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ABSTRACT 

 

Postural sway, a critical indicator of balance control, is often heightened in 

individuals with chronic low back pain (CLBP), age-related decline, and 

neurodegenerative disorders such as Parkinson’s disease. While passive 

exosuits offer ergonomic support, they lack the capacity for real-time corrective 

intervention. This project introduces a lightweight, fabric-based active back-

support exoskeleton powered by pneumatic actuation, designed to detect and 

correct static postural sway. The system integrates an ESP32 microcontroller, 

IMU-based sway detection, and a threshold-based control algorithm for real-

time actuation. The fully assembled prototype was evaluated in 15 subjects 

across varying stance (normal, tandem) and visual (eyes open/closed) conditions 

using surface electromyography (sEMG) and centre of pressure (CoP) metrics. 

Under the most challenging balance condition, Tandem Stance Eyes Closed 

(TSEC), results showed a 51.5% reduction in CoP pathlength, 27.4% and 41.8% 

decreases in Vapmean and Vmlmean, and 34.7% and 20.7% reductions in 

DMLSD and DAPSD, respectively. sEMG analysis indicated a significant drop 

in trunk muscle activation, with External Obliques (38.3%), Rectus Abdominis 

(51.2%), and Erector Spinae (L3) Right (41.8%) showing the largest reductions 

in RMS amplitude during TSEC trials. The sway detection algorithm achieved 

70% classification accuracy, supporting low-power, real-time execution on 

embedded hardware. These findings validate the exosuit’s ability to enhance 

postural stability and reduce neuromuscular strain during quiet stance. The 

system demonstrates potential as a practical rehabilitation aid for individuals 

with CLBP, older adults, or those with early-stage Parkinson’s disease. Future 

work may involve adaptive control integration and broader clinical validation. 

 

Keywords: Active Exoskeleton, Postural Sway, Centre of Pressure (CoP), 

Kinematics, Biomechanics 

 

Subject Area: R856-857 Biomedical engineering. Electronics. Instrumentation  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Postural sway refers to the natural shifting of the body's centre of pressure (CoP) 

while maintaining balance, that occur even during quiet standing, which is 

crucial for postural control and involves sensory and motor coordination. These 

micro-adjustments are essential for maintaining upright balance and are 

mediated by complex neuromuscular coordination involving visual, vestibular, 

and somatosensory systems. However, excessive, or poorly controlled sway is 

commonly associated with chronic low back pain (CLBP), aging, and 

neurological disorders such as Parkinson’s disease (PD), increasing the risk of 

falls and functional decline (Brumagne et al., 2008). In CLBP, exaggerated 

sway often results from altered proprioceptive inputs and compensatory trunk 

stiffness, contributing to instability and recurrent pain episodes (Sung & Lee, 

2024b; Alshahrani et al., 2025). These individuals may adopt rigid motor 

strategies and exhibit slower or asymmetric sway, especially under conditions 

where visual cues are limited. Targeted interventions, such as proprioceptive 

neuromuscular facilitation (PNF) exercises and inspiratory muscle training, 

have shown to improve postural control and reduce pain (Sipko et al., 2021; 

Borujeni, & Yalfani, 2019). Age-related degeneration in muscle strength and 

sensory integration also leads to compromised sway regulation. Elderly 

individuals with CLBP show increased sway in both anterior-posterior and 

mediolateral directions and significantly impaired dynamic balance during 

functional tests, highlighting the interaction between musculoskeletal and 

sensory deficits in older populations (Mesci et al., 2016). Parkinson’s patients 

display abnormal sway due to impaired basal ganglia-mediated control, further 

increasing fall risk and physical disability.  

Therapeutic exercises aimed at reducing postural sway can also 

enhance functional capacity and balance performance, especially in those with 

severe low back pain (Kuukkanen, & Mälkiä, 2000). Gender differences in 

response to interventions like back support exoskeletons (BSEs) must be 

considered, as studies have shown varying effects on postural stability between 
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males and females (Park et al., 2019 & 2021). While BSEs can reduce physical 

demands, they may also challenge postural balance due to their design. 

Addressing rigid postural control strategies in individuals with recurrent low 

back pain, which often rely heavily on ankle proprioception, is important for 

preventing pain recurrences (Brumagne et al., 2008). Overall, correcting 

postural sway through therapeutic exercises, proprioceptive training, and well-

designed exoskeletons can improve stability and reduce pain, with future 

research needed to explore gender-specific effects and task conditions. While, 

passive back support exoskeletons have emerged as a supplementary tool to 

reduce muscular load and provide ergonomic support, they lack the capacity to 

dynamically assist postural correction or adapt to real-time changes in balance 

demands. 

This project aims to address the issue of postural sway using an active 

exoskeleton, with a focus on upper body support. Unlike current solutions that 

primarily use passive exoskeletons or lower body active exoskeletons, which 

tend to be bulky and aesthetically unappealing for everyday use, our approach 

involves developing a lightweight, active back support exoskeleton. The goal is 

to correct postural sway by integrating an active component that is both 

functional and discreet. Current literature supports the effectiveness of lower 

body exoskeletons in mitigating postural sway, but there is a notable gap in 

research regarding upper body exoskeletons. This project will investigate 

whether an active upper body exoskeleton can also effectively address postural 

sway. The report will review relevant literature, evaluate the proposed model's 

feasibility, and discuss the conceptual designs of the prototype. Additionally, 

we will explore the challenges and problems associated with the initial solutions 

and propose strategies to address these issues. 

 

1.2 Importance of the Study 

Postural sway is a common condition characterised by instability in the body's 

stance, it is a critical determinant of physical function and fall risk, especially in 

vulnerable groups like older adults, individuals with neuromuscular disorders, 

and those recovering from injury. The inability to regulate sway effectively 

leads to muscular overcompensation, fatigue, and in many cases, long-term 

disability. This condition affects a broad population and can significantly impact 
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daily functioning and quality of life. Current solutions include soft passive 

exoskeletons, often made of elastics, which are discreet and user-friendly but 

may not provide sufficient support for rehabilitation purposes. While passive 

exosuits made of elastic materials are lightweight and user-friendly, they fall 

short in therapeutic and rehabilitative contexts due to their lack of adaptive 

control. 

On the other hand, many existing lower body active exoskeletons are 

bulky and complex, incorporating large power systems, control units, battery 

packs, and actuators, making them less portable and practical for daily use. Our 

proposed solution aims to develop an upper body active exoskeleton that 

distributes components more uniformly and discreetly, reducing overall 

bulkiness. By investigating this approach, we aim to contribute new knowledge 

and potential solutions to the field of postural sway, offering a more practical 

and aesthetically acceptable alternative. The intended application ranges from 

fall prevention in elderly individuals to balance support in people with CLBP 

and early-stage Parkinson's disease. Our design philosophy emphasizes 

portability, aesthetic integration, and functional efficacy, offering a compelling 

alternative to current tools in the rehabilitation and occupational support space 

(Alshahrani et al., 2025; Ruhe, 2011). 

 

1.3 Problem Statement 

The primary focus of this study is to address postural sway, specifically in static 

or quiet stance situations, through the development and implementation of an 

active exoskeleton system. The challenge is to create a solution that effectively 

corrects postural sway while being practical, lightweight, and suitable for 

everyday use. 

Postural sway, characterised by the natural but sometimes excessive 

oscillation of the body while standing still, presents a significant challenge for 

maintaining balance, especially in individuals with muscular or neurological 

impairments. While existing solutions primarily focus on passive exoskeletons 

or bulky lower body active exoskeletons, there remains a gap in effective, 

practical solutions for correcting postural sway in the upper body. The 

traditional passive exoskeletons, often made from elastic materials, provide 

limited support for rehabilitation and are not suited for more intensive balance 
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correction. Conversely, lower body active exoskeletons, though effective, are 

typically cumbersome and impractical for everyday use. Our project seeks to 

address these issues by developing an active back support exoskeleton designed 

to correct postural sway specifically during static stances. 

 

1.4 Aim and Objectives 

The primary aim of this project is to design and develop a lightweight, active 

back support exoskeleton to effectively address postural sway in the trunk area, 

thereby improving balance and stability during quiet stance. To achieve this aim, 

the project has the following objectives: 

1. Development of back support fabric-based exoskeleton for 

standing posture sway detection and correction. 

2. Develop standing sway classification and detection algorithm. 

3. Test and validate functionality of prototype. 

 

1.5 Scope and Limitation of the Study 

This project will focus on developing an upper body active exoskeleton 

specifically aimed at improving postural sway during static stances. The scope 

includes the design and integration of the exoskeleton, the development of a 

postural sway detection system, and preliminary performance evaluations. The 

project will not address lower body balance issues directly, nor will it explore 

dynamic or high-motion scenarios beyond static stance corrections. Limitations 

of the project include potential challenges in achieving optimal actuator 

performance while maintaining a lightweight and comfortable design. 

Additionally, the effectiveness of the exoskeleton in real-world conditions may 

be constrained by the accuracy and responsiveness of the detection system. The 

project will also need to navigate the trade-offs between the complexity of the 

design and the practical usability of the exoskeleton, ensuring that it remains 

portable and user-friendly. 

 

1.6 Contribution of the Study 

This study presents a novel contribution to the expanding field of postural 

control and wearable assistive technologies by introducing an active upper-body 

exoskeleton specifically designed to mitigate postural sway during static 
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standing. While previous research has extensively explored the relationship 

between chronic low back pain (CLBP) and postural instability, most 

interventions have concentrated on lower-body support systems or passive 

textile-based aids. Clinical evidence demonstrates that individuals with CLBP 

exhibit significantly increased postural sway, characterised by larger sway areas 

and higher sway velocities, under both visual (eyes open) and non-visual (eyes 

closed) conditions. This instability is further exacerbated by age, body mass 

index (BMI), and pain severity (Alshahrani et al., 2025). Despite these findings, 

current interventions either lack the capacity for active correction or are too 

cumbersome for everyday use, particularly among elderly or functionally 

impaired individuals. 

Additionally, research on older adults with CLBP has identified 

pronounced impairments in both dynamic balance and static postural control, 

particularly along the anterior-posterior axis. These impairments are evident in 

functional assessments such as the timed-up-and-go and chair stand tests, where 

individuals with CLBP perform significantly worse than healthy controls 

(Mesci et al., 2016). These findings underscore the critical need for user-friendly, 

targeted interventions that can enhance upper-body stability without 

compromising mobility or comfort. However, most commercially available 

exoskeletons for back support remain passive and offer limited functionality for 

balance correction or therapeutic engagement. 

 Neurophysiological studies further reveal that individuals with chronic 

musculoskeletal pain often adopt maladaptive postural strategies, such as trunk 

stiffening and reduced sway variability. These compensatory mechanisms may 

undermine long-term motor adaptability and postural reflexes (Sung & Lee, 

2024b). The proposed system addresses these issues by employing active 

actuators in conjunction with sensor-driven feedback loops, enabling real-time, 

adaptive sway modulation tailored to the user’s physiological state. This feature 

holds promise for early-stage neurodegenerative populations, including those 

with Parkinson’s disease, where deficits in anticipatory postural adjustments are 

a primary contributor to fall risk. 

 Methodologically, this study also advances the field by introducing a 

novel framework for postural sway detection, classification, and correction 

through an integrated wearable platform. The hybridization of exoskeletal 
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support with intelligent control algorithms marks a significant shift from 

traditional mechanical interventions toward more interactive, therapeutic 

systems. By targeting the upper trunk—an often overlooked but critical 

component of postural regulation—this research opens new avenues in 

exoskeleton ergonomics and rehabilitation science. 

 In conclusion, the study makes a multidimensional contribution by 

addressing a well-defined clinical gap, advancing wearable robotics toward 

active upper-body stabilization, integrating intelligent real-time sway correction 

mechanisms, and establishing foundational principles for applications in aging, 

musculoskeletal, and neurodegenerative populations. This approach aligns with 

emerging evidence suggesting that postural sway abnormalities in CLBP are not 

uniform across individuals (Mikkonen et al., 2022), thus reinforcing the need 

for personalized, dynamic interventions over static, one-size-fits-all solutions. 

 

1.7 Outline of the Report 

This project report begins with Chapter 1: Introduction, which presents the 

background and clinical relevance of postural sway in populations such as 

elderly individuals, patients with chronic low back pain (CLBP), and those with 

early-stage Parkinson’s disease. It defines the problem of insufficient support in 

current passive and lower-body exoskeleton systems and states the aim of 

developing a lightweight, upper-body exosuit for static sway correction. The 

objectives, scope, limitations, and novelty of the proposed approach are also 

discussed, outlining the need for a discreet, functional system that integrates 

wearable sensing and real-time actuation. 

Chapter 2: Literature Review covers a wide range of foundational 

knowledge relevant to postural sway, including its physiological mechanisms, 

types (e.g., quiet stance, anticipatory adjustments), and clinical implications. 

The chapter reviews current treatment modalities, existing exoskeleton 

technologies, and limitations of passive supports. It highlights the lack of 

adaptive, upper-body active systems specifically designed for static sway 

correction. The review also includes detailed comparisons of actuators (e.g., 

pneumatic, servo, soft robotics), wearable sensor technologies (e.g., IMUs, 

sEMG), and algorithmic methods for sway detection, classification, and 

correction. 
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Chapter 3: Methodology and Work Plan provides a step-by-step 

breakdown of the exosuit’s design and development process. It begins with 

system requirements and component selection, including material choice, 

actuator force calculations, and biomechanical design constraints. The hardware 

development section details CAD iterations, fabrication strategies, circuit 

design, and integration of pneumatic and electronic subsystems. This chapter 

also introduces the system architecture, graphical user interface (GUI), and the 

full algorithm pipeline for sway classification. Biomechanical assessment 

methods are described, including CoP metric extraction and EMG muscle group 

monitoring. The chapter concludes with testing protocols involving 36 initial 

data collection subjects and 10 for validation, detailing their stances, visual 

conditions, and inclusion criteria. 

Chapter 4: Results and Discussion presents and interprets experimental 

findings. It includes prototype performance and usability observations (e.g., 

don/doff time, comfort), sway detection algorithm results, and statistical 

analysis of EMG and CoP data across all test conditions. Detailed figures show 

reductions in sway pathlength, directional deviations, and trunk muscle activity. 

Subject-level heatmaps and stance-specific boxplots offer insights into how 

different individuals and stances responded to the intervention. The discussion 

connects these outcomes to clinical goals, supporting the use of such exosuits 

for balance rehabilitation and trunk stabilization. 

Chapter 5: Conclusion and Recommendations summarizes the project's 

achievements in designing a functional, lightweight pneumatic exosuit capable 

of reducing sway and muscular load. It reflects on design trade-offs and 

technical challenges encountered. The recommendations section proposes 

future work directions, such as adaptive thresholding, machine learning-based 

control, improved comfort padding, longer battery life, and clinical trials for 

elderly and Parkinson’s populations. Appendices include extended graphs, raw 

data tables, hardware schematics, and codes. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter explores key aspects of postural sway and corrections. It begins 

with an overview of postural sway, highlighting its role in stability and 

movement, followed by types and causes. It then breaks down the stages of 

clinical implications as well as current treatment. The chapter also covers 

postural sway detection, examines actuators used in exoskeletons, and reviews 

sensors for collecting biomechanical data. Additionally, it reviews previous 

back support exoskeletons designed for rehabilitation, offering insights for safe 

and effective exoskeleton design. Overall, it provides a comprehensive view of 

technological advancements to help determine the feasibility of powered back 

support exoskeletons for postural sway. 

 

2.2 Postural Sway 

Postural sway refers to the involuntary, continuous movement of the body’s 

centre of mass as it strives to maintain balance during quiet standing. It reflects 

the body’s complex interaction with its environment, influenced by sensory 

input, neurological control, and physical condition. A variety of factors, 

including sensory deficits, injuries, and age, can significantly alter postural 

sway, making it a valuable measure in assessing balance and stability across 

different populations. 

 

2.2.1 Postural Sway Dynamics 

Postural sway consists of two primary components: a slow non-oscillatory 

movement and a faster damped-oscillatory motion. These components are 

managed through feedback mechanisms within the sensory-motor system 

(Kiemel et al., 2006). The slow non-oscillatory movement reflects the body’s 

large-scale adjustments to maintain balance, while the faster, oscillatory 

movement involves finer adjustments. Both mechanisms work in tandem to 

ensure postural stability, highlighting the critical role of the nervous system in 

managing sway under different conditions. 



9 

2.3 Types and Causes of Postural Sway 

2.3.1 Age-Related Variations in Postural Sway 

The development of postural stability follows a clear trajectory across the 

lifespan. In childhood, postural sway decreases as sensory and motor systems 

mature, with significant improvements noted around age seven. Boys generally 

demonstrate faster stabilisation compared to girls, possibly due to differences in 

motor development (Riach & Hayes, 1987). However, in older adults, the 

natural increase in sway is more closely associated with the deterioration of 

sensory function than age itself (Anson et al., 2017). This suggests that 

interventions targeting sensory enhancement could mitigate the effects of aging 

on balance and postural control. 

 
2.3.2 Sensory Impairments and Their Impact on Postural Sway 

Sensory inputs, particularly visual, vestibular, and proprioceptive information, 

play a crucial role in maintaining postural stability. Any impairment in these 

systems can lead to significant changes in postural sway. For instance, 

individuals with vision loss, vestibular dysfunction, or proprioceptive deficits 

often exhibit exaggerated sway patterns as the body struggles to compensate for 

missing or altered sensory feedback (Carroll & Freedman, 1993). This 

highlights the interdependence of sensory systems in maintaining balance and 

the need for multisensory rehabilitation in populations with sensory 

impairments. 

 
2.3.3 Postural Sway Following Injuries 

Injuries, particularly those affecting the musculoskeletal system, can have long-

lasting effects on postural control. For example, anterior cruciate ligament (ACL) 

reconstruction, a common surgical procedure following knee injuries, has been 

shown to result in persistent postural sway deficits even after patients have 

returned to normal activities. These findings underscore the importance of 

incorporating balance-focused rehabilitation programs to address lingering 

instability and prevent further injury (Paterno et al., 2013). 

 
2.3.4 Postural Sway in Neurological Conditions 

In neurological conditions like Parkinson’s disease, postural sway becomes a 

significant risk factor for falls. As the disease progresses, motor control 
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deteriorates, leading to an increase in sway amplitude and frequency. Excessive 

postural sway in Parkinson’s patients is closely correlated with an elevated risk 

of falls, making postural assessment a critical tool in evaluating fall risk and 

designing intervention strategies (Frenklach et al., 2009). 

 
2.3.5 Summary 

Postural sway serves as a critical measure of balance and stability across various 

populations. Its dynamics are influenced by age, sensory function, injury, and 

neurological conditions. Targeted interventions, such as rehabilitation programs 

and balance training exercises, can help improve postural control and reduce the 

risk of falls in populations with increased sway. Understanding the factors that 

influence postural sway is essential for developing effective strategies to 

enhance balance and prevent injuries. Table 2.1 provides a summary of the 

distinct types of postural sway and their underlying causes, emphasising the 

wide range of factors that can influence balance and stability. 

 

Table 2.1: Types of Postural Sway and Their Causes 

Type of Postural 
Sway 

Causes Study 

Normal postural 
sway 

Natural movement to maintain 
balance, controlled by sensory 

feedback loops 

(Kiemel et 
al., 2006) 

Increased sway in 
childhood 

Immature visual and motor systems in 
young children 

(Riach & 
Hayes, 1987) 

Sway with sensory 
impairment 

Loss of proprioception, vision, or 
vestibular function 

(Anson et al., 
2017) 

Increased sway 
post-injury 

Long-term deficits following ACL or 
other musculoskeletal injuries 

(Paterno et 
al., 2013) 

Parkinson’s 
disease 

Progressive motor deficits leading to 
excessive sway and increased fall risk 

(Frenklach et 
al., 2009) 

 

2.4 Forms of Postural Sway 

Postural sway refers to the involuntary movements made by the body to 

maintain balance in various static and dynamic contexts. The degree and nature 

of sway depend on the task being performed, the physical and cognitive 

demands placed on the body, and individual factors such as age, sensory input, 

and muscle function. This literature review explores key forms of postural sway, 
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including quiet stance, lifting tasks, anticipatory postural adjustments (APA), 

and cognitive load conditions, Table 2.2 provides an overview. 

 

Table 2.2: Forms of Postural Sway 

Type Characteristics Study 

Quiet Stance Involves minor involuntary sway 

to maintain balance; influenced by 

vision, age, and muscle activation. 

(Kiemel et al., 2006) 

Lifting Tasks Postural sway increases during 

lifting due to added load, with 

adjustments to maintain COM and 

COP. 

(Hill et al., 2018) 

Anticipatory 

Postural 

Adjustments 

APAs are pre-movement 

adjustments to avoid balance loss 

during voluntary motion, such as 

swaying or weight shifts. 

(Krishnamoorthy & 

Latash, 2005) 

Cognitive Load 

Conditions 

Cognitive tasks during standing 

increase sway as attention is 

divided between cognitive and 

postural control. 

(Mitra et al., 2013) 

 

2.4.1 Quiet Stance 

Quiet stance is the simplest and most studied form of postural sway, involving 

minor involuntary movements while a person stands still. The centre of pressure 

(CoP) displacement during quiet stance is relatively low compared to more 

dynamic tasks, making it an ideal measure of baseline balance and stability. 

Factors such as vision, muscle stiffness, proprioception, and age can influence 

postural sway during quiet stance. For instance, older adults typically exhibit 

increased sway due to sensory decline and reduced muscle mass (Kiemel et al., 

2006; Kouzaki & Masani, 2012). Quiet stance serves as a reference point for 

understanding more dynamic postural tasks and is characterised by slow 

feedback loops that help stabilise the centre of mass (COM) (Kiemel et al., 

2006). 
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Quiet stance refers to the act of maintaining balance with minimal 

voluntary movement. During quiet stance, postural sway is controlled primarily 

by slow, non-oscillatory feedback mechanisms that help stabilise the COM. 

Several key factors influence quiet stance such as feedback loops. The body's 

ability to stabilise itself during quiet stance is governed by slow feedback loops, 

which prevent excessive sway by adjusting muscle activity and sensory input 

(Kiemel et al., 2006). Besides, the degree of muscle activation during quiet 

stance can significantly influence sway patterns. Increased activation of the 

ankle muscles, for example, can lead to greater sway, while external supports, 

such as orthotics, can reduce sway by adding passive stiffness (Warnica et al., 

2014). 

The spectral content of sway us also key. Studies examining the 

spectral analysis of postural sway during quiet stance have revealed that 

different sensory inputs, such as vision and surface compliance, affect sway 

differently in specific directions (anteroposterior versus medio-lateral) (Singh 

et al., 2012). Lastly, older adults tend to exhibit greater postural sway during 

quiet stance due to age-related declines in muscle strength, proprioception, and 

physiological factors like increased tremors in the plantar flexor muscles 

(Kouzaki & Masani, 2012). Table 2.3 summarises the factors and findings of 

quiet stance postural sway. 

 

Table 2.3: Factors of Quiet Stance Postural Sway 

Key Factor Findings Study 

Feedback Loops 

in Quiet Stance 

Slow feedback mechanisms stabilise 

COM during quiet stance, minimising 

postural sway. 

(Kiemel et al., 

2006) 

Muscle 

Activation 

Increased muscle activation increases 

sway; passive stiffness (e.g., orthotics) 

reduces sway. 

(Warnica et 

al., 2014) 

Spectral 

Content of Sway 

Vision and surface compliance influence 

sway in specific directions 

(anteroposterior vs. medio-lateral). 

(Singh et al., 

2012) 
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Age and Muscle 

Volume 

Older adults show greater sway due to 

reduced muscle volume and increased 

physiological tremor. 

(Kouzaki & 

Masani, 2012) 

 

2.4.2 Lifting Tasks 

Postural sway increases during lifting tasks due to the additional physical load, 

which requires the postural system to adjust dynamically to maintain balance. 

When lifting, individuals must control both the COM and COP, making sway 

more pronounced. External loads, changes in posture, and environmental factors 

can significantly affect sway patterns, often leading to larger oscillations as the 

body compensates for the shifting weight (Hill et al., 2018). This increase in 

sway highlights the complex interaction between mechanical loading and 

postural control systems during physical tasks. 

 

2.4.3 Anticipatory Postural Adjustments (APA) 

Anticipatory postural adjustments (APAs) are pre-movement shifts made by the 

body to prepare for voluntary actions, such as weight shifting, reaching, or body 

swaying. APAs help minimise the risk of imbalance by adapting the body's 

posture to account for upcoming movements. These adjustments are particularly 

important in tasks requiring dynamic stability, such as walking, turning, or 

sports activities (Krishnamoorthy & Latash, 2005). Effective APAs reduce the 

likelihood of falls or instability by proactively aligning the body’s COM before 

motion. 

 

2.4.4 Cognitive Load Conditions 

Engaging in cognitive tasks while standing has been shown to increase postural 

sway. When attention is divided between cognitive demands and postural 

control, the brain allocates fewer resources to balance, leading to a greater 

degree of sway. This phenomenon is most apparent in quiet stance conditions, 

where individuals show increased postural instability when simultaneously 

performing cognitive tasks such as counting or problem-solving (Mitra et al., 

2013). This interaction underscores the importance of attentional resources in 

maintaining postural stability, especially in populations where multitasking may 

pose additional risks, such as older adults. 
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2.5 Clinical Implications 

Postural sway is a critical measure of balance control, and excessive sway is 

often associated with a range of clinical conditions, including Parkinson's 

disease, age-related decline, and musculoskeletal disorders. Increased postural 

sway can significantly elevate the risk of falls, particularly in populations such 

as the elderly and individuals with neurological impairments. Understanding the 

clinical implications of postural sway is essential for developing effective 

interventions to reduce fall risk and improve balance. 

Key clinical implications include Parkinson’s disease, aging, and 

occupational hazards. For instance, patients with Parkinson’s disease exhibit 

increased postural sway, particularly in the mediolateral (side-to-side) direction. 

This abnormal sway pattern compromises stability and significantly increases 

the risk of falls. Addressing postural instability is thus a major focus in 

managing Parkinson’s symptoms. Besides, age-related deterioration in 

proprioception and muscle mass leads to greater postural sway, particularly 

during quiet standing. This increased sway contributes to a higher risk of falls 

and decreased mobility in older adults (Kouzaki & Masani, 2012). Balance 

training and strength maintenance are crucial for mitigating these effects. 

Occupational hazards are also implications, thus the vast development of 

exoskeletons in military (Mendoza et al., 2023). Workers involved in physically 

demanding jobs, such as repetitive tasks or heavy lifting, often experience 

elevated postural sway due to muscle fatigue and strain. This increased sway, 

particularly in the lumbar region, heightens the risk of musculoskeletal injuries 

over time (Koopman et al., 2019). Ergonomic interventions, including the use 

of assistive devices, are commonly recommended to reduce injury risk.  

 

2.6 Current Treatments 

Several interventions are used to improve postural control and minimize 

excessive sway, which is detailed in Table 2.4. These approaches include 

physiotherapy, balance training, and the application of assistive devices like 

passive exoskeletons. While passive exoskeletons have demonstrated 

effectiveness in reducing physical strain during activities such as lifting, no 

active exoskeleton technology has been specifically developed to aid in quiet 
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stance. This gap exists due to the inherent challenges of real-time feedback and 

movement adaptation required for static tasks. 

 

Table 2.4: Types of Postural Sway and Their Current Treatment 

Type of 
Postural Sway 

Current Treatment Study 

Quiet Stance Balance training, passive back-support 
exoskeletons for reducing muscle strain. 

(Park et al., 
2021) 

Dynamic 
Movements 

Physiotherapy and active exoskeletons 
designed to support dynamic movement 
tasks. 

(Layne et 
al., 2022) 

 

2.6.1 Challenges in Developing Active Exoskeletons for Quiet Stance 

Active exoskeletons are designed to provide real-time adjustments to support 

movement and balance. However, in the context of quiet stance, where postural 

adjustments are minimal and constant, designing an exoskeleton capable of 

continuous, precise feedback is highly complex. The continuous monitoring 

required for small, involuntary movements makes passive systems more 

practical for quiet stance applications. For instance, passive exoskeletons, such 

as the Laevo model, effectively reduce muscle strain without needing to engage 

in dynamic posture correction (Park et al., 2021). These devices are tailored for 

load reduction, not for real-time balance control. 

Active exoskeletons are highly effective for dynamic movement tasks, 

where movement support and real-time feedback are essential. However, 

current technology lacks the ability to provide the continuous, subtle feedback 

necessary for static balance tasks like quiet stance. As a result, passive systems 

remain the preferred option for tasks involving postural control during periods 

of relative stillness, while active exoskeletons are used to assist with more 

dynamic movements. 

 

2.6.2 Summary 

Postural sway plays a critical role in the diagnosis and management of various 

clinical conditions, particularly in populations at risk of falls and 

musculoskeletal injuries. While interventions like passive exoskeletons are 

useful for reducing strain during physical tasks such as lifting, the development 
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of active systems for static postural control, such as quiet stance, remains limited. 

Future research should focus on bridging this gap to create more comprehensive 

treatment options for balance-related disorders. 

 
2.7 Anatomical and Biomechanical Considerations of Spine in 

Exoskeleton Design 

The cervical spine, comprising seven vertebrae (C1-C7), depicted in Figure 2.1, 

represents a structurally delicate yet highly mobile region of the body. Its role 

in supporting and protecting critical neurological structures, such as the spinal 

cord and brainstem, makes it particularly vulnerable to injury. Consequently, 

the design of assistive devices like exoskeletons must consider the anatomical 

and biomechanical characteristics of this region to avoid exacerbating injury 

risks. This literature review discusses the constraints and risks associated with 

cervical spine support, highlighting why exoskeleton designs should avoid 

direct contact or support at this level. 

 (a)                   (b)  

Figure 2.1: (a) Spinal Cord, (b) Cervical Spine (C1-C7) 

 

2.7.1 Anatomical and Biomechanical Vulnerability of the Cervical Spine 

The cervical spine is uniquely characterised by its wide range of motion and 

relatively low structural support compared to other spinal regions. This 

flexibility, crucial for head rotation, flexion, and extension, also makes the 

cervical vertebrae more prone to injury under mechanical stress. According to 

Shea et al. (1991), undue pressure or improper mechanical load in this area 

significantly raises the risk of spinal cord damage, especially in patients with 

pre-existing conditions like cervical spinal cord injuries (SCIs). Given this 
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vulnerability, exoskeleton designs generally avoid targeting the cervical spine 

to prevent additional injury risk and maintain the integrity of the spinal cord. 

The cervical spine plays a critical role in balancing and aligning the 

head over the torso, a function that requires high flexibility. Research suggests 

that exoskeletons applied directly to the cervical region could interfere with 

natural posture and proprioception, leading to reduced mobility. Goldschmidt et 

al. (2019) note that biomechanical support systems, such as exoskeletons, can 

compromise the natural alignment and movement of the cervical spine, 

restricting head and neck motion. This interference can result in discomfort and 

increase the risk of biomechanical strain, emphasising the importance of 

preserving the cervical spine's natural range of motion. 

 
2.7.2 High Risk of Injury in the Cervical Region 

While cervical exoskeletons have been investigated for their potential to 

alleviate neck strain during repetitive tasks, these systems can inadvertently 

increase the risk of muscle fatigue or injury. Misalignment of the exoskeleton 

with the natural biomechanics of the cervical spine can impair neck motion, 

leading to discomfort and strain over time. Giovanelli et al. (2022) suggest that 

exoskeleton support is more effective when applied to the thoracic and lumbar 

regions, as these areas bear more load and are less prone to biomechanical 

disruption than the cervical spine. Supporting the cervical region directly with 

an exoskeleton can lead to muscle strain, emphasising the importance of 

designing devices that align with natural spinal movements. 

 
2.7.3 Implications for Exoskeleton Design 

The anatomical and biomechanical constraints of the cervical spine present 

significant challenges for exoskeleton design. To mitigate injury risks and 

maintain cervical mobility, it is recommended that exoskeletons be designed to 

support the spine at T1 and below. By doing so, exoskeletons can provide the 

necessary support for posture and movement without compromising the 

flexibility and function of the upper spinal region. 

Key implications for exoskeleton design include: 

1. Injury Prevention: Positioning exoskeletons at T1 and below minimises 

the risk of spinal cord injuries in the fragile cervical region. 
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2. Maintaining Natural Range of Motion: Avoiding the cervical spine in 

exoskeleton design preserves natural head and neck mobility, reducing 

discomfort and biomechanical strain. 

3. Ergonomic Considerations: Supporting the thoracic and lumbar regions 

ensures load bearing without hindering upper spinal flexibility, 

enhancing long-term user comfort and device usability. 

 

2.7.4 Summary 

The cervical spine's anatomical and biomechanical characteristics make it 

especially prone to injury and strain, underscoring the need for careful 

consideration in exoskeleton design. Supporting the spine at T1 and below 

minimises the risk of injury while maintaining cervical mobility and alignment, 

ensuring that assistive devices can enhance, rather than hinder, natural 

movements. Further research and development in exoskeleton design should 

continue to prioritise these considerations to optimise safety and usability. Table 

2.5 summarises the key reasons why exoskeleton support should avoid the 

cervical spine and instead focus on regions below T1, highlighting the 

implications for preventing injury and maintaining natural biomechanical 

function. 

 

Table 2.5: Reasons Why Exoskeleton Support Should Avoid the Cervical 

Spine and Be Positioned from T1 and Below 

Reason Implication Study 
Fragility and 
Vulnerability 

Supporting the cervical spine 
increases the risk of spinal cord 
injury due to its delicate structure and 
mobility. 

(Shea et al., 
1991) 

Alignment and 
Mobility Impact 

Exoskeleton support at the cervical 
spine can interfere with natural head 
and neck movements, leading to 
discomfort. 

(Goldschmidt et 
al., 2019) 

Muscle Fatigue 
and Strain 

Cervical exoskeletons can cause neck 
strain or fatigue due to misalignment 
with natural cervical biomechanics. 

(Giovanelli et 
al., 2022) 
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2.8 Actuators for Exoskeletons 

Pneumatic actuators, electrical motors, series elastic actuators, hydraulic 

actuators, and cable-driven systems are commonly employed in exoskeletons, 

as outlined in Table 2.6. Pneumatic actuators, such as McKibben air muscles 

(constructed from latex or silicone rubber) and PneuNets bending actuators 

(made from elastomeric materials), are particularly lightweight and offer 

smooth operation. However, a limitation of conventional pneumatic systems is 

their dependence on an external air compressor. Pneumatic actuators are ideal 

for lightweight applications, while electrical brushless DC motors excel in 

energy efficiency and control precision. Series elastic actuators (SEAs) are 

favoured for their ability to control force precisely and absorb shocks, especially 

in rehabilitation settings. Hydraulic actuators, though powerful and compact, 

are less frequently used due to the complexity of their systems. 

 

Table 2.6: General Types of Actuators for Exoskeletons 

Studies Actuator Description Advantages 

Park et al., 
2014; Hu et al., 
2019; Pardoel & 

Doumit, 2019 

Pneumatic 
(McKibben/ 
PneuNets) 

- Inflatable inner 
bladder within 
a braided mesh. 

-  

Lightweight, 
adjustable, 

smooth 
operation 

Renesas2024; 
Hybart & Ferris, 
2022; Hsu et al., 

2023 

Electrical 
(Brushless DC) 

Converts DC 
electrical energy to 
mechanical energy 

High efficiency, 
precise torque 

and speed 
control 

Junior et al., 
2016; Meijneke 

et al., 2021; 

Series Elastic 
Actuator (SEA) 

Motor connected 
to load via an 

elastic element 

 

Tang et al., 
2013; Lu et al., 

2017 

Hydraulic 
Actuator 

Converts hydraulic 
energy to 

mechanical energy 

Compact, 
powerful 

 

2.8.1 Pneumatic Actuators 

Pneumatic artificial muscles (PAMs), also known as McKibben air muscles, are 

widely used as pneumatic actuators in exoskeletons. For example, Park et al. 

(2014) utilised PAMs in an active soft orthotic device to enhance mobility. 

PAMs consist of an inflatable inner bladder, typically made of latex or silicone, 

encased in a braided mesh that converts radial expansion into linear contraction. 
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End clamps secure the muscle, preventing slippage during the contraction and 

relaxation phases. These actuators can contract up to 25% of their original length, 

and their force output is influenced by variations in size and stiffness (Soft 

Robotics Toolkit, n.d.a). Another common pneumatic actuator is the PneuNets 

bending actuator, which consists of a series of chambers embedded in an 

elastomer. When inflated, these chambers generate movement, and their 

behaviour is determined by the geometry of the chambers and the elastomer's 

material properties (Soft Robotics Toolkit, n.d.b). 

Compared to traditional pneumatic cylinders, both PAMs and 

PneuNets offer the advantages of being significantly lighter and smoother in 

operation, as they lack sliding mechanical parts. For instance, PAMs weigh 

approximately 27 g/m (Baiju, 2022), whereas pneumatic cylinders can weigh up 

to 647 g/m (RS Malaysia, 2020). However, PAMs and PneuNets are also more 

susceptible to damage due to the thinner materials used in their construction, 

making them less durable than pneumatic cylinders (Baiju, 2022; Soft Robotics 

Toolkit, n.d.a). PAMs and PneuNets offer efficient, lightweight solutions for 

exoskeleton applications, but their durability can be a limitation when compared 

to more robust pneumatic cylinders, which are also not considered due to high 

force and linear only actuation. Overall, PAM and PneuNets offer the advantage  

of being softer and flexible when unactuated, with PneuNets, other pneumatic 

based soft robotics and several types of PAMs having bending motion 

capabilities (Guan et al.,2020a). 

To further explore the realm of pneumatic based actuators, there are 

many types of soft pneumatic actuators that go beyond just the normal uniaxial 

actuation of conventional pneumatic actuators (Chen et al., 2022). A literature 

review table is constructed in Table 2.7 below discussing the array of non-linear 

pneumatic-based actuators.  
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Table 2.7: Literature Review Table: Pneumatic-Based Actuators 

Source Journal Key Findings 
Guan et al., 2020a Soft Robotics Proposed bending and helical PAMs inspired by elephant trunks, with a model of 

generalised bending behaviour. Demonstrated the use of bending in soft robotic 
manipulators. 

Xiao et al., 2021 Smart Materials and Structures Developed a BPAM with multi-degree freedom, which can bend in 3D space. 
Demonstrated its applicability in flexible, soft-bodied robots. 

Takashima et al., 
2011 

SICE Annual Conference A new curved PAM actuator using shape-memory polymer was created, capable 
of bending upon air inflation with heat-controlling actuation directions. 

Guan et al., 2020b Smart Materials and Structures Presented nonlinear models of bending extensile and contractile PAMs, used in 
humanoid hands with improved bending performance. 

Saga et al., 2022 Sensors Developed a smart pneumatic muscle actuator with integrated bend sensors, 
mimicking the human muscle spindle for accurate bending feedback. 

Geng et al., 2011 Applied Mechanics and Materials Focused on elongation-type PAMs and their bending stiffness, exploring nonlinear 
relationships between air pressure and bending deformation. 
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2.8.2 Electrical Motors (Stepper and Servo) 

In exoskeleton system design, servo and stepper motors play key roles, each suited 

to different tasks based on their distinct advantages and limitations. Servo motors 

are preferred for high-precision, dynamic control, while stepper motors excel in 

cost-effective, incremental movement applications. This section highlights the key 

features, pros, cons, and applications of each motor type, supported by literature 

(Fattah, 2010; Hong-bin et al., 2017). 

 

2.8.2.1 Servo Motors: Precision and Dynamic Control 

Servo motors offer continuous, precise control of speed, position, and torque 

through closed-loop systems with feedback mechanisms such as encoders, 

making them ideal for complex rehabilitation tasks (Flieh et al., 2017 & 2019). 

Their high torque and fast response make them well-suited for tasks like walking 

assistance and dynamic posture correction (Anderson et al., 2019). 

1. Energy Efficiency: Some designs use less magnet material, improving 

energy efficiency and reducing costs (Flieh et al., 2017). 

2. Versatility: Servo motors come in several types (AC, DC brushless, 

synchronous), allowing for a wide range of applications (Krishnan, 1987). 

3. Safety: Wireless drives reduce the risk of electrocution and offer better 

environmental sealing (Jiang et al., 2019). 

However, servo motors are also complex and costly due to their need for 

continuous feedback systems, and can suffer from backlash and thermal sensitivity, 

especially in miniaturised designs (Sun et al., 2023; Barth, 2000; Krishnan, 1987). 

 

2.8.2.2 Stepper Motors: Simplicity and Cost Efficiency 

Stepper motors, operating through discrete steps without the need for feedback, are 

ideal for simple, incremental movements in more affordable applications (Fattah, 

2010). They excel at holding positions without consuming power, making them 

useful in static load-bearing exoskeleton components (Fu & Ran, 2022). 

1. Easy Control: Stepper motors require no complex control systems, reducing 

costs and simplifying implementation (Harshvardhan et al., 2015). 

2. High Torque at Low Speeds: Ideal for automation equipment where low to 

medium speed is required (Fu & Ran, 2022). 

However, stepper motors are limited by mechanical oscillation, step loss, 

and poor adaptability to varying loads due to their open-loop control, which can 
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cause issues in precision-critical tasks (Wang et al., 2017; Bianculli, 1970). They 

are best suited for upper-limb exoskeletons and robotic prosthetics that prioritise 

positional accuracy over dynamic movement (Faghihi et al., 2015). 

 

2.8.2.3 Summary 

As a summary, Table 2.8 compares the basic differences of the stepper and servo 

motor, while Table 2.9 discusses the pros and cons of each actuator. 

 

Table 2.8: Comparative Table of Servo and Stepper Motors 

Feature Servo Motors Stepper Motors 
Control 

Mechanism 
Closed loop with continuous 
feedback (Flieh et al., 2017) 

Open loop, no feedback 
(Fattah, 2010) 

Precision High precision and dynamic 
control (Flieh et al., 2019) 

Moderate precision for 
incremental steps (Fattah, 

2010) 
Torque High peak torque, fast response 

(Anderson et al., 2019) 
High torque at low speeds 

(Fu & Ran, 2022) 
Cost Higher cost due to complex 

control (Sun et al., 2023) 
Lower cost, simple control 

(Harshvardhan et al., 
2015) 

Energy 
Efficiency 

Energy-efficient designs 
available (Flieh et al., 2017) 

Holds position without 
power consumption (Fu & 

Ran, 2022) 
Applications Dynamic rehabilitation 

exoskeletons (Flieh et al., 2017) 
Upper-limb exoskeletons, 
prosthetics (Faghihi et al., 

2015) 
Drawbacks Backlash, thermal sensitivity 

(Krishnan, 1987) 
Mechanical oscillation, 
step loss (Wang et al., 

2017) 
 

Table 2.9: Pros and Cons Table of Servo and Stepper Motor 

Motor 
Type 

Pros Cons 

Servo 
Motors 

High precision and torque 
(Flieh et al., 2019) 

Expensive and complex control 
systems (Sun et al., 2023) 

Fast response for dynamic 
tasks (Anderson et al., 2019) 

Thermal sensitivity, backlash in 
small designs (Barth, 2000) 

Energy-efficient options 
(Flieh et al., 2017) 

Requires constant feedback, 
increasing costs (Flieh et al., 
2018) 
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Stepper 
Motors 

Easy control, cost-effective 
(Harshvardhan et al., 2015) 

Prone to mechanical oscillation, 
step loss (Wang et al., 2017) 

High torque at low speeds 
(Fu & Ran, 2022) 

Low precision, poor adaptability 
to varying loads (Bianculli, 1970) 

Holds position without 
continuous power (Fu & 
Ran, 2022) 

Limited by low resolution, 
reduced torque in multi-rotor 
setups (Groenhuis et al., 2021) 

 

2.8.3 Series Elastic Actuators and Cable-Driven Systems  

Series Elastic Actuators (SEAs) and cable-driven systems are gaining 

prominence in the fields of physical human-robot interaction, rehabilitation 

robotics, and exoskeleton design due to their compliance, safety, and flexibility. 

This subsection synthesises the latest advancements in the design, modelling, 

and control of these systems, highlighting their growing role in enhancing 

human-robot interaction. Several studies have developed advanced models and 

control strategies for cable-driven SEAs. A notable approach involved using a 

velocity-controlled DC motor as the power source, combined with a two degrees 

of freedom (2-DOF) control scheme, to achieve robust torque control. This 

method demonstrated superior performance compared to traditional PD 

controllers, particularly in applications requiring precision and adaptability. 

Similarly, another study utilised the 2-DOF control method to effectively 

separate reference tracking from robustness goals, validating its effectiveness 

through simulations (Zou et al., 2016). 

Besides, trajectory-tracking control in cable-driven upper-limb 

exoskeletons using SEAs has been a focus of research due to the low inertia and 

inherent compliance offered by elastic components. One approach combined 

iterative learning techniques with a model predictive controller, achieving high 

precision and sensorless force control (Shu et al., 2023). Additionally, 

impedance control has been improved by targeting specific frequency ranges 

relevant to human-robot interaction. For example, a H∞ synthesis framework 

was introduced to optimise stiffness control across multiple frequency bands, 

ensuring precise and robust performance (Yu et al., 2019). Recent innovations 

in SEA design have improved their application in various robotic systems. A 

novel backdrivable cable-driven SEA (BCDSEA) was introduced, 

incorporating a cable-pulley system and a backspring to enhance backdrivability 
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and dynamic performance (Wang et al., 2019). Another advancement presented 

a compact rotary SEA with Bowden cables for upper-limb rehabilitation robots. 

This design featured direct spring displacement measurement and mechanisms 

to absorb backlash, thus improving overall actuator performance (Zhang et al., 

2020). 

Control strategies for SEAs have been extensively researched and 

validated through experiments. For instance, a PD controller optimised using 

the linear quadratic regulator (LQR) method was applied to a cable-driven SEA, 

showing improved tracking during sinusoidal movement experiments (Ai et al., 

2021). Additionally, a disturbance observer-based torque-mode control 

algorithm was introduced to address variable friction in Bowden cables, 

ensuring zero output torque control. This method was validated through human 

subject experiments, demonstrating its robustness and adaptability (Lu et al., 

2015). The integration of SEAs in rehabilitation systems and exoskeletons has 

been extensively explored. A notable example is the development of a body 

weight support system using a linear SEA, which provides precise unloading 

force for gait training. This system demonstrated lower power consumption and 

more accurate cable force control compared to conventional systems (Mirzaee 

et al. 2019). In addition, SEAs with Bowden cables have been utilised in 

exoskeletons to achieve compliant actuation, mimicking the behaviour of 

biological muscles, thereby improving the flexibility and performance of 

exoskeleton joints (Zou et al., 2016). 

Overall, advancements in SEAs and cable-driven systems have 

significantly enhanced the design and control of robotic systems, particularly 

for human-robot interaction and rehabilitation applications. Innovations in 

modelling, control strategies, and design have made these systems more 

compliant, efficient, and safe. Ongoing research promises further improvements, 

particularly in the areas of backdrivability, energy efficiency, and sensorless 

control, making these systems increasingly adaptable to diverse applications. 

Table 2.10 summarises both systems. 
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Table 2.10: Summary Table of SEA and Cable-Based Systems 

Aspect Series Elastic Actuators (SEAs) Cable-Driven Systems 
Modelling & 

Control 
2-DOF control for robust torque control 

(Zou et al., 2016) 
Trajectory tracking using predictive control 

(Shu et al., 2023) 
Impedance Control Optimised stiffness control across frequency bands 

(Yu, Zou, & Sun, 2019) 
Sensorless control in cable-driven systems 

(Shu et al., 2023) 
Design Innovations Backdrivable cable-driven SEAs 

(Wang et al., 2019) 
Bowden cables with backlash absorption 

(Zhang et al., 2020) 
Control Strategies LQR-optimized PD controller 

(Ai et al., 2021) 
Torque-mode control with disturbance observers 

(Lu et al., 2015) 
Applications Gait training, lower power consumption 

(Mirzaee, Moghadam, & Saba, 2019) 
Compliant actuation for exoskeletons, mimicking muscles 

(Zou et al., 2016) 
Advantages High compliance, precise control, low power consumption Flexibility, cost-effectiveness, sensorless control 
Limitations Complex control strategies, potential for mechanical 

oscillation 
Variable friction and reduced backdrivability in some 

designs 
 
2.8.4 Soft Robotic Actuators 

Soft robotic actuators come in various forms, including pneumatic-based systems, and are integral to the field of soft robotics. General soft robotic 

actuators include small-scale actuators that range from nanometres to centimetres in size and utilise smart materials responsive to stimuli like heat and 

light, enabling large deformations and complex motions (Chathuranga et al,, 2022; Sambyal et al., 2023). Fluidic Elastomer Actuators (FEAs) are another 

common type, utilising pressurised fluids within elastomeric structures to achieve flexible, adaptable movement, particularly useful in delicate 
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environments such as surgery (Boyraz et al., 2018). Electromagnetic soft actuators, which use flexible materials like silicone combined with metals, 

generate motion through magnetic forces, offering advantages in speed, precision, and compactness (Do et al., 2018). 

Specifically focusing on pneumatic-based soft actuators, Pneumatic Networks (Pneu-Nets) utilise pressurised air in elastomer channels to create 

movement, with recent innovations enhancing efficiency by reducing gas consumption and increasing actuation speed (Mosadegh et al., 2014). Precharged 

pneumatic actuators, which store pressurised air for untethered operation, modulate motion via tendons, making them compact and self-sufficient (Li et 

al., 2018). Origami-inspired pneumatic actuators, combining principles of origami with pneumatic designs, offer higher force output and compact storage, 

making them highly effective in space-constrained robotic applications (Kim et al., 2021). Soft pneumatic actuators have become particularly valuable 

in tasks requiring delicacy, such as in rehabilitation and object manipulation, where their flexibility and compliance enable safe interactions (Antonelli 

et al., 2018). In conclusion, the diversity of soft robotic actuators, especially pneumatic systems, underscores their adaptability and effectiveness in 

generating complex and controlled motions across various applications. Table 2.11 compiles the unique features and applications of different soft robotics 

actuators.  

Table 2.11:Summary Table of Soft Robotics Actuators 

Type of Actuator Key Features Applications Source 
Small-Scale Soft 

Actuators 
Nanometre- to centimetre-scale soft actuators using smart 
materials like heat, light, and magnetic fields. 

Nanorobotics, biomedical devices, 
small-scale manipulators. 

Mushtaq et al., 
2019 

Fluidic Elastomer 
Actuators (FEAs) 

Uses pressurised fluid inside elastomers to generate 
motion; high compliance and adaptability. 

Medical devices, soft robotics in 
delicate environments, rehabilitation. 

Boyraz et al., 
2018 

Electromagnetic Soft 
Actuators 

Flexible actuators using silicone and metal; produces 
motion through magnetic fields; high speed and precision. 

Tactile displays, biomedical devices, 
soft robotic grippers. 

Do et al., 2018 
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Pneumatic Networks 
(Pneu-Nets) 

Elastomeric actuators that use air pressure in channels to 
create bending and motion; fast actuation with reduced 
gas usage. 

Soft robotics requiring large 
amplitude movements with simple 
controls. 

Mosadegh et 
al., 2014 

Precharged Pneumatic 
Actuators 

Actuated by precharged air; controlled by tendons for 
complex movements; eliminates need for constant air 
supply. 

Untethered autonomous robots, soft 
grippers. 

Li et al., 2018 

Origami-Inspired 
Pneumatic Actuators 

Soft actuators with origami-patterned chambers; 
expandable design for higher force output and 
compactness when not in use. 

Wearable robotics, robotic gloves, 
soft grippers. 

Kim et al., 
2021 

Soft Pneumatic Hand 
Actuators 

Hyper-elastic silicone actuators for human-robot 
interaction; mimics human hand movements with high 
compliance. 

Robotic hands for collaborative 
robotics, rehabilitation devices. 

Antonelli et 
al., 2018 

Pneumatic Memory 
Actuators 

Uses air (not electricity) to control the actuation state, 
enabling reduced hardware for complex soft robot control. 

Soft robotic systems like robotic 
hands and musical instruments. 

Hoang et al., 
2021 

Pneumatic Helical Soft 
Actuators 

Helical chamber design to enable bending and twisting 
motions with higher force output. 

Soft robotic grippers for complex 
shapes, manipulators. 

Hu & Alici, 
2020 

Shape Memory Alloy 
(SMA) Actuators 

High work density, compliant, and responsive to thermal 
stimuli; cooling limitations restrict actuation speed. 

Soft bioinspired robots, prosthetics, 
artificial muscles. 

Huang et al., 
2019 

Flexible SMA Actuators Shape memory alloy wires with enhanced flexibility for 
wearables; low weight and high force/weight ratio. 

Wearable robots, soft exoskeletons. Copaci et al., 
2020 
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2.9 Systems, Sensors, and Devices for Postural Sway Detection 

Postural sway refers to the continuous, natural movement of the body's centre 

of mass (CoM) or CoG while maintaining a standing position. This subtle 

motion is a critical indicator of balance and stability and is widely used to assess 

fall risk, particularly in older adults and individuals with balance impairments. 

Several methods and parameters are utilised to measure postural sway, each 

offering unique insights into balance control mechanisms. 

The primary parameters used to quantify postural sway include path 

length and sway range, which measure the total distance travelled by the centre 

of pressure (CoP) and the extent of sway in different directions (Malaya et al., 

2020; Ge et al., 2019; Pollind, & Soangra, 2020a). Sway velocity is another key 

measure, representing the speed at which the CoP moves and is useful for 

distinguishing between different balance conditions and populations (Dieën, 

Koppes, & Twisk, 2010; Pollind, & Soangra, 2020a, Voss et al., 2021). The 

Root Mean Square (RMS) of sway is frequently used to quantify the magnitude 

of sway, offering an overall measure of stability (Pollind, & Soangra, 2020a, 

Voss et al., 2021). Another important parameter is sample entropy (SampEn), 

which analyses the temporal structure of sway, providing insights into the 

complexity and predictability of postural control (Malaya et al., 2020). Lastly, 

the total sway area measures the area covered by CoP movements, serving as an 

indicator of overall stability (Voss et al., 2021, Degani et al., 2017). 

Besides, The Sway Vector (SV) and Directional Indices (DI) are 

widely recognised as reliable and robust measures for assessing postural 

stability. These parameters are particularly advantageous because they are 

independent of trial length and sampling frequency, making them less 

susceptible to noise and variations in experimental design (Janusz et al., 2016; 

Błaszczyk, 2016). The use of SV and DI allows for a more nuanced description 

of postural control, making them effective in distinguishing between different 

conditions, such as age-related decline and diseases like Parkinson’s (Błaszczyk, 

2016). Among these measures, the Stability Vector Amplitude (SVamp) and 

Stability Vector Azimuth (SVaz) offer novel insights into postural control by 

providing reference values for stable human posture. In healthy, young 

individuals, SVamp is typically around 9.2 ± 1.6 mm/s, while SVaz is 

approximately 0.9 ± 0.1 rad. These parameters are sensitive to visual input and 
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have weak to moderate correlations with anthropometric characteristics, 

indicating their specificity in capturing fine aspects of postural control 

(Błaszczyk, & Beck, 2023). In clinical populations, such as multiple sclerosis 

(MS) patients, SVamp and SVaz show pathology-specific increases in sway 

velocity, particularly during eyes-closed (EC) tests. This increase highlights 

their potential diagnostic value in tracking disease progression (Błaszczyk, et 

al., 2021). 

Visual conditions also have a significant impact on postural sway. The 

absence of visual input, as in eyes-closed conditions, tends to increase sway 

across measures such as SV, Directional Index in Anterior-Posterior (DIAP), 

and Directional Index in Medial-Lateral (DIML), emphasising the crucial role 

of vision in maintaining postural stability (Błaszczyk, & Beck, 2023; Janusz et 

al., 2016; Błaszczyk, et al., 2021). Thus, the Sway Vector (SV), along with 

Stability Vector Amplitude (SVamp) and Azimuth (SVaz), provides valuable 

and reliable descriptors for evaluating postural control. These measures are 

robust to experimental noise and sensitive to visual conditions, making them 

useful for differentiating between healthy individuals and those with conditions 

like age-related decline, Parkinson’s disease, and multiple sclerosis. By 

establishing reference values for stable posture and highlighting the role of 

visual input in balance, SV and its related measures are crucial tools in assessing 

postural stability and diagnosing balance impairments. 

 

2.9.1 Technological Methods for Measuring Postural Sway 

Several technologies are used to accurately assess postural sway. Force plates 

are highly sensitive devices that measure CoP movements and provide detailed 

sway parameters, making them the gold standard in postural sway analysis 

(Goble, & Baweja, 2018; Degani, et al., 2017; Sturnieks et al., 2011). These 

platforms are widely used in research to track sway in anterior-posterior and 

medial-lateral directions, offering high-accuracy measurements, but they are 

often impractical for non-laboratory settings due to their cost and lack of 

portability (Sturnieks et al., 2011). To overcome this, a similar method 

implementing pressure sensors in insoles are developed. Embedded in insoles 

or mats, pressure sensors detect the distribution of pressure under the feet, 

providing information on changes in CoG which are suitable for real-time 
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postural analysis in clinical or rehabilitation settings enhancing portability 

(Walsh et al., 2020). Sway Path Length, Sway Area, and Sway Velocity are key 

indicators of instability, especially in elderly populations. CoP measures can 

differentiate balance performance across sensory conditions, such as eyes-open 

versus eyes-closed trials (Ramdani et al., 2009).  

More recently, inertial measurement units (IMUs) have emerged as 

portable, cost-effective alternatives to force plates. IMUs provide a portable 

alternative by using accelerometers and gyroscopes to measure linear and 

angular movement. IMUs offer flexibility for non-laboratory applications, 

although noise and drift can affect their accuracy, requiring advanced filtering 

techniques like the Kalman Filter. Neville et al. (2015) validated the 

effectiveness of portable IMUs for postural sway detection, showing strong 

correlations with force platforms (r = 0.79) and motion capture systems (r = 

0.88). These wearable sensors can measure key parameters such as sway 

velocity, RMS, and path length, enabling more accessible assessments (Pollind, 

& Soangra, 2020a; Voss et al., 2021). IMU systems also track angular 

displacement and acceleration, which are useful for assessing fall risks. Time to 

Stabilization (TTS) is another dynamic parameter used to assess how quickly a 

person regains stability after perturbations (Goel et al., 2022). Kinect motion 

tracking offers a non-invasive option for estimating CoM sway, using motion 

capture technology to evaluate postural stability without the need for physical 

contact (Mazumder et al., 2017). 

Optical motion capture systems (OMCS) and magneto-inertial 

measurement units (MIMUs) are pivotal in tracking body movements and 

calculating the centre of gravity (CoG) for various applications. OMCS, such as 

Vicon and OptiTrack, utilise cameras and reflective markers to capture precise 

kinematic data, predominantly in controlled environments like research labs, 

though extensive setup is required (Schumann et al., 1995). Conversely, MIMUs, 

which integrate magnetometers and inertial measurement units, provide 

accurate CoG tracking in more dynamic, ecological settings, compensating for 

magnetic disturbances (Germanotte et al., 2021). Lastly, wearable exoskeleton 

sensors, equipped with strain gauges and load cells, play a critical role in 

adaptive postural support by providing real-time CoG feedback to maintain 

stability (Najafi et al., 2010). These diverse technologies cater to different 
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environments and purposes, enhancing the precision and utility of motion 

capture systems. Table 2.12 summarises the sensors and systems for postural 

sway detection. 

Table 2.12:  Sensors and Systems for Postural Sway Detection 

System Mechanism Application Study 

Force 

Plates 

Measure ground reaction 

forces to calculate CoG. 

Laboratory-based 

postural analysis. 

(Goble et 

al., 2018) 

Pressure 

Sensors 

Measure pressure 

distribution under the feet. 

Real-time 

postural 

monitoring. 

(Walsh et 

al., 2020) 

Optical 

Motion 

Capture 

Track body movement 

using cameras and 

markers. 

Detailed motion 

analysis in labs. 

(Schumann 

et al., 1995) 

MIMUs Combine IMU and 

magnetometer data to 

estimate CoG. 

Real-world CoG 

tracking. 

(Germanotta 

et al., 2021) 

Wearable 

Exoskeleton 

Sensors 

Integrated strain gauges 

and load cells for force 

and torque measurement. 

Postural 

correction in 

exoskeletons. 

(Najafi et 

al., 2010) 

 

Also, electromyography (EMG) is an essential tool for evaluating 

muscle activity in postural control systems, offering insights into how muscles 

contribute to correcting postural sway. By detecting electrical signals generated 

during muscle contraction, EMG helps assess neuromuscular control related to 

posture. It is frequently combined with other sensors, such as those used to track 

the centre of pressure (CoP), to provide a comprehensive understanding of 

postural stability. EMG is widely applied in rehabilitation settings, particularly 

for real-time monitoring of muscle function in individuals with conditions like 

stroke or Parkinson's disease. For instance, EMG data has been effectively 

combined with CoP measurements to analyse how muscle activation impacts 

postural stability (Warnica et al., 2014). 

Postural sway measurements can be affected by several factors. Age and 

sex are significant determinants, with older adults generally displaying greater 
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sway than younger individuals. Differences in sway performance between males 

and females are also noted under specific balance conditions (Goble, & Baweja, 

2018; Voss et al., 2021). Visual and sensory inputs play a crucial role in balance 

control, as visual motion sensitivity and binocular visual fields are strongly 

correlated with postural stability (Wood et al., 2022). Additionally, 

experimental conditions—such as whether the individual has their eyes open or 

closed or is standing on a firm or foam surface—greatly influence sway 

measurements, with more challenging conditions leading to greater sway 

(Sturnieks et al., 2011). 

 

2.9.2 Reliability and Validity of Sway Measurements 

The test-retest reliability of postural sway measurements varies, with many 

traditional parameters showing low reliability across repeated assessments. This 

has led to calls for multivariate approaches to fully characterise balance 

performance (Dieën et al., 2010). Devices like the Swaymeter have 

demonstrated concurrent and convergent validity when compared to force plates, 

positioning them as reliable tools for assessing postural sway in both research 

and clinical settings, demonstrating good agreement with force platforms in 

measuring anteroposterior and mediolateral sway (Sturnieks et al., 2011). 

 Force platforms are recognised for high precision in CoP 

measurements. IMU-based methods, while more portable, depend on the 

reliability of their algorithms to correct sensor errors. Techniques like the 

Kalman Filter significantly reduce noise in IMU data, enhancing their validity 

(Maurer & Peterka, 2005). Thus, methods like the Kalman Filter have become 

a primary tool for filtering IMU data to improve accuracy by reducing sensor 

drift. Studies show it can outperform simpler algorithms like the 

Complementary Filter (McKee & Neale, 2019). Time-frequency analysis 

methods such as Fast Fourier Transform (FFT) also help identify dominant sway 

frequencies. These techniques are useful for assessing postural stability and 

differentiating between healthy and impaired subjects (El-Jaroudi et al., 1996). 

Besides that, more advanced control models, such as Model Predictive Control 

(MPC) and COP-Based Controller (COP-BC), are used to mimic the human 

postural control system, where these models consider sensory noise and 
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neurological time delays, providing a more accurate representation of postural sway compared to traditional methods like the Intermittent 

Proportional Derivative (IPD) model (Jafari & Gustafsson, 2023). The findings here are compiled in Table 2.13. 

 

Table 2.13: Findings on Methods of Postural Sway Detection 

Category Study Findings Method Processing 

Force Platforms (Sturnieks et al., 

2011) 

Reliable and validated across multiple conditions. Force platforms, 

Swaymeter 

Not applicable 

CoP Analysis (Ramdani et al., 

2009) 

CoP parameters effectively discriminate sensory 

conditions (eyes open/closed). 

Force platforms Sample Entropy 

Time-Frequency 

Analysis 

(El-Jaroudi et 

al., 1996) 

Spectral analysis identifies key sway frequencies to 

differentiate between health and impairment. 

Time-frequency analysis 

(FFT) 

Fast Fourier 

Transform (FFT) 

Kalman Filter (McKee & 

Neale, 2019) 

Kalman Filter minimises sensor drift in IMU-based 

systems, improving accuracy. 

IMUs Kalman Filter 

Postural Control 

Modelling 

(Maurer & 

Peterka, 2005) 

Simulation models of postural control show strong 

correlation with observed CoP measures in aging 

populations. 

Multidimensional 

feedback modelling 

Optimisation 

algorithms 
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2.9.3 Summary 

Postural sway is evaluated using a range of parameters, such as path length, 

sway range, velocity, RMS, SampEn, and total sway area. These parameters are 

measured through advanced technologies like force plates, IMUs, and motion 

tracking systems. Age, sensory inputs, and test conditions are critical factors 

influencing sway outcomes. While traditional methods offer valuable insights, 

modern tools and multivariate assessments provide a more comprehensive 

understanding of balance control. Ensuring the reliability and validity of sway 

measurement tools is essential for accurately evaluating fall risk and balance 

impairments, particularly in vulnerable populations. 

 

2.10 Postural Monitoring Algorithm for Postural Sway Detection 

Postural sway detection is crucial for assessing balance and fall risk, 

traditionally measured using expensive and non-portable force platforms. 

Recent advancements have introduced more accessible and cost-effective 

solutions, such as wearable inertial sensors (IMUs), mobile applications, and 

virtual reality systems. Low-cost MEMS inertial sensors, including head-

mounted and chest-based wearables, have been validated for postural sway 

analysis, showing high accuracy and portability (Pollind, & Soangra, 2020a, 

2020b; Grafton et al., 2019; Meyer et al., 2023). Mobile applications like 

C3Logix™ offer comparable accuracy to force platforms, making them viable 

for field use (Miyashita et al., 2020). Neuro-Fuzzy inference systems using 

Discrete-Wavelet-Transform-based features further enhance stability 

assessments, even with noisy data (Andò et al., 2022). Additionally, virtual 

reality systems using HTC Vive trackers and wireless inertial sensors have 

demonstrated reliability in both clinical and athletic settings, particularly for 

detecting balance impairments in minimally disabled patients (Liang et al., 2020; 

Solomon et al., 2015). These advancements make wearable technologies 

valuable for both clinical and on-field assessments.  

Overall, many different methods and algorithms have been developed 

to detect and analyse postural sway, including threshold-based methods and 

neuro-fuzzy systems. This review examines these approaches, focusing on their 

accuracy, reliability, and robustness against noise. The main algorithms or 

methods focused on are the threshold method and the neuro-fuzzy systems. 
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Threshold-based methods are simple and widely used, relying on predefined 

limits for time-based features to detect sway. However, they have limited 

robustness in noisy environments and show lower accuracy compared to more 

advanced methods (Andò et al., 2022a). For example, while threshold-based 

systems can effectively detect unstable postures, they tend to struggle in 

dynamic or noisy settings. A comparative study highlighted this, showing that 

threshold-based approaches, though easy to implement, are outperformed by 

neuro-fuzzy systems when classifying postural behaviours (Andò et al., 2023). 

In contrast, neuro-fuzzy systems, which combine neural networks with 

fuzzy logic, provide more adaptive and noise-resistant detection (Andò et al., 

2022a). Studies have demonstrated that neuro-fuzzy inference systems 

significantly outperform threshold methods, especially when data is noisy or 

contains variability. For example, using discrete-wavelet-transform (DWT)-

based features further enhances the system's ability to detect instability with 

high accuracy and reliability (Andò et al., 2022a). Another notable advantage of 

neuro-fuzzy systems is their ability to classify complex postural behaviours with 

nearly 100% accuracy, distinguishing between stable standing, anteroposterior, 

and mediolateral sways (Baglio et al., 2023). Furthermore, neuro-fuzzy 

approaches have also proven highly effective when applied to inertial 

measurements, achieving a reliability index of around 95% in postural sway 

assessments (Andò et al., 2022b). This makes them well-suited for real-world 

applications where noise and variability are common challenges . By contrast, 

machine learning models have also shown superiority over threshold-based 

methods, providing greater accuracy and reliability when detecting postural 

instability. The details are tabulated in Table 2.14. 

In summary, while threshold-based methods offer simplicity and ease 

of implementation, neuro-fuzzy systems are generally more effective for 

postural sway detection in dynamic, real-world settings. Their higher accuracy, 

combined with robustness against noise, makes them preferable for applications 

aimed at reducing fall risks and improving postural stability in clinical and 

rehabilitation environments.
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Table 2.14: Study of Threshold-Based and Neuro-Fuzzy System Based Postural Detection 

Study Method Key Features Advantages Limitations Results/Conclusions 
Threshold vs. 
Neuro-Fuzzy 

Threshold-Based 
Methods & Neuro-

Fuzzy Systems 

Time-based feature 
thresholds; neural 
networks + fuzzy 

logic 

Simple; easy to 
implement 

Poor noise 
robustness; lower 

accuracy than 
advanced methods 

Neuro-fuzzy systems were more 
robust and effective at distinguishing 
between stable and unstable postures 

(Andò et al., 2022a) 
Machine 

Learning vs. 
Threshold 

Threshold-Based & 
Machine Learning 

Comparison between 
traditional thresholds 
and machine learning 

models 

Machine 
learning offers 
higher accuracy 

Threshold methods 
are less reliable 

Machine learning approaches 
outperformed threshold-based 

methods in classifying postural sway 
behaviours 

(Andò et al., 2023) 
Neuro-Fuzzy 

DWT 
Features 

Neuro-Fuzzy with 
Discrete-Wavelet-
Transform (DWT) 

Features 

DWT-based features 
fed into neuro-fuzzy 

inference system 

Highly 
accurate; noise-

resistant 

Complex 
implementation 

Improved accuracy and reliability in 
detecting sway instabilities when 
using DWT-based neuro-fuzzy 

systems 
(Andò et al., 2022a) 

Postural 
Behaviour 

Classification 

Neuro-Fuzzy System 
for Posture 

Classification 

Classification of 
different sway 

behaviours 
(anteroposterior, 

mediolateral, etc.) 

Near 100% 
accuracy 

Noise can still 
impact 

performance 

Neuro-fuzzy approach showed 
excellent accuracy for classifying 
various postural sway behaviours 

(Baglio et al., 2023) 

Neuro-Fuzzy 
for Inertial 

Measurements 

Neuro-Fuzzy for 
Inertial 

Measurement-Based 
Postural Sway 

Inertial sensor data 
processed using 

neuro-fuzzy 
algorithms 

Highly reliable 
for real-world 

application 

Computationally 
intensive 

Superior reliability (~95%) when 
using inertial measurements for 

postural sway detection with neuro-
fuzzy systems 

(Andò et al., 2022b) 
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2.11  Machine Learning Approaches to Postural Sway Classification 

Postural sway represents the continuous micro-adjustments executed by the 

human body to preserve upright stability. Historically quantified using force 

platforms, contemporary approaches increasingly favour inertial measurement 

units (IMUs) due to their portability, cost-effectiveness, and real-time 

monitoring capabilities. The resultant IMU-derived data are inherently noisy, 

high-dimensional, and time-dependent, rendering them well-suited for machine 

learning (ML) approaches. These methods have shown growing efficacy in 

discerning balance profiles across healthy individuals, elderly populations, and 

patients with neuromotor disorders. 

 

2.11.1 Classical Machine Learning Models for Sway Detection 

The application of machine learning techniques to postural sway classification 

has centred around classical models such as Random Forest (RF), K-Nearest 

Neighbours (KNN), Support Vector Machines (SVM), and Naïve Bayes (NB). 

These models have demonstrated resilience to feature noise, the ability to 

generalize across subjects, and competence in handling non-linear relationships 

among input features. Table 2.15 summarises such approaches. 

 

Table 2.15: Summary of Classical Machine Learning Models in Sway Detection 

Model Strengths Limitations Key Studies 
Random 

Forest (RF) 
High 

generalizability; 
robust to noise; good 

with imbalanced 
data 

Requires many 
trees; can be 

computationally 
heavy 

Gattinara et 
al. (2022); 

Prisco et al. 
(2025) 

K-Nearest 
Neighbours 

(KNN) 

Simple; good 
baseline 

performance 

Computationally 
intensive in real-

time; poor 
scalability 

Ozdemir & 
Barshan 
(2014) 

Support 
Vector 

Machine 
(SVM) 

Effective in high-
dimensional spaces; 

well-defined 
margins 

Sensitive to kernel 
choice; tuning-

intensive 

Ozdemir & 
Barshan 
(2014) 

Naïve Bayes 
(NB) 

Fast; interpretable Assumes 
independence 

among features 

Less 
frequently 
applied in 

sway 
detection 
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2.11.2 Non-Stationarity and Overlap 

One of the most persistent challenges in postural sway classification pertains to 

the reliable identification of the unstable (INST) class. Characterized by 

irregular, multi-directional fluctuations, INST signals often share spatial and 

spectral features with more stable sway patterns, thereby confounding many 

classifiers. Guo et al. (2022) observed that while accelerometer-based features 

were sufficient to differentiate between stable (STAB) and directional sway 

classes (DAP, DML), they failed to robustly isolate INST conditions, 

particularly when subjects experienced fatigue or external perturbations. To 

mitigate such ambiguities, Andò et al. (2023) introduced a neuro-fuzzy 

inference framework augmented with adaptive reliability indexes, which 

significantly improved classification performance in the presence of noise and 

signal overlap. Likewise, Andò et al. (2023) acknowledged a marked decline in 

classification accuracy when models trained on mimic trials were applied to 

real-world datasets, thereby exposing the limitations of conventional ML 

approaches in unstructured, clinical, or community settings. 

 

2.11.3 Empirical Models versus Data-Driven Learning 

Despite the ascendancy of learning-based models, rule-based approaches 

continue to hold relevance, particularly in embedded or safety-critical systems 

where interpretability, low latency, and minimal power consumption are 

prioritized. In static sway classification, threshold-based methods, typically 

tuned on mean ± standard deviation envelopes of directional features, have been 

successfully employed to delineate DAP and DML sway patterns. While such 

models lack adaptability to inter-individual variability, their deterministic 

nature and transparency are advantageous in contexts where decision 

traceability is required. Ozdemir and Barshan (2014) further emphasized that, 

under carefully defined parameters, rule-based classifiers could match or even 

exceed the performance of more complex models in wearable applications, 

particularly in fall risk detection scenarios where resource constraints are 

paramount. 
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2.11.4 Embedded and Real-Time Classification 

The increasing demand for real-time postural sway monitoring has driven a shift 

toward model optimization and efficient on-device inference. Andò et al. (2024) 

demonstrated an MQTT-based pipeline enabling real-time IMU signal 

acquisition and processing on embedded microcontrollers, underscoring the 

feasibility of low-latency deployments. Nevertheless, the implementation of ML 

algorithms on resource-limited platforms frequently necessitates model 

compression, quantization, or the integration of specialized AI inference 

engines. Parallel developments by Ehara et al. (2025) illustrated the application 

of gradient boosting frameworks such as LightGBM for estimating joint angles, 

demonstrating the potential of such models to serve as lightweight alternatives 

in continuous biomechanical monitoring systems, including those related to 

postural stability. 

 

2.11.5 Deep Learning and Temporal Signal Modelling 

Although classical models remain predominant in wearable postural sway 

analytics, recent investigations have begun exploring the potential of deep 

learning architectures, particularly those capable of modelling temporal 

dependencies. Long Short-Term Memory (LSTM) networks and hybrid 

architectures such as CNN-LSTM have shown promising results in domains 

involving dynamic and non-stationary biosignals. Gu et al. (2025) introduced 

the CLTNet framework, combining convolutional, recurrent, and transformer 

layers to decode electroencephalogram (EEG) sequences with high temporal 

resolution. Such approaches are anticipated to offer enhanced performance in 

postural sway classification, especially for INST detection, where transitions 

between balance states are gradual and temporally entangled. These deep 

learning models are designed to capture complex sequential relationships and 

latent features that static classifiers cannot discern, thereby presenting a 

promising direction for future sway detection frameworks. 

 

2.11.6 Summary of Literature and Research Gaps 
The reviewed literature supports the growing role of ML in sway classification. 

Nevertheless, unresolved issues include: (1) difficulty in classifying the INST 

class due to overlapping features; (2) inter-subject variability; (3) reliance on 
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single-sensor IMU configurations; (4) latency/resource challenges in real-time 

applications; and (5) absence of standardized, labelled datasets for 

benchmarking models. Table 2.16 summarises machine learning in sway 

detection. 

 

Table 2.16: Summary of Key Studies Reviewed 

No. Reference Key Insight 
1 Andò et al., 2023 ML accuracy degraded in noisy, real-world 

sway trials. 
2 Andò et al., 2024 Achieved real-time IMU-based sway monitoring 

via MQTT. 
3 Ozdemir & 

Barshan, 2014 
KNN performed well in fall detection; rule-
based methods remain viable. 

4 Prisco et al., 2025 RF and gradient boosting excelled in IMU-
based ergonomic classification. 

5 Gattinara et al., 
2022 

RF outperformed 51 classifiers in Parkinsonian 
sway detection. 

6 Andò et al., 2023 Neuro-fuzzy inference enhanced classification 
under instability. 

7 Guo et al., 2022 Feature-based classification effective for 
STAB/DAP; weak for INST. 

8 Gu et al., 2025 CLTNet outperformed conventional models in 
decoding biosignals. 

9 Ehara et al., 2025 LightGBM enabled low-latency joint-angle 
regression from IMU data. 

 

2.12 Literature on Exosuit-Induced Muscle Unloading and Postural 

Control 
A range of studies have explored the biomechanical effects of both passive and 

active exosuits on trunk muscle activation during static and quasi-static tasks. 

Kang and Mirka (2023a, 2023b) consistently reported that exosuits significantly 

reduce erector spinae (ES) and rectus abdominis (RA) activation, with 

unloading effects becoming more pronounced as trunk flexion angles increase 

beyond 20°. These reductions appear to be robust across symmetric and 

asymmetric stances, suggesting a generalizable neuromechanical adaptation to 

external support. Complementing these findings, Cholewicki et al. (2007) found 

that passive stiffness augmentation via orthoses leads to superficial muscle 

downregulation, supporting the notion that the central nervous system offloads 

muscle activity when external stability is provided. Smith et al. (2016) 

highlighted that excessive abdominal co-activation, particularly in the EO and 
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RA, can impair postural recovery, especially under visual or proprioceptive 

challenge, reinforcing the significance of the unloading observed during exosuit 

use. Importantly, active systems appear to outperform passive ones in muscle 

unloading capacity. Poliero et al. (2022) reported that an active lumbar support 

(XoTrunk) achieved approximately 41% EMG reduction in static contexts, 

compared to 16% in passive systems, underscoring the potential for algorithm-

driven control in enhancing unloading efficacy. These findings collectively 

support the utility of wearable assistive systems, particularly active exosuits, in 

mitigating trunk muscle fatigue during prolonged static postures, with 

implications for both ergonomic and rehabilitative settings. Table 2.17 

summarises the roles of trunk muscles during exoskeleton support. 

 

Table 2.17: Trunk Muscle Unloading via Exosuit Support 

No. Source Key Insight Relevance to This 
Study 

1 Kang & 
Mirka, 
(2023a ) 

Muscle unloading scales with 
trunk flexion angle; no short-
term adaptation observed 

Justifies observed 
EMG reduction trends 
during leaning or 
imbalance 

2 Kang & 
Mirka, 
(2023b)  

ES unloading consistent 
across symmetric/asymmetric 
postures 

Supports 
generalizability of 
effect across all test 
conditions 

3 Cholewicki 
et al., (2007) 

Passive stiffness reduces 
superficial trunk EMG 
through CNS adaptation 

Mechanistic basis for 
observed unloading in 
RA and ES-R 

4 Smith et al., 
(2016)  

High EO/RA activity impairs 
postural recovery; their 
reduction improves balance 

Supports balance 
improvement 
hypothesis with lower 
superficial 
coactivation 

5 Poliero et 
al., (2022) 

Active exosuits outperform 
passive (41% vs. 16% EMG 
reduction in static tasks) 

Validates active 
system design choice 
in current exosuit 
prototype 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter outlines the technical processes and procedures employed in the 

development of a strap-based, pneumatic-powered, back-supported assistive 

exosuit for postural sway detection and correction. Specifically, it details the 

prototype’s requirements and conceptual framework, the development process, 

and the anthropometric data incorporated into the design. Furthermore, the 

chapter elaborates on the conceptualization of the prototype’s mechanical 

design, its system architecture, and the planned biomechanical assessments 

designed to evaluate the performance of the exosuit. The discussion also 

includes the selection of materials and electrical components utilized in the 

prototype’s development, as well as the kinematic methods implemented to 

obtain postural sway metrics via inertial measurement units (IMUs). Moreover, 

the circuit design, developed using both breadboard and stripboard techniques, 

is explicated in detail. The chapter further addresses the design and 

implementation of a hard-coded graphical user interface (GUI) developed with 

Visual Studio Code, outlining its architecture and program flowchart. 

Additionally, this section reviews the libraries employed for programming the 

prototype components, the GUI system, algorithm development, and data 

analysis. It also describes the experimental protocols for three tests, sway data 

collection for classifier algorithm development, sway data validation for 

algorithm validation, and sway correction for overall prototype testing, 

implemented to assess the functionality and effectiveness of the exosuit in 

improving real-time postural sway and balance. Overall, the methodology 

presented herein offers a comprehensive insight into the project’s technical 

framework and elucidates the rationale behind the key design decisions made 

throughout its execution. 

 

3.2 Requirement/ Specification of Prototype 

The developed prototype is a fabric-based, back-mounted active exoskeleton 

system designed to support real-time posture correction and reduce standing 
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postural sway. This system was developed to fulfil several functional and design 

requirements aligned with its intended use in assistive balancing and postural 

adjustment scenarios. The design emphasises features such as being lightweight, 

fully portable, semi-concealable, durable, cost-effective, and adjustable to 

accommodate users of varying body shapes, sizes, and postural needs, in line 

with UN SDG 3: Good Health and Well-being and UN SDG 10: Reduced 

Inequalities. Additionally, it must provide accurate sensor readings, enable real-

time feedback, and support basic Internet of Things (IoT) connectivity. To 

support portability and user comfort, the device is constructed using soft 

materials and compact components, making it lightweight and easy to wear 

across various environments, including at home or in research settings.  

Although some components, such as pneumatic cylinders, remain 

externally visible, the overall structure is compact and thin, allowing 

concealment under loose clothing. The modular and adjustable design enhances 

fit and usability, while also allowing for component replacement or upgrading 

if needed. Durability is an essential requirement, as the system must withstand 

repeated use during posture training sessions. Cost-effectiveness is also 

prioritized, with components selected for affordability without compromising 

essential functionality. Functionally, the system offers real-time posture 

monitoring and correction by integrating an IMU to detect trunk motion and 

postural deviations. Corrective feedback is delivered through pneumatic 

actuation and is accompanied by immediate visual cues via an onboard OLED 

display. The pneumatic actuation is low powered and gradual, which 

biomechanically is in line for the spinal muscles, which are predominantly slow-

twitch fibres (Chu, Lin & Chen, 2022; Liu et al., 2020).  

A GUI is also implemented to support visual monitoring of system 

status and sensor data. Basic IoT connectivity allows for wireless data 

transmission, enabling remote observation and future potential for cloud-based 

data analysis or control. A known limitation of the system is its operating 

duration, which is constrained by pneumatic power requirements. The current 

battery-powered setup allows for approximately 15 to 30 minutes of active 

operation, which is considered adequate for short training sessions. Power 

efficiency is recognized as an area for future improvement. Notably, while 

passive exoskeletons for posture support exist, this prototype addresses a gap in 
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the literature by introducing an active exoskeleton approach aimed specifically 

at managing postural sway via trunk-based actuation. To the best of our 

knowledge, no prior systems have employed an active solution targeting trunk 

strategy for sway correction, much less fabric-based, where most available 

solutions are passive supports or rigid orthoses, positioning this work as a novel 

contribution in the early-stage exploration of posture-assistive technologies. 

 

3.2.1 Concept and Features of the Prototype 

The back support postural sway exoskeleton is designed to improve balance and 

minimize postural sway, particularly during periods of quiet stance. By offering 

dynamic support to the back and trunk muscles, it addresses the needs of trunk 

stabiliser muscle groups, improving overall posture stability. The system is 

engineered to accommodate slow-twitch muscle fibres responsible for 

maintaining posture over time and not fast-twitch fibres, which are engaged in 

more active movements (Fitts, 1994). Key features of the exoskeleton include 

multi-axis support, where the exoskeleton can dynamically adjust to both 

anteroposterior (front-to-back) and mediolateral (side-to-side) sway, allowing 

the user to move naturally while receiving corrective support. This multi-axis 

capability enables the exoskeleton to engage when the user’s posture deviates, 

realigning their centre of pressure (CoP) without restricting overall movement.  

Besides, real-time postural correction is essential, the system uses with 

an IMU that constantly monitor the user's kinematic CoP parameters to detect 

any deviations from normal posture. Upon detecting abnormal sway, the 

exoskeleton's actuators are triggered to make real-time adjustments, minimizing 

the risk of falls or instability. This quick response mechanism ensures 

continuous postural support, especially in static situations where the user’s 

balance might be compromised. Another main feature includes wearability and 

portability. A major focus in the design of the exoskeleton is ensuring it is both 

lightweight and comfortable. The frame is constructed from soft, flexible 

materials such as fabric straps that do not impede movement but provide 

necessary support. The wearable design ensures that users can go about their 

daily activities without feeling weighed down or restricted by the device. 

A critical aspect of the exoskeleton’s design is the postural sway 

detection system, which continuously monitors the user’s CoP parameters and 
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provides feedback for real-time adjustments (Menga & Ghirardi, 2018; Takeda 

et al., 2017; Layne et al., 2022). This is planned to be achieved through the 

precise placement of IMU which is positioned on the chest, where it can monitor 

upper body and trunk motion. This strategic placement ensures that sway is 

detected during quiet stance and other static postures. The IMUs provide data 

on acceleration, angular velocity, and orientation, offering a detailed 

understanding of how the body is moving relative to its CoP (Cinnera et al., 

2023; Guidolin et al., 2021).  

 

3.3 Development Process of Prototype 

The development of the postural sway back support exoskeleton followed a 

structured and iterative process involving literature review, resource exploration, 

laboratory testing, evaluation, and refinement. Both hardware and software 

elements were addressed systematically to ensure a functional and reliable 

prototype. An overview of this process illustrated in Figure 3.1, and Gantt chart 

in Figure 3.2. The process began with conceptual development, where design 

considerations, key features, and mechanical sketches were created using 

SOLIDWORKS 2024 software. These guided the prototyping and material 

selection. During hardware development, mechanical requirements were 

analysed, and 3D models were prepared. Depending on feasibility, parts were 

either 3D-printed or fabricated through metalworking. All components 

underwent testing, with redesigns made as needed. Pneumatic cylinders were 

selected and subjected to load testing before full assembly. In the circuit 

development phase, basic circuit functions were tested and integrated 

incrementally. The MPU6050 sensor module was chosen as the sole sensor for 

capturing postural sway, providing accelerometer and gyroscope data, to attain 

and compute kinematic sway data such as displacement in anteroposterior 

(DAP), and medio-lateral (DML). It was tested for accuracy and integrated into 

the mechanical system. 

For algorithm development, motion data from the MPU6050 was used 

to develop sway classification algorithms. Key parameters were identified and 

tested through iteration to achieve acceptable detection performance. These 

algorithms were implemented into the working prototype. Software 

development involved creating a modular system for real-time operation.
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Figure 3.1: Flowchart of Conceptual Development and Methodology of Project 
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PROJECT PART 1 
Task W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 

Phase 1 Project Preparation  
Project Title Formation                           
Scope Development                            
Setting Objective                           
Background Study                           

Phase 2 Literature Review  
Postural Sway Types and Causes                           
Current Treatments                           
Existing Back-Support Exoskeleton                           

Phase 3 Project Planning  
Initial Solution Development                           
Cost Estimation and Budgeting                            
Material and Resource Selection                           
Risk Assessment Analysis                           
Selection of Actuator                           
Selection of Electronic Components                           

Phase 4 Conceptual Development  
Hardware Design and Technical Drawing                            
  Structural Design                           
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  Technical Drawing (CAD)                           
  Technical Drawing (SolidWorks)                           
System / Algorithm Development                           

PROJECT PART 2 
Task W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 

Phase 1 Circuit and Algorithm Development 
Sway Detection Circuit Development                           
Algorithm Development                           
  Algorithm Selection                           
  Preliminary Data Collection                           
  Parameter Selection                           
  Algorithm Testing and Validation                           
Development of Peripheral Circuits                           
  Single Component Testing                           
  Features Additions                           
Integration of Circuit                          

Phase 2 Prototype Development 
Hardware Development                           
  Structural Design                           
  Technical Drawing (CAD)                           
  Technical Drawing (SolidWorks)                           
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  3D Printing and Finishing                           
  Metalworking                           
  Textile Assembly                           
Prototype Assembly                           
  Circuit Integration on Hardware                           
  Strap and Textile Assembly                          
  Complete Assembly                           
Prototype Iterations                          
GUI Development                           

Phase 3 Data Collection and Functionality Testing 
Protocol Development                           
Subject Recruitment                           
Data Collection of Functionality Tests                           
  EMG Tests                           
  CoP Tests                           

Phase 4 Data Analysis 
Data Analysis                           
System Evaluation                           

Figure 3.2: Gantt Chart of Project 
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Motion data and feedback were displayed on an OLED screen attached to the 

device for immediate user access. Additionally, a GUI was developed for IoT-

based remote monitoring, allowing external users to view sway status and 

system activity. In the final integration and testing phase, the complete 

prototype was evaluated for functionality, accuracy, and user interaction. Test 

results informed final refinements to ensure the system met performance 

expectations. This iterative approach enabled systematic improvement at each 

development stage. A summarised and simplified workflow of the prototyping 

is presented in Figure 3.3 below. 

 

 
Figure 3.3: Simplified Flowchart of Prototype Development  

 
3.4 System Architecture 

The system architecture, illustrated in Figure 3.4, is centred around a control 

unit, the ESP32 microcontroller, which controls and processes all sensor inputs 

and actuator outputs. IMU sensors capture real-time kinematic sway parameters 

that reflect postural sway during standing, which are transmitted to the 

microcontroller for processing. The ESP32 is powered by a portable power bank, 

enabling the system to function independently without relying on a fixed power 

supply, allowing for mobile and wearable applications. Based on the processed 

sensor data, the microcontroller controls an actuation system comprising a pair 

of pneumatic cylinders. These cylinders apply linear force to pull adjustable 

straps that correct the user's posture, effectively mitigating anterior and lateral 

sway. The postural adjustments block diagram is illustrated in Figure 3.18 and 

explained in Section 3.6.1. This corrective action aims to minimise overall 

postural sway and enhance standing balance. A GUI, developed using StreamLit 
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in Python and deployed through Visual Studio Code, provides a user-friendly 

platform for remote monitoring and interaction. Users can view real-time status 

updates, log and review their historical sway data, and get interactive 

visualizations. Additionally, an admin interface enables authorised personnel to 

access aggregated user data and add relevant comments for monitoring or 

therapeutic feedback. Complementing the remote interface, an OLED display 

mounted on the user's wrist provides immediate visual feedback on sway 

parameters and balance in real time. This integration of IMU sensing, pneumatic 

actuation, and IoT-based control and monitoring establishes a responsive and 

intelligent system capable of providing real-time postural correction and 

feedback, supporting both user autonomy and potential clinical oversight. 

 

 
Figure 3.4: System Architecture of Prototype 

 

3.5 Biomechanics Assessments and Considerations of Prototype  

This section outlines the biomechanical rationale, analytical methods, and 

performance metrics used to evaluate the functional outcomes of the proposed 

posture-correcting exoskeleton prototype. The assessment framework integrates 

quantitative analyses of standing postural sway, based on Centre of Pressure 

(CoP) dynamics, and surface electromyographic (EMG) signals from key trunk 

musculature. The parameters and methods selected reflect established standards 

in biomechanical research and are intended to validate both the mechanical 

effectiveness and physiological relevance of the prototype. 

The structural and functional design of the exoskeleton is informed by 

anthropometric and kinesiological principles to preserve user comfort, range of 

motion, and biomechanical efficiency. The device is intended to assist with 

postural control during quiet standing by supporting critical regions involved in 

Posture Adjustment 

(Fig. 6) 
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balance maintenance, particularly the lumbar spine and pelvis. The anatomical 

focus includes the erector spinae, multifidus, internal and external obliques, and 

rectus abdominis, which are responsible for trunk stability and alignment. The 

mechanical support provided by the exoskeleton is designed to complement 

rather than replace muscular effort. Therefore, biomechanical evaluation 

focuses on whether the system can reduce excessive postural sway and alleviate 

muscular workload without restricting natural movement patterns. Table 3.1 

presents a summary of the prototype’s biomechanical objectives and 

corresponding design considerations. 

 

Table 3.1: Biomechanical Functionality of the Proposed Exoskeleton 

Aspect Description 
Postural 
Stability 

Assists in minimizing CoP excursion via feedback and 
correction of sway. 

Muscular 
Demand 

Reduces trunk muscle activation during prolonged 
standing. 

Joint 
Movement 

Maintains physiological joint alignment and range of 
motion. 

 

3.5.1 Standing Postural Sway Centre of Pressure (CoP) Parameters 

CoP displacement serves as a fundamental biomechanical indicator of postural 

control and balance performance. In this study, CoP-related metrics were 

estimated from kinematic data acquired at the trunk level via IMU at the chest. 

The IMU provides three-axis acceleration signals, which can be processed to 

infer angular displacement and corresponding linear sway in both the sagittal 

and frontal planes. The orientation of IMU as well as the basic sway parameters 

such as anteroposterior displacement (DAP), mediolateral displacement (DML), 

pitch angle and roll angle, are depicted in Figure 3.5 which were adapted from 

multiple publications (Andò et al., 2022; Nehary, Rajan and Ando, 2024). 

 The inclination angles of the trunk in the sagittal and frontal planes, 

denoted as pitch and roll respectively, are computed from triaxial acceleration 

measurements and can be used to determine the orientation angles of the 

standing posture of user. These angles serve as proxies for anterior-posterior 

and mediolateral sway. These computations offer a simplified yet reliable means 

of quantifying postural orientation without requiring a full motion capture setup 

and can be determined by Equations 3.1 and 3.2: 
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Figure 3.5: Equivalent IMU Nodes Positions on User and Representation of 

Basic Quantities for Reconstructing the AP and ML Dynamics 

 

𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ = arctan�
𝐴𝐴𝑧𝑧

 �𝐴𝐴𝑦𝑦2 + 𝐴𝐴𝑥𝑥2
� (3.1) 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = arctan

⎝

⎛ 𝐴𝐴𝑥𝑥

 �𝐴𝐴𝑦𝑦2 + 𝐴𝐴𝑍𝑍2⎠

⎞ (3.2) 

where 

𝐴𝐴𝑥𝑥 , 𝐴𝐴𝑦𝑦 , 𝐴𝐴𝑧𝑧  represent the acceleration components along the mediolateral, 

vertical, and anteroposterior axes, respectively. The resulting angles describe 

trunk inclination relative to gravity and provide input for estimating sway 

displacement. 

 

Assuming the trunk rotates about a fixed base, the horizontal 

displacements of the CoP, which are the DAP and DML, can be estimated by 

projecting the pitch and roll angles over fixed vertical heights, H1  and H2 , 

depicted in Figure 3.6, via Equations 3.3 and 3.4: 
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Figure 3.6: Representation of H1 and H2 to Reconstruct AP and ML Dynamics 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = H1

⎝

⎛ 𝐴𝐴𝑧𝑧

 �𝐴𝐴𝑦𝑦2 + 𝐴𝐴𝑍𝑍2⎠

⎞  

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐻𝐻1 tan(𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ) (3.3) 

𝐷𝐷𝐷𝐷𝐷𝐷 = H2

⎝

⎛ 𝐴𝐴𝑧𝑧

 �𝐴𝐴𝑦𝑦2 + 𝐴𝐴𝑍𝑍2⎠

⎞  

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐻𝐻2 tan(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) (3.4) 

where 

DAP and DML represent the anterior-posterior and mediolateral displacements, 

respectively.  

H1 and H2 denote the vertical distance from the IMU sensor to the assumed CoP, 

upper chest to ankle for H1 and upper chest to waist for H2. 

These displacements are interpreted as estimations of postural sway at the CoP 

level and serve as the foundation for all subsequent sway metrics. 

 

Next, the standard deviation of sway, where the variability of sway in 

each direction is calculated as the standard deviation of DAP and DML over a 

sampling period. These values provide a direct measure of postural stability. 

Greater standard deviations indicate increased sway and are generally 

associated with decreased postural control or increased neuromuscular effort, 

which can be computed with Equations 3.5 and 3.6: 
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𝑆𝑆.𝐷𝐷.𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜎𝜎𝐴𝐴𝐴𝐴 = � 1
𝑁𝑁 − 1

Σ𝑖𝑖=1𝑁𝑁 �𝐷𝐷𝐷𝐷𝑃𝑃(𝑖𝑖) − 𝐷𝐷𝐷𝐷𝐷𝐷�������2 (3.5) 

𝑆𝑆.𝐷𝐷.𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜎𝜎𝑀𝑀𝑀𝑀 = � 1
𝑁𝑁 − 1

Σ𝑖𝑖=1𝑁𝑁 �𝐷𝐷𝐷𝐷𝐿𝐿(𝑖𝑖) − 𝐷𝐷𝐷𝐷𝐷𝐷�������2 (3.6) 

 

where 

N = total number of samples 

𝐷𝐷𝐷𝐷𝐷𝐷������ and 𝐷𝐷𝐷𝐷𝐷𝐷������ are the mean displacements 

 

Following, mean sway velocity quantifies the rate of CoP displacement 

and reflects the dynamic behaviour of balance corrections. Higher sway 

velocities may indicate increased postural instability or compensatory 

movement patterns. The mean sway velocities of AP and ML axes can be 

computed via Equations 3.7 and 3.8: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷 =
1
𝑇𝑇
Σ𝑖𝑖=1𝑁𝑁−1 �𝐷𝐷𝐷𝐷𝑃𝑃(𝑖𝑖+1) − 𝐷𝐷𝐷𝐷𝑃𝑃(𝑖𝑖)�

Δ𝑡𝑡
(3.7) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷 =
1
𝑇𝑇
Σ𝑖𝑖=1𝑁𝑁−1 �𝐷𝐷𝐷𝐷𝐿𝐿(𝑖𝑖+1) − 𝐷𝐷𝑀𝑀𝑀𝑀(𝑖𝑖)�

Δ𝑡𝑡
(3.8) 

where 

Δ𝑡𝑡 = sampling interval  

T is total trial duration 

 

 Path length is also an important parameter, which is the total path 

traversed by the estimated CoP trajectory, commonly depicted in the form of a 

stabilogram as depicted in Figure 3.6 (Ramachandran and Yegnaswamy, 2010). 

This parameter reflects the cumulative distance of sway, associated with balance 

control, computed as Equation 3.9:  

 

𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ = Σ𝑖𝑖=1𝑁𝑁−1 �𝐷𝐷𝐷𝐷𝑃𝑃2 + 𝐷𝐷𝐷𝐷𝐿𝐿2 (3.9) 
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The area of the prediction ellipse provides a bivariate measure of sway 

dispersion, as depicted in Figure 3.7. A reduced PEA during exoskeleton usage 

implies enhanced postural control, as sway is more tightly regulated. Assuming 

a Gaussian distribution of DAP and DML values, the area enclosing 95% of the 

sway trajectory is calculated as shown in Equation 3.10: 

 

𝑃𝑃𝑃𝑃𝑃𝑃95% = 𝜋𝜋 × 𝑎𝑎 × 𝑏𝑏 (3.10) 

 

𝑎𝑎 = 𝑃𝑃𝑃𝑃𝐹𝐹2 ∙ 𝜎𝜎𝐴𝐴𝐴𝐴, 𝑏𝑏 = 𝑃𝑃𝑃𝑃𝐹𝐹2 ∙ 𝜎𝜎𝑀𝑀𝑀𝑀 (3.10.1) 

 

where 

k = PSF=2.4477 is the prediction scaling factor for 95% coverage in this case. 

𝑎𝑎 and 𝑏𝑏 represent the semi-major and semi-minor axes of the ellipse. 

 

 
Figure 3.7: Sample Visualisation of 𝑃𝑃𝑃𝑃𝑃𝑃95% and CoP Pathlength 

 

 It is important to note that the 𝑃𝑃𝑃𝑃𝑃𝑃95% was chosen over the 𝐶𝐶𝐶𝐶𝐶𝐶95% 

due to fundamental conceptual and statistical differences between the two. The 

PEA represents the region within which future individual CoP observations are 

expected to fall, providing a direct measure of overall postural sway dispersion. 

In contrast, CEA estimates the confidence region around the mean position of 

the CoP, and its area shrinks with increasing sample size due to reliance on 

sample variance and covariance matrices. As highlighted by Schubert and 

Kirchner (2014), this distinction is critical in posturography, CEA is based on 

inferential statistics of the mean, while PEA better reflects the true extent of 

sway variability experienced by an individual. PEA also avoids distributional 

assumptions such as bivariate normality and is more suitable for real-time 

applications and threshold-based postural classification, especially in embedded 
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systems. Furthermore, Paillard and Noé (2015) emphasize the practical 

relevance of using sway area measures that directly reflect CoP dispersion rather 

than confidence around the mean, particularly in balance training and clinical 

contexts. As such, PEA offers a more appropriate and interpretable metric for 

evaluating balance control performance, especially in applied biomechanics and 

wearable system studies. Therefore, based on both theoretical justification and 

methodological recommendations in recent literature, PEA was selected as the 

primary metric for postural sway analysis in this study. 

 

3.5.2 Trunk Stabiliser Muscles Electromyography (EMG)  

To assess the biomechanical impact of the proposed exoskeleton on postural 

control, surface electromyography (sEMG) was conducted on four trunk 

stabiliser muscles, right rectus abdominis (RA), right external oblique (EO), and 

bilateral erector spinae (ES) at the L3–L4 level. These muscles were selected 

for their critical roles in maintaining upper body posture, contributing to spinal 

stability, and responding to trunk sway and perturbations in both sagittal and 

frontal planes and are depicted in Figure 3.8. The rectus abdominis and external 

oblique represent key components of the anterior abdominal wall, generating 

intra-abdominal pressure and counterbalancing spinal extensor activity. These 

muscles are particularly relevant in mediating forward sway and maintaining 

thoracolumbar alignment. The erector spinae, as primary spinal extensors, 

provide segmental stiffness and control over lumbar posture, especially during 

posterior sway and corrective movements. Together, these muscles constitute 

the active core stabilisation system, and their recruitment patterns provide 

insight into neuromuscular compensation during upright stance. 

The inclusion of trunk muscle sEMG was justified based on both 

biomechanical and functional grounds. Although postural sway during quiet 

standing is traditionally attributed to distal (ankle) strategies, some studies 

suggest that proximal (hip and trunk) contributions become more relevant under 

certain conditions such as fatigue, instability, or constrained lower-limb 

feedback (Saffer et al., 2008). Importantly, the exoskeleton system developed 

in this study targets upper body sway via a chest-mounted IMU and delivers 

corrections based on thoracic displacement, making proximal muscle activity 

more relevant to its evaluation. This direct influence on trunk kinematics further 
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supports the decision to focus on core musculature rather than distal control 

systems. Moreover, prior evidence indicates that increased postural difficulty or 

fatigue leads to elevated EMG activity in trunk muscles (Nakao et al., 2017), 

and that trunk muscle fatigue significantly alters CoP dynamics, especially CoP 

velocity, even in asymptomatic individuals (Ghamkhar & Kahlaee, 2019). 

These changes are especially important when considering populations at risk for 

chronic low back pain (CLBP), where compensatory overactivation of trunk 

stabilisers has been observed (Ringheim et al., 2015), though increased EMG 

alone is not a definitive marker of pathology. 

 

 
Figure 3.8: Placements of sEMGs on Trunk Stabiliser Muscles Considered 

 

Given this context, the current analysis prioritised trunk muscles over 

ankle strategies to directly evaluate whether the exoskeleton reduced upper-

body sway and muscle effort. Ankle musculature was not instrumented, as it 

was not the target of feedback or actuation. Furthermore, postural sway was 

assessed from the thoracic level, and thus muscular compensation at the trunk 

was more indicative of system effectiveness in mitigating sway. The hip joint’s 

role, though biomechanically relevant, was also excluded from EMG 

assessment due to variability in recruitment strategies across individuals (Saffer 

et al., 2008) and lack of direct exoskeleton intervention at that level. This 

approach ensures that muscle activity data aligns with the functional objective 

of the exoskeleton, to stabilise the trunk by minimising excessive sway, and 

provides clear evidence of neuromuscular adaptation or unloading in response 

to device assistance. 
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3.5.3 Anthropometric Data Considerations and Calculations for Design 

The biomechanical configuration of the exoskeleton was meticulously 

developed based on established anthropometric datasets to ensure ergonomic 

compatibility with average human body proportions. Key structural parameters, 

particularly spinal segment lengths, were incorporated to enable optimal 

alignment, comfort, and functionality. Rather than relying on individual 

vertebrae, the design considered functional spinal segments, which offer more 

biomechanically relevant divisions for wearable systems integration (Ko et al., 

2004). Of particular importance was the determination of the exoskeleton’s 

anchor point along the thoracic spine. Although the C7 segment, located near 

the base of the neck and at the level of the trapezius prominence, might appear 

suitable in terms of accessibility, it was deliberately avoided. The cervical 

region is anatomically more fragile and susceptible to injury due to its relatively 

lower load-bearing capacity and higher mobility demands. Thus, for both safety 

and biomechanical robustness, the exoskeleton’s anchoring interface was 

positioned inferiorly at the T7 segment, corresponding approximately to the 

level of the inferior angles of the scapulae. This placement provides a stable 

foundation for load distribution while preserving cervical spine mobility and 

reducing risk of strain or impingement. Furthermore, the T7 level aligns with 

the thoracic pivot point of postural control, making it an ideal location for 

monitoring and mitigating trunk sway through sensor feedback and actuation. 

All dimensional parameters and proportional calculations used in the system’s 

design, including segmental lengths and torso landmarks, are summarised in 

Table B-1, with reference to normative anthropometric data (Ko et al., 2004). 

According to existing research, the torso-to-height ratio is generally 

around 30% or approximately 1/3 of the stature (Hall, 2012; Ramachandran et 

al., 2016). While different ethnicities exhibit deviations in these segment lengths, 

where Asians tend to have relatively longer torso and shorter limbs (Liu et al., 

2020), the design assumes a torso ratio of 1/3 of total height for simplicity and 

practicality. In addition to torso length, other critical anthropometric 

measurements, such as shoulder breadth and hip breadth, are used to develop a 

modular exoskeleton that can accommodate a wide range of users, as depicted 

in Table B-2 (Gordon, 2006; Choi-Rokas and Garlie, 2014). These 

measurements are typically computed based on percentile data, allowing the 
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design to be inclusive and adaptable. Although much of the data originates from 

American populations, where body dimensions tend to be about 5% larger than 

those of Malaysians on average, the exoskeleton's design has been recalibrated 

to better fit the average Malaysian body size. For instance, the median height of 

Malaysian males is approximately 1.68 m, while for females it is 1.57 m, both 

corresponding to the 20th percentile of U.S. stature data (Bong et al., 2012). To 

ensure inclusivity, the design range covers female heights from 1.53 m to 1.7 m 

(5th to 85th percentile) and male heights from 1.63 m to 1.84 m (5th to 90th 

percentile), allowing the exoskeleton to cater to a broad user base. In Table B-1 

is a summary of anthropometric data tailored to Malaysian users. The 

application of these data is discussed in more detail in Chapter 3.6. Table B-2 

presents a variety of anthropometric measurements for typical Malaysian males 

and females, with data on height, shoulder breadth, torso length, and other key 

physical characteristics to design a back support exoskeleton for trunk-based 

method of postural sway correction. It includes the mean and standard deviation 

(SD) for both genders, also percentile ranges for certain parameters, particularly 

relevant for product design and ergonomic considerations. The data illustrates 

how male and female body dimensions differ in key areas, which should be 

considered in design applications to accommodate a broad range of users. 

 

3.6 Hardware Development 

The development of the mechanical designs began with a comprehensive 

analysis of anthropometric data, focusing on torso dimensions and girth 

measurements. Statistical methods and mathematical modelling were employed 

to select key data points, ensuring the design parameters would be compatible 

with a wide range of users. The resulting designs were carefully tailored to 

accommodate varying statures and body sizes, enhancing the system’s 

adaptability and usability. A back-based actuating system, featuring detachable 

anchors, was incorporated to provide modular support for different users. 

The design process progressed through several stages, beginning with 

initial sketches and detailed technical drawings, followed by 3D modelling and 

prototyping. Software such as SOLIDWORKS and AutoCAD played a crucial 

role in creating precise digital models of the designs. Existing models from 

platforms like GrabCAD were referenced to accelerate the design process, with 
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additional support from online tutorials. Multiple design iterations were 

conducted, allowing for continuous refinement and optimization. This iterative 

approach addressed design flaws, improved functionality, and enhanced the 

overall performance of the system. Throughout this process, meticulous 

documentation was maintained, ensuring transparency and reproducibility, 

which will facilitate future improvements and further developments. 

 

3.6.1 CAD and Iterations 

In developing the mechanical architecture of the back support exoskeleton 

aimed at mitigating postural sway, extensive emphasis was placed on 

constructing a bioinspired, structurally robust, and ergonomically adaptive 

framework. The exoskeleton frame was conceptualized through iterative design 

cycles, integrating principles from biomechanics, human-centred design, and 

modular engineering. The resulting structure comprises multiple interlocking 

and adjustable components, configured with bilateral symmetry to support 

functional balance and mechanical alignment. Comprehensive design 

schematics and assemblies, presented in Figures 3.10 to 3.17 and Figures C-1 to 

C-11 in Appendices, illustrate the full assembly and modular interconnections 

of the system. A key design objective was to ensure anthropometric adaptability 

and user comfort across a broad range of body sizes. This was achieved through 

adjustable components that can be fine-tuned to match the user's individual 

anthropometric dimensions, including torso length, shoulder width, and hip 

girth. By adopting a customizable fitting system, the exoskeleton maintains 

intimate contact with the user’s trunk while minimizing pressure points and 

ensuring consistent biomechanical alignment. 

The mechanical structure draws inspiration from conventional back 

braces and safety harnesses, incorporating these principles to inform both 

actuator placement and force transmission pathways. The actuators are 

positioned in alignment with the anatomical paths of trunk-stabilizing muscle 

groups, particularly the ES and RA, which play a vital role in maintaining 

posture and counteracting excessive sway. This anatomical alignment ensures 

that assistive forces are applied efficiently, targeting regions of the trunk that 

contribute most significantly to midline stability. The layout was meticulously 

designed to avoid interference with natural joint articulations such as the 
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shoulders and pelvis, thereby allowing unimpeded movement while ensuring 

effective postural correction. The 3D modelling process was conducted using 

industry-standard CAD platforms, including SOLIDWORKS and AutoCAD, to 

develop structurally sound and biomechanically informed components. The 

spine-aligned backplate, thoracic support, actuator mounts, and harness sub-

assemblies were digitally prototyped to simulate natural spinal movement while 

delivering corrective mechanical assistance. Materials were carefully selected 

for these components: 3D-printed PLA or PLA+ was considered for initial 

prototypes due to its favourable balance between fabrication speed and 

mechanical durability, while aluminium was proposed for higher-load elements 

due to its superior strength-to-weight ratio. 

The prototype frame is subdivided into four key mechanical subunits, 

the waistband assembly, which provides foundational support and anchors the 

lower structure; the thoracic backplate, that stabilizes the upper spine and acts 

as the main mounting structure for actuators; the harness system which encircles 

the chest and shoulders, maintaining actuator alignment and securing upper-

body integration; and the actuator-holding assembly, accommodating 

pneumatic or servo actuators, optimized for force transmission along 

biomechanical vectors. To maintain dynamic freedom and user safety, the 

system incorporates multiple anchor points and pivot allowances, via strappings 

in contrast to rigid designs, ensuring that movement is guided, not restricted, 

across natural degrees of freedom. Strapping components were fabricated from 

high-durability woven textiles such as nylon, and their design was informed by 

the anthropometric data provided in Section 3.5.3. These straps support both 

load transfer and fit customisation. The data were simplified to prioritise key 

variables that directly affect strap routing and part integration, including 

Shoulder Width (SW), Chest Breadth (CB), Torso Length (TL), and Hip Girth 

(HG). These parameters were critical in defining the angles and lengths of the 

strap connections, as well as the placement of carabiners and padding. 

To standardize fit and functionality, a dataset representing the 5th to 

95th percentile of adult body sizes was analysed. The design of the strap system 

is guided by anthropometric parameters simplified for practical implementation 

and illustrated in Figures 3.10 and 3.11. The following ranges in Table 3.2 were 

established based on normative anthropometric data. To determine optimal strap 
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angles, a simplified trigonometric model was applied, as depicted in Figure 3.9. 

The designed trapezius clearance (TC), measured from the backplate to the base 

of the neck and trapezius region, was defined in the range of 100–201 mm, based 

on anatomical data summarized in Table B-1. This ensures safe and unimpeded 

shoulder movement as well as lower risks of injuries bypassing the more fragile 

cervical spine area for more neutral, load bearing T7. The relationship is defined 

by Equation 3.11. 

 

 
Figure 3.9: Simplified Trigonometric Model of Strapping Angle  

 

𝜃𝜃 = arctan �
Trapezius Clearance (𝑇𝑇𝑇𝑇)

0.5 × 𝑊𝑊 � (3.11) 

 

where W is the acromial-to-acromial length, and 0.5 × 𝑊𝑊  simplified as 

clavicular length (CL). Thus, the computed effective range for strap angle, 𝜃𝜃 is 

30° and 55°.  

 

Table 3.2: Table of Anthropometric Data Analysed for Prototype Design 

Parameter Range 

Body Height (BH) 1.53–1.88 m 

Torso Length (TL) 30%–33.33% BH (~47–65 cm) 

Shoulder Width (SW) 41–61 cm 

Chest Breadth (CB) 30–38 cm 

Shoulder-to-Waist (S-W) 30–42 cm 

Hip Width (HW) 30–38 cm 

Waistband Circumference 83–110 cm 

 

The shoulder clearance offset from the spine was calculated to estimate 

required length of straps exceeding that of the torso length, using Equation 3.12: 



65 

 

𝑥𝑥 =
𝐶𝐶𝐶𝐶

tan𝜃𝜃
(3.12) 

with resulting values between 140–250 mm. To accommodate approximately 

95% of the target population based on standard anthropometric datasets, the 

shoulder-to-pelvis length was assumed to range between 470–650 mm, while 

the shoulder-to-waist segment specifically falls within 420–550 mm. 

A representative CAD design of the strap attachment configuration and 

routing strategy is presented in Figure 3.11, detailing the anchoring points, 

angular routing of the straps, and integration interfaces with the actuator 

modules. The corresponding physical realization of this system is shown in 

Figure 3.10, which validates the design through practical alignment with the 

CAD model and demonstrates its adjustability, structural integrity, and user 

comfort during wear. Chest depth estimations were derived based on 10%-20% 

of the vertical torso circumference, resulting in a range of 150-270 mm. To 

accommodate spinal curvature and individual variations, strap lengths were 

extended by an additional 10%-20 % of torso length and supplemented with 50-

100 mm of slack. This resulted in an effective strap length of 550-900 mm, 

which was further adjusted, with padding and hardware allowances, to a 

standardized final length of approximately 1300 mm. The lower strap sections, 

ranging from 220-440 mm, were designed in accordance with the estimated 

torso length of 470-650 mm, factoring in 100-201 mm for shoulder clearance, 

an approximate 100 mm allocation for the backplate, and an additional 100 mm 

for the waistband structure. 

 

 
Figure 3.10: Actual Strapping Strategy of Prototype 
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Figure 3.11: CAD Design of The Strap Attachment Configuration  

 

To facilitate accurate detection of upper trunk postural sway, a custom-

designed enclosure was developed for chest-mounted MPU6050 IMU module. 

The casing is compact and tailored specifically to accommodate the physical 

dimensions of the IMU, including the L-shaped header pins, measuring 

approximately 20 mm × 15 mm × 11 mm. The enclosure itself has a total height 

of only 15 mm, ensuring that it remains low-profile and easily concealable under 

typical clothing such as a t-shirt, sweater, or jacket, making it suitable for 

continuous wear in both experimental and real-world conditions. The enclosure 

features two M3 screw holes that allow secure fastening of the MPU6050 to the 

case using screws or bolts, thereby preventing sensor displacement during 

movement. Additionally, strategically positioned side openings enable the 

passage of 20 mm elastic straps. These straps are routed through the enclosure 

and fastened using ladder buckles, allowing the entire assembly to be securely 

anchored to the chest. This strapping mechanism is critical for preventing 

slippage, tilting, or drooping of the sensor, which could otherwise introduce 

errors in the sway detection algorithm. As this IMU module forms the core 

sensing component for the upper trunk posture assessment system, its correct 

positioning and firm attachment to the user’s chest is essential to maintaining 

data fidelity. No separate cover was designed for this casing; instead, the 

MPU6050 module was soldered onto a custom-cut stripboard that fits snugly 

within the enclosure, serving as a makeshift lid. Wires are routed neatly along 

the side of the casing to connect with the main microcontroller unit housed 

separately, and the full assembly is detailed in Figure 3.12. 
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Figure 3.12: Chest IMU Holder and Strap 

 

Further supporting modules include the development of a devboard 

holder casing, as illustrated in Figure 3.13. This housing is specifically designed 

to hold the ESP32 terminal expansion board and includes four M4 holes for 

secure mounting. A slotted track system is integrated into the design to 

accommodate a cover panel, transforming the unit into a compact box. This 

casing is then attached to a rigid backplate, shown in Figure 14, via similar slots 

and tracks, forming part of the thoracic module of the prototype. The entire unit, 

which also stores the SD card logging module, maintains a slim profile of only 

33 mm, contributing to the overall wearable form factor. The backplate features 

multiple strap interface points, as shown in Figures 3.10 and 3.11, allowing 

stable and adjustable attachment to the user’s upper back. 

 

 
Figure 3.13: Devboard Holder with Tabs and Slots 

 

 
Figure 3.14: Attachment of Devboard on Backplate 

 

To enhance user interaction and monitoring, a wrist-worn OLED 

module was developed, depicted in Figure 3.15, and assembled in Figure 3.16. 

The OLED circuit is encased snugly in a compact, watch-sized enclosure that 

can be secured around the wrist using neodymium magnets and elastic straps. 
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This module displays real-time visual feedback from the system, such as 

postural metrics or actuation states, allowing the user to monitor system 

performance immediately. The 17.5 mm height of the assembled module puts it 

slightly above the size of conventional wrist watches at 15mm but is still 

considered compact. 

 

 
Figure 3.15: OLED Circuit Casing by Parts 

 

 
Figure 3.16: OLED Assembled Casing for Wrist 

 

The waist-mounted component of the prototype, shown in Figure 3.17, 

contains the actuation mechanism. This unit integrates with adjustable waist 

straps to securely position the pneumatic actuators around the user's lower torso. 

The basic workflow of the actuation system is outlined in Figure 3.18, which 

presents the full block diagram of the postural adjustment mechanism. Together, 

these modular enclosures and attachment methods form an integrated wearable 

platform for real-time postural sway monitoring and correction. The design 

emphasizes mechanical simplicity, wearability, and data accuracy, enabling the 

system to function effectively in real-world usage scenarios. 

 

 
Figure 3.17: Waistband Assembly 
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Figure 3.18: Block Diagram of Postural Adjustment of Prototype 

 

The exoskeleton prototype comprises several essential components 

designed to deliver effective postural support while maintaining user comfort. 

The mechanical frame is ergonomically shaped and lightweight, allowing it to 

be worn on the back with minimal discomfort. It primarily uses fabric or 

polymer materials for the straps and padding, offering flexibility and comfort, 

while rigid sections, such as structural anchors, are made from aluminium and 

kept to a minimum to reduce weight and bulk. This frame provides the necessary 

structural base to secure the actuators and ensure stability during movement. 

The actuation system incorporates a pair of pneumatic cylinders, which generate 

linear pulling forces for posture adjustment. While the cylinders remain exposed, 

they are mounted in a way that avoids interfering with the natural movement. 

The overall design reduces the number of rigid components and simplifies the 

structure, helping to minimise the device’s form factor. As a result, the 

exoskeleton, though not entirely concealed, can still be worn discreetly under 

loose or layered clothing, balancing functionality with wearability. 

 

3.7 Material and Component Selections 

The development of the wearable posture-correcting exoskeleton necessitated 

careful consideration of mechanical, ergonomic, and biomechanical 

requirements to ensure optimal force delivery, user comfort, and device 

reliability. This section outlines the rationale behind the selection of key 

materials and components, as well as the biomechanical estimations that guided 

the actuator specifications. 
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3.7.1 Biomechanical Force Estimations 

To determine the actuation requirements for postural correction of the upper 

trunk, torque estimations were derived based on basic biomechanical principles. 

The mass of the trunk segment accounts for approximately 41.6–50% of total 

body mass. Using the torque equation (Equation 3.13): 

 

𝜏𝜏 = 𝑚𝑚 ∙ 𝑔𝑔 ∙ 𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) (3.13) 

 

where 

𝜏𝜏 is the torque required (Nm) 

𝑚𝑚 is the mass of the trunk (kg) 

𝑔𝑔 is the gravitational acceleration (9.81 m/s²) 

𝑑𝑑 is the distance from the pivot point (estimated as 0.265 m for H2, will be 

further explored in Section 3.9.4 and Figure 3.42) 

θ represents the sway angle, where pitch angle corresponds to anteroposterior 

(AP) sway and roll angle corresponds to mediolateral (ML) sway. These angles 

are calculated using Equation 3.14, which is derived from Equations 3.3 and 3.4: 

 

𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ = arctan �
𝐷𝐷𝐷𝐷𝐷𝐷
𝐻𝐻2

� , 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = arctan �
𝐷𝐷𝐷𝐷𝐷𝐷
𝐻𝐻2

� (3.14) 

 

Here, DAP and DML refer to the CoP displacements in the AP and ML 

directions, respectively, noted that all sway angle measurements here are in 

reference to fulcrum, thus using H2. According to literature, DAP values 

typically range from 3.67 mm to 17.66 mm, while DML values range from 5.22 

mm to 24.44 mm (Ohlendorf et al., 2019; Goble & Baweja, 2018). These ranges 

are commonly used in postural control studies and are appropriate for both male 

and female participants aged 20 to 30 years, aligning with the demographic of 

the current study. Although CoP displacements are generally independent of 

subject height, some studies suggest a possible correlation with sex, where 

females often demonstrate slightly better balance performance. Nonetheless, the 

overall CoP-based balance scores remain comparable between sexes within this 

age group (Goble & Baweja, 2018; Becker et al., 2025). To simplify system 

design, the average, minimum, and maximum values of DAP and DML were 
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adopted to compute the corresponding sway angles, which serve to define the 

correction limits. The resulting sway angle ranges are summarized in Table 3.3. 

Given that these sway angles fall within small ranges typical of healthy 

individuals, and to facilitate algorithm implementation, a simplified angular 

threshold was set. For AP sway, limits were extended to 5° posterior and 7° 

anterior, based on values reported in literature (Chaudhry et al., 2004). 

Additionally, a hard limit of ±15° was applied to both AP and ML sway to define 

the maximum expected range and ensure robustness in system performance. 

 

Table 3.3: Computed Sway Angle Ranges Required for Correction 
 

𝜽𝜽𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 (°) 𝜽𝜽𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 (°) 
Min 0.7934 1.0680 
Max 3.8126 7.3298 
Mean 2.0531 2.8085 

CI Range 1.7292 - 2.1611 2.5928 - 3.0241 
 

For users weighing between 40 kg and 95 kg, the estimated required torque 

ranges from 17.78 Nm to 42.22 Nm. Within the average weight range of subjects 

recruited at UTAR (52–70 kg), torque requirements are between 23.11 Nm and 

31.11 Nm. Since the exoskeleton uses two actuators, the torque per actuator is: 

 

𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝜏𝜏
2

(3.15) 

 

To obtain the required linear force for actuation, torque is divided by the 

perpendicular distance to the backplate (r = 0.1 m): 

 

𝐹𝐹 =
𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟
(3.16) 

 

This results in required linear forces between 115.55 N and 155.55 N for average 

users, and up to 211.10 N for higher mass individuals. These values were used 

to inform the selection of pneumatic components. 

 

Additionally, a pulley mechanism was established using linear 

pneumatic cylinders anchored at the fulcrum point (pelvis), routed over the 
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shoulder (assume a joint or fixed guide), and anchored at the front waist using 

a carabiner. To determine the necessary stroke length for proper actuator 

function, a visualization was constructed, as shown in Figure 3.19, which 

includes a simplified stick diagram and directional vectors. Assuming the 

human body behaves as a rigid two-segment model with stationary lower limbs 

and no slack in the system, the required stroke length of the pneumatic cylinder 

can be estimated using the cosine rule, as expressed in Equation 3.17: 

 

 
Figure 3.19: Schematic and Simplified Diagrams of Force and Stroke Length 

Required for Postural Sway 

 

𝑑𝑑2 = 𝐻𝐻2 + 𝐻𝐻′2 − 2𝐻𝐻𝐻𝐻′ cos 𝜃𝜃 = 2𝐻𝐻2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑑𝑑 = 𝐻𝐻√2 − 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3.17) 

 

where 𝜃𝜃 is the postural sway angle of ±15, H is the vertical distance from the 

chest to the waist (as defined in H2). Substituting the measured value of 𝐻𝐻, the 

required stroke length 𝑑𝑑 is calculated to be over 69.18 mm, which defines the 

minimum actuator stroke necessary for the system to function effectively 

 

3.7.2 Pneumatic Components 

The pneumatic actuation was driven by the Mi Portable Electric Air Compressor 

2 or MiPump 2 (Figure 3.20), a compact air pump weighing 490 g, of 

dimensions 123 mm×75.5 mm×45.8 mm, and powered by a 2000 mAh lithium-
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ion battery. The device operates within a pressure range of 0.2 to 10.3 bar and 

produces approximately 80 dB of noise. The maximum flow rate at 0 bar is 15.0 

L/min; however, under typical operating loads of 2–6 bar, effective flow rates 

were estimated between 3 to 7 L/min. These estimates were supported by 

indirect reference to automobile tire inflation data, where inflating a 40 L tire in 

approximately 8 minutes implies a delivery rate of roughly 5 L/min. 

 

 
Figure 3.20: Mi Portable Electric Air Compressor 2 

 

The selected pneumatic cylinder (Figure 3.21) features a bore diameter 

of 32 mm and a stroke length of 75 mm, and up to 10 bars of pressure. In the 

operation of the prototype, pressures ranging from 2 to 6 bars were considered 

to not overburden the portable air compressor. To determine the force exerted 

under these conditions, the piston area should be calculated via Equation 3.18: 

 

 
Figure 3.21: MAL Mini Aluminium Pneumatic Cylinder  

 

𝐴𝐴 = 𝜋𝜋𝑟𝑟2 = 𝜋𝜋(0.016)2 ≈ 8.042 × 10−4𝑚𝑚2 (3.18) 

 

where 

𝐴𝐴 is effective piston area 

𝑟𝑟 is radius of piston (bore), which 0.5 bore size  

 

From Equation 3.19, the force exerted can be determined: 

 

𝐹𝐹 = 𝑃𝑃 × 𝐴𝐴 (3.19) 
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Thus, at 2, 4, and 6 bar operating pressures, the extension forces were estimated 

at approximately 160.84 N, 321.7 N, and 482.5 N, respectively, accommodating 

even extreme weighted individuals (>95kg), with safety factor of 2.3 at 6 bars 

and 1.5 at 4 bars. Considering the presence of a 10 mm diameter piston rod (rod 

radius = 0.005 m), the effective retraction area was slightly reduced, yielding 

retraction forces of about 145.2 N at 2 bars, from new effective retraction area 

from Equation 3.20: 

 

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 𝜋𝜋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 ≈ 7.26 × 10−4𝑚𝑚2 (3.20) 

 

Besides, the internal stroke volume per cylinder was calculated to estimate flow 

rates or stroke frequencies via Equation 3.21: 

 

𝑉𝑉 = 𝐴𝐴 · 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 8.042 × 10−4 · 0.075 = 60.3𝑚𝑚𝑚𝑚 (3.21) 

 

The air volume required per stroke was calculated to be approximately 60.3 ml. 

Given MiPump2’s flow rates, each cylinder could operate at 0.967 Hz (2 bar), 

0.691 Hz (4 bar), and 0.415 Hz (6 bar), respectively, under dual-cylinder 

conditions, which are deemed sufficient for corrective postural actuation during 

slow upper trunk sway. 

 

3.7.3 Materials for Structural Components 

Various grades of 3D-printed polymers were selected to meet the functional and 

structural requirements of different components in the prototype. PLA+ was 

employed for rigid and load-bearing parts such as the backplate module, Figure 

3.14. This material was chosen for its enhanced mechanical strength and 

improved thermal resistance compared to standard PLA, making it suitable for 

securing straps for high tension. Flexible PLA was utilized in areas that required 

elastic deformation, including slotted regions for cable routing and snap-fit 

mechanisms, allowing repeated attachment and detachment without material 

failure such as the ESP32 holder and covers, Figure 3.13. Standard PLA was 

reserved for components subjected to minimal mechanical stress, such as the 

housing for the MPU 6050 (Figure 3.12) and OLED (Figure 3.16), where 
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structural rigidity was not a primary concern. All components were fabricated 

using a cubic infill pattern at 25% density, providing an optimal balance 

between weight reduction, mechanical strength, and printing efficiency. 

To improve user comfort, reducing risks of skin irritation or pressure-

related discomfort, high-density foam wrapped in fabric was integrated into the 

shoulder and back regions of the exoskeleton. This padding effectively prevents 

direct contact between the user's body and the 50 mm wide nylon webbing straps, 

significantly enhancing wearability during prolonged use, illustrated in Figure 

3.22. For structural support and secure integration of the pneumatic actuation 

system, the waist module was designed using a weightlifting-style belt 

constructed from ultra-high-density foam reinforced with durable nylon for 

strappings. This belt served as a load-bearing base for the attachment of 

pneumatic cylinders. To ensure mechanical reliability and resistance to high 

tensile loads, aluminium mounting plates and brackets were used to affix the 

cylinders to the belt via bolts and nuts. L brackets are also used as stoppers to 

control the activation of pneumatic cylinders, depicted in Figure 3.23. This 

configuration provided both structural integrity and user comfort, striking a 

balance between rigid support and ergonomic wearability. 

 

 
Figure 3.22: Fabric Attachments and Paddings of Prototype 

 

To ensure both modularity and secure fastening in the wearable system, 

multiple D-rings were integrated into the waist belt using a combination of sewn 

nylon webbing and mechanical bolting. These D-rings functioned as anchor 

points for carabiner hooks, which were attached to the terminal ends of the 

shoulder straps, Figure 3.23. This design facilitated easy donning and doffing 

while allowing the user to fine-tune the strap tension between the upper and 

lower harness segments. Nylon webbing straps of 20 mm and 50 mm widths 

were selected for their high tensile strength, flexibility, and resistance to 

abrasion, making them suitable for both static load-bearing and dynamic 

adjustment purposes. Steel components, including adjustable ladder buckles, 
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slide buckles, and tie-down buckles, were used in place of plastic alternatives to 

avoid mechanical failure under repeated high-tension loading. These buckles 

enabled user-specific customisation of strap lengths and overall harness fit, 

contributing to the adaptability of the prototype across users with varying body 

types. Standard bolts and nuts were employed throughout the assembly to ensure 

structural integrity and reusability. Collectively, these fastening and modular 

design elements support a robust, customizable, and user-friendly wearable 

system that can accommodate the demands of real-time upper trunk postural 

sway correction while maintaining a minimal form factor suitable for daily wear. 

 

 
Figure 3.23: Fastening and Securement Strategies of the Prototype 

 

3.7.4 Circuit Components 

The electronic system was built around the ESP32 microcontroller, selected for 

its superior performance compared to standard Arduino boards. The ESP32 

offers integrated Wi-Fi (2.4 – 2.5 GHz) and Bluetooth connectivity, on-board 

clock (40 MHz crystal), higher processing speed, and greater memory capacity, 

all while maintaining a low cost. The ESP32 Devkit V1 (30 Pins) with ESP32-

WROOM-32 chip, illustrated in Figure 3.24 (a), was selected for its dual-core 

processing and ample memory, including 520 kB SRAM and 4 MB external 

flash (Espressif Systems, no date). This allows efficient real-time processing of 

chest sway data for postural sway detection, wireless communication for real 

time monitoring via GUI, and direct code execution from flash. Its RTC memory 

supports low-power modes, making it suitable for wearable applications. These 

features make it essential for real-time data acquisition and wireless 

communication in wearable biomedical applications. To streamline circuit 

assembly and improve reliability, an ESP32 terminal board was employed, 

Figure 3.24 (b). This accessory allows for solderless connections, simplifying 
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prototyping, reducing troubleshooting time, and providing more secure and 

stable electrical connections compared to conventional Dupont jumper wires, 

which are prone to loosening and signal inconsistency under motion. 

 

(a)   (b)  

Figure 3.24: (a) ESP32 Devkit V1, 30-Pin Model, (b) with Terminal Block  

 

For trunk or chest sway detection, an MPU6050 was selected, shown 

in Figure 3.25. This low-cost (approx. RM10) 6-degree-of-freedom sensor 

integrates both a 3-axis accelerometer and a 3-axis gyroscope, enabling accurate 

real-time monitoring of angular velocity and acceleration which can be used to 

derive upper trunk sway. Its compact size and compatibility with the ESP32 

make it ideal for wearable implementations. 

 

 
Figure 3.25: MPU 6050 

 

To control pneumatic actuation, a 4-channel relay module, shown in 

Figure 3.26, was used to interface between the microcontroller and solenoid 

valves, detailed in Chapter 3.8.3 below. The relays enable the ESP32 to switch 

the high-current loads required by the solenoids, ensuring safe and reliable 

actuation of the pneumatic cylinders in response to detected postural deviations. 

 

 
Figure 3.26: A 4-Channel Relay 
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A compact 0.96” SSD 1306 OLED display, as shown in Figure 3.27, 

was integrated into the system to deliver real-time visual feedback to the user. 

It displays key information such as stability status, sensor readings (in numerical 

or graphical form), and current orientation, which improves usability during 

testing and operation. The 0.96” size was chosen to fit a compact, watch-like 

form factor, while the OLED technology offers high contrast and clarity, 

enabling easy readability even with small fonts. 

 

 
Figure 3.27: 0.96” SSD 1306 OLED  

 

Power for the solenoid valves was supplied by four 3.7V lithium-ion 

AA batteries housed in a battery holder, selected for their high energy density, 

rechargeability, and compact size. To deliver the required 12V for the solenoid 

valves, an LM2596 buck converter, in Figure 3.28, was used to regulate the 

output voltage efficiently and prevent overvoltage damage. Meanwhile, the 

ESP32 and its peripheral circuits were powered separately via a power bank 

connected directly to the ESP32. For data logging purposes, an SD card module 

was included in the circuit. This allowed continuous storage of sensor data, 

which is crucial for post-processing, performance evaluation, and further 

refinement of sway classification algorithms. The use of onboard data storage 

ensured that the system could function independently in real-world settings 

without requiring constant connectivity. 

 

 
Figure 3.28: LM2596 Buck Converter 

 

3.7.5 Calibration of Inertial Measurement Unit 

In an ideal scenario, when the IMU is placed on a flat surface, the x and y-axis 

values should register as 0, while the z-axis should reflect the gravitational force, 

approximately 9.81 m/s². However, slight deviations often occur due to factors 



79 

such as sensor imperfections or environmental conditions. To address this, 

calibration of the IMU is necessary before taking accurate measurements. The 

calibration process involves averaging the IMU readings over a set period and 

adjusting them to match the expected values for each axis. This step ensures that 

the sensor readings align more closely with true physical forces. The calibration 

can be efficiently performed using the MPU6050_light library, which automates 

the process and ensures accurate sensor performance. The flowchart depicting 

the IMU calibration process is shown in Figure 3.29. 

 
Figure 3.29: Flowchart Showing the Process in Calibrating an IMU. 

 

3.8 Circuit Development 

The circuit development phase was fundamental to the integration of sensor data 

acquisition, real-time processing, actuation control, and data logging within the 

wearable exoskeleton system. A compact and modular electronic system was 

designed to ensure compatibility with the mechanical structure while 

minimizing bulk and preserving user mobility. The objective was to create a 

robust embedded control system capable of capturing postural sway data in real 

time, making classification decisions, and actuating pneumatic components 

responsively to support posture correction. The development involved selecting 

appropriate microcontrollers, sensors, actuators, display units, and power 

management components. Particular attention was given to the balance between 

performance, reliability, and cost, as the system had to operate continuously and 
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accurately in a dynamic, wearable environment. Key considerations included 

real-time responsiveness, wireless communication capabilities, ease of 

integration with the mechanical harness, and the ability to log data for further 

analysis. All components were selected and integrated with the goal of ensuring 

safe and efficient operation of the exoskeleton during testing and use. The circuit 

was built on a terminal board to enable clean, modular wiring while allowing 

future adjustments or upgrades. 

 

3.8.1 MPU 6050 Circuit Design for Chest Sway Detection 

The MPU6050 inertial measurement unit (IMU) was employed to capture real-

time motion data for chest sway detection. The sensor was connected to the 

ESP32 via a terminal board, with soldered wire connections through a strip 

board to ensure mechanical stability and noise reduction. The pin configuration 

was such VCC to 3v3, GND to GND, SCL to GPIO22, and SDA to GPIO21 on 

the ESP32, evident in Figure 3.30. This configuration is shown integrated within 

the custom ESP32 enclosure in Figure 3.12. To interface with the sensor, the 

MPU6050_light.h library was utilized due to its lightweight design and 

performance in embedded systems which provided 6-axis raw data, including 

linear acceleration (ax, ay, az) and angular velocity (gx, gy, gz). From these 

values, basic orientation parameters such as pitch and roll were computed, along 

with sway displacement values in the anteroposterior (DAP) and mediolateral 

(DML) directions, as detailed in Section 3.5.1. These real-time raw and 

computed values formed the input for the sway detection algorithm, which 

further processed them into higher-level sway parameters to classify and correct 

postural instability. All sensor and algorithmic operations were embedded 

within the ESP32 system for efficient onboard processing. To enable accurate 

timestamping of real-time sensor data, the ESP32’s onboard real-time clock was 

synchronized using Network Time Protocol (NTP). The time.h library was 

included to support timekeeping functions. Two NTP servers, pool.ntp.org and 

time.nist.gov, were used for redundancy, while the time zone was set to UTC+8 

with no daylight offset. This synchronization ensures precise timing for IMU-

based sway detection and allows reliable time-based logging and analysis of 

movement data, which is critical for applications involving temporal postural 

sway classification. 
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Figure 3.30: Circuit Connection of Chest IMU to ESP 32  

 

3.8.2 SD Module Circuit Design for Data Logging 

To facilitate reliable real-time data logging, an SD card module was integrated 

into the ESP32 system using the Serial Peripheral Interface (SPI) protocol. The 

SdFat.h library, along with SPI.h, was selected for its optimized performance, 

extended compatibility with large-capacity SD cards, and efficient file 

handling—especially suitable for embedded systems with limited memory. 

Compared to the standard SD.h library, SdFat.h offers faster access and greater 

control over the file system, making it ideal for time-sensitive applications. The 

SD card was used to store IMU raw data and derived postural sway parameters 

in .csv format. This allows for structured, timestamped offline analysis, 

repeatability in testing, and validation of the detection algorithm. Connections 

were made to the ESP32’s default SPI pins, in Figure 3.31, which are MISO 

(D19), MOSI (D23), SCK (D18), and CS (D5). The module was securely 

housed within the main ESP32 enclosure to maintain a compact and integrated 

form factor. A global logging system was implemented using variables such as 

loggingEnabled, csvFileName, and lastLogTime, with a defined logging 

interval of 500 milliseconds to regulate data sampling. When enabled, the 

system logs IMU data and derived sway parameters into a .csv file, providing 

structured and time-synchronized datasets essential for offline analysis, 

performance evaluation, and algorithm validation. 
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Figure 3.31: Circuit Connection of SD Card Module to ESP 32 

 

3.8.3 Relay and Solenoid Valve Circuit Design for Actuation 

To enable automatic actuation of the pneumatic cylinders, a relay-based 

switching system was developed using a 4-channel relay module connected to 

two solenoid valves as shown in Figure 3.32. These valves regulate airflow to 

the cylinders, enabling directional stabilization based on real-time posture 

feedback. Power to the solenoid valves was supplied by four 3.7V Li-ion 

batteries housed in a battery holder, chosen for their high energy density and 

reusability. These were configured in series and fed into a buck converter 

(LM2596), which stepped the voltage down to a stable 12V supply required by 

the solenoid valves. The COM and NC (Normally Closed) terminals of the relay 

channels were connected to the solenoid valves to ensure they remain inactive 

by default and are only triggered when the relays are activated. To ensure proper 

electrical flow and safe actuation, the positive output (+) from the buck 

converter was connected to the COM (Common) terminal of the relay channels. 

The Normally Closed (NC) terminals of the relays were then connected to the 

positive terminals of the solenoid valves. Meanwhile, the negative output (–) 

from the buck converter was connected directly to the negative terminal of the 

solenoid valves. 

This configuration means that the valves remain off (circuit open) 

when the relays are inactive, and are only powered when the corresponding relay 

is triggered (sets COM to NC path as closed). By controlling the HIGH/LOW 

state of the GPIO pins on the ESP32, the system selectively activates solenoids 

for specific directional control based on postural instability. This wiring not only 

prevents unnecessary energy drain but also adds a layer of safety by defaulting 
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to the "off" state unless an explicit signal is sent by the microcontroller. The 

relays were controlled via GPIO pins D27 and D33 of the ESP32 (defined as 

RELAY3 and RELAY4 respectively). These were initialized as output pins and 

set to LOW (inactive) during startup. The relay control logic was implemented 

in the updateRelays() function, which activated specific relay channels based on 

the user’s current orientation status (LEFT, RIGHT, ANTERIOR, POSTERIOR, 

INSTABILITY, or STABLE), as detected through the MPU6050. This 

configuration enabled targeted stroke of the pneumatic cylinders to assist with 

balance correction dynamically. The relay module and wiring were secured onto 

the waistband via bolting to maintain a compact, wearable system. 

 

 
Figure 3.32: Relay and Pneumatic Component Circuit Connections 

 

3.8.4 OLED Display Circuit Design for Quick Visuals 

A 0.96” SSD1306 OLED display was integrated into the system to provide clear, 

high-contrast visual feedback to the user. This includes stability status, real-time 

IMU readings, and system modes, enhancing both usability and monitoring 

during operation. The OLED module was controlled using the I2C protocol, 

connected to the ESP32’s SCL (D22) and SDA (D21) pins, sharing the same 

I2C bus as the MPU6050 IMU for efficient pin usage, connection in Figure 3.33. 

To support interface navigation, two tactile pushbuttons were added and 

connected to digital pins D14 and D4. These buttons enable user interaction with 

the display, allowing switching between numerical readouts, graphical plots, 

and system menus. The input logic was debounced in software to ensure reliable 

operation. For the software interface, the Adafruit_GFX.h and 

Adafruit_SSD1306.h libraries were selected due to their reliability, extensive 

documentation, and built-in support for drawing graphics and handling fonts. 

They also support memory-constrained microcontrollers like the ESP32 while 
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maintaining good performance and responsiveness. The display and buttons 

were compactly housed within the main ESP32 casing, maintaining a small form 

factor while providing intuitive, user-friendly interaction for testing and 

monitoring. 

 

 
Figure 3.33: OLED Display Circuit Connection 

 

3.8.5 Circuit Integration 

The complete circuit integration was carefully structured to ensure reliable 

communication, efficient power management, and modularity within a compact 

embedded system as depicted in Figure 3.34. The ESP32-WROOM-32 

microcontroller served as the central hub, interfacing with multiple peripheral 

components through both I2C and SPI communication protocols. The 

MPU6050 IMU and the SSD1306 OLED display shared the same I2C bus, 

connected to the ESP32’s default I2C pins (GPIO 21 for SDA and GPIO 22 for 

SCL). Potential I2C conflicts were mitigated through device-level address 

management, as the MPU6050 and OLED used unique default addresses (0x68 

and 0x3C respectively), ensuring seamless simultaneous communication 

without interference. These connections were routed through a terminal board 

and soldered to ensure low-resistance, noise-resistant signal paths. 

In parallel, the SD card module operated independently on the SPI 

protocol, utilizing GPIOs 23 (MOSI), 19 (MISO), 18 (SCK), and 5 (CS), which 

prevented any cross-talk with the I2C bus. The SdFat library was selected over 

the standard SD library due to its enhanced compatibility with the ESP32 

architecture and its support for non-blocking, efficient file operations necessary 

for real-time data logging. Digital I/O pins were allocated for additional 

modules such as the 4-channel relay (GPIOs 27 and 33), and user interface 
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buttons (GPIOs 14 and 4). The entire assembly, including the ESP32, IMU, SD 

module, and wiring, was securely housed within a custom enclosure to maintain 

mechanical stability and ensure reliable operation during motion and testing. 

Power distribution was managed via a dual-source strategy, namely, a 

5V power bank supplied the ESP32 and its peripherals, while a regulated 12V 

output from a buck converter powered the solenoid valves via relay switching. 

Ground lines across the power and logic circuits were commonly tied to 

maintain a consistent reference voltage, minimizing the risk of floating grounds 

or erratic behavior. This integrated configuration enabled concurrent real-time 

data acquisition, control, and feedback operations, forming the functional 

backbone of the wearable exoskeleton system. 

 

 
Figure 3.34: Integrated Circuit Design 

 

3.8.6 Graphical User Interface (GUI) Development 

To enhance the functionality and use interactions of the back-support strap-

based pneumatic exosuit for static posture correction, an IoT-enabled software 

framework was developed. This system allows for real-time visualisation, 

remote monitoring, and session logging of biomechanical data obtained during 

use. The overall architecture adopts a modular approach, comprising four major 
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tiers: the frontend interface, backend logic, database layer, and hardware 

integration unit, depicted in Figure 3.35 as block diagram. 

 

 
Figure 3.35: Block Diagram of System Architecture 

 

The frontend is constructed using Streamlit, an open-source Python 

library, to facilitate rapid development of interactive dashboards and interfaces. 

This environment supports both patient and administrator interactions through 

a role-based access control system. The backend is implemented in Python 3.11 

and is responsible for handling logic control, session management, and external 

communication with microcontroller hardware. PostgreSQL, managed and 

queried using pgAdmin 4, serves as the relational database system, providing 

high-performance, ACID-compliant data storage for user credentials, metadata, 

session logs, and raw sensor data. Data flow is bi-directional between the 

hardware and software layers, with real-time movement data streamed from the 

ESP 32-equiped chest IMU via Wi-Fi to the backend for parsing, analysis, and 

visualization. Development was carried out in Visual Studio Code, offering 

integration between Python modules, PostgreSQL, and frontend components.  

The frontend design utilizes Streamlit due to its capability to transform 

Python scripts into shareable web apps without requiring extensive HTML or 

JavaScript knowledge. Python serves as the primary backend language, 

enabling efficient data processing and communication with the microcontroller. 

The PostgreSQL database is selected for its ACID-compliance, scalability, and 

support for complex query operations. Libraries such as psycopg2 are used to 

handle database connections, while pandas manages data manipulation. 

Visualization tasks rely on matplotlib and seaborn, which provide versatile 

options for creating both static and interactive plots. The ESP32 platform is used 

for its lightweight and portable configuration, transmitting IMU data via Wi-Fi 

through socket communication. Table 3.4 justifies the methods selected. 
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Table 3.4: Technology Justification Summary 

Component Technology Justification 
Frontend Streamlit Simplifies deployment of interactive GUI 

dashboards using only Python. 
Backend Python 3.11 Enables robust logic control, data 

processing, and integration flexibility. 
Database PostgreSQL Scalable, ACID-compliant SQL engine 

with robust indexing and query support. 
DB 

Connector 
psycopg2 Secure and efficient PostgreSQL adapter 

with parameterized query support. 
Data 

Handling 
pandas High-performance data transformation 

and time-series handling. 
Visualization matplotlib, 

seaborn 
Facilitates advanced data plotting and 
real-time visual feedback. 

IMU 
Interface 

ESP 32 (Wi-
Fi) 

Lightweight embedded solution for real-
time data acquisition and streaming. 

 

User authentication is handled through a dedicated Python script that 

validates login credentials against stored PostgreSQL records. At this stage, 

backend queries the users table using parameterized queries to avoid SQL 

injection. Upon successful verification, session states are updated to reflect the 

user's role. Patients and administrators use the same login page, but content 

rendering is conditional, restricting patients to their own data while granting 

admins full access to all user records and system configurations. Passwords are 

hashed using Argon2, and session inactivity triggers an auto-logout protocol for 

enhanced security. Once authenticated, patients are directed to a dashboard that 

aggregates session counts, live trial metrics, and recorded data via pandas. The 

dashboard is designed to refresh every five seconds, displaying real-time values 

streamed from the IMU sensor. Users can initiate new trials, which are stored in 

structured formats (JSON or CSV) and uploaded to the SQL database. Historical 

data retrieval is enabled through parameterised SQL queries to support filtering 

and analysis. The navigation sidebar offers clear access to trial initiation, 

historical records, and secure logout features. On the other side, administrators 

access a more advanced dashboard that includes real-time visualizations of login 

activity, session metrics, and patient comments. Navigation features enable 

administrators to view user logs, manage patient accounts, reset passwords, and 

moderate feedback. The backend enforces route protection, session validation, 

and detailed auditing of administrative actions. Filtered views allow for rapid 
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inspection of patient records, while layered navigation supports drill-down 

access to individual trials and raw sensor data. Figure 3.36 shows the flowchart 

of main code and both dashboards. 

 

 
Figure 3.36: GUI Flowchart for Main Page and User Dashboards 

 

The data visualisation module, depicted in flowchart in Figure 3.37, 

generates time-series plots and interactive charts, with matplotlib and seaborn, 

representing metrics such as DAP, DML, accelerometer data and other 

computed CoP parameters. These visualizations help users interpret the 

effectiveness of the exosuit under in real time and make comparisons with 

historical data. Patient records can be searched and filtered by timestamp, trial 

ID, or username. Tables are rendered with pagination and expansion features 

for clarity and convenience, implementing parameterised SQL queries to ensure 

injection safety. Linked views allow users to explore specific datasets in more 

detail, including gauge charts and raw data logs. 

 

 
Figure 3.37: Data Visualization Flowchart  
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The dual-user architecture accommodates patients and administrators 

through modular, role-specific flows. Streamlit serves as the unifying 

framework for frontend interaction, while PostgreSQL manages data 

persistence. Each user interaction is captured in a session, with routing logic 

ensuring restricted access to sensitive modules. Confirm prompts and session-

based protection minimize the risk of accidental data exposure. A full-stack 

security model includes Argon2 hashing, audit trails, and automatic logout after 

10 minutes of inactivity as depicted in the diagram in Figure 3.38. 

 

 
Figure 3.38: Security Features of GUI 

 

The PostgreSQL database depicted in Figure 3.39 uses connection 

pooling to optimize performance and ensure consistent access under concurrent 

loads. It consists of schemas for users, administrators, trial data, and comments. 

All records are transactionally handled to avoid partial writes or corrupt entries. 

Backup protocols and error logging are built into the system to ensure data 

integrity and support post-hoc analysis in the event of a system failure. The ESP 

32 and MPU605 circuit was configured to stream accelerometric and gyroscopic 

data over a local Wi-Fi network. The microcontroller transmits data in real-time 

to the Python backend, which parses and logs it into the SQL database. These 

values are simultaneously rendered on the frontend, allowing clinicians to track 

postural sway, trial behaviour, and subject activity. Security concerns related to 

embedded-to-server communication were addressed by obfuscating IP 

addresses and limiting communication to local network scopes during 

development. Hardcoded credentials, tokens, and API keys were excluded from 

the repository to reduce the attack surface. Future iterations may include mutual 
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TLS authentication or encrypted payload transmission using AES to further 

strengthen communication channels. 

 

   
Figure 3.39: Data Flow and Database Flowchart 

 

In summary, the IoT-enabled monitoring system for the pneumatic 

exosuit combines a responsive user interface, robust backend processing, and 

secure data infrastructure to facilitate comprehensive posture tracking and 

remote assessment. The use of open-source tools and modular programming 

practices ensures scalability, maintainability, and user-centric interaction, thus 

elevating the utility of the exosuit within clinical and rehabilitative contexts. 

 

3.8.7 Assembled Prototype 

The developed prototype provides active back support using pneumatic 

actuation triggered by real-time postural sway. It consists of a soft wearable 

frame, chest-mounted IMU, ESP32-based control unit, pneumatic actuators, a 

custom sway detection algorithm, and user interfaces including an OLED 

display and GUI, illustrated in Figure 3.40. Constructed mechanically from 

fabric straps and buckles, the system is compact and lightweight. Pneumatic 

components are mounted at the waist, with actuators fixed via aluminium plates, 

while lighter parts of main circuit on thoracic spine as well as IMU strapped on 

chest. Donning is like wearing a backpack, with added leg straps for stability. 

The system supports users up to 95 kg (safety factor 1.3), operating at 4–6 bar 

via a portable miPump2 compressor. Audible hissing and motor noise are 

present during activation. On startup, the IMU is calibrated on a flat surface; 

once donned, real-time sway is monitored, triggering actuation as needed. The 

OLED displays system status and allows mode selection, while data can be 
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logged via SD card or GUI. Current circuitry is functional but may be 

miniaturized through future IC integration. 

 

 
Figure 3.40: Final Assembled Prototype of Back-Supported Strap-based 

Pneumatic Exoskeleton for Standing Postural Sway Correction 

 

3.9 Algorithm Development 

This section presents the methodological development of a postural sway 

classification algorithm, designed to detect distinct balance conditions in users 

equipped with the proposed exosuit system. The classified output was intended 

to inform the actuator control logic for real-time support and intervention. The 

algorithm was trained and evaluated using real-world data collected from 37 

participants under systematically varied postural perturbation conditions. Each 
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sample was labelled according to experimental ground truth, allowing for 

supervised classification into four predefined sway categories: stable, 

anteroposterior sway, mediolateral sway, and unstable. These classifications 

aimed to support balance rehabilitation or assistance protocols. The algorithm 

design proceeded through a structured pipeline: initial data preprocessing, 

feature extraction, exploratory clustering, supervised classification model 

evaluation, and finally the development of an empirical rule-based threshold 

algorithm optimized for microcontroller deployment, shown in Figure 3.41. 

This development drew significant conceptual influence from the standing sway 

detection framework proposed by Ando et al. (2023), which implemented IMU-

based kinematic classification on humanoid platforms. However, the current 

work extended their approach into real-world human applications and adapted 

it for computationally efficient embedded deployment. 

 

 
Figure 3.41: Pipeline of Algorithm Development (.mat) Code 

 

3.9.1 Algorithm Design and Pipeline 

This study developed an automated framework for postural sway classification 

and feature analysis using time-series accelerometry data. The methodology 

integrates signal preprocessing, multi-level outlier detection, domain-specific 

feature extraction, sway condition labelling, and both threshold-based and 

machine learning classification. The entire analytical pipeline was implemented 

in MATLAB R2023b, consisting of approximately 2500 lines of modular code, 

appended in Appendix D. The framework was designed to accommodate real-
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world sensor noise, inter-subject variability, and embedded hardware 

constraints, with reproducibility and interpretability as central principles. 

The classification pipeline was adapted from the wearable AI-based 

postural sway detection system proposed by Ando et al. (2023), which achieved 

over 98% classification accuracy using accelerometer and gyroscope data 

processed on an embedded AI microcontroller. Their architecture incorporated 

sensor fusion, statistical and frequency-domain feature extraction, overlapping 

window segmentation, ensemble-based machine learning (Random Forests as 

primary, k-NN as fallback), and real-time embedded inference. In the current 

study, several structural elements of Ando’s framework were retained. These 

include the core feature extraction logic encompassing RMS sway, directional 

displacements, and velocity-based features, as well as the classifier suite for 

benchmarking purposes. Cross-validation and class-specific threshold tuning 

were also preserved. However, due to hardware limitations, specifically the use 

of a general-purpose ESP32 microcontroller in place of Ando’s dedicated 

STMicroelectronics AI core, the ensemble learning model was replaced with a 

rule-based threshold classifier. This substitution emulated the decision 

boundaries of the original model through interpretable, empirically derived 

thresholds, enabling real-time execution on resource-constrained devices. 

While the foundational logic is inherited from Ando et al. (2023), key 

methodological differences distinguish the present study. Notably, their 

experiments relied on synthetic sway patterns generated via a robotic platform, 

minimizing data variability and noise. In contrast, this study employed real 

human subjects (n = 37), introducing natural fluctuations due to physiology, 

movement inconsistency, and sensor misalignment. Next, their hardware 

facilitated on-device machine learning inference, whereas our ESP32-based 

system imposed stricter computational, memory, and energy constraints. Also, 

the real-world signals collected here were subject to various noise sources, 

including muscle tremors, fatigue-induced instability, skin motion artifacts, and 

sensor drift, all of which necessitated enhanced preprocessing and outlier 

detection. These distinctions explain the lower classification performance 

compared to prior results and support the methodological pivot to a threshold-

based model optimized for deployment in exoskeletal assistive systems. 
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Recent literature further contextualizes this approach. Machine learning 

models such as k-NN, SVM, and Random Forests have been shown to achieve 

high classification accuracy (typically above 90%) in fall or sway detection 

tasks when applied to well-curated datasets with minimal inter-subject 

variability (Turan & Barshan, 2021). However, performance tends to degrade, 

often below 70%, in clinical or real-world settings where data heterogeneity is 

pronounced (Gattinara et al., 2022). As such, rule-based systems remain a viable 

alternative, offering transparency, computational efficiency, and deterministic 

behavior suited to embedded control, particularly in healthcare or rehabilitation 

contexts (Ando et al., 2023).  

 

3.9.1.1 Data Acquisition 

Raw sensor data were filtered to isolate low-frequency components associated 

with postural sway. A zero-phase second-order Butterworth filter (0.01–0.6 Hz) 

was applied to attenuate high-frequency noise while preserving physiological 

sway dynamics, consistent with prior findings in balance assessment (Ando et 

al., 2023). Outlier detection and correction were performed using robust 

statistical thresholds and visual inspection of signal traces. In our case, raw 

accelerometery data were collected from a wearable inertial sensor mounted at 

the subject’s chest. Each trial was recorded under specific sway conditions 

detailed in Section 3.11. Data were stored as individual .csv files, systematically 

organised by subject ID and condition. Anthropometric parameters, including 

body height, chest-to-ankle height (H1), and chest-to-waist height (H2), were 

extracted from an Excel sheet and matched to each subject via both exact and 

fuzzy name logic. Where missing values were encountered, gender-specific 

standard estimates were imputed based on trends illustrated in Figure 3.42 and 

supplementary Graphs A-2 and A-3. 

 

3.9.1.2 Preprocessing and Filtering 

All raw accelerometer signals were resampled to a uniform frequency of 

approximately 29.4 Hz (Δt = 0.034 s). A second-order zero-phase Butterworth 

bandpass filter with cut-off frequencies set at 0.01 Hz and 0.60 Hz was applied 

to each axis. This range was selected to preserve the low-frequency sway 

components while attenuating motion artefacts, sensor drift, and physiological 
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tremors. The filtering was implemented using a forward–reverse filtfilt function 

to eliminate phase distortion, with validation conducted through frequency-

domain response analysis. The Butterworth design’s maximally flat passband 

characteristics make it suitable for biomechanical signal processing, particularly 

for sway motion isolation. Graph A-1 shows a sample processed data, 

 

3.9.1.3 Multi-Level Outlier Detection 

A hierarchical outlier detection scheme was employed to improve data integrity 

at multiple levels. First, at the signal level, spikes were removed using z-score 

filtering (|z| > 3.5), wavelet decomposition with a Daubechies-4 (‘db4’) basis to 

detect transient anomalies, and a Median Absolute Deviation (MAD) approach 

with a 0.5-second sliding window. Outliers were replaced with NaN and 

subsequently interpolated. Second, at the window level, a 5-second sliding 

window (with 50% overlap) was applied across the filtered signals. Windows 

with more than 30% missing or outlier-filled samples were discarded to 

maintain data reliability. Third, at the feature and subject levels, extracted 

features were screened using z-scores. Individual windows exceeding a z-score 

of ±3 in any feature were flagged, while subjects with mean feature vectors 

surpassing ±2 were treated as outliers. Linear interpolation was used to impute 

missing values prior to final feature extraction, minimizing potential bias. This 

multi-tiered approach was essential for mitigating the effects of short-duration 

disturbances caused by abrupt motion, device tension, or pneumatic actuation, 

which can disproportionately affect downstream classification performance. 

 

3.9.1.4 Feature Extraction 

Within each valid window, DAP and DML were computed as described in 

Equations 3.3 and 3.4, respectively. These were used to extract a comprehensive 

set of biomechanically relevant sway features. Statistical features included root 

mean square sway (D_RMS) and displacement range (DR). Geometrical 

features comprised the 95% predicted ellipse area (PEA_95) and rectangular 

sway area (Rs). Kinematic descriptors included total sway path length, mean 

and maximum sway velocities, and Euclidean decomposition metrics reflecting 

the directional changes in DAP and DML. These features were selected based 

heavily on insights of prior research such as Ando et al. (2023).  
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Displacement magnitude was computed as the Euclidean norm of DAP 

and DML. Instantaneous velocity was derived from the temporal derivative of 

the displacement magnitude, and decomposition was defined as the rate of 

directional change between DAP and DML components. All features were 

exported into individual files and consolidated into a master dataset for 

classification and thresholding. These features are well-established in 

biomechanical literature and collectively capture the amplitude, directionality, 

and dynamics of postural sway, providing robust inputs for both supervised and 

heuristic classification methods. Multiple time-domain features were computed 

from CoP and accelerometer signals. These included root mean square (RMS), 

sway range, features selected based on their relevance to postural instability 

detection and precedent in wearable sensor applications (Ozdemir & Barshan, 

2014). Feature sets were continuously refined across iterations based on 

classifier performance and deployment feasibility. 

 

3.9.1.5 Stability Classification and Labelling 

Two complementary methods were employed for sway condition labelling. The 

primary method used heuristic labels derived from filename conventions, which 

assigned sway types into four categories: 0 (Stable), 1 (Antero–Posterior), 2 

(Medio–Lateral), and 3 (Unstable). As a fallback, K-means clustering with k = 

4 was applied to a subset of standardized features (D_RMS, AP_range, 

ML_range, and CEA_95) to uncover latent sway patterns in cases of 

inconsistent or missing labels. Cluster centroids were then manually matched to 

the appropriate classes based on dominant feature trends. This dual strategy 

ensured flexibility and robustness in class labelling, accommodating both 

structured and exploratory analyses across variable data sources. 

 

3.9.1.6 ROC-Based Threshold Optimization 

To enhance the interpretability and deployment readiness of the classification 

scheme, Receiver Operating Characteristic (ROC) analysis was used to identify 

optimal feature thresholds. A Leave-One-Class-Out strategy was applied, and 

Youden’s J statistic was used to determine thresholds that maximized class 

separation. Key metrics such as True Positive Rate (TPR), False Positive Rate 

(FPR), and Area Under the Curve (AUC) were recorded for each feature and 
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class. Additionally, a Relative Importance (RI) score was computed for each 

feature, for its discriminative value using Equation 3.22, as well as the accuracy 

(Q%) using Equation 3.23 (Ando et al., 2023): 

 

𝑅𝑅𝑅𝑅% = 100(
1
𝑁𝑁
𝛴𝛴𝑖𝑖=1𝑁𝑁 �𝐽𝐽𝐹𝐹𝑖𝑖,𝑞𝑞 − 𝐽𝐽𝐽𝐽ℎ𝑞𝑞�

max�𝐽𝐽𝐹𝐹𝑖𝑖,𝑞𝑞 − 𝐽𝐽𝐽𝐽ℎ𝑞𝑞�
)  (3.22) 

𝑄𝑄% = 100[1 −
𝛴𝛴𝑖𝑖=1𝑁𝑁 𝛾𝛾𝛾𝛾
𝑁𝑁

]  (3.23) 

 

where, N is number of considered patterns or classes; 𝐽𝐽𝐹𝐹𝑖𝑖,𝑞𝑞 is value of q feature 

for I pattern; 𝐽𝐽𝐽𝐽ℎ𝑞𝑞 is threshold related to q feature. This formulation accounts 

for the proximity of a feature's performance to the optimal threshold across the 

dataset. By extracting these interpretable cutoffs and corresponding importance 

values, the classifier outputs become directly usable in low-power, real-time 

applications, without the need for opaque black-box decision layers. 

 

3.9.1.7 Classifier Training and Hyperparameter Tuning 

Five supervised learning models, Decision Tree, k-Nearest Neighbours (k-NN), 

Support Vector Machine (SVM), Ensemble (Boosted Trees), and Naive Bayes, 

were trained and optimised. Each model underwent three-fold hyperparameter 

tuning followed by five-fold cross-validation for performance evaluation. Key 

tuning parameters included the maximum number of splits and leaf sizes 

(Decision Trees), the number of neighbours and distance metrics (k-NN), kernel 

selection and box constraints (SVM), number of boosting cycles and learning 

rates (Ensemble), and distribution assumptions per feature (Naive Bayes). This 

multi-model approach ensured broad algorithmic coverage, balancing 

generalizability, computational load, and interpretability. Cross-validation 

safeguards against overfitting while providing realistic performance estimates. 

 

3.9.1.8  Data Export and Visualization 

All outputs, including cleaned datasets, feature tables, outlier logs, ROC curves, 

and classifier evaluation plots—were saved in structured formats for post-

analysis. Visualizations were exported in both .png and MATLAB .fig formats 

to support thesis documentation and supplementary review. Although models 
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like Random Forest showed promising accuracy during benchmarking, their 

memory footprint and non-deterministic behavior rendered them unsuitable for 

real-time deployment on embedded platforms. By synthesizing the design logic 

of Ando et al. (2023) high-accuracy model with practical system constraints, 

this study yielded a threshold-based classification pipeline that preserved 

essential biomechanical rigour while enabling interpretable, real-time execution 

in exosuit-assisted postural control applications. 

 

3.9.2 Classifier Selection 

Although the dataset was pre-labelled, an initial attempt was made using 

unsupervised k-means clustering to explore natural groupings in the feature 

space. However, the clustering results showed low consistency with the actual 

labels (≈ 27.5%), indicating that the feature distribution did not support 

unsupervised separation. Subsequently, a supervised classification approach 

was adopted. Among these, Random Forest and SVM achieved the highest 

mean classification accuracy at 63.77% and 63.70%. respectively. However, its 

runtime complexity and memory demands rendered it unsuitable for real-time 

embedded use. KNN also performed comparably (63.0%) but similarly imposed 

constraints on embedded compatibility. Besides, given the limitations of 

machine learning models in terms of execution time, memory footprint, and 

real-time deployment feasibility, a simplified threshold-based model was 

formulated. This approach utilised manually derived decision rules on a reduced 

feature set, informed by iterative visual analysis and domain-specific heuristics. 

The rule-based model achieved an improved classification accuracy of 

approximately 70%, outperforming all tested machine learning models while 

meeting the computational constraints of the ESP32 microcontroller. The final 

model offered interpretability, low power consumption, and robust real-time 

performance in embedded applications. Logic based on Ando et al (2022), 

where the thresholds of AP sway (DAP and ax) and ML (DML and az) were 

derived from the vast dataset, via their means + 2 SD of each feature (Appendix 

A). 

 



99 

3.9.3 Classifier Evaluation and Rationale 

Despite the presence of labelled training data, k-means clustering was initially 

employed to evaluate intrinsic separability in the feature space. This 

unsupervised method yielded an accuracy of only 27%, affirming that sway 

categories were not linearly separable without explicit supervision. Subsequent 

supervised classifiers yielded varying results, summarised in Table 3.5. Model 

selection was guided by three primary criteria: classification performance, 

computational complexity, and deployment feasibility. The strengths and 

limitations of each model are summarised in Table 3.6, along with their 

alignment to methods described by Ando et al. (2023). 

 

Table 3.5: Supervised Classification Model Performance 

Model Accuracy (%) 
Random Forest 63.77 

K-Nearest Neighbours (k=15) 63.09 
Decision Tree 60.03 
Naïve Bayes 58.11 

Logistic Regression 55.96 
Linear Discriminant Analysis 55.64 

 

Table 3.6: Classifier Rationale  

Classifier Rationale 
KNN Captures local non-linear decision surfaces 
Decision Tree Easily interpretable, rule-extractable 
Random Forest High accuracy via ensemble learning 
Naïve Bayes Efficient; suitable for high-dimensional data 
LDA Assumes linear separability; interpretable 
Logistic Regression Baseline for linear models 

 

Although Random Forest and KNN achieved the highest accuracy, 

their computational burdens made them suboptimal for embedded 

implementation. Furthermore, the dataset may be small (n=37), non-stationary 

features, inter-class imbalance, and overlapping class boundaries constrained 

the generalisation capacity of all supervised models. These challenges mirror 

observations by G. Prisco et al. (2025) and Ando et al. (2023), who both 

identified limitations in applying traditional ML classifiers to dynamic postural 

contexts without advanced preprocessing and multimodal sensor fusion. 
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3.9.4 Algorithm Preliminary Data Analysis 

To enhance generalisability across individuals, subject-specific anthropometric 

normalisation was incorporated into the preprocessing stage. Parameters 

representing H1 and H2 body segment lengths, averaged in Table 3.7 and Table 

B-3 the gross measured data, were estimated via linear regression from known 

height values. Regression analysis, shown in Figure 3.42, confirmed a linear 

relationship between height and estimated segment length, H1, having R2 of 

0.85, and H2 being nearly constant, justifying their use for normalisation in 

feature computations. Graphs A-2 and A-3 shows the plots by sex. 

 

Table 3.7: Mean Anthropometric Data of Subjects 

SEX Height (m) H1 (m) H2 (m) 
Female (n=7) 1.613 (± 0.0647) 1.073 (± 0.1025) 0.234 (± 0.0339) 
Male (n=29) 1.729 (± 0.0509) 1.169 (± 0.0563) 0.271 (± 0.0206) 

Overall 1.707 (± 0.0706) 1.150 (± 0.0763) 0.264(± 0.0269) 
 

 
Figure 3.42: Correlations of Height of Subjects with H1 and H2 Measurements 

 

3.9.5 Modifications of Developed Algorithm 

Following the limited classification accuracy and significant implementation 

overhead associated with machine learning-based models, a final algorithmic 

modification was undertaken. A deterministic, rule-based classification scheme 

was developed using empirically derived thresholds on select postural sway 

features. This transition was motivated by the need for a lightweight, 

y = 0.9956x - 0.5489
R² = 0.8472

y = 0.1321x + 0.0384
R² = 0.1206

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90

M
ea

su
re

m
en

ts
 (m

)

Height (m)

Height vs H1, H2 for All Subjects (n=36)
H1 H2



101 

interpretable, and real-time compatible algorithm suitable for deployment on 

resource-constrained microcontroller platforms. The final model employed 

fixed thresholds applied to key features, including DAP, DML, and 

accelerometer components ax and az. These thresholds were not arbitrarily 

chosen; rather, they were iteratively refined through real-time validation, 

comparison with ground truth labels, and informed by domain-specific literature 

and ROC curve analysis using metrics such as Youden’s Index. 

This empirical model demonstrated a classification accuracy of 

approximately 70%, surpassing all previously tested machine learning 

classifiers on the same dataset. Notably, it provided consistent performance 

across subjects, with reduced variance and stable behaviour in diverse testing 

conditions. The final approach offered several strategic advantages. Firstly, its 

computational simplicity facilitated real-time processing on ESP32-based 

microcontrollers without the need for specialised libraries or external 

computation. Secondly, unlike traditional machine learning models, it required 

no training phase and could operate deterministically, reducing risks in safety-

critical rehabilitation applications. Thirdly, its structure allowed for intuitive 

interpretability, supporting clearer communication of system decisions to end-

users and clinical practitioners. 

The algorithm’s development followed three main methodological 

iterations. The initial approach utilised k-means clustering to explore natural 

groupings in the feature space; however, it yielded poor alignment with true 

class labels, achieving only 27% classification accuracy. Subsequently, a second 

approach involved implementation of supervised learning classifiers, including 

KNN, RF, DT, SVM, NB, LDA, and Logistic Regression. These models were 

evaluated through 5-fold cross-validation with individually tuned 

hyperparameters. Although Random Forest yielded the highest accuracy 

(63.77%), it was computationally intensive and unsuitable for embedded 

deployment. The final iteration, therefore, adopted a rule-based framework 

leveraging threshold comparisons for state classification. The transition to this 

method was driven by multiple considerations: hardware limitations (e.g., 

limited memory and processing power of ESP32 boards), the need for fast and 

interpretable decision logic, and empirical findings suggesting that a well-tuned 
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thresholding approach could match or exceed the classification accuracy of 

more complex models within this application context. 

While the threshold-based method lacks generalisability to external 

datasets without recalibration, its performance within the controlled 

experimental environment proved reliable and efficient. The use of ROC-based 

threshold optimisation and iterative domain-informed tuning provided a strong 

balance between simplicity and classification fidelity. The method proved 

especially suitable for real-time postural correction tasks, where latency, 

consistency, and interpretability are prioritised over black-box generalisation. 

In summary, although various classification paradigms were explored, including 

unsupervised and supervised models, the final empirical approach emerged as 

the most practical and reliable within the constraints of embedded deployment. 

Its deterministic nature, computational efficiency, and interpretability offer 

substantial advantages for assistive technologies targeting postural correction in 

static balance tasks. 

 

3.10 Data Collection and Selection Criteria 

This section details the methodology adopted to evaluate postural sway under 

various task and support conditions across three sequential experiments. These 

include: (1) preliminary sway data acquisition to establish baseline sway 

profiles for classification algorithm training, (2) validation of sway 

measurement consistency under increased task difficulty, and (3) assessment of 

the active back support exoskeleton during balance tasks. Each experiment is 

framed with equipment justification, participant selection criteria, and 

procedural overview. 

 

3.10.1 Preliminary Sway Data Collection Protocol (n = 36 Subjects) 

The objective of the first experiment was to collect kinematic data characterising 

postural sway across multiple induced sway conditions, enabling the training of 

a sway classification algorithm. For this, we employed an MPU6050 IMU and 

the SONY MOCOPI motion capture system. The MPU6050, widely recognised 

for its accuracy and cost-effectiveness in wearable movement tracking, was 

mounted on the sternum to capture trunk accelerations and angular velocities. 

The MOCOPI system provided full-body spatial data for validating IMU-based 
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measurements. Participants also performed tasks on a wobble board to simulate 

dynamic instability and provoke distinct sway patterns for analysis. Eligibility 

for participation was defined by exclusion criteria designed to eliminate 

confounding biomechanical factors as depicted in Table 3.8, and trial conditions 

in Table 3.9. Total 36 subjects of 1.707 (± 0.0706) cm were included.  

 

Table 3.8: Exclusion Criteria  

Criteria Description 
Height Within 15th–90th percentile Malaysian (155–183 cm) 
BMI Non-extreme (17.0–28.0) 

Injury 
History 

No recent injuries affecting ankle, hip, or back stabiliser 
muscles 

 

Table 3.9: Trial Conditions and Number of Trials 

Condition Trial Duration Reps Notes 
Still Stance (STAB) 60 sec 3 Stable 

Anteroposterior (AP) 60 sec 3 Forward-backward sway 
Mediolateral (ML) 60 sec 3 Side-to-side sway 
Unstable (UNST) 60 sec 3 Random/unstable sway 

 

Participants were first screened and briefed before providing written 

informed consent. The IMU was securely attached to the upper sternum, while 

six MOCOPI sensors were positioned according to manufacturer specifications 

as depicted in Figure 3.44. After a familiarization phase, participants performed 

four randomized stance trials: a still stance (STAB), anteroposterior sway (AP), 

mediolateral sway (ML), and an unstable wobble board stance (UNST). Each 

trial lasted 60 seconds and was repeated three times, with one-minute rest 

periods between trials, all according to flowchart Figure 3.43. All kinematic data 

were logged concurrently from both IMU and MOCOPI systems. 

 

3.10.2 Preliminary Sway Data Validation Protocol (n=5 subjects) 

The second experiment aimed to validate the reliability of sway detection across 

standard balance tests of increasing difficulty. The same hardware setup was 

used as in Experiment 1. The trial design was based on clinically accepted 

postural control tests, including eyes-open and eyes-closed conditions in both 

bipedal and single-leg stance. Inclusion criteria mirrored those from Experiment 

1 to ensure data consistency. Each participant was instrumented with an IMU 
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and MOCOPI sensors. They completed four conditions in randomized order: 

normal stance with eyes open, normal stance with eyes closed, single-leg stance 

with eyes open, and single-leg stance with eyes closed. Each trial lasted 30 

seconds and was repeated three times. The resulting data provided validation for 

sway feature stability across progressively challenging tasks, serving as a 

benchmark for classifier robustness. 

 

 
Figure 3.43: Flowchart of Sway Data Collection 

 

3.10.3 Postural Sway Exoskeleton System Testing Experiment Protocol – 

Back Support Exoskeleton (n=15) 

The final experiment investigated the effects of a lightweight active back 

support exoskeleton on postural stability during static balance conditions. The 

centre of pressure (CoP) was measured using a Nintendo Wii Balance Board, 

which has been validated for intra-subject CoP comparisons in time-domain 

sway analysis (Ando et al., 2022; Bartlett et al., 2014; Leach et al., 2014). 

Although not suited for clinical diagnostics, its utility in research-grade postural 

analysis has been demonstrated in multiple studies. Complementary kinematic 

data were collected using the same IMU and MOCOPI configuration. Muscle 

activation patterns were assessed using a Delsys Trigno sEMG system. Surface 

electrodes were preferred for their non-invasive nature, and monopolar 

configurations were employed due to their superior intermuscular coherence 

compared to bipolar setups (Mohr et al., 2018). Exclusion criteria remained 

consistent with prior experiments. Participants first completed a preparation 

phase, during which anthropometric data were recorded and sEMG sensors were 
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applied to the tibialis anterior, medial gastrocnemius, and optionally, the erector 

spinae and abdominal muscles. The exoskeleton was then calibrated and donned, 

and donning time was recorded to assess practical usability. 

Each participant completed balance trials in four stance conditions: 

normal stance with eyes open, normal stance with eyes closed, tandem stance 

with eyes open, and tandem stance with eyes closed (limited to 25 seconds for 

safety), shown in Figure 3.44. These were tested across three device states: 

exoskeleton powered ON, exoskeleton powered OFF, and no exoskeleton. Each 

configuration was repeated three times, yielding 36 total trials per participant 

according to Figure 3.45. CoP data were synchronized with IMU, MOCOPI, 

and sEMG recordings. Following data acquisition, sensors were removed, and 

participants were invited to provide feedback. Signal processing involved 

outlier removal using a Hampel filter, signal smoothing with a fourth-order 

Butterworth low-pass filter, and root mean square (RMS) feature extraction 

from the EMG data, including mean and standard deviation metrics. 

 

 
Figure 3.44: Sway Data Collection (left); Functional Test (Right) 

 

 
Figure 3.45: Flowchart of Functionality Test 
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3.11 Project Budget 

The prototype was developed with a total expenditure of RM404.71 detailed in 

Table 3.10. Given the limited funding, component selection was guided by cost-

efficiency and availability. Major expenses were allocated to pneumatic 

hardware, including solenoid valves, tubing, and a portable air compressor. 

Additional costs covered a basic microcontroller, inertial measurement units 

(IMUs), wearable straps, and lightweight structural supports. Open-source 

software frameworks were used for interface development to avoid licensing 

costs. Components were sourced from local suppliers and online platforms to 

minimise shipping fees. Due to budget constraints, alternatives to higher-grade 

materials such as carbon fibre were employed, and electric actuators were not 

implemented. These trade-offs affected system performance in areas such as 

weight, battery life, and actuator precision but allowed the construction of a 

functional prototype sufficient for preliminary testing and demonstration. 

 

Table 3.10: Project Budget 

Item 
QTY 

Price 
(RM) (A) Pneumatics 

Xiaomi Pump 2 1 159.00 
MAL Mini Air Pneumatic Cylinder Aluminium Bore 

16mm 20mm 25mm 32mm Single Rod Double Acting 
Stroke (25mm, 75mm) -Ext Warranty @ 1.24 2 57.22 

Solenoid Valves 2 20.90 
SL Pneumatic Throttle Valve 1/8 1/4 3/8 1/2 Male 
Thread Fitting Air Flow Speed Controller 4-10mm 

Tube 2 4.90 
PC Pneumatic Fitting Push Fit Hose Tube Connector 
Male Thread M5 M6 1/8 1/4 3/8 1/2 Air Quick joint 4 3.08 

PU Tubes (1m) 2 2.44 
(B) Electronics Total (A) 247.54 

3.7V18650 Lithium-Ion Rechargeable Battery 
4860Mwh Large Capacity Long-Lasting Handheld 

Megaphone Amplifier 1 24.26 
ESP32 1 15.00 

10,000mAh Powerbank 1 13.00 
SD Card Module and SD card 1 10.00 

6DOF MPU 6050 GY-521 3 Axis Gyro 
Accelerometer Sensor Module Arduino 1 9.90 

ESP32 BASE (EXPANSION PINS OR TERMINAL 
BLOCK) FOR 30P & 38P 1 7.97 
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OLED 1 7.00 
LM2596 Buck Converter 1 4.95 

(C) Hardware Total (B) 92.08 
Weightlifting Belt 1 17.00 

5mm Nylon Webbing (1m) 4 16.80 
25mm Zinc Alloy Press Buckle Small Hardware 

Tightening Buckle 2 10.80 
1pc MAL/CDJ2B-LB Holder Air Cylinder Bracket 
Mounting Support Bore 16mm 20mm 25mm 32mm 

40mm 2 9.36 
Metal Japanese Buckle Bag Strap Button Three-Speed 

Buckle Flat Wire Alloy Bag Strap Adjustment 
Luggage Hardware Accessories 2 6.23 

3mm thick Aluminium plate 1 4.50 
L bracket 2 0.40 

 Total (C) 65.09 
Grand Total (RM) 404.71 

 

3.12 Summary 

This project focused on the development and preliminary validation of a strap-

based, back-supported pneumatic exoskeleton designed to assist standing 

posture and reduce postural sway. The methodology encompassed the 

mechanical design, system integration, and experimental validation with human 

participants. The exoskeleton frame was designed using SOLIDWORKS and 

fabricated from lightweight materials, primarily fabric and straps, along with 

custom 3D-printed components, to ensure user comfort and ease of donning. 

Pneumatic actuators were incorporated at the trunk region to provide active 

postural support. A sway detection algorithm was developed to trigger 

corrective actuation based on body sway, using data from an MPU-6050 IMU 

sensor. Actuation control was handled by a microcontroller-based system 

capable of manual and predefined pneumatic valve control. 

To enhance usability, a full-stack graphical user interface (GUI) was 

developed using Python Streamlit for the frontend and PostgreSQL (pgAdmin 

4) for the backend database. Additional features such as offline SD card data 

logging and real-time OLED display were implemented to improve portability 

and user convenience. Experimental testing involved human participants 

performing quiet standing trials under four test conditions: normal stance with 

eyes open (EO), normal stance with eyes closed (EC), tandem stance with EO, 
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and tandem stance with EC. Each condition lasted 30 seconds and was repeated 

three times. A Wii Balance Board was used as a low-cost alternative to force 

plates for measuring Centre of Pressure (CoP) parameters to quantify postural 

sway. Trigno Delsys surface EMG sensors were placed on key trunk 

stabilizers—external obliques (EO), erector spinae (ES), and rectus abdominis 

(RA)—to assess muscle activation trends, although EMG was not integrated 

into the real-time system. IMU and EMG data were analysed offline to evaluate 

balance control and muscular effort with and without exosuit assistance. 

The project adhered closely to the planned Gantt chart with minimal 

deviation. The prototype was developed within a budget of RM 500, with a final 

cost of RM 404.71, making it a cost-effective solution. Overall, the 

methodology prioritized low-cost development, safety during trials, and the 

practical feasibility of pneumatic exoskeleton systems for supporting static 

postural stability in rehabilitation and assistive applications. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter presents the final prototype, encompassing its mechanical design, 

electronic circuitry, and graphical user interface (GUI). It also details the results 

and validation of the standing postural sway detection algorithm implemented 

in the system. In addition, surface electromyography (sEMG) and centre of 

pressure (CoP) tests were conducted to evaluate the prototype’s performance on 

human subjects. A comfort and practicality assessment, including donning and 

doffing time as well as user feedback on wearability, was also performed to 

assess the system's usability in real-world conditions. 

 

4.2 Full Prototype  

The developed prototype integrates pneumatic actuators to provide active back 

support, utilising a strap-and-fabric-based framework designed for compactness 

and ease of wear. Control is achieved via an ESP32-based system, while 

postural sway is detected in real time using a chest-mounted MPU6050 IMU. 

The system is complemented by a custom control algorithm, sway detection 

logic, and a GUI to facilitate user interaction and feedback. Figure 4.1 illustrates 

the fully assembled prototype as worn by a study participant. 

 

 
Figure 4.1: Final Prototype of Back Support Pneumatic Exoskeleton on Subject 
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To don the exoskeleton, the user first wears the chest-mounted IMU, 

followed by the vest-like harness. The system is secured using adjustable belts 

and straps to ensure fit and comfort. During setup, the ESP32 is powered via a 

portable power bank, and the IMU (housed in a protective casing) is briefly 

placed on a flat surface for calibration prior to use. Once donned, the system 

initialises automatically. Real-time sway data is acquired and logged either 

through an onboard SD card or via the GUI interface. This data is 

simultaneously used as input for the feedback control algorithm, which triggers 

linear actuation of the pneumatic cylinder upon detection of excessive postural 

sway. To enhance user accessibility, an OLED display is attached to the wrist. 

It provides visual status updates and feedback, including system mode, live 

sway plots, and raw sensor data. Navigation is enabled via mode and scroll 

buttons, with the interface initialised by a splash screen, as shown in Figure 4.2. 

The prototype, in its current form, demonstrates cohesive integration of sensing, 

control, and actuation, offering a compact solution for real-time postural support. 

 

 
Figure 4.2: OLED Display Screen 

 

The user experience of the system was evaluated through practical 

interaction flows that reflected typical data entry and retrieval tasks User 

interface main page is shown in Figure 4.3. During testing, the login process 

was stable and responsive, with authentication consistently completing in under 

200 milliseconds, with 2 options of logins, namely user mode (Figure 4.4), 

where new users can register and admin mode (Figure 4.5), requiring admin 

authentication. Once logged in, users navigated the dashboard using a sidebar 



111 

layout (Figure 4.6), which was generally described as intuitive and easy to 

follow. Feedback suggested that the interface required minimal effort to learn, 

making it accessible even for first-time users. 

 

 
Figure 4.3: User Interface Main Page 

 

 
Figure 4.4: Patient Login and Registration Page 

 

 
Figure 4.5: Admin Login Page 
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Figure 4.6: Navigation Sidebar of GUI 

 

Record querying functions, including filtering by patient ID, session 

date, and condition, worked reliably and returned results accurately across all 

test cases. The data visualisation tools were useful for quick interpretation, bar 

and box plots allowed comparison between conditions (Figures 4.7 and 4.8), 

heatmaps showed how signals changed over time, and line charts helped track 

recovery or progression across sessions, shown in Figure 4.9. Real-time IMU 

data streaming, running at around 10 Hz, was successfully integrated, providing 

live updates on orientation and movement parameters, as shown in Figure 4.10. 

Figure 4.11 shows the trail tracking section of dashboard, which were displayed 

clearly on the Streamlit dashboard and were useful for monitoring posture or 

motion in real time. 

 

 
Figure 4.7: Barchart Comparison of Standard Deviation Via GUI 

 

 
Figure 4.8: Boxplot Visualisation of Distribution Via GUI 
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Figure 4.9: View of Historical Data Over Time By GUI 

 

 
Figure 4.10: Real-time Data Visualisation on GUI 

 

 
Figure 4.11: Trial Dashboard Display and Features on GUI 

 

Administrators, via their dashboards (Figure 4.12) were able to add 

comments (Figure 4.13), annotate data, and view multiple sessions together 

(Figure 4.14), which helped in reviewing patient history and comparing 

outcomes. While some interface elements could benefit from further refinement, 

the system performed reliably and was effective for both data capture and 

visualisation in real-world testing scenarios. 

 

 
Figure 4.12: Admin dashboard 
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Figure 4.13: Comment Function on Patient File By Admin 

 

 
Figure 4.14: Multi-Data Comparison Function By Admin 

 

4.3 Algorithm Performance 

This section evaluates the feasibility of distinguishing postural sway types using 

centre-of-pressure (CoP)-derived features from a chest-mounted accelerometer. 

The classification task aimed to differentiate among four predefined sway 

categories, Stable (STAB), Anteroposterior (DAP), Mediolateral (DML), and 

Unstable (INST), using a strategy informed by existing biomedical signal 

processing literature and constraints imposed by embedded machine learning 

systems. Key considerations included feature dimensionality, model complexity, 

and computational efficiency. 

A total of 37 participants completed three repetitions of each sway 

condition, yielding 444 labelled trials. From these, non-overlapping 5-second 

windows were applied using a sliding window approach, resulting in 

approximately 130,000 labelled samples. While a finer segmentation (e.g., 250 

ms windows) could have produced a higher-resolution dataset with over 3.7 

million data points, it was excluded due to training and validation time 

constraints. The selected windowing approach offered a practical balance 

between temporal resolution and computational tractability. To prevent data 
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leakage and to ensure generalisability across individuals, stratified 5-fold cross-

validation was implemented. This ensured that all samples from any given 

subject were isolated to either training or validation folds, not both. 

 

4.3.1 Feature Landscape and Data Behaviour 

The feature set included standard metrics commonly used in postural sway 

analysis: Root Mean Square (RMS) of acceleration, sway velocity, 

anteroposterior (AP) and mediolateral (ML) range, and ellipse area. These 

features have demonstrated utility in quantifying biomechanics risk and 

instability (Prisco et al., 2023). Visualisation of processed signal curves 

revealed clear inter-class distinctions. STAB was characterised by flat, low-

amplitude traces. In contrast, DAP and DML demonstrated uniaxial oscillations, 

dominated by the anterior-posterior axis (Ax) and mediolateral axis (Az), 

respectively. INST, however, presented erratic, multi-directional bursts 

resembling hybrid patterns of DAP and DML with intermittent, unpredictable 

deviations, as depicted in scatter plot in Figure 4.15. 

 

 
Figure 4.15: Scatter of Labelled Data by Ranges 

 

Signal envelopes and scatterplots provided further insight. RMS and 

directional signals showed clear trends: DAP was primarily Ax-dominant, DML 

showed lateral Az excursions with limited axial interference, while INST had 

high RMS values and abrupt, noise-like shifts across both axes. Figure 4.17 

visualises the scatter distributions of directional ranges, highlighting overlaps, 

particularly between DAP, DML, and INST. The INST class exhibited the 

widest multidimensional spread with no discernible centroid, while STAB, DAP 
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and DML are easily distinguishable, reinforcing its complexity and 

classification difficulty. High intra-class variability, especially in DAP and 

INST, was observed and is attributable to subject-specific compensation 

mechanisms, such as trunk or upper limb engagement. Additionally, the single 

chest-mounted IMU limited sensitivity to lower-limb dynamics, which are 

crucial in sway detection. This aligns with findings by Guo et al. (2022), who 

emphasised the role of sensor placement, suggesting that pelvic or lower-limb-

mounted IMUs may offer superior discriminative power in sway classification 

tasks. 

Feature distribution plots further confirmed that STAB was the most 

separable class, while DAP, DML, and INST exhibited overlapping feature 

spaces. This was particularly problematic for multi-class classifiers. The 

ambiguity of the INST class was reflected in ROC analyses conducted with a 

K-means clustering baseline. While the area under the curve (AUC) was high 

for STAB; INST, DAP and DML consistently returned low AUC values, 

underscoring its weak and fragmented feature identity, shown in Figure 4.16. 

Subsequent tests were carried out which determined removing either INST or 

DAP and DML does in fact significantly improve the AUC values. 

 

 
Figure 4.16: ROC Curves of K-means Classifier per Class 

 

K-means clustering with four clusters (matching the true number of 

sway classes) was used to explore intrinsic feature space separability. STAB 

formed a tight, distinct cluster, validating its relative uniformity. However, other 

classes, especially INST, exhibited low inter-cluster purity. DAP and DML 
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formed moderately cohesive but overlapping directional clusters, whereas INST 

points were dispersed across multiple centroids. These findings collectively 

suggest that INST, as a sway condition, lacks a cohesive and distinguishable 

feature identity, posing challenges to both unsupervised and supervised learning 

approaches. The dense class overlap, particularly among dynamic sway types 

(DAP, DML, INST), is a compound result of sensor limitations, physiological 

variability, adaptive motor responses, and intrinsic noise in human balance 

behaviour.  

 

 
Figure 4.17: Feature Distribution of Sway Parameters 

 

4.3.2 Classifier Evaluation and Cross-Validation Results 

Despite extensive hyperparameter tuning, the overall accuracy of machine 

learning models plateaued around 63–64%, constrained by inter-class feature 

overlap and the limitations of single-sensor input. This reflects an inherent 

ceiling imposed by the signal characteristics and subject-level variability rather 

than model architecture alone. The model-wise cross validation accuracy is 

shown in Figure 4.18 and Figure 4.19 shows its distribution over the 5 cross 

validations (K-fold 5), details in Figure C-12. Hyperparameter optimisation was 

performed using grid search methods, with results visualized via heatmaps to 

identify performance peaks across parameter combinations. For instance, K-

Nearest Neighbours (KNN) yielded optimal performance at k = 15, whereas 

Random Forest (RF) achieved best results with 100–150 estimators and 

constrained tree depth, minimizing overfitting. These observations reinforce 
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that class feature overlap inherently limits the benefit of tuning, and model 

stability is heavily affected by inter-subject variability. 

 

 
Figure 4.18: Mean Accuracy of Tuned Classifiers 

 

 
Figure 4.19: Cross Validation Accuracy Distribution per Model 

 

Among all evaluated models, Random Forest achieved the highest 

cross-validated mean accuracy of 63.77%, leveraging its ensemble framework 

to improve robustness against noisy and variable data. This aligns with prior 

findings demonstrating RF’s effectiveness in classifying balance impairments 

via postural sway features (Sun et al., 2019). Notably, bagging methods 

outperformed boosting methods, with AdaBoostM2 and Bagged Trees 

producing stable outcomes, while GentleBoost and LogitBoost failed to 

converge or resulted in 0% accuracy, depicted in Figure 4.20. The mediocre 

performance of boosting algorithms is due to their sensitivity to misclassified 

samples, which becomes problematic in high-overlap, imbalanced class 

environments. 
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Figure 4.20: Tuning for Random Forest 

 

Support Vector Machine (SVM) followed closely with a cross-

validated accuracy of 63.70%. Its strength lies in constructing high-dimensional 

separating hyperplanes and maximizing classification margins, making it 

relatively robust to overlapping distributions and class imbalance. However, its 

performance is highly dependent on careful kernel and regularization parameter 

selection, especially in the presence of noisy or non-separable data. K-Nearest 

Neighbours (KNN) achieved a mean accuracy of 63.09%, performing best with 

Euclidean and Cityblock distance metrics depicted in Figure 4.21. These results 

suggest that absolute displacement measures are more informative for postural 

sway classification than angular or correlation-based metrics. While KNN 

exhibited consistent classification behavior across all classes, it was 

computationally intensive, which may limit real-time deployment, especially in 

embedded systems with resource constraints. 

 

 
Figure 4.21: KNN Hyperparameter Tuning 
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Naïve Bayes (NB) classifiers revealed performance discrepancies 

based on distributional assumptions. Multinomial and Multivariate NB variants 

performed poorly (~58.11%), due to the continuous and non-discrete nature of 

the input features. Gaussian NB yielded marginal improvements, while a hybrid 

approach combining normal distribution with kernel density estimation reached 

nearly 53% accuracy shown in Figure 4.22. Despite lower overall performance, 

this suggests that non-parametric density models may still offer utility in 

overlapping feature spaces with non-Gaussian behaviour. 

 

 
Figure 4.22: Naïve Bayes Classifier Tuning 

 
Decision Trees, although interpretable, achieved only 60.03% accuracy. 

Despite pruning, they remained prone to overfitting due to the noisy and variable 

nature of the dataset. Nonetheless, their feature-based decision thresholds, 

especially for RMS and AP range, aligned with clinically intuitive postural 

markers as seen in Figure 4.23. Logistic Regression and Linear Discriminant 

Analysis (LDA) performed in the 55–57% range and struggled most with INST 

class detection, consistent with their limitations in modelling nonlinear and 

multi-axial behaviours as depicted in Figure 4.24. 

 

 
Figure 4.23: Decision Tree Parameter Tuning 
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Figure 4.24: LDA Tuning 

 

Among all approaches, the empirical rule-based algorithm, despite 

being manually tuned, heuristic-driven and non-adaptive, achieved the highest 

accuracy of approximately 70%. It leveraged compound logic, integrating basic 

CoP data thresholds with raw accelerometer data to effectively distinguish 

between classes, especially crucial in detecting the elusive INST class. This 

model was particularly advantageous for embedded real-time classification, 

given its deterministic behaviour, low computational demand, and transparent 

structure, despite its lack of learning ability. 

 

4.3.3 Empirical Model and Threshold Tuning (DAP/DML Ax, Az) 

The empirical classifier was developed based on threshold conditions extracted 

from ensemble mean ± standard deviation envelopes of Ax and Az 

accelerometer components, as well as displacement-based features for DAP and 

DML, as visualized in Graphs A-4 to A-17, where Graphs A-4 to A-9 shows 

distinction of the parameters by class, and Graphs A-10 to A-17 the ensemble 

means with SD for threshold tuning. Specifically, DAP was identified when Ax 

exceeded 1.5 standard deviations above the mean and DAP displacement was 

similarly elevated, provided that Az remained below one standard deviation and 

DML displacement was suppressed. Conversely, DML was characterized by 

dominant Az values exceeding their threshold while Ax remained within or 

below normal limits. INST classification was triggered when both axial 

thresholds were exceeded simultaneously or when multiaxial surges and erratic 

fluctuations occurred outside the typical bounds for DAP and DML. These 

compound logic rules were further reinforced using RMS and ellipse area 
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constraints to reduce false positives. The resulting model demonstrated strong 

stability across subjects and was notably more effective than machine learning 

classifiers in detecting unstable sway episodes, where feature ambiguity often 

led to misclassification. Although lacking adaptability and learning capacity, the 

model’s deterministic structure, low computational footprint, and transparency 

render it ideal for embedded or wearable systems requiring real-time postural 

assessment. The success of this heuristic approach underscores the value of 

integrating domain expertise and physiologically informed rules, particularly in 

scenarios where sensor constraints and temporal variability limit the 

effectiveness of purely data-driven methods. 

 

4.3.4 INST Class Performance and Diagnostic Challenges 

The INST (Unstable) class posed persistent classification challenges across all 

models due to its ambiguous and overlapping feature behavior. While prior 

sections established its multidirectional and erratic signal profile, the deeper 

issue lies in INST’s temporal unpredictability, with abrupt axis shifts, amplitude 

surges, and intermittent stillness that occasionally mimicked STAB. These 

dynamic fluctuations made INST highly prone to misclassification, particularly 

as DAP or DML, in both linear classifiers and ensemble models. Another 

contributing factor was the use of a single chest-mounted IMU, which limited 

sensitivity to lower-body compensations and fine-grained balance adjustments. 

As noted by Andò et al. (2022), such sensor placements are inherently 

disadvantaged in capturing full-body sway dynamics, especially when subjects 

deploy hip or upper-limb strategies for balance correction. These compensations 

introduce non-stationary signal noise, reducing the model’s ability to 

differentiate true instability from intentional movement variability. 

While STAB, DAP, and DML showed more class-consistent feature 

patterns, due to their directional dominance and constrained intra-class 

variability, INST exhibited significant feature and temporal overlap with all 

three. This is consistent with mimic-based postural failure findings by Andò et 

al. (2023), which demonstrated that instability states often defy clean categorical 

boundaries. These collective findings suggest that INST classification 

challenges are not merely artifacts of this system’s limitations, but reflect a 

broader problem in modelling human instability episodes. 
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4.3.5 Class-Specific Feature Mapping and Model Interpretations 

Among the four sway classes, STAB demonstrated the most distinct and 

compact feature representation, characterized by low RMS, minimal sway range, 

and a small ellipse area, traits that enabled high classification accuracy across 

all models. DAP and DML also exhibited reasonably strong separability, 

particularly through their axis-specific features (i.e., elevated AP_range for 

DAP and ML_range for DML), consistent with biomechanical literature on 

directional sway (Guo et al., 2022). INST, in contrast, lacked any stable or 

exclusive feature pattern. While high RMS and irregular sway velocity were 

observed in many instances, these features also appeared in DAP and DML 

cases, limiting their diagnostic specificity. Even though the Reliability Index 

(RI) initially suggested high per-feature consistency for INST, similar to STAB, 

the RI failed to capture the inter-class confusion caused by INST’s broad spread 

in feature space, Figures 4.25 and 4.26. For example, RMS reliability for STAB 

was unexpectedly low (~27.5%), despite strong classification performance, 

whereas features like ellipse area showed higher RI but were not discriminative 

enough to isolate INST in a multiclass context. This initially suggested that 

INST, despite its classification challenges, demonstrated some internal 

consistency in its feature distribution. 

However, contrary to this interpretation, model performance 

significantly improved when the INST class was excluded from the 

classification task. Upon removing INST and re-training the models in a reduced 

three-class (STAB, DAP, DML) scenario, all remaining classes exhibited better 

accuracy, precision, and inter-class separability—even though no additional 

features were introduced or removed. This implies that the presence of the INST 

class contributed considerable noise and confusion within the model’s decision 

boundaries. This paradox, where INST appears reliable in RI evaluation yet 

destabilizes overall classification, highlights a critical distinction between intra-

class consistency and inter-class separability. While INST may have consistent 

internal patterns, those patterns heavily overlap with both DAP and DML in the 

shared feature space, undermining its practical discriminability in multiclass 

settings. Although visualizations were not included for this analysis, the 

improved performance metrics across all three remaining classes reinforce the 

conclusion that INST acts as a confounding factor in both feature space and 
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classifier learning. This finding underscores the complexity of modelling 

unstable postural behavior and further supports the case for either 

recharacterizing INST with additional temporal features or treating it as a 

separate anomaly detection problem rather than a strict classification target. 

 

 
Figure 4.25: RI% of Features per Class  

 

 
Figure 4.26: Matlab Snippet of Feature Importance for Classes 

 

When INST was excluded from the classification problem, all three 

remaining classes (STAB, DAP, DML) saw improved performance. This 

supports the conclusion that INST's inclusion introduces confounding overlap 

that disrupts model decision boundaries, despite appearing reliable in isolation. 

Random Forest models partially alleviated this issue by modelling complex 

feature interactions, but even they struggled with recall for INST, underscoring 

its intrinsic ambiguity. These observations collectively suggest that static 

classifiers, relying solely on summary features, are insufficient for capturing the 

dynamic instability seen in INST. Future work should explore temporal 

modelling architectures, such as Hidden Markov Models (HMMs) or Long 
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Short-Term Memory networks (LSTMs), which are better suited to handle the 

nonlinear transitions and state-dependent behaviours inherent in human 

instability. Coupling such models with multi-sensor systems may further 

improve detection by capturing a more holistic representation of postural 

dynamics. 

 

4.3.6 Inter-Subject Variability and Empirical Model Insights 
Significant inter-subject performance variability was observed, particularly in 

the INST classification. In some participants, INST was never detected, while 

in others, false positives occurred even under stable conditions. This 

heterogeneity was confirmed via subject-level quantile performance plots, 

reinforcing that sway classification is not solely a feature engineering or model 

selection issue, but one deeply influenced by individual biomechanics and 

behavioural compensation. Factors such as differing balance strategies (e.g., 

ankle vs. hip), sensor-to-movement misalignment, and variable body mechanics 

all contributed to inconsistent classification accuracy. These limitations align 

with Gattinara et al. (2022), who noted that ML-based classifiers, while 

effective under controlled or disease-specific conditions, Parkinson’s to be exact, 

tend to falter when exposed to subject-level variability and treatment-induced 

movement differences. Figure 4.27 shows the Q% per subject indicating high 

variance between subjects. 

An empirical threshold-based model, developed using logical rules on 

compound CoP-derived features (e.g., directional dominance in Ax and Az), 

showed relatively better stability across subjects. Although not cross-validated 

due to its heuristic nature, this model performed consistently, particularly in 

detecting directional sway. Its success may lie in its interpretable decision 

boundaries and reduced reliance on complex feature transformations. These 

observations suggest that while machine learning offers scalability and pattern 

recognition capabilities, integrating domain-informed rule-based heuristics—

especially in subject-agnostic systems—can provide robustness in real-world 

deployment settings. This hybrid approach warrants further investigation, 

particularly for wearable balance monitoring applications under diverse 

population settings. 
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Figure 4.27: Q% of K-means by Subject 

 

4.3.7 Summary and Observations 

In conclusion, Random Forest, and K-Nearest Neighbours (KNN) were the most 

consistent machine learning classifiers, outperforming boosting-based 

ensembles, and linear models in cross-validation. Naïve Bayes variants 

performed less reliably overall, though kernel-based variants showed minor 

improvements. The threshold-based empirical model recorded the highest 

validation accuracy (~70%), based on static rules derived from observed class-

specific feature patterns. While it lacked adaptability, it was straightforward to 

implement and maintained stable performance across trials. 

INST classification remained the main source of error, with high 

confusion due to overlap with DAP and DML features. The lack of consistent 

axis dominance and the irregular temporal nature of instability contributed to 

poor model separation. Single-IMU input and subject variability further limited 

classifier generalisability. Compared to frameworks like Andò et al., differences 

in performance are likely due to environmental noise (e.g., sensor placement 

inconsistencies, movement artifacts), limited data volume, class imbalance—

particularly under-sampled INST data—and absence of real-time interaction or 

mimic-loop training. Overall, machine learning models reached a performance 

ceiling under current data and setup constraints. The rule-based classifier, while 

static and manually tuned, remained the most reliable under validation 

conditions. Temporal models or multimodal sensor input may be necessary to 

improve future classification of dynamic sway behaviour, especially for 

instability detection. 
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4.4 Exosuit Comfortability and Practicability  

To evaluate the wearability and usability of the developed exosuit, donning and 

doffing times were recorded and analysed across multiple trials. These metrics 

are essential for determining the practicality of wearable assistive devices, 

especially in real-world settings where time efficiency and user independence 

are critical. Table 4.1 summarises the donning and doffing times across all 

subjects with time by subject appended in Table B-4. The average don time was 

199 seconds (SD = 88 s), and the average doff time was 68 seconds (SD = 17 

s). Upon removal of statistical outliers, primarily due to hesitation or 

inexperience in early trials, the adjusted mean times improved to 182 seconds 

(SD = 60 s) for donning and 66 seconds (SD = 16 s) for doffing. This 

corresponds to a mean improvement of 8.92% for donning and 2.99% for 

doffing, indicating increased user confidence and efficiency after repeated use. 

While full-body industrial exoskeletons often report donning times of up to 10 

minutes and doffing times under 5 minutes, back-support exoskeletons, being 

lighter and simpler, typically require only around 35 seconds to don and 7 

seconds to doff Chung et al., 2024). The prototype exosuit in this study, although 

slightly slower, falls within a reasonable range given its early-stage construction 

and design limitations. Notably, the exosuit used in this study was assembled as 

a proof-of-concept with a limited budget (RM404), resulting in a semi-manual, 

strapping-based harness that lacked quick-release mechanisms or rigid frames.  

 

Table 4.1: Summary of Don Doff Timing of Users 

 Don Time (s) Doff Time (s) 
All Subjects 

Mean 199 68 
SD 88 17 

Removed Outliers 
Mean 182 66 

SD 60 16 
Percentage Difference (%) 

Mean 8.924% 2.985% 
SD 37.838% 6.061% 

 

In early trials, participants were hesitant to handle the prototype too 

assertively, fearing they might damage it. However, after observing that the 
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system sustained no structural failures during repeated use, subjects became 

more confident. This directly contributed to a noticeable improvement in 

donning speed over time. When tested for self-donning and doffing, the average 

time decreased to 1 minute 35 seconds (95 s) and 45 seconds, respectively, 

suggesting that with further refinements and familiarity, the system has the 

potential to match or exceed the usability of commercial exosuits in its category. 

Overall, participant feedback was consistently positive, especially 

regarding comfort, perceived mobility, and ease of use. Users frequently 

described the exosuit’s form factor as reminiscent of a parachute harness but 

emphasised that it felt surprisingly lightweight and non-restrictive, despite its 

measured weight of 4.7 kg, including the duffle bag and storage materials used 

for accurate weighing of the soft-strap-based prototype. benchmarking against 

existing solutions, the device was lighter than active systems like the XoTrunk 

at 6 kg (Poliero et al., 2020), though still heavier than passive alternatives like 

the BionicBack and LiftSuit, which range from 1 to 1.3 kg (Alemi et al., 2022; 

Luder et al., 2025). Participants also reported that the multi-strap configuration 

felt secure yet unobtrusive, providing a perceptible supportive pull that 

enhanced posture correction without interfering with natural movement. This 

balance of mechanical assistance and wearability suggests that the prototype 

effectively achieves a functional compromise between support and freedom of 

motion. Importantly, these early-stage user impressions indicate strong potential 

for further optimisation. With targeted ergonomic refinements, particularly in 

attachment design, the exosuit could evolve into a practical solution for daily 

use in occupational health, rehabilitation, or assistive mobility applications. 

 

4.5 EMG Results for Functionality Testing 

This study examined the muscle-specific effects of an active back-support 

exosuit designed for static postural sway reduction. The device dynamically 

modulates support torque in response to trunk position, aiming to reduce 

neuromuscular effort and enhance postural control in prolonged upright 

standing tasks. The results confirm that active assistance led to significant 

reductions in EMG amplitude across most trunk muscles, with intersubject 

variability highlighted in heatmaps and box plots. This section presents the 

surface electromyography (sEMG) analysis results for four key trunk stabilisers: 
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the external oblique (EO), rectus abdominis (RA), and bilateral erector spinae 

(ES) muscles. Data were collected from 15 participants under four postural 

subconditions, normal stance with eyes open (NSEO), normal stance with eyes 

closed (NSEC), tandem stance with eyes open (TSEO), and tandem stance with 

eyes closed (TSEC), each performed with and without the exosuit. The root 

mean square (RMS) amplitudes were computed for each condition. To assess 

the functional impact of the exosuit on muscular activation, statistical 

comparisons were made using the Wilcoxon signed-rank test for significance 

(p-values) and Cohen’s d for effect size estimation. Visualisations including box 

plots and heatmaps were generated to illustrate intersubject variability and 

overall muscle activation trends. 

 

4.5.1 External Obliques (EO): Lateral Sway Control and Muscle 

Unloading 

The external oblique (EO) muscle exhibited consistent and statistically 

significant reductions in root mean square (RMS) electromyographic (EMG) 

activity across all postural subconditions when the exosuit was worn. As 

illustrated in Figure 4.28, boxplots of amplitude distributions demonstrate a 

clear reduction in muscle activation under exosuit-assisted conditions and a 

clear percent reduction in comparison to no change line. The percent reduction 

in EO activity ranged from 20.6% during normal stance with eyes open (NSEO) 

to 38.3% during tandem stance with eyes closed (TSEC), emphasising the 

progressive unloading effect under increasingly challenging balance tasks. 

These reductions are further visualised in Figure 4.29, which simplifies the data 

into bar graphs representing mean of both control (without exoskeleton) and 

exoskeleton data and associated p-values.  

The EO muscle, critical for lateral trunk stabilisation and rotational 

control, showed significant reductions (p < 0.05) and medium to large effect 

sizes (Cohen’s d = 0.70–1.12), with the highest effect observed in the T-EC 

subcondition (d = 1.12). This is depicted in Figure 4.30, which uses a scatter 

plot with lines linking pre- and post-intervention values for each subject, 

highlighting individual-level trends. These outcomes support prior findings that 

exosuits significantly reduce trunk muscle demands under postural and sensory 

stress (Kang & Mirka, 2023b). Biomechanically, normal parallel stances offer 
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relative postural stability, while tandem stances impose mechanical constraints 

that increase instability. The addition of eye closure further heightens reliance 

on proprioceptive feedback, thereby escalating postural challenge and EMG 

activity. The observed reductions in muscle activation under such conditions 

reinforce the exosuit's capacity to offload muscular demand effectively (Smith 

et al., 2016). 

These reductions in EO activity are functionally significant. High tonic 

activation of the EO is linked to increased lateral trunk stiffness, which hinders 

dynamic balance and limits adaptability to mediolateral perturbations. The 

exosuit moderates this stiffness, likely by redistributing loads to passive 

structures and augmenting active control strategies. Such an effect can reduce 

fatigue during prolonged stance, where EO engagement is typically energy-

intensive. The heatmap in Figure 4.31 reveal moderate intersubject variability, 

particularly in the visually deprived (EC) conditions. Interestingly, participants 

with higher baseline EO activation exhibited more pronounced reductions, 

suggesting that those with inherently higher muscle co-contraction may derive 

greater benefit from exosuit assistance. This points to a potential personalisation 

approach in future assistive device design. Overall, unlike passive systems that 

often fail to adapt to direction-specific balance demands, active exosuits provide 

torque in a controlled, responsive manner, especially beneficial in mediolateral 

stabilisation. The findings of this study echo previous insights into the superior 

adaptability of active assistive systems (Poliero et al., 2022), reinforcing the 

relevance of EO unloading in improving lateral sway control. 

 

 
Figure 4.28: Boxplots of RMS EMG Amplitude Distribution (Left) and Percent 

Reduction in EMG Activity (Right), in EO. 
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Figure 4.29: Bar of Mean RMS EMG Amplitude in EO. 

 

 
Figure 4.30: Subject EMG Trend With vs Without Exoskeleton in EO.  

 

 
Figure 4.31: Heatmap of Subject-wise EMG Reduction (%) in EO. 
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4.5.2 Rectus Abdominis (RA): Anterior Trunk Support and Sagittal 

Sway Modulation 

The rectus abdominis (RA) exhibited statistically significant reductions in EMG 

amplitude across all postural subconditions when the exosuit was activated, 

indicating its critical role in modulating anterior-posterior sway. As shown in 

Figure 4.32, the boxplots illustrate clear shifts toward lower muscle amplitude 

under exosuit conditions. The magnitude of reduction ranged from 29.4% 

during NSEO to 51.2% during TSEC, reflecting the increased postural demands 

and the corresponding support provided by the exosuit, which can be visualised 

via the differences in mean RMS amplitude of EMG in Figure 4.33. The most 

substantial reduction occurred in the TSEC condition (51.2% reduction, d = 

1.05), highlighting the exosuit’s capacity to offload anterior trunk musculature 

during tasks that challenge anterior-posterior sway. All reductions were 

statistically significant (p < 0.05), with large effect sizes (d = 0.81–1.16), 

confirming a consistent unloading effect. The scatter plot in Figure 4.34, with 

lines connecting pre- and post-assist values, further emphasises these changes 

on a subject-by-subject basis. 

Biomechanically, the RA is essential for sagittal plane stabilisation, 

especially in counteracting posterior sway through active trunk flexion as during 

tasks involving forward-backward perturbations, such as tandem stance with 

eyes closed, the RA contracts to resist backward displacement of the centre of 

mass (Kang & Mirka, 2023a). Sustained activation of the RA, especially in static 

postures, contributes significantly to core fatigue. Therefore, the observed 

reductions in muscle activity under exosuit assistance are functionally 

meaningful, as they indicate lower muscular effort and metabolic demand, 

leading to improved endurance and posture control in prolonged upright 

activities (Kang & Mirka, 2023b). The TSEC condition again emerged as the 

most demanding, both in terms of sensory deprivation and biomechanical 

instability, which correlates with the highest unloading response from the 

exosuit. These outcomes align with literature suggesting that active anterior 

support is particularly effective under sagittal destabilisation scenarios (Smith 

et al., 2016). 
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Figure 4.32: Boxplots of RMS EMG Amplitude Distribution (Left) and Percent 

Reduction in EMG Activity (Right), in RA. 

 

 
Figure 4.33: Bar of Mean RMS EMG Amplitude in RA. 

 

 
Figure 4.34: Subject EMG Trend With vs Without Exoskeleton in RA. 

 

Boxplots in Figure 4.30 revealed narrow amplitude distributions under 

exosuit conditions, suggesting that the unloading benefit was consistent across 

participants. This contrasts with the EO muscle, where intersubject variability 
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was higher. Supporting this, the heatmap analysis (Figure 4.35) demonstrated a 

uniform pattern of percent reduction, with most participants experiencing a 

30%–50% decrease in RMS activity, especially under TSEC and TSEO 

conditions. Such uniformity suggests that anteriorly directed torque from the 

exosuit reliably supports sagittal plane stability, reducing the need for tonic RA 

contraction. This has substantial implications for occupational, clinical, and 

surgical scenarios, where prolonged standing often leads to early RA fatigue 

(Kang & Mirka, 2023b). These findings reinforce the hypothesis that exosuits 

can delay core fatigue and improve trunk control during upright tasks. While 

passive exosuits typically underperform in anterior support, active systems like 

the one developed in this study can precisely target anterior musculature, 

responding dynamically to the user's posture and sway. As such, tonic RA 

activity is significantly reduced, and the risk of fatigue-related postural 

deterioration is minimised. This is supported by prior findings emphasising the 

superiority of active torque delivery in sagittal stabilisation tasks (Poliero et al., 

2022). 

 

 
Figure 4.35: Heatmap of Subject-wise EMG Reduction (%) in RA. 

 

4.5.3 Erector Spinae (Right, L3): Posterior Chain Support in Anterior 

and Rightward Sway 

The right erector spinae (ES-R) displayed a condition-dependent response to 

exosuit assistance, reflecting its biomechanical role in stabilising the trunk 
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against anterior and rightward sway. As shown in Figures 4.36 to 4.38, 

significant EMG amplitude reductions were observed primarily in the tandem 

stance conditions, with 35.6% reduction in TSEO (d = 0.70) and 41.8% 

reduction in TSEC (d = 0.95), both indicating medium to large effect sizes and 

statistically significant changes (p < 0.05). In contrast, during normal stance 

conditions, reductions were minimal and not statistically significant (reductions: 

8.2% in NSEO, 6.7% in NSEC), confirming that exosuit efficacy scales with 

postural demand. 

 

 
Figure 4.36: Boxplots of RMS EMG Amplitude Distribution (Left) and Percent 

Reduction in EMG Activity (Right), in ES (L3, Right) 

 

 
Figure 4.37: Bar of Mean RMS EMG Amplitude in ES (L3, Right). 

 

These findings are consistent with evidence showing that erector 

spinae muscles benefit most from assistive support at higher trunk flexion 

angles or under balance-challenging postures further suggesting that erector 

spinae muscles activate more prominently under increased trunk instability, 

particularly when compensatory stiffening or co-contraction strategies are 
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deployed to prevent loss of balance (Cholewicki et al., 2007). In the tandem 

stance, especially with eyes closed, forward-backward instability increases, 

demanding greater tonic activation of ES-R to resist anterior drift. By providing 

active posterior torque, the exosuit significantly reduces this neuromuscular 

demand in high-load conditions. This scaling behaviour is functionally 

important: passive exosuits often rely on fixed stiffness and may plateau beyond 

certain flexion thresholds, whereas active systems dynamically adjust torque 

output to match postural needs (Cholewicki et al., 2007). The observed 

unloading in tandem conditions demonstrates that exosuits like XoTrunk 

dynamically support the posterior chain, especially under increased sagittal and 

mediolateral challenges (Poliero et al., 2022). 

 

 
Figure 4.38: Subject EMG Trend in ES (L3, Right). 

 

The erector spinae group plays a primary role in resisting anterior sway, 

especially at the lumbosacral level (L3). In upright static stance, especially 

under narrow or tandem base conditions, even small anterior shifts of the centre 

of mass must be countered by extensor torque, largely generated by the ES-R 

and synergistic muscles. As balance becomes more difficult (e.g., eyes closed), 

ES-R activation increases to maintain lumbar lordosis and prevent collapse into 

trunk flexion. The ability of the exosuit to reduce this demand signifies a key 

mechanism of postural support, particularly valuable in fatigue-prone or aging 

populations. As seen in boxplots (Figure 4.36), greater variability was present 

in ES-R responses compared to the EO and RA groups. This was further 

explored in the heatmap (Figure 4.39), which revealed a non-uniform percent 
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reduction distribution across participants. Subjects with higher baseline ES-R 

activation experienced greater relative reductions, indicating that the exosuit 

preferentially supports individuals under high-load conditions and with higher 

tonic posterior chain engagement. This adaptive benefit highlights the potential 

of active systems to tailor support in a subject-specific manner. 

 

 
Figure 4.39: Heatmap of Subject-wise EMG Reduction (%) in ES (L3, Right). 

 

The exosuit reduced ES-R EMG amplitude by over 40% in the most 

challenging subcondition (TSEC). Static postural tasks are deceptively 

demanding over time. Active systems like XoTrunk have shown up to 41% ES 

EMG reduction, significantly outperforming passive systems, also suggesting 

developed exoskeleton being on par with commercialised ones (Poliero et al., 

2022). Although the percent reduction of Xo Trunk was computed via MVC 

normalisation, and is preferred for accuracy and benchmarking, the adopted 

min-max method allowed for consistent intra-subject comparison. This 

facilitated the interpretation of muscle activity trends which were qualitatively 

compared to those reported in commercial exoskeleton studies, despite different 

application contexts. While passive devices offer stiffness-based resistance, 

active exosuits dynamically augment extension torque, making them superior 

for highly variable or long-duration tasks. The statistical pattern in Table 4.2 

reinforces that the exosuit's posterior support structure is selectively effective 

under challenging balance conditions, where spinal extension becomes more 

actively involved in sway control. 
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Table 4.2: Summary of Statistical Observations in ES-R 

Condition % Reduction p-value Effect Size (Cohen’s d) 
NSEO 8.2% > 0.05 Small 
NSEC 6.7% > 0.05 Small 
TSEO 35.6% < 0.05 Medium (0.70) 
TSEC 41.8% < 0.05 Large (0.95) 

 

4.5.4 Erector Spinae (Left, L3): Anterior and Left Sway Control 

In contrast to its right-side counterpart, the left erector spinae (ES-L) exhibited 

no consistent reductions in RMS EMG activity following exosuit activation. As 

shown in Figures 4.40 and 4.41, EMG amplitude changes across all four 

standing subconditions were statistically insignificant (p > 0.05), with two 

conditions showing slight increases, +2.5% in NSEC and +9.1% in TSEO. 

These findings were supported by small or negligible effect sizes (Cohen’s d < 

0.2) and wide error bars, reflecting high intersubject variability reflected in 

Figure 4.42. Mean and standard error (SE) comparisons between NO and ON 

conditions showed minimal differences, with overlapping ranges indicated in 

Figure 4.42. For example, in T-EO, the mean RMS value slightly increased from 

0.084 ± 0.013 (NO) to 0.091 ± 0.014 (ON), suggesting a non-systematic 

influence of the exosuit. Observations were summarised in Table 4.3. 

 

Table 4.3: Summary of Statistical Observations in ES-L 

Condition % Reduction p-value Effect Size (Cohen’s d) 
NSEO -4.1% > 0.05 Negligible 
NSEC +2.5% > 0.05 Negligible 
TSEO +9.1% > 0.05 Small 
TSEC -5.8% > 0.05 Negligible 

 

 As illustrated in Figures 4.40 to 4.42, ES-L responses were highly 

variable, with both increases and decreases across subjects in all subconditions. 

Unlike the consistent downward trend seen in ES-R, median values for ES-L 

remained relatively flat, and interquartile ranges were wide, indicating a lack of 

systematic unloading. The heatmap analysis (Figure 4.43) further clarified this 

inconsistency: individuals with low baseline ES-L activation were more likely 

to show paradoxical increases in muscle activity during exosuit use. This could 

reflect compensatory neuromuscular responses, such as shifting load away from 

the supported side or recruiting contralateral stabilisers.  
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Figure 4.40: Boxplots of RMS EMG Amplitude Distribution (Left) and Percent 

Reduction in EMG Activity (Right), in ES(L3, Left) 

 

 
Figure 4.41: Bar of Mean RMS EMG Amplitude in .ES (L3, Left). 

 

 
Figure 4.42: Subject EMG Trend in ES (L3, Left). 

 

The erector spinae (L3) muscles contribute to anterior sway control, 

especially in the sagittal plane, but they also stabilise left-right sway through 

coordinated bilateral contraction. However, asymmetrical muscle recruitment is 

not uncommon, particularly in tasks without external load asymmetry but with 
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internal biasing from limb dominance, postural habits, or minor alignment 

asymmetries in wearable systems. This asymmetry could reflect user-specific 

compensation strategies or biomechanical factors such as limb dominance and 

exosuit alignment. It has been observed in literature that trunk muscle activation 

patterns can vary considerably between sides, especially in tasks with 

asymmetric demands (Kang & Mirka, 2023). A poorly fitted or asymmetrically 

aligned exosuit may fail to deliver uniform support, underlining the need for 

individualised fitting protocols and actuator symmetry optimisation. These 

factors result in high variability and low group-level statistical significance, 

even if some individuals experience unloading benefits. Further investigation 

involving symmetry assessments and user-specific modelling is warranted. 

 

 
Figure 4.43: Heatmap of Subject-wise EMG Reduction (%) in ES (L3, Left). 

 

The lack of consistent benefit in ES-L highlights the need for bilaterally 

calibrated actuation. Passive or uniformly controlled exosuits may fail to adjust 

for individual asymmetries, leading to unbalanced loading or even 

compensatory overuse. Over time, such asymmetry could contribute to 

musculoskeletal imbalances or altered motor control strategies. Although no 

adverse effects were observed in this short-term study, longitudinal monitoring 

is recommended. To enhance efficacy, future iterations of active exosuits should 

integrate real-time EMG or sensor-based symmetry control algorithms that 

dynamically balance bilateral torque output. As shown by Dos Anjos et al. 

(2022), spatially adaptive muscle activity (e.g., caudal redistribution of ES 
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activation) is common in prolonged postural tasks, underscoring the need for 

localised and responsive support. 

In summary, ES-L showed no statistically significant reductions in 

RMS activity across standing subconditions, with some participants even 

increasing activation. This asymmetry, visualised in both boxplots and 

heatmaps, reflects the complexity of postural compensation and underscores the 

necessity of customised exosuit alignment and adaptive bilateral control. While 

ES-R was clearly offloaded in tandem stances, ES-L responses were 

inconsistent, limiting group-level significance and highlighting an important 

design consideration for future systems. 

 

4.5.5 Analytic Comparison Between Right and Left Erector Spinae (ES) 

The comparative analysis of the right and left erector spinae muscles (ES-R vs. 

ES-L) revealed a pronounced asymmetry in the exosuit’s neuromechanical 

impact, emphasising the complexity of bilateral trunk muscle recruitment during 

static postural control. While the ES-R consistently exhibited statistically 

significant reductions in EMG activity under more demanding tandem stance 

conditions, the ES-L showed inconsistent or even paradoxical responses, with 

negligible or slightly increased activation in some participants. This functional 

divergence suggests that the assumption of symmetric muscular response to 

symmetric support is overly simplistic in real-world applications. 

Several contributing factors may underlie this asymmetry. User-

specific postural compensation strategies, differences in limb dominance, and 

subtle misalignments in exosuit actuator placement could all affect the load 

distribution across the posterior chain. The literature corroborates that limb 

dominance and asymmetric core engagement play a substantial role in trunk 

stabilisation, particularly during balance-challenging or asymmetrical tasks 

(Kang & Mirka, 2023). This aligns with the observation that the ES-L exhibited 

high intersubject variability, as evidenced by broader interquartile ranges in box 

plots and heterogeneous colour distributions in heatmap visualisations. Such 

findings suggest that while the exosuit's hardware delivers uniform torque 

bilaterally, individual neuromuscular responses can vary significantly.  

From a design perspective, this asymmetry highlights a key limitation 

in passive or semi-active exosuit systems that apply symmetrical torque without 
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accommodating individual biomechanical differences. The current design, 

though mechanically balanced, does not account for the user-specific interplay 

of muscle tone, alignment, and baseline activation asymmetries. This results in 

non-uniform unloading effects, as shown in Table 4.4, where ES-R 

demonstrated clear and consistent reductions in EMG activity, supported by 

moderate to large effect sizes (Cohen’s d = 0.45–0.81), whereas ES-L exhibited 

small or negligible effect sizes and no statistically significant changes across all 

tested conditions. These observations underscore the need for individualised 

calibration protocols and potentially real-time adaptive control systems in future 

exosuit designs. Particularly, EMG-informed feedback loops and dynamic 

torque modulation could enable balanced bilateral support, reducing the risk of 

inducing long-term musculoskeletal imbalances through chronic asymmetrical 

offloading. This comparison between ES-R and ES-L activation not only 

validates the effectiveness of the exosuit in targeted scenarios but also highlights 

its current limitations, which must be addressed to ensure holistic, user-specific 

biomechanical support. 

 

Table 4.4: Summary of ES Neuromuscular Response to Exosuit Use 

Metric ES-R (Right) ES-L (Left) 
Overall Trend Consistent EMG 

reduction 
Inconsistent, variable 

changes 
Statistical 

Significance 
Significant in 3 of 4 
conditions (p < 0.05) 

Not significant in any 
condition 

Percent Reduction 
Range 

-6.2% to -23.5% -5.8% to +9.1% 

Effect Size 
(Cohen’s d) 

Moderate to large 
(0.45–0.81) 

Negligible to small (< 0.2) 

Boxplot 
Observation 

Tight IQRs, clear 
downward shift 

Wide IQRs, mixed 
direction 

Heatmap Insight Most subjects showed 
unloading 

Some subjects showed 
increased activation 

Interpretation Effective and consistent 
unloading 

Compensation or lack of 
support 

 

4.5.6 EMG Data Summary and Systematic Analysis 

The electromyographic (EMG) data collected throughout the study revealed 

consistent and meaningful reductions in trunk muscle activity, particularly 

within the external oblique (EO), rectus abdominis (RA), and right erector 
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spinae (ES-R), when participants engaged in static postural tasks while 

supported by the exosuit, visualised in Figure 4.44 in spider plot, and full table 

appended in Table B-5. These reductions are aligned with established 

biomechanical principles that suggest external support devices can effectively 

offload trunk musculature by enhancing passive stiffness and redistributing 

neuromuscular demand. Notably, muscle activity decreased by up to 51.2% for 

RA and 41.8% for ES-R, surpassing reductions reported in previous studies 

involving passive exosuits. For instance, Kang & Mirka (2023b) demonstrated 

consistent reductions in erector spinae activation (21%) across symmetric and 

asymmetric postures, with reductions more pronounced at greater trunk flexion 

angles (Kang & Mirka, 2023a). This reduction in activation indicates a lower 

tonic contraction demand, which may delay the onset of postural fatigue during 

prolonged standing. Smith et al. (2016) emphasise that excessive abdominal 

activity can impair balance, particularly in clinical populations, and the 

observed muscle unloading in this study may mitigate such risks. The effect was 

especially pronounced during the tandem stance with eyes closed (TSEC), a 

condition that taxes proprioceptive and vestibular systems, suggesting that the 

exosuit provided functional neuromechanical support under elevated postural 

demand. 

Biomechanically, these reductions likely stem from central nervous 

system (CNS) adaptations to external support, as proposed by Cholewicki et al. 

(2007). The CNS tends to downregulate superficial trunk muscle activation in 

the presence of external stiffness, optimising trunk control without 

compromising balance. This mechanism mirrors responses seen in orthotic 

bracing, wherein minor EMG reductions (~1–14% MVC) significantly 

contribute to spinal stability (Cholewicki, 2004). The asymmetrical EMG 

response, particularly the lack of significant unloading in the left erector spinae 

(ES-L), highlights inter-subject variability and raises concern regarding long-

term musculoskeletal balance. This asymmetry may stem from factors such as 

limb dominance, individual posture strategies, or mechanical mismatch between 

the user and the actuator interface. While Kang & Mirka (2023a) reported 

consistent muscle unloading regardless of postural asymmetry, our findings 

suggest that real-world implementation requires personalised fit and calibration 

to ensure bilateral efficacy. Future iterations of the exosuit could benefit from 
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integrating real-time biofeedback or adaptive control algorithms to dynamically 

balance torque output and prevent overuse-related asymmetries. 

 

 
Figure 4.44: Spider Plot Summary of Muscle Activity per Condition. 

 

The literature supports these interpretations. Dos Anjos et al. (2022) 

demonstrated that passive trunk exoskeletons achieve approximately 10~18% 

reductions in ES muscle activation during static tasks, accompanied by a 

redistribution of muscular engagement toward caudal regions. In contrast, 

Poliero et al. (2022) found that active systems such as the XoTrunk reduced 

EMG activity by up to 41% in static and dynamic contexts, outperforming 

passive systems (16%) in unloading capacity. A preprint study showed that 

static flexion with a passive exosuit reduced erector spinae activity by ~18% 

and decreased perceived discomfort in the thoracolumbar region, without 

impairing postural stability (Thomas et al., 2022). While passive devices may 

be preferred for comfort and simplicity in long-duration static use, active 

systems provide greater biomechanical precision and are more adaptable to 

varying task demands, postural challenges, and user-specific neuromuscular 

profiles. 

In this study, active support proved especially valuable in tasks with 

visual occlusion or reduced somatosensory feedback, where EO and RA 

exhibited higher baseline co-activation, also summarised in Table 4.5. 

Directional torque application by the exosuit allowed finer control of postural 
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sway, reducing reliance on superficial stabilisers and contributing to improved 

postural efficiency. The findings corroborate the hypothesis that active systems 

are not only beneficial in dynamic movements but may also offer advantages in 

static or quasi-static postures when personalised and finely tuned. These 

findings have important implications for both fatigue management and 

personalised exosuit design. The observed reductions in tonic muscle activation, 

particularly in EO and RA, suggest that the exosuit may effectively delay the 

onset of postural fatigue by reducing the sustained neuromuscular effort 

required to maintain balance in challenging conditions. This is especially 

valuable in occupations that involve prolonged static standing or visually 

demanding tasks, such as surgical procedures or inspection work, where even 

minor postural drift can compromise performance. Furthermore, the variability 

in EMG response across individuals, especially in the ES-L, underscores the 

need for personalised control strategies. Active systems, unlike passive ones, 

offer the potential for real-time, algorithm-driven adjustment based on EMG or 

posture feedback. By dynamically tuning torque output to match the user's 

unique neuromuscular profile, such systems may optimise both comfort and 

symmetry, mitigating risks of overcompensation or muscle imbalance over long 

durations of use. Integration of adaptive control architectures could therefore 

represent a critical step toward achieving individualised unloading curves and 

enhanced ergonomic outcomes. 

 

Table 4.5: Justification of Active Exoskeleton based on EMG 

Muscle 
Group 

Active Assistance Benefits 

EO Active control allows finer lateral torque adjustment, reducing 
over-reliance on EO in visually challenged stances (e.g., T-EC) 

RA Active anterior tension can better match task demands, 
particularly for users with higher RA baseline co-contraction 

ES-R Dynamic compensation by active systems can reduce postural 
sway-induced fluctuations, lowering fatigue risk 

ES-L Intersubject asymmetry may be better addressed by active 
torque modulation rather than passive stiffness alone 

 

In summary, the exosuit significantly offloaded trunk musculature 

during both neutral and challenging balance conditions, with reductions in EO, 

RA, and ES-R confirming its biomechanical effectiveness. These reductions, 
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facilitated by CNS-mediated tonic unloading and enhanced passive stiffness, 

support the utility of active exosuits in occupational, clinical, or rehabilitative 

scenarios involving prolonged static posture. However, intersubject 

asymmetries and differential muscle responses emphasise the need for custom 

calibration and real-time feedback mechanisms to optimise symmetry and long-

term musculoskeletal outcomes. The integration of adaptive control strategies, 

potentially leveraging EMG-driven or machine learning algorithms, represents 

a logical next step in the refinement of wearable trunk support systems. A 

summary is tabulated in Table 4.6. 

 

Table 4.6: Summary Table of EMG Results 

Factor Observation Implication 
Fatigue 
mitigation 

EO and RA reductions 
suggest lower tonic 
contraction demands 

Likely delay in postural 
fatigue during static stance 
tasks 

Passive vs. 
active trade-
offs 

Passive exosuits 
effectively unload in 
static or low-dynamic 
tasks 

Active exosuits may be 
better for tasks with variable 
or high-rate torque demands 

Asymmetry 
risks 

Lack of ES-L reduction 
and observed increases in 
some users 

Possible long-term 
imbalance without custom 
fitting or feedback systems 

Intersubject 
variability 

Heatmaps show user-
dependent effects, 
especially in ES 

Personalised tuning and 
adaptive systems may 
enhance outcomes 

 

4.6 CoP Parameters Results of Functionality Testing 

Centre of Pressure (CoP) metrics are core indicators of postural stability and 

were used in this study to assess the impact of an active back-support exosuit 

under four stance-visual conditions: NSEO, NSEC, TSEO, and TSEC. The 

primary parameters, sway dispersion (DMLSD, DAPSD), mean sway velocities 

(Vmlmean, Vapmean), CoP pathlength, and 95% PEA, offer insight into spatial 

control, corrective effort, and neuromuscular regulation. The interpretation of 

findings was grounded in established postural control literature, with particular 

emphasis on the roles of visual input and mechanical assistance. Given the well-

documented contribution of visual feedback to postural stability, where eyes-

closed (EC) conditions consistently lead to increased sway relative to eyes-open 

(EO) scenarios, this discussion considers both within-condition (EC vs. EO) and 
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between-condition (exoskeleton ON vs. NO) comparisons, drawing from prior 

studies on visual dependence and balance correction mechanisms. 

 During the functionality testing phase, CoP parameters were further 

scrutinised to isolate the mechanical and sensorimotor effects of the exosuit. 

Subject-level heatmap visualisations (Figure 4.45) revealed notable outliers, 

particularly subjects S02 and S07, with subject S09 showing borderline 

deviation. These individuals displayed abnormally high variability across 

several CoP metrics, significantly inflating the standard deviation and distorting 

group-level interpretations. As such, their data were excluded to preserve the 

statistical validity and clarity of the results. The removal of these outliers 

enabled a more accurate and consistent assessment of exosuit-related trends by 

minimising the influence of atypical subject responses or potential sensor 

artefacts. At this stage, the appended Figures C-17 to C-33 and Table B-10 still 

reflect the full dataset, including outliers. The effects of excluding these subjects 

are addressed in the following section to provide a more stable interpretation of 

exosuit-induced postural modulation. 

 

 
Figure 4.45: Heatmap of Subject Consistency in Reduction Across Stance  

 

4.6.1 Statistics-Based Analysis of CoP Metrics 

This analysis investigates whether the active back-support exosuit enhances 

static postural control by examining the six CoP parameters. Both statistical 

significance (Wilcoxon p-values) and effect size (Cohen’s d) were applied to 

provide a robust assessment of intervention effects. Detailed statistical outputs 

are provided in Tables B-6 to B-9, with compiled p-values and effect sizes 
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summarised in Table B-10 and visualised in Figures 4.47. Table B-11 presents 

per-condition data summaries. Notably, Figure 4.46 highlights the NSEC 

condition as an outlier, warranting exclusion due to low effect sizes and 

inconsistent trends. 

 Statistical significance was assessed using p-values, with thresholds set 

at p < 0.05 (), p < 0.01 (), and p < 0.001 (). However, non-significant findings 

(p > 0.05) were not immediately interpreted as null effects, given the limited 

sample size and inter-subject variability. To complement this, Cohen’s d was 

used to estimate effect magnitude, classified as small (0.2), medium (0.5), large 

(0.8), very large (1.2), and huge (≥2.0). As effect sizes are independent of 

sample size, they provide critical insight into potential clinical or functional 

relevance, even in the absence of significance. Tables B-7 and B-8 shows the 

significance and effect size (r), with Cohen’s d in the appended Table B-10 of 

each parameter per condition. 

 

 
Figure 4.46: Condition-based Effect Size Heatmap 
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Figure 4.47: Heatmap of Subject-wise Effect Size Across Parameters  

 

Observing overall effect sizes across parameters and subjects in Figure 

4.46, excluding the NSEC condition as explained before, all 6 parameters 

exhibit positive effect sizes, indicating improvements with the exosuit. DML 

SD showed a positive response in 9 of 11 participants, particularly under tandem 

stance with eyes closed (TSEC). Notably, subjects S03 and S10 exhibited large 

improvements (d = 0.58 and d = 1.46, respectively), suggesting that the exosuit 

contributed to enhanced lateral stabilisation. This aligns with findings by Park 

et al. (2021), who reported reduced ML sway amplitude in unipedal and tandem 

postures using passive back-support systems. Next, DAP SD demonstrated 

similarly favourable outcomes under TSEC, where large effect sizes were 
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observed despite some non-significant p-values. Subjects S03, S06, and S11 

each showed d > 1.0, with statistically significant improvements observed in 

S01, S03, and S04 under tandem conditions. These results are consistent with 

Kuber & Rashedi (2024), who documented reduced anteroposterior CoP 

displacement with active exosuit usage during trunk movements. 

Vml Mean results were heterogeneous. While some participants (S06, 

S10, S03) exhibited large or even huge effect sizes under TSEC, other responses 

were inconsistent, potentially reflecting compensatory sway strategies or altered 

neuromuscular responses. As noted by Farris et al. (2024), exosuits may 

influence sway velocity by modulating reactive response timing rather than 

steady-state control. In contrast, Vap Mean demonstrated more robust and 

consistent reductions under TSEC, with effect sizes exceeding 2.0 in multiple 

subjects (S01: d = 4.15; S06: d = 2.47; S10: d = 2.38). S11 also showed an 

exceptionally large effect (d = 1.19). However, results were variable across 

other stances, suggesting that this metric is particularly sensitive to high-

instability conditions. This is supported by Layne et al. (2022), who observed 

velocity reductions primarily during perturbation scenarios when exosuits were 

engaged. 

CoP Pathlength emerged as the most reliable and consistent metric 

across subjects and conditions. Over 80% of participants exhibited large or huge 

effect sizes in TSEC. S03 showed a dramatic reduction (d = 5.16), with 

statistically significant differences also detected in S01, S03, S04, and S06. 

Prior literature (Donath et al., 2012; Matheron et al., 2010) identifies CoP 

pathlength as a sensitive and repeatable indicator of postural sway, especially 

under eyes-closed or perturbed conditions. Lastly, 95% PEA yielded the highest 

inter-subject variability, showing substantial improvements in select 

participants under TSEC (e.g., S03: d = 3.11; S05: d = 2.44; S11: d = 4.87), 

while producing contradictory or negligible changes in others (e.g., S01 in 

TSEO: d = –0.02). These findings suggest that sway area is highly context-

sensitive and may be less robust than velocity or trajectory-based measures. As 

Layne et al. (2022) note, sway area tends to be more influenced by externally 

induced perturbations rather than quiet stance. 

In summary, the active back-support exosuit significantly enhances 

static postural control, particularly under challenging conditions such as tandem 
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stance with eyes closed. The most pronounced improvements were observed in 

CoP Pathlength, Vml Mean, and DAP SD, with the largest gains occurring in 

participants who initially demonstrated poorer postural stability. While some 

metrics such as 95% PEA and Vml Mean displayed variability, the general trend 

supports the efficacy of the exosuit in improving functional balance, especially 

in high-instability scenarios. 

The observed improvements can be attributed to several biomechanical 

and neuromuscular mechanisms. First, mechanical stabilisation of the trunk 

reduced the amplitude of postural sway, particularly in the mediolateral and 

anteroposterior directions (Park et al., 2021). Second, delayed or dampened 

neuromuscular responses may have contributed to lower CoP velocities, 

minimising overcorrection, or reactive oscillations (Farris et al., 2024). Lastly, 

redistribution of trunk torque could have enhanced AP sway control, especially 

in narrow-base stances (Layne et al., 2022). Collectively, these mechanisms 

underscore the exosuit’s potential for targeted postural support and fall 

prevention in unstable or sensory-compromised conditions. 

 

4.6.2 Subject-Specific Analysis of Postural Control Metrics 

Significant inter-subject variability was observed across postural control metrics, 

particularly in velocity-based measures such as anteroposterior CoP velocity 

(Vapmean). Subjects S03, S04, and S11 exhibited the most pronounced 

improvements in the tandem stance with eyes closed (TSEC), with Vapmean 

and pathlength Cohen’s d-values exceeding 2.0 in multiple instances. In contrast, 

subjects S07 and S08 demonstrated low or inconsistent responses, highlighting 

the influence of individualised balance control strategies. These patterns align 

with the findings of Schniepp et al. (2013), who argue that reduced sway 

variability does not necessarily reflect improved control—it may, in fact, signal 

maladaptive rigidity or inflexible supraspinal compensation. Moreover, 

Vapmean, due to its inherent trial-to-trial sensitivity, should be interpreted in 

conjunction with effect sizes rather than relying solely on p-values. This 

underlines the necessity for individualised analysis to uncover nuanced 

intervention effects that may be masked in group-level statistics. 

Vapmean captures the frequency and intensity of anterior-posterior 

corrective actions during quiet stance. Elevated values typically reflect 
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instability or heightened compensatory motor drive (Kozinc et al., 2023), 

making Vapmean a sensitive, though volatile, indicator of postural effort. CoP 

pathlength, on the other hand, reflects the cumulative trajectory of sway and is 

widely regarded as a robust marker of postural control demand and 

neuromuscular effort. It remains stable across repetitions and correlates with 

energy expenditure during standing balance tasks (Matheron et al., 2010; 

Donath et al., 2012). Despite their variability, both metrics are highly 

informative and well-suited to assessing biomechanical outcomes of exosuit-

assisted stabilisation. 

 

4.6.2.1 Subject-Level Trends 

Strong responders in TSEC includes subjects S03 and S04 displayed 

exceptionally large reductions in Vapmean (d = 4.62, 5.04) and pathlength (d = 

5.16, 2.81), with statistically significant improvements (p < 0.01), indicating 

strong stabilisation in the most demanding condition. Subject S11 similarly 

showed large effect sizes (Vapmean d = 1.18; Pathlength d = 1.11, p < 0.05), 

closely mirroring group-level trends and suggesting consistent postural 

enhancement from the exosuit. Ambiguous or variable responders include 

subject S02 demonstrated large effect sizes (Vapmean d = 1.12; Pathlength d = 

0.99) without reaching significance, due to high intra-trial variability. Subjects 

S07 and S08 presented small or inconsistent effects (d < 0.7), implying that 

individuals with higher baseline stability may rely on adaptive strategies not 

easily captured by conventional sway reduction metrics, echoing the findings of 

Schniepp et al. (2013) regarding compensatory rigidity. 

 

4.6.2.2 Metric-by-Metric Interpretation 

Vapmean demonstrated high sensitivity to sway modulation, particularly under 

TSEC and TSEO conditions. Large effect sizes were observed in S01, S06, and 

S11, suggesting strong neuromuscular engagement with the exosuit. However, 

due to its susceptibility to trial-to-trial fluctuations (Butowicz et al., 2023), 

Vapmean is best interpreted through directional trends and magnitude of effect 

sizes, rather than isolated p-values. Besides, pathlength emerged as the most 

robust and interpretable metric across the cohort. Approximately 70% of 

subjects showed large-to-huge reductions during exosuit-assisted trials, 
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particularly under TSEC, highlighted in Table 4.7, confirming its utility as a 

primary outcome measure in balance-related intervention studies, as advocated 

by Donath et al. (2012) for its cross-condition reliability and sensitivity. 

Individual response variability may reflect deeper neuromotor 

dynamics rather than statistical noise. From a nonlinear control perspective, 

reduced sway variability may indicate maladaptive rigidity, a compensatory 

strategy that appears stable but masks diminished sensorimotor flexibility 

(Schniepp et al., 2013). Similarly, fluctuations in Vapmean following eyes-

closed conditions may represent active postural re-tuning rather than instability, 

aligning with sensorimotor adaptation theories proposed by Kozinc et al. (2023). 

 

Table 4.7: Subject-Level Highlights (TSEC Condition) 

Subject Vapmean 
d 

Pathlength 
d 

Significance Interpretation 

S01 4.15 2.83 * Strong response 
S03 4.62 5.16 ** Robust improvement 
S04 5.04 2.81 ** High stabilisation 
S06 2.47 1.55 * Large improvements 
S11 1.18 1.11 * Consistent with group 

trend 
S02 1.12 0.99 n.s. High variability; 

underpowered 
S07/S08 < 0.7 < 0.7 n.s. Low or inconsistent 

response 
 

Thus, based on the findings, CoP pathlength is recommended as the 

primary outcome metric for future postural control studies involving exoskeletal 

assistance. It demonstrated consistent statistical robustness, sensitivity to the 

intervention, and a strong correlation with the physical effort required to 

maintain postural stability. In contrast, Vapmean (anteroposterior sway 

velocity), while sensitive to subtle changes and useful for capturing effect size 

magnitude, displayed high variability across trials and participants. As such, 

Vapmean is better suited as a supplementary measure, particularly for 

interpreting directional trends rather than for definitive statistical conclusions. 

In terms of data treatment, the NSEC ON vs. NO condition (narrow 

stance, eyes closed) was excluded from deeper interpretation due to its 

inconsistent and often contradictory subject-level and condition-level trends. Its 
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instability across participants limited its value in evaluating intervention effects. 

Furthermore, individual cases such as Subjects S02 and S10, who demonstrated 

large effect sizes without reaching statistical significance, are influenced by 

within-subject variability or limited sample power. These cases should not be 

dismissed as non-responders but rather viewed as potentially underpowered true 

responders, deserving of further validation in larger, more powered future 

studies. 

This subject-level analysis underscores the efficacy of the back-support 

exoskeleton in enhancing postural control, particularly under high-challenge 

conditions like tandem stance with eyes closed. Notably, the exosuit yielded 

substantial improvements in subjects with greater baseline instability, 

reinforcing its potential role in balance rehabilitation. While Vapmean offers 

high sensitivity for detecting change, CoP pathlength remains the preferred 

metric for consistent and reliable assessment. These findings highlight the 

critical importance of individualised biomechanical profiling in intervention 

studies and support the continued refinement of wearable exoskeletons for fall 

prevention and neuromotor recovery. 

 

4.6.3 Parameter-Based Analysis after Outlier Removal 

The overall mean percent reduction in Cop Parameters are shown in heatmaps 

in Figure 4.48 indicating positive effect of exoskeleton in general, even in 

subject based reductions other than the NSEC condition that is removed as 

explained above. 

 

 
Figure 4.48: Heatmap of Percent Reduction by Condition and Subject. 
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Sway dispersion, measured via DMLSD and DAPSD, represents the 

spatial variability of CoP in the mediolateral and anteroposterior directions, 

respectively. In agreement with prior research (e.g., Sezer & Ferdjallah, 2005; 

Tipton et al., 2023), EC trials consistently resulted in increased sway variability 

compared to EO across all stance conditions, as shown in Figures 4.46 and 4.47. 

The TSEC condition, which integrates both a narrow base of support and visual 

deprivation, produced the highest sway dispersion values, underscoring its 

destabilising nature (Tipton et al., 2023; Sezer & Ferdjallah, 2005). Tipton et al. 

(2023) and Andreeva et al. (2021) also confirmed that tandem stance and visual 

occlusion independently increase CoP dispersion, especially along the M-L axis, 

due to diminished spatial orientation and base-of-support constraints. Notably, 

DMLSD decreased from 1.692 cm to 1.087 cm (a 35.8% reduction) with exosuit 

assistance, while DAPSD reduced from 1.359 cm to 1.090 cm (a 19.9% 

reduction). These reductions align with biomechanical evidence indicating that 

external stabilisation mitigates the need for intrinsic neuromuscular 

compensation, particularly in challenging postural scenarios (Nagymáté & Kiss, 

2016). The mechanical resistance offered by the exoskeleton attenuates trunk 

sway, resulting in reduced CoP variability. Subject consistency was noted based 

on the heatmaps in Figure 4.49 and 4.50. 

Boxplots in Figures 4.51 and 4.52 shows the distribution and mean 

differences of DAPSD and DMLSD in all conditions. Anomalously, in the 

normal stance, DMLSD was higher during the eyes-open (NSEO) condition 

(0.526 cm) than eyes-closed (NSEC: 0.407 cm). This contradicts the expected 

EC > EO trend and is due to outlier effects, measurement variability or residual 

adaptation in subjects, which may be caused by participant fatigue, adaptive 

learning, or compensatory overcorrection, suggesting a potential outlier that 

skews between-condition comparisons (Schniepp et al., 2013). As such, 

comparisons between ON vs. NO for NSEC are treated cautiously and excluded 

from inferential interpretations. These findings confirm that both stance 

complexity and visual input significantly influence sway dispersion, and that 

exoskeleton support reduces reliance on intrinsic neuromuscular compensation, 

especially under instability. 
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Figure 4.49: Heatmap of Percentage Reduction in DMLSD. 

 

 
Figure 4.50: Heatmap of Percentage Reduction in DAPSD. 

 

 
Figure 4.51: Boxplot Comparison of DMLSD Between With and Without 

Exoskeleton Conditions. 
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Figure 4.52: Boxplot Comparison of DAPSD Between With and Without 

Exoskeleton Conditions. 

 

Mean CoP velocity metrics, Vmlmean and Vapmean, are indicative of 

the frequency and intensity of postural corrective actions. Elevated velocities 

typically correspond to increased instability and compensatory motor or 

correction effort (Tipton et al., 2023). The TSEC condition produced the highest 

velocities without exosuit assistance, with Vmlmean reaching 4.576 cm/s and 

Vapmean 3.920 cm/s. When the exosuit was engaged, these values significantly 

decreased to 2.469 cm/s (46.0% reduction) and 2.792 cm/s (28.8% reduction), 

respectively. These velocity reductions substantiate the exoskeleton’s efficacy 

in stabilising posture by reducing the frequency of corrective CoP shifts. These 

findings corroborate the stabilising influence of mechanical augmentation, 

which reduces the frequency of CoP corrections, visualised in Figures 4.53 and 

4.54. Comparable effects have been reported in populations utilising external 

balance supports or subjected to altered sensory environments (Bauer et al., 

2008). Subject consistency of improvement was observed more in Vmlmean 

compared to Vapmean, but still meaningful providing improvements. 
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Figure 4.53: Boxplot Comparison of Vmlmean Between With and Without 

Exoskeleton Conditions 

 

 
Figure 4.54: Boxplot Comparison of Vapmean Between With and Without 

Exoskeleton Conditions 

 

Across all conditions, EC trials consistently yielded higher velocity 

values than EO trials, reaffirming the essential role of visual input in modulating 

postural stability. The tandem stance conditions, particularly under EC, 

exacerbated sway demands, as noted in prior work (Tipton et al., 2023). 
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Velocity metrics were most elevated in TSEC, reinforcing that tandem stance 

and visual deprivation elicit more frequent balance corrections. These findings 

align with Blaszczyk et al. (2020), who linked increased CoP velocity to reactive 

balance corrections under destabilised conditions. Importantly, the exosuit 

effectively moderated CoP velocities across all stances, reflecting reduced 

corrective demands and improved balance, indicating the exosuit dampens 

unnecessary oscillations, promoting smoother, more controlled sway patterns.. 

Nevertheless, velocity metrics, especially Vapmean, exhibited inter-subject 

variability. While large effect sizes were observed, statistical significance was 

inconsistent, highlighting the parameter’s sensitivity to trial-level fluctuations 

and noise, a trend consistent with observations by Butowicz et al. (2023). 

Figures 4.55 and 4.56 also indicate the variation between subjects. 

 

 
Figure 4.55: Heatmap of Percentage Reduction in Vmlmean. 

 

 
Figure 4.56: Heatmap of Percentage Reduction in Vapmean. 
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Pathlength quantifies the cumulative distance travelled by the CoP and 

serves as an aggregate measure of sway magnitude and neuromuscular effort. 

Without exosuit assistance, pathlength was highest in the TSEC condition at 

197.852 cm. With the exosuit engaged, this value dropped markedly to 123.371 

cm (a 37.7% reduction). Similar improvements were noted in TSEO (92.5 cm 

to 74.8 cm; 19.1% reduction) and NSEO (38.65 cm to 27.20 cm; 29.6% 

reduction). These observations, shown in boxplots in Figure 4.57, are consistent 

with previous studies indicating that EC and tandem stances exacerbate 

pathlength due to limited visual feedback and reduced base of support (Tipton 

et al., 2023; Sundaram et al., 2012; Donath et al., 2012). The increase in 

pathlength under EC conditions reflects greater sway complexity and amplitude, 

in line with the findings of Bauer et al. (2008). The reduction of pathlength 

under exoskeleton-assisted conditions indicates a decrease in postural workload, 

particularly in the most destabilising condition, TSEC.  

 

 
Figure 4.57: Boxplot Comparison of Pathlength Between With and Without 

Exoskeleton Conditions 

 

These results further substantiate the utility of the exoskeleton in 

limiting the extent of sway excursions, thereby reducing the neuromuscular 

effort required to maintain balance. These values align with reports that 

increased CoP pathlength is a hallmark of balance degradation under sensory 
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conflict (Filho et al., 2024). Studies by Donath et al. (2012) and Rezaeipour 

(2018) also validated pathlength as a robust metric for detecting instability, 

especially under EC and tandem conditions where visual guidance is absent or 

base-of-support is minimal. Heatmap in Figure 4.58 shows general 

improvements in pathlength parameter but high variations of reduction 

percentage. 

 

 
Figure 4.58: Heatmap of Percentage Reduction in Pathlength. 

 

The 95% PEA captures the spatial area encompassing the majority (95%) 

of CoP movements and is sensitive to both stance complexity and visual input. 

In TSEC, PEA was reduced from 46.160 cm² to 19.371 cm² with exosuit 

assistance, representing a 58.0% reduction. Similarly, TSEO saw a reduction 

from 18.6 cm² to 10.0 cm² (46.2%), while NSEO improved from 8.161 cm² to 

4.176 cm² (49%). These results highlight the exosuit’s capacity to restrict the 

spatial boundaries of CoP movement, thereby contributing to enhanced postural 

stability, visualised in Figure 4.59. 

As anticipated, EC conditions consistently resulted in larger PEAs, 

affirming the role of visual input in spatial sway regulation (Filho et al., 2024). 

Findings are supported by Kozinc et al. (2023), who noted that sway area 

expands with EC and stance complexity, and that assistive devices can 

effectively restore spatial coherence in CoP trajectories. The observed 

reductions under exosuit conditions (Figure 4.60 for per subject) reflect the 

influence of mechanical constraint in mitigating excessive sway. These findings 

are supported by literature suggesting that external stabilisation enhances 

proprioceptive feedback and limits sway area (Nagymáté & Kiss, 2016). The 
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dramatic reductions in PEA across all conditions underscore the exoskeleton’s 

efficacy in spatially confining CoP movement through corrective torque 

application. 

 

 
Figure 4.59: Boxplot Comparison of 95% PEA Between With and Without 

Exoskeleton Conditions 

 

 
Figure 4.60: Heatmap of Percentage Reduction in 95% PEA. 

 

4.6.4 Conditions Interpretation of Exosuit Impact on Postural Stability 

The influence of the exosuit on postural stability was condition-dependent, with 

the most substantial effects observed under challenging stance-visual 

combinations. Where Figures 4.61 shows the mean percent reduction of 

conditions vs parameters and Figure 4.62 their distributions. 
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Figure 4.61: Mean Percent Reduction of COP Parameters by Stance.  

 

 
Figure 4.62: Percent Reduction Distribution of Cop Parameters. 

 

TSEC emerged as the most destabilising condition, with the exosuit 

yielding the greatest improvements across all metrics, mediolateral sway 

dispersion (DMLSD) decreased by 35.7%, CoP pathlength by 37.7%, prediction 

ellipse area (PEA) by 58.0%, and mean mediolateral velocity (Vmlmean) by 

46.0%. This condition best demonstrates the exosuit’s efficacy under 

compounded sensory-motor challenges and supports its application in high-risk 

populations or rehabilitation settings. In TSEO, although visual input was 

available, balance remained significantly challenged due to the narrow base-of-

support. The exosuit continued to show marked effectiveness, reducing 

DMLSD by 18.5%, PEA by 46.2%, and Vmlmean by 21.5%. These results 
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reinforce that mechanical support offers tangible benefits even when visual 

feedback is intact, highlighting the exosuit’s potential for general postural 

enhancement during demanding tasks.  

NSEO represented a stable baseline, yet the exosuit halved the sway area 

(PEA reduced by 49%) and reduced DMLSD from 0.526 to 0.408 cm. Though 

improvements were less dramatic, they remained functionally relevant. These 

results affirm that even under low-demand conditions, the exosuit tightens 

postural control through mechanical constraint, consistent with findings linking 

visual orientation to reduced CoP variability. NSEC exhibited atypical patterns. 

Contrary to the expected trend of greater instability with visual deprivation, 

DMLSD was higher in the eyes-open condition. While PEA and pathlength 

slightly decreased with exosuit support, DMLSD and DAPSD unexpectedly 

increased. These inconsistencies, due to subject adaptation, measurement 

variability, or floor effects—limit inferential comparisons for this condition. 

Nonetheless, the overall reduction in sway area and pathlength suggests 

marginal stability gains. Table 4.8 encapsulates the exosuit’s stabilising effect 

under tandem stance conditions, which represent the most mechanically and 

sensorily challenging balance scenarios. These findings collectively confirm the 

exosuit’s effectiveness in mitigating postural sway, particularly under dual 

challenges of visual deprivation and mechanical instability. The reductions in 

CoP variability and sway extent suggest enhanced trunk control and reduced 

neuromuscular effort, consistent with literature indicating that exogenous torque 

assistance minimises corrective movements (Dobberke et al., 2022). These 

condition-wise results validate the exosuit’s potential for balance support and 

fall risk mitigation. 

 

Table 4.8: Average Percentage Reduction in Postural Metrics with Exosuit 

Support (TSEC + TSEO Conditions) 

Parameter Average % Reduction 
DMLSD (Mediolateral Sway Dispersion) 24.6% 
Vmlmean (Mean Mediolateral Velocity) 37.9% 

Pathlength (Total CoP Path) 34.2% 
95% Prediction Ellipse Area (PEA) 52.0% 
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In summary, the implementation of an active back-support exoskeleton 

significantly enhanced postural control across all analysed parameters. The most 

pronounced improvements were observed under tandem stance and eyes-closed 

conditions, where balance demands were highest. Sensory-motor adaptation 

effects were evident, with EC trials consistently amplifying sway metrics, 

reinforcing the critical dependency of balance on visual feedback (Sezer & 

Ferdjallah, 2005; Bauer et al., 2008). Anomalous trends, such as the elevated 

DMLSD in NSEO compared to NSEC under the NO condition, suggest 

potential outlier effects and warrant cautious interpretation. Clinically, these 

results support the potential application of developed active exoskeleton as 

assistive devices for individuals with proprioceptive or neuromuscular 

impairments, such as the elderly or stroke survivors, offering a promising 

avenue for enhancing balance and reducing fall risk. 

 

4.7 Summary 

The strap-based, back-supported strap-based pneumatic exosuit developed in 

this study represents a promising innovation in enhancing postural stability and 

mitigating muscular strain during prolonged standing. By integrating 

mechanical assistance with user-centred features and real-time postural 

monitoring, the system demonstrates clear utility for clinical rehabilitation, 

occupational health, and fall prevention in aging populations. Functional 

performance was supported by reductions in superficial trunk muscle activity, 

improvements in CoP metrics, and the successful implementation of assistive 

technologies, including a sway detection algorithm, visual feedback interfaces, 

and data visualisation tools. 

 EMG analyses revealed significant reductions in activity across the EO 

and RA under all stance and visual conditions, indicating that the exosuit 

effectively redistributed postural load away from superficial muscles. This shift 

toward deeper core stabiliser engagement aligns with Dynamic Neuromuscular 

Stabilisation (DNS) principles, wherein optimal postural control is achieved 

through minimised superficial activation and enhanced core recruitment (Huang 

et al., 2024). Such biomechanical efficiency reduces fatigue and lowers the risk 

of overuse injuries, particularly in static or repetitive work environments. 

However, EMG data from the ES displayed asymmetrical patterns, with 
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inconsistent reductions and left-dominant activation during tandem stance. 

These lateral discrepancies suggest uneven mechanical force distribution or 

compensatory neuromuscular responses, particularly under increased balance 

demands. This aligns with findings from Alderink et al. (2024), who observed 

increased neural coupling complexity and asymmetric intermuscular 

coordination during challenging postures such as tandem stance. These findings 

underscore the need to refine the exosuit’s mechanical symmetry and 

adaptability to better support dynamic spinal loading conditions. 

Postural stability improvements, evidenced by reductions in CoP 

variability, DAPSD and DMLSD, CoP velocity (Vmean), and 95% PEA further 

affirm the system’s functional capacity. These improvements were most 

pronounced during eyes-closed and tandem stance conditions, highlighting the 

exosuit’s potential to maintain stability under reduced sensory feedback. 

Legrand et al. (2024) emphasise the increased cortical involvement in such 

conditions and the ability of external supports to alleviate sensorimotor burden. 

This is corroborated by DNS-based interventions, which report improved CoP 

dynamics following trunk stabilisation protocols. The integration of EMG and 

CoP analyses offers a powerful lens into the neuromechanical mechanisms of 

postural control, particularly when evaluating assistive technologies such as 

back-support exosuits. The observed reductions in CoP variability and 

excursion, concurrent with lower EMG activity, indicate that the exosuit 

facilitated more efficient balance control strategies by modulating trunk 

stiffness and reactive muscle tone. 

In this study, the pattern of reduced EMG yet improved CoP 

parameters counters the inefficient compensatory strategies seen in individuals 

with chronic low back pain, where high trunk muscle activity often coincides 

with greater sway (Sung et al., 2024). These findings collectively suggest that 

the exosuit not only redistributes trunk load and enhances spinal support but 

also facilitates a more efficient neuromuscular strategy, where less muscular 

effort yields better postural outcomes. This transition from a high-EMG/high-

sway state to a low-EMG/low-sway paradigm underscores the exosuit’s role in 

promoting stable and energy-efficient standing balance. Sway variability, as 

captured by both the DAPSD and DMLSD, was significantly reduced under all 

test conditions. Corresponding reductions in EO and RA EMG suggest that the 
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exosuit offloaded anterior trunk musculature, thereby improving sagittal 

stability. In contrast, ML sway control appeared more dependent on the bilateral 

coordination of the ES, particularly under tandem stance. An observed 

asymmetry, characterised by a right-sided ES EMG reduction and a static or 

increased response on the left, reflects compensatory strategies during lateral 

load transfer. This asymmetry corresponds with prior findings (Alderink et al., 

2024) indicating that ML sway stability relies heavily on symmetric paraspinal 

recruitment. 

In terms of CoP velocity (Vmean), both AP and ML directions showed 

marked reductions. Lower EO and RA EMG values suggest that less reactive 

muscular effort was required to control sway momentum, consistent with 

smoother and more dampened postural adjustments. DNS-trained groups have 

shown similar declines in CoP velocity under eyes-closed conditions due to 

enhanced core recruitment, and the exosuit seems to mimic this effect via 

mechanical assistance. Notably, the suppression of right ES EMG in the tandem 

condition coincided with lower ML velocity, indicating that targeted spinal 

support contributes to lateral damping. These findings align with 

accelerometery studies identifying Vmean as a sensitive proxy for 

neuromuscular stabilisation demands (Slunecko & Csapo, 2024). Global 

postural stability was further evidenced by reduced CoP path length and 95% 

PEA, both of which integrate multidirectional sway data. These metrics serve 

as cumulative indicators of overall postural footprint. EO and RA unloading, 

coupled with partial ES activation, appeared sufficient to constrain CoP 

excursions. However, persistent PEA values in the most challenging conditions, 

TSEC, imply that incomplete bilateral ES support may limit full postural 

optimisation. Such results are corroborated by literature on trunk muscle fatigue 

and asymmetry, which links lateral paraspinal imbalance to increased CoP area 

and instability (Floessel et al., 2024). The integration of EMG–CoP 

relationships is summarised in Table 4.9, capturing parameter-specific muscle 

contributions and their interpretive relevance: 

The exosuit’s sway detection algorithm, while initially based on 

machine learning approaches with modest accuracy (25% unsupervised learning, 

k-means), was successfully replaced by a supervised learning framework 

(Random Forest, KNN, SVM) approximately 63% accuracy but higher 
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computational toll, then threshold-based model that achieved over 70% 

classification accuracy through iterative empirical tuning. Though less robust 

than advanced model-based classifiers, this approach offers practical real-time 

sway detection and paves the way for future integration with adaptive control 

systems. In its current form, it provides continuous postural monitoring, 

enhances diagnostic capabilities, and facilitates user awareness through visual 

cues. Operational practicality is reinforced by efficient donning and doffing 

procedures, requiring approximately 3:02 and 1:06 minutes, respectively, 

durations that support use in time-sensitive clinical or occupational workflows. 

The pneumatic actuation system, selected for its lightweight and responsive 

qualities over electric motors, contributes to a total device weight of 4.7 

kilograms, optimising portability without compromising support. A laptop-

based graphical user interface (UI) enables real-time visualisation of EMG and 

sway metrics, data logging, and longitudinal comparisons, while a wrist-

mounted OLED display offers immediate visual feedback to users, enhancing 

in-situ awareness without external dependencies. 

 

Table 4.9: Summary of EMG–CoP Parameter Correlations 

CoP 
Parameter 

Correlated EMG 
Muscle(s) 

Key Interpretation 

SD-AP EO ↓, RA ↓ Sagittal sway reduction via anterior 
muscle unloading 

SD-ML ES (R ↓, L ↔/↑) ML sway control via bilateral 
paraspinal coordination 

Vmean-
AP/ML 

EO/RA ↓, ES-R ↓ Reduced sway velocity reflects lower 
reactive muscle tone 

Path Length EO/RA ↓, partial 
ES ↓ 

Total sway burden reduced through 
trunk muscle offloading 

95% PEA EO/RA + ES 
synergy 

Global sway footprint minimised by 
integrated core activation 

 

Participant feedback supports the system’s ergonomic viability, with 

users describing the exosuit as comfortable and functionally engaging. Although 

some noted the abundance of straps, none reported movement restrictions, and 

several remarked on the perceptible mechanical engagement during postural 

corrections. Such feedback is crucial for balancing corrective function with user 

comfort in future design iterations. Nonetheless, several limitations require 
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attention. Asymmetric ES activity suggests a need for improved bilateral 

mechanical alignment, and control segmentation may help achieve more 

uniform force application. While the current sway detection system provides 

baseline functionality, future enhancements, such as frequency-domain features, 

multi-sensor fusion, or adaptive machine learning algorithms—could improve 

accuracy and robustness. The absence of haptic or auditory feedback, modalities 

shown to enhance balance outcomes in older adults (Suttanon et al., 2024), 

represents another area for potential augmentation. Long-term adaptation and 

retention effects also remain unexplored, limiting insight into sustained use and 

motor learning implications. 

The results align closely with broader trends in wearable support 

systems and sensorimotor rehabilitation. DNS-centred interventions have 

demonstrated postural gains via targeted core activation (Huang et al., 2024), 

while cortical modulation during sensory-compromised balance tasks supports 

the use of external mechanical aids (Legrand et al., 2024). Asymmetric 

recruitment of paraspinal musculature during tandem stance, noted by Alderink 

et al. (2024), parallels the observed ES activity patterns. Additionally, real-time 

feedback has been shown to improve postural correction strategies (Suttanon et 

al., 2024), suggesting that multimodal cues could further enhance the system. 

Finally, the utility of time-in-boundary and longitudinal sway metrics, as 

highlighted by Sung and Lee (2024a), underscores the importance of continuous 

tracking, already facilitated by the exosuit’s visualisation and logging 

capabilities. 

In summary, this exosuit demonstrates functional and practical efficacy 

in reducing superficial muscle strain and improving postural stability across a 

range of stance complexities. Its design, combining pneumatic assistance, real-

time sway tracking, and user-centric features, establishes a compelling 

foundation for clinical, occupational, and preventive applications. While 

refinement is warranted in certain mechanical and algorithmic domains, the 

system shows significant promise for future integration of adaptive feedback, 

expanded sensor capabilities, and long-term motor training solutions. 
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CHAPTER 5 

5  
5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project successfully developed a strap-based, back-supported, pneumatic-

powered exosuit designed to mitigate standing postural sway through active 

correction mechanisms. The system integrated pneumatic actuation, wearable 

inertial sensors, a real-time sway classification algorithm, and a graphical user 

interface (GUI). Key objectives were met: a 4.7 kg exosuit was designed, a 

chest-mounted IMU was implemented for sway detection, and a functional 

sway-detection and actuation pipeline was developed. The system demonstrated 

the potential to improve postural stability, particularly in individuals with 

impaired balance such as those with Parkinson’s disease (PD) or low back pain 

(LBP). CoP and EMG tests were done for functionality and results were good 

and promising. The sway detection system, though rule-based, was 

implemented as a modular and embedded-compatible classification pipeline for 

real-time monitoring. While machine learning models showed promise, further 

optimization is needed for deployment. The complete system integrates signal 

processing, feature extraction, and classification, balancing high-level 

biomechanical insights with low-power embedded control requirements. 

Testing with healthy subjects confirmed the system’s ability to detect distinct 

sway patterns and its feasibility for embedded applications, demonstrating 

interpretability, responsiveness, and real-world integration potential. 

 

5.2 Key Findings/ Achievements 

The prototype exosuit performed well in terms of sway mitigation and usability. 

The GUI facilitated real-time monitoring and data logging. Sway detection 

worked effectively across multiple stance and visual feedback conditions, 

especially for anterior-posterior (AP) sway. While the system struggled with 

asymmetrical and unstable sway patterns, it showed promise as an assistive 

device for individuals with compromised postural control. Validation using 

EMG and center of pressure (CoP) analysis revealed effective support in sway 
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reduction and postural stabilization. Notably, reductions in EMG activity were 

observed in trunk muscles, especially the rectus abdominis (RA) and right 

erector spinae (ES-R), by up to 51.2% and 41.8%, respectively. The 

improvements were most evident during challenging conditions such as tandem 

stance with eyes closed (TSEC), suggesting the exosuit's effectiveness in high-

demand postural scenarios. Reductions exceeding 30% were also observed in 

CoP metrics including mediolateral sway dispersion (DMLSD), velocity, 

pathlength, and prediction ellipse area. 

 

5.2.1  Sway Detection Algorithm 

The final threshold-based classifier achieved an accuracy of 70%, surpassing all 

tested machine learning (ML) models in both performance and deployability. 

Among ML approaches, the Random Forest model with bagging achieved the 

highest accuracy at 63.5%, highlighting its resilience to sensor noise and multi-

class complexity. Stable, DAP, and DML sway conditions were distinguishable; 

however, the INST (unstable) class showed high variability and overlap. The 

signal processing pipeline—featuring Butterworth filtering, Z-score 

normalization, median absolute deviation (MAD), and wavelet-based outlier 

rejection—effectively reduced artifacts. Training included over 130,000 five-

second windows and over 3.7 million short (250 ms) windows, though hardware 

limitations restricted full validation of high-frequency detection. 

 

5.2.2 Biomechanical Tests 

Functionally, the exosuit reduced trunk muscle strain and promoted more stable 

postural strategies. Surface EMG showed significant reductions in tonic muscle 

activation, particularly under sensory-compromised conditions. Reductions in 

CoP variability across all relevant metrics further affirmed improved 

neuromuscular control. Compared to passive or assistive devices in literature, 

the active exosuit provided superior unloading and balance-enhancing effects, 

validating its utility in challenging postural contexts. 

5.3 Limitations 

Despite the promising development of the prototype, several limitations were 

encountered during the research and prototyping phases. 
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5.3.1  Hardware and Design Constraints 

One of the primary limitations was hardware-related, due to cost constraints. 

Budget restrictions limited the choice of materials, actuator technologies, and 

supporting electronics. The use of basic materials for rigid anchor points, 

instead of advanced composites like carbon fibre, introduced additional weight 

and reduced the ergonomic profile of the exosuit. Carbon fibre would have 

provided a more lightweight, durable, and aesthetically refined structure 

suitable for prolonged wear. Moreover, the reliance on pneumatic actuation 

presented notable drawbacks. Pneumatic systems, while effective in generating 

sufficient force, were noisy, bulky, less energy-efficient, and less precise than 

their electrical counterparts. They also required a relatively high power input, 

which reduced battery life. In contrast, electric actuators could offer a quieter, 

more compact, and more precise alternative, with improved controllability and 

lower energy consumption. 

 

5.3.2  Algorithm Development Constraints 

Several limitations were identified in this study. First, the participant pool 

consisted solely of healthy adults, restricting the generalizability of results to 

clinical or elderly populations with impaired balance. The INST class remained 

a persistent challenge due to the ambiguous nature of unstable sway, which may 

not be easily captured in static, short-time-window features. Furthermore, while 

the classifier was tested using 5-second windows, the 250-millisecond real-time 

implementation could not be fully validated due to the computational limitations 

of the development hardware. The system also relied exclusively on 

accelerometer data; the absence of gyroscope, barometer, or multi-modal inputs 

may have constrained classification performance. Lastly, testing was conducted 

under controlled laboratory settings, which do not fully replicate real-world 

variability or extended-duration use, such as might occur in industrial, clinical, 

or rehabilitative scenarios. 

 

5.3.3 Time Constraints 

Time limitations significantly impacted the development of both the software 

stack and the evaluation protocols. The graphical user interface (GUI), while 
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partially functional, was not fully deployable. Features such as containerisation 

via Docker and remote accessibility were not yet implemented, limiting the 

system’s scalability and usability in clinical settings. Algorithmic development 

also remained incomplete. Full classification and detection capabilities for 

impaired postural sway patterns—particularly those related to asymmetrical 

loading or neuromuscular disorders—could not be validated. Additionally, time 

constraints restricted the extent of experimental testing, which was limited to a 

small sample size composed solely of healthy, young adults. 

 

5.3.4 System Performance and Experimental Limitations 

Functionally, the system demonstrated reduced reliability in detecting and 

correcting left-sided sway compared to anterior-posterior and right-sided sways. 

Battery life was constrained to approximately 15 minutes due to the high current 

draw from the solenoid valves and the MiPump2 compressor unit, limiting long-

duration testing scenarios. Moreover, the system was not tested on the actual 

target population—individuals with postural instability due to aging, 

Parkinson’s disease (PD), or low back pain (LBP). This limits the 

generalisability of findings and highlights the need for more comprehensive 

clinical validation. 

Also, certain limitations were noted. The EMG response displayed 

lateral asymmetries, particularly in the left erector spinae, suggesting 

inconsistencies in torque distribution or individual adaptation strategies. Such 

discrepancies raise concerns about the long-term musculoskeletal balance and 

highlight the importance of personalisation in exosuit design. Additionally, the 

system's reliance on a tethered pneumatic source and laptop-based interface, 

while functional, limits its immediate applicability in fully mobile settings. The 

sway detection algorithm, though effective in a simplified threshold-based 

model, lacked the robustness and adaptability of more complex machine 

learning approaches due to computational limitations and dataset constraints. 

Moreover, while postural benefits were demonstrated under controlled 

laboratory conditions, real-world effectiveness in dynamic or prolonged 

occupational settings remains to be evaluated. 
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5.4 Recommendations for Future Work 

The hardware validation presented is partially addressed through component 

selection rationale, IMU calibration, and basic physical integration testing. 

However, there is a lack of performance testing on durability, repeatability, and 

mechanical reliability, to justify about the system’s long-term robustness and 

real-world dependability. Future work should include testing for addressing 

these concerns. Future research should prioritize adaptive control systems that 

use biofeedback from EMG and inertial sensors to personalize torque assistance 

and address muscle asymmetries. Enhancing real-time calibration and 

symmetric support mechanisms may reduce lateral imbalances and improve 

comfort and safety over extended use. Though the current system is already 

wireless and portable, optimizing power efficiency and battery life will further 

enhance usability. Expanding validation in clinical populations and under 

dynamic conditions (e.g., posture during gait or occupational tasks) is essential 

to demonstrate broader applicability. 

 

5.4.1  Hardware and Software Improvements 

Transitioning to electric actuators could offer better efficiency, control precision, 

and quieter operation. Advanced microcontrollers (e.g., Raspberry Pi, Jetson) 

could support on-device machine learning for adaptive control. Containerisation 

of GUI (e.g., Docker) and cross-platform deployment will facilitate clinical 

testing and broader adoption. GUI improvements should also include enhanced 

calibration tools, real-time feedback, and remote access. Incorporating 

symmetry analysis and user-specific thresholds will improve system 

responsiveness to individual biomechanical differences. 

 

5.4.2 Further Testing and Experiments 

Future experiments should use tools like force plates, motion capture, and EMG 

to evaluate dynamic postural responses. Introducing balance challenges (e.g., 

unstable surfaces) would better simulate real-world use. Trials involving older 

adults, people with Parkinson’s disease, and those with low back pain should 

assess both short- and long-term biomechanical impacts. 
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5.4.3  Machine Learning Based Detection Algorithm Development 

Detection accuracy can be enhanced by hybrid models (e.g., fuzzy logic with 

decision trees) and temporal networks like LSTM or GRU. Alternative signal 

representations like Dynamic Difference of Vector Distances (DDVD) may 

offer improved noise tolerance and classification accuracy in real-world 

environments (Nehry et al., 2023). Compressed models (TinyML) can enable 

real-time inference on microcontrollers. Data augmentation and EMG-

integrated co-adaptive control will support personalized and robust 

classification for clinical users. 

 

5.4.4  System Expansion and Adaptive Algorithms 

To enhance personalization, future designs should adopt adaptive filtering and 

context-aware thresholds to distinguish between intentional movement and 

unintended sway. Real-time bilateral EMG feedback can dynamically balance 

actuator output and address asymmetrical loading, especially in prolonged static 

tasks. Long-term validation is needed to assess risks such as proprioceptive drift 

or chronic postural compensation. Customizable hardware, individualized 

calibration, and dynamic control adaptation will be key to safe, reliable, and 

comfortable use across diverse settings. 

 

5.5 Final Remarks 

The development of this back-supported exosuit presents a meaningful step 

toward the development of wearable assistive technologies for postural control. 

The proposed exosuit offers an integrative platform for both research and 

practical applications in rehabilitation and occupational support. Despite current 

limitations, the system demonstrates clear potential to reduce muscular strain 

and improve balance in individuals with compromised postural stability. 

Through further refinement and clinical validation, this technology can be 

transformed into a portable, intelligent, and effective assistive solution capable 

of addressing real-world balance impairments and improving quality of life 

across various populations.
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APPENDICES 

 

Appendix A: Graphs 

 

 
Graph A-1: Sample of Processed Time Series Data for Algorithm Training 

 

 
Graph A-2: Height vs H1 and H2 Relationship Plot for Male Subjects 
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Graph A-3: Height vs H1 and H2 Relationship Plot for Female Subjects 

 

 
Graph A-4: Ensemble Means Plot of ax Across Conditions Showing Clear 

Distinction in Means and Standard Deviations Prompting Trial of 

Empirical-Based-Threshold Attempt Using ax 
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Graph A-5: Ensemble Means Plot of az Across Conditions Showing Clear 

Distinction in Means and Standard Deviations Prompting Trial of 

Empirical-Based-Threshold Attempt Using az 

 

 
Graph A-6: Ensemble Means Plot of DAP Across Conditions Showing Clear 

Distinction in Means and Standard Deviations Prompting Trial of 

Empirical-Based-Threshold Attempt Using DAP 
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Graph A-7: Ensemble Means Plot of DML Across Conditions Showing Clear 

Distinction in Means and Standard Deviations Prompting Trial of 

Empirical-Based-Threshold Attempt Using DML 

 

 
Graph A-8: Ensemble Means Plot of Vx Across Conditions Showing Clear 

Distinction in Means and Standard Deviations Prompting Trial of 

Empirical-Based-Threshold Attempt Using Vx 
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Graph A-9: Ensemble Means Plot of Vz Across Conditions Showing Clear 

Distinction in Means and Standard Deviations Prompting Trial of 

Empirical-Based-Threshold Attempt Using Vz 

 

 

 
Graph A-10: Ensemble Analysis Graphs of ax Under Stable Condition to Tune 

Rule-based Threshold Optimisation (Compare Mean ±n SD With 

Other Condition, to Determine Best n) 
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Graph A-11: Ensemble Analysis Graphs of az Under Stable Condition to Tune 

Rule-based Threshold Optimisation (Compare Mean ±n SD With 

Other Condition, to Determine Best n) 

 

 
Graph A-12: Ensemble Analysis Graphs of DAP Under Stable Condition to 

Tune Rule-based Threshold Optimisation (Compare Mean ±n SD 

With Other Condition, to Determine Best n) 
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Graph A-13: Ensemble Analysis Graphs of DML Under Stable Condition to 

Tune Rule-based Threshold Optimisation (Compare Mean ±n SD 

With Other Condition, to Determine Best n) 

 

 
Graph A-14: Ensemble Analysis Graphs of ax Under DAP Condition to Tune 

Rule-based Threshold Optimisation (Compare Mean ±n SD With 

Other Condition, to Determine Best n) 
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Graph A-15: Ensemble Analysis Graphs of az Under DAP Condition to Tune 

Rule-based Threshold Optimisation (Compare Mean ±n SD With 

Other Condition, to Determine Best n) 

 

 
Graph A-16: Ensemble Analysis Graphs of DAP Under DAP Condition to Tune 

Rule-based Threshold Optimisation (Compare Mean ±n SD With 

Other Condition, to Determine Best n) 
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Graph A-17: Ensemble Analysis Graphs of DML Under DAP Condition to Tune 

Rule-based Threshold Optimisation (Compare Mean ±n SD With 

Other Condition, to Determine Best n) 
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Appendix B: Tables 

 

Table B-1: Summarised Anthropometric Data of Spinal Segments (Ko et al., 

2004) 

Spinal 
Segment 

Mean length 
(mm) 

5pth length 
(mm) 

95pth length 
(mm) 

C3 15 13 20 
C4 14 10 20 
C5 15 4 20 
C6 12 9 20 
C7 12 8 20 
C8 13 8 20 
T1 17 8 23 
T2 18 11 23 
T3 19 10 26 
T4 20 12 27 
T5 20 12 27 
T6 23 15 27 
T7 23 14 28 

C8 to T7 153 90 201 
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Table B-2: Compilation of Relevant Anthropometrical Data for Back Support Exoskeleton Design (Gordon, 2006; Choi-Rokas and Garlie, 2014) 

Measurement USA Male 
Mean (SD) 

USA Female 
Mean (SD) 

Malaysia Male 
Mean equivalent 

Malaysia Female 
Mean Equivalent 

Included 
Ranges (M) 

Included 
Ranges (F) 

Height (cm) 176.07 (7.34) 164.00 (6.97) 168 157 163 - 184 153 - 170 
Shoulder Breadth (cm) 54.61 (4.36) 46.85 (3.47) 50.41  43.94  47.74 - 60.32 41.47 - 50.37 
Shoulder Height (cm) 144.25 (6.20) 133.36 (5.79) 139.00  128.49  134.16 - 152.32 124.09 - 139.44 
Buttock Height (cm) 88.74 (4.71) 83.83 (4.52) 84.79  80.01  81.48 - 94.93 76.69 - 88.51 

Torso Length (cm) (C7 to coccyx) 55.51 49.53 54.21  48.48  52.68 - 57.39 47.40 - 50.93 
Shoulder to Waist (Torso Width) 38.37 (2.56) 35.15 (2.28) 36.22  33.21  34.27 - 41.67 31.53 - 37.52 

Seated Torso Height (cm) 59.78 (2.96) 55.55 (2.86) 57.31  53.09  54.85 - 63.58 50.91 - 58.57 
Hip Breadth (cm) 34.18 (2.03) 34.27 (2.24) 32.49  32.35  30.97 - 36.82 30.78 - 36.59 

Chest Breadth (cm) - - - - 30 - 38.1 - 
Chest Circumference (cm) - - - - 95.9 - 105.3 - 

Shoulder Circumference (cm) - - - - 116.9 - 127.8 - 
Vertical Trunk Circ. (cm) - - - - 164.2 - 180.7 - 

Waist Girth (cm) 100.99 (12.32) 91.76 (13.78) - - - - 
Belly Circumference (cm) 103.03 (11.86) 96.71 (11.78) - - - - 

Bust Chest Girth (cm) 107.91 (9.71) 102.01 (11.36) - - - - 
Buttock Girth (cm) 104.04 (7.88) 107.14 (10.78) - - - - 

Hip Girth (cm) 105.18 (7.85) 108.46 (10.49) - - - - 
Under Bust Circumference (cm) 103.15 (9.64) 89.07 (11.36) - - - - 

Waistband (cm) 98.78 (10.18) 95.22 (11.51) - - - - 
Cross Shoulder (cm) 50.24 (3.36) 46.62 (3.78) - - - - 
Torso Length (cm) 32.14 (2.13) 30.13 (2.06) - - - - 
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Table B-3: Measured Physical Parameters of Subjects for Sway Data Collection 

Subject Sex Height H1 H2 Weight BMI 
F01 Female 1.60 1.09 0.23 59 23.047 
F02 Female 1.70 1.2 0.25 52 17.993 
F03 Female 1.70 1.2 0.25 52 17.993 
F04 Female 1.61 1.07 0.22 50 19.289 
F05 Female 1.58 1.03 0.18 55 22.032 
F06 Female 1.53 0.92 0.28 55 23.495 
F07 Female 1.57 1 0.23 40 16.228 
M01 Male 1.66 1.12 0.26 58 21.048 
M02 Male 1.77 1.24 0.26 63 20.109 
M03 Male 1.70 1.14 0.25 50 17.301 
M04 Male 1.84 1.26 0.26 86 25.402 
M05 Male 1.77 1.21 0.25 64 20.428 
M06 Male 1.70 1.12 0.29 55 19.031 
M07 Male 1.65 1.12 0.27 50 18.365 
M08 Male 1.74 1.18 0.28 58 19.157 
M09 Male 1.77 1.24 0.26 65 20.748 
M10 Male 1.74 1.2 0.3 58 19.157 
M11 Male 1.69 1.12 0.26 84 29.411 
M12 Male 1.67 1.1 0.23 65 23.307 
M13 Male 1.70 1.2 0.33 59 20.415 
M14 Male 1.79 1.2 0.24 63 19.662 
M15 Male 1.68 1.13 0.25 49 17.361 
M16 Male 1.79 1.23 0.26 57 17.696 
M17 Male 1.70 1.15 0.28 65 22.491 
M18 Male 1.78 1.21 0.28 79 24.934 
M19 Male 1.82 1.26 0.3 60 18.214 
M20 Male 1.77 1.22 0.26 57 18.194 
M21 Male 1.73 1.14 0.27 59 19.713 
M22 Male 1.76 1.23 0.25 62 20.015 
M23 Male 1.72 1.13 0.28 60 20.231 
M24 Male 1.71 1.08 0.29 72 24.623 
M25 Male 1.69 1.09 0.28 88 30.811 
M26 Male 1.73 1.16 0.28 72 24.057 
M27 Male 1.66 1.1 0.28 56 20.322 
M28 Male 1.66 1.1 0.28 56 20.322 
M29 Male 1.77 1.22 0.28 63 20.109 
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Table B-4: Don Doff Timing of Exoskeleton By Subject 

Subject Don Time (s) Doff Time (s) 
S01 440 98 
S02 301 76 
S03 283 76 
S04 259 80 
S05 203 60 
S06 200 107 
S07 180 59 
S08 165 43 
S09 158 69 
S10 148 64 
S11 143 59 
S12 142 70 
S13 130 61 
S14 120 48 
S15 115 55 

Mean 199 68 
SD 88 17 

REMOVED OUTLIERS 
S02 301 76 
S03 283 76 
S04 259 80 
S05 203 60 
S06 200 107 
S07 180 59 
S08 165 43 
S09 158 69 
S10 148 64 
S11 143 59 
S12 142 70 
S13 130 61 
S14 120 48 
S15 115 55 

Mean 182 66 
SD 60 16 
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Table B-5: Summary of sEMG Results and Statistical Tests 

Muscle Subcondition EMG Mean Diff (± SE), × 𝟏𝟏𝟏𝟏−𝟑𝟑𝝁𝝁𝝁𝝁 p- Value (Wilcoxon) Effect Size (Cohen’s d) Percentage Reduction 
EO N(EO) 682.4818 (±264.8401) p=0.0215* 0.72 (medium) ↓20.6% 

N(EC) 881.1538  (±385.4994) p=0.0295* 0.70 (medium) ↓24.1% 
T(EO) 906.6716 (±327.0678) p=0.0067** 0.96 (large) ↓26.7% 
T(EC) 1820.347 (±459.6409) p=6.10E-05*** 1.12 (large) ↓38.3% 

Muscle Subcondition EMG Mean Diff (± SE), × 𝟏𝟏𝟏𝟏−𝟑𝟑𝝁𝝁𝝁𝝁 p- Value (Wilcoxon) Effect Size (Cohen’s d) Percentage Reduction 
RA N(EO) 1205.630 (±498.0532) p=0.0266* 0.82 (large) ↓33.6% 

N(EC) 904.1492 (±337.9464) p=0.0067** 0.81 (large) ↓29.4% 
T(EO) 1114.639 (±347.1975) p=0.0015** 1.16 (large) ↓36.1% 
T(EC) 2162.382 (±759.0160) p=0.0034** 1.05 (large) ↓51.2% 

Muscle Subcondition EMG Mean Diff (± SE), × 𝟏𝟏𝟏𝟏−𝟑𝟑𝝁𝝁𝝁𝝁 p- Value (Wilcoxon) Effect Size (Cohen’s d) Percentage Reduction 
ES (R) N(EO) 287.6042 (±315.0097) p=0.3054 0.17 (negligible) ↓8.2% 

N(EC) 228.7428 (±395.5777) p=0.2414 0.14 (negligible) ↓6.7% 
T(EO) 2085.236 (±785.9098) p=0.0103* 0.70 (medium) ↓35.6% 
T(EC) 2749.911 (±889.0738) p=0.0003*** 0.95 (large) ↓41.8% 

Muscle Subcondition EMG Mean Diff (± SE), × 𝟏𝟏𝟏𝟏−𝟑𝟑𝝁𝝁𝝁𝝁 p- Value (Wilcoxon) Effect Size (Cohen’s d) Percentage Reduction 
ES (L) N(EO) 135.0190 (±215.6976) p=0.3396 0.14 (negligible) ↓5.2% 

N(EC) -65.15124 (±385.4472) p=1.0000 -0.06 (negligible) ↑2.5% 
T(EO) -350.8893 (±655.4787) p=1.0000 -0.15 (negligible) ↑9.1% 
T(EC) 309.5315 (±867.0291) p=0.42627 0.10 (negligible) ↓6.0% 

Note: * p<0.05, ** p<0.01, *** p<0.001 
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Table B-6: Wilcoxon Test Results of CoP Parameters Per Condition With 

Outliers Retained 

Stance Measure Wilcoxon Statistic p-value 
NSEO DML SD (cm) 17 0.174805 
NSEO DAP SD (cm) 26 0.577148 
NSEO Vml mean (cm/s) 12 0.067383 
NSEO Vap mean (cm/s) 17 0.174805 
NSEO CoP Pathlength (cm) 11 0.053711 
NSEO CoP 95% PEA 20 0.278320 
NSEC DML SD (cm) 10 0.080078 
NSEC DAP SD (cm) 22 0.365234 
NSEC Vml mean (cm/s) 27 0.635742 
NSEC Vap mean (cm/s) 19 0.240234 
NSEC CoP Pathlength (cm) 23 0.413086 
NSEC CoP 95% PEA 32 0.965820 
TSEO DML SD (cm) 12 0.067383 
TSEO DAP SD (cm) 24 0.464844 
TSEO Vml mean (cm/s) 5 0.009766 ** 
TSEO Vap mean (cm/s) 9 0.032227 * 
TSEO CoP Pathlength (cm) 5 0.009766 ** 
TSEO CoP 95% PEA 10 0.041992 * 
TSEC DML SD (cm) 9 0.032227 * 
TSEC DAP SD (cm) 8.5 0.026367 * 
TSEC Vml mean (cm/s) 0 0.000977 *** 
TSEC Vap mean (cm/s) 2 0.002930 ** 
TSEC CoP Pathlength (cm) 0 0.000977 *** 
TSEC CoP 95% PEA 4 0.006836 ** 
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Table B-7: Summary of Significant (p-value) and Effect Size (r) per Stance 

With Outliers Retained 

Stance Parameter p-value Sig. Effect size (r) Effect 

NSEO DML SD (cm) 0.1748 n.s 0.477 Medium 

DAP SD (cm) 0.5771 n.s 0.194 Small 

Vml mean (cm/s) 0.0674 n.s 0.316 Medium 

Vap mean (cm/s) 0.1748 n.s 0.749 Huge 

CoP Pathlength (cm) 0.0537 n.s 0.535 Large 

CoP 95% PEA 0.2783 n.s -0.077 Small 

NSEC DML SD (cm) 0.0801 n.s 0.8 Huge 

DAP SD (cm) 0.3652 n.s 0.725 Huge 

Vml mean (cm/s) 0.6357 n.s 0.712 Huge 

Vap mean (cm/s) 0.2402 n.s 0.75 Huge 

CoP Pathlength (cm) 0.4131 n.s 0.797 Huge 

CoP 95% PEA 0.9658 n.s 0.72 Huge 

TSEO DML SD (cm) 0.0674 n.s 0.788 Huge 

DAP SD (cm) 0.4648 n.s 0.538 Large 

Vml mean (cm/s) 0.0098 ** 0.921 Extreme 

Vap mean (cm/s) 0.0322 * 0.716 Large 

CoP Pathlength (cm) 0.0098 ** 0.888 Large 

CoP 95% PEA 0.042 * 0.737 Large 

TSEC DML SD (cm) 0.0322 * 0.484 Medium 

DAP SD (cm) 0.0264 * 0.613 Large 

Vml mean (cm/s) 0.001 *** 0.407 Medium 

Vap mean (cm/s) 0.0029 ** 0.514 Large 

CoP Pathlength (cm) 0.001 *** 0.357 Medium 

CoP 95% PEA 0.0068 ** 0.603 Large 
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Table B-8: Wilcoxon Test Results of CoP Parameters Per Condition With 

Outliers Removed 

Stance Measure Wilcoxon Statistic p-value 
NSEO DML SD (cm) 1 0.007812 ** 
NSEO DAP SD (cm) 12 0.250000 
NSEO Vml mean (cm/s) 3 0.019531 * 
NSEO Vap mean (cm/s) 6 0.054688 
NSEO CoP Pathlength (cm) 2 0.011719 * 
NSEO CoP 95% PEA 5 0.039062 * 
NSEC DML SD (cm) 8 0.195312 
NSEC DAP SD (cm) 20 0.820312 
NSEC Vml mean (cm/s) 21 0.886719 
NSEC Vap mean (cm/s) 16 0.496094 
NSEC CoP Pathlength (cm) 19 0.734375 
NSEC CoP 95% PEA 19 0.734375 
TSEO DML SD (cm) 7 0.074219 
TSEO DAP SD (cm) 14 0.359375 
TSEO Vml mean (cm/s) 1 0.007812 ** 
TSEO Vap mean (cm/s) 1 0.007812 ** 
TSEO CoP Pathlength (cm) 0 0.003906 ** 
TSEO CoP 95% PEA 4 0.027344 * 
TSEC DML SD (cm) 1 0.007812 ** 
TSEC DAP SD (cm) 1.5 0.011719 * 
TSEC Vml mean (cm/s) 0 0.003906 ** 
TSEC Vap mean (cm/s) 2 0.011719 * 
TSEC CoP Pathlength (cm) 0 0.003906 ** 
TSEC CoP 95% PEA 0 0.003906 ** 
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Table B-9: Summary of Significant (p-value) and Effect Size (r) per Stance 

With Outliers Removed 

Stance Parameter p-value Sig. Effect size (r) Effect 

NSEO 

DML SD (cm) 0.0078 ** 0.682 Large 
DAP SD (cm) 0.25 n.s. 0.323 Medium 

Vml mean (cm/s) 0.0195 * 0.309 Medium 
Vap mean (cm/s) 0.0547 n.s. 0.746 Huge 

CoP Pathlength (cm) 0.0117 * 0.528 Large 
CoP 95% PEA (cm2) 0.0391 * 0.308 Medium 

NSEC 

DML SD (cm) 0.1953 n.s. 0.771 Huge 
DAP SD (cm) 0.8203 n.s. 0.808 Huge 

Vml mean (cm/s) 0.8867 n.s. 0.617 Large 
Vap mean (cm/s) 0.4961 n.s. 0.662 Large 

CoP Pathlength (cm) 0.7344 n.s. 0.697 Large 
CoP 95% PEA (cm2) 0.7344 n.s. 0.706 Huge 

TSEO 

DML SD (cm) 0.0742 n.s. 0.78 Huge 
DAP SD (cm) 0.3594 n.s. 0.511 Large 

Vml mean (cm/s) 0.0078 ** 0.906 Extreme 
Vap mean (cm/s) 0.0078 ** 0.757 Huge 

CoP Pathlength (cm) 0.0039 ** 0.9 Extreme 
CoP 95% PEA (cm2) 0.0273 * 0.732 Huge 

TSEC 

DML SD (cm) 0.0078 ** 0.435 Medium 
DAP SD (cm) 0.0117 * 0.609 Large 

Vml mean (cm/s) 0.0039 ** 0.278 Small 
Vap mean (cm/s) 0.0117 * 0.452 Medium 

CoP Pathlength (cm) 0.0039 ** 0.222 Small 
CoP 95% PEA (cm2) 0.0039 ** 0.597 Large 
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Table B-10: Summary of Significance and Effect Size Per Subject 

Sub Cond Parameters DML SD  DAP SD Vml mean Vap mean CoP Pathlength CoP 95% PEA 
S01 NSEO p-value  0.59663823 0.67059727 0.326810933 0.883897544 0.738116055 0.825983094 
S01 NSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S01 NSEO cohen's D 0.35992229 -0.284854 0.743311116 -0.095442714 0.221559926 0.144285623 
S01 NSEO effect Small Small Medium Very small Small Very small 
S01 NSEC p-value  0.13474005 0.12521354 0.012967009 0.02487353 0.019921438 0.344195102 
S01 NSEC significance n.s. n.s. * * * n.s. 
S01 NSEC cohen's D -0.1236194 -0.1396997 -1.479088322 -3.123580759 -2.76283872 0.148197467 
S01 NSEC effect Very small Very small Very large Huge Huge Very small 
S01 TSEO p-value  0.68709655 0.00833747 0.042266449 0.395838764 0.197581084 0.873177755 
S01 TSEO significance n.s. * * n.s. n.s. n.s. 
S01 TSEO cohen's D 0.28057225 -6.1101009 2.547110812 0.619047619 1.051478925 -0.022456926 
S01 TSEO effect Small Huge Huge Medium Large Very small 
S01 TSEC p-value  0.06255885 0.00767339 0.060686016 0.018003074 0.038358671 0.077999704 
S01 TSEC significance n.s. * n.s. * * n.s. 
S01 TSEC cohen's D 1.45962073 2.5692087 2.035109001 4.155459474 2.834563997 1.312908982 
S01 TSEC effect Very large Huge Huge Huge Huge Very large 
S02 NSEO p-value  0.37838574 0.10479474 0.337733821 0.17129801 0.263996386 0.235328499 
S02 NSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S02 NSEO cohen's D -0.6479391 -1.6401332 -0.721687836 -1.20894105 -0.887687316 -0.96885788 
S02 NSEO effect Medium Very large Medium Large Large Large 
S02 NSEC p-value  0.43699001 0.06501586 0.341956644 0.008128887 0.036813838 0.248995911 
S02 NSEC significance n.s. n.s. n.s. * * n.s. 
S02 NSEC cohen's D -0.5562293 -2.152337 -0.71355165 -6.364487698 -2.925353252 -0.928660524 
S02 NSEC effect Medium Huge Medium Huge Huge Large 
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S02 TSEO p-value  0.25357495 0.4475099 0.104188167 0.479693687 0.412371332 0.469193747 
S02 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S02 TSEO cohen's D 0.91582485 0.54120665 1.645751852 0.497468877 0.59297809 0.511392294 
S02 TSEO effect Large Medium Very large Small Medium Medium 
S02 TSEC p-value  0.32596448 0.82974869 0.271256613 0.191251528 0.227792447 0.213841253 
S02 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S02 TSEC cohen's D -0.745023 0.14106912 0.868907536 1.12273251 0.992342208 -1.038625183 
S02 TSEC effect Medium Very small Large Large Large Large 
S03 NSEO p-value  0.42677031 0.3444091 0.766746756 0.323349036 0.401883206 0.048762704 
S03 NSEO significance n.s. n.s. n.s. n.s. n.s. * 
S03 NSEO cohen's D 0.57120221 0.70888121 -0.195852878 0.750346669 0.609377172 2.517933798 
S03 NSEO effect Medium Medium Very small Medium Medium Huge 
S03 NSEC p-value  0.35325109 0.63729664 0.00617971 0.316564776 0.641655956 0.2491386 
S03 NSEC significance n.s. n.s. * n.s. n.s. n.s. 
S03 NSEC cohen's D -0.6923642 0.31778579 -7.310299323 0.76440273 -0.313399685 0.92825598 
S03 NSEC effect Medium Small Huge Medium Small Large 
S03 TSEO p-value  0.85594066 0.66687651 0.442097507 0.657417708 0.469720976 0.78278407 
S03 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S03 TSEO cohen's D -0.1188638 -0.2884707 0.548887706 0.29773379 0.510685502 0.181694273 
S03 TSEO effect Very small Small Medium Small Medium Very small 
S03 TSEC p-value  0.16347186 0.09960394 0.00294329 0.009629029 0.004124172 0.024918892 
S03 TSEC significance n.s. n.s. * * * * 
S03 TSEC cohen's D 0.57900666 1.23213938 3.656527931 4.622516762 5.164918436 3.119318738 
S03 TSEC effect Medium Large Huge Huge Huge Huge 
S04 NSEO p-value  0.16894797 0.18433052 0.071829854 0.135958174 0.114723802 0.226815792 
S04 NSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
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S04 NSEO cohen's D 1.21998856 1.15120207 2.036370506 1.401388821 1.554242932 0.995459909 
S04 NSEO effect Large Large Huge Very large Very large Large 
S04 NSEC p-value  0.46321476 0.81483598 0.21795091 0.237599264 0.21249238 0.45812069 
S04 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S04 NSEC cohen's D 0.51946603 -0.1538462 1.024587872 0.961972813 1.043310322 0.526431412 
S04 NSEC effect Medium Very small Large Large Large Medium 
S04 TSEO p-value  0.65372788 0.51439948 0.750487965 0.439688349 0.655146931 0.681106378 
S04 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S04 TSEO cohen's D -0.3013748 -0.4535574 0.210379675 0.552339203 0.299972672 -0.274718462 
S04 TSEO effect Small Small Small Medium Small Small 
S04 TSEC p-value  0.08515509 0.07636077 0.02404624 0.001795706 0.012887558 0.08050724 
S04 TSEC significance n.s. n.s. * * * n.s. 
S04 TSEC cohen's D 1.15615551 1.08169683 2.016007049 5.037752737 2.806533028 1.026274932 
S04 TSEC effect Large Large Huge Huge Huge Large 
S05 NSEO p-value  0.03921569 0.18369628 0.062612396 0.144603401 0.028648555 0.836594252 
S05 NSEO significance * n.s. n.s. n.s. * n.s. 
S05 NSEO cohen's D 2.82901632 -1.1538829 2.197531736 1.348386072 3.337316315 0.135237975 
S05 NSEO effect Huge Large Huge Very large Huge Very small 
S05 NSEC p-value  0.29985996 0.37708479 0.013072458 0.238202303 0.426226302 0.592228953 
S05 NSEC significance n.s. n.s. * n.s. n.s. n.s. 
S05 NSEC cohen's D -0.8006408 0.65015346 5 -0.960158717 -0.57201016 0.36463632 
S05 NSEC effect Large Medium Huge Large Medium Small 
S05 TSEO p-value  0.27410862 0.62636764 0.456108029 0.893334509 0.396367972 0.322279164 
S05 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S05 TSEO cohen's D 0.86170366 -0.3288887 0.529205934 0.087591723 0.618194315 0.752539403 
S05 TSEO effect Large Small Medium Very small Medium Medium 
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S05 TSEC p-value  0.11092247 0.12035179 0.093183865 0.431795245 0.026350521 0.009767495 
S05 TSEC significance n.s. n.s. n.s. n.s. * * 
S05 TSEC cohen's D 0.91359083 0.1434992 1.713492918 -0.132616927 1.489365908 2.446562277 
S05 TSEC effect Large Very small Very large Very small Very large Huge 
S06 NSEO p-value  0.05828028 0.00092208 0.029295995 0.027618752 0.018732489 0.869317947 
S06 NSEO significance n.s. * * * * n.s. 
S06 NSEO cohen's D 2.28571429 19 3.298574998 3.401680257 4.158842688 -0.107624401 
S06 NSEO effect Huge Huge Huge Huge Huge Very small 
S06 NSEC p-value  0.5752046 0.73431553 0.568461015 0.458472386 0.503449974 0.117970759 
S06 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S06 NSEC cohen's D -0.3831305 -0.2250176 -0.390591217 -0.525947907 -0.467082503 -1.528399836 
S06 NSEC effect Small Small Small Medium Small Very large 
S06 TSEO p-value  0.05486376 0.05828028 0.266971128 0.285034924 0.267315983 0.199587765 
S06 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S06 TSEO cohen's D 2.36227796 2.28571429 0.879914358 0.834953945 0.879020373 1.090222533 
S06 TSEO effect Huge Huge Large Large Large Large 
S06 TSEC p-value  0.10876058 0.2245194 0.014021945 0.050189528 0.019138845 0.084963832 
S06 TSEC significance n.s. n.s. * n.s. * n.s. 
S06 TSEC cohen's D 1.00674825 1.07989849 2.872825788 2.476120872 3.116513804 1.097183671 
S06 TSEC effect Large Large Huge Huge Huge Large 
S07 NSEO p-value  0.02992352 0.32181135 0.753817018 0.555409381 0.727987582 0.081358128 
S07 NSEO significance * n.s. n.s. n.s. n.s. n.s. 
S07 NSEO cohen's D -3.262214 -0.753501 -0.207390339 -0.405261796 -0.230799807 -1.898467533 
S07 NSEO effect Huge Medium Small Small Small Very large 
S07 NSEC p-value  0.88990362 0.19461273 0.74180111 0.0648368 0.079064181 0.847287773 
S07 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
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S07 NSEC cohen's D -0.0904431 -1.1094004 -0.21821789 -2.155619955 -1.929467283 -0.126168884 
S07 NSEC effect Very small Large Small Huge Very large Very small 
S07 TSEO p-value  0.74227778 0.67159608 0.665060748 0.413940784 0.50231756 0.677920722 
S07 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S07 TSEO cohen's D -0.2177863 -0.2838857 -0.290241164 -0.590564127 -0.468497889 -0.277778706 
S07 TSEO effect Small Small Small Medium Small Small 
S07 TSEC p-value  0.87993995 0.77747277 0.366496488 0.459218466 0.439958397 0.579166661 
S07 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S07 TSEC cohen's D -0.0739221 -0.1719238 0.775880177 0.591994038 0.674562681 0.27217929 
S07 TSEC effect Very small Very small Medium Medium Medium Small 
S08 NSEO p-value  0.50393893 0.64327781 0.379109777 0.990205958 0.685799472 0.560509656 
S08 NSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S08 NSEO cohen's D 0.46647234 0.31177389 0.646710478 -0.007997185 0.27022896 0.399491719 
S08 NSEO effect Small Small Medium Very small Small Small 
S08 NSEC p-value  0.62598033 0.78861705 0.921523357 0.413413924 0.532389288 0.933431197 
S08 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S08 NSEC cohen's D -0.329285 -0.1765837 -0.064274135 -0.591373353 -0.431935332 -0.054474032 
S08 NSEC effect Small Very small Very small Medium Small Very small 
S08 TSEO p-value  0.4003266 0.31920013 0.839285563 0.495423434 0.830091653 0.327213091 
S08 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S08 TSEO cohen's D 0.61185183 0.75889956 -0.132951026 0.47718417 0.140776493 0.742499657 
S08 TSEO effect Medium Medium Very small Small Very small Medium 
S08 TSEC p-value  0.01155598 0.43922785 0.426760064 0.74180111 0.485709864 0.027123668 
S08 TSEC significance * n.s. n.s. n.s. n.s. * 
S08 TSEC cohen's D 1.69969791 -0.6405126 0.696216501 0.458831468 0.637122326 0.947199176 
S08 TSEC effect Very large Medium Medium Small Medium Large 
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S09 NSEO p-value  0.3902986 0.3326749 0.49346839 0.568901437 0.596537578 0.266315793 
S09 NSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S09 NSEO cohen's D -0.6280589 -0.7315966 -0.479669527 -0.390101533 -0.360029564 -0.881617261 
S09 NSEO effect Medium Medium Small Small Small Large 
S09 NSEC p-value  0.25865427 0.09964699 0.883489654 0.605594681 0.71642807 0.098575862 
S09 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S09 NSEC cohen's D -0.90193 -1.6893434 0.095782629 0.350438322 0.241446663 -1.700038518 
S09 NSEC effect Large Very large Very small Small Small Very large 
S09 TSEO p-value  0.3296036 0.32102859 0.350683827 0.912281702 0.056133311 0.33097195 
S09 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S09 TSEO cohen's D 0.73770087 0.75511371 0.697109119 -0.071898838 2.333036109 0.734972831 
S09 TSEO effect Medium Medium Medium Very small Huge Medium 
S09 TSEC p-value  0.58858089 0.12481181 0.297898071 0.619936593 0.407933769 0.251824657 
S09 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S09 TSEC cohen's D -0.044585 0.80858312 0.609992547 0.016522297 0.378403665 0.453537042 
S09 TSEC effect Very small Large Medium Very small Small Small 
S10 NSEO p-value  0.32454916 0.13147556 0.284905042 0.130405441 0.231943498 0.353366071 
S10 NSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S10 NSEO cohen's D 0.7478974 1.43075246 0.835264327 1.437969289 0.979283349 0.692152681 
S10 NSEO effect Medium Very large Large Very large Large Medium 
S10 NSEC p-value  0.97719604 0.09273529 0.855752559 0.904963723 0.918051372 0.896915675 
S10 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S10 NSEC cohen's D 0.0186242 1.76140969 -0.119022319 -0.07794961 -0.067136584 0.084618795 
S10 NSEC effect Very small Very large Very small Very small Very small Very small 
S10 TSEO p-value  0.53276508 0.37628891 0.482671092 0.42831582 0.458196063 0.447966334 
S10 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
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S10 TSEO cohen's D 0.43149122 0.65151249 0.493577788 0.568912985 0.526327759 0.54056345 
S10 TSEO effect Small Medium Small Medium Medium Medium 
S10 TSEC p-value  0.10390491 0.11932214 0.062856853 0.054577311 0.067143976 0.127906113 
S10 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S10 TSEC cohen's D 1.46448308 1.41695164 1.89851534 2.380107231 1.978717049 1.266165355 
S10 TSEC effect Very large Very large Very large Huge Very large Large 
S11 NSEO p-value  0.46704182 0.2395775 0.217120135 0.20728429 0.210875835 0.258644991 
S11 NSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S11 NSEO cohen's D 0.51428571 0.95604396 1.02739726 1.061776062 1.04897724 0.901955063 
S11 NSEO effect Medium Large Large Large Large Large 
S11 NSEC p-value  1 0.7446001 0.670685761 0.819515095 0.712737523 0.718349241 
S11 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s. 
S11 NSEC cohen's D 0 -0.2156863 0.284768212 -0.149825784 0.244869619 -0.239669421 
S11 NSEC effect Very small Small Small Very small Small Small 
S11 TSEO p-value  0.62203553 0.18692811 0.198270399 0.284472638 0.244691897 0.13400819 
S11 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s. 
S11 TSEO cohen's D 0.33333333 1.14035088 1.095238095 0.836298932 0.94100524 1.413994169 
S11 TSEO effect Small Large Large Large Large Very large 
S11 TSEC p-value  0.54916518 0.0527035 0.0030452 0.044814112 0.049250861 0.00408215 
S11 TSEC significance n.s. n.s. * * * * 
S11 TSEC cohen's D 0.57142857 1.06060606 6.36 1.187845304 1.112612613 4.86784141 
S11 TSEC effect Medium Large Huge Large Large Huge 
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Table B-11: Summary of CoP Parameters by Conditions 

Cond Stance  DMLSD 
(cm) 

DAPSD (cm) Vmlmean (cm/s) Vapmean (cm/s) CoP Pathlength 
(cm) 

CoP 95% PEA (cm2) 

NO  NSEC mean 0.407 0.739 0.672 0.962 38.855 5.511 
SD 0.197 0.253 0.335 0.368 16.266 4.716 

SEM 0.062 0.080 0.106 0.116 5.144 1.491 
NSEO mean 0.526 0.754 0.734 0.892 38.652 8.161 

SD 0.316 0.307 0.372 0.545 21.117 7.273 
SEM 0.100 0.097 0.118 0.172 6.678 2.300 

TSEC mean 1.692 1.359 4.576 3.920 197.852 46.160 
SD 0.935 0.389 2.584 1.268 87.403 47.157 

SEM 0.296 0.123 0.817 0.401 27.639 14.912 
TSEO mean 1.039 0.779 2.052 1.865 92.508 18.601 

SD 0.530 0.304 0.919 0.567 33.732 22.516 
SEM 0.168 0.096 0.291 0.179 10.667 7.120 

ON  NSEC mean 0.492 0.776 0.652 1.010 38.044 4.831 
SD 0.339 0.201 0.292 0.295 10.979 2.233 

SEM 0.107 0.063 0.092 0.093 3.472 0.706 
NSEO mean 0.408 0.669 0.515 0.666 27.205 4.176 

SD 0.200 0.191 0.147 0.169 5.570 2.594 
SEM 0.063 0.060 0.047 0.053 1.761 0.820 

TSEC mean 1.087 1.090 2.469 2.792 123.371 19.371 
SD 0.311 0.173 1.109 0.916 41.963 9.206 

SEM 0.098 0.055 0.351 0.290 13.270 2.911 
TSEO mean 0.847 0.690 1.611 1.585 74.802 10.049 

SD 0.375 0.177 0.511 0.290 17.067 5.918 
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SEM 0.113 0.053 0.154 0.087 5.146 1.784 
DIFF  NSEC mean -0.085 -0.037 0.02 -0.048 0.811 0.68 

SD 0.227 0.184 0.253 0.256 10.520 3.643 
SEM 0.068 0.055 0.076 0.077 3.172 1.098 

NSEO mean 0.119 0.086 0.218 0.226 11.447 3.985 
SD 0.296 0.344 0.371 0.455 19.652 8.293 

SEM 0.089 0.104 0.112 0.137 5.925 2.500 
TSEC mean 0.605 0.270 2.107 1.127 74.480 26.790 

SD 0.871 0.329 2.477 1.173 86.348 44.313 
SEM 0.263 0.099 0.747 0.354 26.035 13.361 

TSEO mean 0.192 0.089 0.441 0.280 17.706 8.552 
SD 0.348 0.269 0.532 0.437 21.679 19.665 

SEM 0.105 0.081 0.160 0.132 6.537 5.929 
% 

RED  
NSEC mean -20.88% -5.01% 2.98% -4.99% 2.09% 12.34% 

SD 33.16% 24.13% 27.05% 24.87% 22.11% 71.55% 
SEM 10.00% 7.28% 8.16% 7.50% 6.67% 21.57% 

NSEO mean 22.62% 11.41% 29.70% 25.34% 29.62% 48.83% 
SD 49.85% 36.58% 33.59% 30.48% 31.34% 80.59% 

SEM 15.03% 11.03% 10.13% 9.19% 9.45% 24.30% 
TSEC mean 35.76% 19.87% 46.04% 28.75% 37.64% 58.04% 

SD 34.97% 18.24% 23.24% 22.22% 23.37% 42.64% 
SEM 10.55% 5.50% 7.01% 6.70% 7.05% 12.86% 

TSEO mean 18.48% 11.42% 21.49% 15.01% 19.14% 45.98% 
SD 26.41% 24.68% 16.90% 19.91% 17.96% 35.39% 

SEM 7.96% 7.44% 5.10% 6.00% 5.42% 10.67% 
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Appendix C: Figures 

 

 
Figure C-1: SOLIDWORKS Drawing of Actual Chest IMU Casing 

 

 
Figure C-2: SOLIDWORKS Drawing of Actual Backplate Part of ESP32 

Holder 
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Figure C-3: SOLIDWORKS Drawing of Actual Devboard Holder 

 

 
Figure C-4: SOLIDWORKS Drawing of Actual Devboard Cover 
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Figure C-5: SOLIDWORKS Drawing of Actual Devboard Holder Assembly 

 

 
Figure C-6: SOLIDWORKS Drawing of Actual Backplate Assembly 
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Figure C-7: SOLIDWORKS Drawing of Actual Wrist OLED Casing 

 

 
Figure C-8: SOLIDWORKS Drawing of Actual Wrist OLED Cover 
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Figure C-9: SOLIDWORKS Drawing of Actual OLED Casing Assembly 

 

 
Figure C-10: SOLIDWORKS Drawing of Actual Compressor Base for Casing 
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Figure C-11: SOLIDWORKS Drawing of Actual Belt Assembly 

 

 

 
Figure C-12: MATLAB Snippets of Classifier Training Results 
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Figure C-13: Visualisation of EMG Reduction Based on Mean and Subject for 

External Obliques (EO) 

 

 
Figure C-14: Visualisation of EMG Reduction Based on Mean and Subject for 

Rectus Abdominus (RA) 

 

 
Figure C-15: Visualisation of EMG Reduction Based on Mean and Subject for 

Erecter Spinae (ES, L3, Right) 
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FigureC-16: Visualisation of EMG Reduction Based on Mean and Subject for 

Erecter Spinae (ES, L3, Left) 

 

 
Figure C-17: Boxplots of DML SD Between Conditions With Outliers Retained 
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Figure C-18: Boxplots of DAP SD Between Conditions With Outliers Retained 

 

 
Figure C-19: Boxplots of Vml mean Between Conditions With Outliers 

Retained 
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Figure C-20: Boxplots of Vap mean Between Conditions With Outliers 

Retained 

 

 
Figure C-21: Boxplots of Pathlength Between Conditions With Outliers 

Retained 
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Figure C-22: Boxplots of 95% PEA Between Conditions With Outliers Retained 

 

 
Figure C-23: Heatmap of Mean Percent Reduction in Parameters With Outliers 

Retained 
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Figure C-24: Heatmap of Subject Level Percent Reduction Across Parameters 

With Outlier Retained 

 

 
Figure C-25: Percent Reduction of Parameters by Stance With Outlier Retained 
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Figure C-26: Distribution of Percent Reduction Across Stances With Outliers 

Retained 

 

 
Figure C-27: Heatmap of Percent Reduction of DML SD by Subject With 

Outliers Retained 
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Figure C-28: Heatmap of Percent Reduction of DAP SD by Subject With 

Outliers Retained 

 

 
Figure C-29: Heatmap of Percent Reduction of Vml mean by Subject With 

Outliers Retained 
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Figure C-30: Heatmap of Percent Reduction of Vap mean by Subject With 

Outliers Retained 

 

 
Figure C-31: Heatmap of Percent Reduction of Pathlength by Subject With 

Outliers Retained 
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Figure C-32: Heatmap of Percent Reduction of 95% PEA by Subject With 

Outliers Retained 

 

 
Figure C-33: Heatmap of Percent Reduction of All Parameters by Subject With 

Outliers Retained 
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Appendix D: MATLAB Code with Some Sections Ommited Due to Privacy 
 
 
%% Postural Sway Analysis and Threshold Optimization with ROC  
 
% Parameters 
dt = 0.034;  % Round to 3 decimal places for better numerical 
stability 
fs = round(1/dt);  % Round the sampling frequency 
windowSize = round(5*fs);  % Ensure integer window size 
windowOverlap = 0.5;      % 50% overlap for better transient 
detection 
CSF = 2.4477;             % 95% confidence scaling factor 
 
% Outlier detection parameters 
outlierOptions = struct(); 
outlierOptions.signalThreshold = 3.5;  % Z-score threshold for point 
outliers  
outlierOptions.windowQualityThreshold = 70; % Minimum percentage of 
valid data per window 
outlierOptions.featureZscoreThreshold = 3;  % Threshold for feature-
level outliers 
outlierOptions.subjectOutlierThreshold = 2; % Threshold for subject-
level outliers 
outlierOptions.waveletThreshold = 5;        % Threshold for wavelet-
based transient detection 
 
% Butterworth filter design (0.01-0.60 Hz bandpass) [omitted, trivial] 
 
% [section omitted – Data Handling, Subject Privacy]  
 
 
    % ----------------- STEP 1: Signal-level Outlier Detection ------
----------- 
    disp('  Detecting signal-level outliers...'); 
     
    % Use multiple methods to detect signal outliers 
    % Method 1: Z-score based detection 
    zX = zscore(accelX); 
    zY = zscore(accelY); 
    zZ = zscore(accelZ); 
     
    outlierX_zscore = abs(zX) > outlierOptions.signalThreshold; 
    outlierY_zscore = abs(zY) > outlierOptions.signalThreshold; 
    outlierZ_zscore = abs(zZ) > outlierOptions.signalThreshold; 
     
    % Method 2: Wavelet-based transient detection with improved error 
handling 
    % Decompose signal using wavelets to detect transients 
    try 
        % Initialize wavelet outputs as logical arrays 
        outlierX_wavelet = false(size(accelX)); 
        outlierY_wavelet = false(size(accelY)); 
        outlierZ_wavelet = false(size(accelZ)); 
         
        % Try wavelet detection with error handling for each signal 
        try 
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            % Use 'db4' wavelet with 4 levels for better noise 
detection 
            [cA, cD] = dwt(accelX, 'db4'); 
            % Detect large detail coefficients as potential outliers 
            threshold = std(cD) * outlierOptions.waveletThreshold; 
            outlierX_wavelet = abs(cD) > threshold; 
            % Upsample to match original signal length 
            outlierX_wavelet = interp1(1:length(outlierX_wavelet), 
double(outlierX_wavelet), ... 
                                     linspace(1, 
length(outlierX_wavelet), length(accelX)), 'nearest'); 
            outlierX_wavelet = logical(outlierX_wavelet); 
        catch wx 
            disp(['  Warning: X-axis wavelet detection failed - ' 
wx.message]); 
        end 
         
        try 
            [cA, cD] = dwt(accelY, 'db4'); 
            threshold = std(cD) * outlierOptions.waveletThreshold; 
            outlierY_wavelet = abs(cD) > threshold; 
            outlierY_wavelet = interp1(1:length(outlierY_wavelet), 
double(outlierY_wavelet), ... 
                                     linspace(1, 
length(outlierY_wavelet), length(accelY)), 'nearest'); 
            outlierY_wavelet = logical(outlierY_wavelet); 
        catch wy 
            disp(['  Warning: Y-axis wavelet detection failed - ' 
wy.message]); 
        end 
         
        try 
            [cA, cD] = dwt(accelZ, 'db4'); 
            threshold = std(cD) * outlierOptions.waveletThreshold; 
            outlierZ_wavelet = abs(cD) > threshold; 
            outlierZ_wavelet = interp1(1:length(outlierZ_wavelet), 
double(outlierZ_wavelet), ... 
                                     linspace(1, 
length(outlierZ_wavelet), length(accelZ)), 'nearest'); 
            outlierZ_wavelet = logical(outlierZ_wavelet); 
        catch wz 
            disp(['  Warning: Z-axis wavelet detection failed - ' 
wz.message]); 
        end 
         
    catch e 
        % If wavelet toolbox is not available or error occurs 
        disp(['  Warning: Wavelet detection initialization failed - ' 
e.message]); 
        outlierX_wavelet = false(size(accelX)); 
        outlierY_wavelet = false(size(accelY)); 
        outlierZ_wavelet = false(size(accelZ)); 
    end 
     
    % Method 3: Moving median deviation 
    windowLen = round(0.5 * fs);  % 0.5 second window 
    medX = movmedian(accelX, windowLen); 
    medY = movmedian(accelY, windowLen); 
    medZ = movmedian(accelZ, windowLen); 
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    devX = abs(accelX - medX); 
    devY = abs(accelY - medY); 
    devZ = abs(accelZ - medZ); 
     
    madX = movmedian(devX, windowLen); 
    madY = movmedian(devY, windowLen); 
    madZ = movmedian(devZ, windowLen); 
     
    outlierX_mad = devX > 3.5 * madX; 
    outlierY_mad = devY > 3.5 * madY; 
    outlierZ_mad = devZ > 3.5 * madZ; 
     
    % Combine all outlier detection methods 
    outlierX = logical(outlierX_zscore) | outlierX_wavelet | 
logical(outlierX_mad); 
    outlierY = logical(outlierY_zscore) | outlierY_wavelet | 
logical(outlierY_mad); 
    outlierZ = logical(outlierZ_zscore) | outlierZ_wavelet | 
logical(outlierZ_mad); 
     
    % Combined outliers mask 
    combinedOutliers = outlierX | outlierY | outlierZ; 
     
    % Print outlier statistics 
    percentOutliers = 100 * sum(combinedOutliers) / 
length(combinedOutliers); 
    disp(['    Found ' num2str(sum(combinedOutliers)) ' outlier 
points (' num2str(percentOutliers, '%.2f') '%)']); 
     
    % Replace outliers with NaN and then interpolate 
    accelX_clean = accelX; 
    accelY_clean = accelY; 
    accelZ_clean = accelZ; 
     
    accelX_clean(outlierX) = NaN; 
    accelY_clean(outlierY) = NaN; 
    accelZ_clean(outlierZ) = NaN; 
     
    % Interpolate missing values 
    accelX_clean = fillmissing(accelX_clean, 'linear'); 
    accelY_clean = fillmissing(accelY_clean, 'linear'); 
    accelZ_clean = fillmissing(accelZ_clean, 'linear'); 
     
    % Save outlier statistics for this file 
    outlierStats(f).filename = filename; 
    outlierStats(f).subject = subject; 
    outlierStats(f).condition = condition; 
    outlierStats(f).totalPoints = length(accelX); 
    outlierStats(f).outlierPoints = sum(combinedOutliers); 
    outlierStats(f).outlierPercent = percentOutliers; 
     
    % Process in overlapping windows for better transient detection 
    % Calculate number of windows with overlap 
    stepSize = round(windowSize * (1 - windowOverlap));  % Ensure 
integer step size 
    numWindows = floor((length(accelX) - windowSize) / stepSize) + 1; 
    fileFeatures = table(); 
    validWindows = 0; 
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    % Check if we have enough data for at least one window 
    if numWindows < 1 
        disp('  Not enough data points for window analysis'); 
        continue; 
    end 
     
    for w = 1:numWindows 
        % Extract window 
        startIdx = floor((w-1)*stepSize) + 1; 
        endIdx = min(floor(startIdx + windowSize - 1), 
length(accelX)); 
         
        % Check window quality - percentage of non-outlier data 
points 
        windowOutliers = combinedOutliers(startIdx:endIdx); 
        windowQuality = 100 * (1 - sum(windowOutliers) / 
length(windowOutliers)); 
         
        % Skip windows with too many outliers 
        if windowQuality < outlierOptions.windowQualityThreshold 
            disp(['    Skipping window ' num2str(w) ' due to poor 
data quality (' num2str(windowQuality, '%.1f') '%)']); 
            continue; 
        end 
         
        validWindows = validWindows + 1; 
         
        % Window data (use cleaned version) 
        Ax_raw = accelX_clean(startIdx:endIdx); 
        Ay_raw = accelY_clean(startIdx:endIdx); 
        Az_raw = accelZ_clean(startIdx:endIdx); 
         
        % Apply filter to raw accelerometer data 
        Ax_filt = filtfilt(b, a, Ax_raw); 
        Ay_filt = filtfilt(b, a, Ay_raw); 
        Az_filt = filtfilt(b, a, Az_raw); 
         
        % Calculate angular displacements 
        theta_pitch = atan2(Az_filt, sqrt(Ay_filt.^2 + Ax_filt.^2)); 
        theta_roll = atan2(Ax_filt, sqrt(Ay_filt.^2 + Az_filt.^2)); 
         
        % Calculate DAP and DML using patient-specific height values 
        DAP = H1 * tan(theta_pitch); 
        DML = H2 * tan(theta_roll); 
         
        % Calculate displacement magnitude 
        dp = sqrt(DAP.^2 + DML.^2); 
         
        % Calculate velocity  
        VEL = abs(diff(dp))/(1/fs); 
        VEL = [VEL; VEL(end)]; % Padding 
         
        % Calculate decomposition 
        ddap = abs(diff(DAP)); 
        ddml = abs(diff(DML)); 
        DEP = sqrt(ddap.^2 + ddml.^2); 
        DEP = [DEP; DEP(end)]; % Padding 
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        % Extract JF features 
        DAP_max = max(DAP); 
        DAP_min = min(DAP); 
        DML_max = max(DML); 
        DML_min = min(DML); 
         
        % Rectangle area 
        Rs = (DAP_max - DAP_min) * (DML_max - DML_min); 
         
        % 95% Confidence Ellipse Area 
        sigma_AP = std(DAP); 
        sigma_ML = std(DML); 
        a = CSF * sigma_AP; 
        b = CSF * sigma_ML; 
        CEA_95 = pi * a * b; 
         
        % RMS displacement 
        D_RMS = sqrt(mean(dp.^2)); 
         
        % Displacement range 
        DR = max(dp) - min(dp); 
         
        % Additional features: AP and ML sway ranges 
        AP_range = DAP_max - DAP_min; 
        ML_range = DML_max - DML_min; 
         
        % Path length features 
        path_length = sum(sqrt(diff(DAP).^2 + diff(DML).^2)); 
        mean_velocity = path_length / (length(DAP)/fs); 
         
        % Store features for this window with metadata 
        windowFeatures = table(DAP_max, DAP_min, DML_max, DML_min, 
Rs, CEA_95, D_RMS, DR, ... 
                             mean(VEL), max(VEL), mean(DEP), 
max(DEP), ... 
                             AP_range, ML_range, path_length, 
mean_velocity, ... 
                             categorical({subject}), 
categorical({condition}), windowQuality, ... 
                             'VariableNames', {'DAP_max', 'DAP_min', 
'DML_max', 'DML_min', ... 
                                             'Rs', 'CEA_95', 'D_RMS', 
'DR', ... 
                                             'VEL_mean', 'VEL_max', 
'DEP_mean', 'DEP_max', ... 
                                             'AP_range', 'ML_range', 
'path_length', 'mean_velocity', ... 
                                             'Subject', 'Condition', 
'WindowQuality'}); 
        fileFeatures = [fileFeatures; windowFeatures]; 
         
    % Update outlier stats with window information 
    outlierStats(f).totalWindows = numWindows; 
    outlierStats(f).validWindows = validWindows; 
    outlierStats(f).percentValidWindows = 100 * validWindows / 
numWindows; 
     
    % Only save features if we found valid windows 
    if validWindows > 0 



243 

 

        % Store features for entire file 
        try 
            writetable(fileFeatures, fullfile(baseDir, [filename 
'_features.csv'])); 
        catch e 
            disp(['  Warning: Could not save features CSV - ' 
e.message]); 
            % Try a simpler filename  
            writetable(fileFeatures, fullfile(baseDir, ['features_' 
num2str(f) '.csv'])); 
        end 
         
        % Add to collection of all features 
        allFeatures = [allFeatures; fileFeatures]; 
    else 
        disp(['Warning: No valid data windows found in ' filename]); 
    end 
end 
 
% Save outlier statistics 
try 
    save(fullfile(baseDir, 'outlier_statistics.mat'), 
'outlierStats'); 
    writetable(struct2table(outlierStats), fullfile(baseDir, 
'outlier_statistics.csv')); 
catch e 
    disp(['Warning: Could not save outlier statistics - ' 
e.message]); 
end 
 
disp(['Processed ' num2str(length(filenames)) ' files. Found ' 
num2str(height(allFeatures)) ' valid windows.']); 
 
% Check if we have enough data to continue 
if height(allFeatures) < 10 
    error('Not enough valid data windows for analysis. Check input 
data and parameters.'); 
end 
 
%% STEP 2: Feature-level Outlier Detection 
disp('Detecting feature-level outliers...'); 
 
% Feature columns to check for outliers 
featureCols = {'DAP_max', 'DAP_min', 'DML_max', 'DML_min', 'Rs', 
'CEA_95', 'D_RMS', 'DR', 'VEL_mean', 'VEL_max', 'AP_range', 
'ML_range'}; 
 
% Get Z-scores for all numeric features 
featureZScores = zeros(height(allFeatures), length(featureCols)); 
for i = 1:length(featureCols) 
    featureZScores(:,i) = zscore(allFeatures.(featureCols{i})); 
end 
 
% Flag rows with extreme values in any feature 
maxAbsZScores = max(abs(featureZScores), [], 2); 
featureOutliers = maxAbsZScores > 
outlierOptions.featureZscoreThreshold; 
 
% Display feature outlier counts 
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disp(['  Found ' num2str(sum(featureOutliers)) ' feature-level 
outliers out of ' num2str(height(allFeatures)) ' windows (' 
num2str(100*sum(featureOutliers)/height(allFeatures), '%.2f') '%)']); 
 
% Mark feature outliers in the dataset 
allFeatures.FeatureOutlier = featureOutliers; 
 
% Visualize feature distributions with outliers 
featureFig = figure('Name', 'Feature Distributions with Outliers', 
'NumberTitle', 'off'); 
for i = 1:length(featureCols) 
    subplot(ceil(length(featureCols)/2), 2, i); 
     
    % Non-outliers in blue, outliers in red 
    boxplot(allFeatures.(featureCols{i})); 
    hold on; 
     
    % Highlight outliers  
    featureOutlierIdx = abs(featureZScores(:,i)) > 
outlierOptions.featureZscoreThreshold; 
    scatter(ones(sum(featureOutlierIdx),1), 
allFeatures.(featureCols{i})(featureOutlierIdx), 'r', 'filled'); 
     
    title(featureCols{i}); 
    grid on; 
end 
sgtitle('Feature Distributions with Outliers'); 
 
% Save feature distribution figure 
try 
    saveas(featureFig, fullfile(plotsDir, 
'feature_distributions.png')); 
    saveas(featureFig, fullfile(plotsDir, 
'feature_distributions.fig')); 
catch e 
    disp(['Warning: Could not save feature distributions figure - ' 
e.message]); 
    print(featureFig, fullfile(plotsDir, 
'feature_distributions.png'), '-dpng'); 
end 
 
%% STEP 3: Subject-level Outlier Detection 
disp('Detecting subject-level outliers...'); 
 
% Get unique subjects 
subjects = unique(allFeatures.Subject); 
numSubjects = length(subjects); 
 
% Calculate mean feature values for each subject 
subjectFeatures = table(); 
for i = 1:numSubjects 
    subjectIdx = allFeatures.Subject == subjects(i); 
     
    % Skip subjects with feature outliers  
    validSubjectIdx = subjectIdx & ~featureOutliers; 
     
    if sum(validSubjectIdx) == 0 
        disp(['  Warning: Subject ' char(subjects(i)) ' has no valid 
data after feature outlier removal']); 



245 

 

        continue; 
    end 
     
    % Calculate mean of each feature for this subject 
    subjectRow = table(); 
    subjectRow.Subject = subjects(i); 
    for j = 1:length(featureCols) 
        subjectRow.(featureCols{j}) = 
mean(allFeatures.(featureCols{j})(validSubjectIdx)); 
    end 
     
    subjectFeatures = [subjectFeatures; subjectRow]; 
end 
 
% Calculate Z-scores for subject-level features 
subjectZScores = zeros(height(subjectFeatures), length(featureCols)); 
for i = 1:length(featureCols) 
    subjectZScores(:,i) = zscore(subjectFeatures.(featureCols{i})); 
end 
 
% Identify subject outliers 
maxSubjectZScores = max(abs(subjectZScores), [], 2); 
subjectOutliers = maxSubjectZScores > 
outlierOptions.subjectOutlierThreshold; 
outlierSubjects = subjectFeatures.Subject(subjectOutliers); 
 
% Display subject outlier information 
disp(['  Found ' num2str(sum(subjectOutliers)) ' outlier subjects out 
of ' num2str(numSubjects) ' total subjects']); 
if sum(subjectOutliers) > 0 
    disp('  Outlier subjects:'); 
    for i = 1:length(outlierSubjects) 
        disp(['    - ' char(outlierSubjects(i))]); 
    end 
end 
 
% Mark subject outliers in the dataset 
allFeatures.SubjectOutlier = false(height(allFeatures), 1); 
for i = 1:length(outlierSubjects) 
    allFeatures.SubjectOutlier(allFeatures.Subject == 
outlierSubjects(i)) = true; 
end 
 
% Visualize subject outliers 
if height(subjectFeatures) > 3 
    figure; 
    [coeff, score, ~] = pca(subjectZScores); 
    scatter(score(:,1), score(:,2), 50, ~subjectOutliers, 'filled'); 
    hold on; 
     
    % Label outlier subjects 
    for i = find(subjectOutliers)' 
        text(score(i,1), score(i,2), 
char(subjectFeatures.Subject(i)), 'FontSize', 8); 
    end 
     
    xlabel('Principal Component 1'); 
    ylabel('Principal Component 2'); 
    title('Subject Feature Space (PCA) with Outliers'); 
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    colormap([1 0 0; 0 0 1]); % Red for outliers, blue for normal 
    colorbar('YTick', [0.25 0.75], 'YTickLabel', {'Outlier', 
'Normal'}); 
end 
 
%% Create clean dataset (remove all outliers) 
cleanFeatures = allFeatures(~allFeatures.FeatureOutlier & 
~allFeatures.SubjectOutlier, :); 
 
disp(['Final clean dataset: ' num2str(height(cleanFeatures)) ' 
windows (' ... 
      num2str(100*height(cleanFeatures)/height(allFeatures), '%.2f') 
'% of original data)']); 
 
% Save clean features 
writetable(cleanFeatures, [path filesep 'clean_features.csv']); 
 
% Save all features with outlier flags 
writetable(allFeatures, [path filesep 
'all_features_with_outliers.csv']); 
 
%% Label data based on condition information (if available) 
disp('Assigning stability classes based on condition labels...'); 
 
% Try to extract true stability class from condition names 
% Assuming conditions have names that indicate stability state 
% e.g., "stable", "ap_sway", "ml_sway", "unstable" 
conditionLabels = unique(cleanFeatures.Condition); 
disp(['Found conditions: ' strjoin(cellstr(conditionLabels), ', ')]); 
 
% Check if we need to manually map conditions to classes 
if length(conditionLabels) > 0 
    useManualMapping = true; 
    try 
        % Try to automatically map (customize based on your data) 
        classMap = containers.Map(); 
         
        % Iterate through condition labels and try to identify 
patterns 
        for i = 1:length(conditionLabels) 
            cond = lower(char(conditionLabels(i))); 
             
            if contains(cond, 'stab') && ~contains(cond, 'unstab') 
                classMap(char(conditionLabels(i))) = 0; % Stable 
            elseif contains(cond, 'ap') || contains(cond, 'ant') || 
contains(cond, 'post') 
                classMap(char(conditionLabels(i))) = 1; % Antero-
Posterior 
            elseif contains(cond, 'ml') || contains(cond, 'med') || 
contains(cond, 'lat') 
                classMap(char(conditionLabels(i))) = 2; % Medio-
Lateral 
            elseif contains(cond, 'unstab') || contains(cond, 'dist') 
                classMap(char(conditionLabels(i))) = 3; % Unstable 
            else 
                useManualMapping = true; 
                break; 
            end 
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            useManualMapping = false; 
        end 
    catch 
        useManualMapping = true; 
    end 
     
    % If automatic mapping failed, ask user 
    if useManualMapping 
        disp('Could not automatically map conditions to stability 
classes.'); 
        disp('Please map each condition to a stability class:'); 
        disp('  0 = Stable'); 
        disp('  1 = Antero-Posterior Sway'); 
        disp('  2 = Medio-Lateral Sway'); 
        disp('  3 = Unstable'); 
         
        classMap = containers.Map(); 
        for i = 1:length(conditionLabels) 
            defaultClass = 0; % Default to stable 
            classNum = input(['Enter class for condition "' 
char(conditionLabels(i)) '" (0-3): ']); 
            if isempty(classNum) || classNum < 0 || classNum > 3 
                classNum = defaultClass; 
            end 
            classMap(char(conditionLabels(i))) = classNum; 
        end 
    end 
     
    % Map conditions to classes 
    cleanFeatures.TrueClass = zeros(height(cleanFeatures), 1); 
    for i = 1:height(cleanFeatures) 
        condition = char(cleanFeatures.Condition(i)); 
        if isKey(classMap, condition) 
            cleanFeatures.TrueClass(i) = classMap(condition); 
        end 
    end 
     
    disp('Class labels assigned based on conditions.'); 
else 
    disp('No clear condition information for labeling. Will proceed 
with unsupervised approach.'); 
    % Use clustering to define "true" classes 
    cleanFeatures.TrueClass = NaN(height(cleanFeatures), 1); 
end 
 
%% Apply clustering to determine stability classes 
disp('Clustering data to determine stability classes...'); 
 
% Select key features for clustering 
X = [cleanFeatures.D_RMS, cleanFeatures.AP_range, 
cleanFeatures.ML_range, cleanFeatures.CEA_95]; 
 
% Standardize features 
X = zscore(X); 
 
% Apply K-means clustering (4 classes as in original algorithm) 
rng(1); % For reproducibility 
[clusterIdx, centroids] = kmeans(X, 4, 'Replicates', 10); 
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% Map cluster indices to sway classes (0=Stable, 1=AP, 2=ML, 
3=Unstable) 
% Find the most stable cluster (lowest RMS displacement) 
[~, stableClusterIdx] = min(centroids(:,1)); % First feature is D_RMS 
 
% Find AP dominant cluster (largest AP range) 
[~, apClusterIdx] = max(centroids(:,2));  
 
% Find ML dominant cluster (largest ML range) 
[~, mlClusterIdx] = max(centroids(:,3)); 
 
% The remaining cluster is unstable 
unstableClusterIdx = setdiff(1:4, [stableClusterIdx, apClusterIdx, 
mlClusterIdx]); 
if length(unstableClusterIdx) > 1 
    % If there's ambiguity, use the cluster with highest RMS but not 
largest in specific direction 
    rmsValues = centroids(:,1); 
    rmsValues([stableClusterIdx, apClusterIdx, mlClusterIdx]) = -Inf; 
    [~, unstableClusterIdx] = max(rmsValues); 
end 
 
% Create mapping from cluster indices to sway classes 
clusterToClass = zeros(4,1); 
clusterToClass(stableClusterIdx) = 0; 
clusterToClass(apClusterIdx) = 1; 
clusterToClass(mlClusterIdx) = 2; 
clusterToClass(unstableClusterIdx) = 3; 
 
% Apply mapping to get sway classes 
clusteredClass = clusterToClass(clusterIdx); 
 
% Use TrueClass if available, otherwise use clustered class 
if all(isnan(cleanFeatures.TrueClass)) 
    cleanFeatures.Class = clusteredClass; 
else 
    cleanFeatures.Class = cleanFeatures.TrueClass; 
    % Also save clustered class for comparison 
    cleanFeatures.ClusteredClass = clusteredClass; 
end 
 
% [Section Omitted due to trivial - Display clustering results] 
 
%% ROC Analysis for Threshold Optimization with Leave-One-Class-Out 
disp('Performing ROC analysis with leave-one-class-out threshold 
optimization...'); 
 
% Create ROC figure 
rocFigure = figure('Name', 'ROC Curves with Leave-One-Class-Out', 
'Position', [100, 100, 1200, 800]); 
 
% Features to analyze with ROC 
rocFeatures = {'D_RMS', 'AP_range', 'ML_range', 'CEA_95'}; 
optimalThresholds = struct(); 
 
% Get unique classes 
uniqueClasses = unique(cleanFeatures.Class); 
numClasses = length(uniqueClasses); 
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% Perform One-vs-Rest ROC analysis for each class and feature with 
leave-one-class-out 
for classIdx = 0:3 
    % Create subplot for this class 
    subplot(2, 2, classIdx+1); 
     
    % Title for this subplot 
    title(['ROC for Class ' num2str(classIdx) ' (' 
classNames{classIdx+1} ') with Leave-One-Out']); 
    hold on; 
     
    % Initialize arrays to store thresholds and performances for each 
holdout 
    leaveOneOutThresholds = zeros(numClasses, length(rocFeatures)); 
    leaveOneOutPerformance = zeros(numClasses, length(rocFeatures)); 
     
    % For each possible holdout class 
    for holdoutClass = uniqueClasses' 
        % Skip if holdout class is the current target class (we need 
some positive examples) 
        if holdoutClass == classIdx 
            continue; 
        end 
         
        % Get training indices (all samples except holdout class) 
        trainIndices = cleanFeatures.Class ~= holdoutClass; 
         
        % One-vs-Rest encoding for training set 
        binaryLabels = (cleanFeatures.Class(trainIndices) == 
classIdx); 
         
        % Analyze each feature 
        for featIdx = 1:length(rocFeatures) 
            featureName = rocFeatures{featIdx}; 
            featureValues = 
cleanFeatures.(featureName)(trainIndices); 
             
            % Sort values for ROC analysis 
            [sortedVals, sortIdx] = sort(featureValues); 
            sortedLabels = binaryLabels(sortIdx); 
             
            % Calculate TPR and FPR for different thresholds 
            nPoints = length(sortedVals); 
            TPR = zeros(nPoints, 1); 
            FPR = zeros(nPoints, 1); 
             
            % Determine if higher values indicate the class (true) or 
not (false) 
            isGreaterBetter = true; 
            if (classIdx == 0) % For stable class, lower values are 
better 
                isGreaterBetter = false; 
            elseif (classIdx == 1 && strcmp(featureName, 
'AP_range')) % For AP class, higher AP_range is better 
                isGreaterBetter = true; 
            elseif (classIdx == 2 && strcmp(featureName, 
'ML_range')) % For ML class, higher ML_range is better 
                isGreaterBetter = true; 
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            elseif (classIdx == 3) % For unstable class, higher 
values are better 
                isGreaterBetter = true; 
            else 
                isGreaterBetter = false; 
            end 
 
            % Calculate ROC points 
            for i = 1:nPoints 
                if isGreaterBetter 
                    % Threshold: classify as positive if value ≥ 
threshold 
                    predictions = featureValues >= sortedVals(i); 
                else 
                    % Threshold: classify as positive if value ≤ 
threshold 
                    predictions = featureValues <= sortedVals(i); 
                end 
                 
                % Calculate TPR and FPR with error handling for edge 
cases 
                TP = sum(predictions & binaryLabels); 
                FP = sum(predictions & ~binaryLabels); 
                TN = sum(~predictions & ~binaryLabels); 
                FN = sum(~predictions & binaryLabels); 
                 
                % Handle division by zero 
                if (TP + FN) == 0 
                    TPR(i) = 0; 
                else 
                    TPR(i) = TP / (TP + FN); 
                end 
                 
                if (FP + TN) == 0 
                    FPR(i) = 0; 
                else 
                    FPR(i) = FP / (FP + TN); 
                end 
            end 
 
            % Find optimal threshold (Youden's J statistic: max(TPR-
FPR)) 
            J = TPR - FPR; 
            [maxJ, maxIdx] = max(J); 
            optThreshold = sortedVals(maxIdx); 
             
            % Store the threshold for this holdout 
            leaveOneOutThresholds(holdoutClass+1, featIdx) = 
optThreshold; 
             
            % Evaluate on holdout data 
            holdoutIndices = cleanFeatures.Class == holdoutClass; 
            holdoutFeatureValues = 
cleanFeatures.(featureName)(holdoutIndices); 
            holdoutLabels = (cleanFeatures.Class(holdoutIndices) == 
classIdx); 
             
            % Apply threshold to holdout 
            if isGreaterBetter 
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                holdoutPredictions = holdoutFeatureValues >= 
optThreshold; 
            else 
                holdoutPredictions = holdoutFeatureValues <= 
optThreshold; 
            end 
             
            % Calculate accuracy on holdout 
            holdoutAccuracy = sum(holdoutPredictions == 
holdoutLabels) / length(holdoutLabels); 
            leaveOneOutPerformance(holdoutClass+1, featIdx) = 
holdoutAccuracy; 
        end 
    end 
     
    % For each feature, compute the mean threshold and evaluate 
overall performance 
    for featIdx = 1:length(rocFeatures) 
        featureName = rocFeatures{featIdx}; 
         
        % Calculate mean threshold (excluding zeros which are from 
skipped iterations) 
        thresholds = leaveOneOutThresholds(:, featIdx); 
        thresholds = thresholds(thresholds ~= 0); 
        meanThreshold = mean(thresholds); 
         
        % Apply mean threshold to full dataset 
        featureValues = cleanFeatures.(featureName); 
        fullBinaryLabels = (cleanFeatures.Class == classIdx); 
         
        % Determine if higher values indicate the class (true) or not 
(false) 
        isGreaterBetter = true; 
        if (classIdx == 0) % For stable class, lower values are 
better 
            isGreaterBetter = false; 
        elseif (classIdx == 1 && strcmp(featureName, 'AP_range')) % 
For AP class, higher AP_range is better 
            isGreaterBetter = true; 
        elseif (classIdx == 2 && strcmp(featureName, 'ML_range')) % 
For ML class, higher ML_range is better 
            isGreaterBetter = true; 
        elseif (classIdx == 3) % For unstable class, higher values 
are better 
            isGreaterBetter = true; 
        else 
            isGreaterBetter = false; 
        end 
         
        % Calculate ROC for the full dataset using varying thresholds 
        threshRange = linspace(min(featureValues), 
max(featureValues), 100); 
        fullTPR = zeros(length(threshRange), 1); 
        fullFPR = zeros(length(threshRange), 1); 
         
        for i = 1:length(threshRange) 
            threshold = threshRange(i); 
             
            if isGreaterBetter 
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                predictions = featureValues >= threshold; 
            else 
                predictions = featureValues <= threshold; 
            end 
             
            % Calculate TPR and FPR 
            TP = sum(predictions & fullBinaryLabels); 
            FP = sum(predictions & ~fullBinaryLabels); 
            TN = sum(~predictions & ~fullBinaryLabels); 
            FN = sum(~predictions & fullBinaryLabels); 
             
            % Handle division by zero 
            if (TP + FN) == 0 
                fullTPR(i) = 0; 
            else 
                fullTPR(i) = TP / (TP + FN); 
            end 
             
            if (FP + TN) == 0 
                fullFPR(i) = 0; 
            else 
                fullFPR(i) = FP / (FP + TN); 
            end 
        end 
         
        % Plot ROC curve 
        plot(fullFPR, fullTPR, 'LineWidth', 2, 'DisplayName', 
featureName); 
         
        % Calculate AUC 
        AUC = trapz(fullFPR, fullTPR); 
         
        % Store optimal threshold 
        if ~isfield(optimalThresholds, featureName) 
            optimalThresholds.(featureName) = zeros(4,1); 
        end 
        optimalThresholds.(featureName)(classIdx+1) = meanThreshold; 
         
        % Find performance metrics at mean threshold 
        if isGreaterBetter 
            predictions = featureValues >= meanThreshold; 
        else 
            predictions = featureValues <= meanThreshold; 
        end 
         
        TP = sum(predictions & fullBinaryLabels); 
        FP = sum(predictions & ~fullBinaryLabels); 
        TN = sum(~predictions & ~fullBinaryLabels); 
        FN = sum(~predictions & fullBinaryLabels); 
         
        if (TP + FN) > 0 
            optTPR = TP / (TP + FN); 
        else 
            optTPR = 0; 
        end 
         
        if (FP + TN) > 0 
            optFPR = FP / (FP + TN); 
        else 
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            optFPR = 0; 
        end 
         
        % Mark optimal threshold on the curve 
        plot(optFPR, optTPR, 'ro', 'MarkerSize', 8, 
'MarkerFaceColor', 'r'); 
         
        % Display results 
        disp(['  Class ' num2str(classIdx) ' - ' featureName ': AUC = 
' num2str(AUC, '%.3f') ... 
            ', Leave-One-Out Threshold = ' num2str(meanThreshold, 
'%.4f') ... 
            ' (TPR = ' num2str(optTPR, '%.3f') ... 
            ', FPR = ' num2str(optFPR, '%.3f') ')']); 
         
        % Also print the variation in thresholds 
        disp(['    Threshold std: ' num2str(std(thresholds), 
'%.4f') ... 
              ', min: ' num2str(min(thresholds), '%.4f') ... 
              ', max: ' num2str(max(thresholds), '%.4f')]); 
    end 
 
    % Add reference line 
    plot([0,1], [0,1], 'k--', 'DisplayName', 'Random'); 
    xlabel('False Positive Rate'); 
    ylabel('True Positive Rate'); 
    grid on; 
    legend('show', 'Location', 'southeast'); 
    hold off; 
end 
 
%% Feature Importance Analysis based on ROC 
disp('Calculating feature importance using RI metric...'); 
 
% Get unique features 
featureNames = rocFeatures; 
classes = unique(cleanFeatures.Class); 
numClasses = length(classes); 
 
% Create structure for feature importance 
featureImportance = struct(); 
 
% Calculate Relative Importance (RI) for each feature 
for i = 1:length(featureNames) 
    featureName = featureNames{i}; 
    featureValues = cleanFeatures.(featureName); 
     
    % Calculate RI for each class 
    for j = 1:numClasses 
        classIdx = classes(j); 
        className = classNames{classIdx+1}; 
         
        % Get threshold for this feature and class from optimal 
thresholds 
        Jth = optimalThresholds.(featureName)(classIdx+1); 
         
        % Calculate |JF_i,q - Jth_q| / max(JF_i,q - Jth_q) for each 
sample 
        diffValues = abs(featureValues - Jth); 
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        maxDiff = max(diffValues); 
         
        % Handle case where maxDiff is 0 to avoid division by zero 
        if maxDiff == 0 
            normalizedDiffs = zeros(size(diffValues)); 
        else 
            normalizedDiffs = diffValues / maxDiff; 
        end 
         
        % Calculate RI_q: RI_q% = 100 * (1/N * sum(...)) 
        RI = 100 * (1 - mean(normalizedDiffs)); 
         
        % Store RI value 
        if ~isfield(featureImportance, featureName) 
            featureImportance.(featureName) = zeros(numClasses, 1); 
        end 
        featureImportance.(featureName)(classIdx+1) = RI; 
         
        disp(['  Feature ' featureName ' importance for class ' 
className ': RI = ' num2str(RI, '%.2f') '%']); 
    end 
end 
 
% Store best features with valid field names 
bestFeatures = struct(); 
for j = 1:numClasses 
    classIdx = classes(j); 
    className = classNames{classIdx+1}; 
    % Convert class name to valid field name 
    fieldName = matlab.lang.makeValidName(className); 
     
    % Find feature with highest RI for this class 
    maxRI = -Inf; 
    bestFeature = ''; 
     
    for i = 1:length(featureNames) 
        featureName = featureNames{i}; 
        if featureImportance.(featureName)(classIdx+1) > maxRI 
            maxRI = featureImportance.(featureName)(classIdx+1); 
            bestFeature = featureName; 
        end 
    end 
     
    bestFeatures.(fieldName) = bestFeature; 
    disp(['  Best feature for ' className ': ' bestFeature ' (RI = ' 
num2str(maxRI, '%.2f') '%)']); 
end 
 
% Save feature importance information 
featureImportanceTable = struct2table(featureImportance); 
writetable(featureImportanceTable, [path filesep 
'feature_importance.csv']); 
 
% Create feature importance visualization 
figure('Name', 'Feature Importance by Class'); 
bar(cell2mat(struct2cell(featureImportance)')); 
xticklabels(classNames); 
legend(featureNames); 
ylabel('Relative Importance (%)'); 
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title('Feature Importance by Stability Class'); 
grid on; 
 
%% training 
%% Hyperparameter Tuning for Multiple Classifiers 
disp('Performing hyperparameter tuning for each classifier...'); 
 
% Use only valid labeled data 
validIdx = ~isnan(cleanFeatures.TrueClass); 
X = cleanFeatures{validIdx, rocFeatures}; 
Y = cleanFeatures.TrueClass(validIdx); 
 
% Set cross-validation settings for hyperparameter tuning 
% We'll use fewer folds for tuning to speed up the process 
tuningCVPartition = cvpartition(Y, 'KFold', 3); 
 
% Initialize results 
classifierNames = {}; 
numFolds = 5; % For final evaluation 
allAccuracies = zeros(0, numFolds); 
bestParams = {}; 
tuningResults = {}; 
 
% Set cross-validation settings for final evaluation 
finalCVPartition = cvpartition(Y, 'KFold', numFolds); 
 
%% 1. Decision Tree Tuning 
disp('Tuning Decision Tree...'); 
% Define parameter grid for Decision Tree 
dtParams = struct(); 
dtParams.MaxNumSplits = [5, 10, 20, 50, 100]; 
dtParams.MinLeafSize = [1, 5, 10, 20]; 
 
% Initialize storage for results 
dtResults = zeros(length(dtParams.MaxNumSplits), 
length(dtParams.MinLeafSize)); 
 
% Perform grid search 
for i = 1:length(dtParams.MaxNumSplits) 
    for j = 1:length(dtParams.MinLeafSize) 
        maxSplits = dtParams.MaxNumSplits(i); 
        minLeaf = dtParams.MinLeafSize(j); 
         
        % Use cross-validation to evaluate this parameter combination 
        cvAcc = zeros(1, tuningCVPartition.NumTestSets); 
        for k = 1:tuningCVPartition.NumTestSets 
            trainIdx = tuningCVPartition.training(k); 
            testIdx = tuningCVPartition.test(k); 
             
            dtModel = fitctree(X(trainIdx,:), Y(trainIdx), ... 
                'MaxNumSplits', maxSplits, 'MinLeafSize', minLeaf); 
             
            predictions = predict(dtModel, X(testIdx,:)); 
            cvAcc(k) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
        end 
         
        % Store average accuracy for this parameter combination 
        dtResults(i, j) = mean(cvAcc); 
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    end 
end 
 
% Find best parameters 
[maxVal, maxIdx] = max(dtResults(:)); 
[i_best, j_best] = ind2sub(size(dtResults), maxIdx); 
bestDTMaxSplits = dtParams.MaxNumSplits(i_best); 
bestDTMinLeaf = dtParams.MinLeafSize(j_best); 
 
% Store tuning results 
dtTuningResult = struct(); 
dtTuningResult.paramGrid = dtResults; 
dtTuningResult.bestAccuracy = maxVal; 
dtTuningResult.bestParams = struct('MaxNumSplits', bestDTMaxSplits, 
'MinLeafSize', bestDTMinLeaf); 
tuningResults{end+1} = dtTuningResult; 
 
% Display best parameters 
fprintf('Best Decision Tree parameters: MaxNumSplits=%d, 
MinLeafSize=%d (CV Accuracy: %.4f)\n', ... 
    bestDTMaxSplits, bestDTMinLeaf, maxVal); 
 
% Evaluate best model on all folds 
dtFoldAcc = zeros(1, numFolds); 
for i = 1:numFolds 
    trainIdx = finalCVPartition.training(i); 
    testIdx = finalCVPartition.test(i); 
     
    % Train with best parameters 
    dtModel = fitctree(X(trainIdx,:), Y(trainIdx), ... 
        'MaxNumSplits', bestDTMaxSplits, 'MinLeafSize', 
bestDTMinLeaf); 
     
    predictions = predict(dtModel, X(testIdx,:)); 
    dtFoldAcc(i) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
end 
 
classifierNames{end+1} = 'Decision Tree (Tuned)'; 
allAccuracies(end+1,:) = dtFoldAcc; 
bestParams{end+1} = sprintf('MaxSplits=%d, MinLeaf=%d', 
bestDTMaxSplits, bestDTMinLeaf); 
 
%% 2. KNN Tuning 
disp('Tuning KNN...'); 
% Define parameter grid for KNN 
knnParams = struct(); 
knnParams.NumNeighbors = [1, 3, 5, 7, 9, 11, 15]; 
knnParams.Distance = {'euclidean', 'cityblock', 'cosine', 
'correlation'}; 
knnParams.Standardize = [true, false]; 
 
% Initialize storage for results 
knnResults = zeros(length(knnParams.NumNeighbors), 
length(knnParams.Distance), length(knnParams.Standardize)); 
 
% Perform grid search 
for i = 1:length(knnParams.NumNeighbors) 
    for j = 1:length(knnParams.Distance) 
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        for k = 1:length(knnParams.Standardize) 
            numNeighbors = knnParams.NumNeighbors(i); 
            distance = knnParams.Distance{j}; 
            standardize = knnParams.Standardize(k); 
             
            % Use cross-validation to evaluate this parameter 
combination 
            cvAcc = zeros(1, tuningCVPartition.NumTestSets); 
            for fold = 1:tuningCVPartition.NumTestSets 
                trainIdx = tuningCVPartition.training(fold); 
                testIdx = tuningCVPartition.test(fold); 
                 
                knnModel = fitcknn(X(trainIdx,:), Y(trainIdx), ... 
                    'NumNeighbors', numNeighbors, 'Distance', 
distance, 'Standardize', standardize); 
                 
                predictions = predict(knnModel, X(testIdx,:)); 
                cvAcc(fold) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
            end 
             
            % Store average accuracy for this parameter combination 
            knnResults(i, j, k) = mean(cvAcc); 
        end 
    end 
end 
 
% Find best parameters 
[maxVal, maxIdx] = max(knnResults(:)); 
[i_best, j_best, k_best] = ind2sub(size(knnResults), maxIdx); 
bestKnnNeighbors = knnParams.NumNeighbors(i_best); 
bestKnnDistance = knnParams.Distance{j_best}; 
bestKnnStandardize = knnParams.Standardize(k_best); 
 
% Store tuning results 
knnTuningResult = struct(); 
knnTuningResult.paramGrid = knnResults; 
knnTuningResult.bestAccuracy = maxVal; 
knnTuningResult.bestParams = struct('NumNeighbors', 
bestKnnNeighbors, ... 
                                   'Distance', bestKnnDistance, ... 
                                   'Standardize', 
bestKnnStandardize); 
tuningResults{end+1} = knnTuningResult; 
 
% Display best parameters 
fprintf('Best KNN parameters: NumNeighbors=%d, Distance=%s, 
Standardize=%d (CV Accuracy: %.4f)\n', ... 
    bestKnnNeighbors, bestKnnDistance, bestKnnStandardize, maxVal); 
 
% Evaluate best model on all folds 
knnFoldAcc = zeros(1, numFolds); 
for i = 1:numFolds 
    trainIdx = finalCVPartition.training(i); 
    testIdx = finalCVPartition.test(i); 
     
    % Train with best parameters 
    knnModel = fitcknn(X(trainIdx,:), Y(trainIdx), ... 
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        'NumNeighbors', bestKnnNeighbors, 'Distance', 
bestKnnDistance, 'Standardize', bestKnnStandardize); 
     
    predictions = predict(knnModel, X(testIdx,:)); 
    knnFoldAcc(i) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
end 
 
classifierNames{end+1} = sprintf('k-NN (k=%d, %s)', bestKnnNeighbors, 
bestKnnDistance); 
allAccuracies(end+1,:) = knnFoldAcc; 
bestParams{end+1} = sprintf('k=%d, dist=%s, std=%d', 
bestKnnNeighbors, bestKnnDistance, bestKnnStandardize); 
 
%% 3. SVM Tuning 
disp('Tuning SVM...'); 
% Define parameter grid for SVM 
svmParams = struct(); 
svmParams.KernelFunction = {'linear', 'rbf', 'polynomial'}; 
svmParams.BoxConstraint = [0.1, 1, 10, 100]; 
svmParams.KernelScale = [0.1, 1, 10]; 
svmParams.Coding = {'onevsone', 'onevsall'}; 
 
% Initialize storage for results - this will be sparse because not 
all combinations make sense 
svmResults = zeros(length(svmParams.KernelFunction), 
length(svmParams.BoxConstraint), ... 
                 length(svmParams.KernelScale), 
length(svmParams.Coding)); 
 
% Perform grid search - Using a simpler approach for SVM due to 
computational intensity 
bestSVMAcc = 0; 
bestSVMKernel = ''; 
bestSVMBoxConstraint = 0; 
bestSVMKernelScale = 0; 
bestSVMCoding = ''; 
 
% We'll use a more focused search for SVM due to computational 
complexity 
for i = 1:length(svmParams.KernelFunction) 
    for j = 1:length(svmParams.BoxConstraint) 
        for k = 1:length(svmParams.KernelScale) 
            for l = 1:length(svmParams.Coding) 
                kernelFunc = svmParams.KernelFunction{i}; 
                boxConstraint = svmParams.BoxConstraint(j); 
                kernelScale = svmParams.KernelScale(k); 
                coding = svmParams.Coding{l}; 
                 
                % Use cross-validation to evaluate this parameter 
combination 
                cvAcc = 0; 
                 
                % For SVM we'll just do a single fold to save time 
during tuning 
                fold = 1; 
                trainIdx = tuningCVPartition.training(fold); 
                testIdx = tuningCVPartition.test(fold); 
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                try 
                    svmModel = fitcecoc(X(trainIdx,:), 
Y(trainIdx), ... 
                        'Learners', templateSVM('KernelFunction', 
kernelFunc, ... 
                                               'BoxConstraint', 
boxConstraint, ... 
                                               'KernelScale', 
kernelScale), ... 
                        'Coding', coding); 
                     
                    predictions = predict(svmModel, X(testIdx,:)); 
                    cvAcc = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
                     
                    % Store result 
                    svmResults(i, j, k, l) = cvAcc; 
                     
                    % Update best if better 
                    if cvAcc > bestSVMAcc 
                        bestSVMAcc = cvAcc; 
                        bestSVMKernel = kernelFunc; 
                        bestSVMBoxConstraint = boxConstraint; 
                        bestSVMKernelScale = kernelScale; 
                        bestSVMCoding = coding; 
                    end 
                catch 
                    % Some parameter combinations might cause errors 
                    svmResults(i, j, k, l) = 0; 
                end 
            end 
        end 
    end 
end 
 
% Store tuning results 
svmTuningResult = struct(); 
svmTuningResult.paramGrid = svmResults; 
svmTuningResult.bestAccuracy = bestSVMAcc; 
svmTuningResult.bestParams = struct('KernelFunction', 
bestSVMKernel, ... 
                                   'BoxConstraint', 
bestSVMBoxConstraint, ... 
                                   'KernelScale', 
bestSVMKernelScale, ... 
                                   'Coding', bestSVMCoding); 
tuningResults{end+1} = svmTuningResult; 
 
% Display best parameters 
fprintf('Best SVM parameters: Kernel=%s, BoxConstraint=%.2f, 
KernelScale=%.2f, Coding=%s (CV Accuracy: %.4f)\n', ... 
    bestSVMKernel, bestSVMBoxConstraint, bestSVMKernelScale, 
bestSVMCoding, bestSVMAcc); 
 
% Evaluate best model on all folds 
svmFoldAcc = zeros(1, numFolds); 
for i = 1:numFolds 
    trainIdx = finalCVPartition.training(i); 
    testIdx = finalCVPartition.test(i); 
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    % Train with best parameters 
    svmModel = fitcecoc(X(trainIdx,:), Y(trainIdx), ... 
        'Learners', templateSVM('KernelFunction', bestSVMKernel, ... 
                               'BoxConstraint', 
bestSVMBoxConstraint, ... 
                               'KernelScale', 
bestSVMKernelScale), ... 
        'Coding', bestSVMCoding); 
     
    predictions = predict(svmModel, X(testIdx,:)); 
    svmFoldAcc(i) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
end 
 
classifierNames{end+1} = sprintf('SVM (%s)', bestSVMKernel); 
allAccuracies(end+1,:) = svmFoldAcc; 
bestParams{end+1} = sprintf('Kernel=%s, C=%.1f, Scale=%.1f', 
bestSVMKernel, bestSVMBoxConstraint, bestSVMKernelScale); 
 
%% 4. Random Forest / Ensemble Tuning 
disp('Tuning Random Forest...'); 
% Define parameter grid for Random Forest 
rfParams = struct(); 
rfParams.Method = {'Bag', 'GentleBoost', 'LogitBoost', 'AdaBoostM2'}; 
rfParams.NumLearningCycles = [10, 50, 100, 200]; 
rfParams.LearnRate = [0.1, 0.5, 1.0]; % Only for boosting methods 
 
% Initialize storage for results 
rfResults = zeros(length(rfParams.Method), 
length(rfParams.NumLearningCycles), length(rfParams.LearnRate)); 
 
% Perform grid search 
bestRFAcc = 0; 
bestRFMethod = ''; 
bestRFCycles = 0; 
bestRFLearnRate = 0; 
 
for i = 1:length(rfParams.Method) 
    for j = 1:length(rfParams.NumLearningCycles) 
        for k = 1:length(rfParams.LearnRate) 
            method = rfParams.Method{i}; 
            cycles = rfParams.NumLearningCycles(j); 
            learnRate = rfParams.LearnRate(k); 
             
            % Skip LearnRate for Bagging 
            if strcmp(method, 'Bag') && k > 1 
                continue; 
            end 
             
            % Use cross-validation to evaluate this parameter 
combination 
            cvAcc = zeros(1, tuningCVPartition.NumTestSets); 
            try 
                for fold = 1:tuningCVPartition.NumTestSets 
                    trainIdx = tuningCVPartition.training(fold); 
                    testIdx = tuningCVPartition.test(fold); 
                     
                    if strcmp(method, 'Bag') 
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                        % Bagging doesn't use learning rate 
                        rfModel = fitcensemble(X(trainIdx,:), 
Y(trainIdx), ... 
                            'Method', method, 'NumLearningCycles', 
cycles); 
                    else 
                        % Boosting methods use learning rate 
                        rfModel = fitcensemble(X(trainIdx,:), 
Y(trainIdx), ... 
                            'Method', method, 'NumLearningCycles', 
cycles, 'LearnRate', learnRate); 
                    end 
                     
                    predictions = predict(rfModel, X(testIdx,:)); 
                    cvAcc(fold) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
                end 
                 
                % Store average accuracy for this parameter 
combination 
                meanAcc = mean(cvAcc); 
                rfResults(i, j, k) = meanAcc; 
                 
                % Update best if better 
                if meanAcc > bestRFAcc 
                    bestRFAcc = meanAcc; 
                    bestRFMethod = method; 
                    bestRFCycles = cycles; 
                    if ~strcmp(method, 'Bag') 
                        bestRFLearnRate = learnRate; 
                    end 
                end 
            catch 
                % Some combinations might cause errors 
                rfResults(i, j, k) = 0; 
            end 
        end 
    end 
end 
 
% Store tuning results 
rfTuningResult = struct(); 
rfTuningResult.paramGrid = rfResults; 
rfTuningResult.bestAccuracy = bestRFAcc; 
if strcmp(bestRFMethod, 'Bag') 
    rfTuningResult.bestParams = struct('Method', bestRFMethod, 
'NumLearningCycles', bestRFCycles); 
    paramStr = sprintf('Method=%s, Cycles=%d', bestRFMethod, 
bestRFCycles); 
else 
    rfTuningResult.bestParams = struct('Method', bestRFMethod, ... 
                                      'NumLearningCycles', 
bestRFCycles, ... 
                                      'LearnRate', bestRFLearnRate); 
    paramStr = sprintf('Method=%s, Cycles=%d, LearnRate=%.1f', ... 
                       bestRFMethod, bestRFCycles, bestRFLearnRate); 
end 
tuningResults{end+1} = rfTuningResult; 
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% Display best parameters 
fprintf('Best Random Forest parameters: %s (CV Accuracy: %.4f)\n', 
paramStr, bestRFAcc); 
 
% Evaluate best model on all folds 
rfFoldAcc = zeros(1, numFolds); 
for i = 1:numFolds 
    trainIdx = finalCVPartition.training(i); 
    testIdx = finalCVPartition.test(i); 
     
    % Train with best parameters 
    if strcmp(bestRFMethod, 'Bag') 
        rfModel = fitcensemble(X(trainIdx,:), Y(trainIdx), ... 
            'Method', bestRFMethod, 'NumLearningCycles', 
bestRFCycles); 
    else 
        rfModel = fitcensemble(X(trainIdx,:), Y(trainIdx), ... 
            'Method', bestRFMethod, 'NumLearningCycles', 
bestRFCycles, 'LearnRate', bestRFLearnRate); 
    end 
     
    predictions = predict(rfModel, X(testIdx,:)); 
    rfFoldAcc(i) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
end 
 
classifierNames{end+1} = sprintf('Ensemble (%s)', bestRFMethod); 
allAccuracies(end+1,:) = rfFoldAcc; 
bestParams{end+1} = paramStr; 
 
%% 5. Naive Bayes Tuning 
disp('Tuning Naive Bayes...'); 
% Define parameter grid for Naive Bayes 
nbParams = struct(); 
nbParams.DistributionNames = { 
    'normal',  % Single distribution for all features 
    'kernel',  % Single distribution for all features 
    'mvmn'     % Multivariate multinormal distribution 
}; 
 
% For per-predictor distributions (if needed) 
% Get number of predictors 
numPredictors = size(X, 2); 
 
% Create cell arrays with per-predictor distributions 
normalAll = repmat({'normal'}, 1, numPredictors); 
kernelAll = repmat({'kernel'}, 1, numPredictors); 
mixedDist = cell(1, numPredictors); 
for i = 1:numPredictors 
    if mod(i, 2) == 0 
        mixedDist{i} = 'normal'; 
    else 
        mixedDist{i} = 'kernel'; 
    end 
end 
 
% Add per-predictor distribution options 
nbParams.DistributionNames{end+1} = normalAll;  % All normal 
nbParams.DistributionNames{end+1} = kernelAll;  % All kernel 



263 

 

nbParams.DistributionNames{end+1} = mixedDist;  % Mixed normal/kernel 
 
% Initialize storage for results 
nbResults = zeros(length(nbParams.DistributionNames), 1); 
 
% Perform grid search 
for i = 1:length(nbParams.DistributionNames) 
    distNames = nbParams.DistributionNames{i}; 
     
    % Use cross-validation to evaluate this parameter combination 
    cvAcc = zeros(1, tuningCVPartition.NumTestSets); 
    for fold = 1:tuningCVPartition.NumTestSets 
        trainIdx = tuningCVPartition.training(fold); 
        testIdx = tuningCVPartition.test(fold); 
         
        % Try-catch to handle potential errors 
        try 
            nbModel = fitcnb(X(trainIdx,:), Y(trainIdx), 
'DistributionNames', distNames); 
             
            predictions = predict(nbModel, X(testIdx,:)); 
            cvAcc(fold) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
        catch ME 
            % If error occurs, log it and set accuracy to 0 
            fprintf('Error with distribution type %d: %s\n', i, 
ME.message); 
            cvAcc(fold) = 0; 
        end 
    end 
     
    % Store average accuracy for this parameter 
    nbResults(i) = mean(cvAcc); 
end 
 
% Find best parameters 
[bestNBAcc, bestNBIdx] = max(nbResults); 
bestNBDist = nbParams.DistributionNames{bestNBIdx}; 
 
% Store tuning results 
nbTuningResult = struct(); 
nbTuningResult.paramGrid = nbResults; 
nbTuningResult.bestAccuracy = bestNBAcc; 
nbTuningResult.bestParams = struct('DistributionNames', bestNBDist); 
tuningResults{end+1} = nbTuningResult; 
 
% Display best parameters 
if iscell(bestNBDist) && length(bestNBDist) > 1 
    % For per-predictor distributions, summarize 
    uniqueDists = unique(bestNBDist); 
    distCounts = cellfun(@(x) sum(strcmp(bestNBDist, x)), 
uniqueDists); 
    distStr = ''; 
    for d = 1:length(uniqueDists) 
        distStr = [distStr, sprintf('%s(%d) ', uniqueDists{d}, 
distCounts(d))]; 
    end 
    distStr = ['Mixed: ', distStr]; 
elseif iscell(bestNBDist) && length(bestNBDist) == 1 
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    distStr = bestNBDist{1}; 
else 
    distStr = bestNBDist; 
end 
 
fprintf('Best Naive Bayes parameters: Distribution=%s (CV 
Accuracy: %.4f)\n', distStr, bestNBAcc); 
 
% Evaluate best model on all folds 
nbFoldAcc = zeros(1, numFolds); 
for i = 1:numFolds 
    trainIdx = finalCVPartition.training(i); 
    testIdx = finalCVPartition.test(i); 
     
    % Train with best parameters 
    nbModel = fitcnb(X(trainIdx,:), Y(trainIdx), 'DistributionNames', 
bestNBDist); 
     
    predictions = predict(nbModel, X(testIdx,:)); 
    nbFoldAcc(i) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
end 
 
classifierNames{end+1} = sprintf('Naive Bayes (%s)', distStr); 
allAccuracies(end+1,:) = nbFoldAcc; 
bestParams{end+1} = sprintf('Distribution=%s', distStr); 
 
%% 6. LDA Tuning 
disp('Tuning LDA...'); 
 
% Define parameter grid for LDA 
ldaParams = struct(); 
% Full grid of discriminant types and gamma values (will be validated 
for each combination) 
ldaParams.DiscrimType = {'linear', 'quadratic', 'diagLinear', 
'diagQuadratic'}; 
ldaParams.Gamma = [0, 0.25, 0.5, 0.75, 1]; 
 
% Initialize storage for results 
ldaResults = zeros(length(ldaParams.DiscrimType), 
length(ldaParams.Gamma)); 
 
% Perform grid search 
for i = 1:length(ldaParams.DiscrimType) 
    for j = 1:length(ldaParams.Gamma) 
        discrimType = ldaParams.DiscrimType{i}; 
        gamma = ldaParams.Gamma(j); 
         
        % Skip invalid combinations (quadratic types with gamma not 0 
or 1) 
        if (strcmp(discrimType, 'quadratic') || strcmp(discrimType, 
'diagQuadratic')) && ... 
                (gamma > 0 && gamma < 1) 
            fprintf('Skipping invalid combination: %s with 
gamma=%.2f\n', discrimType, gamma); 
            ldaResults(i, j) = -Inf;  % Mark as invalid with -Inf 
            continue; 
        end 
         



265 

 

        % Use cross-validation to evaluate this parameter combination 
        cvAcc = zeros(1, tuningCVPartition.NumTestSets); 
        for fold = 1:tuningCVPartition.NumTestSets 
            trainIdx = tuningCVPartition.training(fold); 
            testIdx = tuningCVPartition.test(fold); 
             
            try 
                ldaModel = fitcdiscr(X(trainIdx,:), Y(trainIdx), ... 
                                  'DiscrimType', discrimType, 
'Gamma', gamma); 
                 
                predictions = predict(ldaModel, X(testIdx,:)); 
                cvAcc(fold) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
            catch ME 
                fprintf('Error with %s discriminant, 
gamma=%.2f: %s\n', ... 
                    discrimType, gamma, ME.message); 
                cvAcc(fold) = 0;  % Set accuracy to 0 if an error 
occurs 
            end 
        end 
         
        % Store average accuracy for this parameter combination 
        if all(cvAcc == 0) 
            ldaResults(i, j) = -Inf;  % Mark as invalid if all folds 
failed 
        else 
            ldaResults(i, j) = mean(cvAcc); 
        end 
    end 
end 
 
% Find best parameters (ignore -Inf values) 
validResults = ldaResults; 
validResults(validResults == -Inf) = -1;  % Convert -Inf to -1 for 
max function 
[maxVal, maxIdx] = max(validResults(:)); 
[i_best, j_best] = ind2sub(size(validResults), maxIdx); 
bestLDAType = ldaParams.DiscrimType{i_best}; 
bestLDAGamma = ldaParams.Gamma(j_best); 
 
% Store tuning results 
ldaTuningResult = struct(); 
ldaTuningResult.paramGrid = ldaResults; 
ldaTuningResult.bestAccuracy = maxVal; 
ldaTuningResult.bestParams = struct('DiscrimType', bestLDAType, 
'Gamma', bestLDAGamma); 
tuningResults{end+1} = ldaTuningResult; 
 
% Display best parameters 
fprintf('Best LDA parameters: DiscrimType=%s, Gamma=%.2f (CV 
Accuracy: %.4f)\n', ... 
    bestLDAType, bestLDAGamma, maxVal); 
 
% Evaluate best model on all folds 
ldaFoldAcc = zeros(1, numFolds); 
for i = 1:numFolds 
    trainIdx = finalCVPartition.training(i); 
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    testIdx = finalCVPartition.test(i); 
     
    % Train with best parameters 
    ldaModel = fitcdiscr(X(trainIdx,:), Y(trainIdx), ... 
                       'DiscrimType', bestLDAType, 'Gamma', 
bestLDAGamma); 
     
    predictions = predict(ldaModel, X(testIdx,:)); 
    ldaFoldAcc(i) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
end 
 
classifierNames{end+1} = sprintf('LDA (%s)', bestLDAType); 
allAccuracies(end+1,:) = ldaFoldAcc; 
bestParams{end+1} = sprintf('Type=%s, Gamma=%.2f', bestLDAType, 
bestLDAGamma); 
 
%% 7. Logistic Regression Tuning 
disp('Tuning Logistic Regression...'); 
% Define parameter grid for Logistic Regression 
logitParams = struct(); 
logitParams.Lambda = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1]; 
logitParams.Coding = {'onevsone', 'onevsall'}; 
 
% Initialize storage for results 
logitResults = zeros(length(logitParams.Lambda), 
length(logitParams.Coding)); 
 
% Perform grid search 
for i = 1:length(logitParams.Lambda) 
    for j = 1:length(logitParams.Coding) 
        lambda = logitParams.Lambda(i); 
        coding = logitParams.Coding{j}; 
         
        % Use cross-validation to evaluate this parameter combination 
        cvAcc = zeros(1, tuningCVPartition.NumTestSets); 
        for fold = 1:tuningCVPartition.NumTestSets 
            trainIdx = tuningCVPartition.training(fold); 
            testIdx = tuningCVPartition.test(fold); 
             
            template = templateLinear('Learner', 'logistic', 
'Lambda', lambda); 
            logitModel = fitcecoc(X(trainIdx,:), Y(trainIdx), ... 
                                'Learners', template, 'Coding', 
coding); 
             
            predictions = predict(logitModel, X(testIdx,:)); 
            cvAcc(fold) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
        end 
         
        % Store average accuracy for this parameter combination 
        logitResults(i, j) = mean(cvAcc); 
    end 
end 
 
% Find best parameters 
[maxVal, maxIdx] = max(logitResults(:)); 
[i_best, j_best] = ind2sub(size(logitResults), maxIdx); 
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bestLogitLambda = logitParams.Lambda(i_best); 
bestLogitCoding = logitParams.Coding{j_best}; 
 
% Store tuning results 
logitTuningResult = struct(); 
logitTuningResult.paramGrid = logitResults; 
logitTuningResult.bestAccuracy = maxVal; 
logitTuningResult.bestParams = struct('Lambda', bestLogitLambda, 
'Coding', bestLogitCoding); 
tuningResults{end+1} = logitTuningResult; 
 
% Display best parameters 
fprintf('Best Logistic Regression parameters: Lambda=%.6f, Coding=%s 
(CV Accuracy: %.4f)\n', ... 
    bestLogitLambda, bestLogitCoding, maxVal); 
 
% Evaluate best model on all folds 
logitFoldAcc = zeros(1, numFolds); 
for i = 1:numFolds 
    trainIdx = finalCVPartition.training(i); 
    testIdx = finalCVPartition.test(i); 
     
    % Train with best parameters 
    template = templateLinear('Learner', 'logistic', 'Lambda', 
bestLogitLambda); 
    logitModel = fitcecoc(X(trainIdx,:), Y(trainIdx), ... 
                        'Learners', template, 'Coding', 
bestLogitCoding); 
     
    predictions = predict(logitModel, X(testIdx,:)); 
    logitFoldAcc(i) = sum(predictions == Y(testIdx)) / 
length(Y(testIdx)); 
end 
 
classifierNames{end+1} = 'Logistic Regression (Tuned)'; 
allAccuracies(end+1,:) = logitFoldAcc; 
bestParams{end+1} = sprintf('Lambda=%.6f, Coding=%s', 
bestLogitLambda, bestLogitCoding); 
 
%% Summarize tuned model results 
 
% Calculate mean accuracies across folds 
meanAccuracies = mean(allAccuracies, 2); 
stdAccuracies = std(allAccuracies, 0, 2); 
 
% Create detailed results table 
foldNames = cell(1, numFolds); 
for i = 1:numFolds 
    foldNames{i} = sprintf('Fold%d', i); 
end 
 
% Create a table with fold-by-fold results 
detailedResultTable = array2table(allAccuracies, 'VariableNames', 
foldNames); 
detailedResultTable.Classifier = classifierNames'; 
detailedResultTable.Mean = meanAccuracies; 
detailedResultTable.StdDev = stdAccuracies; 
detailedResultTable.BestParameters = bestParams'; 
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% Reorder columns to put Classifier first 
detailedResultTable = detailedResultTable(:, ['Classifier', 
foldNames, {'Mean', 'StdDev', 'BestParameters'}]); 
 
% Display the detailed results 
disp('Hyperparameter Tuning Results:'); 
disp(detailedResultTable); 
 
% Save to CSV 
writetable(detailedResultTable, fullfile(baseDir, 
'tuned_classifier_results.csv')); 
 
% Create a boxplot to visualize the distribution of accuracies across 
folds 
figure('Position', [100, 100, 1200, 600], 'Name', 'Tuned Classifier 
Performance Distribution'); 
 
% Prepare data for boxplot 
boxplotData = allAccuracies';  % Transpose to get classifiers as 
groups 
boxplot(boxplotData, 'Labels', classifierNames); 
title('Distribution of Accuracies Across CV Folds (Tuned Models)', 
'FontSize', 14, 'FontWeight', 'bold'); 
ylabel('Accuracy', 'FontSize', 12); 
grid on; 
xtickangle(45); 
 
% Add individual points as scatter plot 
hold on; 
for i = 1:size(allAccuracies, 1) 
    % Plot the individual fold results as scattered points 
    scatter(repmat(i, 1, numFolds), allAccuracies(i,:), 50, 
'MarkerEdgeColor', [0 0.4 0.7], 'MarkerFaceColor', [0.3 0.6 0.9], 
'LineWidth', 1.5); 
end 
hold off; 
 
% Save the figure 
saveas(gcf, fullfile(baseDir, 'tuned_classifier_distributions.png')); 
saveas(gcf, fullfile(baseDir, 'tuned_classifier_distributions.fig')); 
 
%% Create bar chart for easier comparison of mean accuracies 
figure('Position', [100, 100, 1200, 600], 'Name', 'Tuned Classifier 
Mean Performance'); 
% Sort the classifiers by mean accuracy 
[sortedAccuracies, sortIdx] = sort(meanAccuracies, 'descend'); 
sortedClassifiers = classifierNames(sortIdx); 
sortedStdAccuracies = stdAccuracies(sortIdx); 
% Create bar chart 
barHandle = bar(sortedAccuracies, 'FaceColor', [0.3 0.6 0.9]); 
hold on; 
% Add error bars 
errorbar(1:length(sortedAccuracies), sortedAccuracies, 
sortedStdAccuracies, 'k', 'LineStyle', 'none', 'LineWidth', 1.5); 
% Customize the plot 
set(gca, 'XTick', 1:length(sortedClassifiers), 'XTickLabel', 
sortedClassifiers); 
title('Mean Accuracy of Tuned Classifiers (Ranked)', 'FontSize', 14, 
'FontWeight', 'bold'); 
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ylabel('Mean Accuracy', 'FontSize', 12); 
grid on; 
xtickangle(45); 
% Add value labels on top of bars 
for i = 1:length(sortedAccuracies) 
    text(i, sortedAccuracies(i) + 0.01, sprintf('%.4f', 
sortedAccuracies(i)), ... 
        'HorizontalAlignment', 'center', 'VerticalAlignment', 
'bottom', 'FontWeight', 'bold'); 
end 
% Save the figure 
saveas(gcf, fullfile(baseDir, 'tuned_classifier_ranking.png')); 
saveas(gcf, fullfile(baseDir, 'tuned_classifier_ranking.fig')); 
 
%% Create heatmaps for selected parameter grids 
disp('Generating parameter heatmaps...'); 
 
% Create a heatmap for Decision Tree parameters 
figure('Position', [100, 100, 900, 700], 'Name', 'Decision Tree 
Parameter Tuning'); 
dtGrid = tuningResults{1}.paramGrid; 
[X, Y] = meshgrid(dtParams.MinLeafSize, dtParams.MaxNumSplits); 
surf(X, Y, dtGrid); 
title('Decision Tree Parameter Tuning', 'FontSize', 14, 'FontWeight', 
'bold'); 
xlabel('Min Leaf Size', 'FontSize', 12); 
ylabel('Max Num Splits', 'FontSize', 12); 
zlabel('CV Accuracy', 'FontSize', 12); 
colormap('jet'); 
colorbar; 
view(45, 30); 
grid on; 
saveas(gcf, fullfile(baseDir, 'dt_parameter_tuning_3d.png')); 
 
% Create a 2D heatmap version for easier viewing 
figure('Position', [100, 100, 900, 700], 'Name', 'Decision Tree 
Parameter Tuning (Heatmap)'); 
h = heatmap(dtParams.MinLeafSize, dtParams.MaxNumSplits, dtGrid); 
h.Title = 'Decision Tree Parameter Tuning'; 
h.XLabel = 'Min Leaf Size'; 
h.YLabel = 'Max Num Splits'; 
colormap('jet'); 
saveas(gcf, fullfile(baseDir, 'dt_parameter_tuning_heatmap.png')); 
 
% Create a heatmap for KNN parameters (using the first standardize 
setting) 
figure('Position', [100, 100, 900, 700], 'Name', 'KNN Parameter 
Tuning'); 
knnGrid = squeeze(knnResults(:,:,1)); % First standardize setting 
h = heatmap(knnParams.Distance, knnParams.NumNeighbors, knnGrid); 
h.Title = 'KNN Parameter Tuning (Standardize=false)'; 
h.XLabel = 'Distance Metric'; 
h.YLabel = 'Number of Neighbors'; 
colormap('jet'); 
saveas(gcf, fullfile(baseDir, 'knn_parameter_tuning_heatmap.png')); 
 
%% Create visualizations for Random Forest / Ensemble tuning 
 
% Prepare to visualize Random Forest results 
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figure('Position', [100, 100, 1200, 700], 'Name', 'Random Forest 
Parameter Tuning'); 
 
% Since RF results are 3D (method, cycles, learn rate), we need to 
visualize carefully 
% Create one subplot for each ensemble method 
methods = rfParams.Method; 
cycles = rfParams.NumLearningCycles; 
rates = rfParams.LearnRate; 
 
% Create a 2x2 subplot layout 
for m = 1:length(methods) 
    subplot(2, 2, m); 
     
    % Extract data for this method 
    methodData = squeeze(rfResults(m, :, :)); 
     
    % For 'Bag' method, we only have data for first learn rate, so 
handle specially 
    if strcmp(methods{m}, 'Bag') 
        % For Bag method, just plot NumLearningCycles vs Accuracy 
        plot(cycles, methodData(:,1), 'o-', 'LineWidth', 2, 
'MarkerSize', 8, 'MarkerFaceColor', 'auto'); 
        title(['Method: ', methods{m}]); 
        xlabel('Number of Learning Cycles'); 
        ylabel('Cross-Validation Accuracy'); 
        grid on; 
    else 
        % For boosting methods, create heatmap of cycles vs learn 
rates 
        imagesc(methodData); 
        colormap('jet'); 
        colorbar; 
        title(['Method: ', methods{m}]); 
        xlabel('Learning Rate'); 
        ylabel('Number of Learning Cycles'); 
         
        % Set axis ticks 
        xticks(1:length(rates)); 
        xticklabels(arrayfun(@(x) sprintf('%.1f', x), rates, 
'UniformOutput', false)); 
        yticks(1:length(cycles)); 
        yticklabels(arrayfun(@(x) sprintf('%d', x), cycles, 
'UniformOutput', false)); 
    end 
end 
 
% Add overall title and adjust layout 
sgtitle('Random Forest / Ensemble Parameter Tuning', 'FontSize', 16, 
'FontWeight', 'bold'); 
set(gcf, 'Color', 'white'); 
saveas(gcf, fullfile(baseDir, 'rf_parameter_tuning.png')); 
saveas(gcf, fullfile(baseDir, 'rf_parameter_tuning.fig')); 
 
%% Create bar chart for each ensemble method showing best performance 
 
% Extract best accuracy for each method 
methodBestAcc = zeros(1, length(methods)); 
for m = 1:length(methods) 
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    methodSlice = rfResults(m, :, :); 
    methodBestAcc(m) = max(methodSlice(:)); 
end 
 
% Create bar chart 
figure('Position', [100, 100, 800, 600], 'Name', 'Ensemble Methods 
Comparison'); 
bar(methodBestAcc, 'FaceColor', [0.2 0.6 0.8]); 
grid on; 
title('Best Accuracy by Ensemble Method', 'FontSize', 14, 
'FontWeight', 'bold'); 
xlabel('Ensemble Method'); 
ylabel('Best Cross-Validation Accuracy'); 
xticks(1:length(methods)); 
xticklabels(methods); 
xtickangle(45); 
 
% Add data labels 
for i = 1:length(methodBestAcc) 
    text(i, methodBestAcc(i) + 0.01, sprintf('%.4f', 
methodBestAcc(i)), ... 
        'HorizontalAlignment', 'center', 'VerticalAlignment', 
'bottom', 'FontWeight', 'bold'); 
end 
saveas(gcf, fullfile(baseDir, 'ensemble_method_comparison.png')); 
 
%% Visualize Naive Bayes results 
figure('Position', [100, 100, 800, 600], 'Name', 'Naive Bayes 
Parameter Tuning'); 
 
% Convert complex distribution names to simpler labels for 
visualization 
distLabels = cell(size(nbParams.DistributionNames)); 
for i = 1:length(nbParams.DistributionNames) 
    dist = nbParams.DistributionNames{i}; 
    if iscell(dist) 
        if length(dist) == numPredictors 
            if all(strcmp(dist, 'normal')) 
                distLabels{i} = 'All Normal'; 
            elseif all(strcmp(dist, 'kernel')) 
                distLabels{i} = 'All Kernel'; 
            else 
                % Count distributions 
                normalCount = sum(strcmp(dist, 'normal')); 
                kernelCount = sum(strcmp(dist, 'kernel')); 
                distLabels{i} = sprintf('Mixed: %d normal, %d 
kernel', normalCount, kernelCount); 
            end 
        else 
            distLabels{i} = 'Custom'; 
        end 
    else 
        distLabels{i} = dist; 
    end 
end 
 
% Create bar chart of results 
bar(nbResults); 
grid on; 
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title('Naive Bayes Distribution Performance', 'FontSize', 14, 
'FontWeight', 'bold'); 
xlabel('Distribution Type'); 
ylabel('Cross-Validation Accuracy'); 
xticks(1:length(distLabels)); 
xticklabels(distLabels); 
xtickangle(45); 
 
% Add data labels 
for i = 1:length(nbResults) 
    text(i, nbResults(i) + 0.01, sprintf('%.4f', nbResults(i)), ... 
        'HorizontalAlignment', 'center', 'VerticalAlignment', 
'bottom', 'FontWeight', 'bold'); 
end 
saveas(gcf, fullfile(baseDir, 'nb_parameter_tuning.png')); 
 
%% Visualize LDA results 
figure('Position', [100, 100, 900, 700], 'Name', 'LDA Parameter 
Tuning'); 
 
% Since we have issues with the heatmap function, let's create a 
visualization  
% that shows the grid of results without using heatmap 
 
% First, replace -Inf with NaN for visualization 
ldaMat = ldaResults; 
ldaMat(ldaMat == -Inf) = NaN; 
 
% Create a 2D visualization 
imagesc(ldaMat); 
colormap('jet'); 
colorbar; 
 
% Set axis labels 
title('LDA Parameter Tuning', 'FontSize', 14, 'FontWeight', 'bold'); 
xlabel('Gamma'); 
ylabel('Discriminant Type'); 
 
% Set axis ticks 
xticks(1:length(ldaParams.Gamma)); 
xticklabels(arrayfun(@(x) sprintf('%.2f', x), ldaParams.Gamma, 
'UniformOutput', false)); 
yticks(1:length(ldaParams.DiscrimType)); 
yticklabels(ldaParams.DiscrimType); 
 
% Add grid and save 
grid on; 
saveas(gcf, fullfile(baseDir, 'lda_parameter_tuning_fixed.png')); 
 
%% Create combination 3D surface plot for best ensemble method 
figure('Position', [100, 100, 1000, 800], 'Name', 'Best Ensemble 
Method 3D Performance'); 
 
% Find the index of the best method 
[~, bestMethodIdx] = max(methodBestAcc); 
bestMethod = methods{bestMethodIdx}; 
 
% If the best method is not 'Bag', create 3D surface 
if ~strcmp(bestMethod, 'Bag') 
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    % Extract the data for the best method 
    methodData = squeeze(rfResults(bestMethodIdx, :, :)); 
     
    % Create mesh grid for 3D surface 
    [X, Y] = meshgrid(rates, cycles); 
     
    % Create surface plot 
    surf(X, Y, methodData); 
    title(['3D Performance Surface for ', bestMethod], 'FontSize', 
14, 'FontWeight', 'bold'); 
    xlabel('Learning Rate'); 
    ylabel('Number of Learning Cycles'); 
    zlabel('Cross-Validation Accuracy'); 
    colormap('jet'); 
    colorbar; 
    view(45, 30); 
else 
    % For Bag method, create a different visualization 
    bagData = squeeze(rfResults(1, :, 1)); % Only first column has 
data 
     
    % Plot the performance vs cycles 
    plot(cycles, bagData, 'o-', 'LineWidth', 2, 'MarkerSize', 8, 
'MarkerFaceColor', 'auto'); 
    title(['Performance for ', bestMethod, ' Method'], 'FontSize', 
14, 'FontWeight', 'bold'); 
    xlabel('Number of Learning Cycles'); 
    ylabel('Cross-Validation Accuracy'); 
    grid on; 
end 
 
saveas(gcf, fullfile(baseDir, ['best_ensemble_', bestMethod, 
'_performance.png'])); 
 
%% Create ROC curves for the best models 
%% Create ROC curves for the best models 
disp('Generating ROC curves for best models...'); 
 
% Create a new figure for ROC curves 
figure('Position', [100, 100, 1200, 800], 'Name', 'ROC Curves for 
Best Models'); 
 
% Define color map for different classifiers 
colorMap = jet(length(classifierNames)); 
lineStyles = {'-', '--', ':', '-.', '-', '--', ':'}; 
 
% AUC values to store 
aucValues = zeros(length(classifierNames), 1); 
 
% Debug information 
fprintf('Number of observations: %d\n', length(Y)); 
fprintf('Number of folds: %d\n', numFolds); 
 
% Check if finalCVPartition is valid 
if ~exist('finalCVPartition', 'var') || isempty(finalCVPartition) 
    disp('Warning: finalCVPartition is not valid, creating a new 
one...'); 
    finalCVPartition = cvpartition(Y, 'KFold', numFolds); 
end 
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% We'll use the last fold for ROC curve demonstration (with safety 
check) 
testFold = min(numFolds, finalCVPartition.NumTestSets); 
fprintf('Using test fold %d of %d\n', testFold, 
finalCVPartition.NumTestSets); 
 
% Get training and test indices safely 
try 
    trainIdx = finalCVPartition.training(testFold); 
    testIdx = finalCVPartition.test(testFold); 
     
    % Verify indices 
    fprintf('Number of training samples: %d\n', sum(trainIdx)); 
    fprintf('Number of test samples: %d\n', sum(testIdx)); 
     
    if max(find(trainIdx)) > size(X, 1) || max(find(testIdx)) > 
size(X, 1) 
        error('Indices out of bounds for data matrix'); 
    end 
catch ME 
    disp('Error getting partition indices, using simple split 
instead'); 
    disp(ME.message); 
     
    % Create a simple 80/20 split as fallback 
    n = length(Y); 
    trainFraction = 0.8; 
    shuffledIndices = randperm(n); 
    trainSize = floor(trainFraction * n); 
     
    trainIdx = false(n, 1); 
    trainIdx(shuffledIndices(1:trainSize)) = true; 
    testIdx = ~trainIdx; 
     
    fprintf('Fallback: %d training samples, %d test samples\n', 
sum(trainIdx), sum(testIdx)); 
end 
 
% Plot ROC for each classifier 
hold on; 
legends = {}; 
 
for i = 1:length(classifierNames) 
    try 
        % Extract training and testing data 
        Xtrain = X(trainIdx,:); 
        Ytrain = Y(trainIdx); 
        Xtest = X(testIdx,:); 
        Ytest = Y(testIdx); 
         
        fprintf('Training classifier %d: %s\n', i, 
classifierNames{i}); 
         
        % Train the model with best parameters 
        switch i 
            case 1 % Decision Tree 
                fprintf('  Training Decision Tree with MaxSplits=%d, 
MinLeaf=%d\n', bestDTMaxSplits, bestDTMinLeaf); 
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                model = fitctree(Xtrain, Ytrain, 'MaxNumSplits', 
bestDTMaxSplits, 'MinLeafSize', bestDTMinLeaf); 
            case 2 % KNN 
                fprintf('  Training KNN with k=%d, Distance=%s, 
Standardize=%d\n', bestKnnNeighbors, bestKnnDistance, 
bestKnnStandardize); 
                model = fitcknn(Xtrain, Ytrain, 'NumNeighbors', 
bestKnnNeighbors, 'Distance', bestKnnDistance, 'Standardize', 
bestKnnStandardize); 
            case 3 % SVM 
                fprintf('  Training SVM with Kernel=%s, C=%f, 
Scale=%f\n', bestSVMKernel, bestSVMBoxConstraint, 
bestSVMKernelScale); 
                model = fitcecoc(Xtrain, Ytrain, 'Learners', 
templateSVM('KernelFunction', bestSVMKernel, 'BoxConstraint', 
bestSVMBoxConstraint, 'KernelScale', bestSVMKernelScale), 'Coding', 
bestSVMCoding); 
            case 4 % Random Forest/Ensemble 
                if strcmp(bestRFMethod, 'Bag') 
                    fprintf('  Training %s with Cycles=%d\n', 
bestRFMethod, bestRFCycles); 
                    model = fitcensemble(Xtrain, Ytrain, 'Method', 
bestRFMethod, 'NumLearningCycles', bestRFCycles); 
                else 
                    fprintf('  Training %s with Cycles=%d, 
LearnRate=%f\n', bestRFMethod, bestRFCycles, bestRFLearnRate); 
                    model = fitcensemble(Xtrain, Ytrain, 'Method', 
bestRFMethod, 'NumLearningCycles', bestRFCycles, 'LearnRate', 
bestRFLearnRate); 
                end 
            case 5 % Naive Bayes 
                fprintf('  Training Naive Bayes\n'); 
                model = fitcnb(Xtrain, Ytrain, 'DistributionNames', 
bestNBDist); 
            case 6 % LDA 
                fprintf('  Training LDA with Type=%s, Gamma=%f\n', 
bestLDAType, bestLDAGamma); 
                model = fitcdiscr(Xtrain, Ytrain, 'DiscrimType', 
bestLDAType, 'Gamma', bestLDAGamma); 
            case 7 % Logistic Regression 
                fprintf('  Training Logistic Regression with 
Lambda=%f, Coding=%s\n', bestLogitLambda, bestLogitCoding); 
                template = templateLinear('Learner', 'logistic', 
'Lambda', bestLogitLambda); 
                model = fitcecoc(Xtrain, Ytrain, 'Learners', 
template, 'Coding', bestLogitCoding); 
        end 
         
        % Get ROC curve data 
        % For multiclass problems, we'll use one-vs-all approach 
        uniqueClasses = unique(Ytrain); 
        numClasses = length(uniqueClasses); 
         
        fprintf('  Generating ROC curve (Classes=%d)\n', numClasses); 
         
        % Convert to binary classification problem (first class vs 
others) 
        % For simplicity, we'll just use the first class vs rest 
        yTestBinary = double(Ytest == uniqueClasses(1)); 
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        % Get prediction scores 
        try 
            if isprop(model, 'ClassNames') && 
length(model.ClassNames) == 2 
                % Binary classifier case 
                [~, scores] = predict(model, Xtest); 
                scores = scores(:,2); % Use scores for positive class 
            else 
                % Multiclass case 
                [~, scores] = predict(model, Xtest); 
                if size(scores, 2) >= numClasses 
                    % Use scores for the first class 
                    classIdx = find(model.ClassNames == 
uniqueClasses(1)); 
                    if ~isempty(classIdx) 
                        scores = scores(:, classIdx); 
                    else 
                        scores = scores(:, 1); 
                    end 
                else 
                    % Fall back to binary predictions 
                    preds = predict(model, Xtest); 
                    scores = double(preds == uniqueClasses(1)); 
                end 
            end 
        catch ME 
            fprintf('  Error getting scores: %s\n', ME.message); 
            % If we can't get scores, just use binary predictions 
            preds = predict(model, Xtest); 
            scores = double(preds == uniqueClasses(1)); 
        end 
         
        % Calculate ROC curve 
        [fpr, tpr, ~] = perfcurve(yTestBinary, scores, 1); 
        auc = trapz(fpr, tpr); % Calculate AUC 
        aucValues(i) = auc; 
         
        % Plot ROC curve 
        plot(fpr, tpr, 'Color', colorMap(i,:), 'LineWidth', 2, 
'LineStyle', lineStyles{mod(i-1, length(lineStyles))+1}); 
        legends{end+1} = sprintf('%s (AUC=%.4f)', classifierNames{i}, 
auc); 
         
        fprintf('  AUC for %s: %.4f\n', classifierNames{i}, auc); 
    catch ME 
        fprintf('Error processing classifier %d (%s): %s\n', i, 
classifierNames{i}, ME.message); 
        aucValues(i) = NaN; 
        legends{end+1} = sprintf('%s (Error)', classifierNames{i}); 
    end 
end 
 
% Plot reference line 
plot([0 1], [0 1], 'k--'); 
legends{end+1} = 'Random Guess'; 
 
% Customize the plot 
xlabel('False Positive Rate', 'FontSize', 12); 
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ylabel('True Positive Rate', 'FontSize', 12); 
title('ROC Curves for Tuned Classifiers (First Class vs Rest)', 
'FontSize', 14, 'FontWeight', 'bold'); 
legend(legends, 'Location', 'southeast', 'FontSize', 10); 
grid on; 
axis square; 
 
% Save the figure 
saveas(gcf, fullfile(baseDir, 'roc_curves.png')); 
saveas(gcf, fullfile(baseDir, 'roc_curves.fig')); 
 
%% Create AUC comparison bar chart 
figure('Position', [100, 100, 1000, 600], 'Name', 'AUC Comparison'); 
 
% Create bar chart of AUC values 
bar(aucValues, 'FaceColor', [0.3 0.6 0.9]); 
grid on; 
title('Area Under ROC Curve (AUC) by Classifier', 'FontSize', 14, 
'FontWeight', 'bold'); 
xlabel('Classifier'); 
ylabel('AUC'); 
xticks(1:length(classifierNames)); 
xticklabels(classifierNames); 
xtickangle(45); 
 
% Add data labels 
for i = 1:length(aucValues) 
    if ~isnan(aucValues(i)) 
        text(i, aucValues(i) + 0.01, sprintf('%.4f', 
aucValues(i)), ... 
            'HorizontalAlignment', 'center', 'VerticalAlignment', 
'bottom', 'FontWeight', 'bold'); 
    end 
end 
 
saveas(gcf, fullfile(baseDir, 'auc_comparison.png')); 
saveas(gcf, fullfile(baseDir, 'auc_comparison.fig')); 
 
 
%% Create confusion matrices for best performing classifier 
 
% Find the best classifier based on AUC 
[bestAUC, bestClassifierIdx] = max(aucValues); 
bestClassifierName = classifierNames{bestClassifierIdx}; 
 
fprintf('Creating confusion matrix for best classifier: %s 
(AUC=%.4f)\n', bestClassifierName, bestAUC); 
 
figure('Position', [100, 100, 800, 600], 'Name', ['Confusion Matrix - 
', bestClassifierName]); 
 
% Train the best model 
Xtrain = X(trainIdx,:); 
Ytrain = Y(trainIdx); 
Xtest = X(testIdx,:); 
Ytest = Y(testIdx); 
 
% Train model with best parameters 
switch bestClassifierIdx 
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    case 1 % Decision Tree 
        model = fitctree(Xtrain, Ytrain, 'MaxNumSplits', 
bestDTMaxSplits, 'MinLeafSize', bestDTMinLeaf); 
    case 2 % KNN 
        model = fitcknn(Xtrain, Ytrain, 'NumNeighbors', 
bestKnnNeighbors, 'Distance', bestKnnDistance, 'Standardize', 
bestKnnStandardize); 
    case 3 % SVM 
        model = fitcecoc(Xtrain, Ytrain, 'Learners', 
templateSVM('KernelFunction', bestSVMKernel, 'BoxConstraint', 
bestSVMBoxConstraint, 'KernelScale', bestSVMKernelScale), 'Coding', 
bestSVMCoding); 
    case 4 % Random Forest/Ensemble 
        if strcmp(bestRFMethod, 'Bag') 
            model = fitcensemble(Xtrain, Ytrain, 'Method', 
bestRFMethod, 'NumLearningCycles', bestRFCycles); 
        else 
            model = fitcensemble(Xtrain, Ytrain, 'Method', 
bestRFMethod, 'NumLearningCycles', bestRFCycles, 'LearnRate', 
bestRFLearnRate); 
        end 
    case 5 % Naive Bayes 
        model = fitcnb(Xtrain, Ytrain, 'DistributionNames', 
bestNBDist); 
    case 6 % LDA 
        model = fitcdiscr(Xtrain, Ytrain, 'DiscrimType', bestLDAType, 
'Gamma', bestLDAGamma); 
    case 7 % Logistic Regression 
        template = templateLinear('Learner', 'logistic', 'Lambda', 
bestLogitLambda); 
        model = fitcecoc(Xtrain, Ytrain, 'Learners', template, 
'Coding', bestLogitCoding); 
end 
 
% Get predictions 
predictions = predict(model, Xtest); 
 
% Get unique classes and ensure they're in the correct order 
uniqueClasses = unique([Ytrain; Ytest]); 
numClasses = length(uniqueClasses); 
 
% Create confusion matrix 
cm = confusionmat(Ytest, predictions); 
 
% In case not all classes appear in the test set, ensure the 
confusion matrix has the right dimensions 
if size(cm, 1) < numClasses 
    tempCM = zeros(numClasses, numClasses); 
    tempCM(1:size(cm,1), 1:size(cm,2)) = cm; 
    cm = tempCM; 
end 
 
% Plot confusion matrix 
h = heatmap(cm); 
h.XDisplayLabels = cellstr(string(uniqueClasses)); 
h.YDisplayLabels = cellstr(string(uniqueClasses)); 
h.Title = sprintf('Confusion Matrix - %s', bestClassifierName); 
h.XLabel = 'Predicted Class'; 
h.YLabel = 'True Class'; 
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h.ColorbarVisible = 'on'; 
 
% Add text annotations for percentages 
% Convert to accuracy on a per-class basis 
rowSums = sum(cm, 2); 
cm_percent = cm ./ rowSums * 100; 
 
% Save the figure 
saveas(gcf, fullfile(baseDir, 'best_classifier_confusion.png')); 
saveas(gcf, fullfile(baseDir, 'best_classifier_confusion.fig')); 
 
 
%% Save the tuning results for future reference 
disp('Saving tuning results...'); 
save(fullfile(baseDir, 'hyperparameter_tuning_results.mat'), ... 
    'tuningResults', 'bestParams', 'classifierNames', 
'allAccuracies', 'X', 'Y'); 
 
%% Train the best overall model 
disp('Training the best overall model...'); 
 
% Find the best classifier 
[bestAccuracy, bestClassifierIdx] = max(meanAccuracies); 
bestClassifierName = classifierNames{bestClassifierIdx}; 
 
% Train on all data 
disp(['Best classifier: ' bestClassifierName ' with mean accuracy: ' 
num2str(bestAccuracy)]); 
disp('Training final model on all data...'); 
 
% Train final model based on the best classifier 
switch bestClassifierIdx 
    case 1 % Decision Tree 
        finalModel = fitctree(X, Y, ... 
            'MaxNumSplits', bestDTMaxSplits, 'MinLeafSize', 
bestDTMinLeaf); 
    case 2 % KNN 
        finalModel = fitcknn(X, Y, ... 
            'NumNeighbors', bestKnnNeighbors, 'Distance', 
bestKnnDistance, ... 
            'Standardize', bestKnnStandardize); 
    case 3 % SVM 
        finalModel = fitcecoc(X, Y, ... 
            'Learners', templateSVM('KernelFunction', 
bestSVMKernel, ... 
                                  'BoxConstraint', 
bestSVMBoxConstraint, ... 
                                  'KernelScale', 
bestSVMKernelScale), ... 
            'Coding', bestSVMCoding); 
    case 4 % Random Forest/Ensemble 
        if strcmp(bestRFMethod, 'Bag') 
            finalModel = fitcensemble(X, Y, ... 
                'Method', bestRFMethod, 'NumLearningCycles', 
bestRFCycles); 
        else 
            finalModel = fitcensemble(X, Y, ... 
                'Method', bestRFMethod, 'NumLearningCycles', 
bestRFCycles, ... 
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                'LearnRate', bestRFLearnRate); 
        end 
    case 5 % Naive Bayes 
        finalModel = fitcnb(X, Y, 'DistributionNames', bestNBDist); 
    case 6 % LDA 
        finalModel = fitcdiscr(X, Y, ... 
            'DiscrimType', bestLDAType, 'Gamma', bestLDAGamma); 
    case 7 % Logistic Regression 
        template = templateLinear('Learner', 'logistic', 'Lambda', 
bestLogitLambda); 
        finalModel = fitcecoc(X, Y, ... 
            'Learners', template, 'Coding', bestLogitCoding); 
end 
 
% Save the final model 
save(fullfile(baseDir, 'final_best_model.mat'), 'finalModel', 
'bestClassifierName', 'bestClassifierIdx', 'bestParams'); 
 
disp('Hyperparameter tuning complete. The best model has been 
saved.'); 
 
%% Plot feature importance for applicable models 
if ismember(bestClassifierIdx, [1, 4]) % Decision Tree or Random 
Forest 
    disp('Calculating feature importance...'); 
     
    figure('Position', [100, 100, 1000, 600], 'Name', 'Feature 
Importance'); 
     
    if bestClassifierIdx == 1 % Decision Tree 
        % Get importance 
        importance = finalModel.predictorImportance; 
    else % Random Forest/Ensemble 
        % Get importance 
        importance = finalModel.predictorImportance; 
    end 
     
    % Sort features by importance 
    [sortedImp, sortIdx] = sort(importance, 'descend'); 
    featureNames = rocFeatures(sortIdx); 
     
    % Plot 
    barh(sortedImp); 
    yticks(1:length(featureNames)); 
    yticklabels(featureNames); 
    xlabel('Predictor Importance', 'FontSize', 12); 
    title(['Feature Importance for ' bestClassifierName], 'FontSize', 
14, 'FontWeight', 'bold'); 
    grid on; 
     
    % Save the figure 
    saveas(gcf, fullfile(baseDir, 'feature_importance.png')); 
    saveas(gcf, fullfile(baseDir, 'feature_importance.fig')); 
end 
 
%% Final report 
disp('Generating final report...'); 
 
% Create a summary figure with key results 
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figure('Position', [100, 100, 1200, 900], 'Name', 'Hyperparameter 
Tuning Summary'); 
 
% Create a 2x2 subplot layout 
subplot(2, 2, 1); 
barHandle = bar(sortedAccuracies, 'FaceColor', [0.3 0.6 0.9]); 
hold on; 
errorbar(1:length(sortedAccuracies), sortedAccuracies, 
sortedStdAccuracies, 'k', 'LineStyle', 'none', 'LineWidth', 1.5); 
set(gca, 'XTick', 1:length(sortedClassifiers), 'XTickLabel', 
sortedClassifiers); 
title('Mean Accuracy of Tuned Classifiers', 'FontSize', 12); 
ylabel('Mean Accuracy', 'FontSize', 10); 
grid on; 
xtickangle(45); 
set(gca, 'FontSize', 8); 
 
% Best model confusion matrix 
subplot(2, 2, 2); 
bestCM = allConfMats(:,:,bestClassifierIdx); 
bestCMNorm = bestCM ./ sum(bestCM, 2); 
imagesc(bestCMNorm); 
colormap('jet'); 
colorbar; 
title(['Confusion Matrix - ' bestClassifierName], 'FontSize', 12); 
xlabel('Predicted Class', 'FontSize', 10); 
ylabel('True Class', 'FontSize', 10); 
set(gca, 'FontSize', 8); 
axis square; 
 
% ROC curves (simplified version) 
subplot(2, 2, 3); 
[~, topClassifiers] = sort(aucValues, 'descend'); 
top3Classifiers = topClassifiers(1:min(3, length(topClassifiers))); 
 
hold on; 
for i = 1:length(top3Classifiers) 
    idx = top3Classifiers(i); 
     
    % Train the model with best parameters for ROC 
    switch idx 
        case 1 % Decision Tree 
            model = fitctree(X(trainIdx,:), Y(trainIdx), ... 
                'MaxNumSplits', bestDTMaxSplits, 'MinLeafSize', 
bestDTMinLeaf); 
        case 2 % KNN 
            model = fitcknn(X(trainIdx,:), Y(trainIdx), ... 
                'NumNeighbors', bestKnnNeighbors, 'Distance', 
bestKnnDistance, ... 
                'Standardize', bestKnnStandardize); 
        case 3 % SVM 
            model = fitcecoc(X(trainIdx,:), Y(trainIdx), ... 
                'Learners', templateSVM('KernelFunction', 
bestSVMKernel, ... 
                                      'BoxConstraint', 
bestSVMBoxConstraint, ... 
                                      'KernelScale', 
bestSVMKernelScale), ... 
                'Coding', bestSVMCoding); 
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        case 4 % Random Forest/Ensemble 
            if strcmp(bestRFMethod, 'Bag') 
                model = fitcensemble(X(trainIdx,:), Y(trainIdx), ... 
                    'Method', bestRFMethod, 'NumLearningCycles', 
bestRFCycles); 
            else 
                model = fitcensemble(X(trainIdx,:), Y(trainIdx), ... 
                    'Method', bestRFMethod, 'NumLearningCycles', 
bestRFCycles, ... 
                    'LearnRate', bestRFLearnRate); 
            end 
        case 5 % Naive Bayes 
            model = fitcnb(X(trainIdx,:), Y(trainIdx), 
'DistributionNames', bestNBDist); 
        case 6 % LDA 
            model = fitcdiscr(X(trainIdx,:), Y(trainIdx), ... 
                'DiscrimType', bestLDAType, 'Gamma', bestLDAGamma); 
        case 7 % Logistic Regression 
            template = templateLinear('Learner', 'logistic', 
'Lambda', bestLogitLambda); 
            model = fitcecoc(X(trainIdx,:), Y(trainIdx), ... 
                'Learners', template, 'Coding', bestLogitCoding); 
    end 
     
    % Get ROC curve data (simplified) 
    yTest = Y(testIdx); 
    yTestBinary = double(yTest == uniqueClasses(1)); 
     
    % Get predictions 
    preds = predict(model, X(testIdx,:)); 
     
    % Calculate ROC curve (simplified) 
    [fpr, tpr, ~] = perfcurve(yTestBinary, double(preds == 
uniqueClasses(1)), 1); 
    plot(fpr, tpr, 'LineWidth', 2, 'DisplayName', 
classifierNames{idx}); 
end 
 
% Plot reference line 
plot([0 1], [0 1], 'k--', 'DisplayName', 'Random'); 
xlabel('False Positive Rate', 'FontSize', 10); 
ylabel('True Positive Rate', 'FontSize', 10); 
title('ROC Curves (Top 3 Models)', 'FontSize', 12); 
legend('Location', 'southeast', 'FontSize', 8); 
grid on; 
axis square; 
set(gca, 'FontSize', 8); 
 
% Best model parameters 
subplot(2, 2, 4); 
text(0.5, 0.5, sprintf('Best Model: %s\n\nParameters:\n%s\n\nMean 
Accuracy: %.4f ± %.4f', ... 
    bestClassifierName, bestParams{bestClassifierIdx}, 
meanAccuracies(bestClassifierIdx), 
stdAccuracies(bestClassifierIdx)), ... 
    'HorizontalAlignment', 'center', 'FontSize', 10); 
axis off; 
 
% Save the summary figure 
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saveas(gcf, fullfile(baseDir, 'hyperparameter_tuning_summary.png')); 
saveas(gcf, fullfile(baseDir, 'hyperparameter_tuning_summary.fig')); 
 
%% Quality Percentage (QP) Calculation with Cross-Validation 
disp('Calculating Quality Percentage (QP) metrics with cross-
validation...'); 
 
% Prepare data for cross-validation 
X_cv = cleanFeatures{:, rocFeatures}; 
Y_cv = cleanFeatures.Class; 
 
% Set up cross-validation 
rng(1); % For reproducibility 
cvFolds = 5; 
cv = cvpartition(Y_cv, 'KFold', cvFolds); 
 
% Initialize arrays to store results 
cvAccuracy = zeros(cvFolds, 1); 
cvPredictions = zeros(size(Y_cv)); 
 
% Perform cross-validation 
for k = 1:cvFolds 
    % Split data 
    trainIdx = cv.training(k); 
    testIdx = cv.test(k); 
     
    % Train decision tree on training set 
    cvTree = fitctree(X_cv(trainIdx,:), Y_cv(trainIdx), 
'PredictorNames', rocFeatures, ... 
                     'MaxNumSplits', 10, 'MinLeafSize', 5); 
     
    % Predict on test set 
    cvPredictions(testIdx) = predict(cvTree, X_cv(testIdx,:)); 
     
    % Calculate accuracy for this fold 
    cvAccuracy(k) = sum(cvPredictions(testIdx) == Y_cv(testIdx)) / 
sum(testIdx); 
     
    disp(['  CV Fold ' num2str(k) ' Accuracy: ' 
num2str(cvAccuracy(k)*100, '%.2f') '%']); 
end 
 
% Store cross-validated predictions 
cleanFeatures.CVPredictedClass = cvPredictions; 
 
% Display overall cross-validation results 
disp(['  Mean CV Accuracy: ' num2str(mean(cvAccuracy)*100, '%.2f') '% 
(SD: ' num2str(std(cvAccuracy)*100, '%.2f') '%)']); 
 
% Apply ROC-optimized threshold classification 
cleanFeatures.PredictedClass_Thresholds = 
zeros(height(cleanFeatures), 1); 
for i = 1:height(cleanFeatures) 
    row = cleanFeatures(i,:); 
    cleanFeatures.PredictedClass_Thresholds(i) = 
classifyStability(row, optimalThresholds); 
end 
 
 Apply decision tree classification - fix the X_tree reference 



284 

 

X_for_prediction = cleanFeatures{:, rocFeatures}; % Using the same 
features for prediction 
cleanFeatures.PredictedClass_DT = predict(dtModel, X_for_prediction); 
 
% Calculate accuracies for each method 
accuracyThresholds = sum(cleanFeatures.PredictedClass_Thresholds == 
cleanFeatures.Class) / height(cleanFeatures); 
accuracyDT = sum(cleanFeatures.PredictedClass_DT == 
cleanFeatures.Class) / height(cleanFeatures); 
 
disp(['ROC-optimized thresholds accuracy: ' 
num2str(accuracyThresholds*100, '%.2f') '%']); 
disp(['Decision tree accuracy: ' num2str(accuracyDT*100, '%.2f') 
'%']); 
disp(['Cross-validation accuracy: ' num2str(mean(cvAccuracy)*100, 
'%.2f') '%']); 
 
% Choose best model based on accuracy and assign to PredictedClass 
if mean(cvAccuracy) > max(accuracyThresholds, accuracyDT) 
    cleanFeatures.PredictedClass = cleanFeatures.CVPredictedClass; 
    disp('Using cross-validated model as final model (best 
performance)'); 
elseif accuracyDT > accuracyThresholds 
    cleanFeatures.PredictedClass = cleanFeatures.PredictedClass_DT; 
    disp('Using decision tree as final model (best performance)'); 
else 
    cleanFeatures.PredictedClass = 
cleanFeatures.PredictedClass_Thresholds; 
    disp('Using ROC-optimized thresholds as final model (best 
performance)'); 
end 
 
% For each subject and condition 
subjects = unique(cleanFeatures.Subject); 
conditions = unique(cleanFeatures.Condition); 
 
% Pre-allocate qpResults for better performance 
qpResults = table('Size', [length(subjects)*length(conditions), 
4], ... 
                 'VariableTypes', {'string', 'string', 'double', 
'double'}, ... 
                 'VariableNames', {'Subject', 'Condition', 'QP', 
'CV_QP'}); 
rowIdx = 1; 
 
for s = 1:length(subjects) 
    subject = subjects(s); 
     
    for c = 1:length(conditions) 
        condition = conditions(c); 
         
        % Get data for this subject and condition 
        subCondIdx = (cleanFeatures.Subject == subject & 
cleanFeatures.Condition == condition); 
         
        if sum(subCondIdx) == 0 
            continue; 
        end 
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        subCondData = cleanFeatures(subCondIdx, :); 
         
        % Calculate percentage of correctly classified instances 
        % For final model 
        correctClassification = (subCondData.PredictedClass == 
subCondData.Class); 
        qp = 100 * mean(correctClassification); 
         
        % For cross-validated model 
        cvCorrectClassification = (subCondData.CVPredictedClass == 
subCondData.Class); 
        cvQp = 100 * mean(cvCorrectClassification); 
         
        % Store results 
        qpResults.Subject(rowIdx) = subject; 
        qpResults.Condition(rowIdx) = condition; 
        qpResults.QP(rowIdx) = qp; 
        qpResults.CV_QP(rowIdx) = cvQp; 
        rowIdx = rowIdx + 1; 
         
        disp(['  QP for Subject ' char(subject) ', Condition ' 
char(condition) ... 
              ': ' num2str(qp, '%.2f') '% (CV: ' num2str(cvQp, 
'%.2f') '%)']); 
    end 
end 
 
% Trim any unused rows 
qpResults = qpResults(1:rowIdx-1,:); 
 
% Save QP results 
writetable(qpResults, [path filesep 'quality_percentage.csv']); 
 
% Create QP visualization 
figure('Name', 'Quality Percentage by Subject'); 
uniqueSubjects = unique(qpResults.Subject); 
meanQP = zeros(length(uniqueSubjects), 1); 
meanCVQP = zeros(length(uniqueSubjects), 1); 
 
for i = 1:length(uniqueSubjects) 
    subjIdx = strcmp(qpResults.Subject, uniqueSubjects(i)); 
    meanQP(i) = mean(qpResults.QP(subjIdx)); 
    meanCVQP(i) = mean(qpResults.CV_QP(subjIdx)); 
end 
 
bar([meanQP, meanCVQP]); 
xticklabels(uniqueSubjects); 
xtickangle(45); 
legend('Original Model', 'Cross-Validated'); 
ylabel('Quality Percentage (%)'); 
title('Classification Quality by Subject'); 
grid on; 
 
 
%% Create and validate classification model 
disp('Creating and validating stability classification model...'); 
 
% Create a model based on ROC-optimized thresholds 
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classifyWithThresholds = @(data, thresholds) classifyStability(data, 
thresholds); 
 
% Apply classification to the clean dataset 
cleanFeatures.PredictedClass_Thresholds = 
zeros(height(cleanFeatures), 1); 
for i = 1:height(cleanFeatures) 
    row = cleanFeatures(i,:); 
    cleanFeatures.PredictedClass_Thresholds(i) = 
classifyStability(row, optimalThresholds); 
end 
 
% Apply decision tree classification 
cleanFeatures.PredictedClass_DT = predict(dtModel, X_tree); 
 
% Evaluate classification accuracy 
accuracyThresholds = sum(cleanFeatures.PredictedClass_Thresholds == 
cleanFeatures.Class) / height(cleanFeatures); 
accuracyDT = sum(cleanFeatures.PredictedClass_DT == 
cleanFeatures.Class) / height(cleanFeatures); 
 
disp(['ROC-optimized thresholds accuracy: ' 
num2str(accuracyThresholds*100, '%.2f') '%']); 
disp(['Decision tree accuracy: ' num2str(accuracyDT*100, '%.2f') 
'%']); 
disp(['Cross-validation accuracy: ' num2str(mean(cvAccuracy)*100, 
'%.2f') '%']); 
 
% Create confusion matrices 
 
% Choose best model and save as final predicted class 
if mean(cvAccuracy) > max(accuracyThresholds, accuracyDT) 
    cleanFeatures.PredictedClass = cleanFeatures.CVPredictedClass; 
    disp('Using cross-validated model as final model (best 
performance)'); 
elseif accuracyDT > accuracyThresholds 
    cleanFeatures.PredictedClass = cleanFeatures.PredictedClass_DT; 
    disp('Using decision tree as final model (best performance)'); 
else 
    cleanFeatures.PredictedClass = 
cleanFeatures.PredictedClass_Thresholds; 
    disp('Using ROC-optimized thresholds as final model (best 
performance)'); 
end 
 
% Save classification results 
writetable(cleanFeatures, [path filesep 'classified_features.csv']); 
 
% Export optimal thresholds to a CSV file 
thresholdTable = struct2table(optimalThresholds); 
writetable(thresholdTable, [path filesep 'optimal_thresholds.csv']); 
 
% Export trained model 
save([path filesep 'stability_model.mat'], 'dtModel', 
'optimalThresholds', ... 
     'featureCols', 'classNames', 'bestFeatures'); 
 
%% [section omitted – basic Summary of data and visualisation, 
trivial] 
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% Boxplots and Data Summary 
 
%% Classification function using ROC-optimized thresholds 
function class = classifyStability(data, thresholds) 
    % Default to unknown class (C=4 per Image 3b) 
    class = 4; 
     
    % Follow the exact hierarchy from Image 3(b) 
    % Check if below threshold for stable class (identified class: 
C=0) 
    if data.D_RMS < thresholds.D_RMS(1) 
        class = 0; % Stable 
    % Check if above AP threshold (identified class: C=1) 
    elseif data.AP_range > thresholds.AP_range(2) && data.ML_range < 
thresholds.ML_range(2) 
        class = 1; % Antero-Posterior 
    % Check if below ML threshold (identified class: C=2) 
    elseif data.ML_range > thresholds.ML_range(3) && data.AP_range < 
thresholds.AP_range(3) 
        class = 2; % Medio-Lateral 
    % Check for unstable (identified class: C=3) 
    elseif data.D_RMS > thresholds.D_RMS(4) 
        class = 3; % Unstable 
    end 
    % Otherwise remains as unknown (class = 4) 
end 
 
% Helper function for cross-validation 
function acc = crossValidateModel(model, X, Y, cv) 
    numFolds = cv.NumTestSets; 
    predictions = zeros(size(Y)); 
     
    for i = 1:numFolds 
        trainIdx = cv.training(i); 
        testIdx = cv.test(i); 
         
        % Train model on training set 
        trainedModel = model.fit(X(trainIdx,:), Y(trainIdx)); 
         
        % Predict on test set 
        predictions(testIdx) = trainedModel.predict(X(testIdx,:)); 
    end 
     
    % Calculate accuracy 
    acc = sum(predictions == Y) / length(Y); 
end 
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