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ABSTRACT

Postural sway, a critical indicator of balance control, is often heightened in
individuals with chronic low back pain (CLBP), age-related decline, and
neurodegenerative disorders such as Parkinson’s disease. While passive
exosuits offer ergonomic support, they lack the capacity for real-time corrective
intervention. This project introduces a lightweight, fabric-based active back-
support exoskeleton powered by pneumatic actuation, designed to detect and
correct static postural sway. The system integrates an ESP32 microcontroller,
IMU-based sway detection, and a threshold-based control algorithm for real-
time actuation. The fully assembled prototype was evaluated in 15 subjects
across varying stance (normal, tandem) and visual (eyes open/closed) conditions
using surface electromyography (SEMG) and centre of pressure (CoP) metrics.
Under the most challenging balance condition, Tandem Stance Eyes Closed
(TSEC), results showed a 51.5% reduction in CoP pathlength, 27.4% and 41.8%
decreases in Vapmean and Vmlmean, and 34.7% and 20.7% reductions in
DMLSD and DAPSD, respectively. sSEMG analysis indicated a significant drop
in trunk muscle activation, with External Obliques (38.3%), Rectus Abdominis
(51.2%), and Erector Spinae (L3) Right (41.8%) showing the largest reductions
in RMS amplitude during TSEC trials. The sway detection algorithm achieved
70% classification accuracy, supporting low-power, real-time execution on
embedded hardware. These findings validate the exosuit’s ability to enhance
postural stability and reduce neuromuscular strain during quiet stance. The
system demonstrates potential as a practical rehabilitation aid for individuals
with CLBP, older adults, or those with early-stage Parkinson’s disease. Future

work may involve adaptive control integration and broader clinical validation.

Keywords: Active Exoskeleton, Postural Sway, Centre of Pressure (CoP),

Kinematics, Biomechanics

Subject Area: R856-857 Biomedical engineering. Electronics. Instrumentation
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Postural sway refers to the natural shifting of the body's centre of pressure (CoP)
while maintaining balance, that occur even during quiet standing, which is
crucial for postural control and involves sensory and motor coordination. These
micro-adjustments are essential for maintaining upright balance and are
mediated by complex neuromuscular coordination involving visual, vestibular,
and somatosensory systems. However, excessive, or poorly controlled sway is
commonly associated with chronic low back pain (CLBP), aging, and
neurological disorders such as Parkinson’s disease (PD), increasing the risk of
falls and functional decline (Brumagne et al., 2008). In CLBP, exaggerated
sway often results from altered proprioceptive inputs and compensatory trunk
stiffness, contributing to instability and recurrent pain episodes (Sung & Lee,
2024b; Alshahrani et al., 2025). These individuals may adopt rigid motor
strategies and exhibit slower or asymmetric sway, especially under conditions
where visual cues are limited. Targeted interventions, such as proprioceptive
neuromuscular facilitation (PNF) exercises and inspiratory muscle training,
have shown to improve postural control and reduce pain (Sipko et al., 2021;
Borujeni, & Yalfani, 2019). Age-related degeneration in muscle strength and
sensory integration also leads to compromised sway regulation. Elderly
individuals with CLBP show increased sway in both anterior-posterior and
mediolateral directions and significantly impaired dynamic balance during
functional tests, highlighting the interaction between musculoskeletal and
sensory deficits in older populations (Mesci et al., 2016). Parkinson’s patients
display abnormal sway due to impaired basal ganglia-mediated control, further
increasing fall risk and physical disability.

Therapeutic exercises aimed at reducing postural sway can also
enhance functional capacity and balance performance, especially in those with
severe low back pain (Kuukkanen, & Milkid, 2000). Gender differences in
response to interventions like back support exoskeletons (BSEs) must be

considered, as studies have shown varying effects on postural stability between



males and females (Park et al., 2019 & 2021). While BSEs can reduce physical
demands, they may also challenge postural balance due to their design.
Addressing rigid postural control strategies in individuals with recurrent low
back pain, which often rely heavily on ankle proprioception, is important for
preventing pain recurrences (Brumagne et al., 2008). Overall, correcting
postural sway through therapeutic exercises, proprioceptive training, and well-
designed exoskeletons can improve stability and reduce pain, with future
research needed to explore gender-specific effects and task conditions. While,
passive back support exoskeletons have emerged as a supplementary tool to
reduce muscular load and provide ergonomic support, they lack the capacity to
dynamically assist postural correction or adapt to real-time changes in balance
demands.

This project aims to address the issue of postural sway using an active
exoskeleton, with a focus on upper body support. Unlike current solutions that
primarily use passive exoskeletons or lower body active exoskeletons, which
tend to be bulky and aesthetically unappealing for everyday use, our approach
involves developing a lightweight, active back support exoskeleton. The goal is
to correct postural sway by integrating an active component that is both
functional and discreet. Current literature supports the effectiveness of lower
body exoskeletons in mitigating postural sway, but there is a notable gap in
research regarding upper body exoskeletons. This project will investigate
whether an active upper body exoskeleton can also effectively address postural
sway. The report will review relevant literature, evaluate the proposed model's
feasibility, and discuss the conceptual designs of the prototype. Additionally,
we will explore the challenges and problems associated with the initial solutions

and propose strategies to address these issues.

1.2 Importance of the Study

Postural sway is a common condition characterised by instability in the body's
stance, it is a critical determinant of physical function and fall risk, especially in
vulnerable groups like older adults, individuals with neuromuscular disorders,
and those recovering from injury. The inability to regulate sway effectively
leads to muscular overcompensation, fatigue, and in many cases, long-term

disability. This condition affects a broad population and can significantly impact



daily functioning and quality of life. Current solutions include soft passive
exoskeletons, often made of elastics, which are discreet and user-friendly but
may not provide sufficient support for rehabilitation purposes. While passive
exosuits made of elastic materials are lightweight and user-friendly, they fall
short in therapeutic and rehabilitative contexts due to their lack of adaptive
control.

On the other hand, many existing lower body active exoskeletons are
bulky and complex, incorporating large power systems, control units, battery
packs, and actuators, making them less portable and practical for daily use. Our
proposed solution aims to develop an upper body active exoskeleton that
distributes components more uniformly and discreetly, reducing overall
bulkiness. By investigating this approach, we aim to contribute new knowledge
and potential solutions to the field of postural sway, offering a more practical
and aesthetically acceptable alternative. The intended application ranges from
fall prevention in elderly individuals to balance support in people with CLBP
and early-stage Parkinson's disease. Our design philosophy emphasizes
portability, aesthetic integration, and functional efficacy, offering a compelling
alternative to current tools in the rehabilitation and occupational support space

(Alshahrani et al., 2025; Ruhe, 2011).

1.3 Problem Statement

The primary focus of this study is to address postural sway, specifically in static
or quiet stance situations, through the development and implementation of an
active exoskeleton system. The challenge is to create a solution that effectively
corrects postural sway while being practical, lightweight, and suitable for
everyday use.

Postural sway, characterised by the natural but sometimes excessive
oscillation of the body while standing still, presents a significant challenge for
maintaining balance, especially in individuals with muscular or neurological
impairments. While existing solutions primarily focus on passive exoskeletons
or bulky lower body active exoskeletons, there remains a gap in effective,
practical solutions for correcting postural sway in the upper body. The
traditional passive exoskeletons, often made from elastic materials, provide

limited support for rehabilitation and are not suited for more intensive balance



correction. Conversely, lower body active exoskeletons, though effective, are
typically cumbersome and impractical for everyday use. Our project seeks to
address these issues by developing an active back support exoskeleton designed

to correct postural sway specifically during static stances.

1.4 Aim and Objectives
The primary aim of this project is to design and develop a lightweight, active
back support exoskeleton to effectively address postural sway in the trunk area,
thereby improving balance and stability during quiet stance. To achieve this aim,
the project has the following objectives:

1. Development of back support fabric-based exoskeleton for

standing posture sway detection and correction.
2. Develop standing sway classification and detection algorithm.

3. Test and validate functionality of prototype.

1.5 Scope and Limitation of the Study

This project will focus on developing an upper body active exoskeleton
specifically aimed at improving postural sway during static stances. The scope
includes the design and integration of the exoskeleton, the development of a
postural sway detection system, and preliminary performance evaluations. The
project will not address lower body balance issues directly, nor will it explore
dynamic or high-motion scenarios beyond static stance corrections. Limitations
of the project include potential challenges in achieving optimal actuator
performance while maintaining a lightweight and comfortable design.
Additionally, the effectiveness of the exoskeleton in real-world conditions may
be constrained by the accuracy and responsiveness of the detection system. The
project will also need to navigate the trade-offs between the complexity of the
design and the practical usability of the exoskeleton, ensuring that it remains

portable and user-friendly.

1.6 Contribution of the Study
This study presents a novel contribution to the expanding field of postural
control and wearable assistive technologies by introducing an active upper-body

exoskeleton specifically designed to mitigate postural sway during static



standing. While previous research has extensively explored the relationship
between chronic low back pain (CLBP) and postural instability, most
interventions have concentrated on lower-body support systems or passive
textile-based aids. Clinical evidence demonstrates that individuals with CLBP
exhibit significantly increased postural sway, characterised by larger sway areas
and higher sway velocities, under both visual (eyes open) and non-visual (eyes
closed) conditions. This instability is further exacerbated by age, body mass
index (BMI), and pain severity (Alshahrani et al., 2025). Despite these findings,
current interventions either lack the capacity for active correction or are too
cumbersome for everyday use, particularly among elderly or functionally
impaired individuals.

Additionally, research on older adults with CLBP has identified
pronounced impairments in both dynamic balance and static postural control,
particularly along the anterior-posterior axis. These impairments are evident in
functional assessments such as the timed-up-and-go and chair stand tests, where
individuals with CLBP perform significantly worse than healthy controls
(Mescietal.,2016). These findings underscore the critical need for user-friendly,
targeted interventions that can enhance upper-body stability without
compromising mobility or comfort. However, most commercially available
exoskeletons for back support remain passive and offer limited functionality for
balance correction or therapeutic engagement.

Neurophysiological studies further reveal that individuals with chronic
musculoskeletal pain often adopt maladaptive postural strategies, such as trunk
stiffening and reduced sway variability. These compensatory mechanisms may
undermine long-term motor adaptability and postural reflexes (Sung & Lee,
2024b). The proposed system addresses these issues by employing active
actuators in conjunction with sensor-driven feedback loops, enabling real-time,
adaptive sway modulation tailored to the user’s physiological state. This feature
holds promise for early-stage neurodegenerative populations, including those
with Parkinson’s disease, where deficits in anticipatory postural adjustments are
a primary contributor to fall risk.

Methodologically, this study also advances the field by introducing a
novel framework for postural sway detection, classification, and correction

through an integrated wearable platform. The hybridization of exoskeletal



support with intelligent control algorithms marks a significant shift from
traditional mechanical interventions toward more interactive, therapeutic
systems. By targeting the upper trunk—an often overlooked but critical
component of postural regulation—this research opens new avenues in
exoskeleton ergonomics and rehabilitation science.

In conclusion, the study makes a multidimensional contribution by
addressing a well-defined clinical gap, advancing wearable robotics toward
active upper-body stabilization, integrating intelligent real-time sway correction
mechanisms, and establishing foundational principles for applications in aging,
musculoskeletal, and neurodegenerative populations. This approach aligns with
emerging evidence suggesting that postural sway abnormalities in CLBP are not
uniform across individuals (Mikkonen et al., 2022), thus reinforcing the need

for personalized, dynamic interventions over static, one-size-fits-all solutions.

1.7 Outline of the Report

This project report begins with Chapter 1: Introduction, which presents the
background and clinical relevance of postural sway in populations such as
elderly individuals, patients with chronic low back pain (CLBP), and those with
early-stage Parkinson’s disease. It defines the problem of insufficient support in
current passive and lower-body exoskeleton systems and states the aim of
developing a lightweight, upper-body exosuit for static sway correction. The
objectives, scope, limitations, and novelty of the proposed approach are also
discussed, outlining the need for a discreet, functional system that integrates
wearable sensing and real-time actuation.

Chapter 2: Literature Review covers a wide range of foundational
knowledge relevant to postural sway, including its physiological mechanisms,
types (e.g., quiet stance, anticipatory adjustments), and clinical implications.
The chapter reviews current treatment modalities, existing exoskeleton
technologies, and limitations of passive supports. It highlights the lack of
adaptive, upper-body active systems specifically designed for static sway
correction. The review also includes detailed comparisons of actuators (e.g.,
pneumatic, servo, soft robotics), wearable sensor technologies (e.g., IMUs,
sEMG), and algorithmic methods for sway detection, classification, and

correction.



Chapter 3: Methodology and Work Plan provides a step-by-step
breakdown of the exosuit’s design and development process. It begins with
system requirements and component selection, including material choice,
actuator force calculations, and biomechanical design constraints. The hardware
development section details CAD iterations, fabrication strategies, circuit
design, and integration of pneumatic and electronic subsystems. This chapter
also introduces the system architecture, graphical user interface (GUI), and the
full algorithm pipeline for sway classification. Biomechanical assessment
methods are described, including CoP metric extraction and EMG muscle group
monitoring. The chapter concludes with testing protocols involving 36 initial
data collection subjects and 10 for validation, detailing their stances, visual
conditions, and inclusion criteria.

Chapter 4: Results and Discussion presents and interprets experimental
findings. It includes prototype performance and usability observations (e.g.,
don/doff time, comfort), sway detection algorithm results, and statistical
analysis of EMG and CoP data across all test conditions. Detailed figures show
reductions in sway pathlength, directional deviations, and trunk muscle activity.
Subject-level heatmaps and stance-specific boxplots offer insights into how
different individuals and stances responded to the intervention. The discussion
connects these outcomes to clinical goals, supporting the use of such exosuits
for balance rehabilitation and trunk stabilization.

Chapter 5: Conclusion and Recommendations summarizes the project's
achievements in designing a functional, lightweight pneumatic exosuit capable
of reducing sway and muscular load. It reflects on design trade-offs and
technical challenges encountered. The recommendations section proposes
future work directions, such as adaptive thresholding, machine learning-based
control, improved comfort padding, longer battery life, and clinical trials for
elderly and Parkinson’s populations. Appendices include extended graphs, raw

data tables, hardware schematics, and codes.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter explores key aspects of postural sway and corrections. It begins
with an overview of postural sway, highlighting its role in stability and
movement, followed by types and causes. It then breaks down the stages of
clinical implications as well as current treatment. The chapter also covers
postural sway detection, examines actuators used in exoskeletons, and reviews
sensors for collecting biomechanical data. Additionally, it reviews previous
back support exoskeletons designed for rehabilitation, offering insights for safe
and effective exoskeleton design. Overall, it provides a comprehensive view of
technological advancements to help determine the feasibility of powered back

support exoskeletons for postural sway.

2.2 Postural Sway

Postural sway refers to the involuntary, continuous movement of the body’s
centre of mass as it strives to maintain balance during quiet standing. It reflects
the body’s complex interaction with its environment, influenced by sensory
input, neurological control, and physical condition. A variety of factors,
including sensory deficits, injuries, and age, can significantly alter postural
sway, making it a valuable measure in assessing balance and stability across

different populations.

2.2.1  Postural Sway Dynamics

Postural sway consists of two primary components: a slow non-oscillatory
movement and a faster damped-oscillatory motion. These components are
managed through feedback mechanisms within the sensory-motor system
(Kiemel et al., 2006). The slow non-oscillatory movement reflects the body’s
large-scale adjustments to maintain balance, while the faster, oscillatory
movement involves finer adjustments. Both mechanisms work in tandem to
ensure postural stability, highlighting the critical role of the nervous system in

managing sway under different conditions.



2.3 Types and Causes of Postural Sway

2.3.1 Age-Related Variations in Postural Sway

The development of postural stability follows a clear trajectory across the
lifespan. In childhood, postural sway decreases as sensory and motor systems
mature, with significant improvements noted around age seven. Boys generally
demonstrate faster stabilisation compared to girls, possibly due to differences in
motor development (Riach & Hayes, 1987). However, in older adults, the
natural increase in sway is more closely associated with the deterioration of
sensory function than age itself (Anson et al., 2017). This suggests that
interventions targeting sensory enhancement could mitigate the effects of aging

on balance and postural control.

2.3.2  Sensory Impairments and Their Impact on Postural Sway

Sensory inputs, particularly visual, vestibular, and proprioceptive information,
play a crucial role in maintaining postural stability. Any impairment in these
systems can lead to significant changes in postural sway. For instance,
individuals with vision loss, vestibular dysfunction, or proprioceptive deficits
often exhibit exaggerated sway patterns as the body struggles to compensate for
missing or altered sensory feedback (Carroll & Freedman, 1993). This
highlights the interdependence of sensory systems in maintaining balance and
the need for multisensory rehabilitation in populations with sensory

impairments.

2.3.3  Postural Sway Following Injuries

Injuries, particularly those affecting the musculoskeletal system, can have long-

lasting effects on postural control. For example, anterior cruciate ligament (ACL)
reconstruction, a common surgical procedure following knee injuries, has been

shown to result in persistent postural sway deficits even after patients have

returned to normal activities. These findings underscore the importance of
incorporating balance-focused rehabilitation programs to address lingering

instability and prevent further injury (Paterno et al., 2013).

2.3.4  Postural Sway in Neurological Conditions
In neurological conditions like Parkinson’s disease, postural sway becomes a

significant risk factor for falls. As the disease progresses, motor control
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deteriorates, leading to an increase in sway amplitude and frequency. Excessive
postural sway in Parkinson’s patients is closely correlated with an elevated risk
of falls, making postural assessment a critical tool in evaluating fall risk and

designing intervention strategies (Frenklach et al., 2009).

2.3.5 Summary

Postural sway serves as a critical measure of balance and stability across various
populations. Its dynamics are influenced by age, sensory function, injury, and
neurological conditions. Targeted interventions, such as rehabilitation programs
and balance training exercises, can help improve postural control and reduce the
risk of falls in populations with increased sway. Understanding the factors that
influence postural sway is essential for developing effective strategies to
enhance balance and prevent injuries. Table 2.1 provides a summary of the

distinct types of postural sway and their underlying causes, emphasising the

wide range of factors that can influence balance and stability.

Table 2.1: Types of Postural Sway and Their Causes

Type of Postural Causes Study
Sway
Normal postural Natural movement to maintain (Kiemel et
sway balance, controlled by sensory al., 2006)
feedback loops
Increased sway in | Immature visual and motor systems in (Riach &

childhood young children Hayes, 1987)
Sway with sensory Loss of proprioception, vision, or (Anson et al.,
impairment vestibular function 2017)
Increased sway Long-term deficits following ACL or (Paterno et

post-injury other musculoskeletal injuries al., 2013)
Parkinson’s Progressive motor deficits leading to | (Frenklach et
disease excessive sway and increased fall risk al., 2009)

24 Forms of Postural Sway

Postural sway refers to the involuntary movements made by the body to
maintain balance in various static and dynamic contexts. The degree and nature
of sway depend on the task being performed, the physical and cognitive
demands placed on the body, and individual factors such as age, sensory input,

and muscle function. This literature review explores key forms of postural sway,
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including quiet stance, lifting tasks, anticipatory postural adjustments (APA),

and cognitive load conditions, Table 2.2 provides an overview.

Table 2.2: Forms of Postural Sway

Type Characteristics Study

Quiet Stance Involves minor involuntary sway | (Kiemel et al., 2006)
to maintain balance; influenced by

vision, age, and muscle activation.

Lifting Tasks Postural sway increases during | (Hill et al., 2018)
lifting due to added load, with

adjustments to maintain COM and

COP.
Anticipatory APAs are pre-movement | (Krishnamoorthy &
Postural adjustments to avoid balance loss | Latash, 2005)
Adjustments during voluntary motion, such as

swaying or weight shifts.

Cognitive Load | Cognitive tasks during standing | (Mitra et al., 2013)
Conditions increase sway as attention is
divided between cognitive and

postural control.

2.4.1  Quiet Stance

Quiet stance is the simplest and most studied form of postural sway, involving
minor involuntary movements while a person stands still. The centre of pressure
(CoP) displacement during quiet stance is relatively low compared to more
dynamic tasks, making it an ideal measure of baseline balance and stability.
Factors such as vision, muscle stiffness, proprioception, and age can influence
postural sway during quiet stance. For instance, older adults typically exhibit
increased sway due to sensory decline and reduced muscle mass (Kiemel et al.,
2006; Kouzaki & Masani, 2012). Quiet stance serves as a reference point for
understanding more dynamic postural tasks and is characterised by slow
feedback loops that help stabilise the centre of mass (COM) (Kiemel et al.,
20006).
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Quiet stance refers to the act of maintaining balance with minimal
voluntary movement. During quiet stance, postural sway is controlled primarily
by slow, non-oscillatory feedback mechanisms that help stabilise the COM.
Several key factors influence quiet stance such as feedback loops. The body's
ability to stabilise itself during quiet stance is governed by slow feedback loops,
which prevent excessive sway by adjusting muscle activity and sensory input
(Kiemel et al., 2006). Besides, the degree of muscle activation during quiet
stance can significantly influence sway patterns. Increased activation of the
ankle muscles, for example, can lead to greater sway, while external supports,
such as orthotics, can reduce sway by adding passive stiffness (Warnica et al.,
2014).

The spectral content of sway us also key. Studies examining the
spectral analysis of postural sway during quiet stance have revealed that
different sensory inputs, such as vision and surface compliance, affect sway
differently in specific directions (anteroposterior versus medio-lateral) (Singh
et al., 2012). Lastly, older adults tend to exhibit greater postural sway during
quiet stance due to age-related declines in muscle strength, proprioception, and
physiological factors like increased tremors in the plantar flexor muscles
(Kouzaki & Masani, 2012). Table 2.3 summarises the factors and findings of

quiet stance postural sway.

Table 2.3: Factors of Quiet Stance Postural Sway

Key Factor Findings Study

Feedback Loops | Slow feedback mechanisms stabilise | (Kiemel et al.,
in Quiet Stance | COM during quiet stance, minimising | 2006)

postural sway.

Muscle Increased muscle activation increases | (Warnica et
Activation sway; passive stiffness (e.g., orthotics) | al., 2014)

reduces sway.

Spectral Vision and surface compliance influence | (Singh et al.,
Content of Sway | sway in specific directions | 2012)

(anteroposterior vs. medio-lateral).
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Age and Muscle | Older adults show greater sway due to | (Kouzaki &

Volume reduced muscle volume and increased | Masani, 2012)

physiological tremor.

2.4.2  Lifting Tasks

Postural sway increases during lifting tasks due to the additional physical load,
which requires the postural system to adjust dynamically to maintain balance.
When lifting, individuals must control both the COM and COP, making sway
more pronounced. External loads, changes in posture, and environmental factors
can significantly affect sway patterns, often leading to larger oscillations as the
body compensates for the shifting weight (Hill et al., 2018). This increase in
sway highlights the complex interaction between mechanical loading and

postural control systems during physical tasks.

2.43 Anticipatory Postural Adjustments (APA)

Anticipatory postural adjustments (APAs) are pre-movement shifts made by the
body to prepare for voluntary actions, such as weight shifting, reaching, or body
swaying. APAs help minimise the risk of imbalance by adapting the body's
posture to account for upcoming movements. These adjustments are particularly
important in tasks requiring dynamic stability, such as walking, turning, or
sports activities (Krishnamoorthy & Latash, 2005). Effective APAs reduce the
likelihood of falls or instability by proactively aligning the body’s COM before

motion.

2.44  Cognitive Load Conditions

Engaging in cognitive tasks while standing has been shown to increase postural
sway. When attention is divided between cognitive demands and postural
control, the brain allocates fewer resources to balance, leading to a greater
degree of sway. This phenomenon is most apparent in quiet stance conditions,
where individuals show increased postural instability when simultaneously
performing cognitive tasks such as counting or problem-solving (Mitra et al.,
2013). This interaction underscores the importance of attentional resources in
maintaining postural stability, especially in populations where multitasking may

pose additional risks, such as older adults.
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2.5 Clinical Implications

Postural sway is a critical measure of balance control, and excessive sway is
often associated with a range of clinical conditions, including Parkinson's
disease, age-related decline, and musculoskeletal disorders. Increased postural
sway can significantly elevate the risk of falls, particularly in populations such
as the elderly and individuals with neurological impairments. Understanding the
clinical implications of postural sway is essential for developing effective
interventions to reduce fall risk and improve balance.

Key clinical implications include Parkinson’s disease, aging, and
occupational hazards. For instance, patients with Parkinson’s disease exhibit
increased postural sway, particularly in the mediolateral (side-to-side) direction.
This abnormal sway pattern compromises stability and significantly increases
the risk of falls. Addressing postural instability is thus a major focus in
managing Parkinson’s symptoms. Besides, age-related deterioration in
proprioception and muscle mass leads to greater postural sway, particularly
during quiet standing. This increased sway contributes to a higher risk of falls
and decreased mobility in older adults (Kouzaki & Masani, 2012). Balance
training and strength maintenance are crucial for mitigating these effects.
Occupational hazards are also implications, thus the vast development of
exoskeletons in military (Mendoza et al., 2023). Workers involved in physically
demanding jobs, such as repetitive tasks or heavy lifting, often experience
elevated postural sway due to muscle fatigue and strain. This increased sway,
particularly in the lumbar region, heightens the risk of musculoskeletal injuries
over time (Koopman et al., 2019). Ergonomic interventions, including the use

of assistive devices, are commonly recommended to reduce injury risk.

2.6 Current Treatments

Several interventions are used to improve postural control and minimize
excessive sway, which is detailed in Table 2.4. These approaches include
physiotherapy, balance training, and the application of assistive devices like
passive exoskeletons. While passive exoskeletons have demonstrated
effectiveness in reducing physical strain during activities such as lifting, no

active exoskeleton technology has been specifically developed to aid in quiet



15

stance. This gap exists due to the inherent challenges of real-time feedback and

movement adaptation required for static tasks.

Table 2.4: Types of Postural Sway and Their Current Treatment

Type of Current Treatment Study
Postural Sway
Quiet Stance Balance training, passive back-support (Park et al.,
exoskeletons for reducing muscle strain. 2021)
Dynamic Physiotherapy and active exoskeletons (Layne et
Movements designed to support dynamic movement al., 2022)
tasks.

2.6.1 Challenges in Developing Active Exoskeletons for Quiet Stance
Active exoskeletons are designed to provide real-time adjustments to support
movement and balance. However, in the context of quiet stance, where postural
adjustments are minimal and constant, designing an exoskeleton capable of
continuous, precise feedback is highly complex. The continuous monitoring
required for small, involuntary movements makes passive systems more
practical for quiet stance applications. For instance, passive exoskeletons, such
as the Laevo model, effectively reduce muscle strain without needing to engage
in dynamic posture correction (Park et al., 2021). These devices are tailored for
load reduction, not for real-time balance control.

Active exoskeletons are highly effective for dynamic movement tasks,
where movement support and real-time feedback are essential. However,
current technology lacks the ability to provide the continuous, subtle feedback
necessary for static balance tasks like quiet stance. As a result, passive systems
remain the preferred option for tasks involving postural control during periods
of relative stillness, while active exoskeletons are used to assist with more

dynamic movements.

2.6.2 Summary

Postural sway plays a critical role in the diagnosis and management of various
clinical conditions, particularly in populations at risk of falls and
musculoskeletal injuries. While interventions like passive exoskeletons are

useful for reducing strain during physical tasks such as lifting, the development
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of active systems for static postural control, such as quiet stance, remains limited.
Future research should focus on bridging this gap to create more comprehensive

treatment options for balance-related disorders.

2.7 Anatomical and Biomechanical Considerations of Spine in
Exoskeleton Design
The cervical spine, comprising seven vertebrae (C1-C7), depicted in Figure 2.1,
represents a structurally delicate yet highly mobile region of the body. Its role
in supporting and protecting critical neurological structures, such as the spinal
cord and brainstem, makes it particularly vulnerable to injury. Consequently,
the design of assistive devices like exoskeletons must consider the anatomical
and biomechanical characteristics of this region to avoid exacerbating injury
risks. This literature review discusses the constraints and risks associated with
cervical spine support, highlighting why exoskeleton designs should avoid

direct contact or support at this level.

(a) (b)
Figure 2.1: (a) Spinal Cord, (b) Cervical Spine (C1-C7)

2.7.1  Anatomical and Biomechanical Vulnerability of the Cervical Spine
The cervical spine is uniquely characterised by its wide range of motion and
relatively low structural support compared to other spinal regions. This
flexibility, crucial for head rotation, flexion, and extension, also makes the
cervical vertebrae more prone to injury under mechanical stress. According to
Shea et al. (1991), undue pressure or improper mechanical load in this area
significantly raises the risk of spinal cord damage, especially in patients with

pre-existing conditions like cervical spinal cord injuries (SCIs). Given this
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vulnerability, exoskeleton designs generally avoid targeting the cervical spine
to prevent additional injury risk and maintain the integrity of the spinal cord.
The cervical spine plays a critical role in balancing and aligning the
head over the torso, a function that requires high flexibility. Research suggests
that exoskeletons applied directly to the cervical region could interfere with
natural posture and proprioception, leading to reduced mobility. Goldschmidt et
al. (2019) note that biomechanical support systems, such as exoskeletons, can
compromise the natural alignment and movement of the cervical spine,
restricting head and neck motion. This interference can result in discomfort and
increase the risk of biomechanical strain, emphasising the importance of

preserving the cervical spine's natural range of motion.

2.7.2  High Risk of Injury in the Cervical Region

While cervical exoskeletons have been investigated for their potential to
alleviate neck strain during repetitive tasks, these systems can inadvertently
increase the risk of muscle fatigue or injury. Misalignment of the exoskeleton
with the natural biomechanics of the cervical spine can impair neck motion,
leading to discomfort and strain over time. Giovanelli et al. (2022) suggest that
exoskeleton support is more effective when applied to the thoracic and lumbar
regions, as these areas bear more load and are less prone to biomechanical
disruption than the cervical spine. Supporting the cervical region directly with
an exoskeleton can lead to muscle strain, emphasising the importance of

designing devices that align with natural spinal movements.

2.7.3  Implications for Exoskeleton Design
The anatomical and biomechanical constraints of the cervical spine present
significant challenges for exoskeleton design. To mitigate injury risks and
maintain cervical mobility, it is recommended that exoskeletons be designed to
support the spine at T1 and below. By doing so, exoskeletons can provide the
necessary support for posture and movement without compromising the
flexibility and function of the upper spinal region.
Key implications for exoskeleton design include:

1. Injury Prevention: Positioning exoskeletons at T1 and below minimises

the risk of spinal cord injuries in the fragile cervical region.
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2. Maintaining Natural Range of Motion: Avoiding the cervical spine in
exoskeleton design preserves natural head and neck mobility, reducing
discomfort and biomechanical strain.

3. Ergonomic Considerations: Supporting the thoracic and lumbar regions
ensures load bearing without hindering upper spinal flexibility,

enhancing long-term user comfort and device usability.

2.74  Summary

The cervical spine's anatomical and biomechanical characteristics make it
especially prone to injury and strain, underscoring the need for careful
consideration in exoskeleton design. Supporting the spine at T1 and below
minimises the risk of injury while maintaining cervical mobility and alignment,
ensuring that assistive devices can enhance, rather than hinder, natural
movements. Further research and development in exoskeleton design should
continue to prioritise these considerations to optimise safety and usability. Table
2.5 summarises the key reasons why exoskeleton support should avoid the
cervical spine and instead focus on regions below TI1, highlighting the
implications for preventing injury and maintaining natural biomechanical

function.

Table 2.5: Reasons Why Exoskeleton Support Should Avoid the Cervical

Spine and Be Positioned from T1 and Below

Reason Implication Study
Fragility and Supporting the cervical spine (Shea et al.,
Vulnerability increases the risk of spinal cord 1991)

injury due to its delicate structure and
mobility.

Alignment and Exoskeleton support at the cervical (Goldschmidt et
Mobility Impact | spine can interfere with natural head | al., 2019)

and neck movements, leading to
discomfort.

Muscle Fatigue | Cervical exoskeletons can cause neck | (Giovanelli et
and Strain strain or fatigue due to misalignment | al., 2022)

with natural cervical biomechanics.
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2.8 Actuators for Exoskeletons

Pneumatic actuators, electrical motors, series elastic actuators, hydraulic
actuators, and cable-driven systems are commonly employed in exoskeletons,
as outlined in Table 2.6. Pneumatic actuators, such as McKibben air muscles
(constructed from latex or silicone rubber) and PneuNets bending actuators
(made from elastomeric materials), are particularly lightweight and offer
smooth operation. However, a limitation of conventional pneumatic systems is
their dependence on an external air compressor. Pneumatic actuators are ideal
for lightweight applications, while electrical brushless DC motors excel in
energy efficiency and control precision. Series elastic actuators (SEAs) are
favoured for their ability to control force precisely and absorb shocks, especially
in rehabilitation settings. Hydraulic actuators, though powerful and compact,

are less frequently used due to the complexity of their systems.

Table 2.6: General Types of Actuators for Exoskeletons

Studies Actuator Description Advantages
- Inflatable inner ) )
Park et al., Pneumatic bladder within nghtwelght,
2014; Hu et al., (McKibben/ a braided mesh. adjustable,
2019; Pardoel & PneuNets) ) smooth
Doumit, 2019 operation
Renesas2024,: ' Converts DC High 'efﬁmency,
Hybart & Ferris, Electrical . precise torque
electrical energy to
2022; Hsu et al., | (Brushless DC) ) and speed
mechanical energy
2023 control
Junior et al., : : Motor connected
2016 Meiinek Series Elastic 0 load vi
s MeYnere | ctuator (SEA) © O,a viaan
etal, 2021; elastic element
2071' t;n(g; et al.,l Hydraulic Converts hy(;irauhc Compact,
s Lu et at, Actuator ene'rgy ° powerful
2017 mechanical energy

2.8.1 Pneumatic Actuators

Pneumatic artificial muscles (PAMs), also known as McKibben air muscles, are
widely used as pneumatic actuators in exoskeletons. For example, Park et al.
(2014) utilised PAMs in an active soft orthotic device to enhance mobility.
PAMs consist of an inflatable inner bladder, typically made of latex or silicone,

encased in a braided mesh that converts radial expansion into linear contraction.
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End clamps secure the muscle, preventing slippage during the contraction and
relaxation phases. These actuators can contract up to 25% of their original length,
and their force output is influenced by variations in size and stiffness (Soft
Robotics Toolkit, n.d.a). Another common pneumatic actuator is the PneuNets
bending actuator, which consists of a series of chambers embedded in an
elastomer. When inflated, these chambers generate movement, and their
behaviour is determined by the geometry of the chambers and the elastomer's
material properties (Soft Robotics Toolkit, n.d.b).

Compared to traditional pneumatic cylinders, both PAMs and
PneuNets offer the advantages of being significantly lighter and smoother in
operation, as they lack sliding mechanical parts. For instance, PAMs weigh
approximately 27 g/m (Baiju, 2022), whereas pneumatic cylinders can weigh up
to 647 g/m (RS Malaysia, 2020). However, PAMs and PneuNets are also more
susceptible to damage due to the thinner materials used in their construction,
making them less durable than pneumatic cylinders (Baiju, 2022; Soft Robotics
Toolkit, n.d.a). PAMs and PneuNets offer efficient, lightweight solutions for
exoskeleton applications, but their durability can be a limitation when compared
to more robust pneumatic cylinders, which are also not considered due to high
force and linear only actuation. Overall, PAM and PneuNets offer the advantage
of being softer and flexible when unactuated, with PneuNets, other pneumatic
based soft robotics and several types of PAMs having bending motion
capabilities (Guan et al.,2020a).

To further explore the realm of pneumatic based actuators, there are
many types of soft pneumatic actuators that go beyond just the normal uniaxial
actuation of conventional pneumatic actuators (Chen et al., 2022). A literature
review table is constructed in Table 2.7 below discussing the array of non-linear

pneumatic-based actuators.
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Table 2.7: Literature Review Table: Pneumatic-Based Actuators

Source

Journal Key Findings

Guan et al., 2020a

Soft Robotics Proposed bending and helical PAMs inspired by elephant trunks, with a model of
generalised bending behaviour. Demonstrated the use of bending in soft robotic
manipulators.

Xiao et al., 2021

Smart Materials and Structures | Developed a BPAM with multi-degree freedom, which can bend in 3D space.
Demonstrated its applicability in flexible, soft-bodied robots.

Takashima et al.,
2011

SICE Annual Conference A new curved PAM actuator using shape-memory polymer was created, capable
of bending upon air inflation with heat-controlling actuation directions.

Guan et al., 2020b

Smart Materials and Structures | Presented nonlinear models of bending extensile and contractile PAMs, used in
humanoid hands with improved bending performance.

Saga et al., 2022

Sensors Developed a smart pneumatic muscle actuator with integrated bend sensors,
mimicking the human muscle spindle for accurate bending feedback.

Geng et al., 2011

Applied Mechanics and Materials | Focused on elongation-type PAMs and their bending stiffness, exploring nonlinear
relationships between air pressure and bending deformation.
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2.8.2  Electrical Motors (Stepper and Servo)

In exoskeleton system design, servo and stepper motors play key roles, each suited
to different tasks based on their distinct advantages and limitations. Servo motors
are preferred for high-precision, dynamic control, while stepper motors excel in
cost-effective, incremental movement applications. This section highlights the key
features, pros, cons, and applications of each motor type, supported by literature

(Fattah, 2010; Hong-bin et al., 2017).

2.8.2.1 Servo Motors: Precision and Dynamic Control
Servo motors offer continuous, precise control of speed, position, and torque
through closed-loop systems with feedback mechanisms such as encoders,
making them ideal for complex rehabilitation tasks (Flieh et al., 2017 & 2019).
Their high torque and fast response make them well-suited for tasks like walking
assistance and dynamic posture correction (Anderson et al., 2019).
1. Energy Efficiency: Some designs use less magnet material, improving
energy efficiency and reducing costs (Flieh et al., 2017).
2. Versatility: Servo motors come in several types (AC, DC brushless,
synchronous), allowing for a wide range of applications (Krishnan, 1987).
3. Safety: Wireless drives reduce the risk of electrocution and offer better
environmental sealing (Jiang et al., 2019).
However, servo motors are also complex and costly due to their need for
continuous feedback systems, and can suffer from backlash and thermal sensitivity,

especially in miniaturised designs (Sun et al., 2023; Barth, 2000; Krishnan, 1987).

2.8.2.2 Stepper Motors: Simplicity and Cost Efficiency
Stepper motors, operating through discrete steps without the need for feedback, are
ideal for simple, incremental movements in more affordable applications (Fattah,
2010). They excel at holding positions without consuming power, making them
useful in static load-bearing exoskeleton components (Fu & Ran, 2022).
1. Easy Control: Stepper motors require no complex control systems, reducing
costs and simplifying implementation (Harshvardhan et al., 2015).
2. High Torque at Low Speeds: Ideal for automation equipment where low to
medium speed is required (Fu & Ran, 2022).
However, stepper motors are limited by mechanical oscillation, step loss,

and poor adaptability to varying loads due to their open-loop control, which can
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cause issues in precision-critical tasks (Wang et al., 2017; Bianculli, 1970). They
are best suited for upper-limb exoskeletons and robotic prosthetics that prioritise

positional accuracy over dynamic movement (Faghihi et al., 2015).

2.8.2.3 Summary
As a summary, Table 2.8 compares the basic differences of the stepper and servo

motor, while Table 2.9 discusses the pros and cons of each actuator.

Table 2.8: Comparative Table of Servo and Stepper Motors

Feature Servo Motors Stepper Motors
Control Closed loop with continuous Open loop, no feedback
Mechanism feedback (Flieh et al., 2017) (Fattah, 2010)
Precision High precision and dynamic Moderate precision for
control (Flieh et al., 2019) incremental steps (Fattah,
2010)
Torque High peak torque, fast response | High torque at low speeds
(Anderson et al., 2019) (Fu & Ran, 2022)
Cost Higher cost due to complex Lower cost, simple control
control (Sun et al., 2023) (Harshvardhan et al.,
2015)
Energy Energy-efficient designs Holds position without
Efficiency available (Flieh et al., 2017) power consumption (Fu &
Ran, 2022)
Applications Dynamic rehabilitation Upper-limb exoskeletons,
exoskeletons (Flieh et al., 2017) | prosthetics (Faghihi et al.,
2015)
Drawbacks Backlash, thermal sensitivity Mechanical oscillation,
(Krishnan, 1987) step loss (Wang et al.,
2017)

Table 2.9: Pros and Cons Table of

Servo and Stepper Motor

Motor Pros Cons
Type
High precision and torque | Expensive and complex control
(Flieh et al., 2019) systems (Sun et al., 2023)
Servo Fast response for dynamic | Thermal sensitivity, backlash in
Motors tasks (Anderson et al., 2019) | small designs (Barth, 2000)
Energy-efficient options | Requires  constant  feedback,
(Flieh et al., 2017) increasing costs (Flieh et al.,
2018)
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Easy control, cost-effective | Prone to mechanical oscillation,
(Harshvardhan et al., 2015) | step loss (Wang et al., 2017)
Stepper | High torque at low speeds | Low precision, poor adaptability
Motors (Fu & Ran, 2022) to varying loads (Bianculli, 1970)
Holds position  without | Limited by low resolution,
continuous power (Fu & |reduced torque in multi-rotor
Ran, 2022) setups (Groenhuis et al., 2021)

2.8.3  Series Elastic Actuators and Cable-Driven Systems

Series Elastic Actuators (SEAs) and cable-driven systems are gaining
prominence in the fields of physical human-robot interaction, rehabilitation
robotics, and exoskeleton design due to their compliance, safety, and flexibility.
This subsection synthesises the latest advancements in the design, modelling,
and control of these systems, highlighting their growing role in enhancing
human-robot interaction. Several studies have developed advanced models and
control strategies for cable-driven SEAs. A notable approach involved using a
velocity-controlled DC motor as the power source, combined with a two degrees
of freedom (2-DOF) control scheme, to achieve robust torque control. This
method demonstrated superior performance compared to traditional PD
controllers, particularly in applications requiring precision and adaptability.
Similarly, another study utilised the 2-DOF control method to effectively
separate reference tracking from robustness goals, validating its effectiveness
through simulations (Zou et al., 2016).

Besides, trajectory-tracking control in cable-driven upper-limb
exoskeletons using SEAs has been a focus of research due to the low inertia and
inherent compliance offered by elastic components. One approach combined
iterative learning techniques with a model predictive controller, achieving high
precision and sensorless force control (Shu et al.,, 2023). Additionally,
impedance control has been improved by targeting specific frequency ranges
relevant to human-robot interaction. For example, a Hoo synthesis framework
was introduced to optimise stiffness control across multiple frequency bands,
ensuring precise and robust performance (Yu et al., 2019). Recent innovations
in SEA design have improved their application in various robotic systems. A
novel backdrivable cable-driven SEA (BCDSEA) was introduced,

incorporating a cable-pulley system and a backspring to enhance backdrivability
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and dynamic performance (Wang et al., 2019). Another advancement presented
a compact rotary SEA with Bowden cables for upper-limb rehabilitation robots.
This design featured direct spring displacement measurement and mechanisms
to absorb backlash, thus improving overall actuator performance (Zhang et al.,
2020).

Control strategies for SEAs have been extensively researched and
validated through experiments. For instance, a PD controller optimised using
the linear quadratic regulator (LQR) method was applied to a cable-driven SEA,
showing improved tracking during sinusoidal movement experiments (Ai et al.,
2021). Additionally, a disturbance observer-based torque-mode control
algorithm was introduced to address variable friction in Bowden cables,
ensuring zero output torque control. This method was validated through human
subject experiments, demonstrating its robustness and adaptability (Lu et al.,
2015). The integration of SEAs in rehabilitation systems and exoskeletons has
been extensively explored. A notable example is the development of a body
weight support system using a linear SEA, which provides precise unloading
force for gait training. This system demonstrated lower power consumption and
more accurate cable force control compared to conventional systems (Mirzaee
et al. 2019). In addition, SEAs with Bowden cables have been utilised in
exoskeletons to achieve compliant actuation, mimicking the behaviour of
biological muscles, thereby improving the flexibility and performance of
exoskeleton joints (Zou et al., 2016).

Overall, advancements in SEAs and cable-driven systems have
significantly enhanced the design and control of robotic systems, particularly
for human-robot interaction and rehabilitation applications. Innovations in
modelling, control strategies, and design have made these systems more
compliant, efficient, and safe. Ongoing research promises further improvements,
particularly in the areas of backdrivability, energy efficiency, and sensorless
control, making these systems increasingly adaptable to diverse applications.

Table 2.10 summarises both systems.
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Table 2.10: Summary Table of SEA and Cable-Based Systems

Aspect Series Elastic Actuators (SEAs) Cable-Driven Systems
Modelling & 2-DOF control for robust torque control Trajectory tracking using predictive control
Control (Zou et al., 2016) (Shu et al., 2023)
Impedance Control Optimised stiffness control across frequency bands Sensorless control in cable-driven systems
(Yu, Zou, & Sun, 2019) (Shu et al., 2023)
Design Innovations Backdrivable cable-driven SEAs Bowden cables with backlash absorption
(Wang et al., 2019) (Zhang et al., 2020)
Control Strategies LQR-optimized PD controller Torque-mode control with disturbance observers
(Aietal., 2021) (Luetal., 2015)
Applications Gait training, lower power consumption Compliant actuation for exoskeletons, mimicking muscles
(Mirzaee, Moghadam, & Saba, 2019) (Zou et al., 2016)
Advantages High compliance, precise control, low power consumption Flexibility, cost-effectiveness, sensorless control
Limitations Complex control strategies, potential for mechanical Variable friction and reduced backdrivability in some
oscillation designs
2.8.4  Soft Robotic Actuators

Soft robotic actuators come in various forms, including pneumatic-based systems, and are integral to the field of soft robotics. General soft robotic

actuators include small-scale actuators that range from nanometres to centimetres in size and utilise smart materials responsive to stimuli like heat and

light, enabling large deformations and complex motions (Chathuranga et al,, 2022; Sambyal et al., 2023). Fluidic Elastomer Actuators (FEAs) are another

common type, utilising pressurised fluids within elastomeric structures to achieve flexible, adaptable movement, particularly useful in delicate
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environments such as surgery (Boyraz et al., 2018). Electromagnetic soft actuators, which use flexible materials like silicone combined with metals,
generate motion through magnetic forces, offering advantages in speed, precision, and compactness (Do et al., 2018).

Specifically focusing on pneumatic-based soft actuators, Pneumatic Networks (Pneu-Nets) utilise pressurised air in elastomer channels to create
movement, with recent innovations enhancing efficiency by reducing gas consumption and increasing actuation speed (Mosadegh et al., 2014). Precharged
pneumatic actuators, which store pressurised air for untethered operation, modulate motion via tendons, making them compact and self-sufficient (Li et
al., 2018). Origami-inspired pneumatic actuators, combining principles of origami with pneumatic designs, offer higher force output and compact storage,
making them highly effective in space-constrained robotic applications (Kim et al., 2021). Soft pneumatic actuators have become particularly valuable
in tasks requiring delicacy, such as in rehabilitation and object manipulation, where their flexibility and compliance enable safe interactions (Antonelli
et al., 2018). In conclusion, the diversity of soft robotic actuators, especially pneumatic systems, underscores their adaptability and effectiveness in

generating complex and controlled motions across various applications. Table 2.11 compiles the unique features and applications of different soft robotics

actuators.
Table 2.11:Summary Table of Soft Robotics Actuators
Type of Actuator Key Features Applications Source
Small-Scale Soft Nanometre- to centimetre-scale soft actuators using smart | Nanorobotics, biomedical devices, | Mushtaq et al.,
Actuators materials like heat, light, and magnetic fields. small-scale manipulators. 2019
Fluidic Elastomer Uses pressurised fluid inside elastomers to generate | Medical devices, soft robotics in | Boyraz et al.,
Actuators (FEAs) motion; high compliance and adaptability. delicate environments, rehabilitation. | 2018
Electromagnetic Soft Flexible actuators using silicone and metal; produces | Tactile displays, biomedical devices, | Do et al., 2018
Actuators motion through magnetic fields; high speed and precision. | soft robotic grippers.




28

Pneumatic Networks
(Pneu-Nets)

Elastomeric actuators that use air pressure in channels to
create bending and motion; fast actuation with reduced

Soft  robotics  requiring large

amplitude movements with simple

Mosadegh et
al., 2014

gas usage. controls.
Precharged Pneumatic | Actuated by precharged air; controlled by tendons for | Untethered autonomous robots, soft | Li et al., 2018
Actuators complex movements; eliminates need for constant air | grippers.
supply.
Origami-Inspired Soft actuators with origami-patterned chambers; | Wearable robotics, robotic gloves, | Kim et al.,
Pneumatic Actuators expandable design for higher force output and | soft grippers. 2021
compactness when not in use.
Soft Pneumatic Hand | Hyper-elastic silicone actuators for human-robot | Robotic hands for collaborative | Antonelli et
Actuators interaction; mimics human hand movements with high | robotics, rehabilitation devices. al., 2018
compliance.
Pneumatic Memory Uses air (not electricity) to control the actuation state, | Soft robotic systems like robotic | Hoang et al.,
Actuators enabling reduced hardware for complex soft robot control. | hands and musical instruments. 2021
Pneumatic Helical Soft | Helical chamber design to enable bending and twisting | Soft robotic grippers for complex | Hu & Alici,
Actuators motions with higher force output. shapes, manipulators. 2020
Shape Memory Alloy | High work density, compliant, and responsive to thermal | Soft bioinspired robots, prosthetics, | Huang et al.,
(SMA) Actuators stimuli; cooling limitations restrict actuation speed. artificial muscles. 2019
Flexible SMA Actuators Shape memory alloy wires with enhanced flexibility for Wearable robots, soft exoskeletons. Copact et al,

wearables; low weight and high force/weight ratio.

2020
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2.9 Systems, Sensors, and Devices for Postural Sway Detection
Postural sway refers to the continuous, natural movement of the body's centre
of mass (CoM) or CoG while maintaining a standing position. This subtle
motion is a critical indicator of balance and stability and is widely used to assess
fall risk, particularly in older adults and individuals with balance impairments.
Several methods and parameters are utilised to measure postural sway, each
offering unique insights into balance control mechanisms.

The primary parameters used to quantify postural sway include path
length and sway range, which measure the total distance travelled by the centre
of pressure (CoP) and the extent of sway in different directions (Malaya et al.,
2020; Ge et al., 2019; Pollind, & Soangra, 2020a). Sway velocity is another key
measure, representing the speed at which the CoP moves and is useful for
distinguishing between different balance conditions and populations (Dieén,
Koppes, & Twisk, 2010; Pollind, & Soangra, 2020a, Voss et al., 2021). The
Root Mean Square (RMS) of sway is frequently used to quantify the magnitude
of sway, offering an overall measure of stability (Pollind, & Soangra, 2020a,
Voss et al., 2021). Another important parameter is sample entropy (SampEn),
which analyses the temporal structure of sway, providing insights into the
complexity and predictability of postural control (Malaya et al., 2020). Lastly,
the total sway area measures the area covered by CoP movements, serving as an
indicator of overall stability (Voss et al., 2021, Degani et al., 2017).

Besides, The Sway Vector (SV) and Directional Indices (DI) are
widely recognised as reliable and robust measures for assessing postural
stability. These parameters are particularly advantageous because they are
independent of trial length and sampling frequency, making them less
susceptible to noise and variations in experimental design (Janusz et al., 2016;
Btaszczyk, 2016). The use of SV and DI allows for a more nuanced description
of postural control, making them effective in distinguishing between different
conditions, such as age-related decline and diseases like Parkinson’s (Blaszczyk,
2016). Among these measures, the Stability Vector Amplitude (SVamp) and
Stability Vector Azimuth (SVaz) offer novel insights into postural control by
providing reference values for stable human posture. In healthy, young
individuals, SVamp is typically around 9.2 + 1.6 mm/s, while SVaz is

approximately 0.9 + 0.1 rad. These parameters are sensitive to visual input and
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have weak to moderate correlations with anthropometric characteristics,
indicating their specificity in capturing fine aspects of postural control
(Btaszczyk, & Beck, 2023). In clinical populations, such as multiple sclerosis
(MS) patients, SVamp and SVaz show pathology-specific increases in sway
velocity, particularly during eyes-closed (EC) tests. This increase highlights
their potential diagnostic value in tracking disease progression (Btaszczyk, et
al., 2021).

Visual conditions also have a significant impact on postural sway. The
absence of visual input, as in eyes-closed conditions, tends to increase sway
across measures such as SV, Directional Index in Anterior-Posterior (DIAP),
and Directional Index in Medial-Lateral (DIML), emphasising the crucial role
of vision in maintaining postural stability (Btaszczyk, & Beck, 2023; Janusz et
al., 2016; Btaszczyk, et al., 2021). Thus, the Sway Vector (SV), along with
Stability Vector Amplitude (SVamp) and Azimuth (SVaz), provides valuable
and reliable descriptors for evaluating postural control. These measures are
robust to experimental noise and sensitive to visual conditions, making them
useful for differentiating between healthy individuals and those with conditions
like age-related decline, Parkinson’s disease, and multiple sclerosis. By
establishing reference values for stable posture and highlighting the role of
visual input in balance, SV and its related measures are crucial tools in assessing

postural stability and diagnosing balance impairments.

2.9.1 Technological Methods for Measuring Postural Sway

Several technologies are used to accurately assess postural sway. Force plates
are highly sensitive devices that measure CoP movements and provide detailed
sway parameters, making them the gold standard in postural sway analysis
(Goble, & Baweja, 2018; Degani, et al., 2017; Sturnieks et al., 2011). These
platforms are widely used in research to track sway in anterior-posterior and
medial-lateral directions, offering high-accuracy measurements, but they are
often impractical for non-laboratory settings due to their cost and lack of
portability (Sturnieks et al., 2011). To overcome this, a similar method
implementing pressure sensors in insoles are developed. Embedded in insoles
or mats, pressure sensors detect the distribution of pressure under the feet,

providing information on changes in CoG which are suitable for real-time
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postural analysis in clinical or rehabilitation settings enhancing portability
(Walsh et al., 2020). Sway Path Length, Sway Area, and Sway Velocity are key
indicators of instability, especially in elderly populations. CoP measures can
differentiate balance performance across sensory conditions, such as eyes-open
versus eyes-closed trials (Ramdani et al., 2009).

More recently, inertial measurement units (IMUs) have emerged as
portable, cost-effective alternatives to force plates. IMUs provide a portable
alternative by using accelerometers and gyroscopes to measure linear and
angular movement. IMUs offer flexibility for non-laboratory applications,
although noise and drift can affect their accuracy, requiring advanced filtering
techniques like the Kalman Filter. Neville et al. (2015) validated the
effectiveness of portable IMUs for postural sway detection, showing strong
correlations with force platforms (r = 0.79) and motion capture systems (r =
0.88). These wearable sensors can measure key parameters such as sway
velocity, RMS, and path length, enabling more accessible assessments (Pollind,
& Soangra, 2020a; Voss et al., 2021). IMU systems also track angular
displacement and acceleration, which are useful for assessing fall risks. Time to
Stabilization (TTS) is another dynamic parameter used to assess how quickly a
person regains stability after perturbations (Goel et al., 2022). Kinect motion
tracking offers a non-invasive option for estimating CoM sway, using motion
capture technology to evaluate postural stability without the need for physical
contact (Mazumder et al., 2017).

Optical motion capture systems (OMCS) and magneto-inertial
measurement units (MIMUs) are pivotal in tracking body movements and
calculating the centre of gravity (CoG) for various applications. OMCS, such as
Vicon and OptiTrack, utilise cameras and reflective markers to capture precise
kinematic data, predominantly in controlled environments like research labs,
though extensive setup is required (Schumann et al., 1995). Conversely, MIMUs,
which integrate magnetometers and inertial measurement units, provide
accurate CoG tracking in more dynamic, ecological settings, compensating for
magnetic disturbances (Germanotte et al., 2021). Lastly, wearable exoskeleton
sensors, equipped with strain gauges and load cells, play a critical role in
adaptive postural support by providing real-time CoG feedback to maintain

stability (Najafi et al., 2010). These diverse technologies cater to different
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environments and purposes, enhancing the precision and utility of motion
capture systems. Table 2.12 summarises the sensors and systems for postural
sway detection.

Table 2.12: Sensors and Systems for Postural Sway Detection

System Mechanism Application Study
Force Measure ground reaction | Laboratory-based | (Goble et
Plates forces to calculate CoG. | postural analysis. | al., 2018)
Pressure Measure pressure Real-time (Walsh et
Sensors distribution under the feet. postural al., 2020)
monitoring.
Optical Track body movement Detailed motion | (Schumann
Motion using cameras and analysis in labs. | et al., 1995)
Capture markers.
MIMUs Combine IMU and Real-world CoG | (Germanotta
magnetometer data to tracking. et al., 2021)
estimate CoG.
Wearable Integrated strain gauges Postural (Najafi et
Exoskeleton | and load cells for force correction in al., 2010)
Sensors and torque measurement. exoskeletons.

Also, electromyography (EMG) is an essential tool for evaluating
muscle activity in postural control systems, offering insights into how muscles
contribute to correcting postural sway. By detecting electrical signals generated
during muscle contraction, EMG helps assess neuromuscular control related to
posture. It is frequently combined with other sensors, such as those used to track
the centre of pressure (CoP), to provide a comprehensive understanding of
postural stability. EMG is widely applied in rehabilitation settings, particularly
for real-time monitoring of muscle function in individuals with conditions like
stroke or Parkinson's disease. For instance, EMG data has been effectively
combined with CoP measurements to analyse how muscle activation impacts
postural stability (Warnica et al., 2014).

Postural sway measurements can be affected by several factors. Age and

sex are significant determinants, with older adults generally displaying greater
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sway than younger individuals. Differences in sway performance between males
and females are also noted under specific balance conditions (Goble, & Baweja,
2018; Voss et al., 2021). Visual and sensory inputs play a crucial role in balance
control, as visual motion sensitivity and binocular visual fields are strongly
correlated with postural stability (Wood et al., 2022). Additionally,
experimental conditions—such as whether the individual has their eyes open or
closed or is standing on a firm or foam surface—greatly influence sway
measurements, with more challenging conditions leading to greater sway

(Sturnieks et al., 2011).

2.9.2  Reliability and Validity of Sway Measurements
The test-retest reliability of postural sway measurements varies, with many
traditional parameters showing low reliability across repeated assessments. This
has led to calls for multivariate approaches to fully characterise balance
performance (Dieén et al., 2010). Devices like the Swaymeter have
demonstrated concurrent and convergent validity when compared to force plates,
positioning them as reliable tools for assessing postural sway in both research
and clinical settings, demonstrating good agreement with force platforms in
measuring anteroposterior and mediolateral sway (Sturnieks et al., 2011).
Force platforms are recognised for high precision in CoP
measurements. IMU-based methods, while more portable, depend on the
reliability of their algorithms to correct sensor errors. Techniques like the
Kalman Filter significantly reduce noise in IMU data, enhancing their validity
(Maurer & Peterka, 2005). Thus, methods like the Kalman Filter have become
a primary tool for filtering IMU data to improve accuracy by reducing sensor
drift. Studies show it can outperform simpler algorithms like the
Complementary Filter (McKee & Neale, 2019). Time-frequency analysis
methods such as Fast Fourier Transform (FFT) also help identify dominant sway
frequencies. These techniques are useful for assessing postural stability and
differentiating between healthy and impaired subjects (El-Jaroudi et al., 1996).
Besides that, more advanced control models, such as Model Predictive Control
(MPC) and COP-Based Controller (COP-BC), are used to mimic the human

postural control system, where these models consider sensory noise and
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neurological time delays, providing a more accurate representation of postural sway compared to traditional methods like the Intermittent

Proportional Derivative (IPD) model (Jafari & Gustafsson, 2023). The findings here are compiled in Table 2.13.

Table 2.13: Findings on Methods of Postural Sway Detection

populations.

Category Study Findings Method Processing

Force Platforms | (Sturnieks et al., | Reliable and validated across multiple conditions. Force platforms, | Not applicable
2011) Swaymeter

CoP Analysis (Ramdani et al., | CoP parameters effectively discriminate sensory | Force platforms Sample Entropy
2009) conditions (eyes open/closed).

Time-Frequency | (El-Jaroudi et | Spectral analysis identifies key sway frequencies to | Time-frequency analysis | Fast Fourier

Analysis al., 1996) differentiate between health and impairment. (FFT) Transform (FFT)

Kalman Filter (McKee & | Kalman Filter minimises sensor drift in IMU-based | IMUs Kalman Filter
Neale, 2019) systems, improving accuracy.

Postural Control | (Maurer & | Simulation models of postural control show strong | Multidimensional Optimisation

Modelling Peterka, 2005) correlation with observed CoP measures in aging | feedback modelling algorithms
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2.9.3 Summary

Postural sway is evaluated using a range of parameters, such as path length,
sway range, velocity, RMS, SampEn, and total sway area. These parameters are
measured through advanced technologies like force plates, IMUs, and motion
tracking systems. Age, sensory inputs, and test conditions are critical factors
influencing sway outcomes. While traditional methods offer valuable insights,
modern tools and multivariate assessments provide a more comprehensive
understanding of balance control. Ensuring the reliability and validity of sway
measurement tools is essential for accurately evaluating fall risk and balance

impairments, particularly in vulnerable populations.

2.10 Postural Monitoring Algorithm for Postural Sway Detection
Postural sway detection is crucial for assessing balance and fall risk,
traditionally measured using expensive and non-portable force platforms.
Recent advancements have introduced more accessible and cost-effective
solutions, such as wearable inertial sensors (IMUs), mobile applications, and
virtual reality systems. Low-cost MEMS inertial sensors, including head-
mounted and chest-based wearables, have been validated for postural sway
analysis, showing high accuracy and portability (Pollind, & Soangra, 2020a,
2020b; Grafton et al., 2019; Meyer et al., 2023). Mobile applications like
C3Logix™ offer comparable accuracy to force platforms, making them viable
for field use (Miyashita et al., 2020). Neuro-Fuzzy inference systems using
Discrete-Wavelet-Transform-based  features  further enhance stability
assessments, even with noisy data (Ando et al., 2022). Additionally, virtual
reality systems using HTC Vive trackers and wireless inertial sensors have
demonstrated reliability in both clinical and athletic settings, particularly for
detecting balance impairments in minimally disabled patients (Liang et al., 2020;
Solomon et al., 2015). These advancements make wearable technologies
valuable for both clinical and on-field assessments.

Overall, many different methods and algorithms have been developed
to detect and analyse postural sway, including threshold-based methods and
neuro-fuzzy systems. This review examines these approaches, focusing on their
accuracy, reliability, and robustness against noise. The main algorithms or

methods focused on are the threshold method and the neuro-fuzzy systems.



36

Threshold-based methods are simple and widely used, relying on predefined
limits for time-based features to detect sway. However, they have limited
robustness in noisy environments and show lower accuracy compared to more
advanced methods (Ando et al., 2022a). For example, while threshold-based
systems can effectively detect unstable postures, they tend to struggle in
dynamic or noisy settings. A comparative study highlighted this, showing that
threshold-based approaches, though easy to implement, are outperformed by
neuro-fuzzy systems when classifying postural behaviours (Ando et al., 2023).

In contrast, neuro-fuzzy systems, which combine neural networks with
fuzzy logic, provide more adaptive and noise-resistant detection (Ando et al.,
2022a). Studies have demonstrated that neuro-fuzzy inference systems
significantly outperform threshold methods, especially when data is noisy or
contains variability. For example, using discrete-wavelet-transform (DWT)-
based features further enhances the system's ability to detect instability with
high accuracy and reliability (Ando et al., 2022a). Another notable advantage of
neuro-fuzzy systems is their ability to classify complex postural behaviours with
nearly 100% accuracy, distinguishing between stable standing, anteroposterior,
and mediolateral sways (Baglio et al.,, 2023). Furthermore, neuro-fuzzy
approaches have also proven highly effective when applied to inertial
measurements, achieving a reliability index of around 95% in postural sway
assessments (Ando et al., 2022b). This makes them well-suited for real-world
applications where noise and variability are common challenges . By contrast,
machine learning models have also shown superiority over threshold-based
methods, providing greater accuracy and reliability when detecting postural
instability. The details are tabulated in Table 2.14.

In summary, while threshold-based methods offer simplicity and ease
of implementation, neuro-fuzzy systems are generally more effective for
postural sway detection in dynamic, real-world settings. Their higher accuracy,
combined with robustness against noise, makes them preferable for applications
aimed at reducing fall risks and improving postural stability in clinical and

rehabilitation environments.
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Table 2.14: Study of Threshold-Based and Neuro-Fuzzy System Based Postural Detection

Study Method Key Features Advantages Limitations Results/Conclusions
Threshold vs. Threshold-Based Time-based feature | Simple; easy to Poor noise Neuro-fuzzy systems were more
Neuro-Fuzzy | Methods & Neuro- thresholds; neural implement robustness; lower | robust and effective at distinguishing

Fuzzy Systems networks + fuzzy accuracy than between stable and unstable postures
logic advanced methods (Ando et al., 2022a)
Machine Threshold-Based & | Comparison between Machine Threshold methods Machine learning approaches
Learning vs. Machine Learning | traditional thresholds | learning offers are less reliable outperformed threshold-based
Threshold and machine learning | higher accuracy methods in classifying postural sway

models

behaviours
(Ando et al., 2023)

Neuro-Fuzzy | Neuro-Fuzzy with | DWT-based features Highly Complex Improved accuracy and reliability in
DWT Discrete-Wavelet- fed into neuro-fuzzy | accurate; noise- | implementation detecting sway instabilities when
Features Transform (DWT) inference system resistant using DWT-based neuro-fuzzy
Features systems
(Ando et al., 2022a)
Postural Neuro-Fuzzy System Classification of Near 100% Noise can still Neuro-fuzzy approach showed
Behaviour for Posture different sway accuracy impact excellent accuracy for classifying
Classification Classification behaviours performance various postural sway behaviours
(anteroposterior, (Baglio et al., 2023)
mediolateral, etc.)
Neuro-Fuzzy Neuro-Fuzzy for Inertial sensor data | Highly reliable | Computationally Superior reliability (~95%) when
for Inertial Inertial processed using for real-world intensive using inertial measurements for
Measurements | Measurement-Based neuro-fuzzy application postural sway detection with neuro-

Postural Sway

algorithms

fuzzy systems
(Ando et al., 2022b)
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2.11 Machine Learning Approaches to Postural Sway Classification

Postural sway represents the continuous micro-adjustments executed by the
human body to preserve upright stability. Historically quantified using force
platforms, contemporary approaches increasingly favour inertial measurement
units (IMUs) due to their portability, cost-effectiveness, and real-time
monitoring capabilities. The resultant IMU-derived data are inherently noisy,
high-dimensional, and time-dependent, rendering them well-suited for machine
learning (ML) approaches. These methods have shown growing efficacy in

discerning balance profiles across healthy individuals, elderly populations, and

patients with neuromotor disorders.

2.11.1 Classical Machine Learning Models for Sway Detection

The application of machine learning techniques to postural sway classification
has centred around classical models such as Random Forest (RF), K-Nearest
Neighbours (KNN), Support Vector Machines (SVM), and Naive Bayes (NB).
These models have demonstrated resilience to feature noise, the ability to
generalize across subjects, and competence in handling non-linear relationships

among input features. Table 2.15 summarises such approaches.

Table 2.15: Summary of Classical Machine Learning Models in Sway Detection

Model Strengths Limitations Key Studies
Random High Requires many Gattinara et
Forest (RF) generalizability; trees; can be al. (2022);
robust to noise; good computationally Prisco et al.
with imbalanced heavy (2025)
data
K-Nearest Simple; good Computationally Ozdemir &
Neighbours baseline intensive in real- Barshan
(KNN) performance time; poor (2014)
scalability
Support Effective in high- Sensitive to kernel | Ozdemir &
Vector dimensional spaces; choice; tuning- Barshan
Machine well-defined intensive (2014)
(SVM) margins
Naive Bayes Fast; interpretable Assumes Less
(NB) independence frequently
among features applied in
sway
detection
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2.11.2 Non-Stationarity and Overlap

One of the most persistent challenges in postural sway classification pertains to
the reliable identification of the unstable (INST) class. Characterized by
irregular, multi-directional fluctuations, INST signals often share spatial and
spectral features with more stable sway patterns, thereby confounding many
classifiers. Guo et al. (2022) observed that while accelerometer-based features
were sufficient to differentiate between stable (STAB) and directional sway
classes (DAP, DML), they failed to robustly isolate INST conditions,
particularly when subjects experienced fatigue or external perturbations. To
mitigate such ambiguities, Ando et al. (2023) introduced a neuro-fuzzy
inference framework augmented with adaptive reliability indexes, which
significantly improved classification performance in the presence of noise and
signal overlap. Likewise, Ando et al. (2023) acknowledged a marked decline in
classification accuracy when models trained on mimic trials were applied to
real-world datasets, thereby exposing the limitations of conventional ML

approaches in unstructured, clinical, or community settings.

2.11.3 Empirical Models versus Data-Driven Learning

Despite the ascendancy of learning-based models, rule-based approaches
continue to hold relevance, particularly in embedded or safety-critical systems
where interpretability, low latency, and minimal power consumption are
prioritized. In static sway classification, threshold-based methods, typically
tuned on mean + standard deviation envelopes of directional features, have been
successfully employed to delineate DAP and DML sway patterns. While such
models lack adaptability to inter-individual variability, their deterministic
nature and transparency are advantageous in contexts where decision
traceability is required. Ozdemir and Barshan (2014) further emphasized that,
under carefully defined parameters, rule-based classifiers could match or even
exceed the performance of more complex models in wearable applications,
particularly in fall risk detection scenarios where resource constraints are

paramount.
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2.11.4 Embedded and Real-Time Classification

The increasing demand for real-time postural sway monitoring has driven a shift
toward model optimization and efficient on-device inference. Ando et al. (2024)
demonstrated an MQTT-based pipeline enabling real-time IMU signal
acquisition and processing on embedded microcontrollers, underscoring the
feasibility of low-latency deployments. Nevertheless, the implementation of ML
algorithms on resource-limited platforms frequently necessitates model
compression, quantization, or the integration of specialized Al inference
engines. Parallel developments by Ehara et al. (2025) illustrated the application
of gradient boosting frameworks such as LightGBM for estimating joint angles,
demonstrating the potential of such models to serve as lightweight alternatives
in continuous biomechanical monitoring systems, including those related to

postural stability.

2.11.5 Deep Learning and Temporal Signal Modelling

Although classical models remain predominant in wearable postural sway
analytics, recent investigations have begun exploring the potential of deep
learning architectures, particularly those capable of modelling temporal
dependencies. Long Short-Term Memory (LSTM) networks and hybrid
architectures such as CNN-LSTM have shown promising results in domains
involving dynamic and non-stationary biosignals. Gu et al. (2025) introduced
the CLTNet framework, combining convolutional, recurrent, and transformer
layers to decode electroencephalogram (EEG) sequences with high temporal
resolution. Such approaches are anticipated to offer enhanced performance in
postural sway classification, especially for INST detection, where transitions
between balance states are gradual and temporally entangled. These deep
learning models are designed to capture complex sequential relationships and
latent features that static classifiers cannot discern, thereby presenting a

promising direction for future sway detection frameworks.

2.11.6 Summary of Literature and Research Gaps
The reviewed literature supports the growing role of ML in sway classification.
Nevertheless, unresolved issues include: (1) difficulty in classifying the INST

class due to overlapping features; (2) inter-subject variability; (3) reliance on
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single-sensor IMU configurations; (4) latency/resource challenges in real-time
applications; and (5) absence of standardized, labelled datasets for
benchmarking models. Table 2.16 summarises machine learning in sway

detection.

Table 2.16: Summary of Key Studies Reviewed

No. Reference Key Insight

1 Ando et al., 2023 ML accuracy degraded in noisy, real-world
sway trials.

2 Ando et al., 2024 Achieved real-time IMU-based sway monitoring

via MQTT.
3 Ozdemir & KNN performed well in fall detection; rule-
Barshan, 2014 based methods remain viable.

4 Prisco et al., 2025 | RF and gradient boosting excelled in IMU-
based ergonomic classification.

5 Gattinara et al., RF outperformed 51 classifiers in Parkinsonian
2022 sway detection.
6 Ando et al., 2023 Neuro-fuzzy inference enhanced classification
under instability.
7 Guo et al., 2022 Feature-based classification effective for
STAB/DAP; weak for INST.
8 Guet al., 2025 CLTNet outperformed conventional models in

decoding biosignals.
9 Ehara et al., 2025 LightGBM enabled low-latency joint-angle
regression from IMU data.

2.12 Literature on Exosuit-Induced Muscle Unloading and Postural
Control
A range of studies have explored the biomechanical effects of both passive and
active exosuits on trunk muscle activation during static and quasi-static tasks.
Kang and Mirka (2023a, 2023b) consistently reported that exosuits significantly
reduce erector spinae (ES) and rectus abdominis (RA) activation, with
unloading effects becoming more pronounced as trunk flexion angles increase
beyond 20°. These reductions appear to be robust across symmetric and
asymmetric stances, suggesting a generalizable neuromechanical adaptation to
external support. Complementing these findings, Cholewicki et al. (2007) found
that passive stiffness augmentation via orthoses leads to superficial muscle
downregulation, supporting the notion that the central nervous system offloads
muscle activity when external stability is provided. Smith et al. (2016)

highlighted that excessive abdominal co-activation, particularly in the EO and
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RA, can impair postural recovery, especially under visual or proprioceptive
challenge, reinforcing the significance of the unloading observed during exosuit
use. Importantly, active systems appear to outperform passive ones in muscle
unloading capacity. Poliero et al. (2022) reported that an active lumbar support
(XoTrunk) achieved approximately 41% EMG reduction in static contexts,
compared to 16% in passive systems, underscoring the potential for algorithm-
driven control in enhancing unloading efficacy. These findings collectively
support the utility of wearable assistive systems, particularly active exosuits, in
mitigating trunk muscle fatigue during prolonged static postures, with

implications for both ergonomic and rehabilitative settings. Table 2.17

summarises the roles of trunk muscles during exoskeleton support.

Table 2.17: Trunk Muscle Unloading via Exosuit Support

No. Source Key Insight Relevance to This
Study
1 Kang & Muscle unloading scales with | Justifies observed
Mirka, trunk flexion angle; no short- | EMG reduction trends
(2023a) term adaptation observed during leaning or
imbalance
2 Kang & ES unloading consistent Supports
Mirka, across symmetric/asymmetric | generalizability of
(2023b) postures effect across all test
conditions
3 Cholewicki | Passive stiffness reduces Mechanistic basis for
et al., (2007) | superficial trunk EMG observed unloading in
through CNS adaptation RA and ES-R
4 Smith et al., | High EO/RA activity impairs | Supports balance
(2016) postural recovery; their improvement
reduction improves balance hypothesis with lower
superficial
coactivation
5 Poliero et Active exosuits outperform Validates active
al., (2022) passive (41% vs. 16% EMG | system design choice
reduction in static tasks) in current exosuit
prototype
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CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the technical processes and procedures employed in the
development of a strap-based, pneumatic-powered, back-supported assistive
exosuit for postural sway detection and correction. Specifically, it details the
prototype’s requirements and conceptual framework, the development process,
and the anthropometric data incorporated into the design. Furthermore, the
chapter elaborates on the conceptualization of the prototype’s mechanical
design, its system architecture, and the planned biomechanical assessments
designed to evaluate the performance of the exosuit. The discussion also
includes the selection of materials and electrical components utilized in the
prototype’s development, as well as the kinematic methods implemented to
obtain postural sway metrics via inertial measurement units (IMUs). Moreover,
the circuit design, developed using both breadboard and stripboard techniques,
is explicated in detail. The chapter further addresses the design and
implementation of a hard-coded graphical user interface (GUI) developed with
Visual Studio Code, outlining its architecture and program flowchart.
Additionally, this section reviews the libraries employed for programming the
prototype components, the GUI system, algorithm development, and data
analysis. It also describes the experimental protocols for three tests, sway data
collection for classifier algorithm development, sway data validation for
algorithm validation, and sway correction for overall prototype testing,
implemented to assess the functionality and effectiveness of the exosuit in
improving real-time postural sway and balance. Overall, the methodology
presented herein offers a comprehensive insight into the project’s technical
framework and elucidates the rationale behind the key design decisions made

throughout its execution.

3.2 Requirement/ Specification of Prototype
The developed prototype is a fabric-based, back-mounted active exoskeleton

system designed to support real-time posture correction and reduce standing
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postural sway. This system was developed to fulfil several functional and design
requirements aligned with its intended use in assistive balancing and postural
adjustment scenarios. The design emphasises features such as being lightweight,
fully portable, semi-concealable, durable, cost-effective, and adjustable to
accommodate users of varying body shapes, sizes, and postural needs, in line
with UN SDG 3: Good Health and Well-being and UN SDG 10: Reduced
Inequalities. Additionally, it must provide accurate sensor readings, enable real-
time feedback, and support basic Internet of Things (IoT) connectivity. To
support portability and user comfort, the device is constructed using soft
materials and compact components, making it lightweight and easy to wear
across various environments, including at home or in research settings.

Although some components, such as pneumatic cylinders, remain
externally visible, the overall structure is compact and thin, allowing
concealment under loose clothing. The modular and adjustable design enhances
fit and usability, while also allowing for component replacement or upgrading
if needed. Durability is an essential requirement, as the system must withstand
repeated use during posture training sessions. Cost-effectiveness is also
prioritized, with components selected for affordability without compromising
essential functionality. Functionally, the system offers real-time posture
monitoring and correction by integrating an IMU to detect trunk motion and
postural deviations. Corrective feedback is delivered through pneumatic
actuation and is accompanied by immediate visual cues via an onboard OLED
display. The pneumatic actuation is low powered and gradual, which
biomechanically is in line for the spinal muscles, which are predominantly slow-
twitch fibres (Chu, Lin & Chen, 2022; Liu et al., 2020).

A GUI is also implemented to support visual monitoring of system
status and sensor data. Basic IoT connectivity allows for wireless data
transmission, enabling remote observation and future potential for cloud-based
data analysis or control. A known limitation of the system is its operating
duration, which is constrained by pneumatic power requirements. The current
battery-powered setup allows for approximately 15 to 30 minutes of active
operation, which is considered adequate for short training sessions. Power
efficiency is recognized as an area for future improvement. Notably, while

passive exoskeletons for posture support exist, this prototype addresses a gap in
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the literature by introducing an active exoskeleton approach aimed specifically
at managing postural sway via trunk-based actuation. To the best of our
knowledge, no prior systems have employed an active solution targeting trunk
strategy for sway correction, much less fabric-based, where most available
solutions are passive supports or rigid orthoses, positioning this work as a novel

contribution in the early-stage exploration of posture-assistive technologies.

3.2.1 Concept and Features of the Prototype
The back support postural sway exoskeleton is designed to improve balance and
minimize postural sway, particularly during periods of quiet stance. By offering
dynamic support to the back and trunk muscles, it addresses the needs of trunk
stabiliser muscle groups, improving overall posture stability. The system is
engineered to accommodate slow-twitch muscle fibres responsible for
maintaining posture over time and not fast-twitch fibres, which are engaged in
more active movements (Fitts, 1994). Key features of the exoskeleton include
multi-axis support, where the exoskeleton can dynamically adjust to both
anteroposterior (front-to-back) and mediolateral (side-to-side) sway, allowing
the user to move naturally while receiving corrective support. This multi-axis
capability enables the exoskeleton to engage when the user’s posture deviates,
realigning their centre of pressure (CoP) without restricting overall movement.

Besides, real-time postural correction is essential, the system uses with
an IMU that constantly monitor the user's kinematic CoP parameters to detect
any deviations from normal posture. Upon detecting abnormal sway, the
exoskeleton's actuators are triggered to make real-time adjustments, minimizing
the risk of falls or instability. This quick response mechanism ensures
continuous postural support, especially in static situations where the user’s
balance might be compromised. Another main feature includes wearability and
portability. A major focus in the design of the exoskeleton is ensuring it is both
lightweight and comfortable. The frame is constructed from soft, flexible
materials such as fabric straps that do not impede movement but provide
necessary support. The wearable design ensures that users can go about their
daily activities without feeling weighed down or restricted by the device.

A critical aspect of the exoskeleton’s design is the postural sway

detection system, which continuously monitors the user’s CoP parameters and
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provides feedback for real-time adjustments (Menga & Ghirardi, 2018; Takeda
et al., 2017; Layne et al., 2022). This is planned to be achieved through the
precise placement of IMU which is positioned on the chest, where it can monitor
upper body and trunk motion. This strategic placement ensures that sway is
detected during quiet stance and other static postures. The IMUs provide data
on acceleration, angular velocity, and orientation, offering a detailed
understanding of how the body is moving relative to its CoP (Cinnera et al.,

2023; Guidolin et al., 2021).

33 Development Process of Prototype

The development of the postural sway back support exoskeleton followed a
structured and iterative process involving literature review, resource exploration,
laboratory testing, evaluation, and refinement. Both hardware and software
elements were addressed systematically to ensure a functional and reliable
prototype. An overview of this process illustrated in Figure 3.1, and Gantt chart
in Figure 3.2. The process began with conceptual development, where design
considerations, key features, and mechanical sketches were created using
SOLIDWORKS 2024 software. These guided the prototyping and material
selection. During hardware development, mechanical requirements were
analysed, and 3D models were prepared. Depending on feasibility, parts were
either 3D-printed or fabricated through metalworking. All components
underwent testing, with redesigns made as needed. Pneumatic cylinders were
selected and subjected to load testing before full assembly. In the circuit
development phase, basic circuit functions were tested and integrated
incrementally. The MPU6050 sensor module was chosen as the sole sensor for
capturing postural sway, providing accelerometer and gyroscope data, to attain
and compute kinematic sway data such as displacement in anteroposterior
(DAP), and medio-lateral (DML). It was tested for accuracy and integrated into
the mechanical system.

For algorithm development, motion data from the MPU6050 was used
to develop sway classification algorithms. Key parameters were identified and
tested through iteration to achieve acceptable detection performance. These
algorithms were implemented into the working prototype. Software

development involved creating a modular system for real-time operation.
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PROJECT PART 1

Task

[w1 [w2 [w3 [wa [ws [we [w7 [w8 [wo [wio [wi1 [w12 [wi13

Phase 1 Project Preparation

Project Title Formation

Scope Development

Setting Objective

Background Study

Phase 2 Literature Review

Postural Sway Types and Causes

Current Treatments

Existing Back-Support Exoskeleton

Phase 3 Project Planning

Initial Solution Development

Cost Estimation and Budgeting

Material and Resource Selection

Risk Assessment Analysis

Selection of Actuator

Selection of Electronic Components

Phase 4 Conceptual Development

Hardware Design and Technical Drawing

Structural Design




Technical Drawing (CAD)

Technical Drawing (SolidWorks)

System / Algorithm Development

PROJECT PART 2

Task W1 (W2 | W3 (W4 | WS | W6 | W7 | W8 W9 | W10 | W11 | W12 | W13

Phase 1 Circuit and Algorithm Development

Sway Detection Circuit Development

Algorithm Development

Algorithm Selection

Preliminary Data Collection

Parameter Selection

Algorithm Testing and Validation

Development of Peripheral Circuits

Single Component Testing

Features Additions

Integration of Circuit

Phase 2 Prototype Development

Hardware Development

Structural Design

Technical Drawing (CAD)

Technical Drawing (SolidWorks)
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EMG Tests
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Phase 4 Data Analysis

Data Analysis

System Evaluation

Figure 3.2: Gantt Chart of Project
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Motion data and feedback were displayed on an OLED screen attached to the
device for immediate user access. Additionally, a GUI was developed for [oT-
based remote monitoring, allowing external users to view sway status and
system activity. In the final integration and testing phase, the complete
prototype was evaluated for functionality, accuracy, and user interaction. Test
results informed final refinements to ensure the system met performance
expectations. This iterative approach enabled systematic improvement at each
development stage. A summarised and simplified workflow of the prototyping

is presented in Figure 3.3 below.

Hardware Algorithm
| !
# Circuit design =] Data
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material 0" &validation
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Data analysis

Figure 3.3: Simplified Flowchart of Prototype Development

34 System Architecture

The system architecture, illustrated in Figure 3.4, is centred around a control
unit, the ESP32 microcontroller, which controls and processes all sensor inputs
and actuator outputs. IMU sensors capture real-time kinematic sway parameters
that reflect postural sway during standing, which are transmitted to the
microcontroller for processing. The ESP32 is powered by a portable power bank,
enabling the system to function independently without relying on a fixed power
supply, allowing for mobile and wearable applications. Based on the processed
sensor data, the microcontroller controls an actuation system comprising a pair
of pneumatic cylinders. These cylinders apply linear force to pull adjustable
straps that correct the user's posture, effectively mitigating anterior and lateral
sway. The postural adjustments block diagram is illustrated in Figure 3.18 and
explained in Section 3.6.1. This corrective action aims to minimise overall

postural sway and enhance standing balance. A GUI, developed using StreamLit
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in Python and deployed through Visual Studio Code, provides a user-friendly
platform for remote monitoring and interaction. Users can view real-time status
updates, log and review their historical sway data, and get interactive
visualizations. Additionally, an admin interface enables authorised personnel to
access aggregated user data and add relevant comments for monitoring or
therapeutic feedback. Complementing the remote interface, an OLED display
mounted on the user's wrist provides immediate visual feedback on sway
parameters and balance in real time. This integration of IMU sensing, pneumatic
actuation, and IoT-based control and monitoring establishes a responsive and
intelligent system capable of providing real-time postural correction and

feedback, supporting both user autonomy and potential clinical oversight.
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(MPU 6050)
i i Posture Adjustment
Power Source N Control Unit Amqatlonl ]
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¥ L
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Direct {g'f;?:'f ation Interface (GUI)
(VS Code)

Figure 3.4: System Architecture of Prototype

3.5 Biomechanics Assessments and Considerations of Prototype
This section outlines the biomechanical rationale, analytical methods, and
performance metrics used to evaluate the functional outcomes of the proposed
posture-correcting exoskeleton prototype. The assessment framework integrates
quantitative analyses of standing postural sway, based on Centre of Pressure
(CoP) dynamics, and surface electromyographic (EMG) signals from key trunk
musculature. The parameters and methods selected reflect established standards
in biomechanical research and are intended to validate both the mechanical
effectiveness and physiological relevance of the prototype.

The structural and functional design of the exoskeleton is informed by
anthropometric and kinesiological principles to preserve user comfort, range of
motion, and biomechanical efficiency. The device is intended to assist with

postural control during quiet standing by supporting critical regions involved in



53

balance maintenance, particularly the lumbar spine and pelvis. The anatomical
focus includes the erector spinae, multifidus, internal and external obliques, and
rectus abdominis, which are responsible for trunk stability and alignment. The
mechanical support provided by the exoskeleton is designed to complement
rather than replace muscular effort. Therefore, biomechanical evaluation
focuses on whether the system can reduce excessive postural sway and alleviate
muscular workload without restricting natural movement patterns. Table 3.1
presents a summary of the prototype’s biomechanical objectives and

corresponding design considerations.

Table 3.1: Biomechanical Functionality of the Proposed Exoskeleton

Aspect Description

Postural Assists in minimizing CoP excursion via feedback and
Stability correction of sway.
Muscular Reduces trunk muscle activation during prolonged
Demand standing.

Joint Maintains physiological joint alignment and range of
Movement motion.

3.5.1 Standing Postural Sway Centre of Pressure (CoP) Parameters
CoP displacement serves as a fundamental biomechanical indicator of postural
control and balance performance. In this study, CoP-related metrics were
estimated from kinematic data acquired at the trunk level via IMU at the chest.
The IMU provides three-axis acceleration signals, which can be processed to
infer angular displacement and corresponding linear sway in both the sagittal
and frontal planes. The orientation of IMU as well as the basic sway parameters
such as anteroposterior displacement (DAP), mediolateral displacement (DML),
pitch angle and roll angle, are depicted in Figure 3.5 which were adapted from
multiple publications (Ando et al., 2022; Nehary, Rajan and Ando, 2024).

The inclination angles of the trunk in the sagittal and frontal planes,
denoted as pitch and roll respectively, are computed from triaxial acceleration
measurements and can be used to determine the orientation angles of the
standing posture of user. These angles serve as proxies for anterior-posterior
and mediolateral sway. These computations offer a simplified yet reliable means
of quantifying postural orientation without requiring a full motion capture setup

and can be determined by Equations 3.1 and 3.2:
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Figure 3.5: Equivalent IMU Nodes Positions on User and Representation of
Basic Quantities for Reconstructing the AP and ML Dynamics

A,
Opitcn = arctan | ——— (3.1)

Ay

/A§ + A7

Ay, Ay, A, represent the acceleration components along the mediolateral,

(3.2)

0., = arctan

where

vertical, and anteroposterior axes, respectively. The resulting angles describe
trunk inclination relative to gravity and provide input for estimating sway

displacement.

Assuming the trunk rotates about a fixed base, the horizontal
displacements of the CoP, which are the DAP and DML, can be estimated by
projecting the pitch and roll angles over fixed vertical heights, H; and H,,
depicted in Figure 3.6, via Equations 3.3 and 3.4:
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Figure 3.6: Representation of H; and H, to Reconstruct AP and ML Dynamics

A,
DAP = H, | —2—
/Af, + AZ
(a4 )
DML =H, | ——2
/A§ + A%/
DAP == Hz tan( HTOU) (34‘)

where

DAP and DML represent the anterior-posterior and mediolateral displacements,
respectively.

H,; and H, denote the vertical distance from the IMU sensor to the assumed CoP,
upper chest to ankle for H; and upper chest to waist for H,.

These displacements are interpreted as estimations of postural sway at the CoP

level and serve as the foundation for all subsequent sway metrics.

Next, the standard deviation of sway, where the variability of sway in
each direction is calculated as the standard deviation of DAP and DML over a
sampling period. These values provide a direct measure of postural stability.
Greater standard deviations indicate increased sway and are generally
associated with decreased postural control or increased neuromuscular effort,

which can be computed with Equations 3.5 and 3.6:
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1 —\2
S.Dpsp=0Osp = \/mzﬁl(mp(i) — DAP) (3.5)

1 —\2
S.D.pyL = Oy = jng"_l(DML(i) — DML) (3.6)

where

N = total number of samples

DAP and DML are the mean displacements

Following, mean sway velocity quantifies the rate of CoP displacement
and reflects the dynamic behaviour of balance corrections. Higher sway
velocities may indicate increased postural instability or compensatory
movement patterns. The mean sway velocities of AP and ML axes can be

computed via Equations 3.7 and 3.8:

1 _y_1 |DAP1) — DAP |

Mean Velocityp,p = f2i=1 v (3.7)
1 DML 1y — DML
Mean Velocitypy, = TZ?’:"ll | (Hl)At ol (3.8)

where
At = sampling interval

T is total trial duration

Path length is also an important parameter, which is the total path
traversed by the estimated CoP trajectory, commonly depicted in the form of a
stabilogram as depicted in Figure 3.6 (Ramachandran and Yegnaswamy, 2010).
This parameter reflects the cumulative distance of sway, associated with balance

control, computed as Equation 3.9:

Pathlength = SN¥='\/DAP? + DMI? (3.9)
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The area of the prediction ellipse provides a bivariate measure of sway
dispersion, as depicted in Figure 3.7. A reduced PEA during exoskeleton usage
implies enhanced postural control, as sway is more tightly regulated. Assuming
a Gaussian distribution of DAP and DML values, the area enclosing 95% of the

sway trajectory is calculated as shown in Equation 3.10:
PEAgsyy, =T XaXb (3.10)
a = PSF? - o,p, b = PSF? - gy, (3.10.1)
where

k = PSF=2.4477 is the prediction scaling factor for 95% coverage in this case.

a and b represent the semi-major and semi-minor axes of the ellipse.
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Figure 3.7: Sample Visualisation of PEAgse, and CoP Pathlength

It is important to note that the PEAgse, was chosen over the CEAgsq,
due to fundamental conceptual and statistical differences between the two. The
PEA represents the region within which future individual CoP observations are
expected to fall, providing a direct measure of overall postural sway dispersion.
In contrast, CEA estimates the confidence region around the mean position of
the CoP, and its area shrinks with increasing sample size due to reliance on
sample variance and covariance matrices. As highlighted by Schubert and
Kirchner (2014), this distinction is critical in posturography, CEA is based on
inferential statistics of the mean, while PEA better reflects the true extent of
sway variability experienced by an individual. PEA also avoids distributional
assumptions such as bivariate normality and is more suitable for real-time

applications and threshold-based postural classification, especially in embedded



58

systems. Furthermore, Paillard and Noé (2015) emphasize the practical
relevance of using sway area measures that directly reflect CoP dispersion rather
than confidence around the mean, particularly in balance training and clinical
contexts. As such, PEA offers a more appropriate and interpretable metric for
evaluating balance control performance, especially in applied biomechanics and
wearable system studies. Therefore, based on both theoretical justification and
methodological recommendations in recent literature, PEA was selected as the

primary metric for postural sway analysis in this study.

3.5.2  Trunk Stabiliser Muscles Electromyography (EMG)

To assess the biomechanical impact of the proposed exoskeleton on postural
control, surface electromyography (sEMG) was conducted on four trunk
stabiliser muscles, right rectus abdominis (RA), right external oblique (EO), and
bilateral erector spinae (ES) at the L3—-L4 level. These muscles were selected
for their critical roles in maintaining upper body posture, contributing to spinal
stability, and responding to trunk sway and perturbations in both sagittal and
frontal planes and are depicted in Figure 3.8. The rectus abdominis and external
oblique represent key components of the anterior abdominal wall, generating
intra-abdominal pressure and counterbalancing spinal extensor activity. These
muscles are particularly relevant in mediating forward sway and maintaining
thoracolumbar alignment. The erector spinae, as primary spinal extensors,
provide segmental stiffness and control over lumbar posture, especially during
posterior sway and corrective movements. Together, these muscles constitute
the active core stabilisation system, and their recruitment patterns provide
insight into neuromuscular compensation during upright stance.

The inclusion of trunk muscle SEMG was justified based on both
biomechanical and functional grounds. Although postural sway during quiet
standing is traditionally attributed to distal (ankle) strategies, some studies
suggest that proximal (hip and trunk) contributions become more relevant under
certain conditions such as fatigue, instability, or constrained lower-limb
feedback (Saffer et al., 2008). Importantly, the exoskeleton system developed
in this study targets upper body sway via a chest-mounted IMU and delivers
corrections based on thoracic displacement, making proximal muscle activity

more relevant to its evaluation. This direct influence on trunk kinematics further



59

supports the decision to focus on core musculature rather than distal control
systems. Moreover, prior evidence indicates that increased postural difficulty or
fatigue leads to elevated EMG activity in trunk muscles (Nakao et al., 2017),
and that trunk muscle fatigue significantly alters CoP dynamics, especially CoP
velocity, even in asymptomatic individuals (Ghamkhar & Kahlaee, 2019).
These changes are especially important when considering populations at risk for
chronic low back pain (CLBP), where compensatory overactivation of trunk
stabilisers has been observed (Ringheim et al., 2015), though increased EMG

alone is not a definitive marker of pathology.
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Figure 3.8: Placements of SEMGs on Trunk Stabiliser Muscles Considered

Given this context, the current analysis prioritised trunk muscles over
ankle strategies to directly evaluate whether the exoskeleton reduced upper-
body sway and muscle effort. Ankle musculature was not instrumented, as it
was not the target of feedback or actuation. Furthermore, postural sway was
assessed from the thoracic level, and thus muscular compensation at the trunk
was more indicative of system effectiveness in mitigating sway. The hip joint’s
role, though biomechanically relevant, was also excluded from EMG
assessment due to variability in recruitment strategies across individuals (Saffer
et al., 2008) and lack of direct exoskeleton intervention at that level. This
approach ensures that muscle activity data aligns with the functional objective
of the exoskeleton, to stabilise the trunk by minimising excessive sway, and
provides clear evidence of neuromuscular adaptation or unloading in response

to device assistance.
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3.5.3 Anthropometric Data Considerations and Calculations for Design
The biomechanical configuration of the exoskeleton was meticulously
developed based on established anthropometric datasets to ensure ergonomic
compatibility with average human body proportions. Key structural parameters,
particularly spinal segment lengths, were incorporated to enable optimal
alignment, comfort, and functionality. Rather than relying on individual
vertebrae, the design considered functional spinal segments, which offer more
biomechanically relevant divisions for wearable systems integration (Ko et al.,
2004). Of particular importance was the determination of the exoskeleton’s
anchor point along the thoracic spine. Although the C7 segment, located near
the base of the neck and at the level of the trapezius prominence, might appear
suitable in terms of accessibility, it was deliberately avoided. The cervical
region is anatomically more fragile and susceptible to injury due to its relatively
lower load-bearing capacity and higher mobility demands. Thus, for both safety
and biomechanical robustness, the exoskeleton’s anchoring interface was
positioned inferiorly at the T7 segment, corresponding approximately to the
level of the inferior angles of the scapulae. This placement provides a stable
foundation for load distribution while preserving cervical spine mobility and
reducing risk of strain or impingement. Furthermore, the T7 level aligns with
the thoracic pivot point of postural control, making it an ideal location for
monitoring and mitigating trunk sway through sensor feedback and actuation.
All dimensional parameters and proportional calculations used in the system’s
design, including segmental lengths and torso landmarks, are summarised in
Table B-1, with reference to normative anthropometric data (Ko et al., 2004).
According to existing research, the torso-to-height ratio is generally
around 30% or approximately 1/3 of the stature (Hall, 2012; Ramachandran et
al., 2016). While different ethnicities exhibit deviations in these segment lengths,
where Asians tend to have relatively longer torso and shorter limbs (Liu et al.,
2020), the design assumes a torso ratio of 1/3 of total height for simplicity and
practicality. In addition to torso length, other critical anthropometric
measurements, such as shoulder breadth and hip breadth, are used to develop a
modular exoskeleton that can accommodate a wide range of users, as depicted
in Table B-2 (Gordon, 2006; Choi-Rokas and Garlie, 2014). These

measurements are typically computed based on percentile data, allowing the
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design to be inclusive and adaptable. Although much of the data originates from
American populations, where body dimensions tend to be about 5% larger than
those of Malaysians on average, the exoskeleton's design has been recalibrated
to better fit the average Malaysian body size. For instance, the median height of
Malaysian males is approximately 1.68 m, while for females it is 1.57 m, both
corresponding to the 20™ percentile of U.S. stature data (Bong et al., 2012). To
ensure inclusivity, the design range covers female heights from 1.53 mto 1.7 m
(5™ to 85" percentile) and male heights from 1.63 m to 1.84 m (5" to 90™
percentile), allowing the exoskeleton to cater to a broad user base. In Table B-1
is a summary of anthropometric data tailored to Malaysian users. The
application of these data is discussed in more detail in Chapter 3.6. Table B-2
presents a variety of anthropometric measurements for typical Malaysian males
and females, with data on height, shoulder breadth, torso length, and other key
physical characteristics to design a back support exoskeleton for trunk-based
method of postural sway correction. It includes the mean and standard deviation
(SD) for both genders, also percentile ranges for certain parameters, particularly
relevant for product design and ergonomic considerations. The data illustrates
how male and female body dimensions differ in key areas, which should be

considered in design applications to accommodate a broad range of users.

3.6 Hardware Development

The development of the mechanical designs began with a comprehensive
analysis of anthropometric data, focusing on torso dimensions and girth
measurements. Statistical methods and mathematical modelling were employed
to select key data points, ensuring the design parameters would be compatible
with a wide range of users. The resulting designs were carefully tailored to
accommodate varying statures and body sizes, enhancing the system’s
adaptability and usability. A back-based actuating system, featuring detachable
anchors, was incorporated to provide modular support for different users.

The design process progressed through several stages, beginning with
initial sketches and detailed technical drawings, followed by 3D modelling and
prototyping. Software such as SOLIDWORKS and AutoCAD played a crucial
role in creating precise digital models of the designs. Existing models from

platforms like GrabCAD were referenced to accelerate the design process, with
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additional support from online tutorials. Multiple design iterations were
conducted, allowing for continuous refinement and optimization. This iterative
approach addressed design flaws, improved functionality, and enhanced the
overall performance of the system. Throughout this process, meticulous
documentation was maintained, ensuring transparency and reproducibility,

which will facilitate future improvements and further developments.

3.6.1 CAD and Iterations

In developing the mechanical architecture of the back support exoskeleton
aimed at mitigating postural sway, extensive emphasis was placed on
constructing a bioinspired, structurally robust, and ergonomically adaptive
framework. The exoskeleton frame was conceptualized through iterative design
cycles, integrating principles from biomechanics, human-centred design, and
modular engineering. The resulting structure comprises multiple interlocking
and adjustable components, configured with bilateral symmetry to support
functional balance and mechanical alignment. Comprehensive design
schematics and assemblies, presented in Figures 3.10 to 3.17 and Figures C-1 to
C-11 in Appendices, illustrate the full assembly and modular interconnections
of the system. A key design objective was to ensure anthropometric adaptability
and user comfort across a broad range of body sizes. This was achieved through
adjustable components that can be fine-tuned to match the user's individual
anthropometric dimensions, including torso length, shoulder width, and hip
girth. By adopting a customizable fitting system, the exoskeleton maintains
intimate contact with the user’s trunk while minimizing pressure points and
ensuring consistent biomechanical alignment.

The mechanical structure draws inspiration from conventional back
braces and safety harnesses, incorporating these principles to inform both
actuator placement and force transmission pathways. The actuators are
positioned in alignment with the anatomical paths of trunk-stabilizing muscle
groups, particularly the ES and RA, which play a vital role in maintaining
posture and counteracting excessive sway. This anatomical alignment ensures
that assistive forces are applied efficiently, targeting regions of the trunk that
contribute most significantly to midline stability. The layout was meticulously

designed to avoid interference with natural joint articulations such as the
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shoulders and pelvis, thereby allowing unimpeded movement while ensuring
effective postural correction. The 3D modelling process was conducted using
industry-standard CAD platforms, including SOLIDWORKS and AutoCAD, to
develop structurally sound and biomechanically informed components. The
spine-aligned backplate, thoracic support, actuator mounts, and harness sub-
assemblies were digitally prototyped to simulate natural spinal movement while
delivering corrective mechanical assistance. Materials were carefully selected
for these components: 3D-printed PLA or PLA+ was considered for initial
prototypes due to its favourable balance between fabrication speed and
mechanical durability, while aluminium was proposed for higher-load elements
due to its superior strength-to-weight ratio.

The prototype frame is subdivided into four key mechanical subunits,
the waistband assembly, which provides foundational support and anchors the
lower structure; the thoracic backplate, that stabilizes the upper spine and acts
as the main mounting structure for actuators; the harness system which encircles
the chest and shoulders, maintaining actuator alignment and securing upper-
body integration; and the actuator-holding assembly, accommodating
pneumatic or servo actuators, optimized for force transmission along
biomechanical vectors. To maintain dynamic freedom and user safety, the
system incorporates multiple anchor points and pivot allowances, via strappings
in contrast to rigid designs, ensuring that movement is guided, not restricted,
across natural degrees of freedom. Strapping components were fabricated from
high-durability woven textiles such as nylon, and their design was informed by
the anthropometric data provided in Section 3.5.3. These straps support both
load transfer and fit customisation. The data were simplified to prioritise key
variables that directly affect strap routing and part integration, including
Shoulder Width (SW), Chest Breadth (CB), Torso Length (TL), and Hip Girth
(HG). These parameters were critical in defining the angles and lengths of the
strap connections, as well as the placement of carabiners and padding.

To standardize fit and functionality, a dataset representing the 5th to
95th percentile of adult body sizes was analysed. The design of the strap system
is guided by anthropometric parameters simplified for practical implementation
and illustrated in Figures 3.10 and 3.11. The following ranges in Table 3.2 were

established based on normative anthropometric data. To determine optimal strap
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angles, a simplified trigonometric model was applied, as depicted in Figure 3.9.
The designed trapezius clearance (TC), measured from the backplate to the base
of the neck and trapezius region, was defined in the range of 100-201 mm, based
on anatomical data summarized in Table B-1. This ensures safe and unimpeded
shoulder movement as well as lower risks of injuries bypassing the more fragile
cervical spine area for more neutral, load bearing T7. The relationship is defined

by Equation 3.11.

TC

Figure 3.9: Simplified Trigonometric Model of Strapping Angle

Trapezius Clearance (TC)> (3.11)

0= arctan( 05 X W

where W is the acromial-to-acromial length, and 0.5 X W simplified as
clavicular length (CL). Thus, the computed effective range for strap angle, 6 is
30° and 55°.

Table 3.2: Table of Anthropometric Data Analysed for Prototype Design

Parameter Range
Body Height (BH) 1.53-1.88 m
Torso Length (TL) 30%—-33.33% BH (~47-65 cm)
Shoulder Width (SW) 41-61 cm
Chest Breadth (CB) 30-38 cm
Shoulder-to-Waist (S-W) 3042 cm
Hip Width (HW) 30-38 cm
Waistband Circumference 83—-110 cm

The shoulder clearance offset from the spine was calculated to estimate

required length of straps exceeding that of the torso length, using Equation 3.12:
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CL
=— 3.12
x tanf ( )

with resulting values between 140—-250 mm. To accommodate approximately
95% of the target population based on standard anthropometric datasets, the
shoulder-to-pelvis length was assumed to range between 470—650 mm, while
the shoulder-to-waist segment specifically falls within 420-550 mm.

A representative CAD design of the strap attachment configuration and
routing strategy is presented in Figure 3.11, detailing the anchoring points,
angular routing of the straps, and integration interfaces with the actuator
modules. The corresponding physical realization of this system is shown in
Figure 3.10, which validates the design through practical alignment with the
CAD model and demonstrates its adjustability, structural integrity, and user
comfort during wear. Chest depth estimations were derived based on 10%-20%
of the vertical torso circumference, resulting in a range of 150-270 mm. To
accommodate spinal curvature and individual variations, strap lengths were
extended by an additional 10%-20 % of torso length and supplemented with 50-
100 mm of slack. This resulted in an effective strap length of 550-900 mm,
which was further adjusted, with padding and hardware allowances, to a
standardized final length of approximately 1300 mm. The lower strap sections,
ranging from 220-440 mm, were designed in accordance with the estimated
torso length of 470-650 mm, factoring in 100-201 mm for shoulder clearance,
an approximate 100 mm allocation for the backplate, and an additional 100 mm

for the waistband structure.

Figure 3.10: Actual Strapping Strategy of Prototype
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Figure 3.11: CAD Design of The Strap Attachment Configuration

To facilitate accurate detection of upper trunk postural sway, a custom-
designed enclosure was developed for chest-mounted MPU6050 IMU module.
The casing is compact and tailored specifically to accommodate the physical
dimensions of the IMU, including the L-shaped header pins, measuring
approximately 20 mm x 15 mm X 11 mm. The enclosure itself has a total height
of only 15 mm, ensuring that it remains low-profile and easily concealable under
typical clothing such as a t-shirt, sweater, or jacket, making it suitable for
continuous wear in both experimental and real-world conditions. The enclosure
features two M3 screw holes that allow secure fastening of the MPU6050 to the
case using screws or bolts, thereby preventing sensor displacement during
movement. Additionally, strategically positioned side openings enable the
passage of 20 mm elastic straps. These straps are routed through the enclosure
and fastened using ladder buckles, allowing the entire assembly to be securely
anchored to the chest. This strapping mechanism is critical for preventing
slippage, tilting, or drooping of the sensor, which could otherwise introduce
errors in the sway detection algorithm. As this IMU module forms the core
sensing component for the upper trunk posture assessment system, its correct
positioning and firm attachment to the user’s chest is essential to maintaining
data fidelity. No separate cover was designed for this casing; instead, the
MPU6050 module was soldered onto a custom-cut stripboard that fits snugly
within the enclosure, serving as a makeshift lid. Wires are routed neatly along
the side of the casing to connect with the main microcontroller unit housed

separately, and the full assembly is detailed in Figure 3.12.
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Figure 3.12: Chest IMU Holder and Strap

Further supporting modules include the development of a devboard
holder casing, as illustrated in Figure 3.13. This housing is specifically designed
to hold the ESP32 terminal expansion board and includes four M4 holes for
secure mounting. A slotted track system is integrated into the design to
accommodate a cover panel, transforming the unit into a compact box. This
casing is then attached to a rigid backplate, shown in Figure 14, via similar slots
and tracks, forming part of the thoracic module of the prototype. The entire unit,
which also stores the SD card logging module, maintains a slim profile of only
33 mm, contributing to the overall wearable form factor. The backplate features
multiple strap interface points, as shown in Figures 3.10 and 3.11, allowing

stable and adjustable attachment to the user’s upper back.
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Figure 3.14: Attachment of Devboard on Backplate

To enhance user interaction and monitoring, a wrist-worn OLED
module was developed, depicted in Figure 3.15, and assembled in Figure 3.16.
The OLED circuit is encased snugly in a compact, watch-sized enclosure that

can be secured around the wrist using neodymium magnets and elastic straps.
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This module displays real-time visual feedback from the system, such as
postural metrics or actuation states, allowing the user to monitor system
performance immediately. The 17.5 mm height of the assembled module puts it
slightly above the size of conventional wrist watches at 15mm but is still

considered compact.

17.50

Figure 3.16: OLED Assembled Casing for Wrist

The waist-mounted component of the prototype, shown in Figure 3.17,
contains the actuation mechanism. This unit integrates with adjustable waist
straps to securely position the pneumatic actuators around the user's lower torso.
The basic workflow of the actuation system is outlined in Figure 3.18, which
presents the full block diagram of the postural adjustment mechanism. Together,
these modular enclosures and attachment methods form an integrated wearable
platform for real-time postural sway monitoring and correction. The design
emphasizes mechanical simplicity, wearability, and data accuracy, enabling the

system to function effectively in real-world usage scenarios.
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Figure 3.18: Block Diagram of Postural Adjustment of Prototype

The exoskeleton prototype comprises several essential components
designed to deliver effective postural support while maintaining user comfort.
The mechanical frame is ergonomically shaped and lightweight, allowing it to
be worn on the back with minimal discomfort. It primarily uses fabric or
polymer materials for the straps and padding, offering flexibility and comfort,
while rigid sections, such as structural anchors, are made from aluminium and
kept to a minimum to reduce weight and bulk. This frame provides the necessary
structural base to secure the actuators and ensure stability during movement.
The actuation system incorporates a pair of pneumatic cylinders, which generate
linear pulling forces for posture adjustment. While the cylinders remain exposed,
they are mounted in a way that avoids interfering with the natural movement.
The overall design reduces the number of rigid components and simplifies the
structure, helping to minimise the device’s form factor. As a result, the
exoskeleton, though not entirely concealed, can still be worn discreetly under

loose or layered clothing, balancing functionality with wearability.

3.7 Material and Component Selections

The development of the wearable posture-correcting exoskeleton necessitated
careful consideration of mechanical, ergonomic, and biomechanical
requirements to ensure optimal force delivery, user comfort, and device
reliability. This section outlines the rationale behind the selection of key
materials and components, as well as the biomechanical estimations that guided

the actuator specifications.
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3.7.1 Biomechanical Force Estimations

To determine the actuation requirements for postural correction of the upper
trunk, torque estimations were derived based on basic biomechanical principles.
The mass of the trunk segment accounts for approximately 41.6-50% of total

body mass. Using the torque equation (Equation 3.13):

T=m-g-d-sin(0) (3.13)

where

7 is the torque required (Nm)

m is the mass of the trunk (kg)

g 1s the gravitational acceleration (9.81 m/s?)

d is the distance from the pivot point (estimated as 0.265 m for H2, will be
further explored in Section 3.9.4 and Figure 3.42)

0 represents the sway angle, where pitch angle corresponds to anteroposterior
(AP) sway and roll angle corresponds to mediolateral (ML) sway. These angles

are calculated using Equation 3.14, which is derived from Equations 3.3 and 3.4:

DAP), (3.14)

DML)
Hy

Opitch = arctan( 0,011 = arctan(

2

Here, DAP and DML refer to the CoP displacements in the AP and ML
directions, respectively, noted that all sway angle measurements here are in
reference to fulcrum, thus using H2. According to literature, DAP values
typically range from 3.67 mm to 17.66 mm, while DML values range from 5.22
mm to 24.44 mm (Ohlendorf et al., 2019; Goble & Baweja, 2018). These ranges
are commonly used in postural control studies and are appropriate for both male
and female participants aged 20 to 30 years, aligning with the demographic of
the current study. Although CoP displacements are generally independent of
subject height, some studies suggest a possible correlation with sex, where
females often demonstrate slightly better balance performance. Nonetheless, the
overall CoP-based balance scores remain comparable between sexes within this
age group (Goble & Baweja, 2018; Becker et al., 2025). To simplify system

design, the average, minimum, and maximum values of DAP and DML were
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adopted to compute the corresponding sway angles, which serve to define the
correction limits. The resulting sway angle ranges are summarized in Table 3.3.
Given that these sway angles fall within small ranges typical of healthy
individuals, and to facilitate algorithm implementation, a simplified angular
threshold was set. For AP sway, limits were extended to 5° posterior and 7°
anterior, based on values reported in literature (Chaudhry et al., 2004).
Additionally, a hard limit of £15° was applied to both AP and ML sway to define

the maximum expected range and ensure robustness in system performance.

Table 3.3: Computed Sway Angle Ranges Required for Correction

epitch (O) eroll (O)

Min 0.7934 1.0680

Max 3.8126 7.3298

Mean 2.0531 2.8085
CI Range 1.7292 - 2.1611 2.5928 - 3.0241

For users weighing between 40 kg and 95 kg, the estimated required torque
ranges from 17.78 Nm to 42.22 Nm. Within the average weight range of subjects
recruited at UTAR (52-70 kg), torque requirements are between 23.11 Nm and

31.11 Nm. Since the exoskeleton uses two actuators, the torque per actuator is:

T
Tper actuator = E (3.15)

To obtain the required linear force for actuation, torque is divided by the

perpendicular distance to the backplate (r = 0.1 m):

F — Tper a;tuator (316)

This results in required linear forces between 115.55 N and 155.55 N for average
users, and up to 211.10 N for higher mass individuals. These values were used

to inform the selection of pneumatic components.

Additionally, a pulley mechanism was established using linear

pneumatic cylinders anchored at the fulcrum point (pelvis), routed over the
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shoulder (assume a joint or fixed guide), and anchored at the front waist using
a carabiner. To determine the necessary stroke length for proper actuator
function, a visualization was constructed, as shown in Figure 3.19, which
includes a simplified stick diagram and directional vectors. Assuming the
human body behaves as a rigid two-segment model with stationary lower limbs
and no slack in the system, the required stroke length of the pneumatic cylinder

can be estimated using the cosine rule, as expressed in Equation 3.17:

Shoulder
», [
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Torso 7
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r/ //
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d D F
Lower -
Extremities

Figure 3.19: Schematic and Simplified Diagrams of Force and Stroke Length
Required for Postural Sway

d? =H? + H'? — 2HH' cos 8 = 2H?*(1 — cos0)
d =HV2—2cosf (3.17)

where 6 is the postural sway angle of 15, H is the vertical distance from the
chest to the waist (as defined in H2). Substituting the measured value of H, the
required stroke length d is calculated to be over 69.18 mm, which defines the

minimum actuator stroke necessary for the system to function effectively

3.7.2  Pneumatic Components

The pneumatic actuation was driven by the Mi Portable Electric Air Compressor
2 or MiPump 2 (Figure 3.20), a compact air pump weighing 490 g, of
dimensions 123 mmx75.5 mmx45.8 mm, and powered by a 2000 mAh lithium-
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ion battery. The device operates within a pressure range of 0.2 to 10.3 bar and
produces approximately 80 dB of noise. The maximum flow rate at 0 bar is 15.0
L/min; however, under typical operating loads of 2—6 bar, effective flow rates
were estimated between 3 to 7 L/min. These estimates were supported by
indirect reference to automobile tire inflation data, where inflating a 40 L tire in

approximately 8 minutes implies a delivery rate of roughly 5 L/min.

P

Figure 3.20: Mi Portable Electric Air Compressor 2

The selected pneumatic cylinder (Figure 3.21) features a bore diameter
of 32 mm and a stroke length of 75 mm, and up to 10 bars of pressure. In the
operation of the prototype, pressures ranging from 2 to 6 bars were considered
to not overburden the portable air compressor. To determine the force exerted

under these conditions, the piston area should be calculated via Equation 3.18:

- & - 7

Figure 3.21: MAL Mini Aluminium Pneumatic Cylinder
A=mnr? =m(0.016)? ~ 8.042 X 10~*m? (3.18)
where
A is effective piston area
r is radius of piston (bore), which 0.5 bore size

From Equation 3.19, the force exerted can be determined:

F=PxA (3.19)
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Thus, at 2, 4, and 6 bar operating pressures, the extension forces were estimated
at approximately 160.84 N, 321.7 N, and 482.5 N, respectively, accommodating
even extreme weighted individuals (>95kg), with safety factor of 2.3 at 6 bars
and 1.5 at 4 bars. Considering the presence of a 10 mm diameter piston rod (rod
radius = 0.005 m), the effective retraction area was slightly reduced, yielding
retraction forces of about 145.2 N at 2 bars, from new effective retraction area
from Equation 3.20:

Acfrective = nrgiswn —nr}, ~ 7.26 X 10™*m? (3.20)

Besides, the internal stroke volume per cylinder was calculated to estimate flow

rates or stroke frequencies via Equation 3.21:
V = A- Stroke = 8.042 x 107*-0.075 = 60.3mL (3.21)

The air volume required per stroke was calculated to be approximately 60.3 ml.
Given MiPump2’s flow rates, each cylinder could operate at 0.967 Hz (2 bar),
0.691 Hz (4 bar), and 0.415 Hz (6 bar), respectively, under dual-cylinder
conditions, which are deemed sufficient for corrective postural actuation during

slow upper trunk sway.

3.7.3  Materials for Structural Components

Various grades of 3D-printed polymers were selected to meet the functional and
structural requirements of different components in the prototype. PLA+ was
employed for rigid and load-bearing parts such as the backplate module, Figure
3.14. This material was chosen for its enhanced mechanical strength and
improved thermal resistance compared to standard PLA, making it suitable for
securing straps for high tension. Flexible PLA was utilized in areas that required
elastic deformation, including slotted regions for cable routing and snap-fit
mechanisms, allowing repeated attachment and detachment without material
failure such as the ESP32 holder and covers, Figure 3.13. Standard PLA was
reserved for components subjected to minimal mechanical stress, such as the

housing for the MPU 6050 (Figure 3.12) and OLED (Figure 3.16), where
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structural rigidity was not a primary concern. All components were fabricated
using a cubic infill pattern at 25% density, providing an optimal balance
between weight reduction, mechanical strength, and printing efficiency.

To improve user comfort, reducing risks of skin irritation or pressure-
related discomfort, high-density foam wrapped in fabric was integrated into the
shoulder and back regions of the exoskeleton. This padding effectively prevents
direct contact between the user's body and the 50 mm wide nylon webbing straps,
significantly enhancing wearability during prolonged use, illustrated in Figure
3.22. For structural support and secure integration of the pneumatic actuation
system, the waist module was designed using a weightlifting-style belt
constructed from ultra-high-density foam reinforced with durable nylon for
strappings. This belt served as a load-bearing base for the attachment of
pneumatic cylinders. To ensure mechanical reliability and resistance to high
tensile loads, aluminium mounting plates and brackets were used to affix the
cylinders to the belt via bolts and nuts. L brackets are also used as stoppers to
control the activation of pneumatic cylinders, depicted in Figure 3.23. This
configuration provided both structural integrity and user comfort, striking a

balance between rigid support and ergonomic wearability.

High Density Foam in

50 mm Nylon abric for Paddings

Webbings
+—__ Steel Tie-Down
Buckle

Figure 3.22: Fabric Attachments and Paddings of Prototype

To ensure both modularity and secure fastening in the wearable system,
multiple D-rings were integrated into the waist belt using a combination of sewn
nylon webbing and mechanical bolting. These D-rings functioned as anchor
points for carabiner hooks, which were attached to the terminal ends of the
shoulder straps, Figure 3.23. This design facilitated easy donning and doffing
while allowing the user to fine-tune the strap tension between the upper and
lower harness segments. Nylon webbing straps of 20 mm and 50 mm widths
were selected for their high tensile strength, flexibility, and resistance to
abrasion, making them suitable for both static load-bearing and dynamic

adjustment purposes. Steel components, including adjustable ladder buckles,
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slide buckles, and tie-down buckles, were used in place of plastic alternatives to
avoid mechanical failure under repeated high-tension loading. These buckles
enabled user-specific customisation of strap lengths and overall harness fit,
contributing to the adaptability of the prototype across users with varying body
types. Standard bolts and nuts were employed throughout the assembly to ensure
structural integrity and reusability. Collectively, these fastening and modular
design elements support a robust, customizable, and user-friendly wearable
system that can accommodate the demands of real-time upper trunk postural

sway correction while maintaining a minimal form factor suitable for daily wear.

D-ring Attached to
Fabric Straps
Bolted on Belt

Buckles for Modular
/ Adjustments

Carabiner Hooks as
Main Strap
Securements

Aluminum Plates to Secure
Pneumatic Cylinders and L-
brackets as Stopper

Figure 3.23: Fastening and Securement Strategies of the Prototype

3.74  Circuit Components

The electronic system was built around the ESP32 microcontroller, selected for
its superior performance compared to standard Arduino boards. The ESP32
offers integrated Wi-Fi (2.4 — 2.5 GHz) and Bluetooth connectivity, on-board
clock (40 MHz crystal), higher processing speed, and greater memory capacity,
all while maintaining a low cost. The ESP32 Devkit V1 (30 Pins) with ESP32-
WROOM-32 chip, illustrated in Figure 3.24 (a), was selected for its dual-core
processing and ample memory, including 520 kB SRAM and 4 MB external
flash (Espressif Systems, no date). This allows efficient real-time processing of
chest sway data for postural sway detection, wireless communication for real
time monitoring via GUI, and direct code execution from flash. Its RTC memory
supports low-power modes, making it suitable for wearable applications. These
features make it essential for real-time data acquisition and wireless
communication in wearable biomedical applications. To streamline circuit
assembly and improve reliability, an ESP32 terminal board was employed,

Figure 3.24 (b). This accessory allows for solderless connections, simplifying
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prototyping, reducing troubleshooting time, and providing more secure and
stable electrical connections compared to conventional Dupont jumper wires,

which are prone to loosening and signal inconsistency under motion.

(a) (b
Figure 3.24: (a) ESP32 Devkit V1, 30-Pin Model, (b) with Terminal Block

For trunk or chest sway detection, an MPU6050 was selected, shown
in Figure 3.25. This low-cost (approx. RM10) 6-degree-of-freedom sensor
integrates both a 3-axis accelerometer and a 3-axis gyroscope, enabling accurate
real-time monitoring of angular velocity and acceleration which can be used to
derive upper trunk sway. Its compact size and compatibility with the ESP32

make it ideal for wearable implementations.

Figure 3.25: MPU 6050

To control pneumatic actuation, a 4-channel relay module, shown in
Figure 3.26, was used to interface between the microcontroller and solenoid
valves, detailed in Chapter 3.8.3 below. The relays enable the ESP32 to switch
the high-current loads required by the solenoids, ensuring safe and reliable

actuation of the pneumatic cylinders in response to detected postural deviations.

Figure 3.26: A 4-Channel Relay
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A compact 0.96” SSD 1306 OLED display, as shown in Figure 3.27,
was integrated into the system to deliver real-time visual feedback to the user.
It displays key information such as stability status, sensor readings (in numerical
or graphical form), and current orientation, which improves usability during
testing and operation. The 0.96” size was chosen to fit a compact, watch-like
form factor, while the OLED technology offers high contrast and clarity,

enabling easy readability even with small fonts.

Figure 3.27: 0.96” SSD 1306 OLED

Power for the solenoid valves was supplied by four 3.7V lithium-ion
AA batteries housed in a battery holder, selected for their high energy density,
rechargeability, and compact size. To deliver the required 12V for the solenoid
valves, an LM2596 buck converter, in Figure 3.28, was used to regulate the
output voltage efficiently and prevent overvoltage damage. Meanwhile, the
ESP32 and its peripheral circuits were powered separately via a power bank
connected directly to the ESP32. For data logging purposes, an SD card module
was included in the circuit. This allowed continuous storage of sensor data,
which is crucial for post-processing, performance evaluation, and further
refinement of sway classification algorithms. The use of onboard data storage
ensured that the system could function independently in real-world settings

without requiring constant connectivity.

Figure 3.28: LM2596 Buck Converter

3.7.5 Calibration of Inertial Measurement Unit
In an ideal scenario, when the IMU is placed on a flat surface, the x and y-axis
values should register as 0, while the z-axis should reflect the gravitational force,

approximately 9.81 m/s?. However, slight deviations often occur due to factors
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such as sensor imperfections or environmental conditions. To address this,
calibration of the IMU is necessary before taking accurate measurements. The
calibration process involves averaging the IMU readings over a set period and
adjusting them to match the expected values for each axis. This step ensures that
the sensor readings align more closely with true physical forces. The calibration
can be efficiently performed using the MPU6050 light library, which automates
the process and ensures accurate sensor performance. The flowchart depicting

the IMU calibration process is shown in Figure 3.29.

Initialize IMU

<

Y

Connected to
IMu?

Y

Calculate Offset

h 4

Set the Offset

Figure 3.29: Flowchart Showing the Process in Calibrating an IMU.

3.8 Circuit Development

The circuit development phase was fundamental to the integration of sensor data
acquisition, real-time processing, actuation control, and data logging within the
wearable exoskeleton system. A compact and modular electronic system was
designed to ensure compatibility with the mechanical structure while
minimizing bulk and preserving user mobility. The objective was to create a
robust embedded control system capable of capturing postural sway data in real
time, making classification decisions, and actuating pneumatic components
responsively to support posture correction. The development involved selecting
appropriate microcontrollers, sensors, actuators, display units, and power
management components. Particular attention was given to the balance between

performance, reliability, and cost, as the system had to operate continuously and
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accurately in a dynamic, wearable environment. Key considerations included
real-time responsiveness, wireless communication capabilities, ease of
integration with the mechanical harness, and the ability to log data for further
analysis. All components were selected and integrated with the goal of ensuring
safe and efficient operation of the exoskeleton during testing and use. The circuit
was built on a terminal board to enable clean, modular wiring while allowing

future adjustments or upgrades.

3.8.1 MPU 6050 Circuit Design for Chest Sway Detection

The MPU6050 inertial measurement unit (IMU) was employed to capture real-
time motion data for chest sway detection. The sensor was connected to the
ESP32 via a terminal board, with soldered wire connections through a strip
board to ensure mechanical stability and noise reduction. The pin configuration
was such VCC to 3v3, GND to GND, SCL to GPI022, and SDA to GPIO21 on
the ESP32, evident in Figure 3.30. This configuration is shown integrated within
the custom ESP32 enclosure in Figure 3.12. To interface with the sensor, the
MPU6050 light.h library was utilized due to its lightweight design and
performance in embedded systems which provided 6-axis raw data, including
linear acceleration (ax, ay, az) and angular velocity (gx, gy, gz). From these
values, basic orientation parameters such as pitch and roll were computed, along
with sway displacement values in the anteroposterior (DAP) and mediolateral
(DML) directions, as detailed in Section 3.5.1. These real-time raw and
computed values formed the input for the sway detection algorithm, which
further processed them into higher-level sway parameters to classify and correct
postural instability. All sensor and algorithmic operations were embedded
within the ESP32 system for efficient onboard processing. To enable accurate
timestamping of real-time sensor data, the ESP32’s onboard real-time clock was
synchronized using Network Time Protocol (NTP). The time.h library was
included to support timekeeping functions. Two NTP servers, pool.ntp.org and
time.nist.gov, were used for redundancy, while the time zone was set to UTC+8
with no daylight offset. This synchronization ensures precise timing for IMU-
based sway detection and allows reliable time-based logging and analysis of
movement data, which is critical for applications involving temporal postural

sway classification.
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Figure 3.30: Circuit Connection of Chest IMU to ESP 32

3.8.2 SD Module Circuit Design for Data Logging

To facilitate reliable real-time data logging, an SD card module was integrated
into the ESP32 system using the Serial Peripheral Interface (SPI) protocol. The
SdFat.h library, along with SPL.h, was selected for its optimized performance,
extended compatibility with large-capacity SD cards, and efficient file
handling—especially suitable for embedded systems with limited memory.
Compared to the standard SD.h library, SdFat.h offers faster access and greater
control over the file system, making it ideal for time-sensitive applications. The
SD card was used to store IMU raw data and derived postural sway parameters
in .csv format. This allows for structured, timestamped offline analysis,
repeatability in testing, and validation of the detection algorithm. Connections
were made to the ESP32’s default SPI pins, in Figure 3.31, which are MISO
(D19), MOSI (D23), SCK (D18), and CS (DS5). The module was securely
housed within the main ESP32 enclosure to maintain a compact and integrated
form factor. A global logging system was implemented using variables such as
loggingEnabled, csvFileName, and lastLogTime, with a defined logging
interval of 500 milliseconds to regulate data sampling. When enabled, the
system logs IMU data and derived sway parameters into a .csv file, providing
structured and time-synchronized datasets essential for offline analysis,

performance evaluation, and algorithm validation.
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Figure 3.31: Circuit Connection of SD Card Module to ESP 32

3.8.3 Relay and Solenoid Valve Circuit Design for Actuation

To enable automatic actuation of the pneumatic cylinders, a relay-based
switching system was developed using a 4-channel relay module connected to
two solenoid valves as shown in Figure 3.32. These valves regulate airflow to
the cylinders, enabling directional stabilization based on real-time posture
feedback. Power to the solenoid valves was supplied by four 3.7V Li-ion
batteries housed in a battery holder, chosen for their high energy density and
reusability. These were configured in series and fed into a buck converter
(LM2596), which stepped the voltage down to a stable 12V supply required by
the solenoid valves. The COM and NC (Normally Closed) terminals of the relay
channels were connected to the solenoid valves to ensure they remain inactive
by default and are only triggered when the relays are activated. To ensure proper
electrical flow and safe actuation, the positive output (+) from the buck
converter was connected to the COM (Common) terminal of the relay channels.
The Normally Closed (NC) terminals of the relays were then connected to the
positive terminals of the solenoid valves. Meanwhile, the negative output (-)
from the buck converter was connected directly to the negative terminal of the
solenoid valves.

This configuration means that the valves remain off (circuit open)
when the relays are inactive, and are only powered when the corresponding relay
is triggered (sets COM to NC path as closed). By controlling the HIGH/LOW
state of the GPIO pins on the ESP32, the system selectively activates solenoids
for specific directional control based on postural instability. This wiring not only

prevents unnecessary energy drain but also adds a layer of safety by defaulting
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to the "off" state unless an explicit signal is sent by the microcontroller. The
relays were controlled via GPIO pins D27 and D33 of the ESP32 (defined as
RELAY3 and RELAY4 respectively). These were initialized as output pins and
set to LOW (inactive) during startup. The relay control logic was implemented
in the updateRelays() function, which activated specific relay channels based on
the user’s current orientation status (LEFT, RIGHT, ANTERIOR, POSTERIOR,
INSTABILITY, or STABLE), as detected through the MPU6050. This
configuration enabled targeted stroke of the pneumatic cylinders to assist with
balance correction dynamically. The relay module and wiring were secured onto

the waistband via bolting to maintain a compact, wearable system.

—
i

4

Figure 3.32: Relay and Pneumatic Component Circuit Connections

3.8.4 OLED Display Circuit Design for Quick Visuals

A 0.96” SSD1306 OLED display was integrated into the system to provide clear,
high-contrast visual feedback to the user. This includes stability status, real-time
IMU readings, and system modes, enhancing both usability and monitoring
during operation. The OLED module was controlled using the I2C protocol,
connected to the ESP32’s SCL (D22) and SDA (D21) pins, sharing the same
12C bus as the MPU6050 IMU for efficient pin usage, connection in Figure 3.33.
To support interface navigation, two tactile pushbuttons were added and
connected to digital pins D14 and D4. These buttons enable user interaction with
the display, allowing switching between numerical readouts, graphical plots,
and system menus. The input logic was debounced in software to ensure reliable
operation. For the software interface, the Adafruit GFX.h and
Adafruit SSD1306.h libraries were selected due to their reliability, extensive
documentation, and built-in support for drawing graphics and handling fonts.

They also support memory-constrained microcontrollers like the ESP32 while
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maintaining good performance and responsiveness. The display and buttons
were compactly housed within the main ESP32 casing, maintaining a small form
factor while providing intuitive, user-friendly interaction for testing and

monitoring.

Figure 3.33: OLED Display Circuit Connection

3.8.5 Circuit Integration

The complete circuit integration was carefully structured to ensure reliable
communication, efficient power management, and modularity within a compact
embedded system as depicted in Figure 3.34. The ESP32-WROOM-32
microcontroller served as the central hub, interfacing with multiple peripheral
components through both I12C and SPI communication protocols. The
MPU6050 IMU and the SSD1306 OLED display shared the same 12C bus,
connected to the ESP32’s default I2C pins (GPIO 21 for SDA and GPIO 22 for
SCL). Potential 12C conflicts were mitigated through device-level address
management, as the MPU6050 and OLED used unique default addresses (0x68
and 0x3C respectively), ensuring seamless simultaneous communication
without interference. These connections were routed through a terminal board
and soldered to ensure low-resistance, noise-resistant signal paths.

In parallel, the SD card module operated independently on the SPI
protocol, utilizing GPIOs 23 (MOSI), 19 (MISO), 18 (SCK), and 5 (CS), which
prevented any cross-talk with the I2C bus. The SdFat library was selected over
the standard SD library due to its enhanced compatibility with the ESP32
architecture and its support for non-blocking, efficient file operations necessary
for real-time data logging. Digital I/O pins were allocated for additional

modules such as the 4-channel relay (GPIOs 27 and 33), and user interface
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buttons (GPIOs 14 and 4). The entire assembly, including the ESP32, IMU, SD
module, and wiring, was securely housed within a custom enclosure to maintain
mechanical stability and ensure reliable operation during motion and testing.
Power distribution was managed via a dual-source strategy, namely, a
5V power bank supplied the ESP32 and its peripherals, while a regulated 12V
output from a buck converter powered the solenoid valves via relay switching.
Ground lines across the power and logic circuits were commonly tied to
maintain a consistent reference voltage, minimizing the risk of floating grounds
or erratic behavior. This integrated configuration enabled concurrent real-time
data acquisition, control, and feedback operations, forming the functional

backbone of the wearable exoskeleton system.

Figure 3.34: Integrated Circuit Design

3.8.6  Graphical User Interface (GUI) Development

To enhance the functionality and use interactions of the back-support strap-
based pneumatic exosuit for static posture correction, an loT-enabled software
framework was developed. This system allows for real-time visualisation,
remote monitoring, and session logging of biomechanical data obtained during

use. The overall architecture adopts a modular approach, comprising four major
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tiers: the frontend interface, backend logic, database layer, and hardware

integration unit, depicted in Figure 3.35 as block diagram.

Hardware .
T 8050 Backend Logic Frontend
(MPU 6050 via —»f EC end
ESP 32 [WiFi]) (Pythom) (Streamlit GUI)
Diatabase
(postgreSQL)

Figure 3.35: Block Diagram of System Architecture

The frontend is constructed using Streamlit, an open-source Python
library, to facilitate rapid development of interactive dashboards and interfaces.
This environment supports both patient and administrator interactions through
a role-based access control system. The backend is implemented in Python 3.11
and is responsible for handling logic control, session management, and external
communication with microcontroller hardware. PostgreSQL, managed and
queried using pgAdmin 4, serves as the relational database system, providing
high-performance, ACID-compliant data storage for user credentials, metadata,
session logs, and raw sensor data. Data flow is bi-directional between the
hardware and software layers, with real-time movement data streamed from the
ESP 32-equiped chest IMU via Wi-Fi to the backend for parsing, analysis, and
visualization. Development was carried out in Visual Studio Code, offering
integration between Python modules, PostgreSQL, and frontend components.

The frontend design utilizes Streamlit due to its capability to transform
Python scripts into shareable web apps without requiring extensive HTML or
JavaScript knowledge. Python serves as the primary backend language,
enabling efficient data processing and communication with the microcontroller.
The PostgreSQL database is selected for its ACID-compliance, scalability, and
support for complex query operations. Libraries such as psycopg2 are used to
handle database connections, while pandas manages data manipulation.
Visualization tasks rely on matplotlib and seaborn, which provide versatile
options for creating both static and interactive plots. The ESP32 platform is used
for its lightweight and portable configuration, transmitting IMU data via Wi-Fi

through socket communication. Table 3.4 justifies the methods selected.
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Table 3.4: Technology Justification Summary

Component Technology Justification
Frontend Streamlit Simplifies deployment of interactive GUI
dashboards using only Python.
Backend Python 3.11 | Enables robust logic control, data
processing, and integration flexibility.
Database PostgreSQL | Scalable, ACID-compliant SQL engine
with robust indexing and query support.
DB psycopg?2 Secure and efficient PostgreSQL adapter
Connector with parameterized query support.
Data pandas High-performance data transformation
Handling and time-series handling.
Visualization matplotlib, Facilitates advanced data plotting and
seaborn real-time visual feedback.
IMU ESP 32 (Wi- | Lightweight embedded solution for real-
Interface Fi) time data acquisition and streaming.

User authentication is handled through a dedicated Python script that
validates login credentials against stored PostgreSQL records. At this stage,
backend queries the users table using parameterized queries to avoid SQL
injection. Upon successful verification, session states are updated to reflect the
user's role. Patients and administrators use the same login page, but content
rendering is conditional, restricting patients to their own data while granting
admins full access to all user records and system configurations. Passwords are
hashed using Argon2, and session inactivity triggers an auto-logout protocol for
enhanced security. Once authenticated, patients are directed to a dashboard that
aggregates session counts, live trial metrics, and recorded data via pandas. The
dashboard is designed to refresh every five seconds, displaying real-time values
streamed from the IMU sensor. Users can initiate new trials, which are stored in
structured formats (JSON or CSV) and uploaded to the SQL database. Historical
data retrieval is enabled through parameterised SQL queries to support filtering
and analysis. The navigation sidebar offers clear access to trial initiation,
historical records, and secure logout features. On the other side, administrators
access a more advanced dashboard that includes real-time visualizations of login
activity, session metrics, and patient comments. Navigation features enable
administrators to view user logs, manage patient accounts, reset passwords, and
moderate feedback. The backend enforces route protection, session validation,

and detailed auditing of administrative actions. Filtered views allow for rapid
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inspection of patient records, while layered navigation supports drill-down

access to individual trials and raw sensor data. Figure 3.36 shows the flowchart

of main code and both dashboards.
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Figure 3.36: GUI Flowchart for Main Page and User Dashboards

The data visualisation module,

depicted in flowchart in Figure 3.37,

generates time-series plots and interactive charts, with matplotlib and seaborn,

representing metrics such as DAP, DML, accelerometer data and other

computed CoP parameters. These visualizations help users interpret the

effectiveness of the exosuit under in real time and make comparisons with

historical data. Patient records can be searched and filtered by timestamp, trial

ID, or username. Tables are rendered with pagination and expansion features

for clarity and convenience, implementing parameterised SQL queries to ensure

injection safety. Linked views allow users to explore specific datasets in more

detail, including gauge charts and raw data logs.
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Figure 3.37: Data Visualization Flowchart
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The dual-user architecture accommodates patients and administrators
through modular, role-specific flows. Streamlit serves as the unifying
framework for frontend interaction, while PostgreSQL manages data
persistence. Each user interaction is captured in a session, with routing logic
ensuring restricted access to sensitive modules. Confirm prompts and session-
based protection minimize the risk of accidental data exposure. A full-stack
security model includes Argon2 hashing, audit trails, and automatic logout after

10 minutes of inactivity as depicted in the diagram in Figure 3.38.

SECURITY FLOW

Session-Based Auth

Argon2 Password Hashing

Auto Logout (10 min idle)
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Figure 3.38: Security Features of GUI

The PostgreSQL database depicted in Figure 3.39 uses connection
pooling to optimize performance and ensure consistent access under concurrent
loads. It consists of schemas for users, administrators, trial data, and comments.
All records are transactionally handled to avoid partial writes or corrupt entries.
Backup protocols and error logging are built into the system to ensure data
integrity and support post-hoc analysis in the event of a system failure. The ESP
32 and MPUG605 circuit was configured to stream accelerometric and gyroscopic
data over a local Wi-Fi network. The microcontroller transmits data in real-time
to the Python backend, which parses and logs it into the SQL database. These
values are simultaneously rendered on the frontend, allowing clinicians to track
postural sway, trial behaviour, and subject activity. Security concerns related to
embedded-to-server communication were addressed by obfuscating IP
addresses and limiting communication to local network scopes during
development. Hardcoded credentials, tokens, and API keys were excluded from

the repository to reduce the attack surface. Future iterations may include mutual
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TLS authentication or encrypted payload transmission using AES to further

strengthen communication channels.
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Figure 3.39: Data Flow and Database Flowchart

In summary, the IoT-enabled monitoring system for the pneumatic
exosuit combines a responsive user interface, robust backend processing, and
secure data infrastructure to facilitate comprehensive posture tracking and
remote assessment. The use of open-source tools and modular programming
practices ensures scalability, maintainability, and user-centric interaction, thus

elevating the utility of the exosuit within clinical and rehabilitative contexts.

3.8.7 Assembled Prototype

The developed prototype provides active back support using pneumatic
actuation triggered by real-time postural sway. It consists of a soft wearable
frame, chest-mounted IMU, ESP32-based control unit, pneumatic actuators, a
custom sway detection algorithm, and user interfaces including an OLED
display and GUI, illustrated in Figure 3.40. Constructed mechanically from
fabric straps and buckles, the system is compact and lightweight. Pneumatic
components are mounted at the waist, with actuators fixed via aluminium plates,
while lighter parts of main circuit on thoracic spine as well as IMU strapped on
chest. Donning is like wearing a backpack, with added leg straps for stability.
The system supports users up to 95 kg (safety factor 1.3), operating at 4—6 bar
via a portable miPump2 compressor. Audible hissing and motor noise are
present during activation. On startup, the IMU is calibrated on a flat surface;
once donned, real-time sway is monitored, triggering actuation as needed. The

OLED displays system status and allows mode selection, while data can be
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logged via SD card or GUI. Current circuitry is functional but may be

miniaturized through future IC integration.
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Figure 3.40: Final Assembled Prototype of Back-Supported Strap-based

Pneumatic Exoskeleton for Standing Postural Sway Correction

3.9 Algorithm Development

This section presents the methodological development of a postural sway
classification algorithm, designed to detect distinct balance conditions in users
equipped with the proposed exosuit system. The classified output was intended
to inform the actuator control logic for real-time support and intervention. The
algorithm was trained and evaluated using real-world data collected from 37

participants under systematically varied postural perturbation conditions. Each
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sample was labelled according to experimental ground truth, allowing for
supervised classification into four predefined sway categories: stable,
anteroposterior sway, mediolateral sway, and unstable. These classifications
aimed to support balance rehabilitation or assistance protocols. The algorithm
design proceeded through a structured pipeline: initial data preprocessing,
feature extraction, exploratory clustering, supervised classification model
evaluation, and finally the development of an empirical rule-based threshold
algorithm optimized for microcontroller deployment, shown in Figure 3.41.
This development drew significant conceptual influence from the standing sway
detection framework proposed by Ando et al. (2023), which implemented IMU-
based kinematic classification on humanoid platforms. However, the current
work extended their approach into real-world human applications and adapted

it for computationally efficient embedded deployment.
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Figure 3.41: Pipeline of Algorithm Development (.mat) Code

3.9.1 Algorithm Design and Pipeline

This study developed an automated framework for postural sway classification
and feature analysis using time-series accelerometry data. The methodology
integrates signal preprocessing, multi-level outlier detection, domain-specific
feature extraction, sway condition labelling, and both threshold-based and
machine learning classification. The entire analytical pipeline was implemented
in MATLAB R2023b, consisting of approximately 2500 lines of modular code,

appended in Appendix D. The framework was designed to accommodate real-
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world sensor noise, inter-subject variability, and embedded hardware
constraints, with reproducibility and interpretability as central principles.

The classification pipeline was adapted from the wearable Al-based
postural sway detection system proposed by Ando et al. (2023), which achieved
over 98% classification accuracy using accelerometer and gyroscope data
processed on an embedded Al microcontroller. Their architecture incorporated
sensor fusion, statistical and frequency-domain feature extraction, overlapping
window segmentation, ensemble-based machine learning (Random Forests as
primary, k-NN as fallback), and real-time embedded inference. In the current
study, several structural elements of Ando’s framework were retained. These
include the core feature extraction logic encompassing RMS sway, directional
displacements, and velocity-based features, as well as the classifier suite for
benchmarking purposes. Cross-validation and class-specific threshold tuning
were also preserved. However, due to hardware limitations, specifically the use
of a general-purpose ESP32 microcontroller in place of Ando’s dedicated
STMicroelectronics Al core, the ensemble learning model was replaced with a
rule-based threshold classifier. This substitution emulated the decision
boundaries of the original model through interpretable, empirically derived
thresholds, enabling real-time execution on resource-constrained devices.

While the foundational logic is inherited from Ando et al. (2023), key
methodological differences distinguish the present study. Notably, their
experiments relied on synthetic sway patterns generated via a robotic platform,
minimizing data variability and noise. In contrast, this study employed real
human subjects (n = 37), introducing natural fluctuations due to physiology,
movement inconsistency, and sensor misalignment. Next, their hardware
facilitated on-device machine learning inference, whereas our ESP32-based
system imposed stricter computational, memory, and energy constraints. Also,
the real-world signals collected here were subject to various noise sources,
including muscle tremors, fatigue-induced instability, skin motion artifacts, and
sensor drift, all of which necessitated enhanced preprocessing and outlier
detection. These distinctions explain the lower classification performance
compared to prior results and support the methodological pivot to a threshold-

based model optimized for deployment in exoskeletal assistive systems.
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Recent literature further contextualizes this approach. Machine learning
models such as k-NN, SVM, and Random Forests have been shown to achieve
high classification accuracy (typically above 90%) in fall or sway detection
tasks when applied to well-curated datasets with minimal inter-subject
variability (Turan & Barshan, 2021). However, performance tends to degrade,
often below 70%, in clinical or real-world settings where data heterogeneity is
pronounced (Gattinara et al., 2022). As such, rule-based systems remain a viable
alternative, offering transparency, computational efficiency, and deterministic
behavior suited to embedded control, particularly in healthcare or rehabilitation

contexts (Ando et al., 2023).

3.9.1.1 Data Acquisition

Raw sensor data were filtered to isolate low-frequency components associated
with postural sway. A zero-phase second-order Butterworth filter (0.01-0.6 Hz)
was applied to attenuate high-frequency noise while preserving physiological
sway dynamics, consistent with prior findings in balance assessment (Ando et
al., 2023). Outlier detection and correction were performed using robust
statistical thresholds and visual inspection of signal traces. In our case, raw
accelerometery data were collected from a wearable inertial sensor mounted at
the subject’s chest. Each trial was recorded under specific sway conditions
detailed in Section 3.11. Data were stored as individual .csv files, systematically
organised by subject ID and condition. Anthropometric parameters, including
body height, chest-to-ankle height (H1), and chest-to-waist height (H2), were
extracted from an Excel sheet and matched to each subject via both exact and
fuzzy name logic. Where missing values were encountered, gender-specific
standard estimates were imputed based on trends illustrated in Figure 3.42 and

supplementary Graphs A-2 and A-3.

3.9.1.2 Preprocessing and Filtering

All raw accelerometer signals were resampled to a uniform frequency of
approximately 29.4 Hz (At = 0.034 s). A second-order zero-phase Butterworth
bandpass filter with cut-off frequencies set at 0.01 Hz and 0.60 Hz was applied
to each axis. This range was selected to preserve the low-frequency sway

components while attenuating motion artefacts, sensor drift, and physiological
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tremors. The filtering was implemented using a forward-reverse filtfilt function
to eliminate phase distortion, with validation conducted through frequency-
domain response analysis. The Butterworth design’s maximally flat passband
characteristics make it suitable for biomechanical signal processing, particularly

for sway motion isolation. Graph A-1 shows a sample processed data,

3.9.1.3 Multi-Level Outlier Detection

A hierarchical outlier detection scheme was employed to improve data integrity
at multiple levels. First, at the signal level, spikes were removed using z-score
filtering (|z| > 3.5), wavelet decomposition with a Daubechies-4 (‘db4’) basis to
detect transient anomalies, and a Median Absolute Deviation (MAD) approach
with a 0.5-second sliding window. Outliers were replaced with NaN and
subsequently interpolated. Second, at the window level, a 5-second sliding
window (with 50% overlap) was applied across the filtered signals. Windows
with more than 30% missing or outlier-filled samples were discarded to
maintain data reliability. Third, at the feature and subject levels, extracted
features were screened using z-scores. Individual windows exceeding a z-score
of +£3 in any feature were flagged, while subjects with mean feature vectors
surpassing £2 were treated as outliers. Linear interpolation was used to impute
missing values prior to final feature extraction, minimizing potential bias. This
multi-tiered approach was essential for mitigating the effects of short-duration
disturbances caused by abrupt motion, device tension, or pneumatic actuation,

which can disproportionately affect downstream classification performance.

3.9.1.4 Feature Extraction

Within each valid window, DAP and DML were computed as described in
Equations 3.3 and 3.4, respectively. These were used to extract a comprehensive
set of biomechanically relevant sway features. Statistical features included root
mean square sway (D RMS) and displacement range (DR). Geometrical
features comprised the 95% predicted ellipse area (PEA_95) and rectangular
sway area (Rs). Kinematic descriptors included total sway path length, mean
and maximum sway velocities, and Euclidean decomposition metrics reflecting
the directional changes in DAP and DML. These features were selected based

heavily on insights of prior research such as Ando et al. (2023).
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Displacement magnitude was computed as the Euclidean norm of DAP
and DML. Instantaneous velocity was derived from the temporal derivative of
the displacement magnitude, and decomposition was defined as the rate of
directional change between DAP and DML components. All features were
exported into individual files and consolidated into a master dataset for
classification and thresholding. These features are well-established in
biomechanical literature and collectively capture the amplitude, directionality,
and dynamics of postural sway, providing robust inputs for both supervised and
heuristic classification methods. Multiple time-domain features were computed
from CoP and accelerometer signals. These included root mean square (RMS),
sway range, features selected based on their relevance to postural instability
detection and precedent in wearable sensor applications (Ozdemir & Barshan,
2014). Feature sets were continuously refined across iterations based on

classifier performance and deployment feasibility.

3.9.1.5 Stability Classification and Labelling

Two complementary methods were employed for sway condition labelling. The
primary method used heuristic labels derived from filename conventions, which
assigned sway types into four categories: 0 (Stable), 1 (Antero—Posterior), 2
(Medio—Lateral), and 3 (Unstable). As a fallback, K-means clustering with k =
4 was applied to a subset of standardized features (D _RMS, AP range,
ML range, and CEA 95) to uncover latent sway patterns in cases of
inconsistent or missing labels. Cluster centroids were then manually matched to
the appropriate classes based on dominant feature trends. This dual strategy
ensured flexibility and robustness in class labelling, accommodating both

structured and exploratory analyses across variable data sources.

3.9.1.6 ROC-Based Threshold Optimization

To enhance the interpretability and deployment readiness of the classification
scheme, Receiver Operating Characteristic (ROC) analysis was used to identify
optimal feature thresholds. A Leave-One-Class-Out strategy was applied, and
Youden’s J statistic was used to determine thresholds that maximized class
separation. Key metrics such as True Positive Rate (TPR), False Positive Rate

(FPR), and Area Under the Curve (AUC) were recorded for each feature and
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class. Additionally, a Relative Importance (RI) score was computed for each
feature, for its discriminative value using Equation 3.22, as well as the accuracy

(Q%) using Equation 3.23 (Ando et al., 2023):
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where, N is number of considered patterns or classes; JF; 4 is value of q feature
for I pattern; Jth, is threshold related to q feature. This formulation accounts

for the proximity of a feature's performance to the optimal threshold across the
dataset. By extracting these interpretable cutoffs and corresponding importance
values, the classifier outputs become directly usable in low-power, real-time

applications, without the need for opaque black-box decision layers.

3.9.1.7 Classifier Training and Hyperparameter Tuning

Five supervised learning models, Decision Tree, k-Nearest Neighbours (k-NN),
Support Vector Machine (SVM), Ensemble (Boosted Trees), and Naive Bayes,
were trained and optimised. Each model underwent three-fold hyperparameter
tuning followed by five-fold cross-validation for performance evaluation. Key
tuning parameters included the maximum number of splits and leaf sizes
(Decision Trees), the number of neighbours and distance metrics (k-NN), kernel
selection and box constraints (SVM), number of boosting cycles and learning
rates (Ensemble), and distribution assumptions per feature (Naive Bayes). This
multi-model approach ensured broad algorithmic coverage, balancing
generalizability, computational load, and interpretability. Cross-validation

safeguards against overfitting while providing realistic performance estimates.

3.9.1.8 Data Export and Visualization

All outputs, including cleaned datasets, feature tables, outlier logs, ROC curves,
and classifier evaluation plots—were saved in structured formats for post-
analysis. Visualizations were exported in both .png and MATLAB .fig formats

to support thesis documentation and supplementary review. Although models

(3.22)

(3.23)
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like Random Forest showed promising accuracy during benchmarking, their
memory footprint and non-deterministic behavior rendered them unsuitable for
real-time deployment on embedded platforms. By synthesizing the design logic
of Ando et al. (2023) high-accuracy model with practical system constraints,
this study yielded a threshold-based classification pipeline that preserved
essential biomechanical rigour while enabling interpretable, real-time execution

in exosuit-assisted postural control applications.

3.9.2  Classifier Selection

Although the dataset was pre-labelled, an initial attempt was made using
unsupervised k-means clustering to explore natural groupings in the feature
space. However, the clustering results showed low consistency with the actual
labels (= 27.5%), indicating that the feature distribution did not support
unsupervised separation. Subsequently, a supervised classification approach
was adopted. Among these, Random Forest and SVM achieved the highest
mean classification accuracy at 63.77% and 63.70%. respectively. However, its
runtime complexity and memory demands rendered it unsuitable for real-time
embedded use. KNN also performed comparably (63.0%) but similarly imposed
constraints on embedded compatibility. Besides, given the limitations of
machine learning models in terms of execution time, memory footprint, and
real-time deployment feasibility, a simplified threshold-based model was
formulated. This approach utilised manually derived decision rules on a reduced
feature set, informed by iterative visual analysis and domain-specific heuristics.
The rule-based model achieved an improved classification accuracy of
approximately 70%, outperforming all tested machine learning models while
meeting the computational constraints of the ESP32 microcontroller. The final
model offered interpretability, low power consumption, and robust real-time
performance in embedded applications. Logic based on Ando et al (2022),
where the thresholds of AP sway (DAP and ax) and ML (DML and az) were
derived from the vast dataset, via their means + 2 SD of each feature (Appendix

A).
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3.9.3 Classifier Evaluation and Rationale

Despite the presence of labelled training data, k-means clustering was initially
employed to evaluate intrinsic separability in the feature space. This
unsupervised method yielded an accuracy of only 27%, affirming that sway
categories were not linearly separable without explicit supervision. Subsequent
supervised classifiers yielded varying results, summarised in Table 3.5. Model
selection was guided by three primary criteria: classification performance,
computational complexity, and deployment feasibility. The strengths and
limitations of each model are summarised in Table 3.6, along with their

alignment to methods described by Ando et al. (2023).

Table 3.5: Supervised Classification Model Performance

Model Accuracy (%)
Random Forest 63.77
K-Nearest Neighbours (k=15) 63.09
Decision Tree 60.03
Naive Bayes 58.11
Logistic Regression 55.96
Linear Discriminant Analysis 55.64

Table 3.6: Classifier Rationale

Classifier Rationale

KNN Captures local non-linear decision surfaces
Decision Tree Easily interpretable, rule-extractable
Random Forest High accuracy via ensemble learning

Naive Bayes Efficient; suitable for high-dimensional data
LDA Assumes linear separability; interpretable
Logistic Regression | Baseline for linear models

Although Random Forest and KNN achieved the highest accuracy,
their computational burdens made them suboptimal for embedded
implementation. Furthermore, the dataset may be small (n=37), non-stationary
features, inter-class imbalance, and overlapping class boundaries constrained
the generalisation capacity of all supervised models. These challenges mirror
observations by G. Prisco et al. (2025) and Ando et al. (2023), who both
identified limitations in applying traditional ML classifiers to dynamic postural

contexts without advanced preprocessing and multimodal sensor fusion.
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3.9.4 Algorithm Preliminary Data Analysis

To enhance generalisability across individuals, subject-specific anthropometric
normalisation was incorporated into the preprocessing stage. Parameters
representing H1 and H2 body segment lengths, averaged in Table 3.7 and Table
B-3 the gross measured data, were estimated via linear regression from known
height values. Regression analysis, shown in Figure 3.42, confirmed a linear
relationship between height and estimated segment length, H1, having R2 of
0.85, and H2 being nearly constant, justifying their use for normalisation in

feature computations. Graphs A-2 and A-3 shows the plots by sex.

Table 3.7: Mean Anthropometric Data of Subjects

SEX Height (m) H1 (m) H2 (m)
Female (n=7) | 1.613 (= 0.0647) | 1.073 (+ 0.1025) | 0.234 (+ 0.0339)
Male (n=29) | 1.729 (£ 0.0509) | 1.169 (+ 0.0563) | 0.271 (+ 0.0206)

Overall 1.707 (£ 0.0706) | 1.150 (£ 0.0763) | 0.264(+ 0.0269)

Height vs H1, H2 for All Subjects (n=36)
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Figure 3.42: Correlations of Height of Subjects with Hl and H2 Measurements

3.9.5 Modifications of Developed Algorithm

Following the limited classification accuracy and significant implementation
overhead associated with machine learning-based models, a final algorithmic
modification was undertaken. A deterministic, rule-based classification scheme
was developed using empirically derived thresholds on select postural sway

features. This transition was motivated by the need for a lightweight,
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interpretable, and real-time compatible algorithm suitable for deployment on
resource-constrained microcontroller platforms. The final model employed
fixed thresholds applied to key features, including DAP, DML, and
accelerometer components ax and az. These thresholds were not arbitrarily
chosen; rather, they were iteratively refined through real-time validation,
comparison with ground truth labels, and informed by domain-specific literature
and ROC curve analysis using metrics such as Youden’s Index.

This empirical model demonstrated a classification accuracy of
approximately 70%, surpassing all previously tested machine learning
classifiers on the same dataset. Notably, it provided consistent performance
across subjects, with reduced variance and stable behaviour in diverse testing
conditions. The final approach offered several strategic advantages. Firstly, its
computational simplicity facilitated real-time processing on ESP32-based
microcontrollers without the need for specialised libraries or external
computation. Secondly, unlike traditional machine learning models, it required
no training phase and could operate deterministically, reducing risks in safety-
critical rehabilitation applications. Thirdly, its structure allowed for intuitive
interpretability, supporting clearer communication of system decisions to end-
users and clinical practitioners.

The algorithm’s development followed three main methodological
iterations. The initial approach utilised k-means clustering to explore natural
groupings in the feature space; however, it yielded poor alignment with true
class labels, achieving only 27% classification accuracy. Subsequently, a second
approach involved implementation of supervised learning classifiers, including
KNN, RF, DT, SVM, NB, LDA, and Logistic Regression. These models were
evaluated through 5-fold cross-validation with individually tuned
hyperparameters. Although Random Forest yielded the highest accuracy
(63.77%), it was computationally intensive and unsuitable for embedded
deployment. The final iteration, therefore, adopted a rule-based framework
leveraging threshold comparisons for state classification. The transition to this
method was driven by multiple considerations: hardware limitations (e.g.,
limited memory and processing power of ESP32 boards), the need for fast and

interpretable decision logic, and empirical findings suggesting that a well-tuned
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thresholding approach could match or exceed the classification accuracy of
more complex models within this application context.

While the threshold-based method lacks generalisability to external
datasets without recalibration, its performance within the controlled
experimental environment proved reliable and efficient. The use of ROC-based
threshold optimisation and iterative domain-informed tuning provided a strong
balance between simplicity and classification fidelity. The method proved
especially suitable for real-time postural correction tasks, where latency,
consistency, and interpretability are prioritised over black-box generalisation.
In summary, although various classification paradigms were explored, including
unsupervised and supervised models, the final empirical approach emerged as
the most practical and reliable within the constraints of embedded deployment.
Its deterministic nature, computational efficiency, and interpretability offer
substantial advantages for assistive technologies targeting postural correction in

static balance tasks.

3.10 Data Collection and Selection Criteria

This section details the methodology adopted to evaluate postural sway under
various task and support conditions across three sequential experiments. These
include: (1) preliminary sway data acquisition to establish baseline sway
profiles for classification algorithm training, (2) validation of sway
measurement consistency under increased task difficulty, and (3) assessment of
the active back support exoskeleton during balance tasks. Each experiment is
framed with equipment justification, participant selection criteria, and

procedural overview.

3.10.1 Preliminary Sway Data Collection Protocol (n = 36 Subjects)

The objective of the first experiment was to collect kinematic data characterising
postural sway across multiple induced sway conditions, enabling the training of
a sway classification algorithm. For this, we employed an MPU6050 IMU and
the SONY MOCOPI motion capture system. The MPU6050, widely recognised
for its accuracy and cost-effectiveness in wearable movement tracking, was
mounted on the sternum to capture trunk accelerations and angular velocities.

The MOCOPI system provided full-body spatial data for validating IMU-based
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measurements. Participants also performed tasks on a wobble board to simulate
dynamic instability and provoke distinct sway patterns for analysis. Eligibility
for participation was defined by exclusion criteria designed to eliminate
confounding biomechanical factors as depicted in Table 3.8, and trial conditions

in Table 3.9. Total 36 subjects of 1.707 (£ 0.0706) cm were included.

Table 3.8: Exclusion Criteria

Criteria Description

Height Within 15th—-90th percentile Malaysian (155-183 cm)
BMI Non-extreme (17.0-28.0)

Injury No recent injuries affecting ankle, hip, or back stabiliser

History muscles

Table 3.9: Trial Conditions and Number of Trials

Condition Trial Duration | Reps Notes
Still Stance (STAB) 60 sec 3 Stable
Anteroposterior (AP) 60 sec 3 Forward-backward sway
Mediolateral (ML) 60 sec 3 Side-to-side sway
Unstable (UNST) 60 sec 3 Random/unstable sway

Participants were first screened and briefed before providing written
informed consent. The IMU was securely attached to the upper sternum, while
six MOCOPI sensors were positioned according to manufacturer specifications
as depicted in Figure 3.44. After a familiarization phase, participants performed
four randomized stance trials: a still stance (STAB), anteroposterior sway (AP),
mediolateral sway (ML), and an unstable wobble board stance (UNST). Each
trial lasted 60 seconds and was repeated three times, with one-minute rest
periods between trials, all according to flowchart Figure 3.43. All kinematic data

were logged concurrently from both IMU and MOCOPI systems.

3.10.2 Preliminary Sway Data Validation Protocol (n=5 subjects)

The second experiment aimed to validate the reliability of sway detection across
standard balance tests of increasing difficulty. The same hardware setup was
used as in Experiment 1. The trial design was based on clinically accepted
postural control tests, including eyes-open and eyes-closed conditions in both
bipedal and single-leg stance. Inclusion criteria mirrored those from Experiment

1 to ensure data consistency. Each participant was instrumented with an IMU
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and MOCOPI sensors. They completed four conditions in randomized order:
normal stance with eyes open, normal stance with eyes closed, single-leg stance
with eyes open, and single-leg stance with eyes closed. Each trial lasted 30
seconds and was repeated three times. The resulting data provided validation for
sway feature stability across progressively challenging tasks, serving as a

benchmark for classifier robustness.

Subjects n=37

Setup
Attach & calibrate Sony MoCoPi Attach & calibrate Chest IMU

'\ / Anteroposterior AP

r_?

hA
Setup=-Setup-
For each condition 3 trials | 4 Conditions I—b
Subject mimics sway on wobble Unstable UNST
board

v

Collect sway data 60 s per trial

Mediolateral ML

Figure 3.43: Flowchart of Sway Data Collection

3.10.3 Postural Sway Exoskeleton System Testing Experiment Protocol —
Back Support Exoskeleton (n=15)
The final experiment investigated the effects of a lightweight active back
support exoskeleton on postural stability during static balance conditions. The
centre of pressure (CoP) was measured using a Nintendo Wii Balance Board,
which has been validated for intra-subject CoP comparisons in time-domain
sway analysis (Ando et al., 2022; Bartlett et al., 2014; Leach et al., 2014).
Although not suited for clinical diagnostics, its utility in research-grade postural
analysis has been demonstrated in multiple studies. Complementary kinematic
data were collected using the same IMU and MOCOPI configuration. Muscle
activation patterns were assessed using a Delsys Trigno sEMG system. Surface
electrodes were preferred for their non-invasive nature, and monopolar
configurations were employed due to their superior intermuscular coherence
compared to bipolar setups (Mohr et al., 2018). Exclusion criteria remained
consistent with prior experiments. Participants first completed a preparation

phase, during which anthropometric data were recorded and sSEMG sensors were
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applied to the tibialis anterior, medial gastrocnemius, and optionally, the erector
spinae and abdominal muscles. The exoskeleton was then calibrated and donned,
and donning time was recorded to assess practical usability.

Each participant completed balance trials in four stance conditions:
normal stance with eyes open, normal stance with eyes closed, tandem stance
with eyes open, and tandem stance with eyes closed (limited to 25 seconds for
safety), shown in Figure 3.44. These were tested across three device states:
exoskeleton powered ON, exoskeleton powered OFF, and no exoskeleton. Each
configuration was repeated three times, yielding 36 total trials per participant
according to Figure 3.45. CoP data were synchronized with IMU, MOCOPI,
and sEMG recordings. Following data acquisition, sensors were removed, and
participants were invited to provide feedback. Signal processing involved
outlier removal using a Hampel filter, signal smoothing with a fourth-order
Butterworth low-pass filter, and root mean square (RMS) feature extraction

from the EMG data, including mean and standard deviation metrics.

Figure 3.44: Sway Data Collection (left); Functional Test (Right)
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Figure 3.45: Flowchart of Functionality Test
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3.11 Project Budget

The prototype was developed with a total expenditure of RM404.71 detailed in
Table 3.10. Given the limited funding, component selection was guided by cost-
efficiency and availability. Major expenses were allocated to pneumatic
hardware, including solenoid valves, tubing, and a portable air compressor.
Additional costs covered a basic microcontroller, inertial measurement units
(IMUs), wearable straps, and lightweight structural supports. Open-source
software frameworks were used for interface development to avoid licensing
costs. Components were sourced from local suppliers and online platforms to
minimise shipping fees. Due to budget constraints, alternatives to higher-grade
materials such as carbon fibre were employed, and electric actuators were not
implemented. These trade-offs affected system performance in areas such as
weight, battery life, and actuator precision but allowed the construction of a

functional prototype sufficient for preliminary testing and demonstration.

Table 3.10: Project Budget

Item Price
(A) Pneumatics QTY (RM)
Xiaomi Pump 2 1 159.00

MAL Mini Air Pneumatic Cylinder Aluminium Bore
16mm 20mm 25mm 32mm Single Rod Double Acting
Stroke (25mm, 75mm) -Ext Warranty @ 1.24 2 57.22

Solenoid Valves 2 20.90
SL Pneumatic Throttle Valve 1/8 1/4 3/8 1/2 Male
Thread Fitting Air Flow Speed Controller 4-10mm

Tube 2 4.90
PC Pneumatic Fitting Push Fit Hose Tube Connector
Male Thread M5 M6 1/8 1/4 3/8 1/2 Air Quick joint 4 3.08
PU Tubes (1m) 2 2.44
(B) Electronics Total (A) | 247.54

3.7V18650 Lithium-Ion Rechargeable Battery
4860Mwh Large Capacity Long-Lasting Handheld

Megaphone Amplifier 1 24.26
ESP32 1 15.00
10,000mAh Powerbank 1 13.00
SD Card Module and SD card 1 10.00

6DOF MPU 6050 GY-521 3 Axis Gyro
Accelerometer Sensor Module Arduino 1 9.90
ESP32 BASE (EXPANSION PINS OR TERMINAL
BLOCK) FOR 30P & 38P 1 7.97
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OLED 1 7.00
LM2596 Buck Converter 1 4.95
(C) Hardware Total (B) | 92.08
Weightlifting Belt 1 17.00
Smm Nylon Webbing (1m) 4 16.80
25mm Zinc Alloy Press Buckle Small Hardware
Tightening Buckle 2 10.80

1pc MAL/CDJ2B-LB Holder Air Cylinder Bracket

Mounting Support Bore 16mm 20mm 25mm 32mm

40mm 2 9.36

Metal Japanese Buckle Bag Strap Button Three-Speed
Buckle Flat Wire Alloy Bag Strap Adjustment

Luggage Hardware Accessories 2 6.23
3mm thick Aluminium plate 1 4.50
L bracket 2 0.40

Total (C) | 65.09

Grand Total (RM) 404.71

3.12 Summary

This project focused on the development and preliminary validation of a strap-
based, back-supported pneumatic exoskeleton designed to assist standing
posture and reduce postural sway. The methodology encompassed the
mechanical design, system integration, and experimental validation with human
participants. The exoskeleton frame was designed using SOLIDWORKS and
fabricated from lightweight materials, primarily fabric and straps, along with
custom 3D-printed components, to ensure user comfort and ease of donning.
Pneumatic actuators were incorporated at the trunk region to provide active
postural support. A sway detection algorithm was developed to trigger
corrective actuation based on body sway, using data from an MPU-6050 IMU
sensor. Actuation control was handled by a microcontroller-based system
capable of manual and predefined pneumatic valve control.

To enhance usability, a full-stack graphical user interface (GUI) was
developed using Python Streamlit for the frontend and PostgreSQL (pgAdmin
4) for the backend database. Additional features such as offline SD card data
logging and real-time OLED display were implemented to improve portability
and user convenience. Experimental testing involved human participants
performing quiet standing trials under four test conditions: normal stance with

eyes open (EO), normal stance with eyes closed (EC), tandem stance with EO,
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and tandem stance with EC. Each condition lasted 30 seconds and was repeated
three times. A Wii Balance Board was used as a low-cost alternative to force
plates for measuring Centre of Pressure (CoP) parameters to quantify postural
sway. Trigno Delsys surface EMG sensors were placed on key trunk
stabilizers—external obliques (EO), erector spinae (ES), and rectus abdominis
(RA)—to assess muscle activation trends, although EMG was not integrated
into the real-time system. IMU and EMG data were analysed offline to evaluate
balance control and muscular effort with and without exosuit assistance.

The project adhered closely to the planned Gantt chart with minimal
deviation. The prototype was developed within a budget of RM 500, with a final
cost of RM 404.71, making it a cost-effective solution. Overall, the
methodology prioritized low-cost development, safety during trials, and the
practical feasibility of pneumatic exoskeleton systems for supporting static

postural stability in rehabilitation and assistive applications.
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the final prototype, encompassing its mechanical design,
electronic circuitry, and graphical user interface (GUI). It also details the results
and validation of the standing postural sway detection algorithm implemented
in the system. In addition, surface electromyography (SEMG) and centre of
pressure (CoP) tests were conducted to evaluate the prototype’s performance on
human subjects. A comfort and practicality assessment, including donning and
doffing time as well as user feedback on wearability, was also performed to

assess the system's usability in real-world conditions.

4.2 Full Prototype

The developed prototype integrates pneumatic actuators to provide active back
support, utilising a strap-and-fabric-based framework designed for compactness
and ease of wear. Control is achieved via an ESP32-based system, while
postural sway is detected in real time using a chest-mounted MPU6050 IMU.
The system is complemented by a custom control algorithm, sway detection
logic, and a GUI to facilitate user interaction and feedback. Figure 4.1 illustrates

the fully assembled prototype as worn by a study participant.

Strap Padding r .]
Backplate

Powerbank Bl Tie-down Buckle ~— (Main Circuit:
\ — ESP 32 and
SD Module)

Pneumatic
Cylinder

‘Waistband

Figure 4.1: Final Prototype of Back Support Pneumatic Exoskeleton on Subject
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To don the exoskeleton, the user first wears the chest-mounted IMU,
followed by the vest-like harness. The system is secured using adjustable belts
and straps to ensure fit and comfort. During setup, the ESP32 is powered via a
portable power bank, and the IMU (housed in a protective casing) is briefly
placed on a flat surface for calibration prior to use. Once donned, the system
initialises automatically. Real-time sway data is acquired and logged either
through an onboard SD card or via the GUI interface. This data is
simultaneously used as input for the feedback control algorithm, which triggers
linear actuation of the pneumatic cylinder upon detection of excessive postural
sway. To enhance user accessibility, an OLED display is attached to the wrist.
It provides visual status updates and feedback, including system mode, live
sway plots, and raw sensor data. Navigation is enabled via mode and scroll
buttons, with the interface initialised by a splash screen, as shown in Figure 4.2.
The prototype, in its current form, demonstrates cohesive integration of sensing,

control, and actuation, offering a compact solution for real-time postural support.

RS o
MODE
% e Stability: 8%
"

Initializing... POSTERIOR

Relays: 0000

Splash Screen of OLED Display Status Mode Screen
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2.
e e
215

Plot Screen Display Data Display

Figure 4.2: OLED Display Screen

The user experience of the system was evaluated through practical
interaction flows that reflected typical data entry and retrieval tasks User
interface main page is shown in Figure 4.3. During testing, the login process
was stable and responsive, with authentication consistently completing in under
200 milliseconds, with 2 options of logins, namely user mode (Figure 4.4),
where new users can register and admin mode (Figure 4.5), requiring admin

authentication. Once logged in, users navigated the dashboard using a sidebar
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layout (Figure 4.6), which was generally described as intuitive and easy to
follow. Feedback suggested that the interface required minimal effort to learn,

making it accessible even for first-time users.

Welcome to our Medical Monitoring System

This platform pravides real-time monit

Bur system supports:

«  Real-time vital sign monitoeing

«  Historical data analysts

+  Medical device integration

= Secure patient data management

£33 Patient Monitariog Syste

Fo assiciance, please Gantac the syutsn administrstoe

Figure 4.3: User Interface Main Page
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Figure 4.4: Patient Login and Registration Page

/A Admin Authentication
Admin Portal Required

You must be logged in a3 an admin to access this page.

o Admin Login
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Figure 4.5: Admin Login Page
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Patient Information

Patient Records -

Figure 4.6: Navigation Sidebar of GUI

Record querying functions, including filtering by patient ID, session
date, and condition, worked reliably and returned results accurately across all
test cases. The data visualisation tools were useful for quick interpretation, bar
and box plots allowed comparison between conditions (Figures 4.7 and 4.8),
heatmaps showed how signals changed over time, and line charts helped track
recovery or progression across sessions, shown in Figure 4.9. Real-time IMU
data streaming, running at around 10 Hz, was successfully integrated, providing
live updates on orientation and movement parameters, as shown in Figure 4.10.
Figure 4.11 shows the trail tracking section of dashboard, which were displayed
clearly on the Streamlit dashboard and were useful for monitoring posture or

motion in real time.
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Figure 4.7: Barchart Comparison of Standard Deviation Via GUI

Parameter Distribution Comparison

LS
® .
)
- .
¥ -
o L)
s

KL LIS

A N

1 e

Parameter

Figure 4.8: Boxplot Visualisation of Distribution Via GUI
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Parameter Trends Over Time
Select parameter for time analysis
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Figure 4.9: View of Historical Data Over Time By GUI
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Figure 4.10: Real-time Data Visualisation on GUI
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Figure 4.11: Trial Dashboard Display and Features on GUI

Administrators, via their dashboards (Figure 4.12) were able to add
comments (Figure 4.13), annotate data, and view multiple sessions together
(Figure 4.14), which helped in reviewing patient history and comparing
outcomes. While some interface elements could benefit from further refinement,
the system performed reliably and was effective for both data capture and

visualisation in real-world testing scenarios.
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Figure 4.12: Admin dashboard
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[ Pending Comments

Figure 4.13: Comment Function on Patient File By Admin

Multi-Patient Data Comparison

e

<t Data 03 o Compure
133 (10:3) - Data .. X o~

@ Usenormakized time (seconds from start) ()

Data Summary

Parameter Selection

@ Show only parameters common to all datasets

oot e Yo g o

Visualization

Figure 4.14: Multi-Data Comparison Function By Admin

4.3 Algorithm Performance

This section evaluates the feasibility of distinguishing postural sway types using
centre-of-pressure (CoP)-derived features from a chest-mounted accelerometer.
The classification task aimed to differentiate among four predefined sway
categories, Stable (STAB), Anteroposterior (DAP), Mediolateral (DML), and
Unstable (INST), using a strategy informed by existing biomedical signal
processing literature and constraints imposed by embedded machine learning
systems. Key considerations included feature dimensionality, model complexity,
and computational efficiency.

A total of 37 participants completed three repetitions of each sway
condition, yielding 444 labelled trials. From these, non-overlapping 5-second
windows were applied using a sliding window approach, resulting in
approximately 130,000 labelled samples. While a finer segmentation (e.g., 250
ms windows) could have produced a higher-resolution dataset with over 3.7
million data points, it was excluded due to training and validation time
constraints. The selected windowing approach offered a practical balance

between temporal resolution and computational tractability. To prevent data
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leakage and to ensure generalisability across individuals, stratified 5-fold cross-
validation was implemented. This ensured that all samples from any given

subject were isolated to either training or validation folds, not both.

4.3.1 Feature Landscape and Data Behaviour

The feature set included standard metrics commonly used in postural sway
analysis: Root Mean Square (RMS) of acceleration, sway velocity,
anteroposterior (AP) and mediolateral (ML) range, and ellipse area. These
features have demonstrated utility in quantifying biomechanics risk and
instability (Prisco et al., 2023). Visualisation of processed signal curves
revealed clear inter-class distinctions. STAB was characterised by flat, low-
amplitude traces. In contrast, DAP and DML demonstrated uniaxial oscillations,
dominated by the anterior-posterior axis (Ax) and mediolateral axis (Az),
respectively. INST, however, presented erratic, multi-directional bursts
resembling hybrid patterns of DAP and DML with intermittent, unpredictable

deviations, as depicted in scatter plot in Figure 4.15.
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Figure 4.15: Scatter of Labelled Data by Ranges

Signal envelopes and scatterplots provided further insight. RMS and
directional signals showed clear trends: DAP was primarily Ax-dominant, DML
showed lateral Az excursions with limited axial interference, while INST had
high RMS values and abrupt, noise-like shifts across both axes. Figure 4.17
visualises the scatter distributions of directional ranges, highlighting overlaps,
particularly between DAP, DML, and INST. The INST class exhibited the

widest multidimensional spread with no discernible centroid, while STAB, DAP
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and DML are easily distinguishable, reinforcing its complexity and
classification difficulty. High intra-class variability, especially in DAP and
INST, was observed and is attributable to subject-specific compensation
mechanisms, such as trunk or upper limb engagement. Additionally, the single
chest-mounted IMU limited sensitivity to lower-limb dynamics, which are
crucial in sway detection. This aligns with findings by Guo et al. (2022), who
emphasised the role of sensor placement, suggesting that pelvic or lower-limb-
mounted IMUs may offer superior discriminative power in sway classification
tasks.

Feature distribution plots further confirmed that STAB was the most
separable class, while DAP, DML, and INST exhibited overlapping feature
spaces. This was particularly problematic for multi-class classifiers. The
ambiguity of the INST class was reflected in ROC analyses conducted with a
K-means clustering baseline. While the area under the curve (AUC) was high
for STAB; INST, DAP and DML consistently returned low AUC values,
underscoring its weak and fragmented feature identity, shown in Figure 4.16.
Subsequent tests were carried out which determined removing either INST or

DAP and DML does in fact significantly improve the AUC values.

ROC for Class 0 (Stable) with Leave-One-Out ROC for Class 1 (Antero-Posterior) with Leave-One-Out

a fata:
ange
fata
o
fata

0 o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
False Positive Rate False Positive Rate
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Figure 4.16: ROC Curves of K-means Classifier per Class

K-means clustering with four clusters (matching the true number of
sway classes) was used to explore intrinsic feature space separability. STAB
formed a tight, distinct cluster, validating its relative uniformity. However, other

classes, especially INST, exhibited low inter-cluster purity. DAP and DML
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formed moderately cohesive but overlapping directional clusters, whereas INST
points were dispersed across multiple centroids. These findings collectively
suggest that INST, as a sway condition, lacks a cohesive and distinguishable
feature identity, posing challenges to both unsupervised and supervised learning
approaches. The dense class overlap, particularly among dynamic sway types
(DAP, DML, INST), is a compound result of sensor limitations, physiological

variability, adaptive motor responses, and intrinsic noise in human balance

behaviour.
Feature Distributions with Outliers
DAP, ax oML _; Rs D MS VEL ean AP_ange DAP,_in DML in CcEAS R VEL, ax ML ange
il _ ' L ' T i
- i lzso| - asa|
s | e 3 . b " A ol * *
. |
.
2
-
-
REE.
- e A .
- sl *
[} -
=0l
S B e 5 -
¢ . b {
| .- I i
2k 1
.
B I . i
1 - 3
T FY - .- - s *
: : I
. $ ]
. l F -
I . oL ; 1 L} L ] % - ab . T § &
L JE—— L . L
T 1

Figure 4.17: Feature Distribution of Sway Parameters

4.3.2  Classifier Evaluation and Cross-Validation Results

Despite extensive hyperparameter tuning, the overall accuracy of machine
learning models plateaued around 63—64%, constrained by inter-class feature
overlap and the limitations of single-sensor input. This reflects an inherent
ceiling imposed by the signal characteristics and subject-level variability rather
than model architecture alone. The model-wise cross validation accuracy is
shown in Figure 4.18 and Figure 4.19 shows its distribution over the 5 cross
validations (K-fold 5), details in Figure C-12. Hyperparameter optimisation was
performed using grid search methods, with results visualized via heatmaps to
identify performance peaks across parameter combinations. For instance, K-
Nearest Neighbours (KNN) yielded optimal performance at k = 15, whereas
Random Forest (RF) achieved best results with 100-150 estimators and

constrained tree depth, minimizing overfitting. These observations reinforce
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that class feature overlap inherently limits the benefit of tuning, and model

stability is heavily affected by inter-subject variability.
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Figure 4.18: Mean Accuracy of Tuned Classifiers

Distribution of Accuracies Across CV Folds (Tuned Models)
T

T T
ha -+
Rd |
A Rt
= +
082 .
-
-+
i

=
8 0B °
g : |
g -

" E |

054 |- | | | - T o

o = & 3 £ o S
& & & & & o &
& & & & & & &
A8 pd & o W~ &
& ‘é&' <& & &
& 3 o &

N

Figure 4.19: Cross Validation Accuracy Distribution per Model

Among all evaluated models, Random Forest achieved the highest
cross-validated mean accuracy of 63.77%, leveraging its ensemble framework
to improve robustness against noisy and variable data. This aligns with prior
findings demonstrating RF’s effectiveness in classifying balance impairments
via postural sway features (Sun et al., 2019). Notably, bagging methods
outperformed boosting methods, with AdaBoostM2 and Bagged Trees
producing stable outcomes, while GentleBoost and LogitBoost failed to
converge or resulted in 0% accuracy, depicted in Figure 4.20. The mediocre
performance of boosting algorithms is due to their sensitivity to misclassified
samples, which becomes problematic in high-overlap, imbalanced class

environments.
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Figure 4.20: Tuning for Random Forest

Support Vector Machine (SVM) followed closely with a cross-
validated accuracy of 63.70%. Its strength lies in constructing high-dimensional
separating hyperplanes and maximizing classification margins, making it
relatively robust to overlapping distributions and class imbalance. However, its
performance is highly dependent on careful kernel and regularization parameter
selection, especially in the presence of noisy or non-separable data. K-Nearest
Neighbours (KNN) achieved a mean accuracy of 63.09%, performing best with
Euclidean and Cityblock distance metrics depicted in Figure 4.21. These results
suggest that absolute displacement measures are more informative for postural
sway classification than angular or correlation-based metrics. While KNN
exhibited consistent classification behavior across all classes, it was
computationally intensive, which may limit real-time deployment, especially in

embedded systems with resource constraints.
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Figure 4.21: KNN Hyperparameter Tuning
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Naive Bayes (NB) classifiers revealed performance discrepancies
based on distributional assumptions. Multinomial and Multivariate NB variants
performed poorly (~58.11%), due to the continuous and non-discrete nature of
the input features. Gaussian NB yielded marginal improvements, while a hybrid
approach combining normal distribution with kernel density estimation reached
nearly 53% accuracy shown in Figure 4.22. Despite lower overall performance,
this suggests that non-parametric density models may still offer utility in

overlapping feature spaces with non-Gaussian behaviour.

Naive Bayes Distribution Performance

Figure 4.22: Naive Bayes Classifier Tuning

Decision Trees, although interpretable, achieved only 60.03% accuracy.
Despite pruning, they remained prone to overfitting due to the noisy and variable
nature of the dataset. Nonetheless, their feature-based decision thresholds,
especially for RMS and AP range, aligned with clinically intuitive postural
markers as seen in Figure 4.23. Logistic Regression and Linear Discriminant
Analysis (LDA) performed in the 55-57% range and struggled most with INST
class detection, consistent with their limitations in modelling nonlinear and

multi-axial behaviours as depicted in Figure 4.24.
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Figure 4.23: Decision Tree Parameter Tuning
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Figure 4.24: LDA Tuning

Among all approaches, the empirical rule-based algorithm, despite
being manually tuned, heuristic-driven and non-adaptive, achieved the highest
accuracy of approximately 70%. It leveraged compound logic, integrating basic
CoP data thresholds with raw accelerometer data to effectively distinguish
between classes, especially crucial in detecting the elusive INST class. This
model was particularly advantageous for embedded real-time classification,
given its deterministic behaviour, low computational demand, and transparent

structure, despite its lack of learning ability.

4.3.3 Empirical Model and Threshold Tuning (DAP/DML Ax, Az)

The empirical classifier was developed based on threshold conditions extracted
from ensemble mean =+ standard deviation envelopes of Ax and Az
accelerometer components, as well as displacement-based features for DAP and
DML, as visualized in Graphs A-4 to A-17, where Graphs A-4 to A-9 shows
distinction of the parameters by class, and Graphs A-10 to A-17 the ensemble
means with SD for threshold tuning. Specifically, DAP was identified when Ax
exceeded 1.5 standard deviations above the mean and DAP displacement was
similarly elevated, provided that Az remained below one standard deviation and
DML displacement was suppressed. Conversely, DML was characterized by
dominant Az values exceeding their threshold while Ax remained within or
below normal limits. INST classification was triggered when both axial
thresholds were exceeded simultaneously or when multiaxial surges and erratic
fluctuations occurred outside the typical bounds for DAP and DML. These

compound logic rules were further reinforced using RMS and ellipse area
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constraints to reduce false positives. The resulting model demonstrated strong
stability across subjects and was notably more effective than machine learning
classifiers in detecting unstable sway episodes, where feature ambiguity often
led to misclassification. Although lacking adaptability and learning capacity, the
model’s deterministic structure, low computational footprint, and transparency
render it ideal for embedded or wearable systems requiring real-time postural
assessment. The success of this heuristic approach underscores the value of
integrating domain expertise and physiologically informed rules, particularly in
scenarios where sensor constraints and temporal variability limit the

effectiveness of purely data-driven methods.

4.3.4  INST Class Performance and Diagnostic Challenges

The INST (Unstable) class posed persistent classification challenges across all
models due to its ambiguous and overlapping feature behavior. While prior
sections established its multidirectional and erratic signal profile, the deeper
issue lies in INST’s temporal unpredictability, with abrupt axis shifts, amplitude
surges, and intermittent stillness that occasionally mimicked STAB. These
dynamic fluctuations made INST highly prone to misclassification, particularly
as DAP or DML, in both linear classifiers and ensemble models. Another
contributing factor was the use of a single chest-mounted IMU, which limited
sensitivity to lower-body compensations and fine-grained balance adjustments.
As noted by Ando et al. (2022), such sensor placements are inherently
disadvantaged in capturing full-body sway dynamics, especially when subjects
deploy hip or upper-limb strategies for balance correction. These compensations
introduce non-stationary signal noise, reducing the model’s ability to
differentiate true instability from intentional movement variability.

While STAB, DAP, and DML showed more class-consistent feature
patterns, due to their directional dominance and constrained intra-class
variability, INST exhibited significant feature and temporal overlap with all
three. This is consistent with mimic-based postural failure findings by Ando et
al. (2023), which demonstrated that instability states often defy clean categorical
boundaries. These collective findings suggest that INST classification
challenges are not merely artifacts of this system’s limitations, but reflect a

broader problem in modelling human instability episodes.
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4.3.5 Class-Specific Feature Mapping and Model Interpretations
Among the four sway classes, STAB demonstrated the most distinct and
compact feature representation, characterized by low RMS, minimal sway range,
and a small ellipse area, traits that enabled high classification accuracy across
all models. DAP and DML also exhibited reasonably strong separability,
particularly through their axis-specific features (i.e., elevated AP range for
DAP and ML range for DML), consistent with biomechanical literature on
directional sway (Guo et al., 2022). INST, in contrast, lacked any stable or
exclusive feature pattern. While high RMS and irregular sway velocity were
observed in many instances, these features also appeared in DAP and DML
cases, limiting their diagnostic specificity. Even though the Reliability Index
(RI) initially suggested high per-feature consistency for INST, similar to STAB,
the RI failed to capture the inter-class confusion caused by INST’s broad spread
in feature space, Figures 4.25 and 4.26. For example, RMS reliability for STAB
was unexpectedly low (~27.5%), despite strong classification performance,
whereas features like ellipse area showed higher RI but were not discriminative
enough to isolate INST in a multiclass context. This initially suggested that
INST, despite its classification challenges, demonstrated some internal
consistency in its feature distribution.

However, contrary to this interpretation, model performance
significantly improved when the INST class was excluded from the
classification task. Upon removing INST and re-training the models in a reduced
three-class (STAB, DAP, DML) scenario, all remaining classes exhibited better
accuracy, precision, and inter-class separability—even though no additional
features were introduced or removed. This implies that the presence of the INST
class contributed considerable noise and confusion within the model’s decision
boundaries. This paradox, where INST appears reliable in RI evaluation yet
destabilizes overall classification, highlights a critical distinction between intra-
class consistency and inter-class separability. While INST may have consistent
internal patterns, those patterns heavily overlap with both DAP and DML in the
shared feature space, undermining its practical discriminability in multiclass
settings. Although visualizations were not included for this analysis, the
improved performance metrics across all three remaining classes reinforce the

conclusion that INST acts as a confounding factor in both feature space and
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classifier learning. This finding underscores the complexity of modelling
unstable postural behavior and further supports the case for either
recharacterizing INST with additional temporal features or treating it as a

separate anomaly detection problem rather than a strict classification target.

Feature Importance by Stability Class

Relative Importance (%)

Stable Antero-Posterior  Medio-Lateral Unstable

Figure 4.25: R1% of Features per Class

Calculating feature importance using RI metric...
Feature D_RMS importance for class Stable: RI = 29.66%
Feature D _RMS importance for class Antero-Posterior: RI = 83.66%
Feature D _RMS importance for class Medio-Lateral: RI = 83.59%
Feature D _RMS importance for class Unstable: RI = 69.98%
Feature AP_range importance for class Stable: RI = 84.90%
Feature AP range importance for class Antero-Posterior: RI = 94.47%
Feature AP range importance for class Medio-Lateral: RI = 93.50%
Feature AP range importance for class Unstable: RI = 95.03%
Feature ML range importance for class Stable: RI = 65.55%
Feature ML range importance for class Antero-Posterior: RI = 80.52%
Feature ML range importance for class Medio-Lateral: RI = 85.64%
Feature ML_range importance for class Unstable: RI = 85.92%
Feature CEA_95 importance for class Stable: RI = 97.24%
Feature CEA_95 importance for class Antero-Posterior: RI = 96.27%
Feature CEA_95 importance for class Medio-Tateral: RI = 92.59%
Feature CEAR 95 importance for class Unstable: RI = 97.36%

Figure 4.26: Matlab Snippet of Feature Importance for Classes

When INST was excluded from the classification problem, all three
remaining classes (STAB, DAP, DML) saw improved performance. This
supports the conclusion that INST's inclusion introduces confounding overlap
that disrupts model decision boundaries, despite appearing reliable in isolation.
Random Forest models partially alleviated this issue by modelling complex
feature interactions, but even they struggled with recall for INST, underscoring
its intrinsic ambiguity. These observations collectively suggest that static
classifiers, relying solely on summary features, are insufficient for capturing the
dynamic instability seen in INST. Future work should explore temporal

modelling architectures, such as Hidden Markov Models (HMMs) or Long
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Short-Term Memory networks (LSTMs), which are better suited to handle the
nonlinear transitions and state-dependent behaviours inherent in human
instability. Coupling such models with multi-sensor systems may further
improve detection by capturing a more holistic representation of postural

dynamics.

4.3.6 Inter-Subject Variability and Empirical Model Insights
Significant inter-subject performance variability was observed, particularly in
the INST classification. In some participants, INST was never detected, while
in others, false positives occurred even under stable conditions. This
heterogeneity was confirmed via subject-level quantile performance plots,
reinforcing that sway classification is not solely a feature engineering or model
selection issue, but one deeply influenced by individual biomechanics and
behavioural compensation. Factors such as differing balance strategies (e.g.,
ankle vs. hip), sensor-to-movement misalignment, and variable body mechanics
all contributed to inconsistent classification accuracy. These limitations align
with Gattinara et al. (2022), who noted that ML-based classifiers, while
effective under controlled or disease-specific conditions, Parkinson’s to be exact,
tend to falter when exposed to subject-level variability and treatment-induced
movement differences. Figure 4.27 shows the Q% per subject indicating high
variance between subjects.

An empirical threshold-based model, developed using logical rules on
compound CoP-derived features (e.g., directional dominance in Ax and Az),
showed relatively better stability across subjects. Although not cross-validated
due to its heuristic nature, this model performed consistently, particularly in
detecting directional sway. Its success may lie in its interpretable decision
boundaries and reduced reliance on complex feature transformations. These
observations suggest that while machine learning offers scalability and pattern
recognition capabilities, integrating domain-informed rule-based heuristics—
especially in subject-agnostic systems—can provide robustness in real-world
deployment settings. This hybrid approach warrants further investigation,
particularly for wearable balance monitoring applications under diverse

population settings.
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Figure 4.27: Q% of K-means by Subject

4.3.7 Summary and Observations

In conclusion, Random Forest, and K-Nearest Neighbours (KNN) were the most
consistent machine learning classifiers, outperforming boosting-based
ensembles, and linear models in cross-validation. Naive Bayes variants
performed less reliably overall, though kernel-based variants showed minor
improvements. The threshold-based empirical model recorded the highest
validation accuracy (~70%), based on static rules derived from observed class-
specific feature patterns. While it lacked adaptability, it was straightforward to
implement and maintained stable performance across trials.

INST classification remained the main source of error, with high
confusion due to overlap with DAP and DML features. The lack of consistent
axis dominance and the irregular temporal nature of instability contributed to
poor model separation. Single-IMU input and subject variability further limited
classifier generalisability. Compared to frameworks like Ando et al., differences
in performance are likely due to environmental noise (e.g., sensor placement
inconsistencies, movement artifacts), limited data volume, class imbalance—
particularly under-sampled INST data—and absence of real-time interaction or
mimic-loop training. Overall, machine learning models reached a performance
ceiling under current data and setup constraints. The rule-based classifier, while
static and manually tuned, remained the most reliable under validation
conditions. Temporal models or multimodal sensor input may be necessary to
improve future classification of dynamic sway behaviour, especially for

instability detection.
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4.4 Exosuit Comfortability and Practicability

To evaluate the wearability and usability of the developed exosuit, donning and
doffing times were recorded and analysed across multiple trials. These metrics
are essential for determining the practicality of wearable assistive devices,
especially in real-world settings where time efficiency and user independence
are critical. Table 4.1 summarises the donning and doffing times across all
subjects with time by subject appended in Table B-4. The average don time was
199 seconds (SD = 88 s), and the average doff time was 68 seconds (SD = 17
s). Upon removal of statistical outliers, primarily due to hesitation or
inexperience in early trials, the adjusted mean times improved to 182 seconds
(SD = 60 s) for donning and 66 seconds (SD = 16 s) for doffing. This
corresponds to a mean improvement of 8.92% for donning and 2.99% for
doffing, indicating increased user confidence and efficiency after repeated use.
While full-body industrial exoskeletons often report donning times of up to 10
minutes and doffing times under 5 minutes, back-support exoskeletons, being
lighter and simpler, typically require only around 35 seconds to don and 7
seconds to doff Chung et al., 2024). The prototype exosuit in this study, although
slightly slower, falls within a reasonable range given its early-stage construction
and design limitations. Notably, the exosuit used in this study was assembled as
a proof-of-concept with a limited budget (RM404), resulting in a semi-manual,

strapping-based harness that lacked quick-release mechanisms or rigid frames.

Table 4.1: Summary of Don Doff Timing of Users

| Don Time (s) | Doff Time (s)
All Subjects
Mean 199 68
SD 88 17
Removed Outliers
Mean 182 66
SD 60 16
Percentage Difference (%)
Mean 8.924% 2.985%
SD 37.838% 6.061%

In early trials, participants were hesitant to handle the prototype too

assertively, fearing they might damage it. However, after observing that the
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system sustained no structural failures during repeated use, subjects became
more confident. This directly contributed to a noticeable improvement in
donning speed over time. When tested for self-donning and doffing, the average
time decreased to 1 minute 35 seconds (95 s) and 45 seconds, respectively,
suggesting that with further refinements and familiarity, the system has the
potential to match or exceed the usability of commercial exosuits in its category.

Overall, participant feedback was consistently positive, especially
regarding comfort, perceived mobility, and ease of use. Users frequently
described the exosuit’s form factor as reminiscent of a parachute harness but
emphasised that it felt surprisingly lightweight and non-restrictive, despite its
measured weight of 4.7 kg, including the duffle bag and storage materials used
for accurate weighing of the soft-strap-based prototype. benchmarking against
existing solutions, the device was lighter than active systems like the XoTrunk
at 6 kg (Poliero et al., 2020), though still heavier than passive alternatives like
the BionicBack and LiftSuit, which range from 1 to 1.3 kg (Alemi et al., 2022;
Luder et al., 2025). Participants also reported that the multi-strap configuration
felt secure yet unobtrusive, providing a perceptible supportive pull that
enhanced posture correction without interfering with natural movement. This
balance of mechanical assistance and wearability suggests that the prototype
effectively achieves a functional compromise between support and freedom of
motion. Importantly, these early-stage user impressions indicate strong potential
for further optimisation. With targeted ergonomic refinements, particularly in
attachment design, the exosuit could evolve into a practical solution for daily

use in occupational health, rehabilitation, or assistive mobility applications.

4.5 EMG Results for Functionality Testing

This study examined the muscle-specific effects of an active back-support
exosuit designed for static postural sway reduction. The device dynamically
modulates support torque in response to trunk position, aiming to reduce
neuromuscular effort and enhance postural control in prolonged upright
standing tasks. The results confirm that active assistance led to significant
reductions in EMG amplitude across most trunk muscles, with intersubject
variability highlighted in heatmaps and box plots. This section presents the

surface electromyography (SEMQ) analysis results for four key trunk stabilisers:
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the external oblique (EO), rectus abdominis (RA), and bilateral erector spinae
(ES) muscles. Data were collected from 15 participants under four postural
subconditions, normal stance with eyes open (NSEO), normal stance with eyes
closed (NSEC), tandem stance with eyes open (TSEO), and tandem stance with
eyes closed (TSEC), each performed with and without the exosuit. The root
mean square (RMS) amplitudes were computed for each condition. To assess
the functional impact of the exosuit on muscular activation, statistical
comparisons were made using the Wilcoxon signed-rank test for significance
(p-values) and Cohen’s d for effect size estimation. Visualisations including box
plots and heatmaps were generated to illustrate intersubject variability and

overall muscle activation trends.

4.5.1 External Obliques (EO): Lateral Sway Control and Muscle

Unloading
The external oblique (EO) muscle exhibited consistent and statistically
significant reductions in root mean square (RMS) electromyographic (EMG)
activity across all postural subconditions when the exosuit was worn. As
illustrated in Figure 4.28, boxplots of amplitude distributions demonstrate a
clear reduction in muscle activation under exosuit-assisted conditions and a
clear percent reduction in comparison to no change line. The percent reduction
in EO activity ranged from 20.6% during normal stance with eyes open (NSEO)
to 38.3% during tandem stance with eyes closed (TSEC), emphasising the
progressive unloading effect under increasingly challenging balance tasks.
These reductions are further visualised in Figure 4.29, which simplifies the data
into bar graphs representing mean of both control (without exoskeleton) and
exoskeleton data and associated p-values.

The EO muscle, critical for lateral trunk stabilisation and rotational
control, showed significant reductions (p < 0.05) and medium to large effect
sizes (Cohen’s d = 0.70-1.12), with the highest effect observed in the T-EC
subcondition (d = 1.12). This is depicted in Figure 4.30, which uses a scatter
plot with lines linking pre- and post-intervention values for each subject,
highlighting individual-level trends. These outcomes support prior findings that
exosuits significantly reduce trunk muscle demands under postural and sensory

stress (Kang & Mirka, 2023b). Biomechanically, normal parallel stances offer
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relative postural stability, while tandem stances impose mechanical constraints
that increase instability. The addition of eye closure further heightens reliance
on proprioceptive feedback, thereby escalating postural challenge and EMG
activity. The observed reductions in muscle activation under such conditions
reinforce the exosuit's capacity to offload muscular demand effectively (Smith
etal., 2016).

These reductions in EO activity are functionally significant. High tonic
activation of the EO is linked to increased lateral trunk stiffness, which hinders
dynamic balance and limits adaptability to mediolateral perturbations. The
exosuit moderates this stiffness, likely by redistributing loads to passive
structures and augmenting active control strategies. Such an effect can reduce
fatigue during prolonged stance, where EO engagement is typically energy-
intensive. The heatmap in Figure 4.31 reveal moderate intersubject variability,
particularly in the visually deprived (EC) conditions. Interestingly, participants
with higher baseline EO activation exhibited more pronounced reductions,
suggesting that those with inherently higher muscle co-contraction may derive
greater benefit from exosuit assistance. This points to a potential personalisation
approach in future assistive device design. Overall, unlike passive systems that
often fail to adapt to direction-specific balance demands, active exosuits provide
torque in a controlled, responsive manner, especially beneficial in mediolateral
stabilisation. The findings of this study echo previous insights into the superior
adaptability of active assistive systems (Poliero et al., 2022), reinforcing the

relevance of EO unloading in improving lateral sway control.
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Figure 4.28: Boxplots of RMS EMG Amplitude Distribution (Left) and Percent
Reduction in EMG Activity (Right), in EO.
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4.5.2 Rectus Abdominis (RA): Anterior Trunk Support and Sagittal

Sway Modulation
The rectus abdominis (RA) exhibited statistically significant reductions in EMG
amplitude across all postural subconditions when the exosuit was activated,
indicating its critical role in modulating anterior-posterior sway. As shown in
Figure 4.32, the boxplots illustrate clear shifts toward lower muscle amplitude
under exosuit conditions. The magnitude of reduction ranged from 29.4%
during NSEO to 51.2% during TSEC, reflecting the increased postural demands
and the corresponding support provided by the exosuit, which can be visualised
via the differences in mean RMS amplitude of EMG in Figure 4.33. The most
substantial reduction occurred in the TSEC condition (51.2% reduction, d =
1.05), highlighting the exosuit’s capacity to offload anterior trunk musculature
during tasks that challenge anterior-posterior sway. All reductions were
statistically significant (p < 0.05), with large effect sizes (d = 0.81-1.16),
confirming a consistent unloading effect. The scatter plot in Figure 4.34, with
lines connecting pre- and post-assist values, further emphasises these changes
on a subject-by-subject basis.

Biomechanically, the RA is essential for sagittal plane stabilisation,
especially in counteracting posterior sway through active trunk flexion as during
tasks involving forward-backward perturbations, such as tandem stance with
eyes closed, the RA contracts to resist backward displacement of the centre of
mass (Kang & Mirka, 2023a). Sustained activation of the RA, especially in static
postures, contributes significantly to core fatigue. Therefore, the observed
reductions in muscle activity under exosuit assistance are functionally
meaningful, as they indicate lower muscular effort and metabolic demand,
leading to improved endurance and posture control in prolonged upright
activities (Kang & Mirka, 2023b). The TSEC condition again emerged as the
most demanding, both in terms of sensory deprivation and biomechanical
instability, which correlates with the highest unloading response from the
exosuit. These outcomes align with literature suggesting that active anterior
support is particularly effective under sagittal destabilisation scenarios (Smith

etal., 2016).
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Boxplots in Figure 4.30 revealed narrow amplitude distributions under

exosuit conditions, suggesting that the unloading benefit was consistent across

participants. This contrasts with the EO muscle, where intersubject variability
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was higher. Supporting this, the heatmap analysis (Figure 4.35) demonstrated a
uniform pattern of percent reduction, with most participants experiencing a
30%-50% decrease in RMS activity, especially under TSEC and TSEO
conditions. Such uniformity suggests that anteriorly directed torque from the
exosuit reliably supports sagittal plane stability, reducing the need for tonic RA
contraction. This has substantial implications for occupational, clinical, and
surgical scenarios, where prolonged standing often leads to early RA fatigue
(Kang & Mirka, 2023b). These findings reinforce the hypothesis that exosuits
can delay core fatigue and improve trunk control during upright tasks. While
passive exosuits typically underperform in anterior support, active systems like
the one developed in this study can precisely target anterior musculature,
responding dynamically to the user's posture and sway. As such, tonic RA
activity is significantly reduced, and the risk of fatigue-related postural
deterioration is minimised. This is supported by prior findings emphasising the
superiority of active torque delivery in sagittal stabilisation tasks (Poliero et al.,
2022).
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Figure 4.35: Heatmap of Subject-wise EMG Reduction (%) in RA.

4.5.3 Erector Spinae (Right, L.3): Posterior Chain Support in Anterior
and Rightward Sway
The right erector spinae (ES-R) displayed a condition-dependent response to

exosuit assistance, reflecting its biomechanical role in stabilising the trunk
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against anterior and rightward sway. As shown in Figures 4.36 to 4.38,
significant EMG amplitude reductions were observed primarily in the tandem
stance conditions, with 35.6% reduction in TSEO (d = 0.70) and 41.8%
reduction in TSEC (d = 0.95), both indicating medium to large effect sizes and
statistically significant changes (p < 0.05). In contrast, during normal stance
conditions, reductions were minimal and not statistically significant (reductions:
8.2% in NSEO, 6.7% in NSEC), confirming that exosuit efficacy scales with

postural demand.
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Figure 4.37: Bar of Mean RMS EMG Amplitude in ES (L3, Right).

These findings are consistent with evidence showing that erector
spinae muscles benefit most from assistive support at higher trunk flexion
angles or under balance-challenging postures further suggesting that erector
spinae muscles activate more prominently under increased trunk instability,

particularly when compensatory stiffening or co-contraction strategies are
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deployed to prevent loss of balance (Cholewicki et al., 2007). In the tandem
stance, especially with eyes closed, forward-backward instability increases,
demanding greater tonic activation of ES-R to resist anterior drift. By providing
active posterior torque, the exosuit significantly reduces this neuromuscular
demand in high-load conditions. This scaling behaviour is functionally
important: passive exosuits often rely on fixed stiffness and may plateau beyond
certain flexion thresholds, whereas active systems dynamically adjust torque
output to match postural needs (Cholewicki et al., 2007). The observed
unloading in tandem conditions demonstrates that exosuits like XoTrunk
dynamically support the posterior chain, especially under increased sagittal and

mediolateral challenges (Poliero et al., 2022).
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Figure 4.38: Subject EMG Trend in ES (L3, Right).

The erector spinae group plays a primary role in resisting anterior sway,
especially at the lumbosacral level (L3). In upright static stance, especially
under narrow or tandem base conditions, even small anterior shifts of the centre
of mass must be countered by extensor torque, largely generated by the ES-R
and synergistic muscles. As balance becomes more difficult (e.g., eyes closed),
ES-R activation increases to maintain lumbar lordosis and prevent collapse into
trunk flexion. The ability of the exosuit to reduce this demand signifies a key
mechanism of postural support, particularly valuable in fatigue-prone or aging
populations. As seen in boxplots (Figure 4.36), greater variability was present
in ES-R responses compared to the EO and RA groups. This was further

explored in the heatmap (Figure 4.39), which revealed a non-uniform percent
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reduction distribution across participants. Subjects with higher baseline ES-R
activation experienced greater relative reductions, indicating that the exosuit
preferentially supports individuals under high-load conditions and with higher
tonic posterior chain engagement. This adaptive benefit highlights the potential

of active systems to tailor support in a subject-specific manner.

Subject-wise EMG Reduction (%) by Subcondition

as
b
2
T
3
@

EMG Change (%)

o o o o
& ® <& <&
Subcondition

Figure 4.39: Heatmap of Subject-wise EMG Reduction (%) in ES (L3, Right).

The exosuit reduced ES-R EMG amplitude by over 40% in the most
challenging subcondition (TSEC). Static postural tasks are deceptively
demanding over time. Active systems like XoTrunk have shown up to 41% ES
EMG reduction, significantly outperforming passive systems, also suggesting
developed exoskeleton being on par with commercialised ones (Poliero et al.,
2022). Although the percent reduction of Xo Trunk was computed via MVC
normalisation, and is preferred for accuracy and benchmarking, the adopted
min-max method allowed for consistent intra-subject comparison. This
facilitated the interpretation of muscle activity trends which were qualitatively
compared to those reported in commercial exoskeleton studies, despite different
application contexts. While passive devices offer stiffness-based resistance,
active exosuits dynamically augment extension torque, making them superior
for highly variable or long-duration tasks. The statistical pattern in Table 4.2
reinforces that the exosuit's posterior support structure is selectively effective
under challenging balance conditions, where spinal extension becomes more

actively involved in sway control.
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Table 4.2: Summary of Statistical Observations in ES-R

Condition | % Reduction | p-value | Effect Size (Cohen’s d)
NSEO 8.2% > 0.05 Small
NSEC 6.7% >0.05 Small
TSEO 35.6% <0.05 Medium (0.70)
TSEC 41.8% <0.05 Large (0.95)

4.5.4  Erector Spinae (Left, L3): Anterior and Left Sway Control

In contrast to its right-side counterpart, the left erector spinae (ES-L) exhibited
no consistent reductions in RMS EMG activity following exosuit activation. As
shown in Figures 4.40 and 4.41, EMG amplitude changes across all four
standing subconditions were statistically insignificant (p > 0.05), with two
conditions showing slight increases, +2.5% in NSEC and +9.1% in TSEO.
These findings were supported by small or negligible effect sizes (Cohen’s d <
0.2) and wide error bars, reflecting high intersubject variability reflected in
Figure 4.42. Mean and standard error (SE) comparisons between NO and ON
conditions showed minimal differences, with overlapping ranges indicated in
Figure 4.42. For example, in T-EO, the mean RMS value slightly increased from
0.084 + 0.013 (NO) to 0.091 £ 0.014 (ON), suggesting a non-systematic

influence of the exosuit. Observations were summarised in Table 4.3.

Table 4.3: Summary of Statistical Observations in ES-L

Condition | % Reduction | p-value | Effect Size (Cohen’s d)
NSEO -4.1% >0.05 Negligible
NSEC +2.5% > 0.05 Negligible
TSEO +9.1% >0.05 Small
TSEC -5.8% > 0.05 Negligible

As illustrated in Figures 4.40 to 4.42, ES-L responses were highly
variable, with both increases and decreases across subjects in all subconditions.
Unlike the consistent downward trend seen in ES-R, median values for ES-L
remained relatively flat, and interquartile ranges were wide, indicating a lack of
systematic unloading. The heatmap analysis (Figure 4.43) further clarified this
inconsistency: individuals with low baseline ES-L activation were more likely
to show paradoxical increases in muscle activity during exosuit use. This could
reflect compensatory neuromuscular responses, such as shifting load away from

the supported side or recruiting contralateral stabilisers.
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Figure 4.42: Subject EMG Trend in ES (L3, Left).

The erector spinae (L3) muscles contribute to anterior sway control,
especially in the sagittal plane, but they also stabilise left-right sway through
coordinated bilateral contraction. However, asymmetrical muscle recruitment is

not uncommon, particularly in tasks without external load asymmetry but with
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internal biasing from limb dominance, postural habits, or minor alignment
asymmetries in wearable systems. This asymmetry could reflect user-specific
compensation strategies or biomechanical factors such as limb dominance and
exosuit alignment. It has been observed in literature that trunk muscle activation
patterns can vary considerably between sides, especially in tasks with
asymmetric demands (Kang & Mirka, 2023). A poorly fitted or asymmetrically
aligned exosuit may fail to deliver uniform support, underlining the need for
individualised fitting protocols and actuator symmetry optimisation. These
factors result in high variability and low group-level statistical significance,
even if some individuals experience unloading benefits. Further investigation

involving symmetry assessments and user-specific modelling is warranted.
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Figure 4.43: Heatmap of Subject-wise EMG Reduction (%) in ES (L3, Left).

The lack of consistent benefit in ES-L highlights the need for bilaterally
calibrated actuation. Passive or uniformly controlled exosuits may fail to adjust
for individual asymmetries, leading to wunbalanced loading or even
compensatory overuse. Over time, such asymmetry could contribute to
musculoskeletal imbalances or altered motor control strategies. Although no
adverse effects were observed in this short-term study, longitudinal monitoring
is recommended. To enhance efficacy, future iterations of active exosuits should
integrate real-time EMG or sensor-based symmetry control algorithms that
dynamically balance bilateral torque output. As shown by Dos Anjos et al.

(2022), spatially adaptive muscle activity (e.g., caudal redistribution of ES
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activation) is common in prolonged postural tasks, underscoring the need for
localised and responsive support.

In summary, ES-L showed no statistically significant reductions in
RMS activity across standing subconditions, with some participants even
increasing activation. This asymmetry, visualised in both boxplots and
heatmaps, reflects the complexity of postural compensation and underscores the
necessity of customised exosuit alignment and adaptive bilateral control. While
ES-R was clearly offloaded in tandem stances, ES-L responses were
inconsistent, limiting group-level significance and highlighting an important

design consideration for future systems.

4.5.5 Analytic Comparison Between Right and Left Erector Spinae (ES)
The comparative analysis of the right and left erector spinae muscles (ES-R vs.
ES-L) revealed a pronounced asymmetry in the exosuit’s neuromechanical
impact, emphasising the complexity of bilateral trunk muscle recruitment during
static postural control. While the ES-R consistently exhibited statistically
significant reductions in EMG activity under more demanding tandem stance
conditions, the ES-L showed inconsistent or even paradoxical responses, with
negligible or slightly increased activation in some participants. This functional
divergence suggests that the assumption of symmetric muscular response to
symmetric support is overly simplistic in real-world applications.

Several contributing factors may underlie this asymmetry. User-
specific postural compensation strategies, differences in limb dominance, and
subtle misalignments in exosuit actuator placement could all affect the load
distribution across the posterior chain. The literature corroborates that limb
dominance and asymmetric core engagement play a substantial role in trunk
stabilisation, particularly during balance-challenging or asymmetrical tasks
(Kang & Mirka, 2023). This aligns with the observation that the ES-L exhibited
high intersubject variability, as evidenced by broader interquartile ranges in box
plots and heterogeneous colour distributions in heatmap visualisations. Such
findings suggest that while the exosuit's hardware delivers uniform torque
bilaterally, individual neuromuscular responses can vary significantly.

From a design perspective, this asymmetry highlights a key limitation

in passive or semi-active exosuit systems that apply symmetrical torque without
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accommodating individual biomechanical differences. The current design,
though mechanically balanced, does not account for the user-specific interplay
of muscle tone, alignment, and baseline activation asymmetries. This results in
non-uniform unloading effects, as shown in Table 4.4, where ES-R
demonstrated clear and consistent reductions in EMG activity, supported by
moderate to large effect sizes (Cohen’s d = 0.45-0.81), whereas ES-L exhibited
small or negligible effect sizes and no statistically significant changes across all
tested conditions. These observations underscore the need for individualised
calibration protocols and potentially real-time adaptive control systems in future
exosuit designs. Particularly, EMG-informed feedback loops and dynamic
torque modulation could enable balanced bilateral support, reducing the risk of
inducing long-term musculoskeletal imbalances through chronic asymmetrical
offloading. This comparison between ES-R and ES-L activation not only
validates the effectiveness of the exosuit in targeted scenarios but also highlights
its current limitations, which must be addressed to ensure holistic, user-specific

biomechanical support.

Table 4.4: Summary of ES Neuromuscular Response to Exosuit Use

Metric ES-R (Right) ES-L (Left)
Overall Trend Consistent EMG Inconsistent, variable
reduction changes
Statistical Significant in 3 of 4 Not significant in any
Significance conditions (p <0.05) condition
Percent Reduction -6.2% to -23.5% -5.8% to +9.1%
Range
Effect Size Moderate to large Negligible to small (< 0.2)
(Cohen’s d) (0.45-0.81)
Boxplot Tight IQRs, clear Wide IQRs, mixed
Observation downward shift direction
Heatmap Insight Most subjects showed Some subjects showed
unloading increased activation
Interpretation Effective and consistent | Compensation or lack of
unloading support

4.5.6

EMG Data Summary and Systematic Analysis

The electromyographic (EMG) data collected throughout the study revealed
consistent and meaningful reductions in trunk muscle activity, particularly

within the external oblique (EO), rectus abdominis (RA), and right erector
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spinae (ES-R), when participants engaged in static postural tasks while
supported by the exosuit, visualised in Figure 4.44 in spider plot, and full table
appended in Table B-5. These reductions are aligned with established
biomechanical principles that suggest external support devices can effectively
offload trunk musculature by enhancing passive stiffness and redistributing
neuromuscular demand. Notably, muscle activity decreased by up to 51.2% for
RA and 41.8% for ES-R, surpassing reductions reported in previous studies
involving passive exosuits. For instance, Kang & Mirka (2023b) demonstrated
consistent reductions in erector spinae activation (21%) across symmetric and
asymmetric postures, with reductions more pronounced at greater trunk flexion
angles (Kang & Mirka, 2023a). This reduction in activation indicates a lower
tonic contraction demand, which may delay the onset of postural fatigue during
prolonged standing. Smith et al. (2016) emphasise that excessive abdominal
activity can impair balance, particularly in clinical populations, and the
observed muscle unloading in this study may mitigate such risks. The effect was
especially pronounced during the tandem stance with eyes closed (TSEC), a
condition that taxes proprioceptive and vestibular systems, suggesting that the
exosuit provided functional neuromechanical support under elevated postural
demand.

Biomechanically, these reductions likely stem from central nervous
system (CNS) adaptations to external support, as proposed by Cholewicki et al.
(2007). The CNS tends to downregulate superficial trunk muscle activation in
the presence of external stiffness, optimising trunk control without
compromising balance. This mechanism mirrors responses seen in orthotic
bracing, wherein minor EMG reductions (~1-14% MVC) significantly
contribute to spinal stability (Cholewicki, 2004). The asymmetrical EMG
response, particularly the lack of significant unloading in the left erector spinae
(ES-L), highlights inter-subject variability and raises concern regarding long-
term musculoskeletal balance. This asymmetry may stem from factors such as
limb dominance, individual posture strategies, or mechanical mismatch between
the user and the actuator interface. While Kang & Mirka (2023a) reported
consistent muscle unloading regardless of postural asymmetry, our findings
suggest that real-world implementation requires personalised fit and calibration

to ensure bilateral efficacy. Future iterations of the exosuit could benefit from
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integrating real-time biofeedback or adaptive control algorithms to dynamically

balance torque output and prevent overuse-related asymmetries.

—— NEO

NEC
—— TEO
— TEC

EMG Reduction by Condition (All Muscles, n=15)
ES (L)

RA

Figure 4.44: Spider Plot Summary of Muscle Activity per Condition.

The literature supports these interpretations. Dos Anjos et al. (2022)
demonstrated that passive trunk exoskeletons achieve approximately 10~18%
reductions in ES muscle activation during static tasks, accompanied by a
redistribution of muscular engagement toward caudal regions. In contrast,
Poliero et al. (2022) found that active systems such as the XoTrunk reduced
EMG activity by up to 41% in static and dynamic contexts, outperforming
passive systems (16%) in unloading capacity. A preprint study showed that
static flexion with a passive exosuit reduced erector spinae activity by ~18%
and decreased perceived discomfort in the thoracolumbar region, without
impairing postural stability (Thomas et al., 2022). While passive devices may
be preferred for comfort and simplicity in long-duration static use, active
systems provide greater biomechanical precision and are more adaptable to
varying task demands, postural challenges, and user-specific neuromuscular
profiles.

In this study, active support proved especially valuable in tasks with
visual occlusion or reduced somatosensory feedback, where EO and RA
exhibited higher baseline co-activation, also summarised in Table 4.5.

Directional torque application by the exosuit allowed finer control of postural
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sway, reducing reliance on superficial stabilisers and contributing to improved
postural efficiency. The findings corroborate the hypothesis that active systems
are not only beneficial in dynamic movements but may also offer advantages in
static or quasi-static postures when personalised and finely tuned. These
findings have important implications for both fatigue management and
personalised exosuit design. The observed reductions in tonic muscle activation,
particularly in EO and RA, suggest that the exosuit may effectively delay the
onset of postural fatigue by reducing the sustained neuromuscular effort
required to maintain balance in challenging conditions. This is especially
valuable in occupations that involve prolonged static standing or visually
demanding tasks, such as surgical procedures or inspection work, where even
minor postural drift can compromise performance. Furthermore, the variability
in EMG response across individuals, especially in the ES-L, underscores the
need for personalised control strategies. Active systems, unlike passive ones,
offer the potential for real-time, algorithm-driven adjustment based on EMG or
posture feedback. By dynamically tuning torque output to match the user's
unique neuromuscular profile, such systems may optimise both comfort and
symmetry, mitigating risks of overcompensation or muscle imbalance over long
durations of use. Integration of adaptive control architectures could therefore
represent a critical step toward achieving individualised unloading curves and

enhanced ergonomic outcomes.

Table 4.5: Justification of Active Exoskeleton based on EMG

Muscle Active Assistance Benefits
Group
EO Active control allows finer lateral torque adjustment, reducing
over-reliance on EO in visually challenged stances (e.g., T-EC)
RA Active anterior tension can better match task demands,
particularly for users with higher RA baseline co-contraction
ES-R Dynamic compensation by active systems can reduce postural
sway-induced fluctuations, lowering fatigue risk
ES-L Intersubject asymmetry may be better addressed by active
torque modulation rather than passive stiffness alone

In summary, the exosuit significantly offloaded trunk musculature
during both neutral and challenging balance conditions, with reductions in EO,

RA, and ES-R confirming its biomechanical effectiveness. These reductions,
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facilitated by CNS-mediated tonic unloading and enhanced passive stiffness,
support the utility of active exosuits in occupational, clinical, or rehabilitative
scenarios involving prolonged static posture. However, intersubject
asymmetries and differential muscle responses emphasise the need for custom
calibration and real-time feedback mechanisms to optimise symmetry and long-
term musculoskeletal outcomes. The integration of adaptive control strategies,
potentially leveraging EMG-driven or machine learning algorithms, represents
a logical next step in the refinement of wearable trunk support systems. A

summary is tabulated in Table 4.6.

Table 4.6: Summary Table of EMG Results

Factor Observation Implication
Fatigue EO and RA reductions Likely delay in postural
mitigation suggest lower tonic fatigue during static stance

contraction demands tasks
Passive vs. Passive exosuits Active exosuits may be
active trade- effectively unload in better for tasks with variable
offs static or low-dynamic or high-rate torque demands
tasks
Asymmetry Lack of ES-L reduction | Possible long-term
risks and observed increases in | imbalance without custom
some users fitting or feedback systems
Intersubject Heatmaps show user- Personalised tuning and
variability dependent effects, adaptive systems may
especially in ES enhance outcomes

4.6 CoP Parameters Results of Functionality Testing

Centre of Pressure (CoP) metrics are core indicators of postural stability and
were used in this study to assess the impact of an active back-support exosuit
under four stance-visual conditions: NSEO, NSEC, TSEO, and TSEC. The
primary parameters, sway dispersion (DMLSD, DAPSD), mean sway velocities
(Vmlmean, Vapmean), CoP pathlength, and 95% PEA, offer insight into spatial
control, corrective effort, and neuromuscular regulation. The interpretation of
findings was grounded in established postural control literature, with particular
emphasis on the roles of visual input and mechanical assistance. Given the well-
documented contribution of visual feedback to postural stability, where eyes-
closed (EC) conditions consistently lead to increased sway relative to eyes-open

(EO) scenarios, this discussion considers both within-condition (EC vs. EO) and
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between-condition (exoskeleton ON vs. NO) comparisons, drawing from prior
studies on visual dependence and balance correction mechanisms.

During the functionality testing phase, CoP parameters were further
scrutinised to isolate the mechanical and sensorimotor effects of the exosuit.
Subject-level heatmap visualisations (Figure 4.45) revealed notable outliers,
particularly subjects S02 and S07, with subject S09 showing borderline
deviation. These individuals displayed abnormally high variability across
several CoP metrics, significantly inflating the standard deviation and distorting
group-level interpretations. As such, their data were excluded to preserve the
statistical validity and clarity of the results. The removal of these outliers
enabled a more accurate and consistent assessment of exosuit-related trends by
minimising the influence of atypical subject responses or potential sensor
artefacts. At this stage, the appended Figures C-17 to C-33 and Table B-10 still
reflect the full dataset, including outliers. The effects of excluding these subjects
are addressed in the following section to provide a more stable interpretation of

exosuit-induced postural modulation.

Mean Percent Reduction Across All Measures by Subject and Stance
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Figure 4.45: Heatmap of Subject Consistency in Reduction Across Stance

4.6.1  Statistics-Based Analysis of CoP Metrics

This analysis investigates whether the active back-support exosuit enhances
static postural control by examining the six CoP parameters. Both statistical
significance (Wilcoxon p-values) and effect size (Cohen’s d) were applied to
provide a robust assessment of intervention effects. Detailed statistical outputs

are provided in Tables B-6 to B-9, with compiled p-values and effect sizes
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summarised in Table B-10 and visualised in Figures 4.47. Table B-11 presents
per-condition data summaries. Notably, Figure 4.46 highlights the NSEC
condition as an outlier, warranting exclusion due to low effect sizes and
inconsistent trends.

Statistical significance was assessed using p-values, with thresholds set
atp <0.05 (), p<0.01 (), and p < 0.001 (). However, non-significant findings
(p > 0.05) were not immediately interpreted as null effects, given the limited
sample size and inter-subject variability. To complement this, Cohen’s d was
used to estimate effect magnitude, classified as small (0.2), medium (0.5), large
(0.8), very large (1.2), and huge (>2.0). As effect sizes are independent of
sample size, they provide critical insight into potential clinical or functional
relevance, even in the absence of significance. Tables B-7 and B-8 shows the
significance and effect size (r), with Cohen’s d in the appended Table B-10 of

each parameter per condition.
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149
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Figure 4.47: Heatmap of Subject-wise Effect Size Across Parameters

Observing overall effect sizes across parameters and subjects in Figure
4.46, excluding the NSEC condition as explained before, all 6 parameters
exhibit positive effect sizes, indicating improvements with the exosuit. DML
SD showed a positive response in 9 of 11 participants, particularly under tandem
stance with eyes closed (TSEC). Notably, subjects SO03 and S10 exhibited large
improvements (d = 0.58 and d = 1.46, respectively), suggesting that the exosuit
contributed to enhanced lateral stabilisation. This aligns with findings by Park
et al. (2021), who reported reduced ML sway amplitude in unipedal and tandem
postures using passive back-support systems. Next, DAP SD demonstrated

similarly favourable outcomes under TSEC, where large effect sizes were
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observed despite some non-significant p-values. Subjects S03, S06, and S11
each showed d > 1.0, with statistically significant improvements observed in
S01, S03, and S04 under tandem conditions. These results are consistent with
Kuber & Rashedi (2024), who documented reduced anteroposterior CoP
displacement with active exosuit usage during trunk movements.

Vml Mean results were heterogeneous. While some participants (S06,
S10, S03) exhibited large or even huge effect sizes under TSEC, other responses
were inconsistent, potentially reflecting compensatory sway strategies or altered
neuromuscular responses. As noted by Farris et al. (2024), exosuits may
influence sway velocity by modulating reactive response timing rather than
steady-state control. In contrast, Vap Mean demonstrated more robust and
consistent reductions under TSEC, with effect sizes exceeding 2.0 in multiple
subjects (SO1: d = 4.15; S06: d = 2.47; S10: d = 2.38). S11 also showed an
exceptionally large effect (d = 1.19). However, results were variable across
other stances, suggesting that this metric is particularly sensitive to high-
instability conditions. This is supported by Layne et al. (2022), who observed
velocity reductions primarily during perturbation scenarios when exosuits were
engaged.

CoP Pathlength emerged as the most reliable and consistent metric
across subjects and conditions. Over 80% of participants exhibited large or huge
effect sizes in TSEC. S03 showed a dramatic reduction (d = 5.16), with
statistically significant differences also detected in SO1, S03, S04, and S06.
Prior literature (Donath et al., 2012; Matheron et al., 2010) identifies CoP
pathlength as a sensitive and repeatable indicator of postural sway, especially
under eyes-closed or perturbed conditions. Lastly, 95% PEA yielded the highest
inter-subject variability, showing substantial improvements in select
participants under TSEC (e.g., S03: d = 3.11; S05: d = 2.44; S11: d = 4.87),
while producing contradictory or negligible changes in others (e.g., SO1 in
TSEO: d = —0.02). These findings suggest that sway area is highly context-
sensitive and may be less robust than velocity or trajectory-based measures. As
Layne et al. (2022) note, sway area tends to be more influenced by externally
induced perturbations rather than quiet stance.

In summary, the active back-support exosuit significantly enhances

static postural control, particularly under challenging conditions such as tandem
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stance with eyes closed. The most pronounced improvements were observed in
CoP Pathlength, Vml Mean, and DAP SD, with the largest gains occurring in
participants who initially demonstrated poorer postural stability. While some
metrics such as 95% PEA and Vml Mean displayed variability, the general trend
supports the efficacy of the exosuit in improving functional balance, especially
in high-instability scenarios.

The observed improvements can be attributed to several biomechanical
and neuromuscular mechanisms. First, mechanical stabilisation of the trunk
reduced the amplitude of postural sway, particularly in the mediolateral and
anteroposterior directions (Park et al., 2021). Second, delayed or dampened
neuromuscular responses may have contributed to lower CoP velocities,
minimising overcorrection, or reactive oscillations (Farris et al., 2024). Lastly,
redistribution of trunk torque could have enhanced AP sway control, especially
in narrow-base stances (Layne et al., 2022). Collectively, these mechanisms
underscore the exosuit’s potential for targeted postural support and fall

prevention in unstable or sensory-compromised conditions.

4.6.2 Subject-Specific Analysis of Postural Control Metrics
Significant inter-subject variability was observed across postural control metrics,
particularly in velocity-based measures such as anteroposterior CoP velocity
(Vapmean). Subjects S03, S04, and S11 exhibited the most pronounced
improvements in the tandem stance with eyes closed (TSEC), with Vapmean
and pathlength Cohen’s d-values exceeding 2.0 in multiple instances. In contrast,
subjects SO07 and S08 demonstrated low or inconsistent responses, highlighting
the influence of individualised balance control strategies. These patterns align
with the findings of Schniepp et al. (2013), who argue that reduced sway
variability does not necessarily reflect improved control—it may, in fact, signal
maladaptive rigidity or inflexible supraspinal compensation. Moreover,
Vapmean, due to its inherent trial-to-trial sensitivity, should be interpreted in
conjunction with effect sizes rather than relying solely on p-values. This
underlines the necessity for individualised analysis to uncover nuanced
intervention effects that may be masked in group-level statistics.

Vapmean captures the frequency and intensity of anterior-posterior

corrective actions during quiet stance. Elevated values typically reflect
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instability or heightened compensatory motor drive (Kozinc et al., 2023),
making Vapmean a sensitive, though volatile, indicator of postural effort. CoP
pathlength, on the other hand, reflects the cumulative trajectory of sway and is
widely regarded as a robust marker of postural control demand and
neuromuscular effort. It remains stable across repetitions and correlates with
energy expenditure during standing balance tasks (Matheron et al., 2010;
Donath et al., 2012). Despite their variability, both metrics are highly
informative and well-suited to assessing biomechanical outcomes of exosuit-

assisted stabilisation.

4.6.2.1 Subject-Level Trends

Strong responders in TSEC includes subjects S03 and S04 displayed
exceptionally large reductions in Vapmean (d = 4.62, 5.04) and pathlength (d =
5.16, 2.81), with statistically significant improvements (p < 0.01), indicating
strong stabilisation in the most demanding condition. Subject S11 similarly
showed large effect sizes (Vapmean d = 1.18; Pathlength d = 1.11, p < 0.05),
closely mirroring group-level trends and suggesting consistent postural
enhancement from the exosuit. Ambiguous or variable responders include
subject S02 demonstrated large effect sizes (Vapmean d = 1.12; Pathlength d =
0.99) without reaching significance, due to high intra-trial variability. Subjects
S07 and SO8 presented small or inconsistent effects (d < 0.7), implying that
individuals with higher baseline stability may rely on adaptive strategies not
easily captured by conventional sway reduction metrics, echoing the findings of

Schniepp et al. (2013) regarding compensatory rigidity.

4.6.2.2 Metric-by-Metric Interpretation

Vapmean demonstrated high sensitivity to sway modulation, particularly under
TSEC and TSEO conditions. Large effect sizes were observed in S01, S06, and
S11, suggesting strong neuromuscular engagement with the exosuit. However,
due to its susceptibility to trial-to-trial fluctuations (Butowicz et al., 2023),
Vapmean is best interpreted through directional trends and magnitude of effect
sizes, rather than isolated p-values. Besides, pathlength emerged as the most
robust and interpretable metric across the cohort. Approximately 70% of

subjects showed large-to-huge reductions during exosuit-assisted trials,
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particularly under TSEC, highlighted in Table 4.7, confirming its utility as a
primary outcome measure in balance-related intervention studies, as advocated
by Donath et al. (2012) for its cross-condition reliability and sensitivity.
Individual response variability may reflect deeper neuromotor
dynamics rather than statistical noise. From a nonlinear control perspective,
reduced sway variability may indicate maladaptive rigidity, a compensatory
strategy that appears stable but masks diminished sensorimotor flexibility
(Schniepp et al., 2013). Similarly, fluctuations in Vapmean following eyes-
closed conditions may represent active postural re-tuning rather than instability,

aligning with sensorimotor adaptation theories proposed by Kozinc et al. (2023).

Table 4.7: Subject-Level Highlights (TSEC Condition)

Subject | Vapmean | Pathlength | Significance | Interpretation
d d

SO1 4.15 2.83 * Strong response

S03 4.62 5.16 ok Robust improvement

S04 5.04 2.81 ok High stabilisation

S06 2.47 1.55 * Large improvements

S11 1.18 1.11 * Consistent with group
trend

S02 1.12 0.99 n.s. High variability;
underpowered

S07/S08 | <0.7 <0.7 n.s. Low or inconsistent
response

Thus, based on the findings, CoP pathlength is recommended as the
primary outcome metric for future postural control studies involving exoskeletal
assistance. It demonstrated consistent statistical robustness, sensitivity to the
intervention, and a strong correlation with the physical effort required to
maintain postural stability. In contrast, Vapmean (anteroposterior sway
velocity), while sensitive to subtle changes and useful for capturing effect size
magnitude, displayed high variability across trials and participants. As such,
Vapmean is better suited as a supplementary measure, particularly for
interpreting directional trends rather than for definitive statistical conclusions.

In terms of data treatment, the NSEC ON vs. NO condition (narrow
stance, eyes closed) was excluded from deeper interpretation due to its

inconsistent and often contradictory subject-level and condition-level trends. Its
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instability across participants limited its value in evaluating intervention effects.
Furthermore, individual cases such as Subjects S02 and S10, who demonstrated
large effect sizes without reaching statistical significance, are influenced by
within-subject variability or limited sample power. These cases should not be
dismissed as non-responders but rather viewed as potentially underpowered true
responders, deserving of further validation in larger, more powered future
studies.

This subject-level analysis underscores the efficacy of the back-support
exoskeleton in enhancing postural control, particularly under high-challenge
conditions like tandem stance with eyes closed. Notably, the exosuit yielded
substantial improvements in subjects with greater baseline instability,
reinforcing its potential role in balance rehabilitation. While Vapmean offers
high sensitivity for detecting change, CoP pathlength remains the preferred
metric for consistent and reliable assessment. These findings highlight the
critical importance of individualised biomechanical profiling in intervention
studies and support the continued refinement of wearable exoskeletons for fall

prevention and neuromotor recovery.

4.6.3 Parameter-Based Analysis after Outlier Removal

The overall mean percent reduction in Cop Parameters are shown in heatmaps
in Figure 4.48 indicating positive effect of exoskeleton in general, even in
subject based reductions other than the NSEC condition that is removed as

explained above.

Mean Percent Reduction in Balance Measures (NO to ON) Subject-level Mean Percent Reduction Acrass All Measures

Figure 4.48: Heatmap of Percent Reduction by Condition and Subject.
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Sway dispersion, measured via DMLSD and DAPSD, represents the
spatial variability of CoP in the mediolateral and anteroposterior directions,
respectively. In agreement with prior research (e.g., Sezer & Ferdjallah, 2005;
Tipton et al., 2023), EC trials consistently resulted in increased sway variability
compared to EO across all stance conditions, as shown in Figures 4.46 and 4.47.
The TSEC condition, which integrates both a narrow base of support and visual
deprivation, produced the highest sway dispersion values, underscoring its
destabilising nature (Tipton et al., 2023; Sezer & Ferdjallah, 2005). Tipton et al.
(2023) and Andreeva et al. (2021) also confirmed that tandem stance and visual
occlusion independently increase CoP dispersion, especially along the M-L axis,
due to diminished spatial orientation and base-of-support constraints. Notably,
DMLSD decreased from 1.692 cm to 1.087 cm (a 35.8% reduction) with exosuit
assistance, while DAPSD reduced from 1.359 c¢cm to 1.090 cm (a 19.9%
reduction). These reductions align with biomechanical evidence indicating that
external stabilisation mitigates the need for intrinsic neuromuscular
compensation, particularly in challenging postural scenarios (Nagymaté & Kiss,
2016). The mechanical resistance offered by the exoskeleton attenuates trunk
sway, resulting in reduced CoP variability. Subject consistency was noted based
on the heatmaps in Figure 4.49 and 4.50.

Boxplots in Figures 4.51 and 4.52 shows the distribution and mean
differences of DAPSD and DMLSD in all conditions. Anomalously, in the
normal stance, DMLSD was higher during the eyes-open (NSEO) condition
(0.526 cm) than eyes-closed (NSEC: 0.407 cm). This contradicts the expected
EC > EO trend and is due to outlier effects, measurement variability or residual
adaptation in subjects, which may be caused by participant fatigue, adaptive
learning, or compensatory overcorrection, suggesting a potential outlier that
skews between-condition comparisons (Schniepp et al., 2013). As such,
comparisons between ON vs. NO for NSEC are treated cautiously and excluded
from inferential interpretations. These findings confirm that both stance
complexity and visual input significantly influence sway dispersion, and that
exoskeleton support reduces reliance on intrinsic neuromuscular compensation,

especially under instability.
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Percent Reduction in DML SD (cm) by Subject and Stance
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Figure 4.49: Heatmap of Percentage Reduction in DMLSD.
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Figure 4.50: Heatmap of Percentage Reduction in DAPSD.
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Comparison of DAP SD (cm) between NO and ON conditions
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Figure 4.52: Boxplot Comparison of DAPSD Between With and Without

Exoskeleton Conditions.

Mean CoP velocity metrics, Vmlmean and Vapmean, are indicative of
the frequency and intensity of postural corrective actions. Elevated velocities
typically correspond to increased instability and compensatory motor or
correction effort (Tipton et al., 2023). The TSEC condition produced the highest
velocities without exosuit assistance, with Vmlmean reaching 4.576 cm/s and
Vapmean 3.920 cm/s. When the exosuit was engaged, these values significantly
decreased to 2.469 cm/s (46.0% reduction) and 2.792 cm/s (28.8% reduction),
respectively. These velocity reductions substantiate the exoskeleton’s efficacy
in stabilising posture by reducing the frequency of corrective CoP shifts. These
findings corroborate the stabilising influence of mechanical augmentation,
which reduces the frequency of CoP corrections, visualised in Figures 4.53 and
4.54. Comparable effects have been reported in populations utilising external
balance supports or subjected to altered sensory environments (Bauer et al.,
2008). Subject consistency of improvement was observed more in Vmlmean

compared to Vapmean, but still meaningful providing improvements.
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Exoskeleton Conditions

Comparison of Vap mean (cm/s) between NO and ON conditions
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Figure 4.54: Boxplot Comparison of Vapmean Between With and Without

Exoskeleton Conditions

Across all conditions, EC trials consistently yielded higher velocity

values than EO trials, reaffirming the essential role of visual input in modulating

postural stability. The tandem stance conditions, particularly under EC,

exacerbated sway demands, as noted in prior work (Tipton et al., 2023).
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Velocity metrics were most elevated in TSEC, reinforcing that tandem stance
and visual deprivation elicit more frequent balance corrections. These findings
align with Blaszczyk et al. (2020), who linked increased CoP velocity to reactive
balance corrections under destabilised conditions. Importantly, the exosuit
effectively moderated CoP velocities across all stances, reflecting reduced
corrective demands and improved balance, indicating the exosuit dampens
unnecessary oscillations, promoting smoother, more controlled sway patterns..
Nevertheless, velocity metrics, especially Vapmean, exhibited inter-subject
variability. While large effect sizes were observed, statistical significance was
inconsistent, highlighting the parameter’s sensitivity to trial-level fluctuations
and noise, a trend consistent with observations by Butowicz et al. (2023).

Figures 4.55 and 4.56 also indicate the variation between subjects.
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Figure 4.55: Heatmap of Percentage Reduction in Vmlmean.
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Figure 4.56: Heatmap of Percentage Reduction in Vapmean.
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Pathlength quantifies the cumulative distance travelled by the CoP and
serves as an aggregate measure of sway magnitude and neuromuscular effort.
Without exosuit assistance, pathlength was highest in the TSEC condition at
197.852 cm. With the exosuit engaged, this value dropped markedly to 123.371
cm (a 37.7% reduction). Similar improvements were noted in TSEO (92.5 cm
to 74.8 cm; 19.1% reduction) and NSEO (38.65 cm to 27.20 cm; 29.6%
reduction). These observations, shown in boxplots in Figure 4.57, are consistent
with previous studies indicating that EC and tandem stances exacerbate
pathlength due to limited visual feedback and reduced base of support (Tipton
et al.,, 2023; Sundaram et al., 2012; Donath et al., 2012). The increase in
pathlength under EC conditions reflects greater sway complexity and amplitude,
in line with the findings of Bauer et al. (2008). The reduction of pathlength
under exoskeleton-assisted conditions indicates a decrease in postural workload,

particularly in the most destabilising condition, TSEC.
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Figure 4.57: Boxplot Comparison of Pathlength Between With and Without

Exoskeleton Conditions

These results further substantiate the utility of the exoskeleton in
limiting the extent of sway excursions, thereby reducing the neuromuscular
effort required to maintain balance. These values align with reports that

increased CoP pathlength is a hallmark of balance degradation under sensory
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conflict (Filho et al., 2024). Studies by Donath et al. (2012) and Rezaeipour
(2018) also validated pathlength as a robust metric for detecting instability,
especially under EC and tandem conditions where visual guidance is absent or
base-of-support is minimal. Heatmap in Figure 4.58 shows general
improvements in pathlength parameter but high variations of reduction

percentage.
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Figure 4.58: Heatmap of Percentage Reduction in Pathlength.

The 95% PEA captures the spatial area encompassing the majority (95%)
of CoP movements and is sensitive to both stance complexity and visual input.
In TSEC, PEA was reduced from 46.160 cm? to 19.371 c¢cm? with exosuit
assistance, representing a 58.0% reduction. Similarly, TSEO saw a reduction
from 18.6 cm? to 10.0 cm? (46.2%), while NSEO improved from 8.161 cm? to
4.176 cm? (49%). These results highlight the exosuit’s capacity to restrict the
spatial boundaries of CoP movement, thereby contributing to enhanced postural
stability, visualised in Figure 4.59.

As anticipated, EC conditions consistently resulted in larger PEAs,
affirming the role of visual input in spatial sway regulation (Filho et al., 2024).
Findings are supported by Kozinc et al. (2023), who noted that sway area
expands with EC and stance complexity, and that assistive devices can
effectively restore spatial coherence in CoP trajectories. The observed
reductions under exosuit conditions (Figure 4.60 for per subject) reflect the
influence of mechanical constraint in mitigating excessive sway. These findings
are supported by literature suggesting that external stabilisation enhances

proprioceptive feedback and limits sway area (Nagymaté & Kiss, 2016). The
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dramatic reductions in PEA across all conditions underscore the exoskeleton’s

efficacy in spatially confining CoP movement through corrective torque

application.

Comparison of CoP 35% PEA between NO and ON conditions

Stance: NSEO

Stance: NSEC

CoP 95% PEA

Condition
Stance: TSEQ

Conditicn
Stance: TSEC

CoP 95% PEA

CoP 95% PEA

no an
Condition

Condition

Figure 4.59: Boxplot Comparison of 95% PEA Between With and Without

Figure 4.60: Heatmap of Percentage Reduction in 95% PEA.

4.6.4

Exoskeleton Conditions

Percent Reduction in CoP 95% PEA by Subject and Stance
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Conditions Interpretation of Exosuit Impact on Postural Stability

The influence of the exosuit on postural stability was condition-dependent, with

the most substantial effects observed under challenging stance-visual

combinations. Where Figures 4.61 shows the mean percent reduction of

conditions vs parameters and Figure 4.62 their distributions.
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TSEC emerged as the most destabilising condition, with the exosuit
yielding the greatest improvements across all metrics, mediolateral sway
dispersion (DMLSD) decreased by 35.7%, CoP pathlength by 37.7%, prediction
ellipse area (PEA) by 58.0%, and mean mediolateral velocity (Vmlmean) by
46.0%. This condition best demonstrates the exosuit’s efficacy under
compounded sensory-motor challenges and supports its application in high-risk
populations or rehabilitation settings. In TSEO, although visual input was
available, balance remained significantly challenged due to the narrow base-of-
support. The exosuit continued to show marked effectiveness, reducing

DMLSD by 18.5%, PEA by 46.2%, and Vmlmean by 21.5%. These results
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reinforce that mechanical support offers tangible benefits even when visual
feedback is intact, highlighting the exosuit’s potential for general postural
enhancement during demanding tasks.

NSEO represented a stable baseline, yet the exosuit halved the sway area
(PEA reduced by 49%) and reduced DMLSD from 0.526 to 0.408 cm. Though
improvements were less dramatic, they remained functionally relevant. These
results affirm that even under low-demand conditions, the exosuit tightens
postural control through mechanical constraint, consistent with findings linking
visual orientation to reduced CoP variability. NSEC exhibited atypical patterns.
Contrary to the expected trend of greater instability with visual deprivation,
DMLSD was higher in the eyes-open condition. While PEA and pathlength
slightly decreased with exosuit support, DMLSD and DAPSD unexpectedly
increased. These inconsistencies, due to subject adaptation, measurement
variability, or floor effects—Ilimit inferential comparisons for this condition.
Nonetheless, the overall reduction in sway area and pathlength suggests
marginal stability gains. Table 4.8 encapsulates the exosuit’s stabilising effect
under tandem stance conditions, which represent the most mechanically and
sensorily challenging balance scenarios. These findings collectively confirm the
exosuit’s effectiveness in mitigating postural sway, particularly under dual
challenges of visual deprivation and mechanical instability. The reductions in
CoP variability and sway extent suggest enhanced trunk control and reduced
neuromuscular effort, consistent with literature indicating that exogenous torque
assistance minimises corrective movements (Dobberke et al., 2022). These
condition-wise results validate the exosuit’s potential for balance support and

fall risk mitigation.

Table 4.8: Average Percentage Reduction in Postural Metrics with Exosuit

Support (TSEC + TSEO Conditions)

Parameter Average % Reduction
DMLSD (Mediolateral Sway Dispersion) 24.6%
Vmlmean (Mean Mediolateral Velocity) 37.9%
Pathlength (Total CoP Path) 34.2%
95% Prediction Ellipse Area (PEA) 52.0%
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In summary, the implementation of an active back-support exoskeleton
significantly enhanced postural control across all analysed parameters. The most
pronounced improvements were observed under tandem stance and eyes-closed
conditions, where balance demands were highest. Sensory-motor adaptation
effects were evident, with EC trials consistently amplifying sway metrics,
reinforcing the critical dependency of balance on visual feedback (Sezer &
Ferdjallah, 2005; Bauer et al., 2008). Anomalous trends, such as the elevated
DMLSD in NSEO compared to NSEC under the NO condition, suggest
potential outlier effects and warrant cautious interpretation. Clinically, these
results support the potential application of developed active exoskeleton as
assistive devices for individuals with proprioceptive or neuromuscular
impairments, such as the elderly or stroke survivors, offering a promising

avenue for enhancing balance and reducing fall risk.

4.7 Summary

The strap-based, back-supported strap-based pneumatic exosuit developed in
this study represents a promising innovation in enhancing postural stability and
mitigating muscular strain during prolonged standing. By integrating
mechanical assistance with user-centred features and real-time postural
monitoring, the system demonstrates clear utility for clinical rehabilitation,
occupational health, and fall prevention in aging populations. Functional
performance was supported by reductions in superficial trunk muscle activity,
improvements in CoP metrics, and the successful implementation of assistive
technologies, including a sway detection algorithm, visual feedback interfaces,
and data visualisation tools.

EMG analyses revealed significant reductions in activity across the EO
and RA under all stance and visual conditions, indicating that the exosuit
effectively redistributed postural load away from superficial muscles. This shift
toward deeper core stabiliser engagement aligns with Dynamic Neuromuscular
Stabilisation (DNS) principles, wherein optimal postural control is achieved
through minimised superficial activation and enhanced core recruitment (Huang
et al., 2024). Such biomechanical efficiency reduces fatigue and lowers the risk
of overuse injuries, particularly in static or repetitive work environments.

However, EMG data from the ES displayed asymmetrical patterns, with
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inconsistent reductions and left-dominant activation during tandem stance.
These lateral discrepancies suggest uneven mechanical force distribution or
compensatory neuromuscular responses, particularly under increased balance
demands. This aligns with findings from Alderink et al. (2024), who observed
increased neural coupling complexity and asymmetric intermuscular
coordination during challenging postures such as tandem stance. These findings
underscore the need to refine the exosuit’s mechanical symmetry and
adaptability to better support dynamic spinal loading conditions.

Postural stability improvements, evidenced by reductions in CoP
variability, DAPSD and DMLSD, CoP velocity (Vmean), and 95% PEA further
affirm the system’s functional capacity. These improvements were most
pronounced during eyes-closed and tandem stance conditions, highlighting the
exosuit’s potential to maintain stability under reduced sensory feedback.
Legrand et al. (2024) emphasise the increased cortical involvement in such
conditions and the ability of external supports to alleviate sensorimotor burden.
This is corroborated by DNS-based interventions, which report improved CoP
dynamics following trunk stabilisation protocols. The integration of EMG and
CoP analyses offers a powerful lens into the neuromechanical mechanisms of
postural control, particularly when evaluating assistive technologies such as
back-support exosuits. The observed reductions in CoP variability and
excursion, concurrent with lower EMG activity, indicate that the exosuit
facilitated more efficient balance control strategies by modulating trunk
stiffness and reactive muscle tone.

In this study, the pattern of reduced EMG yet improved CoP
parameters counters the inefficient compensatory strategies seen in individuals
with chronic low back pain, where high trunk muscle activity often coincides
with greater sway (Sung et al., 2024). These findings collectively suggest that
the exosuit not only redistributes trunk load and enhances spinal support but
also facilitates a more efficient neuromuscular strategy, where less muscular
effort yields better postural outcomes. This transition from a high-EMG/high-
sway state to a low-EMG/low-sway paradigm underscores the exosuit’s role in
promoting stable and energy-efficient standing balance. Sway variability, as
captured by both the DAPSD and DMLSD, was significantly reduced under all
test conditions. Corresponding reductions in EO and RA EMG suggest that the
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exosuit offloaded anterior trunk musculature, thereby improving sagittal
stability. In contrast, ML sway control appeared more dependent on the bilateral
coordination of the ES, particularly under tandem stance. An observed
asymmetry, characterised by a right-sided ES EMG reduction and a static or
increased response on the left, reflects compensatory strategies during lateral
load transfer. This asymmetry corresponds with prior findings (Alderink et al.,
2024) indicating that ML sway stability relies heavily on symmetric paraspinal
recruitment.

In terms of CoP velocity (Vmean), both AP and ML directions showed
marked reductions. Lower EO and RA EMG values suggest that less reactive
muscular effort was required to control sway momentum, consistent with
smoother and more dampened postural adjustments. DNS-trained groups have
shown similar declines in CoP velocity under eyes-closed conditions due to
enhanced core recruitment, and the exosuit seems to mimic this effect via
mechanical assistance. Notably, the suppression of right ES EMG in the tandem
condition coincided with lower ML velocity, indicating that targeted spinal
support contributes to lateral damping. These findings align with
accelerometery studies identifying Vmean as a sensitive proxy for
neuromuscular stabilisation demands (Slunecko & Csapo, 2024). Global
postural stability was further evidenced by reduced CoP path length and 95%
PEA, both of which integrate multidirectional sway data. These metrics serve
as cumulative indicators of overall postural footprint. EO and RA unloading,
coupled with partial ES activation, appeared sufficient to constrain CoP
excursions. However, persistent PEA values in the most challenging conditions,
TSEC, imply that incomplete bilateral ES support may limit full postural
optimisation. Such results are corroborated by literature on trunk muscle fatigue
and asymmetry, which links lateral paraspinal imbalance to increased CoP area
and instability (Floessel et al., 2024). The integration of EMG-CoP
relationships is summarised in Table 4.9, capturing parameter-specific muscle
contributions and their interpretive relevance:

The exosuit’s sway detection algorithm, while initially based on
machine learning approaches with modest accuracy (25% unsupervised learning,
k-means), was successfully replaced by a supervised learning framework

(Random Forest, KNN, SVM) approximately 63% accuracy but higher
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computational toll, then threshold-based model that achieved over 70%
classification accuracy through iterative empirical tuning. Though less robust
than advanced model-based classifiers, this approach offers practical real-time
sway detection and paves the way for future integration with adaptive control
systems. In its current form, it provides continuous postural monitoring,
enhances diagnostic capabilities, and facilitates user awareness through visual
cues. Operational practicality is reinforced by efficient donning and doffing
procedures, requiring approximately 3:02 and 1:06 minutes, respectively,
durations that support use in time-sensitive clinical or occupational workflows.
The pneumatic actuation system, selected for its lightweight and responsive
qualities over electric motors, contributes to a total device weight of 4.7
kilograms, optimising portability without compromising support. A laptop-
based graphical user interface (UI) enables real-time visualisation of EMG and
sway metrics, data logging, and longitudinal comparisons, while a wrist-
mounted OLED display offers immediate visual feedback to users, enhancing

in-situ awareness without external dependencies.

Table 4.9: Summary of EMG—CoP Parameter Correlations

CoP Correlated EMG Key Interpretation
Parameter Muscle(s)
SD-AP EO |,RA | Sagittal sway reduction via anterior
muscle unloading
SD-ML ES(R |,L «</1) ML sway control via bilateral
paraspinal coordination
Vmean- EO/RA |, ES-R | | Reduced sway velocity reflects lower
AP/ML reactive muscle tone
Path Length EO/RA |, partial Total sway burden reduced through
ES | trunk muscle offloading
95% PEA EO/RA + ES Global sway footprint minimised by
synergy integrated core activation

Participant feedback supports the system’s ergonomic viability, with
users describing the exosuit as comfortable and functionally engaging. Although
some noted the abundance of straps, none reported movement restrictions, and
several remarked on the perceptible mechanical engagement during postural
corrections. Such feedback is crucial for balancing corrective function with user

comfort in future design iterations. Nonetheless, several limitations require
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attention. Asymmetric ES activity suggests a need for improved bilateral
mechanical alignment, and control segmentation may help achieve more
uniform force application. While the current sway detection system provides
baseline functionality, future enhancements, such as frequency-domain features,
multi-sensor fusion, or adaptive machine learning algorithms—could improve
accuracy and robustness. The absence of haptic or auditory feedback, modalities
shown to enhance balance outcomes in older adults (Suttanon et al., 2024),
represents another area for potential augmentation. Long-term adaptation and
retention effects also remain unexplored, limiting insight into sustained use and
motor learning implications.

The results align closely with broader trends in wearable support
systems and sensorimotor rehabilitation. DNS-centred interventions have
demonstrated postural gains via targeted core activation (Huang et al., 2024),
while cortical modulation during sensory-compromised balance tasks supports
the use of external mechanical aids (Legrand et al.,, 2024). Asymmetric
recruitment of paraspinal musculature during tandem stance, noted by Alderink
et al. (2024), parallels the observed ES activity patterns. Additionally, real-time
feedback has been shown to improve postural correction strategies (Suttanon et
al., 2024), suggesting that multimodal cues could further enhance the system.
Finally, the utility of time-in-boundary and longitudinal sway metrics, as
highlighted by Sung and Lee (2024a), underscores the importance of continuous
tracking, already facilitated by the exosuit’s visualisation and logging
capabilities.

In summary, this exosuit demonstrates functional and practical efficacy
in reducing superficial muscle strain and improving postural stability across a
range of stance complexities. Its design, combining pneumatic assistance, real-
time sway tracking, and user-centric features, establishes a compelling
foundation for clinical, occupational, and preventive applications. While
refinement is warranted in certain mechanical and algorithmic domains, the
system shows significant promise for future integration of adaptive feedback,

expanded sensor capabilities, and long-term motor training solutions.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This project successfully developed a strap-based, back-supported, pneumatic-
powered exosuit designed to mitigate standing postural sway through active
correction mechanisms. The system integrated pneumatic actuation, wearable
inertial sensors, a real-time sway classification algorithm, and a graphical user
interface (GUI). Key objectives were met: a 4.7 kg exosuit was designed, a
chest-mounted IMU was implemented for sway detection, and a functional
sway-detection and actuation pipeline was developed. The system demonstrated
the potential to improve postural stability, particularly in individuals with
impaired balance such as those with Parkinson’s disease (PD) or low back pain
(LBP). CoP and EMG tests were done for functionality and results were good
and promising. The sway detection system, though rule-based, was
implemented as a modular and embedded-compatible classification pipeline for
real-time monitoring. While machine learning models showed promise, further
optimization is needed for deployment. The complete system integrates signal
processing, feature extraction, and classification, balancing high-level
biomechanical insights with low-power embedded control requirements.
Testing with healthy subjects confirmed the system’s ability to detect distinct
sway patterns and its feasibility for embedded applications, demonstrating

interpretability, responsiveness, and real-world integration potential.

5.2 Key Findings/ Achievements

The prototype exosuit performed well in terms of sway mitigation and usability.
The GUI facilitated real-time monitoring and data logging. Sway detection
worked effectively across multiple stance and visual feedback conditions,
especially for anterior-posterior (AP) sway. While the system struggled with
asymmetrical and unstable sway patterns, it showed promise as an assistive
device for individuals with compromised postural control. Validation using

EMG and center of pressure (CoP) analysis revealed effective support in sway
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reduction and postural stabilization. Notably, reductions in EMG activity were
observed in trunk muscles, especially the rectus abdominis (RA) and right
erector spinae (ES-R), by up to 51.2% and 41.8%, respectively. The
improvements were most evident during challenging conditions such as tandem
stance with eyes closed (TSEC), suggesting the exosuit's effectiveness in high-
demand postural scenarios. Reductions exceeding 30% were also observed in
CoP metrics including mediolateral sway dispersion (DMLSD), velocity,

pathlength, and prediction ellipse area.

5.2.1 Sway Detection Algorithm

The final threshold-based classifier achieved an accuracy of 70%, surpassing all
tested machine learning (ML) models in both performance and deployability.
Among ML approaches, the Random Forest model with bagging achieved the
highest accuracy at 63.5%, highlighting its resilience to sensor noise and multi-
class complexity. Stable, DAP, and DML sway conditions were distinguishable;
however, the INST (unstable) class showed high variability and overlap. The
signal processing pipeline—featuring Butterworth filtering, Z-score
normalization, median absolute deviation (MAD), and wavelet-based outlier
rejection—effectively reduced artifacts. Training included over 130,000 five-
second windows and over 3.7 million short (250 ms) windows, though hardware

limitations restricted full validation of high-frequency detection.

5.2.2  Biomechanical Tests

Functionally, the exosuit reduced trunk muscle strain and promoted more stable
postural strategies. Surface EMG showed significant reductions in tonic muscle
activation, particularly under sensory-compromised conditions. Reductions in
CoP wvariability across all relevant metrics further affirmed improved
neuromuscular control. Compared to passive or assistive devices in literature,
the active exosuit provided superior unloading and balance-enhancing effects,
validating its utility in challenging postural contexts.

5.3 Limitations

Despite the promising development of the prototype, several limitations were

encountered during the research and prototyping phases.
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5.3.1 Hardware and Design Constraints

One of the primary limitations was hardware-related, due to cost constraints.
Budget restrictions limited the choice of materials, actuator technologies, and
supporting electronics. The use of basic materials for rigid anchor points,
instead of advanced composites like carbon fibre, introduced additional weight
and reduced the ergonomic profile of the exosuit. Carbon fibre would have
provided a more lightweight, durable, and aesthetically refined structure
suitable for prolonged wear. Moreover, the reliance on pneumatic actuation
presented notable drawbacks. Pneumatic systems, while effective in generating
sufficient force, were noisy, bulky, less energy-efficient, and less precise than
their electrical counterparts. They also required a relatively high power input,
which reduced battery life. In contrast, electric actuators could offer a quieter,
more compact, and more precise alternative, with improved controllability and

lower energy consumption.

5.3.2 Algorithm Development Constraints

Several limitations were identified in this study. First, the participant pool
consisted solely of healthy adults, restricting the generalizability of results to
clinical or elderly populations with impaired balance. The INST class remained
a persistent challenge due to the ambiguous nature of unstable sway, which may
not be easily captured in static, short-time-window features. Furthermore, while
the classifier was tested using 5-second windows, the 250-millisecond real-time
implementation could not be fully validated due to the computational limitations
of the development hardware. The system also relied exclusively on
accelerometer data; the absence of gyroscope, barometer, or multi-modal inputs
may have constrained classification performance. Lastly, testing was conducted
under controlled laboratory settings, which do not fully replicate real-world
variability or extended-duration use, such as might occur in industrial, clinical,

or rehabilitative scenarios.

5.3.3 Time Constraints
Time limitations significantly impacted the development of both the software

stack and the evaluation protocols. The graphical user interface (GUI), while
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partially functional, was not fully deployable. Features such as containerisation
via Docker and remote accessibility were not yet implemented, limiting the
system’s scalability and usability in clinical settings. Algorithmic development
also remained incomplete. Full classification and detection capabilities for
impaired postural sway patterns—particularly those related to asymmetrical
loading or neuromuscular disorders—could not be validated. Additionally, time
constraints restricted the extent of experimental testing, which was limited to a

small sample size composed solely of healthy, young adults.

5.3.4  System Performance and Experimental Limitations

Functionally, the system demonstrated reduced reliability in detecting and
correcting left-sided sway compared to anterior-posterior and right-sided sways.
Battery life was constrained to approximately 15 minutes due to the high current
draw from the solenoid valves and the MiPump2 compressor unit, limiting long-
duration testing scenarios. Moreover, the system was not tested on the actual
target population—individuals with postural instability due to aging,
Parkinson’s disease (PD), or low back pain (LBP). This limits the
generalisability of findings and highlights the need for more comprehensive
clinical validation.

Also, certain limitations were noted. The EMG response displayed
lateral asymmetries, particularly in the left erector spinae, suggesting
inconsistencies in torque distribution or individual adaptation strategies. Such
discrepancies raise concerns about the long-term musculoskeletal balance and
highlight the importance of personalisation in exosuit design. Additionally, the
system's reliance on a tethered pneumatic source and laptop-based interface,
while functional, limits its immediate applicability in fully mobile settings. The
sway detection algorithm, though effective in a simplified threshold-based
model, lacked the robustness and adaptability of more complex machine
learning approaches due to computational limitations and dataset constraints.
Moreover, while postural benefits were demonstrated under controlled
laboratory conditions, real-world effectiveness in dynamic or prolonged

occupational settings remains to be evaluated.
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5.4 Recommendations for Future Work

The hardware validation presented is partially addressed through component
selection rationale, IMU calibration, and basic physical integration testing.
However, there is a lack of performance testing on durability, repeatability, and
mechanical reliability, to justify about the system’s long-term robustness and
real-world dependability. Future work should include testing for addressing
these concerns. Future research should prioritize adaptive control systems that
use biofeedback from EMG and inertial sensors to personalize torque assistance
and address muscle asymmetries. Enhancing real-time calibration and
symmetric support mechanisms may reduce lateral imbalances and improve
comfort and safety over extended use. Though the current system is already
wireless and portable, optimizing power efficiency and battery life will further
enhance usability. Expanding validation in clinical populations and under
dynamic conditions (e.g., posture during gait or occupational tasks) is essential

to demonstrate broader applicability.

5.4.1 Hardware and Software Improvements

Transitioning to electric actuators could offer better efficiency, control precision,
and quieter operation. Advanced microcontrollers (e.g., Raspberry Pi, Jetson)
could support on-device machine learning for adaptive control. Containerisation
of GUI (e.g., Docker) and cross-platform deployment will facilitate clinical
testing and broader adoption. GUI improvements should also include enhanced
calibration tools, real-time feedback, and remote access. Incorporating
symmetry analysis and user-specific thresholds will improve system

responsiveness to individual biomechanical differences.

5.4.2  Further Testing and Experiments

Future experiments should use tools like force plates, motion capture, and EMG
to evaluate dynamic postural responses. Introducing balance challenges (e.g.,
unstable surfaces) would better simulate real-world use. Trials involving older
adults, people with Parkinson’s disease, and those with low back pain should

assess both short- and long-term biomechanical impacts.
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5.4.3 Machine Learning Based Detection Algorithm Development

Detection accuracy can be enhanced by hybrid models (e.g., fuzzy logic with
decision trees) and temporal networks like LSTM or GRU. Alternative signal
representations like Dynamic Difference of Vector Distances (DDVD) may
offer improved noise tolerance and classification accuracy in real-world
environments (Nehry et al., 2023). Compressed models (TinyML) can enable
real-time inference on microcontrollers. Data augmentation and EMG-
integrated co-adaptive control will support personalized and robust

classification for clinical users.

5.4.4 System Expansion and Adaptive Algorithms

To enhance personalization, future designs should adopt adaptive filtering and
context-aware thresholds to distinguish between intentional movement and
unintended sway. Real-time bilateral EMG feedback can dynamically balance
actuator output and address asymmetrical loading, especially in prolonged static
tasks. Long-term validation is needed to assess risks such as proprioceptive drift
or chronic postural compensation. Customizable hardware, individualized
calibration, and dynamic control adaptation will be key to safe, reliable, and

comfortable use across diverse settings.

5.5 Final Remarks

The development of this back-supported exosuit presents a meaningful step
toward the development of wearable assistive technologies for postural control.
The proposed exosuit offers an integrative platform for both research and
practical applications in rehabilitation and occupational support. Despite current
limitations, the system demonstrates clear potential to reduce muscular strain
and improve balance in individuals with compromised postural stability.
Through further refinement and clinical validation, this technology can be
transformed into a portable, intelligent, and effective assistive solution capable
of addressing real-world balance impairments and improving quality of life

across various populations.
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Appendix A: Graphs
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Height vs H1, H2 for Female Subjects (n=7)
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Ensemble Analysis: az - Condition: dap (n=651)
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Table B-1: Summarised Anthropometric Data of Spinal Segments (Ko et al.,

2004)
Spinal Mean length Spth length 95pth length

Segment (mm) (mm) (mm)
C3 15 13 20
C4 14 10 20
(O8] 15 4 20
Cé6 12 9 20
C7 12 8 20
C8 13 8 20
T1 17 8 23
T2 18 11 23
T3 19 10 26
T4 20 12 27
T5 20 12 27
T6 23 15 27
T7 23 14 28

C8to T7 153 90 201
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Table B-2: Compilation of Relevant Anthropometrical Data for Back Support Exoskeleton Design (Gordon, 2006; Choi-Rokas and Garlie, 2014)

Measurement USA Male USA Female Malaysia Male | Malaysia Female Included Included
Mean (SD) Mean (SD) Mean equivalent | Mean Equivalent Ranges (M) Ranges (F)
Height (cm) 176.07 (7.34) 164.00 (6.97) 168 157 163 - 184 153-170
Shoulder Breadth (cm) 54.61 (4.36) 46.85 (3.47) 50.41 43.94 47.74 - 60.32 41.47 - 50.37
Shoulder Height (cm) 144.25 (6.20) 133.36 (5.79) 139.00 128.49 134.16 - 152.32 | 124.09 - 139.44
Buttock Height (cm) 88.74 (4.71) 83.83 (4.52) 84.79 80.01 81.48 - 94.93 76.69 - 88.51
Torso Length (cm) (C7 to coccyx) 55.51 49.53 54.21 48.48 52.68 - 57.39 47.40 - 50.93
Shoulder to Waist (Torso Width) 38.37 (2.56) 35.15 (2.28) 36.22 33.21 34.27 - 41.67 31.53-37.52
Seated Torso Height (cm) 59.78 (2.96) 55.55 (2.86) 57.31 53.09 54.85 - 63.58 50.91 - 58.57
Hip Breadth (cm) 34.18 (2.03) 34.27 (2.24) 32.49 32.35 30.97 - 36.82 30.78 - 36.59
Chest Breadth (cm) - - - - 30 -38.1 -
Chest Circumference (cm) - - - - 95.9-105.3 -
Shoulder Circumference (cm) - - - - 116.9-127.8 -
Vertical Trunk Circ. (cm) - - - - 164.2 - 180.7 -
Waist Girth (cm) 100.99 (12.32) | 91.76 (13.78) - - - -

Belly Circumference (cm)

103.03 (11.86)

96.71 (11.78)

Bust Chest Girth (cm)

107.91 (9.71)

102.01 (11.36)

Buttock Girth (cm)

104.04 (7.88)

107.14 (10.78)

Hip Girth (cm)

105.18 (7.85)

108.46 (10.49)

Under Bust Circumference (cm)

103.15 (9.64)

89.07 (11.36)

Waistband (cm) 98.78 (10.18) 95.22 (11.51) - - - -
Cross Shoulder (cm) 50.24 (3.36) 46.62 (3.78) - - - -
Torso Length (cm) 32.14 (2.13) 30.13 (2.06) - - - -




206

Table B-3: Measured Physical Parameters of Subjects for Sway Data Collection

Subject | Sex Height H1 H2 Weight | BMI
FO01 | Female | 1.60 1.09 0.23 59 23.047
F02 Female | 1.70 1.2 0.25 52 17.993
F03 | Female | 1.70 1.2 0.25 52 17.993
F04 | Female | 1.61 1.07 0.22 50 19.289
FO5 | Female | 1.58 1.03 0.18 55 22.032
F06 | Female | 1.53 0.92 0.28 55 23.495
F07 | Female | 1.57 1 0.23 40 16.228
MO1 Male 1.66 1.12 0.26 58 21.048
MO02 Male 1.77 1.24 0.26 63 20.109
Mo03 Male 1.70 1.14 0.25 50 17.301
Mo04 Male 1.84 1.26 0.26 86 25.402
Mo05 Male 1.77 1.21 0.25 64 20.428
Mo6 Male 1.70 1.12 0.29 55 19.031
Mo07 Male 1.65 1.12 0.27 50 18.365
MO8 Male 1.74 1.18 0.28 58 19.157
M09 Male 1.77 1.24 0.26 65 20.748
M10 Male 1.74 1.2 0.3 58 19.157
Mi11 Male 1.69 1.12 0.26 84 29.411
Mi12 Male 1.67 1.1 0.23 65 23.307
M13 Male 1.70 1.2 0.33 59 20.415
Mi14 Male 1.79 1.2 0.24 63 19.662
M15 Male 1.68 1.13 0.25 49 17.361
M16 Male 1.79 1.23 0.26 57 17.696
M17 Male 1.70 1.15 0.28 65 22.491
M18 Male 1.78 1.21 0.28 79 24.934
M19 Male 1.82 1.26 0.3 60 18.214
M20 Male 1.77 1.22 0.26 57 18.194
M21 Male 1.73 1.14 0.27 59 19.713
M22 Male 1.76 1.23 0.25 62 20.015
M23 Male 1.72 1.13 0.28 60 20.231
M24 Male 1.71 1.08 0.29 72 24.623
M25 Male 1.69 1.09 0.28 88 30.811
M26 Male 1.73 1.16 0.28 72 24.057
M27 Male 1.66 1.1 0.28 56 20.322
M28 Male 1.66 1.1 0.28 56 20.322
M29 Male 1.77 1.22 0.28 63 20.109
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Table B-4: Don Doff Timing of Exoskeleton By Subject

Subject Don Time (s Doff Time (s)

S01
S02 301 76
S03 283 76
S04 259 80
S05 203 60
S06 200
S07 180
S08 165
S09 158 69
S10 148 64
S11 143 59
S12 142 70
S13 61
S14
S15 55

Mean 199 68
SD 88 17

REMOVED OUTLIERS

S02 76
S03 76
S04 80
S05
S06
S07
S08
S09 158 69
S10 148 64
S11 143 59
S12 142 70
S13
S14
S15

Mean 182 66
SD 60 16




Table B-5: Summary of sSEMG Results and Statistical Tests

Muscle | Subcondition | EMG Mean Diff (+ SE), X 10~3uV | p- Value (Wilcoxon) | Effect Size (Cohen’s d) | Percentage Reduction
EO N(EO) 682.4818 (£264.8401) p=0.0215* 0.72 (medium) 120.6%
N(EC) 881.1538 (+385.4994) p=0.0295* 0.70 (medium) 124.1%
T(EO) 906.6716 (£327.0678) p=0.0067** 0.96 (large) 126.7%
T(EC) 1820.347 (+£459.6409) p=6.10E-05*** 1.12 (large) 138.3%

Muscle | Subcondition | EMG Mean Diff (+ SE), X 10~3uV | p- Value (Wilcoxon) | Effect Size (Cohen’s d) | Percentage Reduction
RA N(EO) 1205.630 (£498.0532) p=0.0266* 0.82 (large) 133.6%
N(EC) 904.1492 (£337.9464) p=0.0067** 0.81 (large) 129.4%
T(EO) 1114.639 (£347.1975) p=0.0015%* 1.16 (large) 136.1%
T(EC) 2162.382 (+£759.0160) p=0.0034** 1.05 (large) 151.2%

Muscle | Subcondition | EMG Mean Diff (+ SE), X 10~3uV | p- Value (Wilcoxon) | Effect Size (Cohen’s d) | Percentage Reduction
ES (R) N(EO) 287.6042 (£315.0097) p=0.3054 0.17 (negligible) 18.2%
N(EC) 228.7428 (+£395.5777) p=0.2414 0.14 (negligible) 16.7%
T(EO) 2085.236 (+£785.9098) p=0.0103* 0.70 (medium) 135.6%
T(EC) 2749.911 (+£889.0738) p=0.0003*** 0.95 (large) 141.8%

Muscle | Subcondition | EMG Mean Diff (+ SE), X 10~3uV | p- Value (Wilcoxon) | Effect Size (Cohen’s d) | Percentage Reduction
ES (L) N(EO) 135.0190 (£215.6976) p=0.3396 0.14 (negligible) 15.2%
N(EC) -65.15124 (+£385.4472) p=1.0000 -0.06 (negligible) 12.5%
T(EO) -350.8893 (£655.4787) p=1.0000 -0.15 (negligible) 19.1%
T(EC) 309.5315 (£867.0291) p=0.42627 0.10 (negligible) 16.0%

Note: * p<0.05, ** p<0.01, *** p<0.001
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Table B-6: Wilcoxon Test Results of CoP Parameters Per Condition With

Outliers Retained

Stance Measure Wilcoxon Statistic p-value
NSEO DML SD (cm) 17 0.174805
NSEO DAP SD (cm) 26 0.577148
NSEO Vml mean (cm/s) 12 0.067383
NSEO Vap mean (cm/s) 17 0.174805
NSEO CoP Pathlength (cm) 11 0.053711
NSEO CoP 95% PEA 20 0.278320
NSEC DML SD (cm) 10 0.080078
NSEC DAP SD (cm) 22 0.365234
NSEC Vml mean (cm/s) 27 0.635742
NSEC Vap mean (cm/s) 19 0.240234
NSEC CoP Pathlength (cm) 23 0.413086
NSEC CoP 95% PEA 32 0.965820
TSEO DML SD (cm) 12 0.067383
TSEO DAP SD (cm) 24 0.464844
TSEO Vml mean (cm/s) 5 0.009766 **
TSEO Vap mean (cm/s) 9 0.032227 *
TSEO CoP Pathlength (cm) 5 0.009766 **
TSEO CoP 95% PEA 10 0.041992 *
TSEC DML SD (cm) 9 0.032227 *
TSEC DAP SD (cm) 8.5 0.026367 *
TSEC Vml mean (cm/s) 0 0.000977 ***
TSEC Vap mean (cm/s) 2 0.002930 **
TSEC CoP Pathlength (cm) 0 0.000977 **x*
TSEC CoP 95% PEA 4 0.006836 **
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Table B-7: Summary of Significant (p-value) and Effect Size (r) per Stance

With Outliers Retained
Stance Parameter p-value | Sig. | Effectsize (r) | Effect
NSEO DML SD (cm) 0.1748 n.s 0.477 Medium
DAP SD (cm) 0.5771 n.s 0.194 Small
Vml mean (cm/s) 0.0674 n.s 0.316 Medium
Vap mean (cm/s) 0.1748 n.s 0.749 Huge
CoP Pathlength (cm) | 0.0537 n.s 0.535 Large
CoP 95% PEA 0.2783 n.s -0.077 Small
NSEC DML SD (cm) 0.0801 n.s 0.8 Huge
DAP SD (cm) 0.3652 n.s 0.725 Huge
Vml mean (cm/s) 0.6357 n.s 0.712 Huge
Vap mean (cm/s) 0.2402 n.s 0.75 Huge
CoP Pathlength (cm) | 0.4131 n.s 0.797 Huge
CoP 95% PEA 0.9658 n.s 0.72 Huge
TSEO DML SD (cm) 0.0674 n.s 0.788 Huge
DAP SD (cm) 0.4648 n.s 0.538 Large
Vml mean (cm/s) 0.0098 ok 0.921 Extreme
Vap mean (cm/s) 0.0322 * 0.716 Large
CoP Pathlength (cm) | 0.0098 ok 0.888 Large
CoP 95% PEA 0.042 * 0.737 Large
TSEC DML SD (cm) 0.0322 * 0.484 Medium
DAP SD (cm) 0.0264 * 0.613 Large
Vml mean (cm/s) 0.001 ook 0.407 Medium
Vap mean (cm/s) 0.0029 *x 0.514 Large
CoP Pathlength (cm) | 0.001 lolo 0.357 Medium
CoP 95% PEA 0.0068 *x 0.603 Large




Table B-8: Wilcoxon Test Results of CoP Parameters Per Condition With

Outliers Removed
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Stance Measure Wilcoxon Statistic p-value
NSEO DML SD (cm) 1 0.007812 **
NSEO DAP SD (cm) 12 0.250000
NSEO Vml mean (cm/s) 3 0.019531 *
NSEO Vap mean (cm/s) 6 0.054688
NSEO CoP Pathlength (cm) 2 0.011719 *
NSEO CoP 95% PEA 5 0.039062 *
NSEC DML SD (cm) 8 0.195312
NSEC DAP SD (cm) 20 0.820312
NSEC Vml mean (cm/s) 21 0.886719
NSEC Vap mean (cm/s) 16 0.496094
NSEC CoP Pathlength (cm) 19 0.734375
NSEC CoP 95% PEA 19 0.734375
TSEO DML SD (cm) 7 0.074219
TSEO DAP SD (cm) 14 0.359375
TSEO Vml mean (cm/s) 1 0.007812 **
TSEO Vap mean (cm/s) 1 0.007812 **
TSEO CoP Pathlength (cm) 0 0.003906 **
TSEO CoP 95% PEA 4 0.027344 *
TSEC DML SD (cm) 1 0.007812 **
TSEC DAP SD (cm) 1.5 0.011719 *
TSEC Vml mean (cm/s) 0 0.003906 **
TSEC Vap mean (cm/s) 2 0.011719 *
TSEC CoP Pathlength (cm) 0 0.003906 **
TSEC CoP 95% PEA 0 0.003906 **
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Table B-9: Summary of Significant (p-value) and Effect Size (r) per Stance

With Outliers Removed
Stance Parameter p-value | Sig. | Effectsize (r) | Effect
DML SD (cm) 0.0078 ok 0.682 Large
DAP SD (cm) 0.25 n.s. 0.323 Medium
NSEO Vml mean (cm/s) 0.0195 * 0.309 Medium
Vap mean (cm/s) 0.0547 | n.s. 0.746 Huge
CoP Pathlength (cm) | 0.0117 * 0.528 Large
CoP 95% PEA (cm?) | 0.0391 * 0.308 Medium
DML SD (cm) 0.1953 | ns. 0.771 Huge
DAP SD (cm) 0.8203 | n.s. 0.808 Huge
NSEC Vml mean (cm/s) 0.8867 | n.s. 0.617 Large
Vap mean (cm/s) 0.4961 n.s. 0.662 Large
CoP Pathlength (cm) | 0.7344 | n.s. 0.697 Large
CoP 95% PEA (cm?) | 0.7344 | n.s. 0.706 Huge
DML SD (cm) 0.0742 | n.s. 0.78 Huge
DAP SD (cm) 0.3594 | n.s. 0.511 Large
TSEO Vml mean (cm/s) 0.0078 ok 0.906 Extreme
Vap mean (cm/s) 0.0078 ok 0.757 Huge
CoP Pathlength (cm) | 0.0039 ok 0.9 Extreme
CoP 95% PEA (cm?) | 0.0273 * 0.732 Huge
DML SD (cm) 0.0078 *x 0.435 Medium
DAP SD (cm) 0.0117 * 0.609 Large
TSEC Vml mean (cm/s) 0.0039 *ok 0.278 Small
Vap mean (cm/s) 0.0117 * 0.452 Medium
CoP Pathlength (cm) | 0.0039 ok 0.222 Small
CoP 95% PEA (cm?) | 0.0039 *x 0.597 Large




Table B-10: Summary of Significance and Effect Size Per Subject
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Sub Cond Parameters DML SD DAP SD Vml mean Vap mean CoP Pathlength | CoP 95% PEA
S01 | NSEO p-value 0.59663823 0.67059727 0.326810933 0.883897544 0.738116055 0.825983094
S01 | NSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S01 | NSEO cohen's D 0.35992229 -0.284854 0.743311116 -0.095442714 0.221559926 0.144285623
S01 | NSEO effect Small Small Medium Very small Small Very small
S01 | NSEC p-value 0.13474005 0.12521354 0.012967009 0.02487353 0.019921438 0.344195102
S01 | NSEC significance n.s. n.s. * * * n.s.

S01 | NSEC cohen's D -0.1236194 -0.1396997 -1.479088322 -3.123580759 -2.76283872 0.148197467
S01 | NSEC effect Very small Very small Very large Huge Huge Very small
S01 | TSEO p-value 0.68709655 0.00833747 0.042266449 0.395838764 0.197581084 0.873177755
So1 TSEO significance n.s. * * n.s. n.s. n.s.

S01 | TSEO cohen's D 0.28057225 -6.1101009 2.547110812 0.619047619 1.051478925 -0.022456926
So1 TSEO effect Small Huge Huge Medium Large Very small
S01 | TSEC p-value 0.06255885 0.00767339 0.060686016 0.018003074 0.038358671 0.077999704
So01 TSEC significance n.s. * n.s. * * n.s.

S01 | TSEC cohen's D 1.45962073 2.5692087 2.035109001 4.155459474 2.834563997 1.312908982
So1 TSEC effect Very large Huge Huge Huge Huge Very large
S02 | NSEO p-value 0.37838574 0.10479474 0.337733821 0.17129801 0.263996386 0.235328499
S02 | NSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S02 | NSEO cohen's D -0.6479391 -1.6401332 -0.721687836 -1.20894105 -0.887687316 -0.96885788
S02 | NSEO effect Medium Very large Medium Large Large Large
S02 | NSEC p-value 0.43699001 0.06501586 0.341956644 0.008128887 0.036813838 0.248995911
S02 | NSEC significance n.s. n.s. n.s. * * n.s.

S02 | NSEC cohen's D -0.5562293 -2.152337 -0.71355165 -6.364487698 -2.925353252 -0.928660524
S02 | NSEC effect Medium Huge Medium Huge Huge Large
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S02 | TSEO p-value 0.25357495 0.4475099 0.104188167 0.479693687 0.412371332 0.469193747
S02 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S02 | TSEO cohen's D 0.91582485 0.54120665 1.645751852 0.497468877 0.59297809 0.511392294
S02 | TSEO effect Large Medium Very large Small Medium Medium
S02 | TSEC p-value 0.32596448 0.82974869 0.271256613 0.191251528 0.227792447 0.213841253
S02 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S02 | TSEC cohen's D -0.745023 0.14106912 0.868907536 1.12273251 0.992342208 -1.038625183
S02 TSEC effect Medium Very small Large Large Large Large
S03 | NSEO p-value 0.42677031 0.3444091 0.766746756 0.323349036 0.401883206 0.048762704
S03 | NSEO significance n.s. n.s. n.s. n.s. n.s. *

S03 | NSEO cohen's D 0.57120221 0.70888121 -0.195852878 0.750346669 0.609377172 2.517933798
S03 | NSEO effect Medium Medium Very small Medium Medium Huge
S03 | NSEC p-value 0.35325109 0.63729664 0.00617971 0.316564776 0.641655956 0.2491386
S03 | NSEC significance n.s. n.s. * n.s. n.s. n.s.

S03 | NSEC cohen's D -0.6923642 0.31778579 -7.310299323 0.76440273 -0.313399685 0.92825598
S03 | NSEC effect Medium Small Huge Medium Small Large
S03 | TSEO p-value 0.85594066 0.66687651 0.442097507 0.657417708 0.469720976 0.78278407
S03 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S03 | TSEO cohen's D -0.1188638 -0.2884707 0.548887706 0.29773379 0.510685502 0.181694273
S03 TSEO effect Very small Small Medium Small Medium Very small
S03 | TSEC p-value 0.16347186 0.09960394 0.00294329 0.009629029 0.004124172 0.024918892
S03 TSEC significance n.s. n.s. * * * *

S03 | TSEC cohen's D 0.57900666 1.23213938 3.656527931 4.622516762 5.164918436 3.119318738
S03 TSEC effect Medium Large Huge Huge Huge Huge
S04 | NSEO p-value 0.16894797 0.18433052 0.071829854 0.135958174 0.114723802 0.226815792
S04 | NSEO significance n.s. n.s. n.s. n.s. n.s. n.s.
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S04 | NSEO cohen's D 1.21998856 1.15120207 2.036370506 1.401388821 1.554242932 0.995459909
S04 | NSEO effect Large Large Huge Very large Very large Large
S04 | NSEC p-value 0.46321476 0.81483598 0.21795091 0.237599264 0.21249238 0.45812069
S04 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S04 | NSEC cohen's D 0.51946603 -0.1538462 1.024587872 0.961972813 1.043310322 0.526431412
S04 NSEC effect Medium Very small Large Large Large Medium
S04 | TSEO p-value 0.65372788 0.51439948 0.750487965 0.439688349 0.655146931 0.681106378
S04 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S04 | TSEO cohen's D -0.3013748 -0.4535574 0.210379675 0.552339203 0.299972672 -0.274718462
S04 | TSEO effect Small Small Small Medium Small Small
S04 | TSEC p-value 0.08515509 0.07636077 0.02404624 0.001795706 0.012887558 0.08050724
S04 TSEC significance n.s. n.s. * * * n.s.

S04 | TSEC cohen's D 1.15615551 1.08169683 2.016007049 5.037752737 2.806533028 1.026274932
S04 TSEC effect Large Large Huge Huge Huge Large
S05 | NSEO p-value 0.03921569 0.18369628 0.062612396 0.144603401 0.028648555 0.836594252
S05 | NSEO significance * n.s. n.s. n.s. * n.s.

S05 | NSEO cohen's D 2.82901632 -1.1538829 2.197531736 1.348386072 3.337316315 0.135237975
S05 | NSEO effect Huge Large Huge Very large Huge Very small
S05 | NSEC p-value 0.29985996 0.37708479 0.013072458 0.238202303 0.426226302 0.592228953
S05 | NSEC significance n.s. n.s. * n.s. n.s. n.s.

S05 | NSEC cohen's D -0.8006408 0.65015346 5 -0.960158717 -0.57201016 0.36463632
S05 | NSEC effect Large Medium Huge Large Medium Small
S05 | TSEO p-value 0.27410862 0.62636764 0.456108029 0.893334509 0.396367972 0.322279164
S05 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S05 | TSEO cohen's D 0.86170366 -0.3288887 0.529205934 0.087591723 0.618194315 0.752539403
S05 | TSEO effect Large Small Medium Very small Medium Medium
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S05 | TSEC p-value 0.11092247 0.12035179 0.093183865 0.431795245 0.026350521 0.009767495
S05 TSEC significance n.s. n.s. n.s. n.s. * *

S05 | TSEC cohen's D 0.91359083 0.1434992 1.713492918 -0.132616927 1.489365908 2.446562277
S05 TSEC effect Large Very small Very large Very small Very large Huge
S06 | NSEO p-value 0.05828028 0.00092208 0.029295995 0.027618752 0.018732489 0.869317947
S06 | NSEO significance n.s. * * * * n.s.

S06 | NSEO cohen's D 2.28571429 19 3.298574998 3.401680257 4.158842688 -0.107624401
S06 | NSEO effect Huge Huge Huge Huge Huge Very small
S06 | NSEC p-value 0.5752046 0.73431553 0.568461015 0.458472386 0.503449974 0.117970759
S06 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S06 | NSEC cohen's D -0.3831305 -0.2250176 -0.390591217 -0.525947907 -0.467082503 -1.528399836
S06 NSEC effect Small Small Small Medium Small Very large
S06 | TSEO p-value 0.05486376 0.05828028 0.266971128 0.285034924 0.267315983 0.199587765
S06 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S06 | TSEO cohen's D 2.36227796 2.28571429 0.879914358 0.834953945 0.879020373 1.090222533
S06 | TSEO effect Huge Huge Large Large Large Large
S06 | TSEC p-value 0.10876058 0.2245194 0.014021945 0.050189528 0.019138845 0.084963832
S06 TSEC significance n.s. n.s. * n.s. * n.s.

S06 | TSEC cohen's D 1.00674825 1.07989849 2.872825788 2.476120872 3.116513804 1.097183671
So06 TSEC effect Large Large Huge Huge Huge Large
S07 | NSEO p-value 0.02992352 0.32181135 0.753817018 0.555409381 0.727987582 0.081358128
S07 | NSEO significance * n.s. n.s. n.s. n.s. n.s.

S07 | NSEO cohen's D -3.262214 -0.753501 -0.207390339 -0.405261796 -0.230799807 -1.898467533
S07 | NSEO effect Huge Medium Small Small Small Very large
S07 | NSEC p-value 0.88990362 0.19461273 0.74180111 0.0648368 0.079064181 0.847287773
S07 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s.
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S07 | NSEC cohen's D -0.0904431 -1.1094004 -0.21821789 -2.155619955 -1.929467283 -0.126168884
S07 | NSEC effect Very small Large Small Huge Very large Very small
S07 | TSEO p-value 0.74227778 0.67159608 0.665060748 0.413940784 0.50231756 0.677920722
S07 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S07 | TSEO cohen's D -0.2177863 -0.2838857 -0.290241164 -0.590564127 -0.468497889 -0.277778706
S07 TSEO effect Small Small Small Medium Small Small
S07 | TSEC p-value 0.87993995 0.77747277 0.366496488 0.459218466 0.439958397 0.579166661
S07 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S07 | TSEC cohen's D -0.0739221 -0.1719238 0.775880177 0.591994038 0.674562681 0.27217929
S07 TSEC effect Very small Very small Medium Medium Medium Small
S08 | NSEO p-value 0.50393893 0.64327781 0.379109777 0.990205958 0.685799472 0.560509656
S08 | NSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S08 | NSEO cohen's D 0.46647234 0.31177389 0.646710478 -0.007997185 0.27022896 0.399491719
S08 | NSEO effect Small Small Medium Very small Small Small
S08 | NSEC p-value 0.62598033 0.78861705 0.921523357 0.413413924 0.532389288 0.933431197
S08 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S08 | NSEC cohen's D -0.329285 -0.1765837 -0.064274135 -0.591373353 -0.431935332 -0.054474032
S08 NSEC effect Small Very small Very small Medium Small Very small
S08 | TSEO p-value 0.4003266 0.31920013 0.839285563 0.495423434 0.830091653 0.327213091
S08 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S08 | TSEO cohen's D 0.61185183 0.75889956 -0.132951026 0.47718417 0.140776493 0.742499657
S08 | TSEO effect Medium Medium Very small Small Very small Medium
S08 | TSEC p-value 0.01155598 0.43922785 0.426760064 0.74180111 0.485709864 0.027123668
S08 TSEC significance * n.s. n.s. n.s. n.s. *

S08 | TSEC cohen's D 1.69969791 -0.6405126 0.696216501 0.458831468 0.637122326 0.947199176
S08 TSEC effect Very large Medium Medium Small Medium Large
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S09 | NSEO p-value 0.3902986 0.3326749 0.49346839 0.568901437 0.596537578 0.266315793
S09 | NSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S09 | NSEO cohen's D -0.6280589 -0.7315966 -0.479669527 -0.390101533 -0.360029564 -0.881617261
S09 | NSEO effect Medium Medium Small Small Small Large
S09 | NSEC p-value 0.25865427 0.09964699 0.883489654 0.605594681 0.71642807 0.098575862
S09 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S09 | NSEC cohen's D -0.90193 -1.6893434 0.095782629 0.350438322 0.241446663 -1.700038518
S09 | NSEC effect Large Very large Very small Small Small Very large
S09 | TSEO p-value 0.3296036 0.32102859 0.350683827 0.912281702 0.056133311 0.33097195
S09 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S09 | TSEO cohen's D 0.73770087 0.75511371 0.697109119 -0.071898838 2.333036109 0.734972831
S09 TSEO effect Medium Medium Medium Very small Huge Medium
S09 | TSEC p-value 0.58858089 0.12481181 0.297898071 0.619936593 0.407933769 0.251824657
S09 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S09 | TSEC cohen's D -0.044585 0.80858312 0.609992547 0.016522297 0.378403665 0.453537042
S09 TSEC effect Very small Large Medium Very small Small Small
S10 | NSEO p-value 0.32454916 0.13147556 0.284905042 0.130405441 0.231943498 0.353366071
S10 | NSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S10 | NSEO cohen's D 0.7478974 1.43075246 0.835264327 1.437969289 0.979283349 0.692152681
S10 | NSEO effect Medium Very large Large Very large Large Medium
S10 | NSEC p-value 0.97719604 0.09273529 0.855752559 0.904963723 0.918051372 0.896915675
S10 | NSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S10 | NSEC cohen's D 0.0186242 1.76140969 -0.119022319 -0.07794961 -0.067136584 0.084618795
S10 NSEC effect Very small Very large Very small Very small Very small Very small
S10 | TSEO p-value 0.53276508 0.37628891 0.482671092 0.42831582 0.458196063 0.447966334
S10 | TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.
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S10 | TSEO cohen's D 0.43149122 0.65151249 0.493577788 0.568912985 0.526327759 0.54056345
S10 TSEO effect Small Medium Small Medium Medium Medium
S10 | TSEC p-value 0.10390491 0.11932214 0.062856853 0.054577311 0.067143976 0.127906113
S10 TSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S10 | TSEC cohen's D 1.46448308 1.41695164 1.89851534 2.380107231 1.978717049 1.266165355
S10 TSEC effect Very large Very large Very large Huge Very large Large
S11 | NSEO p-value 0.46704182 0.2395775 0.217120135 0.20728429 0.210875835 0.258644991
S11 | NSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S11 | NSEO cohen's D 0.51428571 0.95604396 1.02739726 1.061776062 1.04897724 0.901955063
S11 | NSEO effect Medium Large Large Large Large Large
S11 NSEC p-value 1 0.7446001 0.670685761 0.819515095 0.712737523 0.718349241
S11 NSEC significance n.s. n.s. n.s. n.s. n.s. n.s.

S11 | NSEC cohen's D 0 -0.2156863 0.284768212 -0.149825784 0.244869619 -0.239669421
S11 NSEC effect Very small Small Small Very small Small Small
S11 TSEO p-value 0.62203553 0.18692811 0.198270399 0.284472638 0.244691897 0.13400819
S11 TSEO significance n.s. n.s. n.s. n.s. n.s. n.s.

S11 TSEO cohen's D 0.33333333 1.14035088 1.095238095 0.836298932 0.94100524 1.413994169
S11 TSEO effect Small Large Large Large Large Very large
S11 TSEC p-value 0.54916518 0.0527035 0.0030452 0.044814112 0.049250861 0.00408215
S11 | TSEC significance n.s. n.s. * * * *

S11 TSEC cohen's D 0.57142857 1.06060606 6.36 1.187845304 1.112612613 4.86784141
S11 TSEC effect Medium Large Huge Large Large Huge




220

Table B-11: Summary of CoP Parameters by Conditions
Cond | Stance DMLsp DAPsp (¢cm) | Vimlmean (cm/s) | Vapmean (cm/s) CoP Pathlength CoP 95% PEA (cm?)
(cm) (cm)

NO NSEC | mean 0.407 0.739 0.672 0.962 38.855 5.511
SD 0.197 0.253 0.335 0.368 16.266 4716

SEM 0.062 0.080 0.106 0.116 5.144 1.491

NSEO | mean 0.526 0.754 0.734 0.892 38.652 8.161

SD 0.316 0.307 0.372 0.545 21.117 7.273

SEM 0.100 0.097 0.118 0.172 6.678 2.300
TSEC | mean 1.692 1.359 4.576 3.920 197.852 46.160
SD 0.935 0.389 2.584 1.268 87.403 47.157
SEM 0.296 0.123 0.817 0.401 27.639 14.912

TSEO | mean 1.039 0.779 2.052 1.865 92.508 18.601
SD 0.530 0.304 0.919 0.567 33.732 22.516

SEM 0.168 0.096 0.291 0.179 10.667 7.120

ON NSEC | mean 0.492 0.776 0.652 1.010 38.044 4.831
SD 0.339 0.201 0.292 0.295 10.979 2.233

SEM 0.107 0.063 0.092 0.093 3.472 0.706

NSEO | mean 0.408 0.669 0.515 0.666 27.205 4.176

SD 0.200 0.191 0.147 0.169 5.570 2.594

SEM 0.063 0.060 0.047 0.053 1.761 0.820

TSEC | mean 1.087 1.090 2.469 2.792 123.371 19.371

SD 0.311 0.173 1.109 0.916 41.963 9.206

SEM 0.098 0.055 0.351 0.290 13.270 2911
TSEO | mean 0.847 0.690 1.611 1.585 74.802 10.049

SD 0.375 0.177 0.511 0.290 17.067 5.918
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SEM 0.113 0.053 0.154 0.087 5.146 1.784
DIFF | NSEC | mean -0.085 -0.037 0.02 -0.048 0.811 0.68
SD 0.227 0.184 0.253 0.256 10.520 3.643
SEM 0.068 0.055 0.076 0.077 3.172 1.098
NSEO | mean 0.119 0.086 0.218 0.226 11.447 3.985
SD 0.296 0.344 0.371 0.455 19.652 8.293
SEM 0.089 0.104 0.112 0.137 5.925 2.500
TSEC | mean 0.605 0.270 2.107 1.127 74.480 26.790
SD 0.871 0.329 2.477 1.173 86.348 44313
SEM 0.263 0.099 0.747 0.354 26.035 13.361
TSEO | mean 0.192 0.089 0.441 0.280 17.706 8.552
SD 0.348 0.269 0.532 0.437 21.679 19.665
SEM 0.105 0.081 0.160 0.132 6.537 5.929
Y% NSEC | mean -20.88% -5.01% 2.98% -4.99% 2.09% 12.34%
RED SD 33.16% 24.13% 27.05% 24.87% 22.11% 71.55%
SEM 10.00% 7.28% 8.16% 7.50% 6.67% 21.57%
NSEO | mean 22.62% 11.41% 29.70% 25.34% 29.62% 48.83%
SD 49.85% 36.58% 33.59% 30.48% 31.34% 80.59%
SEM 15.03% 11.03% 10.13% 9.19% 9.45% 24.30%
TSEC | mean 35.76% 19.87% 46.04% 28.75% 37.64% 58.04%
SD 34.97% 18.24% 23.24% 22.22% 23.37% 42.64%
SEM 10.55% 5.50% 7.01% 6.70% 7.05% 12.86%
TSEO | mean 18.48% 11.42% 21.49% 15.01% 19.14% 45.98%
SD 26.41% 24.68% 16.90% 19.91% 17.96% 35.39%
SEM 7.96% 7.44% 5.10% 6.00% 5.42% 10.67%
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Appendix C: Figures
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Figure C-1: SOLIDWORKS Drawing of Actual Chest IMU Casing
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Figure C-11: SOLIDWORKS Drawing of Actual Belt Assembly

classifier Foldl Fold2 Fold3 Fold4 FoldS Mean Stdbev BestParameters

{'Decision Tree (Tuned)' } 0.61463 0.59513 0.59513 0.59629 0.60012 0.60026 0.0082894 {'MaxSplits=100, MinLeaf=10' }
{"k-NN (k=15, cityblock)' } 0.64829 0.62877 0.61717 0.63283 0.62739 0.63089 0.011307 {'k=15, dist=cityblock, std=1' }
{'SVM (rbf)' } 0.65177 0.63457 0.63051 0.63167 0.63668 0.63704 0.008583 {'Kernel=rbf, C=100.0, Scale=0.1' }
{'Ensemble (Bag)' } 0.65177 0.63747 0.64095 0.63109 0.62739 0.63774 0.0094668 {'Method=Bag, Cycles=100" }
{'Naive Bayes (kernel)' } 0.59025 0.57541 0.58295 0.57425 0.5827 0.58111 0.0065019 {'Distribution=kernel' }
{'LDA (linear)' } 0.5682 0.57019 0.55684 0.54698 0.53976 0.55639 0.013182 {'Type=linear, Gamma=0.00" }
{'Logistic Regression (Tuned)'} 0.5682 0.56439 0.56265 0.56206 0.54092 0.55964 0.010737 {'Lambda=0.000001, Coding=onevsone'}

Performing

hyperparameter tuning for esach classifier...

Tuning Decision Tree...
Best Decision Tree parameters: MaxNumSplits=100, MinLeafsize=10 (CV Accuracy: 0.59%65

Tuning KNN

Best KNN parameters: NumNeighbors=15, Distance=cityblock, Standardize=1 (CV Accuracy: 0.6274)

Tuning SVM

Best SVM parameters: Kernel=rbf, BoxConstraint=100.00, KernelScale=0.10, Coding=onevsone (CV Accuracy: 0.6281

Tuning Random Forest...

Best Random Forest parameters: Method=Bag, Cycles=100 (CV Accuracy: 0.63863)

Best Naive Bayes parameters: Distribution=kernel (CV Accuracy: 0.5806

Tuning LDA...

Skipping invalid combination: quadratic with gamma=0.25
Skipping invalid combination: gquadratic with gamma=0.50
Skipping invalid combination: quadratic with gamma=0.75

Skipping
Skipping
Skipping
Best LDA

invalid combination: diagQuadratic with gamma=0.25
invalid combination: diagQuadratic with gamma=0.50
invalid combination: diagQuadratic with gamma=0.75
parameters: DiscrimType=linear, Gamma=0.00 (CV Accuracy: 0.5578)

Tuning Logistic Regression. ..

Best Logistic Regression parameters: Lambda=0.000001, Coding=onevsone (CV Accuracy: 0.5605

Figure C-12: MATLAB Snippets of Classifier Training Results
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Figure C-13: Visualisation of EMG Reduction Based on Mean and Subject for

External Obliques (EO)
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Figure C-14: Visualisation of EMG Reduction Based on Mean and Subject for

Rectus Abdominus (RA)
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Figure C-15: Visualisation of EMG Reduction Based on Mean and Subject for
Erecter Spinae (ES, L3, Right)
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FigureC-16: Visualisation of EMG Reduction Based on Mean and Subject for
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Figure C-17: Boxplots of DML SD Between Conditions With Outliers Retained



Comparison of DAP SD (cm) between NO and ON conditions
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Figure C-18: Boxplots of DAP SD Between Conditions With Outliers Retained
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Comparison of Vap mean (cm/s) between NO and ON conditions
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Figure C-20: Boxplots of Vap mean Between Conditions With Outliers
Retained

Comparison of CoP Pathlength (cm) between NO and ON conditions
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Figure C-21: Boxplots of Pathlength Between Conditions With Outliers
Retained



Comparison of CoP 95% PEA between NO and ON conditions
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Figure C-22: Boxplots of 95% PEA Between Conditions With Outliers Retained
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Figure C-23: Heatmap of Mean Percent Reduction in Parameters With Outliers

Retained
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Distribution of Percent Reduction Across Stances
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Figure C-26: Distribution of Percent Reduction Across Stances With Outliers
Retained
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Percent Reduction in DAP SD (cm) by Subject and Stance
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Figure C-28: Heatmap of Percent Reduction of DAP SD by Subject With

Outliers Retained
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Figure C-29: Heatmap of Percent Reduction of Vml mean by Subject With
Outliers Retained
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Percent Reduction in Vap mean (cm/s) by Subject and Stance
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Figure C-30: Heatmap of Percent Reduction of Vap mean by Subject With

Outliers Retained
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Outliers Retained
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Percent Reduction in CoP 95% PEA by Subject and Stance
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Figure C-32: Heatmap of Percent Reduction of 95% PEA by Subject With

Outliers Retained
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Figure C-33: Heatmap of Percent Reduction of All Parameters by Subject With

Outliers Retained
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Appendix D: MATLAB Code with Some Sections Ommited Due to Privacy

%% Postural Sway Analysis and Threshold Optimization with ROC

% Parameters

dt = 0.034; % Round to 3 decimal places for better numerical
stability

fs = round(1/dt); % Round the sampling frequency

windowSize = round(5*fs); % Ensure integer window size

windowOverlap = 0.5; % 50% overlap for better transient
detection
CSF = 2.4477; % 95% confidence scaling factor

% Outlier detection parameters

outlierOptions = struct();

outlierOptions.signalThreshold = 3.5; % Z-score threshold for point
outliers
outlierOptions.windowQualityThreshold
valid data per window
outlierOptions.featureZscoreThreshold
level outliers
outlierOptions.subjectOutlierThreshold = 2;
level outliers
outlierOptions.waveletThreshold = 5;

based transient detection

70; % Minimum percentage of

R

3; % Threshold for feature-

R

4 Threshold for subject-

R

5 Threshold for wavelet-

% Butterworth filter design (0.01-0.60 Hz bandpass) [omitted, trivial]

% [section omitted - Data Handling, Subject Privacy]

B mmmmmmmm e STEP 1: Signal-level Outlier Detection ------

disp(' Detecting signal-level outliers...');

% Use multiple methods to detect signal outliers
% Method 1: Z-score based detection

zX = zscore(accelX);
zY = zscore(accelY);
zZ = zscore(accelZ);

outlierX_zscore = abs(zX) > outlierOptions.signalThreshold;
outlierY_zscore = abs(zY) > outlierOptions.signalThreshold;
outlierZ_zscore = abs(zZ) > outlierOptions.signalThreshold;

% Method 2: Wavelet-based transient detection with improved error
handling
% Decompose signal using wavelets to detect transients
try
% Initialize wavelet outputs as logical arrays
outlierX wavelet = false(size(accelX));
outlierY wavelet = false(size(accelY));
outlierZ_wavelet = false(size(accelZ));

% Try wavelet detection with error handling for each signal
try
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% Use 'db4' wavelet with 4 levels for better noise
detection
[cA, cD] = dwt(accelX, 'db4");
% Detect large detail coefficients as potential outliers
threshold = std(cD) * outlierOptions.waveletThreshold;
outlierX wavelet = abs(cD) > threshold;
% Upsample to match original signal length
outlierX_wavelet = interpl(1:length(outlierX_wavelet),
double(outlierX_wavelet),
linspace(1,
length(outlierX_wavelet), length(accelX)), 'nearest');
outlierX wavelet = logical(outlierX_wavelet);
catch wx
disp([' Warning: X-axis wavelet detection failed -
wx.message]);
end

try
[cA, cD] = dwt(accely, 'db4");
threshold = std(cD) * outlierOptions.waveletThreshold;
outlierY_wavelet = abs(cD) > threshold;
outlierY_wavelet = interpl(1l:length(outlierY_wavelet),
double(outlierY_wavelet),
linspace(1,
length(outlierY_wavelet), length(accelY)), 'nearest');
outlierY wavelet = logical(outlierY_wavelet);
catch wy
disp([' Warning: Y-axis wavelet detection failed -
wy.message]);
end

try
[cA, cD] = dwt(accelz, 'db4");
threshold = std(cD) * outlierOptions.waveletThreshold;
outlierZ wavelet = abs(cD) > threshold;
outlierzZ_wavelet = interpl(1l:length(outlierZ_wavelet),
double(outlierz_wavelet),
linspace(1,
length(outlierZ_wavelet), length(accelZ)), 'nearest');
outlierZ wavelet = logical(outlierZ wavelet);
catch wz
disp([' Warning: Z-axis wavelet detection failed -
wz.message]);
end

catch e
% If wavelet toolbox is not available or error occurs
disp([" Warning: Wavelet detection initialization failed -
e.message]);
outlierX wavelet = false(size(accelX));
outlierY wavelet = false(size(accelY));
outlierZ_wavelet = false(size(accelZ));

end

% Method 3: Moving median deviation
windowlLen = round(@.5 * fs); % 0.5 second window
medX = movmedian(accelX, windowLen);
medY = movmedian(accelY, windowLen);
medZ = movmedian(accelZ, windowLen);
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devX = abs(accelX - medX);
devY = abs(accelY - medY);
devZ = abs(accelZ - medZ);

madX = movmedian(devX, windowLen);
madY = movmedian(devY, windowlLen);
madZ = movmedian(devZ, windowLen);

outlierX_mad
outlierY_mad
outlierz_mad

devX > 3.5 * madX;
devY > 3.5 * mady;
devZ > 3.5 * madZ;

% Combine all outlier detection methods

outlierX = logical(outlierX_zscore) | outlierX_ wavelet |
logical(outlierX_mad);

outlierY = logical(outlierY_zscore) | outlierY_wavelet |
logical(outlierY_mad);

outlierZ = logical(outlierZ zscore) | outlierZ wavelet |
logical(outlierZ mad);

% Combined outliers mask
combinedOutliers = outlierX | outlierY | outlierZ;

% Print outlier statistics

percentOutliers = 100 * sum(combinedOutliers) /
length(combinedOutliers);

disp([' Found ' num2str(sum(combinedOutliers)) ' outlier
points (' num2str(percentOutliers, '%.2f") '%)']);

% Replace outliers with NaN and then interpolate
accelX_clean = accelX;

accelY_clean = accely;
accelZ clean = accelZ;
accelX_clean(outlierX) = NaN;
accelY_clean(outlierY) = NaN;
accelZ clean(outlierZ) = NaN;

% Interpolate missing values

accelX_clean = fillmissing(accelX_clean, 'linear');
accelY_clean = fillmissing(accelY_clean, 'linear');
accelZ clean = fillmissing(accelZ clean, 'linear');

% Save outlier statistics for this file
outlierStats(f).filename = filename;
outlierStats(f).subject = subject;
outlierStats(f).condition = condition;
outlierStats(f).totalPoints = length(accelX);
outlierStats(f).outlierPoints = sum(combinedOutliers);
outlierStats(f).outlierPercent = percentOutliers;

% Process in overlapping windows for better transient detection

% Calculate number of windows with overlap

stepSize = round(windowSize * (1 - windowOverlap)); % Ensure
integer step size

numWindows = floor((length(accelX) - windowSize) / stepSize) + 1;

fileFeatures = table();

validWindows = 9;
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% Check if we have enough data for at least one window
if numWindows < 1
disp(' Not enough data points for window analysis');
continue;
end

for w = 1:numWindows
% Extract window
startIdx = floor((w-1)*stepSize) + 1;
endIdx = min(floor(startIdx + windowSize - 1),
length(accelX));

% Check window quality - percentage of non-outlier data
points

windowOutliers = combinedOutliers(startIdx:endIdx);

windowQuality = 100 * (1 - sum(windowOutliers) /
length(windowOutliers));

% Skip windows with too many outliers
if windowQuality < outlierOptions.windowQualityThreshold

disp([' Skipping window ' num2str(w) ' due to poor
data quality (' num2str(windowQuality, '%.1f"') '%)']1);
continue;

end

validWindows = validWindows + 1;

% Window data (use cleaned version)
Ax_raw = accelX clean(startIdx:endIdx);
Ay raw = accelY_clean(startIdx:endIdx);

Az_raw = accelZ_clean(startIdx:endIdx);

% Apply filter to raw accelerometer data

Ax_filt = filtfilt(b, a, Ax_raw);
Ay filt = filtfilt(b, a, Ay_raw);
Az_filt = filtfilt(b, a, Az_raw);

% Calculate angular displacements
theta_pitch = atan2(Az_filt, sqrt(Ay filt.”2 + Ax_filt.”2));
theta_roll = atan2(Ax_filt, sqrt(Ay_filt.”2 + Az_filt.~2));

% Calculate DAP and DML using patient-specific height values
DAP = H1 * tan(theta_pitch);
DML = H2 * tan(theta_roll);

% Calculate displacement magnitude
dp = sqrt(DAP.~2 + DML."2);

% Calculate velocity
VEL = abs(diff(dp))/(1/fs);
VEL = [VEL; VEL(end)]; % Padding

% Calculate decomposition
ddap = abs(diff(DAP));

ddml = abs(diff(DML));
DEP = sqgrt(ddap.”2 + ddml.”2);
DEP = [DEP; DEP(end)]; % Padding



% Extract JF features
DAP_max = max(DAP);
DAP_min = min(DAP);
DML_max = max(DML);
DML _min = min(DML);

% Rectangle area
Rs = (DAP_max - DAP_min) * (DML_max - DML_min);

% 95% Confidence Ellipse Area
sigma_AP = std(DAP);
sigma_ML = std(DML);
a = CSF * sigma_AP;
b = CSF * sigma_ML;
CEA 95 = pi * a * b;

% RMS displacement
D RMS = sqgrt(mean(dp.”2));

% Displacement range
DR = max(dp) - min(dp);

% Additional features: AP and ML sway ranges
AP_range = DAP_max - DAP_min;
ML_range = DML_max - DML_min;

% Path length features
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path_length = sum(sqrt(diff(DAP).”2 + diff(DML)."2));

mean_velocity = path_length / (length(DAP)/fs);

% Store features for this window with metadata

windowFeatures = table(DAP_max, DAP_min, DML_max, DML_min,
Rs, CEA_95, D_RMS, DR,

mean(VEL), max(VEL), mean(DEP),

max(DEP),

AP_range, ML_range, path_length,

mean_velocity,

categorical({subject}),

categorical({condition}), windowQuality,
'VariableNames', {'DAP_max', 'DAP_min’,

'DML_max"', 'DML_min"',

IDRI,

'Rs', 'CEA 95', 'D_RMS',

'"VEL_mean',

'DEP_mean', 'DEP_max',

"AP_range',

‘path_length', 'mean_velocity',

'Subject’,

'"WindowQuality'});

fileFeatures = [fileFeatures; windowFeatures];

% Update outlier stats with window information
outlierStats(f).totalWindows = numWindows;
outlierStats(f).validWindows = validWindows;
outlierStats(f).percentValidWindows = 100 * validWindows /
numWindows;

% Only save features if we found valid windows
if validWindows > @

'"VEL_max',
'ML_range',

"Condition’',
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% Store features for entire file
try
writetable(fileFeatures, fullfile(baseDir, [filename
' features.csv']));
catch e
disp([' Warning: Could not save features CSV -
e.message]);
% Try a simpler filename
writetable(fileFeatures, fullfile(baseDir, ['features_
num2str(f) '.csv']));
end

% Add to collection of all features
allFeatures = [allFeatures; fileFeatures];
else
disp(['Warning: No valid data windows found in ' filenamel]);
end
end

% Save outlier statistics
try

save(fullfile(baseDir, 'outlier statistics.mat'),
'outlierStats');

writetable(struct2table(outlierStats), fullfile(baseDir,
'outlier statistics.csv'));
catch e

disp([ 'Warning: Could not save outlier statistics -
e.message]);
end

disp(['Processed ' num2str(length(filenames)) ' files. Found
num2str(height(allFeatures)) ' valid windows.']);

% Check if we have enough data to continue
if height(allFeatures) < 10
error('Not enough valid data windows for analysis. Check input
data and parameters.');
end

%% STEP 2: Feature-level Outlier Detection
disp('Detecting feature-level outliers...');

% Feature columns to check for outliers

featureCols = {'DAP_max', 'DAP_min', 'DML_max', 'DML_min', 'Rs',
'"CEA_95', 'D_RMS', 'DR', 'VEL_mean', 'VEL_max', 'AP_range',
'ML_range'};

% Get Z-scores for all numeric features
featurezScores = zeros(height(allFeatures), length(featureCols));
for i = 1l:length(featureCols)

featurezScores(:,i) = zscore(allFeatures. (featureCols{i}));
end

% Flag rows with extreme values in any feature
maxAbsZScores = max(abs(featureZScores), [], 2);
featureOutliers = maxAbsZScores >
outlierOptions.featureZscoreThreshold;

% Display feature outlier counts
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disp([" Found ' num2str(sum(featureOutliers)) ' feature-level
outliers out of ' num2str(height(allFeatures)) ' windows ('
num2str(100*sum(featureOutliers)/height(allFeatures), '%.2f') '%)']);

% Mark feature outliers in the dataset
allFeatures.FeatureOutlier = featureOutliers;

% Visualize feature distributions with outliers
featureFig = figure('Name', 'Feature Distributions with Outliers',
"NumberTitle', 'off');
for i = 1l:length(featureCols)
subplot(ceil(length(featureCols)/2), 2, i);

% Non-outliers in blue, outliers in red
boxplot(allFeatures. (featureCols{i}));
hold on;

% Highlight outliers
featureOutlierIdx = abs(featureZScores(:,i)) >
outlierOptions.featureZscoreThreshold;
scatter(ones(sum(featureOutlierIdx),1),
allFeatures. (featureCols{i})(featureOutlierIdx), 'r', 'filled');

title(featureCols{i});
grid on;
end
sgtitle('Feature Distributions with Outliers');

% Save feature distribution figure
try

saveas(featureFig, fullfile(plotsDir,
'feature_distributions.png'));

saveas(featureFig, fullfile(plotsDir,
"feature_distributions.fig'));
catch e

disp(['Warning: Could not save feature distributions figure -
e.message]);

print(featurefFig, fullfile(plotsDir,
'feature_distributions.png'), '-dpng');
end

%% STEP 3: Subject-level Outlier Detection
disp('Detecting subject-level outliers...');

% Get unique subjects
subjects = unique(allFeatures.Subject);
numSubjects = length(subjects);

% Calculate mean feature values for each subject
subjectFeatures = table();
for i = 1:numSubjects

subjectIdx = allFeatures.Subject == subjects(i);

% Skip subjects with feature outliers
validSubjectIdx = subjectIdx & ~featureOutliers;

if sum(validSubjectIdx) ==
disp(["' Warning: Subject ' char(subjects(i)) ' has no valid
data after feature outlier removal']);
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continue;
end

% Calculate mean of each feature for this subject
subjectRow = table();
subjectRow.Subject = subjects(i);
for j = 1:length(featureCols)
subjectRow. (featureCols{j}) =
mean(allFeatures. (featureCols{j})(validSubjectIdx));
end

subjectFeatures = [subjectFeatures; subjectRow];
end

% Calculate Z-scores for subject-level features
subjectZScores = zeros(height(subjectFeatures), length(featureCols));
for i = 1:length(featureCols)

subjectZScores(:,i) = zscore(subjectFeatures. (featureCols{i}));
end

% Identify subject outliers

maxSubjectZScores = max(abs(subjectZScores), [], 2);
subjectOutliers = maxSubjectZScores >
outlierOptions.subjectOutlierThreshold;

outlierSubjects = subjectFeatures.Subject(subjectOutliers);

% Display subject outlier information
disp([" Found " num2str(sum(subjectOutliers)) ' outlier subjects out
of ' num2str(numSubjects) ' total subjects']);
if sum(subjectOutliers) > ©

disp(' Outlier subjects:');

for i = 1:length(outlierSubjects)

disp([' - ' char(outlierSubjects(i))]);

end

end

% Mark subject outliers in the dataset

allFeatures.SubjectOutlier = false(height(allFeatures), 1);

for i = 1:length(outlierSubjects)
allFeatures.SubjectOutlier(allFeatures.Subject ==

outlierSubjects(i)) = true;

end

% Visualize subject outliers
if height(subjectFeatures) > 3
figure;
[coeff, score, ~] = pca(subjectZScores);
scatter(score(:,1), score(:,2), 50, ~subjectOutliers, 'filled');
hold on;

% Label outlier subjects
for i = find(subjectOutliers)"'
text(score(i,1), score(i,2),
char(subjectFeatures.Subject(i)), 'FontSize', 8);
end

xlabel('Principal Component 1');
ylabel('Principal Component 2");
title('Subject Feature Space (PCA) with Outliers');
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colormap([1 @ ©; © @ 1]); % Red for outliers, blue for normal
colorbar('YTick', [0.25 ©.75], 'YTickLabel', {'Outlier',
"Normal'});
end

%% Create clean dataset (remove all outliers)

cleanFeatures = allFeatures(~allFeatures.FeatureOutlier &

~allFeatures.SubjectOutlier, :);

disp(['Final clean dataset: '

windows (' .
num2str(100*height(cleanFeatures)/height(allFeatures), '%.2f")

'% of original data)']);

num2str(height(cleanFeatures)) '

% Save clean features
writetable(cleanFeatures, [path filesep 'clean_features.csv']);

% Save all features with outlier flags
writetable(allFeatures, [path filesep
'all features_with outliers.csv']);

%% Label data based on condition information (if available)
disp('Assigning stability classes based on condition labels...");

% Try to extract true stability class from condition names

% Assuming conditions have names that indicate stability state
% e.g., "stable", "ap_sway", "ml sway", "unstable"
conditionLabels = unique(cleanFeatures.Condition);
disp(['Found conditions: ' strjoin(cellstr(conditionLabels), ', ')]);

% Check if we need to manually map conditions to classes
if length(conditionLabels) > ©
useManualMapping = true;
try
% Try to automatically map (customize based on your data)
classMap = containers.Map();

% Iterate through condition labels and try to identify
patterns
for i = 1:length(conditionLabels)
cond = lower(char(conditionLabels(i)));

if contains(cond, 'stab') && ~contains(cond, ‘unstab')
classMap(char(conditionLabels(i))) = @; % Stable
elseif contains(cond, 'ap') || contains(cond, 'ant') ||
contains(cond, 'post')
classMap(char(conditionLabels(i))) = 1; % Antero-
Posterior
elseif contains(cond, 'ml') || contains(cond, 'med') ||
contains(cond, 'lat')
classMap(char(conditionLabels(i))) = 2; % Medio-

Lateral
elseif contains(cond, 'unstab') || contains(cond, 'dist')
classMap(char(conditionLabels(i))) = 3; % Unstable
else
useManualMapping = true;
break;

end
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useManualMapping = false;
end
catch
useManualMapping = true;
end

% If automatic mapping failed, ask user
if useManualMapping
disp('Could not automatically map conditions to stability
classes.');
disp('Please map each condition to a stability class:');

disp(' © = Stable');

disp(' 1 = Antero-Posterior Sway');
disp(' 2 = Medio-Lateral Sway');
disp(' 3 = Unstable');

classMap = containers.Map();
for i = 1:1length(conditionLabels)
defaultClass = @; % Default to stable
classNum = input(['Enter class for condition
char(conditionLabels(i)) '" (©-3): '1);
if isempty(classNum) || classNum < @ || classNum > 3
classNum = defaultClass;

end
classMap(char(conditionLabels(i))) = classNum;
end
end

% Map conditions to classes
cleanFeatures.TrueClass = zeros(height(cleanFeatures), 1);
for i = 1l:height(cleanFeatures)
condition = char(cleanFeatures.Condition(i));
if isKey(classMap, condition)
cleanFeatures.TrueClass(i) = classMap(condition);
end
end

disp('Class labels assigned based on conditions.');
else
disp('No clear condition information for labeling. Will proceed
with unsupervised approach.');
% Use clustering to define "true" classes
cleanFeatures.TrueClass = NaN(height(cleanFeatures), 1);
end

%% Apply clustering to determine stability classes
disp('Clustering data to determine stability classes...');

% Select key features for clustering
X = [cleanFeatures.D_RMS, cleanFeatures.AP_range,
cleanFeatures.ML_range, cleanFeatures.CEA 95];

% Standardize features
X = zscore(X);

% Apply K-means clustering (4 classes as in original algorithm)
rng(1l); % For reproducibility
[clusterIdx, centroids] = kmeans(X, 4, 'Replicates’', 10);
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% Map cluster indices to sway classes (©=Stable, 1=AP, 2=ML,
3=Unstable)

% Find the most stable cluster (lowest RMS displacement)

[~, stableClusterIdx] = min(centroids(:,1)); % First feature is D_RMS

% Find AP dominant cluster (largest AP range)
[~, apClusterIdx] = max(centroids(:,2));

% Find ML dominant cluster (largest ML range)
[~, mlClusterIdx] = max(centroids(:,3));

% The remaining cluster is unstable
unstableClusterIdx = setdiff(1:4, [stableClusterIdx, apClusterIdx,
mlClusterIdx]);
if length(unstableClusterIdx) > 1
% If there's ambiguity, use the cluster with highest RMS but not
largest in specific direction
rmsValues = centroids(:,1);
rmsValues([stableClusterIdx, apClusterIdx, mlClusterIdx]) = -Inf;
[~, unstableClusterIdx] = max(rmsValues);
end

% Create mapping from cluster indices to sway classes
clusterToClass = zeros(4,1);
clusterToClass(stableClusterIdx) = ©;
clusterToClass(apClusterIdx) = 1;
clusterToClass(mlClusterIdx) = 2;
clusterToClass(unstableClusterIdx) = 3;

% Apply mapping to get sway classes
clusteredClass = clusterToClass(clusterIdx);

% Use TrueClass if available, otherwise use clustered class
if all(isnan(cleanFeatures.TrueClass))
cleanFeatures.Class = clusteredClass;
else
cleanFeatures.Class = cleanFeatures.TrueClass;
% Also save clustered class for comparison
cleanFeatures.ClusteredClass = clusteredClass;
end

% [Section Omitted due to trivial - Display clustering results]

%% ROC Analysis for Threshold Optimization with Leave-One-Class-Out
disp('Performing ROC analysis with leave-one-class-out threshold
optimization...");

% Create ROC figure
rocFigure = figure('Name', 'ROC Curves with Leave-One-Class-Out',
'Position', [100, 100, 1200, 800]);

% Features to analyze with ROC
rocFeatures = {'D_RMS', 'AP_range', 'ML_range', 'CEA _95'};
optimalThresholds = struct();

% Get unique classes
uniqueClasses = unique(cleanFeatures.Class);
numClasses = length(uniqueClasses);
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% Perform One-vs-Rest ROC analysis for each class and feature with
leave-one-class-out
for classIdx = 0:3

% Create subplot for this class

subplot(2, 2, classIdx+l);

% Title for this subplot

title(['ROC for Class ' num2str(classIdx) ' ('
classNames{classIdx+1} ') with Leave-One-Out']);

hold on;

% Initialize arrays to store thresholds and performances for each

holdout

leaveOneOutThresholds = zeros(numClasses, length(rocFeatures));
leaveOneQOutPerformance = zeros(numClasses, length(rocFeatures));

% For each possible holdout class
for holdoutClass = uniqueClasses'

% Skip if holdout class is the current target class (we need

some positive examples)

if holdoutClass == classIdx
continue;
end

% Get training indices (all samples except holdout class)
trainIndices = cleanFeatures.Class ~= holdoutClass;

% One-vs-Rest encoding for training set
binarylLabels = (cleanFeatures.Class(trainIndices) ==

classIdx);

% Analyze each feature

for featIdx = 1:length(rocFeatures)
featureName = rocFeatures{featIdx};
featureValues =

cleanFeatures. (featureName) (trainIndices);

% Sort values for ROC analysis
[sortedvals, sortIdx] = sort(featureValues);
sortedLabels = binarylLabels(sortIdx);

% Calculate TPR and FPR for different thresholds
nPoints = length(sortedvals);

TPR = zeros(nPoints, 1);

FPR = zeros(nPoints, 1);

% Determine if higher values indicate the class (true) or

not (false)

better

isGreaterBetter = true;
if (classIdx == @) % For stable class, lower values are

isGreaterBetter = false;
elseif (classIdx == 1 && strcmp(featureName,

"AP_range')) % For AP class, higher AP_range is better

isGreaterBetter = true;
elseif (classIdx == 2 && strcmp(featureName,

'ML_range')) % For ML class, higher ML_range is better

isGreaterBetter = true;
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elseif (classIdx == 3) % For unstable class, higher
values are better
isGreaterBetter = true;
else

isGreaterBetter = false;

end

% Calculate ROC points
for 1 = 1:nPoints
if isGreaterBetter
% Threshold: classify as positive if value 2>

threshold
predictions = featureValues >= sortedVals(i);
else
% Threshold: classify as positive if value <
threshold
predictions = featureValues <= sortedVals(i);
end
% Calculate TPR and FPR with error handling for edge
cases
TP = sum(predictions & binaryLabels);
FP = sum(predictions & ~binarylLabels);
TN = sum(~predictions & ~binarylLabels);
FN = sum(~predictions & binarylLabels);
% Handle division by zero
if (TP + FN) == @
TPR(1) = 0;
else
TPR(i) = TP / (TP + FN);
end
if (FP + TN) == @
FPR(i) = 0;
else
FPR(i) = FP / (FP + TN);
end
end
% Find optimal threshold (Youden's J statistic: max(TPR-
FPR))

J = TPR - FPR;
[maxJ, maxIdx] = max(3J);
optThreshold = sortedVals(maxIdx);

% Store the threshold for this holdout
leaveOneOutThresholds(holdoutClass+1l, featIdx) =
optThreshold;

% Evaluate on holdout data
holdoutIndices = cleanFeatures.Class == holdoutClass;
holdoutFeatureValues =
cleanFeatures. (featureName) (holdoutIndices);
holdoutLabels = (cleanFeatures.Class(holdoutIndices) ==
classIdx);

% Apply threshold to holdout
if isGreaterBetter
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holdoutPredictions = holdoutFeatureValues >=
optThreshold;
else
holdoutPredictions = holdoutFeatureValues <=
optThreshold;
end

% Calculate accuracy on holdout
holdoutAccuracy = sum(holdoutPredictions ==
holdoutLabels) / length(holdoutLabels);
leaveOneOutPerformance(holdoutClass+1, featIdx) =
holdoutAccuracy;
end
end

% For each feature, compute the mean threshold and evaluate
overall performance
for featIdx = 1:1length(rocFeatures)
featureName = rocFeatures{featIdx};

% Calculate mean threshold (excluding zeros which are from
skipped iterations)

thresholds = leaveOneOutThresholds(:, featIdx);

thresholds = thresholds(thresholds ~= 0);

meanThreshold = mean(thresholds);

% Apply mean threshold to full dataset
featureValues = cleanFeatures. (featureName);
fullBinarylLabels = (cleanFeatures.Class == classIdx);

% Determine if higher values indicate the class (true) or not
(false)
isGreaterBetter = true;
if (classIdx == @) % For stable class, lower values are
better
isGreaterBetter = false;
elseif (classIdx == 1 && strcmp(featureName, 'AP_range')) %
For AP class, higher AP_range is better
isGreaterBetter = true;
elseif (classIdx == 2 && strcmp(featureName, 'ML _range')) %
For ML class, higher ML_range is better
isGreaterBetter = true;
elseif (classIdx == 3) % For unstable class, higher values
are better
isGreaterBetter = true;
else
isGreaterBetter = false;
end

% Calculate ROC for the full dataset using varying thresholds

threshRange = linspace(min(featurevalues),
max(featureValues), 100);

fullTPR = zeros(length(threshRange), 1);

fullFPR = zeros(length(threshRange), 1);

for i = 1:length(threshRange)
threshold = threshRange(i);

if isGreaterBetter
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predictions
else

predictions
end

featureValues >= threshold;

featureValues <= threshold;

% Calculate TPR and FPR

TP = sum(predictions & fullBinaryLabels);
FP = sum(predictions & ~fullBinarylLabels);
TN = sum(~predictions & ~fullBinaryLabels);
FN = sum(~predictions & fullBinarylabels);

% Handle division by zero

if (TP + FN) ==

fullTPR(i) = O;
else

fullTPR(i) = TP / (TP + FN);
end

if (FP + TN) == @
fullFPR(i)
else
fullFPR(1i)
end

]
(]
[

FP / (FP + TN);
end

% Plot ROC curve
plot(fullFPR, fullTPR, 'LineWidth', 2, 'DisplayName’,
featureName);

% Calculate AUC
AUC = trapz(fullFPR, fullTPR);

% Store optimal threshold

if ~isfield(optimalThresholds, featureName)
optimalThresholds. (featureName) = zeros(4,1);

end

optimalThresholds. (featureName)(classIdx+1l) = meanThreshold;

% Find performance metrics at mean threshold
if isGreaterBetter

predictions = featureValues >= meanThreshold;
else

predictions = featureValues <= meanThreshold;
end

TP = sum(predictions & fullBinarylLabels);

FP = sum(predictions & ~fullBinarylLabels);
TN = sum(~predictions & ~fullBinarylLabels);
FN = sum(~predictions & fullBinarylLabels);

if (TP + FN) > ©

optTPR = TP / (TP + FN);
else

optTPR = 0O;
end

if (FP + TN) > @
optFPR = FP / (FP + TN);
else
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OptFPR = 0O;
end

% Mark optimal threshold on the curve
plot(optFPR, optTPR, 'ro', 'MarkerSize', 8,
'MarkerFaceColor', 'r');

% Display results
disp([' Class ' num2str(classIdx) ' - ' featureName ': AUC =
" num2str(AUC, '%.3f') ...

', Leave-One-Out Threshold = ' num2str(meanThreshold,
"%.AFT) ...
" (TPR = " num2str(optTPR, '%.3f"') ...
', FPR = " num2str(optFPR, '%.3f"') ")']);
% Also print the variation in thresholds
disp([’ Threshold std: ' num2str(std(thresholds),
"%.4F") ...
', min: " num2str(min(thresholds), '%.4f') ...
', max: ' num2str(max(thresholds), '%.4f')]);
end

% Add reference line
plot([o,1], [@,1], 'k--', 'DisplayName', 'Random");
xlabel('False Positive Rate');
ylabel('True Positive Rate');
grid on;
legend('show', 'Location', 'southeast');
hold off;
end

%% Feature Importance Analysis based on ROC
disp('Calculating feature importance using RI metric...');

% Get unique features

featureNames = rocFeatures;

classes = unique(cleanFeatures.Class);
numClasses = length(classes);

% Create structure for feature importance
featureImportance = struct();

% Calculate Relative Importance (RI) for each feature
for i = 1:length(featureNames)

featureName = featureNames{i};

featureValues = cleanFeatures. (featureName);

% Calculate RI for each class
for j = 1:numClasses
classIdx = classes(j);
className = classNames{classIdx+1};

% Get threshold for this feature and class from optimal
thresholds
Jth = optimalThresholds. (featureName)(classIdx+1);

% Calculate |JF_i,q - Jth_q| / max(3IF_i,q - Jth_q) for each
sample
diffValues = abs(featureValues - Jth);
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maxDiff = max(diffValues);

% Handle case where maxDiff is © to avoid division by zero

if maxDiff ==

normalizedDiffs = zeros(size(diffValues));
else

normalizedDiffs = diffValues / maxDiff;
end

% Calculate RI_q: RI_g% = 100 * (1/N * sum(...))
RI = 100 * (1 - mean(normalizedDiffs));

% Store RI value

if ~isfield(featureImportance, featureName)
featureImportance. (featureName) = zeros(numClasses, 1);

end

featureImportance. (featureName)(classIdx+1) = RI;

disp([" Feature ' featureName ' importance for class
className ': RI = ' num2str(RI, '%.2f"') '%']);
end
end

% Store best features with valid field names
bestFeatures = struct();
for j = 1:numClasses
classIdx = classes(j);
className = classNames{classIdx+1};
% Convert class name to valid field name
fieldName = matlab.lang.makeValidName(className);

% Find feature with highest RI for this class
maxRI = -Inf;

bestFeature = ;

for i = 1:length(featureNames)
featureName = featureNames{i};
if featureImportance.(featureName)(classIdx+1l) > maxRI
maxRI = featureImportance.(featureName)(classIdx+1l);
bestFeature = featureName;
end
end

bestFeatures.(fieldName) = bestFeature;

disp([' Best feature for ' className ': ' bestFeature ' (RI = '
num2str(maxRI, '%.2f') '%)']);
end

% Save feature importance information
featureImportanceTable = struct2table(featureImportance);
writetable(featureImportanceTable, [path filesep
'feature_importance.csv']);

% Create feature importance visualization
figure('Name', 'Feature Importance by Class');
bar(cell2mat(struct2cell(featureImportance)'));
xticklabels(classNames);

legend(featureNames);

ylabel('Relative Importance (%)');



title('Feature Importance by Stability Class');
grid on;

%% training
%% Hyperparameter Tuning for Multiple Classifiers

disp('Performing hyperparameter tuning for each classifier...

% Use only valid labeled data

validIdx = ~isnan(cleanFeatures.TrueClass);
X = cleanFeatures{validIdx, rocFeatures};
Y = cleanFeatures.TrueClass(validIdx);

% Set cross-validation settings for hyperparameter tuning
% We'll use fewer folds for tuning to speed up the process
tuningCVPartition = cvpartition(yY, 'KFold', 3);

% Initialize results

classifierNames = {};

numFolds = 5; % For final evaluation
allAccuracies = zeros(@, numFolds);
bestParams = {};

tuningResults = {};

% Set cross-validation settings for final evaluation
finalCVPartition = cvpartition(Y, 'KFold', numFolds);

%% 1. Decision Tree Tuning

disp('Tuning Decision Tree...');

% Define parameter grid for Decision Tree
dtParams = struct();

dtParams.MaxNumSplits = [5, 10, 20, 50, 100];
dtParams.MinLeafSize = [1, 5, 10, 20];

% Initialize storage for results
dtResults = zeros(length(dtParams.MaxNumSplits),
length(dtParams.MinLeafSize));

% Perform grid search
for i = 1:length(dtParams.MaxNumSplits)
for j = 1l:length(dtParams.MinLeafSize)
maxSplits = dtParams.MaxNumSplits(i);
minLeaf = dtParams.MinLeafSize(j);

)5
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% Use cross-validation to evaluate this parameter combination

cvAcc = zeros(1l, tuningCVPartition.NumTestSets);

for k = 1:tuningCVPartition.NumTestSets
trainIdx = tuningCVPartition.training(k);
testIdx = tuningCVPartition.test(k);

dtModel = fitctree(X(trainIdx,:), Y(trainIdx),

'"MaxNumSplits', maxSplits, 'MinLeafSize', minLeaf);

predictions = predict(dtModel, X(testIdx,:));
cvAcc(k) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

% Store average accuracy for this parameter combination

dtResults(i, j) = mean(cvAcc);
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end
end

% Find best parameters

[maxval, maxIdx] = max(dtResults(:));

[i_best, j_best] = ind2sub(size(dtResults), maxIdx);
bestDTMaxSplits = dtParams.MaxNumSplits(i_best);
bestDTMinLeaf = dtParams.MinLeafSize(j_best);

% Store tuning results

dtTuningResult = struct();

dtTuningResult.paramGrid = dtResults;

dtTuningResult.bestAccuracy = maxVal;

dtTuningResult.bestParams = struct('MaxNumSplits', bestDTMaxSplits,
'MinLeafSize', bestDTMinLeaf);

tuningResults{end+1} = dtTuningResult;

% Display best parameters
fprintf('Best Decision Tree parameters: MaxNumSplits=%d,
MinLeafSize=%d (CV Accuracy: %.4f)\n',

bestDTMaxSplits, bestDTMinLeaf, maxVal);

% Evaluate best model on all folds
dtFoldAcc = zeros(1l, numFolds);
for i = 1:numFolds
trainIdx = finalCVPartition.training(i);
testIdx = finalCVPartition.test(i);

% Train with best parameters
dtModel = fitctree(X(trainldx,:), Y(trainIdx),
"MaxNumSplits', bestDTMaxSplits, 'MinLeafSize’,
bestDTMinLeaf);

predictions = predict(dtModel, X(testIdx,:));
dtFoldAcc(i) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

classifierNames{end+1} = 'Decision Tree (Tuned)';
allAccuracies(end+1,:) = dtFoldAcc;

bestParams{end+1} = sprintf('MaxSplits=%d, MinLeaf=%d",
bestDTMaxSplits, bestDTMinLeaf);

%% 2. KNN Tuning

disp('Tuning KNN..."');

% Define parameter grid for KNN

knnParams = struct();

knnParams.NumNeighbors = [1, 3, 5, 7, 9, 11, 15];
knnParams.Distance = {'euclidean', 'cityblock', 'cosine’,
"correlation'};

knnParams.Standardize = [true, false];

% Initialize storage for results
knnResults = zeros(length(knnParams.NumNeighbors),
length(knnParams.Distance), length(knnParams.Standardize));

% Perform grid search
for i = 1:length(knnParams.NumNeighbors)
for j = 1:length(knnParams.Distance)
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for k = 1:length(knnParams.Standardize)
numNeighbors = knnParams.NumNeighbors(i);
distance = knnParams.Distance{j};
standardize = knnParams.Standardize(k);

% Use cross-validation to evaluate this parameter
combination
cvAcc = zeros(1l, tuningCVPartition.NumTestSets);
for fold = 1:tuningCVPartition.NumTestSets
trainIdx = tuningCVPartition.training(fold);
testIdx = tuningCVPartition.test(fold);

knnModel = fitcknn(X(trainIdx,:), Y(trainIdx),
"NumNeighbors', numNeighbors, 'Distance’,
distance, 'Standardize', standardize);

predictions = predict(knnModel, X(testIdx,:));
cvAcc(fold) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));

end

% Store average accuracy for this parameter combination
knnResults(i, j, k) = mean(cvAcc);
end
end
end

% Find best parameters

[maxVal, maxIdx] = max(knnResults(:));

[i_best, j best, k_best] = ind2sub(size(knnResults), maxIdx);
bestKnnNeighbors = knnParams.NumNeighbors(i_best);
bestkKnnDistance = knnParams.Distance{j_best};
bestkKnnStandardize = knnParams.Standardize(k_best);

% Store tuning results
knnTuningResult = struct();
knnTuningResult.paramGrid = knnResults;
knnTuningResult.bestAccuracy = maxVal;
knnTuningResult.bestParams = struct('NumNeighbors",
bestkKnnNeighbors,
'Distance’', bestKnnDistance,
'Standardize’,
bestkKnnStandardize);
tuningResults{end+1} = knnTuningResult;

% Display best parameters
fprintf('Best KNN parameters: NumNeighbors=%d, Distance=¥%s,
Standardize=%d (CV Accuracy: %.4f)\n',

bestknnNeighbors, bestKnnDistance, bestKnnStandardize, maxVal);

% Evaluate best model on all folds
knnFoldAcc = zeros(1l, numFolds);
for i = 1:numFolds
trainIdx = finalCVPartition.training(i);
testIdx = finalCVPartition.test(i);

% Train with best parameters
knnModel = fitcknn(X(trainIdx,:), Y(trainIdx),
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‘NumNeighbors®, bestKnnNeighbors, 'Distance’,
bestkKnnDistance, 'Standardize', bestKnnStandardize);

predictions = predict(knnModel, X(testIdx,:));
knnFoldAcc(i) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

classifierNames{end+1}
bestknnDistance);
allAccuracies(end+1,:) = knnFoldAcc;

bestParams{end+1} = sprintf('k=%d, dist=%s, std=%d',
bestKnnNeighbors, bestKnnDistance, bestKnnStandardize);

sprintf('k-NN (k=%d, %s)', bestKnnNeighbors,

%% 3. SVM Tuning

disp('Tuning SVM...");

% Define parameter grid for SVM

svmParams = struct();

svmParams.KernelFunction = {'linear’, 'rbf', 'polynomial'};
svmParams.BoxConstraint = [0.1, 1, 10, 100];
svmParams.KernelScale = [0.1, 1, 10];

svmParams.Coding = {'onevsone', ‘'onevsall'};

% Initialize storage for results - this will be sparse because not
all combinations make sense
svmResults = zeros(length(svmParams.KernelFunction),
length(svmParams.BoxConstraint),

length(svmParams.KernelScale),
length(svmParams.Coding));

% Perform grid search - Using a simpler approach for SVM due to
computational intensity
bestSVMAcc = 0;
bestSVMKernel = '';
bestSVMBoxConstraint =
bestSVMKernelScale = 0;
bestSVMCoding = '';

o;

% We'll use a more focused search for SVM due to computational
complexity
for i = 1:length(svmParams.KernelFunction)
for j = 1:length(svmParams.BoxConstraint)
for k = 1:length(svmParams.KernelScale)
for 1 = 1:length(svmParams.Coding)
kernelFunc = svmParams.KernelFunction{i};
boxConstraint = svmParams.BoxConstraint(j);
kernelScale = svmParams.KernelScale(k);
coding = svmParams.Coding{l};

% Use cross-validation to evaluate this parameter
combination
cvAcc = 0;

% For SVM we'll just do a single fold to save time
during tuning

fold = 1;

trainIdx = tuningCVPartition.training(fold);

testIdx = tuningCVPartition.test(fold);



try

Y(trainIdx),
kernelFunc,
boxConstraint,

kernelScale),

length(Y(testIdx));

svmModel = fitcecoc(X(trainldx,:),
"Learners', templateSVM('KernelFunction',
'BoxConstraint',
'KernelScale',
"Coding', coding);

predictions = predict(svmModel, X(testIdx,:));
cvAcc = sum(predictions == Y(testIdx)) /

% Store result
svmResults(i, j, k, 1) = cvAcc;

% Update best if better

if cvAcc > bestSVMAcc
bestSVMAcc = cvAcc;
bestSVMKernel = kernelFunc;
bestSVMBoxConstraint = boxConstraint;
bestSVMKernelScale = kernelScale;
bestSVMCoding = coding;

end

catch
% Some parameter combinations might cause errors

end

end
end
end
end

svmResults(i, j, k, 1) = 0;

% Store tuning results

svmTuningResult = struct();

svmTuningResult.paramGrid = svmResults;
svmTuningResult.bestAccuracy = bestSVMAcc;
svmTuningResult.bestParams = struct('KernelFunction',

bestSVMKernel,

'BoxConstraint',

bestSVMBoxConstraint,

bestSVMKernelScale,

'KernelScale',

'Coding', bestSVMCoding);

tuningResults{end+1} = svmTuningResult;

% Display best parameters

fprintf('Best SVM parameters: Kernel=%s, BoxConstraint=%.2f,

KernelScale=%.2f, Coding=%s (CV Accuracy: %.4f)\n’,
bestSVMKernel, bestSVMBoxConstraint, bestSVMKernelScale,

bestSVMCoding, bestSVMAcc);

% Evaluate best model on all folds
svmFoldAcc = zeros(1l, numFolds);

for 1 = 1:numFolds

trainIdx = finalCVPartition.training(i);
testIdx = finalCVPartition.test(i);
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% Train with best parameters
svmModel = fitcecoc(X(trainIdx,:), Y(trainIdx),
"Learners', templateSVM('KernelFunction', bestSVMKernel,
'BoxConstraint’',
bestSVMBoxConstraint,
'KernelScale',
bestSVMKernelScale),
"Coding', bestSVMCoding);

predictions = predict(svmModel, X(testIdx,:));
svmFoldAcc(i) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

classifierNames{end+1} = sprintf('SVM (%s)', bestSVMKernel);
allAccuracies(end+1,:) = svmFoldAcc;

bestParams{end+1} = sprintf('Kernel=%s, C=%.1f, Scale=%.1f"',
bestSVMKernel, bestSVMBoxConstraint, bestSVMKernelScale);

%% 4. Random Forest / Ensemble Tuning

disp('Tuning Random Forest...");

% Define parameter grid for Random Forest

rfParams = struct();

rfParams.Method = {'Bag', 'GentleBoost', 'LogitBoost', 'AdaBoostM2'};
rfParams.NumLearningCycles = [10, 50, 100, 200];

rfParams.LearnRate = [0.1, 0.5, 1.0]; % Only for boosting methods

% Initialize storage for results
rfResults = zeros(length(rfParams.Method),
length(rfParams.NumLearningCycles), length(rfParams.LearnRate));

% Perform grid search
bestRFAcc = 9;
bestRFMethod = '';
bestRFCycles = 0;
bestRFLearnRate = 0;

for i = 1:length(rfParams.Method)
for j = 1l:length(rfParams.NumLearningCycles)
for k = 1:length(rfParams.LearnRate)
method = rfParams.Method{i};
cycles = rfParams.NumLearningCycles(j);
learnRate = rfParams.LearnRate(k);

% Skip LearnRate for Bagging

if strcmp(method, 'Bag') & & k > 1
continue;

end

% Use cross-validation to evaluate this parameter
combination
cvAcc = zeros(1l, tuningCVPartition.NumTestSets);
try
for fold = 1:tuningCVPartition.NumTestSets
trainIdx = tuningCVPartition.training(fold);
testIdx = tuningCVPartition.test(fold);

if strcmp(method, 'Bag')
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% Bagging doesn't use learning rate
rfModel = fitcensemble(X(trainldx,:),

Y(trainIdx),
'Method', method, 'NumLearningCycles’,
cycles);
else
% Boosting methods use learning rate
rfModel = fitcensemble(X(trainldx,:),
Y(trainIdx),

'Method', method, ‘NumLearningCycles’,
cycles, 'LearnRate', learnRate);

end
predictions = predict(rfModel, X(testIdx,:));
cvAcc(fold) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

% Store average accuracy for this parameter
combination

meanAcc = mean(cvAcc);

rfResults(i, j, k) = meanAcc;

% Update best if better
if meanAcc > bestRFAcc
bestRFAcc = meanAcc;
bestRFMethod = method;
bestRFCycles = cycles;
if ~strcmp(method, 'Bag')
bestRFLearnRate = learnRate;
end
end
catch
% Some combinations might cause errors
rfResults(i, j, k) = 0;
end
end
end
end

% Store tuning results
rfTuningResult = struct();
rfTuningResult.paramGrid = rfResults;
rfTuningResult.bestAccuracy = bestRFAcc;
if strcmp(bestRFMethod, 'Bag’)
rfTuningResult.bestParams = struct('Method', bestRFMethod,
"NumLearningCycles', bestRFCycles);
paramStr = sprintf('Method=%s, Cycles=%d', bestRFMethod,
bestRFCycles);
else
rfTuningResult.bestParams = struct('Method', bestRFMethod,
"NumLearningCycles',
bestRFCycles,
"LearnRate', bestRFLearnRate);
paramStr = sprintf('Method=%s, Cycles=%d, LearnRate=%.1f",
bestRFMethod, bestRFCycles, bestRFLearnRate);
end
tuningResults{end+1} = rfTuningResult;



% Display best parameters

fprintf('Best Random Forest parameters: %s (CV Accuracy: %.4f)\n',

paramStr, bestRFAcc);

% Evaluate best model on all folds

rfFoldAcc = zeros(1l, numFolds);

for i = 1:numFolds
trainIdx = finalCVPartition.training(i);
testIdx = finalCVPartition.test(i);

% Train with best parameters
if strcmp(bestRFMethod, 'Bag')

rfModel = fitcensemble(X(trainIdx,:), Y(trainIdx),

'Method', bestRFMethod, 'NumLearningCycles’,
bestRFCycles);
else

rfModel = fitcensemble(X(trainIdx,:), Y(trainIdx),

'Method', bestRFMethod, ‘NumLearningCycles’,
bestRFCycles, 'LearnRate', bestRFLearnRate);
end

predictions = predict(rfModel, X(testIdx,:));
rfFoldAcc(i) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

classifierNames{end+1}
allAccuracies(end+1l,:) = rfFoldAcc;
bestParams{end+1} = paramStr;

%% 5. Naive Bayes Tuning

disp('Tuning Naive Bayes...');

% Define parameter grid for Naive Bayes

nbParams = struct();

nbParams.DistributionNames = {
‘normal’, % Single distribution for all features
'kernel', % Single distribution for all features
"mvmn' % Multivariate multinormal distribution

s

% For per-predictor distributions (if needed)
% Get number of predictors
numPredictors = size(X, 2);

% Create cell arrays with per-predictor distributions
normalAll = repmat({'normal'}, 1, numPredictors);
kernelAll = repmat({'kernel'}, 1, numPredictors);
mixedDist = cell(1l, numPredictors);
for i = 1:numPredictors
if mod(i, 2) ==
mixedDist{i} = 'normal’;
else
mixedDist{i} = 'kernel';
end
end

% Add per-predictor distribution options

nbParams.DistributionNames{end+1} = normalAll; % All normal
nbParams.DistributionNames{end+1} = kernelAll; % All kernel

sprintf('Ensemble (%s)', bestRFMethod);
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nbParams.DistributionNames{end+1} = mixedDist; % Mixed normal/kernel

% Initialize storage for results
nbResults = zeros(length(nbParams.DistributionNames), 1);

% Perform grid search
for i = 1:length(nbParams.DistributionNames)
distNames = nbParams.DistributionNames{i};

% Use cross-validation to evaluate this parameter combination
cvAcc = zeros(l, tuningCVPartition.NumTestSets);
for fold = 1:tuningCVPartition.NumTestSets

trainIdx = tuningCVPartition.training(fold);

testIdx = tuningCVPartition.test(fold);

% Try-catch to handle potential errors
try
nbModel = fitcnb(X(trainIdx,:), Y(trainIdx),
'DistributionNames', distNames);

predictions = predict(nbModel, X(testIdx,:));
cvAcc(fold) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
catch ME

% If error occurs, log it and set accuracy to ©
fprintf('Error with distribution type %d: %s\n', i,
ME.message);
cvAcc(fold) = 0;
end
end

% Store average accuracy for this parameter
nbResults(i) = mean(cvAcc);
end

% Find best parameters
[bestNBAcc, bestNBIdx] = max(nbResults);
bestNBDist = nbParams.DistributionNames{bestNBIdx};

% Store tuning results

nbTuningResult = struct();

nbTuningResult.paramGrid = nbResults;

nbTuningResult.bestAccuracy = bestNBAcc;

nbTuningResult.bestParams = struct('DistributionNames', bestNBDist);
tuningResults{end+1} = nbTuningResult;

% Display best parameters
if iscell(bestNBDist) && length(bestNBDist) > 1

% For per-predictor distributions, summarize

uniqueDists = unique(bestNBDist);

distCounts = cellfun(@(x) sum(strcmp(bestNBDist, x)),
uniqueDists);

distStr = '';

for d = 1:length(uniqueDists)

distStr = [distStr, sprintf('%s(%d) ', uniqueDists{d},

distCounts(d))];

end

distStr = ['Mixed: ', distStr];
elseif iscell(bestNBDist) && length(bestNBDist) ==
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distStr
else
distStr

bestNBDist{1};

bestNBDist;
end

fprintf('Best Naive Bayes parameters: Distribution=%s (CV
Accuracy: %.4f)\n', distStr, bestNBAcc);

% Evaluate best model on all folds

nbFoldAcc = zeros(1, numFolds);

for i = 1:numFolds
trainIdx = finalCVPartition.training(i);
testIdx = finalCVPartition.test(i);

% Train with best parameters
nbModel = fitcnb(X(trainldx,:), Y(trainIdx), 'DistributionNames"’,
bestNBDist);

predictions = predict(nbModel, X(testIdx,:));
nbFoldAcc(i) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

classifierNames{end+1} = sprintf('Naive Bayes (%s)', distStr);
allAccuracies(end+1l,:) = nbFoldAcc;
bestParams{end+1} = sprintf('Distribution=%s', distStr);

%% 6. LDA Tuning
disp('Tuning LDA...");

% Define parameter grid for LDA

ldaParams = struct();

% Full grid of discriminant types and gamma values (will be validated
for each combination)

ldaParams.DiscrimType = {'linear', 'quadratic', ‘'diaglinear’,
‘diagQuadratic'};

ldaParams.Gamma = [0, ©.25, 0.5, 0.75, 1];

% Initialize storage for results
ldaResults = zeros(length(ldaParams.DiscrimType),
length(ldaParams.Gamma));

% Perform grid search
for i = 1:length(ldaParams.DiscrimType)
for j = 1:length(ldaParams.Gamma)
discrimType = ldaParams.DiscrimType{i};
gamma = ldaParams.Gamma(j);

% Skip invalid combinations (quadratic types with gamma not ©
or 1)
if (strcmp(discrimType, 'quadratic') || strcmp(discrimType,
'diagQuadratic')) && ...
(gamma > © && gamma < 1)
fprintf('Skipping invalid combination: %s with
gamma=%.2f\n', discrimType, gamma);
ldaResults(i, j) = -Inf; % Mark as invalid with -Inf
continue;
end
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% Use cross-validation to evaluate this parameter combination
cvAcc = zeros(1l, tuningCVPartition.NumTestSets);
for fold = 1:tuningCVPartition.NumTestSets

trainIdx = tuningCVPartition.training(fold);

testIdx = tuningCVPartition.test(fold);

try
ldaModel = fitcdiscr(X(trainIdx,:), Y(trainIdx),
'DiscrimType', discrimType,
"Gamma', gamma);

predictions = predict(ldaModel, X(testIdx,:));
cvAcc(fold) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
catch ME

fprintf('Error with %s discriminant,
gamma=%.2f: %s\n',
discrimType, gamma, ME.message);
cvAcc(fold) = @; % Set accuracy to © if an error

occurs
end
end
% Store average accuracy for this parameter combination
if all(cvAcc == 0)
ldaResults(i, j) = -Inf; % Mark as invalid if all folds
failed
else
ldaResults(i, j) = mean(cvAcc);
end
end
end

% Find best parameters (ignore -Inf values)

validResults = ldaResults;

validResults(validResults == -Inf) = -1; % Convert -Inf to -1 for
max function

[maxval, maxIdx] = max(validResults(:));

[i_best, j best] = ind2sub(size(validResults), maxIdx);
bestLDAType = ldaParams.DiscrimType{i_best};

bestLDAGamma = ldaParams.Gamma(j_best);

% Store tuning results

ldaTuningResult = struct();

ldaTuningResult.paramGrid = ldaResults;
ldaTuningResult.bestAccuracy = maxVal;
ldaTuningResult.bestParams = struct('DiscrimType', bestLDAType,
'Gamma', bestLDAGamma);

tuningResults{end+1} = ldaTuningResult;

% Display best parameters
fprintf('Best LDA parameters: DiscrimType=%s, Gamma=%.2f (CV
Accuracy: %.4f)\n',

bestLDAType, bestLDAGamma, maxVal);

% Evaluate best model on all folds
ldaFoldAcc = zeros(1, numFolds);
for i = 1:numFolds

trainIdx = finalCVPartition.training(i);



266

testIdx = finalCVPartition.test(i);

% Train with best parameters
ldaModel = fitcdiscr(X(trainIdx,:), Y(trainIdx),
'DiscrimType', bestLDAType, 'Gamma',
bestLDAGamma) ;

predictions = predict(ldaModel, X(testIdx,:));
ldaFoldAcc(i) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

classifierNames{end+1} = sprintf('LDA (%s)', bestLDAType);
allAccuracies(end+1l,:) = ldaFoldAcc;

bestParams{end+1} = sprintf('Type=%s, Gamma=%.2f', bestLDAType,
bestLDAGamma) ;

%% 7. Logistic Regression Tuning

disp('Tuning Logistic Regression...');

% Define parameter grid for Logistic Regression

logitParams = struct();

logitParams.Lambda = [1le-6, le-5, le-4, le-3, le-2, le-1, 1];
logitParams.Coding = {'onevsone', 'onevsall'};

% Initialize storage for results
logitResults = zeros(length(logitParams.Lambda),
length(logitParams.Coding));

% Perform grid search
for i = 1:length(logitParams.Lambda)
for j = 1l:length(logitParams.Coding)
lambda = logitParams.Lambda(i);
coding = logitParams.Coding{j};

% Use cross-validation to evaluate this parameter combination
cvAcc = zeros(l, tuningCVPartition.NumTestSets);
for fold = 1:tuningCVPartition.NumTestSets

trainIdx = tuningCVPartition.training(fold);

testIdx = tuningCVPartition.test(fold);

template = templatelLinear('Learner', 'logistic',
"Lambda’, lambda);
logitModel = fitcecoc(X(trainldx,:), Y(trainIdx),
'Learners', template, 'Coding’,

coding);
predictions = predict(logitModel, X(testIdx,:));
cvAcc(fold) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

% Store average accuracy for this parameter combination
logitResults(i, j) = mean(cvAcc);
end
end

% Find best parameters
[maxval, maxIdx] = max(logitResults(:));
[i_best, j_best] ind2sub(size(logitResults), maxIdx);



bestLogitLambda = logitParams.Lambda(i_best);
bestLogitCoding = logitParams.Coding{j_best};

% Store tuning results

logitTuningResult = struct();
logitTuningResult.paramGrid = logitResults;
logitTuningResult.bestAccuracy = maxVal;

logitTuningResult.bestParams = struct('Lambda', bestLogitLambda,

'Coding', bestLogitCoding);
tuningResults{end+1} = logitTuningResult;

% Display best parameters
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fprintf('Best Logistic Regression parameters: Lambda=%.6f, Coding=%s

(CV Accuracy: %.4f)\n',
bestLogitLambda, bestLogitCoding, maxVval);

% Evaluate best model on all folds
logitFoldAcc = zeros(1l, numFolds);
for i = 1:numFolds
trainIdx = finalCVPartition.training(i);
testIdx = finalCVPartition.test(i);

% Train with best parameters

template = templatelLinear('Learner', 'logistic', 'Lambda',

bestLogitLambda);
logitModel = fitcecoc(X(trainIdx,:), Y(trainIdx),
‘Learners', template, 'Coding’,
bestLogitCoding);

predictions = predict(logitModel, X(testIdx,:));
logitFoldAcc(i) = sum(predictions == Y(testIdx)) /
length(Y(testIdx));
end

classifierNames{end+1} = 'Logistic Regression (Tuned)';
allAccuracies(end+1,:) = logitFoldAcc;
bestParams{end+1} = sprintf('Lambda=%.6f, Coding=%s",
bestLogitLambda, bestlLogitCoding);

%% Summarize tuned model results

% Calculate mean accuracies across folds
meanAccuracies = mean(allAccuracies, 2);
stdAccuracies = std(allAccuracies, 0, 2);

% Create detailed results table
foldNames = cell(1l, numFolds);
for i = 1:numFolds

foldNames{i} = sprintf('Fold%d', i);
end

% Create a table with fold-by-fold results

detailedResultTable = array2table(allAccuracies, 'VariableNames',

foldNames);

detailedResultTable.Classifier = classifierNames';
detailedResultTable.Mean = meanAccuracies;
detailedResultTable.StdDev = stdAccuracies;
detailedResultTable.BestParameters = bestParams';
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% Reorder columns to put Classifier first
detailedResultTable = detailedResultTable(:, ['Classifier’,
foldNames, {'Mean', 'StdDev', 'BestParameters'}]);

% Display the detailed results
disp('Hyperparameter Tuning Results:');
disp(detailedResultTable);

% Save to CSV
writetable(detailedResultTable, fullfile(baseDir,
"tuned_classifier_results.csv'));

% Create a boxplot to visualize the distribution of accuracies across
folds

figure('Position', [100, 100, 1200, 600], 'Name', 'Tuned Classifier
Performance Distribution');

% Prepare data for boxplot

boxplotData = allAccuracies'; % Transpose to get classifiers as
groups

boxplot(boxplotData, 'Labels', classifierNames);
title('Distribution of Accuracies Across CV Folds (Tuned Models)',
'"FontSize', 14, 'FontWeight', 'bold');

ylabel('Accuracy', 'FontSize', 12);

grid on;

xtickangle(45);

% Add individual points as scatter plot
hold on;
for i = 1l:size(allAccuracies, 1)
% Plot the individual fold results as scattered points
scatter(repmat(i, 1, numFolds), allAccuracies(i,:), 50,
'MarkerEdgeColor', [0 0.4 0.7], 'MarkerFaceColor', [0.3 0.6 0.9],
"LineWidth', 1.5);
end
hold off;

% Save the figure
saveas(gcf, fullfile(baseDir, 'tuned classifier_distributions.png'));
saveas(gcf, fullfile(baseDir, 'tuned_classifier_distributions.fig'));

%% Create bar chart for easier comparison of mean accuracies
figure('Position', [100, 100, 1200, 600], 'Name', 'Tuned Classifier
Mean Performance');

% Sort the classifiers by mean accuracy

[sortedAccuracies, sortIdx] = sort(meanAccuracies, 'descend');
sortedClassifiers = classifierNames(sortIdx);

sortedStdAccuracies = stdAccuracies(sortIdx);

% Create bar chart

barHandle = bar(sortedAccuracies, 'FaceColor', [0.3 0.6 0.9]);

hold on;

% Add error bars

errorbar(l:length(sortedAccuracies), sortedAccuracies,
sortedStdAccuracies, 'k', 'LineStyle', 'none', 'LineWidth', 1.5);

% Customize the plot

set(gca, 'XTick', 1l:length(sortedClassifiers), 'XTickLabel',
sortedClassifiers);

title('Mean Accuracy of Tuned Classifiers (Ranked)', 'FontSize', 14,
'FontWeight', 'bold');
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ylabel('Mean Accuracy', 'FontSize', 12);
grid on;
xtickangle(45);
% Add value labels on top of bars
for i = 1:length(sortedAccuracies)

text(i, sortedAccuracies(i) + 0.01, sprintf('%.4f",
sortedAccuracies(i)),

'HorizontalAlignment', 'center', 'VerticalAlignment',

"bottom', 'FontWeight', 'bold');
end
% Save the figure
saveas(gcf, fullfile(baseDir, 'tuned_classifier_ranking.png'));
saveas(gcf, fullfile(baseDir, 'tuned_classifier_ranking.fig'));

%% Create heatmaps for selected parameter grids
disp('Generating parameter heatmaps...');

% Create a heatmap for Decision Tree parameters
figure('Position', [100, 100, 900, 700], 'Name', 'Decision Tree
Parameter Tuning');

dtGrid = tuningResults{1}.paramGrid;

[X, Y] = meshgrid(dtParams.MinLeafSize, dtParams.MaxNumSplits);
surf(X, Y, dtGrid);

title('Decision Tree Parameter Tuning', 'FontSize', 14, 'FontWeight',
'bold");

xlabel('Min Leaf Size', 'FontSize', 12);

ylabel('Max Num Splits', 'FontSize', 12);

zlabel('CV Accuracy', 'FontSize', 12);

colormap('jet');

colorbar;

view(45, 30);

grid on;

saveas(gcf, fullfile(baseDir, 'dt_parameter_tuning 3d.png'));

% Create a 2D heatmap version for easier viewing
figure('Position', [100, 100, 900, 700], 'Name', 'Decision Tree
Parameter Tuning (Heatmap)');

h = heatmap(dtParams.MinLeafSize, dtParams.MaxNumSplits, dtGrid);
h.Title = 'Decision Tree Parameter Tuning';

h.XLabel 'Min Leaf Size';

h.YLabel = 'Max Num Splits’;

colormap('jet");

saveas(gcf, fullfile(baseDir, 'dt_parameter_tuning heatmap.png'));

% Create a heatmap for KNN parameters (using the first standardize
setting)

figure('Position', [100, 100, 900, 700], 'Name', 'KNN Parameter
Tuning');

knnGrid = squeeze(knnResults(:,:,1)); % First standardize setting
h = heatmap(knnParams.Distance, knnParams.NumNeighbors, knnGrid);
h.Title = 'KNN Parameter Tuning (Standardize=false)’;

h.XLabel 'Distance Metric';

h.YLabel = 'Number of Neighbors';

colormap('jet');

saveas(gcf, fullfile(baseDir, 'knn_parameter tuning heatmap.png'));

%% Create visualizations for Random Forest / Ensemble tuning

% Prepare to visualize Random Forest results
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figure('Position', [100, 100, 1200, 700], 'Name', 'Random Forest
Parameter Tuning');

% Since RF results are 3D (method, cycles, learn rate), we need to
visualize carefully

% Create one subplot for each ensemble method

methods = rfParams.Method;

cycles = rfParams.NumLearningCycles;

rates = rfParams.LearnRate;

% Create a 2x2 subplot layout
for m = 1:length(methods)
subplot(2, 2, m);

% Extract data for this method
methodData = squeeze(rfResults(m, :, :));

% For 'Bag' method, we only have data for first learn rate, so
handle specially
if strcmp(methods{m}, 'Bag')
% For Bag method, just plot NumLearningCycles vs Accuracy
plot(cycles, methodData(:,1), 'o-', 'LineWidth', 2,
'MarkerSize', 8, 'MarkerFaceColor', 'auto');
title([ 'Method: ', methods{m}]);
xlabel('Number of Learning Cycles');
ylabel('Cross-Validation Accuracy');
grid on;
else
% For boosting methods, create heatmap of cycles vs learn
rates
imagesc(methodData);
colormap('jet');
colorbar;
title([ 'Method: ', methods{m}]);
xlabel('Learning Rate');
ylabel('Number of Learning Cycles');

% Set axis ticks

xticks(1:1length(rates));

xticklabels(arrayfun(@(x) sprintf('%.1f', x), rates,
"UniformOutput', false));

yticks(1:1length(cycles));

yticklabels(arrayfun(@(x) sprintf('%d', x), cycles,
"UniformOutput', false));

end

end

% Add overall title and adjust layout

sgtitle('Random Forest / Ensemble Parameter Tuning', 'FontSize', 16,
'FontWeight', 'bold');

set(gcf, 'Color', 'white');

saveas(gcf, fullfile(baseDir, 'rf_parameter_tuning.png'));
saveas(gcf, fullfile(baseDir, 'rf_parameter_tuning.fig'));

%% Create bar chart for each ensemble method showing best performance
% Extract best accuracy for each method

methodBestAcc = zeros(1l, length(methods));
for m = 1:1length(methods)
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methodSlice = rfResults(m, :, :);
methodBestAcc(m) = max(methodSlice(:));
end

% Create bar chart

figure('Position', [100, 100, 800, 600], 'Name', 'Ensemble Methods
Comparison');

bar(methodBestAcc, 'FaceColor', [0.2 0.6 0.8]);

grid on;

title('Best Accuracy by Ensemble Method', 'FontSize', 14,
'"FontWeight', 'bold');

xlabel('Ensemble Method');

ylabel('Best Cross-Validation Accuracy');
xticks(1:1length(methods));

xticklabels(methods);

xtickangle(45);

% Add data labels
for i = 1:1length(methodBestAcc)

text(i, methodBestAcc(i) + 0.01, sprintf('%.4f",
methodBestAcc(i)),

'HorizontalAlignment', ‘'center', 'VerticalAlignment',

'bottom', 'FontWeight', 'bold');
end
saveas(gcf, fullfile(baseDir, 'ensemble_method comparison.png'));

%% Visualize Naive Bayes results
figure('Position', [100, 100, 800, 600], 'Name', 'Naive Bayes
Parameter Tuning');

% Convert complex distribution names to simpler labels for
visualization
distlLabels = cell(size(nbParams.DistributionNames));
for i = 1:length(nbParams.DistributionNames)
dist = nbParams.DistributionNames{i};
if iscell(dist)
if length(dist) == numPredictors
if all(strcmp(dist, 'normal'))
distlLabels{i} = 'All Normal';
elseif all(strcmp(dist, 'kernel'))
distLabels{i} = 'All Kernel';
else
% Count distributions
normalCount = sum(strcmp(dist, 'normal'));
kernelCount = sum(strcmp(dist, 'kernel'));
distLabels{i} = sprintf('Mixed: %d normal, %d
kernel', normalCount, kernelCount);
end
else
distlLabels{i} = 'Custom';
end
else
distLabels{i} = dist;
end
end

% Create bar chart of results
bar(nbResults);
grid on;
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'"FontWeight', 'bold');

xlabel('Distribution Type');

ylabel('Cross-Validation Accuracy');
xticks(1:1length(distLabels));

xticklabels(distLabels);

xtickangle(45);

% Add data labels
for i = 1:length(nbResults)
text(i, nbResults(i) + 0.01, sprintf('%.4f', nbResults(i)),
'HorizontalAlignment', ‘'center', 'VerticalAlignment',
'bottom', 'FontWeight', 'bold');
end
saveas(gcf, fullfile(baseDir, 'nb_parameter_tuning.png'));

%% Visualize LDA results
figure('Position', [100, 100, 900, 700], 'Name', 'LDA Parameter
Tuning');

% Since we have issues with the heatmap function, let's create a
visualization
% that shows the grid of results without using heatmap

% First, replace -Inf with NaN for visualization
ldaMat = ldaResults;

ldaMat(ldaMat == -Inf) = NaN;
% Create a 2D visualization
imagesc(ldaMat);
colormap('jet');

colorbar;

% Set axis labels
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title('LDA Parameter Tuning', 'FontSize', 14, 'FontWeight', 'bold');

xlabel('Gamma');
ylabel('Discriminant Type');

% Set axis ticks

xticks(1:1length(ldaParams.Gamma));

xticklabels(arrayfun(@(x) sprintf('%.2f', x), ldaParams.Gamma,
'"UniformOutput', false));
yticks(1:1length(ldaParams.DiscrimType));
yticklabels(ldaParams.DiscrimType);

% Add grid and save
grid on;
saveas(gcf, fullfile(baseDir, 'lda_parameter_tuning fixed.png'));

%% Create combination 3D surface plot for best ensemble method
figure('Position', [100, 100, 1000, 800], 'Name', 'Best Ensemble
Method 3D Performance');

% Find the index of the best method
[~, bestMethodIdx] = max(methodBestAcc);
bestMethod = methods{bestMethodIdx};

% If the best method is not 'Bag', create 3D surface
if ~strcmp(bestMethod, 'Bag')
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% Extract the data for the best method
methodData = squeeze(rfResults(bestMethodIdx, :, :));

% Create mesh grid for 3D surface
[X, Y] = meshgrid(rates, cycles);

% Create surface plot

surf(X, Y, methodData);

title(['3D Performance Surface for ', bestMethod], 'FontSize',
14, 'FontWeight', 'bold');

xlabel('Learning Rate');

ylabel( 'Number of Learning Cycles');

zlabel('Cross-Validation Accuracy');

colormap('jet');

colorbar;

view(45, 30);
else

% For Bag method, create a different visualization

bagData = squeeze(rfResults(1l, :, 1)); % Only first column has
data

% Plot the performance vs cycles

plot(cycles, bagbata, 'o-', 'LineWidth', 2, 'MarkerSize', 8,
'"MarkerFaceColor', 'auto');

title([ 'Performance for ', bestMethod, ' Method'], 'FontSize',
14, 'FontWeight', 'bold');

xlabel('Number of Learning Cycles');

ylabel('Cross-Validation Accuracy');

grid on;
end

saveas(gcf, fullfile(baseDir, ['best_ensemble_ ', bestMethod,
' _performance.png']));

%% Create ROC curves for the best models
%% Create ROC curves for the best models
disp('Generating ROC curves for best models...');

% Create a new figure for ROC curves
figure('Position', [100, 100, 1200, 800], 'Name', 'ROC Curves for
Best Models');

% Define color map for different classifiers
colorMap = jet(length(classifierNames));
lineStyles = {'-", '--", "', '-.', "=, -ty "'}

% AUC values to store
aucValues = zeros(length(classifierNames), 1);

% Debug information
fprintf('Number of observations: %d\n', length(Y));
fprintf('Number of folds: %d\n', numFolds);

% Check if finalCVPartition is valid
if ~exist('finalCVPartition', 'var') || isempty(finalCVPartition)
disp('Warning: finalCVPartition is not valid, creating a new
one...");
finalCVPartition = cvpartition(Y, 'KFold', numFolds);
end
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% We'll use the last fold for ROC curve demonstration (with safety
check)

testFold = min(numFolds, finalCVPartition.NumTestSets);
fprintf('Using test fold %d of %d\n', testFold,
finalCVPartition.NumTestSets);

% Get training and test indices safely

try
trainIdx = finalCVPartition.training(testFold);
testIdx = finalCVPartition.test(testFold);

% Verify indices
fprintf('Number of training samples: %d\n', sum(trainIdx));
fprintf('Number of test samples: %d\n', sum(testIdx));

if max(find(trainIdx)) > size(X, 1) || max(find(testIdx)) >

size(X, 1)
error('Indices out of bounds for data matrix');

end
catch ME

disp('Error getting partition indices, using simple split
instead');

disp(ME.message);

% Create a simple 80/20 split as fallback
n = length(Y);

trainFraction = 0.8;

shuffledIndices = randperm(n);

trainSize = floor(trainFraction * n);

trainIdx = false(n, 1);
trainIdx(shuffledIndices(1l:trainSize)) = true;
testIdx = ~trainldx;

fprintf('Fallback: %d training samples, %d test samples\n',
sum(trainIdx), sum(testIdx));
end

% Plot ROC for each classifier
hold on;
legends = {};

for i = 1:length(classifierNames)
try
% Extract training and testing data
Xtrain = X(trainIdx,:);
Ytrain = Y(trainldx);
Xtest = X(testlIdx,:);
Ytest = Y(testIdx);

fprintf('Training classifier %d: %s\n', i,
classifierNames{i});

% Train the model with best parameters
switch i
case 1 % Decision Tree
fprintf(' Training Decision Tree with MaxSplits=%d,
MinLeaf=%d\n', bestDTMaxSplits, bestDTMinLeaf);
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model = fitctree(Xtrain, Ytrain, 'MaxNumSplits',
bestDTMaxSplits, 'MinLeafSize', bestDTMinLeaf);
case 2 % KNN
fprintf(' Training KNN with k=%d, Distance=%s,
Standardize=%d\n', bestKnnNeighbors, bestKnnDistance,
bestkKnnStandardize);
model = fitcknn(Xtrain, Ytrain, 'NumNeighbors’,
bestknnNeighbors, 'Distance’', bestKnnDistance, 'Standardize’,
bestkKnnStandardize);
case 3 % SUM
fprintf(' Training SVM with Kernel=%s, C=%f,
Scale=%f\n', bestSVMKernel, bestSVMBoxConstraint,
bestSVMKernelScale);
model = fitcecoc(Xtrain, Ytrain, 'Learners’,
templateSVM( 'KernelFunction', bestSVMKernel, 'BoxConstraint',
bestSVMBoxConstraint, 'KernelScale', bestSVMKernelScale), 'Coding’,
bestSVMCoding);
case 4 % Random Forest/Ensemble
if strcmp(bestRFMethod, 'Bag')
fprintf(' Training %s with Cycles=%d\n',
bestRFMethod, bestRFCycles);
model = fitcensemble(Xtrain, Ytrain, 'Method’,
bestRFMethod, 'NumLearningCycles', bestRFCycles);
else
fprintf(' Training %s with Cycles=%d,
LearnRate=%f\n"', bestRFMethod, bestRFCycles, bestRFLearnRate);
model = fitcensemble(Xtrain, Ytrain, 'Method’,
bestRFMethod, 'NumLearningCycles', bestRFCycles, 'LearnRate’,
bestRFLearnRate);
end
case 5 % Naive Bayes
fprintf(' Training Naive Bayes\n');
model = fitcnb(Xtrain, Ytrain, 'DistributionNames’,
bestNBDist);
case 6 % LDA
fprintf(' Training LDA with Type=%s, Gamma=%f\n',
bestLDAType, bestLDAGamma);
model = fitcdiscr(Xtrain, Ytrain, 'DiscrimType’,
bestLDAType, 'Gamma', bestLDAGamma);
case 7 % Logistic Regression
fprintf(' Training Logistic Regression with
Lambda=%f, Coding=%s\n', bestLogitlLambda, bestLogitCoding);
template = templatelLinear('Learner', 'logistic',
'Lambda’, bestLogitLambda);
model = fitcecoc(Xtrain, Ytrain, 'Learners’,
template, 'Coding', bestLogitCoding);
end

% Get ROC curve data

% For multiclass problems, we'll use one-vs-all approach
uniqueClasses = unique(Ytrain);

numClasses = length(uniqueClasses);

fprintf(' Generating ROC curve (Classes=%d)\n', numClasses);

% Convert to binary classification problem (first class vs
others)

% For simplicity, we'll just use the first class vs rest

yTestBinary = double(Ytest == uniqueClasses(1));
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% Get prediction scores
try
if isprop(model, 'ClassNames') &&
length(model.ClassNames) ==
% Binary classifier case
[~, scores] = predict(model, Xtest);
scores = scores(:,2); % Use scores for positive class
else
% Multiclass case
[~, scores] = predict(model, Xtest);
if size(scores, 2) >= numClasses
% Use scores for the first class
classIdx = find(model.ClassNames ==
uniqueClasses(1));
if ~isempty(classIdx)
scores = scores(:, classIdx);
else
scores = scores(:, 1);
end
else
% Fall back to binary predictions
preds = predict(model, Xtest);
scores = double(preds == uniqueClasses(1));
end
end
catch ME
fprintf("' Error getting scores: %s\n', ME.message);
% If we can't get scores, just use binary predictions
preds = predict(model, Xtest);
scores = double(preds == uniqueClasses(1l));
end

% Calculate ROC curve

[fpr, tpr, ~] = perfcurve(yTestBinary, scores, 1);
auc = trapz(fpr, tpr); % Calculate AUC
aucValues(i) = auc;

% Plot ROC curve

plot(fpr, tpr, 'Color', colorMap(i,:), 'LineWidth', 2,
'LineStyle', lineStyles{mod(i-1, length(lineStyles))+1});

legends{end+1} = sprintf('%s (AUC=%.4f)', classifierNames{i},
auc);

fprintf(' AUC for %s: %.4f\n', classifierNames{i}, auc);
catch ME
fprintf('Error processing classifier %d (%s): %s\n', i,
classifierNames{i}, ME.message);
aucValues(i) = NaN;
legends{end+1} = sprintf('%s (Error)', classifierNames{i});
end
end

% Plot reference line
plot([@ 1]: [0 1]: Ik"');
legends{end+1} = 'Random Guess';

% Customize the plot
xlabel('False Positive Rate', 'FontSize', 12);
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ylabel('True Positive Rate', 'FontSize', 12);

title('ROC Curves for Tuned Classifiers (First Class vs Rest)',
'"FontSize', 14, 'FontWeight', 'bold');

legend(legends, 'Location', 'southeast', 'FontSize', 10);

grid on;

axis square;

% Save the figure
saveas(gcf, fullfile(baseDir, 'roc_curves.png'));
saveas(gcf, fullfile(baseDir, 'roc_curves.fig'));

%% Create AUC comparison bar chart
figure('Position', [100, 100, 1000, 600], 'Name', 'AUC Comparison');

% Create bar chart of AUC values

bar(aucValues, 'FaceColor', [0.3 0.6 0.9]);

grid on;

title('Area Under ROC Curve (AUC) by Classifier', 'FontSize', 14,
"FontWeight', 'bold');

xlabel('Classifier');

ylabel('AUC");

xticks(1:1length(classifierNames));

xticklabels(classifierNames);

xtickangle(45);

% Add data labels
for i = 1:length(aucValues)

if ~isnan(aucValues(i))

text(i, aucValues(i) + ©.01, sprintf('%.4f',
aucValues(i)),
'HorizontalAlignment', 'center', 'VerticalAlignment',

'"bottom', 'FontWeight', 'bold');

end
end

saveas(gcf, fullfile(baseDir, 'auc_comparison.png'));
saveas(gcf, fullfile(baseDir, 'auc_comparison.fig'));

%% Create confusion matrices for best performing classifier

% Find the best classifier based on AUC
[bestAUC, bestClassifierIdx] = max(aucValues);
bestClassifierName = classifierNames{bestClassifierIdx};

fprintf('Creating confusion matrix for best classifier: %s
(AUC=%.4F)\n"', bestClassifierName, bestAUC);

figure('Position’, [100, 100, 800, 600], 'Name', ['Confusion Matrix -
', bestClassifierName]);

% Train the best model
Xtrain = X(trainldx,:);
Ytrain = Y(trainIdx);
Xtest = X(testIdx,:);
Ytest = Y(testIdx);

% Train model with best parameters
switch bestClassifierIdx
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case 1 % Decision Tree
model = fitctree(Xtrain, Ytrain, 'MaxNumSplits',
bestDTMaxSplits, 'MinLeafSize', bestDTMinLeaf);
case 2 % KNN
model = fitcknn(Xtrain, Ytrain, 'NumNeighbors',
bestkKnnNeighbors, 'Distance’', bestKnnDistance, 'Standardize’,
bestknnStandardize);
case 3 % SVM
model = fitcecoc(Xtrain, Ytrain, 'Learners’,
templateSVM( 'KernelFunction', bestSVMKernel, 'BoxConstraint’,
bestSVMBoxConstraint, 'KernelScale', bestSVMKernelScale), 'Coding’,
bestSVMCoding);
case 4 % Random Forest/Ensemble
if strcmp(bestRFMethod, 'Bag')
model = fitcensemble(Xtrain, Ytrain, 'Method',
bestRFMethod, 'NumLearningCycles', bestRFCycles);
else
model = fitcensemble(Xtrain, Ytrain, 'Method’,
bestRFMethod, 'NumLearningCycles', bestRFCycles, 'LearnRate’,
bestRFLearnRate);
end
case 5 % Naive Bayes
model = fitcnb(Xtrain, Ytrain, 'DistributionNames’,
bestNBDist);
case 6 % LDA
model = fitcdiscr(Xtrain, Ytrain, 'DiscrimType', bestLDAType,
‘Gamma', bestLDAGamma);
case 7 % Logistic Regression
template = templatelLinear('Learner', 'logistic', 'Lambda',
bestLogitLambda);
model = fitcecoc(Xtrain, Ytrain, 'Learners', template,
'Coding', bestLogitCoding);
end

% Get predictions
predictions = predict(model, Xtest);

% Get unique classes and ensure they're in the correct order
uniqueClasses = unique([Ytrain; Ytest]);
numClasses = length(uniqueClasses);

% Create confusion matrix
cm = confusionmat(Ytest, predictions);

% In case not all classes appear in the test set, ensure the
confusion matrix has the right dimensions
if size(cm, 1) < numClasses
tempCM = zeros(numClasses, numClasses);
tempCM(1:size(cm,1), 1l:size(cm,2)) = cm;
cm = tempCM;
end

Plot confusion matrix

= heatmap(cm);

.XDisplayLabels = cellstr(string(uniqueClasses));
.YDisplayLabels = cellstr(string(uniqueClasses));

.Title = sprintf('Confusion Matrix - %s', bestClassifierName);
.XLabel = 'Predicted Class';

.YLabel = 'True Class"';

jm s e i e e I3



h.ColorbarVisible = 'on';

% Add text annotations for percentages

% Convert to accuracy on a per-class basis
rowSums = sum(cm, 2);

cm_percent = cm ./ rowSums * 100;

% Save the figure
saveas(gcf, fullfile(baseDir, 'best classifier_confusion.png'));
saveas(gcf, fullfile(baseDir, 'best classifier_confusion.fig'));

%% Save the tuning results for future reference

disp('Saving tuning results...');

save(fullfile(baseDir, 'hyperparameter_tuning results.mat'),
"tuningResults', ‘'bestParams', 'classifierNames',

'allAccuracies', 'X', 'Y');

%% Train the best overall model
disp('Training the best overall model...');

% Find the best classifier
[bestAccuracy, bestClassifierIdx] = max(meanAccuracies);
bestClassifierName = classifierNames{bestClassifierIdx};

% Train on all data

disp(['Best classifier:
num2str(bestAccuracy)]);
disp('Training final model on all data...');

bestClassifierName ' with mean accuracy:

% Train final model based on the best classifier
switch bestClassifierIdx
case 1 % Decision Tree
finalModel = fitctree(X, VY,
"MaxNumSplits', bestDTMaxSplits, 'MinLeafSize’,
bestDTMinLeaf);
case 2 % KNN
finalModel = fitcknn(X, Y,
"NumNeighbors', bestkKnnNeighbors, 'Distance’,
bestKnnDistance,
'Standardize', bestKnnStandardize);
case 3 % SVM
finalModel = fitcecoc(X, Y,
'Learners', templateSVM('KernelFunction',
bestSVMKernel,
'BoxConstraint"',
bestSVMBoxConstraint,
'KernelScale',
bestSVMKernelScale), .
'Coding', bestSVMCoding);
case 4 % Random Forest/Ensemble
if strcmp(bestRFMethod, 'Bag')
finalModel = fitcensemble(X, YV,
'Method', bestRFMethod, 'NumLearningCycles',
bestRFCycles);
else
finalModel = fitcensemble(X, YV,
'Method', bestRFMethod, 'NumLearningCycles’,
bestRFCycles,
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'LearnRate', bestRFLearnRate);
end
case 5 % Naive Bayes
finalModel = fitcnb(X, Y, 'DistributionNames', bestNBDist);
case 6 % LDA
finalModel = fitcdiscr(X, VY, ...
'DiscrimType', bestLDAType, 'Gamma', bestLDAGamma);
case 7 % Logistic Regression
template = templatelLinear('Learner', 'logistic', 'Lambda',
bestLogitLambda);
finalModel = fitcecoc(X, YV,
"Learners', template, 'Coding', bestLogitCoding);
end

% Save the final model
save(fullfile(baseDir, 'final_best_model.mat'), 'finalModel’,
'bestClassifierName', 'bestClassifierIdx', 'bestParams');

disp('Hyperparameter tuning complete. The best model has been
saved.');

%% Plot feature importance for applicable models
if ismember(bestClassifierIdx, [1, 4]) % Decision Tree or Random
Forest

disp('Calculating feature importance...');

figure('Position', [100, 100, 1000, 600], 'Name', 'Feature
Importance');

if bestClassifierIdx == 1 % Decision Tree

% Get importance

importance = finalModel.predictorImportance;
else % Random Forest/Ensemble

% Get importance

importance = finalModel.predictorImportance;
end

% Sort features by importance
[sortedImp, sortIdx] = sort(importance, 'descend');
featureNames = rocFeatures(sortIdx);

% Plot

barh(sortedImp);

yticks(1:1length(featureNames));

yticklabels(featureNames);

xlabel('Predictor Importance', 'FontSize', 12);

title(['Feature Importance for ' bestClassifierName], 'FontSize',
14, 'FontWeight', 'bold');

grid on;

% Save the figure

saveas(gcf, fullfile(baseDir, 'feature_importance.png'));

saveas(gcf, fullfile(baseDir, 'feature_importance.fig'));
end

%% Final report
disp('Generating final report...");

% Create a summary figure with key results



figure('Position', [100, 100, 1200, 900], 'Name', 'Hyperparameter
Tuning Summary');

% Create a 2x2 subplot layout

subplot(2, 2, 1);

barHandle = bar(sortedAccuracies, 'FaceColor', [0.3 0.6 0.9]);
hold on;

errorbar(1l:length(sortedAccuracies), sortedAccuracies,
sortedStdAccuracies, 'k', 'LineStyle', 'none', 'LineWidth', 1.5);
set(gca, 'XTick', 1l:length(sortedClassifiers), 'XTickLabel',
sortedClassifiers);

title('Mean Accuracy of Tuned Classifiers', 'FontSize', 12);
ylabel('Mean Accuracy', 'FontSize', 10);

grid on;

xtickangle(45);

set(gca, 'FontSize', 8);

% Best model confusion matrix

subplot(2, 2, 2);

bestCM = allConfMats(:,:,bestClassifierIdx);
bestCMNorm = bestCM ./ sum(bestCM, 2);
imagesc(bestCMNorm);

colormap('jet');

colorbar;

title([ 'Confusion Matrix - ' bestClassifierName], 'FontSize', 12);
xlabel('Predicted Class', 'FontSize', 10);
ylabel('True Class', 'FontSize', 10);
set(gca, 'FontSize', 8);

axis square;

% ROC curves (simplified version)
subplot(2, 2, 3);
[~, topClassifiers] = sort(aucValues, 'descend');
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top3Classifiers = topClassifiers(1l:min(3, length(topClassifiers)));

hold on;
for i = 1:length(top3Classifiers)
idx = top3Classifiers(i);

% Train the model with best parameters for ROC
switch idx
case 1 % Decision Tree
model = fitctree(X(trainIdx,:), Y(trainIdx),
'MaxNumSplits', bestDTMaxSplits, 'MinLeafSize',
bestDTMinLeaf);
case 2 % KNN
model = fitcknn(X(trainIdx,:), Y(trainIdx),
"NumNeighbors', bestKnnNeighbors, 'Distance’,
bestknnDistance,
'Standardize', bestKnnStandardize);
case 3 % SVM
model = fitcecoc(X(trainIdx,:), Y(trainIdx),
"Learners', templateSVM('KernelFunction',
bestSVMKernel,
'BoxConstraint’',
bestSVMBoxConstraint,
'KernelScale',
bestSVMKernelScale),
"Coding', bestSVMCoding);



case 4 % Random Forest/Ensemble
if strcmp(bestRFMethod, 'Bag')

model = fitcensemble(X(trainIdx,:), Y(trainIdx),
'Method', bestRFMethod, 'NumLearningCycles',

bestRFCycles);
else
model = fitcensemble(X(trainIdx,:), Y(trainIdx),
'Method', bestRFMethod, 'NumLearningCycles',
bestRFCycles,
'LearnRate', bestRFLearnRate);
end

case 5 % Naive Bayes
model = fitcnb(X(trainIdx,:), Y(trainIdx),
'DistributionNames', bestNBDist);
case 6 % LDA
model = fitcdiscr(X(trainIdx,:), Y(trainIdx),
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'DiscrimType', bestLDAType, 'Gamma', bestLDAGamma);

case 7 % Logistic Regression

template = templatelLinear('Learner', 'logistic’,

'Lambda’, bestLogitLambda);
model = fitcecoc(X(trainIdx,:), Y(trainIdx),

"Learners', template, 'Coding', bestLogitCoding);

end

% Get ROC curve data (simplified)
yTest = Y(testIdx);
yTestBinary = double(yTest == uniqueClasses(1));

% Get predictions
preds = predict(model, X(testIdx,:));

% Calculate ROC curve (simplified)

[fpr, tpr, ~] = perfcurve(yTestBinary, double(preds ==
uniqueClasses(1l)), 1);

plot(fpr, tpr, 'LineWidth', 2, 'DisplayName’,
classifierNames{idx});
end

% Plot reference line

plot([@ 1], [@ 1], 'k--', 'DisplayName', 'Random');
xlabel('False Positive Rate', 'FontSize', 10);
ylabel('True Positive Rate', 'FontSize', 10);
title('ROC Curves (Top 3 Models)', 'FontSize', 12);
legend('Location', 'southeast', 'FontSize', 8);
grid on;

axis square;

set(gca, 'FontSize', 8);

% Best model parameters
subplot(2, 2, 4);

text(0.5, 0.5, sprintf('Best Model: %s\n\nParameters:\n%s\n\nMean

Accuracy: %.4f * %.4f",
bestClassifierName, bestParams{bestClassifierIdx},
meanAccuracies(bestClassifierIdx),
stdAccuracies(bestClassifierIdx)),
'HorizontalAlignment', 'center', 'FontSize', 10);
axis off;

% Save the summary figure
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saveas(gcf, fullfile(baseDir, 'hyperparameter_tuning summary.png'));
saveas(gcf, fullfile(baseDir, 'hyperparameter_tuning summary.fig'));

%% Quality Percentage (QP) Calculation with Cross-Validation
disp('Calculating Quality Percentage (QP) metrics with cross-
validation...");

% Prepare data for cross-validation
X_cv = cleanFeatures{:, rocFeatures};
Y_cv = cleanFeatures.Class;

% Set up cross-validation

rng(1l); % For reproducibility

cvFolds = 5;

cv = cvpartition(Y_cv, 'KFold', cvFolds);

% Initialize arrays to store results
cvAccuracy = zeros(cvFolds, 1);
cvPredictions = zeros(size(Y_cv));

% Perform cross-validation
for k = 1:cvFolds
% Split data
trainIdx = cv.training(k);
testIdx = cv.test(k);

% Train decision tree on training set
cvTree = fitctree(X_cv(trainIdx,:), Y _cv(trainIdx),
'PredictorNames', rocFeatures,
"MaxNumSplits', 10, 'MinLeafSize', 5);

% Predict on test set
cvPredictions(testIdx) = predict(cvTree, X cv(testIdx,:));

% Calculate accuracy for this fold
cvAccuracy(k) = sum(cvPredictions(testIdx) == Y_cv(testIdx)) /
sum(testIdx);

disp([" CV Fold ' num2str(k) ' Accuracy: '
num2str(cvAccuracy(k)*100, '%.2f"') '%']);
end

% Store cross-validated predictions
cleanFeatures.CVPredictedClass = cvPredictions;

% Display overall cross-validation results
disp([' Mean CV Accuracy: ' num2str(mean(cvAccuracy)*100, '%.2f') '%
(SD: " num2str(std(cvAccuracy)*100, '%.2f"') '%)']);

% Apply ROC-optimized threshold classification
cleanFeatures.PredictedClass_Thresholds =
zeros (height(cleanFeatures), 1);
for i = 1:height(cleanFeatures)
row = cleanFeatures(i,:);
cleanFeatures.PredictedClass_Thresholds(i) =
classifyStability(row, optimalThresholds);
end

Apply decision tree classification - fix the X_tree reference
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X_for_prediction = cleanFeatures{:, rocFeatures}; % Using the same
features for prediction
cleanFeatures.PredictedClass_ DT = predict(dtModel, X_for_prediction);

% Calculate accuracies for each method

accuracyThresholds = sum(cleanFeatures.PredictedClass_Thresholds ==
cleanFeatures.Class) / height(cleanFeatures);

accuracyDT = sum(cleanFeatures.PredictedClass DT ==
cleanFeatures.Class) / height(cleanFeatures);

disp(['ROC-optimized thresholds accuracy: '
num2str(accuracyThresholds*100, '%.2f"') '%']);

disp(['Decision tree accuracy: ' num2str(accuracyDT*100, '%.2f')
%15

disp(['Cross-validation accuracy:
"%.2F") "% ]);

num2str(mean(cvAccuracy)*100,

% Choose best model based on accuracy and assign to PredictedClass
if mean(cvAccuracy) > max(accuracyThresholds, accuracyDT)
cleanFeatures.PredictedClass = cleanFeatures.CVPredictedClass;
disp('Using cross-validated model as final model (best
performance)');
elseif accuracyDT > accuracyThresholds
cleanFeatures.PredictedClass = cleanFeatures.PredictedClass_DT;
disp('Using decision tree as final model (best performance)');
else
cleanFeatures.PredictedClass =
cleanFeatures.PredictedClass_Thresholds;
disp('Using ROC-optimized thresholds as final model (best
performance)');
end

% For each subject and condition
subjects = unique(cleanFeatures.Subject);
conditions = unique(cleanFeatures.Condition);

% Pre-allocate gpResults for better performance
gpResults = table('Size', [length(subjects)*length(conditions),
4],

'VariableTypes', {'string', 'string', 'double’,
"double'},

'VariableNames', {'Subject', 'Condition', 'QP',
"CV_QP'});
rowIdx = 1;

for s = 1:length(subjects)
subject = subjects(s);

for ¢ = 1:1length(conditions)
condition = conditions(c);

% Get data for this subject and condition
subCondIdx = (cleanFeatures.Subject == subject &
cleanFeatures.Condition == condition);

if sum(subCondIdx) ==
continue;
end



subCondData = cleanFeatures(subCondIdx, :);

% Calculate percentage of correctly classified instances

% For final model

correctClassification = (subCondData.PredictedClass ==
subCondData.Class);

gp = 100 * mean(correctClassification);

% For cross-validated model

cvCorrectClassification = (subCondData.CVPredictedClass ==
subCondData.Class);

cvQp = 100 * mean(cvCorrectClassification);

% Store results
gpResults.Subject(rowIdx) = subject;
gpResults.Condition(rowIdx) = condition;
gpResults.QP(rowIdx) = qgp;
gpResults.CV_QP(rowIdx) = cvQp;

rowIdx = rowIdx + 1;

disp([" QP for Subject ' char(subject) ', Condition '
char(condition) ...
"1 " num2str(gp, '%.2f") '% (CV: ' num2str(cvQp,
'%.26') %) 1);
end
end

% Trim any unused rows
gpResults = gpResults(l:rowIdx-1,:);

% Save QP results
writetable(gpResults, [path filesep 'quality percentage.csv']);

% Create QP visualization

figure('Name', 'Quality Percentage by Subject');
uniqueSubjects = unique(gpResults.Subject);
meanQP = zeros(length(uniqueSubjects), 1);
meanCVQP = zeros(length(uniqueSubjects), 1);

for i = 1l:length(uniqueSubjects)
subjIdx = strcmp(gpResults.Subject, uniqueSubjects(i));
meanQP (i) = mean(qpResults.QP(subjIdx));
meanCVQP (i) = mean(qpResults.CV_QP(subjIdx));

end

bar([meanQP, meanCVQP]);
xticklabels(uniqueSubjects);

xtickangle(45);

legend('Original Model', 'Cross-Validated');
ylabel('Quality Percentage (%)');
title('Classification Quality by Subject');
grid on;

%% Create and validate classification model
disp('Creating and validating stability classification model...");

% Create a model based on ROC-optimized thresholds
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classifyWithThresholds = @(data, thresholds) classifyStability(data,
thresholds);

% Apply classification to the clean dataset
cleanFeatures.PredictedClass_Thresholds =
zeros (height(cleanFeatures), 1);
for i = 1:height(cleanFeatures)
row = cleanFeatures(i,:);
cleanFeatures.PredictedClass_Thresholds(i) =
classifyStability(row, optimalThresholds);
end

% Apply decision tree classification
cleanFeatures.PredictedClass_DT = predict(dtModel, X_tree);

% Evaluate classification accuracy

accuracyThresholds = sum(cleanFeatures.PredictedClass_Thresholds ==
cleanFeatures.Class) / height(cleanFeatures);

accuracyDT = sum(cleanFeatures.PredictedClass DT ==
cleanFeatures.Class) / height(cleanFeatures);

disp(['ROC-optimized thresholds accuracy: '
num2str(accuracyThresholds*100, '%.2f"') '%']);

disp(['Decision tree accuracy: ' num2str(accuracyDT*100, '%.2f')
%15

disp(['Cross-validation accuracy:
"%.2F") "% ]);

num2str(mean(cvAccuracy)*100,

% Create confusion matrices

% Choose best model and save as final predicted class
if mean(cvAccuracy) > max(accuracyThresholds, accuracyDT)
cleanFeatures.PredictedClass = cleanFeatures.CVPredictedClass;
disp('Using cross-validated model as final model (best
performance)');
elseif accuracyDT > accuracyThresholds
cleanFeatures.PredictedClass = cleanFeatures.PredictedClass_DT;
disp('Using decision tree as final model (best performance)');
else
cleanFeatures.PredictedClass =
cleanFeatures.PredictedClass_Thresholds;
disp('Using ROC-optimized thresholds as final model (best
performance)');
end

% Save classification results
writetable(cleanFeatures, [path filesep 'classified_features.csv']);

% Export optimal thresholds to a CSV file
thresholdTable = struct2table(optimalThresholds);
writetable(thresholdTable, [path filesep 'optimal_ thresholds.csv']);

% Export trained model
save([path filesep 'stability model.mat'], 'dtModel',
'optimalThresholds’,

'featureCols', 'classNames', 'bestFeatures');

%% [section omitted - basic Summary of data and visualisation,
trivial]
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% Boxplots and Data Summary

%% Classification function using ROC-optimized thresholds
function class = classifyStability(data, thresholds)

% Default to unknown class (C=4 per Image 3b)

class = 4;

% Follow the exact hierarchy from Image 3(b)
% Check if below threshold for stable class (identified class:
C=0)
if data.D_RMS < thresholds.D _RMS(1)
class = 9; % Stable
% Check if above AP threshold (identified class: C=1)
elseif data.AP_range > thresholds.AP_range(2) && data.ML_range <
thresholds.ML_range(2)
class = 1; % Antero-Posterior
% Check if below ML threshold (identified class: C=2)
elseif data.ML_range > thresholds.ML_range(3) && data.AP_range <
thresholds.AP_range(3)
class = 2; % Medio-Lateral
% Check for unstable (identified class: C=3)
elseif data.D_RMS > thresholds.D_RMS(4)
class = 3; % Unstable
end
% Otherwise remains as unknown (class = 4)
end

% Helper function for cross-validation

function acc = crossValidateModel(model, X, Y, cv)
numFolds = cv.NumTestSets;
predictions = zeros(size(Y));

for i = 1:numFolds
trainIdx = cv.training(i);
testIdx = cv.test(i);

% Train model on training set
trainedModel = model.fit(X(trainIdx,:), Y(trainIdx));

% Predict on test set
predictions(testIdx) = trainedModel.predict(X(testIdx,:));
end

% Calculate accuracy
acc = sum(predictions == Y) / length(Y);
end
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