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ABSTRACT 
        ………………………………………………………………………………………………………… 

Background and Objective: The rising incidence of Parkinson’s Disease 

(PD) underscores the need for innovative strategies to assess its symptoms, 

especially motor symptoms. Associated issues with functional mobility and 

reduced capacity to perform activities of daily living among people with PD, 

can reduce the quality of life. Wearable devices can provide insight and 

serve as a tool for assessing the impact of interventions. However, despite 

the potential benefits, it is fraught with challenges and risk factors. This 

scoping review attempts to address the challenges and possible risk factors 

associated with using wearable devices in assessing motor symptoms in 

people with PD.  

Methods: This scoping review adhered to the guidelines in the PRISMA-

ScR framework. The Scopus database was analysed using the MeSH key 

search terms to retrieve all eligible studies and peer-reviewed papers using 

wearable devices to assess motor symptoms in people with PD published 

from 2019 to 2024 according to the defined criterion.  

Results: Forty-six articles were analyzed in the final review. The results 

were organized into the type of wearable devices used and the related motor 

symptoms being assessed. The included articles were investigated 



 

iii 
 

thoroughly to identify the challenges and possible risk factors in using 

wearable devices to assess motor symptoms among people with PD.  

Conclusion: The challenges and possible risk factors retrieved from the 

studies were classified into 5 perspectives. The use of wearable devices may 

lead to inconsistency in data collection, causing incomplete data sets, which 

not accurately reflect an individual’s condition. This leads to misdiagnosis, 

affecting clinical decision-making. Future studies should aim to incorporate 

a wider range of databases and include non-motor symptoms to provide a 

more comprehensive understanding of the impact on all people with PD.  

Keywords: Parkinson’s Disease, Wearable devices, Motor symptoms, 

Assessment, Diagnostic tools, Challenges, Scoping review 
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CHAPTER 1 

1.0 BACKGROUND 

1.1 Background of Study  

Parkinson’s disease (PD) is a central nervous system (CNS) disorder that 

progresses over time. PD can be classified into idiopathic PD, secondary 

parkinsonism, and Parkinson’s-plus syndrome (Jankovic & Tan, 2020). 

Idiopathic PD can be due to unknown reasons or genetic factors. It can be 

divided into two different subgroups. The first subgroup has postural instability 

and gait disturbances as dominant symptoms, and the second subgroup has a 

tremor as a main feature, along with bradykinesia or postural instability 

(National Institute of Neurological Disorders and Stroke, 2023). The genetic 

factor is due to the genetic mutation that involves the gene PARK1, PINK1, 

LRRK2, and SNCA (Vázquez-Vélez & Zoghbi, 2021). On the other hand, 

secondary parkinsonism is a disease that exhibits similar clinical features as 

idiopathic PD yet to have a distinct etiologic. Examples of secondary 

parkinsonism are postencephalitic parkinsonism, toxic parkinsonism, and drug-

induced parkinsonism (Berlot et al., 2024). Parkinson-plus syndrome are 

diseases that affect the substantia nigra which causes the parkinsonian 

symptoms. The diseases are parkinsonian degeneration (SND), Shy-Drager 

syndrome, progressive supranuclear palsy (PSP), Juvenile Huntington’s disease, 

etc (Berlot et al., 2024). The stages of PD can be classified by observing the 

symptoms of the people by using the Hoehn and Yahr scale (Kataoka & Sugie, 
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2021). It is a five-point scale that is commonly used in the clinical setting (refer 

to Appendix 1). Other than this, there is another scale known as Braak’s staging 

model which breaks PD into six stages according to the pathological changes in 

the brain (Laansma et al., 2021) (refer to Appendix II). Assessment of non-

motor symptoms in PD is crucial for comprehensive management, as these 

symptoms significantly impact the quality of life. Non-Motor Symptoms 

Questionnaire (NMSQuest) is a 30-item self-reported questionnaire which can 

identify the presence of various non-motor symptoms (Zis et al., 2015). It covers 

nine domains, including gastrointestinal, urinary, cognition and sleep (refer to 

Appendix III). Nevertheless, the Non-Motor Symptoms Scale (NMSS) which is 

a clinician-rated scale assesses the severity and frequency of non-motor 

symptoms across multiple domains (Joshi et al., 2022). It is particularly useful 

for evaluating the effect of these symptoms on daily living and quality of life 

(refer to Appendix IV). These scales enable clinical professionals to assess and 

evaluate the disease progression which helps to guide the decision making in 

the plan of care. 

PD causes motor and non-motor symptoms through a variety of 

mechanisms. The primary pathological feature of PD is the degeneration of 

dopaminergic neurons in the pars compactus of the substantia nigra in the basal 

ganglia (Kouli et al., 2018). Its function is to produce a neurotransmitter known 

as dopamine. The degeneration of the dopaminergic neurons leads to the cease 

of the production of dopamine, which disrupts the balance between excitatory 

and inhibitory signals required for normal motor functions (Wu et al., 2012). 

The loss of dopamine alters the functioning of various neurotransmitters within 

the basal ganglia, including glutamate and GABA (gamma-aminobutyric acid). 
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This imbalance exacerbates the motor control issues, as the pathways that 

typically facilitate movement become impaired. The dorsal striatum, which 

receives input from the substantia nigra, becomes less responsive, leading to 

difficulties in initiating and executing movements. As dopamine levels decrease, 

the brain attempts to compensate through changes in other neurotransmitter 

systems (Radad et al., 2023). However, these compensatory mechanisms are 

often insufficient to restore normal function. This leads to the progression of 

motor symptoms over time. Hence, this histological hallmark of PD contributes 

to the four cardinal symptoms (Jankovic & Tan, 2020). The four cardinal motor 

symptoms include 1) Rigidity, 2) Bradykinesia/Akinesia, 3) Tremor (4 – 6 Hz), 

and 4) Postural instability.  

According to Moustafa et al. (2016), akinesia, bradykinesia and rigidity 

are strongly related to dopamine depletion in basal ganglia. They concluded that 

akinesia and bradykinesia are caused by the lack of D2 receptor stimulation. 

This reduction contributes to the hyper-excitability of striatal neurons, known 

as medium spiny neurons (MSNs) (Magrinelli et al., 2016). The MSNs are 

categorized into two main types based on their projections: 1) Direct Pathway 

MSNs and 2) Indirect Pathway MSNs (Barry et al., 2018). The direct pathway 

involves the expression of dopamine D1 receptors to the substantia nigra pars 

reticulata and internal segment of the globus pallidus to facilitate the 

movements. In contrast, the indirect pathway helps to express dopamine D2 

receptors and project to the external segment of the globus pallidus to inhibit 

movement. The striatal neurons become hyper-excited is a significant factor 

contributing to akinesia and bradykinesia by disrupting the balance between the 

direct and indirect pathways, ultimately impairing motor control (Piantadosi et 
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al., 2024). The hyper-excitability is characterized by changes in action potential 

firing and membrane potential dynamics, making these neurons more 

responsive to synaptic inputs (Jáidar et al., 2019). The loss of dopaminergic 

modulation leads to unopposed excitatory inputs from glutamatergic afferents, 

which further enhance the excitability of the indirect pathway of MSNs. As the 

indirect pathways become overactive, it leads to an increased inhibition of 

movement, resulting in symptoms such as akinesia, bradykinesia and rigidity.  

Additionally, the rigidity in people with PD is not only associated with 

dopamine depletion but also increases the discharge of neurons in the 

subthalamic nucleus (Zhao et al., 2023). The increased firing rates of STN 

neurons contribute to enhanced inhibitory output to the globus pallidus internus 

(Gpi) and substantia nigra reticulata (SNr), which in turn leads to increased 

inhabitation of the motor thalamus.  

Tremor is among the earliest motor symptoms of PD (Abusrair et al., 

2022). The common type of tremor is the resting tremor, which will be reduced 

upon movement as well as sleeping (Abusrair et al., 2022). The resting tremor 

is often described as a “pill-rolling” movement. It usually starts asymmetrically 

during early stages of PD (Abusrair et al., 2022). As the disease progresses, both 

sides may become affected. In addition to resting tremors, people with PD may 

also experience postural tremors and kinetic tremor (Abusrair et al., 2022). 

Postural tremor occurs when the body maintains a position against gravity, 

while kinetic tremor occurs during voluntary movements (Puschmann & 

Wszolek, 2011). Those with tremor-dominant PD tend to have a slower disease 

progression compared to other subtypes (Moustafa et al., 2016). It rarely 

continues to worsen beyond a certain point and may even improve over time in 
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some cases. The pathophysiology of tremor in PD is complex and involves 

multiple interacting mechanisms within the central and peripheral nervous 

system (Onanong Jitkritsadakul et al., 2017). It is caused by the abnormal 

oscillatory activity within the basal ganglia-thalamo-corticol circuits (Abusrair 

et al., 2022). The imbalance activity of pathways can contribute to the 

generation of tremor, similar to the pathophysiology of movement symptoms in 

PD. Nevertheless, the cerebellum plays a crucial role in modulating tremor 

amplitude via the cerebello-thalamo-cortical circuit (Zhong et al., 2022). A 

recent study discovered that cerebellar over-activity, driven by α-synuclein-

related pathological changes in the cerebellum, plays a role in the development 

of resting tremor in PD (Zhong et al., 2022). Besides, other pathological changes 

such as lower climbing fiber length and higher Purkinje cell count may also tend 

to show symptoms of resting tremor in people with PD (Wu & Hallett, 2013). 

The gradual degeneration of serotonergic neurons in the raphe nuclei and the 

depletion of serotonin in areas such as the cortex, thalamus, and basal ganglia 

contribute to the development of tremors (Zhong et al., 2022). This damage 

appears to have a greater impact on tremor than the degeneration of striatal 

dopaminergic neurons.  

Postural instability is a significant and challenging symptom of PD that 

affects balance and increases the risk of falls (Palakurthi & Burugupally, 2019). 

Postural instability refers to the loss of the ability to remain balanced under both 

dynamic and static conditions (Palakurthi & Burugupally, 2019). This symptom 

in PD is primarily linked to the degenerative of dopaminergic neurons in the 

substantia nigra (Skidmore et al., 2022). This degeneration disrupts the normal 

functioning of the basal ganglia circuity, impairing the ability to control posture 
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and balance (Skidmore et al., 2022). Maintaining postural stability requires the 

integration of motor outputs and sensory inputs such as visual, vestibular and 

proprioceptive (Appeadu & Gupta, 2021). There may be deficits in processing 

these sensory inputs, leading to impaired balance. People with PD commonly 

experience altered reflexes and impaired motor control, and this significantly 

contributes to postural instability (Palakurthi & Burugupally, 2019). These 

factors lead to delayed or inadequate responses to perturbations, making it 

challenging for people to recover balance when faced with external forces or 

uneven surfaces. Moreover, people with PD who have cognitive impairment 

symptoms can further exacerbate postural instability as they face difficulties in 

attention and executive function (Appeadu & Gupta, 2021). Freezing of gait 

(FoG) and postural instability are intertwined, as they influence each other 

behaviourally and neurologically (Heremans et al., 2013). FoG is characterized 

by a sudden, transient absence in the forward movement of the feet, although to 

walk (Rahimpour et al., 2021). People with PD often describe their feet are stuck 

to the ground, with episodes lasting from a few seconds to over 30 seconds 

(Rahimpour et al., 2021). Freezing episodes are often triggered by specific 

situations, including initiating movement from a standing position, turning 

through narrow spaces, approaching doorways and multitasking or experiencing 

stress (Rahimpour et al., 2021). The underlying mechanisms of FoG remain 

poorly understood, but several factors contribute to its occurrence. FoG involves 

a combination of motor and cognitive deficits, specifically difficulties in gait 

pattern generation and execution function (Heremans et al., 2013). These 

impairments can hinder the initiation of movement and the adaptation to a 

changing environment. Approximately 30% of people with PD experience falls 
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each year (Cui & Lewis, 2021). Falls associated with FoG tend to result in more 

severe injuries compared to falls occurring during standing or other activities 

(Cui & Lewis, 2021). Studies have shown that people with PD who experience 

FoG demonstrate significantly poorer postural control compared to those 

without FoG (Schlenstedt et al., 2016). For instance, people with FoG have been 

found to have a posterior shift in their centre of pressure (COP) during the stance 

phase (Schlenstedt et al., 2016). This may limit their ability to initiate forward 

movement, thereby contributing to freezing episodes (Schlenstedt et al., 2016).  

Besides, as the disease progresses, Lewy bodies, which are the 

cytoplasmic inclusion bodies, will further inhibit the production and 

transmission of dopamine (Huber et al., 2019). It disrupts the normal 

functioning of dopaminergic pathways, leading to impaired neurotransmission. 

The Lewy bodies can be found in multiple brain regions, which are in the 

olfactory bulb, brainstem, limbic structures and neocortex (Rocha Cabrero & 

Morrison, 2020). The presence of Lewy bodies in limbic and neocortical regions 

is associated with cognitive decline and dementia (Patterson et al., 2019). 

Besides, it can also lead to neuropsychiatric symptoms such as depression, 

anxiety, and psychosis due to the degeneration of dopaminergic circuity. The 

other nonmotor symptoms are altered bladder function, excessive saliva, 

changes in integumentary, dysarthria (difficulty in speaking), dysphagia 

(difficulty in swallowing), and cognitive issues. These symptoms appear after 

years of underlying neurodegeneration has started. Thus, this period can be 

known as prodromal PD. It can be up to fifteen to twenty years.  

Healthcare professionals need to assess and monitor the symptoms 

during the first session as well as at each follow-up visit to gauge how the patient 
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is responding to treatment and how the disease is progressing over time. The 

most commonly used assessment tools are the timed up-and-go (TUG) test, the 

Unified Parkinson’s Disease Rating Scale (UPDRS), and the freezing of gait 

questionnaire (FOG-Q). The TUG test is a valuable clinical tool used to assess 

mobility and fall risk in people with PD (Nocera et al., 2013). The TUG test can 

assess the ability of a person to perform basic mobility movements, which 

include sitting to stand, walking for 3 meters, turning and walking back to the 

chair, and then sitting down (Nocera et al., 2013). According to Morris et al. 

(2001), the cut-off score in people with PD is 11.5 seconds. Thus, a time of 11.5 

seconds or longer indicates a higher risk of falls in these patients (Morris et al., 

2001). Next, the UPDRS is also a comprehensive tool for assessing the severity 

and progression of PD (Ivey et al., 2012). It consists of four components: 1) Part 

I (Mentation, Behavior, and Mood), 2) Part II (Activities of Daily Living), 3) 

Part III (Motor Examination), and 4) Part IV (Complications of Therapy) 

(Morris et al., 2001). Parts I to III contain a Likert scale ranging from 0 

indicating normal to 4 indicating severe impairment whereas Part IV uses 

closed-ended questions (Yes or No) to assess the complication of the treatment 

(Morris et al., 2001). The total scores from Parts I to III will be summed up, in 

which higher scores indicate greater disease severity (Morris et al., 2001). 

However, the UPDRS can only be assessed when the patient is in the “ON” state 

(Morris et al., 2001). The FOG-Q is a valuable tool for assessing FOG in people 

with PD (Cronin et al., 2024). It is designed to quantify the frequency and 

severity of freezing episodes (Cronin et al., 2024). The FOG-Q consists of 6 

items, each containing a Likert scale ranging from 0 to 4 (Cronin et al., 2024). 

The first 2 items assessed the difficulty initiating walking, the third item 
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assessed the frequency of freezing, whereas items 4 to 6 assessed the duration 

of the freezing episodes (Cronin et al., 2024). The higher the score, the more 

severe the freezing episodes. However, all the conventional assessment tools 

have their limitation when it comes to evaluating individuals with PD. Therefore, 

the use of wearable devices could help address these shortcomings. Besides, 

clinical decision-making in PD can be significantly hindered by the reliance on 

traditional assessment methods. These methods often involve subjective 

evaluations and can be time-consuming, leading to potential inaccuracies in 

diagnosis and treatment. Traditional assessments often require extensive time 

for both the clinician and the patient. The need for detailed history taking 

physical examinations and possibly multiple follow-up visits can delay timely 

diagnosis and treatment adjustments. A study done by Rossi et al. (2021) 

reported that the time required for final diagnosis in a clinical setting lasts for 

2.75 years in people with PD. Furthermore, studies also showed that symptoms 

of burnout such as emotional exhaustion and depersonalization were suffered 

by physiotherapists who were working in an acute care hospital (Rogan et al., 

2019). Burnout among physiotherapists treating people with PD is a significant 

concern, influenced by various factors inherent to the profession and the 

complexities of managing chronic conditions like PD (Rodríguez-Nogueira et 

al., 2022).  

Several wearable devices are currently being used to assess various 

aspects of PD, particularly motor symptoms.  Accelerometers and gyroscopes 

are sensors commonly used in wearable devices to measure movement 

parameters (Godoi et al., 2019). They are typically worn on the waist, wrists 

and legs to collect data on tremors, bradykinesia and gait disturbance (Godoi et 
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al., 2019). Data from the accelerometers can be used to derive measures of 

symptom severity, such as amplitude and frequency of tremor, while gyroscopes 

provide information about body orientation and rotational movements, which is 

useful for assessing postural instability and gait abnormalities in PD (Channa et 

al., 2020; Daneault et al., 2021). The combination of these two sensors helps to 

provide a better detection of turns and a more accurate assessment of gait 

parameters (Channa et al., 2020; Daneault et al., 2021). Another wrist-worn 

device, Parkinson’s KinetiGraph (PKG) uses an accelerometer to continuously 

monitor movement (Lu et al., 2020). It resembles a standard watch, making it 

user-friendly and easy to wear throughout daily activities (Lu et al., 2020). This 

device also helps to provide objective data on bradykinesia, dyskinesia and 

tremor, which can help in medication management (Lu et al., 2020). The device 

employs a fuzzy logic-based algorithm to analyze the collected data, generating 

scores for bradykinesia and dyskinesia in 2-minute epochs (Ramdhani et al., 

2018). This allows for detailed insights into the patient’s motor function over 

time. After the data collection period, the PKG generates a report for healthcare 

providers, summarizing key metrics such as fluctuation scores (FS) and 

dyskinesia scores (DKS) (Moreau et al., 2023). Its integration into routine 

clinical practice has the potential to address unmet needs in PD care, making it 

a valuable tool for both people with PD and healthcare. Inertial Measurement 

Units (IMUs), which combine accelerometers and gyroscopes are used in 

wearable devices to assess postural instability and lower limb impairments in 

people with PD (Rose et al., 2021). These devices can be worn on the waist or 

2020). IMUs provide real-time data on motion and orientation, which is critical 

for applications requiring immediate feedback (Moreau et al., 2023). They can 
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be used in various environments and applications, from aerospace to consumer 

electronics (Tirado et al., 2024). IMUs improve GPS reliability in challenging 

environments, such as indoors or in urban canyons, where satellite signals may 

be obstructed (Tirado et al., 2024). Moreover, pressure sensors embedded in 

shoes or insoles can measure gait parameters, such as stride length and cadence, 

which are affected in people with PD with FoG (Lu et al., 2020).  Besides, 

magnetometers are sensors used in accelerometers and gyroscopes to provide 

more accurate measurements of movements and posture in people with PD (Sica 

et al., 2021). This device helps in accurately detecting turns and changes in 

direction during walking, which is particularly important for people with PD, 

who often experience difficulties with gait and may freeze during movements 

(Sica et al., 2021). Nevertheless, this device can also assist in characterizing 

tremors by providing data on the frequency and amplitude of the tremors 

experienced by people with PD (Daneault et al., 2021).  

Various machine learning models are applied to the extracted features to 

predict motor symptom severity. The common algorithms used are Random 

Forest, Linear Regression, Support Vector Machines (SVM), and k-Nearest 

Neighbors (Knn) (Sotirakis et al., 2023). The Random Forest model constructs 

multiple decision trees during training and for classification tasks, each tree 

votes on the predicted class, in which the majority vote determines the final 

prediction (di Biase et al., 2024). Once relevant features are selected, it will be 

trained to use the labelled data, where each instance corresponds to a known 

outcome such as the scores from MDS-UPDRS) (di Biase et al., 2024). So, the 

model can be used to predict motor symptoms based on the sensor data after 

training (di Biase et al., 2024). Next, linear regression serves as a 
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straightforward yet effective tool for understanding how various kinematic 

features correlate with the assessment of motor symptoms. The data such as the 

MDS-UPDRS score will become the dependent variable while the selected 

kinematic features from wearable devices will become the independent variable 

(Lu et al., 2020). The model is then trained using historical data after both 

variables are known. After training, the model’s performance is evaluated using 

metrics performance such as R-squared and Root Mean Square Error (RMSE) 

to measure prediction accuracy (Lu et al., 2020). Hence, by inputting new 

kinematic measurements into the model, researchers can estimate the severity 

of the motor symptoms without requiring direct assessment (Lu et al., 2020). 

Wearable devices allow real-world data collection as they enable 

continuous monitoring of people with PD in their natural environment, 

capturing data that may not be evident during clinical assessments (Daneault et 

al., 2021). This is essential for understanding the variability of symptoms 

throughout the day and across different contexts (Channa et al., 2020). These 

wearable devices offer several advantages over traditional clinical assessments, 

such as the UPDRS. They provide objective, continuous and quantitative data 

on motor symptoms which can help in monitoring disease progression and 

optimizing treatment. While wearable technologies offer exciting potential for 

improving the evaluation of motor symptoms in PD, it’s essential to recognize 

that their implementation is not without obstacles. Careful consideration of the 

challenges and risk factors involved is necessary to ensure these devices’ 

effective and appropriate use in clinical settings.
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1.2 Problem Statement 

The growing incidence of Parkinson’s disease (PD) highlights the 

pressing demand for innovative approaches to efficiently monitor and manage 

the motor and non-motor symptoms of people with PD. The roles of 

physiotherapists are mostly in assessing and managing the motor symptoms of 

people with PD. 

Concerning recent advances and developments, there is an increasing 

adoption of wearable devices in various research to identify the effectiveness of 

these devices in assessing motor symptoms among people with PD. Current 

works of literature show the accuracy of the assessment of the symptoms, 

indicating that wearable devices can provide valuable insights into motor 

symptom progression.  

However, there is a lack of comprehensive understanding regarding the 

challenges and possible risk factors in using wearable devices in assessing 

motor symptoms among people with PD. These challenges and possible risk 

factors can potentially affect the treatment decisions.  

This scoping review aims to systematically investigate the challenges 

and possible risk factors with the use of wearable devices for assessing motor 

symptoms among people with PD. By identifying existing research, this study 

seeks to identify knowledge gaps and provide recommendations for future 

research and development. The research will contribute to future planning, 

testing, and implementation of wearable devices in assessing motor symptoms 

of people with PD.  
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1.3 Research Question  

1. What challenges and potential risk factors have been studied regarding 

the use of wearable devices as diagnostic tools in assessing the motor 

symptoms of people with Parkinson’s Disease?  

2. How do these challenges and potential risk factors associated with the 

use of wearable devices impact the assessment and management of 

people with Parkinson’s Disease? 

 

1.4 Aims  

To review the comprehensive analysis of existing literature, including meta-

analysis, systematic review, observational study, and experimental study to 

provide a thorough understanding of the challenges and potential risk factors in 

using wearable devices in assessing motor symptoms of people with Parkinson’s 

Disease.  

 

1.5 Objectives  

1. To review the recent literature and to understand current challenges and 

potential risk factors in using wearable devices in assessing motor 

symptoms of people with Parkinson’s Disease.  

2. To evaluate how the challenges and possible risk factors can affect the 

effectiveness and reliability of wearable devices in assessing and 

managing people with Parkinson’s Disease.  
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1.6 Operational Definition  

 

1.6.1 Parkinson’s Disease  

A progressive neurodegenerative disorder primarily affecting the central 

nervous system (CNS), characterized by the degeneration of dopaminergic 

neurons in the substantia nigra, leading to a deficiency of dopamine (AlMahadin 

et al., 2020). It manifests both motor and non-motor symptoms (AlMahadin et 

al., 2020).  

 

1.6.2 Wearable Devices  

Electronic devices that can be worn on the body, often in close contact with the 

skin, continuously monitor both motor and non-motor symptoms of the patients, 

enabling healthcare professionals to understand the patient’s condition better 

(Lu et al., 2020).  

 

1.6.3 Scoping Review 

A form of evidence synthesis designed to systematically identify and outline the 

range of available evidence on a specific topic, field, concept, or issue (Munn 

et al., 2022). It typically encompasses a variety of sources, including primary 

research, reviews, and non-empirical evidence, and can be conducted within or 

across contexts (Munn et al., 2022).  
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1.7 Rationale of Study  

 There is an increasing trend in the prevalence of Parkinson’s Disease 

(PD) worldwide. PD is the second most common neurodegenerative disorder 

that is affecting millions globally. Hence, innovative solutions came up as a 

promising avenue for the continuous assessment of both motor and non-motor 

symptoms.  

 The motor symptoms are the hallmark of PD, which significantly affect 

the activities of daily living (ADLs) of the people with PD thus, decreasing their 

quality of life (QoL). Our roles as physiotherapists are to improve motor 

symptoms, functional mobility, and gait, which then leads to our ultimate goal 

– to reduce the risk of falls and improve the QoL. However, a shortage of 

manpower as well as time constraints can limit the ability of the physiotherapists 

to perform a comprehensive assessment. For example, the average time to 

perform the full UPDRS is approximately 20 minutes. Additionally, it may be 

necessary for a single physiotherapist to treat multiple patients during a session.  

 The introduction of wearable devices in physiotherapy assessment offers 

real-time monitoring of people with PD, providing information about the 

functional capacities inside or outside of the clinical settings. Besides, the data 

collected from the sensors are more precise, which may be neglected or missed 

in conventional assessments. However, despite the potential benefits of 

wearable devices, there are some challenges and possible risk factors associated 

with integrating wearable devices into clinical practice, which will be 

thoroughly investigated in this study. By synthesizing existing research, the 

study seeks to provide valuable insights that can inform future research and 
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development, ultimately enhancing the utility of wearable devices in clinical 

practice and improving patient outcomes. 

 

1.8 Scope of Study 

 This study focuses on examining various types of wearable devices that 

serve as diagnostic tools in assessing the motor symptoms of people with PD. 

The analysis included their functionalities and the specific motor symptoms 

they are designed to assess for example tremors, bradykinesia, and freezing of 

gait. This study also identified and analysed the challenges and potential risk 

factors of using wearable devices in assessing people with PD in clinical settings. 

The scoping review aims to highlight the gaps in existing literature regarding 

the use of wearable devices for PD assessment. This scoping review also aims 

to serve as the basis for future systematic review and interventional studies.
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Prevalence of Parkinson’s Disease  

 According to the research done by Ou et al (2021) provides a 

comprehensive analysis of the global trends in the incidence, prevalence, and 

years lived with disability associated with PD from the year 1990 to 2019 across 

204 countries and territories. Based on the study, the overall age-standardized 

incidence rate (ASIR) of PD has significantly increased, showing a 159.73% 

rise in new cases since 1990, and reaching 1081.72 thousand cases by the year 

2019 (Ou et al, 2021). Additionally, the age-standardized prevalence has also 

risen sharply, highlighting an escalating public health challenge. The highest 

incidence and prevalence rates were found in older populations, especially 

among individuals over 80 years of age (Ou et al, 2021). This demographic trend 

highlights the influence of an ageing population on the burden of Parkinson’s 

disease (Ou et al, 2021). Other than this, there is a notable increase in PD was 

reported in specific countries. The United States of America and Norway 

showed the largest increasing percentages in PD incidence, with estimated 

annual percentage changes (EAPCs) of 2.87 (95% CI: 2.35–3.38) and 2.14 (95% 

CI: 2.00–2.29) respectively (Ou et al, 2021). Furthermore, the global count of 

years lived with disability (YLDs) attributed to PD has risen by 154.73% since 

the year 1990, accompanied by an increase in the age-standardized rate (Ou et 

al, 2021).  
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 A nationwide study in Norway analyzed data from the Norwegian 

Prescription Database to assess the incidence, prevalence, and mortality of PD 

between the years 2004 to year 2017 (Brakedal et al., 2022). The study showed 

the prevalence of PD increased over the observational period, particularly 

among older age groups, with the highest prevalence in individuals aged 85 and 

older (Brakedal et al., 2022). The male-to-female prevalence ratio is 1.5 across 

all age groups (Brakedal et al., 2022). The incidence ratio increased from 1.4 in 

individuals aged 60 to 2.03 in those over 90 years old (Brakedal et al., 2022). 

Another systematic review done by Muangpaisan et al (2009) provided 

valuable insights into the epidemiology of PD in Asian countries. The study 

involves several countries in Asia, specifically: China, Japan, Singapore, India, 

Israel, and Saudi Arabia (Muangpaisan et al, 2009). From the systematic review, 

the standardized all-age prevalence of PD in door-to-door surveys in Asia 

ranged from 51.3% to 176.9 per 100,000 population, which is slightly lower 

than in Western countries (Muangpaisan et al, 2009). Besides, the incidence 

rates were 8.7 per 100.000 person-years in door-to-door surveys and 6.7 to 8.3 

per 100,000 person-years in record-based surveys in Asia (Muangpaisan et al, 

2009).  

A large-scale, nationwide epidemiological study in China provides 

important insights into the current prevalence of PD in older adults aged 65 and 

above (Song et al., 2021). The study showed that the overall crude prevalence 

of PD in this population is 1.86% with a standardized prevalence of 1.60% 

(Song et al., 2021). This translates to an estimated 1.98 million people aged 65 

and older having PD in China (Song et al., 2021). This study also stated that 

men have a higher prevalence of PD compared to women with a standardized 
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prevalence of 2.00% and 1.59% respectively (Song et al., 2021). In addition, the 

study showed the prevalence of PD is higher in urban areas compared to rural 

areas with a standardized prevalence of 1.98% and 1.49% respectively (Song et 

al., 2021). 

According to the Malaysian Parkinson’s Disease Association (MPDA), 

the prevalence of PD in Malaysia is estimated to be around 20,000 people with 

PD currently (Hassandarvish, 2019). This number is expected to increase 

significantly, potentially rising fivefold to 120,000 people with PD in the year 

2040 (Hassandarvish, 2019). Furthermore, PD is ranked as the 28th leading 

cause of death in Malaysia (Parkinson’s Disease in Malaysia, n.d.). Despite the 

increasing prevalence of PD, more targeted epidemiological studies are needed 

to precisely assess the prevalence of PD in the Malaysian population.  

There is a rising trend in the global prevalence of Parkinson’s disease, 

with significant trends noted across various regions and populations. An 

increase in the number of PD cases correlates with a higher overall burden of 

motor symptoms, such as tremors, rigidity, bradykinesia, and postural instability. 

These motor symptoms can greatly impact individuals with PD in multiple ways, 

influencing their daily activities, functional abilities, and overall quality of life 

(QoL). Therefore, it is essential for healthcare professionals to understand the 

motor symptoms of PD, as this knowledge facilitates timely assessments and 

the development of appropriate treatment plans.
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2.2 Motor Symptoms of Parkinson’s Disease 

 Parkinson’s Disease (PD) is a progressive neurodegenerative disorder 

primarily central nervous system (CNS), characterized by a range of motor 

symptoms due to the degeneration of dopaminergic neurons in the substantia 

nigra (Thorp et al., 2018). The primary motor symptoms of PD include tremors, 

bradykinesia, rigidity, and postural instability.  In addition to the primary 

symptoms, PD is also associated with a range of other motor-related symptoms, 

such as freezing of gait, decreased arm swing, and dystonia (Thorp et al., 2018). 

2.2.1 Tremor 

 One of the most distinctive signs of PD is a resting tremor, which often 

starts distally on one side of the body, typically hands or fingers with a 

frequency of 4 to 6 Hz (Thorp et al., 2018). 

  According to a multi-cohort observational study done by Gupta et al 

(2020), resting tremor is the most common type of tremor among people with 

PD, comprising 58.2% across all baseline data while action tremor is also 

common, impacting nearly 40% of the people with PD. This study analyzed data 

from three distinct cohorts: the Parkinson Progression Marker Initiative (PPMI), 

the Fox Investigation for New Discovery of Biomarkers (BioFND), and the 

Parkinson’s Disease Biomarkers Program (PDBP). The study stated that people 

with PD who experience resting tremors have a significantly higher prevalence 

of action tremors in comparison with people with PD who do not experience 

resting tremors (Gupta et al, 2020). This trend is consistent across all three 

cohorts studied. In the PPMI cohort, the prevalence of action tremors was 40.0% 

in people with PD who experience resting tremors, compared to 30.1% in those 
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without resting tremors (Gupta et al, 2020). In the BioFIND cohort, 48.0% of 

people with PD who experience resting tremors exhibit action tremors while the 

prevalence was 40.0% among those without resting tremors (Gupta et al, 2020). 

In the PDBP cohort, the prevalence of action tremors was 49.9% in people with 

PD who experienced resting tremors, compared to 21.0% in those without 

resting tremors.  

According to Pasquini et al. (2018), a study was done to investigate the 

prevalence and progression of different types of tremors in people with early 

PD as well as to explore the relationship between dopaminergic and 

serotonergic dysfunction and tremor severity.  The study showed that 87.8% of 

378 people with PD presented with tremors at baseline, with rest tremors being 

the most prevalent type with a decreasing trend to 67.9% at a 2-year follow-up 

(Pasquini et al., 2018). Besides, the study mentioned that postural and kinetic 

tremors occurred in about 50% of people with PD at both baseline and 2-year 

follow-up (Pasquini et al., 2018). In addition, the number of people with PD 

with isolated rest tremors significantly decreased by the follow-up, suggesting 

a progression in tremor types as the disease advances. The study found that rest 

tremor severity was inversely correlated with serotonergic transporter 

availability, indicating that greater serotonergic dysfunction is associated with 

more severe tremor symptoms (Pasquini et al., 2018). 

Tremors are often the first motor symptom of PD and can interfere with 

daily activities such as writing, dressing, eating, and using technology. Many 

patients may report that tremors hinder their ability to perform fine motor tasks, 

which can lead to frustration and a sense of loss of independence. Besides, the 
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presence of tremors can lead to significant emotional distress, which can 

diminish their self-esteem and overall mental well-being. 

 

1.6.4 Quality of Life  

An individual’s perceived well-being and satisfaction with their physical, 

mental, emotional, and social functioning, as influenced by a health condition, 

disability, or the physiotherapy treatment itself. It encompasses various aspects 

of a person’s life that are affected by their physical and mental state (Schramlová 

et al., 2024). 
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2.2.2 Bradykinesia  

 Bradykinesia is one of the hallmark symptoms of PD, which is 

characterized by the slowness of movement, particularly in the context of 

initiating voluntary actions.  

 According to Achbani et al. (2020), the study investigated the 

differences in clinical profiles of people with PD based on age and gender in 

Southern Morocco. Among 180 participants, 17% of it exhibited bradykinesia 

(Achbani et al., 2020). Besides, the study stated that bradykinesia is more 

prevalent in males (37.6%) compared to females (23.8%) at the early stage of 

the disease (Achbani et al., 2020). In addition, the study revealed a rising trend 

in the prevalence of bradykinesia as age increases (Achbani et al., 2020).  

 The prevalence of bradykinesia is associated with significant functional 

impairments. Bradykinesia will reduce autonomic movements in people with 

PD, they may experience diminished spontaneous movements, significantly 

seen in arm swings and eyes blinking (Deal et al., 2019). This will reduce the 

fluid motion pattern, leading to a more rigid movement (Herz & Brown, 2023). 

Besides, they will experience difficulty in initiating a movement (Sarasso et al., 

2024). For example, a simple sit to stand task will be challenging for them as 

rising from a chair can become particularly challenging. Hence, this can lead to 

fatigue and frustration for patients due to increased time and effort.  

2.2.3 Rigidity  

 Rigidity is the increased resistance to passive movement that is uniform 

and velocity-independent (Baradaran et al., 2013). It can be classified into lead 

pipe rigidity and cogwheel rigidity (Baradaran et al., 2013). 
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A systematic review done by Ferreira-Sánchez et al. (2020) showed an 

extensive analysis of various objective methods for assessing rigidity in people 

with PD. Based on the study, rigidity is the primary symptom of PD, which is 

present in up to 89% of patients (Ferreira-Sánchez et al., 2020). A cross-

sectional study was conducted by Achbani et al. (2020) involving 180 people 

with PD which consists of 117 males and 63 females. The study showed that 

rigidity symptoms are more prevalent in younger patients and those aged 61 to 

70 years old (Achbani et al., 2020). In this study, 33% of the total participants 

exhibited rigidity symptoms (Achbani et al., 2020). 

The constant tension in the muscles can lead to pain and discomfort, 

contributing to fatigue (Ferreira-Sánchez et al., 2020). This significantly 

impedes their abilities to engage in ADLs. In addition, stiffness can also happen 

to facial muscles, causing a mask-like expression. This may be misinterpreted 

by others as a lack of interest or engagement, affecting social interactions 

(Borrione, 2014). In conclusion, the presence of rigidity correlated with lower 

scores on quality-of-life assessments, indicating that those experiencing more 

severe stiffness reported greater difficulties in daily living and higher levels of 

distress related to their condition (Cano-de-la-Cuerda et al., 2010).  

2.2.4 Postural Instability  

Postural instability (PI) is a common and debilitating symptom of PD 

that significantly impacts the daily lives of those living with the condition 

(Palakurthi & Burugupally, 2019). It is characterized by the inability to maintain 

balance and equilibrium under both static and dynamic conditions, such as 
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standing still, preparing to move, or responding to perturbations (Palakurthi & 

Burugupally, 2019). 

A review was done by Palakurthi and Burugupally (2019), postural 

instability affects approximately 16% of the people with PD, with falls 

occurring in about 60% of this population. According to Cao et al. (2022), the 

study provided a comprehensive analysis of the prevalence of axial postural 

abnormalities in people with PD. The study found that the overall prevalence of 

axial postural abnormalities among people with PD is 22.1% (Cao et al., 2022).  

Postural instability often leads to challenges in maintaining balance, 

causing a higher risk of falls (Li et al., 2023). Impaired postural control can 

negatively impact functional tasks like stair climbing and transitioning activities 

such as supine to sitting, leading to increased dependency on others as well as 

decreased quality of life (Luna et al., 2024).  

 

2.2.5 Freezing of Gait  

Freezing of Gait (FOG) is an unpredictable event that happens in people 

with PD which may lead to falls, instability, impaired functional independence, 

and gait issues (Korkusuz et al., 2023).  

One meta-analysis by Ge et al. (2020) consisted of 29 studies using 3 

databases conducted in China to assess the prevalence of FOG in Parkinson’s 

disease among patients with PD worldwide. It includes patients with PD from 

China, Europe, Australia, the United States of America, and Israel. The overall 

prevalence of FOG among patients with PD with FOG is 39.9%. %. The 
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subjects in this study are patients with PD with varying disease durations, hence, 

this study aimed to study the impact of disease duration on the FOG episodes 

(Ge et al., 2020). The study indicated that for patients with PD for more than 10 

years, the prevalence is the greatest which is 70.8% (Ge et al., 2020). The 

prevalence of FOG in patients with PD for more than 5 years is 53.3% while the 

lowest prevalence is 22.4% for patients with PD for less than 5 years (Ge et al., 

2020).  

A Danish cohort study found that the prevalence of FOG in people with 

PD was around 39.9% (Terkelsen MH et al., 2023). The outcome measure used 

in the study is the Freezing of Gait Questionnaire (FOG-Q) (Terkelsen MH et 

al., 2023). The study mentioned that the prevalence of FOG increases as the 

disease advances (Terkelsen MH et al., 2023). 

A cross-sectional study conducted by Choi et al. (2019) in South Korea 

to determine the factors associated with FOG in patients with PD was carried 

out on 157 patients with PD. The setting was in a hospital. The tool utilized in 

this study is the FOG-Q. Participants who may not have previously recognized 

FOG in themselves were provided with video prescriptions of FOG to educate 

them about its characteristics. Hence, this can prevent errors in answering the 

questionnaire as the patients themselves may not realize that they experienced 

FOG. Thus, this showed that patients have low awareness of their FOG episodes, 

which can lead to underreporting and an underestimation of the true prevalence 

of FOG. The study reported a high prevalence of FOG among patients with PD 

in South Korea, which is 70.7%. However, FOG rarely happens in a clinical 

setting compared to when the patients are at home as the patients are taken care 

of well in the hospital (Amboni et al, 2015). Besides, most of the FOG episodes 
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might be triggered by emotions, environmental factors, and unfixed routines in 

taking medications (Amboni et al, 2015).   

In summary, the motor symptoms of PD significantly impact patients’ 

quality of life. Hence, it is crucial that healthcare professionals assess these 

symptoms accurately to develop targeted interventions and improve patient 

outcomes. 
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2.3 Conventional Assessment of Parkinson’s Disease 

 Conventional assessment methods for Parkinson’s disease (PD) 

primarily rely on rating scales, questionnaires, patient diaries, and clinically 

based tests (AlMahadin et al., 2020). These tools, known as conventional 

outcome measures (COMs), evaluate various aspects of the disease, including 

motor symptoms, non-motor symptoms, and overall disease severity 

(AlMahadin et al., 2020). 

2.3.1 Time Up and Go Test  

The timed up and go (TUG) test is a widely used clinical assessment 

tool in various conditions designed to evaluate a person’s mobility, balance, and 

functional ability (Zeltzer, 2008). It was developed by D. Podsiadlo and S. 

Richardson in the year 1991(Nicolini-Panisson & Donadio, 2013). It is based 

on an earlier version called the “Get-up and Go” test, which was proposed by 

Mathias et al. in 1986 (Nicolini-Panisson & Donadio, 2013).  

A systematic review done by Mollinedo and Cancela (2020) included 24 

studies that assessed the TUG test’s psychometric properties in people with PD, 

focusing on its reliability, validity, and sensitivity to change. Among the 24 

studies, 9 studies analyzed the reliability of the TUG test as moderate to good 

(Mollinedo and Cancela, 2020). Nest, 17 out of the 24 studies evaluated the 

validity of the TUG test, reporting good quality scores, especially in assessing 

balance (Mollinedo and Cancela, 2020). Only 2 out of the 24 studies examined 

the sensitivity of the TUG test to change, both of the studies reported poor 

quality scores. Hence, the TUG test may fail to register a significant change 

even if the patient improves. In certain instances, the TUG test may fail to 
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differentiate between individuals with different levels of mobility, especially 

those who are less impaired. This can result in ceiling effects, where individuals 

with higher performance levels receive similar scores (Silva et al., 2017). 

According to Silva et al. (2017), the study found that 22% of the participants, 

predominantly those with mild stage PD achieved the highest possible scores 

on the TUG test, indicating a ceiling effect. In addition, the performance of PD 

patients on the TUG test can fluctuate considerably based on whether they are 

in the “on” or “off” phase of their medication cycle (Silva et al., 2017). This 

inconsistency in results can make it challenging to interpret the findings 

accurately.  

 

2.3.2 Unified Parkinson’s Disease Rating Scale  

 The Unified Parkinson’s Disease Rating Scale (UPDRS) is a 

comprehensive clinical tool used to assess the severity and progression of PD 

(Ivey et al., 2012). It was developed in the year 1987 and has become the gold 

standard in monitoring the response to treatment and understanding the impact 

of the disease on patients’ daily lives. It consists of 6 components that evaluate 

different aspects of PD (Ivey et al., 2012).  

A study done by Siderowf et al. (2002) assessed the test-retest reliability 

of UPDRS. In this study, the patients were assessed using the UPDRS on two 

separate occasions (screening and baseline visits) by the same neurologist, with 

an average interval of 14.6 days between assessments (Siderowf et al., 2002). 

The reliability was measured using intraclass correlation coefficients (ICCs) for 

total and subscale scores, while weighted kappa statistics were calculated for 
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individual items (Siderowf et al., 2002). The result showed that the total UPDRS 

score showed excellent test-retest reliability with an ICC of 0.92 (Siderowf et 

al., 2002). Besides, the derived symptom-based scales had ICCs ranging from 

0.69 to 0.88 (Siderowf et al., 2002). However, the use of UPDRS in assessing 

people with PD, especially those in early-stage requires clinicians who are 

expert and well-trained (Hendricks & Khasawneh, 2021). The rating relies on 

clinician assessments and patient self-reports, which can introduce variability 

due to subjective interpretations of symptoms and performance (Hendricks & 

Khasawneh, 2021). In addition, factors such as environmental conditions during 

assessment or psychological factors can impact the scores, leading to variability 

that does not reflect the true disease progression (Hendricks & Khasawneh, 

2021). Furthermore, the administration of the full scale can take significant time 

around 10 to 20 minutes, which may be impractical in busy clinical settings, 

potentially leading to a rushed assessment and less reliable score (Hendricks & 

Khasawneh, 2021). 

Another study done by Abdolahi et al. (2013) assessed the reliability and 

validity of the modified UPDRS (Mupdrs), which excludes rigidity and 

retropulsion items. The study measured cross-sectional and longitudinal 

reliability through interclass correlation coefficients (ICC), internal consistency 

with Cronbach’s alpha, and concurrent validity using Pearson’s correlation 

coefficients (Abdolahi et al., 2013). The result of the study indicated that the 

Mupdrs exhibited high cross-sectional (ICC ≥ 0.92) and longitudinal reliability 

(ICC ≥ 0.92) across the treatment groups (Abdolahi et al., 2013). Moreover, the 

internal consistency was also high with Cronbach’s alpha ≥ 0.96 (Abdolahi et 

al., 2013). Hence, the Mupdrs demonstrated strong concurrent validity with the 
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standard UPDRS, with correlation coefficients reaching up to 0.96 (Abdolahi et 

al., 2013). However, the removal of the rigidity and retropulsion items will 

increase the challenges in evaluating the disease progression and severity, 

especially those in the advanced stage of PD. This will lead to the failure to 

optimize therapy for the patients.   

 

2.3.3 Freezing of Gait Questionnaire  

The freezing of gait questionnaire (FOG-Q) is a clinical tool designed to 

assess FOG in people with PD (Nilsson et al., 2010). The questionnaire was 

created by N. Giladi et al. (2000) and was published in the journal Parkinsonism 

and Related Disorders. The questionnaire can be administered by healthcare 

professionals or completed by patients themselves.  

 A study done by Giladi et al. (2009) studied the reliability and validity 

of the FOG-Q as a measurement tool for FOG in people with PD. The research 

involved a cohort of patients diagnosed with Parkinson’s disease who completed 

the FOGQ. The study evaluated both test-retest reliability and internal 

consistency, as well as construct and concurrent validity by correlating the 

FOGQ scores with other established measures of gait and motor function 

(Giladi et al., 2009). According to the result, the FOG-Q showed excellent test-

retest reliability, indicated by high ICCs (Giladi et al., 2009).  In addition, the 

internal consistency was strong, with a Cronbach’s alpha confirming that the 

items within the questionnaire effectively measure the same construct (Giladi et 

al., 2009). Thus, the FOG-Q demonstrated good construct validity, showing 
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significant correlations with other measures related to gait and motor function, 

which supports its effectiveness in assessing FOG (Giladi et al., 2009). 

 The FOG-Q has been translated into different languages. Research done 

in China focuses on developing a Chinese version of the FOG-Q to assess 

people with PD and evaluate its reliability and validity (Tao et al., 2021). The 

study involved translating the original FOGQ into Chinese using a forward-

backward translation approach, followed by cultural adaptation through expert 

review and pretesting. The final version, FOGQ-CH, was then tested for 

reliability and validity. The FOGQ-CH demonstrated good internal consistency 

with a Cronbach’s alpha (Cα) of 0.823. Test-retest reliability was also 

satisfactory, with an intraclass correlation coefficient (ICC) of 0.786 for the total 

score, indicating that the questionnaire produces stable results over time. The 

FOGQ-CH showed moderate correlations with other established measures, 

including the Unified Parkinson’s Disease Rating Scale (UPDRS) Parts II and 

III, the Timed Up and Go Test (TUGT), and walking speed (Tao et al., 2021). 

The area under the ROC curve (AUC) for predicting falls was 0.777, indicating 

good predictive validity for identifying patients at risk of multiple falls (Tao et 

al., 2021).  

 However, the FOG-Q relies on patient self-reporting, which can 

introduce variability due to differences in individual perceptions of freezing 

episodes. In addition, the FOG-Q is unable to capture other related motor 

symptoms that can impact overall mobility and quality of life (QoL) in people 

with PD (Nilsson et al., 2010). Moreover, the FOG-Q may not be sensitive 

enough to detect small but clinically significant changes in FOG, making it less 
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effective for monitoring progression or response to treatment in clinical trials 

(Nilsson et al., 2010). 

 Due to the limitations of conventional assessments in PD, wearable 

devices have been introduced and have gained significant attention recently for 

their potential in assessing motor symptoms in people with PD. The growing 

interest in using these devices may potentially overcome the limitations of the 

conventional assessments of the PD, hence, enhancing the accuracy of 

assessments as well as empowering patients in their disease management. 
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2.4 Wearable Devices in Assessing People with Parkinson’s Disease  

 To date, wearable devices have been introduced to the rehabilitation 

field to reduce the burden of physiotherapists as well as to increase the accuracy 

of the assessments.  

 A study done by Vescio et al. (2021) reviews the advancements in 

wearable sensor technology in assessing tremors associated with PD. The 

review categorizes wearable devices into 3 main classes: 1) Assessment devices, 

2) Monitoring devices, and 3) Differential diagnosis devices (Vescio et al., 

2021). This study mentioned that wearable devices have shown promising 

results in accurately assessing tremor characteristics (Vescio et al., 2021). A 

wrist-mounted accelerometer showed an accuracy of 90% in discriminating 

essential tremors (Vescio et al., 2021).   

 According to the review done by Lu et al. (2020), it provides an 

overview of the current status and prospects of using wearable devices in 

evaluating motor symptoms in people with PD. The study showed that the 

wearable devices having gyroscopes or accelerometers have high specificity 

which is 88% and a high sensitivity of 95% in comparison with the conventional 

assessment tools (Lu et al., 2020). The wearable devices can effectively quantify 

bradykinesia parameters such as speed, amplitude, and rhythm (Lu et al., 2020). 

In addition, the study stated that wearable devices can help identify the 

symptoms of people with PD in the early stages (Lu et al., 2020). Furthermore, 

this study stated that gyroscopes and accelerometers also can be used to detect 

changes in gait patterns among people with PD (Lu et al., 2020). When the 

sensors are strategically placed on the various body parts, such as the chest, 

waist, thigh, leg, and foot, the sensors can provide a detailed kinematic and 



 

36 
 

dynamic gait parameter (Lu et al., 2020). The key gait parameters used in 

assessing the movement patterns are rhythm, symmetry, stride length, amplitude, 

and periodicity (Lu et al., 2020).  

 A study done by di Biase et al. (2018) investigated the use of wearable 

sensors to quantitatively assess bradykinesia and rigidity in people with PD. In 

the study, 4 indexes were extracted from the magnetoinertial wearable sensor 

data, which are fatigability, total time, total power, and smoothness (di Biase et 

al., 2018). The sensors were strategically placed on various anatomical locations, 

including the middle phalanx of the index finger, the distal phalanx of the thumb, 

the midpoint of the third metacarpal bone, the midpoint between the radius and 

ulna, and the midpoint between the greater tubercle of the humerus and the 

lateral epicondyle (di Biase et al., 2018). The study indicated that the sensors 

placed on the middle phalanx of the index finger and wrist can provide the most 

accurate assessments of bradykinesia and rigidity (di Biase et al., 2018). 

According to Huang et al. (2023), a systematic review was done to 

investigate the importance of wearable devices in detecting FOG and falls 

among patients with PD. A total of 75 articles found from 2 databases were 

studied on the type of devices, site of wearing, how they function, and the 

overall performances of the devices (Huang et al., 2023). The wearable devices 

used in the studies are accelerometers and gyroscopes, which are especially in 

detecting falls; force sensors, IMU, and bending sensors (Huang et al., 2023). 

The overall accuracy of these devices was identified, which is from 71.3% to 

99.7%, and the overall specificity has a range of 59% to 100% (Huang et al., 

2023). The sensitivity of the accelerometer has a range of 70.1% to 99.2% 

(Huang et al., 2023). According to Pardoel et al. (2022), the sensitivity of the 
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pressure sensor is 77.3% while the specificity is 82.9%. This study investigated 

the effectiveness of using plantar pressure data from the most affected side 

(MAS), least affected side (LAS), or both sides for predicting FOG (Pardoel et 

al., 2022). Another systematic review was done by Demrozi et al. (2020) to 

examine the mean sensitivity and specificity of accelerometer in detecting FOG. 

Three axial accelerometer sensors are worn on the back, hip, and ankle 

(Demrozi et al., 2020). The study was able to predict FOG by identifying the 

pre-FOG events with an average sensitivity of 94.1% and specificity of 97.1% 

(Demrozi et al., 2020).  

To sum up, the wearable devices provide objective data on motor 

symptoms, which may help to overcome the limitation of the conventional 

assessments which only rely on clinician observations and patient self-reports. 

Besides, the use of wearable devices can enable continuous monitoring of the 

symptoms in both clinical and real-world settings, allowing a more 

comprehensive understanding of the patient’s condition over time. Furthermore, 

wearable devices are highly sensitive and can detect subtle changes in motor 

function that may not be captured during infrequent clinical evaluations. This 

sensitivity can help in early diagnosis as well as the timely adjustment to the 

treatment plans (AlMahadin et al., 2020). On the other hand, everything is not 

always ideal. While wearable devices hold promise for enhancing the 

assessment of motor symptoms in PD, understanding the challenges and risk 

factors associated with their use is crucial for optimizing their implementation 

in clinical practice. 
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CHAPTER 3 

METHOD AND METHODOLOGY  

 

3.1 Research Design  

A scoping review.   

 

3.2 Search Strategy 

This scoping review adhered to the guidelines detailed in the Preferred 

Reporting Items for Systematic Reviews and Meta-analysis Extension for 

Scoping Reviews (PRISMA-ScR) framework (Tricco et al., 2018).   

The Scopus database was searched using the medical subject heading 

(MeSH) key search terms to retrieve all eligible studies and peer-reviewed 

papers that use randomised controlled trials (RCTs), experimental studies and 

observational studies published from year 2019 to year 2024 involving the 

assessment of the motor symptoms in people with Parkinson’s Disease. The 

following keywords were used: Parkinson’s Disease, motor symptoms, 

wearable sensors, wearable devices, inertial measurement units (IMUs), 

accelerometer, gyroscope, magnetometer, pressure sensors, force sensors, 

physiotherapy assessment, physical examination, analysis, rehabilitation, 

challenges, limitations, cost, data administration, and battery life. The keywords 

are shown in Table 3.2.  

The Scopus database is chosen as the only search database due to several 

reasons. Firstly, Scopus database is an extensive database that indexes over 
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27000 serial titles and more than 14000 peer-reviewed journals (Gusenbauer & 

Haddaway, 2020). Thus, this ensures that this study had accessed a broad 

spectrum of searches relevant to the topic of this study. Next, the Scopus 

database employs a strict selection process for journals, ensuring only high-

quality, peer-reviewed publications are indexed (Gusenbauer & Haddaway, 

2020). This ensures quality assurance and enhances the reliability of the 

literature that has been reviewed. In addition, the Scopus database updates daily, 

ensuring that this study incorporated the most current research findings 

available (Gusenbauer & Haddaway, 2020).  

Number Keywords 

1 <Parkinson’s Disease> 

2 <Motor symptom> 

3 <Wearable devices> OR <Wearable sensors> OR <Inertial 

measurement units> OR <Accelerometer> OR <Gyroscope> 

OR <Magnetometers> OR <Pressure sensors> OR <Force 

sensors> 

4 <Physiotherapy assessment> OR <Physical examination> 

OR <Analysis> 

5 <Challenges> OR <Limitations> OR <Cost> OR <Data 

administration> OR <Battery life> 

Final search: Combined search Numbers 1 and 2 and 3 and 4 and 5 

Table 3.2. Keywords for search strategy 
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3.3 Outcome Measure 

There are no strict criteria for the outcomes specified.  

 

3.4 Inclusion Criteria  

Study 

characteristics 

Inclusion criteria 

Study design  1. Randomised controlled trials (RCTs) 

2. Observational studies  

3. Experimental studies 

Assessment tool  1. Studies that used non-invasive wearable 

devices.  

2. Studies that addressed challenges and potential 

risk factors in using wearable devices in 

assessment.  

Population  People with Parkinson’s Disease  

Outcome  No restriction applied.  

Table 3.4. Inclusion criteria  
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3.5 Exclusion Criteria  

Study 

characteristics 

Exclusion criteria  

Study design  1. Non-English publication. 

2. Studies that were published before the year 

2019.  

Assessment tool  1. Studies that use non-wearable devices as 

diagnostic tools.  

2. Studies that use technologies in assessing the 

psychological domain of people with 

Parkinson’s Disease.  

3. Studies that do not address the challenges and 

possible risk factors in using wearable devices.  

Population  1. People with other neurological conditions.   

2. Parkinsonism.  

Outcome  No restriction applied.  

Table 3.5. Exclusion Criteria  

 

3.6 Data Charting 

Research title, study designs, number of participants, types of wearable 

devices used, symptoms assessed by the wearable devices, challenges and 

potential risk factors in using the wearable devices will be extracted from the 

included studies. The overall findings will be presented in Table 3.6.  
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Research 

title 

Study 

designs 

Number of 

participants 

Type of 

wearable 

devices 

used 

Symptoms 

assessed 

Challenges 

and 

potential 

risk 

factors 

Table 3.6. Head Rows of Data Charting 

 

3.7 Synthesis of Results  

 Narrative methods were used to summarize and synthesize the collected 

data, followed by a constructivist approach to analyze the studies and identify 

research gaps. Constructivism is a framework to critically analyze research 

findings, highlight current knowledge gaps, and establish study limitations. 

Furthermore, by using a constructivist approach in narrative synthesis, existing 

research can be developed by discussing the implications of the current findings. 

A combination of text, tables, and graphs was used to describe the study 

characteristics of the final included publications. Graphs were used to present 

key data such as the number and type of wearable devices used as well as the 

challenges and possible risk factors in using the wearable devices to assess 

motor symptoms of people with PD.  

 

3.8 Ethical Approval  

 This study is subjected to ethical approval by the Scientific and Ethical 

Review Committee (SERC) of Universiti Tunku Abdul Rahman (UTAR).   
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CHAPTER 4 

RESULTS 

4.1 Search Results  

A total of 85 articles were screened initially based on the title and 

abstract. 70 (82.4%) papers were selected for full-text evaluation based on their 

titles and abstracts based on our inclusion and exclusion criteria. A total of 46 

papers fitted the conditions and were finally retained. 24 articles were excluded 

during full-text screening. One study was excluded for not involving people 

with PD. Two studies were excluded for not using any wearable devices. Four 

studies were excluded for not assessing the motor symptoms. Next, one study 

was excluded because it studied the management of motor symptoms. Ten 

studies were excluded because they did not have the relevant outcome data. 

Then, two non-peer-reviewed papers were excluded. Lastly, four studies were 

excluded due to the full text not available.  

Figure 4.1 shows the flow of information through the different search 

phases of this scoping review.  
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Figure 4.1. Review flow chart based on the PRISMA-ScR guidelines.  
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4.2 Characteristics of Sources of Evidence  

Study Author (Year) Study Design Sample size 

1.  Wodarski et al. (2024) Observational study 29 

2.  Sigcha et al. (2024) Observational and 

Experimental study 

 

38 

3.  Maas et al. (2024) Observational cohort 

study  

200 

4.  Cox et al. (2023)  Systematic review  677 

5.  Hagar Elbatanouny et al. 

(2024) 

Meta-analysis  223 

 

6.  Kazemi et al. (2024) Observational study 36 

7.  Bremm et al. (2024) Observational study 33 

8.  Kehagia et al. (2024) Experimental study 100 

9.  Panda and Bhuyan (2024) Observational study 16 

10.  Rodriguez et al. (2024) Observational study 24 

11.  Burtscher et al. (2024) Observational study  50 

12.  Gent Ymeri et al. (2023) Experimental study 30 

13.  Sotirakis et al. (2023) Prospective 

observational study  

 

91 

14.  Spooner et al. (2023) Observational study  24 

15.  Gourrame et al. (2023) Experimental study 14 

16.  Sigcha et al. (2023) Systematic review  243 

17.  Vasileios Skaramagkas et 

al. (2023)  

Observational study 22 

18.  Xie et al. (2023) Observational study 30 

19.  Ravichandran et al. (2023) Observational and 

Experimental study 

 

10 

20.  Cohen et al. (2023) Randomized 

controlled trial 

 

32 
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Study Author (Year) Study Design Sample size 

21.  Ohara et al. (2023) Experimental study 19 

22.  Uhlig and Prell. (2023) Observational study 79 

23.  Klaver et al. (2023) Comparative 

observational study 

 

70 

24.  Li et al. (2023) Systematic review  1407 

25.  Wang et al. (2023) Observational study 81 

26.  Antonini et al. (2023) Observational and 

experimental study 

 

65 

27.  Debelle et al. (2023) Observational study 29 

28.  Meng et al. (2023) Experimental study 21 

29.  Geritz et al. (2023) Prospective 

observational study 

 

47 

30.  Chatzaki et al. (2022)  Experimental study 44 

31.  Geritz et al. (2022) Observational study 74  

32.  Domingues et al. (2021) Randomized 

controlled trial 

 

18 

33.  Sringean et al. (2022) Observational study 32 

34.  Habets et al. (2021) Prospective 

observational study 

 

20 

35.  Sieberts et al. (2021) Observational study 30 

36.  Rissanen et al. (2021) Prospective 

observational study 

16 

37.  Sigcha et al. (2021) Experimental study 592 

38.  Chen et al. (2020) Observational study 100 

39.  Evans et al. (2020) Experimental study 61 

40.  Elm et al. (2019) Experimental study 51 
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Study Author (Year) Study Design Sample size 

41.  Aghanavesi et al. (2020) Observational study 19  

42.  Shawen et al. (2020) Observational study 13 

43.  Lee et al. (2020) Observational study 74 

44.  Sigcha et al. (2020) Experimental study 187 

45.  Aghanavesi et al. (2020) 

 

Observational study 19 

46.  Nguyen et al. (2019) Cohort study 119 

Total sample size 5209 

Table 4.2. Overview of the included studies 

Based on Table 4.2, the characteristics of the included studies are 

tabulated according to the authors and year, study designs, and sample size. A 

total of 6366 sample sizes were obtained from 46 studies. The included studies 

were published between 2019 to 2024. Most of the studies were published in 

2023 (19/46, 41.3%).  

 Most of the studies included are observational studies, comprised of 26 

out of 46 (56.5%). Among these 26 observational studies, there were 2 cohort 

studies included. This is followed by experimental studies, which comprised 10 

out of 46 (21.7%). Besides, some included studies are mixed studies of 

observational and experimental studies (3/46, 6.5%). 3 systematic reviews were 

included (6.5%). Only 2 randomized controlled trial and meta-analysis were 

included respectively.  

The number of participants across the studies varied significantly. 

Studies with smaller cohorts like Ravichandran et al. (2023) with only 10 

participants, Wodarski et al. (2024) with 29 participants, Rodriguez et al. (2024) 
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and Spooner et al. (2023) with 24 participants, Gourrame et al. (2023) with 14 

participants, Vasileios Skaramagkas et al. (2023) with 22 participants, Ohara et 

al. (2023), Aghanavesi et al. (2020) and Aghanavesi et al. (2020) with 19 

participants, Debelle et al. (2023) with 29 participants, Meng et al. (2023) with 

21 participants, Domingues et al. (2021) with 18 participants, Habets et al. 

(2021) with 20 participants Rissanen et al. (2021) and Panda and Bhuyan. (2024) 

with 16 participants, and Shawen et al. (2020) with 13 participants. Conversely, 

larger studies like Li et al. (2023) included over 1407 participants, providing a 

broader perspective to the research.  
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4.3 Wearable Devices Used, and the Corresponding Symptoms Assessed 

Study Author (Year) 
Type of wearable 

devices 

Number 

of 

wearable 

devices  

Motor 

symptom(s) 

assessed  

1.  Wodarski et al. 

(2024) 

IMU sensors 3 Postural 

balance  

2.  Sigcha et al. (2024) IMU sensors 

Accelerometer  

7 

3 

FOG 

3.  Maas et al. (2024) Smartwatch 

(contained an 

accelerometer and 

gyroscope) 

 

1 FOG 

4.  Cox et al. (2023)  PKG  2 Tremor  

Dyskinesia  

Bradykinesia  

 

5.  Hagar Elbatanouny 

et al. (2024) 

Accelerometer  

Gyroscope 

IMU sensors 

EEG 

EMG 

ECG 

Skin conductance 

   

5 

2 

4 

2 

2 

1 

3 

FOG 

6.  Kazemi et al. 

(2024) 

IMU sensors  3 Arm swing  

Gait  

7.  Bremm et al. 

(2024) 

IMU sensors  2 UL motor 

symptoms  

8.  Kehagia et al. 

(2024) 

PKG 2 Tremors 

Dyskinesia  

Bradykinesia  

 

9.  Panda and Bhuyan 

(2024) 

IMU sensors 2 Gait 

 

10.  Rodriguez et al. 

(2024) 

IMU sensors 4 Tremor  

11.  Burtscher et al. 

(2024) 

IMU sensors  6 Gait  

12.  Gent Ymeri et al. 

(2023) 

GENEActiv wrist 

device  

1 UL motor 

symptoms  
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Study Author (Year) 
Type of wearable 

devices 

Number 

of 

wearable 

devices  

Motor 

symptom(s) 

assessed  

13.  Sotirakis et al. 

(2023) 

IMU sensors   6 Gait  

Postural 

sway  

 

14.  Spooner et al. 

(2023) 

Accelerometer   2 Fine motor 

movement  

15.  Gourrame et al. 

(2023) 

IMU sensors  4 Gait  

16.  Sigcha et al. (2023) Accelerometer  

Gyroscope  

Magnetometer  

Force sensor   

4 

3 

1 

32 

FOG 

Gait  

Bradykinesia  

Tremor 

Dyskinesia  

Balance  

Rigidity  

 

17.  Vasileios 

Skaramagkas et al. 

(2023)  

Accelerometer  2  Tremor  

18.  Xie et al. (2023) Wearable 

multisource insole 

2 Gait  

19.  Ravichandran et al. 

(2023) 

iTex gloves  

contained: 

a. Flex 

sensors  

b. Pressure 

sensors 

 

2 

 

6 

 

4 

Tremor  

20.  Cohen et al. (2023) Tri-axial 

accelerometer  

1 Gait  

21.  Ohara et al. (2023) IMU sensor 1 Gait  

22.  Uhlig and Prell. 

(2023) 

IMU sensors  2 Gait  

23.  Klaver et al. (2023) IMU sensors  7 FOG  

24.  Li et al. (2023) Actiwatch  1 Dyskinesia  

25.  Wang et al. (2023) IMU sensors 10 Gait  
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Study Author (Year) 
Type of wearable 

devices 

Number 

of 

wearable 

devices  

Motor 

symptom(s) 

assessed  

26.  Antonini et al. 

(2023) 

IMU sensors  5 Gait  

Bradykinesia  

Dyskinesia  

Tremor 

On/off 

fluctuations  

FOG 

 

27.  Debelle et al. 

(2023) 

Smartwatch  

IMU sensor  

1 

1 

Dyskinesia  

Motor 

fluctuations 

 

28.  Meng et al. (2023) IMU sensors  11 Gait  

29.  Geritz et al. (2023) IMU sensor  1 Gait  

30.  Chatzaki et al. 

(2022)  

Pressure sensor 

insoles  

1 Gait  

FOG  

31.  Geritz et al. (2022) IMU sensor  1 Gait  

32.  Domingues et al. 

(2021) 

Tri-axial 

accelerometer  

1 Gait  

33.  Sringean et al. 

(2022) 

NIGHT-Recorder 4 Supine to 

sitting  

34.  Habets et al. (2021) Accelerometer  2 Bradykinesia  

35.  Sieberts et al. 

(2021) 

Gyroscope  

Accelerometer  

4 

1 

Tremor 

Dyskinesia  

Bradykinesia  

36.  Rissanen et al. 

(2021) 

EMG 2 Tremor 

Rigidity 

Bradykinesia 

37.  Sigcha et al. (2021) Smartwatch 

(contained a tri-

axial 

accelerometer)  

 

1 Resting 

tremor  

38.  Chen et al. (2020) PKG  1 Bradykinesia 

Tremor  

Dyskinesia  

Rigidity  
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Study Author (Year) 
Type of wearable 

devices 

Number 

of 

wearable 

devices  

Motor 

symptom(s) 

assessed  

39.  Evans et al. (2020) PKG  1 Bradykinesia 

Tremor  

Dyskinesia  

Rigidity 

 

40.  Elm et al. (2019) Smartwatch  1 Tremor  

Dyskinesia  

 

41.  Aghanavesi et al. 

(2020) 

IMU sensors  5 Gait  

Arm swing  

42.  Shawen et al. 

(2020) 

Skin-mounted 

sensor 

Commercial 

smartwatch  

 

1 

 

1 

Tremor  

Bradykinesia  

43.  Lee et al. (2020) Shoe-type IMU  2 Gait  

44.  Sigcha et al. (2020) Accelerometer  1 FOG  

45.  Aghanavesi, 

Bergquist, et al. 

(2020) 

Motion sensors  2 Dyskinesia  

46.  Nguyen et al. 

(2019) 

IMU sensors 2 Gait  

Table 4.3. Type of wearable devices and motor symptoms assessed in the 

included studies. 

 

Figure 4.3. Number and Types of Wearable Devices 



 

53 
 

Table 4.3 presents the types and number of wearable devices, and the 

features of the wearable devices used in each study. The number of studies that 

utilized each type of wearable device was illustrated in a graph shown in Figure 

4.3.  

Most studies (40/46, 87%) used a single wearable device, whereas the 

remaining studies (6/46, 13%) used more than 1 wearable device to assess motor 

symptoms in people with PD. The IMU sensor was the most popular type of 

wearable device used (22/46, 47.8%). The IMU sensor typically consists of an 

accelerometer, gyroscope, and magnetometer, commonly used to assess gait. 

Next, the second most commonly used wearable device is the accelerometer 

(10/46, 21.7%), followed by PKG wearable devices (4/46, 8.7%). PKG contains 

light and temperature sensors, commonly used to assess dyskinesia, 

bradykinesia, and tremor. 4 studies also involved smartwatches (8.7%) while a 

smartwatch with accelerometer and gyroscope as well as a smartwatch with tri-

axial accelerometer were each used only in one study (1/46, 2.1%). Next, it was 

followed by the gyroscope (3/46,6.5%), then the wearable multisource insole 

and EMG (2/46, 4.4%) respectively. The remaining wearable devices were used 

in only one study each (1/46, 2.1%). These devices include EEG, ECG, skin 

conductance, GENEActiv wrist device, force sensor, iTex gloves, Actiwatch, 

pressure sensor insoles, NIGHT-Recorder, skin-mounted sensor, shoe-type IMU, 

and motion sensor.  
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4.4 Challenges and Possible Risk Factors in Using Wearable Devices  

 To establish a structured framework that improves the clarity and 

comprehensiveness of this review, the challenges and potential risk factors 

identified from the 46 studies will be organized into five perspectives: ethical, 

human, cost, technical, and research. This categorization enables a clearer 

presentation of findings, making it easier to navigate complex information and 

enhancing understanding. Additionally, it aims to guide future research 

directions by providing targeted recommendations, recognizing that different 

stakeholders may have varying interests in the challenges presented. 

 

4.4.1 Ethical Perspective   

Challenges and 

Possible Risk Factors 

Author(s) 

Number of 

Studies 

Privacy concerns  Cox et al, 2024; Sieberts et al, 

2021 

 

2 

User compliance  Kazemi et al, 2024; Gent Ymeri et 

al, 2023; Spooner et al, 2023; 

Sigcha et al, 2023; Ravichandran 

et al, 2023; Domingues et al, 2021; 

Sieberts et al, 2021; Elm et al, 

2019; Shawen et al, 2020; 

Rissanen et al, 2021 

 

10 
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Long-term acceptance  Gent Ymeri et al, 2023; 

Aghanavesi et al, 2020  

2 

Table 4.4.1. Challenges and possible risk factors from the ethical perspective 

 

According to Table 6, there are 3 challenges and possible risk factors 

grouped into ethical perspective, which are privacy concerns, user compliance, 

and long-term acceptance of the wearable devices. User compliance is a 

significant concern, highlighted by 10 studies (20%) (Kazemi et al, 2024; Gent 

Ymeri et al, 2023; Spooner et al, 2023; Sigcha et al, 2023; Ravichandran et al, 

2023; Domingues et al, 2021; Sieberts et al, 2021; Elm et al, 2019; Shawen et 

al, 2020; Rissanen et al, 2021), indicating that users might not be adherence to 

researchers’ instructions. Next, privacy concerns are also one of the possible 

risk factors in using wearable devices highlighted by Cox et al (2024) and 

Sieberts et al (2021) (2/50, 4%), reflecting users may perceive privacy risk in 

adopting wearable devices. Lastly, the challenges associated with the long-term 

acceptance of wearable devices are highlighted by 2 studies (4%) (Gent Ymeri 

et al, 2023; Aghanavesi et al, 2020).  
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4.4.2 Human Perspective  

Challenges and 

Possible Risk Factors 

Author(s) Number of Study(s) 

Wear-related 

discomfort   

 

Maas et al, 2024; Hagar 

Elbatanouny et al, 2024 

2 

Logistical constraints 

   

Kehagia et al, 2024 1 

Patient preference for 

in-person 

consultations   

 

Kehagia et al, 2024 1 

Size compatibility  Ravichandran et al, 

2023 

 

1 

Sensor aesthetics  Antonini et al, 2023; 

Aghanavesi et al, 2020 

 

2 

Issues related to don 

and doff  

Ravichandran et al, 

2023; Antonini et al, 

2023; Geritz et al, 2022 

3 

Table 4.4.2. Challenges and possible risk factors from the human perspective  

 

From a human perspective, several challenges and possible risk factors 

arise that affect the adoption and effectiveness of wearable devices. Issues 
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related to donning and doffing the wearable devices highlighted by 

Ravichandran et al (2023), Antonini et al (2023), and Geritz et al (2022) (3/46, 

6.5%), emphasizing the need for designs that facilitate ease of use. Next, size 

compatibility (Ravichandran et al, 2023) (1/46, 2.1%) and sensor aesthetics 

(Antonini et al, 2023; Aghanavesi et al, 2020) (2/46, 4.3%) reflect users’ desire 

for devices that fit comfortably and look appealing. Besides, wear-related 

discomfort is highlighted by Maas et al (2024) and Hagar Elbatanouny et al 

(2024) (2/46, 4.4%), indicating that users might be struggling with the physical 

aspects of wearable devices. In addition, Kehagia et al (2024) highlighted 2 

challenges, which are the logistical constraints of the wearable devices and a 

preference for in-person consultations by people with PD as the challenges and 

possible risk factors in using wearable devices, suggesting that practical issues 

can hinder technology use.   
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4.4.3 Cost Perspective 

Challenges and 

Possible Risk Factors 

Author(s) Number of Study 

Cost-prohibitive   Cox et al, 2024; Hagar 

Elbatanouny et al, 2024; 

Sigcha et al, 2021; 

Evans et al, 2020 

 

4 

Need for multiple 

sensors  

Bremm et al, 2024; 

Klaver et al, 2023; 

Meng et al, 2023; 

Shawen et al, 2020; 

Nguyen et al, 2019; 

Panda and Bhuyan, 

2024; Vasileios 

Skaramagkas et al., 

2023; Li et al., 2023 

 

8 

Potential for damage, 

theft, or loss   

Cox et al, 2024 1 

Table 4.4.3. Challenges and possible risk factors from the cost perspective 

 

From the cost perspective, the need for multiple sensors to assess 

multiple motor symptoms is a significant concern, as highlighted in 8 studies 

(17.4%) (Bremm et al, 2024; Klaver et al, 2023; Meng et al, 2023; Shawen et 
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al, 2020; Nguyen et al, 2019; Panda and Bhuyan, 2024; Vasileios Skaramagkas 

et al., 2023; Li et al., 2023). It is followed by cost-prohibitive factors, addressed 

by Cox et al (2024), Hagar Elbatanouny et al (2024), Sigcha et al (2021), and 

Evans et al (2020) (4/46, 8.7%). These 2 challenges are closely related, limiting 

the access to necessary devices. Last but not least, concerns about the potential 

for damage, theft, or loss of devices stated by Cox et al. (2024) highlight the 

financial risk associated with investing in technology.  
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4.4.4 Technical Perspective 

Challenges and 

Possible Risk Factors 

Author(s) Number of Study 

Data variability from 

sensor placement 

Wodarski et al, 2024; 

Hagar Elbatanouny et 

al, 2024; Rodriguez et 

al, 2024; Spooner et al, 

2023; Gourrame et al, 

2023; Ohara et al, 2023; 

Wang et al, 2023; 

Chatzaki et al, 2022 

  

8 

Complexity of data 

interpretation  

Hagar Elbatanouny et 

al, 2024; Kazemi et al, 

2024; Gourrame et al, 

2023; Sigcha et al, 

2023; Chatzaki et al, 

2022; Burtscher et al., 

2024; Debelle et al., 

2023 

 

7 

Connectivity problem   Sieberts et al, 2021; Lee 

et al., 2020 

2 
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Challenges and 

Possible Risk Factors 

Author(s) Number of Study 

Short battery life  Maas et al, 2024; Hagar 

Elbatanouny et al, 2024; 

Sotirakis et al, 2023  

 

3 

Lack of calibration 

and sensitivity of the 

sensors  

Spooner et al, 2023; 

Sigcha et al, 2023; 

Domingues et al, 2021; 

Habets et al, 2021; 

Sigcha et al, 2021; 

Sigcha et al, 2020 

 

6 

Overlapping of signals 

from multiple sensors  

Sieberts et al, 2021; Xie 

et al, 2023; Sringean et 

al., 2022 

 

3 

Require experienced 

consultant  

Evans et al, 2020  1 

Table 4.4.4. Challenges and possible risk factors from the technical 

perspective 

  

Based on Table 9, data variability from sensor placement is one of the 

challenges and possible risk factors in using wearable devices (8/46, 17.4%) 

(Wodarski et al, 2024; Hagar Elbatanouny et al, 2024; Rodriguez et al, 2024; 
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Spooner et al, 2023; Gourrame et al, 2023; Ohara et al, 2023; Wang et al, 2023; 

Chatzaki et al, 2022). This can lead to inconsistent results, making the data 

interpretation challenging. Next, 6 studies (13.0%) highlighted a lack of 

calibration and sensitivity of the sensors will affect the adoption and 

effectiveness of the wearable devices (Spooner et al, 2023; Sigcha et al, 2023; 

Domingues et al, 2021; Habets et al, 2021; Sigcha et al, 2021; Sigcha et al, 

2020). Furthermore, the complexity of the data interpretation (Hagar 

Elbatanouny et al, 2024; Kazemi et al, 2024; Gourrame et al, 2023; Sigcha et al, 

2023; Chatzaki et al, 2022; Burtscher et al., 2024; Debelle et al., 2023) (7/46, 

15.2%) indicates the needs of the experienced consultant which was highlighted 

by Evans et al. (2020) (1/46, 2.1%). Furthermore, short battery life posed 

practical hurdles that impacted the adoption and effectiveness of wearable 

devices (Maas et al, 2024; Hagar Elbatanouny et al, 2024; Sotirakis et al, 2023) 

(3/46, 6.5%). Moreover, connectivity problems with wearable devices add 

another layer of technical complexity that can deter effective use (Sieberts et al, 

2021; Lee et al., 2020) (2/46, 4.3%). Lastly, due to the multiple adoptions of 

wearable devices over different parts of the body, there might be overlapping of 

the signals which were highlighted by Sieberts et al. (2021), Sringean et al. 

(2022) and Xie et al. (2023) (3/46. 6.5%), which can lead to inaccurate results, 

affecting the effectiveness of the wearable devices.  
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4.4.5 Research Perspective  

Challenges and 

Possible Risk Factors 

Author(s) Number of Study 

Issues with 

generalizability in 

real-world settings    

Sigcha et al, 2024; 

Sotirakis et al, 2023; 

Vasileios Skaramagkas 

et al, 2023; Cohen et al, 

2023; Uhlig and Prell, 

2023; Klaver et al, 

2023; Aghanavesi et al., 

2020 

7 

Table 4.4.5. Challenges and possible risk factors from the research perspective 

 

From a research perspective, concerns about generalizability in real-

world settings raise questions about how well the study results can be translated 

into practical applications. The concern was highlighted by 7 studies (15.2%) 

(Sigcha et al, 2024; Sotirakis et al, 2023; Vasileios Skaramagkas et al, 2023; 

Cohen et al, 2023; Uhlig and Prell, 2023; Klaver et al, 2023; Aghanavesi et al., 

2020). This highlights a critical gap between a controlled research environment 

and everyday usage scenarios.  
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CHAPTER 5 

DISCUSSION 

 

5.1 Discussion   

 In this scoping review, we have identified 46 studies describing the 

challenges and possible risk factors in using wearable devices to assess motor 

symptoms of people with PD. The first instance included studies identifying the 

effectiveness of using wearable devices in assessing motor symptoms of people 

with PD. However, despite the potential benefits, the integration of wearable 

technology into clinical practice is fraught with challenges and risk factors.  

 

5.1.1 Ethical Perspective  

 From the ethical perspective, 3 challenges and possible risk factors 

are identified. First of all, user compliance was the main challenge and possible 

risk factor in using wearable devices to assess motor symptoms of people with 

PD. The perception of people with PD about the value of wearable devices can 

influence their willingness to use them (Reichmann et al., 2023). They might 

not understand how the data collected can benefit their symptom management. 

In addition, they might not feel that the wearable devices can provide 

meaningful insights into their condition, making them less motivated to wear 

them regularly as told by the researchers (Wendling, 2024). Besides, it can also 

be related to the technical perspectives of the wearable devices, where the user 

might feel discomfort in wearing the wearable devices, leading to non-

compliance with the adoption of the wearable devices (Kenny et al., 2022). 
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Moreover, people with PD might experience difficulty in using wearable 

devices as the devices might be difficult to put on or take off or require frequent 

charging, leading them to perceive the wearable devices as a burden, hence, 

further discouraging the regular use of the devices (Kenny et al., 2022). 

Furthermore, the psychological impact of being continuously monitored can 

also affect compliance. People with PD are more susceptible to stress and 

anxiety (van der Heide et al., 2021). Thus, they may experience anxiety or stress 

related to the constant tracking of their symptoms, resulting in a reluctance to 

engage with the device. This is also can be linked to the second challenge and 

possible risk factor which is the long-term acceptance of wearable devices, in 

which low user compliance will affect the long-term acceptance of the wearable 

devices.  

 The second challenge and possible risk factor is privacy concerns. 

This is because the devices will collect sensitive health information, including 

real-time data on motor symptoms, activity levels, and potentially other 

personal health metrics (Minen & Stieglitz, 2020). This data is inherently 

sensitive as it can reveal not only the presence of a medical condition but also 

the severity of symptoms and daily functioning. There are valid privacy 

concerns among patients due to the potential for such personal health 

information to be accessed or exploited (Vivian Genaro Motti & Caine, 2015). 

People with PD may fear that their data could be exposed to unauthorised parties 

or used for purposes beyond their consent, such as marketing or research 

without sufficient anonymity (Asma Channa et al., 2024). In addition, the data 

collected by wearable devices is another critical concern. Many devices transmit 

data over the internet, making it susceptible to hacking and data breaches (Jorge 



 

66 
 

et al., 2024). People with PD may be discouraged from using these wearable 

devices if there are insufficient security measures in place because they may not 

believe that their data will be sufficiently safeguarded (Jiang & Shi, 2021).  

 

5.1.2 Human Perspective 

 According to the challenges stated in the human perspective, the 

main challenge and possible risk factors are issues related to donning and 

doffing. People with PD suffer from motor difficulties, which significantly 

inhibit their ability to don and doff wearable devices (Kenny et al., 2022). Motor 

symptoms such as rigidity, tremors, and bradykinesia will make fine motor 

movements such as fastening the strap challenging. This further decreases their 

confidence, leading to frustration and stress (van der Heide et al., 2021). In 

addition, some people with PD may be suffering from cognitive impairments, 

for example, executive dysfunction, which can affect their ability to don and 

doff the devices (Capato et al., 2024). They may suddenly become confused and 

forget how to use the devices. This may lead to improper usage of wearable 

devices, affecting the quality of the data collected (Goncu-Berk & Topcuoglu, 

2017). Furthermore, the design of wearable devices also plays a vital role as 

these devices are not tailored specifically for individuals with PD, hindering 

them from using them efficiently (Godoi et al., 2019). Not only this, but some 

of them may require thorough training on how to use these devices effectively 

(Asma Channa et al., 2024). If they do not receive adequate training, they may 

struggle with donning and doffing procedures.  
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 Next, wear-related discomfort can significantly affect the 

effectiveness of wearable devices in physiotherapy assessment. As we 

mentioned above, the design and fit of wearable devices play a critical role in 

user comfort, however, most wearable devices may not be ergonomically 

designed for each user, especially those in the advanced stage. In addition, the 

skin of people with PD can become easily irritated due to some skin changes 

(Ravn Jørgensen et al., 2017). Hence, if the device does not fit and too heavy it 

can lead to irritation or pain after prolonged use. Additionally, if the material of 

the device is not friendly to sensitive skin, it can cause extra pressure or friction 

against the skin, heightening the sensitivity, and leading to discomfort 

(Henrique et al., 2021). Even if the individual does not have any skin conditions 

mentioned above, prolonged contact with the wearable devices may result in 

allergic reactions, especially when the materials used are not hypoallergenic 

(Group, 2023). Over time, the individuals may suffer from rashes, preventing 

them from wearing the devices consistently. Besides, people with PD can be 

mentally discomfort while wearing the devices, as they may feel shame or 

embarrassed (Henry, 2020). This internal stigma can lower their self-esteem and 

contribute to anxiety about being judged by others (Maffoni et al., 2017). They 

might believe that their symptoms become apparent after wearing the devices, 

making them seem “different”. Furthermore, they might also fear of 

discrimination by the society.  

 The following challenge and possible risk factor is sensor aesthetics. 

First, it can be related to the challenge mentioned above, which is wear-related 

discomfort. Next, if the design of the devices is not attractive, it may exacerbate 

their reluctance to use them (Rovini et al., 2017). Aesthetically pleasing designs 
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can significantly increase user acceptance. Next, wearable devices can carry a 

social stigma, particularly for those who feel shame or embarrassed and will 

become more self-conscious about wearing the devices (Sampsom, 2023). So, 

if the devices are designed that look overly clinical, they will avoid wearing the 

devices in social settings. In addition, some individuals may need to wear the 

devices for a longer period, hence, the design should be seamlessly integrated 

into users’ daily lives without drawing any attention or causing any 

inconvenience (Cox, 2024). In a nutshell, the ability of a device to blend into 

everyday attire can enhance its usability and encourage individuals to wear it 

consistently (Cox, 2024). Apart from this, people nowadays often seek 

customization and personalization. However, this can also lead to other 

challenges that may inhibit the effectiveness of the wearable devices.  

  On top of that, the preference for in-person assessments is one of the 

challenges. This is because they often have established relationships with their 

physiotherapists, which fosters a sense of trust and security (Kenny et al., 2022). 

In-person visits allow for direct communication, in which they can 

communicate their symptoms and how they feel as well as clarify their concerns 

to the physiotherapists directly (Boege et al., 2024). Thus, the lack of a physical 

presence can lead to scepticism about the accuracy and reliability of the data 

collected by the wearable devices (Cox, 2024). Moreover, some individuals may 

perceive that in-person are more effective for comprehensive evaluations of 

their condition. They might think that trained physiotherapists can yield a more 

accurate assessment than the wearable device alone (Luc et al., 2023). In 

addition, some individuals may face technological barriers, which they may feel 

difficulties in using or understanding how to operate wearable devices. Besides, 
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people with PD are more prone to stress and anxiety, hence they may require 

social interaction with physiotherapists and other individuals with the same 

health condition (van der Heide et al., 2021).  

 Since there are no more in-person consultations, the wearable 

devices will be sent out to the individuals logistically, especially in regions that 

are not accessible to healthcare services and will require a more well-

coordinated distribution strategy so that the wearable devices are always 

feasible to anyone who needs them (Li, Richard van Wezel, et al., 2023). Hence, 

the manufacturer and the supply chain play an important role. Any delays in 

production or shipping can lead to a shortage or inconsistent availability of 

devices (Laar et al., 2023). This can disrupt the research studies or ongoing 

patient assessments. Additionally, such interruptions can affect the continuity of 

care which is vital in managing the motor symptoms of PD.  

 Individuals of different sizes may find that standard-sized wearables 

do not fit comfortably. Thus, size compatibility becomes one of the challenges 

and possible risk factors in using wearable devices to assess motor symptoms 

of PD. Potential users who do not fall into normal sizing categories may become 

alienated due to the existing market’s frequent lack of enough size diversity 

(Silva de Lima et al., 2017). If the sensor does not have a size that suits an 

individual’s anatomy, it may not adhere precisely to the site mentioned by the 

researchers or it may shift during movement, leading to inaccurate readings 

(Adams et al., 2021). In addition, individuals may consider a sensor that is too 

large to be a burden as it could cause them problems.  A poorly fitted sensor can 

further decrease user compliance towards wearable devices (Adams et al., 2021). 
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5.1.3 Cost Perspective  

 First of all, PD affects motor function in various ways, affecting 

different body parts including limbs, trunk, and facial muscles. Hence, multiple 

sensors are needed to detect the symptoms of each body part for a 

comprehensive assessment. However, the need for multiple sensors would be a 

challenge in using the wearable device due to cost implications. To assess 

tremors, wearable devices are recommended to be placed at the dorsal aspect of 

the hands, wrists, fingers, and trunk (Sotirakis et al., 2023). The devices can 

detect tremors during hand movements and tasks by placing them over the 

dorsal part of the hands and wrists, providing real-time data on tremor frequency 

and amplitude (Moreau et al., 2023). In addition, placing the devices on the 

index finger can enhance tremor detection during fine motor tasks (Moreau et 

al., 2023). A sensor must also be placed on the trunk to detect overall body 

dynamics and posture; hence, this can understand how tremors will affect 

movement as a whole (Rovini et al., 2017). Not only this, but the trunk also 

serves as a central point of reference for limb movements (Rovini et al., 2017). 

Next, to assess bradykinesia and dyskinesia, the devices will be placed on the 

upper arm, forearm, wrist, and hands (Shawen et al., 2020). Besides, to detect 

FOG, the sensors are placed above the ankle, thigh, waist, and insoles (Ren et 

al., 2022).  

 The need for multiple wearable devices to detect a single motor 

symptom significantly increases the financial burden of people with PD. Not 

only this, but the development of advanced wearable devices also involves 

significant investment in research, design, and manufacturing. On top of that, 

wearable devices such as IMU sensors incorporate accelerometers, gyroscopes 
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and magnetometers, which further increase the cost of production (Sotirakis et 

al., 2023). Additionally, the integration of machine learning algorithms for data 

analysis further increases cost, as it requires specialized expertise and resources 

to develop effective models that can accurately interpret the data collected from 

people with PD (Godoi et al., 2019). Besides, these wearable devices have a 

limited market, in which they will only be used by people with PD or other 

neurological conditions, leading to higher prices due to lower economies of 

scale in production (Godoi et al., 2019). If only fewer units sold means that the 

manufacturers may not be able to reduce prices significantly, making these 

devices less accessible to a broader patient population. Moreover, insurance 

coverage for wearable devices is often inadequate or does not exist, which can 

hinder individuals from buying them (Antonini et al., 2023). As PD is a chronic 

disease that requires long-term rehabilitation, the financial burden falls entirely 

on the people with PD, making the wearable technology prohibitively expensive 

for most of them. In addition to that, the devices might require ongoing 

maintenance, software updates, or even technical support (Antonini et al., 2023). 

When these additional costs accumulate over time, this can make the long-term 

use of these devices less financially feasible.  

 To assess the motor symptoms effectively, people with PD are 

required to wear them daily. Hence, the devices are often subjected to wear and 

tear, which can lead to physical damage (Lu et al., 2020). People with PD may 

inadvertently drop or bump the devices during ADLs, especially if they have 

tremors or rigidity. This vulnerability can result in malfunction or complete 

dysfunction of the device, hindering the continuous monitoring of the motor 

symptoms. Besides, the devices are often visually appealing or technologically 



 

72 
 

advanced and have a higher risk of theft (Cox, 2024). When people with PD 

wear these devices in public settings, the devices could be easily stolen. In 

addition, this raises concerns about personal data security (Minen & Stieglitz, 

2020). Not only this, but people with PD may also be suffering from cognitive 

issues along with motor symptoms, which can be confusion or forgetfulness 

(van der Heide et al., 2021). This can result in misplacing or forgetting to wear 

the devices, affecting the continuity of assessment.  

5.1.4 Technical Perspective 

 Due to the varying human anatomical structures and movement 

patterns across different regions, this anatomical variability can lead to 

differences in the data collected (Azodo et al., 2020). There is no agreed site for 

placement, which can yield distinct readings for the same movement due to 

differences in how force and motions are transmitted through the body (Caballol 

et al., 2023). When the devices are placed differently across people with PD, 

this variability can lead to inconsistent data outputs, complicating comparisons 

and assessments across different individuals (Shawen et al., 2020). In addition, 

when only a single device was placed on the arm may detect tremors effectively 

during tasks such as writing, however, this placement may not yield accurate 

data during other activities such as walking or standing still (Yang et al., 2016).   

 Moreover, there is a lack of calibration and sensitivity in wearable 

devices. the wearable devices may have built-in inaccuracies that require 

regular calibration to maintain precision (Cho et al., 2021). Besides, movement 

during the data collection process can result in errors, challenging the 

calibration process (Canali et al., 2022). When the devices are not calibrated 

correctly, the positional error can exceed acceptable limits, leading to inaccurate 
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readings of motor symptoms such as bradykinesia and dyskinesia (Li, Cristiano, 

et al., 2023). Moreover, different types of wearable devices may have inherent 

variability in their sensitivity and accuracy based on their design and operational 

principles. For example, IMU can vary in performance due to different 

placements on the body, leading to inconsistent data collection, and making it 

challenging to reliably assess symptoms across different individuals (Tahri 

Sqalli & Al-Thani, 2020). In addition to that, improper placement of the devices 

can result in missed signals or inaccurate readings.  

 Moreover, compared to conventional physiotherapy assessments, the 

process of data interpretation after using wearable devices to assess motor 

symptoms of people with PD is more complex. The wearable devices will 

collect a vast array of data from multiple sensors, resulting in high dimensions 

of datasets that contain numerous variables related to movement patterns, speed, 

and direction (Van et al., 2024). Analysing such complex data requires 

sophisticated statistical and machine-learning techniques to extract meaningful 

insights, making interpretation challenging. In addition, the devices often gather 

multimodal data that need to be integrated for a comprehensive assessment 

(Ferrara, 2024). It is vital to combine these diverse data streams can provide a 

coherent picture of the individual’s motor function, however, it involves 

complex algorithms for feature extraction and fusion (Ferrara, 2024). Moreover, 

if the devices require a machine-learning model to analyse the data, it can 

introduce additional complexity as these models need extensive training on 

diverse datasets to generalize well across different individuals (Ortiz, 2024). 

The complexity of data interpretation can be associated with the next challenge, 

which is the need for experienced consultants (Bove, 2019). One of the 
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challenges and possible risk factors listed from the technical perspective is the 

need for experienced consultants to handle wearable devices. This is because 

experienced consultants possess specialized knowledge of the various wearable 

devices available, their functionalities and how to effectively integrate them into 

existing healthcare systems (Bove, 2019).  

 The battery life of wearable devices presents significant challenges 

in assessing the motor symptoms of an individual. Firstly, wearable devices are 

mostly designed to be compact and lightweight, restricting the size of the battery 

that can be used (Beniwal et al., 2023). Most wearable devices rely only on 

small lithium-ion batteries, typically with capacities from 130mAh to 410mAh, 

leading to limited operational time before recharging is required (Beniwal et al., 

2023). Furthermore, the wearable devices are equipped with advanced features 

which further increase power consumption, this complexity often results in a 

trade-off between functionality and battery life, making it difficult to achieve 

long runtimes without frequent charging (Rong et al., 2021). Moreover, 

wearable devices do not effectively manage power consumption during idle 

periods (Contoli et al., 2024). The devices do not enter a low-power mode even 

when they are not actively collecting or processing data, making them consume 

significant energy (Workineh Tesema et al., 2024).  

 As mentioned above the challenges from the cost perspective, there 

is a need for multiple sensors in assessing a single motor symptom. These 

sensors operate on similar frequencies, leading to electromagnetic interference, 

and causing the overlapping of signals from different sensors, distorting each 

other (Ates et al., 2022). Moreover, some sensors may be placed close to each 

other, for example when assessing tremors, the sensors are placed over the wrist, 
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hand, and finger (Sotirakis et al., 2023). This can cause crosstalk between 

sensors, in which the signal of each sensor interferes with one another. 

Otherwise, even though some sensors are placed away from each other, the 

signals may be overlapping due to the physical movement of an individual 

(Heikenfeld et al., 2018). For instance, the sensors that are placed over the hand 

and ankle may overlap when the individual squats down. Besides, inadequate 

filtering and amplification techniques can lead to signal overlapping (Liu et al., 

2022).  

 The overlapping of the signals can sometimes lead to connectivity 

problems (Ikharo & Aliu, 2023). Besides, wearable devices use different 

communication protocols, causing difficulties in data transfer between devices 

from different manufacturers (Ikharo & Aliu, 2023). This lack of 

standardization creates barriers that prevent seamless interoperability, making it 

difficult for physiotherapists or charge persons to incorporate the data into 

electronic health records (Canali et al., 2022). In addition, wearable devices that 

have short battery life can also lead to connectivity failures especially when the 

devices run out of power (Beniwal et al., 2023). Next, software issues can also 

lead to connectivity problems. If there are bugs in the firmware or application 

software, it may cause the devices to fail to establish or maintain connections 

with other devices or networks (Canali et al., 2022). When the devices are 

incompatible in size with the individuals, this can lead to inadequate sealing 

against moisture, leading to connectivity issues (Adams et al., 2021).   

 



 

76 
 

5.1.5 Research Perspective  

 There is only one challenge and a possible risk factor that arises from 

the research perspective, which is issues with generalizability in real-world 

settings. Wearable devices often encounter significant data quality issues that 

can affect their reliability and applicability in clinical settings (Chang et al., 

2019). These challenges include data entry errors, non-wear periods, and 

missing data, leading to incorrect conclusions about the health of an individual 

(Chang et al., 2019). In addition to that, controlled research environments often 

involve highly structured conditions that do not reflect the complexities of daily 

life (Khakurel et al., 2018). For example, participants’ behaviour, environmental 

factors, and device usage are strictly regulated in the research settings (Khakurel 

et al., 2018). The lack of variability can lead to results that do not translate well 

to the diverse and unpredictable nature of real-life settings (Belal Abboushi et 

al., 2022). Next, when the research only recruited those 50 years old and above, 

the result may not represent the broader population. The lack of diversity can 

skew results, limiting the applicability to different demographic groups or 

individuals with more than one health condition (Belal Abboushi et al., 2022).  
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5.2 Implication of The Challenges and Possible Risk Factors to Physiotherapy 

Assessment and Management  

 The challenges and possible risk factors mentioned above have 

significant implications for the physiotherapy assessment of motor symptoms 

in PD. Privacy concerns related to the use of wearable devices can lead to 

decreased trust in wearable technologies among people with PD (AlMahadin et 

al., 2020). They will most likely be disengaged from these devices. If not, 

people with PD can choose to limit the amount of data shared or stop sharing 

the data, resulting in gaps in symptom monitoring. In addition, non-compliance 

and the issue with long-term acceptance of the devices can also lead to 

inconsistent use of wearable devices, causing incomplete data sets, which do 

not accurately represent a patient’s condition over time (Bergh et al., 2023). This 

inconsistency complicates clinical decision-making, leading to missing 

opportunities for timely management or adjustments in treatment strategies 

(Moreau et al., 2023). Additionally, some specific events such as falls and 

tremors might be missed due to inconsistent and short-term usage, potentially 

overlooking critical changes that require attention (Lu et al., 2020). A slower 

response to necessary new treatment from the physiotherapists occurred due to 

delayed recognition of changes or new symptoms (Moreau et al., 2023). As a 

result, patients might become even less motivated to engage with their treatment 

plan as they might think that the treatment plan is not effective (Lu et al., 2020), 

creating a detrimental feedback loop.  

 The handling of sensitive health information raises ethical and legal 

issues that must be navigated carefully (Rodgers et al., 2019). Failure to 

adequately address these concerns could lead to legal repercussions and damage 



 

78 
 

the professional reputation of a physiotherapist (Rodgers et al., 2019). Next, 

preference for face-to-face consultations may create a barrier to integrating 

wearable devices into routine care. Besides, the financial burden associated with 

the use of wearable devices will limit access for both patients and healthcare 

providers, resulting in a decreased implementation of wearable devices in the 

physiotherapy field (Tina Binesh Marvasti et al., 2024). Moreover, the 

challenges mentioned from the technical perspective may lead to inconsistent 

data interpretation, obscuring true changes in the individuals (Yue et al., 2024). 

Additionally, inconsistency in data interpretation may lead to misdiagnosis, 

affecting clinical decision-making. The complexity of utilising wearable 

devices may further increase the burden of a physiotherapist as additional works 

have to be done (Smuck et al., 2021). Wearable devices may perform well in 

clinical settings where conditions are controlled, but the accuracy of the 

collected data may diminish in real-world settings, leading to which the data 

collected may not truly reflect the individual’s condition (Singh et al., 2024).  

 

5.3 Perspective That Causes Major Impact on Physiotherapy Aspect  

 Among the five perspectives: human, ethical, cost, technical, and 

research, the human perspective is likely to have the most significant impact on 

the physiotherapy field.  

The human perspective emphasizes the importance of patient-centred 

care, which is fundamental in physiotherapy. Understanding patients' needs, 

preferences, and experiences can lead to more effective treatment plans and 

improved outcomes (Bastemeijer et al., 2020). A focus on the human aspect 
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ensures that therapy is tailored to individual patients, enhancing engagement 

and adherence to rehabilitation protocols. 

Besides, strong therapeutic relationships between physiotherapists and 

patients are crucial for successful treatment (Worum et al., 2020). The human 

perspective highlights the importance of communication, empathy, and trust, 

which can significantly influence a patient's motivation and willingness to 

participate in their rehabilitation process. Positive interactions can foster a 

supportive environment that encourages recovery (Worum et al., 2020). 

In addition, physiotherapy often requires a holistic approach that 

considers not only physical impairments but also psychological, social, and 

emotional factors affecting a patient's health. By prioritizing the human 

perspective, physiotherapists can address these multifaceted issues, leading to 

more comprehensive care that acknowledges the whole person rather than just 

their physical condition (Liang et al., 2022). 

The human perspective also encompasses issues related to advocacy for 

patient rights and accessibility to care (Liang et al., 2022). Addressing barriers 

faced by diverse populations such as socio-economic factors or cultural 

differences can improve access to physiotherapy services. This focus can lead 

to more equitable healthcare delivery and better health outcomes for 

underserved groups. 

Focusing on the human perspective encourages physiotherapists to 

engage in continuous professional development regarding interpersonal skills 

and cultural competence (Débora Petry Moecke & Camp, 2024). This emphasis 
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can enhance practice standards and foster an environment of compassion and 

understanding within the profession. 

In summary, while all five perspectives are important, the human 

perspective stands out as it directly influences patient outcomes through 

personalized care, strong therapeutic relationships, a holistic approach to 

treatment, advocacy for accessibility, and enhancement of professional practice. 

Prioritizing this perspective can lead to significant advancements in the 

effectiveness and quality of physiotherapy services. 
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5.4 Limitations  

 The search database was only limited to Scopus, which might lead 

to incomplete retrieval of relevant studies, resulting in a biased sample. In 

addition, the search strategy was limited to a few of the main established peer-

reviewed databases and the peer-reviewed paper publications were reviewed 

only if they were written in English. Therefore, the identified publications may 

not be completely representative of the research available, as contributions 

made by technologically advanced such as Germany were excluded. 

Furthermore, the publication search was conducted only by one person. 

Although the inclusion of the eligible studies and the search strategy 

methodology were supervised by the research supervisor and co-supervisor, 

studies may have been missed or there may have been some variation during 

the screening process.  

 Moreover, the study only focused on motor symptoms. Non-motor 

symptoms were not included as conducting a comprehensive review that 

includes both motor and non-motor symptoms may require significantly more 

resources in terms of time, literature search, and result synthesis. Furthermore, 

study participants with PD tended to be older, and there is little information on 

how wearable devices could benefit patients with young onset PD (YOPD) and 

how the different challenges faced by patients with YOPD can impact the results. 

 In addition, some articles were not able to be viewed in full text. An 

attempt was made to contact respective authors for the not available studies, 

however, there is no reply from the authors.  
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5.5 Recommendation for Future Study 

 For the recommendations for future study, researchers should 

incorporate assessing non-motor symptoms involving the use of wearable 

devices to enhance the understanding of this complex condition. While this 

study primarily focused on motor symptoms, the multifaceted nature of PD 

necessitates a broader approach that includes non-motor aspects such as 

cognitive decline, mood disorders, and sleep disturbances. This is because the 

non-motor symptoms significantly impact the QoL of people with PD. By 

integrating these symptoms into wearable device assessments, researchers can 

provide a more holistic view of the disease’s progression and its effects on daily 

living. Hence, this scoping review should be followed by assessing the capacity 

of the mentioned devices in assessing non-motor symptoms of PD.  

 Next, future studies can be done to solve the challenges and possible 

risk factors mentioned in this study. Researchers can conduct a user-centred 

design, engaging people with PD in the design process to create more 

comfortable and aesthetically pleasing devices that meet their needs. 

Additionally, researchers can perform cost-effectiveness analyses to determine 

the financial viability of implementing wearable devices in clinical practice.  

 Besides, given the complexity and diversity of challenges and 

potential risk factors identified in the use of wearable devices in assessing motor 

symptoms in PD, a systematic review followed by a meta-analysis could 

synthesize existing literature more comprehensively. Hence, this scoping review 

serves as a basis for further systematic review and meta-analysis. A systematic 

review can provide a structured synthesis of evidence regarding the efficacy and 

challenges associated with wearable devices, integrating findings from various 
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studies to draw more robust conclusions. A meta-analysis would allow for 

statistical analysis of data across studies, potentially revealing trends or effects 

that are not apparent in individual studies due to small sample sizes or varying 

methodologies. By consolidating evidence, these reviews can inform clinical 

practices and guidelines regarding the implementation and use of wearable 

devices in assessing people with PD.  
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5.6 Conclusion  

 This scoping review provides an overview of the challenges and 

possible risk factors associated with the use of wearable devices in assessing 

motor symptoms of people with PD. The findings indicate that a variety of 

challenges exist across ethical, human, cost, technical, and research 

perspectives, which collectively influence the efficacy and acceptance of these 

devices as well as the impacts on physiotherapy assessment and management.   

 The ethical concerns emphasise how these challenges can result in 

inconsistency in data collection, as well as trust and engagement of the user. 

Next, the human perspective emerged as a critical barrier that could deter the 

acceptance of the devices and the compliance in using the devices. Furthermore, 

the cost perspective revealed the financial limitations towards the devices, thus, 

limiting the widespread adoption of the devices. From a technical perspective, 

it suggested that there is a need for improvement in updating the device feature 

as well as the function. These challenges not only affect the assessment of motor 

symptoms but also have broader implications for patient care. The potential for 

inaccurate data collection can lead to misinterpretation, thereby affecting 

clinical decisions. Future studies should focus on developing strategies to 

mitigate these challenges so that we can fully utilize the advantages of wearable 

devices.  
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CHAPTER 7  

APPENDICES 

APPENDIX A - ETHICAL APPROVAL FORM 
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APPENDIX B - PRISMA-SCR CHECKLIST  

Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

extension for Scoping Reviews (PRISMA-ScR) Checklist 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

TITLE 

Title 1 
Identify the report as a scoping 
review. 

i 

ABSTRACT 

Structured 
summary 

2 

Provide a structured summary that 
includes (as applicable): background, 
objectives, eligibility criteria, sources 
of evidence, charting methods, 
results, and conclusions that relate to 
the review questions and objectives. 

ii – iii  

INTRODUCTION 

Rationale 3 

Describe the rationale for the review 
in the context of what is already 
known. Explain why the review 
questions/objectives lend themselves 
to a scoping review approach. 

16 – 17  

Objectives 4 

Provide an explicit statement of the 
questions and objectives being 
addressed with reference to their key 
elements (e.g., population or 
participants, concepts, and context) 
or other relevant key elements used 
to conceptualize the review questions 
and/or objectives. 

15 

METHODS 

Protocol and 
registration 

5 

Indicate whether a review protocol 
exists; state if and where it can be 
accessed (e.g., a Web address); and 
if available, provide registration 
information, including the registration 
number. 

- 

Eligibility criteria 6 

Specify characteristics of the sources 
of evidence used as eligibility criteria 
(e.g., years considered, language, 
and publication status), and provide a 
rationale. 

39 – 40  

Information 
sources* 

7 

Describe all information sources in 
the search (e.g., databases with 
dates of coverage and contact with 
authors to identify additional 
sources), as well as the date the 
most recent search was executed. 

38 

Search 8 

Present the full electronic search 
strategy for at least 1 database, 
including any limits used, such that it 
could be repeated. 

38 

Selection of 
sources of 
evidence† 

9 
State the process for selecting 
sources of evidence (i.e., screening 

38 – 40  
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

and eligibility) included in the scoping 
review. 

Data charting 
process‡ 

10 

Describe the methods of charting 
data from the included sources of 
evidence (e.g., calibrated forms or 
forms that have been tested by the 
team before their use, and whether 
data charting was done 
independently or in duplicate) and 
any processes for obtaining and 
confirming data from investigators. 

40 – 41  

Data items 11 

List and define all variables for which 
data were sought and any 
assumptions and simplifications 
made. 

41 

Critical appraisal 
of individual 
sources of 
evidence§ 

12 

If done, provide a rationale for 
conducting a critical appraisal of 
included sources of evidence; 
describe the methods used and how 
this information was used in any data 
synthesis (if appropriate). 

- 

Synthesis of 
results 

13 
Describe the methods of handling 
and summarizing the data that were 
charted. 

41 

RESULTS 

Selection of 
sources of 
evidence 

14 

Give numbers of sources of evidence 
screened, assessed for eligibility, and 
included in the review, with reasons 
for exclusions at each stage, ideally 
using a flow diagram. 

42 – 43  

Characteristics 
of sources of 
evidence 

15 
For each source of evidence, present 
characteristics for which data were 
charted and provide the citations. 

44 – 47  

Critical appraisal 
within sources of 
evidence 

16 
If done, present data on critical 
appraisal of included sources of 
evidence (see item 12). 

- 

Results of 
individual 
sources of 
evidence 

17 

For each included source of 
evidence, present the relevant data 
that were charted that relate to the 
review questions and objectives. 

48 – 62  

Synthesis of 
results 

18 
Summarize and/or present the 
charting results as they relate to the 
review questions and objectives. 

48 – 62  

DISCUSSION 

Summary of 
evidence 

19 

Summarize the main results 
(including an overview of concepts, 
themes, and types of evidence 
available), link to the review 
questions and objectives, and 
consider the relevance to key groups. 

63 – 77  

Limitations 20 
Discuss the limitations of the scoping 
review process. 

78  

Conclusions 21 

Provide a general interpretation of the 
results with respect to the review 
questions and objectives, as well as 
potential implications and/or next 
steps. 

81 
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

FUNDING 

Funding 22 

Describe sources of funding for the 
included sources of evidence, as well 
as sources of funding for the scoping 
review. Describe the role of the 
funders of the scoping review. 

- 

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic 
reviews and Meta-Analyses extension for Scoping Reviews. 
* Where sources of evidence (see second footnote) are compiled from, such as bibliographic 
databases, social media platforms, and Web sites. 
† A more inclusive/heterogeneous term used to account for the different types of evidence or 
data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy 
documents) that may be eligible in a scoping review as opposed to only studies. This is not to 
be confused with information sources (see first footnote). 
‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI 
guidance (4, 5) refer to the process of data extraction in a scoping review as data charting. 
§ The process of systematically examining research evidence to assess its validity, results, and 
relevance before using it to inform a decision. This term is used for items 12 and 19 instead of 
"risk of bias" (which is more applicable to systematic reviews of interventions) to include and 
acknowledge the various sources of evidence that may be used in a scoping review (e.g., 
quantitative and/or qualitative research, expert opinion, and policy document). 
 
 

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping 
Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850. 

 

 

 

  

http://annals.org/aim/fullarticle/2700389/prisma-extension-scoping-reviews-prisma-scr-checklist-explanation


 

131 
 

APPENDIX C - HOEHN-YAHR CLASSIFICATION 

Stage Character of disability  

I Minimal or absent: unilateral if present. 

II Minimal bilateral or midline involvement. Balance not 

impaired.  

III Impaired righting reflexes. 

Unsteadiness when turning or rising from chair. Some 

activities are restricted, but patient can live independently 

and continue some forms of employment.  

IV All symptoms present and severe.  

Standing and walking possible only with assistance.  

V Confined to bed or wheelchair.  
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APPENDIX D - BRAAK’S STAGING 

Stage  Anatomy  Clinical symptoms  

1 Dorsal motor nucleus of the 

vagal nerve 

Anterior olfactory structures  

Olfactory loss  

Autonomic dysfunction  

2 Lower raphe nuclei  

Locus coeruleus  

Affective impairment  

Anxiety  

Sleep disturbance  

3 Susbstantia nigra 

Amygdala  

Nucleus basilis of Meynert 

Motor symptoms – clinical 

diagnosis  

4 Temporal mesocortex  Worsening motor symptoms 

Emotional disturbances  

5 Temporal neocortex 

Sensory association and 

premotor areas  

Worsening motor symptoms  

Cognitive changes  
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APPENDIX E - TURNITIN REPORT 
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