

INTELLIGENT MEDICINE BOX SYSTEM WITH

AI-POWERED PILL DETECTION AND IOT

INTEGRATION

CHAN YEE WEI

UNIVERSITI TUNKU ABDUL RAHMAN

INTELLIGENT MEDICINE BOX SYSTEM WITH AI-POWERED PILL

DETECTION AND IOT INTEGRATION

CHAN YEE WEI

A project report submitted in partial fulfilment of the

requirements for the award of

Bachelor of Electronics Engineering With Honours

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at UTAR

or other institutions.

Signature :

Name : CHAN YEE WEI

ID No. : 20AGB02486

Date :

22 May 2025

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “INTELLIGENT MEDICINE BOX

SYSTEM WITH AI-POWERED PILL DETECTION AND IOT INTEGRATION”

was prepared by CHAN YEE WEI has met the required standard for submission in

partial fulfilment of the requirements for the award of Bachelor of Electronic

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Ts Dr Toh Pek Lan

22 May 2025

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2025, Chan Yee Wei. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project titled Intelligent Medicine Box System with AI-powered Pill Detection

and IoT Integration. I would like to express my gratitude to my research supervisor, Ts.

Dr. Toh Pek Lan for her invaluable advice, guidance, and her enormous patience

throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parents and

friends who have helped and given me encouragement and support throughout the

process. Furthermore, I would like to thank the lab assistants for their guidance and

advice.

v

INTELLIGENT MEDICINE BOX SYSTEM WITH AI-

POWERED PILL DETECTION AND IOT

INTEGRATION

ABSTRACT

Taking medication as prescribed is a challenging task for most patients,

particularly for those with busy lifestyles. In simple words, medication adherence can

be defined as taking prescriptions at the right time and in the correct dosage. Adhering

to medication schedules and dosages is crucial for managing chronic conditions such as

hypertension and high cholesterol. Failure to follow the medication regimen can lead to

several adverse consequences, including disease progression and the deterioration of

health conditions. In the long run, this can ultimately reduce the overall quality of life,

leading to an increased risk of long-term health consequences. To address this issue, an

Intelligent Medicine Box System that leverages the power of Artificial Intelligence (AI)

and the Internet of Things (IoT) has been developed to improve the user’s medication

adherence. This book describes the development of an Intelligent Medicine Box System

with AI-Powered Pill Detection and IoT Integration. The Intelligent Medicine Box

System, which leverages IoT, provides the features of timely reminders via mobile

application and the buzzer in the pill box to ensure the user takes their medication as

prescribed. Besides that, the risk of running out of medicine will be reduced with the

real-time pill tracker feature that automatically tracks and monitors supply levels and

alerts users when refills are needed. In addition, the AI-powered pill detection and

counting feature using a deep learning model can further detect foreign objects and

potential missed doses, thus reducing contamination and enhancing medication

adherence. By ensuring their medications are taken on time, this system can help in

managing users' conditions more effectively, thereby improving their quality of life.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xv

LIST OF APPENDICES xvi

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Aim and Objectives 5

1.3.1 Aim 5

1.3.2 Objectives 5

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Literature Review 7

2.2.1 Smart Medicine Pill Box Reminder

Presented by Azlan and Yahya (2023) 7

2.2.2 Design of a Smart Medical Box for

Automatic Pill Dispensing and Health

Monitoring Presented by Nasir et al.

(2023) 10

2.2.3 Automated Medication Verification

System (AMVS): System Based on

vii

Edge Detection and CNN

Classification Drug on Embedded

Systems Presented by Chiu (2024) 13

2.2.4 Development of Smart Pill Expert

System Based on IoT Presented by

Dayananda and Upadhya (2024) 18

3 METHODOLOGY 23

3.1 Introduction 23

3.2 Project Management 23

3.3 Component Description 25

3.3.1 Raspberry Pi 4 Model B 25

3.3.2 Raspberry Pi Camera Module V2 28

3.3.3 16 × 2 Liquid Crystal Display (LCD) 28

3.3.4 Light Emitting Diode (LED) 30

3.3.5 Acrylic Diffuser Sheet 30

3.3.6 RGB LED 31

3.3.7 NodeMCU ESP8266 V2 32

3.3.8 Buzzer 33

3.3.9 LC18650 Li-Ion Rechargeable

Lithium Battery 34

3.3.10 18650 Battery Holder 34

3.3.11 MT3608 Step-Up Power Module 35

3.4 Software Descriptions 35

3.4.1 Cloud Firestore 36

3.4.2 Android Studio 38

3.4.3 Flutter 39

3.4.4 Visual Studio Code 40

3.4.5 Arduino IDE 40

3.5 Block Diagram 40

3.6 Arduino IDE and Raspberry Pi Setup 41

3.6.1 Setup for Arduino IDE 41

3.6.2 Setup for Raspberry Pi 43

3.7 Pill Detection 48

3.7.1 Object Detection 48

viii

3.7.2 YOLO (You Only Look Once) 48

3.7.3 YOLO Model Training Workflow 49

4 RESULTS AND DISCUSSION 56

4.1 Mobile Application User Interface (UI) 56

4.2 Prototype 66

4.2.1 Portable Pill Box 67

4.2.2 Home Base 68

4.3 Pill Box 70

4.3.1 Program of NodeMCU ESP8266 V2 70

4.3.2 Hardware Connection in Pill Box 73

4.3.3 Light Indications and Sound Alert 74

4.4 Home Base 75

4.4.1 YOLOv8 Model Evaluation 75

4.4.2 Operation of the Home Base System 77

4.4.3 Results of the Deployment of

YOLOv8 Model on Raspberry Pi 80

4.4.4 LED and LCD Indications 82

5 CONCLUSION AND RECOMMENDATIONS 85

5.1 Conclusion 85

5.2 Future Improvements and Recommendations 86

REFERENCES 87

APPENDICES 90

ix

LIST OF TABLES

TABLE TITLE PAGE

2.1 Comparison of Techniques Related to Intelligent

Medicine Box System 22

3.1 Gantt Chart for FYP 1 24

3.2 Gantt Chart for FYP 2 25

3.3 Specifications and Description of the Raspberry Pi 4

Model B 27

3.4 Pinout for the 16×2 LCD 29

4.1 Light Indications and Sound Alert on Pill Box 74

4.2 LED and LCD Indications on Home Base 83

x

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Flowchart of the Whole System (Azlan and Yahya,

2023) 9

2.2 The Total Weight of the Medicines (Azlan and

Yahya, 2023) 10

2.3 Blynk Application (a) Total Weight of Medicines

Reaches Below 50% (b) Alert Notifications Will Be

Sent to the Caretaker (Azlan and Yahya, 2023) 10

2.4 The Design of the Rotating Disk Dispenser (Nasir et

al., 2023) 12

2.5 The Database of Patients Saved in the Module (Nasir

et al., 2023) 13

2.6 GUI Designed (a) New Medicine Schedules Created

(b) Medicine Schedule (Nasir et al., 2023) 13

2.7 The Design of Drug Verification Box (Chiu, 2024) 16

2.8 The Workflow of the System (Chiu, 2024) 17

2.9 The Comparison of the Computational Time of Edge

Detection Between the Watershed Algorithm and

Other Methods (Chiu, 2024) 17

2.10 The SA Average Accuracy for Classification (Chiu,

2024) 18

2.11 The Working Dispensing Mechanism of the System

(Dayananda and Upadhya, 2024) 20

2.12 Accuracy and Functionality Graph of SEPC 2.0

(Dayananda and Upadhya, 2024) 20

xi

2.13 Comparative Analysis of SPEC 2.0 with Existing

System (Dayananda and Upadhya, 2024) 21

3.1 Raspberry Pi 4 Model B 26

3.2 Structure and Specifications of the Raspberry Pi

Model B (Singh, 2021) 26

3.3 40 GPIO Pins of the Raspberry Pi 4 Model B (Singh,

2021) 27

3.4 Raspberry Pi Camera Module V2 (a) Camera Module

with Ribbon Cable (b) Camera Module Connected to

Raspberry Pi Board 28

3.5 16 × 2 LCD (Cd-Team, 2023) 29

3.6 Light Emitting Diode (Scully, 2019) 30

3.7 Acrylic Diffuser Sheets 31

3.8 RGB LED 31

3.9 Common Cathode RGB LED Pins (Santos, 2019) 32

3.10 NodeMCU ESP8266 V2 32

3.11 NodeMCU ESP8266 V2 Pinout 33

3.12 Buzzer (Agarwal, 2021) 33

3.13 LC18650 Li-Ion Rechargeable Lithium Battery 34

3.14 18650 Battery Holder 34

3.15 MT3608 DC-DC Boost Converter 35

3.16 Trimmer for Adjusting Voltage (Robottronic, 2020) 35

3.17 Logo of Cloud Firestore 36

3.18 Data Structures in Cloud Firestore 37

3.19 Cloud Firestore Database 37

3.20 Customized Cloud Firestore Security Rules 38

3.21 Logo of Android Studio 38

3.22 Pixel 4 API 35 Emulator 39

xii

3.23 Logo of Flutter 39

3.24 Block Diagram of Intelligent Medicine Box System

With AI-Powered Pill Detection and IoT Integration 41

3.25 URL Added in the Preferences Menu 42

3.26 Installation of ESP8266 Board Package 42

3.27 NodeMCU 1.0 (ESP-12E Module) Is Selected 43

3.28 Selections Available in Raspberry Pi Imager 44

3.29 Recommended Operating System Shown at the Top 44

3.30 Advance Settings for Wi-Fi Credentials 45

3.31 Text File Is Created 45

3.32 Settings for SSH 46

3.33 VNC Enabled in the Raspberry Pi Configuration 47

3.34 RealVNC Viewer Home Screen 47

3.35 Authentication Window in RealVNC Viewer 48

3.36 Detection System of YOLO (Redmon et al., 2016) 49

3.37 YOLO Model Training Workflow 50

3.38 Output Messages When Capturing Images 51

3.39 Images Captured by the Python Script (a)

Amlodipine (b) Simvastatin (c) BoxPresent (d)

Unknown 51

3.40 Annotated Images (a) Amlodipine (b) Simvastatin (c)

BoxPresent (d) Unknown 52

3.41 Medicine_box_v4.yaml File Is Created 53

3.42 Train.py File Is Created 54

3.43 Terminal Displays the Progress of Each Epoch 54

3.44 Model Performance Shows in Terminal 55

4.1 Flow of the Mobile Application UI 58

xiii

4.2 Register Page 59

4.3 Login Page 59

4.4 Reminder Alarm Page When No Reminder Is Set 60

4.5 Reminder Alarm Page with Set Reminders 60

4.6 Pill Tracker Page 61

4.7 Add Reminder Dialog 61

4.8 Time Picker 62

4.9 Reminder Successfully Added 62

4.10 Delete Reminder Dialog 63

4.11 Reminder Successfully Deleted 63

4.12 Refill Pill Dialog 64

4.13 Successful Pill Refill 64

4.14 Reminder Notification 65

4.15 Refill Alert Notification 65

4.16 Prototype of Intelligent Medicine Box System 66

4.17 Pill Box Detected by the System 66

4.18 Front View of the Pill Box 67

4.19 Side Perspectives of the Pill Box (a) Right Side View

(b) Left Side View 67

4.20 Top View of the Pill Box 68

4.21 Front View of Home Base 68

4.22 Side Perspectives of Home Base (a) Right Side View

(b) Left Side View 69

4.23 Top View of the Home Base 69

4.24 Drawer in Home Base 69

4.25 Firebase Credentials and Firestore API URL

Included in the Code 71

xiv

4.26 Program Flow in ESP8266 72

4.27 Conditions to Trigger Buzzer 72

4.28 Hardware Connection for Circuit Inside Pill Box 73

4.29 Circuit Connection Inside Pill Box 73

4.30 Normalized Confusion Matrix 76

4.31 Precision-Recall Curve 77

4.32 F1- Confidence Curve 77

4.33 Flowchart of the Home Base System 79

4.34 Result from Real-Time Detection Window 80

4.35 Unknown Objects Detected (a) One Unknown Object

Detected (b) Two Unknown Objects Detected 81

4.36 Output Messages When No Box Detected 81

4.37 Output Messages When Pill Match 81

4.38 Output Messages When Pill Mismatch 81

4.39 Output Messages When Unknown Object Detected 82

xv

LIST OF SYMBOLS / ABBREVIATIONS

3D Three Dimension

AI Artificial Intelligence

API Application Programming Interface

CNN Convolutional Neural Network

EDP Edge Detection Processing

GPIO General-Purpose Input/Output

GSM Global System for Mobile Communication

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IoT Internet of Things

IoU Intersection over Union

JSON JavaScript Object Notation

LCD Liquid Crystal Display

LED Light Emitting Diode

mAP mean Average Precision

NCDs Non-Communicable Diseases

NTP Network Time Protocol

RGB Red, Green, Blue (Additive Colour Model)

RTC Real-Time Clock

SSH Secure Shell

UI User Interface

UTC Coordinated Universal Time

VNC Virtual Network Computing

YOLO You Only Look Once

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A QR Code for Demonstration Video 90

B C++ Code for ESP8266 90

C Python Code for Capturing Dataset 101

D Python Code for Real-Time Pill Detection 104

E Dart Code for Main 110

F Dart Code for Home Screen 111

G Dart Code for Notification Logic 118

H Dart Code for Add Reminder 123

I Dart Code for Button 127

J Dart Code for Delete Reminder 128

K Dart Code for Login Screen 130

L Dart Code for Pill Tracker 136

M Dart Code for Reminder Model 144

N Dart Code for Round Text Field 145

O Dart Code for Signup Screen 147

P Dart Code for Switcher 155

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Medications play a critical role in our daily life, as medicines are mainly used to treat

or prevent diseases. They are not only used to manage certain disorders, but they also

help in preventing the progression of illnesses, thus improving the quality of life.

According to the findings from the National Health and Morbidity Survey (NHMS)

2023, it showed that 29.2% of Malaysian adults have hypertension, 33.3% have high

cholesterol, and 15.6% of the population suffer from diabetes (Institute for Public

Health (IPH), 2024). With the rise in prevalence of certain illnesses, medication plays

a vital role in enhancing and safeguarding patients’ health.

Adherence is the key element in the effectiveness of pharmacological therapies,

especially in managing chronic illnesses. Treating chronic illnesses such as

hypertension and high blood pressure typically requires long-term use of medication.

However, the effectiveness of the medication is often compromised by non-adherence

(Brown and Bussell, 2011). Poor adherence to medical treatment, such as missed doses,

can lead to worsening of their conditions. In other words, failing to adhere to prescribed

regimens not only exacerbates the risk of disease progression but also increases the

likelihood of complications, ultimately increasing the healthcare costs (Religioni et al.,

2025). One of the major hurdles in healthcare is to ensure that patients take their

prescribed medicine and consistently follow healthcare professionals’ instructions for

taking the medicine. Medicines prescribed by healthcare professionals should be taken

2

properly and on time to ensure effective control of chronic conditions. In simple terms,

it is essential to take prescriptions according to the doctor’s instructions in order to

maximize the benefits of the medications. If the medications are not taken as directed,

this may lead to adverse outcomes. Therefore, an effective approach that leverages

technology for reminders and monitoring should be implemented.

Being tech-savvy, we have seamlessly integrated technology into our daily lives.

In other words, technology has become an indispensable part of our lives. The Internet

of Things (IoT) can be defined as a network of devices that are embedded with sensors

to collect and share data with other devices via an internet connection. The power of

IoT is not only limited to household tools but can also be utilized in the healthcare field.

In fact, IoT devices will be beneficial for healthcare professionals to monitor patients

as well as for patients to monitor themselves more easily. To ensure that the user adheres

to the prescribed medication schedules, an Intelligent Medicine Box System can provide

a timely reminder and track the medication supply. Compared to the conventional

medicine box that can only serve for medicine storage, the Intelligent Medicine Box

System that integrates with the mobile application enables the user to set reminders,

which are stored on the cloud server. Then, the buzzer in the pill box will be triggered

based on the reminders fetched from the cloud server. In this case, the patient will be

reminded to take their medicine, ensuring consistent medication intake by patients.

Besides that, the pill tracking feature can ensure a more efficient medication

management system that allows users to keep track of their current medication quantity.

In addition, users will get a timely reminder when the scheduled time is reached.

Notifications that include a ‘Mark as taken’ button, allowing users to confirm the

consumption of medication. By having this feature, it enables real-time updates of the

pill quantity in the pill tracker. In this instance, the pill tracker will always be up to date

with the current medication quantity. To ensure there is always an adequate supply

available in the pill box and reduce the risk of medication shortages, an alert notification

will be sent to the user’s phone when the pill quantity is running low. If the status of the

medication quantity reaches 20% or below of the original quantity, an alert message

will automatically be sent to the mobile phone to remind the user to refill the medicine.

By utilizing real-time pill tracking, the system helps in ensuring timely refills and

3

preventing any missed doses. This feature is not only useful for pill monitoring, but also

for preventing medication schedule disruptions.

On top of that, the integration of Artificial Intelligence (AI) with the Intelligent

Medicine Box System has led to the development of the AI-powered pill-detecting and

counting features. Based on the visual information captured by the camera, the pills

remaining in the pill box can be detected using a real-time object detection algorithm,

and after that, the system performs the pill counting. By comparing the counting result

with the pill log stored in the Cloud Firestore, the system can identify any potential

missed doses. Through this process, the system can perform pill detection and counting

precisely and efficiently.

1.2 Problem Statement

In Malaysia, 2.5% of the population, or more than half a million adults, suffer from all

four non-communicable diseases (NCDs). The four NCDs include high cholesterol,

hypertension, diabetes, and obesity (Harun and Nizam, 2024). Besides that, a survey

was conducted with 20 participants aged between 40 to 60. The main goal of the survey

was to evaluate how well they adhere to the medication, particularly in managing

chronic illnesses. The results of the survey showed that 40% of them suffer from

hypertension, 45% have high cholesterol, 20% have diabetes, 10% have cardiovascular

diseases, and another 10% have osteoarthritis. Among them, half of the participants

struggle to remember to take medication daily and sometimes miss doses. This

highlights the prevalence of chronic health conditions within this age group,

emphasizing the need for the development of an Intelligent Medicine Box System with

AI-powered Pill Detection and IoT Integration.

However, it is prevalent for many individuals to experience difficulties taking

their medications on time, specifically those who have a hectic lifestyle, resulting in

frequent non-adherence. According to Kvarnström et al. (2021), one of the obstacles to

medication adherence is the busy schedule that results in missed doses. In the midst of

4

their busy schedules, it’s easy for them to prioritize work over their well-being. Hence,

taking medicines on time always falls by the wayside. In other words, medication

adherence becomes a challenge for them. In the long run, this issue may contribute to

increasing the risk of detrimental effects on their health. To combat this, it is important

to develop a system with timely reminders to ensure timely and consistent medication

intake.

For conventional medication management, manual pill counting and tracking

are prone to errors due to forgetfulness or miscounting doses, which can result in poor

adherence to treatment plans. This not only compromises the effectiveness of the

medication but also exacerbates their health condition. Additionally, manually counting

pills is a time-consuming task that increases their workload, particularly for those with

a busy schedule. The lack of real-time tracking worsens the situation as timely

reminders or alerts cannot be delivered, thereby increasing the risk of running out of

medication without noticing and disrupting the treatment plan.

Besides that, regularly refilling medications is particularly crucial for

individuals who have been diagnosed with chronic conditions such as hypertension or

high blood pressure. It is important for them to refill their medication to ensure there is

always an adequate supply in their pill box, thus maintaining their health. To manage

their chronic conditions, they need to take medicine constantly and adhere to their

treatment plans. Failure or delay in refilling the medications may result in running out

of medication, leading to a treatment gap. In the long run, their treatment plan will be

disrupted and cause health complications.

Therefore, the development of an Intelligent Medicine Box System with AI-

Powered Pill Detection and IoT Integration can effectively address these problems by

providing the respective solutions to the problems. This Intelligent Medicine Box

System not only provides timely reminders and pill tracking but also detects

discrepancies in pill count and enhances medication safety by identifying any foreign

object that could lead to contamination.

5

1.3 Aim and Objectives

1.3.1 Aim

The aim of this project is to improve the medication adherence of the user by utilizing

the Intelligent Medicine Box System with AI-powered Pill Detection and IoT

Integration. The mobile application allows users to schedule reminders and track their

pill quantity, while the audible alert from the buzzer helps ensure that they take their

medication on time. Additionally, the object detection model employed can help in

object detection and pill counting accurately, thus ensuring the user’s medication

adherence.

1.3.2 Objectives

The primary objective of this project is to design an Intelligent Medicine Box System

integrated with a mobile application for setting reminders and pill tracking. The pill

tracking function is like a small-scale inventory system. Besides that, the second

objective is to integrate IoT technology into a pill box for timely reminders through

buzzer alert based on scheduled reminders in the mobile application. The user is allowed

to customize their medication schedule via the mobile application. By triggering the

audible alert in the pill box, they can receive timely reminders and prevent missed doses.

In addition, the objective of this project is to develop an AI-powered pill detection and

counting system using the Raspberry Pi. This feature ensures accuracy and convenience,

minimizing the likelihood of running out of medication supplies. As a result, it promotes

better adherence to prescribed treatment plans, improving health outcomes.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, literature reviews related to the Intelligent Medicine Box System are

conducted. The goal of conducting the literature review is to collect relevant research

and clarify the project’s concepts. Furthermore, the literature review serves to broaden

our knowledge base and provides a comprehensive understanding of the topic that is

related to this project. In other words, conducting a thorough literature review is

paramount for enhancing knowledge and improving research methods. By analysing the

existing studies, it can provide valuable insights into the most effective research method,

thereby enhancing the project’s credibility. This project has reviewed various research

on the integration of IoT technology with the medicine box and the implementation of

AI in the detection and counting process. Additionally, this part examines the pros and

cons of each research, while also discussing the areas for future improvements.

7

2.2 Literature Review

2.2.1 Smart Medicine Pill Box Reminder Presented by Azlan and Yahya (2023)

Azlan and Yahya (2023) created a Smart Medicine Pill Box Reminder to tackle the

problem of forgetting to take medication by providing timely reminders. The Smart

Medicine Pill Box not only can carry out the function of alerting patients to take their

medicine but also is able to notify the caretaker when the patient has taken their

medicines based on the weight of the medicine box. When the time to take the

medication arrives, the Smart Medicine Pill Box will notify the patient to take the

medicine visually as well as audibly by using LEDs and a buzzer. This can ensure that

the patients consistently receive notifications, thus improving medication adherence.

One of the core elements of this project is the presence of a weight sensor. A

weight sensor is used to determine if the patient has taken their medication by measuring

the weight of the remaining medicine. As the patient took the medicine, the removal of

pills will directly cause changes in the weight measured by the sensor. By doing so, the

caretaker can monitor and ensure that the patient adheres to the medication schedule.

This project is suitable for both elderly and young people to ensure they take the right

doses on time.

 The authors utilize Arduino Uno to control the overall operation of the Smart

Medicine Pill Box. This system is also equipped with a 1kg load cell to perform the

function of measuring the weight of the medications in the medication box. To connect

the Smart Medicine Pill Box with the BLYNK application on the phone, an ESP8266

Wi-Fi module is used. Besides that, this system includes a real-time clock (RTC)

DS3231 that ensures accurate timekeeping. The LCD, LEDs, and buzzer serve as the

outputs.

Figure 2.1 illustrates the flowchart of the operation of the whole system. This

project included the date and time setup by the patient at the beginning. By pressing the

“Set Time / Date” button provided on the casing of the medicine box, patients are

allowed to adjust the time and date via the “Up” and “Down” buttons. Next, the patient

8

can proceed with the alarm setup so that they can set an alarm to remind them to take

the medicines according to the medication schedules. To ensure accurate weight

measurement, the load cell sensor should be calibrated.

The load cell measurement data will be sent directly to the BLYNK application.

After that, the caretaker will receive the notification depending on the weight of the

remaining medicines. When the load cell detects that the weight of the pill box reaches

below 50% of the total weight, a notification will be sent to the BLYNK application and

received by the caretaker. It will be extremely helpful for the caretaker to track the

patient’s medication intake. If the weight of the pill box decreases, it indicates that the

patient has been taking their medication on time. As shown in Figure 2.2 and Figure 2.3,

when the total weight of the remaining medicine reaches below 6.9g (below 50% of the

total weight of 13.8g), the caretaker will receive notification that the patient has taken

the medicine from the BLYNK IoT application.

One of the drawbacks of this project is that the patient needs to take the

prescribed doses four times to reach 50% of the total weight of the medicines. This

feature will only happen after the patient consumes medicines four times, making it

difficult for daily monitoring of medication intake.

In this scenario, the caretaker will only receive notification after the patient has

taken their medication for four days. This implies that the daily consumption of the

patient cannot be tracked accurately. In this context, the patient is likely to miss doses

without any reminders. If the caregiver cannot monitor whether the patient is taking the

medication follows prescribed dose and timing, this can lead to inconsistent medication

adherence and consequently cause negative impacts on their health. Besides that, this

medicine box has medication shape and size constraints, as it is only suitable for

medicines that have the same shape and size. Therefore, further improvement can be

achieved by changing the working system of the project to ensure that the daily changes

in the weight of the medications can be accurately monitored.

 In a nutshell, this Smart Medicine Pill Box Reminder project has met its

objective of designing a system that will remind the patient to take medication and has

9

developed a mobile application that is able to notify the caretaker if the patient has taken

the medicine by measuring the weight of the pill box. Overall, this system effectively

addresses the concern of missed doses by providing timely reminders and tracking

adherence to medication schedules.

Figure 2.1: Flowchart of the Whole System (Azlan and Yahya, 2023)

10

Figure 2.2: The Total Weight of the Medicines (Azlan and Yahya, 2023)

(a) (b)

Figure 2.3: Blynk Application (a) Total Weight of Medicines Reaches Below 50% (b)

Alert Notifications Will Be Sent to the Caretaker (Azlan and Yahya, 2023)

2.2.2 Design of a Smart Medical Box for Automatic Pill Dispensing and Health

Monitoring Presented by Nasir et al. (2023)

Nasir et al. (2023) proposed a Smart Medical Box for Automatic Pill Dispensing that

includes a health monitoring system. The health monitoring system includes measuring

temperature, heart rate, and oxygen level. In order to enhance security and ensure

correct patient access, the Smart Medical Box is equipped with biometric recognition.

Furthermore, the user is able to receive notifications through SMS when their medicine

has been dispensed. This function not only informs the patient to collect their medicine

11

on time but also improves their adherence to the medication schedules. The goal of this

project is to develop a simple, reliable, easy-to-use system that will be beneficial for

older users.

The proposed Smart Medical Box has three compartments for three time periods,

mainly morning, afternoon, and night, each operated by its own stepper motor. Once

the ultrasonic sensor detects the patient’s hand, it will trigger the stepper motor to

operate and dispense the medicine.

The author builds the basic health monitoring system by using a wide variety of

sensors to perform their specific task. For instance, a biometric verification is performed

by the biometric sensor, R307, while heart rate and oxygen are measured by MAX30102.

For the temperature measuring and hand detection, the system utilizes the DS18B20

and Ultrasonic sensor, HC-SR04. All these sensors are integrated with a Raspberry Pi,

which processes the data and allows for real-time monitoring. Subsequently, the

respective readings will be displayed on the LCD.

When the time for medication is reached, a SIM800L GSM (Global System for

Mobile Communication) serves the purpose of sending the reminder message to the

patient and caretakers at the same time. This function will be particularly beneficial for

those who may forget to take their medication and hence, ensures they follow the

medication schedules properly. Moreover, the system is even equipped with a touch-

sensitive LED to enable user interaction with the Smart Medical Box.

The author uses ‘AutoCAD’ to design a rotating disk dispenser with a hole that

only allows only single pill to pass through at a time, ensuring only single pill dispensing

at a time as shown in Figure 2.4.

On top of that, the biometric data, medicine schedule, and health conditions can

be saved for up to 1000 patients, as shown in Figure 2.5. For the data stored, an existing

user can modify and update the medicines. This is also applicable for a new user to enter

the respective details and save them in the database. Upon receiving the alerting

12

notification, patients authenticate their identity, and then the automatic dispensing of

the specific medication will be triggered.

The most notable advantage of this project is the biometric verification for

granting access to ensure that only authorized patients can retrieve the medication. This

function can prevent unauthorized access to the medicine, leading to medication misuse.

In terms of software, the user-friendly graphical user interface (GUI) will be convenient

for the elderly, as shown in Figure 2.6. Hence, the task of setting the medication

schedule can be done effectively and independently. Saving the patient data in a

systematic way is also the key aspect of enhancing accuracy and preventing medication

errors.

However, one of the limitations of this project is that it is not suitable for

managing non-oral medication. Creams, eye drops, and inhalers are examples of non-

oral medication that the medicine box cannot accommodate. Thus, future improvements

can be made to solve this problem. Besides that, this project can be improved by adding

more compartments for the medicine storage. Another improvement that can be made

in the future is creating an application that allows access for both the patient and the

caretaker. In this case, not only is the patient able to manage the medication schedules,

but the caretaker can also track and monitor the patient’s health data.

In conclusion, the Smart Medical Box that was developed can effectively

address the issue of forgetting to take the right medication at the right time. It is not the

conventional medical box that is only used for medicine storage, but it also provides a

reminder function as well as basic health monitoring. The multi-functionality of the

medical box makes it suitable for everyone.

Figure 2.4: The Design of the Rotating Disk Dispenser (Nasir et al., 2023)

13

Figure 2.5: The Database of Patients Saved in the Module (Nasir et al., 2023)

(a) (b)

Figure 2.6: GUI Designed (a) New Medicine Schedules Created (b) Medicine Schedule

(Nasir et al., 2023)

2.2.3 Automated Medication Verification System (AMVS): System Based on

Edge Detection and CNN Classification Drug on Embedded Systems

Presented by Chiu (2024)

In the medical field, medication dispensing errors may cause adverse outcomes, such as

hospitalization or even death. Contributing factors to the healthcare professionals

include exhaustion from high workload and an insufficient nurse-to-patient ratio. Thus,

the function of advanced technology can be widely used to address these issues.

14

According to Chiu (2024), an Automated Medication Verification System

(AMVS) has been developed based on edge detection and Convolutional Neural

Network (CNN) classification of drugs on embedded systems. In simpler words, the

system automates the verification process by employing edge detection techniques

combined with deep learning models, particularly CNN. To tackle the challenges posed

by manual medication verification, this project can minimize medication errors in

hospital settings. In the traditional approach, nursing professionals used to verify the

medication manually multiple times, significantly increasing their workload. Therefore,

the system proposed by the author can guarantee higher accuracy in medication

administration and enhance patient safety.

For the verification and training datasets, there are a total of 300 images from

10 drug categories were captured by the drug verification box. To reduce the effect of

optical changes during the image capturing process, the drug verification box is

designed to be fully sealed and light tight. In this case, LED light sources play a

fundamental role in providing stable and consistent lighting because all the system

operations are carried out in closed spaces. This setup will minimize the variations in

pixel values that could be caused by external light sources. Ensuring high resolution of

images captured, the distance between the camera and the 3D-printed medication tray

is considered during the design process. Furthermore, the medication tray features outer

walls with an angled design to minimize the segmentation errors. One of the special

features of this medication box is the presence of an electromagnetic valve. As shown

in Figure 2.7, the electromagnetic valve is utilized in the medication box to enhance

user convenience by allowing for easy access.

In terms of software, it is designed to control the state of the LED, brightness,

image capture size, and even the exposure time of the camera. Besides that, the edge

detection analysis is carried out using the OpenCV package, while the PyTorch package

is chosen for building the deep learning model. For this system, the author uses pre-

trained deep learning models such as ResNet, VGG, AlexNet, MobileNet, and

SqueezeNet to perform the medication classification.

15

The author also explained the workflow of the system in Figure 2.8, which

consists of 2 steps, including classification and verification process. The CNN-based

model is trained using the single pill images in step 1, while the same algorithm is used

to identify the pill region and the predict the pill type.

By comparing the results of the Watershed algorithm and the Canny algorithm,

the Watershed algorithm can perform edge detection effectively, while the Canny

algorithm achieved an accuracy of 60%, but may result in error when identifying regions

for different drug types. In terms of processing time for edge detection, the Watershed

algorithm takes the lowest time consumption compared to other methods, as shown in

Figure 2.9.

To verify the model accuracy, VGG11 is employed to evaluate the effect of Edge

Detection Processing (EDP) with and without padding. As a result, there is a successful

pill prediction when applying EDP with the padding method. Out of the eight

classification models using EDP, VGG11 attained the greatest SA average accuracy of

around 93%, as depicted in Figure 2.10. Additionally, VGG11 also showcased an

impressive accuracy of approximately 96% when analysing images less than 10 pills.

For other models, the SA average accuracy is around 60% to 80%. Thus, it can be

proved that the VGG11 achieves a high level of accuracy compared to other models.

Therefore, the VGG11 model is chosen as the deep learning model in this system.

Ultimately, the watershed algorithm and pre-trained VGG11 model offer superior

performance as compared to other edge detection methods and pre-trained models. This

is due to the fact that the Watershed algorithm excels at the lowest time consumption,

while the VGG11 model is able to achieve a high level of accuracy, effectively

discerning the images.

By comparing among few models and techniques, the author chooses the edge

detection techniques and pre-trained models with a high overall performance. Therefore,

the system not only can save a lot of time but also reduce medication error that occurs

in the future. Another benefit of this system is the drug verification box that is fully

enclosed. This means that it will not be influenced by the external factors, thus

improving the accuracy of the detection and classification process. In addition, this

16

system achieves an accuracy rate of 93% is one of the key benefits of this system. The

high level of precision can enhance the efficiency of healthcare professionals, thus

reducing the risk of medication dispensing errors occurring.

On the contrary, to deal with the problem of long training time using Raspberry

Pi, the future improvement is to integrate IoT technology with Raspberry Pi for more

effective and accurate performance in medication classification.

Overall, this AMVS can definitely help reduce medication dispensing errors

through the integration of edge detection techniques with CNNs. At the same time, this

study highlights the importance of integrating conventional edge detection techniques

with CNNs to optimize the performance of the system.

Figure 2.7: The Design of Drug Verification Box (Chiu, 2024)

17

Figure 2.8: The Workflow of the System (Chiu, 2024)

Figure 2.9: The Comparison of the Computational Time of Edge Detection Between the

Watershed Algorithm and Other Methods (Chiu, 2024)

18

Figure 2.10: The SA Average Accuracy for Classification (Chiu, 2024)

2.2.4 Development of Smart Pill Expert System Based on IoT Presented by

Dayananda and Upadhya (2024)

According to Dayananda and Upadhya (2024), an enhanced version of the Smart Pill

Expert System Based on IoT called SPEC 2.0, is designed. In order to minimize the

improper dosage due to the medication system error, the goal of this system is to propose

a user-friendly device. It aims to provide users with control and monitoring features

through an Android application without any in-app purchases or subscriptions needed.

On top of that, the system has the capability to send notifications and SMS messages to

remind the user. From the perspective of the user, they can receive reminders based on

their prescribed schedule. The standout feature of this system is the management of

overdosage. This system not only can remind the user to consume the medication on

schedule but is also useful in avoiding excessive medication consumption. The usage

of IoT in this system can enhance the efficiency of the pill box through a user-friendly

interface.

To address the problem of overdosage, the system includes a container box that

serves as the pill box, which features a flap mechanism driven by a DC motor as

illustrated in Figure 2.11. Besides being the container that holds the dispensed

medication, the pill box also functions to drop the untaken medication into an overdose

19

pill container if not taken within a specific time limit. According to the predefined time

duration threshold of 10 seconds, the dispensed medication is considered an overdose

if the user does not take the medication from the pill box. In fact, the pill’s detection is

carried out by an infrared obstacle sensor that serves to verify if the user has taken the

medication. In this system, the buzzer and LCD are used to serve as the alert notification

and display component.

For the software implementation, an Android mobile application is built using

Java Development Kit (JDK), and a common user interface (UI) is built using Eclipse.

Furthermore, the system incorporates both software and hardware components,

ensuring seamless connectivity between the GSM module and the mobile application.

This integration allows the user to receive the SMS notifications directly from the

system, so that the SMS can be received by the user from the system, carrying out the

function of real-time tracking.

For this system, there are some pros and cons. First of all, it will be beneficial

for the elderly user due to its usability and user-friendly design, making it easier for

them to understand and operate. Next, the overdosage prevention is another advantage

of the system that can monitor the medication intake of the user. However, one major

limitation of the system is that it only provides for a single user interface, which means

that it can only accommodate the needs of one user at a time. Furthermore, this system

has the limitation of only restricted to solid pharmaceutical forms and is not suitable for

non-oral medication. Lacking a backup battery is another drawback of this system. In

this context, it is likely to lead to unexpected power outages.

To enhance the accuracy and ensure the functionality of the system, 8 test cases

are introduced in the testing process as illustrated in Figure 2.12. Figure 2.13 shows the

comparative analysis of SPEC 2.0 with the existing system. By referring to the

comparative analysis, the system achieves 90% accuracy, making a 5% improvement

over existing systems. The improvement can be done is to designing using 3D printing

in order to enhance its reliability. Furthermore, the sudden power outage problem can

be improved by including a backup battery to ensure the system continues to function

and prevent missed doses in this situation. Ultimately, the SPEC 2.0 can be improved

20

by increasing the time slots, enabling the generation of reports for dispensing events,

and incorporating enhanced security features such as a fingerprint feature. In conclusion,

SPEC 2.0 is effectively tackling challenges like unreliable performance and improper

medication dosage. By incorporating advanced technologies and features, medication

adherence can be improved, and the risk of overdose is significantly minimized.

Figure 2.11: The Working Dispensing Mechanism of the System (Dayananda and

Upadhya, 2024)

Figure 2.12: Accuracy and Functionality Graph of SEPC 2.0 (Dayananda and Upadhya,

2024)

21

Figure 2.13: Comparative Analysis of SPEC 2.0 with Existing System (Dayananda and

Upadhya, 2024)

22

Table 2.1: Comparison of Techniques Related to Intelligent Medicine Box System

Author Year Title and Details Advantages/ Disadvantages

Chiu 2024 Automated Medication Verification

System (AMVS)

• Automates the classification

of medications using a

combination of edge

detection methods with deep

learning models

Advantages:

- Low time

consumption

- Achieved over 93%

accuracy

Dayananda

and

Upadhya

2024 Development of Smart Pill Expert

System Based on IoT

• Developed an enhanced

version of the Smart Pill

Expert System Based on IoT

called SPEC 2.0

Advantages:

- User-friendly

interface

- Overdosage

prevention

Disadvantages:

- Only one user

interface

- Without a backup

battery for power

Azlan and

Yahya

2023 Smart Medicine Pill Box Reminder

• Smart Medicine Pill Box for

reminder purposes and

equipped with a weight

sensor

Advantages:

- The status of the pill

box can be monitored

Disadvantages:

- Difficult for daily

monitoring

- Medication shape and

size constraint

Nasir et al. 2023 Design of a Smart Medical Box for

Automatic Pill Dispensing and

Health Monitoring

• Smart Medical Box with

health monitoring system,

including measuring for

temperature, heart rate, and

oxygen level

Advantages:

- Enhance security

with biometric

recognition

- User-friendly GUI

Disadvantages:

• Not suitable for non-

oral medication

• Limited

compartments

23

CHAPTER 3

3 METHODOLOGY

3.1 Introduction

Methodology is an important aspect of any project because it outlines the components

and techniques employed throughout the project. This chapter covers the detailed

descriptions of hardware and software components used in developing the smart

medicine box system for health monitoring. It provides a detailed description of

components utilized and outlines the research design and methodology employed. The

chapter is divided into three sections, which are project timeline, component description

and block diagram. Together, these sections provide a clear framework for the system’s

development process.

3.2 Project Management

A Gantt chart is a helpful tool for project management as it can help in planning and

scheduling the project timeline effectively. This project is scheduled using a Gantt chart

to ensure that all the tasks will be completed on time without delay. It offers a visual

timeline for each task and also helps to track the progress. Table 3.1 shows the Gantt

chart for Final Year Project 1, while Table 3.2 illustrates the Gantt chart for Final Year

Project 2.

24

Table 3.1: Gantt Chart for FYP 1

Details/ Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project Proposal

Literature

Review

Study for Internet

of Things

Study for

Artificial

Intelligence for

Machine

Learning

Research for

Software and

Hardware Design

Design Draft

Prototype

Set Up for a Basic

Mobile

Application

Reporting

FYP 1 Report

Submission

FYP 1 Oral

Presentation

Collect Dataset

25

Table 3.2: Gantt Chart for FYP 2

Details/ Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Model Training

Assembling

Circuit

Building the

Mobile

Application

3D Printing of

Prototype

Debugging &

Testing

Reporting

FYP 2 Oral

Presentation

FYP 2 Report

Submission

3.3 Component Description

3.3.1 Raspberry Pi 4 Model B

As shown in Figure 3.1, Raspberry Pi is a tiny single-board computer (SBC) that is

equipped with all the essential components necessary for a computer to operate.

Compared to the other models, Raspberry Pi 4 comes with a more powerful processor

and provides a choice of RAM configurations. The structure of the Raspberry Pi Model

B is illustrated in Figure 3.2. As shown in Figure 3.3, it includes a total of 40 general-

purpose input/output (GPIO) pins in order to interface and communicate with other

electronic circuits or components. There are dual-HDMI ports to support multiple

monitors. Thus, a micro-HDMI to HDMI cable is needed to connect from the micro-

26

HDMI ports to the screen. Besides that, Raspberry Pi Model B also features a Wi-Fi

port, four USB ports, a USB Type-C power jack, and a Gigabit Ethernet port for quicker

stressed network connectivity. The micro-SD card slot also plays a fundamental role in

the Raspberry Pi board as it serves as the storage medium for files and the Operating

System for turning the system on. Basically, the Raspberry Pi is a programmable device

that supports various types of programming languages, like Python, Java, and C. In short,

it is similar to a minicomputer that can be used to perform numerous applications,

ranging from simple programming projects to complex home automation projects

(Saddam, 2016). All the specifications and respective descriptions are listed in Table

3.3.

Figure 3.1: Raspberry Pi 4 Model B

Figure 3.2: Structure and Specifications of the Raspberry Pi Model B (Singh, 2021)

27

Figure 3.3: 40 GPIO Pins of the Raspberry Pi 4 Model B (Singh, 2021)

Table 3.3: Specifications and Description of the Raspberry Pi 4 Model B

Specifications Descriptions

Processor quad-core Broadcom BCM2711B0

(Cortex A-72) 64-bit SoC @ 1.5GHz

Memory (RAM) 1GB, 2GB, 4GB or 8GB (depends on

model)

Camera Interface 2-lane MIPI CSI camera port

Display Interface 2-lane MIPI DSI display port

Power over Ethernet (PoE) enabled

GPIO 40 pins

USB 2 × USB 2.0 ports, 2 × USB 3.0 ports

HDMI 2 × micro-HDMI ports

Input Power 5V via USB Type C connector

5V via GPIO header

PoE capability via separate POE HAT

(add-on)

Operating System Raspberry Pi OS, as well as Linux and

Windows 10

WIFI Available

Bluetooth 5.0, BLE

Operating Voltage 3.3V

Operating Temperature Range 0 to 50 degrees Celsius

28

3.3.2 Raspberry Pi Camera Module V2

The Raspberry Pi Camera Module V2 as illustrated in Figure 3.4, plays a fundamental

role in this project by capturing the images. It is equipped with an ultra-high quality 8-

megapixel Sony IMX219 image sensor and consists of a fixed focus lens on-board. The

camera module is connected to the 15-pin Raspberry Pi Camera Serial Interface (CSI)

camera connector on the top of the Raspberry Pi board using a ribbon cable.

Furthermore, this camera module is capable of capturing 3280 × 2464-pixel static

images. It is also able to support video recording at various resolutions, including 1080p

at 30fps, 720p at 60 fps, and 640 × 480p at 90 fps. One of the benefits of this camera

module is its small size and lightweight design.

(a) (b)

Figure 3.4: Raspberry Pi Camera Module V2 (a) Camera Module with Ribbon Cable (b)

Camera Module Connected to Raspberry Pi Board

3.3.3 16 × 2 Liquid Crystal Display (LCD)

A 16 × 2 LCD is an electronic display module that supports diverse applications.

Basically, the main function of an LCD is to display information or data. As shown in

Figure 3.5, this display can show 32 characters, with 16 columns and 2 rows, while the

characters can be displayed in a 5 × 7-pixel matrix. There are a total of 16 pins that

carry out different tasks, including power supply, data communication, and signal

control. Table 3.4 shows the pinout of a 16 × 2 LCD, DB0 to DB7 refer to Data Bus

lines 0 to 7.

29

Figure 3.5: 16 × 2 LCD (Cd-Team, 2023)

Table 3.4: Pinout for the 16×2 LCD

Pin No. Pin Name

1 Ground

2 Vcc

3 Vo/VEE

4 RS (Register Select)

5 Read/Write

6 Enable

7 DB1

8 DB2

9 DB3

10 DB4

11 DB5

12 DB6

13 DB7

14 DB8

15 Led+ (LED backlight Vcc)

16 Led- (LED backlight ground)

30

3.3.4 Light Emitting Diode (LED)

LED is one of the most common hardware components used in embedded systems. The

main function of an LED is to emit light when an electric current is applied and flows

through it. It performs this specific function by ensuring that the current flows forward

while blocking the current in the reverse direction. Due to their small size and minimal

power usage, they are suitable for many applications. An LED is used to provide stable

and consistent illumination. In this context, it enhances the accuracy of the system in

detecting and counting the medication in the medicine box. As shown in Figure 3.6,

the LEDs have different colours.

Figure 3.6: Light Emitting Diode (Scully, 2019)

3.3.5 Acrylic Diffuser Sheet

Figure 3.7 shows acrylic diffuser sheets that are used to diffuse light evenly while

maintaining the optimal brightness (Jinbao Plastic, 2025). It helps in spreading and

softening the light from sources like LED, ensuring the light is evenly distributed

without bright spots or glare.

31

Figure 3.7: Acrylic Diffuser Sheets

3.3.6 RGB LED

The RGB LED in Figure 3.8 is an LED module that uses three primary colours: red (R),

green (G), and blue (B) to generate different colours. By combining these colours in

different intensities, it can produce almost any colour. In a common cathode RGB LED,

all three LEDs share the same cathode. As shown in Figure 3.9, an RGB LED has four

legs, and the longest leg represents the common cathode and the other colours are

following in the sequence of red, cathode, green, and blue.

Figure 3.8: RGB LED

32

Figure 3.9: Common Cathode RGB LED Pins (Santos, 2019)

3.3.7 NodeMCU ESP8266 V2

NodeMCU ESP8266 V2, shown in Figure 3.10, is an IoT development board that is

built around a System-on-Chip called ESP8266. It comes with built-in Wi-Fi features

that allow access to online services. Therefore, it is suitable for IoT-based applications.

It featured with 4 MB of Flash memory with a clock speed of 80 MHz. There are several

peripherals included in the ESP8266, such as 17 GPIO, SPI, I2C, UART, and 10-bit

ADC. Figure 3.11 illustrates the pinout of the NodeMCU ESP8266 V2.

Figure 3.10: NodeMCU ESP8266 V2

33

Figure 3.11: NodeMCU ESP8266 V2 Pinout

3.3.8 Buzzer

A buzzer is an audio signalling device that uses electrical signals to generate sound, as

shown in Figure 3.12. It is commonly used for delivering an audible alert or notification

by converting audio signals into sound signals. It consumes less energy and has a

smaller size.

Figure 3.12: Buzzer (Agarwal, 2021)

34

3.3.9 LC18650 Li-Ion Rechargeable Lithium Battery

The LC18650 3.7V Li-ion rechargeable battery (3800mAh), as illustrated in Figure 3.13,

is a lithium-ion battery that can be recharged using a rechargeable battery charger when

its power is depleted. The 3800mAh represents the capacity of the battery. This

highlights that the battery can supply 3800 milliamperes for one hour. Compared to the

normal non-rechargeable battery (primary battery), this type of battery is known for its

rechargeability and eco -friendly.

Figure 3.13: LC18650 Li-Ion Rechargeable Lithium Battery

3.3.10 18650 Battery Holder

The 18650 battery holder is designed to hold the 18650 lithium-ion battery and connect

it to electronic circuits or devices. It serves as a place to make electrical contact with

battery terminals. Figure 3.14 shows the single cell holder for a 18650 battery.

Figure 3.14: 18650 Battery Holder

35

3.3.11 MT3608 Step-Up Power Module

The MT3608 power module shown in Figure 3.15 is a step-up (boost) converter that is

mainly used to power up devices by generating a higher output voltage from a lower

input voltage. Therefore, it is suitable for devices that have limited power. This module

can regulate the output voltage up to 28V and the output current of 2A. There is a

trimmer potentiometer called trimpot on the boost converter that can be adjusted using

a screwdriver to adjust the desired output voltage, as shown in Figure 3.16.

Figure 3.15: MT3608 DC-DC Boost Converter

Figure 3.16: Trimmer for Adjusting Voltage (Robottronic, 2020)

3.4 Software Descriptions

In developing the mobile application for the Intelligent Medicine Box System, several

development tools have been used. Cloud Firestore serves as the cloud database for data

storage and synchronization. Android Studio Emulator and Flutter are used to build and

test the mobile application. Visual Studio Code was utilized as the main Integrated

Development Environment (IDE) for writing and debugging code. To program a

NodeMCU ESP8266 V2, an Arduino IDE is used.

36

3.4.1 Cloud Firestore

When developing a modern application, the database is stored in the cloud to enable

seamless synchronization across all devices. Cloud Firestore is a NoSQL (Not Only

SQL) document database offered by Google Firebase to help in optimizing the

application development process. The logo of Cloud Firestore is shown in Figure 3.17.

It provides the functions to store, query, and synchronize data for both mobile and web

applications. In contrast to the conventional SQL (Structured Query Language) that

stores data with tables and rows, Cloud Firestore organizes data as collections of

documents, making the data stored can be accessed more quickly. In Cloud Firestore,

data is stored in collections where each collection contains multiple documents, and

each document holds the data (Abba, 2021). This structure enables the retrieval of data

to be more flexible. Therefore, it can improve data management by organizing complex

databases efficiently. Based on the diagram in Figure 3.18, it shows the visual structure

of the Cloud Firestore database which the data are store of the Intelligent Medicine Box

System stored in collections and documents. Figure 3.19 shows a screenshot of Cloud

Firestore, displaying the data stored for the Intelligent Medicine Box System.

In terms of security, Cloud Firestore integrates with Firebase Authentication,

allowing developers to build a secure and efficient mobile application. With the Cloud

Firestore security rules, it ensures users’ data is protected by implementing strict access

control and enforcing data validation. The rules can be customized based on the

developers’ preferences. As shown in Figure 3.20, the customized Cloud Firestore

security rules for time-limited access to the data highlight that users are allowed to read

or write to the database only if the request is before 31 December 2025 (Coordinated

Universal Time, UTC). Furthermore, Cloud Firestore also offers offline support,

meaning the application can still function and can perform read/write data even without

connecting to an internet connection (Lee, 2019). Once connectivity is restored, it

synchronizes any changes back to the Cloud Firestore automatically.

Figure 3.17: Logo of Cloud Firestore

37

Figure 3.18: Data Structures in Cloud Firestore

Figure 3.19: Cloud Firestore Database

38

Figure 3.20: Customized Cloud Firestore Security Rules

3.4.2 Android Studio

Android Studio is designed mainly for developing Android applications. The logo of

Android Studio is shown in Figure 3.21. It is Google’s official IDE for Android app

development. It offers features that enhance productivity when building apps. It

provides everything that developers need to design, build, test, and debug. Android

applications, such as layout editor, code editor, and debugging tools, make it easier to

develop and test Android apps (Harwani, 2024). On top of that, a virtual android device

called an emulator is also provided to allow the developers to test their apps without

needing physical hardware. Figure 3.22 shows that the Pixel 4 API 35 emulator is

generated using Android Studio.

Figure 3.21: Logo of Android Studio

39

Figure 3.22: Pixel 4 API 35 Emulator

3.4.3 Flutter

Flutter is an open-source UI toolkit developed by Google, which is primarily intended

to build multi-platform applications using a single codebase. The logo of Flutter is

shown in Figure 3.23. The single codebase implies that its developers can write code

and deploy it on several platforms. It is beneficial for developers in building web,

desktop, and mobile applications more productively. The programming language used

in Flutter is Dart. The Dart language is optimized for building UIs. In simpler terms,

Flutter apps are designed using UI building blocks, which are known as widgets, that

are suitable for developers to build their customizable interfaces. In simpler terms, it

builds with widgets inside widgets. Flutter also provides developer-friendly tools like

the hot reload feature, which is important for developers to view the changes in the apps

faster and more easily without fully restarting the applications.

Figure 3.23: Logo of Flutter

40

3.4.4 Visual Studio Code

Visual Studio Code is an IDE that can be utilized to develop a Flutter app. It is a code

editor to build and debug apps with extensibility that is compatible with programming

languages like Python, Java, and C++. Visual Studio Code is equipped with a vast array

of extensions, including plugins for Flutter and Dart, making it suitable for Flutter app

development. Compared with Android Studio, Visual Studio Code is more lightweight

and faster when startup.

3.4.5 Arduino IDE

Arduino IDE is an open-source IDE that is used to write code, compile, and then upload

it to the board. It consists of a text editor and compiler for code writing and compilation,

allowing users to write, test, and upload the program to the board without an internet

connection. The Arduino software is beginner-friendly software that supports

programming languages like C or C++. In addition, it has a serial monitor that shows

the output from the board by selecting the corresponding baud rate (Ehsan et al., 2018).

3.5 Block Diagram

Figure 3.24 shows the block diagram of the Intelligent Medicine Box System, consisting

of the mobile application, Home Base, and Pill Box. The mobile app is built using

Flutter in Visual Studio Code and tested using an emulator. In the Pill Box, the ESP8266

microcontroller, which is powered by a rechargeable battery, is used to fetch reminders

from Cloud Firestore and trigger the buzzer. An RGB LED inside the Pill Box shows

different colours according to the current task when the program is running. In the Home

base, a Raspberry Pi runs the YOLO model to process images captured by the Raspberry

Pi camera module. Since the operation takes place in an enclosed environment,

consistent lighting is essential. Therefore, LEDs are mounted on diffuser sheets and

41

positioned on both sides of the camera to diffuse light evenly while maintaining the

optimal brightness. Moreover, the LEDs and an LCD attached to the Home Base serve

as visual outputs.

Figure 3.24: Block Diagram of Intelligent Medicine Box System With AI-Powered Pill

Detection and IoT Integration

3.6 Arduino IDE and Raspberry Pi Setup

3.6.1 Setup for Arduino IDE

In this project, the NodeMCU ESP8266 V2 is programmed using the Arduino IDE. To

begin, the development environment should be properly set up to support the ESP8266

board family. First and foremost, the following URL

“http://arduino.esp8266.com/stable/package_esp8266com_index.json” is entered into

the Additional Boards Manager URLs field found in the Preferences menu. Figure 3.25

depicts the Preferences menu with the URL added to enable access to the ESP8266

board. After that, “esp8266 by ESP8266 Community” is installed from the Boards

Manager as shown in Figure 3.26. Once installed, the NodeMCU ESP8266 V2 is

42

connected to the laptop via a USB cable. Next, NodeMCU 1.0 (ESP-12E Module),

which corresponds to the NodeMCU ESP8266 V2, is selected from the Tools options

as illustrated in Figure 3.27. At this point, the board is ready to be programmed using

the Arduino IDE.

Figure 3.25: URL Added in the Preferences Menu

Figure 3.26: Installation of ESP8266 Board Package

43

Figure 3.27: NodeMCU 1.0 (ESP-12E Module) Is Selected

3.6.2 Setup for Raspberry Pi

To start working with a Raspberry Pi, a microSD card with the Raspberry Pi OS

installed is required. For Raspberry Pi 4 Model B, it requires a USB-C power supply

with the specifications of a voltage of 5V and a current of 3A. When operating the

Raspberry Pi directly, additional peripherals such as a display, a display cable that

connects the Raspberry Pi to the display, a keyboard, and a mouse are required to enable

full interaction and control the Raspberry Pi. Installing the operating system on the

microSD card is an essential step, and it can be done by using Raspberry Pi Imager.

Once the Imager is installed, it allows the user to select the Raspberry Pi Device,

preferred operating system, and storage as shown in Figure 3.28. At the top of the list,

it will show the recommended version of the Raspberry Pi Operating System, as

depicted in Figure 3.29.

44

Figure 3.28: Selections Available in Raspberry Pi Imager

Figure 3.29: Recommended Operating System Shown at the Top

3.6.2.1 Headless Connection to Wi-Fi

Before the first boot of the Raspberry Pi, an OS customization menu will appear,

allowing users to set up their username, password, Wi-Fi connections, and other

advanced settings. Figure 3.30 illustrates the settings for Wi-Fi credentials, where the

SSID is filled with the name of the currently connected network and its corresponding

password. Once completed, save all the settings. Alternatively, Wi-Fi setup can be done

manually using a configuration file. Firstly, a text file named “wpa_supplicant.conf” is

created with the contents illustrated in Figure 3.31. The SSID and password are entered

as the Wi-Fi name and password, respectively, while the country code for Malaysia is

designated as MY. Afterwards, the text file needs to be copied to the boot directory on

45

the microSD card before inserting the microSD card into the Raspberry Pi. Once booted,

the Raspberry Pi will establish a connection to the Wi-Fi network.

Figure 3.30: Advance Settings for Wi-Fi Credentials

Figure 3.31: Text File Is Created

3.6.2.2 Secure Shell (SSH)

SHH is mainly used for the purpose for remote access. In the Raspberry Pi Imager tool,

SSH can be enabled, and a username and password can be created as shown in Figure

3.32.

46

Figure 3.32: Settings for SSH

3.6.2.3 Virtual Network Computing (VNC)

To remotely control the Raspberry Pi from another internet-connected device, enabling

VNC is essential for secure access to desktop screen sharing on the Raspberry Pi. With

this VNC connection, location is no more a concern for the user. As illustrated in Figure

3.33, the VNC server in the Raspberry Pi configuration can be enabled. RealVNC

Viewer is installed to facilitate the remote control of the Raspberry Pi. By entering the

IP address of the Raspberry Pi into the RealVNC Viewer, users can establish a

connection to the VNC server. After that, the RealVNC Viewer grants full access to the

graphical desktop interface of the Raspberry Pi. Figure 3.34 shows the home screen of

the RealVNC Viewer. By entering the username and password in the authentication

window, the connection will be established. The authentication window is illustrated in

Figure 3.35.

47

Figure 3.33: VNC Enabled in the Raspberry Pi Configuration

Figure 3.34: RealVNC Viewer Home Screen

48

Figure 3.35: Authentication Window in RealVNC Viewer

3.7 Pill Detection

3.7.1 Object Detection

Object detection is one of the computer vision tasks that identify, classify, and locate

objects within an image or video by drawing bounding box around them. Object

detection models can be trained to detect multiple objects simultaneously and are widely

used in many applications ranging from medical imaging to self-driving cars (Murel,

2024).

3.7.2 YOLO (You Only Look Once)

YOLO is a real-time object detection algorithm. As illustrated in Figure 3.36, the YOLO

algorithm processes images by resizing them and then passing them through a single

Convolutional Neural Network (CNN). CNN will then process the input image by

dividing it into a grid, and with each cell predicting multiple bounding boxes along with

the class probability. After that, based on the confidence scores, YOLO will threshold

these detections and filter out the low-confidence predictions (Redmon et al., 2016). In

49

addition, the YOLO algorithm is a single-shot object detection algorithm that involves

a single pass of the input image to predict the bounding boxes and class of the object.

In other words, YOLO can predict the presence of an object and the bounding box in a

single pass of the network (Buhl, 2024). Therefore, YOLO is fast in detecting objects,

making it suitable for real-time applications.

Figure 3.36: Detection System of YOLO (Redmon et al., 2016)

3.7.3 YOLO Model Training Workflow

In training a YOLO model on the custom dataset, the process begins with dataset

collection. After collecting the datasets, the next step is to annotate them by drawing

the bounding boxes and their respective class labels. Then, the dataset is partitioned to

split it into training and validation sets. After that, the YOLO model is trained and

evaluated. The workflow of the YOLO model training is depicted in Figure 3.37.

50

Figure 3.37: YOLO Model Training Workflow

3.7.3.1 Dataset Collection

To train the YOLO model for object detection, all the images for the custom dataset are

captured using the Raspberry Pi Camera Module V2. By ensuring the consistency of

the image captured, the camera is fixed on a stable platform at Home Base, facing

inward toward the centre where the Pill Box is placed. Besides that, a Python script is

written to capture the images for the dataset. Figure 3.38 presents the output messages

during the capturing process.

In this project, the YOLO model is required to detect and classify four object

classes, which are Amlodipine, Simvastatin, BoxPresent (the presence of a Pill Box),

and Unknown (foreign object that may appear inside the Pill Box). Images are captured

with different lighting conditions, orientations, different pill counts, and pill

arrangements (single pill, partially overlapping) to vary the conditions. This approach

helps the model improve its robustness and reliability in real-world situations. A total

of 3200 images are captured and used as the dataset for this system. Figure 3.39 shows

the images captured using a Python script.

51

Figure 3.38: Output Messages When Capturing Images

(a) (b)

(c) (d)

Figure 3.39: Images Captured by the Python Script (a) Amlodipine (b) Simvastatin (c)

BoxPresent (d) Unknown

52

3.7.3.2 Annotation

After capturing the images, each image in the dataset is manually annotated by assigning

bounding boxes and class labels to each object of interest. Then, the annotations are

saved in YOLO format, where the text file contains the bounding box’s position and the

corresponding object classes. This step is crucial to ensure the model can differentiate

between objects and background. The annotation tool used is LabelImg. Figure 3.40

illustrates the annotated images using LabelImg.

(a) (b)

(c) (d)

Figure 3.40: Annotated Images (a) Amlodipine (b) Simvastatin (c) BoxPresent (d)

Unknown

53

3.7.3.3 Partition

Partitioning in the training process involves the splitting of the dataset into 80% for

training and 20% for validation. This approach ensures the model has adequate data for

training and also data to evaluate its performance.

3.7.3.4 Model Training

After splitting the dataset, the object detection model is trained using the YOLOv8

framework on the Raspberry Pi. During this stage, a YAML file and a Python file are

created. The path to the train and validation dataset, the number of the object classes,

and the name of each class are specified in the medicine_box_v4.yaml file as shown in

Figure 3.41.

To start the actual training, a Python file named train.py is created. In this Python

file, the YOLO model is initialized, and some training parameters are also stated, such

as the image size, batch size, and number of epochs. YOLOv8 Nano (YOLOv8n) is

chosen for this project because of its high speed and lightweight architecture. The

number of epochs is set to 20, with the batch size of 2 and image size of 416 × 416, so

that it can accommodate the limited computational capabilities of the Raspberry Pi 4

Model B. To improve training results, the training parameters can be fine-tuned. During

training, the terminal displays the progress of each epoch along with some metrics such

as loss and accuracy, as illustrated in Figure 3.42. Based on the progress displayed in

the terminal, the model’s performance can be monitored as shown in Figure 3.43.

Figure 3.41: Medicine_box_v4.yaml File Is Created

54

Figure 3.42: Train.py File Is Created

Figure 3.43: Terminal Displays the Progress of Each Epoch

55

3.7.3.5 Model Evaluation

After the completion of training, there are two weight files generated, which are best.pt

and last.pt, representing the best epoch and the latest epoch. To ensure optimal

performance, the best.pt model is used for real-time pill detection. As shown in Figure

3.44, the terminal will display the message indicating the end of the training, along with

the final loss and performance metrics. The detailed model evaluation is provided in

Chapter 4.

Figure 3.44: Model Performance Shows in Terminal

56

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Mobile Application User Interface (UI)

The flow of the mobile application UI is depicted in Figure 4.1. New users can create

an account on the Register Page, while existing users can log in via the Login Page. The

mobile application consists of two pages, which are the Reminder Alarm Page and the

Pill Tracker Page. On the Reminder Alarm Page, users can add or delete reminders.

When the scheduled time is reached, a notification will appear to remind the user to take

their medication, thus improving their medication adherence. On the Pill Tracker page,

it displays the current pill count for each medication, allowing users to track the

remaining pill supply. When the pill count falls to 20% or below of the original quantity,

an alert notification will appear to remind users to refill the medication.

On the Register Page, new users can create an account by filling in their first

name and last name, email, and password as presented in Figure 4.2. The account will

be created only if all the required fields are completed. For existing users, they can

access the app by logging in with their registered email and password. As illustrated in

Figure 4.3, the users must provide their email and password to ensure security.

The first page of the mobile application is the Reminder Alarm Page. If no

alarms are scheduled, it will display the message “Nothing to show”, as displayed in

Figure 4.4. As shown in Figure 4.5, when the user sets a reminder, it will be displayed

on the page. Each reminder consists of details such as the quantity and type of pills to

57

be consumed at the scheduled time to avoid confusion. In addition, each reminder has

an on/off switch that allows the user to enable or disable the alarm. There is a cross

button located next to the on/off switch that can be used to delete the reminder if it’s no

longer needed. There is a logout button located at the top right corner that allows the

user to log out of the application. The bottom navigation bar features two icons that

represent the first and second pages of the mobile application. By tapping these icons,

users can easily switch between pages. By clicking the second icon, users are directed

to the second page, the Pill Tracker Page, as shown in Figure 4.6. This page displays

the types of pills along with their respective remaining amounts, allowing users to

monitor and track their current pill count effectively.

By clicking the round button in the bottom-right corner of the Reminder Alarm

Page, users can add a new reminder easily. Figure 4.7 illustrates that the add reminder

dialog will appear once users click the button. This dialog allows users to select the

reminder time using the time picker and enter the pill name and the quantity to be

consumed during the scheduled time. The time picker UI component is illustrated in

Figure 4.8. The additional information provided by the user is essential for enhancing

the clarity of the scheduled reminder. After the reminder is successfully added, a toast

message will appear at the bottom of the screen, as shown in Figure 4.9.

On the other hand, users can remove the reminders that are no longer needed by

pressing the cross button beside the on/off button. Figure 4.10 shows the delete reminder

dialog, which serves as a confirmation prompt before deleting the reminder. The success

of this action is confirmed with a toast message, indicating the reminder has been

successfully deleted, as illustrated in Figure 4.11.

On the Pill Tracker Page, users are able to update the Pill Tracker by clicking

the “Refill Pill” button and manually entering the refill dosages. Figure 4.12 presents

the dialog box that appears where users can enter the pill name and dosage they are

refilling. As shown in Figure 4.13, a snackbar message will show at the bottom of the

screen, indicating the successful pill refill and the creation of a new pill log in Cloud

Firestore.

58

When the scheduled time arrives, a reminder notification will pop up on the

screen to remind users to take their medication following the prescribed schedule, as

shown in Figure 4.14. The notification displays the pill name and dosage to avoid any

errors in medication intake. On top of that, the notification includes a “Mark as Taken”

button at the bottom. Pressing this button will automatically update the pill count in the

Pill Tracker by deducting the quantity stated in the reminder. This feature can ensure

that the Pill Tracker always shows the current pill supply, helping users manage their

medication more efficiently. Additionally, Figure 4.15 shows that the system features a

refill alert notification. It will activate when the pill quantity falls to 20% or below of

the original amount. In this case, users can be notified when it is time to refill their

prescriptions, thereby reducing the risk of missed doses. This function is vital for

individuals with chronic conditions, ensuring they always have an adequate supply in

their pill box.

Figure 4.1: Flow of the Mobile Application UI

59

Figure 4.2: Register Page

Figure 4.3: Login Page

60

Figure 4.4: Reminder Alarm Page When No Reminder Is Set

Figure 4.5: Reminder Alarm Page with Set Reminders

61

Figure 4.6: Pill Tracker Page

Figure 4.7: Add Reminder Dialog

62

Figure 4.8: Time Picker

Figure 4.9: Reminder Successfully Added

63

Figure 4.10: Delete Reminder Dialog

Figure 4.11: Reminder Successfully Deleted

64

Figure 4.12: Refill Pill Dialog

Figure 4.13: Successful Pill Refill

65

Figure 4.14: Reminder Notification

Figure 4.15: Refill Alert Notification

66

4.2 Prototype

Figure 4.16 illustrates the prototype for the Intelligent Medicine Box System, which

consists of a portable Pill Box, a Home Base, and its drawer. The compartment in the

Pill Box, the Home Base, and its drawer were created using 3D printing technology.

The prototype is constructed using this approach because 3D printing is cost-effective,

able to provide robust structures, and more environmentally friendly compared to other

materials. After printing, the components are sanded and spray-painted to improve their

surface quality. Figure 4.17 shows that the Intelligent Medicine Box System detected

the presence of the Pill Box. The Pill Box is placed on the drawer and then slid into the

Home Base. Inside the Home Base, the Raspberry Pi camera is positioned facing

inwards. This setup allows the camera to capture images of the Pill Box and then

perform pill detection.

Figure 4.16: Prototype of Intelligent Medicine Box System

Figure 4.17: Pill Box Detected by the System

67

4.2.1 Portable Pill Box

Figure 4.18 presents the front view of the Pill Box. It is a transparent container with a

status label attached, so that users can understand the system’s current state based on

the RGB LED indicators. Different colours shown by the RGB LED represent different

statuses. Figure 4.19 illustrates the side views of the Pill Box, showing that the upper

section of the Pill Box serves as the compartment for pill storage, while the lower

section houses the circuit for the ESP8266 microcontroller that connects to a buzzer and

an RGB LED. As observed from the top view of the Pill Box, the pill compartment is

divided into two sections, allowing two different types of pills to be stored separately,

as shown in Figure 4.20. Besides that, a rechargeable battery with a battery holder is

attached to the back of the Pill Box, which supplies power to the ESP8266

microcontroller.

Figure 4.18: Front View of the Pill Box

(a) (b)

Figure 4.19: Side Perspectives of the Pill Box (a) Right Side View (b) Left Side View

68

Figure 4.20: Top View of the Pill Box

4.2.2 Home Base

The front view, side view, and top view of the Home Base are shown in Figure 4.21,

Figure 4.22, and Figure 4.23, respectively. The Home Base is sprayed with green colour

because it is associated with healthcare, providing a calming and cooling effect. In the

upper section of the Home Base, three LEDs are positioned at the centre to represent

the specific state of the system. The status label is attached next to these LEDs to provide

visual information for the user. An LCD is placed on the right-hand side to display the

output messages when the program is running on the Raspberry Pi. Figure 4.24 shows

the drawer designed for placing the Pill Box.

Figure 4.21: Front View of Home Base

69

(a) (b)

Figure 4.22: Side Perspectives of Home Base (a) Right Side View (b) Left Side View

Figure 4.23: Top View of the Home Base

Figure 4.24: Drawer in Home Base

70

4.3 Pill Box

4.3.1 Program of NodeMCU ESP8266 V2

As the ESP8266 does not support the Firebase SDK, it accesses the data from Cloud

Firestore via the REST API. REST API refers to Representational State Transfer

Application Programming Interface, which allows devices to communicate with the

server using Hypertext Transfer Protocol (HTTP) requests, such as GET, POST, and

DELETE. Figure 4.25 shows that the Firebase credentials and Firestore API URL are

included in the code to allow communication between ESP8266 and Cloud Firestore.

In Arduino IDE, the code is written to allow ESP8266 to fetch the reminder data from

Cloud Firestore via REST API, parse the payload, and then trigger the buzzer when the

reminder time is reached.

The program’s operational flow is depicted in Figure 4.26. In the setup ()

function, the program starts by initializing the pins and serial communication. For serial

data transmission between ESP8266 and the computer, it is initialized at a baud rate of

9600 bits per second. Next, the ESP8266 starts to connect with Wi-Fi, and the RGB

LED will produce white light once it is successfully connected. To get the current time

in UTC, the ESP8266 syncs with the Network Time Protocol (NTP) server, a time

synchronization protocol. During the process, a red light will turn on to indicate system

errors.

With Wi-Fi connected and having an accurate time, the system will enter the

loop function that will run continuously. Inside the loop function, the ESP8266 will

retrieve the latest reminder documents from the Cloud Firestore. To fetch reminders,

the ESP8266 sends the HTTP GET request to Cloud Firestore. If a valid HTTP response

code is received (httpResponseCode is 200), the RGB LED will show blue light. Once

the ESP8266 successfully received the payload (scheduled reminder time) from Cloud

Firestore, it is indicated by a green light. On the other hand, failure is indicated by a red

light. After that, the payload, which is in JavaScript Object Notation (JSON) format,

will be parsed by extracting timestamps and the on/off status. It is proceeding to convert

the date and time into Unix timestamps and store them in a reminder array. The

maximum number of reminders is 10 in this program.

71

 After that, the ESP8266 will get the current UTC, which is returned as a Unix

timestamp. Next, the current time is compared with the scheduled reminder times to

determine the triggering of the buzzer. The buzzer will only be triggered when: it is

active (onOff is true), the reminder is not yet triggered, current time is within the range

of ± 180 seconds (3 minutes) of the reminder time. By considering the delays from NTP

synchronization or Wi-Fi connectivity, the buzzer will be triggered within the 3-minute

window around the exact reminder time. In this case, the buzzer will only be triggered

once and preventing missing reminders. Figure 4.27 shows the conditions that need to

be met to trigger the buzzer.

Figure 4.25: Firebase Credentials and Firestore API URL Included in the Code

72

Figure 4.26: Program Flow in ESP8266

Figure 4.27: Conditions to Trigger Buzzer

73

4.3.2 Hardware Connection in Pill Box

Figure 4.28 illustrates the connection between the components used to build the circuit

inside the Pill Box, including NodeMCU ESP8266 V2, an LC18650 rechargeable

battery with holder, an MT3608 step-up power module, an RGB LED, resistors, and a

buzzer. For the step-up power module, it is used to boost the voltage from 3.7V (from

the lithium-ion battery) to 5V (as the input voltage for ESP8266). All the components

are connected on a stripboard as shown in Figure 4.29.

Figure 4.28: Hardware Connection for Circuit Inside Pill Box

Figure 4.29: Circuit Connection Inside Pill Box

74

4.3.3 Light Indications and Sound Alert

The portable Pill Box features an RGB light that will change based on the task being

performed. Table 4.1 illustrates the four types of light indications on the Pill Box when

performing different tasks, such as connected to Wi-Fi, data retrieval, successful

retrieval, and error occurred. On top of that, there is a sound alert from the buzzer inside

the Pill Box to improve the medication adherence of the user.

Table 4.1: Light Indications and Sound Alert on Pill Box

Pill Box Explanations

White light from the RGB LED indicates that

Wi-Fi is connected.

Blue light represents that the HTTP response

code received is correct and data is being

retrieved from Cloud Firestore.

Green light indicates that the data has been

successfully retrieved from the Cloud Firestore.

Red light indicates a system error.

 The buzzer inside the Pill Box will sound when

the scheduled time is reached, reminding the user

to take their medication on time.

75

4.4 Home Base

4.4.1 YOLOv8 Model Evaluation

After training the YOLOv8 model, the performance of the model can be evaluated based

on several metrics, including Precision (P), Recall (R), and Mean Average Precision

(mAP). Precision refers to the model’s accuracy in correctly detecting objects, while

recall measures how many objects are detected in the image by the model (Torres, 2024).

For the mAP, it evaluates the accuracy of a model by combining precision and recall.

From these metrics, the effectiveness of the model can be easily evaluated. After

training the YOLOv8 model, several performance plots such as the normalized

confusion matrix, the precision-recall curve, and the F1-confidence curve are

automatically generated to visualize how well the model is performing.

 Figure 4.30 shows the normalized confusion matrix obtained after training the

YOLOv8 model. The normalized confusion matrix illustrates the classification

performance for each of the classes. From the normalized confusion matrix, an overview

of the comparison between true labels and predicted labels can be observed. Since this

is a normalized confusion matrix, the values are represented as percentages, which

makes the performance for each class can be compare easily. It can be seen that the

four main classes (Amlodipine, Simvastatin, BoxPresent, and Unknown) are achieving

100% accuracy in classification along their respective rows. In other words, four of the

classes are correctly predicted without any misclassifications. However, there are

misclassifications in the background class. From the plot obtained, the background is

wrongly predicted as Amlodipine (12%), BoxPresent (10%), Simvastatin (75%), and

Unknown (2%), leading to false positives in the detection. This highlights that the

background might struggle to distinguish the background and pills, especially

simvastatin. This might be due to the small size of simvastatin, which is visually similar

to the LED bulb. In addition, the reflective surface of the transparent pill box lid might

introduce the light reflections of the LED that looks like a pill.

The precision-recall curve illustrated in Figure 4.31 highlights the trade-off

between precision and recall at various thresholds. The blue line on the precision-recall

76

curve shows the average precision-recall performance. It remains high precision and

recall across different confidence thresholds. From the plot, it indicates that the model

is performing well with the mean Average Precision (mAP) of 0.995 at the IoU

threshold of 0.5. The Intersection over Union (IoU) threshold of 0.5 means the predicted

bounding box is counted as correct if it overlaps the ground truth by at least 50%.

Overall, the YOLOv8 model is achieving high performance by showing strong

classification accuracy with minimal false positives.

A confidence curve can also be used to evaluate the overall performance of a

model. Basically, the F1 score represents the harmonic mean of precision and recall.

Based on the confidence curve as shown in Figure 4.32, the F1 curve is the

representation of the F1 score across different confidence thresholds. At the confidence

threshold of 0.681, the F1 score gets the highest peak of 1.00, highlighting that the

model has the optimal performance at this point. This means that this is the point where

precision and recall are best balanced. At this confidence threshold, all predicted objects

are correct, and all instances are detected. It can be observed that the curve drops after

0.8, indicating that a high confidence threshold will cause miss detections. Based on the

F1 curves, the best confidence threshold is 0.681, which can be used for deployment

later.

Figure 4.30: Normalized Confusion Matrix

77

Figure 4.31: Precision-Recall Curve

Figure 4.32: F1- Confidence Curve

4.4.2 Operation of the Home Base System

After training the YOLOv8 model, it is deployed on the Raspberry Pi for real-time pill

detection. A Python program is written to load the trained model and perform pill

detection. By referring to the flowchart in Figure 4.33, the program begins with the

initialization of GPIO, LCD, camera, Firebase, and the YOLOv8 model. After that, the

YOLOv8 object detection model is loaded so that the program is able to perform object

78

detection. Once the initialization is complete, the program will enter the main loop,

where the blinking green LED indicates that the system is capturing images and

capturing pills. The image is captured using the Raspberry Pi Camera Module V2 and

then passed into the YOLOv8 model to perform object detection. Based on the model’s

detection output, the system counts the number of Amlodipine pills, Simvastatin pills,

and Unknown objects.

The program verifies the presence of the Pill Box by checking if the YOLO

model has detected the BoxPresent object. If no box is detected, the LCD shows the

messages “No box detected” and “skipping counting” and turns off the green LED. Then,

the program loops back to the image capturing process. If the BoxPresent class is

detected by the model, the LCD displays “Box detected” message and the blue LED is

activated, allowing the counting results to be displayed on the LCD.

If there is an unknown object is detected, the red LED turns on and the LCD

displays an alert message “E: unknown obj!” This alert message and red LED can alert

the user to check their Pill Box when the model detects unknown objects in the Pill Box.

After that, the system compares the detected pill count (number of Amlodipine and

Simvastatin) with the latest pill log that is stored in the Cloud Firestore. If the detected

pill count matches the stored data, the LCD displays “Pill Match!” with no alert

triggered. Otherwise, it will show “E: Pill Mismatch!” and trigger the red LED. The

purpose of comparing the pill count is to determine if a discrepancy exists, which might

indicate problems like incorrect dosage or missed doses. When the system detects a pill

count that differs from the one stored in the latest pill log, an alert message “E: Pill

mismatch!” will be displayed to alert the user, so that they can take appropriate

corrective actions. After the comparison, the program will turn off the blue and green

LEDs and continue looping.

79

Figure 4.33: Flowchart of the Home Base System

80

4.4.3 Results of the Deployment of YOLOv8 Model on Raspberry Pi

In the program, the image captured will be passed into the YOLO model to perform

object detection. When running the program on the Raspberry Pi, a real-time detection

window will pop out to allow the developer to visualize the model’s predictions. It

shows how the model identifies and detects the object in real time.

Based on the detection window shown in Figure 4.34 and Figure 4.35, each

image displays the predicted bounding boxes along with the confidence score and their

class labels (Amlodipine, Simvastatin, BoxPresent, or Unknown). Each detected object

is surrounded by a coloured bounding box along with its class label and confidence

score. The confidence score reflects how confident the model is of this prediction.

Figure 4.35 displays the prediction output when the model detects unknown

objects inside the Pill Box. In this project, unknown objects include the unrecognized

pill and small non-pill item intentionally placed in the compartment of the Pill Box.

This demonstrates the additional function of the system to detect any foreign objects

and then alert users to these issues. When the program is executing, the Raspberry Pi’s

terminal will display the output messages. Figure 4.36 illustrates the output messages

from the terminal when no box is detected in Home Base. Figure 4.37, Figure 4.38, and

Figure 4.39 show the output messages when the box is detected, and the program will

proceed to verify the presence of any unknown objects and compare the pill count with

the latest pill log stored in Cloud Firestore.

Figure 4.34: Result from Real-Time Detection Window

81

(a) (b)

Figure 4.35: Unknown Objects Detected (a) One Unknown Object Detected (b) Two

Unknown Objects Detected

Figure 4.36: Output Messages When No Box Detected

Figure 4.37: Output Messages When Pill Match

Figure 4.38: Output Messages When Pill Mismatch

82

Figure 4.39: Output Messages When Unknown Object Detected

4.4.4 LED and LCD Indications

The Home Base prototype is equipped with LEDs and an LCD to provide real-time

feedback on the task that is being executed. The LCD shows the detection results and

messages for user monitoring, while the LEDs indicate various statuses: a green light

indicates that the program is capturing images, a blue LED lights up when the Pill Box

is detected, and a red LED is activated when an error occurs. There are two specific

conditions that trigger There are two scenarios that trigger the red LED: when the model

detects an unknown object or when there is a pill count mismatch, alerting the user to

these issues that require attention. Table 4.2 presents all the LED and LCD indicators

along with explanations.

83

Table 4.2: LED and LCD Indications on Home Base

LCD LED light indication Explanations

The system starts

with a capturing

process to detect the

presence of the Pill

Box.

Green light (blinking):

The pill capturing process is

in progress

Condition 1: No box detected

No box is detected

inside Home Base.

No LED lights up

The system does not

display the counting

results.

No LED lights up

Condition 2: Pill Box detected

Pill Box detected

inside Home Base.

Blue light:

Pill Box detected

84

The counting results

are displayed on

LCD:

A – Amlodipine

S – Simvastatin

U – Unknown

Blue light:

Pill Box detected

The system

compares the pill

count with the latest

pill log stored in

Cloud Firestore.

Blue light:

Pill Box detected

Pill count matched.

Blue light:

Pill Box presence detected

Pill count

mismatch!

Red light:

Error encountered

Unknown object

detected.

Red light:

Error encountered

85

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, this project has achieved all the objectives and successfully developed a

functional Intelligent Medicine Box System with AI-Powered Pill Detection and IoT

Integration. With the user-friendly mobile application, users are able to adhere to their

medication regimens and have better medication management through the timely

reminders and notifications. Additionally, the pill tracker feature in the mobile

application allows user to monitor their current pill quantity and send an alert when a

refill is needed. This approach ensures user take their medicine consistently and makes

sure an adequate supply of pills is always available. Besides that, the integration of IoT

technology into the portable Pill Box can ensure the user receives timely reminders

anytime and anywhere. The AI-powered pill detection and classification features in the

Intelligent Medicine Box System are achieved through the deployment of the YOLOv8

model on the Raspberry Pi. The system is able to automate the process of detection and

counting and subsequently compare these pill counts with the pill log stored in Cloud

Firestore to verify that the user is adhering to the treatment plan. Besides that, the system

is capable of detecting foreign objects in the Pill Box to avoid contamination or incorrect

medication intake. The concept of the system is not only applicable in healthcare but

also adaptable to other fields that require inventory management, such as logistics and

warehousing.

86

5.2 Future Improvements and Recommendations

For future improvements, several enhancements can be made to improve the overall

functionality of the system. Firstly, a more lightweight pill box with multiple

compartments could be designed to increase portability and allow users to store multiple

types of medication separately. For the mobile application, it can be designed to display

history logs, which allow the user to review when the dose was taken or missed. By

having this feature, the user will be more likely to stay consistent with their medication

schedule, thus improving their medication adherence. Furthermore, the Pill Box and

Home Base can incorporate voice commands to enhance accessibility, especially for

users with disabilities. Besides that, the accuracy of the AI model can be continued to

improve in order to enhance the detection performance. Additionally, the AI model

could be further improved to recognize newly introduced pills automatically by

integrating the system with the healthcare database. For instance, integrating the system

with the Ministry of Health Malaysia (MOH) to get the latest and updated medication

information so that the system can recognize the new pill automatically.

87

REFERENCES

Abba, I. (2021) Firebase Cloud Firestore – Database Crash course,

freeCodeCamp.org. Available at: https://www.freecodecamp.org/news/firebase-

firestore-crash-course/ (Accessed: 10 May 2025).

Agarwal, T. (2021) Buzzer : Working, types, circuit, Advantages &

Disadvantages, ElProCus. Available at: https://www.elprocus.com/buzzer-working-

applications/ (Accessed: 01 May 2025).

Azlan, M.A.I. and Yahya, R. (2023) ‘Smart medicine pill box reminder’,

Evolution in Electrical and Electronic Engineering. Available at:

https://publisher.uthm.edu.my/periodicals/index.php/eeee/article/view/10766

(Accessed: 15 July 2024).

Brown, M.T. and Bussell, J.K. (2011) ‘Medication adherence: Who cares?’,

Mayo Clinic Proceedings, 86(4), pp. 304–314. doi:10.4065/mcp.2010.0575.

Buhl, N. (2024) Yolo Object Detection explained: Evolution, algorithm, and

applications, Encord. Available at: https://encord.com/blog/yolo-object-detection-

guide/ (Accessed: 11 May 2025).

Cd-Team (2023) LCD 16x2 Pinout, Commands, and Displaying Custom

Character, Electronics for You. Available at:

https://www.electronicsforu.com/technology-trends/learn-electronics/16x2-lcd-pinout-

diagram.

Chiu, Y.-J. (2024) ‘Automated medication verification system (AMVS): System

based on Edge Detection and CNN classification drug on Embedded Systems’, Heliyon,

10(9). doi:10.1016/j.heliyon.2024.e30486.

Dayananda, P. and Upadhya, A.G. (2024) ‘Development of smart pill expert

system based on IOT’, Journal of The Institution of Engineers (India): Series B, 105(3),

pp. 457–467. doi:10.1007/s40031-023-00956-2.

88

Ehsan, M., Diop, M. and Pham, C. (2018) Introduction to arduino IDE: Arduino

Lora IOT Online Tutorial, Introduction to Arduino IDE | Arduino LoRa IoT online

tutorial. Available at: https://cpham.perso.univ-

pau.fr/LORA/HUBIQUITOUS/solution-lab/arduino-lora-

tutorial/introduction_arduino_ide/introduction_arduino_ide/#:~:text=The%20Arduino

%20IDE%20(Integrated%20Development,reason%20Arduino%20became%20so%20

popular. (Accessed: 01 May 2025).

Harun, H.N. and Nizam, F. (2024). More than half a million Malaysian adults

have diabetes, hypertension, high cholesterol plus obesity | New Straits Times. [online]

NST Online. Available at:

https://www.nst.com.my/news/nation/2024/05/1051421/more-half-million-malaysian-

adults-have-diabetes-hypertension-high (Accessed 30 Jun. 2024).

Harwani, P. (2024) What is Android Studio?, Scaler Topics. Available at:

https://www.scaler.com/topics/android/what-is-android-studio/ (Accessed: 11 May

2025).

Institute for Public Health (IPH) (2024) Key Findings from the National Health

and Morbidity Survey (NHMS) 2023: Health & Healthcare Demand, Institute for Public

Health. Available at: https://iku.gov.my/nhms-2023 (Accessed: 11 May 2025).

Jinbao Plastic (2025) What makes acrylic sheets ideal for LED light diffusion

panels? - jinan jinbao plastic co, ltd.. Available at:

https://www.jinbaoplastic.com/What-Makes-Acrylic-Sheets-Ideal-for-LED-Light-

Diffusion-Panels-id45565516.html (Accessed: 08 May 2025).

Kvarnström, K. et al. (2021) ‘Factors contributing to medication adherence in

patients with a chronic condition: A scoping review of qualitative research’,

Pharmaceutics, 13(7), p. 1100. doi:10.3390/pharmaceutics13071100.

Lee, W.M. (2019) Introduction to cloud firestore, CODE. Available at:

https://www.codemag.com/Article/1905071/Introduction-to-Cloud-Firestore

(Accessed: 02 May 2025).

Murel, J. (2024) What is object detection?, IBM. Available at:

https://www.ibm.com/think/topics/object-detection (Accessed: 05 May 2025).

Nasir, Z. et al. (2023) ‘Design of a smart medical box for automatic pill

dispensing and health monitoring †’, INTERACT 2023, 3, p. 7.

doi:10.3390/engproc2023032007

89

Redmon, J. et al. (2016) You only look once: Unified, real-time object detection,

arXiv.org. Available at: https://arxiv.org/abs/1506.02640 (Accessed: 14 May 2025).

Religioni, U. et al. (2025) ‘Enhancing therapy adherence: Impact on clinical

outcomes, healthcare costs, and patient quality of life’, Medicina, 61(1), p. 153.

doi:10.3390/medicina61010153.

Robottronic (2020) DC-DC boost converter MT3608, Instructables. Available

at: https://www.instructables.com/DC-DC-Boost-Converter-MT3608/ (Accessed: 02

May 2025).

Saddam (2016) Visitor monitoring system with Raspberry Pi and pi camera,

Circuit Digest - Electronics Engineering News, Latest Products, Articles and Projects.

Available at: https://circuitdigest.com/microcontroller-projects/visitor-monitoring-

with-raspberry-pi-and-pi-camera (Accessed: 11 May 2025).

Santos, R. (2019) How do RGB leds work?, Random Nerd Tutorials. Available

at: https://randomnerdtutorials.com/electronics-basics-how-do-rgb-leds-work/

(Accessed: 12 March 2025).

Scully, T. (2019) How Does a 5mm LED Work?, LEDSupply. Available at:

https://www.ledsupply.com/blog/how-does-a-5mm-led-work/ (Accessed: 25 March

2025).

Singh, A. (2025) Raspberry pi 4 pinout, specifications and applications,

Hackatronic. Available at: https://www.hackatronic.com/raspberry-pi-4-specifications-

pin-diagram-and-description (Accessed: 25 March 2025).

Torres, J. (2024) How to evaluate yolov8 model: A comprehensive guide,

YOLOv8. Available at: https://yolov8.org/how-to-evaluate-yolov8-model/ (Accessed:

10 May 2025).

90

APPENDICES

Appendix A: QR Code for Demonstration Video

Appendix B: C++ Code for ESP8266

#include<ESP8266WiFi.h>

#include<WiFiClientSecure.h>

#include<ArduinoJson.h>

#include<ESP8266HTTPClient.h>

#include<WiFiClient.h>

#include<NTPClient.h>

#include<WiFiUdp.h>

const char* ssid = "AndroidAPD67C";

const char* password = "nlba2708";

91

// Firebase project credentials

const String FIREBASE_HOST ="http://medicine-reminder-92853.firebaseio.com";

const String FIREBASE_API_KEY ="AIzaSyDgvmd-

bI_QsNiK0zmArLWX8WxRoeeZwxs";

const String FIREBASE_PROJECT_ID ="medicine-reminder-92853";

const String USER_ID ="vfUin8HcMlba6MefkhxpBBk5xxT2";

// Firestore API URL

String firestoreURL = "https://firestore.googleapis.com/v1/projects/" +

FIREBASE_PROJECT_ID +

 "/databases/(default)/documents/users/" + USER_ID +

"/reminder?key=" + FIREBASE_API_KEY;

unsigned long getCurrentTime();

void getFirestoreData();

void parseAndConvertTime(String jsonResponse);

void checkReminderTime(unsigned long currentTime);

void triggerBuzzer();

unsigned long convertToTimestamp(String adjustedReminder);

unsigned long convertToTimestamp(int year, int month, int day, int hour, int minute,

int second);

struct Reminder{

 String adjustedReminder;

 unsigned long reminderTime;

 bool onOff;

 bool triggered;

};

// array size

#define MAX_REM 10

//reminder array

92

Reminder reminders[MAX_REM];

int reminderCount =0;

//Define the pin for buzzer and RGB LED

#define BUZZER_PIN D8

#define redPin D0

#define greenPin D1

#define bluePin D2

//create HTTPClient instance

HTTPClient http;

WiFiClientSecure client;

//WiFiClient wificlient; //SSL/TLS

int yearInt, monthInt, dayInt, hourInt, minuteInt, secondInt;

bool onOff;

String payload = "";

WiFiUDP udp;

NTPClient timeClient(udp, "pool.ntp.org", 0, 3600); // NTP setup

void setup() {

 pinMode(BUZZER_PIN, OUTPUT);

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(bluePin, OUTPUT);

 Serial.begin(9600);

 delay(10);

 // Connect to WiFi network

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

93

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

 // white light--> Connected to WIFI

 digitalWrite(redPin, HIGH);

 digitalWrite(greenPin, HIGH);

 digitalWrite(bluePin, HIGH);

 delay(1000);

 //Initialize HTTPS client

 client.setInsecure();

 Serial.println("Initializing NTP...");

 timeClient.begin();

 while (timeClient.getEpochTime() < 1000000000) {

 Serial.println("Waiting for NTP sync...");

 timeClient.update();

 delay(1000);

 }

 Serial.println("NTP synced successfully!");

}

94

void loop() {

 //get data or send other HTTP requests

 delay(5000);

 // get payload from firestore

 getFirestoreData();

 // Get current time from NTP

 unsigned long currentTime = getCurrentTime();

 // Check the reminder time from Firestore

 checkReminderTime(currentTime);

}

// get current time from NTP

unsigned long getCurrentTime() {

 timeClient.update(); // Update NTP time

 unsigned long utcTime = timeClient.getEpochTime(); // Get time in seconds (UTC)

 if(utcTime<1000000000){

 Serial.println("Error:NTP time not synced properly!");

 return 0;

 }

 Serial.println("Raw UTC Time: ");

 Serial.println(utcTime);

 return utcTime;

}

void getFirestoreData() {

 delay(2000);

95

 int max_tries =3;

 int tries =0;

 int httpResponseCode =0;

 //HTTP request

 http.begin(client, url);

 http.addHeader("Content-Type", "application/json");

 http.setTimeout(8000);

 while(tries <max_tries){

 // Send GET request

 httpResponseCode = http.GET();

 if (httpResponseCode > 0) {

 if (httpResponseCode == 200){

 Serial.printf("HTTP Response code: %d\n",httpResponseCode);

 String payload = http.getString();

 Serial.println("Got HTTP response");

 //blue light --> got HTTP response

 digitalWrite(redPin, LOW);

 digitalWrite(greenPin, LOW);

 digitalWrite(bluePin, HIGH);

 delay(1000);

 Serial.println("Response from Firestore:");

 Serial.println(payload);

 if (payload.length() >0){

 Serial.println("Data retrieved successfully!");

 // Green light --> retrieved payload from firestore

 digitalWrite(redPin, LOW);

 digitalWrite(greenPin, HIGH);

96

 digitalWrite(bluePin, LOW);

 delay(1000); // Delay 1 second

 }

 parseAndConvertTime(payload);

 break;

 }else {

 Serial.println("Error on HTTP request");

 Serial.print("Retrying... ");

 Serial.print("Error code: ");

 Serial.println (httpResponseCode);

 // red light --> indicate error

 digitalWrite(redPin, HIGH);

 digitalWrite(greenPin, LOW);

 digitalWrite(bluePin, LOW);

 delay(1000); // Delay 1 second

 }

 } else {

 Serial.println("Error on HTTP request");

 Serial.print("Error code: ");

 Serial.println (httpResponseCode);

 // red light --> indicate error

 digitalWrite(redPin, HIGH);

 digitalWrite(greenPin, LOW);

 digitalWrite(bluePin, LOW);

 delay(1000); // Delay 1 second

 }

 tries++;

 }

http.end();

}

97

void parseAndConvertTime(String jsonResponse) {

 reminderCount = 0;

 // Create a JSON document object to parse the response

 DynamicJsonDocument doc(16384);

 //Deserialize JSON and check errors

 DeserializationError error = deserializeJson(doc, jsonResponse);

 // Test if parsing succeeds

 if (error) {

 Serial.print(F("deserializeJson() failed: "));

 Serial.println(error.f_str());

 delay(1000);

 return; // Exit the function early if JSON parsing failed

 }

 JsonArray documents = doc["documents"];

 if (documents.size() > 0) {

 for (JsonObject docObj : documents) {

 serializeJsonPretty(docObj, Serial);

 String timestamp = docObj["fields"]["time"]["timestampValue"];

 onOff = docObj["fields"]["onOff"]["booleanValue"];

 if (timestamp != "") {

 Serial.print("UTC Timestamp: ");

 Serial.println(timestamp);

 Serial.print("onOff status: ");

 Serial.println(onOff ? "true" : "false");

 // Convert timestamp

98

 String dateTimeStr = timestamp; // Example: "2025-01-08T05:50:00Z"

 String year = dateTimeStr.substring(0, 4);

 String month = dateTimeStr.substring(5, 7);

 String day = dateTimeStr.substring(8, 10);

 String hour = dateTimeStr.substring(11, 13);

 String minute = dateTimeStr.substring(14, 16);

 String second = dateTimeStr.substring(17, 19);

 // Convert to integers

 yearInt = year.toInt();

 monthInt = month.toInt();

 dayInt = day.toInt();

 hourInt = hour.toInt();

 minuteInt = minute.toInt();

 secondInt = second.toInt();

 // Create a string

 String adjustedTime = String(yearInt) + "-" + String(monthInt) + "-" +

String(dayInt) +

 " " + String(hourInt) + ":" + String(minuteInt) + ":" +

String(secondInt);

 unsigned long reminderTime = convertToTimestamp(yearInt, monthInt, dayInt,

hourInt, minuteInt, secondInt);

 if (reminderCount < MAX_REM){

 reminders [reminderCount].adjustedReminder= adjustedTime;

 reminders [reminderCount].reminderTime= reminderTime;

 reminders [reminderCount].onOff = onOff;

 reminderCount++;

 }else{

 Serial.println ("max number of reminders reached");

 }

 }

99

 }

 } else {

 Serial.println("No timestamp found.");

 }

}

void checkReminderTime(unsigned long currentTime) {

 if (currentTime == 0){

 Serial.println("Error: Invalid current time!");

 return;

 }else{

 Serial.print("Current Time (UTC): ");

 Serial.println(currentTime);

 }

 //Loop all the reminders

 for (int i = 0; i<reminderCount; i++){

 long timeDiff = (long)currentTime - (long)reminders[i].reminderTime;

 Serial.print("Reminder Time: ");

 Serial.println(reminders[i].reminderTime);

 Serial.print("Current Time: ");

 Serial.println(currentTime);

 Serial.print("Difference: ");

 Serial.println(timeDiff);

 if (!reminders[i].triggered &&

 (timeDiff >= -180) &&

 (timeDiff <= 180) &&

 reminders[i].onOff) {

 Serial.print("Reminder Time(UTC):");

 Serial.println(reminders[i].reminderTime);

100

 Serial.println(reminders[i].onOff? "true" : "false");

 Serial.println("Time reached, buzzer triggered!");

 triggerBuzzer();

 reminders[i].triggered = true;

 } else {

 Serial.println("Buzzer does not trigger");

 }

 }

}

void triggerBuzzer(){

 digitalWrite(BUZZER_PIN, HIGH);//buzzer connect to D1(digital pin)

 delay(3000); // buzz for 3 second

 digitalWrite(BUZZER_PIN, LOW);// turn off buzzer

}

unsigned long convertToTimestamp(String adjustedReminder) {

 int year = adjustedReminder.substring(0, 4).toInt();

 int month = adjustedReminder.substring(5, 7).toInt();

 int day = adjustedReminder.substring(8, 10).toInt();

 int hour = adjustedReminder.substring(11, 13).toInt();

 int minute = adjustedReminder.substring(14, 16).toInt();

 int second = adjustedReminder.substring(17, 19).toInt();

 return convertToTimestamp(year, month, day, hour, minute, second);

}

unsigned long convertToTimestamp(int year, int month, int day, int hour, int minute,

int second) {

 struct tm tmStruct = {0};

 tmStruct.tm_year = year - 1900;

 tmStruct.tm_mon = month - 1;

 tmStruct.tm_mday = day;

 tmStruct.tm_hour = hour;

101

 tmStruct.tm_min = minute;

 tmStruct.tm_sec = second;

 time_t utcTime = mktime(&tmStruct); // Now treated as UTC

 return utcTime;

}

Appendix C: Python Code for Capturing Dataset

from picamera2 import Picamera2

import cv2

import os

import time

import RPi.GPIO as GPIO

import numpy as np

GPIO.setmode(GPIO.BCM)

GPIO.setup(17, GPIO.OUT)

GPIO.setup(23, GPIO.OUT)

dataset_folder = "/home/yeewei831/dataset/v4" # Folder to save images

YOLO_IMAGE_SIZE = (640, 640)

picam2 = Picamera2()

camera_config = picam2.create_still_configuration(

 raw={"size": (1640, 1232)},

 main={"format": 'RGB888', "size": (640, 480)}

)

picam2.configure(camera_config)

102

picam2.set_controls({

 "Contrast": 1.0,

 "Sharpness": 16.0,

})

def sharpen_image(image):

 kernel = np.array([[0, -1, 0],

 [-1, 5, -1],

 [0, -1, 0]])

 return cv2.filter2D(image, -1, kernel)

def resize_image(image_path):

 img = cv2.imread(image_path)

 if img is not None:

 img = sharpen_image(img) # sharpening filter

 img = cv2.medianBlur(img, 5) #remove reflection

 # Get original image dimensions

 h, w = img.shape[:2]

 # Calculate padding to make square

 max_dim = max(h, w)

 top = (max_dim - h) // 2

 bottom = max_dim - h - top

 left = (max_dim - w) // 2

 right = max_dim - w - left

 # Padding

 padded_img = cv2.copyMakeBorder(img, top, bottom, left, right,

cv2.BORDER_CONSTANT, value=[0, 0, 0])

 # Resize to 640x640

103

 resized = cv2.resize(padded_img, YOLO_IMAGE_SIZE)

 cv2.imwrite(image_path, resized)

 print(f"Resized (padded): {image_path} to {YOLO_IMAGE_SIZE}")

 else:

 print(f" Image not found: {image_path}")

def capture_images(num_images, delay, start_index = 0):

 print("Camera warming up... .")

 time.sleep(2)

 GPIO.output(17, GPIO.HIGH)

 GPIO.output(23, GPIO.HIGH)

 picam2.start()

 print("Capturing process started...")

for i in range(start_index, start_index+num_images):

 filename = os.path.join(dataset_folder, f"pill_{i}.jpg")

 picam2.capture_file(filename)

 print(f"Captured {filename}")

 resize_image(filename) # Resize image

 if i < start_index+num_images - 1:

 print(f"Waiting {delay} seconds for next capture...")

 time.sleep(delay)

 picam2.stop()

 print("[INFO] Image captured successfully!")

 GPIO.output(17, GPIO.LOW) # Turn LED off

 GPIO.output(23, GPIO.LOW) # Turn LED off

 GPIO.cleanup()

104

 capture_images(5, 2)

Appendix D: Python Code for Real-Time Pill Detection

from ultralytics import YOLO

import firebase_admin

from firebase_admin import credentials, firestore

from picamera2 import Picamera2

import cv2

import time

import RPi.GPIO as GPIO

import numpy as np

import threading

from picamera2.controls import Controls

from RPLCD import CharLCD

lcd = CharLCD(cols=16, rows=2, pin_rs=26, pin_e=19, pins_data=[13, 6, 5, 11],

 numbering_mode=GPIO.BCM)

Initialize Firebase

cred = credentials.Certificate("/home/yeewei831/pi/medicine-reminder-92853-

firebase-adminsdk-bnij5-78500064f6.json")

firebase_admin.initialize_app(cred)

db = firestore.client()

GPIO.setmode(GPIO.BCM)

GPIO.setup(17, GPIO.OUT)

GPIO.setup(23, GPIO.OUT)

GPIO.setup(24, GPIO.OUT)

GPIO.setup(25, GPIO.OUT)

GPIO.setup(16, GPIO.OUT)

Initialize Camera

105

picam2 = Picamera2()

camera_config = picam2.create_preview_configuration(

 raw={"size": (1640, 1232)},

 main={"format": 'RGB888', "size": (640, 480)}

)

picam2.configure(camera_config)

picam2.set_controls({

 "Contrast": 1.0, # 0.0 to 32.0

 "Sharpness": 16.0, # 0.0 to 16.0

})

GPIO.output(17, GPIO.HIGH)

GPIO.output(23, GPIO.HIGH)

picam2.start()

Load YOLO Model

model = YOLO("YOLO_results_v4/pill_detector_v42/weights/best.pt") # trained

model path

def blink_led(pin, stop_event, interval=0.5):

 while not stop_event.is_set():

 GPIO.output(pin, GPIO.HIGH)

 time.sleep(interval)

 GPIO.output(pin, GPIO.LOW)

 time.sleep(interval)

def capture_image():

 print("Capturing Image...")

 picam2.capture_file("pill_image.jpg")

 return "pill_image.jpg"

def capture_pills(image_path):

 print("Capturing Pills...")

 lcd_display("Capturing Pills")

106

 start_time = time.time()

 results = model.predict(source=image_path, conf=0.681, show=True)

 end_time = time.time() # End timing

 elapsed_time = end_time - start_time

 print(f"YOLO detection took {elapsed_time:.2f} seconds")

 # Get class name

 class_names = model.names

 print(model.names)

 Amlodipine_count = 0

 Simvastatin_count = 0

 BoxPresent = False

 Unknown_count = 0

 for result in results:

 boxes = result.boxes

 for box in boxes:

 class_id = int(box.cls[0]) # Get class ID

 label = class_names[class_id] # Get label name

 if label.lower() == "boxpresent":

 BoxPresent = True

 elif label.lower() == "amlodipine":

 Amlodipine_count += 1

 elif label.lower() == "simvastatin":

 Simvastatin_count += 1

 elif label.lower() == "unknown":

 Unknown_count += 1

107

 if BoxPresent:

 lcd_display("Box detected")

 time.sleep (2)

 GPIO.output(16, GPIO.HIGH)

 print("Box Present: Yes")

 print(f"Amlodipine Count: {Amlodipine_count}")

 print(f"Simvastatin Count: {Simvastatin_count}")

 print(f"Unknown Count: {Unknown_count}")

 lcd_display_pill_counts(Amlodipine_count, Simvastatin_count,

Unknown_count)

 time.sleep(3)

 if Unknown_count >= 1:

 GPIO.output(24, GPIO.HIGH) # Error

 print(f"E: Unknown object detected!")

 lcd_display("E :unknown obj !")

 time.sleep(3)

 GPIO.output(24, GPIO.LOW)

 print("box detected and data are compared")

 compare_firestore (Amlodipine_count, Simvastatin_count)

 else:

 lcd_display("No box detected")

 time.sleep(2)

 lcd_display("skipping count!")

 print ("Box present: NO")

 print("skipping count")

 GPIO.output(16, GPIO.LOW)

 GPIO.output(24, GPIO.LOW)

 return BoxPresent, Amlodipine_count, Simvastatin_count, Unknown_count

108

 #compare with data stored in firestore

def compare_firestore(amlo_count, simva_count):

 print("Comparing data with data stored in firestore")

 lcd_display("comparing data")

 uid = "vfUin8HcMlba6MefkhxpBBk5xxT2"

 latest_log=(

 db.collection("users")

 .document(uid)

 .collection("pill_logs")

 .order_by("timestamp", direction=firestore.Query.DESCENDING)

 .limit(1)

 .get()

)

 if latest_log:

 latest_data = latest_log[0].to_dict()

 firestore_amlo = latest_data.get("amlodipine_count",0)

 firestore_simva = latest_data.get("simvastatin_count",0)

 print(f"[FIRESTORE]Amlodipine:{firestore_amlo},

Simvastatin:{firestore_simva}")

 print(f"[LOCAL] Amlodipine:{amlo_count}, SImvastatin:{simva_count}")

 if firestore_amlo != amlo_count or firestore_simva != simva_count:

 print("E:pills mismatch!")

 GPIO.output(24, GPIO.HIGH)

 lcd_display("E:Pills mismatch!")

 time.sleep (3)

109

 GPIO.output(24, GPIO.LOW)

 GPIO.output(16, GPIO.LOW)

 else:

 print("no alert, pill count match")

 lcd_display("pills match!")

 GPIO.output(16, GPIO.LOW)

 else:

 print ("no pill log found")

def lcd_display (message):

 lcd.clear()

 lcd.write_string(message)

def lcd_display_pill_counts(amlo_count, simva_count, unknown_count):

 lcd.clear()

 lcd.write_string(f"A:{amlo_count} S:{simva_count}")

 lcd.crlf()

 lcd.write_string(f"U:{unknown_count}")

def main():

 while True:

 GPIO.output(25, GPIO.HIGH)

 stop_blink = threading.Event()

 blink_thread = threading.Thread(target=blink_led, args=(25, stop_blink))

 blink_thread.start()

 image_path = capture_image()

 BoxPresent, amlo_count, simva_count, Unknown_count =

capture_pills(image_path)

110

 stop_blink.set()

 blink_thread.join()

 GPIO.output(25, GPIO.LOW) # Make sure LED ends off

 time.sleep(3)

 if cv2.waitKey(1) & 0xFF == ord('q'): # Press 'q' to exit

 break

 cv2.destroyAllWindows()

 picam2.stop() # Stop the camera

 GPIO.output(17, GPIO.LOW) # Turn LED off

 GPIO.output(23, GPIO.LOW) # Turn LED off

 lcd.clear()

 GPIO.cleanup()

if __name__ == "__main__":

 main()

Appendix E: Dart Code for Main

import 'package:firebase_auth/firebase_auth.dart';

import 'package:firebase_core/firebase_core.dart';

import 'package:first_app/firebase_options.dart';

import 'package:first_app/login_screen.dart';

import 'package:first_app/home.dart';

import 'package:flutter/material.dart';

void main() async{

 WidgetsFlutterBinding.ensureInitialized();

 await Firebase.initializeApp(

 options: DefaultFirebaseOptions.currentPlatform,

);

111

 runApp (MyApp());

}

class MyApp extends StatelessWidget {

 final FirebaseAuth _auth = FirebaseAuth.instance;

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner:false,

 title:'Medicine Reminder',

 home: _auth.currentUser != null? Alarm() :LoginScreen(),

);

 }

}

Appendix F: Dart Code for Home Screen

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:firebase_auth/firebase_auth.dart';

import 'package:first_app/pill_tracker.dart';

import 'package:first_app/addreminder.dart';

import 'package:first_app/delete_reminder.dart';

import 'package:first_app/login_screen.dart';

import 'package:first_app/services/notification_logic.dart';

import 'package:first_app/switcher.dart';

import 'package:flutter/material.dart';

import 'package:font_awesome_flutter/font_awesome_flutter.dart';

import 'package:intl/intl.dart';

class HomeScreen extends StatefulWidget {

 const HomeScreen({super.key});

112

 @override

 State<HomeScreen> createState() => _HomeScreenState();

}

class _HomeScreenState extends State<HomeScreen> {

 User? user;

 bool on = true;

 @override

 void initState() {

 super.initState();

 user = FirebaseAuth.instance.currentUser;

 NotificationLogic.init(context, user!.uid);

 listenNotifications();

 }

 void listenNotifications() {

 NotificationLogic.onNotifications.listen((value) {});

 }

 void onClickedNotifications(String? payload) {

 Navigator.pushReplacement(

 context,

 MaterialPageRoute(

 builder: (context) => const HomeScreen(),

));

 }

 @override

 Widget build(BuildContext context) {

 return PopScope(

 canPop: false,

113

 child: Scaffold(

 appBar: AppBar(

 backgroundColor: Colors.green[200],

 centerTitle: true,

 elevation: 0,

 title: const Text(

 "Medicine Reminder Alarm -YW",

 style: TextStyle(

 color: Colors.black,

 fontSize: 18,

 fontWeight: FontWeight.w500,

),

),

 actions: [

 IconButton(

 icon: const Icon(Icons.logout),

 onPressed: () {

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => const LoginScreen(),

));

 },

),

],

),

 floatingActionButton: FloatingActionButton(

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(100),

),

 onPressed: () async {

 addReminder(context, user!.uid);

 },

114

 child: Container(

 decoration: BoxDecoration(

 gradient: const LinearGradient(

 colors: [Colors.green, Colors.blue],

 begin: Alignment.centerLeft,

 end: Alignment.centerRight,

),

 borderRadius: BorderRadius.circular(100),

 boxShadow: const [

 BoxShadow(

 color: Colors.black,

 blurRadius: 2,

 offset: Offset(0, 2),

)

]),

 child: const Center(

 child: Icon(

 Icons.add,

 color: Colors.white,

 size: 30,

),

),

),

),

 body: StreamBuilder<QuerySnapshot>(

 stream: FirebaseFirestore.instance

 .collection("users")

 .doc(user!.uid)

 .collection('reminder')

 .snapshots(),

 builder:

 (BuildContext context, AsyncSnapshot<QuerySnapshot> snapshot) {

 if (snapshot.connectionState == ConnectionState.waiting) {

115

 return const Center(

 child: CircularProgressIndicator(

 valueColor:

 AlwaysStoppedAnimation<Color>(Colors.blueAccent)),

);

 }

 ;

 if (snapshot.data!.docs.isEmpty) {

 return const Center(

 child: Text("Nothing to Show"),

);

 };

 final data = snapshot.data;

 return ListView.builder(

 itemCount: data?.docs.length,

 itemBuilder: (context, index) {

 final doc = data!.docs[index];

 final docData = doc.data() as Map<String, dynamic>;

 Timestamp t = docData['time'] as Timestamp;

 DateTime date =

DateTime.fromMicrosecondsSinceEpoch(t.microsecondsSinceEpoch);

 String formattedTime = DateFormat.jm().format(date);

 bool on = docData['onOff'] ?? true;

 String pillName = docData['pillName'] ?? '';

 int pillCount = docData['pillCount'] ?? 1;

 int notificationnId = docData['notificationId'] ?? 0;

 if (on) {

 final String uid = user!.uid; // Ensure you extract uid

 final String payload = '$pillName|$uid|$pillCount'; // Correct interpolation

116

 final int notificationId = notificationnId; // Use a unique ID from Firestore

 NotificationLogic.showNotifcations(

 dateTime: date,

 id: notificationId,

 pillName: pillName,

 pillCount: pillCount,

 title: "Reminder (YW)",

 body: "Don't forget to take $pillCount your $pillName",

 payload:payload);

 }

 return SingleChildScrollView(

 child: Column(

 children: [

 Padding(

 padding: EdgeInsets.all(8),

 child: Card(

 child: ListTile(

 title: Text(

 formattedTime,

 style: const TextStyle(fontSize: 30),

),

 subtitle: Text("Everyday • $pillName: $pillCount tablets"),

 trailing: Container(

 width: 110,

 child: Row(

 children: [

 Switcher(on, user!.uid, data.docs[index].id,

 data.docs[index].get('time')),

 IconButton(

 onPressed: () {

 deleteReminder(context,

 data.docs[index].id, user!.uid);

 },

117

 icon: const FaIcon(

 FontAwesomeIcons.circleXmark),

)

],

),

),

),

),

),

],

),

);

 },

);

 },

),

),

);

 }

}

class Alarm extends StatefulWidget {

 const Alarm({super.key});

 @override

 State<Alarm> createState() => _AlarmState();

}

class _AlarmState extends State<Alarm> {

 int currentPage = 0;

 List<Widget> pages = [

 const HomeScreen(),

118

 const PillTracker(),

];

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 body: pages[currentPage],

 bottomNavigationBar: BottomNavigationBar(

 onTap: (int value) {

 setState(() {

 currentPage = value; // Update currentPage when tab is tapped

 });

 },

 items: const [

 BottomNavigationBarItem(

 label: 'Alarm',

 icon: Icon(Icons.alarm),

),

 BottomNavigationBarItem(

 label: 'Pill',

 icon: Icon(Icons.medication),

),

],

),

);

 }}

Appendix G: Dart Code for Notification Logic

import 'package:first_app/pill_tracker.dart';

import 'package:first_app/home.dart';

import 'package:flutter/material.dart';

119

import 'package:flutter_local_notifications/flutter_local_notifications.dart';

import 'package:rxdart/rxdart.dart';

import 'package:timezone/data/latest_all.dart' as tz;

import 'package:timezone/timezone.dart' as tz;

import 'package:cloud_firestore/cloud_firestore.dart';

class NotificationLogic {

 static final _notifications = FlutterLocalNotificationsPlugin();

 static final onNotifications = BehaviorSubject<String?>();

 static Future init(BuildContext context, String uid) async {

 tz.initializeTimeZones();

 const initializationSettingAndroid = AndroidInitializationSettings("clock");

 const initializationSettings = InitializationSettings(android:

initializationSettingAndroid);

 await _notifications.initialize(

 initializationSettings,

 onDidReceiveNotificationResponse: (NotificationResponse response) async {

 final payload = response.payload;

 if (response.actionId == 'mark_taken') {

 print('pill marked as taken via notification');

 await markPillAsTaken (payload);

 }else{

 Navigator.push(context,

 MaterialPageRoute(builder: (context) => const HomeScreen()));

 }

 }

);

 }

 static Future showNotifcations(

120

 {int id = 0,

 String? title,

 String? pillName,

 int? pillCount,

 String? body,

 String? payload,

 required DateTime dateTime}) async {

 if (dateTime.isBefore(DateTime.now())) {

 dateTime = dateTime.add(const Duration(days: 1));

 }

 const AndroidNotificationDetails androidDetails = AndroidNotificationDetails(

 "Schedule Reminder",

 "Don't Forget to eat the pill",

 importance: Importance.max,

 priority: Priority.max,

 actions: <AndroidNotificationAction>[

 AndroidNotificationAction(

 'mark_taken', //action ID

 'Mark as Taken',

 showsUserInterface: true,

 cancelNotification: true,

),],);

 final notificationDetails = const NotificationDetails(android: androidDetails);

 await _notifications.zonedSchedule(

 id,

 title,

 body,

 tz.TZDateTime.from(dateTime, tz.local),

 notificationDetails,

 uiLocalNotificationDateInterpretation:

 UILocalNotificationDateInterpretation.absoluteTime,

121

 androidScheduleMode: AndroidScheduleMode.exactAllowWhileIdle,

 matchDateTimeComponents: DateTimeComponents.time,

 payload: payload,

); }

 static Future<void> showInstantNotification({

 required String title,

 required String body,

 required int id,

}) async {

 const androidDetails = AndroidNotificationDetails(

 'pill_channel',

 'Pill Notifications',

 importance: Importance.max,

 priority: Priority.high,

);

 const notificationDetails = NotificationDetails(android: androidDetails);

 await _notifications.show(id, title, body, notificationDetails);

}

//after pressing mark as taken button can minus the pillCount amount & updates pill

tracker page

static Future markPillAsTaken(String? payload) async {

 if (payload == null) return;

 print('Received payload: $payload');

 final parts = payload.split('|');

 if (parts.length < 3) return; // 3 parts

 final String pillName = parts[0];

 final String uid = parts[1];

 final int amountToDeduct = int.tryParse(parts[2]) ?? 1;

122

 final pillLogRef = FirebaseFirestore.instance

 .collection('users')

 .doc(uid)

 .collection('pill_logs');

 try {

 final snapshot = await pillLogRef.orderBy('timestamp', descending:

true).limit(1).get();

 if (snapshot.docs.isEmpty) {

 print('No pill logs found.');

 return;

 }

 final latestDoc = snapshot.docs.first;

 final data = latestDoc.data();

 if (pillName.toLowerCase().contains('amlodipine')) {

 int originalCount = data['amlodipine_count'] ?? 0;

 int updatedCount = originalCount - amountToDeduct;

 await latestDoc.reference.update({'amlodipine_count': updatedCount});

 checkPillThreshold(pillName: pillName, originalCount: originalCount,

currentCount: updatedCount);

 } else if (pillName.toLowerCase().contains('simvastatin')) {

 int originalCount = data['simvastatin_count'] ?? 0;

 int updatedCount = originalCount - amountToDeduct;

 await latestDoc.reference.update({'simvastatin_count': updatedCount});

 checkPillThreshold(pillName: pillName, originalCount: originalCount,

currentCount: updatedCount);

 } else {

 print('Unrecognized pill name.');

 return;

 }

 print('Pill count updated in latest log.');

123

 } catch (e) {

 print('Error marking pill as taken: $e');

 }

}}

Appendix H: Dart Code for Add Reminder

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:first_app/reminder_model.dart';

import 'package:first_app/services/notification_logic.dart';

import 'package:flutter/material.dart';

import 'package:flutter/widgets.dart';

import 'package:fluttertoast/fluttertoast.dart';

import 'package:font_awesome_flutter/font_awesome_flutter.dart';

addReminder(BuildContext context, String uid) {

 TimeOfDay time = TimeOfDay.now();

 final TextEditingController pillNameController = TextEditingController();

 final TextEditingController pillCountController = TextEditingController();

 add(String uid, TimeOfDay time) async{

 try {

 DateTime d = DateTime.now();

 DateTime dateTime =

 DateTime(d.year, d.month, d.day, time.hour, time.minute).toUtc();

 Timestamp timestamp = Timestamp.fromDate(dateTime);

 DocumentReference docRef =FirebaseFirestore.instance

 .collection('users')

 .doc(uid)

 .collection('reminder')

 .doc();

124

 int notifId = DateTime.now().millisecondsSinceEpoch.remainder(100000);

 ReminderModel reminderModel = ReminderModel();

 reminderModel.timestamp = timestamp;

 reminderModel.onOff = true; // turn ON the reminder

 reminderModel.pillName = pillNameController.text.trim();

 reminderModel.pillCount = int.tryParse(pillCountController.text);

 reminderModel.notificationId = notifId;

 await docRef.set(reminderModel.toMap());

 Fluttertoast.showToast(msg: "Medicine reminder added");

 } catch (e) {

 Fluttertoast.showToast(msg: e.toString());

 }

 }

 return showDialog(

 context: context,

 builder: (context) {

 return StatefulBuilder(

 builder:

 (BuildContext context, void Function(void Function()) setState) {

 return AlertDialog(

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(25),

),

 title: const Text("Add Reminder"),

 content: SingleChildScrollView(

 child: Column(

 children: [

 const Text("Select time for the medicine reminder"),

125

 const SizedBox(height: 20),

 MaterialButton(

 onPressed: () async {

 //create TimePicker

 TimeOfDay? newTime = await showTimePicker(

 context: context, initialTime: TimeOfDay.now());

 if (newTime == null) return;

 setState(() {

 time = newTime;

 },);

 },

 child: Row(

 children: [

 const FaIcon(

 FontAwesomeIcons.clock,

 color: Colors.lightGreen,

 size: 30,

),

 const SizedBox(width: 10),

 Text(

 time.format(context).toString(),

 style: const TextStyle(

 color: Colors.green,

 fontSize: 20,

),

)

],

),

),

 const SizedBox (height:20),

 TextField(

 controller:pillNameController,

 decoration:

126

 const InputDecoration(

 labelText:"Pill name",

 border:OutlineInputBorder(),

),

),

 const SizedBox(height:10),

 TextField(

 controller:pillCountController,

 decoration:const InputDecoration(

 labelText:"Amount (e.g. 2 tablets)",

 border:OutlineInputBorder(),

),

 keyboardType: TextInputType.text,

)

],

),

),

 actions: [

 TextButton(

 onPressed: () {

 Navigator.pop(context);

 },

 child: const Text("Cancel"),

),

 TextButton(

 onPressed: () {

 final pillName = pillNameController.text.trim();

 final pillCountText = pillCountController.text.trim();

127

 final pillCount = int.tryParse(pillCountText);

 if (pillNameController.text.trim().isEmpty) {

 Fluttertoast.showToast(msg: "Please enter a pill name.");

 return;

 }

 if (pillCount == null|| pillCount <= 0){

 Fluttertoast.showToast(msg: "Please enter a valid number");

 return;

 }

 add(uid, time);

 Navigator.pop(context); // close the dialog

 },

 child: const Text("Add"),

),

],

);

 },

);

 },

);

}

Appendix I: Dart Code for Button

import 'package:flutter/material.dart';

class CustomButton extends StatelessWidget {

 const CustomButton({super.key,

 required this.label,

 this.onPressed});

128

 final String label;

 final void Function()? onPressed;

 @override

 Widget build(BuildContext context) {

 return SizedBox(

 width: 180,

 height: 42,

 child: ElevatedButton(

 onPressed: onPressed,

 child: Text(

 label,

 style: const TextStyle(fontSize: 18),

)));

 }

}

Appendix J: Dart Code for Delete Reminder

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:flutter/material.dart';

import 'package:fluttertoast/fluttertoast.dart';

deleteReminder(BuildContext context, String id, String uid) {

 return showDialog(

 context: context,

 builder: (context) {

 return AlertDialog(

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(25),

),

 title: const Text("Delete reminder"),

129

 content: const Text("Are you sure you want to delete?"),

 actions: [

 TextButton(

 onPressed: () {

 try {

 FirebaseFirestore.instance

 .collection("users")

 .doc(uid)

 .collection("reminder")

 .doc(id)

 .delete();

 Fluttertoast.showToast(

 msg: "Reminder Deleted successfully!");

 } catch (e) {

 Fluttertoast.showToast(msg: e.toString());

 }

 Navigator.pop(context);

 },

 child: const Text("Delete"),

),

 TextButton(

 onPressed: () {

 try {} catch (e) {}

 Navigator.pop(context);

 },

 child: const Text("Cancel"),

),

]);

 });

}

130

Appendix K: Dart Code for Login Screen

import 'package:firebase_auth/firebase_auth.dart';

import 'package:first_app/home.dart';

import 'package:first_app/round_text_field.dart';

import 'package:first_app/signup_screen.dart';

import 'package:flutter/material.dart';

class LoginScreen extends StatefulWidget {

 const LoginScreen({super.key});

 @override

 State<LoginScreen> createState() => _LoginScreenState();

}

class _LoginScreenState extends State<LoginScreen> {

 final FirebaseAuth _auth = FirebaseAuth.instance;

 final TextEditingController _emailController = TextEditingController();

 final TextEditingController _passController = TextEditingController();

 bool _isObsecure = true;

 final _formKey = GlobalKey<FormState>();

 Future<User?> _signIn(

 BuildContext context, String email, String password) async {

 try {

 UserCredential usercredential = await _auth.signInWithEmailAndPassword(

 email: email, password: password);

 User? user = usercredential.user;

 ///navigate to Firstpage if the sign in is successful

 Navigator.push(

 context,

 MaterialPageRoute(builder: (context) => const Alarm(),

),

131

);

 return user;

 } catch (e) {

 //show a snackbar if sign-in fails

 ScaffoldMessenger.of(context).showSnackBar(

 const SnackBar(content: Text('Login Failed')),

);

 return null;

 }

 }

 @override

 void initState() {

 super.initState();

 }

 @override

 Widget build(BuildContext context) {

 var media = MediaQuery.of(context).size;

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: const Text('Medicine Reminder'),

 backgroundColor: Colors.greenAccent,

 centerTitle: true,

),

 body: SafeArea(

 child: SingleChildScrollView(

 child: Container(

 padding: const EdgeInsets.symmetric(

132

 vertical: 15, horizontal: 25),

 child: Form(

 key: _formKey,

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 SizedBox(height: media.height * 0.1),

 SizedBox(

 width: media.width,

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 SizedBox(

 height: media.width * 0.03,

),

 const Text(

 'Welcome',

 textAlign: TextAlign.center,

 style: TextStyle(

 color: Colors.black,

 fontSize: 30,

 fontWeight: FontWeight.w200),

)

],

),

),

 SizedBox(

 height: media.width * 0.15,

),

 RoundTextField(

 textEditingController: _emailController,

 hintText: "Email",

133

 icon: "assets/icons/email_icon.png",

 textInputType: TextInputType.emailAddress,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return "Please enter email";

 }

 return null;

 },

),

 SizedBox(

 height: media.width * 0.05,

),

 RoundTextField(

 textEditingController: _passController,

 hintText: "Password",

 icon: "assets/icons/password_icon.png",

 textInputType: TextInputType.text,

 isObsecureText: _isObsecure,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return "Please enter password";

 }

 return null;

 },

 rightIcon: TextButton(

 onPressed: () {

 setState(

 () {

 _isObsecure = !_isObsecure;

 },

);

 },

 child: Container(

134

 alignment: Alignment.center,

 height: 20,

 width: 20,

),

)),

 SizedBox(

 height: media.width * 0.1,

),

 ElevatedButton(

 onPressed: () {

 if (_formKey.currentState!.validate()) {

 _signIn(context, _emailController.text,

 _passController.text);

 }

 },

 child: const Text("login")),

 SizedBox(

 height: media.width * 0.01,

),

 TextButton(

 onPressed: () {

 Navigator.push(

 context,

 MaterialPageRoute(builder: (context) => const

SignupScreen(),

),

);

 },

 child: RichText(

 textAlign: TextAlign.center,

 text: const TextSpan(

 style: TextStyle(

135

 color: Colors.black,

 fontSize: 14,

 fontWeight: FontWeight.w400,

),

 children: [

 TextSpan(text: "Don't have an account? "),

 TextSpan(

 text: "Register",

 style:

 TextStyle(

 color: Colors.blueAccent,

 fontSize: 14,

 fontWeight:FontWeight.w500,

),

),

],

),

),

),

]

),

),

),

),

),

),

);

 }

}

136

Appendix L: Dart Code for Pill Tracker

import 'package:firebase_core/firebase_core.dart';

import 'package:first_app/firebase_options.dart';

import 'package:first_app/main.dart';

import 'package:flutter/material.dart';

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:firebase_auth/firebase_auth.dart';

import 'package:intl/intl.dart';

import 'package:first_app/services/notification_logic.dart';

void main() async {

 WidgetsFlutterBinding.ensureInitialized();

 await Firebase.initializeApp(

 options: DefaultFirebaseOptions.currentPlatform,

);

 runApp(MyApp());

}

class PillTracker extends StatelessWidget {

 const PillTracker({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 final String uid = FirebaseAuth.instance.currentUser!.uid;

 final TextEditingController nameController = TextEditingController();

 final TextEditingController amountController = TextEditingController();

 return Scaffold(

 appBar: AppBar(

 backgroundColor: Colors.blue[100],

 centerTitle: true,

 elevation: 0,

 title: const Text(

 'Pill Tracker',

137

 style: TextStyle(

 color: Colors.black,

 fontSize: 18,

 fontWeight: FontWeight.w500,

),

),

),

 body: StreamBuilder<QuerySnapshot>(

 stream: FirebaseFirestore.instance

 .collection("users")

 .doc(uid)

 .collection('pill_logs')

 .orderBy('timestamp',

 descending: true) // make sure is the latest first

 .limit(1) // only get the latest one

 .snapshots(),

 builder: (context, snapshot) {

 print('Stream updated!');

 print('Stream triggered at ${DateTime.now()}');

 if (snapshot.connectionState == ConnectionState.waiting) {

 return const Center(child: CircularProgressIndicator());

 }

 if (!snapshot.hasData || snapshot.data!.docs.isEmpty) {

 return const Center(child: Text('No pill logs found.'));

 }

 final latestLog = snapshot.data!.docs.first;

 final data = latestLog.data() as Map<String, dynamic>;

 print('Latest document data: $data');

 print('pill log id: ${latestLog.id}');

138

 final amlodipine_count = data['amlodipine_count'] ?? 0;

 final simvastatin_count = data['simvastatin_count'] ?? 0;

 final timestamp = data['timestamp'] as Timestamp?;

 final docId = latestLog.id; //Get the document ID

 return Padding(

 padding: const EdgeInsets.all(16.0),

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: [

 buildPillCard('Amlodipine', amlodipine_count),

 const SizedBox(height: 40),

 buildPillCard('Simvastatin', simvastatin_count),

 const SizedBox(height: 40),

 ElevatedButton(

 onPressed: () {

 showRefillDialog(context,uid, docId); //pass document ID

 },

 child: const Text('Refill Pills'),

 style:

 ElevatedButton.styleFrom(

 backgroundColor: const Color.fromARGB(255, 25, 85, 94),

 foregroundColor: Colors.white,

)

)

],

),

);

 },

),

);

 }

139

 Widget buildPillCard(String name, int count) {

 return Card(

 elevation: 10,

 shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(8)),

 child: Container(

 width: double.infinity,

 padding: const EdgeInsets.all(16),

 child: Column(

 mainAxisSize: MainAxisSize.min,

 children: [

 const Icon(Icons.medical_services, size: 30, color: Colors.teal),

 const SizedBox(height: 10),

 Text(name,

 style:

 const TextStyle(fontSize: 20, fontWeight: FontWeight.bold)),

 const SizedBox(height: 10),

 Text('Count: $count', style: const TextStyle(fontSize: 18)),

],

),

),

);

 }

}

void checkPillThreshold({

 required String pillName,

 required int originalCount,

 required int currentCount,

}) {

 final int threshold = (originalCount * 0.2).ceil();

 print('original count: $originalCount');

 print('Threshold check: $pillName | Current: $currentCount | Threshold:

$threshold');

140

 if (currentCount <= threshold) {

 NotificationLogic.showInstantNotification(

 title: 'Low Pill Alert: $pillName',

 body: 'Only $currentCount pills left. Remember to refill!',

 id: DateTime.now().millisecondsSinceEpoch ~/ 1000,

);

 }

}

void showRefillDialog (BuildContext context, String uid, String docId){

 print('Latest document ID: $docId');

 final TextEditingController nameController = TextEditingController();

 final TextEditingController amountController = TextEditingController();

 String pillName = '';

 int refillAmount =0;

 showDialog(

 context: context,

 builder: (context){

 return AlertDialog(

 title:Text('Refill pills'),

 content:Column(

 mainAxisSize:MainAxisSize.min,

 children: [

 TextField(

 controller:nameController,

 keyboardType:TextInputType.text,

 decoration:const InputDecoration(labelText:'Pill Name (e.g. Amlodipine)'),

 onChanged:(value){

 pillName= value.trim().toLowerCase();

 },

),

 TextField(

141

 controller:amountController

 keyboardType:TextInputType.number,

 decoration:const InputDecoration(labelText:'Number of pills'),

 onChanged: (value){

 refillAmount = int.tryParse(value)??0;

 }

),

],

),

 actions:[

 TextButton(child: const Text('Cancel'),

 onPressed: (){

 Navigator.of(context).pop(); // close the dialog

 },

),

 ElevatedButton(

 child: const Text('Save'),

 onPressed: () async{

 await refillPills(docId, pillName, refillAmount, context);

 },

),

],

);

 },

);

}

Future<void> refillPills(String docId, String pillName, int amount, BuildContext

context) async {

 if (pillName.isEmpty || amount <= 0) {

 ScaffoldMessenger.of(context).showSnackBar(

 SnackBar(content: const Text('Please enter valid pill name and amount.')),

);

142

 return;

 }

 final String uid = FirebaseAuth.instance.currentUser!.uid;

 final userRef = FirebaseFirestore.instance.collection("users").doc(uid);

 final pillLogsRef = userRef.collection('pill_logs');

 try {

 final snapshot= await pillLogsRef.orderBy('timestamp', descending :

true).limit(1).get();

 int currentAmlodipine = 0;

 int currentSimvastatin = 0;

 if (snapshot.docs.isNotEmpty){

 final latestData = snapshot.docs.first.data();

 currentAmlodipine = latestData['amlodipine_count'] ?? 0;

 currentSimvastatin = latestData ['simvastatin_count'] ?? 0;

 }

 if (pillName.contains('amlodipine')) {

 currentAmlodipine +=amount;

 checkPillThreshold(

 pillName: 'Amlodipine',

 originalCount: currentAmlodipine,

 currentCount: currentAmlodipine,

);

 }else if (pillName.contains('simvastatin')) {

 currentSimvastatin += amount;

 checkPillThreshold(

 pillName: 'Simvastatin',

 originalCount: currentSimvastatin,

 currentCount: currentSimvastatin,

143

);

 } else {

 ScaffoldMessenger.of(context).showSnackBar(

 SnackBar(content: Text('Pill name not recognized.')),

);

 return;

 }

 //create pill log everytime after refills

 await pillLogsRef.add({

 'amlodipine_count': currentAmlodipine,

 'simvastatin_count':currentSimvastatin,

 'timestamp':Timestamp.now(),

 'source':'flutter_app',

 });

 Navigator.of(context).pop(); // close refill dialog

 ScaffoldMessenger.of(context).showSnackBar(

 const SnackBar(content: Text('new pill logs created in firestore')),);

 } catch (e) {

 print('Error updating pills: $e');

 ScaffoldMessenger.of(context).showSnackBar(

 const SnackBar(content: Text('Failed to update! ')),

);

 }

}

144

Appendix M: Dart Code for Reminder Model

import 'package:cloud_firestore/cloud_firestore.dart';

class ReminderModel{

 Timestamp? timestamp;

 bool? onOff;

 String?pillName;

 int?pillCount; // amounf of pills user should take

 int? notificationId;

 ReminderModel({this.timestamp, this.onOff, this.pillName, this.pillCount,

this.notificationId});

 //convert into this,data structure that can easily store in firestore

 Map<String, dynamic> toMap() {

 return {

 'time':timestamp,

 'onOff':onOff,

 'pillName':pillName,

 'pillCount':pillCount,

 'notificationId': notificationId,

 };

 }

 factory ReminderModel.fromMap(map) {

 return ReminderModel(

 timestamp:map['time'],

 onOff:map['onOff'],

 pillName:map['pillName'],

 pillCount:map['pillCount'],

 notificationId: map['notificationId'],

);

 }}

145

Appendix N: Dart Code for Round Text Field

import 'package:flutter/material.dart';// import Flutter UI components

class RoundTextField extends StatelessWidget {

 final TextEditingController? textEditingController;

 final FormFieldValidator? validator;

 final ValueChanged<String>? onChanged;

 final String hintText;

 final String icon;

 final TextInputType textInputType

 final bool isObsecureText;

 final Widget? rightIcon;

 const RoundTextField(

 {super.key, //this passed the key to teh StatelessWidget constructor

 this.textEditingController,

 this.validator,

 this.onChanged,

 required this.hintText,

 required this.icon,

 required this.textInputType,

 this.isObsecureText = false,

 this.rightIcon});

 @override

 Widget build(BuildContext context) {

 return Container(

 decoration: BoxDecoration(

 color: const Color.fromARGB(255, 207, 228, 244),

 borderRadius: BorderRadius.circular(10),

),

 child: TextFormField(

 controller: textEditingController,

146

 keyboardType: textInputType,

 obscureText: isObsecureText,

 onChanged: onChanged,

 decoration: InputDecoration(

 contentPadding:

 const EdgeInsets.symmetric(

 vertical: 20,

 horizontal: 20),

 enabledBorder: InputBorder.none,

 focusedBorder: InputBorder.none,

 hintText: hintText,

 prefixIcon: Container(

 alignment: Alignment.center,

 width: 20,

 height: 20,

 child: Image.asset(

 icon,

 height: 20,

 width: 20,

 fit:BoxFit.contain,

 color: Colors.black,

),

),

 suffixIcon: rightIcon,

 hintStyle: const TextStyle(fontSize: 12,color:Colors.black),

),

 validator: validator,

));

 }

}

147

Appendix O: Dart Code for Signup Screen

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:firebase_auth/firebase_auth.dart';

import 'package:first_app/login_screen.dart';

import 'package:first_app/round_text_field.dart';

import 'package:flutter/material.dart';

class SignupScreen extends StatefulWidget {

 const SignupScreen({super.key});

 @override

 State<SignupScreen> createState() => _SignUpScreenState();

}

class _SignUpScreenState extends State<SignupScreen> {

 final FirebaseAuth _auth = FirebaseAuth.instance;

 final CollectionReference _users = FirebaseFirestore.instance.collection("users");

 final TextEditingController _firstNameController = TextEditingController();

 final TextEditingController _lastNameController = TextEditingController();

 final TextEditingController _emailController = TextEditingController();

 final TextEditingController _passController = TextEditingController();

 bool _isObsecure = true;

 bool _isCheck = false;

 final _formKey = GlobalKey<FormState>();

 @override

 void initState() {

 super.initState();

 // Initialization code here

 }

 @override

 Widget build(BuildContext context) {

 var media = MediaQuery.of(context).size;

148

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 appBar: AppBar(

 title: const Text('Medicine Reminder'),

 backgroundColor: Colors.greenAccent,

 centerTitle: true,

),

 body: SafeArea(

 child: SingleChildScrollView(

 child: Container(

 padding: const EdgeInsets.symmetric(

 vertical: 15, horizontal: 25),

 child: Form(

 key: _formKey,

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 SizedBox(height: media.height * 0.1),

 SizedBox(

 width: media.width,

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 SizedBox(

 height: media.width * 0.03,

),

 const Text(

 'Create an account',

 textAlign: TextAlign.center,

 style: TextStyle(

 color: Colors.black,

149

 fontSize: 30,

 fontWeight: FontWeight.w200),

)

],

),

),

//enter first name

 SizedBox(

 height: media.width * 0.02,

),

 RoundTextField(

 textEditingController: _firstNameController,

 hintText: "First Name",

 icon: "assets/icons/profile_icon.png",

 textInputType: TextInputType.name,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return "Please enter your first name";

 }

 return null;

 },

),

//enter last name

 SizedBox(

 height: media.width * 0.02,

),

 RoundTextField(

 textEditingController: _lastNameController,

 hintText: "Last Name",

 icon: "assets/icons/profile_icon.png",

 textInputType: TextInputType.name,

150

 validator: (value) {

 if (value == null || value.isEmpty) {

 return "Please enter your last name";

 }

 return null;

 },

),

//enter email

 SizedBox(

 height: media.width * 0.02,

),

 RoundTextField(

 textEditingController: _emailController,

 hintText: "Email",

 icon: "assets/icons/email_icon.png",

 textInputType: TextInputType.emailAddress,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return "Please enter email";

 }

 return null;

 },

),

//enter password

 SizedBox(

 height: media.width * 0.02,

),

 RoundTextField(

 textEditingController: _passController,

 hintText: "Password",

 icon: "assets/icons/password_icon.png",

 textInputType: TextInputType.text,

 isObsecureText: _isObsecure,

151

 validator: (value) {

 if (value == null || value.isEmpty) {

 return "Please enter password";

 }

 return null;

 },

 rightIcon: TextButton(

 onPressed: () {

 setState(

 () {

 _isObsecure = !_isObsecure;

 },

);

 },

 child: Container(

 alignment: Alignment.center,

 height: 20,

 width: 20,

),

)),

 SizedBox (

 height: media.width*0.02

),

 Row(

 mainAxisAlignment: MainAxisAlignment.start,

 children:[

 IconButton(onPressed: () {

 setState(() {

 _isCheck = !_isCheck;

 });

 },

 icon: Icon(

 _isCheck

152

 ? Icons.check_box_outlined

 : Icons.check_box_outline_blank,

 color: Colors.grey,

)),

 const Expanded(child: Text(

 "By continuing you accept out Privacy Policy and terms of Use",

 style: TextStyle(

 color:Colors.grey,

 fontSize: 10,

),

))

],

),

 SizedBox(

 height: media.width * 0.1,

),

 ElevatedButton(

 onPressed: () async {

 if(_formKey.currentState!.validate()){

 if(_isCheck){

 try{

 UserCredential userCredential =

 await _auth.createUserWithEmailAndPassword(

 email: _emailController.text,

 password: _passController.text,

);

 String uid =userCredential.user!.uid;

 await _users.doc(uid).set({

 'email': _emailController.text,

 'firstName': _firstNameController.text,

 'lastName': _lastNameController.text,

 });

153

 ScaffoldMessenger.of(context).showSnackBar(

 const SnackBar(content: Text("Account created")));

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => LoginScreen())

);

 }catch(e){

 ScaffoldMessenger.of(context).showSnackBar(

 SnackBar(content: Text(e.toString())));

 }

 }

 }

 },

 child: const Text("Create Account")),

 SizedBox(

 height: media.width * 0.01,

),

 TextButton(

 onPressed: () {

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => const LoginScreen(),

));},

 child: RichText(

 textAlign: TextAlign.center,

 text: const TextSpan(

 style: TextStyle(

 color: Colors.black,

 fontSize: 14,

154

 fontWeight: FontWeight.w400,

),

 children: [

 TextSpan(text: "Already have an account? "),

 TextSpan(

 text: "Login",

 style:

 TextStyle(

 color: Colors.blueAccent,

 fontSize: 14,

 fontWeight:FontWeight.w500,

),),

],

),

),

),

]

),

),

),

),

),

),

);

 }}

155

Appendix P: Dart Code for Switcher

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:first_app/reminder_model.dart';

import 'package:flutter/material.dart';

class Switcher extends StatefulWidget {

 bool onOff;

 String uid;

 Timestamp timestamp;

 String id;

 Switcher(this.onOff, this.uid, this.id, this.timestamp);

 @override

 State<Switcher> createState() => _SwitcherState();

}

class _SwitcherState extends State<Switcher> {

 @override

 Widget build(BuildContext context) {

 return Switch (

 onChanged:

 (bool value) {

 ReminderModel reminderModel = ReminderModel();

 reminderModel.onOff = value;

 reminderModel.timestamp = widget.timestamp;

 FirebaseFirestore.instance

 .collection('users')

 .doc(widget.uid)

 .collection('reminder')

 .doc(widget.id)

 .update(reminderModel.toMap());

 },

 value: widget.onOff,

); }}

