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CROPGUARD: AI-DRIVEN IOT-BASED SMART FARMING SYSTEM 

 

 

ABSTRACT 

 

 

Protecting crops against wildlife intrusions has become a pressing need as the delicate 

balance between human livelihoods and wildlife existence is disrupted. Reason behind 

this is that the encroachment of wildlife habitats caused by the rising socio-economic 

activities has led to human-wildlife conflict. Therefore, this scenario underscores the 

critical importance of developing an innovative crop protection system to mitigate the 

issue of crop raiding faced in agricultural sector. This project proposed an IoT-based 

smart farming system driven by Artificial Intelligence (AI). In other words, this system 

is developed in such a way that it builds on the foundation of IoT and AI to expand its 

system capabilities in protecting the crop against wildlife intrusions intelligently. This 

system is developed to have a variety of functionalities including detecting the 

presence of animal, classifying the animals and initiating appropriate actions to repel 

the threatening animals away. In this project, a Raspberry Pi 4 Model B acts as a central 

processing unit to process and interpret several data inputs from multiple sensors such 

as Raspberry Pi Camera Module 2, Passive Infrared (PIR) sensor and buzzer. Besides, 

machine learning model such as Haar Cascade Classifier is used to empower the 

system to detect and classify the animals into different categories. The collected data 

is processed and analysed in real-time. Real-time alert notification will be sent to the 

farmers upon wildlife intrusions. With this feature, the farmers can be informed 

immediately, enabling them to execute further actions to the animals and their crops.  
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

As the world population is growing, the demand for food production also increases 

over the time. At the same time, the rapid growth in food consumption also leads to 

the increase in food demand. For this reason, a sustainable global food system is crucial 

to maintain the balance between food supply and demand, ensuring food security. 

Unfortunately, the food production is often interrupted by the conflict arises between 

human and wildlife. The wild animals invade into the crop field and cause a significant 

damage to the crop. According to the research, there is a serious loss of household food 

requirements which caused by the wild animals’ intrusions occurred in two districts of 

Bhutan: Tsirang and Trashiyangste (Wangchuk et al., 2023). To make the matter worse, 

there has been a noticeable decline in farming since the food production is greatly 

hindered by the wild animals. As a result, the workforce in agricultural sector also 

decreases dramatically. Human-Wildlife Conflict (HWC) remains a pertinent and 

ongoing challenge for farmers in agricultural sector especially in rural countries. Crop 

damage brings by HWC not only leads to food shortages but also family migration. 

This is because the farming families have lost their interest in farming, thus 

abandoning their farmland and migrate to other countries for living. The implication 

of this issue extends beyond the disruption of food production, resulting in substantial 

financial loss especially to those farmers who mainly depend on the crops for their 

daily income. Therefore, this scenario underscores the critical importance of 

developing an innovative smart farming system in agricultural sector. As its name 
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suggests, a smart farming system adopts the concept of Internet of Things (IoT) to 

address this issue faced in food production system. With these features incorporated 

in a smart farming system, farmers are able to mitigate the impact of wildlife invasions 

to their crop field. Besides, it reduces the necessity to employ a large number of labour 

workforce to monitor the crops. A smart farming system utilizes integration of IoT 

with artificial intelligence (AI) to repel the wildlife away from the crop field in an 

intelligent way before the wildlife manage to destroy the crops. The smart farming 

system is designed in such a way that it is able to detect the animals, classify the 

animals, capture the image of the animals, repel the animals and send alert message to 

the farmers via mobile applications. 

 

 

 

1.2 Problem Statement 

 

For many years, several approaches have been implemented to address the problem of 

crop raiding due to the wildlife invasions (Rubi et al., 2024). Approaches such as 

chemical repellent or releasing smoke is no longer effective to repel the animals away 

as the animals already have adaptability to these approaches as time goes by. Besides, 

traditional animal repelling methods including physical barriers such as electric fences 

could be harmful to the animals and even lead the animals to death. While these 

methods offer promising results, but there are many major drawbacks exist in these 

traditional methods. For this reason, progression from traditional methods to more 

advanced methods should be emphasized to expand the system’s capability in 

protecting the crops from wildlife. The proposed system in this project is going to 

develop an AI-driven IoT-based smart farming system. This system is designed to 

repel the animals in an intelligent, efficient and autonomous way. Unlike the traditional 

animal repelling methods, this system is capable to repel the animals accurately and 

consistently without causing physical damage to the animals. Hence, unnecessary 

harm to the animals could be avoided. Apart from that, this proposed system is able to 

send alert notification to the farmers upon animal invasions. The farmers will be able 

to monitor the crops condition and execute further actions to the intruding animals. 
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Hence, this proposed system is a leap forward in crop protection as it integrates 

advanced technologies and artificial intelligence to offer a smart farming system. 

 

 

 

1.3 Aims and Objectives 

 

The objectives of this project are shown as follow: 

 

i. To develop a system which can detect the presence of the wild animals, classify 

the animals, and deter the animals away from the crop field. 

ii. To develop a system which can interact with IoT cloud to monitor the crop 

condition and send a real-time alert message to the farmers.  

iii. To develop a software program using machine learning algorithms to classify 

the animals detected by the system.  
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Object Detection 

 

Object detection is a technique of detecting the object by locating the object and 

classifying the objects within the image. In simpler words, identification of what is the 

object and where is the object in the image is the key component of objection detection. 

The object is first localized by drawing a bounding box around it to denote its location. 

If there are multiple objects present within the images, then there will be multiple 

bounding boxes to locate the objects within the images. When it comes to object 

localization, the coordinate of the bounding box plays its important role to determine 

the location of the object. The image will lie below the x-axis and at the right of y-axis. 

Therefore, the coordinate of the object within the image will be calculated towards a 

downward direction. At the same time, process of object classification takes place 

where the objects are classified into each of their respective categories. For instance, 

trees, flowers, chairs, and others. This classification is carried out based on the 

extracted features from the object. According to Kellenberger, Volpi, and Tuia (2017), 

the traditional way of object detection in computer vision adopts the technique of hand-

crafted features. For example, Scale-Invariant Feature Transform (SIFT) and 

Histogram of Oriented Gradients (HOG). At its essence, these techniques are 

considered impractical as both methods require intensive computations which in turns 

make these methods a major roadblock to the real time applications. Besides, manual 

annotations that involved in traditional object detection is time consuming and a lot of 

professional experts are required to perform this task. That is when Convolutional 
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Neutral Networks (CNNs) come into rescue to introduce a more advanced and 

effective system to perform the object detection in computer vision. CNNs offers end-

to-end, task-specific joint feature and classification learning (Kellenberger, Volpi, and 

Tuia, 2017). Besides, the researchers have suggested a CNN architecture, specifically 

optimized to detect small and similarly sized objects in Unmanned Aerial Vehicles 

(UAVs) images in a faster and more effective way. 

 

 

 

2.2 Machine Learning 

 

Machine learning is considered as a technique that breaks down from artificial 

intelligence (AI) to perform learning and decision-making from the given data. It is a 

cutting-edge approach in recognizing image, automating advanced tasks and so on 

through the process of self-learning. In general, a conventional object detection often 

requires a large number of training samples for Artificial Intelligence (AI) models to 

recognize different classes of data. In other words, several hundreds or even thousands 

of labelled data points are required to train these deep learning AI models for a better 

accuracy in the data recognition. However, it is a challenging approach to obtain a 

large number of samples in real-world scenarios. The reasons are chiefly as follows: 

there are many rare and newly discovered species which leads to the lack of samples 

available. Besides, since data annotation involves domain-specific expertise, thus 

obtaining labelled samples can be a high expenses activity. For this reason, the 

performance of conventional object detection methods is not desirable. In this case, 

few-shot learning is introduced to solve this issue. 

 

 

 

2.2.1 Few-shot Learning 

 

Few-shot learning is a machine learning framework that allows the AI models to 

provide accurate predictions with limited number of data samples (Thailappan, 2024). 

This implies that few-shot object detection can perform better than the conventional 
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object detection under the case of few data training samples. According to Feng and 

Xiao (2022), few-shot learning serves its purpose to develop the ability in learning and 

autonomous generalization from a limited number of data samples. When it comes to 

few-shot learning, generalization has more emphasis over memorization. It contributes 

to rapid generalization to new task with supervised information on a limited number 

of data samples. In applications, few-shot learning is widely used in the field of 

computer vision especially object detection, image recognition and classification. The 

working principle of few-shot learning involves N-way K-shot classification where N 

refers to the number of classes while K refers to the number of samples provided for 

each class. Figure 2.1 illustrates a general overview of a few-shot learning framework. 

Based on the figure, the framework consists of support set and query set (Kundu, 2022). 

The support set is considered as a 3-way 3-shot classification since the support set 

consists of three different classes (penguin, pelican and puffin) and each class has three 

different examples which arranged in a vertical way. Basically, the support set helps 

the pre-trained models to learn how to generalize representations for each class. Other 

than that, the query set provides new examples for each class after prediction of 

classification has been done by the model based on the generalized representations 

learned from the previous support set. As a result, there are one new example provided 

for each respective class such as penguin, pelican and puffin. From what has been 

discussed above, it can be recognized that a lower value of N is more preferrable to 

ensure the accuracy of few-shot learning. This is because lower N-way indicates that 

the pre-trained model needs to generalize over a smaller number of classes for 

representations. In simpler words, accuracy in prediction of classification increases 

when the number of classes decreases. On the contrary, prediction accuracy increases 

when K, number of samples provided for each class increases. This is because higher 

value of K indicates that more samples are given to support the models in making 

accurate similarity predictions. Apart from this, training a function to predict similarity 

between the classes in the support set and query set is the fundamental concept of few-

shot learning. For instance, given that the image provided in the query set is a penguin, 

it is being compared to the classes such as penguin, pelican and puffin in the support 

set. By comparing the query image with penguin, the outcome of similarity function is 

0.9. However, when the query image is being compared with pelican, the outcome of 

the similarity function will be 0.2. In the case of comparison with puffin, the similarity 
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score is 0.4. Therefore, the class with the highest similarity score will be filtered and 

placed at the top of the query set predictions as shown in Figure 2.1. 

 

 

Figure 2.1: General Overview of Few-shot Learning Framework (Kundu, 2022). 

 

 

 

2.3 Deep Learning 

 

With the purpose of developing an energy-efficient system, Sayagavi, Sudarshan, and 

Ravoor (2021) have proposed an intelligent system that will only activates the camera 

to capture the image in response to movement detection. Besides, this proposed system 

also introduce an advanced technique to ascertain the motives of the animal detected 

and generate appropriate action to the animals in response with the motives analysed. 

This will be a significant approach to minimize false positives which can lead to 

unnecessary damage to the animals and wasted resources. A case in point, there are 

some birds intend to prey on the rodents which feed on crop in the crop field. In this 

case, the birds do not pose any threat to the crop. However, once the system detects 

the presence of the birds without ascertain their motives, it automatically releases a 
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strong chemical deterrent to drive the birds that actually help with pest control. 

Consequently, the ultimate goal of the system in protecting the crop will not be 

achieved. Up to a point, the local ecosystem can even be disrupted by the immature 

system developed to protect the crop. According to the research carried out by 

Sayagavi, Sudarshan, and Ravoor (2021), You Only Look Once (YOLO) model is 

chosen to be the object detection method due to its outstanding performance to provide 

fast and accurate result. Figure 2.2 provides the flowchart of object detection 

framework introduced by YOLO model. The process of Non-Max Suppression (NMS) 

serves its purpose to eliminate low confidence and duplicate detections. According to 

the flowchart, object tracking takes place if there is wild animal being detected in the 

frame. In this case, Channel and Spatial Reliability Tracking (CSRT) tracker is used 

as the object tracker to ascertain the motive of the animals detected in the frame. 

Furthermore, a set of rules are predefined and used as a reference to execute 

appropriate actions. This is because if the animal’s motive aligns with the predefined 

rules, appropriate actions will be taken in order to protect the crop. In terms of 

hardware design, Raspberry Pi is implemented for the purpose of video capture and 

video processing. Two Raspberry Pi are required for this proposed system to balance 

 

 

Figure 2.2: Flowchart of Object Detection Framework (Sayagavi, Sudarshan, and 

Ravoor, 2021). 
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the processing load. Besides, the process of inter-device communication also requires 

two Raspberry Pi to communicate with each other about the tracking condition. By 

way of example, if the object is out of sight of the camera of the first Raspberry Pi, a 

message will be sent to the second Raspberry Pi to indicate loss track of the object. 

This process is known as hand-off. 

 

 

 

2.3.1 Deep Convolutional Neural Networks 

 

As its name implies, Deep Convolutional Neural Networks (DCNN) is Convolutional 

Neural Networks (CNN) that involves a greater number of layers. This is the reason it 

is being called “deep” since it composed of many convolutional layers which leads to 

a greater depth. Figure 2.3 illustrates the overview of a DCNN architecture (Aloysius 

and Geetha, 2017). By referring to the figure, it can be seen clearly that DCNN has 

different types of layers such as convolutional layer, pooling layer and fully connected 

layers. In the first place, the convolutional layer will take an image as its input. The 

convolutional layer is made up of several feature maps which consist of neurons that 

are responsive to a particular region of the input image. During this stage, multiple 

computations will take place and convolution operations are being performed. Two-

dimensional (2D) activation maps are produced from the combination of filters and 

feature maps by convolution. Since several filters are used to convolve with the feature 

maps thus the filters overlap with each other in the convolutional layer as shown in 

Figure 2.3. The output volume will then be generated from the stacking of activation 

maps along the depth dimension. In simpler words, the filters which are also called as 

kernels will slide over the input image several times. This process is known as 

convolution operations. As a result, activation maps that emphasize the extracted 

feature of the input image will be produced. Next, DCNN proceeds to the following 

stage which involves pooling layer. During this stage, it can be observed obviously 

that the feature maps which are also known as activation layers have reduced their size 

from 20 × 20 to 10 × 10. This is because pooling layer functions to decrease the size 

of the activation maps while retaining its original information. Consequently, the 

number of computations and parameters will also decrease which leads to 
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minimization of overfitting effect. The convolution process and pooling process are 

then repeated to boost the effectiveness of features and pattern extraction from the 

images and enhance object detection and classification. DCNN then proceeds to the 

next stage includes fully connected layer after the final pooling layer. As its name 

suggests, fully connected layer implies that in this layer, the neurons in convolutional 

layer, pooling layer and this layer are fully connected to each other. Fully connected 

layer is the final layer in DCNN architecture before the final classification. Therefore, 

this layer plays an important role to perform high-level reasoning. Based on the DCNN 

architecture, fully connected layers evolve from 4 × 4 to 1 × 1. This is due to the reason 

that fully connected layers receive an input vector from the previous layer which has 

been flattened into one dimensional vector. In other words, the image pixels of the 

output from previous layers are flattened and treated as the input of fully connected 

layer. Finally, fully connected layers perform high-level reasoning which includes 

application of Softmax function that leads to classification of image. As a result, 

classifier is produced from fully connected layer. 

 

 

Figure 2.3: Overview of DCNN Architecture (Aloysius and Geetha, 2017). 

 

 

 

2.3.2 You Only Look Once  

 

As its name implies, You Only Look Once (YOLO) is a real-time object detection 

algorithm which the YOLO model can detect and classify the object within an image 

by only looking once at that image. Redmon et al. (2016) indicated that YOLO is an 

effective approach in object detection, which performs better than other object 

detectors, such as Region-based Convolutional Neutral Network (R-CNN) and 
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Deformable Parts Model (DPM). The reason behind this is that R-CNN is a region 

proposal-based models where it involves multi-stage process, and its pipelines are 

complex. Thus, R-CNN often requires more time in processing the region proposals 

hence it is slow during inference. In addition, DPM adopts the concept of sliding 

window-based which the classifier performs object recognition at regular intervals 

across the entire image. As a result, the overall process will be slowed down. Due to 

the common practical limitation of slow processing introduced by other object 

detectors, YOLO stands out for its capability to provide fast and accurate real-time 

object detection. YOLO detects and classifies the object simultaneously by looking 

once at an image. Meanwhile, its detection is framed as a regression problem therefore 

the complex pipelines such as region proposals and classifiers are abandoned. For this 

reason, YOLO can perform image processing at 45 frames per second (fps). To certain 

extent, a fast YOLO network can upsurge to run at 155 fps (Redmon et al., 2016). 

YOLO emphasized on real-time speed and accuracy since it can be used to process 

real-time image and streaming video with low level of latency. In addition, YOLO 

serves a purpose to boost the generalization for new domains (Keita, 2022). This 

implies that YOLO can generalize on different shapes of objects, hence it is an 

effective approach when it comes to applications that need rapid and robust object 

detection. Besides that, YOLO works on global reasoning where it observes the full 

image during both stages including training and testing. In this case, both contextual 

information and appearance information can be encoded implicitly. By doing so, 

mistakes such as false positives prediction on background can be greatly avoided as 

YOLO can view a greater context and even perform better prediction in situations 

where the objects seem ambiguous or presents in various contexts. Despite the fact 

that YOLO provide better object detection performance than other object detection 

methods, it still comes with its limitation. Localization of small objects that come in 

groups such as swarm of fishes is an issue for YOLO due to the spatial constraints 

introduced by YOLO. YOLO employs the technique of unified detection which 

involves integration of various object detection components into a single neural 

network. Generally, YOLO algorithm work on the basis of grid division, bounding box 

regressions, intersection over union (IOU), class probabilities prediction, and non-

maximum suppression (NMS) (Kundu, 2023). In terms of applications, YOLO is an 

effective object detector in the field of agriculture, healthcare, self-driving cars and 
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security surveillance (Keita, 2022). For instance, YOLO is implemented in vision-

based robots such as harvesting robots to identify and harvest the target fruits and 

vegetables accurately and effectively. 

 

 

 

2.4 Literature Review  

 

In this study, several literatures are reviewed to develop a better understanding of the 

existing research and technologies that are relevant to this area of study. By conducting 

literature reviews concerning crop protection, a basic conceptual framework of smart 

farming system is identified and incorporated in the development of this project. The 

strengths and weaknesses of each literature review are discussed in this chapter. 

 

 

 

2.4.1 Smart Animal Repelling Device: Utilizing IoT and AI for Effective Anti-

Adaptive Harmful Animal Deterrence by Mishra and Yadav (2024) 

 

This study focuses on the study of Smart Animal Repelling Device (SARD) by 

incorporating the elements of Internet of Things (IoT) and Artificial Intelligence (AI). 

Mishra and Yadav (2024) introduced a SARD framework which runs IoT applications 

in microservices by abiding the principle of containerization and uses Docker 

containers. According to the research work, it is a necessity to deploy a smart and 

flexible deterrent method to replace the traditional methods. The reason behind this is 

that the traditional deterrent methods such as physical barriers and fear tactics are no 

longer practical and effective in repelling the animals away as the animals have great 

adaptability toward these traditional methods as time goes by. With the integration of 

IoT and AI in animal repelling methods, the crop losses have been significantly 

reduced to 30% which reflects the effectiveness of SARD using IoT and AI. There are 

several reasons for the effectiveness of SARD, but they come down to three major 

contributions. Firstly, SARD uses the technique of combination of various components 

such as a Passive Infrared (PIR) sensor, solar panel, and Low Range (LoRa) 
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technology to ensure that the real-time animal detection is energy saving (Mishra and 

Yadav, 2024). Detection of the infrared radiation emitted by objects within the field of 

view of PIR sensor is the function of a PIR sensor. By way of explanation, the infrared 

energy pattern will change once an object motion is detected within the field of PIR 

sensor’s view. PIR sensor will capture the changes in the infrared energy pattern, and 

it will be triggered by the changes to send a signal to a linked responsive device to 

initiate an appropriate action. In the context of designing a faster and more accurate 

real-time animal identification system, Single Shot Multibox Detector (SSMD) is used 

in conjunction with the Recursive Convolutional Neutral Network (R-CNN) model on 

edge devices. This is because SSMD is an enhanced version of previous single shot 

detector (YOLO), and it is much more accurate and precise with slower techniques 

that carry out explicit region proposals and pooling such as Faster R-CNN. Besides, 

the key to the accuracy of SSMD lies in the elimination of the process of resampling 

feature and pixels for bounding box proposals that is performed by SSMD. Hence, 

there is no doubt that this approach contributes significantly to the effectiveness of 

SARD in terms of speed and accuracy. The third contribution comes from the re-

identification designs. With the re-identification designs, the effectiveness of an 

animal deterrent can be assured by the system architecture through identity association, 

monitoring and real-time alerts. In other words, when re-identification is incorporated 

into the system architecture of SARD, SARD can identify and monitor the individual 

animals over time. Likewise, SARD contributes to monitoring the animal’s behaviour 

and initiate action with real-time alerts. For this reason, it allows SARD to perform 

effectively to repel the animals away. Besides, the researchers also highlight the 

intelligent devices used in SARD which cover identification and ultrasound production, 

real-time detection and integration among animal identification and repelling device. 

All in all, SARD serves its purpose to provide real-time object detection by using 

various comprehensive approaches such as PIR sensors, ultrasonic emission and edge 

computing. Figure 2.4 illustrates the SARD system architecture. It can be observed 

clearly that the overall system architecture comprised of IoT, AI, and edge computing. 

The integration of IoT, AI and edge computing facilitates the level of intelligence of a 

smart animal repelling device. Despite the fact that the SARD system has proven to be 

a significant tool in the aspect of animal detection and repelling action, but there are 

still rooms for improvement. Ultrasonic frequencies remain as an issue in this study. 
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Figure 2.4: The System Architecture of Smart Animal Repelling Device (Mishra and 

Yadav, 2024). 

 

Although SARD utilizes variety of ultrasound frequencies which tailored to the 

specified animals based on their classification, but there is still a need to refine the 

ultrasonic frequency in terms of its functionality and frequency modulation. Another 

limitation of this study is the power efficiency of the SARD system which can be 

further improved. There are several proposed solutions recommended to address the 

issues in this study. More advanced algorithms involving machine learning and 

artificial intelligence models are taken into consideration to investigate the 

effectiveness of ultrasonic frequencies that caters to different animals. Other than that, 

precise and careful calibration of ultrasonic emission should be implemented to boost 

the effectiveness of ultrasonic emission across a wide spectrum. Since the system is 

designed to function for 24 hours to keep track the conditions of crop field in a remote 

area, therefore power efficiency of the system should be maximized. In this case, the 

proposed solution is introducing solar panel system to replace the energy resources 

such as batteries. Since this system will be placed in outdoor areas, therefore natural 

renewable resources should be utilized to enhance the power efficiency of this system. 
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2.4.2 Edge AI in Sustainable Farming: Deep Learning-Driven IoT Framework 

to Safeguard Crops from Wildlife Threats by Reddy et al. (2024) 

 

This research work highlights the pressing needs to incorporate artificial intelligence 

in sustainable agriculture. Research has shown that the crop production in agriculture 

is constantly hampered by animal intrusion which eventually leads to crop damage. To 

certain extent, food production is being hindered by the crop damage that arises. 

Meanwhile, the imbalance of supply and demand also become worsen. Reddy et al. 

(2024) make a binding effort to propose a cutting-edge approach that integrates 

Internet of Things (IoT) with tinyML-based deep learning algorithms to leverage the 

potential of Edge AI in developing a sustainable wildlife intrusion detection and 

deterrence system. In this case, the system is developed in such a way that it 

synthesized an AI-CAM with a laser detection system for the purpose of ensuring an 

effective wildlife intrusion detection and classification. On the other hand, Internet of 

Things (IoT) is a significant technique that is used to allow the farmers to have the 

real-time access to the situation of the crop field. This research paper has suggested a 

lightweight deep learning model known as EvoNet to classify the animals. All in all, 

the proposed model revolves around the integration of IoT with AI. Apart from 

protecting crops from the wildlife, the proposed model is also designed to support 

ecological conservation while safeguarding the lives of agricultural communities. 

When it comes to wildlife detection system, Passive Infrared (PIR) sensor is 

commonly used to detect animal’s motion. Nevertheless, PIR sensor has its drawbacks 

such as it is more likely to malfunction when its surrounding temperature exceeds 35ο. 

This problem makes the wildlife detection system using PIR sensor become 

impractical in most of the countries that normally have hotter weather with temperature 

above 35ο. Due to several practical limitations of PIR sensor, the researchers have 

come up with an innovative solution to address these problems. Laser-based boundary 

system is presented and utilized for wildlife intrusion detection system. The laser-

based boundary system works in such a way that it produces laser which covers the 

boundary edge around the crop field. In other words, the laser emitted by the laser 

diode equipped in the laser-based boundary system will form a security barrier around 

the crop field. If there is any potential wildlife invasion, the laser boundary will be 

disrupted thus presence of wildlife will be detected in an early stage. Conversely, if 
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there is no wildlife invasion, the system is able to detect the absence of the wildlife 

and minimize its power consumption. At the same time, AI-CAM that is incorporated 

in the system will be responsible to capture the images of intruding animal once 

wildlife intrusion is detected. Consequently, the captured images will be analysed by 

the deep learning model to proceed with animal classification. In this case, TensorFlow 

Lite is used to implement the deep learning model. After animal classification is done, 

the central pole which is part of the system will carry out appropriate actions to deter 

the intruding animals away from the crop field. With the implementation of IoT in the 

system, the microcontroller embedded in the central pole is allowed to have Wi-Fi 

connectivity. Therefore, the central pole can send alert message to the farmer 

immediately once wildlife intrusion is detected and confirmed. In addition, the farmer 

can monitor the condition of the crop to double check whether the intruding animal 

has been deterred away from the crop field or not. This can be done by the wireless 

controller synthesized in a mobile robotic device known as rover. The rover has a 

camera that is placed at the front of the rover, it allows the farmers to have real-time 

access of their crop. In simpler words, they can monitor their crop field with live video 

stream provided in their mobile devices. Therefore, the farmers can now deploy any 

further strong deterrence action towards the intruding animal that still remain in the 

crop field by using the wireless controller in his hand. This instrumental approach 

offers a great deal of convenience to those farmers who are outstation. The limitation 

from this study is the limited computational power offered by TinyML. In this case, 

the suggestion is to develop more efficient algorithms to reduce the computational 

burden in resource constraint environment. 

 

 

 

2.4.3 A Review of Crop Protection Methods in Agricultural by Rubi et al. 

(2024) 

 

In this study, Rubi et al. (2024) summarised the limitations offered by various crop 

protection methods. Firstly, traditional crop protection methods such as electric and 

wire fences require a large amount of cost for installation. Besides, electric fences often 

exert negative impacts on wildlife by causing damage to the intruding wildlife. 
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Meanwhile, regular maintenance needs to be invested upon electric fence installation 

to avoid ineffective electric fences due to the vegetation that grow around the electric 

fence lines. Furthermore, Convolutional Neutral Network (CNN)-based animal 

detection system needs a great deal of upfront efforts including significant setup and 

training time, and costly technology implementation. In other words, CNN-based 

animal detection system involves great amount of labelled training data and 

computation, thus the training time tends to be much longer. The same goes for laser 

fence as laser fence also require high expenses to implement its laser technology. 

Likewise, initial setup and technology adoption also remains an ongoing challenge for 

laser fences. Another crop protection method which is known as Weighted Co-

occurrence Histograms of Oriented Gradients (W-Co-HOG) algorithm also face the 

same challenges as the previous crop protection methods that have been discussed 

before. For instance, it needs great time investment for initial setup and 

implementation, training and testing time. Based on the findings obtained in the study, 

there is no denying fact that the adoption of initial setup and technology is a common 

issue for most of the crop protection methods. For instance, laser fence, Internet of 

Things (IoT)-based monitoring system and smart agriculture with ultrasound emission. 

In addition, another crop protection method which is acoustic system with Global 

System for Mobile communication (GSM) is used to deter intruding animals by 

emitting sounds that are tailored to the fear of that animal. However, its sound 

effectiveness is constrained by certain range, and it relies on GSM networks. This 

implies that this acoustic system with GSM is more likely to lose its function in 

agricultural field that has a broader area. At the same time, this system might not be 

applicable to those rural areas that struggle to have a good network coverage. As a 

matter of fact, wildlife invasions often take place in those rural areas. From what has 

been discussed above, it is necessary to develop a structured approach to address the 

issues face by the current crop protection system. You Only Look Once (YOLO) 

version 5 is the enhanced YOLO model proposed by Rubi et al. (2024) to solve the 

problems of the current crop protection system. In this case, YOLOv5 is used in object 

detection, features extraction and object classification. However, YOLOv5 comes with 

its limitations. For instance, it is hard to detect small objects. Therefore, super-

resolution techniques are suggested to improve input image preprocessing should be 
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implemented to address this issue. Besides, image reconstruction algorithms can be 

implemented to extract features of small objects. 

 

 

 

2.4.4 Airep: Ai and IoT Based Animal Recognition and Repelling System for 

Smart Farming by Lekhaa et al. (2022) 

 

In this work, Lekhaa et al. (2022) discussed the challenges of the traditional 

approaches and propose a system solution related to Artificial Intelligence (AI) 

Computer Vision based Deep Convolutional Neural Network (DCNN) for animal 

detection and ultrasonic emission used to repel the animals. According to the findings 

of their study, traditional approaches such as chemical repellents, electric fences, 

smoke, and others have exerted negative impacts on the surrounding environment of 

the monitored area. Chemical repellent or smoke causes environmental pollution 

leading to the disruption of ecological conservation. To a certain extent, strong 

chemical repellent or electric fences could pose a formidable threat to human and 

animals which is not the purpose of the smart farming system. Therefore, advancement 

of technology give rise to an intelligent sensor-based animal intrusion detection system. 

In other words, multiple sensors are incorporated into the system for motion detection 

and capture the image upon camera activation. After that, the system will proceed to 

the next stage which is image processing and classification using several techniques 

of predefined algorithms such as Weighted Co-occurrence Histograms of Oriened 

Gradients (W-Co HoG) feature vector. Furthermore, Support Vector Machines (SVM) 

is a machine learning algorithm used in the application of animal classification. When 

it comes to the sending of alert messages to the farmers, methods such as GSM module 

and Radio Frequency Identification (RFID) are responsible to enable the 

communication to the farmers. However, there are several disadvantages in the 

existing animal intrusion system. The common challenge is sensor failure since the 

existing animal intrusion system utilizes a lot of sensors. Therefore, the system 

proposed by Lekhaa et al. (2022) deploy DCNN algorithms and integrate AI-based 

computer vision methods with IoT devices to develop a holistic approach in protecting 

the crops. Deep Convolutional Neural Networks (DCNN) is the deep learning model 
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which is known for its effectiveness in performing tasks involving image recognition 

and image classification. In addition, the crop protection system functions to emit 

ultrasound which creates disturbance to the animals and prompts the animals to leave 

the crop field. Meanwhile, a notification system is set up to alert the farmers about the 

animal invasion and the condition of the crop field. In the context of designing a crop 

protection system, Lekhaa et al. (2022) have come up with a modules list which 

includes animal repellent web dashboard, animal recognition, repellent, monitoring 

and visualizing, notification and performance analysis. In the animal recognition 

module, training and test data annotation is required. Besides, pre-processing, animal 

detection, feature extraction, animal classification and prediction are the steps included 

in animal recognition module. Figure 2.5 shows the design architecture of the crop 

protection system proposed in this study. In conclusion, the proposed CNN developed  

 

 

Figure 2.5: The System Architecture of the Proposed CNN (Lekhaa et al., 2022). 
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by the researchers has shown a positive result where the accuracy in recognizing 

animals is about 98% which is relatively high. Nevertheless, there is still possibility of 

facing inaccurate results in the proposed system which is considered as the limitation 

of this study. For instance, false positives which the system detect presence of animal 

but in fact the animal is absent and false negatives which the system fail to detect the 

presence of animal where it supposed to. In order to address this issue, training and 

test data annotation needs to be enhanced by collecting more data for the pre-training 

model. As a result, a larger dataset will lead the deep learning model and machine 

learning model to obtain a better generalization with lesser mistakes. 
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Design Architecture  

 

The design architecture of the AI-driven IoT-based Smart Farming System is 

illustrated as a block diagram as shown in Figure 3.1. In the beginning, an environment 

of the proposed system must be set up including the integration of hardware design 

with software design. In this context, the hardware equipments needed are Raspberry 

Pi 4 Model B, Raspberry Pi Camera Module v2, Passive Infrared (PIR) Sensor and a 

buzzer. As a result, a prototype for the proposed system will be produced. The 

hardware design of the proposed system is responsible for the motion detection, image 

capture and repellent action. If motion is detected by PIR sensor, the Raspberry Pi 

Camera Module v2 will be activated to switch on and observe the surrounding 

environment. The live environment will be monitored by the Pi camera if motion is 

detected. It is treated as the input frame of the software model in the following steps. 

The input frame is then pre-processed to enhance the image for object detection in 

computer vision. Pre-processing involves normalization, image resizing, noise 

reduction, and so on. After that, the image data is being fed into a machine learning 

model to classify the class of the image captured. Machine learning model such as 

Haar Cascade classifier is used for image classification. The image is classified into 

different categories. Since this proposed system targets animals like cat, hence object 

matching is required to determine whether the image captured matches the targeted 

animals. Once targeted animal is detected, the proposed system carries on with the 

next stage which involves image acquisition. Simultaneously, actions such as buzzing 
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sound emission and real-time alert notification system will be activated at the same 

time. In this context, hardware and software components are effectively well-

integrated to demonstrate seamless operation in protecting the crop field. 

 

 

Figure 3.1: Flowchart of the Proposed System. 

 

 

 

3.2 Hardware System Design 

 

This section discusses the selection of hardware components that serve as the core 

elements of AI-driven IoT-based smart farming system. The hardware components are 

carefully selected as each component plays an important role in their respective distinct 

modules with specific functionality. Each component is carefully considered to ensure 

smooth integration, thus providing seamless operation flow of the whole system. 
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3.2.1 Raspberry Pi 4 Model B 

 

In the context of designing an AI-driven IoT-based smart farming system, Raspberry 

Pi 4 Model B is implemented in the system to serve as a central processing unit (CPU). 

It is used to process and interpret data received from multiple sensors. It then further 

proceeds to execute instructions based on the data. The General-Purpose Input and 

Output (GPIO) pins offered by a Raspberry Pi 4 Model B allows it to interface with a 

wide range of peripherals. With this implementation, a surveillance system can be set 

up to monitor the presence of animals in the crop field. Besides, Raspberry Pi 4 Model 

B also plays its role in supporting IoT application in this system. This is because it 

provides ethernet port with various connectivity choices including Wi-Fi and 

Bluetooth, which makes it well-suited for communication and networking purpose. In 

simpler words, the ethernet port available in a Raspberry Pi 4 Model B is the key 

component for the connection of Raspberry Pi with other devices and routers 

(BasuMallick, 2022). Furthermore, Raspberry Pi 4 Model B offers high processor 

speed which boosts its performance. For these reasons, Raspberry Pi 4 Model B as 

shown in Figure 3.2 is chosen as part of the hardware system design. Table 3.1 shows 

the specifications of a Raspberry Pi 4 Model B (Raspberry Pi, 2019). 

 

 

Figure 3.2: Raspberry Pi 4 Model B (Raspberry Pi, 2019). 
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Table 3.1: The Specifications of Raspberry Pi 4 Model B (Raspberry Pi, 2019). 

Specification Description 

Processor  
Broadcom BCM2711, quad-core Cortex-A72 (ARM v8)  

64-bit SoC @ 1.5 GHZ 

Memory  1 GB, 2 GB, 4 GB LPDDR4 (depending on model) 

Connectivity  

2.4GHz and 5.0GHz IEEE 802.11b/g/n/ac wireless LAN, 

Bluetooth 5.0, BLE  

Gigabit Ethernet 

2 × USB 3.0 ports 

2 × USB 3.0 ports 

GPIO Standard 40-pin GPIO header 

SD card support 
Micro SD card slot for loading operating system and data 

storage  

Input power 5V DC  

 

 

 

3.2.2 Raspberry Pi Camera Module v2 

 

The camera module that is a ttached to the Raspberry Pi 4 Model B is known as 

Raspberry Pi Camera Module v2 as shown in Figure 3.3. As its name suggests, it is 

used to capture images and videos of the monitored area of the crop field. For this 

reason, it is acting as the “eyes” of the AI-driven IoT-based Smart Farming System to 

detect animal’s presence. Raspberry Pi Camera Module v2 consists of a Sony 1MX219 

8MP sensor which allows it to capture high resolution images and videos (Raspberry 

Pi, n.d.). Besides, it also assures the quality of image captured, low-light performance 

and colour fidelity. It has a weight around 3 g which contributes to its compact and 

lightweight features. The specifications of Raspberry Pi Camera Module v2 is recorded 

in Table 3.2. 
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Figure 3.3: Raspberry Pi Camera Module v2 (Raspberry Pi, n.d.). 

 

 

 

Table 3.2: The Specifications of Raspberry Pi Camera Module v2 (Raspberry Pi, n.d.). 

Specification Description 

Dimension 25 mm × 23 mm × 9 mm 

Weight 3 g 

Resolution 8-megapixel 

Lens Fixed focus 

Video modes 1080p30, 720p60, 640 × 480p90 

Sensor Sony IMX219 
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3.2.3 Passive Infrared Sensor 

 

Figure 3.4 shows the Passive Infrared (PIR) Sensor that is being utilized and integrated 

in the system. PIR sensor is a motion sensor that aims to detect motion within the 

sensor range. It detects motion passively in such a way that it perceives the infrared 

radiation from objects that emit heat instead of emitting infrared signals by the sensor 

itself (Global Sensor Technology, 2021). This indicates that PIR sensor detects object 

motion via the movement of the object’s infrared wavelength. In this proposed system, 

PIR sensor is integrated with Raspberry Pi Camera Module v2 to work together and 

produce an intelligent object detector. This is because PIR sensor acts as a master while 

Raspberry Pi Camera Module v2 acts as a slave. PIR sensor will trigger its slave which 

is the camera to activate and capture image only when it manages to detect cats. As a 

result, power consumption of the camera can be greatly minimized. Table 3.3 records 

the specifications of a PIR sensor (Ada and Dicola, n.d.). 

 

 

Figure 3.4: Passive Infrared Sensor (Global Sensor Technology, 2021). 

 

Table 3.3: The Specifications of Passive Infrared (PIR) Sensor (Ada and Dicola, n.d.). 

Specification Description  

Output 
Digital pulse high when triggered (motion detected) 

Digital pulse low when idle (no motion detected) 

Sensitivity range Up to 7 meters, 110° × 70° detection range  

Power supply  5V – 12V input voltage  
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3.2.4 Buzzer 

 

A buzzer as shown in Figure 3.5 is included in the proposed system to repel the 

intruding animals away from the monitored area by emitting ultrasonic sound. The 

model chosen is piezo buzzer as it can emit sound using piezoelectric effect that are 

unpleasant to some animals such as cats. In general, the emitted sound waves have 

frequency up to 5 kHz, which is considered sufficient enough to acts as a useful tool 

for causing a disruption to the auditory and nervous system of the targeted animals. 

Apart from this, this buzzer introduces a broad coverage where it can cover up to 309 

square feet with a radius of around 9.84 feet. 

 

 

Figure 3.5: Buzzer. 

 

 

 

3.3 Software System Design 

 

This section highlights the software system design that serves a primary purpose to 

orchestrate the functional logic of the smart farming system. The chosen programming 

language for the development of software programs, necessary software applications 

for system setup and IoT platforms are discussed in this section. 
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3.3.1 Python Programming  

 

When it comes to the software design of the AI-driven IoT-based Smart Farming 

System, programming serves its purpose to develop a communication gateway 

between the hardware design and software design. Besides, programming is also 

needed for data processing, machine learning algorithms, decision making algorithms, 

database system development, and web server development. In this context, Python is 

the main programming language chosen for this proposed system. The logo of Python 

is shown in Figure 3.6. The main reason for choosing Python as the programming 

language is because it provides a strong and reliable platform for machine learning and 

artificial intelligence (AI). This is because Python comes with several machine 

learning libraries such as PyTorch, TensorFlow, Scikit-learn, and others that provides 

easy-to-use machine learning algorithms (Corporate Finance Institute Team, 2023). 

Besides, Python is independent across different platforms including Raspberry Pi, 

Linux and Windows. Python is also the preferred programming language as it offers 

great readability and simplicity in terms of its programming code. In fact, Python codes 

are relatively shorter and simpler than other programming languages. Thus, the 

execution speed of the program code is also faster. 

 

 

Figure 3.6: Logo of Python (Ra20Ga, 2021). 
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3.3.2 VNC Viewer 

 

Virtual Network Computing (VNC) viewer is an essential software application that is 

used with Raspberry Pi 4 Model B to access the Raspberry Pi’s graphical desktop 

interface. Its logo is shown in Figure 3.7. VNC viewer is needed in this system as it 

enables remote accessibility of Raspberry Pi’s desktop from a user’s laptop, by 

connecting the VNC server and the Raspberry Pi over the same network. In other 

words, VNC viewer eliminates the necessity of using display monitor and external 

mouse. 

 

 

Figure 3.7: Logo of VNC Viewer (Uptodown, n.d). 

 

 

 

3.3.3 Telegram 

 

In the context of designing AI-driven IoT-based Smart Farming System, Telegram is 

used as the software platform to develop the IoT-based monitoring system. Figure 3.8 

shows the logo of Telegram. It functions to create an intuitive mobile interface which 

allows the users to receive alert notifications upon the animal invasions. Telegram is 

considered as a popular platform for IoT application development due to its versatility. 

It is versatile on various platforms and operating systems including IOS and Android. 

Moreover, Telegram is widely used in real-time applications as it supports media such 
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as images and videos. Besides, Telegram assures security because it only allows 

authorized users to access the system with the private bots. 

 

 

Figure 3.8: Logo of Telegram (Logos-world, 2024). 

 

 

 

3.4 Hard-Level Proposed System Design 

 

In summary, Cropguard: AI-driven IoT-based Smart Farming System should be able 

to perform four main functions which are motion detection, image acquisition, 

repellent sound emission and alert notification system as shown in Figure 3.9. From 

the diagram in Figure 3.9, the Raspberry Pi 4 Model B acts as the main controller for 

the whole system, it is responsible for executing the entire software program. From 

another perspective, Raspberry Pi also serves as a IoT device and gateway to collect 

data from the input components and sensors such as Raspberry Pi Camera Module v2 

and PIR sensor. Then it proceeds to perform data processing and transmit the data to 

the IoT cloud. Raspberry Pi is the edge device in this system to bridge the gap between 

the physical world and the digital world. In this case, Wi-Fi serves as a communication 

backbone to provide internet connectivity to the Raspberry Pi, allowing real-time 

integration and data transmission to the IoT cloud. On the other hand, buzzer will be 

activated according to the instruction received from Raspberry Pi, therefore it is the 
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output of the system. Meanwhile, Telegram plays it role in cloud-based 

communication by providing a platform for real-time alert notification. 

 

 

Figure 3.9: Hard-Level Design of the Proposed System. 

 

 

 

3.5 Project Management  

 

The project timeline spanning two trimesters are presented in two separate Gantt charts, 

breaking it down into several key phases and activities. The project for FYP 1 is 

progressed according to the timeline shown in Table 3.4. Generally, the project 

schedule for FYP 1 focuses on research and findings. Table 3.5 provides the project 

timeline for FYP 2, focusing on the development and implementation of the project. 

All in all, these Gantt charts are important for monitoring the progress of project, 

ensuring the project stays on schedule, and completing the project within project 

deadline. 
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Table 3.4: Gantt Chart for FYP 1. 

                Week 

Task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Title Proposal               

Background 

Research 

              

Literature 

Review 

              

Methodology 

Research 

              

Hardware design 

Research  

              

Software design 

Research 

              

Presentation 

Preparation 

              

FYP 1 Report 

Submission 

              

FYP 1 Oral 

Presentation 

              

 

 

 

Table 3.5: Gantt Chart for FYP 2. 

                Week 

Task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Data Collection 

and Analyzation  

              

Develop 

Machine 

Learning 

Algorithm for 

Classification 
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Testing and 

Debug Machine 

Learning Model  

              

Develop Object 

Detection 

Module  

              

Develop Object 

Classification 

Module  

              

Develop Animal 

Repellent 

Module and 

Real-time 

Notification 

Module   

              

Integration of 

Hardware and 

Software 

Modules 

              

Testing and 

Debug Integrated 

System 

              

Design and 

Implement 3D 

Printing 

Enclosure  

              

Poster 

Submission 

              

FYP 2 Oral 

Presentation 

              

FYP 2 Final 

Report 

Submission 
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Hardware Development  

 

The hardware development of the smart farming system focuses on the integration of 

electronic components, the configuration and connectivity of all components, design 

and architecture of the whole prototype, including the design of a protective and 

adjustable-angle enclosure. The hardware development also emphasizes on the 

structural performance in an outdoor setting that have limited resources such as power 

supply, network connectivity, and so on. 

 

 

 

4.1.1 Electronic Components Integration  

 

In this section, all the electronic components are connected and integrated into a 

physical prototype which functions as an AI-driven IoT-based smart farming system. 

In simple words, the physical hardware setup realizes the hard-level system design as 

discussed in Section 3.4 by converting theoretical models into a real-time operating 

system. In the context of designing a smart farming system, the location of the 

hardware setup will be in an outdoor setting. For this reason, the hardware setup must 

be a standalone device without any physical connection to a monitor or mouse. In other 

words, it should be remote controlled using laptop or smart phone in an outdoor 

environment. On this basis, the Raspberry Pi is connected to a laptop instead of a 
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monitor by default. An ethernet cable is used to connect the Raspberry Pi directly with 

the laptop, allowing a direct communication gateway between these two devices. At 

the same time, Virtual Network Computing (VNC) server serves as a platform for the 

remote access of the Raspberry Pi’s graphical desktop interface as shown in Figure 4.1. 

In this case, the VNC server which connects with the Raspberry Pi must have the same 

Wi-Fi network with the laptop itself to ensure that the Raspberry Pi’s graphical desktop 

interface can be accessed using laptop. 

 

 

Figure 4.1: The Raspberry Pi’s Desktop Interface through VNC Viewer. 

 

 

 

4.1.2 Enclosure Fabrication  

 

To assembly and position all the electronic components and IoT device in an orderly 

manner, an enclosure for the whole prototype is customized and fabricated using 3-

Dimensional (3D) printing technology. 3D printing technology contributes 

significantly to a customized-design enclosure that can fit all the electronic 

components precisely and house them in their respective positions and angles. From 

the perspective of exterior design, 3D printing enclosure improves the prototype’s 

visual appearance and its overall presentation in a professional way. As its name 

suggests, 3D printing is a process of making 3D solid objects from file where the 3D 

product is printed out layer by layer. The design process starts with modelling software 
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which is responsible for the design of the shape and size of the enclosure. The 3D 

modelling software used for the enclosure are Thingiverse, SolidWorks and ideaMaker. 

In SolidWorks, tasks involving definition and adjustment of shape, size and dimension 

of the 3D printed enclosure are done. Besides, more particular tasks that delve into the 

finer details of the specifications, must be done precisely to ensure that the 3D printed 

enclosure can be fabricated well. For instance, infill, object density, temperature of the 

model, and others. The next step moves on to the hardware part of the 3D printing 

technology where the 3D enclosure is printed physically. 3D printer and filament are 

the primary elements of the fabrication process in terms of hardware. Before initiating 

the hardware printing process, the printer settings must be configured properly to 

ensure a smooth and successful printing. Printer bed must be adjusted to its optimal 

level according to the requirements of the 3D enclosure models. Besides, the 

functionality of different 3D printer parts such as nozzle, extruder, motherboard, and 

others must be checked properly. After all, the printing process is initiated, and the 

filament will be heated and melted to print the enclosure models layer by layer from 

the bottom to the top. Figure 4.2 shows the configuration setting of enclosure for 

Raspberry Pi Camera Module v2 in raise 3D printer. Figure 4.3 presents the current 

progress of 3D printing for the support structure for the prototype. There are a total of 

four 3D enclosure models that are needed to be fabricated to protect and secure all the 

electronic components. For instance, Raspberry Pi 4 Model B, Raspberry Pi Camera 

Module v2, Passive Infrared (PIR) sensor and buzzer. After the fabrication of these 

enclosures have completed separately, an assembly of all these enclosures is required 

in the next step. This is essential to ensure that each functional components are 

positioned in their respective optimal angles and the whole prototype is presented 

professionally. Since Raspberry Pi Camera Module v2 work with the assistance of PIR 

sensor, therefore these two components will be placed next to each other. Therefore, a 

customized design that is tailored to the specifications of the placement are required. 

Figure 4.4 provides the design preview of the assembly enclosure for both components 

in ideaMaker software. Besides, Figure 4.5 illustrates the design preview of Raspberry 

Pi 4 Model B’s enclosure in SolidWorks. 
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Figure 4.2: 3D Printer Home Setting for Raspberry Pi Camera Enclosure. 

 

 

Figure 4.3: 3D Printing for the Support Structure of the Prototype is in Progress. 
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Figure 4.4: Design Preview of Assembly Enclosure for Raspberry Pi Camera Module 

V2 and PIR Sensor in IdeaMaker Software. 

 

 

Figure 4.5: Design Preview of Enclosure for Raspberry Pi 4 Model B in SolidWorks. 

 

 

 

4.1.3 Prototype 

 

Figure 4.6 shows the complete prototype of this project with all functional components 

securely mounted and held in place. By referring to Figure 4.6, the Raspberry Pi 

Camera Module v2 is set up side by side with the Passive Infrared (PIR) sensor since 
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both components operate collaboratively. Pi camera works with the assistance of PIR 

sensor, Pi camera will only be activated when PIR sensors is triggered by motion. If 

PIR sensor is triggered, this indicates that motion is detected in front of the Pi Camera, 

thus it is necessary to place the Pi camera beside the PIR sensor so that the Pi camera 

can capture the exact view of the detected motion. The sensitivity range of PIR sensor 

is 3 to 7 meters which means that it can detect motion up to 7 meters. If there is any 

motion takes place beyond 7 meters away from the PIR sensor, the motion will not be 

detected by PIR sensor. In addition, the detection angle of a PIR sensor spans 120ο, 

this indicates that its effective coverage is 60ο to the left and 60ο to the right from its 

central axis. The horizontal field of view of Raspberry Pi Camera Module v2 is 

approximately 62.2ο, which implies that Pi camera has a total horizontal width of 

capture angle from 31.1ο to the left and 31.1ο to the right of the central axis. On the 

other hand, its vertical field of view is approximately 48.8ο, indicating that the vertical 

capture angle spans 48.8ο, ranging from 24.4ο upward and 24.4ο downwards from the 

central axis of Pi Camera. Besides, the buzzer is placed on top of the PIR sensor, facing 

the same direction with PIR sensor. This is to ensure that the sound produced by the 

buzzer can effectively repel the cat from its exact opposite direction. In other words, 

the repelling action is executed directly in front of the cat detected. Furthermore, a 

20,000 mAH power bank serves its purpose to acts as an independent power supply 

for the system. The power bank is connected to the Raspberry Pi to provide sufficient 

power to the system so that the whole system can acts as a standalone device. In terms 

of duration, the power bank is capable to supply power to the Raspberry Pi for about 

12 to 13 hours. 
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Figure 4.6: Prototype of the Smart Farming System. 

 

 

 

4.2 Software Development  

 

The software development of the smart farming system focuses on the implementation 

of functional logic for different modules with their respective specific functionalities. 

Several key aspects including energy efficiency, lightweight computation, 

compactness, accuracy, consistency and reliability are the highlights in this section. 

 

 

 

4.2.1 Software Setup 

 

When it comes to IoT projects, operating system is the fundamental element to manage 

hardware development and support software development, allowing applications to 

Buzzer 

PIR Sensor 

Raspberry Pi 

Camera Module v2 

Raspberry Pi 4 

Model B 
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communicate with the hardware and other system-level functions. In this project that 

involved Raspberry Pi, the operating system used is called Raspberry Pi OS. Besides, 

VNC viewer is another software application used in this project to allow direct access 

between laptop and the Raspberry Pi desktop without any external support devices 

such as monitor and mouse. In the initial stage of software development, all necessary 

configuration tasks for each component are implemented. For instance, functionality 

testing, setup and initialization, software and packages installation needed to be done 

before developing the software part of the smart farming system. Figure 4.7 shows that 

the installation for OpenCV is successfully performed in the terminal window of 

Raspberry Pi OS. 

 

 

Figure 4.7: Successful Installation of OpenCV library. 

 

 

 

4.2.2 Classification Model 

 

The core aspect of this project revolves around the AI techniques employed for object 

detection, specifically focusing on cats. On this basis, a machine learning model is 

used to classify animals whether they are cats or not. In this case, a machine learning 

model is pre-trained using OpenCV in such a way that a large dataset of cat images is 

being fed into the model for it to learn about their common pattern from the dataset. 

With this, the model will analyze the pattern and is capable of implementing 

predictions on new data based on the pattern learned. Concerning the practical 
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limitations of Raspberry Pi imposed by various factors such as limited random-access 

memory (RAM), limited memory capacity and power intensive, a machine learning 

algorithm which is known as Haar Cascade classifier is employed in smart farming 

system for the purpose of object detection. As its name suggests, Haar Cascade 

classifier is a machine learning algorithm that uses a cascade of classifiers to detect 

object based on the Haar-like features. In this context, OpenCV provides a pathway 

for Haar Cascade classifier with the objective of implementing real-time object 

detection. The first step in training Haar Cascade classifier for cats is collecting a large 

dataset of positive images of targeted subjects and negative images of non-targeted 

subjects. In simpler words, those positive images will be different kinds of cats’ images 

while negative images can be images other than cats. In this context, there are 

thousands of positive images and negative images that have been collected for the 

purpose of training. Next, it is essential to indicate the location of the targeted subjects 

inside every positive image, thus the coordinates of the bounding boxes that precisely 

locate the targeted subject should be prepared and recorded in a list file. Meanwhile, 

since the negative images do not have the targeted subjects, hence there is no need to 

record the precise location of the non-targeted subjects. After all the dataset of positive 

images and negative images have been collected, the dataset is ready for training. The 

dataset is being fed into a training tool that comes with the OpenCV library. During 

this stage, the training tool will train the classifier model to apply and calculate Haar-

like features based on the collected dataset. In general, it is trained to identify the 

common patterns that are frequently present in the positive images of targeted subjects 

like cats and extract the common features from the images. For instance, the eyes of a 

cat will be recognized as a darker region while the nose of a cat will be recognized as 

a brighter region. Therefore, the Haar-like features are collected and will be proceeded 

for calculation. During this stage, the addition of pixel intensities in each region will 

be calculated. At the same time, the subtraction of the sum of pixels is also calculated. 

However, Haar-like features can be difficult for big image, therefore integral image is 

being introduced to reduce the complexity of calculations. In other words, integral 

images help to compute the Haar-like features by generating sub-rectangles and array 

references for each of the sub-rectangles (Mittal, 2020). Figure 4.8 clearly illustrates 

the concept of integral images for Haar-like features. The next stage involves 

AdaBoost training where it is a boosting technique used to select the key features that  
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Figure 4.8: Working Concept of Integral Images for Object Detection (Mittal, 2020). 

 

 

Figure 4.9: Part of the Code to Classify Cats based on Different Sets of Parameters. 
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best distinguish a cat from a huge dataset of Haar-like features. AdaBoost plays an 

important role in enhancing the accuracy of a classifier model because it forms a strong 

classifier by combining several weak classifiers. In other words, a strong classifier can 

be considered as a weighted sum of the weak classifiers. The final stage in training this 

machine learning model is to proceed with the cascading classifiers. This stage 

involves several stages of classifiers where all the features of a cat are split into various 

classifiers separately. The classifiers stage is then applied individually, step by step. 

By way of example, the first classifier stage is a checkpoint for feature like cat’s eyes. 

If the image window is positive and matches with the first feature, then it will proceed 

to the next classifier stage with different features. On the contrary, the image window 

will fail at the first classifier stage if the image is negative. Hence, this window will be 

rejected and will not be considered for the next cascade classifier stage. After all, if a 

window manages to pass all the cascade classifier stages, it can be said with certainty 

that this window presents a cat. Figure 4.9 shows extracted part of the data for Stage 1 

Cascade Classifier stage in .xml file. Based on the extracted data, stage 1 is composed 

of 26 weak classifiers and the threshold value in stage 1 is -1.4618960618972778e+00. 

If the result in stage 1 is greater than -1.4618960618972778e+00, then it can proceed 

to the next stage and vice versa. Each group represents one weak classifier with 

different sets of parameters. For the first weak classifier, 0 -1 725 

1.0133055038750172e-02 at internal nodes represents the parameters for features in 

the first weak classifier whereas the leafValues which are -2.8207325935363770e-01 

and 6.2703561782836914e-01 represent the output results. After all the training has 

been completed, the machine learning model is well-trained as a Haar Cascade 

classifier, and it is saved as ‘haarcascade_frontalcatface.xml’ file. 

 

 

 

4.3 Unified System Workflow  

 

This section highlights the operational cycle of the complete system by breaking it 

down into two subsections. The first subsection, which is system-level operation 

workflow, emphasizes the integration between hardware and software. Integration is 

significant to enable interaction between the hardware components. This subsection 
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discusses the system’s physical operation. On the other hand, the second subsection, 

which is software logic and execution flow narrow down to discuss the structure of the 

software program logic. It explains the digital brain behind the system, focusing on the 

internal structure of the system.  

 

 

 

4.3.1 System-level Operation Workflow  

 

In the context of designing an AI-driven IoT-based smart farming system for 

agricultural farming, electricity supply is one of the factors that should be taken into 

careful consideration. This is because the agricultural sector often faces challenges in 

obtaining sustainable electricity supply. Therefore, this underscores the importance of 

developing a smart farming system that is energy efficient to tackle the common 

challenges faced in the agricultural sector. This project stands out for its remarkable 

performance in achieving a sustainable electricity supply by adopting several measures 

to save energy. Figure 4.10 gives an illustration of the flowchart of the smart farming 

system. This project develops a cutting-edge approach by introducing an intelligent 

system that has bistable mode control to reduce unnecessary energy consumption. 

This system is designed in such a way that the Pi camera will only be switched on 

when motion is detected by the PIR sensor or else the Pi camera will be in idle mode. 

If motion is detected, the PIR sensor will trigger the camera module to switch on but 

there is no image acquisition until a cat is detected by Haar Cascade classifier. In other 

words, the camera will be activated automatically to act as an eye to observe the 

surrounding environment, it will capture image only when the system detects there are 

cats present in the surrounding environment. This signifies a holistic approach towards 

an intelligent and energy-efficient system. This is due to the fact that this system does 

not simply keep the camera module turned on constantly, but it is only powered on 

under specific conditions. With this approach, the camera is used only, when necessary, 

thus the camera energy can be conserved. Besides, image acquisition will only be 

performed for cats. When the Pi camera captures images, the images will be renamed 

according to the present time when it has been captured and saved in a folder named 

as ‘detected_cats’ in Raspberry Pi as shown in Figure 4.11. Several alert actions  
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Figure 4.10: Flowchart of Smart Farming System. 
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Figure 4.11: Images Saved in Folder.  

 

 

 

 

 

 

Figure 4.12: Message in the Shell of System Program. 
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Figure 4.13: Alert Message in Telegram. 

 

including activation of buzzer alarm and alert message sending will be triggered 

simultaneously and immediately when cat is detected and captured by the system. The 

buzzer will be activated to produce sound for a minimum duration of 5 s and stop 

producing sound only when the cat moves away from the detection range of the system. 

The buzzer will produce continuous alarm output as long as the detected cat is still 

present within the detection range of the system. In other words, the duration of the 

buzzer’s sound emission depends on the state of the PIR sensor. Figure 4.12 shows the 

status of the smart farming system which clearly indicates every activation status of 

the functional devices. At the same time, alert messages which include the image of 

cat detected will be sent immediately to the user through Telegram as shown in Figure 

4.13. 
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4.3.2 Software Logic and Execution Flow 

 

In the beginning, it is necessary to open VNC viewer so that users can access the 

Raspberry Pi’s desktop screen and proceed to develop the software program in the 

Raspberry Pi. PuTTY is an application that needs to be used to open and set up the 

VNC viewer in the condition when no monitor is connected to the Raspberry Pi. 

PuTTY establishes Secure Shell (SSH) connections between a laptop window and 

external devices like Raspberry Pi. Figure 4.14 shows the PuTTY configuration before 

running VNC viewer. Figure 4.15 shows the authentication of VNC server before 

getting into VNC viewer. Appendix A presents the full program script for smart 

farming system which is written in Python language. The python script starts with the 

modules imports to perform initial setup of the program environment. It is important 

to import the OpenCV library for computer vision and image processing that are 

required in this system. Apart from that, the requests module is imported to allow 

communication between the software program and the telegram application 

programming interface (APIs). This enables the message and data to be sent to 

Telegram over the Internet. Other modules including file handling modules, RPI.GPIO 

modules, Picamera2 modules are required to develop the integrated unified system. 

The next phase of software logic and execution flow is to configure the setup of 

Telegram bot. At first, a telegram bot with a specified name ‘cropguard’ is created 

through BotFather in Telegram. Then, a Bot Token will be sent in the chat to access 

the HyperText Transfer Protocol (HTTP) API. The Bot Token received is 

8115057421:AAHYv-nEQ7nnLSFs-iWxG-uUChD3DgbtGwg. The subsequent step 

is to obtain the chat id for ‘cropguard’ by initiating a new conservation with the new 

bot ‘cropguard’ and extracting the chat id provided in the Telegram API browser. The 

obtained values of both bot token and chat id are specified in the script to configure 

the Telegram, allowing a secure alert message notification. The python script 

continues with the initialization and setup of the GPIO pins for Raspberry Pi 4 Model 

B. The GPIO pin 4 of Raspberry Pi is configured as the input for PIR sensor while the 

GPIO pin 17 of Raspberry Pi is configured as the output for buzzer. Next, the python 

script also introduces logging event functions to record and track every event of the 

system with detailed information such as the live status of every functional component 

that comes along with the current date and time as shown in Figure 4.16. The detection 
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log file is used for performance tracking. Next, the pre-trained machine learning model, 

Haar Cascade classifier that was generated beforehand is imported within the script. 

In this context, OpenCV module serves a purpose to load the Haar Cascade classifier 

in eXtensible Markup Language (XML) format for object detection and classification. 

When Raspberry Pi executes the ‘haarcascade_frontalcatface.xml’ during Pi camera 

activation, Haar Cascade classifier will perform continuous scanning of every live 

frame within the camera. Figure 4.17 and Figure 4.18 show the process of converting 

the input frame to grayscale, respectively. Once the input frame is converted to 

grayscale, a window with a size of 40 × 40 will slide across all positions of the 

grayscale frame to check every aspect of cat’s features. The diagrams from Figure 

4.19 to Figure 4.24 shows the 40 × 40 window at different positions of the grayscale 

frame. After obtaining windows at different positions, this is when the cascade 

classifier stages come into play to detect whether the frame is a cat. The classifiers 

stages are applied individually, step by step to every window. Each classifier stage is 

responsible for checking different aspects of features related to cats. If a window 

succeeds in passing all the cascade classifier stages, then this input frame is considered 

as a cat. Figure 4.25 shows that a cat is successfully detected by the classification 

model. There is a bounding box that encompasses the area of cat detected. In addition, 

the Pi camera is initialized to have a minimum active time of 10 s once PIR sensor 

detects motion. This is to ensure that the motion-triggered camera has enough time to 

monitor and scan the live frame of the motion detected. With this, the accuracy of 

object detection can be further enhanced. Apart from that, stabilization of the PIR 

sensor plays a significant part in ensuring accurate motion detection to minimize false 

positives. In this case, the PIR sensor is stabilized for 30 s after the system is powered 

on and ready for operation. In the first 30 s, the PIR sensor is allowed to make 

adjustment to the ambient temperature as it detects motion by perceiving infrared 

radiation from objects that emit heat. If the PIR sensor is not stabilized, it might detect 

false motion due to several possible reasons such as the heat caused by the setup and 

initiation of component power-up. Figure 4.26 illustrates the confirmation status of 

stabilization of the PIR sensor in the beginning of system program start-up. In the 

main program loop, PIR sensor acts as the input of the whole program since the 

activation of the rest of the functional components depends on PIR sensor. In simple 

words, PIR sensor is the master of the program while Pi camera, buzzer and Telegram  
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Figure 4.14: PuTTY Configuration.  

 

 

 

Figure 4.15: Authentication of VNC Server. 
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Figure 4.16: Detection Log File for Event Tracking.  

 

 

 

Figure 4.17: Input Frame. 
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Figure 4.18: Converted Grayscale Frame. 

 

are the slaves that receive instructions from PIR sensor to operate. Upon motion 

detection by PIR sensor, the camera will be activated for at least 10 s, then Haar 

Cascade classifier comes into play to scan the live frame within the camera and detect 

if it is a cat. Once a cat is detected, there are several actions that will be initiated. For 

instance, the Pi camera will capture and save the image in ‘detected_cats’ folder, the 

buzzer will produce sound to repel the cat, a message with an image of the cat will be 

sent to Telegram, and the latest detection time of cat will be updated in the detection 

log file. Once the motion is no longer present within the detection range of PIR sensor, 

the buzzer will turn off and stop producing sound. The Pi camera and buzzer will reset 

and wait for instruction from the PIR sensor until motion is detected again. 

 

 

Figure 4.19: Window at 

Position (1,24). 

 

Figure 4.20: Window at 

Position (60,60). 

 

Figure 4.21: Window at 

Position (100,100). 
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Figure 4.22: Window at 

Position (130,50). 

 

Figure 4.23: Window at 

Position (40,100). 

 

Figure 4.24: Window at 

Position (30,150). 

 

 

 

Figure 4.25: A cat is Successfully Detected. 

 

 

 

 

Figure 4.26: Stabilization of PIR Sensor. 
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4.4 System Analysis and Evaluation  

 

In this section, the performance of the AI-driven IoT-based Smart Farming System is 

being analyzed and evaluated using several key measures which will be discussed in 

the following subsections. System analysis and evaluation are one of the important 

phases in the development process of the system to ensure that the system achieves 

performance milestones required by the system. It examines the effectiveness, 

accuracy, and reliability of the system under several conditions.  

 

 

 

4.4.1 Detection Performance Analysis  

 

As its name implies, detection performance analysis focuses on the evaluation process 

to determine the accuracy and effectiveness of the smart farming system in detecting 

and classifying cats. This subsection highlights the performance of the detection part 

of the system. In this context, several performance metrics such as confusion matrix, 

recall, precision, F1-score and detection latency are conducted. Through detection 

performance analysis, the strength and weakness of the classification model in 

detecting cats can be identified and analyzed for future improvements. 

 

 

 

4.4.1.1 Confusion Matrix Analysis  

 

Confusion Matrix is a method to evaluate the performance of the machine learning 

classifier by identifying the classification accuracy, breaking it down into four 

different categories. By referring to Figure 4.27, the top-left cell of the confusion 

matrix refers to the True Positives (TP) cases, that is the case where positive detections 

are obtained. In simpler words, TP case refers to the case where the system correctly 

predicted the presence of a cat when a real cat was actually present. This indicates that 

a cat is successfully detected by the system. For this reason, the system is considered 

highly sensitive in detecting cat, since the system demonstrates an accurate detection 
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performance. The top-right cell of the confusion matrix refers to the False Negatives 

(FN) cases where the system fails to detect the presence of a real cat. The system could 

not detect the presence of cat therefore cause a missed detection. The FN rate obtained 

from the system is 4.55% which is considered relatively low. Apart from that, the 

bottom-left cell of the confusion matrix represents the False Positive (FP) rate of the 

system. False positive case refers to the case where the system performs false detection, 

it predicted the animal as a cat, but the animal is not a cat in actual case. Non-cat is 

detected by the system, leading to a false deterrence response to the animal that is not 

a cat. Figure 4.27 shows that the system has a FP rate of 9.09% which indicates that 

the 9.09% of all the cases were misclassified as cats. Lastly, the bottom-right cell of 

the confusion matrix represents the True Negative (TN) rate of the system. It refers to 

the correct detection performed by the system in negative cases where cat is not present 

but other animals are present. In other words, non-cats are not detected by the system. 

The system shows a high TN rate of 45.45% that reflects the remarkable performance 

of the system in eliminating irrelevant inputs fed to the system. When other animals 

such as dog, tiger, kangaroo, and so on are present, the system will not detect them as 

cats. The overall accuracy of the system’s classification model is calculated using 

Equation 4.1. 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
× 100% 

(4.1) 

 

where  

𝑇𝑃 = True Positive  

𝑇𝑁 = True Negative  

 

As a result, the overall accuracy obtained is 86.36%, which is considered relatively 

high. This accuracy result reflects the system’s ability in detecting and classifying cats 

accurately and consistently. The system has shown great potential in minimizing crop 

damage due to its strong and stable performance. 
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Figure 4.27: Confusion Matrix of the Classification Model. 

 

 

 

4.4.1.2 Performance Metrics Evaluation  

 

Besides, the performance of the detection module is evaluated using another three key 

metrics which are recall, precision and F1-score. Figure 4.28 shows the value of recall, 

precision and F1-score which are 89.99%, 81.82% and 85.71% respectively. Recall is 

used as a metric to measure how many cats are actually detected. It can be calculated 

using the value of TP and FN as shown in Equation 4.2. 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.2) 

 

where 

𝑇𝑃 = True Positive  

𝐹𝑁 = False Negative  

 

Since the value of 𝑇𝑃 and 𝐹𝑁 obtained from the confusion matrix as shown in Figure 

4.27 are 40.91% and 4.55%, respectively, therefore the result of recall is 89.99%. This 

result implies that out of all the actual cats that are present, 89.99% of the cats are 
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Figure 4.28: Recognition and Classification Metrics of the System. 

 

successfully detected. In simpler words, it successfully detected 89.99% of the actual 

cats present. This shows that the system is highly sensitive and rarely misses a real 

threat. Besides, precision is used as another metrics to measure how many detected 

cases are actually cats. In other words, it measures the accuracy of the classification 

model. Equation 4.3 presents the formula for precision. 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4.3) 

 

where 

𝐹𝑃 = False Positive 

 

The value obtained for precision is 81.82% as shown in Figure 4.28 which indicates 

that out of all the detections made, 81.82% of them were correctly identified as cat. 

With this high value of precision, chances of false alarms can be greatly reduced. At 

the same time, accurate deterrent response can be assured. F1-score refers to the 

harmonic mean of recall and precision thus its value is calculated using the value of 

recall and precision as shown in Equation 4.4.  
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 F1-𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4.4) 

 

As a result, the value of F1-score obtained is 85.71%. This balanced score reflects the 

system’s great ability and capability in detecting and classifying cats accurately. All 

in all, these results confirm that the Haar Cascade classifier performs reliably and is 

well-suited for real-time smart farming system. 

 

 

 

4.4.1.3 Detection Latency Analysis  

 

Detection latency analysis is done by measuring the time taken for the system to detect 

cats across multiple trails to evaluate the system performance in detecting cats. Based 

on the diagram in Figure 4.29, it can be observed that the detection latency lies within 

the range of 0.7 s to 1.65 s. The detection latency includes the total time taken starting 

from the camera activating, scanning the live frame, system processing the input  

 

 

Figure 4.29: Detection Latency of Smart Farming System. 
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through the machine learning classifier, classification of the animal, specifically 

detecting cats and ending with the confirmation of cat presence. The results obtained 

based on Figure 4.29 proves that the system is quick in detecting cats. It is highly 

responsive to the presence of cat. Thus, it can be concluded that the system achieves 

high level of efficiency in detecting cat, contributing to a reliable operation for real-

time smart farming system.  

 

 

 

4.4.2 Repelling Mechanism Analysis   

 

The performance of the repelling mechanism is tested in this analysis where analysis 

is carried out to determine the effectiveness of the system in repelling the cats. In other 

words, repelling mechanism analysis explains the repelling latency and the repelling 

success rate achieved by the system. This analysis is important to reflect the system’s 

ability to fulfill the core objectives of this project, which is to repel the cats away in 

order to protect the crop field.  

 

 

 

4.4.2.1 Repelling Latency Analysis  

 

Repelling latency is defined as the time taken for the smart farming system to trigger 

the repelling mechanism and complete the repelling action. It includes the time taken 

to complete the final stage of the system operation process which is deterrence action 

module. By referring to Figure 4.30, the repelling latency of the system ranges from 

0.2 s to 1.5 s. This result proves that the system is able to response rapidly upon 

detecting the presence of cats. In the majority of cases, the system manages to execute 

the repelling mechanism immediately by triggering the buzzer to sound on right after 

the system confirms the presence of cat. All in all, the system has successfully 

demonstrated its effectiveness in executing an immediate repelling response to the 

presence of cats.  
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Figure 4.30: Repelling Latency of Smart Farming System. 

 

 

 

4.4.2.2 Repelling Success Rate  

 

The repelling success rate of the smart farming system is obtained by evaluating the 

system performance, mainly focusing on the accuracy of the classification model and 

responsiveness of the repelling mechanism. These two aspects serve as the key factors 

that contribute significantly to the system’s high repelling success rate. They work 

together to detect cats accurately and repel the cats immediately without any delay. At 

the same time, all of the processes should be performed rapidly. Hence, a high repelling 

success rate can be obtained if all these core aspects are achieved. Figure 4.31 shows 

that a repelling success rate of 80% to 100% is achieved by the system. By way of 

explanation, the reason behind the high repelling success rate is demonstrated in such 

a way that when a cat is present, it will be quickly and accurately detected by the 

system. After this, the buzzer will be activated immediately to emit a buzzing sound. 

As a result, the cat will fail to damage the crop since it is being driven away before it 
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manages to enter the crop field. Therefore, it can be said with certainty that the system 

emerged as a promising solution to protect the crops.  

 

 

Figure 4.31: Repelling Success Rate of Smart Farming System. 

 

 

 

4.4.3 Total Response Time Analysis  

 

The total response time of the smart farming system is another key aspect that has been 

analyzed using the logging event function introduced by the system. In general, the 

total response time represents the full operational cycle of the system. The response 

time includes duration for motion detection, camera activation, object classification, 

image acquisition, real-time telegram message delivery and buzzer activation. The 

total time is recorded from the beginning to the end of system operation. From the 

latency perspective as mentioned in the previous subsections, the total response time 

is the summation of detection latency and repelling latency. By referring to Figure 4.32, 

an average total response time that ranges from 4 s to 5 s is obtained through multiple 

test runs. This implies that it takes the smart farming system approximately 4.5 s to 
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detect and repel the cat away from the location where the system is placed at. This 

rapid response ensures that the repelling action is activated almost immediately after a 

cat is detected, minimizing the chance for crop damage. Besides, this rapid response 

also proves that the functional modules for smart farming system are integrated 

smoothly, leading to a successful development of an advanced system. All in all, this 

developed project signifies a holistic approach towards system reliability in real-time 

scenarios. 

 

 

Figure 4.32: Total Response Time of Smart Farming System. 

 

 

 

4.4.4 Condition-based Accuracy Analysis  

 

The performance of the system under various affecting factors is analyzed in this 

subsection. Factors such as cat species variation, lighting conditions, detection 

distance and number of cats are used to examine the accuracy and reliability of the 

system. Condition-based accuracy analysis is significant to ensure that the system 
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performs reliably and maintains robustness in real-time scenario that is full of 

uncertainty. 

 

 

 

4.4.4.1 Cat Species Variation 

 

The performance of AI-driven IoT-based Smart Farming System is verified through 

testing on multiple species of cat. The diagrams presented in Figure 4.33 to Figure 

4.35 present that the system is capable of identifying cats regardless of species 

difference. These results prove that the machine learning classifier which is known as 

Haar Cascade classifier is intelligent in classifying cats. It is trained to classify cats 

based on the features of cats. For this reason, Haar Cascade classifier has proven to be 

instrumental in animal classification, especially cats in this case. To further support 

this study, another case study involving a tiger is being carried out. This is because a 

tiger looks similar to a cat, therefore it might cause confusion to the classifier during 

the animal classification phase. However, there is no response from the system when  

 

 

Figure 4.33: White Cat is Detected. 
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Figure 4.34: Gray Cat is Detected. 

 

 

 

Figure 4.35: Orange Cat is Detected. 
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the system is tested with an image of a tiger. Furthermore, additional case studies 

involving dogs are also being conducted. The system shows no response to dogs. This 

result proves that the classifier performs excellently in detecting specific animals like 

cats. Hence, there is no doubt that this system is reliable since its performance is well-

supported by different valid case studies. 

 

 

 

4.4.4.2 Lighting Conditions 

 

To evaluate the performance of the smart farming system under different lighting 

conditions, another case study is investigated where the system is placed in a dark 

environment. Figure 4.36 shows that the system is able to detect and classify cats even 

though the surrounding environment has weak illumination. This is because the 

machine learning classification model is well-trained to perform classification with 

great tolerance to the illumination variations. With this comprehensive approach, this 

system achieves strong performance in detecting cats regardless of the lighting 

conditions. For this reason, this smart farming system is a stable and effective tool to 

protect the crops at day and night since it is immune to lighting conditions. 

 

 

Figure 4.36: Cat is Detected in Dark Condition. 
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4.4.4.3 Detection Distance  

 

Detection distance is another factor taken into consideration when evaluating the 

performance of the smart farming system. It is important to ensure that the system can 

perform reliably under varied conditions regardless of the distance. The evaluation of  

 

 

Figure 4.37: Short Detection Distance. 

 

 

 

Figure 4.38: Long Detection Distance. 
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system performance at different distances is shown in Figure 4.37 and Figure 4.38, 

respectively. Although the cat is far away from the system and it is small in size, the 

system still manages to detect the cat. Therefore, this proves that the system is a 

powerful tool for wide area surveillance in agricultural settings. 

 

 

 

4.4.4.4 Number of Cats  

 

By referring to Figure 4.39, multiple cats are detected by the system. This result shows 

that the system remains its accuracy to detect cats in complex scenes. In addition, the 

system introduces no latency in detecting multiple cats compared to detecting a single 

cat. In other words, the model can handle multiple cats in a single frame and perform 

rapid classification regardless of the number of objects in the frame. Therefore, it 

expands the system capability for scalability and accuracy in real-time scenarios. 

 

 

Figure 4.39: Multiple Cats are Detected. 
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CHAPTER 5 

 

 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion  

 

In conclusion, a smart farming system powered by AI and IoT has been successfully 

developed and implemented to achieve the objectives of this project. The developed 

system is able to detect the presence of cats and execute immediate repellent action to 

the cats. At the same time, the system successfully interacts with the IoT cloud by 

delivering real-time data to user’s Telegram via cloud-based communication. A 

software program is successfully developed using machine learning algorithms to 

perform accurate object classifications, specifically focusing on cats. Besides, the 

integration between multiple functional modules is successful where all functional 

components work together to contribute a seamless operation in detecting, classifying, 

and repelling animals efficiently and autonomously. This AI-driven IoT-based Smart 

Farming System has demonstrated a successful integration between intelligent animal 

classification with automated repelling mechanism. Data from the detection module is 

passed in real-time to the classification module, which identifies the species of the 

approaching animal. Based on the classification result, the system triggers the 

appropriate deterrent through the output control module and sends timely alert 

messages. All in all, the experimental results prove that this system is a powerful tool 

for surveillance of crop field as it not only fulfils the primary objective of this project 

but also shows great potential in enhancing the system’s accuracy, efficiency and 

reliability in real-time scenarios. In addition, this system stands out for its remarkable 

performance in optimizing energy consumption.  
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5.2 Recommendation 

 

While this project has offered promising results, there are several areas that can be 

improved in future development. Firstly, a stepper motor could be introduced to the 

system to provide mobility. By integrating stepper motors into the system, the system 

is empowered to function like a surveillance robot, capable of autonomously patrolling 

the crop field. With this future improvement, the system will not remain stationary in 

that particular location, instead, it becomes an active device that moves around the 

crop field without any restrictions. Furthermore, the system’s capability can be 

extended by developing more advanced AI models for real-time detection and 

classification for multiple classes of animals. On the other hand, it is recommended 

that solar panel charging could be introduced to the system, enabling sustainable 

operation with enhanced energy efficiency.  
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APPENDICES 

 

 

 

Appendix A: Python Program for Integrated Smart Farming System. 

 

#!/usr/bin/python3 

import cv2 

import os   

import time 

import datetime 

import requests 

import RPi.GPIO as GPIO 

import signal 

from picamera2 import Picamera2 

 

# Telegram configuration 

BOT_TOKEN = "8115057421:AAHYv-nEQ7nnLSFs-iWxG-

uUChD3DgbtGwg" #private bot token for cropguard 

CHAT_ID = "983344994" #private chat ID for cropguard 

 

# PIR sensor and buzzer GPIO setup 

PIR_PIN = 4 #GPIO pin connected to PIR sensor 

BUZZER_PIN = 17 #GPIO pin connected to buzzer 

 

GPIO.setmode(GPIO.BCM) 

GPIO.setup(PIR_PIN, GPIO.IN) #PIR sensor is configured as input  

GPIO.setup(BUZZER_PIN, GPIO.OUT) #Buzzer is configured as output 

GPIO.output(BUZZER_PIN, GPIO.LOW) #Ensure buzzer is off initially 
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# Log file configuration for event tracking  

log_file = "detection_log_file.txt" 

def log_event(message): 

    timestamp = 

datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") 

    with open(log_file, "a") as f: 

        f.write(f"[{timestamp}] {message}\n") 

 

def handle_exit(signum, frame): 

    print("\nProgram interrupted. Exiting gracefully...") 

    log_event("Program exited by user") 

    GPIO.cleanup() 

    picam2.close() 

    cv2.destroyAllWindows() 

    exit(0) 

 

signal.signal(signal.SIGINT, handle_exit) 

 

# Function to send a Telegram message with image 

def send_telegram_message_with_image(message, image_path): 

    url = f"https://api.telegram.org/bot{BOT_TOKEN}/sendPhoto" 

    data = {"chat_id": CHAT_ID, "caption": message} 

    with open(image_path, 'rb') as photo: 

        files = {"photo": photo} 

        try: 

            response = requests.post(url, data=data, files=files) 

            if response.status_code != 200: 

                print("Failed to send the photo.") 

                log_event("Failed to send Telegram image") 

        except Exception as e: 

            print(f"Failed to send Telegram message with image: {e}") 

            log_event(f"Telegram error: {e}") 
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# Load Haar Cascade classifier to detect cats  

cat_detector = 

cv2.CascadeClassifier("/home/pi/cat_detection/haarcascade_frontalcatface.xml") 

 

# Initialize Picamera2 

picam2 = Picamera2() 

picam2.configure(picam2.create_still_configuration(main={"format": 

'RGB888', "size": (640, 480)})) #Enlarged resolution 

 

# Create directory for detected cat faces 

output_directory = "detected_cats" 

os.makedirs(output_directory, exist_ok=True) 

 

last_detection_time = 0 #Tracks the time of last detection 

cooldown = 10 #Cooldown period in seconds 

min_active_time = 10 #Camera stays active for at least 10 s 

 

# Allow PIR sensor to stabilize for 30s  

print("Initializing PIR sensor... Waiting for stabilization (30s)") 

log_event("Initializing PIR sensor  Waiting 30 seconds") 

time.sleep(30) 

print("PIR sensor ready.") 

log_event("PIR sensor ready") 

 

print("Waiting for motion... (Press Ctrl+C to exit)") 

log_event("System started Waiting for motion") 

 

try: 

    while True: 

        if GPIO.input(PIR_PIN):  # Motion detected 

            print("Motion detected! Confirming...") 

            log_event("Motion detected") 

            time.sleep(0.5)  #Small delay to prevent false triggers 
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            if GPIO.input(PIR_PIN):  # Double-check motion 

                print("Confirmed! Activating camera...") 

                picam2.start() 

                time.sleep(2)  #Allow adjustment of camera  

                motion_start_time = time.time() 

                 

                cat_detected = False #Flag to track if a cat was detected 

                 

                while time.time() - motion_start_time < min_active_time: 

                    im = picam2.capture_array() 

                    grey = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 

                    cats = cat_detector.detectMultiScale(grey, 1.1, 5) 

 

                    if len(cats) > 0 and (time.time() - last_detection_time > 

cooldown): 

                        print("Cat detected! Capturing image and activating 

buzzer...") 

                        timestamp = 

datetime.datetime.now().strftime("%m-%d_%H-%M") 

                        filename = os.path.join(output_directory, 

f"cat_{timestamp}.jpg") 

                        cv2.imwrite(filename, im) 

                        log_event(f"Cat detected - Image saved as {filename}") 

                         

                        # Activate buzzer only when a cat is detected 

                        GPIO.output(BUZZER_PIN, GPIO.HIGH) 

                        log_event("Buzzer activated") 

                         

                        send_telegram_message_with_image("cat detected! buzzer 

sound on!", filename) 

                        last_detection_time = time.time() 

                        cat_detected = True 
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                    for (x, y, w, h) in cats: 

                        cv2.rectangle(im, (x, y), (x + w, y + h), (255, 0, 0), 2) 

                     

                    cv2.imshow("Cat Detection", im) 

                    cv2.waitKey(1) 

                 

                print("Camera deactivating...") 

                log_event("Camera deactivated") 

                picam2.stop() 

                 

                # Turn off buzzer only when no motion is detected 

                print("Waiting for no motion to turn off buzzer...") 

                while GPIO.input(PIR_PIN): 

                    time.sleep(0.5) 

                 

                GPIO.output(BUZZER_PIN, GPIO.LOW) #Deactivate buzzer 

                print("Buzzer turned off.") 

                log_event("Buzzer deactivated  No motion detected") 

 

except KeyboardInterrupt: 

    handle_exit(None, None) 
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Appendix B: Program Code to Create Vector File of Positive Samples for Training 

Automation in Bash. 

#!/bin/sh 

 

vec=binary_description 

info=positive_description.txt 

bg=negative_description.txt 

 

# Uncomment the next 4 variables for LBP training. 

#featureType=LBP 

#data=lbpcascade_frontalcatface/ 

#dst=../cascades/lbpcascade_frontalcatface.xml 

#mode=BASIC 

 

# Uncomment the next 4 variables for Haar training with basic 

# features. 

featureType=HAAR 

data=haarcascade_frontalcatface/ 

dst=../cascades/haarcascade_frontalcatface.xml 

mode=BASIC 

 

# Uncomment the next 4 variables for Haar training with 

# extended features. 

#featureType=HAAR 

#data=haarcascade_frontalcatface_extended/ 

#dst=../cascades/haarcascade_frontalcatface_extended.xml 

#mode=ALL 

 

# Set numPosTotal to be the line count of info. 

numPosTotal=`wc -l < $info` 

 

# Set numNegTotal to be the line count of bg. 

numNegTotal=`wc -l < $bg` 
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numPosPerStage=$(($numPosTotal*9/10)) 

numNegPerStage=$(($numNegTotal*9/10)) 

numStages=20 

minHitRate=0.995 

maxFalseAlarmRate=0.5 

 

# Ensure that the data directory exists and is empty. 

if [ ! -d "$data" ]; then 

    mkdir "$data" 

else 

    rm "$data/*.xml" 

fi 

 

opencv_createsamples -vec "$vec" -info "$info" -bg "$bg" \ 

        -num "$numPosTotal" 

opencv_traincascade -data "$data" -vec "$vec" -bg "$bg" \ 

        -numPos "$numPosPerStage" -numNeg "$numNegPerStage" \ 

        -numStages "$numStages" -minHitRate "$minHitRate" \ 

        -maxFalseAlarmRate "$maxFalseAlarmRate" \ 

        -featureType "$featureType" -mode "$mode" 

 

cp "$data/cascade.xml" "$dst" 
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Appendix C: Program Code to Generate Annotated Training Data for the 

Classification Model. 

import cv2 

import glob 

import math 

import sys 

 

outputImageExtension = '.out.jpg' 

 

def equalizedGray(image): 

    return cv2.equalizeHist(cv2.cvtColor( 

            image, cv2.COLOR_BGR2GRAY)) 

 

def describeNegativeHelper(imagePath, output): 

    outputImagePath = '%s%s' % (imagePath, outputImageExtension) 

    image = cv2.imread(imagePath) 

    # Save an equalized version of the image. 

    cv2.imwrite(outputImagePath, equalizedGray(image)) 

    # Append the equalized image to the negative description. 

    print >> output, outputImagePath 

 

def describeNegative(): 

    output = open('negative_description.txt', 'w') 

    # Append all images from Caltech Faces 1999, since all are 

    # non-cats. 

    for imagePath in glob.glob('faces/*.jpg'): 

        if imagePath.endswith(outputImageExtension): 

            # This file is equalized, saved on a previous run. 

            # Skip it. 

            continue 

        describeNegativeHelper(imagePath, output) 

    # Append all images from the Urtho negative training set, 

    # since all are non-cats. 
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    for imagePath in glob.glob('urtho_negatives/*.jpg'): 

        if imagePath.endswith(outputImageExtension): 

            # This file is equalized, saved on a previous run. 

            # Skip it. 

            continue 

        describeNegativeHelper(imagePath, output) 

    # Append non-cat images from VOC2007. 

    input = open('VOC2007/ImageSets/Main/cat_test.txt', 'r') 

    while True: 

        line = input.readline().rstrip() 

        if not line: 

            break 

        imageNumber, flag = line.split() 

        if int(flag) < 0: 

            # There is no cat in this image. 

            imagePath = 'VOC2007/JPEGImages/%s.jpg' % imageNumber 

            describeNegativeHelper(imagePath, output) 

 

def rotateCoords(coords, center, angleRadians): 

    # Positive y is down so reverse the angle, too. 

    angleRadians = -angleRadians 

    xs, ys = coords[::2], coords[1::2] 

    newCoords = [] 

    n = min(len(xs), len(ys)) 

    i = 0 

    centerX = center[0] 

    centerY = center[1] 

    cosAngle = math.cos(angleRadians) 

    sinAngle = math.sin(angleRadians) 

    while i < n: 

        xOffset = xs[i] - centerX 

        yOffset = ys[i] - centerY 

        newX = xOffset * cosAngle - yOffset * sinAngle + centerX 
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        newY = xOffset * sinAngle + yOffset * cosAngle + centerY 

        newCoords += [newX, newY] 

        i += 1 

    return newCoords 

 

def preprocessCatFace(coords, image): 

     

    leftEyeX, leftEyeY = coords[0], coords[1] 

    rightEyeX, rightEyeY = coords[2], coords[3] 

    mouthX = coords[4] 

    if leftEyeX > rightEyeX and leftEyeY < rightEyeY and \ 

            mouthX > rightEyeX: 

        # The "right eye" is in the second quadrant of the face, 

        # while the "left eye" is in the fourth quadrant (from the 

        # viewer's perspective.) Swap the eyes' labels in order to 

        # simplify the rotation logic. 

        leftEyeX, rightEyeX = rightEyeX, leftEyeX 

        leftEyeY, rightEyeY = rightEyeY, leftEyeY 

 

    eyesCenter = (0.5 * (leftEyeX + rightEyeX), 

                  0.5 * (leftEyeY + rightEyeY)) 

     

    eyesDeltaX = rightEyeX - leftEyeX 

    eyesDeltaY = rightEyeY - leftEyeY 

    eyesAngleRadians = math.atan2(eyesDeltaY, eyesDeltaX) 

    eyesAngleDegrees = eyesAngleRadians * 180.0 / math.pi 

     

    # Straighten the image and fill in gray for blank borders. 

    rotation = cv2.getRotationMatrix2D( 

            eyesCenter, eyesAngleDegrees, 1.0) 

    imageSize = image.shape[1::-1] 

    straight = cv2.warpAffine(image, rotation, imageSize, 

                              borderValue=(128, 128, 128)) 
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    # Straighten the coordinates of the features. 

    newCoords = rotateCoords( 

            coords, eyesCenter, eyesAngleRadians) 

     

    # Make the face as wide as the space between the ear bases. 

    # (The ear base positions are specified in the reference 

    # coordinates.) 

    w = abs(newCoords[16] - newCoords[6]) 

    # Make the face square. 

    h = w 

    # Put the center point between the eyes at (0.5, 0.4) in 

    # proportion to the entire face. 

    minX = eyesCenter[0] - w/2 

    if minX < 0: 

        w += minX 

        minX = 0 

    minY = eyesCenter[1] - h*2/5 

    if minY < 0: 

        h += minY 

        minY = 0 

     

    # Crop the face. 

    crop = straight[minY:minY+h, minX:minX+w] 

    # Convert the crop to equalized grayscale. 

    crop = equalizedGray(crop) 

    # Return the crop. 

    return crop 

 

def describePositive(): 

    output = open('positive_description.txt', 'w') 

    dirs = ['CAT_DATASET_01/CAT_00', 

            'CAT_DATASET_01/CAT_01', 
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            'CAT_DATASET_01/CAT_02', 

            'CAT_DATASET_02/CAT_03', 

            'CAT_DATASET_02/CAT_04', 

            'CAT_DATASET_02/CAT_05', 

            'CAT_DATASET_02/CAT_06'] 

    for dir in dirs: 

        for imagePath in glob.glob('%s/*.jpg' % dir): 

            if imagePath.endswith(outputImageExtension): 

                # This file is a crop, saved on a previous run. 

                # Skip it. 

                continue 

            # Open the '.cat' annotation file associated with this 

            # image. 

            input = open('%s.cat' % imagePath, 'r') 

            # Read the coordinates of the cat features from the 

            # file. Discard the first number, which is the number 

            # of features. 

            coords = [int(i) for i in input.readline().split()[1:]] 

            # Read the image. 

            image = cv2.imread(imagePath) 

            # Straighten and crop the cat face. 

            crop = preprocessCatFace(coords, image) 

            if crop is None: 

                print >> sys.stderr, \ 

                        'Failed to preprocess image at %s.' % \ 

                        imagePath 

                continue 

            # Save the crop. 

            cropPath = '%s%s' % (imagePath, outputImageExtension) 

            cv2.imwrite(cropPath, crop) 

            # Append the cropped face and its bounds to the 

            # positive description. 

            h, w = crop.shape[:2] 
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            print >> output, cropPath, 1, 0, 0, w, h 

 

def main():     

    describeNegative() 

    describePositive() 

 

if __name__ == '__main__': 

    main() 

 

 

 


