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ABSTRACT 

 

This study explores the effectiveness of various data augmentation strategies for enhancing plant 

disease classification using the LeafGAN model. We propose a novel approach that integrates leaf 

region and disease symptom masking to improve the quality of synthetic images and, consequently, 

the performance of plant disease models. Three different configurations of the LeafGAN model 

were tested, with each model applying distinct masking techniques: LeafGAN with LFLSeg uses 

basic LeafGAN outputs, SingleMask-LeafGAN applies leaf region masking to isolate the leaf 

from the background, and DualMask-LeafGAN combines both leaf region and disease symptom 

masking for enhanced disease simulation. The models were evaluated based on their ability to 

generate realistic disease progression and recovery images, which were then used for data 

augmentation. Results show that DualMask-LeafGAN, incorporating both masking strategies, 

produced the most realistic and high-fidelity images, leading to superior augmentation quality. 

These findings highlight the potential of advanced data augmentation strategies in improving plant 

disease simulation, emphasizing the importance of targeted feature masking in enhancing the 

generalization and robustness of disease classification models in agricultural applications. 

 

Area of Study: Deep Learning for Image Segmentation and Classification, Computer Vision in 

Agriculture 

 

Keywords: Data Augmentation, Deep Learning, LeafGAN, Image Masking, Plant Disease 

Detection 
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Chapter 1 

Introduction 

 

Figure 1.1 :Examples of plant diseases from the PlantVillage dataset [1]. 

Plant disease classification plays a vital role in securing agricultural productivity and food 

supply. Traditionally, disease identification has relied on manual observation, which is time- 

consuming, labor-intensive, and requires expert knowledge making it impractical for large- 

scale farming. These diseases, often caused by pathogens such as viruses, bacteria, and fungi, 

typically exhibit visible symptoms like yellowing, spots, or galls on plant leaves. However, 

relying solely on visual inspection is not only inefficient but also prone to human error, 

especially when symptoms are subtle or resemble multiple diseases. In response to these 

limitations, automated classification using artificial intelligence (AI) has emerged as a faster, 

more scalable, and more accurate alternative [2]. 

Recent advances in deep learning have significantly enhanced image-based plant disease 

detection. Pre-trained models utilizing techniques such as Convolutional Neural Networks 

(CNNs), Generative Adversarial Networks (GANs), and Diffusion models have achieved 

promising performance by increasing both speed and accuracy. However, the success of these 

models heavily depends on the quality and diversity of training datasets. 

 

1.1 Problem Statement and Motivation 

 

Acquiring high-quality plant disease datasets is hindered by environmental challenges, such as 

variable lighting, leaf overlap, and background noise, which complicate accurate data 

collection. These factors often lead to inconsistent image quality, making it difficult to capture 

clear and reliable visual symptoms of diseases. Additionally, seasonal variations and 

geographic differences further limit the ability to gather standardized and comprehensive 

datasets. 
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A major challenge in plant disease classification is the lack of diverse and balanced datasets. 

Many publicly available datasets contain an uneven distribution of disease classes, with some 

conditions significantly underrepresented. Training models on such imbalanced data introduce 

bias, often resulting in overfitting and poor generalization to real-world scenarios. 

 
 

Figure 1.2: Examples of leaf segmented results from LeafGAN [3]. 

While basic augmentation techniques like rotation, flipping, and color variation increase 

dataset size, they often fail to replicate the intricate and diverse manifestations of plant diseases 

in real-world conditions. To overcome these limitations, advanced GAN-based methods, such 

as CycleGAN [4] and LeafGAN [3], have been developed for unpaired image-to-image 

translation to generate synthetic diseased leaf images. LeafGAN, for instance, employs Grad- 

CAM to generate a heatmap for rough leaf region localization and employs CycleGAN to train 

two models: one to superimpose disease symptoms on healthy leaves and another to remove 

disease symptoms from diseased leaves. However, the quality of the transformed images is 

heavily dependent on the accuracy of the segmentation algorithm, as Grad-CAM struggles to 

isolate leaf regions in images with multiple or overlapping leaves. This often results in the 

inclusion of background elements in the heatmap, leading to low-quality augmentations that 

compromise the realism of the generated images. 

This research is motivated by the need to generate higher-quality synthetic training data 

through improved segmentation and masking strategies. Specifically, this study replaces the 

segmentation module in LeafGAN with a YOLOv5-based segmentation model to improve leaf 
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localization and masking precision. This is expected to produce more realistic augmented 

images that better support disease classification tasks. 

 

1.2 Objectives 

Primary Objective: 

To enhance the diversity of existing plant disease datasets by applying advanced data 

augmentation techniques based on disease translation methods. 

Specific Objectives: 

(a) To study the impact of different leaf segmentation strategies on the quality of augmented 

disease images generated by LeafGAN. The current label-free segmentation method, LFLSeg, 

has shown limitations and produced suboptimal results. 

(b) To propose a novel plant disease augmentation method incorporating alternative 

segmentation strategies aimed at improving the realism and reliability of synthetic images. 

1.3 Contributions 

 

This project’s contributions include: 

• This work demonstrates that segmentation quality is a crucial factor in enhancing the 

realism of GAN-generated synthetic data for plant disease augmentation. Experiments 

confirm that employing the YOLOv5 model for leaf localization significantly improves 

segmentation accuracy, resulting in higher-quality augmentations and generating promising 

results compared to traditional Grad-CAM-based approaches. 

• A novel dual masking strategy is introduced to optimize disease augmentation. For healthy-

to-diseased transformations, leaf segmentation is utilized to enable LeafGAN to apply 

disease symptoms accurately across any part of the leaf. Conversely, for diseased-to- 

healthy transformations, disease-region detection is employed to ensure precise targeting 

of affected areas, improving the model’s ability to transform the correct regions. 

Experiments validate that this dual masking approach enhances the fidelity of bidirectional 

transformations. 
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1.4 Report Organization 

 

This report is organised into 6 chapters: Chapter 1 Introduction, Chapter 2 Literature Review, 

Chapter 3 Proposed Method, Chapter 4 Experiment and Chapter 5 Conclusion. The first chapter 

is the introduction of this project which includes problem statement, project background and 

motivation, project scope, project objectives, project contribution, highlights of project 

achievements, and report organisation. The second chapter is the literature review carried out 

on several existing disease translation models using different methods and the strengths and 

weaknesses of each product. The third chapter discusses the overall system design of this 

project. The fourth chapter concerns the details on how to implement the design of the system 

and reports the results obtained from the experiments. The fifth chapter summarizes the key 

findings of the project, highlights the main contributions, and suggests directions for future 

research to further improve data augmentation for plant disease classification. 
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Chapter 2 

Literature Review 

In this section, we will explore GAN-based and diffusion-based models in the augmentation of 

plant disease datasets. 

 

2.1 Previous Works on GANs-based model 

Generative Adversarial Networks (GAN) is a minimax two-player game where both players 

learn from each other and attempt to outperform the other [5]. The model includes two main 

structures: a generator and a discriminator. The generator produces synthetic images that 

closely resemble real ones to challenge the discriminator, whose task is to differentiate between 

synthetic and real images. Besides, GAN models have been widely used in various areas such 

as the medical field [6, 7], gaming industry [8, 9] and art sector especially in style transfer [10, 

11, 12]. The following research aims to extend the application of GAN models to the 

agriculture sector. 
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2.1.1 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial 

Networks 

CycleGAN [4] uses unpaired datasets for generating synthetic images, which has 

revolutionized the data augmentation method. Typically, the usage of paired datasets assists in 

generating the output image by learning the mapping between the paired datasets. For instance, 

health leaf images and disease leaf images are using simultaneously to guide the model training. 

However, this approach faces a crucial bottleneck due to the scarcity and difficulty in collecting 

paired data samples. CycleGAN introduces the unpaired dataset to address this problem. The 

main concept is to learn the special features from one image and apply them to other images 

without any paired training data. 

 

 

Figure 2.1: Overview of CycleGAN’s architecture. 

The process of the model is depicted in Figure 2.1. There are two different domain datasets, X 

(e.g., healthy plant dataset) and Y (e.g., diseased plant dataset). Additionally, generator G aids 

in translating the dataset from domain X to domain Y, while the reverse process is conducted 

using generator F. Two discriminators, Dx and Dy, distinguish between real images and 

synthetic images. 
 

Figure 2.2: Overview of the translation Framework. 

For instance, a healthy plant image 𝑥 is translated to a disease plant image though the generator 

G, i.e., 𝑦 → 𝐺(𝑥) = 𝑦^. Then, Discriminator Dy identifies the synthetic images 𝑦^ among the 

original disease images 𝑌. 
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Loss function 

The final objective function includes the adversarial loss function for both the generator G and 

F, as well as a novel loss function called cycle consistency loss. 

 

 

 

 

(1) 

The adversarial loss function (LGAN) encourages the discriminators to correctly classify 

synthetic images, maintaining the overall performance of the model. The generator G 

minimizes the difference between the real and fake images and generates compelling synthetic 

images, while discriminator Dy maximizes its ability to identify the results correctly. The 

formula for the adversarial loss is expressed as follows: 

 

(2) 

Utilizing unpaired datasets leads to a lack of guidance in image generation. Therefore, 

CycleGAN introduces a new loss function called cycle consistency loss to ensure successful 

translation though the process. 
 

Figure 2.3: Cycle-consistency loss. 

This model employs bidirectional translation concepts, meaning that if a horse image translates 

to the zebra, it can also translate back to the horse image. Similarly, the original image 𝑥 will 

be translate to 𝐺(𝑥) = 𝑦^ then transfer back to the original domain 𝐹(𝐺(𝑥)) ≈ 𝑥, as shown in 

Figure 2.3. Further explanation of the cycle consistency loss is to compare the distribution 

distance between the reconstructed image 𝑥 and original image 𝑥 to guarantee the similarity of 

them. 
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(3) 
 

Figure 2.4: The failure cases of translating the images using CycleGAN.  

Although the proposed model addresses the problem of insufficient datasets, it also has some 

limitations. For example, while CycleGAN is successful in translating colour and texture 

images, it struggles with geometric changes and various transformations, as depicted in Figure 

2.4. Additionally, CycleGAN translates the entire image, which can lead to the generation of 

undesirable datasets. For instance, when translating a horse into a zebra, the human riding on 

it may also be affected due to the lack of masking or attention mechanism. 
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2.1.2 LeafGAN: An Effective Data Augmentation Method for Practical Plant Disease 

Diagnosis 

Previous paper, CycleGAN, faces an issue in generating high-quality synthetic images and 

tends to transform the entire image into another image. Therefore, LeafGAN [3] is proposed to 

improve the existing problem found in CycleGAN. LeafGAN inherits the concept of unpaired 

datasets from CycleGAN and utilizes data augmentation methods to expand the dataset for 

diagnosing plant diseases. 

 

 

Figure 2.5: The architecture of LeafGAN. 

Similar to the architecture of CycleGAN, which uses a GAN-based model and bidirectional 

generation in healthy plant image and arbitrary disease plant image. Moreover, this model 

integrates a label-free leaf segmentation module (LFLSeg) to emphasize the important regions 

of the dataset as shown in Figure 2.5. 

 

Figure 2.6:  Result and segmentation process of LFLSeg model. 

LFLSeg is employed to mask undesired regions, such as the background, with a focus on 

translating the symptoms of diseases in images. It uses Gram-CAM, which generates a heatmap 

to visualize the important regions on the image through specific colors, as shown in Figure 2.6 

(a). Compared to traditional masking methods, it more accurately highlights the target. 
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𝑠 

The segmentation process is depicted in Figure 2.6 (b). A synthetic image is generated and 

after masking, it is added to the dataset pool to mislead the discriminator. Initially, a healthy 

image, denoted as 𝑥, is transformed into a synthetic disease image though the generator G 

which stimulates the symptoms. This transformation is represented as 𝐺(𝑥) = 𝑥′. Following 

masking in LFLSeg, it is denoted as 𝐺(𝑥)☉𝑆𝑥 = 𝑥′. In contrast, another dataset 𝑦 exclusively 

masks the background of images, identified as 𝑦 ☉ 𝑆𝑦 = 𝑦𝑠. Then, the discriminator 𝐷𝑌 is 

tasked with identifying synthetic images. 

Loss function 

The final objective function includes mainly three different type of loss function: Adversarial 

Loss, Cycle Consistency Loss and Background Similarity Loss and defined as follow: 

 

 

(4) 

For both the adversarial loss and cycle consistency loss, we find similarities with the 

CycleGAN loss function. Therefore, our focus in this paper is on introducing background 

similarity loss (Lbs). The core concept is to maintain the integrity of the background during 

transformation. This means that the synthetic background images should closely resemble their 

original counterparts. This is achieved by calculating the distance between the generated 

background images and the original ones, allowing us to identify any differences between them. 

 

 

(5) 
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Figure 2.7: The failure result in segmentation. 
 

Figure 2.8: Failure result in translating the powdery mildew disease (PM). 

The LFLSeg model effectively identifies most of the background and the target region but fails 

to classify multiple and overlapping leaves, as depicted in the first row of Figure 2.7. 

Additionally, the LeafGAN model encounters difficulties when dealing with powdery mildew 

(PM) disease, which exhibits complex characteristics across different disease stages. 

Consequently, it generates images with altered colours and insufficient representation of PM 

symptoms. In Figure 2.8, the first and second rows illustrate symptoms of powdery mildew in 

the first and middle stages, appearing as a darker blue colour. However, the later stage of PM 

disease (last row) is characterized by white spots. While this stage is typical, the problem arises 

from the limited examples in the training dataset. 
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2.2 Previous Works on diffusion-based model 

The diffusion model comprises two main processes: the forward process, involving the addition 

of noise, and the backward process, also known as denoising, which removes the noise until 

the image becomes clear. This approach generates higher-quality and more diverse images 

compared to GANs models [13]. 

2.2.1 Denoising Diffusion Probabilistic Models 

 

 

 

 

 

Figure 2.9: The process of Denoising Diffusion Probabilistic Models. 

Denoising Diffusion Probabilistic Models (DDPM) [14] is a type of diffusion model, 

specifically a likelihood generative model, designed to produce images that belong to a similar 

distribution. In the forward process, Gaussian noise is gradually added to an input 𝑥0 until it 

becomes a fully noised image 𝑥𝑇. This process is expressed as follows: 

 

(6) 

Here, 𝑥𝑡 is the image at time step 𝑡, added with Gaussian noise following the variance 𝛽𝑡 at 

specific timestep t and scaling 𝑥𝑡−1 by √1 − 𝛽𝑡. In other word, given an 𝑥𝑡−1 one can predict 

𝑥𝑡. 

Using the reparameterization trick, sampling from a standard Gaussian distribution and then 

scaling and shifting this sample using the model's learnable parameters, this equation can also 

be written as: 

(7) 

This means 𝑥𝑡 is the combination of the 𝑥𝑡−1 with the noise 𝜖. This formula also predicts that 

a similar situation exists where 𝑥𝑡−1 consists of 𝑥𝑡−2 with noise 𝜖. Hence, it shows that an 

image at arbitrary timestep 𝑥𝑡 is represented as 𝑥0 with noise 𝜖. 

The backward process of the diffusion model tries to reconstruct the fully noised image 𝑥𝑇 into 

a clear noise image 𝑥0. This process predicts the means and covariance matrix of Gaussian 

distribution as expressed in this equation: 

 

(8) 

This model uses variational lower bound loss and is simplified as follows: 
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(9) 

This equation aims to measure the difference between the noise added to the image 𝜖 and the 

noise generated by the diffusion process 𝑞(𝑥𝑡, 𝑡) at arbitrary time step t. Using this equation, 

it guides the diffusion process to generate positive images. 

Similar to most diffusion models, a significant limitation of this model is the lengthy training 

time, as it necessitates 1000 timesteps to generate high-quality images. Moreover, while this 

model shows promise in improving image generation quality, it does not currently surpass 

existing models. 
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𝑡−1 

2.2.2 RePaint: Inpainting using Denoising Diffusion Probabilistic Models 
 

Figure 2.10: Failure case of semantic meaningful generation. 

Image inpainting is a technique that aids in recovering missing areas in an image. However, 

the existing approaches are limited to training on certain shapes of masks, and the generated 

images sometimes lack semantic meaningful changes, resulting in undesirable outcomes. For 

example, if we attempt to change the nose of a dog, it may translate into a different type of 

nose, such as that of a horse or another animal, as shown in Figure 2.10. Hence, RePaint, a 

model using the DDPM as the backbone and resample method is proposed [15]. It aims to 

generate different kinds of mask on training and enhance the accuracy of semantic generation 

ability. 

 

Figure 2.11: Overview of RePaint’s architecture. 

Figure 2.11 depicts the architecture of RePaint, which shares a similar process with DDPM in 

both the forward and backward processes. It identifies the image at arbitrary timesteps and 

combines it with a mask before proceeding to another iteration. In the forward process, the 

input image gradually accumulates Gaussian noise, using Equation (10) from the DDPM 

paper to predict intermediate image 𝑥𝑡 and 𝑥𝑡−1 at any timestep: 

(10) 

During the forward process, an image 𝑥𝑡−1 gradually accumulates Gaussian noise, denoted as 

𝑥𝑘𝑛𝑜𝑤, and the noise addition process is expressed as follows: 

 

(11) 
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𝑡−1 

The reverse process utilizes the image 𝑥𝑡 to denoise the image using a noise prediction equation 

inherited from DDPM and represents it as 𝑥𝑢𝑛𝑘𝑛𝑜𝑤. The denoising process is expressed as 

follow: 

 

(12) 

The 𝑥𝑘𝑛𝑜𝑤  is masked with the desirable area 𝑚 and 𝑥𝑢𝑛𝑘𝑛𝑜𝑤 is marked with an inverted 
𝑡−1 𝑡−1 

mask (1 − 𝑚). These two images are combined and indicated as follows: 

 

(13) 

After combining the two images, this image serves as the input image during the next iteration 

until it outputs a fully denoised image. 

 
 

Figure 2.12: Result of using slow-down and resampling methods. 

The known pixels are generated without considering the filling part, resulting in disharmony 

in the generated image. Additionally, the change in the image is hindered by the decrease in 

variance 𝛽𝑡 at each denoising step. The paper compares the slowing-down and resampling 

methods to solve this problem. The slowing-down approach involves using more time steps to 

generate one image, while the resampling method attempts to regenerate the image multiple 

times. Moreover, Learned Perceptual Image Patch Similarity (LPIPS) is used to evaluate the 

distance between the input and output images, where a higher number indicates more difference. 

The results show that despite the higher computational cost, resampling yields significantly 

better results compared to the slowing-down approach as shown in Figure 2.12. 

Moreover, this model has the potential to further enhance the generative process time because 

the processing time, which necessitates at least 250 timesteps, exceeds that of the GAN model. 
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However, several models focus on addressing this issue, as evidenced in studies [16, 17]. 

Additionally, the disparity between the ground truth image and the generated image presents 

challenges in evaluation due to the enhancement of arbitrary masking during training, resulting 

in various output images. For example, the current evaluation metric, LPIPS, compares the 

diversity of the input and output images. Therefore, the utilization of Fréchet inception distance 

(FID) provides an alternative for analysing the quality and diversity of the images. However, 

FID typically requires evaluating images exceeding 1000, rendering this evaluation method 

infeasible for the current DDPM model. 
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2.2.3 Effective Data Augmentation with Diffusion Models 

The current data augmentation techniques, such as rotation or flip, are limited in their ability 

to transform images with diverse and intricate features. For example, when applying these 

techniques to a car image, they often only alter the color or produce similar images from the 

dataset, failing to transform aspects like texture, brand, or unique structural elements. 

Additionally, pretrained models trained on large datasets like ImageNet can suffer from data 

leakage issues, as they tend to generate images that closely resemble the benchmarking dataset. 

Therefore, this paper proposes a text-to-image diffusion model (DA-Fusion) to increase diverse 

datasets using a more comprehensive data augmentation strategy [18]. 

To prevent the leakage of internet data, this model applies two approaches: a model-centric 

approach, which fine-tunes the weights of the model to remove class information, and a data- 

centric approach, which changes the class names to remove class knowledge. 

 

Figure 2.13: Leakage of Internet Data. 

The model-centric method modifies the Stable diffusion model to eliminate concepts from the 

original dataset. Additionally, it fine-tunes the UNet, which is the backbone of the Stable 

diffusion model, to remove the effect of the prompt (class name). Consequently, it adjusts the 

loss function, as outlined in the Erased Stable Diffusion (ESD) [19], to assist in removing the 

concept of the original class name. 

 (14) 

It aims to minimize the difference between the adjustment effect of the image given a specific 

class name compared to without modification. This helps the generation of the image to be less 

likely transformed into the specific image. 

For the data-centric method to prevent dataset leakage, it changes the prompts of the original 

class name to a new prompt without any clues of the class name. By removing the class name 

from the prompt, the model is forced to rely on other contextual cues or general knowledge
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0 

rather than specific class information. 
 

Figure 2.14: Process of data augmentation using DA-Fusion 

Generally, the training process combines the dataset of the images and class labels to generate 

M versions of the augmented images. It applies the word-embedding method and uses the 

pretrained DDPM model throughout the entire process. Additionally, it trains the downstream 

model using the synthetic image and original images. 

To guide the model in learning the new concept to generate diverse images, this model embeds 

a text encoder to learn the new words. It uses a word embedding vector 𝑤→→→𝜄 to represent each 

class using a small number of labelled images. The loss function optimizes the learning process 

as shown below: 

(15) 

It aids in generating a more accurate image by enhancing understanding through word 

embedding for a certain class. Moreover, this model employs an approach that splices real 

images as guidance for training the model. During the reverse process, it introduces another 

real image to guide the denoising process until it becomes clear. 

 

 

At arbitrary timestep 𝑆𝑡0 

(16) 

during the reverse process, a real image 𝑥𝑟𝑒𝑓 is added as a reference 

during the generation and the denoising of Gaussian noise 𝜖~𝑁 (0,1) continues until the 

timesteps are completed. 

This model not only achieves success in few-shot classification but also in real-world weed 

recognition. However, it faces challenges in controlling the modification of the image. For 

instance, it cannot explicitly control the transformation of the image, such as changing the 

breed of a cat. Hence, prompt-based image editing has been suggested to address this limitation, 
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enabling localized changes without supervision. Moreover, the paper has mentioned that 

maintaining temporal consistency is crucial, as it assists in transforming realistic images across 

various background environments. 
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2.2.4 Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models 

The diffusion model consumes a lot of time during training and is slow in generating an image 

due to the forward and backward processes. Additionally, it also requires a large dataset to train 

the model to achieve good results. This paper proposes Patch Diffusion, patch-wise diffusion 

training to address these two problems [20]. The core concept of this model focuses on smaller 

patches of the whole image, which decreases processing time and burden instead of adding 

noise throughout the entire image. Unlike conventional methods focusing on image distribution 

learning, Patch Diffusion adopts score-based generative modelling, prioritizing the assessment 

of scores, whether good or bad, over image generation distribution. 

This model comprises three key components. Firstly, it randomly partitions the image into 

patches, incorporating patch location and size as adjustable parameters. Secondly, it integrates 

a pixel coordinate system to depict patch locations accurately. Lastly, it streamlines the reverse 

step, eliminating the need for separate patch sampling and merging, thereby enhancing 

efficiency and simplicity. 

 

Figure 2.15: Architecture of Patch Diffusion. 

During the training phase, the original image is cropped into larger and smaller sizes. Both 

images are indicated with 𝑥𝑖,𝑗,𝑠 where (𝑖, 𝑗) represents the left-upper coordinate of the patches 

and 𝑠 represents the size. The usage of different-sized patches helps capture the cross- 

dependency of the entire image. Additionally, the model employs an out-painting strategy to 

sample a new image, involving generating content beyond the boundaries of the input image. 

This is crucial as the full-size image provides the global score to aid in generating a high- 

quality image. A coordinate-guided diffusion model is utilized to incorporate spatial 

information through pixel coordinates, enhancing the generation process. This model 

concatenates the patches obtained from the previous step to provide guidance, serving as 

coordinate conditions during each reverse iteration. 
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The patch size selection is divided into two parts: stochastic and progressive. The stochastic 

method involves randomly cropping the image to create mini batches for training the model. 

Conversely, the progressive method increases the patch size from small to large during each 

iteration, as shown below: 

 

 

 

 

(17) 

The resolution of the original image is denoted as 𝑅, and the ratio of the iteration is 𝑝. There 

are three situations: firstly, when the patch size is one-fourth of the original image (denoted as 

𝑅// 4), it selects the probability 2 (1 − 𝑝) of the iteration. Secondly, when the patch size is 
5 

half of the original image, the probability 3 (1 − 𝑝) of the remaining iteration is selected. 
5 

Lastly, it uses the original image throughout the total iteration. 𝑝 = 0.5 is found to show that 

the scheduling trades off the efficiency of training time and the quality of the generated image. 

Furthermore, the model learns the score function on random-size patches rather than the entire 

image. The denoising score function is expressed as: 

 

(18) 

It aims to minimize Euclidean distance between the denoised patches 𝐷𝜃(𝑥˜𝒊, 𝑗, 𝑠; 𝜎𝑡, 𝑖, 𝑗, 𝑠) 

with the original patch 𝑥𝑖, 𝑗,𝑠. 

Patch diffusion addresses the issue of lengthy training times and achieves a 2x faster training 

rate compared to other models. Moreover, it demonstrates robust performance across datasets 

of various sizes, although there is still potential for enhancement in certain aspects of picture 

accuracy. Furthermore, there is discussion about enhancing the coordinate system by 

leveraging advanced positional embeddings, such as 5D coordinates encompassing spatial and 

viewing directions [21]. 
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2.3 Limitation of Previous Studies 

 

Previous studies have not extensively utilized diffusion models for augmenting plant datasets. 

While some research has mentioned generating new datasets in the field of plant datasets, there 

has been little focus on creating variable field conditions for crop datasets, leaving a gap in the 

literature. Furthermore, research on data augmentation strategies for plant disease detection is 

limited and does not comprehensively address different scenarios. For instance, LeafGAN has 

failed to analyse datasets with multiple layers of leaves, restricting its applicability to broader 

scenarios. 

 

2.4 Proposed Solutions 

This project aims to propose a model that employs the GAN model to augment new datasets 

capable of handling various conditions and backgrounds to address the dataset insufficiency 

problem. Moreover, this project aims to augment the dataset through two different methods. 

Firstly, by generating a variety of new healthy and diseased plant images. Secondly, by 

translating between healthy plant images and diseased plant images, and vice versa. Two 

different condition datasets have been utilized to highlight the complexity of background 

datasets, resulting in a more compelling and realistic dataset. Additionally, the transfer learning 

technique using the Yolov5 model is incorporated to focus on the translating region to aid in 

generating positive images. 



Bachelor of Information Technology (Honours) Communications and Networking 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

23 

 

Chapter 3  

Dual Masking Strategy for LeafGAN 

 
3.1   Segmentation Strategies in LeafGAN 

The original LeafGAN framework suffers from two key limitations in its segmentation strategy. 

First, segmentation is only indirectly involved in the generation process. It primarily assists the 

discriminator by focusing attention on the leaf region during adversarial training, without 

directly guiding the generator. Consequently, disease translation is learned in a weakly 

supervised manner requiring the model to implicitly localize both the leaf and disease regions 

which limits its ability to synthesize accurate and realistic disease patterns. Second, the LFLSeg 

module used for segmentation often produces low-quality masks. These label-free masks tend 

to include background pixels or miss parts of the leaf, providing weak supervision that degrades 

the realism of generated images. 

 

To address these issues, we propose two key enhancements. First, we replace LFLSeg with the 

YOLOv5 model for leaf localization, achieving more precise segmentation that isolates the 

leaf region and minimizes background interference. Second, we introduce a dual masking 

strategy that generates separate masks for both the leaf and disease regions. This additional 

spatial information allows the discriminator to focus more accurately on disease-affected areas, 

enhancing its ability to distinguish real images among synthetic images. As a result of the 

stronger adversarial feedback, the generator also improves, producing more realistic and 

disease-accurate outputs. 
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3. 2 DualMask-LeafGAN 

 
Figure 3.1: Overview of proposed DualMask-LeafGAN. 

Figure 3.1 shows the architecture of DualMask-LeafGAN (DM-LeafGAN). DM-Leaf-GAN is 

an improved image translation framework aimed at generating more accurate and realistic 

representations of healthy and diseased leaf images. The model operates bidirectionally with 

two mapping functions, 𝐺: 𝐻 → 𝐷  and 𝐹: 𝐷 → 𝐻 , where  𝐻  and 𝐷 denote the healthy and 

diseased leaf domains. Unlike the original LeafGAN, which relies on a single label-free 

segmentation mask (LFLSeg) for the entire leaf region, this approach employs two distinct 

segmentation modules for healthy and diseased leaves. These modules generate separate masks 

for both the leaf and the disease areas using YOLOv5, which provides enhanced precision in 

localization. When transforming a healthy leaf image ℎ ∈  𝐻  to a diseased version, the 

generator G creates a synthetic image h’, and the corresponding masks 𝑆ℎand 𝑆𝑑  are applied to 

isolate important regions. The masked images ℎ′𝑠   and real diseased 𝑑𝑠 are then fed into the 

diseased discriminator 𝐷𝐷, focusing its attention exclusively on the relevant leaf and disease 

areas for real or fake discrimination. The reverse transformation from diseased to healthy 

images follows a similar process with generator F and discriminator 𝐷𝐻. By incorporating dual 

masking and adversarial training, this method allows the discriminators to better identify subtle 

differences in the disease patterns, encouraging the generators to produce sharper and more 

faithful image translations. This strategy addresses the shortcomings of the previous single-

mask method, improving disease localization and overall visual fidelity. 
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3.3 Loss Function for Dual-Mask LeafGAN 

 

Figure 3.2: Loss functions used in DM-LeafGAN. 

Figure 3.2 shows the healthy-to-diseased translation process and the corresponding loss 

functions. The training of Dual-Mask LeafGAN is guided by a composite loss function, 

adapted from the original LeafGAN, with additional considerations for dual-mask 

segmentation. As illustrated in Figure 3.2, the loss function comprises three components: 

adversarial loss, cycle-consistency loss, and identity loss. Each component plays a specific 

role in improving the quality and realism of the generated images. 

 

A. Adversarial Loss 

Adversarial loss encourages the generator to produce synthetic images that are 

indistinguishable from real images in their respective domains. In Dual-Mask LeafGAN, two 

discriminators are used one for healthy leaves (𝐷𝐻) and another for diseased leaves 𝐷𝐷 . The 

role of each discriminator is to differentiate between real and generated (fake) images within 

its domain. 

As shown in Figure 3.2, generator G learns to transform a healthy leaf image ℎ 𝜖 𝐻 into a 

diseased image 𝐺(ℎ) ∈ 𝐷 , which is then evaluated by  𝐷𝐷 . Simultaneously, the reverse 

generator F transforms a diseased leaf 𝑑 ∈ 𝐷  into a healthy version 𝐹(𝑑) ∈ 𝐻 , which is 

assessed by 𝐷𝐻 . Both discriminators are guided using leaf-specific segmentation masks, 

enhancing their ability to focus on leaf regions during discrimination. The adversarial loss for 
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generator G and discriminator 𝐷𝐷  is defined as: 

ℒ𝑎𝑑𝑣(𝐺, 𝐷𝐷) = 𝐸𝑑~𝐷[ (𝐷𝐷(𝑑𝑠) − 1)2] + 𝐸ℎ~𝐻[(𝐷𝐷(ℎ𝑠
′ ))2].               (19) 

Similarly, the adversarial loss for F and 𝐷𝐻  is defined accordingly. 

 

B. Cycle-Consistency Loss 

Due to the unpaired nature of the dataset, there is no direct ground truth for the translated 

images. To address this, a cycle-consistency loss is introduced, ensuring that an image 

translated to the other domain and back again should resemble the original input. This loss 

enforces structure and semantic consistency across domains. 

In practice, if a healthy leaf ℎ is transformed to diseased 𝐺(ℎ) and then reconstructed back to 

healthy via 𝐹(𝐺(ℎ)), the result should match the original ℎ. The same applies in reverse for 

diseased to healthy transformations. The cycle-consistency loss is expressed as: 

ℒ𝑐𝑦𝑐D(𝐺, 𝐹) = 𝐸ℎ∼𝐻[|𝐹(𝐺(ℎ)) − ℎ|] + 𝐸𝑑∼𝐷[|𝐺(𝐹(𝑑)) − 𝑑|].           (20) 

This loss penalizes discrepancies between original and reconstructed images, thus promoting 

consistency. 

 

C. Identity Loss 

Identity loss is introduced to preserve color distribution and low-level features, especially 

when the input image already belongs to the target domain. It ensures that the generator does 

not unnecessarily alter images that require no transformation. 

For example, feeding a diseased leaf image 𝑑 into generator G, which is designed for healthy-

to-diseased translation, should ideally return the same image without changes. This constraint 

is critical to maintain visual realism and structural integrity. 

The identity loss is defined as: 

ℒ𝑖𝑑(𝐺, 𝐹) = 𝐸𝑑∼𝐷[|𝐺(𝑑) − 𝑑|] + 𝐸ℎ∼𝐻[|𝐹(ℎ) − ℎ|].                     (21) 

Overall Objective 

The total loss combines all three components with weighting parameters 𝜆𝑐𝑦𝑐 and 𝜆𝑖𝑑: 

ℒ𝑡𝑜𝑡𝑎𝑙 =  ℒ𝑎𝑑𝑣 +  𝜆𝑐𝑦𝑐  ∙  ℒ𝑐𝑦𝑐 +  𝜆𝑖𝑑  ∙  ℒ𝑖𝑑                                  (22) 

By jointly optimizing this objective, the Dual-Mask LeafGAN achieves more precise, stable, 

and visually accurate domain translations, especially when guided by dual-mask 

segmentation under adversarial training. 
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CHAPTER 4 

Experiment 

4.1 Datasets 

 

Figure 4.1: The sample of dataset images illustrating the types of leaf and diseases. 

This study utilizes images of bean and strawberry leaves under two conditions: healthy and 

infected with Angular Leaf Spot. Except for the healthy strawberry dataset, which was 

collected from Roboflow, all other images were obtained from Kaggle. The bean dataset was 

originally collected in bean fields by the Makerere AI Lab in collaboration with the National 

Crops Resources Research Institute (NaCRRI), Uganda’s official body responsible for 

agricultural research. These images reflect real-world variability in field conditions, such as 

lighting, leaf positioning, and background complexity. The healthy strawberry images from 

Roboflow provide clear and high-quality examples of non-infected leaves, useful for 

establishing a baseline during training. The total number of images used for each category is 

summarized in Table 1. 

Table 1 The details of datasets 
 

 Healthy Angular Leaf Spot (ALS) 

Bean 319 297 

Strawberry 300 257 
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4. 2 Training Details 

 

Figure 4.2: Overall research workflow. 

The research begins with collecting healthy and diseased leaf images, which are then subjected 

to segmentation. Unlike the original LFLSeg method that masks only the leaf region, our 

approach uses YOLOv5 to perform dual masking—separating both the leaf region and disease 

symptoms for diseased leaves. This results in more precise segmented datasets for both healthy 

and diseased domains. These segmented datasets are then used to train the Dual-Mask Leaf-

GAN, which performs bidirectional image translation. Finally, the trained model generates 

high-quality synthetic healthy and diseased leaf images that better simulate real-world 

variations. 

 

4.2.1 Segmentation Strategies 

 

To support the preprocessing phase of LeafGAN and enhance the quality of style translation, 

different segmentation strategies were explored to guide the model’s attention toward relevant 

regions of interest. Three main approaches were evaluated: LFLSeg, leaf region masking (SM-

LeafGAN), and combined leaf and disease symptom masking (DM-LeafGAN). Each strategy 

differs in how it defines and isolates informative areas for the generator to focus on during 

training. 

(1) LFLSeg 

LFLSeg represents the original segmentation strategy used in LeafGAN. It utilizes a pretrained 

module that generates heatmaps indicating areas of high relevance. However, this method lacks 

spatial precision and does not produce actual segmentation masks. As an attention-based 

approach, it offers only general guidance to the model without explicitly isolating leaf regions 

or disease symptoms, which can limit translation accuracy. 
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(2) Leaf Region Masking  

This masking strategy was adopted in the SingleMask-LeafGAN (SM-LeafGAN) model to 

guide the generator with spatially constrained inputs. The strategy involves explicit 

segmentation of the entire leaf area to remove background distractions. The leaf regions were 

first manually annotated using Roboflow, and these annotated masks were used to train a 

YOLOv5x-seg model. The model was trained with an input size of 320, batch size of 32, and 

150 epochs on Google Colab. Once trained, it could automatically generate binary masks that 

isolate leaf regions in both healthy and diseased images. These masks were applied during 

training to ensure that the generator focused only on the leaf areas, thereby improving the 

consistency and accuracy of the style translation. 

(3) Leaf Region Masking + Disease Symptom Masking 

DM-LeafGAN extends the previous approach by adding segmentation for visible disease 

symptoms. Both the leaf regions and the disease-affected areas (Angular Leaf Spot) were 

manually annotated using Roboflow. The annotated disease symptom data, in the form of 

bounding boxes, was used to train a standard YOLOv5 object detection model. The output 

bounding boxes were then converted into binary masks that specifically highlight symptomatic 

regions. Combined with the leaf masks from SM-LeafGAN, this dual-masking strategy 

provides detailed spatial guidance, enabling the model to distinguish between healthy and 

diseased regions. This enhances the disease-to-healthy image translation by helping the 

generator target specific areas for correction. 

 

4.2.2 Disease Translation Models 

To investigate the impact of segmentation-based masking on translation performance, three 

configurations of the LeafGAN model were evaluated. Each model was trained on the same 

dataset under consistent conditions to ensure fair comparison, with the objective of 

bidirectional image translation between healthy and diseased leaf domains. 

• LeafGAN: This baseline configuration adopts the original LeafGAN architecture, using 

LFLSeg for preprocessing. No explicit region masking is applied images are translated 

in full, including background content. The model was trained for 150 epochs with a 

learning rate of 0.0005 and an identity loss weight (𝜆𝑖𝑑 = 0.6). 

• SM-LeafGAN: In this configuration, binary masks generated by the SM-LeafGAN 

model are applied to both healthy and diseased images. By masking out the background, 
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the model learns to focus exclusively on the leaf regions. Training was conducted for 

100 epochs with a learning rate of 0.0007. 

• DM-LeafGAN: This model introduces a dual-masking strategy. Leaf region masks are 

applied to healthy images, while symptom-specific masks—generated by the disease 

detection model—are used for diseased images. This selective masking directs the 

generator to concentrate on symptomatic regions during the disease-to-healthy 

transformation, potentially leading to more accurate correction and artifact reduction. 

Training settings matched those of SM-LeafGAN(100 epochs, learning rate of 0.0007). 

Overall, these three configurations facilitate an in-depth analysis of how different segmentation 

strategies affect translation quality, particularly in reducing visual artifacts and improving 

symptom localization accuracy in synthetic images. 
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4.3 Result 

4.3.1 Leaf and disease segmentation result 

To evaluate the performance of the proposed segmentation method, we compared our custom 

pipeline with the original LFLSeg module used in LeafGAN. Two segmentation tasks were 

considered: leaf region masking for healthy leaves and disease lesion masking for infected 

leaves. The final mAP0.5 scores achieved were 82.30% and 73.28%, respectively. 

Original Image               LFLSeg         Leaf region Masking  

from YOLOv5 

Figure 4.3: Comparison of Healthy Leaf Segmentation using different segmentation models. 

Our approach leverages YOLOv5 to detect leaf regions, followed by binary masking to isolate 

the leaf from the background. It addresses a key limitation of LFLSeg, which employs Grad- 

CAM to highlight leaf regions, specifically its inability to accurately segment images 

containing multiple leaves. In contrast, our method reliably detects and isolates each leaf 
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instance. Compared to LFLSeg, our method also demonstrated improved spatial accuracy, 

particularly in cases with complex leaf contours and challenging lighting conditions, as 

illustrated in Figure 4.3. 

 

Original Image             LFLSeg   Leaf region Masking    Disease Symptoms 

from YOLOv5          from YOLOv5 
 

Figure 4.4: Comparison of Disease Leaf Segmentation using different segmentation models. 

For disease lesion extraction, we proposed a novel strategy that incorporates lesion masks to 

guide LeafGAN more effectively. This enables more accurate translation of healthy patterns 

and realistic removal of disease features, as shown in Figure 4.4. 
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4.3.2 Disease Translation Results 

Original LeafGAN SM-LeafGAN DM-LeafGAN 
 

Figure 4.5: Healthy bean leaves translated to the disease bean leaves result using different 

types of models. 
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Original LeafGAN SM-LeafGAN DM-LeafGAN 
 

Figure 4.6: Healthy strawberry leaves translated to the disease strawberry leaves result using 

different types of models. 
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Original LeafGAN SM-LeafGAN DM-LeafGAN 
 

Figure 4.7: Diseased bean leaves translated to the healthy bean leaves result using different 

types of models. 
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Original LeafGAN SM-LeafGAN DM-LeafGAN 

Figure 4.8: Diseased strawberry leaves translated to the healthy strawberry leaves result using 

different types of models. 

This section evaluates the performance of three disease translation models: LeafGAN with 

LFLSeg, SingleMask-LeafGAN, and DualMask-LeafGAN, in simulating disease progression 

and recovery on bean and strawberry leaves. Each model was assessed based on its ability to 

transform leaf images from healthy to diseased states and vice versa. 

LeafGAN with LFLSeg initiates the transformation by introducing early disease symptoms in 

healthy leaves, such as mild discoloration and sparse spotting. In diseased-to-healthy 

translations, it slightly reduces visible disease signs. However, this model often retains residual 



Bachelor of Information Technology (Honours) Communications and Networking 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

37 

 

features from the original state, indicating limited transformation depth. 

SingleMask-LeafGAN improves upon the original LeafGAN by generating more distinct 

disease symptoms characterized by increased spotting and discoloration, including pinkish-

purple lesions in healthy-to-diseased translations. It also achieves better symptom reduction in 

diseased leaves, producing more balanced intermediate results. Nonetheless, some artifacts 

from the original state remain. 

DualMask-LeafGAN demonstrates the most effective and realistic transformations among the 

three. In the healthy-to-diseased translation, it simulates advanced disease symptoms with 

extensive discoloration and detailed spotting, closely mimicking naturally infected leaves. In 

the reverse direction, DualMask-LeafGAN successfully restores leaves to near-healthy 

appearances, effectively minimizing disease traces. 

In summary, DualMask-LeafGAN delivers the highest fidelity in both transformation directions, 

followed by SingleMask-LeafGAN, which shows moderate improvements over the original 

LeafGAN with LFLSeg. While the baseline model provides basic functionality, its results lack 

completeness and realism. These findings highlight DualMask-LeafGAN as the most robust 

model for simulating plant disease dynamics, with promising applications in agricultural 

research and plant health monitoring. Further enhancements to the first two models could 

improve their translation accuracy and utility. 
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4.4 Failure Cases 

 

Although the proposed models particularly DualMask-LeafGAN demonstrated strong 

performance in simulating disease progression and recovery, several failure cases reveal 

notable limitations that warrant further investigation. 

 

Figure 4.9:  Failure cases generated by SingleMask-LeafGAN. 

As depicted in Figure 4.9, the first row of images reveals a poorly trained model for translating 

healthy to diseased leaves, marked by the appearance of gray artifacts. This deficiency is likely 

attributable to suboptimal hyperparameters, which hinder the model’s ability to learn 

effectively, resulting in underwhelming performance as also observed in Figures 3 and 4 of the 

first row. Conversely, the second row showcases outcomes from the disease-to-healthy 

translation task, where the model achieves partial success in reducing disease symptoms but 

struggles to fully eliminate leaf spot areas, leaving residual green spots. Moreover, images 3 

and 4 in the second row exhibit subtle visual distortions in the generated outputs, underscoring 

the model’s persistent challenges in producing accurate translations. 
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Figure 4.10: Failure cases generated by DualMask-LeafGAN. 

In the first row, which illustrates the translation from healthy to diseased, the sequence starts 

with a vibrant green leaf but quickly degrades as pinkish spots appear, followed by significant 

gray cutouts or missing sections in later images. These gaps indicate the model’s difficulty in 

preserving the leaf’s structural integrity, likely due to overfitting or poor boundary handling. 

As a result, the outcomes feature disrupted vein designs and grey artifacts in the leaves. In the 

second row, depicting disease-to-healthy translation, the initial leaf shows scattered disease 

spots. Although some symptom reduction is achieved, the restoration is hindered by an overly 

saturated green tone and irregular textures in subsequent images. This excessive coloration, 

along with subtle visual distortions, reveals the model’s ongoing struggle to accurately 

normalize color and texture, ultimately failing to produce convincingly healthy leaves. 

 

These failure cases highlight the importance of enhancing both the model’s structural 

awareness and its ability to generate biologically coherent transformations. Future 

improvements could include integrating advanced loss functions, such as perceptual loss, to 

better preserve texture and structural consistency. Additionally, further training with fine- 

tuning and hyperparameter optimization may help address residual artifacts and improve 

generalization to complex leaf patterns. 
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CHAPTER 5 

Conclusion 

This study evaluated three LeafGAN models for plant disease translation, focusing on how 

different masking strategies influence the visual realism of generated images. Notably, our 

proposed DualMask-LeafGAN, which integrates both leaf region and disease symptom masking 

using YOLOv5, significantly outperformed the original LeafGAN with LFLSeg. The superior 

performance of this YOLO-based approach highlights that segmentation quality is a crucial factor 

in enhancing the realism of GAN-generated synthetic data. 

SingleMask-LeafGAN, which utilized only leaf region masking, generated cleaner images by 

eliminating background interference and focusing on leaf areas. While it offered improved image 

quality compared to LeafGAN with LFLSeg, its outputs were less realistic than those produced by 

DualMask-LeafGAN. Although SingleMask-LeafGAN achieved moderate improvements, it 

occasionally retained artifacts from the original images, limiting its overall visual effectiveness. 

DualMask-LeafGAN consistently delivered the most visually convincing results. It accurately 

simulated advanced disease symptoms and restored diseased leaves to near-healthy appearances 

with minimal residual artifacts. Its outputs closely resembled real-world leaf conditions, making it 

the most robust model for capturing the visual dynamics of plant disease. 

The findings underscore the strong potential of DualMask-LeafGAN in simulating plant disease 

dynamics, particularly in terms of visual fidelity. Although some failure cases were observed, such 

as grey artifacts and occasional visual distortions, these issues were minor relative to its overall 

performance. Addressing these artifacts, for instance through the integration of perceptual loss, 

could further enhance output quality. 

In conclusion, DualMask-LeafGAN emerged as the most effective model for realistic plant disease 

translation, offering high-fidelity image generation in both directions. Its potential applications 

include agricultural research, synthetic dataset generation, and plant health monitoring. Future 

work may focus on refining LeafGAN with LFLSeg and SingleMask-LeafGAN to narrow the 

performance gap and further enhancing DualMask-LeafGAN’s visual consistency. 
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