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ABSTRACT 
 

The rise of smart agriculture in Malaysia, powered by IoT sensor networks, has transformed 

farming by enabling real-time monitoring of soil moisture, temperature, and environmental 

conditions. However, much of this sensor data is transmitted without encryption, exposing it 

to risks such as interception, tampering, and unauthorised access. This project addresses these 

security concerns by developing a secure data collection and visualisation system using 

Raspberry Pi and Node-RED. The system integrates multiple robust encryption 

algorithms—AES-128, AES-256, ChaCha20, and Twofish—for end-to-end data protection. 

Additionally, a benchmarking tool was developed to evaluate and compare the performance 

of these algorithms in terms of speed, memory, CPU usage, and encryption overhead. The 

final outcome is a lightweight, replicable solution for secure smart agriculture systems that 

enhances trust, integrity, and data privacy in IoT-based farming environments. 

 

Area of Study (Minimum 1 and Maximum 2): Internet of Things, Cybersecurity 

 

Keywords (Minimum 5 and Maximum 10): Security, Smart Agriculture, Encrypted Data 

Transmission, Sensor Networks, Node-RED, MQTT, Raspberry Pi, Real-time Monitoring, 

ChaCha20, Twofish  
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Chapter 1 Introduction 

CHAPTER 1 

Introduction 

The rise of Internet of Things (IoT) sensor networks in Malaysian agriculture has transformed 

traditional farming practices by enabling farmers to collect real-time environmental data. 

These networks gather environmental information like soil moisture levels and temperature to 

assist farmers in improving crop productivity and managing resources efficiently [1]. Despite 

its significance, safeguarding the security of this sensor data still poses a persistent challenge 

that is frequently underestimated. 

Smart farming uses technology to modernise traditional agriculture practices by offering 

immediate data to improve decision-making processes. In Malaysia, the integration of these 

advancements has played a role in tackling farming issues, such as erratic weather conditions, 

insect invasions, and limited resources. For example, the use of sensors allows ongoing 

monitoring of soil quality, resulting in accurate watering techniques that save water and 

enhance crop productivity and health. Furthermore, temperature and humidity sensors play a 

role in maintaining the perfect environment for crops to thrive [2]. By ensuring conditions for 

growth, these sensors help minimise the risk of crop losses and boost productivity as a whole. 

The advantages of utilising farming go beyond just improving efficiency and productivity in 

agricultural practices. In Malaysia, farmers can use data analysis to predict and address 

potential challenges before they escalate into major concerns. This proactive strategy not only 

boosts crop production but also reduces the environmental footprint of farming methods. 

Despite these progressions in technology, there is a concern surrounding the protection of 

agricultural sensor information. The transmission of agricultural data without encryption, 

such as soil moisture levels, temperature recordings, and nutrient content, poses potential 

risks for farms. Additionally, unauthorised access to agricultural data can disrupt automated 

systems, such as irrigation controllers, resulting in significant operational challenges [3]. 

Addressing these security concerns is essential to safeguarding the integrity and reliability of 

smart agriculture systems in Malaysia. 
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Chapter 1 Introduction 

1.1 ​ Problem Statement and Motivation 

In the changing world of smart farming, Malaysia's agricultural sector has embraced modern 

farming techniques that rely on data from IoT sensors on their farms to enhance their farming 

practices efficiently by gathering crucial information about the environment, like soil 

moisture content and temperature to help improve crop productivity and resource utilization 

effectively.   

On the other hand, transmitting this important agricultural information is frequently done 

without encryption, which poses major security risks. Unprotected data pathways leave farms 

vulnerable to potential threats like data breaches, alteration of crop conditions, interruptions 

in automated processes and an overall compromise in farm operations. It is crucial to tackle 

this pressing security issue to safeguard the trustworthiness and dependability of farming 

practices, in Malaysia. 

 

1.2 Objectives 

1.​ To develop a secure and cost-effective data transmission system for smart agriculture 

using Raspberry Pi as the target platform, MQTT and Node-RED 

2.​ To implement and benchmark multiple encryption algorithms (AES-128, AES-256, 

ChaCha20, and Twofish) for securing sensor data in transit. 

3.​ To evaluate the performance of these algorithms in terms of encryption time, 

decryption time, memory usage, and CPU usage on resource-constrained hardware. 

These objectives collectively aim to deliver a replicable and secure communication 

framework suitable for real-time monitoring in small to medium-sized smart farming 

environments. 

1.3 ​ Project Scope 

The scope of this project involves the development and implementation of a secure IoT-based 

data collection system for environmental monitoring within agricultural contexts. 

Environmental sensor readings will be emulated using Python scripts on both the 

development machine and Raspberry Pi, and transmitted as encrypted payloads to a 

Node-RED flow via MQTT. The Node-RED flow will include decryption logic for multiple 

algorithms and present visual feedback through an interactive dashboard. 
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The project also includes a comparative evaluation of the selected encryption algorithms 

(AES-128, AES-256, ChaCha20, and Twofish), focusing on metrics such as processing time, 

memory usage, and CPU load. A key consideration is ensuring the system remains 

lightweight, modular, and suitable for future integration with actual sensors. This supports the 

broader aim of creating a practical and scalable solution for secure data transmission in 

small-scale agricultural IoT deployments. 

The project does not include the use of actual physical sensors; instead, all environmental 

data is emulated through Python scripts. Additionally, cloud-based data storage, remote 

access capabilities, and advanced analytics are outside the scope of this work. The 

implementation also excludes security components such as key exchange protocols, public 

key infrastructure (PKI), and user authentication mechanisms. Network-level security threats, 

including denial-of-service (DoS), man-in-the-middle (MITM) attacks, and packet sniffing, 

are not addressed. Furthermore, energy consumption metrics are estimated using CPU usage 

and processing time, as external power measurement tools are not utilised. 

 

1.4​ Contributions 

This project addresses vulnerability concerns in protecting sensitive agricultural data within 

the agriculture sector in Malaysia. By integrating open-source tools like Raspberry Pi and 

Node-RED with robust encryption, the project significantly improves the security of sensitive 

agricultural data transmission, preventing interception, manipulation, and unauthorised 

access. In addition to demonstrating encryption workflows and decryption handling, it 

benchmarks the performance of various cryptographic methods, aiding future IoT developers 

in selecting suitable algorithms. This solution improves trust, reliability, and scalability of 

smart farming systems in resource-constrained environments. 

 

1.5 ​ Report Organization 

The thesis is organized into 7 Chapters briefly discussed below: 

Chapter 1 is divided into 5 sections. The first section discusses the problem statement and 

motivation behind the research. Section 2 lists the research objectives. Section 3 lists the 
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project scope and objectives. Section 4 discusses the contributions of the project to the field 

of smart agriculture. Finally, Section 5 provides an overview of the report organisation. 

Chapter 2 is split into 4 sections. Section 1 provides a review of relevant technologies 

including Raspberry Pi, Node-RED, MQTT, Python, encryption algorithms, and monitoring 

tools. Section 2 discusses previous works related to secure smart farming. Section 3 

highlights the limitations identified in existing studies. Section 4 offers a summary of the 

literature reviewed.  

Chapter 3 is divided into 7 sections. Section 1 introduces the system design through various 

diagrams. Section 2 presents the tools and technologies used. Section 3 details the secure data 

transmission workflow. Section 4 explains the decryption and data visualisation process using 

Node-RED. Section 5 outlines the benchmarking methodology. Section 6 describes the data 

collection and analysis process. Section 7 concludes with a summary of the methodology. 

Chapter 4 is split into 4 sections. Section 1 presents the overall system block diagram. 

Section 2 provides the specifications of the hardware and software components. Section 3 

focuses on the design of circuits and emulated sensors. Section 4 describes how different 

system components interact in transmitting and receiving sensor data. 

Chapter 5 is divided into 6 sections. Section 1 discusses the physical hardware setup. Section 

2 explains the software setup and environment configuration. Section 3 elaborates on system 

configurations, particularly encryption and MQTT settings. Section 4 demonstrates system 

operation with illustrative screenshots. Section 5 identifies challenges encountered during 

implementation. Section 6 concludes the chapter with final remarks on the implementation 

phase. 

Chapter 6 is separated into 5 sections. Section 1 outlines the testing objectives and 

performance metrics. Section 2 presents the testing setup and detailed results for each metric. 

Section 3 discusses project challenges related to performance and resources. Section 4 

evaluates how well the objectives were met. Section 5 concludes the discussion on system 

evaluation. 

Chapter 7 is divided into 2 sections. Section 1 summarises the main findings and conclusions 

drawn from the project. Section 2 provides recommendations for future improvements and 

potential research directions. 
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Chapter 2 

Literature Review 
 

2.1 Review of Technologies 

The section highlights various technologies both hardware and software that will be utilised 

for the proposed project. 

In this chapter, the project will highlight the related literature review of the technology used. 

2.1.1 Raspberry Pi 

The Raspberry Pi is a compact, cost-effective single-board computer widely utilised in IoT 

applications due to its versatility and energy efficiency. Its compatibility with various sensors 

and support for multiple programming languages make it ideal for smart agriculture systems. 

The Raspberry Pi’s ability to handle data collection, processing, and transmission tasks 

efficiently aligns with the project’s requirements for a secure and scalable agricultural 

monitoring solution. 

2.1.2 Node-RED 

Node-RED is a flow-based development tool designed for visual programming, particularly 

suited for IoT applications. Developed by IBM, it allows for the seamless integration of 

hardware devices, APIs, and online services. In this project, Node-RED facilitates the 

creation of dashboards for real-time data visualisation and management, enhancing user 

interaction and system monitoring capabilities. 

2.1.3 MQTT Protocol 

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol 

optimised for high-latency or unreliable networks, making it ideal for IoT environments. It 

operates on a publish-subscribe model, ensuring efficient data transmission between devices. 

The protocol's minimal bandwidth requirements and low power consumption are 

advantageous for resource-constrained devices like those used in smart agriculture.  
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2.1.4 Python Programming Language 

Python is a high-level, interpreted programming language known for its readability and 

extensive library support. Its versatility makes it suitable for various aspects of IoT 

development, including data processing, automation, and implementing encryption 

algorithms. In this project, Python is employed to develop scripts for data encryption and 

decryption, leveraging libraries such as PyCryptodome to ensure secure data handling. 

2.1.5 Encryption Algorithms 

Ensuring data security in IoT applications is paramount, especially in sectors like agriculture 

where sensitive information is transmitted. This project evaluates several encryption 

algorithms to determine their suitability for resource-constrained environments: 

●​ AES (Advanced Encryption Standard): A symmetric encryption algorithm known 

for its robustness and efficiency. Variants like AES-128 and AES-256 offer different 

key lengths, balancing security and performance. 

●​ ChaCha20: A stream cipher designed for high performance in software 

implementations, offering strong security with faster processing times compared to 

traditional algorithms. 

●​ Twofish: A symmetric key block cipher recognized for its flexibility and speed, 

making it a viable option for devices with limited computational resources. 

Studies have benchmarked these algorithms on platforms such as the Raspberry Pi, assessing 

their performance in terms of speed, memory usage, and energy consumption. 

2.1.6 Data Visualisation and Monitoring Tools 

Effective data visualisation is crucial for monitoring agricultural parameters and making 

informed decisions. Tools integrated within Node-RED enable the creation of interactive 

dashboards, providing real-time insights into environmental conditions. These dashboards 

facilitate the tracking of metrics such as soil moisture, temperature, and humidity, allowing 

for timely interventions and resource optimization. 
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2.2 Related Works in Secure Smart Farming 

The report will highlight the existing works and project how our proposed solution fills 

identified gaps and advances the field. 

 

2.2.1 Precision Agriculture Monitoring System using Wireless Sensor Network and 

Raspberry Pi Local Server 

Work by the author Flores [4] underlines the need for real-time monitoring possible through 

WSN in reducing risks to production due to both environmental and human factors. Their 

study delimited how there is a need to take advantage of the field data and make it possible 

for farmers to make necessary adjustments in crop production timely in order to increase 

agricultural productivity and resilience. 

With more demands for the increased production of food, there has been growing economic 

pressure on investors to adopt aggressive farming methods. While this brings high yields in 

the short run, it depletes the natural resources. The adoption of sustainable agricultural 

practices through the use of new technologies is required if responses to such challenges are 

to be affected. Poor utilization, due to a lack of information, awareness, and resistance to the 

adoption of new technologies outweighs the effectiveness of new technologies. Author Flores 

[4] expresses that in order for environmental monitoring to encourage sustainable agriculture, 

there is a dire need to develop low-cost, user-friendly, efficient monitoring systems. 

Relevant to this paper is the Pods project at the University of Hawaii whose objective is the 

ecological environment and events monitoring around rare plants. This project would deploy 

attached micro weather sensors to communication units, or "pods," to monitor sunlight, 

temperature, wind, and rainfall. Considering a low cost and low interference with the terrain, 

the pods form a wireless ad-hoc sensor network capable of transmitting data by themselves 

and forwarding it to other nodes. Implementation of the wireless routing protocol MOR 

(Multi-path On-demand Routing Protocol) comes true with maximized efficiency in routing 

and energy conservation, enhancing scalability and robustness for the Sensor Network. 

Among all the parameters that highly influence crop growth, temperature, humidity, soil 

moisture, and soil pH are considered to be some of the key parameters in agriculture 

monitoring sensors. Of these, soil electrical conductivity and pH bear high importance 

because of their critical role in characterizing field variability and optimizing precision 
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agriculture practices. According to the author Flores [4], accurate measurement of soil pH is 

very important because it defines nutrient availability and plant growth. This study further 

renders the importance of pH extremes concerning plant tolerance and nutrient uptake, 

emphasizing that the soil pH should be optimally adequate for agricultural productivity. 

Testing sensors is an important aspect that leads to full assurance of the accuracy and 

reliability of agriculture sensors. Flores conducted in-depth testing of numerous sensors, such 

as the DHT22 sensor for temperature and humidity, ALS-PTl9 for light, soil moisture sensor, 

and analogue pH meter. Each sensor was subjected to all sorts of different environmental 

conditions to check for its accuracy and response. Additionally, there is an EC meter that was 

developed after rigorous testing to relate the EC analogue values and electrical conductivity 

measurements. Moreover, the study has established the calibration and validation of sensors 

as key factors in guaranteeing agricultural data integrity. 

Eventually, it has been observed from the reviewed literature how much more significant 

WSNs and state-of-the-art sensor technologies play regarding revolutionary changes in 

agricultural monitoring and management. Several such works have highlighted real-time data 

acquisition, sustainability of agriculture, and sensor reliability as critical aspects that 

determine improvements in agricultural productivity and resilience. By integrating novel 

technologies with sound sensor testing methodologies, scholars will be in a position to 

achieve affordable and effective solutions towards overcoming farming challenges and 

improving food production in a sustainable manner. 

In light of this, an evaluation of the strengths and weaknesses of individual studies reveals 

both promising approaches and notable gaps. Flores et al. [4] present a compelling concept 

for agricultural monitoring. Its strengths lie in the use of wireless sensor networks (WSNs) 

combined with a Raspberry Pi local server, which enables live monitoring of environmental 

variables to facilitate timely agricultural decisions. The project emphasises low-cost 

implementation using commonly available hardware components, making it financially 

suitable for farmers and promoting the widespread adoption of precision agriculture practices. 

However, several limitations can be observed. The project’s reliability is heavily dependent 

on the durability and stability of its hardware components, such as the Raspberry Pi, sensors, 

and the central server. Sensor failures or connectivity issues could disrupt data collection and 

negatively impact data-driven decision-making. Additionally, while the system handles 
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sensitive agricultural data, the study [4] does not explore data protection mechanisms. As 

such, adequate measures to safeguard this data against unauthorized access or cyber-attacks 

would be necessary for real-world deployment. 

2.2.2 Cyber Attack on Smart Farming Infrastructure 

The author Sontowski [5] shows the threatening aspect brought about by cyber attacks on 

smart farming infrastructure; this paper describes the implementation of denial-of-service 

(DoS) attacks targeting a smart farm architecture that is connected to the 2.4 GHz network. 

Namely, a Wi-Fi deauthentication attack managed to totally disrupt the communication 

between the Raspberry Pi and the Wi-Fi access point and, by implication, prevent data from 

going to the Azure cloud. Moreover, using the MakerFocus ESP8266 Development Board 

WiFi Deauther Monster, the attackers expand the attack to disable any devices attempting to 

connect. Hence, disconnecting the Raspberry Pi from the network is achieved, as highlighted 

in Figure 2.1. This particular attack utilises, among others, deficiencies of the IEEE 802.11 

protocols, such as the sent-in plaintext management frames, which render them susceptible to 

deauthentication frames containing spoofed MAC addresses that forge the AP. The study 

emphasises that such types of attacks are quite difficult to detect since they bypass the 

traditional systems of security such as MAC filtering and intrusion detection systems. 
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Figure 2.1: System Architecture and Attack Vector [5] 

Figure 2.1 highlights a potential cybersecurity threat, an adversary launching a DDOS attack 

against the Raspberry Pi. This attack could disrupt the system’s performance, blocking 

communication of data between the sensors, cloud platform, and end users, thereby 

compromising the confidentiality and integrity of smart agriculture.  
 

A very critical example concerning the importance of understanding and mitigating such 

vulnerabilities in the infrastructure of smart farming is the Wi-Fi deauthentication attack 

execution by the author Sontowski [5]. It can be executed through tools that are easily 

available, targeting the weaknesses within the 802.11 protocol, posing an immense danger 

towards the reliability and security of the agricultural sensor network. The successful attack 

demonstrates the implementation of robust security measures, such as encryption of 

management frames by IEEE 802.11w, which prevents spoofing and unauthorized access 

through a method of encrypting management frames, as highlighted in Figure 2.2. 

Furthermore, this study underlines that the challenges of dealing with cybersecurity will not 

be confined only to smart farming but to each other domain of IoT, where similar 

vulnerabilities might exist. 
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Figure 2.2: Graphical Depiction of a Deauthentication Attack [5] 

 

Figure 2.2 gives a graphic representation of the deauthentication attack by relating the client, 

attacker, and access point in such a way that the attacker intercepts the regular flow of 

communication from authentication and association in an unencrypted management frame 

and subverts to send deauthentication frames that disrupt the established connection between 

client and access point, hence keeping the client disconnected from the network. 

It has been established from the review of the literature that cybersecurity plays an imperative 

role in the infrastructure of smart farming, thus creating a platform for developing proactive 

measures against cyber-attacks. This benefits both researchers and practitioners by allowing 

them to understand the methodologies and implications of such malicious threats, develop 

appropriate security strategies, and deploy them effectively to protect agricultural systems. 

Building on this perspective, an analysis of the strengths and weaknesses of relevant 

cybersecurity studies reveals critical vulnerabilities and defensive approaches. The study by 

Sontowski et al. [5] addresses a highly relevant aspect of modern smart farming 

infrastructure: cybersecurity. One of the key strengths of this work lies in its demonstration of 

a practical Wi-Fi deauthentication attack using the MakerFocus ESP8266 Development 

Board WiFi Deauther Monster. The authors [5] provide empirical evidence of vulnerabilities 

in 2.4 GHz networks, commonly used in smart agriculture, by exposing exploitable 

management frames in the IEEE 802.11 protocol. These findings highlight the potential for 

spoofed deauthentication frames to compromise network availability. 

Despite its relevance, the study has certain limitations. It focuses exclusively on Wi-Fi 

deauthentication attacks within the 2.4 GHz frequency band. While this exposes one 

significant vulnerability, it does not consider other possible cyber threats to smart agriculture 

systems, such as man-in-the-middle attacks, data injection, or physical tampering. Moreover, 

although the study recommends implementing IEEE 802.11w as a countermeasure, it does 

not present a comprehensive set of mitigation strategies or technical implementations for 

broader threat coverage. 

2.2.3 Securing the Internet of Battlefield Things with ChaCha20 

Navalino et al. [6] proposed the use of ChaCha20-Poly1305 encryption to enhance data 

security for resource-constrained devices operating within the Internet of Battlefield Things 
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(IoBT) environment. The study focused on applying lightweight cryptography in real-time 

sensor communication using a Raspberry Pi Pico microcontroller and nRF24L01 radio 

modules. Although the original context is military-based, the underlying architecture and 

methodology are directly applicable to smart agriculture systems, where energy efficiency 

and secure data transmission are critical requirements. 

The authors [6] evaluated encryption and decryption performance by measuring the execution 

time, throughput, and avalanche effect using live sensor data from MPU6050 modules. 

Encryption times ranged from 261 ms for 16-byte messages to 17,472 ms for 8,192-byte 

messages. Despite the increasing data size, the throughput remained relatively stable, peaking 

at around 468 Bps for encryption and 465 Bps for decryption, respectively. An average 

avalanche effect of 50.53% was recorded, indicating strong resistance to cryptanalytic attacks 

with only minor input changes. 

The implementation of ChaCha20-Poly1305 demonstrated suitability for real-time 

environments due to its lightweight nature, high speed, and consistent output performance. 

This study is relevant to the current project as it provides empirical justification for using 

ChaCha20 as an alternative to AES in low-power, low-latency IoT applications such as smart 

agriculture. The findings [6] support the benchmarking approach in this project, particularly 

in comparing symmetric encryption algorithms under constrained hardware conditions. 

In evaluating the contributions of this work, Navalino et al. [6] presents several notable 

strengths. Firstly, it evaluates the ChaCha20-Poly1305 encryption algorithm within a 

real-world embedded environment using the Raspberry Pi Pico, along with actual sensor data 

transmission. This approach aligns well with the goals of the current project, which involves 

performance benchmarking of lightweight encryption in constrained IoT systems. The study’s 

analysis of encryption and decryption timings, throughput measurements, and avalanche 

effect provides comprehensive insight into the algorithm’s practical viability. Additionally, 

the consistent throughput across varying payload sizes demonstrates the algorithm’s 

efficiency for systems with variable data loads, such as those found in agriculture. 

On the other hand, the study does have some limitations. It focuses solely on 

ChaCha20-Poly1305 and does not include performance comparisons against other algorithms 

like AES or Twofish, which are included in this project. This reduces its value as a 

comparative reference across multiple encryption schemes. Furthermore, the research is 
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positioned within a military IoT context (IoBT), which, while sharing technical similarities 

with agricultural IoT, may not fully reflect the environmental and data usage conditions of 

smart farming systems. Nonetheless, the hardware and security constraints discussed in [6] 

are largely equivalent, allowing the findings to be transferable and still relevant to this 

project’s objectives. 

2.2.4 Comparative Performance Analysis of Lightweight Cryptography Algorithms 

Fotovvat et al. [7] conducted a comprehensive study titled “Comparative Performance 

Analysis of Lightweight Cryptography Algorithms for IoT Sensor Nodes,” focusing on 

evaluating encryption performance in real-world IoT environments. The study compares 32 

authenticated encryption with associated data (AEAD) algorithms, including AES-GCM, 

AES-CCM, and other lightweight cipher suites across three embedded platforms: Raspberry 

Pi 3B, Raspberry Pi Zero W, and the iMX233 board. 

The researchers [7] measured execution time, RAM usage, and energy consumption for each 

algorithm using a standardized testing environment. They highlighted how AES-based modes 

like GCM and CCM, while offering high security, consume significantly more resources 

compared to newly developed lightweight algorithms. This is crucial in IoT systems where 

power efficiency, low latency, and memory constraints are fundamental design 

considerations. 

Fotovvat et al. [7] also deployed the algorithms in a practical IoT sensor node scenario, 

encrypting 30-byte sensor payloads and transmitting them over LoRa communication. They 

found that encryption time typically accounted for only 5–10% of total transmission time, 

demonstrating that selecting an efficient cipher can meaningfully impact overall system 

energy usage and responsiveness. 

While this study primarily focused on NIST’s LWC candidates, it provides valuable insight 

into how classic algorithms like AES (and by extension, Twofish and ChaCha20) compare in 

performance under embedded constraints. This aligns closely with the objective of the 

present project, which benchmarks various encryption algorithms in a smart agriculture 

environment using Raspberry Pi Zero W and Node-RED for secure MQTT communication 

[7]. Fotovvat et al. [7] contribute several strengths that reinforce the relevance of their work 

to this project. Notably, the study includes extensive benchmarking of 32 AEAD algorithms 

across multiple embedded platforms, including the Raspberry Pi Zero W, which is also used 
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in this implementation. This direct hardware alignment ensures the performance insights are 

highly applicable. Secondly, the inclusion of a real-world IoT deployment scenario, where 

encrypted sensor data is transmitted over a LoRa interface, adds significant practical value. It 

illustrates how encryption affects total system performance in terms of timing and energy use, 

especially in constrained devices commonly found in agriculture IoT systems. 

Moreover, the study provides quantitative analysis on core performance metrics—execution 

time, RAM usage, and power consumption—that mirror the benchmarking goals of this 

project. This makes the literature a strong foundation for supporting algorithm selection in 

resource-limited environments such as smart farms. 

However, there are a few limitations to consider. While the study compares a broad range of 

lightweight cryptographic algorithms from the NIST LWC standardization process, it does 

not explicitly evaluate ChaCha20 or Twofish, two algorithms used in this project. As a result, 

while the benchmarking methodology is relevant, the direct applicability to those specific 

ciphers is somewhat limited. Additionally, the encryption tests primarily focus on small 

payloads (~30 bytes), which, although typical in sensor networks, may not fully represent 

systems that handle larger or variable-length data. Lastly, the study focuses exclusively on 

symmetric AEAD encryption, and does not explore hybrid or asymmetric encryption models, 

which may be relevant for some smart agriculture systems that involve cloud-based services 

or device-to-device authentication. 

Despite these limitations, the paper remains a valuable and contextually appropriate reference 

for this project, especially in justifying the need for performance-aware encryption selection 

in IoT-based agriculture. 

2.3 Limitations of Previous Study 

Table 2.1 provides a summary of the existing literature and their identified limitations in 

relation to the secure smart agriculture system. 

Table 2.1 Literature Review of the Existing Methods 

Year Author(s) Technique Problems Limitations 

2018 Flores et al. Smart farming using 
IoT and Raspberry Pi 

Real-time sensor 
monitoring and 
automation in 
agriculture 

Does not implement 
security or 
encryption 
mechanisms 
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2021 Sontowski et 
al. 

Analysis of 
cybersecurity 
vulnerabilities in 
smart agriculture 

Identifies real-world 
attack vectors and 
risk factors 

No solution or 
implementation 
details provided 

2024 Navalino et 
al.. 

ChaCha20-Poly1305 
encryption for secure 
IoT transmission 

Ensures secure 
communication in 
restricted 
environments 

Focuses only on 
CC20; lacks 
algorithm 
comparison 

2021 Fotovvat et al. Performance 
benchmarking of 32 
lightweight AEAD 
encryption 
algorithms 

Evaluates execution 
time, energy use, and 
memory on platforms 

Does not include 
Twofish of CC20; no 
implementation case 
study 

 

Table 2.1 outlines the various projects' techniques, problems, and limitations in the context of 

project themes, ranging from real-time monitoring and data security, encryption algorithm 

benchmark to IoT integration and vulnerabilities, highlighting their specific strengths and 

challenges. Table 2.2 illustrates the benefits and challenges of the project. 

Table 2.2 Strengths and Weakness of the Project 

Author(s) Strengths Weakness 

2.1.2 Flores et al. Provides a comprehensive 
real-world architecture for smart 
farming using IoT and Raspberry 
Pi. Demonstrates the feasibility 
of low-cost agricultural 
monitoring systems. 

Does not address encryption 
or data security. Focuses 
primarily on system 
deployment and monitoring 
functions. 

2.2.2 Sontowski et al. Highlights real security threats in 
smart farming, including DoS 
and Wi-Fi interception. Validates 
the need for cryptographic 
security in agricultural IoT. 

Lacks technical 
implementation of 
benchmarking of security 
protocols. Mostly 
theoretical. 

2.3.2 Navalino et al.. Demonstrates practical use of 
ChaCha20-Poly1305 on 
Raspberry Pi Pico with real-time 
sensor data. Includes 
encryption/decryption time, 
throughput, and avalanche 
analysis. 

Focuses solely on 
ChaCha20; no comparison 
with AES or other 
algorithms. Context is 
military (IoBT) rather than 
agricultural IoT 
 
 

2.4.2 Fotovvat et al. Offers large-scale benchmarking 
of 32 lightweight encryption 
algorithms on Raspberry Pi Zero 
W. Includes metrics like energy 

Does not include ChaCha20 
or Twofish. Primarily focus 
is AEAD algorithms under 
NIST LWC without 
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use, RAM consumption, and 
execution time. 

application-level integration 

 

Table 2.2 exposes the strengths and weaknesses of various projects focused on integrating 

technology in agriculture, specifically in the contexts of environmental monitoring, 

cybersecurity, encryption benchmark, and IoT applications. 

 

2.4 Summary 

In summary, this chapter has reviewed a range of literature relevant to the implementation of 

secure IoT systems in agriculture. The studies examined offer insights into IoT agriculture, 

cybersecurity concerns, and lightweight encryption algorithms applicable in this 

environment. Early works by Flores et al. [4] highlighted the feasibility of IoT integration in 

agricultural monitoring, while Sontowski et al. [5] addressed emerging cybersecurity risks 

associated with smart farming systems. Navalino et al. [6] and Fotovvat et al. [7] contributed 

valuable findings on encryption performance in embedded platforms, offering practical 

benchmarking data and considerations for selecting appropriate cryptographic techniques. 

These reviewed studies form the foundation for the selection of encryption techniques in the 

proposed secure sensor data transmission system. 
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Chapter 3 

System Methodology 
In this chapter, the method that gives the solution of the entire project is identified. 

3.1 System Design Diagram 

The system is designed to securely transmit environmental sensor data using various 

encryption algorithms, simulating a smart agriculture use case. The synthetic data used in this 

project to simulate environmental readings is generated through a Python script, encrypted 

based on the selected algorithm, and transmitted via the MQTT protocol. Upon reception, 

Node-RED handles decryption and visualisation of the sensor metrics. This section presents 

the high-level system design through architecture, use case, and activity diagrams to illustrate 

the flow and interactions within the system, starting with Figure 3.1 System Architecture 

Diagram. 

3.1.1 System Architecture Diagram 

 

Figure 3.1: System Architecture Diagram 
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Figure 3.1 shows the overall structure of the architecture from sensor simulation and 

encryption to MQTT messaging and dashboard visualisation. 

 

3.1.2 Use Case Diagram and Description 

This diagram in Figure 3.2 outlines the interactions between the users, system, and 

components. 

 

Figure 3.2: Use Case Diagram 

In Figure 3.2 illustrates the roles of two user types, System Admin and Viewer and their 

interactions with key system functionalities. The System Admin initiates core processes, 

including generating synthetic sensor data, encrypting it with a selected algorithm, 

transmitting it securely via MQTT, and running encryption benchmark tests. Once the 

encrypted data reaches Node-RED, the system decrypts the payload and prepares it for 

presentation. The Viewer accesses the visualised data through a real-time dashboard, enabling 

observation of secure sensor information without direct interaction with encryption or 

transmission components. 
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3.1.3 Activity Diagram 

Figure 3.3 will detail the step-by-step flow during data transmission and reception. 

​

Figure 3.3: Activity Diagram 

This activity diagram in Figure 3.3 illustrates the sequence of operations from the user 

selecting an encryption algorithm to the final data display on the dashboard. The process 

includes key decision nodes for algorithm selection, encryption type recognition, and 

decryption success. Once data is successfully decrypted by Node-RED, it is visualised live. 

Optionally, the user may execute a separate benchmarking script, shown independently from 

the main process flow to evaluate algorithm performance metrics without impacting the core 

transmission pipeline. 
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3.2 Tools and Technologies Used 

This section outlines the hardware, software, and libraries used to develop and implement the 

secure data collection system. The technologies were selected based on suitability on IoT 

environments, encryption capabilities, and support for real-time data transmission and 

visualisation. 

 

3.2.1 Hardware 

●​ Raspberry Pi Zero 2 W 

Intended as the target platform for deployment, the Raspberry Pi offers a low-power, 

cost-effective solution for real-time data processing and sensor integration. It is 

capable of running Python scripts, handling encryption tasks, and communicating 

with MQTT brokers, making it ideal for embedded IoT environments such as smart 

agriculture [17]. 

●​ MacBook (Simulated Environment) 

While the Raspberry Pi Zero 2 W is the target deployment platform, the MacBook 

served as a development environment during testing and a contributor in 

benchmarking stages. It was fully capable of running all system components, 

including encryption, MQTT publishing, and Node-RED flows. During this stage, it 

also served as a reliable environment for benchmarking encryption algorithms and 

performing visualisation via the local dashboard. Both the Raspberry Pi and MacBook 

are considered viable hardware for executing the system, depending on deployment 

requirements. 

 

3.2.2 Software Tools 

●​ Python 3.13​

Used as the primary programming language for scripting sensor data generation, 

encryption logic, and MQTT publishing. Its simplicity and compatibility with 

cryptographic libraries make it suitable for rapid development in IoT applications. 

●​ Node-RED​

A low-code, flow-based development tool used for MQTT data intake, decryption, 

and dashboard visualisation [14]. The function nodes in Node-RED were configured 

to dynamically detect the encryption type and apply the corresponding decryption 
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method. It also provides an integrated dashboard for monitoring the sensor data in real 

time. 

●​ Node.js and npm​

Required by Node-RED to support JavaScript libraries used in decryption flows. 

These packages ensure Node-RED is able to load required cryptographic modules via 

global context settings. 

●​ Mosquitto (MQTT Broker)​

A lightweight MQTT broker used for transmitting encrypted payloads from the 

Python script to Node-RED. It operates over the local network on the same machine 

during testing, simulating edge-device communication. 

3.2.3 Python Libraries and Packages 

●​ paho-mqtt​

A Python client library used to implement MQTT publishing functionality. It allows 

the encryption script to push data to a broker on a specified topic. 

●​ PyCryptodome​

A self-contained Python package of low-level cryptographic primitives, used to 

implement AES-128 and AES-256 encryption in ECB mode. It supports padding 

schemes and byte-level operations required for secure encryption. 

●​ PyNaCl​

Python bindings to the Networking and Cryptography (NaCl) library. This was used 

for implementing ChaCha20 encryption via the ‘SecretBox’ method, offering secure, 

authenticated encryption for lightweight systems. 

●​ twofish​

A Python implementation of the Twofish cipher. It was used to evaluate a less 

commonly deployed encryption method for comparison with standard algorithms. 

●​ keyboard & threading​

The ‘keyboard’ library was used for capturing user input to switch between 

encryption modes, and ‘threading’ enabled the implementation of a continuous 

packet-sending loop. 

●​ matplotlib, psutil, tabulate​

These libraries were used in the benchmarking script to measure and visualise 
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encryption performance across algorithms. Metrics include CPU usage, memory 

consumption, and time-based throughput. 

3.3 Secure Data Transmission Workflow 

This section outlines how the system encrypts sensor data and transmits it securely through 

MQTT. The workflow begins with user input to select the encryption algorithm, followed by 

data generation, encryption, and structured publishing to the MQTT broker. Each payload 

includes both the encrypted data and metadata to ensure proper decryption on the receiver 

side. 

 

3.3.1 Encryption Mode Selection 

The user initiates the process by selecting an encryption type using predefined keyboard keys. 

4 modes are available: 

●​ AES-128 (key: 1) 
●​ AES-256 (key: 2) 
●​ ChaCha20 (key: 3) 
●​ Twofish (key: 4) 

 
These selections determine which algorithm is applied for the next data packet sent. Pressing 
the ‘spacebar’ will send one packet. Pressing ‘P’ will keep sending packets every 5 seconds 
until pressing ‘S’ to stop. 
 
3.3.2 Sensor Data Generation 

Fake environmental data is generated in JSON format to simulate agricultural parameters 

such as: 

●​ Temperature 

●​ Humidity 

●​ Soil moisture 

●​ Light intensity 

●​ CO₂ levels 

Each reading is randomized within realistic agricultural ranges. 
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3.3.3 MQTT Publishing 

Each message is structured in JSON format with the following fields: 

{ 

  "encryptionType": "AES-128", 

  "encryptedData": "<Base64 encoded ciphertext>" 

} 

The message is then published to the topic ‘sensor/data’ using the Paho MQTT client. This 

standard format ensures consistent decryption and identification on the receiver side. 

 

3.3.4 Encryption Logic 

Using conditional logic, the function node supports dynamic decryption based on the 

‘encryptionType’ string in each message. This allows the system to process messages 

encrypted by any of the supported algorithms without modifying the node configuration. 

 

The selected algorithm is applied to the generated data: 

●​ AES (128/256-bit): Uses ECB [8] mode via PyCryptodome. Data is padded using 

PKCS#7 before encryption to mitigate diffusion properties and repetitive patterns. 

●​ ChaCha20: Uses NaCl’s ‘SecretBox’ with a 24-byte nonce [9]. Encrypted data is 

authenticated and includes both the nonce and ciphertext. The nonce ensures each 

message is unique, preventing replay attacks. 

●​ Twofish: Encrypts padded data with PKCS#7 in 16-byte blocks using the Python 

twofish module [10]. SHA-256 is used to derive a compatible key size.  

 

3.4 Node-RED Decryption and Visualisation Workflow 

This section explains how incoming encrypted MQTT messages are processed within 

Node-RED. The workflow includes identifying the encryption type, decrypting the payload, 

parsing the data, and visualising the results using a real-time dashboard.  

 

3.4.1 MQTT Message Reception 

Encrypted payloads are received in Node-RED via an MQTT input node subscribed to the 

topic ‘sensor/data’. Each message is expected to contain a JSON object with: 

●​ encryptionType: Identifies the encryption algorithm applied to the payload 

●​ encryptedData: the Base64-encoded ciphertext 
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3.4.2 Decryption Flow 

A function node is used to handle decryption. The node performs the following steps: 

1.​ Parse the payload: Extract ‘encryptionType’ and ‘encryptedData’ 

2.​ Decode: Base64-decode the encrypted string 

3.​ Select decryption method: 

●​ AES-128/AES-256: Uses CryptoJS with ECB mode and PKCS#7 padding 

●​ ChaCha20: Uses ‘sodium-native’ from the Node-RED global context 

●​ Twofish: Uses the ‘twofish-ts’ package (a TypeScript implementation 

compatible with Node.js) injected into Node-RED via 

‘functionGlobalContext’. This allows the Function node to decrypt Twofish 

encrypted payloads received over MQTT. 

4.​ Output decrypted JSON: The resulting object is passed to subsequent nodes 

 

Decryption errors (e.g., incorrect padding, mismatched keys) are caught and logged through 

the node’s warning system. 

 

3.4.3 Dashboard Integration 

Decrypted sensor readings are passed to individual chart and gauge nodes for real-time 

visualisation. These metrics include: 

●​ Temperature (°C) 

●​ Humidity (%) 

●​ Soil Moisture (%) 

●​ Light Intensity (lux) 

●​ CO₂ Level (ppm) 

Each metric is updated on the dashboard every time a new message is decrypted successfully. 

3.5 Benchmarking and Methodology 

This section explains the methodology used to evaluate the performance of each encryption 

algorithm in terms of speed, throughput, memory usage, CPU load, and energy estimation 

[7,12]. The goal is to determine the most suitable cipher for resource-constrained IoT 

environments. 
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3.5.1 Benchmarking Script Structure 

A standalone Python script was developed to benchmark 4 encryption algorithms: 

1.​ AES-128 

2.​ AES-256 

3.​ ChaCha20 

4.​ Twofish 

The script measures both encryption and decryption performance across multiple data sizes (1 

KB up to 10 MB) and entropy conditions. Each result is recorded for further analysis. 

 

3.5.2 Performance Metrics 

For each test, the following parameters were collected: 

1.​ Execution Time (ms): Duration of encryption and decryption. 

2.​ Throughput (MB/s): Rate of data processed over time. 

3.​ Memory Usage (KB): RAM consumption before and after each operation. 

4.​ CPU Load (%): Monitored continuously during execution. 

5.​ Estimated Energy Usage: Derived from CPU usage over time, as an indirect 

indicator of power efficiency.  

As actual power draw was not measured with hardware instruments, CPU-based estimation 

serves as an indicative proxy for energy consumption 

 

3.5.3 Testing Parameters 

●​ Data Sizes: 1 KB, 10 KB, 100 KB, 1 MB, 4.9 MB (Optional: 5 MB and 10 MB for 

extended testing but may crash on Raspberry Pi) 

●​ Entropy Levels: 

○​ High entropy: Random binary data (012345) 

○​ Low entropy: Repetitive or low-complexity data (11111) 

●​ Iterations: Three repetitions per test case for statistical reliability and reduce random 

variation. The test results will be averaged and be examined this way. 
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3.5.4 Data Collection Tools 

The benchmarking script uses the following Python libraries: 

●​ ‘psutil’: To monitor CPU usage and memory footprint 

●​ ‘time’: For precise execution timing 

●​ ‘numpy, statistics’: For calculating averages and standard deviations 

●​ ‘tabulate, json’: To export readable reports 

●​ ‘matplotlib’: For plotting performance comparisons 

 

3.5.5 Algorithm Executions 

Each encryption method follows the same process: 

1.​ Generate random data of defined size and entropy 

2.​ Encrypt and decrypt the data using the selected algorithm 

3.​ Record time, memory, and CPU usage 

4.​ Validate decryption correctness (assert decrypted == original) 

5.​ Repeat for multiple data sizes 

 

3.5.6 Summary Results Output 

The script exports results as: 

1.​ Tabulated Summaries 

2.​ JSON files (for storage or external processing) 

3.​ PNG file of the graph 

4.​ MatPlot GUI for interactive viewing of the result 

 

3.6 Data Collection and Analysis Process 

This section describes how performance data from the encryption benchmarking was 

recorded, structured, and prepared for evaluation. The process ensures consistent comparison 

across algorithms and supports the project’s aim to identify lightweight, secure encryption for 

smart agriculture IoT systems. 

 

3.6.1 Structured Metric Recording 

Each benchmark test logs the following for each algorithm, data size, and entropy condition: 

●​ Encryption Time 

●​ Decryption Time 

Bachelor of Information Technology (Honours) Communications and Networking 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
​ ​   26 
 



Chapter 3 System Methodology 

●​ Memory Usage 

●​ CPU Usage 

●​ Data Throughput (MB/s) 

●​ Energy Consumption Estimation 

The script internally verifies the decryption result to ensure correctness and flags any errors 

using ‘assert decrypted == original_data’. 

 

3.6.2 Tabulated Output 

Using the ‘tabulate’ library, test results are formatted into readable tables with: 

●​ Algorithm Name 

●​ Average Timing (Encrypt / Decrypt) 

●​ Standard Deviation 

●​ Throughput 

●​ CPU and Energy Estimations 

These summaries are printed to console and optionally saved as ‘.json’ logs for 

documentation. 

 

3.6.3 Visualisation and Export 

Results are export into two formats: 

●​ ‘.json’: For structured storage and reproducibility 

●​ ‘.png’ (charts): Graphs showing time, throughput, and CPU performance using 

‘matplotlib’ 

All files are time-stamped and named by encryption algorithm and entropy type. 

 

3.6.4 Reproducibility 

The script includes argument flags to: 

●​ Select which algorithms to test 

●​ Specify data sizes or entropy level 

●​ Add larger data sets optionally 

●​ Export or suppress visual output 

This allows repeatable testing under controlled conditions, enabling direct comparisons. 
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3.7 Summary 

This chapter described the full development methodology of the proposed project, from 

system architecture to implement the encryption workflow and perform benchmarking. 

Multiple encryption algorithms were integrated into a modular transmission system and a 

custom Python benchmarking tool was developed to measure their effectiveness under 

various conditions. The methods described form the basis for the system’s evaluation in later 

chapters, where the results will be assessed in detail. 
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Chapter 4 

System Design 
This chapter details the system design and diagrams for ease of understanding. 

4.1 System Block Diagram 

The system block diagram shown in Figure 4.1 provides a high-level overview of the secure 

data transmission process implemented in this project. It outlines the sequence of interactions 

from data generation and encryption to transmission and visualisation using MQTT and 

Node-RED. 

 

 

Figure 4.1: System Block Diagram 

Figure 4.1 presents the complete system workflow, beginning with the user selecting an 

encryption method. A Python script then generates a random sensor value, which is encrypted 

and published via MQTT. The encrypted payload is transmitted through a broker and 
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received by Node-RED, which identifies the encryption type (determining if the encryption 

type is AES-128, AES-256, ChaCha20 or Twofish), decrypts the data, and displays the sensor 

readings on a dashboard. 

 

4.2 System Components Specifications 

This section outlines the essential hardware and software components used to implement the 

secure data transmission project. The chosen components are selected for their compatibility 

with IoT environments, lightweight operation, and support for real-time encryption and 

decryption message protocols. 

 

4.2.1 Hardware Components 

1.​ Raspberry Pi Zero 2 W​

The Pi serves as the target hardware for deployment. It is compact, cost-effective, and 

capable of running the full encryption workflow including sensor simulation, 

algorithm switching, and MQTT publishing. It supports Python and can operate as an 

edge device for agriculture use. 

2.​ MacBook (Development and Testing Platform)​

Throughout the development stage, a MacBook was used to simulate the full system. 

It served as the primary environment to test the encryption script. run the 

benchmarking tool, and host Node-RED for receiving and visualising sensor data. The 

performance of Apple Silicon allowed for reliable testing of all encryption algorithms 

before transitioning to the Pi. 

 

4.2.2 Software Components 

1.​ Python 3.13​

Used for writing the main encryption script, handling sensor data generation, 

encryption mode selection, and MQTT publishing. It is also used to develop the 

benchmarking script that evaluates the encryption algorithm’s performance. 

2.​ Node-RED (Flow-based Development Tool)​

Node-RED was used to create the decryption and dashboard workflow. The tool 

processes incoming MQTT messages, dynamically detects the encryption type, and 

uses custom Function nodes to decrypt the payloads. Each sensor value is routed to 

real-time charts and gauge widgets on the dashboard. 
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3.​ Mosquitto (MQTT Broker) ​

A lightweight MQTT broker configured locally to simulate communication between 

the publisher (Python script) and subscriber (Node-RED). It enables encrypted data 

transmission using the ‘sensor/data’ topic 

 

4.2.3 Setup for Node-RED Function Global Context 

To enable dynamic selection and execution of multiple decryption algorithms within 

Node-RED, certain cryptographic modules must be made globally accessible [14]. This is 

achieved through the functionGlobalContext configuration within the Node-RED settings.js 

file. By declaring the required modules in this context, the Function nodes within Node-RED 

can access them without needing to require the modules locally—something that is not 

supported natively within the Node-RED runtime for security and sandboxing reasons. 

The following code snippet was added to the functionGlobalContext section of the settings.js 

file, located in ‘cd ~/.node-red’ on the terminal window : 

“ 

functionGlobalContext: { 

    CryptoJS: require("crypto-js"), 

    sodium: require("sodium-native"), 

    crypto: require("crypto"), 

    twofish: require("twofish-ts") 

} 

“ 

This setup allows the Node-RED Function nodes to access CryptoJS, sodium-native, the 

built-in Node.js crypto module, and twofish-ts, enabling them to decrypt messages based on 

the algorithm specified in the incoming payload. 

However, this configuration step introduces a platform-specific challenge on macOS. In 

macOS, Node-RED instances installed via global npm or brew often run with restricted 

access to Node.js modules due to system integrity protections and permissions. As a result, 

modifying settings.js to load external libraries can lead to runtime errors or “module not 

found” issues if the modules are not properly installed in the correct context or if Node-RED 

is not executed with elevated permissions. 
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4.3 Circuits and Components Design 

This project was primarily designed and tested in a simulated environment to validate the 

secure data transmission workflow. While no physical circuitry was implemented during the 

testing phase — aside from connecting the Raspberry Pi directly to the MacBook — the 

system remains fully compatible with standard agricultural sensors and is structured for 

future hardware integration. 

 

4.3.1 Simulated Sensor Emulation 

Python script were used to emulate the output of real-world sensors by generating 

randomised values that mimic the behaviour of the following physical sensors: 

●​ DHT22: For temperature and humidity readings 

●​ Soil Moisture Sensor: For volumetric water content 

●​ Light Sensor: (e.g. BH1750 or similar) 

●​ CO₂ Sensor: To simulate environmental gas levels in ppm 

These emulated values allowed for encryption benchmarking and visualisation in a realistic 

data flow without requiring actual physical sensors. 

 

4.3.2 Potential Hardware Integration 

For future iterations or real-world development, the system can be easily adapted to read 

from physical sensors connected to a Raspberry Pi’s GPIO pins. The Python script can 

interface with these devices using common libraries such as ‘Adafruit_DHT’, ‘smbus’ for 

I2C, or serial communication. 

 

This simulation-first approach enabled rapid development, consistent testing, and 

performance evaluation, while retaining hardware intercompatibility for smart agriculture 

applications. 
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4.4 System Components Interaction Operations 

This section describes how the various system components interact with each other during 

normal operation, from data generation and encryption to transmission, decryption, and 

proper visualisation. 

 

4.4.1 Sender Operations (Python Script) 

The sender module begins execution upon user input, where the encryption mode is chosen 

using a keyboard. The script performs the following steps: 

1.​ Sensor Data Generation: Synthetic environmental sensor data is created using 

randomized values within typical agricultural ranges. 

2.​ Encryption: Based on user input (AES-128, AES-256, ChaCha20, or Twofish), the 

data is encrypted using the corresponding encryption library. 

3.​ Packet Structuring: Encrypted data is encoded in Base64 and packaged into a JSON 

structure: 

{ 

  "encryptionType": "AES-256", 

  "encryptedData": "base64payload..." 

} 

4.​ MQTT Publishing: The packet is published to the topic ‘sensor/data’ using Paho 

MQTT client on the Python script via the MQTT Broker with port 1883.. 

This modular and looped design enables continuous data output or on-demand packet 

dispatch, depending on user control.  

 

4.4.2 Message Transmission (MQTT Broker) 

The Mosquitto broker acts as the intermediary, ensuring that all published MQTT messages 

from the sender are relayed to the Node-RED subscriber operating on a publish-subscribe 

model [15]. As both systems operate on the same local network, the broker guarantees 

low-latency transmission and accurate topic handling. 

 

4.4.3 Receiver Operations (Node-RED Flow) 

On the receiving side, Node-RED listens for incoming messages on the topic ‘sensor/data’. 

The data flow within the Node-RED is as follows: 

1.​ MQTT Input Node: Receives the encrypted message and passes it downstream. 

Bachelor of Information Technology (Honours) Communications and Networking 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
​ ​   33 
 



Chapter 4 System Design 

2.​ Decryption Function Node: 

●​ Extracts the ‘encryptedType’ value 

●​ Determine the correct type of encryption to pass the function 

●​ Decodes the ‘encryptedData’ 

●​ Applies the appropriate decryption function using ‘CryptoJS’, 

‘sodium-native’, or ‘twofish-ts’ from the global context. 

3.​ Output: Once decrypted, the JSON payload is parsed and routed to various chart and 

gauge nodes for display. 

 

This interaction structure allows dynamic decryption and ensures a seamless transition from 

raw MQTT payloads to user-friendly dashboard elements. 

 

4.4.4 Dashboard Visualisation 

Each sensor metric (e.g., temperature, humidity, light intensity) is displayed on real-time 

charts or gauges within the Node-RED dashboard. These values are updated every time a new 

payload is successfully decrypted and parsed. 

 

The flow is fully modular – any new encryption algorithm or data type can be integrated with 

minimal notifications to the Node-RED function node or dashboard layout. 
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Chapter 5 

System Implementation 
In this chapter, the implementation of the entire project is described. 

5.1 Hardware Setup 
 
This section outlines the physical hardware setup used for implementing and testing the 

secure agricultural data transmission system. The setup was carried out in a simulated 

development environment, followed by hardware compatibility testing on Raspberry Pi. 

 

Table 5.1 Specifications of Laptop 

Description Specifications 

Model Apple MacBook Air M1 A2237 

Processor M1 8-core CPU 

Operating System macOS 15 Sequoia 

Graphic M1 7-core GPU 

Memory 8GB Unified Memory 

Storage 256 GB SSD 

 

Table 5.1 details the specification of the MacBook Air M1, primarily used as the 

development and simulation platform. All initial scripts including data generation, 

encryption, benchmarking, and Node-RED dashboard were developed and validated on the 

MacBook prior to hardware deployment. Its reliable performance allowed for seamless 

testing of multiple encryption algorithms. 
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Table 5.2 Specifications of Raspberry Pi Zero 2 W 

Description Specifications 

Model Raspberry Pi Zero 2 W 

Processor Quad-core 64-bit Arm Cortex-A53 @ 1 Ghz 

Operating System Raspberry Pi OS (Debian-based) 

Graphic VideoCore IV (64 MB LPDDR2 shared) 

Memory 512MB LPDDR2 

Storage 32 GB microSD Card 

 

Based on Table 5.2, it details the hardware specifications of the Raspberry Pi Zero 2 W which 

was used as the target deployment device. The compact and power-efficient nature of the 

Raspberry Pi is suitable for use in IoT applications, specifically for real-time sensor 

processing, lightweight encryption, and MQTT-based data publishing and reception. 

 

The combination of MacBook for development and Raspberry Pi for development testing 

ensures that the system is both prototyped efficiently and tested under realistic hardware 

constraints typical in agricultural environments. 

 

5.2 Software Setup 

The table below (Table 5.3) shows the software tools and libraries installed on both the 

development machine and Raspberry Pi Zero 2 W to support encryption, data handling, and 

visualisation. The mentioned software ensures seamless data generation, encryption, MQTT 

communication, and dashboard rendering in real-time with consideration of compatibility 

with lightweight systems and other cryptographic operations in IoT environments. 
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Table 5.3 Software Tools and Libraries Installed 

Software/Package Version Purpose 

Python 3.13 Main programming language for 
scripting and benchmarking 

Node.js 22.x LTS JavaScript runtime required by 
Node-RED and custom decryption 
modules 

npm 10.9.2 Node.js package manager used to 
installed required libraries 

Node.-RED 4.0.9 Flow-based tool for MQTT processing 
and dashboard rendering 

Mosquitto MQTT Broker 2.0.21 Lightweight broker for MQTT data 
routing 

PyCryptodome 3.19+ AES encrypt/decrypt using ECB mode 
and PKCS#7 pad 

PyNaCl 1.5.0+ Secure CC20 implementation with 
SecretBox 

Twofish (Python) 0.3.0 Python implementation of Twofish cipher 

paho-mqtt 2.1.0 MQTT publishing client for Python 

keyboard/threading 0.13.5/built-in Handle user input and multithreaded 
packet looping 

matplotlib, psutil, tabulate Latest Benchmark visualisation and system 
resource monitoring 

crypto-js, sodium-native, 
twofish-ts 

(npm modules) 
Latest 

Decryption modules made globally 
available in Node-RED for Function 
Nodes 

 

Table 5.3 describes the software and the libraries used for this project. It highlights the names 

of the package, the recommended version to install to operate correctly, and justification of 

their purpose in the project. Packages under npm will always be installed in the latest version 

due to its package manager behaviour. 
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5.3 Setting and Configuration 

This section outlines the technical configuration steps required to prepare the development 

and testing environment for secure data transmission between devices. The setup includes 

configuring the encryption script, MQTT broker, Node-RED runtime, and dashboard flow 

necessary for real-time IoT communication. Each component was configured to simulate a 

typical smart agriculture deployment, with an emphasis on replicability and low system 

overhead. 

 

5.3.1 Encryption Script Configuration (Python) 

To enable rapid switching and testing of encryption algorithms during benchmarking, the 

encryption script (sendAll.py) was modified to support in-script configuration via keyboard 

inputs. This minimized external dependencies and made the benchmarking process more 

efficient and controlled. 

●​ File: sendAll.py 

●​ Encryption Keys: hardcoded AES (128, 256) key value, ChaCha20 and Twofish also 

uses the same key but derived via SHA-256 hash 

●​ Keyboard Mappings: 

○​ 1 = AES-128 

○​ 2 = AES-256 

○​ 3 = ChaCha20 

○​ 4 = Twofish 

○​ ‘spacebar’ = Send one packet 

○​ ‘P’ / ‘S’ = Start/Stop loop 

No external configuration files were required, as all settings were handled within the Python 

script.  

 

5.3.2 Mosquitto MQTT Broker Setup 

The MQTT broker facilitates lightweight message transmission over the local network using 

the publish-subscribe model. A local Mosquitto broker instance was used to emulate 

real-time data transmission between the sensor device and the dashboard. 

●​ Broker: installed locally via ‘apt install mosquitto’ (Raspberry Pi) or ‘brew install 

mosquitto’ (MacOS) 

●​ Port: 1883 (default) 
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●​ Configuration File: Not modified, default configuration sufficient for LAN 

●​ Broker Testing: use ‘netstat -an | grep 1883’ to confirm broker operation 

 

5.3.3 Node-RED Environment Configuration 

●​ Installed via ‘npm install -g –unsafe-perm node-red’ 

●​ Accessed by visiting ‘http://localhost:1880’ 

●​ Additional Node Packages Installed: 

○​ node-red-dashboard 

○​ node-red-contrib-crypto-js 

●​ Global context modules added to ‘settings.js’ 

○​ functionGlobalContext: { 

    CryptoJS: require("crypto-js"), 

    sodium: require("sodium-native"), 

    crypto: require("crypto"), 

    twofish: require("twofish-ts") 

} 

When configuring ‘settings.js’, ensure all required npm packages are installed with​

‘npm install crypto-js sodium-native twofish-ts’. 

After modification, Node-RED was restarted via: ‘node-red-stop && node-red-start’. 

 

5.3.4 Flow Import and Dashboard Setup 

To streamline testing and visualisation, a pre-configured JSON flow was imported into the 

Node-RED GUI. This flow handled incoming MQTT messages, decrypted them based on the 

selected encryption scheme, and displayed the results using visual dashboard widgets. 

●​ Flow JSON file imported through Node-RED GUI 

●​ Main node functions: 

○​ MQTT-in topic configured with ‘sensor/data’ 

○​ Function Nodes: Match encryption type and decrypt 

○​ Chart/Gauge Nodes: Present decrypted readings in dashboard tabs 

 

5.4 System Operation (with Screenshot) 

This section outlines the runtime behaviour of the secure data transmission system. It 

describes the flow of data from the user-triggered encryption script to MQTT transmission, 
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decryption by Node-RED, and visualisation on a live dashboard. The operational flow 

showcases both the sensor simulation logic and the real-time performance of the message 

broker and dashboard interface. 

 

5.4.1 Starting the Sender Script 

The system begins when the user launches the Python script (‘sendAll.py’) on either the 

development machine or Raspberry Pi using ‘python3 sendAll.py’. The user is presented with 

options to select an encryption: 

●​ Press 1: AES-128 

●​ Press 2: AES-256 

●​ Press 3: ChaCha20 

●​ Press 4: Twofish 

Once selected, pressing ‘spacebar’ sends a single encrypted packet, while pressing ‘P’ will 

have the packet sent every 5 seconds until stopped by pressing ‘S’. 

Figure 5.1 will show a demonstration of the Python script running. 

 

 

Figure 5.1: Demonstration of Python Script 

Figure 5.1 demonstrates the interactive terminal where the user selects an encryption type and 

initiates sensor data transmission. 

 

5.4.2 MQTT Broker Operation (Mosquitto) 

The Python script publishes encrypted sensor data to the ‘sensor/data’ topic using the MQTT 

protocol. The Mosquitto broker, operating on its default port 1883, facilitates the 

communication by forwarding messages from the Python publisher to the Node-RED 

subscriber. No modifications were made to the default Mosquitto configuration files for this 

setup. 

 

Figure 5.2: Verification of MQTT Broker Active 
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Figure 5.2 demonstrates that the Mosquitto MQTT broker is actively running on the local 

machine. Using the ‘netstat’ command in the terminal, the output confirms that port 1883 

(default MQTT port) is open and an active TCP connection exists between the localhost 

(127.0.0.1) and a client. This indicates a successful connection and operation of the broker. 

 

5.4.3 Receiving and Decrypting in Node-RED 

Node-RED, running on the same machine or network, receives messages published to the 

MQTT broker. The process flow includes: 

●​ The MQTT Input Node listens for incoming encryption packets. 

●​ Encryption Type Function Node parses the message and determines the encryption 

type. 

●​ A Switch Node uses the encryptionType variable and passes it to the correct 

decryption function. 

●​ The corresponding function (AES, ChaCha20, Twofish) is executed using globally 

loaded libraries. 

●​ The result is parsed into readable JSON format and passed downstream. The next 

Figure 5.3 highlights the full Node-RED flow. 

 

 

Figure 5.3: Node-RED Flow 

Figure 5.3 highlights the flow logic and how the system automatically routes each message to 

its respective function node based on encryption type. It begins with MQTT-in node in 

purple, to Encryption Type function node in orange, to a switch node in yellow, splitting and 

heading into the appropriate decryption node in orange. Upon successful decryption, it parses 

its decrypted message into a JSON formatted string through the json node in orange, and 

finally visualised the data in a visual form in the graph node in blue. 
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5.4.4 Dashboard Visualisation 

Once decrypted, the sensor values are displayed in real time using Node-RED's Dashboard 

UI. Each environmental metric (Temperature, Humidity, Soil Moisture, Light, CO₂) is shown 

using both line charts and gauges for immediate interpretation. These charts auto-update with 

each new packet. Figure 5.4 will show the operational UI dashboard for users to infer data. 

Arrange temperature graph and gauge horizontally, humi graph and gauge horizontally 

etc 

 

 

Figure 5.4: Node-RED Dashboard UI view 

Figure 5.4 shows the dashboard live readings for each simulated sensor metric using charts 

and gauges, enabling easy monitoring of encrypted IoT data in real time. 

 

5.4.5 Benchmark Script Execution Flow 

In a separate workflow, a standalone benchmarking script is used to evaluate the performance 

of each encryption algorithm. This script is run independently of the MQTT transmission: 

●​ Execution time 

●​ CPU and memory utilization 
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●​ Throughput 

●​ Decryption verification 

●​ Energy consumption estimation 

While not part of the continuous system, this component plays an important role in assessing 

which encryption mode is most appropriate under agricultural environments. Figure 5.5 will 

show a snippet of the benchmarking result. 

 

Figure 5.5: Benchmarking Script Result Demonstration 

Figure 5.5 shows the sample result in the form of a screenshot of the completed benchmark 

script of putting all encryption under a benchmark with 1 MB high entropy string. It 

highlights the algorithm used, and all the variables that were tested. However a graph will be 

used in favor of this tabulated result. Based on this specific instance of the result, AES-256 

appears to be the appropriate choice due to a balance of CPU usage, more analysis and 

discussion on Chapter 6. 

 

5.5 Implementation Issues and Challenges 

During the development and integration of the secure data transmission system, several 

technical challenges were encountered. These issues primarily stemmed from Node-RED’s 

limitations in handling external cryptographic libraries and the complexity of implementing 

low-level ciphers such as Twofish. 

 

5.5.1 Node-RED function Context Configuration 

Node-RED function nodes by default lack access to external libraries. Attempting to import 

modules such as ‘crypto.js’, ‘sodium-native’, or ‘twofish-ts’ within function nodes returned 

errors related to undefined modules. This was resolved by explicitly defining the 

‘functionGlobalContext’ in ‘settings.js’. After saving the file, Node-RED had to be restarted 

for the context to apply. This approach made these libraries globally accessible across flows 

which allowed for decryption to work. This issue was particularly pronounced on macOS due 

to stricter default permissions in npm. 
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5.5.2 Block Cipher Padding Constraints 

Since both AES and Twofish are block ciphers requiring fixed 16-byte input lengths, proper 

padding was essential. The project adopted PKCS#7 padding, a widely used scheme where 

padding bytes reflect the number of missing bytes needed to complete the block. Without this 

padding mechanism, ciphertext decryption would fail with alignment errors, especially when 

using AES ECB. Padding and unpadding were handled manually in both the encryption 

(Python)  and decryption (Node-RED) side. 

 

5.5.3 Complexity of Twofish Implementation in Node-RED 

Integrating Twofish decryption in Node-RED posed a significant challenge due to the 

low-level API design of the ‘twofish-ts’ package. Unlike AES or ChaCha20 which offer 

streamlined encryption/decryption, twofish-ts requires manual handling of cipher blocks and 

session keys. 

Key challenge included: 

●​ Manual block processing: Ciphertext had to be decrypted in 16-byte chunks, 

requiring looped buffer operations. 

●​ Key derivation: Keys were derived using SHA-256 hashing to meet byte-length 

constraints. 

●​ Padding validation: Post-decryption, padding had to be validated and removed safely 

using PKCS#7 rules. 

The need to manage session arrays (sBox and sKey) and align input/output buffers correctly 

made Twofish decryption notably more complex compared to the single-call decryption 

available in AES and ChaCha20’s implementations.  

 

5.6 Concluding Remark 

This chapter has detailed the complete implementation process of the secure IoT data 

transmission system, from hardware and software setup to configuration and runtime 

operation. Through a modular Python-based sender script and a dynamic Node-RED receiver 

flow, the system demonstrated real-time encryption, transmission, and decryption of 

simulated agricultural sensor data. Despite development being conducted largely in a 

simulated environment, the design ensured compatibility with physical Raspberry Pi 

deployment and hardware extensions. 
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Chapter 6 

System Evaluation and Discussion 
6.1 System Testing and Performance Metrics 

The performance of the proposed encryption-based data transmission system was evaluated 

to determine its efficiency, responsiveness, and resource usage under various operating 

conditions. These evaluations were designed to simulate real-world smart agriculture 

deployments, particularly in low-power or embedded IoT environments such as the 

Raspberry Pi Zero 2 W. 

Testing was conducted on both the development machine (MacBook Air M1) and the target 

hardware (Raspberry Pi Zero 2 W). All four encryption modes—AES-128, AES-256, 

ChaCha20, and Twofish—were included in the benchmark process using a custom 

benchmarking script written in Python. Results and observations are presented in Section 6.2 

through a series of comparative visual analysis. 

6.1.1 Objectives of Testing 

The key goals of the system testing were: 

●​ To assess the execution time of encryption and decryption across algorithms. 

●​ To evaluate system throughput, i.e., the rate at which data could be securely 

processed. 

●​ To monitor CPU load and memory usage, indicating the efficiency of each 

algorithm. 

●​ To estimate energy consumption, derived from CPU usage and operational duration, 

critical for edge device sustainability. 

 

6.1.2 Test Parameters and Methodology 

The benchmarking script was developed in Python and executed under consistent conditions 

on both platforms. Each encryption algorithm was tested using randomized input data of 

varying sizes and entropy to simulate realistic transmission payloads. 

Data Sizes Tested: 

●​ 1 KB 

●​ 10 KB 
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●​ 100 KB 

●​ 1 MB 

●​ 4.9 MB 

●​ 5 MB and 10 MB (Optional, may crash or become impractically slow for Twofish) 

Due to the computational overhead of Twofish, particularly on the Raspberry Pi, the 

benchmarking script includes a prompt for the user to proceed when evaluating 4.9MB and 

above. In some cases, execution exceeded 30 minutes or caused system instability, resulting 

in the omission of those data points in the analysis. 

 

6.1.3 Entropy Conditions: 

●​ High entropy (random binary data) - ‘abcdef’ 

●​ Low entropy (repetitive or compressible data) - ‘aaaaaa’ 

 

6.1.4 Repetitions: 

●​ Each scenario was executed three times to ensure statistical relevance and smooth out 

anomalies. The result is then averaged out as one output and will be used as the point 

of reference for the analysis. 

 

6.1.5 Performance Metric Tracked 

Table 6.1 will discuss the metrics that will be used for analysing the benchmark results. 

Table 6.1: Metrics Tracked and Description 

Metric Description 

Encryption Time (ms) Time taken to encrypt payload 

Decryption Time (ms) Time to recover the original data 

Throughput (MB/s)  Amount of data securely processed per second 

CPU Usage (%) Average CPU load during operation 

Memory Usage (KB) Peak memory allocated 

Energy Estimation Indirect metric based on CPU load over time 

 

Table 6.1 lists the performance metrics considered when analysing the benchmarking results. 

All measurements were collected using Python libraries such as ‘psutil’, ‘time’, and built-in 
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statistical modules. Result sets were tabulated using ‘tabulate’ and visualised using 

‘matplotlib’ 

This testing framework provides the basis for the comparative performance evaluations 

presented in Section 6.2, encompassing efficiency, scalability, and hardware suitability across 

all algorithms and platforms. 

 

6.2 Testing Setup and Results 

This section will prove the evaluation results of the encryption system’s performance, as 

benchmarked on both a Macbook Air M1 and the Raspberry Pi Zero 2 W. Each encryption 

algorithm (AES-128, AES-256, ChaCha20, and Twofish) was tested across different payload 

sizes (1 KB, 10 KB, 100 KB, 1.0 MB, and 4.9 MB). The results are visualised to highlight 

differences in encryption efficiency, throughput, and resource utilisation. 

 

6.2.1 Encryption Time 

Figure 6.1 illustrates the encryption times required by each algorithm at different data sizes 

for both the Macbook and Raspberry Pi. 

 

 
Figure 6.1: Encryption Time Comparison Across Algorithms and Devices (Lower is Better) 

 

Figure 6.1 shows the encryption time performance of AES-128, AES-256, ChaCha20, and 

Twofish across varying data sizes (1 KB, 10 KB, 100 KB, 1.0 MB, 4.9 MB) tested on both 

MacBook Air M1 and Raspberry Pi Zero 2 W. The graph visualises the time required for each 

encryption operation, with notable differences in performance depending on the algorithm 
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and hardware platform. AES-128 consistently demonstrates the lowest encryption time across 

all payload sizes, making it the most efficient algorithm in terms of speed. AES-256 follows 

closely behind but incurs slightly higher computational costs due to the extended key length. 

ChaCha20, while slightly slower than AES-128 and AES-256, maintains relatively consistent 

performance, especially on the Raspberry Pi. In contrast, Twofish displays significantly 

higher encryption times, particularly for larger payloads such as 1MB and 4.9MB, where its 

performance degrades dramatically. This issue is especially critical on the Raspberry Pi, 

where Twofish encryption time exceeds practical limits for real-time IoT operations. Twofish 

is an outlier due to its more complex key schedule and computational overhead, which 

heavily burden low-power devices like the Raspberry Pi. The findings indicate that 

lightweight algorithms like AES-128 are far more suitable for resource-constrained 

environments in smart agriculture deployments, while Twofish's computational overhead 

renders it less viable for such use cases. The next figure (Figure 6.2) will discuss the 

decryption time of the encryption algorithm. 

 

6.2.2 Decryption Time 

Figure 6.2 illustrates the decryption times required by each algorithm at different data sizes 

for both the Macbook and Raspberry Pi. 

 
Figure 6.2: Decryption Time Comparison Across Algorithms and Devices (Lower is Better) 

 

Figure 6.2 illustrates the decryption time performance of AES-128, AES-256, ChaCha20, and 

Twofish across different payload sizes on both Macbook Air M1 and Raspberry Pi Zero 2 W. 

Bachelor of Information Technology (Honours) Communications and Networking 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
​ ​   48 
 



Chapter 6 System Evaluation and Discussion 

Decryption time patterns largely mirror encryption performance trends observed previously 

in Figure 6.1. AES-128 consistently offers the fastest decryption times across all tested data 

sizes, confirming its suitability for real-time smart agriculture data handling. AES-256 

follows closely but imposes slightly more computational overhead due to its extended key 

size. ChaCha20 performs moderately, exhibiting competitive speeds for small to medium 

payloads, particularly on the Raspberry Pi, where it even outperforms AES encryption at 

4.9MB scale.  Conversely, Twofish again shows extremely high decryption times, especially 

for payloads exceeding 1MB, where execution becomes impractically slow, notably on the 

Raspberry Pi. The decryption of a 1MB file using Twofish takes approximately 30696 ms 

(around 30 seconds), and the 4.9MB test is practically infeasible. Twofish is an outlier 

because its decryption process involves intensive mathematical operations and S-box lookups 

that are inefficient on constrained hardware. 

The logarithmic scale representation is necessary to accommodate the extremely 

disproportionate behaviour of Twofish relative to the other algorithms. These results further 

reinforce that Twofish is unsuitable for lightweight, latency-sensitive applications in IoT 

environments, while AES-128, AES-256, and ChaCha20 remain strong candidates depending 

on specific system constraints. Figure 6.3 will touch on the encryption throughput of the 

algorithms. 

6.2.3 Encryption Throughput 

Figure 6.3 shows the encryption throughput performance for AES-128, AES-256, ChaCha20, 

and Twofish algorithms across varying data sizes on both the MacBook Air M1 and 

Raspberry Pi Zero 2 W platforms. 
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Figure 6.3: Encryption Throughput Comparison Across Mac and Raspberry Pi (Higher is Better) 

 

Figure 6.3 illustrates the encryption throughput achieved by each algorithm across varying 

data sizes for both the MacBook Air M1 and Raspberry Pi Zero 2 W platforms. As expected, 

the MacBook consistently outperformed the Raspberry Pi in terms of throughput due to its 

more powerful hardware capabilities. Among all algorithms, AES-128 demonstrated the 

highest throughput across all data sizes on both devices, reaching approximately 194 MB/s on 

the Mac and about 36 MB/s on the Pi for a 4.9MB payload. AES-256 followed closely behind 

but showed slightly reduced performance compared to AES-128, reflecting the additional 

computational overhead required by its longer key length. 

ChaCha20 also exhibited competitive throughput, particularly on the Raspberry Pi, where it 

occasionally outperformed AES-256 at specific payload sizes. This outcome supports 

ChaCha20’s reputation for being efficient on low-power, embedded devices. Meanwhile, 

Twofish displayed the lowest throughput among all algorithms, remaining below 1 MB/s on 

both Mac and Pi even for small data sizes. This poor performance can be attributed to the 

lower-level nature of the ‘twofish-ts’ library used, which requires manual block-by-block 

decryption, adding significant computational delay. The gap between Mac and Pi was more 

pronounced for larger payloads, emphasizing the importance of selecting a lightweight and 

efficient encryption algorithm in smart agriculture deployments. Figure 6.4 will touch on the 

decryption throughput side of the benchmark. 
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6.2.4 Decryption Throughput 

Figure 6.4 shows the decryption throughput performance for AES-128, AES-256, ChaCha20, 

and Twofish algorithms across varying data sizes on both the MacBook Air M1 and 

Raspberry Pi Zero 2 W platforms. 

 

Figure 6.4: Decryption Throughput Comparison Across Mac and Raspberry Pi (Higher is Better) 

Figure 6.4 presents the decryption throughput achieved by each encryption algorithm across 

various data sizes for both the MacBook Air M1 and Raspberry Pi Zero 2 W. As with 

encryption throughput, the MacBook consistently delivered superior performance compared 

to the Raspberry Pi. AES-128 again dominated in throughput performance across most tested 

payloads, achieving up to 157 MB/s for 4.9MB payloads on the Mac, and around 37 MB/s on 

the Pi. AES-256 followed but lagged slightly due to the additional computational overhead of 

its longer key size, especially noticeable for larger payloads. 

ChaCha20 displayed a particularly strong showing during decryption tests, especially on the 

Raspberry Pi. Notably, it surpassed AES-256 throughput at several data points, reinforcing 

ChaCha20’s reputation for efficiency on lower-power devices. This observation is important 

for real-world IoT deployments where decryption speed can impact responsiveness of edge 

applications. Twofish once again recorded the poorest performance, with extremely low 

throughput values, especially evident for larger payloads where its figures dropped below 1 

MB/s or were not measurable within reasonable time frames. Twofish is the outlier because 

its decryption relies on CPU-intensive routines poorly suited for real-time performance on 

constrained devices. This substantial gap in Twofish’s decryption performance compared to 
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other algorithms reinforces the earlier concerns regarding its unsuitability for lightweight IoT 

platforms like Raspberry Pi. Figure 6.5 will discuss the memory usage of the algorithms. 

6.2.5 Memory Usage 

Figure 6.5a and Figure 6.5b show the memory usage of AES-128, AES-256, ChaCha20, and 

Twofish algorithms across varying data sizes on both the MacBook Air M1 and Raspberry Pi 

Zero 2 W platforms. 

 

Figure 6.5a: Memory Usage of Encryption Algorithms on MacBook 

Figure 6.5a shows the memory usage profile of AES-128, AES-256, ChaCha20, and Twofish 

during encryption and decryption operations on the MacBook Air M1. As the payload size 

increased, memory usage for AES-128, AES-256, and ChaCha20 generally scaled upward in 

a predictable manner. Twofish, however, exhibited erratic memory behaviour, including 

negative values at larger data sizes, most notably at 4.9MB where encryption memory dipped 

to -6017.07 KB. This anomaly is attributed to transient memory management optimizations 

or measurement artifacts in Python's ‘psutil’ memory tracking, particularly during 

long-running Twofish processes. Overall, AES and ChaCha20 maintained a lightweight and 

consistent memory footprint suitable for resource-sensitive applications. Figure 6.5b will 

discuss memory usage on the Raspberry Pi instead. 
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Figure 6.5b: Memory Usage of Encryption Algorithms on Raspberry Pi 

Figure 6.5b displays the memory usage of encryption and decryption operations on the 

Raspberry Pi Zero 2 W. Consistent with the MacBook findings, AES-128, AES-256, and 

ChaCha20 demonstrated low and scalable memory consumption across increasing data sizes. 

Twofish again showed erratic behaviour, recording 0 KB or negative memory values during 

large data decryptions, such as -938.4 KB for AES-128 decryption of 4.9MB payloads. These 

anomalies likely result from Python’s memory handling combined with aggressive garbage 

collection on resource-constrained systems like the Pi. Nonetheless, AES and ChaCha20 

maintained superior stability, further reinforcing their suitability for low-memory embedded 

devices compared to the resource-intensive Twofish algorithm. 

Across both the MacBook Air M1 and Raspberry Pi Zero 2 W, the encryption and decryption 

memory usage patterns reaffirm the lightweight nature of AES and ChaCha20 encryption, 

making them highly suitable for resource-constrained IoT devices. Meanwhile, Twofish 

presented irregular memory behaviours, particularly under large payload conditions, which 

complicates its deployment in memory-sensitive environments. These findings highlight the 

importance of memory efficiency alongside speed and security when selecting cryptographic 
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algorithms for agricultural IoT systems. The next section will discuss CPU Usage across all 

algorithms on both hardware. 

6.2.6 CPU Usage 

This section examines the CPU utilization incurred by each encryption and decryption 

process on both the Mac and Raspberry Pi platforms with Figure 6.6a and Figure 6.6b 

respectively. Two representative data sizes — 1MB and 4.9MB — are selected to reflect 

medium and large data payloads common in smart agriculture systems. The CPU usage was 

recorded as the average load over the duration of each operation using Python’s ‘psutil’ 

module. Algorithms tested include AES-128, AES-256, ChaCha20, and Twofish. 

 

 
Figure 6.6a: CPU Usage per Encryption/Decryption Operation at 1MB on Mac and Pi (Lower is 

Better) 

Figure 6.6a compares CPU usage for encrypting and decrypting 1MB data chunks. On the 

Mac, AES-128 and AES-256 performed efficiently, consuming under 12% CPU, while 

ChaCha20 showed slightly higher usage (~15.67% encryption). Twofish registered the 

highest usage (~17.3%) among all algorithms. On the Raspberry Pi, Twofish again recorded 

significantly higher load (27.4%), while AES and ChaCha20 remained under 13%, indicating 

their suitability for edge deployment.  
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Figure 6.6b: CPU Usage per Encryption/Decryption Operation at 4.9MB on Mac and Pi (Lower is 

Better) 

Figure 6.6b explains CPU usage for encrypting and decrypting 4.9MB data chunks. Twofish 

was the most CPU-intensive on the Mac, reaching ~26.8%, but no CPU data was recorded for 

Twofish on the Raspberry Pi, likely due to memory exhaustion or process failure as discussed 

in Section 6.2.5. AES-256 and ChaCha20 remained relatively stable, indicating better 

scalability for edge computing applications. 

Overall, CPU usage trends demonstrate that lightweight ciphers such as AES-128, AES-256, 

and ChaCha20 are well-suited for both development and edge devices, maintaining 

reasonable load even at larger data sizes. Twofish consistently exhibited the highest CPU 

consumption, particularly on the Raspberry Pi where it may even fail, highlighting its 

inefficiency for constrained hardware. These findings are crucial when selecting encryption 

schemes for IoT applications where processing power and battery life are limited. Figure 6.7 

will discuss the energy estimation of the encryption algorithms. 
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6.2.7 Energy Estimation 

Energy consumption was indirectly assessed through a relative energy score derived from 

CPU usage and execution time. This metric is essential in evaluating the sustainability of 

cryptographic operations in resource-constrained devices like the Raspberry Pi, especially in 

long-term agricultural deployments where energy efficiency directly affects operational 

viability. Figure 6.7a will address the energy estimation at 1MB. 

 
Figure 6.7a: Energy Estimation at 1MB Data Size for Mac and Pi (Lower is better) 

Figure 6.7a illustrates the estimated energy score for encryption and decryption of a 1MB 

payload across all algorithms and platforms. Notably, the MacBook maintained consistently 

lower energy profiles across most algorithms, with AES-128 and AES-256 presenting the 

lowest scores overall. In contrast, ChaCha20 exhibited moderately higher energy use on the 

Mac, while Twofish remained significantly more demanding across both platforms. The 

Raspberry Pi's energy scores were elevated compared to the Mac, especially for Twofish, 

where both encryption and decryption registered exponentially higher values relative to other 

algorithms — a behaviour consistent with previous performance bottlenecks. Figure 6.7b will 

switch the data size into 4.9MB. 

 

Figure 6.7b: Energy Estimation at 4.9MB Data Size for Mac and Pi (Lower is better) 
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Figure 6.7b expands the comparison to 4.9MB data size, where energy disparities become 

even more pronounced. Twofish on the Mac recorded energy scores exceeding 1000 units, 

highlighting its unsuitability for large data encryption in constrained environments. On the 

Raspberry Pi, energy scores for AES and ChaCha20 remained within a manageable range. 

However, Twofish failed to complete the 4.9MB operation on the Pi, leading to its omission 

from the graph — an outcome that reinforces previously observed memory and CPU 

limitations (see Figures 6.4b and 6.5b). ChaCha20 again proved to be a competitive option, 

balancing speed and energy efficiency effectively, especially in decryption. 

 

The energy estimation results strongly suggest that AES-128 and ChaCha20 offer the most 

favorable balance between performance and energy efficiency across both platforms. 

Twofish, while theoretically secure, exhibited extreme power demands and operational 

instability on low-power devices, undermining its feasibility for real-world deployments in 

smart agriculture IoT networks. 

 

6.3 Project Challenges 

During the development and benchmarking phases of this project, several challenges emerged 

that affected both the evaluation process and the overall system design. These challenges 

were primarily related to hardware limitations, library constraints, and inconsistencies in 

performance measurement. Each of these issues is discussed below to provide a realistic 

assessment of the project's technical hurdles. 

6.3.1 Performance Bottlenecks with Twofish 

Twofish consistently underperformed in all benchmark metrics, including 

encryption/decryption time, throughput, CPU usage, memory consumption, and energy 

estimation. These issues were especially pronounced on the Raspberry Pi Zero 2 W, where 

the algorithm either failed to complete at larger payloads (e.g., 4.9MB) or returned extreme 

results—such as over 1000 in relative energy score and null outputs. 

This performance degradation can be attributed to the limitations of the ‘twofish-ts’ Python 

library used. Unlike AES and ChaCha20, which benefit from optimised, low-level libraries 

with hardware acceleration (e.g., OpenSSL-backed bindings), Twofish required manual 
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block-by-block encryption logic. This approach led to significantly higher computational 

overhead, making the algorithm unsuitable for lightweight real-time IoT applications. 

6.3.2 Resource Constraints on the Raspberry Pi 

Although the Raspberry Pi Zero 2 W features a quad-core CPU, the benchmark script was 

written in a single-threaded Python process and could not effectively utilise multiple cores. 

As a result, computational load was limited by weak single-core performance, particularly 

when dealing with large data sizes or complex algorithms like Twofish. 

This limitation led to excessive CPU usage, prolonged execution times, and in some cases, 

incomplete benchmarks. While lightweight algorithms like AES-128 and ChaCha20 

performed acceptably, Twofish repeatedly caused operational instability, demonstrating the 

need to match algorithm complexity with the processing capabilities of the target hardware. 

6.3.3 Memory and Energy Measurement Anomalies 

Another significant challenge was the inconsistency in memory usage reporting. During 

large-payload encryption or decryption tasks, especially with Twofish, the ‘psutil’ library 

recorded negative memory usage or 0 KB values. This anomaly likely resulted from 

aggressive garbage collection or memory reuse strategies by Python’s runtime, especially 

under constrained environments like the Raspberry Pi. 

Similarly, the energy estimation metric—derived from CPU usage and operation 

time—exhibited significant variance. Though useful as a relative indicator, its accuracy was 

inherently limited by the software-based approximation method and the non-deterministic 

nature of process scheduling in Python. 

6.3.4 Library Fragmentation and Tool Limitations 

The benchmarking process faced additional complexity due to differences in how encryption 

algorithms are implemented across libraries. For example, AES encryption was available via 

well-optimised libraries (such as ‘cryptography’), whereas ChaCha20 required use of 

‘PyCryptodome’, and ‘Twofish’ depended on the less-performant ‘twofish-ts’. 

This fragmentation meant that no single library could be used uniformly across all 

algorithms. Consequently, special handling was needed in the benchmarking script for each 
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algorithm, which introduced small but unavoidable disparities in how performance was 

measured. 

6.3.5 Manual Interruption Handling for Long-running Tests 

To prevent prolonged execution or system crashes during testing, the benchmarking script 

included an interactive prompt asking the user whether to continue with Twofish evaluations 

for 4.9MB, 5MB, and 10MB payloads. While this approach safeguarded system stability, it 

disrupted the flow of automated benchmarking and required human intervention, which is not 

ideal for repeatable experimentation. 

6.4 Objectives Evaluation 

To reiterate, the objective of this project is to develop a secure and replicable data 

transmission system for smart agriculture in Malaysia using Raspberry Pi and Node-RED. 

The system must transmit simulated sensor data using MQTT while implementing encryption 

algorithms – AES-128, AES-256, ChaCha20, and Twofish to assess their performance in a 

low-power, IoT-based environment. The system also aims to identify an algorithm that 

provides a practical balance of speed, resource efficiency, and security for real-world 

developments. 

Upon evaluation, the project has successfully met its objectives. The encryption system was 

implemented and deployed using both high-end (Macbook Air M1) and low-power 

(Raspberry Pi Zero 2 W) platforms. All four algorithms were integrated and benchmarked 

across multiple data sizes with measurements taken for encryption time, decryption time, 

throughput, memory usage, CPU load, and energy estimation. AES-128 emerged as the most 

well-rounded and optimal algorithm, offering the best trade-off between speed, resource 

efficiency, and energy use–particularly on the Raspberry Pi. ChaCha20 also performed 

exceptionally well, especially in memory-constrained scenarios, making it a strong alternative 

for certain IoT deployments. In contrast, Twofish displayed critical weaknesses in processing 

speed, memory handling, and energy use, disqualifying it as a practical option for constrained 

environments. The system, built entirely with open-source tools, remains low-cost, replicable, 

and suitable for future enhancements. 
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6.5 Concluding Remark 

This chapter presented a comprehensive evaluation of the implemented secure data 

transmission system for smart agriculture, highlighting its performance across multiple 

cryptographic algorithms on both a development machine (MacBook Air M1) and a target 

embedded device (Raspberry Pi Zero 2 W). Through rigorous testing, AES-128 emerged as 

the most efficient and reliable algorithm overall, delivering the best balance of performance 

and energy for real-time IoT agricultural applications. ChaCha20 closely followed, 

demonstrating solid efficiency and scalability on low-power hardware, making it a strong 

second choice depending on specific constraints. 

In contrast, Twofish exhibited significant performance limitations especially on CPU and 

memory metrics, rendering it unsuitable for constrained edge platforms like the Raspberry Pi. 

The benchmarking effort highlighted the critical role of lightweight cryptography in 

resource-constrained environments, validating the project’s core objective. Overall, this 

system is ready to support future smart agriculture initiatives with secure, efficient, and 

scalable data communication. 
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Chapter 7 

Conclusion and Recommendations 

This project successfully achieved its primary objective of developing, implementing and 

evaluating a secure data transmission system tailored for smart agriculture applications. By 

integrating four widely recognised symmetric encryption algorithms (AES-128, AES-256, 

ChaCha20, and Twofish), the system provided a versatile platform for assessing 

cryptographic performance in both development (MacBook Air M1) and embedded 

(Raspberry Pi Zero 2 W) environments. 

Comprehensive benchmarking tests were conducted to evaluate encryption and decryption 

time, throughput, CPU usage, memory usage, and energy estimation across different payload 

sizes. The results showed that AES-128 consistently delivered the most favorable balance of 

speed, efficiency, and energy consumption, making it the definitive choice for low-power IoT 

systems. ChaCha20, while slightly less efficient in raw speed, demonstrated strong suitability 

for embedded applications, thanks to its low memory and CPU demands. AES-256, while 

secure, imposed greater computational overhead and latency, making it better suited for 

systems prioritising high security over speed. 

Conversely, Twofish, despite its theoretical security strengths, underperformed across all 

tested parameters–particularly in large payload scenarios due to high latency, energy 

demands, and memory irregularities. 

These findings highlight the need for encryption algorithm selection in IoT deployments to 

go beyond just cryptographic strength. Real-world considerations such as processing 

overhead, energy use, and platform compatibility are crucial. In summary, AES-128 stands 

out as the best-fit algorithm, with ChaCha20 offering an excellent alternative where 

performance trade-offs are acceptable. 

7.2 Recommendation 

Based on the evaluation and findings of this study, several improvements are recommended 

for future development and research. First, the underperformance of the Twofish algorithm 

may be attributed to the limitations of the ‘twofish’ library used in the Node-RED and Python 
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environment. It is suggested that a more optimised or native implementation in a lower-level 

language such as C be considered, interfaced via Python using libraries like ‘ctypes’ or ‘cffi’ 

to yield more representative results. 

Additionally, the benchmarking script employed in this project likely utilises a single CPU 

thread, which may not fully capitalize on the Raspberry Pi Zero 2 W’s quad-core architecture. 

Optimising the script to support multithreading could improve test realism and better reflect 

performance potential. Future versions of this system should also incorporate physical power 

measurement tools to obtain more accurate energy consumption data, as the current energy 

estimation is based on CPU load and execution time only. 

Moreover, real-world testing in a live agriculture deployment is encouraged. This would 

introduce practical variables such as sensor noise, wireless transmission delays, and 

long-term stability that are difficult to simulate in controlled environments. A deeper 

examination of how input data entropy influences algorithm performance is also 

recommended, especially since agricultural sensor data may exhibit predictable or repetitive 

patterns that affect compression and encryption behaviour. 

Finally, future studies could broaden the algorithm selection to include lightweight 

cryptographic algorithms such as Speck, Simon, or Ascon, which has been considered in 

NIST’s Lightweight Cryptography competition. These algorithms may offer better 

performance for embedded IoT use cases. Together, these recommendations aim to enhance 

the robustness, efficiency, and applicability of secure data transmission systems in real-world 

smart agriculture deployments. 
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