

SECURED AGRICULTURE SENSOR DATA BASED ON END-TO-END

ENCRYPTION USING RASPBERRY PI

BY

CHOO JIA HUEY

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMMUNICATIONS

AND NETWORKING

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

COPYRIGHT STATEMENT

© 2025 Choo Jia Huey. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Technology (Honours) Communications

and Networking at Universiti Tunku Abdul Rahman (UTAR). This Final Year

Project report represents the work of the author, except where due

acknowledgment has been made in the text. No part of this Final Year Project

report may be reproduced, stored, or transmitted in any form or by any means,

whether electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 2

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr.

Abdulrahman Aminu Ghali who has given me this bright opportunity to engage in this

project. It is my first step to establish a career in the agriculture security field. A million

thanks to you.

To a very special person in my life, Low Hui Wen, for her patience, unconditional support,

and love, and for standing by my side during hard times. Finally, I must say thanks to my

parents and my family for their love, support, and continuous encouragement throughout the

course.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 3

ABSTRACT

The rise of smart agriculture in Malaysia, powered by IoT sensor networks, has transformed

farming by enabling real-time monitoring of soil moisture, temperature, and environmental

conditions. However, much of this sensor data is transmitted without encryption, exposing it

to risks such as interception, tampering, and unauthorised access. This project addresses these

security concerns by developing a secure data collection and visualisation system using

Raspberry Pi and Node-RED. The system integrates multiple robust encryption

algorithms—AES-128, AES-256, ChaCha20, and Twofish—for end-to-end data protection.

Additionally, a benchmarking tool was developed to evaluate and compare the performance

of these algorithms in terms of speed, memory, CPU usage, and encryption overhead. The

final outcome is a lightweight, replicable solution for secure smart agriculture systems that

enhances trust, integrity, and data privacy in IoT-based farming environments.

Area of Study (Minimum 1 and Maximum 2): Internet of Things, Cybersecurity

Keywords (Minimum 5 and Maximum 10): Security, Smart Agriculture, Encrypted Data

Transmission, Sensor Networks, Node-RED, MQTT, Raspberry Pi, Real-time Monitoring,

ChaCha20, Twofish

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 4

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1​INTRODUCTION 1

1.1​ Problem Statement and Motivation 2

1.2​ Objectives 2

1.3​ Project Scope and Direction 3

1.4​ Contributions 3

1.5​ Report Organization 3

CHAPTER 2​LITERATURE REVIEW 5

2.1​ Review of Technologies 4

2.1.1​ Raspberry Pi 5

2.1.2​ Node-RED 5

2.1.3​ MQTT Protocol 5

2.1.4​ Python Programming Language 6

2.1.5​ Encryption Algorithms 6

2.1.6​ Data Visualisation and Monitoring Tools 6

2.2​ Related Works in Secure Smart Farming 7

2.2.1​ Precision Agriculture Monitoring System using Wireless

Sensor Network and Raspberry Pi Local Server

7

2.2.2​ Cyber Attack on Smart Farming Infrastructure 9

2.2.3​ Securing the Internet of Battlefield Things with ChaCha20 11

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 5

2.2.4​ Comparative Performance Analysis of Lightweight

Cryptography Algorithms

13

2.3​ Limitations of Previous Study 14

2.4​ Summary 16

CHAPTER 3​SYSTEM METHODOLOGY 17

3.1​ System Design Diagram 17

3.1.1​ System Architecture Diagram 17

3.1.2​ Use Case Diagram and Description 18

3.1.3​ Activity Diagram 19

3.2​ Tools and Technologies Used 20

3.2.1 Hardware 20

3.2.2 Software Tools 20

3.2.3 Python Libraries and Packages 21

3.3​ Secure Data Transmission Workflow 22

3.3.1​ Encryption Mode Selection 22

3.3.2​ Sensor Data Generation 22

3.3.3​ MQTT Publishing 23

3.3.4 Encryption Logic 23

3.4​ Node-RED Decryption and Visualisation Workflow 23

3.4.1 MQTT Message Reception 23

3.4.2 Decryption Flow 24

3.4.3 Dashboard Integration 24

3.5​ Benchmarking and Methodology 24

3.5.1​ Benchmarking Script Structure 25

3.5.2​ Performance Metrics 25

3.5.3​ Testing Parameters 25

3.5.4 Data Collection Tools 26

3.5.5 Algorithm Executions 26

3.5.6 Summary Results Output 26

3.6​ Data Collection and Analysis Process 26

3.6.1​ Structured Metric Recording 26

3.6.2​ Tabulated Output 27

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 6

3.6.3​ Visualisation and Export 27

3.6.4 Reproducibility 27

3.7​ Summary 28

CHAPTER 4 SYSTEM DESIGN 29

 4.1 System Block Diagram 29

 4.2 System Components Specifications 30

4.2.1​ Hardware Components 30

4.2.2​ Software Components 30

4.2.3​ Setup for Node-RED Function Global Context 31

 4.3 Circuits and Components Design 32

4.3.1​ Simulated Sensor Emulation 32

4.3.2​ Potential Hardware Integration 32

 4.4 System Components Interaction Operations 33

4.4.1​ Sender Operations (Python Script) 33

4.4.2​ Message Transmission (MQTT Broker) 33

4.4.3​ Receiver Operations (Node-RED) 33

4.4.4​ Dashboard Visualisation 34

CHAPTER 5​SYSTEM IMPLEMENTATION 35

 5.1 Hardware Setup 35

5.2​ Software Setup 36

5.3​ Setting and Configuration 38

5.3.1​ Encryption Script Configuration (Python) 38

5.3.2​ Mosquitto MQTT Broker Setup 38

5.3.3 Node-RED Environment Configuration 39

5.3.4​ Flow Import and Dashboard Setup 39

5.4​ System Operation (with Screenshot) 39

5.4.1​ Starting the Sender Script 40

5.4.2​ MQTT Broker Operation (Mosquitto) 40

5.4.3​ Receiving and Decrypting in Node-RED 41

5.4.4 Dashboard Visualisation 42

5.4.5​ Benchmark Script Execution Flow 42

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 7

5.5​ Implementation Issues and Challenges 43

5.5.1​ Node-RED function Context Configuration 43

5.5.2​ Block Cipher Padding Constraints 44

5.5.3​ Complexity of Twofish Implementation in Node-RED 44

5.6 Concluding Remark 44

CHAPTER 6​SYSTEM EVALUATION AND DISCUSSION 45
​ ​ ​ ​

6.1​ System Testing and Performance Metrics

45

6.1.1​ Objectives of Testing 45

6.1.2​ Test Parameters and Methodology 45

6.1.3 Entropy Conditions 46

6.1.4 Repetitions 46

6.1.5 Performance Metric Tracked 46

6.2 Testing Setup and Result 47

6.2.1​ Encryption Time 47

6.2.2​ Decryption Time 48

6.2.3​ Encryption Throughput 49

6.2.4 Decryption Throughput 50

6.2.5 Memory Usage 52

6.2.6 CPU Usage 54

6.2.7​ Energy Estimation 56

6.3 Project Challenges 57

6.3.1​ Performance Bottlenecks with Twofish 57

6.3.2​ Resource Constraints on the Raspberry Pi 58

6.3.3​ Memory and Energy Measurement Anomalies 58

6.3.4 Library Fragmentation and Tool Limitations 58

6.3.5 Manual Interruption Handling for Long-running Tests 59

6.4 Objectives Evaluation 59

6.5 Concluding Remark 60

CHAPTER 7​CONCLUSION AND RECOMMENDATION 61

7.1​ Conclusion 61

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 8

7.2​ Recommendation 61

REFERENCES 63

 APPENDIX​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 65

 POSTER​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 65

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 9

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 System Architecture and Attack Vector 10

Figure 2.2 Graphical Depiction of a Deauthentication Attack 11

Figure 3.1 System Architecture Diagram 17

Figure 3.2 Use Case Diagram 18

Figure 3.3 Activity Diagram 19

Figure 4.1 System Block Diagram 29

Figure 5.1 Demonstration of Python Script 40

Figure 5.2 Verification of MQTT Broker Active 40

Figure 5.3 Node-RED Flow 41

Figure 5.4 Node-RED Dashboard UI View 42

Figure 5.5 Benchmarking Script Result Demonstration 43

Figure 6.1 Encryption Time Comparison Across Algorithms and

Devices (Lower is Better)

47

Figure 6.2 Decryption Time Comparison Across Algorithms and

Devices (Lower is Better)

48

Figure 6.3 Encryption Throughput Comparison Across Mac and

Raspberry Pi (Higher is Better)

49

Figure 6.4 Decryption Throughput Comparison Across Mac and

Raspberry Pi (Higher is Better)

51

Figure 6.5a Memory Usage of Encryption Algorithms on Macbook 52

Figure 6.5b Memory Usage of Encryption Algorithms on Raspberry Pi 53

Figure 6.6a CPU Usage per Encryption/Decryption Operation at 1MB

on Mac and Pi (Lower is Better)

54

Figure 6.6b CPU Usage per Encryption/Decryption Operation at 4.9MB

on Mac and Pi (Lower is Better)

55

Figure 6.7a Energy Estimation at 1MB for Mac and Pi (Lower is Better) 56

Figure 6.7b Energy Estimation at 4.9MB for Mac and Pi (Lower is

Better)

56

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 10

LIST OF TABLES

Table Number Title Page

Table 2.1 Literature Review of the Existing Methods 17

Table 2.2 Strengths and Weakness of the Project 18

Table 5.1 Specifications of Laptop 35

Table 5.2 Specifications of Raspberry Pi Zero 2 W 36

Table 5.3 Software Tools and Libraries Installed 37

Table 6.1 Metric Tracked and Description 46

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 11

LIST OF SYMBOLS

- -

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 12

LIST OF ABBREVIATIONS

AES

AES-128

AES-256

CC20

Twofish

Advanced Encryption Standard

AES with 128-bit encryption key

AES with 256-bit encryption key

ChaCha20 stream cipher

A symmetric key block cipher

API Application Programming Interface

CPU Central Processing Unit

GPIO General Purpose Input Output

IOT Internet of Things

JSON JavaScript Object Notation

RAM Random Access Memory

MQTT Message Queuing Telemetry Transport

RPi/Pi Raspberry Pi

PKCS7 Public-Key Cryptography Standards #7 (padding scheme)

I2C Inter-Integrated Circuit

Mac Macintosh/Macbook

UI User Interface

GUI Graphical User Interface

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 13

Chapter 1 Introduction

CHAPTER 1

Introduction

The rise of Internet of Things (IoT) sensor networks in Malaysian agriculture has transformed

traditional farming practices by enabling farmers to collect real-time environmental data.

These networks gather environmental information like soil moisture levels and temperature to

assist farmers in improving crop productivity and managing resources efficiently [1]. Despite

its significance, safeguarding the security of this sensor data still poses a persistent challenge

that is frequently underestimated.

Smart farming uses technology to modernise traditional agriculture practices by offering

immediate data to improve decision-making processes. In Malaysia, the integration of these

advancements has played a role in tackling farming issues, such as erratic weather conditions,

insect invasions, and limited resources. For example, the use of sensors allows ongoing

monitoring of soil quality, resulting in accurate watering techniques that save water and

enhance crop productivity and health. Furthermore, temperature and humidity sensors play a

role in maintaining the perfect environment for crops to thrive [2]. By ensuring conditions for

growth, these sensors help minimise the risk of crop losses and boost productivity as a whole.

The advantages of utilising farming go beyond just improving efficiency and productivity in

agricultural practices. In Malaysia, farmers can use data analysis to predict and address

potential challenges before they escalate into major concerns. This proactive strategy not only

boosts crop production but also reduces the environmental footprint of farming methods.

Despite these progressions in technology, there is a concern surrounding the protection of

agricultural sensor information. The transmission of agricultural data without encryption,

such as soil moisture levels, temperature recordings, and nutrient content, poses potential

risks for farms. Additionally, unauthorised access to agricultural data can disrupt automated

systems, such as irrigation controllers, resulting in significant operational challenges [3].

Addressing these security concerns is essential to safeguarding the integrity and reliability of

smart agriculture systems in Malaysia.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 1

Chapter 1 Introduction

1.1 ​ Problem Statement and Motivation

In the changing world of smart farming, Malaysia's agricultural sector has embraced modern

farming techniques that rely on data from IoT sensors on their farms to enhance their farming

practices efficiently by gathering crucial information about the environment, like soil

moisture content and temperature to help improve crop productivity and resource utilization

effectively.

On the other hand, transmitting this important agricultural information is frequently done

without encryption, which poses major security risks. Unprotected data pathways leave farms

vulnerable to potential threats like data breaches, alteration of crop conditions, interruptions

in automated processes and an overall compromise in farm operations. It is crucial to tackle

this pressing security issue to safeguard the trustworthiness and dependability of farming

practices, in Malaysia.

1.2 Objectives

1.​ To develop a secure and cost-effective data transmission system for smart agriculture

using Raspberry Pi as the target platform, MQTT and Node-RED

2.​ To implement and benchmark multiple encryption algorithms (AES-128, AES-256,

ChaCha20, and Twofish) for securing sensor data in transit.

3.​ To evaluate the performance of these algorithms in terms of encryption time,

decryption time, memory usage, and CPU usage on resource-constrained hardware.

These objectives collectively aim to deliver a replicable and secure communication

framework suitable for real-time monitoring in small to medium-sized smart farming

environments.

1.3 ​ Project Scope

The scope of this project involves the development and implementation of a secure IoT-based

data collection system for environmental monitoring within agricultural contexts.

Environmental sensor readings will be emulated using Python scripts on both the

development machine and Raspberry Pi, and transmitted as encrypted payloads to a

Node-RED flow via MQTT. The Node-RED flow will include decryption logic for multiple

algorithms and present visual feedback through an interactive dashboard.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 2

Chapter 1 Introduction

The project also includes a comparative evaluation of the selected encryption algorithms

(AES-128, AES-256, ChaCha20, and Twofish), focusing on metrics such as processing time,

memory usage, and CPU load. A key consideration is ensuring the system remains

lightweight, modular, and suitable for future integration with actual sensors. This supports the

broader aim of creating a practical and scalable solution for secure data transmission in

small-scale agricultural IoT deployments.

The project does not include the use of actual physical sensors; instead, all environmental

data is emulated through Python scripts. Additionally, cloud-based data storage, remote

access capabilities, and advanced analytics are outside the scope of this work. The

implementation also excludes security components such as key exchange protocols, public

key infrastructure (PKI), and user authentication mechanisms. Network-level security threats,

including denial-of-service (DoS), man-in-the-middle (MITM) attacks, and packet sniffing,

are not addressed. Furthermore, energy consumption metrics are estimated using CPU usage

and processing time, as external power measurement tools are not utilised.

1.4​ Contributions

This project addresses vulnerability concerns in protecting sensitive agricultural data within

the agriculture sector in Malaysia. By integrating open-source tools like Raspberry Pi and

Node-RED with robust encryption, the project significantly improves the security of sensitive

agricultural data transmission, preventing interception, manipulation, and unauthorised

access. In addition to demonstrating encryption workflows and decryption handling, it

benchmarks the performance of various cryptographic methods, aiding future IoT developers

in selecting suitable algorithms. This solution improves trust, reliability, and scalability of

smart farming systems in resource-constrained environments.

1.5 ​ Report Organization

The thesis is organized into 7 Chapters briefly discussed below:

Chapter 1 is divided into 5 sections. The first section discusses the problem statement and

motivation behind the research. Section 2 lists the research objectives. Section 3 lists the

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 3

Chapter 1 Introduction

project scope and objectives. Section 4 discusses the contributions of the project to the field

of smart agriculture. Finally, Section 5 provides an overview of the report organisation.

Chapter 2 is split into 4 sections. Section 1 provides a review of relevant technologies

including Raspberry Pi, Node-RED, MQTT, Python, encryption algorithms, and monitoring

tools. Section 2 discusses previous works related to secure smart farming. Section 3

highlights the limitations identified in existing studies. Section 4 offers a summary of the

literature reviewed.

Chapter 3 is divided into 7 sections. Section 1 introduces the system design through various

diagrams. Section 2 presents the tools and technologies used. Section 3 details the secure data

transmission workflow. Section 4 explains the decryption and data visualisation process using

Node-RED. Section 5 outlines the benchmarking methodology. Section 6 describes the data

collection and analysis process. Section 7 concludes with a summary of the methodology.

Chapter 4 is split into 4 sections. Section 1 presents the overall system block diagram.

Section 2 provides the specifications of the hardware and software components. Section 3

focuses on the design of circuits and emulated sensors. Section 4 describes how different

system components interact in transmitting and receiving sensor data.

Chapter 5 is divided into 6 sections. Section 1 discusses the physical hardware setup. Section

2 explains the software setup and environment configuration. Section 3 elaborates on system

configurations, particularly encryption and MQTT settings. Section 4 demonstrates system

operation with illustrative screenshots. Section 5 identifies challenges encountered during

implementation. Section 6 concludes the chapter with final remarks on the implementation

phase.

Chapter 6 is separated into 5 sections. Section 1 outlines the testing objectives and

performance metrics. Section 2 presents the testing setup and detailed results for each metric.

Section 3 discusses project challenges related to performance and resources. Section 4

evaluates how well the objectives were met. Section 5 concludes the discussion on system

evaluation.

Chapter 7 is divided into 2 sections. Section 1 summarises the main findings and conclusions

drawn from the project. Section 2 provides recommendations for future improvements and

potential research directions.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 4

Chapter 2 Literature Review

Chapter 2

Literature Review

2.1 Review of Technologies

The section highlights various technologies both hardware and software that will be utilised

for the proposed project.

In this chapter, the project will highlight the related literature review of the technology used.

2.1.1 Raspberry Pi

The Raspberry Pi is a compact, cost-effective single-board computer widely utilised in IoT

applications due to its versatility and energy efficiency. Its compatibility with various sensors

and support for multiple programming languages make it ideal for smart agriculture systems.

The Raspberry Pi’s ability to handle data collection, processing, and transmission tasks

efficiently aligns with the project’s requirements for a secure and scalable agricultural

monitoring solution.

2.1.2 Node-RED

Node-RED is a flow-based development tool designed for visual programming, particularly

suited for IoT applications. Developed by IBM, it allows for the seamless integration of

hardware devices, APIs, and online services. In this project, Node-RED facilitates the

creation of dashboards for real-time data visualisation and management, enhancing user

interaction and system monitoring capabilities.

2.1.3 MQTT Protocol

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol

optimised for high-latency or unreliable networks, making it ideal for IoT environments. It

operates on a publish-subscribe model, ensuring efficient data transmission between devices.

The protocol's minimal bandwidth requirements and low power consumption are

advantageous for resource-constrained devices like those used in smart agriculture.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 5

Chapter 2 Literature Review

2.1.4 Python Programming Language

Python is a high-level, interpreted programming language known for its readability and

extensive library support. Its versatility makes it suitable for various aspects of IoT

development, including data processing, automation, and implementing encryption

algorithms. In this project, Python is employed to develop scripts for data encryption and

decryption, leveraging libraries such as PyCryptodome to ensure secure data handling.

2.1.5 Encryption Algorithms

Ensuring data security in IoT applications is paramount, especially in sectors like agriculture

where sensitive information is transmitted. This project evaluates several encryption

algorithms to determine their suitability for resource-constrained environments:

●​ AES (Advanced Encryption Standard): A symmetric encryption algorithm known

for its robustness and efficiency. Variants like AES-128 and AES-256 offer different

key lengths, balancing security and performance.

●​ ChaCha20: A stream cipher designed for high performance in software

implementations, offering strong security with faster processing times compared to

traditional algorithms.

●​ Twofish: A symmetric key block cipher recognized for its flexibility and speed,

making it a viable option for devices with limited computational resources.

Studies have benchmarked these algorithms on platforms such as the Raspberry Pi, assessing

their performance in terms of speed, memory usage, and energy consumption.

2.1.6 Data Visualisation and Monitoring Tools

Effective data visualisation is crucial for monitoring agricultural parameters and making

informed decisions. Tools integrated within Node-RED enable the creation of interactive

dashboards, providing real-time insights into environmental conditions. These dashboards

facilitate the tracking of metrics such as soil moisture, temperature, and humidity, allowing

for timely interventions and resource optimization.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 6

Chapter 2 Literature Review

2.2 Related Works in Secure Smart Farming

The report will highlight the existing works and project how our proposed solution fills

identified gaps and advances the field.

2.2.1 Precision Agriculture Monitoring System using Wireless Sensor Network and

Raspberry Pi Local Server

Work by the author Flores [4] underlines the need for real-time monitoring possible through

WSN in reducing risks to production due to both environmental and human factors. Their

study delimited how there is a need to take advantage of the field data and make it possible

for farmers to make necessary adjustments in crop production timely in order to increase

agricultural productivity and resilience.

With more demands for the increased production of food, there has been growing economic

pressure on investors to adopt aggressive farming methods. While this brings high yields in

the short run, it depletes the natural resources. The adoption of sustainable agricultural

practices through the use of new technologies is required if responses to such challenges are

to be affected. Poor utilization, due to a lack of information, awareness, and resistance to the

adoption of new technologies outweighs the effectiveness of new technologies. Author Flores

[4] expresses that in order for environmental monitoring to encourage sustainable agriculture,

there is a dire need to develop low-cost, user-friendly, efficient monitoring systems.

Relevant to this paper is the Pods project at the University of Hawaii whose objective is the

ecological environment and events monitoring around rare plants. This project would deploy

attached micro weather sensors to communication units, or "pods," to monitor sunlight,

temperature, wind, and rainfall. Considering a low cost and low interference with the terrain,

the pods form a wireless ad-hoc sensor network capable of transmitting data by themselves

and forwarding it to other nodes. Implementation of the wireless routing protocol MOR

(Multi-path On-demand Routing Protocol) comes true with maximized efficiency in routing

and energy conservation, enhancing scalability and robustness for the Sensor Network.

Among all the parameters that highly influence crop growth, temperature, humidity, soil

moisture, and soil pH are considered to be some of the key parameters in agriculture

monitoring sensors. Of these, soil electrical conductivity and pH bear high importance

because of their critical role in characterizing field variability and optimizing precision
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 7

Chapter 2 Literature Review

agriculture practices. According to the author Flores [4], accurate measurement of soil pH is

very important because it defines nutrient availability and plant growth. This study further

renders the importance of pH extremes concerning plant tolerance and nutrient uptake,

emphasizing that the soil pH should be optimally adequate for agricultural productivity.

Testing sensors is an important aspect that leads to full assurance of the accuracy and

reliability of agriculture sensors. Flores conducted in-depth testing of numerous sensors, such

as the DHT22 sensor for temperature and humidity, ALS-PTl9 for light, soil moisture sensor,

and analogue pH meter. Each sensor was subjected to all sorts of different environmental

conditions to check for its accuracy and response. Additionally, there is an EC meter that was

developed after rigorous testing to relate the EC analogue values and electrical conductivity

measurements. Moreover, the study has established the calibration and validation of sensors

as key factors in guaranteeing agricultural data integrity.

Eventually, it has been observed from the reviewed literature how much more significant

WSNs and state-of-the-art sensor technologies play regarding revolutionary changes in

agricultural monitoring and management. Several such works have highlighted real-time data

acquisition, sustainability of agriculture, and sensor reliability as critical aspects that

determine improvements in agricultural productivity and resilience. By integrating novel

technologies with sound sensor testing methodologies, scholars will be in a position to

achieve affordable and effective solutions towards overcoming farming challenges and

improving food production in a sustainable manner.

In light of this, an evaluation of the strengths and weaknesses of individual studies reveals

both promising approaches and notable gaps. Flores et al. [4] present a compelling concept

for agricultural monitoring. Its strengths lie in the use of wireless sensor networks (WSNs)

combined with a Raspberry Pi local server, which enables live monitoring of environmental

variables to facilitate timely agricultural decisions. The project emphasises low-cost

implementation using commonly available hardware components, making it financially

suitable for farmers and promoting the widespread adoption of precision agriculture practices.

However, several limitations can be observed. The project’s reliability is heavily dependent

on the durability and stability of its hardware components, such as the Raspberry Pi, sensors,

and the central server. Sensor failures or connectivity issues could disrupt data collection and

negatively impact data-driven decision-making. Additionally, while the system handles

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 8

Chapter 2 Literature Review

sensitive agricultural data, the study [4] does not explore data protection mechanisms. As

such, adequate measures to safeguard this data against unauthorized access or cyber-attacks

would be necessary for real-world deployment.

2.2.2 Cyber Attack on Smart Farming Infrastructure

The author Sontowski [5] shows the threatening aspect brought about by cyber attacks on

smart farming infrastructure; this paper describes the implementation of denial-of-service

(DoS) attacks targeting a smart farm architecture that is connected to the 2.4 GHz network.

Namely, a Wi-Fi deauthentication attack managed to totally disrupt the communication

between the Raspberry Pi and the Wi-Fi access point and, by implication, prevent data from

going to the Azure cloud. Moreover, using the MakerFocus ESP8266 Development Board

WiFi Deauther Monster, the attackers expand the attack to disable any devices attempting to

connect. Hence, disconnecting the Raspberry Pi from the network is achieved, as highlighted

in Figure 2.1. This particular attack utilises, among others, deficiencies of the IEEE 802.11

protocols, such as the sent-in plaintext management frames, which render them susceptible to

deauthentication frames containing spoofed MAC addresses that forge the AP. The study

emphasises that such types of attacks are quite difficult to detect since they bypass the

traditional systems of security such as MAC filtering and intrusion detection systems.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 9

Chapter 2 Literature Review

Figure 2.1: System Architecture and Attack Vector [5]

Figure 2.1 highlights a potential cybersecurity threat, an adversary launching a DDOS attack

against the Raspberry Pi. This attack could disrupt the system’s performance, blocking

communication of data between the sensors, cloud platform, and end users, thereby

compromising the confidentiality and integrity of smart agriculture.

A very critical example concerning the importance of understanding and mitigating such

vulnerabilities in the infrastructure of smart farming is the Wi-Fi deauthentication attack

execution by the author Sontowski [5]. It can be executed through tools that are easily

available, targeting the weaknesses within the 802.11 protocol, posing an immense danger

towards the reliability and security of the agricultural sensor network. The successful attack

demonstrates the implementation of robust security measures, such as encryption of

management frames by IEEE 802.11w, which prevents spoofing and unauthorized access

through a method of encrypting management frames, as highlighted in Figure 2.2.

Furthermore, this study underlines that the challenges of dealing with cybersecurity will not

be confined only to smart farming but to each other domain of IoT, where similar

vulnerabilities might exist.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 10

Chapter 2 Literature Review

Figure 2.2: Graphical Depiction of a Deauthentication Attack [5]

Figure 2.2 gives a graphic representation of the deauthentication attack by relating the client,

attacker, and access point in such a way that the attacker intercepts the regular flow of

communication from authentication and association in an unencrypted management frame

and subverts to send deauthentication frames that disrupt the established connection between

client and access point, hence keeping the client disconnected from the network.

It has been established from the review of the literature that cybersecurity plays an imperative

role in the infrastructure of smart farming, thus creating a platform for developing proactive

measures against cyber-attacks. This benefits both researchers and practitioners by allowing

them to understand the methodologies and implications of such malicious threats, develop

appropriate security strategies, and deploy them effectively to protect agricultural systems.

Building on this perspective, an analysis of the strengths and weaknesses of relevant

cybersecurity studies reveals critical vulnerabilities and defensive approaches. The study by

Sontowski et al. [5] addresses a highly relevant aspect of modern smart farming

infrastructure: cybersecurity. One of the key strengths of this work lies in its demonstration of

a practical Wi-Fi deauthentication attack using the MakerFocus ESP8266 Development

Board WiFi Deauther Monster. The authors [5] provide empirical evidence of vulnerabilities

in 2.4 GHz networks, commonly used in smart agriculture, by exposing exploitable

management frames in the IEEE 802.11 protocol. These findings highlight the potential for

spoofed deauthentication frames to compromise network availability.

Despite its relevance, the study has certain limitations. It focuses exclusively on Wi-Fi

deauthentication attacks within the 2.4 GHz frequency band. While this exposes one

significant vulnerability, it does not consider other possible cyber threats to smart agriculture

systems, such as man-in-the-middle attacks, data injection, or physical tampering. Moreover,

although the study recommends implementing IEEE 802.11w as a countermeasure, it does

not present a comprehensive set of mitigation strategies or technical implementations for

broader threat coverage.

2.2.3 Securing the Internet of Battlefield Things with ChaCha20

Navalino et al. [6] proposed the use of ChaCha20-Poly1305 encryption to enhance data

security for resource-constrained devices operating within the Internet of Battlefield Things
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 11

Chapter 2 Literature Review

(IoBT) environment. The study focused on applying lightweight cryptography in real-time

sensor communication using a Raspberry Pi Pico microcontroller and nRF24L01 radio

modules. Although the original context is military-based, the underlying architecture and

methodology are directly applicable to smart agriculture systems, where energy efficiency

and secure data transmission are critical requirements.

The authors [6] evaluated encryption and decryption performance by measuring the execution

time, throughput, and avalanche effect using live sensor data from MPU6050 modules.

Encryption times ranged from 261 ms for 16-byte messages to 17,472 ms for 8,192-byte

messages. Despite the increasing data size, the throughput remained relatively stable, peaking

at around 468 Bps for encryption and 465 Bps for decryption, respectively. An average

avalanche effect of 50.53% was recorded, indicating strong resistance to cryptanalytic attacks

with only minor input changes.

The implementation of ChaCha20-Poly1305 demonstrated suitability for real-time

environments due to its lightweight nature, high speed, and consistent output performance.

This study is relevant to the current project as it provides empirical justification for using

ChaCha20 as an alternative to AES in low-power, low-latency IoT applications such as smart

agriculture. The findings [6] support the benchmarking approach in this project, particularly

in comparing symmetric encryption algorithms under constrained hardware conditions.

In evaluating the contributions of this work, Navalino et al. [6] presents several notable

strengths. Firstly, it evaluates the ChaCha20-Poly1305 encryption algorithm within a

real-world embedded environment using the Raspberry Pi Pico, along with actual sensor data

transmission. This approach aligns well with the goals of the current project, which involves

performance benchmarking of lightweight encryption in constrained IoT systems. The study’s

analysis of encryption and decryption timings, throughput measurements, and avalanche

effect provides comprehensive insight into the algorithm’s practical viability. Additionally,

the consistent throughput across varying payload sizes demonstrates the algorithm’s

efficiency for systems with variable data loads, such as those found in agriculture.

On the other hand, the study does have some limitations. It focuses solely on

ChaCha20-Poly1305 and does not include performance comparisons against other algorithms

like AES or Twofish, which are included in this project. This reduces its value as a

comparative reference across multiple encryption schemes. Furthermore, the research is
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 12

Chapter 2 Literature Review

positioned within a military IoT context (IoBT), which, while sharing technical similarities

with agricultural IoT, may not fully reflect the environmental and data usage conditions of

smart farming systems. Nonetheless, the hardware and security constraints discussed in [6]

are largely equivalent, allowing the findings to be transferable and still relevant to this

project’s objectives.

2.2.4 Comparative Performance Analysis of Lightweight Cryptography Algorithms

Fotovvat et al. [7] conducted a comprehensive study titled “Comparative Performance

Analysis of Lightweight Cryptography Algorithms for IoT Sensor Nodes,” focusing on

evaluating encryption performance in real-world IoT environments. The study compares 32

authenticated encryption with associated data (AEAD) algorithms, including AES-GCM,

AES-CCM, and other lightweight cipher suites across three embedded platforms: Raspberry

Pi 3B, Raspberry Pi Zero W, and the iMX233 board.

The researchers [7] measured execution time, RAM usage, and energy consumption for each

algorithm using a standardized testing environment. They highlighted how AES-based modes

like GCM and CCM, while offering high security, consume significantly more resources

compared to newly developed lightweight algorithms. This is crucial in IoT systems where

power efficiency, low latency, and memory constraints are fundamental design

considerations.

Fotovvat et al. [7] also deployed the algorithms in a practical IoT sensor node scenario,

encrypting 30-byte sensor payloads and transmitting them over LoRa communication. They

found that encryption time typically accounted for only 5–10% of total transmission time,

demonstrating that selecting an efficient cipher can meaningfully impact overall system

energy usage and responsiveness.

While this study primarily focused on NIST’s LWC candidates, it provides valuable insight

into how classic algorithms like AES (and by extension, Twofish and ChaCha20) compare in

performance under embedded constraints. This aligns closely with the objective of the

present project, which benchmarks various encryption algorithms in a smart agriculture

environment using Raspberry Pi Zero W and Node-RED for secure MQTT communication

[7]. Fotovvat et al. [7] contribute several strengths that reinforce the relevance of their work

to this project. Notably, the study includes extensive benchmarking of 32 AEAD algorithms

across multiple embedded platforms, including the Raspberry Pi Zero W, which is also used
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 13

Chapter 2 Literature Review

in this implementation. This direct hardware alignment ensures the performance insights are

highly applicable. Secondly, the inclusion of a real-world IoT deployment scenario, where

encrypted sensor data is transmitted over a LoRa interface, adds significant practical value. It

illustrates how encryption affects total system performance in terms of timing and energy use,

especially in constrained devices commonly found in agriculture IoT systems.

Moreover, the study provides quantitative analysis on core performance metrics—execution

time, RAM usage, and power consumption—that mirror the benchmarking goals of this

project. This makes the literature a strong foundation for supporting algorithm selection in

resource-limited environments such as smart farms.

However, there are a few limitations to consider. While the study compares a broad range of

lightweight cryptographic algorithms from the NIST LWC standardization process, it does

not explicitly evaluate ChaCha20 or Twofish, two algorithms used in this project. As a result,

while the benchmarking methodology is relevant, the direct applicability to those specific

ciphers is somewhat limited. Additionally, the encryption tests primarily focus on small

payloads (~30 bytes), which, although typical in sensor networks, may not fully represent

systems that handle larger or variable-length data. Lastly, the study focuses exclusively on

symmetric AEAD encryption, and does not explore hybrid or asymmetric encryption models,

which may be relevant for some smart agriculture systems that involve cloud-based services

or device-to-device authentication.

Despite these limitations, the paper remains a valuable and contextually appropriate reference

for this project, especially in justifying the need for performance-aware encryption selection

in IoT-based agriculture.

2.3 Limitations of Previous Study

Table 2.1 provides a summary of the existing literature and their identified limitations in

relation to the secure smart agriculture system.

Table 2.1 Literature Review of the Existing Methods

Year Author(s) Technique Problems Limitations

2018 Flores et al. Smart farming using
IoT and Raspberry Pi

Real-time sensor
monitoring and
automation in
agriculture

Does not implement
security or
encryption
mechanisms

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 14

Chapter 2 Literature Review

2021 Sontowski et
al.

Analysis of
cybersecurity
vulnerabilities in
smart agriculture

Identifies real-world
attack vectors and
risk factors

No solution or
implementation
details provided

2024 Navalino et
al..

ChaCha20-Poly1305
encryption for secure
IoT transmission

Ensures secure
communication in
restricted
environments

Focuses only on
CC20; lacks
algorithm
comparison

2021 Fotovvat et al. Performance
benchmarking of 32
lightweight AEAD
encryption
algorithms

Evaluates execution
time, energy use, and
memory on platforms

Does not include
Twofish of CC20; no
implementation case
study

Table 2.1 outlines the various projects' techniques, problems, and limitations in the context of

project themes, ranging from real-time monitoring and data security, encryption algorithm

benchmark to IoT integration and vulnerabilities, highlighting their specific strengths and

challenges. Table 2.2 illustrates the benefits and challenges of the project.

Table 2.2 Strengths and Weakness of the Project

Author(s) Strengths Weakness

2.1.2 Flores et al. Provides a comprehensive
real-world architecture for smart
farming using IoT and Raspberry
Pi. Demonstrates the feasibility
of low-cost agricultural
monitoring systems.

Does not address encryption
or data security. Focuses
primarily on system
deployment and monitoring
functions.

2.2.2 Sontowski et al. Highlights real security threats in
smart farming, including DoS
and Wi-Fi interception. Validates
the need for cryptographic
security in agricultural IoT.

Lacks technical
implementation of
benchmarking of security
protocols. Mostly
theoretical.

2.3.2 Navalino et al.. Demonstrates practical use of
ChaCha20-Poly1305 on
Raspberry Pi Pico with real-time
sensor data. Includes
encryption/decryption time,
throughput, and avalanche
analysis.

Focuses solely on
ChaCha20; no comparison
with AES or other
algorithms. Context is
military (IoBT) rather than
agricultural IoT

2.4.2 Fotovvat et al. Offers large-scale benchmarking
of 32 lightweight encryption
algorithms on Raspberry Pi Zero
W. Includes metrics like energy

Does not include ChaCha20
or Twofish. Primarily focus
is AEAD algorithms under
NIST LWC without

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 15

Chapter 2 Literature Review

use, RAM consumption, and
execution time.

application-level integration

Table 2.2 exposes the strengths and weaknesses of various projects focused on integrating

technology in agriculture, specifically in the contexts of environmental monitoring,

cybersecurity, encryption benchmark, and IoT applications.

2.4 Summary

In summary, this chapter has reviewed a range of literature relevant to the implementation of

secure IoT systems in agriculture. The studies examined offer insights into IoT agriculture,

cybersecurity concerns, and lightweight encryption algorithms applicable in this

environment. Early works by Flores et al. [4] highlighted the feasibility of IoT integration in

agricultural monitoring, while Sontowski et al. [5] addressed emerging cybersecurity risks

associated with smart farming systems. Navalino et al. [6] and Fotovvat et al. [7] contributed

valuable findings on encryption performance in embedded platforms, offering practical

benchmarking data and considerations for selecting appropriate cryptographic techniques.

These reviewed studies form the foundation for the selection of encryption techniques in the

proposed secure sensor data transmission system.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 16

Chapter 3 System Methodology

Chapter 3

System Methodology
In this chapter, the method that gives the solution of the entire project is identified.

3.1 System Design Diagram

The system is designed to securely transmit environmental sensor data using various

encryption algorithms, simulating a smart agriculture use case. The synthetic data used in this

project to simulate environmental readings is generated through a Python script, encrypted

based on the selected algorithm, and transmitted via the MQTT protocol. Upon reception,

Node-RED handles decryption and visualisation of the sensor metrics. This section presents

the high-level system design through architecture, use case, and activity diagrams to illustrate

the flow and interactions within the system, starting with Figure 3.1 System Architecture

Diagram.

3.1.1 System Architecture Diagram

Figure 3.1: System Architecture Diagram

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 17

Chapter 3 System Methodology

Figure 3.1 shows the overall structure of the architecture from sensor simulation and

encryption to MQTT messaging and dashboard visualisation.

3.1.2 Use Case Diagram and Description

This diagram in Figure 3.2 outlines the interactions between the users, system, and

components.

Figure 3.2: Use Case Diagram

In Figure 3.2 illustrates the roles of two user types, System Admin and Viewer and their

interactions with key system functionalities. The System Admin initiates core processes,

including generating synthetic sensor data, encrypting it with a selected algorithm,

transmitting it securely via MQTT, and running encryption benchmark tests. Once the

encrypted data reaches Node-RED, the system decrypts the payload and prepares it for

presentation. The Viewer accesses the visualised data through a real-time dashboard, enabling

observation of secure sensor information without direct interaction with encryption or

transmission components.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 18

Chapter 3 System Methodology

3.1.3 Activity Diagram

Figure 3.3 will detail the step-by-step flow during data transmission and reception.

​

Figure 3.3: Activity Diagram

This activity diagram in Figure 3.3 illustrates the sequence of operations from the user

selecting an encryption algorithm to the final data display on the dashboard. The process

includes key decision nodes for algorithm selection, encryption type recognition, and

decryption success. Once data is successfully decrypted by Node-RED, it is visualised live.

Optionally, the user may execute a separate benchmarking script, shown independently from

the main process flow to evaluate algorithm performance metrics without impacting the core

transmission pipeline.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 19

Chapter 3 System Methodology

3.2 Tools and Technologies Used

This section outlines the hardware, software, and libraries used to develop and implement the

secure data collection system. The technologies were selected based on suitability on IoT

environments, encryption capabilities, and support for real-time data transmission and

visualisation.

3.2.1 Hardware

●​ Raspberry Pi Zero 2 W

Intended as the target platform for deployment, the Raspberry Pi offers a low-power,

cost-effective solution for real-time data processing and sensor integration. It is

capable of running Python scripts, handling encryption tasks, and communicating

with MQTT brokers, making it ideal for embedded IoT environments such as smart

agriculture [17].

●​ MacBook (Simulated Environment)

While the Raspberry Pi Zero 2 W is the target deployment platform, the MacBook

served as a development environment during testing and a contributor in

benchmarking stages. It was fully capable of running all system components,

including encryption, MQTT publishing, and Node-RED flows. During this stage, it

also served as a reliable environment for benchmarking encryption algorithms and

performing visualisation via the local dashboard. Both the Raspberry Pi and MacBook

are considered viable hardware for executing the system, depending on deployment

requirements.

3.2.2 Software Tools

●​ Python 3.13​

Used as the primary programming language for scripting sensor data generation,

encryption logic, and MQTT publishing. Its simplicity and compatibility with

cryptographic libraries make it suitable for rapid development in IoT applications.

●​ Node-RED​

A low-code, flow-based development tool used for MQTT data intake, decryption,

and dashboard visualisation [14]. The function nodes in Node-RED were configured

to dynamically detect the encryption type and apply the corresponding decryption

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 20

Chapter 3 System Methodology

method. It also provides an integrated dashboard for monitoring the sensor data in real

time.

●​ Node.js and npm​

Required by Node-RED to support JavaScript libraries used in decryption flows.

These packages ensure Node-RED is able to load required cryptographic modules via

global context settings.

●​ Mosquitto (MQTT Broker)​

A lightweight MQTT broker used for transmitting encrypted payloads from the

Python script to Node-RED. It operates over the local network on the same machine

during testing, simulating edge-device communication.

3.2.3 Python Libraries and Packages

●​ paho-mqtt​

A Python client library used to implement MQTT publishing functionality. It allows

the encryption script to push data to a broker on a specified topic.

●​ PyCryptodome​

A self-contained Python package of low-level cryptographic primitives, used to

implement AES-128 and AES-256 encryption in ECB mode. It supports padding

schemes and byte-level operations required for secure encryption.

●​ PyNaCl​

Python bindings to the Networking and Cryptography (NaCl) library. This was used

for implementing ChaCha20 encryption via the ‘SecretBox’ method, offering secure,

authenticated encryption for lightweight systems.

●​ twofish​

A Python implementation of the Twofish cipher. It was used to evaluate a less

commonly deployed encryption method for comparison with standard algorithms.

●​ keyboard & threading​

The ‘keyboard’ library was used for capturing user input to switch between

encryption modes, and ‘threading’ enabled the implementation of a continuous

packet-sending loop.

●​ matplotlib, psutil, tabulate​

These libraries were used in the benchmarking script to measure and visualise

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 21

Chapter 3 System Methodology

encryption performance across algorithms. Metrics include CPU usage, memory

consumption, and time-based throughput.

3.3 Secure Data Transmission Workflow

This section outlines how the system encrypts sensor data and transmits it securely through

MQTT. The workflow begins with user input to select the encryption algorithm, followed by

data generation, encryption, and structured publishing to the MQTT broker. Each payload

includes both the encrypted data and metadata to ensure proper decryption on the receiver

side.

3.3.1 Encryption Mode Selection

The user initiates the process by selecting an encryption type using predefined keyboard keys.

4 modes are available:

●​ AES-128 (key: 1)
●​ AES-256 (key: 2)
●​ ChaCha20 (key: 3)
●​ Twofish (key: 4)

These selections determine which algorithm is applied for the next data packet sent. Pressing
the ‘spacebar’ will send one packet. Pressing ‘P’ will keep sending packets every 5 seconds
until pressing ‘S’ to stop.

3.3.2 Sensor Data Generation

Fake environmental data is generated in JSON format to simulate agricultural parameters

such as:

●​ Temperature

●​ Humidity

●​ Soil moisture

●​ Light intensity

●​ CO₂ levels

Each reading is randomized within realistic agricultural ranges.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 22

Chapter 3 System Methodology

3.3.3 MQTT Publishing

Each message is structured in JSON format with the following fields:

{

 "encryptionType": "AES-128",

 "encryptedData": "<Base64 encoded ciphertext>"

}

The message is then published to the topic ‘sensor/data’ using the Paho MQTT client. This

standard format ensures consistent decryption and identification on the receiver side.

3.3.4 Encryption Logic

Using conditional logic, the function node supports dynamic decryption based on the

‘encryptionType’ string in each message. This allows the system to process messages

encrypted by any of the supported algorithms without modifying the node configuration.

The selected algorithm is applied to the generated data:

●​ AES (128/256-bit): Uses ECB [8] mode via PyCryptodome. Data is padded using

PKCS#7 before encryption to mitigate diffusion properties and repetitive patterns.

●​ ChaCha20: Uses NaCl’s ‘SecretBox’ with a 24-byte nonce [9]. Encrypted data is

authenticated and includes both the nonce and ciphertext. The nonce ensures each

message is unique, preventing replay attacks.

●​ Twofish: Encrypts padded data with PKCS#7 in 16-byte blocks using the Python

twofish module [10]. SHA-256 is used to derive a compatible key size.

3.4 Node-RED Decryption and Visualisation Workflow

This section explains how incoming encrypted MQTT messages are processed within

Node-RED. The workflow includes identifying the encryption type, decrypting the payload,

parsing the data, and visualising the results using a real-time dashboard.

3.4.1 MQTT Message Reception

Encrypted payloads are received in Node-RED via an MQTT input node subscribed to the

topic ‘sensor/data’. Each message is expected to contain a JSON object with:

●​ encryptionType: Identifies the encryption algorithm applied to the payload

●​ encryptedData: the Base64-encoded ciphertext

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 23

Chapter 3 System Methodology

3.4.2 Decryption Flow

A function node is used to handle decryption. The node performs the following steps:

1.​ Parse the payload: Extract ‘encryptionType’ and ‘encryptedData’

2.​ Decode: Base64-decode the encrypted string

3.​ Select decryption method:

●​ AES-128/AES-256: Uses CryptoJS with ECB mode and PKCS#7 padding

●​ ChaCha20: Uses ‘sodium-native’ from the Node-RED global context

●​ Twofish: Uses the ‘twofish-ts’ package (a TypeScript implementation

compatible with Node.js) injected into Node-RED via

‘functionGlobalContext’. This allows the Function node to decrypt Twofish

encrypted payloads received over MQTT.

4.​ Output decrypted JSON: The resulting object is passed to subsequent nodes

Decryption errors (e.g., incorrect padding, mismatched keys) are caught and logged through

the node’s warning system.

3.4.3 Dashboard Integration

Decrypted sensor readings are passed to individual chart and gauge nodes for real-time

visualisation. These metrics include:

●​ Temperature (°C)

●​ Humidity (%)

●​ Soil Moisture (%)

●​ Light Intensity (lux)

●​ CO₂ Level (ppm)

Each metric is updated on the dashboard every time a new message is decrypted successfully.

3.5 Benchmarking and Methodology

This section explains the methodology used to evaluate the performance of each encryption

algorithm in terms of speed, throughput, memory usage, CPU load, and energy estimation

[7,12]. The goal is to determine the most suitable cipher for resource-constrained IoT

environments.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 24

Chapter 3 System Methodology

3.5.1 Benchmarking Script Structure

A standalone Python script was developed to benchmark 4 encryption algorithms:

1.​ AES-128

2.​ AES-256

3.​ ChaCha20

4.​ Twofish

The script measures both encryption and decryption performance across multiple data sizes (1

KB up to 10 MB) and entropy conditions. Each result is recorded for further analysis.

3.5.2 Performance Metrics

For each test, the following parameters were collected:

1.​ Execution Time (ms): Duration of encryption and decryption.

2.​ Throughput (MB/s): Rate of data processed over time.

3.​ Memory Usage (KB): RAM consumption before and after each operation.

4.​ CPU Load (%): Monitored continuously during execution.

5.​ Estimated Energy Usage: Derived from CPU usage over time, as an indirect

indicator of power efficiency.

As actual power draw was not measured with hardware instruments, CPU-based estimation

serves as an indicative proxy for energy consumption

3.5.3 Testing Parameters

●​ Data Sizes: 1 KB, 10 KB, 100 KB, 1 MB, 4.9 MB (Optional: 5 MB and 10 MB for

extended testing but may crash on Raspberry Pi)

●​ Entropy Levels:

○​ High entropy: Random binary data (012345)

○​ Low entropy: Repetitive or low-complexity data (11111)

●​ Iterations: Three repetitions per test case for statistical reliability and reduce random

variation. The test results will be averaged and be examined this way.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 25

Chapter 3 System Methodology

3.5.4 Data Collection Tools

The benchmarking script uses the following Python libraries:

●​ ‘psutil’: To monitor CPU usage and memory footprint

●​ ‘time’: For precise execution timing

●​ ‘numpy, statistics’: For calculating averages and standard deviations

●​ ‘tabulate, json’: To export readable reports

●​ ‘matplotlib’: For plotting performance comparisons

3.5.5 Algorithm Executions

Each encryption method follows the same process:

1.​ Generate random data of defined size and entropy

2.​ Encrypt and decrypt the data using the selected algorithm

3.​ Record time, memory, and CPU usage

4.​ Validate decryption correctness (assert decrypted == original)

5.​ Repeat for multiple data sizes

3.5.6 Summary Results Output

The script exports results as:

1.​ Tabulated Summaries

2.​ JSON files (for storage or external processing)

3.​ PNG file of the graph

4.​ MatPlot GUI for interactive viewing of the result

3.6 Data Collection and Analysis Process

This section describes how performance data from the encryption benchmarking was

recorded, structured, and prepared for evaluation. The process ensures consistent comparison

across algorithms and supports the project’s aim to identify lightweight, secure encryption for

smart agriculture IoT systems.

3.6.1 Structured Metric Recording

Each benchmark test logs the following for each algorithm, data size, and entropy condition:

●​ Encryption Time

●​ Decryption Time

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 26

Chapter 3 System Methodology

●​ Memory Usage

●​ CPU Usage

●​ Data Throughput (MB/s)

●​ Energy Consumption Estimation

The script internally verifies the decryption result to ensure correctness and flags any errors

using ‘assert decrypted == original_data’.

3.6.2 Tabulated Output

Using the ‘tabulate’ library, test results are formatted into readable tables with:

●​ Algorithm Name

●​ Average Timing (Encrypt / Decrypt)

●​ Standard Deviation

●​ Throughput

●​ CPU and Energy Estimations

These summaries are printed to console and optionally saved as ‘.json’ logs for

documentation.

3.6.3 Visualisation and Export

Results are export into two formats:

●​ ‘.json’: For structured storage and reproducibility

●​ ‘.png’ (charts): Graphs showing time, throughput, and CPU performance using

‘matplotlib’

All files are time-stamped and named by encryption algorithm and entropy type.

3.6.4 Reproducibility

The script includes argument flags to:

●​ Select which algorithms to test

●​ Specify data sizes or entropy level

●​ Add larger data sets optionally

●​ Export or suppress visual output

This allows repeatable testing under controlled conditions, enabling direct comparisons.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 27

Chapter 3 System Methodology

3.7 Summary

This chapter described the full development methodology of the proposed project, from

system architecture to implement the encryption workflow and perform benchmarking.

Multiple encryption algorithms were integrated into a modular transmission system and a

custom Python benchmarking tool was developed to measure their effectiveness under

various conditions. The methods described form the basis for the system’s evaluation in later

chapters, where the results will be assessed in detail.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 28

Chapter 4 System Design

Chapter 4

System Design
This chapter details the system design and diagrams for ease of understanding.

4.1 System Block Diagram

The system block diagram shown in Figure 4.1 provides a high-level overview of the secure

data transmission process implemented in this project. It outlines the sequence of interactions

from data generation and encryption to transmission and visualisation using MQTT and

Node-RED.

Figure 4.1: System Block Diagram

Figure 4.1 presents the complete system workflow, beginning with the user selecting an

encryption method. A Python script then generates a random sensor value, which is encrypted

and published via MQTT. The encrypted payload is transmitted through a broker and
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 29

Chapter 4 System Design

received by Node-RED, which identifies the encryption type (determining if the encryption

type is AES-128, AES-256, ChaCha20 or Twofish), decrypts the data, and displays the sensor

readings on a dashboard.

4.2 System Components Specifications

This section outlines the essential hardware and software components used to implement the

secure data transmission project. The chosen components are selected for their compatibility

with IoT environments, lightweight operation, and support for real-time encryption and

decryption message protocols.

4.2.1 Hardware Components

1.​ Raspberry Pi Zero 2 W​

The Pi serves as the target hardware for deployment. It is compact, cost-effective, and

capable of running the full encryption workflow including sensor simulation,

algorithm switching, and MQTT publishing. It supports Python and can operate as an

edge device for agriculture use.

2.​ MacBook (Development and Testing Platform)​

Throughout the development stage, a MacBook was used to simulate the full system.

It served as the primary environment to test the encryption script. run the

benchmarking tool, and host Node-RED for receiving and visualising sensor data. The

performance of Apple Silicon allowed for reliable testing of all encryption algorithms

before transitioning to the Pi.

4.2.2 Software Components

1.​ Python 3.13​

Used for writing the main encryption script, handling sensor data generation,

encryption mode selection, and MQTT publishing. It is also used to develop the

benchmarking script that evaluates the encryption algorithm’s performance.

2.​ Node-RED (Flow-based Development Tool)​

Node-RED was used to create the decryption and dashboard workflow. The tool

processes incoming MQTT messages, dynamically detects the encryption type, and

uses custom Function nodes to decrypt the payloads. Each sensor value is routed to

real-time charts and gauge widgets on the dashboard.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 30

Chapter 4 System Design

3.​ Mosquitto (MQTT Broker) ​

A lightweight MQTT broker configured locally to simulate communication between

the publisher (Python script) and subscriber (Node-RED). It enables encrypted data

transmission using the ‘sensor/data’ topic

4.2.3 Setup for Node-RED Function Global Context

To enable dynamic selection and execution of multiple decryption algorithms within

Node-RED, certain cryptographic modules must be made globally accessible [14]. This is

achieved through the functionGlobalContext configuration within the Node-RED settings.js

file. By declaring the required modules in this context, the Function nodes within Node-RED

can access them without needing to require the modules locally—something that is not

supported natively within the Node-RED runtime for security and sandboxing reasons.

The following code snippet was added to the functionGlobalContext section of the settings.js

file, located in ‘cd ~/.node-red’ on the terminal window :

“

functionGlobalContext: {

 CryptoJS: require("crypto-js"),

 sodium: require("sodium-native"),

 crypto: require("crypto"),

 twofish: require("twofish-ts")

}

“

This setup allows the Node-RED Function nodes to access CryptoJS, sodium-native, the

built-in Node.js crypto module, and twofish-ts, enabling them to decrypt messages based on

the algorithm specified in the incoming payload.

However, this configuration step introduces a platform-specific challenge on macOS. In

macOS, Node-RED instances installed via global npm or brew often run with restricted

access to Node.js modules due to system integrity protections and permissions. As a result,

modifying settings.js to load external libraries can lead to runtime errors or “module not

found” issues if the modules are not properly installed in the correct context or if Node-RED

is not executed with elevated permissions.
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 31

Chapter 4 System Design

4.3 Circuits and Components Design

This project was primarily designed and tested in a simulated environment to validate the

secure data transmission workflow. While no physical circuitry was implemented during the

testing phase — aside from connecting the Raspberry Pi directly to the MacBook — the

system remains fully compatible with standard agricultural sensors and is structured for

future hardware integration.

4.3.1 Simulated Sensor Emulation

Python script were used to emulate the output of real-world sensors by generating

randomised values that mimic the behaviour of the following physical sensors:

●​ DHT22: For temperature and humidity readings

●​ Soil Moisture Sensor: For volumetric water content

●​ Light Sensor: (e.g. BH1750 or similar)

●​ CO₂ Sensor: To simulate environmental gas levels in ppm

These emulated values allowed for encryption benchmarking and visualisation in a realistic

data flow without requiring actual physical sensors.

4.3.2 Potential Hardware Integration

For future iterations or real-world development, the system can be easily adapted to read

from physical sensors connected to a Raspberry Pi’s GPIO pins. The Python script can

interface with these devices using common libraries such as ‘Adafruit_DHT’, ‘smbus’ for

I2C, or serial communication.

This simulation-first approach enabled rapid development, consistent testing, and

performance evaluation, while retaining hardware intercompatibility for smart agriculture

applications.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 32

Chapter 4 System Design

4.4 System Components Interaction Operations

This section describes how the various system components interact with each other during

normal operation, from data generation and encryption to transmission, decryption, and

proper visualisation.

4.4.1 Sender Operations (Python Script)

The sender module begins execution upon user input, where the encryption mode is chosen

using a keyboard. The script performs the following steps:

1.​ Sensor Data Generation: Synthetic environmental sensor data is created using

randomized values within typical agricultural ranges.

2.​ Encryption: Based on user input (AES-128, AES-256, ChaCha20, or Twofish), the

data is encrypted using the corresponding encryption library.

3.​ Packet Structuring: Encrypted data is encoded in Base64 and packaged into a JSON

structure:

{

 "encryptionType": "AES-256",

 "encryptedData": "base64payload..."

}

4.​ MQTT Publishing: The packet is published to the topic ‘sensor/data’ using Paho

MQTT client on the Python script via the MQTT Broker with port 1883..

This modular and looped design enables continuous data output or on-demand packet

dispatch, depending on user control.

4.4.2 Message Transmission (MQTT Broker)

The Mosquitto broker acts as the intermediary, ensuring that all published MQTT messages

from the sender are relayed to the Node-RED subscriber operating on a publish-subscribe

model [15]. As both systems operate on the same local network, the broker guarantees

low-latency transmission and accurate topic handling.

4.4.3 Receiver Operations (Node-RED Flow)

On the receiving side, Node-RED listens for incoming messages on the topic ‘sensor/data’.

The data flow within the Node-RED is as follows:

1.​ MQTT Input Node: Receives the encrypted message and passes it downstream.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 33

Chapter 4 System Design

2.​ Decryption Function Node:

●​ Extracts the ‘encryptedType’ value

●​ Determine the correct type of encryption to pass the function

●​ Decodes the ‘encryptedData’

●​ Applies the appropriate decryption function using ‘CryptoJS’,

‘sodium-native’, or ‘twofish-ts’ from the global context.

3.​ Output: Once decrypted, the JSON payload is parsed and routed to various chart and

gauge nodes for display.

This interaction structure allows dynamic decryption and ensures a seamless transition from

raw MQTT payloads to user-friendly dashboard elements.

4.4.4 Dashboard Visualisation

Each sensor metric (e.g., temperature, humidity, light intensity) is displayed on real-time

charts or gauges within the Node-RED dashboard. These values are updated every time a new

payload is successfully decrypted and parsed.

The flow is fully modular – any new encryption algorithm or data type can be integrated with

minimal notifications to the Node-RED function node or dashboard layout.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 34

Chapter 5 System Implementation

Chapter 5

System Implementation
In this chapter, the implementation of the entire project is described.

5.1 Hardware Setup

This section outlines the physical hardware setup used for implementing and testing the

secure agricultural data transmission system. The setup was carried out in a simulated

development environment, followed by hardware compatibility testing on Raspberry Pi.

Table 5.1 Specifications of Laptop

Description Specifications

Model Apple MacBook Air M1 A2237

Processor M1 8-core CPU

Operating System macOS 15 Sequoia

Graphic M1 7-core GPU

Memory 8GB Unified Memory

Storage 256 GB SSD

Table 5.1 details the specification of the MacBook Air M1, primarily used as the

development and simulation platform. All initial scripts including data generation,

encryption, benchmarking, and Node-RED dashboard were developed and validated on the

MacBook prior to hardware deployment. Its reliable performance allowed for seamless

testing of multiple encryption algorithms.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 35

Chapter 5 System Implementation

Table 5.2 Specifications of Raspberry Pi Zero 2 W

Description Specifications

Model Raspberry Pi Zero 2 W

Processor Quad-core 64-bit Arm Cortex-A53 @ 1 Ghz

Operating System Raspberry Pi OS (Debian-based)

Graphic VideoCore IV (64 MB LPDDR2 shared)

Memory 512MB LPDDR2

Storage 32 GB microSD Card

Based on Table 5.2, it details the hardware specifications of the Raspberry Pi Zero 2 W which

was used as the target deployment device. The compact and power-efficient nature of the

Raspberry Pi is suitable for use in IoT applications, specifically for real-time sensor

processing, lightweight encryption, and MQTT-based data publishing and reception.

The combination of MacBook for development and Raspberry Pi for development testing

ensures that the system is both prototyped efficiently and tested under realistic hardware

constraints typical in agricultural environments.

5.2 Software Setup

The table below (Table 5.3) shows the software tools and libraries installed on both the

development machine and Raspberry Pi Zero 2 W to support encryption, data handling, and

visualisation. The mentioned software ensures seamless data generation, encryption, MQTT

communication, and dashboard rendering in real-time with consideration of compatibility

with lightweight systems and other cryptographic operations in IoT environments.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 36

Chapter 5 System Implementation

Table 5.3 Software Tools and Libraries Installed

Software/Package Version Purpose

Python 3.13 Main programming language for
scripting and benchmarking

Node.js 22.x LTS JavaScript runtime required by
Node-RED and custom decryption
modules

npm 10.9.2 Node.js package manager used to
installed required libraries

Node.-RED 4.0.9 Flow-based tool for MQTT processing
and dashboard rendering

Mosquitto MQTT Broker 2.0.21 Lightweight broker for MQTT data
routing

PyCryptodome 3.19+ AES encrypt/decrypt using ECB mode
and PKCS#7 pad

PyNaCl 1.5.0+ Secure CC20 implementation with
SecretBox

Twofish (Python) 0.3.0 Python implementation of Twofish cipher

paho-mqtt 2.1.0 MQTT publishing client for Python

keyboard/threading 0.13.5/built-in Handle user input and multithreaded
packet looping

matplotlib, psutil, tabulate Latest Benchmark visualisation and system
resource monitoring

crypto-js, sodium-native,
twofish-ts

(npm modules)
Latest

Decryption modules made globally
available in Node-RED for Function
Nodes

Table 5.3 describes the software and the libraries used for this project. It highlights the names

of the package, the recommended version to install to operate correctly, and justification of

their purpose in the project. Packages under npm will always be installed in the latest version

due to its package manager behaviour.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 37

Chapter 5 System Implementation

5.3 Setting and Configuration

This section outlines the technical configuration steps required to prepare the development

and testing environment for secure data transmission between devices. The setup includes

configuring the encryption script, MQTT broker, Node-RED runtime, and dashboard flow

necessary for real-time IoT communication. Each component was configured to simulate a

typical smart agriculture deployment, with an emphasis on replicability and low system

overhead.

5.3.1 Encryption Script Configuration (Python)

To enable rapid switching and testing of encryption algorithms during benchmarking, the

encryption script (sendAll.py) was modified to support in-script configuration via keyboard

inputs. This minimized external dependencies and made the benchmarking process more

efficient and controlled.

●​ File: sendAll.py

●​ Encryption Keys: hardcoded AES (128, 256) key value, ChaCha20 and Twofish also

uses the same key but derived via SHA-256 hash

●​ Keyboard Mappings:

○​ 1 = AES-128

○​ 2 = AES-256

○​ 3 = ChaCha20

○​ 4 = Twofish

○​ ‘spacebar’ = Send one packet

○​ ‘P’ / ‘S’ = Start/Stop loop

No external configuration files were required, as all settings were handled within the Python

script.

5.3.2 Mosquitto MQTT Broker Setup

The MQTT broker facilitates lightweight message transmission over the local network using

the publish-subscribe model. A local Mosquitto broker instance was used to emulate

real-time data transmission between the sensor device and the dashboard.

●​ Broker: installed locally via ‘apt install mosquitto’ (Raspberry Pi) or ‘brew install

mosquitto’ (MacOS)

●​ Port: 1883 (default)

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 38

Chapter 5 System Implementation

●​ Configuration File: Not modified, default configuration sufficient for LAN

●​ Broker Testing: use ‘netstat -an | grep 1883’ to confirm broker operation

5.3.3 Node-RED Environment Configuration

●​ Installed via ‘npm install -g –unsafe-perm node-red’

●​ Accessed by visiting ‘http://localhost:1880’

●​ Additional Node Packages Installed:

○​ node-red-dashboard

○​ node-red-contrib-crypto-js

●​ Global context modules added to ‘settings.js’

○​ functionGlobalContext: {

 CryptoJS: require("crypto-js"),

 sodium: require("sodium-native"),

 crypto: require("crypto"),

 twofish: require("twofish-ts")

}

When configuring ‘settings.js’, ensure all required npm packages are installed with​

‘npm install crypto-js sodium-native twofish-ts’.

After modification, Node-RED was restarted via: ‘node-red-stop && node-red-start’.

5.3.4 Flow Import and Dashboard Setup

To streamline testing and visualisation, a pre-configured JSON flow was imported into the

Node-RED GUI. This flow handled incoming MQTT messages, decrypted them based on the

selected encryption scheme, and displayed the results using visual dashboard widgets.

●​ Flow JSON file imported through Node-RED GUI

●​ Main node functions:

○​ MQTT-in topic configured with ‘sensor/data’

○​ Function Nodes: Match encryption type and decrypt

○​ Chart/Gauge Nodes: Present decrypted readings in dashboard tabs

5.4 System Operation (with Screenshot)

This section outlines the runtime behaviour of the secure data transmission system. It

describes the flow of data from the user-triggered encryption script to MQTT transmission,

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 39

http://localhost:1880

Chapter 5 System Implementation

decryption by Node-RED, and visualisation on a live dashboard. The operational flow

showcases both the sensor simulation logic and the real-time performance of the message

broker and dashboard interface.

5.4.1 Starting the Sender Script

The system begins when the user launches the Python script (‘sendAll.py’) on either the

development machine or Raspberry Pi using ‘python3 sendAll.py’. The user is presented with

options to select an encryption:

●​ Press 1: AES-128

●​ Press 2: AES-256

●​ Press 3: ChaCha20

●​ Press 4: Twofish

Once selected, pressing ‘spacebar’ sends a single encrypted packet, while pressing ‘P’ will

have the packet sent every 5 seconds until stopped by pressing ‘S’.

Figure 5.1 will show a demonstration of the Python script running.

Figure 5.1: Demonstration of Python Script

Figure 5.1 demonstrates the interactive terminal where the user selects an encryption type and

initiates sensor data transmission.

5.4.2 MQTT Broker Operation (Mosquitto)

The Python script publishes encrypted sensor data to the ‘sensor/data’ topic using the MQTT

protocol. The Mosquitto broker, operating on its default port 1883, facilitates the

communication by forwarding messages from the Python publisher to the Node-RED

subscriber. No modifications were made to the default Mosquitto configuration files for this

setup.

Figure 5.2: Verification of MQTT Broker Active

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 40

Chapter 5 System Implementation

Figure 5.2 demonstrates that the Mosquitto MQTT broker is actively running on the local

machine. Using the ‘netstat’ command in the terminal, the output confirms that port 1883

(default MQTT port) is open and an active TCP connection exists between the localhost

(127.0.0.1) and a client. This indicates a successful connection and operation of the broker.

5.4.3 Receiving and Decrypting in Node-RED

Node-RED, running on the same machine or network, receives messages published to the

MQTT broker. The process flow includes:

●​ The MQTT Input Node listens for incoming encryption packets.

●​ Encryption Type Function Node parses the message and determines the encryption

type.

●​ A Switch Node uses the encryptionType variable and passes it to the correct

decryption function.

●​ The corresponding function (AES, ChaCha20, Twofish) is executed using globally

loaded libraries.

●​ The result is parsed into readable JSON format and passed downstream. The next

Figure 5.3 highlights the full Node-RED flow.

Figure 5.3: Node-RED Flow

Figure 5.3 highlights the flow logic and how the system automatically routes each message to

its respective function node based on encryption type. It begins with MQTT-in node in

purple, to Encryption Type function node in orange, to a switch node in yellow, splitting and

heading into the appropriate decryption node in orange. Upon successful decryption, it parses

its decrypted message into a JSON formatted string through the json node in orange, and

finally visualised the data in a visual form in the graph node in blue.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 41

Chapter 5 System Implementation

5.4.4 Dashboard Visualisation

Once decrypted, the sensor values are displayed in real time using Node-RED's Dashboard

UI. Each environmental metric (Temperature, Humidity, Soil Moisture, Light, CO₂) is shown

using both line charts and gauges for immediate interpretation. These charts auto-update with

each new packet. Figure 5.4 will show the operational UI dashboard for users to infer data.

Arrange temperature graph and gauge horizontally, humi graph and gauge horizontally

etc

Figure 5.4: Node-RED Dashboard UI view

Figure 5.4 shows the dashboard live readings for each simulated sensor metric using charts

and gauges, enabling easy monitoring of encrypted IoT data in real time.

5.4.5 Benchmark Script Execution Flow

In a separate workflow, a standalone benchmarking script is used to evaluate the performance

of each encryption algorithm. This script is run independently of the MQTT transmission:

●​ Execution time

●​ CPU and memory utilization

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 42

Chapter 5 System Implementation

●​ Throughput

●​ Decryption verification

●​ Energy consumption estimation

While not part of the continuous system, this component plays an important role in assessing

which encryption mode is most appropriate under agricultural environments. Figure 5.5 will

show a snippet of the benchmarking result.

Figure 5.5: Benchmarking Script Result Demonstration

Figure 5.5 shows the sample result in the form of a screenshot of the completed benchmark

script of putting all encryption under a benchmark with 1 MB high entropy string. It

highlights the algorithm used, and all the variables that were tested. However a graph will be

used in favor of this tabulated result. Based on this specific instance of the result, AES-256

appears to be the appropriate choice due to a balance of CPU usage, more analysis and

discussion on Chapter 6.

5.5 Implementation Issues and Challenges

During the development and integration of the secure data transmission system, several

technical challenges were encountered. These issues primarily stemmed from Node-RED’s

limitations in handling external cryptographic libraries and the complexity of implementing

low-level ciphers such as Twofish.

5.5.1 Node-RED function Context Configuration

Node-RED function nodes by default lack access to external libraries. Attempting to import

modules such as ‘crypto.js’, ‘sodium-native’, or ‘twofish-ts’ within function nodes returned

errors related to undefined modules. This was resolved by explicitly defining the

‘functionGlobalContext’ in ‘settings.js’. After saving the file, Node-RED had to be restarted

for the context to apply. This approach made these libraries globally accessible across flows

which allowed for decryption to work. This issue was particularly pronounced on macOS due

to stricter default permissions in npm.
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 43

Chapter 5 System Implementation

5.5.2 Block Cipher Padding Constraints

Since both AES and Twofish are block ciphers requiring fixed 16-byte input lengths, proper

padding was essential. The project adopted PKCS#7 padding, a widely used scheme where

padding bytes reflect the number of missing bytes needed to complete the block. Without this

padding mechanism, ciphertext decryption would fail with alignment errors, especially when

using AES ECB. Padding and unpadding were handled manually in both the encryption

(Python) and decryption (Node-RED) side.

5.5.3 Complexity of Twofish Implementation in Node-RED

Integrating Twofish decryption in Node-RED posed a significant challenge due to the

low-level API design of the ‘twofish-ts’ package. Unlike AES or ChaCha20 which offer

streamlined encryption/decryption, twofish-ts requires manual handling of cipher blocks and

session keys.

Key challenge included:

●​ Manual block processing: Ciphertext had to be decrypted in 16-byte chunks,

requiring looped buffer operations.

●​ Key derivation: Keys were derived using SHA-256 hashing to meet byte-length

constraints.

●​ Padding validation: Post-decryption, padding had to be validated and removed safely

using PKCS#7 rules.

The need to manage session arrays (sBox and sKey) and align input/output buffers correctly

made Twofish decryption notably more complex compared to the single-call decryption

available in AES and ChaCha20’s implementations.

5.6 Concluding Remark

This chapter has detailed the complete implementation process of the secure IoT data

transmission system, from hardware and software setup to configuration and runtime

operation. Through a modular Python-based sender script and a dynamic Node-RED receiver

flow, the system demonstrated real-time encryption, transmission, and decryption of

simulated agricultural sensor data. Despite development being conducted largely in a

simulated environment, the design ensured compatibility with physical Raspberry Pi

deployment and hardware extensions.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 44

Chapter 6 System Evaluation and Discussion

Chapter 6

System Evaluation and Discussion
6.1 System Testing and Performance Metrics

The performance of the proposed encryption-based data transmission system was evaluated

to determine its efficiency, responsiveness, and resource usage under various operating

conditions. These evaluations were designed to simulate real-world smart agriculture

deployments, particularly in low-power or embedded IoT environments such as the

Raspberry Pi Zero 2 W.

Testing was conducted on both the development machine (MacBook Air M1) and the target

hardware (Raspberry Pi Zero 2 W). All four encryption modes—AES-128, AES-256,

ChaCha20, and Twofish—were included in the benchmark process using a custom

benchmarking script written in Python. Results and observations are presented in Section 6.2

through a series of comparative visual analysis.

6.1.1 Objectives of Testing

The key goals of the system testing were:

●​ To assess the execution time of encryption and decryption across algorithms.

●​ To evaluate system throughput, i.e., the rate at which data could be securely

processed.

●​ To monitor CPU load and memory usage, indicating the efficiency of each

algorithm.

●​ To estimate energy consumption, derived from CPU usage and operational duration,

critical for edge device sustainability.

6.1.2 Test Parameters and Methodology

The benchmarking script was developed in Python and executed under consistent conditions

on both platforms. Each encryption algorithm was tested using randomized input data of

varying sizes and entropy to simulate realistic transmission payloads.

Data Sizes Tested:

●​ 1 KB

●​ 10 KB

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 45

Chapter 6 System Evaluation and Discussion

●​ 100 KB

●​ 1 MB

●​ 4.9 MB

●​ 5 MB and 10 MB (Optional, may crash or become impractically slow for Twofish)

Due to the computational overhead of Twofish, particularly on the Raspberry Pi, the

benchmarking script includes a prompt for the user to proceed when evaluating 4.9MB and

above. In some cases, execution exceeded 30 minutes or caused system instability, resulting

in the omission of those data points in the analysis.

6.1.3 Entropy Conditions:

●​ High entropy (random binary data) - ‘abcdef’

●​ Low entropy (repetitive or compressible data) - ‘aaaaaa’

6.1.4 Repetitions:

●​ Each scenario was executed three times to ensure statistical relevance and smooth out

anomalies. The result is then averaged out as one output and will be used as the point

of reference for the analysis.

6.1.5 Performance Metric Tracked

Table 6.1 will discuss the metrics that will be used for analysing the benchmark results.

Table 6.1: Metrics Tracked and Description

Metric Description

Encryption Time (ms) Time taken to encrypt payload

Decryption Time (ms) Time to recover the original data

Throughput (MB/s) Amount of data securely processed per second

CPU Usage (%) Average CPU load during operation

Memory Usage (KB) Peak memory allocated

Energy Estimation Indirect metric based on CPU load over time

Table 6.1 lists the performance metrics considered when analysing the benchmarking results.

All measurements were collected using Python libraries such as ‘psutil’, ‘time’, and built-in

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 46

Chapter 6 System Evaluation and Discussion

statistical modules. Result sets were tabulated using ‘tabulate’ and visualised using

‘matplotlib’

This testing framework provides the basis for the comparative performance evaluations

presented in Section 6.2, encompassing efficiency, scalability, and hardware suitability across

all algorithms and platforms.

6.2 Testing Setup and Results

This section will prove the evaluation results of the encryption system’s performance, as

benchmarked on both a Macbook Air M1 and the Raspberry Pi Zero 2 W. Each encryption

algorithm (AES-128, AES-256, ChaCha20, and Twofish) was tested across different payload

sizes (1 KB, 10 KB, 100 KB, 1.0 MB, and 4.9 MB). The results are visualised to highlight

differences in encryption efficiency, throughput, and resource utilisation.

6.2.1 Encryption Time

Figure 6.1 illustrates the encryption times required by each algorithm at different data sizes

for both the Macbook and Raspberry Pi.

Figure 6.1: Encryption Time Comparison Across Algorithms and Devices (Lower is Better)

Figure 6.1 shows the encryption time performance of AES-128, AES-256, ChaCha20, and

Twofish across varying data sizes (1 KB, 10 KB, 100 KB, 1.0 MB, 4.9 MB) tested on both

MacBook Air M1 and Raspberry Pi Zero 2 W. The graph visualises the time required for each

encryption operation, with notable differences in performance depending on the algorithm

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 47

Chapter 6 System Evaluation and Discussion

and hardware platform. AES-128 consistently demonstrates the lowest encryption time across

all payload sizes, making it the most efficient algorithm in terms of speed. AES-256 follows

closely behind but incurs slightly higher computational costs due to the extended key length.

ChaCha20, while slightly slower than AES-128 and AES-256, maintains relatively consistent

performance, especially on the Raspberry Pi. In contrast, Twofish displays significantly

higher encryption times, particularly for larger payloads such as 1MB and 4.9MB, where its

performance degrades dramatically. This issue is especially critical on the Raspberry Pi,

where Twofish encryption time exceeds practical limits for real-time IoT operations. Twofish

is an outlier due to its more complex key schedule and computational overhead, which

heavily burden low-power devices like the Raspberry Pi. The findings indicate that

lightweight algorithms like AES-128 are far more suitable for resource-constrained

environments in smart agriculture deployments, while Twofish's computational overhead

renders it less viable for such use cases. The next figure (Figure 6.2) will discuss the

decryption time of the encryption algorithm.

6.2.2 Decryption Time

Figure 6.2 illustrates the decryption times required by each algorithm at different data sizes

for both the Macbook and Raspberry Pi.

Figure 6.2: Decryption Time Comparison Across Algorithms and Devices (Lower is Better)

Figure 6.2 illustrates the decryption time performance of AES-128, AES-256, ChaCha20, and

Twofish across different payload sizes on both Macbook Air M1 and Raspberry Pi Zero 2 W.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 48

Chapter 6 System Evaluation and Discussion

Decryption time patterns largely mirror encryption performance trends observed previously

in Figure 6.1. AES-128 consistently offers the fastest decryption times across all tested data

sizes, confirming its suitability for real-time smart agriculture data handling. AES-256

follows closely but imposes slightly more computational overhead due to its extended key

size. ChaCha20 performs moderately, exhibiting competitive speeds for small to medium

payloads, particularly on the Raspberry Pi, where it even outperforms AES encryption at

4.9MB scale. Conversely, Twofish again shows extremely high decryption times, especially

for payloads exceeding 1MB, where execution becomes impractically slow, notably on the

Raspberry Pi. The decryption of a 1MB file using Twofish takes approximately 30696 ms

(around 30 seconds), and the 4.9MB test is practically infeasible. Twofish is an outlier

because its decryption process involves intensive mathematical operations and S-box lookups

that are inefficient on constrained hardware.

The logarithmic scale representation is necessary to accommodate the extremely

disproportionate behaviour of Twofish relative to the other algorithms. These results further

reinforce that Twofish is unsuitable for lightweight, latency-sensitive applications in IoT

environments, while AES-128, AES-256, and ChaCha20 remain strong candidates depending

on specific system constraints. Figure 6.3 will touch on the encryption throughput of the

algorithms.

6.2.3 Encryption Throughput

Figure 6.3 shows the encryption throughput performance for AES-128, AES-256, ChaCha20,

and Twofish algorithms across varying data sizes on both the MacBook Air M1 and

Raspberry Pi Zero 2 W platforms.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 49

Chapter 6 System Evaluation and Discussion

Figure 6.3: Encryption Throughput Comparison Across Mac and Raspberry Pi (Higher is Better)

Figure 6.3 illustrates the encryption throughput achieved by each algorithm across varying

data sizes for both the MacBook Air M1 and Raspberry Pi Zero 2 W platforms. As expected,

the MacBook consistently outperformed the Raspberry Pi in terms of throughput due to its

more powerful hardware capabilities. Among all algorithms, AES-128 demonstrated the

highest throughput across all data sizes on both devices, reaching approximately 194 MB/s on

the Mac and about 36 MB/s on the Pi for a 4.9MB payload. AES-256 followed closely behind

but showed slightly reduced performance compared to AES-128, reflecting the additional

computational overhead required by its longer key length.

ChaCha20 also exhibited competitive throughput, particularly on the Raspberry Pi, where it

occasionally outperformed AES-256 at specific payload sizes. This outcome supports

ChaCha20’s reputation for being efficient on low-power, embedded devices. Meanwhile,

Twofish displayed the lowest throughput among all algorithms, remaining below 1 MB/s on

both Mac and Pi even for small data sizes. This poor performance can be attributed to the

lower-level nature of the ‘twofish-ts’ library used, which requires manual block-by-block

decryption, adding significant computational delay. The gap between Mac and Pi was more

pronounced for larger payloads, emphasizing the importance of selecting a lightweight and

efficient encryption algorithm in smart agriculture deployments. Figure 6.4 will touch on the

decryption throughput side of the benchmark.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 50

Chapter 6 System Evaluation and Discussion

6.2.4 Decryption Throughput

Figure 6.4 shows the decryption throughput performance for AES-128, AES-256, ChaCha20,

and Twofish algorithms across varying data sizes on both the MacBook Air M1 and

Raspberry Pi Zero 2 W platforms.

Figure 6.4: Decryption Throughput Comparison Across Mac and Raspberry Pi (Higher is Better)

Figure 6.4 presents the decryption throughput achieved by each encryption algorithm across

various data sizes for both the MacBook Air M1 and Raspberry Pi Zero 2 W. As with

encryption throughput, the MacBook consistently delivered superior performance compared

to the Raspberry Pi. AES-128 again dominated in throughput performance across most tested

payloads, achieving up to 157 MB/s for 4.9MB payloads on the Mac, and around 37 MB/s on

the Pi. AES-256 followed but lagged slightly due to the additional computational overhead of

its longer key size, especially noticeable for larger payloads.

ChaCha20 displayed a particularly strong showing during decryption tests, especially on the

Raspberry Pi. Notably, it surpassed AES-256 throughput at several data points, reinforcing

ChaCha20’s reputation for efficiency on lower-power devices. This observation is important

for real-world IoT deployments where decryption speed can impact responsiveness of edge

applications. Twofish once again recorded the poorest performance, with extremely low

throughput values, especially evident for larger payloads where its figures dropped below 1

MB/s or were not measurable within reasonable time frames. Twofish is the outlier because

its decryption relies on CPU-intensive routines poorly suited for real-time performance on

constrained devices. This substantial gap in Twofish’s decryption performance compared to

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 51

Chapter 6 System Evaluation and Discussion

other algorithms reinforces the earlier concerns regarding its unsuitability for lightweight IoT

platforms like Raspberry Pi. Figure 6.5 will discuss the memory usage of the algorithms.

6.2.5 Memory Usage

Figure 6.5a and Figure 6.5b show the memory usage of AES-128, AES-256, ChaCha20, and

Twofish algorithms across varying data sizes on both the MacBook Air M1 and Raspberry Pi

Zero 2 W platforms.

Figure 6.5a: Memory Usage of Encryption Algorithms on MacBook

Figure 6.5a shows the memory usage profile of AES-128, AES-256, ChaCha20, and Twofish

during encryption and decryption operations on the MacBook Air M1. As the payload size

increased, memory usage for AES-128, AES-256, and ChaCha20 generally scaled upward in

a predictable manner. Twofish, however, exhibited erratic memory behaviour, including

negative values at larger data sizes, most notably at 4.9MB where encryption memory dipped

to -6017.07 KB. This anomaly is attributed to transient memory management optimizations

or measurement artifacts in Python's ‘psutil’ memory tracking, particularly during

long-running Twofish processes. Overall, AES and ChaCha20 maintained a lightweight and

consistent memory footprint suitable for resource-sensitive applications. Figure 6.5b will

discuss memory usage on the Raspberry Pi instead.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 52

Chapter 6 System Evaluation and Discussion

Figure 6.5b: Memory Usage of Encryption Algorithms on Raspberry Pi

Figure 6.5b displays the memory usage of encryption and decryption operations on the

Raspberry Pi Zero 2 W. Consistent with the MacBook findings, AES-128, AES-256, and

ChaCha20 demonstrated low and scalable memory consumption across increasing data sizes.

Twofish again showed erratic behaviour, recording 0 KB or negative memory values during

large data decryptions, such as -938.4 KB for AES-128 decryption of 4.9MB payloads. These

anomalies likely result from Python’s memory handling combined with aggressive garbage

collection on resource-constrained systems like the Pi. Nonetheless, AES and ChaCha20

maintained superior stability, further reinforcing their suitability for low-memory embedded

devices compared to the resource-intensive Twofish algorithm.

Across both the MacBook Air M1 and Raspberry Pi Zero 2 W, the encryption and decryption

memory usage patterns reaffirm the lightweight nature of AES and ChaCha20 encryption,

making them highly suitable for resource-constrained IoT devices. Meanwhile, Twofish

presented irregular memory behaviours, particularly under large payload conditions, which

complicates its deployment in memory-sensitive environments. These findings highlight the

importance of memory efficiency alongside speed and security when selecting cryptographic

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 53

Chapter 6 System Evaluation and Discussion

algorithms for agricultural IoT systems. The next section will discuss CPU Usage across all

algorithms on both hardware.

6.2.6 CPU Usage

This section examines the CPU utilization incurred by each encryption and decryption

process on both the Mac and Raspberry Pi platforms with Figure 6.6a and Figure 6.6b

respectively. Two representative data sizes — 1MB and 4.9MB — are selected to reflect

medium and large data payloads common in smart agriculture systems. The CPU usage was

recorded as the average load over the duration of each operation using Python’s ‘psutil’

module. Algorithms tested include AES-128, AES-256, ChaCha20, and Twofish.

Figure 6.6a: CPU Usage per Encryption/Decryption Operation at 1MB on Mac and Pi (Lower is

Better)

Figure 6.6a compares CPU usage for encrypting and decrypting 1MB data chunks. On the

Mac, AES-128 and AES-256 performed efficiently, consuming under 12% CPU, while

ChaCha20 showed slightly higher usage (~15.67% encryption). Twofish registered the

highest usage (~17.3%) among all algorithms. On the Raspberry Pi, Twofish again recorded

significantly higher load (27.4%), while AES and ChaCha20 remained under 13%, indicating

their suitability for edge deployment.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 54

Chapter 6 System Evaluation and Discussion

Figure 6.6b: CPU Usage per Encryption/Decryption Operation at 4.9MB on Mac and Pi (Lower is

Better)

Figure 6.6b explains CPU usage for encrypting and decrypting 4.9MB data chunks. Twofish

was the most CPU-intensive on the Mac, reaching ~26.8%, but no CPU data was recorded for

Twofish on the Raspberry Pi, likely due to memory exhaustion or process failure as discussed

in Section 6.2.5. AES-256 and ChaCha20 remained relatively stable, indicating better

scalability for edge computing applications.

Overall, CPU usage trends demonstrate that lightweight ciphers such as AES-128, AES-256,

and ChaCha20 are well-suited for both development and edge devices, maintaining

reasonable load even at larger data sizes. Twofish consistently exhibited the highest CPU

consumption, particularly on the Raspberry Pi where it may even fail, highlighting its

inefficiency for constrained hardware. These findings are crucial when selecting encryption

schemes for IoT applications where processing power and battery life are limited. Figure 6.7

will discuss the energy estimation of the encryption algorithms.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 55

Chapter 6 System Evaluation and Discussion

6.2.7 Energy Estimation

Energy consumption was indirectly assessed through a relative energy score derived from

CPU usage and execution time. This metric is essential in evaluating the sustainability of

cryptographic operations in resource-constrained devices like the Raspberry Pi, especially in

long-term agricultural deployments where energy efficiency directly affects operational

viability. Figure 6.7a will address the energy estimation at 1MB.

Figure 6.7a: Energy Estimation at 1MB Data Size for Mac and Pi (Lower is better)

Figure 6.7a illustrates the estimated energy score for encryption and decryption of a 1MB

payload across all algorithms and platforms. Notably, the MacBook maintained consistently

lower energy profiles across most algorithms, with AES-128 and AES-256 presenting the

lowest scores overall. In contrast, ChaCha20 exhibited moderately higher energy use on the

Mac, while Twofish remained significantly more demanding across both platforms. The

Raspberry Pi's energy scores were elevated compared to the Mac, especially for Twofish,

where both encryption and decryption registered exponentially higher values relative to other

algorithms — a behaviour consistent with previous performance bottlenecks. Figure 6.7b will

switch the data size into 4.9MB.

Figure 6.7b: Energy Estimation at 4.9MB Data Size for Mac and Pi (Lower is better)

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 56

Chapter 6 System Evaluation and Discussion

Figure 6.7b expands the comparison to 4.9MB data size, where energy disparities become

even more pronounced. Twofish on the Mac recorded energy scores exceeding 1000 units,

highlighting its unsuitability for large data encryption in constrained environments. On the

Raspberry Pi, energy scores for AES and ChaCha20 remained within a manageable range.

However, Twofish failed to complete the 4.9MB operation on the Pi, leading to its omission

from the graph — an outcome that reinforces previously observed memory and CPU

limitations (see Figures 6.4b and 6.5b). ChaCha20 again proved to be a competitive option,

balancing speed and energy efficiency effectively, especially in decryption.

The energy estimation results strongly suggest that AES-128 and ChaCha20 offer the most

favorable balance between performance and energy efficiency across both platforms.

Twofish, while theoretically secure, exhibited extreme power demands and operational

instability on low-power devices, undermining its feasibility for real-world deployments in

smart agriculture IoT networks.

6.3 Project Challenges

During the development and benchmarking phases of this project, several challenges emerged

that affected both the evaluation process and the overall system design. These challenges

were primarily related to hardware limitations, library constraints, and inconsistencies in

performance measurement. Each of these issues is discussed below to provide a realistic

assessment of the project's technical hurdles.

6.3.1 Performance Bottlenecks with Twofish

Twofish consistently underperformed in all benchmark metrics, including

encryption/decryption time, throughput, CPU usage, memory consumption, and energy

estimation. These issues were especially pronounced on the Raspberry Pi Zero 2 W, where

the algorithm either failed to complete at larger payloads (e.g., 4.9MB) or returned extreme

results—such as over 1000 in relative energy score and null outputs.

This performance degradation can be attributed to the limitations of the ‘twofish-ts’ Python

library used. Unlike AES and ChaCha20, which benefit from optimised, low-level libraries

with hardware acceleration (e.g., OpenSSL-backed bindings), Twofish required manual

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 57

Chapter 6 System Evaluation and Discussion

block-by-block encryption logic. This approach led to significantly higher computational

overhead, making the algorithm unsuitable for lightweight real-time IoT applications.

6.3.2 Resource Constraints on the Raspberry Pi

Although the Raspberry Pi Zero 2 W features a quad-core CPU, the benchmark script was

written in a single-threaded Python process and could not effectively utilise multiple cores.

As a result, computational load was limited by weak single-core performance, particularly

when dealing with large data sizes or complex algorithms like Twofish.

This limitation led to excessive CPU usage, prolonged execution times, and in some cases,

incomplete benchmarks. While lightweight algorithms like AES-128 and ChaCha20

performed acceptably, Twofish repeatedly caused operational instability, demonstrating the

need to match algorithm complexity with the processing capabilities of the target hardware.

6.3.3 Memory and Energy Measurement Anomalies

Another significant challenge was the inconsistency in memory usage reporting. During

large-payload encryption or decryption tasks, especially with Twofish, the ‘psutil’ library

recorded negative memory usage or 0 KB values. This anomaly likely resulted from

aggressive garbage collection or memory reuse strategies by Python’s runtime, especially

under constrained environments like the Raspberry Pi.

Similarly, the energy estimation metric—derived from CPU usage and operation

time—exhibited significant variance. Though useful as a relative indicator, its accuracy was

inherently limited by the software-based approximation method and the non-deterministic

nature of process scheduling in Python.

6.3.4 Library Fragmentation and Tool Limitations

The benchmarking process faced additional complexity due to differences in how encryption

algorithms are implemented across libraries. For example, AES encryption was available via

well-optimised libraries (such as ‘cryptography’), whereas ChaCha20 required use of

‘PyCryptodome’, and ‘Twofish’ depended on the less-performant ‘twofish-ts’.

This fragmentation meant that no single library could be used uniformly across all

algorithms. Consequently, special handling was needed in the benchmarking script for each
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 58

Chapter 6 System Evaluation and Discussion

algorithm, which introduced small but unavoidable disparities in how performance was

measured.

6.3.5 Manual Interruption Handling for Long-running Tests

To prevent prolonged execution or system crashes during testing, the benchmarking script

included an interactive prompt asking the user whether to continue with Twofish evaluations

for 4.9MB, 5MB, and 10MB payloads. While this approach safeguarded system stability, it

disrupted the flow of automated benchmarking and required human intervention, which is not

ideal for repeatable experimentation.

6.4 Objectives Evaluation

To reiterate, the objective of this project is to develop a secure and replicable data

transmission system for smart agriculture in Malaysia using Raspberry Pi and Node-RED.

The system must transmit simulated sensor data using MQTT while implementing encryption

algorithms – AES-128, AES-256, ChaCha20, and Twofish to assess their performance in a

low-power, IoT-based environment. The system also aims to identify an algorithm that

provides a practical balance of speed, resource efficiency, and security for real-world

developments.

Upon evaluation, the project has successfully met its objectives. The encryption system was

implemented and deployed using both high-end (Macbook Air M1) and low-power

(Raspberry Pi Zero 2 W) platforms. All four algorithms were integrated and benchmarked

across multiple data sizes with measurements taken for encryption time, decryption time,

throughput, memory usage, CPU load, and energy estimation. AES-128 emerged as the most

well-rounded and optimal algorithm, offering the best trade-off between speed, resource

efficiency, and energy use–particularly on the Raspberry Pi. ChaCha20 also performed

exceptionally well, especially in memory-constrained scenarios, making it a strong alternative

for certain IoT deployments. In contrast, Twofish displayed critical weaknesses in processing

speed, memory handling, and energy use, disqualifying it as a practical option for constrained

environments. The system, built entirely with open-source tools, remains low-cost, replicable,

and suitable for future enhancements.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 59

Chapter 6 System Evaluation and Discussion

6.5 Concluding Remark

This chapter presented a comprehensive evaluation of the implemented secure data

transmission system for smart agriculture, highlighting its performance across multiple

cryptographic algorithms on both a development machine (MacBook Air M1) and a target

embedded device (Raspberry Pi Zero 2 W). Through rigorous testing, AES-128 emerged as

the most efficient and reliable algorithm overall, delivering the best balance of performance

and energy for real-time IoT agricultural applications. ChaCha20 closely followed,

demonstrating solid efficiency and scalability on low-power hardware, making it a strong

second choice depending on specific constraints.

In contrast, Twofish exhibited significant performance limitations especially on CPU and

memory metrics, rendering it unsuitable for constrained edge platforms like the Raspberry Pi.

The benchmarking effort highlighted the critical role of lightweight cryptography in

resource-constrained environments, validating the project’s core objective. Overall, this

system is ready to support future smart agriculture initiatives with secure, efficient, and

scalable data communication.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 60

Chapter 7 Conclusion and Recommendations

Chapter 7

Conclusion and Recommendations

This project successfully achieved its primary objective of developing, implementing and

evaluating a secure data transmission system tailored for smart agriculture applications. By

integrating four widely recognised symmetric encryption algorithms (AES-128, AES-256,

ChaCha20, and Twofish), the system provided a versatile platform for assessing

cryptographic performance in both development (MacBook Air M1) and embedded

(Raspberry Pi Zero 2 W) environments.

Comprehensive benchmarking tests were conducted to evaluate encryption and decryption

time, throughput, CPU usage, memory usage, and energy estimation across different payload

sizes. The results showed that AES-128 consistently delivered the most favorable balance of

speed, efficiency, and energy consumption, making it the definitive choice for low-power IoT

systems. ChaCha20, while slightly less efficient in raw speed, demonstrated strong suitability

for embedded applications, thanks to its low memory and CPU demands. AES-256, while

secure, imposed greater computational overhead and latency, making it better suited for

systems prioritising high security over speed.

Conversely, Twofish, despite its theoretical security strengths, underperformed across all

tested parameters–particularly in large payload scenarios due to high latency, energy

demands, and memory irregularities.

These findings highlight the need for encryption algorithm selection in IoT deployments to

go beyond just cryptographic strength. Real-world considerations such as processing

overhead, energy use, and platform compatibility are crucial. In summary, AES-128 stands

out as the best-fit algorithm, with ChaCha20 offering an excellent alternative where

performance trade-offs are acceptable.

7.2 Recommendation

Based on the evaluation and findings of this study, several improvements are recommended

for future development and research. First, the underperformance of the Twofish algorithm

may be attributed to the limitations of the ‘twofish’ library used in the Node-RED and Python

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 61

Chapter 7 Conclusion and Recommendations

environment. It is suggested that a more optimised or native implementation in a lower-level

language such as C be considered, interfaced via Python using libraries like ‘ctypes’ or ‘cffi’

to yield more representative results.

Additionally, the benchmarking script employed in this project likely utilises a single CPU

thread, which may not fully capitalize on the Raspberry Pi Zero 2 W’s quad-core architecture.

Optimising the script to support multithreading could improve test realism and better reflect

performance potential. Future versions of this system should also incorporate physical power

measurement tools to obtain more accurate energy consumption data, as the current energy

estimation is based on CPU load and execution time only.

Moreover, real-world testing in a live agriculture deployment is encouraged. This would

introduce practical variables such as sensor noise, wireless transmission delays, and

long-term stability that are difficult to simulate in controlled environments. A deeper

examination of how input data entropy influences algorithm performance is also

recommended, especially since agricultural sensor data may exhibit predictable or repetitive

patterns that affect compression and encryption behaviour.

Finally, future studies could broaden the algorithm selection to include lightweight

cryptographic algorithms such as Speck, Simon, or Ascon, which has been considered in

NIST’s Lightweight Cryptography competition. These algorithms may offer better

performance for embedded IoT use cases. Together, these recommendations aim to enhance

the robustness, efficiency, and applicability of secure data transmission systems in real-world

smart agriculture deployments.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 62

References

REFERENCES

[1] A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldú, "A review on the practice of big

data analysis in agriculture," Computers and Electronics in Agriculture, vol. 143, pp. 23-37,

2017.

[2] K. R. Pasupuleti, S. Ramalingam, and P. M. Kumar, "An efficient and secure smart

agriculture framework using blockchain technology," Computers and Electronics in

Agriculture, vol. 171, p. 105338, 2020.

[3] Y. Zhang, R. Yu, S. Xie, W. Yao, and Y. Ming, "An improved data transmission security

protocol for wireless sensor network and IoT," Journal of Network and Computer

Applications, vol. 119, pp. 1-7, 2018.

[4] K. O. Flores, I. M. Butaslac, J. E. M. Gonzales, S. M. G. Dumlao, and R. S. J. Reyes,

“Precision agriculture monitoring system using wireless sensor network and Raspberry Pi

local server,” in Proc. IEEE Region 10 Conf. (TENCON), Singapore, Nov. 2016, pp.

3018–3021.

[5] S. Sontowski, M. Gupta, S. S. L. Chukkapalli, M. Abdelsalam, S. Mittal, A. Joshi, and R.

Sandhu, “Cyber attacks on smart farming infrastructure,” in Proc. 2020 IEEE 6th Int. Conf.

Collaboration Internet Computing (CIC), Oct. 2020, pp. 135–143.

[6] V. Navalino, A. F. Wadjdi, and Y. Asnar, “Securing the Internet of Battlefield Things with

ChaCha20-Poly1305 Encryption Architecture for Resource-Constrained Devices,” Int. J.

Progressive Sci. Technol., vol. 42, no. 2, pp. 547–555, Jan. 2024.

[7] A. Fotovvat, G. M. E. Rahman, S. S. Vedaei, and K. Wahid, “Comparative performance

analysis of lightweight cryptography algorithms for IoT sensor nodes,” IEEE Internet Things

J., vol. 8, no. 10, pp. 8279–8290, Oct. 2021.

[8] National Institute of Standards and Technology, Specification for the Advanced

Encryption Standard (AES), FIPS PUB 197, Nov. 2001.

[9] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,” RFC 7539, IRTF

Crypto Forum, May 2015.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 63

References

[10] B. Schneier, J. Kelsey, D. Whiting, N. Ferguson, D. Wagner, and C. Hall, The Twofish

Encryption Algorithm: A 128-Bit Block Cipher, John Wiley & Sons, 1999.

[11] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996.

[12] M. N. Khan, A. Rao, and S. Camtepe, “Lightweight cryptographic protocols for

IoT-constrained devices: A survey,” IEEE Internet Things J., vol. 8, no. 5, pp. 4132–4156,

2020.

[13] S. Blanc, A. Lahmadi, K. Le Gouguec, M. Minier, and L. Sleem, “Benchmarking of

lightweight cryptographic algorithms for wireless IoT networks,” Wireless Netw., vol. 28, pp.

3453–3476, Jul. 2022.

[14] T. Hagino, Practical Node-RED Programming: Learn Powerful Visual Programming

Techniques and Best Practices for the Web and IoT, Apress, 2016.

[15] A. Banks and R. Gupta, MQTT Version 3.1.1, OASIS Standard, 29 Oct. 2014.

[16] H. Eijs, PyCryptodome 3.22.0 Documentation, [Online]. Available:

https://www.pycryptodome.org.

[17] E. Upton and G. Halfacree, Raspberry Pi User Guide, 4th ed., Wiley, 2016.

[18] Python Software Foundation, Python 3.10.0 Documentation, 2021. [Online]. Available:

https://docs.python.org/3.

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 64

Appendix

POSTER

Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR
​ ​ 65

	COPYRIGHT STATEMENT
	2.1 Review of Technologies
	2.1.1 Raspberry Pi
	2.1.2 Node-RED
	2.1.3 MQTT Protocol
	
	2.1.4 Python Programming Language
	2.1.5 Encryption Algorithms
	2.1.6 Data Visualisation and Monitoring Tools

	6.2.3 Encryption Throughput
	6.3.1 Performance Bottlenecks with Twofish
	6.3.2 Resource Constraints on the Raspberry Pi
	6.3.3 Memory and Energy Measurement Anomalies
	6.3.4 Library Fragmentation and Tool Limitations

