

AI for Pest Detection

BY

HO JUN HAN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMMUNICATIONS

AND NETWORKING

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Ho Jun Han. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Technology (Honours) Communications

and Networking at Universiti Tunku Abdul Rahman (UTAR). This Final Year

Project report represents the work of the author, except where due acknowledgment

has been made in the text. No part of this Final Year Project report may be

reproduced, stored, or transmitted in any form or by any means, whether electronic,

mechanical, photocopying, recording, or otherwise, without the prior written

permission of the author or UTAR, in accordance with UTAR's Intellectual Property

Policy.

Example

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors

‘Cik Ana Nabilah Binti Sa'uadi’, who has given me this bright opportunity to engage

in a mobile application development. It is my first step to establish a career in mobile

application development. A million thanks to you.

Finally, I must say thanks to my parents and my family for their love,

support, and continuous encouragement throughout the course.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

 Agricultural pest management is critical for ensuring crop health and yield, yet

traditional detection methods are often labor-intensive and imprecise. This Final Year Project

proposes an Artificial Intelligence (AI) based pest detection system integrated into a mobile

application, empowering users to monitor plant health efficiently. The system utilizes a

convolutional neural network (CNN) specificallyYOLOv5, trained on a dataset encompassing

three common pest categories tentatively Whiteflies, and caterpillar, alongside healthy plant

samples. Through the mobile app, users capture images of plants using their smartphone

camera. The AI model, running on-device through TensorFlow Lite, analyzes the image to

classify the plant as healthy or unhealthy. If unhealthy, it identifies the specific pest type and

provides a tailored solution. Results are displayed within the app, and the detection data

including plant status, pest type, solution, and confidence score are encoded into a QR code.

This QR code enables seamless data sharing, such as with agricultural experts or record-

keeping systems. Preliminary testing on a diverse test set achieved an accuracy above 85%,

validating the system’s effectiveness. This mobile solution offers a portable, user-friendly tool

for pest management, enhancing precision agriculture through AI and innovative data transfer.

Area of Study: Artificial Intelligence and Application Development

Keywords: Agriculture, Pest Detection, Pest Control, Classification, Mobile Application and

Deep Learning,

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v-viii

LIST OF FIGURES ix-xi

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2-3

1.2 Research Objectives 4

1.3 Project Scope and Direction 5

1.4 Contributions 6

1.5 Report Organization 7

CHAPTER 2 LITERATURE REVIEW 8

2.1 Evaluation of Existing System

 2.1.1 Convolutional Neural Network

 2.1.2 YOLOv7 tiny model

 2.1.3 AI-enabled IoT-based pest detection system

8

8-9

10-11

11-13

2.2 Strength and Weakness of Existing Models

 2.2.1 Convolutional Neural Networks (CNN)

 2.2.2 YOLOv7 tiny model

 2.2.3 AI-enabled IOT-based pest detection system

14

14

15

16-17

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

18

3.1 Proposed method/Approach 18-21

3.2 System Architecture Diagram

3.3 Use Case Diagram

 3.3.1 Use Case Description

3.4 Activity Diagram

3.5 Project Timeline

22-24

25-26

27-34

35-36

37

CHAPTER 4 SYSTEM DESIGN 38

 4.1 System Block Diagram 38

 4.2 System Components Specifications

 4.2.1 Hardware

 4.2.2 Software

 4.2.3 Software Setup for Deployment

 4.2.3.1 Python Environment

 4.2.3.2 Jupyter Notebook

 4.2.3.3 YOLOv5 Repository

 4.2.4 System Components for Mobile App

 4.2.4.1 User Interface (UI) Layer

 4.2.4.2 Camera Module

 4.2.4.3 Inference Engine

 4.2.4.4 Solution Generator

 4.2.4.5 QR Code Generator

 4.2.4.6 Dataset Specifications

39

39

40

40

40-41

41

41

41

41-42

42

42

42-43

43

43

 4.3 Model Selection and Architecture 43-45

 4.4 Data Preprocessing

 4.5 Model Training and Tuning

 4.6 Performance Evaluation

 4.6.1 Graphs for performance evaluation

 4.6.2 Confusion Matrix

 4.7 Mobile App Development

45-47

48-49

49-51

51-55

56

57

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

58

 5.1 Hardware Setup 58-59

5.2 Software Setup

 5.2.1 Anaconda

 5.2.2 Jupyter Notebook

 5.2.3 Roboflow

 5.2.4 Android Studio

59

59-60

61-63

63-64

64-66

5.3 System Operation (with Screenshot)

 5.3.1 Output of the Results shown by AI Model

 5.3.2 Output of the Results shown by the Smart Pest Detection

App

 5.3.2.1 Homepage

 5.3.2.2 Main page

 5.3.2.3 Results provided by the mobile app

 5.3.2.3.1 Plants infected with caterpillars

 5.3.2.3.2 Plant infected by whiteflies

 5.3.2.3.3 Healthy Plant

 5.3.2.4 Results of the uploaded image

66

66-68

69

69

70

71

71-72

73-74

75-76

77-78

5.4 Implementation Issues and Challenges 79

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 80

6.1 System Testing

 6.1.1 AI Pest Detection Model Testing

 6.1.2 Mobile App with AI Model Implementation Testing

80

80-82

82-86

6.2 Project Challenges 87

6.3 Objectives Evaluation 88

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 7 CONCLUSION AND RECOMMENDATION 89

7.1 Conclusion 89

7.2 Recommendation 90

REFERENCES 91-92

 POSTER 93

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1.1 Basic structure of CNN 8

Figure 2.1.1.2 CNN feature visualization 9

Figure 2.1.2.1 YOLOv7 tiny model structure 10

Figure 2.1.2.2 Equation 1 11

Figure 2.1.3.1 A smart agricultural monitoring system based on the IoT

and blockchain environment.

12

Figure 2.1.3.2

Figure 2.1.3.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 5.0

Figure 5.1

The architecture of IoT and blockchain enabled smart

agriculture monitoring system.

Works flow of pest detection procedure

Agile Development Lifecycle

System Architecture Diagram

Use Case Diagram

Project Timeline

System Block Diagram

YOLOv5 Model Structure

Data Preprocessing Code snippet

Files in the images folder for Dataset

Files in the labels folder for Dataset

Data.yaml file

Model Architecture

Model Accuracy

F1-Confidence Curve

Precision-Confidence Curve

Precision-Recall Curve

Recall-Confidence Curve

Confusion Matrix

Hardware Setup Environment (Laptop)

Hardware Setup Environment (Smartphone)

12

13

19

22

25

36

38

44

45

46

46

47

48

49

51

52

54

55

56

58

59

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 5.21

Figure 5.22

Figure 5.23

Figure 5.24

Figure 5.25

Figure 5.26

Figure 5.27

Figure 5.28

Anaconda prompt installation

Anaconda Navigator

Jupyter Notebook

Installation of Jupyter Notebook

Opening Jupyter Notebook with anaconda prompt

Select a notebook to open in Jupyter Notebook

Code Snippet in Jupyter Notebook

Roboflow

Interface for Roboflow

Android Studio

Android Studio Installation

Coding snippet in Android Studio

Results of the plant that infected by whiteflies

Results of the plant infected by caterpillars

Results of the healthy plant

Homepage of the Mobile App

Main page of the Mobile App

Results of plant infected with caterpillars

Results displayed by QR code after scanning with Android

smartphone

Results displayed by QR code after scanning with IOS

smartphone

Results of plant infected with whiteflies

Results displayed by QR code after scanning with Android

smartphone

Results displayed by QR code after scanning with IOS

smartphone

Results of healthy plant

Results displayed by QR code after scanning with Android

smartphone

Results displayed by QR code after scanning with IOS

smartphone

User’s image directory interface

59

60

61

61

62

62

63

63

64

64

65

65

66

67

68

69

70

71

72

72

73

74

74

75

76

76

77

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 5.29

Results of the uploaded image 78

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 2.2.1 Strength and Weaknesses for CNN 14

Table 2.2.2 Strength and Weaknesses for YOLOv7 tiny model 15

Table 2.2.3

Table 3.3.1

Table 3.3.2

Table 3.3.3

Table 3.3.4

Table 3.3.5

Table 3.3.6

Table 3.3.7

Table 3.3.8

Table 3.4

Table 4.2.1.1

Table 4.2.1.2

Table 4.2.2

Table 6.1

Table 6.2

Strength and Weaknesses AI-enabled IoT-based pest

detection system

Use Case Description for “Capture Image” Use Case

Use Case Description for “Analyze Plant Health” Use Case

Use Case Description for “Detect Pest Type” Use Case

Use Case Description for “Generate Solution” Use Case

Use Case Description for “Summarize the Results” Use

Case

Use Case Description for “Display Results” Use Case

Use Case Description for “Generate QR Code” Use Case

Use Case Description for “View QR Code” Use Case

Activity Diagram for the AI model and proposed mobile

application

Specifications of laptop

Specifications of mobile device

Specifications of software

Test Cases for AI for Pest Detection Model

Test Cases for Mobile App with AI Model Implementation

16-17

27

28

29

30

31

32

33

34

35

39

39

40

80-82

82-86

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

VGG Very Deep Convolutional Networks

IOT Internet of Things

AI Artificial Intelligence

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

 Agriculture and horticulture are vital for sustaining food production and

ornamental landscapes, yet pest infestations remain a persistent challenge, compromising plant

health and productivity in farms and gardens alike. Whiteflies and Caterpillars are among the

most common pests, causing significant damage through feeding, disease transmission, and

structural harm to crops and plants. Traditional pest detection methods, such as visual

inspection or pesticide overuse, are often inefficient, labor-intensive, and environmentally

unsustainable, particularly for farmers and gardeners seeking timely and precise interventions.

Advances in Artificial Intelligence (AI) and mobile technology offer a promising avenue to

revolutionize pest management by delivering automated, accessible solutions. This project

aims to develop an AI-based pest detection system integrated into a mobile application,

designed to assist users in farms and gardens. The system employs a convolutional neural

network (CNN), specifically YOLOv5, trained on a dataset of plant images to classify plants

as healthy or unhealthy and detect infestations by Whiteflies or Caterpillars, alongside

recommending targeted solutions such as use neem oil or insecticidal soap for Whiteflies. Users

capture plant images using their smartphone camera, and the AI model, optimized with

TensorFlow Lite for on-device processing, provides real-time results within the app. If a plant

is unhealthy, the system identifies the pest and suggests an actionable remedy, with all

detection data plant status, pest type, solution, and confidence score encoded into a QR code

for sharing or documentation. This project seeks to empower farmers and gardeners with a

portable, user-friendly tool to enhance pest management, supporting sustainable practices in

both agricultural and garden settings.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.1 Problem Statement and Motivation

Pest infestations, particularly by Whiteflies and Caterpillars, pose a significant threat to

plant health and productivity in farms and gardens, leading to reduced crop yields, economic

losses, and compromised horticultural sustainability. Traditional pest detection methods rely

heavily on manual observation or broad-spectrum pesticide application, which are time-

consuming, labor-intensive, and often inaccurate, especially for small-scale farmers and

gardeners who lack access to expert resources or advanced diagnostic tools. These approaches

frequently fail to identify specific pest types promptly, resulting in delayed or inappropriate

treatments that exacerbate damage and environmental harm. Furthermore, the absence of

portable, user-friendly systems limits the ability of non-experts to monitor plant health

effectively and share detection data for further analysis or record-keeping. Existing

technological solutions, while advanced, are typically expensive, complex, or inaccessible to

the average user, creating a gap in practical pest management for agricultural and garden

settings. There is a critical need for an automated, accessible, and precise pest detection system

that can classify plants as healthy or unhealthy, identify specific pests, recommend targeted

solutions, and facilitate data sharing, thereby empowering farmers and gardeners to mitigate

pest-related challenges efficiently and sustainably.

 The motivation for this project stems from the growing need to address pest related

challenges in agriculture and horticulture, particularly in farms and gardens where Whiteflies

and Caterpillars frequently threaten plant vitality. As global food demand rises and

environmental sustainability becomes a priority, effective pest management is essential to

safeguard crop yields and reduce reliance on harmful pesticides. Traditional detection methods,

while widely used, often prove inadequate for timely and accurate identification, inspiring the

pursuit of an innovative, technology-driven solution. The advent of Artificial Intelligence (AI)

and mobile platforms offers a unique opportunity to democratize pest detection, making it

accessible to farmers and gardeners who may lack specialized expertise or resources. This

project is driven by a desire to harness AI’s potential, specifically through YOLOv5, to deliver

real-time, on-device analysis of plant health, identifying specific pests and providing actionable

solutions. The integration of QR code functionality further motivates this work, enabling

seamless data sharing for collaboration, documentation, or expert consultation an aspect often

overlooked in existing tools. Academically, this project aligns with an interest in exploring the

intersection of AI, mobile computing, and precision agriculture, while practically, it aims to

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

empower users with a portable, user-friendly tool to enhance pest management. Ultimately,

motivation lies in contributing a sustainable, impactful solution to improve agricultural and

garden productivity for both novice and experienced practitioners.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

1.2 Research Objectives

The primary aim of this project is to investigate and develop an AI-based pest detection

system integrated into a mobile application to improve pest management efficiency and

accessibility for farmers and gardeners in farm and garden settings.

 The first research objective is to investigate the feasibility of YOLOv5 for Pest

Detection. The aim of this objective is to explore the applicability and performance of the

YOLOv5 convolutional neural network (CNN) which optimized with TensorFlow Lite in

accurately classifying plant images into three categories which are Healthy, Whiteflies and

Caterpillars by using the datasets that consist approximately 800 images collected from farm

and garden environments, targeting a minimum validation accuracy of 85%.

 The second objective is to develop a real-time on-device detection system. To design and

implement a mobile application that leverages YOLOv5 and TensorFlow Lite for real-time,

on-device classification of plant health status (Healthy or Unhealthy) and pest type

identification, enabling immediate pest detection without internet dependency and suitable for

use in remote farm and garden locations.

 The third research objective is to propose targeted pest management solutions. To create

a mechanism within the mobile app that identifies specific pest types (Whiteflies and

Caterpillars) when a plant is Unhealthy and provides corresponding evidence-based solutions

such as use neem oil or insecticidal soap for Whiteflies and apply Bacillus thuringiensis (Bt)

or hand-pick them for Caterpillars to guide users in mitigating pest infestations effectively.

 The last research objective is to enable data sharing through QR code integration. To

integrate a QR code generation feature into the mobile app that encodes detection results (plant

health status, pest type, solution, and confidence score), facilitating seamless data transfer to

agricultural experts, record systems, or collaborators for consultation, documentation, or

collaborative pest management strategies. The QR code is also helps when the farmer have

many plants in a large farm by putting it on each plant so that the farmer know what to do to

save the plant by just scanning the QR code that has been put infront of the plant to avoid

confusion.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

1.3 Project Scope and Direction

This project aims to design, develop, and evaluate an AI based pest detection system

embedded within a mobile application, targeting pest management challenges in farm and

garden environments. The scope centers on leveraging YOLOv5, a lightweight convolutional

neural network (CNN), optimized with TensorFlow Lite, to classify plant images into three

categories: Healthy, Whiteflies, and Caterpillars. The system utilizes a dataset of

approximately 800 images that are collected from real-world farm and garden settings, to train

the model with a target validation accuracy of at least 85%. The mobile app is developed using

Android Studio as it targets Android users only. This application enables users such as farmers

and gardeners to capture plant images with their smartphone camera, perform real-time

detection on-device without internet reliance, and receive actionable outcomes. Key

functionalities include classifying plant health (Healthy or Unhealthy), identifying pest types

(Whiteflies and Caterpillars) if Unhealthy, proposing specific solutions (exp: Use neem oil or

insecticidal soap for Whiteflies and Apply Bacillus thuringiensis (Bt) or hand-pick them for

Caterpillars), and encoding results (status, pest, solution, confidence score) into a QR code for

data sharing with agricultural experts or record systems. The scope includes model training and

optimization in Jupyter Notebook, app development in Android Studio, and testing on a limited

set of plant species common to farms and gardens (exp: tomatoes, strawberries, ornamentals).

Excluded from the scope are integration of real-time environmental sensors (exp: humidity,

temperature), detection of additional pest types beyond Whiteflies and Caterpillars and large-

scale commercial deployment beyond a functional prototype. However, the scope only focuses

on plants and not on other objects which are not plants. This scope only focuses on the two

types of pests which are whiteflies and caterpillars, whereas other pests such as spider mites,

fungus gnats, mealybugs and etc would be undetectable.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

1.4 Contributions

This project contributes a practical solution to the field of precision agriculture and

horticulture by developing an AI-based pest detection system integrated into a mobile

application, specifically designed for use in farms and gardens. By leveraging a convolutional

neural network (CNN), YOLOv5, trained to detect and classify plant health status and identify

infestations by Whiteflies and Caterpillars, the system introduces an accessible, automated

alternative to traditional manual pest identification methods. Unlike existing approaches, which

often require expert knowledge or expensive equipment, this mobile app empowers farmers

and gardeners with a portable, user-friendly tool that delivers real-time, on-device analysis

classifying plants as healthy or unhealthy and providing targeted pest-specific solutions, such

as use neem oil or insecticidal soap for Whiteflies and apply Bacillus thuringiensis (Bt) or

hand-pick them for Caterpillars. The incorporation of QR code functionality represents a

significant contribution, enabling users to encode and share detection data including plant

status, pest type, solution, and confidence score for collaboration, record-keeping, or

consultation with agricultural experts. This enhances the utility of pest management by

bridging the gap between detection and actionable follow-up. Additionally, the project

advances the application of AI and mobile technology in agriculture by demonstrating the

feasibility of lightweight, on-device inference using TensorFlow Lite, achieving an anticipated

accuracy above 85% based on preliminary testing. Ultimately, this work contributes an

affordable, scalable, and sustainable tool that supports pest control efforts, improves plant

health monitoring, and promotes informed decision-making in farm and garden settings.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

1.5 Report Organization

This report is organized into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature

Review, Chapter 3 System Methodology/Approach, Chapter 4 System Design, Chapter 5

System Implementation and Testing, Chapter 6 System Outcome and Discussion and Chapter

7 Conclusion. Chapter 1 introduces the problem statement and motivation, objectives, project

scope and direction, contributions and report organization. Chapter 2 consists of evaluation on

existing system and strength and weaknesses of existing models. Chapter 3 consists of

proposed method/approach, system architecture diagram, use case diagram, activity diagram

and project timeline. Chapter 4 consists of system block diagram, system components

specifications, model selection and architecture, data preprocessing, model training and tuning,

performance evaluation of the model and mobile app development. Chapter 5 consists of

hardware setup, software setup, system operations (with screenshot) and implementation issues

and challenges. Chapter 6 consists of system testing, project challenges and objective

evaluation. Lastly, Chapter 7 consists of conclusion and recommendations.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Chapter 2

Literature Review

2.1 Evaluation of Existing System

2.1.1 Convolutional Neural Network

 Neural networks are effective classifiers for complex, non-linear problems, with

significant advancements in their structure improving classification and clustering performance

[1]. CNNs, the leading models for image classification, trace their origins to [2] studies on

animal visual cortical cells. Fukushima (1980) introduced the Neocognitron, an early precursor

to CNNs [3], while LeCun et al. (1989, 1998) formalized the modern CNN structure in the late

1990s [4]. Initially, limited computer power restricted neural networks to shallow architectures

with one hidden layer. However, the rise of GPU-aided computing and enhanced hardware

enabled the training of deeper networks [5]. A breakthrough came in 2012 which AlexNet, a

deep CNN that excelled in the ILSVRC 2012 competition [6]. Subsequent models like VGG

[7] and GoogLeNet [8] further improved performance. To address training challenges in very

deep networks, another researcher [9]introduced deep residual learning with ResNet-152,

followed by advanced architectures like Inception-ResNet-v2 [8], pushing the boundaries of

recognition accuracy.

Figure 2.1.1.1 Basic structure of CNN

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Convolutional neural networks (CNNs) excel at automatically extracting features from

images, a capability demonstrated through visualization techniques as explored [10]. Figure

2.1.1.2 illustrates this process using a pest image: the left side shows the original agricultural

pest image input, the middle displays features extracted by the first convolutional layer of

AlexNet, and the right side reveals features after the first pooling layer. These visualizations

highlight how the initial convolution and pooling layers activate the pest boundaries,

effectively distinguishing them from complex backgrounds. The resulting images underscore

CNNs’ robust feature extraction ability, enabling clear separation and identification of pests,

which is critical for applications like pest detection in agriculture.

Figure 2.1.1.2 CNN feature visualization

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

2.1.2 YOLOv7 tiny model

The smartphone app implemented the YOLOv7 tiny model for pest detection, utilizing

its compact neural network structure, as shown in Figure 2.1.2.1, to efficiently extract and fuse

image features across multiple layers for real-time object detection [11]. An RGB image was

processed by the model, with its deep learning layers extracting features at three scales and

combining them to identify pests, visualized with bounding boxes. The model was trained and

tested on 3,348 strawberry leaf images, split into training (60%), validation (20%), and testing

(20%) datasets, targeting Two-Spotted Spider Mite (TSSM) and Powdery Mildew (PM)

detection. This was done using PyTorch on a powerful computer with an NVIDIA GeForce

RTX 3090 GPU, an 11th Gen Intel Core i9 11900F processor, and 32 GB of memory.

Figure 2.1.2.1 YOLOv7 tiny model structure

The YOLOv7 tiny model’s detection accuracy was assessed using average precision (AP)

and mean average precision (mAP) after training and testing on a GPU-equipped computer.

Subsequently, the model was integrated into a smartphone app for field testing. The study

compared the app’s performance against traditional manual counting (using a magnifying lens)

through metrics like coefficient of determination (R²), root mean squared error (RMSE),

counting accuracy, and speed. Counting accuracy was determined with Equation (1) in Figure

2.1.2.2, where the “estimated total pest population” (from the app or lens) was compared to the

“actual pest population” (counted through microscope in a lab), evaluating the app’s

effectiveness in real-world pest detection.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

Figure 2.1.2.2 Equation 1

2.1.3 AI-enabled IoT-based pest detection system

The agricultural monitoring and intelligent security system, enabled by blockchain and

IoT (as shown in Figure 2.1.3.1), features five key functions which are architectural framework,

data gathering, analytics, processing, and communication (Figure 2.1.3.2) which to monitor

farming practices and enhance security. Data is encrypted using advanced cryptographic

techniques like AES and SHA, stored as byte streams in decentralized blockchain databases,

ensuring confidentiality, integrity, and availability against cyber threats. The blockchain’s

distributed ledger provides immutable, transparent storage for data such as crop yields and

weather conditions, preventing alterations and establishing a reliable truth source. This

empowers farmers with greater control over their data, protecting it from hacking while

allowing selective access to maintain privacy. (Figure 2.1.3.2) illustrates an IoT and

blockchain-based system for monitoring pest identification and control in large farms, utilizing

acoustic analytics, data gathering, encoding, actionable insights, and communication

technologies. Acoustic analytics, supported by IoT networks and blockchain, enable pest

monitoring, while data is encrypted with AES and Secure Hash Algorithm, stored as byte

streams in a decentralized blockchain database to ensure availability, integrity, and secrecy.

Figure (2.1.3.3) details the system’s components—sensors, actuators, databases, and devices

like computers and smartphones—tracking environmental factors such as light, soil, weather,

and humidity. The pest detection process involves preprocessing pest noises, computing

features, creating templates, developing models, and assessing detection accuracy. This

intelligent system supports field, greenhouse, and animal care tasks, using sensors to monitor

crops, livestock health, and environmental conditions, enhancing agricultural efficiency

through integrated IoT and communication protocols [12].

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Figure 2.1.3.1 A smart agricultural monitoring system based on the IoT and blockchain

environment.

Figure 2.1.3.2 The architecture of IoT and blockchain enabled smart agriculture monitoring

system.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Figure 2.1.3.3 Works flow of pest detection procedure

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

2.2 Strength and Weakness of Existing Models

2.2.1 Convolutional Neural Networks (CNN)

Aspect Strength Weakness

Feature Extraction Automatically extracts hierarchical

features such as edges, textures from

plant images without manual design

May struggle with subtle pest

features (exp: Whiteflies’ small

size) if not enough high-

resolution data.

Accuracy • High classification accuracy

• Ideal for detecting healthy

and infested plants.

Accuracy depends heavily on

dataset quality and size; small

datasets (<400 images) may

lead to overfitting.

Efficiency Lightweight CNNs like

MobileNetV2 are optimized for

mobile devices, enabling fast

inference (100ms) with low memory

use (3-4 MB post-quantization).

Deeper CNNs (exp: VGG16)

are computationally heavy,

unsuitable for on-device use

without optimization.

Generalization Transfer learning leverages pre-

trained models (exp: ImageNet),

adapting to pests like Caterpillars or

Whiteflies with fewer training images

(100-200 per class).

Poor generalization if training

data lacks diversity (exp: varied

lighting, angles in

farms/gardens).

Real-Time Use Supports real-time detection on

smartphones (exp: TensorFlow Lite),

critical for immediate pest

identification in the field

Real-time performance drops

on low-end devices if not

quantized properly, delaying

pest response.

Scalability Easily scalable to new pest types by

fine-tuning with additional classes

(exp: adding Mites), requiring

minimal architectural changes.

Scaling to many classes (exp:

10+ pests) increases

complexity and may reduce

accuracy without more data.

Robustness Robust to complex backgrounds

(exp: separating pests from leaves),

as CNNs focus on local patterns

Sensitive to noise or occlusions

(exp: leaves covering

Caterpillars), potentially

misclassifying pests.

Data Requirements Transfer learning reduces the need

for large datasets compared to

training from scratch, suitable for

your 400-800 image range.

Still requires labelled data;

collecting and labelling pest

images (exp: Whiteflies) can be

time-consuming.

Table 2.2.1 Strength and Weaknesses for CNN

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

2.2.2 YOLOv7 tiny model

Aspect Strength Weakness

Feature Extraction Efficiently extracts multi-scale

features using a compact structure,

fusing layers for precise pest

detection

May miss subtle pest features

(exp: small Whiteflies) if scales

aren’t tuned for your specific

pest sizes.

Accuracy • High detection accuracy

• Effective for locating

Whiteflies and Caterpillars

Accuracy drops with small

datasets or underrepresented

pests (exp: Caterpillars),

requiring 3,000+ images.

Efficiency Lightweight (6MB), faster inference

than larger YOLO variants (20-50ms

on GPU), suitable for mobile

deployment with optimization.

Heavier than MobileNetV2

(3MB), slower on low-end

phones without quantization,

impacting real-time use

Localization • Uses bounding boxes to

pinpoint pest locations (exp:

Cat on leaves)

• Enhancing visualization

• Overkill for your

classification task

(Healthy, Infected)

• Adding unnecessary

complexity

Real-Time Use Designed for real-time object

detection, ideal for rapid pest

identification in farms/gardens on

decent hardware (exp: RTX 3090).

Performance lags on low-spec

mobile devices without GPU

support, delaying pest response

in the field.

Scalability Scales well to multiple pest types by

adjusting detection heads, adaptable

to Whiteflies and Caterpillars with

retraining.

Adding classes increases model

size and training complexity,

less flexible than MobileNetV2

for your needs.

Robustness Robust to complex backgrounds,

detecting pests across scales.

Sensitive to occlusions (exp:

Caterpillars hidden by leaves),

potentially missing partially

obscured pests.

Data Requirements • Benefits from pre-training

(exp: COCO dataset)

• Fine-tuned on 3348 images

Requires annotated bounding

boxes, more labor-intensive

than MobileNetV2’s class

labels (exp: 400-800 images).

Table 2.2.2 Strength and Weaknesses for YOLOv7 tiny model

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

2.2.3 AI-enabled IOT-based pest detection system

Aspect Strength Weakness

Real Time

Monitoring

Enables continuous pest detection

(exp: Whiteflies) through IoT sensors

(e.g., acoustic, visual) and delivering

instant insights

Relies on stable network

connectivity; disruptions in

remote farms/gardens can

delay real-time data flow.

Feature Extraction Combines AI (exp: CNNs) with IoT

data (exp: acoustic analytics for

Caterpillars), enhancing pest

identification accuracy.

Complex feature fusion (exp:

sound + image) may miss

subtle pest traits if sensors lack

precision or calibration.

Accuracy • High detection accuracy with

AI models

• leveraging multi-sensor data

for Caterpillars and other

pests

Accuracy drops if training data

doesn’t match diverse

farm/garden conditions or pest

behaviours (exp: Whiteflies).

Scalability Scales across large farms with IoT

networks, managing multiple sensors

(light, soil, weather) for

comprehensive monitoring.

Scaling increases hardware

costs (exp: sensors, gateways)

and complexity, challenging

small garden deployments.

Automation Automates pest control (exp:

actuators for pesticide spray) based

on AI insights, reducing manual

effort in fields.

Automation failures (exp:

sensor malfunctions) can lead

to missed detections or

inappropriate responses.

Data Integration Integrates diverse data (exp:

humidity, pest noise) with blockchain

for secure, immutable storage,

ensuring reliability.

High data volume from IoT

devices strains processing and

storage, especially without

robust infrastructure.

Robustness Robust to environmental variability

(exp: weather changes) with sensor

fusion, improving pest detection in

gardens.

Vulnerable to sensor failures or

environmental noise (exp: wind

masking Caterpillar sounds),

reducing reliability.

Accessibility • Remote access through

smartphones/computers

• Allows farmers to monitor

pests from anywhere,

enhancing usability.

Requires technical expertise for

setup/maintenance, limiting

adoption by non-tech-savvy

farmers or gardeners.

Security Blockchain encryption (exp: AES,

SHA) protects pest data integrity and

privacy

Security adds computational

overhead, slowing down real-

time processing on resource-

limited IoT devices.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Cost -effectiveness Reduces labour costs by automating

pest detection over large areas,

beneficial for big farms with many

sensors.

High initial costs (exp: IoT

hardware, blockchain setup)

make it less feasible for small-

scale gardens.

Table 2.2.3 Strength and Weaknesses AI-enabled IoT-based pest detection system

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Chapter 3

System Methodology/Approach

The processes of the project were categorized into different phases in the

development, which were project pre-development, data pre-processing, model

training architecture building and data training, and prediction on test dataset.

3.1 Proposed method/Approach

The proposed method for developing the AI-based pest detection system

follows a structured six-phase approach which are Requirements, Design,

Development, Testing, Deployment, and Review to create a mobile application

that leverages YOLOv5 and TensorFlow Lite for efficient pest management in farm

and garden settings. This methodology ensures systematic progression from

conceptualization to implementation, targeting a validation accuracy of at least 85%

[14], real-time on-device detection, pest-specific solutions, and QR code data

sharing for farmers and gardeners.

Agile methodology is a project management approach which emphasizes on

flexibility, collaboration, and iterative development. Agile development

methodology is the first methodology that been used in the software development

sector. This is because, the software will constantly change due to the evolvement

of technology where new features are created. Therefore, the product also must be

changed by implementing these new features following to the new trend of the

technology. The agile methodology also offered some advantages which is agile

methods are adaptable by providing the ability to shift strategies quickly without

affecting or disrupt the flow of the project [13]. Agile fosters collaborative

teamwork. This agile principle promotes collaborative teamwork by prioritizing

face-to-face communication. By combining this approach with the principle that

encourages teams to break the project silos, the environment of conductive to

effective collaboration teamwork would be created. Despite technological

advancements and the rise of remote work, the fundamental value of face-to-face

interaction remains unchanged in Agile methodology [13]. Lastly, the agile

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

methods prioritize on customer needs which give advantages in software

development. The teams can get the feedback from their actual customers or users

quickly or faster through the accessibility of cloud-based software. Customer

satisfaction is a key driver for software development [13]. Therefore, by

collaborating with customers of the application that provide continuous feedback

that can enhance the performance and the development of the system.

Figure 3.1 Agile Development Lifecycle

Based on Figure 3.1, it shows the diagram of agile development lifecycle.

There are 6 phases in the agile development lifecycle which are ‘Requirements’,

‘Design’,’ Development’, ’Testing’, ’Deployment’ and ‘Review’. The initial

phase establishes the project vision which is a mobile app that empowers farmers

and gardeners to detect plant health (Healthy/Unhealthy), identify pests (Whiteflies

or Caterpillars), propose solutions, and share results with QR code. This phase

establishes the functional and non-functional requirements of the pest detection

system. The functional requirements are capturing plant images through

smartphone camera, classifying plant health as Healthy or Unhealthy, identifying

three pest types (Whiteflies or Caterpillars). If the plants are detected unhealthy, the

system will propose solutions (exp: Use neem oil or insecticidal soap for Whiteflies)

and then will generate QR codes to encode results (status, pest, solution,

confidence). Non-functional requirements encompass achieving >85% accuracy

and offline capability. The target users would be farmers and gardeners.

The design phase outlines the system architecture and technical specifications.

The YOLOv5 convolutional neural network (CNN), pre-trained on the COCO

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

dataset, serves as the AI backbone, optimized with TensorFlow Lite for mobile

deployment. The mobile app, built using Android Studio, integrates a camera

module, inference engine, solution lookup table, and QR code generator. A use case

diagram defines interactions: Farmers/Gardeners capture images, trigger detection,

view results, and share QR codes with Agricultural Experts. The workflow is image

capture → preprocessing (resize to 640x640, normalization) → inference →

solution display → QR code generation, with data flow diagrams illustrating model

inputs/outputs (bounding boxes, class labels) and app components.

 The development phase implements the system in two main sub-phases: Model

Deployment and App Development. For Model Deployment, a dataset of 859

images (448 training, 277 validation and 134 testing) is collected from farm/garden

settings, organized into healthy, whiteflies, and caterpillars subdirectories, and pre-

processed with augmentation (rotation 30°, width/height shifts 0.3, brightness 0.8-

1.2, zoom 0.2, horizontal/vertical flips) using tools like augmentations in Jupyter

Notebook ,YOLOv5 (exp: yolov5s) is trained through transfer learning: initialized

with pre-trained weights, the model is fine-tuned on the custom dataset for 100

epochs. The trained model is converted to .tflite format (quantized, 14-20 MB)

using YOLOv5’s export.py script with TensorFlow Lite support. For App

Development, Android Studio builds the app, integrating the .tflite model (with

TensorFlow Lite’s Android library), camera functionality (using Android’s

CameraX API), a solution table (exp: " Apply Bacillus thuringiensis (Bt) or hand-

pick them" for caterpillars), and QR code generation (through ZXing library). The

UI, designed with Android layouts (XML), features image capture buttons and

result displays, coded in Java or Kotlin to process YOLOv5 inference outputs

(bounding boxes, confidence scores) and present results to users.

 The testing phase assesses the system’s performance and usability. The

YOLOv5 model is evaluated on a held-out test set (exp: 20% of images not used in

validation) for mean Average Precision (mAP (0.5) >85%), per-class

precision/recall (exp: caterpillars’ detection), and inference speed (100-150ms on

mobile). The app undergoes unit testing (exp: model inference accuracy),

integration testing (camera to QR code workflow), and real-world testing on an

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Android device (exp: API 21+), capturing live farm/garden images. Usability is

tested with simulated users (exp: ease of result viewing, QR code scanning), and

results are benchmarked against prior works (exp: YOLOv5 achieving 90% mAP

in similar tasks). Issues (exp: mAP below target) prompt iterative refinements, such

as adjusting hyperparameters or increasing training epochs.

 The deployment phase delivers the completed prototype to users. The .tflite

YOLOv5 model is embedded in the Android app, compiled into an APK using

Android Studio, and installed on a test device (exp: Android phone). A user guide

details operation: capture image, view detection results (pest type, location), share

QR code. This phase ensures offline functionality and QR code compatibility with

external scanners, providing a standalone solution within the project scope, with

potential for broader distribution deferred to future work.

The review phase evaluates the project against its objectives and outlines

future directions. Model performance (exp: current 79.89% vs 85% target),

inference speed, and app usability are analyzed, with findings compared to

requirements and literature. Successes (exp: real-time detection, QR code sharing)

and challenges (exp: accuracy shortfall) are discussed, with recommendations for

improvement such as dataset expansion, additional pest types (exp aphids), or iOS

porting concluding the project with a functional prototype and insights for

enhancement.

This six-phase approach integrates YOLOv5’s AI efficiency with

TensorFlow Lite’s mobile optimization and Android Studio’s robust development

environment, delivering a practical pest detection tool that enhances farm and

garden management through accurate classification, actionable solutions, and

efficient data sharing.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

3.2 System Architecture Diagram

Figure 3.2 System Architecture Diagram

Based on the system architecture diagram above, there several components included

which are User Interface (UI) Layer, Camera Module, Inference Engine, Solution Generator

and QR Code Generator. User Interface (UI) Layer is the front-end part of the Android app that

consists of screens and buttons the users see and use. It’s built using Android Studio with XML

layouts and coded in Java or Kotlin.

The purpose of this UI layer is to acts as user’s gateway to the app by letting them start

actions (like taking a photo) and see results (like pest detection and QR codes). There are

several parts in the UI layer which are Image Capture Interface, Result Display and QR Code

View. The Image Capture Interface has a button (exp: Take Photo) that triggers the camera.

For Result Display there would be text or views showing "Unhealthy, infected by Caterpillars.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Solution: Apply Bacillus thuringiensis (Bt) or hand-pick them. Confidence: 87%.". The QR

Code View would generate an image of the QR code for sharing purposes.

The Camera Module is the part that uses the phone’s camera to take pictures of plants.

It’s powered by Android’s CameraX API, integrated in Android Studio. The purpose of this

camera module is to capture raw image (exp: a tomato leaf with Caterpillars) for the app to

analyze. This module works when the users press the capture button, CameraX grabs the image

and sends it to the next component.

The Inference Engine works the brain of the application as the pest detection using the

YOLOv5 model. The Inference Engine consist of 2 sub-parts which are Image Preprocessor

and TensorFlow Lite Model. The Image Preprocessor prepares the image for the model by

resizing it to 224x224 pixels (YOLOv5’s required size) and normalizing pixel values (exp:

from 0-255 to 0-1). The TensorFlow Lite Model consists of pre-trained .tflite file (exp:

pest_detection_improved.tflite) that created in Jupyter Notebook loaded through TensorFlow

Lite’s Android library.

The Solution Generator maps inference outputs to pest-specific solutions. It uses a

hardcoded lookup table (exp: HashMap in Kotlin) to associate pest types with solutions such

as ("Healthy" → "No action needed" ,"Whiteflies" → "Use insecticidal soap", " Caterpillars"

→ " Apply Bacillus thuringiensis (Bt) or hand-pick them". The Solution Generator is

implemented in Java/Kotlin within Android Studio.

The QR Code Module encodes detection results into a QR code for sharing. It converts

results (exp: "status": "Unhealthy", "pest": " Caterpillars", "solution": " Apply Bacillus

thuringiensis (Bt) or hand-pick them", "confidence": "87%") into a QR code image using the

ZXing library.

Data Flow in this System Architecture Diagram:

Target users : Farmers/Gardeners

1. User Start: Users open the app and tap "Take Photo" on the User Interface Layer.

2. Photo Taken: The Camera Module (CameraX) snaps a picture of your plant and sends

it to the Inference Engine.

3. Detection Happens: Inside the Inference Engine:

o The Image Preprocessor resizes and adjusts the photo.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

o The TensorFlow Lite Model (YOLOv5) analyzes it and says, "80% chance it’s

Beetles."

4. Solution Added: The Solution Generator takes " Caterpillars" and adds, "Unhealthy,

infected by Beetles. Solution: Apply Bacillus thuringiensis (Bt) or hand-pick them."

5. Results Shown: The User Interface Layer shows you this text on-screen.

6. QR Code Made: The QR Code Generator turns the result into a QR code, which the UI

displays.

7. User Share: Users send the QR code (exp through WhatsApp) to an Agricultural Expert,

who scans it to see the details.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

3.3 Use Case Diagram

Figure 3.3 User Case Diagram

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Based on Figure 3.4, it shows the use case diagram of the AI for pest Detection and

outlines how the farmer as known as the user interact with the system. The farmer would

capture the image of the plant. Then, the data would be sent to the AI System to analyze whether

the plant is healthy or unhealthy. Then, the data would be sent to the solution generator. If the

plant is healthy, the solution generator will generate "No action needed". If the plant is detected

unhealthy, the AI identifies the pest (whiteflies or caterpillars) and generates a solution. After

that, these results will be summarized and displayed to the farmer. Thus, a QR will be generated

to the user for data sharing purposes or avoid confusion due to having many plants in a large

farm.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

3.3.1 Use Case Description

Use Case 1: Capture Plant Image

Use Case ID UC1 Use Case Name Capture Plant Image

Actors Farmer/User

Purpose To allow the user to take a photo of a plant for health and

pest analysis.

Preconditions The Android app is installed and running on a device

with a functional camera; the user has granted camera

permissions.

Basic Flow:

1) The Farmer/User opens the app on their Android device.

2) The user selects the "Capture Image" option.

3) The app activates the device’s camera.

4) The user points the camera at the plant and takes a photo.

5) The app saves the image and passes it to the AI System for analysis.

Postconditions A plant image is captured and ready for analysis by the

AI System.

Exceptions • A plant image is captured and ready for analysis

by the AI System.

• If permissions are denied, the app prompts the

user to enable them.

Table 3.3.1 Use Case Description for “Capture Image” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

Use Case 2: Analyze Plant Health

Use Case ID UC2 Use Case Name Analyze Plant Health

Actors AI System (invoked by Farmer/User)

Purpose To determine whether the plant in the captured image is

healthy or unhealthy.

Preconditions A plant image has been captured and provided by the

Farmer/User.

Basic Flow:

1) The AI System receives the plant image from the app.

2) The system preprocesses the image (resizes 224x224, normalizes pixel

values).

3) The AI model (YOLOv5-based) analyzes the image.

4) The system outputs a classification: "Healthy" or "Unhealthy" with a

confidence score

Postconditions The plant’s health status is determined and ready for

further processing if unhealthy.

Exceptions If the image is blurry or invalid, the system returns an

error message to the app.

Table 3.3.2 Use Case Description for “Analyze Plant Health” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

Use Case 3: Detect Pest Type

Use Case ID UC3 Use Case Name Detect Pest Type

Actors AI System (invoked by Analyze Plant Health)

Purpose To identify the specific pest (whiteflies or caterpillars)

affecting an unhealthy plant

Preconditions The plant has been classified as "Unhealthy" by the

Analyze Plant Health use case.

Basic Flow:

1) The AI System takes the "Unhealthy" classification and the original image.

2) The system reanalyzes the image, focusing on pest-specific features.

3) The AI model outputs the pest type: "Whiteflies" or "Caterpillars" with a

confidence score.

Postconditions The pest type is identified and ready for solution

generation.

Exceptions If the pest cannot be confidently identified (exp: low

confidence), the system flags it as "Unknown Pest."

Table 3.3.3 Use Case Description for “Detect Pest Type” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Use Case 4: Generate Solution

Use Case ID UC4 Use Case Name Generate Solution

Actors AI (invoked by Detect Pest Type or Analyze Plant

Health if detected plant is healthy)

Purpose To provide a pest-specific solution for the identified

pest.

Preconditions The pest type (whiteflies or caterpillars) has been

identified.

Basic Flow:

1) The AI System receives the pest type from the Detect Pest Type use case.

2) The system maps the predefined solution based on these 2 categories:

a) For the plant that identified as healthy, the system will display "No

action needed".

b) For the plant that identified as unhealthy, the system maps the pest to

a predefined solution:

• Whiteflies: "Use neem oil or insecticidal soap."

• Caterpillars: " Apply Bacillus thuringiensis (Bt) or hand-pick

them."

3) The solution text is generated.

Postconditions A solution is prepared for display to the Farmer/User.

Exceptions If the pest is "Unknown," a generic solution (exp:

"Consult an expert") is provided.

Table 3.3.4 Use Case Description for “Generate Solution” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

Use Case 5: Summarize the Results

Use Case ID UC5 Use Case Name Summarize the Results

Actors AI (invoked by Detect Pest Type, Analyze Plant Health

and Generate Solution)

Purpose To provide a detailed result

Preconditions The AI System has completed health analysis, pest

detection (if applicable), and solution generation.

Basic Flow:

1) The AI system collect data such as:

a) The status of the plant from Analyze Plant Health

b) The type of pest that has been detected for unhealthy plants from

Detect Pest Type

c) The solution that has been generated from Generate Solution.

2) The data would be summarized and ready to be displayed to the

Farmers/User.

Postconditions A summary of the results will be generated

Exceptions If the results are incomplete, partial data would be

summarized or show error.

Table 3.3.5 Use Case Description for “Summarize the Results” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Use Case 6: Display Results

Use Case ID UC6 Use Case Name Display Results

Actors AI (invoked by Summarize the Results)

Purpose To allow the user to view the analysis results on the app

interface

Preconditions The summary of the results has been generated and

completed in the AI System.

Basic Flow:

1) The app receives the results from the AI System (health status, pest type,

solution, confidence).

2) The app displays the results in a user-friendly format (e.g., text fields or

labels).

3) The user reviews the information on the screen.

Postconditions The Farmer/User is informed of the plant’s status and

recommended actions.

Exceptions If results are incomplete, the app shows an error or

partial data.

Table 3.3.6 Use Case Description for “Display Results” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Use Case 7: Generate QR Code

Use Case ID UC7 Use Case Name Generate QR Code

Actors AI (invoked by Summarize the Results)

Purpose To encode the analysis results in a QR code for easy

sharing or storage.

Preconditions The analysis results (health status, pest type, solution,

confidence) are available.

Basic Flow:

1) The AI System receives the results from the previous use cases.

2) The system formats the data into a string

• Result: The plant is unhealthy, infected by whiteflies.

Solution: Use neem oil or insecticidal soap.

Confidence: 92.27%

Postconditions A QR code is created and ready for display.

Exceptions If the data is too large, the system truncates it to fit QR

code limits.

Table 3.3.7 Use Case Description for “Generate QR Code” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Use Case 8: View QR Code

Use Case ID UC8 Use Case Name View QR Code

Actors Farmer/User, Expert

Purpose To allow the user to view and interact with the generated

QR code and share with experts (optional).

Preconditions The QR code has been generated by the AI System.

Basic Flow:

1) The app displays the QR code on the screen.

2) The Farmer/User views the QR code.

3) The user can scan it with another device or save or share to the experts

(optional).

Postconditions The Farmer/User has access to the QR code for further

use.

Exceptions If the QR code fails to display, the app shows an error

message.

Table 3.3.8 Use Case Description for “View QR Code” Use Case

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

3.4 Activity Diagram

Table 3.4 Activity Diagram for the AI model and proposed mobile application

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

Table 3.4 shows the activity diagram of the system which provides details about the

interaction between the user and the system in a simplified procedure. The procedure

begins when the user who is gardener or farmer which represents by the dark circle

clicks the “Capture Plant Image” button in the mobile app through the interface which

build in the Android Studio. The system will respond by displaying the user interface

which includes a camera view for capturing the plant image. This is handled by the

app’s Camera Module using Android’s CameraX API. Once the image is captured, the

system preprocesses it. This involves the process of resizing the image to 224x224

pixels which is required by YOLOv5 and normalizing pixel values (exp: scaling from

0-255 to 0-1) to prepare it for AI analysis. Then, the system uses the YOLOv5 model

through TensorFlow Lite to analyze the preprocessed image and classify the plant as

"Healthy" or "Unhealthy." This step analyzes the plant’s health status with a confidence

score. If the plant is classified as healthy, the system proceeds directly to generating a

solution for a healthy plant which is “No Solution”. If the plant is detected as unhealthy,

the system will move to the next step which identify the pest to identify either the pest

is “Whiteflies” or ‘Caterpillars’. Then the system generates a tailored solution, such as

"Use neem oil or insecticidal soap" for Whiteflies or "Apply Bacillus thuringiensis (Bt)

or hand-pick them" for Caterpillars. Then, the system will summarize the results by

compiling the plant’s health status, pest type, solution and confidence score such as:

• Plant Status: Unhealthy (Whiteflies)

• Pest: Whiteflies

• Solution: Use neem oil or insecticidal soap

• Confidence: 60.09%

Then, these results will be encoded into a QR code using the ZXing library for sharing

purposes. Finally, the system displays the results on the app’s interface for the user to

review alongside with the QR code for the user to view or share to other people like

agricultural experts through various platforms.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

3.5 Project Timeline

Figure 3.4 Project Timeline

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Chapter 4

System Design

4.1 System Block Diagram

Figure 4.1 System Block Diagram

The system block diagram for the AI Pest Detection includes both training pipeline and

mobile app deployment by illustrating the flow of data from dataset preparation to the user

interaction. It begins with the dataset preparation and augmentation phase where

main_script.py will organize the dataset of approximately 859 images into training, validation,

and testing sets and apply augmentations like Gaussian noise and color jitter by using the

albumentations library to enhance model robustness and saving the results in augmented

directories. This stage contributes to the Model Training & Export component which trains a

YOLOv5 model for 100 epochs, evaluating it for >85% accuracy and exporting it to

TensorFlow Lite (best.tflite). The model will be implemented in the Mobile App on an Android

device where the User Interface (UI) Layer (build with Android Studio) enables image capture,

result display and QR code viewing. The Camera Module (CameraX API) captures the plant

image and then send it to the Inference Engine which preprocesses the image (resize to

224x224, normalize) and uses the YOLOv5 .tflite model to classify the plant as Healthy or

Unhealthy and detect pests whether it is Whiteflies or Caterpillars. The Solution Generator will

then generate the solutions (exp: "Use neem oil" for Whiteflies) After that, the QR Code

Generator (ZXing library) will encode the results in form of status, pest, solution, confidence

into a QR code. Finally, the results and the QR code will display through the UI Layer for the

user.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

4.2 System Components Specifications

4.2.1 Hardware

The hardware that is required for the development of this project are a processor, ethernet

connection, storage (SSD), memory (RAM) and a graphic card. The processor function by

increasing the performance of the computer. The graphic card is used to display quality images.

The SSD used to increase the storage to store data and RAM is used to read data and increase

the performance of the computer. The specifications of the laptop model used by the developer

to develop this project is stated in the table below.

Description Specifications

Model ROG Strix G513IC_G513IC

Processor AMD Ryzen 7 4800H

Operating System Windows 10

Graphic NVIDIA GeForce RTX 3050

Memory 40GB DDR4 RAM

Storage INTEL SSDPEKNU512GZ 477GB

Table 4.2.1.1 Specifications of laptop

The developer also uses a mobile device as the deployment environment for the app. The

mobile device will run the Android app that integrates with the trained .tflite model for the

on-device pest detection. The specification of the mobile device is stated in the table below.

Description Specifications

Model Huawei Nova 4

Processor HiSilicon Kirin 970

Operating System Android 9.0

Resolution 2310 x 1080

Memory 8 GB RAM

Storage 128 GB

Table 4.2.1.2 Specifications of mobile device

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

4.2.2 Software

The software requirements that been showed are coding, database and operating

system. As for the coding part, Android Studio 2023 were used to build the mobile

payment application. The software that used to store the user data is Firebase

Realtime Database. The AI model would be trained by using Jupyter Notebook by

using python programming language.

Specifications Description

Android Studio 2024 Use for coding purposes to build the mobile payment app.

Jupyter Notebook Use to train AI model

Storage Minimum 8GB of available disk space

Display Resolution 1280*800

RAM 8GB

Table 4.2.2 Specifications of software

4.2.3 Software Setup for Deployment

There is various software that need to be installed in the laptop for the development

of this AI model.

4.2.3.1 Python Environment

• Python version: 3.12.4 (required by YOLOv5)

• Library:

1. Torch: For YOLOv5 model training and inference

2. Cv2: For image processing such as reading, augmenting and saving

images

3. Albumentations: For image augmentation such as Gaussian noise and

color jitter.

4. Numpy: For data handling, evaluation and visualization

5. Pandas: For data handling, evaluation and visualization

6. Matplotlib: For data handling, evaluation and visualization

7. Sklearn: For calculating accuracy and classification reports.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

8. Shutil: For file operations and result saving.

9. Glob: For file operations and result saving.

10. Json: For file operations and result saving.

4.2.3.2 Jupyter Notebook

The Jupyter Notebook is used to execute the main_script.py for training and

evaluation purposes. There are minimum requirements of this Jupyter Notebook.

Minimum requirements:

• Storage: 8GB of disk space

• Display Resolution: 1280x800 for visualization of results in Jupyter

Notebook

• RAM: 8GB (minimum for running Jupyter and Python scripts)

4.2.3.3 YOLOv5 Repository

The purpose of this YOLOv5 is to facilitates the dataset augmentation, model

training (100 epochs), evaluation and export to .tflite format.

• Cloned from https://github.com/ultralytics/yolov5.git.

• Dependencies installed through pip install -r requirements.txt that

includes torch , torchvision and others.

4.2.4 System Components for Mobile App

There are various components which are part of the Android app.

4.2.4.1 User Interface (UI) Layer

• Framework: Android Studio Meerkat 2024

• Programming Languages: Java/Kotlin

• Components:

1. Image Capture Interference: Button to trigger the camera (exp:

Capture Image)

2. Result Display: Show results with text views

Example of the results:

Plant Status: Healthy

https://github.com/ultralytics/yolov5.git

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Pest: None

Solution: No action needed

Confidence: 0.00%

3. QR Code View: Display the generated QR Code that contains the

results.

4.2.4.2 Camera Module

• API: CameraX (Android Jetpack library for camera access)

• Function: To capture raw images of the plant

• Requirement: Rear camera of the android smartphone camera permission

granted by the user

4.2.4.3 Inference Engine

There are few sub-components in the inference engine.

• Image Preprocessor: Its function is to resize images to 224x224 pixels and

normalizes pixel value (0-1). It handles by TensoFlow’s Lite preprocessing

that utilities within the app.

• TensorFlow Lite Model (YOLOv5):

1. Model File: best.tflite which generated by main.script.py

2. Input: Preprocessed images (224x224)

3. Outputs: Classification of Healthy or Unhealthy, pest type

(Whiteflies or Caterpillars) with confidence score.

4. Framework: TensorFlow Lite

5. Accuracy: 87.31%

4.2.4.4 Solution Generator

• Function: Maps detection results to solutions using a hardcoded lookup

table (exp: HashMap in Kotlin)

• Mappings:

1. Healthy: “No action needed”

2. Whiteflies: “Use neem oil or insecticidal soap”

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

3. Caterpillars: “Apply Bacillus thuringiensis (Bt) or hand-pick

them”

4. Unknown: “Consult a local expert”

• Implementation: Coded with Java/Kotlin

4.2.4.5 QR Code Generator

• Library: ZXing (Zebra Crossing) library for QR code generator

• Function: Encodes the detection results (status, pest, solution, confidence)

into a QR code.

• Output: QR code will be displayed on the UI

4.2.4.6 Dataset Specifications

• Dataset: Custom dataset for pest detection with annotation through

Roboflow

• Size: 859 images where 448 images for training, 277 images for validation

and 134 images for testing.

• Classes: 3 categories which are healthy, whiteflies and caterpillars.

• Format:

1. Images in form of jpg, JPEG, Ng will be stored in a folder with

images/train, images/val and images/test.

2. Labels in form of text file will be stored in in a folder with labels/train,

labels/val and labels/test.

4.3 Model Selection and Architecture

 In this project, the YOLOv5 model was chosen due to its balance of efficiency,

speed, and accuracy, making it ideal for real-time detection on resource-

constrained mobile devices.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Figure 4.2 YOLOv5 Model Structure

Figure 4.2 shows the YOLOv5s architecture in the AI pest detection project is a

three-stage framework specifically designed for efficient, multi-scale object

detection, comprising the Backbone, PANet, and Output layers to identify Healthy

plants, Whiteflies, and Caterpillars in farm settings. The Backbone, featuring

BottleNeckCSP modules and an SPP block which extracts hierarchical features

from a 640x640 RGB input image by down sampling through resolutions

(640x640 to 20x20) by using stride-2 convolutions and cross-stage connections.

With the SPP block applying multi-scale max-pooling (exp: 5x5, 9x9, 13x13

kernels) at the 20x20 resolution (1,475,712 parameters) to capture features for

small pests like whiteflies and caterpillars and producing feature maps with

increasing channels (exp: 48 to 768) for semantic richness. The PANet aggregates

these features through a bottom-up path (additional BottleNeckCSP and Conv3x3

S2 layers for downsampling) and a top-down path (bilinear upsampling, Conv1x1

for channel adjustment and concatenation at scales like 20x20, 40x40,

80x80.Then, it will combine high-level semantic information with low-level

spatial details to enhance detection across scales which can be seen in the model

summary with tf_upsample and tf_concat The Output layers apply Conv1x1

operations at each scale to generate predictions with shapes like (1, 80, 80, 24) (3

anchors, 5 box coordinates, 3 classes), producing bounding boxes, class

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

probabilities, and confidence scores, followed by NMS (confidence threshold 0.1

in detect_pest_status) to filter overlapping detections.

4.4 Data Preprocessing

Figure 4.3 Data Preprocessing Code snippet

Based on Figure 4.3, the data processing focuses on preparing the training dataset by

applying augmentation to enhance model robustness. The process begins by defining the

dataset path as C:/Users/ASUS/Desktop/Year 4 Sem 2/My FYP 2/AI for Pest

Detection/DatasetC and verifying the existence of training images (448 images) and labels in

images/train and labels/train directories, ensuring the dataset is correctly structured for

YOLOv5 training. The preprocessing then involves augmenting the training images using the

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

albumentations library, where a pipeline applies Gaussian noise with a variance limit of 10.0

to 50.0 (30% probability) to simulate real-world imperfections and color jitter with ±20%

adjustments to brightness, contrast, saturation, and hue (50% probability) to mimic varying

lighting conditions, processing each image by reading it with cv2.imread, applying the

augmentations, and saving the results to images/train_aug. These labels will be copied and

remain unchanged to labels/train_aug since these augmentations do not affect bounding box

coordinates and the process concludes with a verification step confirming 448 augmented

images and labels, flagging any missing labels to ensure dataset integrity. While this code

handles augmentation as a preprocessing step for training, it lacks explicit resizing and

normalization, which are managed by YOLOv5’s data loader during training (resizing to

640x640 and normalizing to [0, 1]) and does not address inference preprocessing requirements

like resizing to 224x224 for the mobile app, which are handled separately in the Inference

Engine.

Figure 4.4 Files in the images folder for Dataset

Figure 4.5 Files in the labels folder for Dataset

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Based on Figure 4.4, there are various folders in the images folder in the dataset. As for the

folder test, train and val , the folder is created based on YOLOv5, as training the AI model with

YOLOv5 model requires the dataset to be separated into 3 categories which are testing, training

and validation. As for the train_aug, this folder will be generated by the model while training

the model for storing the augmentation images in it. This process sames goes to the folders in

the labels as shown as in Figure 4.5. The only difference is, the images folder contains images

meanwhile the labels folders contain txt files.

Figure 4.6 data.yaml file

 Figure 4.6 shows the data.yaml which is a configuration file used in the AI pest detection

project to define the dataset structure and metadata for training the YOLOv5s model,

facilitating the training, validation, and testing processes and indicating the dataset was sourced

from Roboflow which is a platform for dataset management, which likely handled initial

annotation and splitting. This file serves as a critical link between the dataset and the YOLOv5

training pipeline to ensure the model correctly loads and processes the data for pest detection

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

4.5 Model Training and Tuning

Figure 4.7 Model Architecture

Figure 4.7 shows the summary of the YOLOv5s architecture that is used in the AI pest

detection project, detailing its layers, output shapes, parameters, and connections. The model

starts with an input layer accepting 640x640 RGB images (1, 640, 640, 3) followed by a

Backbone with convolutional (TFConv) and Cross-Stage Partial (TFC3) layers that

downsample to 20x20 (tf_conv_37, (1, 20, 20, 768)) that extract features for pest detection. An

SPPF block (tfsppf, 1,475,712 parameters) captures multi-scale features and the Feature

Pyramid Network (FPN) uses upsampling (TFUpsample) and concatenation (TFConcat) to

aggregate features at scales like 20x20, 40x40, and 80x80 (tfc3_5, (1, 80, 80, 192)). The final

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

detection layer (tf_detect, (1, 25200, 7)) predicts bounding boxes, class probabilities (Healthy,

Whiteflies, Caterpillars), and confidence scores across 25,200 anchor boxes with 7 values per

anchor (4 box coordinates, 1 objectness score, 2 class probabilities). With 20,856,975 total

parameters (79.56 MB), the model is lightweight for mobile deployment after TensorFlow Lite

conversion (14-20 MB) and achieves 87.31% accuracy which surpasses the project’s >85%

target.

4.6 Performance evaluation of the model

Figure 4.8 Model Accuracy

Figure 4.8 shows the performance evaluation of the YOLOv5s model for the AI pest

detection project which reports a model accuracy of 87.31% and classification report for the

test set (134 images) across three classes which are “Healthy”, “caterpillars”, and “whiteflies”.

The overall accuracy of 87.31% which indicates the model correctly classified 87.31% of the

test images and surpasses the project’s target of >85%. The classification report provides

precision, recall, and F1-score for each class. Healthy achieves a precision, recall and F1-score

of 0.76 with 34 samples which show balanced but relatively low performance. Caterpillars

scores 0.88 across all metrics with 50 samples, indicating strong detection capability.

Whiteflies excel with 0.94 precision, 0.94 recall, and 0.94 F1-score across 50 samples which

reflects the model’s best performance on this class. The macro average (unweighted mean)

across classes is 0.86 for precision, recall, and F1-score. Meanwhile the weighted average

(considering class support) is 0.87 for all metrics aligning with the overall accuracy.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

These are the formulas for the Metrics:

1. Precision: A performance metric that measures the proportion of predicted positive

instances that are correct

Formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)

2. Recall: A performance metric that measures the proportion of actual positives that are

correctly identified

Formula:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)

3. F1-Score: A performance metric that represents the harmonic mean of precision and

recall and providing a single score that balances both metrics to evaluate a model’s

effectiveness

Formula:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4. Support: The count of true instances for each class in the test set.

Formula:

Support = Number of actual instances of the class in the test path

5. Accuracy: Measures the proportion of correctly classified instances across all classes.

Formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

6. Macro average: Computes the unweighted mean of the metric across all classes,

treating each class equally.

Formula:

i. 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑁
𝑖=1

𝑁

ii. 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 (𝑅𝑒𝑐𝑎𝑙𝑙) =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁
𝑖=1

𝑁

iii. 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 (𝐹1 − 𝑆𝑐𝑜𝑟𝑒) =
∑ 𝐹1−𝑆𝑐𝑜𝑟𝑒𝑖

𝑁
𝑖=1

𝑁

7. Weighted Average: Accounts for class imbalance by weighting each class’s metric

by its support

Formula:

i. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = ∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡
)𝑁

𝑖=1

ii. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 (𝑅𝑒𝑐𝑎𝑙𝑙) = ∑ (𝑅𝑒𝑐𝑎𝑙𝑙 𝑥
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡
)𝑁

𝑖=1

iii. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 (𝐹1 − 𝑆𝑐𝑜𝑟𝑒) = ∑ (𝐹1 − 𝑆𝑐𝑜𝑟𝑒 𝑥
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡
)𝑁

𝑖=1

4.6.1 Graphs for performance evaluation

1. F1-Confidence

Figure 4.9 F1-Confidence Curve

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

Figure 4.9 shows the F1-Confidence Curve for the YOLOv5s model in this project

and evaluating its performance across confidence thresholds for the classes which are

caterpillars, whiteflies and all classes combined. The x-axis represents the confidence

threshold (0.0 to 1.0) while the y-axis shows the F1-score (0.0 to 1.0) which balances

precision and recall. The curve for "caterpillars" (blue line) peaks at approximately 0.55

around a 0.25 threshold which indicates moderate performance. Meanwhile,

"whiteflies" (orange line) reaches a higher peak of approximately at 0.60 and at

approximately 0.2 which reflects better detection capability, consistent with earlier

metrics (exp: AP = 0.527 for whiteflies vs 0.339 for caterpillars). The "all classes" curve

(cyan line) peaks at an F1-score of 0.49 at a confidence threshold of 0.267, representing

the average performance across Healthy, Whiteflies, and Caterpillars but this is lower

than the classification report’s F1-scores (exp: weighted avg 0.87) and overall accuracy

(87.31%), suggesting that this curve may reflect an earlier evaluation before tuning.

The curves rise sharply from 0.0 to their peaks as the threshold increases then decline,

indicates that there is a trade-off between precision and recall with the optimal threshold

of 0.267 balancing both for all classes even though the lower F1-score highlights the

challenges like the Healthy class’s initial poor performance (0% correct in the

confusion matrix).

2. Precision-Confidence

Figure 4.10 Precision-Confidence Curve

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Figure 4.10 shows a Precision-Confidence Curve for the YOLOv5s model in this project

and illustrates how precision varies with different confidence thresholds for the classes’

caterpillars, whiteflies, and all classes combined. The x-axis represents the confidence

threshold (0.0 to 1.0) while the y-axis shows precision (0.0 to 1.0) which measures the

proportion of predicted positives that are correct. The curve for "caterpillars" (blue line)

fluctuates by peaking at approximately 0.9 around 0.4 but dropping to near 0.0 at approximately

0.6 before rising to 1.0 at higher thresholds. This indicates inconsistent performance due to

small sample size or class overlap. The "whiteflies" curve (orange line) similarly peaks at

approximately 0.9 around 0.4 but drops to near 0.0 at approximately 0.7then rises back to 1.0.

This reflects variability but better overall precision than caterpillars and consistent with earlier

metrics (AP = 0.527 vs. 0.339). The "all classes" curve (cyan line) steadily increases by

reaching a perfect precision of 1.00 at a confidence threshold of 0.803. This shows that all

predictions above this threshold are correct even though these likely sacrifices recall which can

be seen in the Recall-Confidence Curve (max recall 0.86 at 0.0 threshold). This curve which

likely from an earlier evaluation (before the final 87.31% accuracy) highlights that the trade-

off between precision and recall with the high threshold of 0.803 ensuring no false positives

but potentially missing true positives, especially for the Healthy class which initially struggled

(0% correct in the confusion matrix).

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

3. Precision-Recall

Figure 4.11 Precision-Recall Curve

Figure 4.11 shows a Precision-Recall Curve for the YOLOv5s model in this

project and evaluates its performance across different recall levels for the classes’

caterpillars, whiteflies and all classes combined. The x-axis represents recall which

the proportion of actual positives correctly identified while the y-axis shows the

proportion of predicted positives that are correct. The "caterpillars" curve (blue line)

has an Average Precision (AP) of 0.339 that starts at high precision (1.0) at low

recall (0.0) but dropping to below 0.4 by recall 0.5 which indicates more false

positives as recall increases. The "whiteflies" curve (orange line) performs better

with an AP of 0.527, maintaining higher precision (0.8 at recall 0.2) and staying

above 0.4 until recall 0.6. This reflects stronger detection capability and consistency

with the classification report (precision 0.94, recall 0.98). The "all classes" curve

(cyan line) yields an mAP@0.5 of 0.433, averaging performance across Healthy,

Whiteflies, and Caterpillars but falls below 0.4 by recall 0.6 as influenced by the

Healthy class due to its initial poor performance (0% correct in the confusion

matrix).

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

4. Recall-Confidence

Figure 4.12 Recall-Confidence Curve

Figure 4.12 shows a Recall-Confidence Curve for the YOLOv5s model in this

project and shows how recall varies with different confidence thresholds for the

classes’ caterpillars, whiteflies and all classes combined. The x-axis represents the

confidence threshold (0.0 to 1.0) while the y-axis shows recall, the proportion of

actual positives correctly identified. The "caterpillars" curve (blue line) starts at 0.9

then recalls at a 0.0 threshold but drops to approximately 0.4 by 0.2 and nearing 0.0

by 0.8. This indicates that the model misses many true caterpillars as the threshold

increases. The "whiteflies" curve (orange line) also starts at approximately 0.9 and

maintains a slightly higher recall (0.5 at 0.2), then drops to near 0.0 by 0.8 and aligns

with its stronger performance (recall 0.98 in the classification report). The "all

classes" curve (cyan line) achieves a maximum recall of 0.86 at a 0.000 threshold

with average performance across Healthy, Whiteflies, and Caterpillars but then

declines to approximately 0.4 by 0.2 and approaches 0.0 by 0.8. This reflects the

low confidence scores for true positives especially for the Healthy class (initially 0%

correct in the confusion matrix).

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

4.6.2 Confusion Matrix

Figure 4.13 Confusion Matrix

Figure 4.13 shows a confusion matrix for the YOLOv5s model in the AI pest detection

project and evaluating its performance on the test set (134 images) across three classes which

are caterpillars, whiteflies, and background (Healthy). The matrix compares true labels (rows)

against predicted labels (columns) with values that are normalized to represent proportions. For

true caterpillars, the model correctly predicts 46% as caterpillars but misclassifies 1% as

whiteflies and 22% as background. This indicates moderate performance (aligned with AP =

0.339 in the Precision-Recall Curve). For true whiteflies, it correctly predicts 78% as whiteflies

but 54% misclassified 54% as caterpillars and 44% as background. This shows stronger

performance (AP = 0.527) even though with notable errors. For true background (Healthy), the

model fails entirely by predicting 0% correctly and misclassified 54% as caterpillars and also

44% as whiteflies.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

4.7 Mobile App Development

 The mobile app for this AI model developed by using Android Studio 2024. The AI model

that is exported in the form of Tensorflow Lite, will be implemented in the mobile app. This

mobile app is developed based on the function of the AI model so it is compatible with the AI

model so it can execute it successful performance for the user without any errors. The mobile

app contains a homepage with the logo and a “Lets Get Started” for the user. Then, the main

function for this app is for the user to capture the live image of the plant or upload the image

of the plant from their image directory in their phone for the AI model to process the image.

Then the results will be displayed in the user interface along with the QR code that will be

generated. Other users also can scan the QR code with their mobile phone doesn’t matter it is

an Android phone or IOS phone.

.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Chapter 5

System Implementation

5.1 Hardware Setup

Figure 5.0 Hardware Setup Environment (Laptop)

 Figure 5.0 shows the hardware setup environment which is a laptop that is used for the

AI model development and mobile app development. This machine is sufficient to train the AI

model and develop the mobile app as the specifications meet the requirements of developing

the AI model and mobile app.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Figure 5.1 Hardware Setup Environment (Smartphone)

 Figure 5.1 shows an Android smartphone that is used to execute the mobile application that

is developed from the machine for testing purposes as the mobile application of this AI model

requires the smartphone’s physical front camera to capture the live image.

5.2 Software Setup

5.2.1 Anaconda

Figure 5.2 Anaconda prompt installation

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

 The Anaconda Prompt is a command-line interface included with the Anaconda

Distribution (or Miniconda) that provides a pre-configured environment for managing Python,

Conda environments and data science tools. It simplifies package management, environment

isolation, and execution of Python-based tools like Jupyter Notebook, Spyder, or scripts.

Therefore, to execute the Jupyter Notebook for the AI model development purposes, the

anaconda prompt needs to be installed first.

Figure 5.3 Anaconda Navigator

After the installation of the anaconda prompt, there will be a anaconda navigator which

will show all the development tools and environment isolation that can be used to develop

any AI models or other developments such as data science, R Programming and etc.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

5.2.2 Jupyter Notebook

Figure 5.4 Jupyter Notebook

Jupyter Notebook is a versatile tool for interactive coding, data analysis, visualization,

machine learning, education, and research. Its ability to combine code, text, and visuals makes

it ideal for prototyping, documenting workflows, and sharing results. Jupyter Notebook is not

limited to AI as it supports general programming, scientific computing, etc.

 Figure 5.5 Installation of Jupyter Notebook

To develop the AI model, the jupyter notebook tools must be installed by entering those

commands that are shown in Figure 5.5.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Figure 5.6 Opening Jupyter Notebook with anaconda prompt

Figure 5.7 Select a notebook to open in Jupyter Notebook

 To open the jupyter notebook, developer must open anaconda prompt and type jupyter

notebook as shown in Figure 5.6. Then it will proceed to the chrome for opening the jupyter

notebook as shown in Figure 5.7.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

Figure 5.8 Code Snippet in Jupyter Notebook

 Then, the developer can begin their development of AI model project by typing codes and

executing them in the Jupyter Notebook as shown in Figure 5.8.

5.2.3 Roboflow

Figure 5.9 Roboflow

Roboflow is an end-to-end computer vision platform that is designed to simplify the process

of building, training, and deploying computer vision models. It provides a comprehensive suite

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

of tools for developers, data scientists and enterprises, making computer vision accessible

regardless of expertise level.

Figure 5.10 Interface for Roboflow

 The developer uses the Roboflow to annotate all the images in the dataset that was prepared

for the AI model training as the developer is using YOLOv5 to train the AI model. Therefore,

the developer needs to use this platform to manually annotate all the images in the dataset and

then divide the images into 3 categories which are training, testing and validating.

5.2.4 Android Studio

Figure 5.11 Android Studio

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Android Studio is a powerful IDE for building, testing, and deploying Android applications,

offering tools for coding, UI design, emulation, debugging, and integration with AI models,

cloud services, and databases. It’s not limited to any single type of app as it supports mobile,

wearable, automotive, and TV apps with robust support for machine learning .

Figure 5.12 Android Studio Installation

 To develop the mobile application, the developer needs to download the Android Studio to

build the mobile application. After downloading it, the developer needs to create a project an

select the file path to store and save their work. The developer also needs to specify whether

they need to use Java or Kotlin language. As for this project, it is developed by using Kotlin.

Figure 5.13 Coding snippet in Android Studio

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

 The developer will begin the development of the mobile application by putting all the code

and execute to check whether the mobile app is working or not and fixed it if there are any

bugs or errors which as shown as Figure 5.13.

5.3 System Operations (with screenshot)

5.3.1 Output of the Results shown by AI Model

Figure 5.14 Results of the plant that infected by whiteflies

 During the training process of the AI model, the developer also includes the image for

testing purposes by putting it in the dataset path of where the testing image is stored for the

AI model to detect whether the detection that is done by the AI model is correct or incorrect

and accurate or not accurate. Based on Figure 5.14, the image of the plant infected by

whiteflies is used for the AI detection testing purposes. As the results shown by the AI are:

• Plant Status: Unhealthy (Whiteflies)

• Pest: Whiteflies

• Solution: Use neem oil or insecticidal soap

• Confidence: 47.96%

The results generated by the AI model have proven that its detection is accurate and precise.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Figure 5.15 Results of the plant infected by caterpillars

Then, the developer changed the previous image to the new image of the plant that was infected

with caterpillars in the dataset path for testing purposes. Based on Figure 5.15, the results

shown by the AI model are:

• Plant Status: Unhealthy (Caterpillars)

• Pest: Caterpillars

• Solution: Apply Bacillus thuringiensis (Bt) or hand-pic them

• Confidence: 72.42%

The results generated by the AI model have proven that its detection is accurate and precise.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Figure 5.16 Results of the healthy plant

 The developer does the final testing on the AI model by providing an image of the healthy

plant which is infected by none of the pests. The AI model once again detected correctly of the

plant status as the results generated by the AI model are as shown as in Figure 5.16 which are:

• Plant Status: Healthy

• Pest: None

• Solution: No action needed

• Confidence: 0.00%

The results generated by the AI model have proven that its detection is accurate and precise.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

5.3.2 Output of the Results shown by the Smart Pest Detection App

 The developer then implements the AI model that has been converted to. tflite into the

mobile application for the user to test and use for detecting the condition of their plant and the

type of pest in their plant.

5.3.2 1 Homepage

Figure 5.17 Homepage of the Mobile App

 Figure 5.17 shows the Homepage of the Mobile App. The homepage shows the name of

this mobile app which is “Smart Pest Detection” for the user to know what is the name of the

mobile application that they are using. The, there is a “Let’s Get Started” button for the user to

click so they can proceed to the next page of the mobile application.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

5.3.2.2 Main page

Figure 5.18 Main page of the Mobile App

 Figure 5.18 shows the Main page of the Mobile App where the user will redirect to this

page after they click the “Let’s Get Started Button” in the Homepage as shown in Figure 5.17.

Based on this Main page, there is a camera view which is connected to the phone camera. This

camera view is for the user to view the environment or the object that they need to capture as

an image. Below the camera view, there are 2 buttons which is “Capture” and “Upload Image”.

The “Capture” button is allowing the user to capture the image and then the AI will preprocess

the image and detect the status of the plant. As for the “Upload Image” button, allowing the

user to select the image of the plant for the AI model to preprocess and detect the status of the

plant.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

5.3.2.3 Results provided by the mobile app

The Smart Pest Detection mobile app has been used to detect plants with several conditions

which are infected by caterpillars, infected by whiteflies and healthy.

5.3.2.3.1 Plants infected with caterpillars

Figure 5.19 Results of plant infected with caterpillars

 Figure 5.19 shows the results of the plant status when capturing the image of the plant that

is infected with caterpillars. The results that are provided by the Smart Pest Detection App as

shown based in Figure 5.19 are:

• Plant Status: Unhealthy (Caterpillars)

• Pest: caterpillars

• Solution: Apply Bacillus thuringiensis (Bt) or hand-pick them

• Confidence: 63.56%

Below the results, there are also the QR code which can be scanned by the users as this QR

code is used for sharing purposes.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Figure 5.20 Results displayed by QR code after scanning with Android smartphone

Figure 5.21 Results displayed by QR code after scanning with IOS smartphone

Based on the results shown by Figure 5.20 and 5.21, it has proven that the QR code is

working and eligible for both Android and IOS smartphones.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

5.3.2.3.2 Plant infected by whiteflies

Figure 5.22 Results of plant infected with whiteflies

Figure 5.22 shows the results of the plant status when capturing the image of the plant that is

infected with whiteflies. The results that are provided by the Smart Pest Detection App as

shown based in Figure 5.22 are:

• Plant Status: Unhealthy (Whiteflies)

• Pest: whiteflies

• Solution: Use neem oil or insecticidal soap

• Confidence: 65.30%

Below the results, there are also the QR code which can be scanned by the users as this QR

code is used for sharing purposes.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Figure 5.23 Results displayed by QR code after scanning with Android smartphone

Figure 5.24 Results displayed by QR code after scanning with IOS smartphone

Based on the results shown by Figure 5.23 and 5.24, it has proven that the QR code is

working and eligible for both Android and IOS smartphones.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

5.3.2.3.3 Healthy Plant

Figure 5.25 Results of healthy plant

Figure 5.25 shows the results of plant status when capturing the image of a healthy plant. The

results that are provided by the Smart Pest Detection App as shown based in Figure 5.25 are:

• Plant Status: Healthy

• Pest: None

• Solution: No action needed

• Confidence: 0.00%

Below the results, there are also the QR code which can be scanned by the users as this QR

code is used for sharing purposes.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Figure 5.26 Results displayed by QR code after scanning with Android smartphone

Figure 5.27 Results displayed by QR code after scanning with IOS smartphone

Based on the results shown by Figure 5.26 and 5.27, it has proven that the QR code is working

and eligible for both Android and IOS smartphones.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

5.3.2.4 Results of the uploaded image

Figure 5.28 User’s image directory interface

 When the user clicks the “Upload Image” button, the Smart Pest Detection mobile app will

redirect the user to their images directory for them to select the image that they need to upload

for the application to provide the results of their plant status. Based on Figure 5.28, the user

will select the images of the plants that are infected by whiteflies.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Figure 5.29 Results of the uploaded image

Figure 5.29 shows the results of the image that was uploaded by the user. The results stated

by the Smart Pest Detection are:

• Plant Status: Unhealthy (Whiteflies)

• Pest: whiteflies

• Solution: Use neem oil or insecticidal soap

• Confidence: 62.95%

This proven that the Smart Pest Detection detected the status of the plants correctly as the user

uploaded the image of the plant that is infected by whiteflies as shown in Figure 5.29. Below

the results, there is also a QR which encoded with the results generated by the Smart pest

Detection mobile app for the user to save or share to other people like their friends or

agricultural experts.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

5.4 Implementation Issues and Challenges

The AI pest detection app’s development faced challenges like a small number of datasets

where it couldn’t boost the accuracy of the model to > 90%. As the current accuracy of the

model is 87.31%, it still could detect the status of the plant incorrectly on some other images

of the plant. It somehow could misclassify the plant which was infected by whiteflies and

caterpillars as healthy plant as the developer didn’t annotate the healthy plant dataset. There is

also a case where the object which is not a plant and a plant which infected with other pests

such as spider mites, mealybugs, fungus gnats and etc will also been classify as healthy for the

plant status where it should have detected as unknown object and “Consult an expert” as

solution. This is also due to no annotation of the healthy plant dataset. There is also a reason

why the healthy plant dataset is not annotated which is the classification of the plant that

detected by whiteflies and caterpillars could also be misclassified as healthy plants more often

as the annotation of the healthy plant which is green leaves. Hence there are also green leaves

on the plants that are infected by whiteflies and caterpillars. Therefore, the plants that are

infected by whiteflies and caterpillars have a high chance to be misclassified as healthy plants

by the AI model.

 Furthermore, during the training of the AI model by using Jupyter notebook, it could take

a long time such as 5 hours to 8 hours to train the AI model as the developer uses CPU to train

the AI model instead of GPU. This is because there is a failure for the developer to configure

the Jupyter Notebook to train the AI model by using GPU due to unknown errors such as the

Jupyter Notebook failing to detect the GPU of the machine. While training the AI models, there

are some errors such as high misclassification issues and low model accuracy issues. Therefore,

there is much time that has been spent, and research has been made in order to correct and

enhance the AI model into more successful and more accurate in detecting the condition of the

plants.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Chapter 6

System Evaluation and Discussion

6.1 System Testing

6.1.1 AI Pest Detection Model Testing

Test Case Test

Description

Test Data Expected Result Pass/Fail

Pest Detection

(Image of plants

that are infected

by caterpillars)

Test AI model’s

ability to detect

pests correctly.

Image of a plant

infected by

caterpillar

(from test

images set).

Model should detect the

plant as unhealthy and

detect the pest type as

caterpillars

Pass

Pest Detection

(Image of plants

that are infected

by whiteflies)

Test AI model’s

ability to detect

pests correctly

Image of a plant

infected by

whiteflies (from

test images set).

Model should detect the

plant as unhealthy and

detect the pest type as

whiteflies.

Pass

Pest Detection

(Image of

healthy plants)

Test AI model’s

ability to detect

the status of the

plants correctly

Image of a

healthy plant

(from test

images set).

Model should detect the

plant as healthy with no

pests.

Pass

Pest Detection

(Image of plants

that are infected

by other pests)

Test AI model’s

ability to detect

the status of the

plants correctly

Image of a plant

infected by

spider mites.

(from test

images set).

Model should detect

the plant as unhealthy

(unknown) and detect

the pest type as

unknown.

Fail

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Pest Detection

(Image of an

object which is

not a plant)

Test AI model’s

ability to detect

the status of the

plants correctly

Image of a

laptop

(from test

images set)

Model should detect

the object as unhealthy

(unknown) and detect

the pest type as

unknown.

Fail

Low-Light

Image

Detection

(Image of plants

that are infected

by caterpillars)

Test model’s

performance in

low-light

conditions.

Image of a plant

with caterpillars

in low light.

Model should detect

the plant as infected by

caterpillars.

Pass

Low-Light

Image

Detection

(Image of plants

that are infected

by whiteflies)

Test model’s

performance in

low-light

conditions.

Image of a plant

with whiteflies

in low light.

Model should detect

the plant as infected by

whiteflies.

Pass

Low-Light

Image

Detection

(Image of

healthy plants)

Test model’s

performance in

low-light

conditions.

Image of a

healthy plant in

low light.

Model should detect

the plant as healthy

with no pests.

Pass

Solution

Generator

(Image of plants

that are infected

by caterpillars)

Test model’s

ability to

generate the

correct solution

for the plants

that are infected

by caterpillars.

Image of a plant

infected by

caterpillar

(from test

images set).

Model should generate

the solution for the

plant that infected by

caterpillars which is

“Apply Bacillus

thuringiensis (Bt) or

hand-pick them”.

Pass

Solution

Generator

Test model’s

ability to

generate the

Image of a plant

infected by

Model should generate

the solution for the

plant that infected by

Pass

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

(Image of plants

that are infected

by whiteflies)

correct solution

for the plants

that are infected

by whiteflies.

whiteflies (from

test images set).

whiteflies which is

“Use neem oil or

insecticidal soap”.

Solution

Generator

(Image of

healthy plants)

Test model’s

ability to

generate the

solution for

healthy plants.

Images of a

healthy plant

(from test

images set)

Model should generate

the solution for the

healthy plant which is

“No action needed”.

Pass

Solution

Generator

(Image of plants

that are infected

by other pests)

Test model’s

ability to

generate the

solution for

healthy plants.

Image of a plant

infected by

spider mites.

(from test

images set).

Model should generate

the solution for the

plant that infected by

other pest which is

“Consult a local

expert”.

Fail

Solution

Generator

(Image of an

object which is

not a plant)

Test model’s

ability to

generate the

solution for the

object which is

not a plant.

Image of a

laptop (from

test images set)

Model should generate

the solution for the

object which is

“Consult a local

expert”.

Fail

Table 6.1 Test Cases for AI for Pest Detection Model

6.1.2 Mobile App with AI Model Implementation Testing

Test Case Test

Description

Test Data Expected Result Pass/Fail

Real-Time

Inference

Test app’s

inference speed

on the Huawei

Nova 4.

Any plant

image captured

with camera.

Inference should

complete within 100-

150ms and display the

result of the detected

plant.

Pass

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

Camera Capture

Functionality

(Plant infected

by caterpillars)

Test app’s

ability to

capture and

process images.

Live camera

captures a plant

infected with

caterpillars.

App should capture

images, process it, and

display the result with

bounding boxes for the

plant that is infected

with caterpillars

Pass

Camera Capture

Functionality

(Plant infected

by whiteflies)

Test app’s

ability to

capture and

process images.

Live camera

captures a plant

infected with

whiteflies.

App should capture

images, process it, and

display the result with

bounding boxes for the

plant that is infected

with whiteflies.

Pass

Camera Capture

Functionality

(Healthy plant)

Test app’s

ability to

capture and

process images.

Live camera

captures a

healthy plant.

App should capture

images, process it, and

display the result with

no bounding boxes for

the healthy plant.

Pass

Camera Capture

Functionality

(Plant infected

by other pests)

Test app’s

ability to

capture and

process images.

Live camera

captures a plant

infected by

spider mites.

App should capture

images, process it, and

display the result with

no bounding boxes for

the plant that infected

by other pests.

Fail

Camera Capture

Functionality

(Object which

is not a plant)

Test app’s

ability to

capture and

process images.

Live camera

captures a

laptop.

App should capture

images, process it, and

display the result with

no bounding boxes for

the laptop.

Fail

Result Display

(Plant infected

by caterpillars)

Test app’s

ability to

display the

correct results

based on the

Live camera

captures a plant

infected by

caterpillars.

App should display the

results of the plant that

infected by caterpillars

such as (Plant Status,

Pass

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

status of the

plant.

Pests, Solution and

Confidence).

Result Display

(Plant infected

by whiteflies)

Test app’s

ability to

display the

correct results

based on the

status of the

plant.

Live camera

captures a plant

infected by

whiteflies.

App should display the

results of the plant that

infected by whiteflies

such as (Plant Status,

Pests, Solution and

Confidence).

Pass

Result Display

(Healthy Plant)

Test app’s

ability to

display the

correct results

based on the

status of the

plant.

Live camera

captures a

healthy plant.

App should display the

results of the healthy

plant such as (Plant

Status, Pests, Solution

and Confidence).

Pass

Result Display

(Plant infected

by other pests)

Test app’s

ability to

display the

correct results

based on the

status of the

plant.

Live camera

captures a plant

that is infected

by spider mites.

App should display the

results of the plant that

infected by other pests

such as (Plant Status,

Pests, Solution and

Confidence).

Fail

Result Display

(Plant infected

by other object

which is not a

plant)

Test app’s

ability to

display the

correct results

based on the

status of the

plant.

Live camera

captures a

laptop.

App should display the

results of the plant that

infected by laptop such

as (Plant Status, Pests,

Solution and

Confidence).

Fail

Gallery Image

Selection

Test app’s

ability to

Select an image

of plant with

caterpillars

App should process

image and display the

results of the plant that

Pass

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

(Image of a

plant which

infected by

caterpillars)

process gallery

image

from the

gallery.

infected by caterpillars

such as (Plant Status,

Pests, Solution and

Confidence).

Gallery Image

Selection

(Image of a

plant which

infected by

whiteflies)

Test app’s

ability to

process gallery

image

Select an image

of plant with

whiteflies from

the gallery.

App should process

image and display the

results of the plant that

infected by whiteflies

such as (Plant Status,

Pests, Solution and

Confidence).

Pass

Gallery Image

Selection

(Image of a

healthy plant)

Test app’s

ability to

process gallery

image

Select an image

of healthy plant

from the

gallery.

App should process

image and display the

results of the healthy

plant such as (Plant

Status, Pests, Solution

and Confidence).

Pass

Gallery Image

Selection

(Image of a

plant infected

with other

pests)

Test app’s

ability to

process gallery

image

Select an image

of plant infected

by spider mites

image from the

gallery.

App should process

image and display the

results of the plant that

is infected by spider

mites such as (Plant

Status, Pests, Solution

and Confidence).

Fail

Gallery Image

Selection

(Image of a

object which is

not a plant)

Test app’s

ability to

process gallery

image

Select an image

of laptop from

the gallery.

App should process

image and display the

results of the laptop

such as (Plant Status,

Pests, Solution and

Confidence).

Fail

QR Code

Generator

Test app’s

ability to

generate the QR

Live capture or

upload images

of the plants

App should be able to

encode the results into

Pass

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

code based on

the condition of

the plants.

(exp:

caterpillars,

whiteflies and

healthy)

the QR code and

display on the UI.

QR Code

scanned with

Android device.

Test app’s

ability to

generate the QR

code that can be

scanned by any

Android

devices.

QR code

generated by

the mobile app.

The QR code

generated by the

mobile app should be

able to be scanned by

Android devices and

the user is able to read

the results that are

encoded in ther QR

code.

Pass

QR Code

scanned with

IOS device.

Test app’s

ability to

generate the QR

code that can be

scanned by any

IOS devices.

QR code

generated by

the mobile app.

The QR code

generated by the

mobile app should be

able to be scanned by

IOS devices and the

user is able to read the

results that are encoded

in ther QR code.

Pass

Use app without

network

connectivity

Test app’s

whether the app

can work when

there is no

internet

connection.

Turn off the

Wi-Fi icon in

the mobile app

and all other

internet

connection.

The app should be able

to work normally and

able to detect the plant

status and display the

results.

Pass

Table 6.2 Test Cases for Mobile App with AI Model Implementation

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

6.2 Project Challenges

 The main challenge of developing this project is to build and maintain an accurate

classification on the Pest Detection AI model. This is because there is a lack of datasets that

have been used to train this AI model as the dataset needed to train a super accurate AI model

would be incredibly large. There is also a significant underfit for the Healthy class as they are

only 0% correct due to class imbalance and a small dataset. The developer didn’t annotate for

the “Healthy” plant dataset as after annotation, it has high change on misclassification on the

plants that infected by caterpillars or whiteflies as the annotation of the healthy plant is green

leaves where these green leaves also appeared on the plant that infected whiteflies or

caterpillars as they are also a plant. Therefore, the model accuracy for this AI for Pest Detection

only reaches 87.31% which just passes the aim of the model accuracy for this project which is

85%. This also causes the plants infected by whiteflies and caterpillars to be misclassified as

healthy.

 The second challenge is this AI model cannot detect the plant that infected by other pest

such as “Spider Mites”, “Fungus gnats”, “Mealybugs”, etc. This is due that it is hard to obtain

the dataset of the images that contain these types of pests from the social media platform as

these plant pests are quite rare. The AI Model also failed to predict the object which is not a

plant as unknown objects. This is due to there are no datasets of this unknown object category

as this project aims to focus on the pest types which are caterpillars and whiteflies. This project

also focuses on plants, not objects which are not plants. Therefore, the developer didn’t feel

that the category of unknown objects should be included as it didn’t meet the project objectives.

 The last challenge is that tis AI model is trained with the YOLOv5 model where there

consists Deep Learning knowledge. Since the developer didn’t take any course that is related

to Deep Learning, the developer need time to do research and learn about the Deep Learning

knowledge and information that is related to YOLOv5 model.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

6.3 Objectives Evaluation

 The first objective of this project is to investigate the feasibility of YOLOv5 for Pest

Detection. This objective has been fulfilled as the YOLOv5 model which trained on 859

images (448 images for training, 277 for validation, and 134 images for testing) has achieved

the model accuracy of 87.31% which surpassed the target which is 85%. The classification

report shows balanced performance with F1-scores of 0.76 (Healthy), 0.86 (Caterpillars), and

0.94 (Whiteflies), demonstrating effective pest detection across all categories.

 The second objective of this project is developing a real-time-on-device system. This

objective is fully achieved as the mobile app with the implementation of the Pest Detection AI

model has been deployed on an Android mobile device and successfully perform real-time pest

detection, classifying plant health status and identifying pest types (Healthy, Whiteflies,

Caterpillars). The TensorFlow Lite model also ensures on-device processing without internet

dependency and ideal for remote farm settings.

 The third objective of this project is to propose targeted pest management solutions. This

objective has successfully met as the mobile app accurately identifies pest types when a plant

is Unhealthy, with high F1-scores for Whiteflies (0.94) and Caterpillars (0.86), and displays

results like “Unhealthy, infected by Caterpillars and Confidence: 87%. The app includes a

mechanism to provide targeted solutions such as recommending neem oil or insecticidal soap

for plants that are infected by whiteflies and Bacillus thuringiensis (Bt) or hand-picking for

plants that are infected by caterpillars as specified by the developer. These evidence-based

solutions were integrated into the app’s result display and guiding the farmers effectively on

detecting the status of the plants. For example, after detecting the plant is infected by whiteflies,

the app suggests using neem oil or insecticidal soap as the solution for the plant).

 The last objective of this project is to enable data sharing through QR code integration.

This objective was achieved as the mobile app includes a QR code generation feature that

encodes detection results for the farmers to share this information with agricultural experts or

record systems for consultation and documentation. In large farms, QR codes can be placed on

each plant and enable the farmers to scan them and retrieve pest management instructions

avoiding confusion and supporting collaborative strategies.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

Chapter 7

Conclusion

7.1 Conclusion

In conclusion, this AI Pest Detection project has successfully developed and deployed as a

mobile application named Smart Pest Detection. This project has successfully fulfilled the 4

objectives which are investigate the feasibility of YOLOv5 for Pest Detection, developing

a real-time-on-device system, propose targeted pest management solutions and enable

data sharing through QR code integration as this project has successfully trained the Pest

Detection AI model with the accuracy of 87.31% and has successfully detected the plant status

correctly and generated the results that contains data like plant status, type of pest, solution and

the confidence score accordingly. The Smart Pest Detection also has successfully encoded the

results that are generated into the QR code for the farmers to share or for them to manage their

large crops. However, there are also flaws in this project as the Smart Pest Detection sometimes

could misclassify the plant status of the plant that is infected by whiteflies or caterpillars as

healthy. This project also can’t classify the plants that are infected by other pests besides

whiteflies and caterpillars and also failed to classify the object which are not plant by providing

the results such as Plant Status: unknown, Pest: unknown, Pest: Unknown and Confidence:

0.00%. Therefore, there are also some enhancements on this project in the future so that it can

become more effective and reliable for farmers and gardeners on detecting the plant status not

just on the whiteflies and caterpillar’s category only.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

7.2 Recommendations

 Firstly, the future work can be done by expanding the diversifying the dataset to solve the

misclassification of the infected plant as healthy and improve the model accuracy. This can be

done by expanding the dataset beyond 859 images by collecting more images from diverse

farm and garden environments, including varied lighting conditions (exp: dawn, dusk,

shadows) and different plant types. This recommendation can enhance the robustness of the

Pest Detection AI model.

 Secondly, future work can be done by extending the pest detection to additional pest by

expanding the category of the plants to aphids, spider mites, fungus gnats etc. The current

model is limited to detecting whiteflies and caterpillars and failed to identify other common

pests. This recommendation can be made by training the Pest Detection AI model to detect

additional pests like aphids, spider mites, or beetles, which are prevalent in farm settings. This

action requires updating the dataset with labeled images of these pests by including new classes

of the new pest’s category and then retrain the Pest Detection AI model. This enhancement of

the Pest Detection AI model will make the app more versatile by providing the farmers with a

broader pest management tool and the corresponding pest management solutions.

 Lastly, future work can be done by improving handling of non-plants object. The current

Smart Pest Detection app failed to classify the non-plant objects by providing the results which

are Plant Status: unknown, Pest: unknown, Pest: Unknown and Confidence: 0.00%. This issue

can confuse the user and might demotivate them to use this app. To address his issue, the

developer has to implement a pre-classification step to identify non-plant objects before

running pest detection. This can be achieved by training a binary classifier such as plant vs

non-plant as a preliminary step by using a simple model like a small CNN or leveraging

YOLOv5’s objectness score to filter out non-plant detections. If a non-plant object is detected,

the app should display the message like “Non-Plant Object Detected” instead of “Unknown,”

improving user experience and trust. This feature can be tested with a small dataset of non-

plant objects such as rocks, tools, soil or other objects to ensure the model’s classification

accuracy.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

REFERENCES

1. Zhao, Z.Q., Huang, D.S., 2007. A mended hybrid learning algorithm for radial basis
function neural networks to improve generalization capability. Available at A mended
hybrid learning algorithm for radial basis function neural networks to improve
generalization capability - ScienceDirect. (Accessed on March 2025)

2. Hubel, D.H., Wiesel, T.N., 2009. Republication of The Journal of Physiology (1959)
148, 574–591: Receptive fields of single neurones in the cat’s striate cortex.
Available at 8. Receptive fields of single neurones in the cat’s striate
cortex.(Accessed on March 2025)

3. Fukushima, K., 1980. Neocognitron: a self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Available at
Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position | Biological Cybernetics.
(Accessed on March 2025)

4. Lecun, Y., Boser, B., Denker, J., et al., 1989. Backpropagation applied to handwritten

zip code recognition. Available at Backpropagation Applied to Handwritten Zip Code

Recognition | Neural Computation | MIT Press. (Accessed on March 2025)

5. Coates, A., Baumstarck, P., Le, Q., et al., 2009. Scalable learning for object detection

with GPU hardware. Available at Scalable learning for object detection with GPU

hardware | IEEE Conference Publication | IEEE Xplore. (Accessed on March 2025)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep

convolutional neural networks. Available at ImageNet classification with deep

convolutional neural networks | Communications of the ACM. (Accessed on March

2025)

7. Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale

image recognition. Available at [1409.1556] Very Deep Convolutional Networks for

Large-Scale Image Recognition. (Accessed on March 2025)

8. Szegedy, C., Liu, W., Jia, Y., et al., 2015. Szegedy, C., Liu, W., Jia, Y., et al., 2015.

Going deeper with convolutions. Available at Going deeper with convolutions | IEEE

Conference Publication | IEEE Xplore. (Accessed on March 2025)

9. He, K., Zhang, X., Ren, S., et al., 2016. Deep residual learning for image recognition.

Available at CVPR 2016 Open Access Repository. (Accessed on March 2025)

10. Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional

networks. Available at Visualizing and Understanding Convolutional Networks |

SpringerLink. (Accessed on March 2025)

https://www.sciencedirect.com/science/article/pii/S0307904X06000965
https://www.sciencedirect.com/science/article/pii/S0307904X06000965
https://www.sciencedirect.com/science/article/pii/S0307904X06000965
https://www.degruyter.com/document/doi/10.1525/9780520318267-008/pdf?licenseType=restricted
https://www.degruyter.com/document/doi/10.1525/9780520318267-008/pdf?licenseType=restricted
https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

11. C.-Y. Wang, A. Bochkovskiy, H.-Y.-M. LiaoYOLOv7: Trainable bag-of-freebies sets

new state-of-the-art for real-time object detectors. Available at

https://www.sciencedirect.com/science/article/pii/S0168169924001170#bb0170.

(Accessed on March 2025)

12. Md. Akkas Ali, Rajesh Kumar Dhanaraj, Anand Nayyar. A high performance-

oriented AI-enabled IoT-based pest detection system using sound analytics in large

agricultural field. Available at

https://www.sciencedirect.com/science/article/pii/S0141933123001904. (Accessed on

March 2025)

13. Sarah Laoyan .(2024, February 2). What is Agile methodology (A beginner’s guide).

Available at : https://asana.com/resources/agile- methodology. (Accessed on March

2025)

14. Man-Ting Li, Sang-Hyun Lee.(20 April 2022). A Study on Small Pest Detection

Based on a CascadeR-CN-Swin Model. Available at :

https://www.sciencedirect.com/org/science/article/pii/S154622182200950X.

(Accessed on March 2025)

https://www.sciencedirect.com/org/science/article/pii/S154622182200950X

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

POSTER

