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ABSTRACT 

 

 Agricultural pest management is critical for ensuring crop health and yield, yet 

traditional detection methods are often labor-intensive and imprecise. This Final Year Project 

proposes an Artificial Intelligence (AI) based pest detection system integrated into a mobile 

application, empowering users to monitor plant health efficiently. The system utilizes a 

convolutional neural network (CNN) specificallyYOLOv5, trained on a dataset encompassing 

three common pest categories tentatively Whiteflies, and caterpillar, alongside healthy plant 

samples. Through the mobile app, users capture images of plants using their smartphone 

camera. The AI model, running on-device through TensorFlow Lite, analyzes the image to 

classify the plant as healthy or unhealthy. If unhealthy, it identifies the specific pest type and 

provides a tailored solution. Results are displayed within the app, and the detection data 

including plant status, pest type, solution, and confidence score are encoded into a QR code. 

This QR code enables seamless data sharing, such as with agricultural experts or record-

keeping systems. Preliminary testing on a diverse test set achieved an accuracy above 85%, 

validating the system’s effectiveness. This mobile solution offers a portable, user-friendly tool 

for pest management, enhancing precision agriculture through AI and innovative data transfer. 

 

Area of Study: Artificial Intelligence and Application Development 

 

Keywords: Agriculture, Pest Detection, Pest Control, Classification, Mobile Application and 

Deep Learning,   
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Chapter 1 

Introduction 

 

 Agriculture and horticulture are vital for sustaining food production and 

ornamental landscapes, yet pest infestations remain a persistent challenge, compromising plant 

health and productivity in farms and gardens alike. Whiteflies and Caterpillars are among the 

most common pests, causing significant damage through feeding, disease transmission, and 

structural harm to crops and plants. Traditional pest detection methods, such as visual 

inspection or pesticide overuse, are often inefficient, labor-intensive, and environmentally 

unsustainable, particularly for farmers and gardeners seeking timely and precise interventions. 

Advances in Artificial Intelligence (AI) and mobile technology offer a promising avenue to 

revolutionize pest management by delivering automated, accessible solutions. This project 

aims to develop an AI-based pest detection system integrated into a mobile application, 

designed to assist users in farms and gardens. The system employs a convolutional neural 

network (CNN), specifically YOLOv5, trained on a dataset of plant images to classify plants 

as healthy or unhealthy and detect infestations by Whiteflies or Caterpillars, alongside 

recommending targeted solutions such as use neem oil or insecticidal soap for Whiteflies. Users 

capture plant images using their smartphone camera, and the AI model, optimized with 

TensorFlow Lite for on-device processing, provides real-time results within the app. If a plant 

is unhealthy, the system identifies the pest and suggests an actionable remedy, with all 

detection data plant status, pest type, solution, and confidence score encoded into a QR code 

for sharing or documentation. This project seeks to empower farmers and gardeners with a 

portable, user-friendly tool to enhance pest management, supporting sustainable practices in 

both agricultural and garden settings. 
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1.1  Problem Statement and Motivation 

Pest infestations, particularly by Whiteflies and Caterpillars, pose a significant threat to 

plant health and productivity in farms and gardens, leading to reduced crop yields, economic 

losses, and compromised horticultural sustainability. Traditional pest detection methods rely 

heavily on manual observation or broad-spectrum pesticide application, which are time-

consuming, labor-intensive, and often inaccurate, especially for small-scale farmers and 

gardeners who lack access to expert resources or advanced diagnostic tools. These approaches 

frequently fail to identify specific pest types promptly, resulting in delayed or inappropriate 

treatments that exacerbate damage and environmental harm. Furthermore, the absence of 

portable, user-friendly systems limits the ability of non-experts to monitor plant health 

effectively and share detection data for further analysis or record-keeping. Existing 

technological solutions, while advanced, are typically expensive, complex, or inaccessible to 

the average user, creating a gap in practical pest management for agricultural and garden 

settings. There is a critical need for an automated, accessible, and precise pest detection system 

that can classify plants as healthy or unhealthy, identify specific pests, recommend targeted 

solutions, and facilitate data sharing, thereby empowering farmers and gardeners to mitigate 

pest-related challenges efficiently and sustainably. 

 The motivation for this project stems from the growing need to address pest related 

challenges in agriculture and horticulture, particularly in farms and gardens where Whiteflies 

and Caterpillars frequently threaten plant vitality. As global food demand rises and 

environmental sustainability becomes a priority, effective pest management is essential to 

safeguard crop yields and reduce reliance on harmful pesticides. Traditional detection methods, 

while widely used, often prove inadequate for timely and accurate identification, inspiring the 

pursuit of an innovative, technology-driven solution. The advent of Artificial Intelligence (AI) 

and mobile platforms offers a unique opportunity to democratize pest detection, making it 

accessible to farmers and gardeners who may lack specialized expertise or resources. This 

project is driven by a desire to harness AI’s potential, specifically through YOLOv5, to deliver 

real-time, on-device analysis of plant health, identifying specific pests and providing actionable 

solutions. The integration of QR code functionality further motivates this work, enabling 

seamless data sharing for collaboration, documentation, or expert consultation an aspect often 

overlooked in existing tools. Academically, this project aligns with an interest in exploring the 

intersection of AI, mobile computing, and precision agriculture, while practically, it aims to 
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empower users with a portable, user-friendly tool to enhance pest management. Ultimately, 

motivation lies in contributing a sustainable, impactful solution to improve agricultural and 

garden productivity for both novice and experienced practitioners. 
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1.2  Research Objectives 

The primary aim of this project is to investigate and develop an AI-based pest detection 

system integrated into a mobile application to improve pest management efficiency and 

accessibility for farmers and gardeners in farm and garden settings. 

 

 The first research objective is to investigate the feasibility of YOLOv5 for Pest 

Detection. The aim of this objective is to explore the applicability and performance of the 

YOLOv5 convolutional neural network (CNN) which optimized with TensorFlow Lite in 

accurately classifying plant images into three categories which are Healthy, Whiteflies and 

Caterpillars by using the datasets that consist approximately 800 images collected from farm 

and garden environments, targeting a minimum validation accuracy of 85%. 

 

 The second objective is to develop a real-time on-device detection system. To design and 

implement a mobile application that leverages YOLOv5 and TensorFlow Lite for real-time, 

on-device classification of plant health status (Healthy or Unhealthy) and pest type 

identification, enabling immediate pest detection without internet dependency and suitable for 

use in remote farm and garden locations. 

 

 The third research objective is to propose targeted pest management solutions. To create 

a mechanism within the mobile app that identifies specific pest types (Whiteflies and 

Caterpillars) when a plant is Unhealthy and provides corresponding evidence-based solutions 

such as use neem oil or insecticidal soap for Whiteflies and apply Bacillus thuringiensis (Bt) 

or hand-pick them for Caterpillars to guide users in mitigating pest infestations effectively. 

 

 The last research objective is to enable data sharing through QR code integration. To 

integrate a QR code generation feature into the mobile app that encodes detection results (plant 

health status, pest type, solution, and confidence score), facilitating seamless data transfer to 

agricultural experts, record systems, or collaborators for consultation, documentation, or 

collaborative pest management strategies. The QR code is also helps when the farmer have 

many plants in a large farm by putting it on each plant so that the farmer know what to do to 

save the plant by just scanning the QR code that has been put infront of the plant to avoid 

confusion. 
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1.3  Project Scope and Direction  

This project aims to design, develop, and evaluate an AI based pest detection system 

embedded within a mobile application, targeting pest management challenges in farm and 

garden environments. The scope centers on leveraging YOLOv5, a lightweight convolutional 

neural network (CNN), optimized with TensorFlow Lite, to classify plant images into three 

categories: Healthy, Whiteflies, and Caterpillars. The system utilizes a dataset of 

approximately 800 images that are collected from real-world farm and garden settings, to train 

the model with a target validation accuracy of at least 85%. The mobile app is developed using 

Android Studio as it targets Android users only. This application enables users such as farmers 

and gardeners to capture plant images with their smartphone camera, perform real-time 

detection on-device without internet reliance, and receive actionable outcomes. Key 

functionalities include classifying plant health (Healthy or Unhealthy), identifying pest types 

(Whiteflies and Caterpillars) if Unhealthy, proposing specific solutions (exp: Use neem oil or 

insecticidal soap for Whiteflies and Apply Bacillus thuringiensis (Bt) or hand-pick them for 

Caterpillars), and encoding results (status, pest, solution, confidence score) into a QR code for 

data sharing with agricultural experts or record systems. The scope includes model training and 

optimization in Jupyter Notebook, app development in Android Studio, and testing on a limited 

set of plant species common to farms and gardens (exp: tomatoes, strawberries, ornamentals). 

Excluded from the scope are integration of real-time environmental sensors (exp: humidity, 

temperature), detection of additional pest types beyond Whiteflies and Caterpillars and large-

scale commercial deployment beyond a functional prototype. However, the scope only focuses 

on plants and not on other objects which are not plants. This scope only focuses on the two 

types of pests which are whiteflies and caterpillars, whereas other pests such as spider mites, 

fungus gnats, mealybugs and etc would be undetectable. 
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1.4  Contributions 

This project contributes a practical solution to the field of precision agriculture and 

horticulture by developing an AI-based pest detection system integrated into a mobile 

application, specifically designed for use in farms and gardens. By leveraging a convolutional 

neural network (CNN), YOLOv5, trained to detect and classify plant health status and identify 

infestations by Whiteflies and Caterpillars, the system introduces an accessible, automated 

alternative to traditional manual pest identification methods. Unlike existing approaches, which 

often require expert knowledge or expensive equipment, this mobile app empowers farmers 

and gardeners with a portable, user-friendly tool that delivers real-time, on-device analysis 

classifying plants as healthy or unhealthy and providing targeted pest-specific solutions, such 

as use neem oil or insecticidal soap for Whiteflies and apply Bacillus thuringiensis (Bt) or 

hand-pick them for Caterpillars. The incorporation of QR code functionality represents a 

significant contribution, enabling users to encode and share detection data including plant 

status, pest type, solution, and confidence score for collaboration, record-keeping, or 

consultation with agricultural experts. This enhances the utility of pest management by 

bridging the gap between detection and actionable follow-up. Additionally, the project 

advances the application of AI and mobile technology in agriculture by demonstrating the 

feasibility of lightweight, on-device inference using TensorFlow Lite, achieving an anticipated 

accuracy above 85% based on preliminary testing. Ultimately, this work contributes an 

affordable, scalable, and sustainable tool that supports pest control efforts, improves plant 

health monitoring, and promotes informed decision-making in farm and garden settings. 
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1.5  Report Organization 

This report is organized into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature 

Review, Chapter 3 System Methodology/Approach, Chapter 4 System Design, Chapter 5 

System Implementation and Testing, Chapter 6 System Outcome and Discussion and Chapter 

7 Conclusion. Chapter 1 introduces the problem statement and motivation, objectives, project 

scope and direction, contributions and report organization. Chapter 2 consists of  evaluation on 

existing system and strength and weaknesses of existing models. Chapter 3 consists of 

proposed method/approach, system architecture diagram, use case diagram, activity diagram 

and project timeline. Chapter 4 consists of system block diagram, system components 

specifications, model selection and architecture, data preprocessing, model training and tuning, 

performance evaluation of the model and mobile app development. Chapter 5 consists of 

hardware setup, software setup, system operations (with screenshot) and implementation issues 

and challenges. Chapter 6 consists of system testing, project challenges and objective 

evaluation. Lastly, Chapter 7 consists of conclusion and recommendations. 
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Chapter 2 

Literature Review 

 

2.1 Evaluation of Existing System 

2.1.1  Convolutional Neural Network  

 Neural networks are effective classifiers for complex, non-linear problems, with 

significant advancements in their structure improving classification and clustering performance 

[1]. CNNs, the leading models for image classification, trace their origins to [2] studies on 

animal visual cortical cells. Fukushima (1980) introduced the Neocognitron, an early precursor 

to CNNs [3], while LeCun et al. (1989, 1998) formalized the modern CNN structure in the late 

1990s [4]. Initially, limited computer power restricted neural networks to shallow architectures 

with one hidden layer. However, the rise of GPU-aided computing and enhanced hardware 

enabled the training of deeper networks [5]. A breakthrough came in 2012 which AlexNet, a 

deep CNN that excelled in the ILSVRC 2012 competition [6]. Subsequent models like VGG 

[7] and GoogLeNet [8] further improved performance. To address training challenges in very 

deep networks, another researcher [9]introduced deep residual learning with ResNet-152, 

followed by advanced architectures like Inception-ResNet-v2 [8], pushing the boundaries of 

recognition accuracy. 

 

 

Figure 2.1.1.1 Basic structure of CNN 
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Convolutional neural networks (CNNs) excel at automatically extracting features from 

images, a capability demonstrated through visualization techniques as explored [10]. Figure 

2.1.1.2 illustrates this process using a pest image: the left side shows the original agricultural 

pest image input, the middle displays features extracted by the first convolutional layer of 

AlexNet, and the right side reveals features after the first pooling layer. These visualizations 

highlight how the initial convolution and pooling layers activate the pest boundaries, 

effectively distinguishing them from complex backgrounds. The resulting images underscore 

CNNs’ robust feature extraction ability, enabling clear separation and identification of pests, 

which is critical for applications like pest detection in agriculture. 

 

 
 

Figure 2.1.1.2 CNN feature visualization 
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2.1.2 YOLOv7 tiny model 

The smartphone app implemented the YOLOv7 tiny model for pest detection, utilizing 

its compact neural network structure, as shown in Figure 2.1.2.1, to efficiently extract and fuse 

image features across multiple layers for real-time object detection [11]. An RGB image was 

processed by the model, with its deep learning layers extracting features at three scales and 

combining them to identify pests, visualized with bounding boxes. The model was trained and 

tested on 3,348 strawberry leaf images, split into training (60%), validation (20%), and testing 

(20%) datasets, targeting Two-Spotted Spider Mite (TSSM) and Powdery Mildew (PM) 

detection. This was done using PyTorch on a powerful computer with an NVIDIA GeForce 

RTX 3090 GPU, an 11th Gen Intel Core i9 11900F processor, and 32 GB of memory. 

 

 

Figure 2.1.2.1 YOLOv7 tiny model structure 

 

The YOLOv7 tiny model’s detection accuracy was assessed using average precision (AP) 

and mean average precision (mAP) after training and testing on a GPU-equipped computer. 

Subsequently, the model was integrated into a smartphone app for field testing. The study 

compared the app’s performance against traditional manual counting (using a magnifying lens) 

through metrics like coefficient of determination (R²), root mean squared error (RMSE), 

counting accuracy, and speed. Counting accuracy was determined with Equation (1) in Figure 

2.1.2.2, where the “estimated total pest population” (from the app or lens) was compared to the 

“actual pest population” (counted through microscope in a lab), evaluating the app’s 

effectiveness in real-world pest detection. 
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Figure 2.1.2.2 Equation 1 

 

 

2.1.3 AI-enabled IoT-based pest detection system 

 

The agricultural monitoring and intelligent security system, enabled by blockchain and 

IoT (as shown in Figure 2.1.3.1), features five key functions which are architectural framework, 

data gathering, analytics, processing, and communication (Figure 2.1.3.2) which to monitor 

farming practices and enhance security. Data is encrypted using advanced cryptographic 

techniques like AES and SHA, stored as byte streams in decentralized blockchain databases, 

ensuring confidentiality, integrity, and availability against cyber threats. The blockchain’s 

distributed ledger provides immutable, transparent storage for data such as crop yields and 

weather conditions, preventing alterations and establishing a reliable truth source. This 

empowers farmers with greater control over their data, protecting it from hacking while 

allowing selective access to maintain privacy. (Figure 2.1.3.2) illustrates an IoT and 

blockchain-based system for monitoring pest identification and control in large farms, utilizing 

acoustic analytics, data gathering, encoding, actionable insights, and communication 

technologies. Acoustic analytics, supported by IoT networks and blockchain, enable pest 

monitoring, while data is encrypted with AES and Secure Hash Algorithm, stored as byte 

streams in a decentralized blockchain database to ensure availability, integrity, and secrecy. 

Figure (2.1.3.3) details the system’s components—sensors, actuators, databases, and devices 

like computers and smartphones—tracking environmental factors such as light, soil, weather, 

and humidity. The pest detection process involves preprocessing pest noises, computing 

features, creating templates, developing models, and assessing detection accuracy. This 

intelligent system supports field, greenhouse, and animal care tasks, using sensors to monitor 

crops, livestock health, and environmental conditions, enhancing agricultural efficiency 

through integrated IoT and communication protocols [12]. 
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Figure 2.1.3.1 A smart agricultural monitoring system based on the IoT and blockchain 

environment. 

 

 

Figure 2.1.3.2 The architecture of IoT and blockchain enabled smart agriculture monitoring 

system. 
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Figure 2.1.3.3 Works flow of pest detection procedure 
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2.2  Strength and Weakness of Existing Models 

2.2.1 Convolutional Neural Networks (CNN) 

Aspect Strength Weakness 

Feature Extraction Automatically extracts hierarchical 

features such as edges, textures from 

plant images without manual design 

 

May struggle with subtle pest 

features (exp: Whiteflies’ small 

size) if not enough high-

resolution data. 

 

Accuracy • High classification accuracy 

• Ideal for detecting healthy 

and infested plants. 

Accuracy depends heavily on 

dataset quality and size; small 

datasets (<400 images) may 

lead to overfitting. 

 

Efficiency Lightweight CNNs like 

MobileNetV2 are optimized for 

mobile devices, enabling fast 

inference (100ms) with low memory 

use (3-4 MB post-quantization). 

 

Deeper CNNs (exp: VGG16) 

are computationally heavy, 

unsuitable for on-device use 

without optimization. 

 

Generalization Transfer learning leverages pre-

trained models (exp: ImageNet), 

adapting to pests like Caterpillars or 

Whiteflies with fewer training images 

(100-200 per class). 

 

Poor generalization if training 

data lacks diversity (exp: varied 

lighting, angles in 

farms/gardens). 

 

Real-Time Use Supports real-time detection on 

smartphones (exp: TensorFlow Lite), 

critical for immediate pest 

identification in the field 

 

Real-time performance drops 

on low-end devices if not 

quantized properly, delaying 

pest response. 

 

Scalability Easily scalable to new pest types by 

fine-tuning with additional classes 

(exp: adding Mites), requiring 

minimal architectural changes. 

 

Scaling to many classes (exp: 

10+ pests) increases 

complexity and may reduce 

accuracy without more data. 

 

Robustness Robust to complex backgrounds 

(exp: separating pests from leaves), 

as CNNs focus on local patterns 

 

Sensitive to noise or occlusions 

(exp: leaves covering 

Caterpillars), potentially 

misclassifying pests. 

 

Data Requirements Transfer learning reduces the need 

for large datasets compared to 

training from scratch, suitable for 

your 400-800 image range. 

 

Still requires labelled data; 

collecting and labelling pest 

images (exp: Whiteflies) can be 

time-consuming. 

 

Table 2.2.1 Strength and Weaknesses for CNN 
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2.2.2 YOLOv7 tiny model 

Aspect Strength Weakness 

Feature Extraction Efficiently extracts multi-scale 

features using a compact structure, 

fusing layers for precise pest 

detection 

 

May miss subtle pest features 

(exp: small Whiteflies) if scales 

aren’t tuned for your specific 

pest sizes. 

 

Accuracy • High detection accuracy 

• Effective for locating 

Whiteflies and Caterpillars 

 

Accuracy drops with small 

datasets or underrepresented 

pests (exp: Caterpillars), 

requiring 3,000+ images. 

 

Efficiency Lightweight (6MB), faster inference 

than larger YOLO variants (20-50ms 

on GPU), suitable for mobile 

deployment with optimization. 

 

Heavier than MobileNetV2 

(3MB), slower on low-end 

phones without quantization, 

impacting real-time use 

 

Localization • Uses bounding boxes to 

pinpoint pest locations (exp: 

Cat on leaves) 

• Enhancing visualization 

 

• Overkill for your 

classification task 

(Healthy, Infected) 

• Adding unnecessary 

complexity 

Real-Time Use Designed for real-time object 

detection, ideal for rapid pest 

identification in farms/gardens on 

decent hardware (exp: RTX 3090). 

 

Performance lags on low-spec 

mobile devices without GPU 

support, delaying pest response 

in the field. 

 

Scalability Scales well to multiple pest types by 

adjusting detection heads, adaptable 

to Whiteflies and Caterpillars with 

retraining. 

 

Adding classes increases model 

size and training complexity, 

less flexible than MobileNetV2 

for your needs. 

 

Robustness Robust to complex backgrounds, 

detecting pests across scales. 

 

Sensitive to occlusions (exp: 

Caterpillars hidden by leaves), 

potentially missing partially 

obscured pests. 

 

Data Requirements • Benefits from pre-training 

(exp: COCO dataset) 

• Fine-tuned on 3348 images 

 

Requires annotated bounding 

boxes, more labor-intensive 

than MobileNetV2’s class 

labels (exp: 400-800 images). 

 

 

Table 2.2.2 Strength and Weaknesses for YOLOv7 tiny model 
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2.2.3 AI-enabled IOT-based pest detection system 

Aspect Strength Weakness 

Real Time 

Monitoring 

Enables continuous pest detection 

(exp: Whiteflies) through IoT sensors 

(e.g., acoustic, visual) and delivering 

instant insights 

 

Relies on stable network 

connectivity; disruptions in 

remote farms/gardens can 

delay real-time data flow. 

 

Feature Extraction Combines AI (exp: CNNs) with IoT 

data (exp: acoustic analytics for 

Caterpillars), enhancing pest 

identification accuracy. 

 

Complex feature fusion (exp: 

sound + image) may miss 

subtle pest traits if sensors lack 

precision or calibration. 

 

Accuracy • High detection accuracy with 

AI models 

• leveraging multi-sensor data 

for Caterpillars and other 

pests 

 

Accuracy drops if training data 

doesn’t match diverse 

farm/garden conditions or pest 

behaviours (exp: Whiteflies). 

 

Scalability Scales across large farms with IoT 

networks, managing multiple sensors 

(light, soil, weather) for 

comprehensive monitoring. 

 

Scaling increases hardware 

costs (exp: sensors, gateways) 

and complexity, challenging 

small garden deployments. 

 

Automation Automates pest control (exp: 

actuators for pesticide spray) based 

on AI insights, reducing manual 

effort in fields. 

 

Automation failures (exp: 

sensor malfunctions) can lead 

to missed detections or 

inappropriate responses. 

 

Data Integration  Integrates diverse data (exp: 

humidity, pest noise) with blockchain 

for secure, immutable storage, 

ensuring reliability. 

 

High data volume from IoT 

devices strains processing and 

storage, especially without 

robust infrastructure. 

 

Robustness Robust to environmental variability 

(exp: weather changes) with sensor 

fusion, improving pest detection in 

gardens. 

 

Vulnerable to sensor failures or 

environmental noise (exp: wind 

masking Caterpillar sounds), 

reducing reliability. 

 

Accessibility • Remote access through 

smartphones/computers 

• Allows farmers to monitor 

pests from anywhere, 

enhancing usability. 

 

Requires technical expertise for 

setup/maintenance, limiting 

adoption by non-tech-savvy 

farmers or gardeners. 

 

Security Blockchain encryption (exp: AES, 

SHA) protects pest data integrity and 

privacy 

 

Security adds computational 

overhead, slowing down real-

time processing on resource-

limited IoT devices. 
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Cost -effectiveness Reduces labour costs by automating 

pest detection over large areas, 

beneficial for big farms with many 

sensors. 

 

High initial costs (exp: IoT 

hardware, blockchain setup) 

make it less feasible for small-

scale gardens. 

 

Table 2.2.3 Strength and Weaknesses AI-enabled IoT-based pest detection system 
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Chapter 3 

System Methodology/Approach 

The processes of the project were categorized into different phases in the 

development, which were project pre-development, data pre-processing, model 

training architecture building and data training, and prediction on test dataset. 

 

3.1 Proposed method/Approach 

The proposed method for developing the AI-based pest detection system 

follows a structured six-phase approach which are Requirements, Design, 

Development, Testing, Deployment, and Review to create a mobile application 

that leverages YOLOv5 and TensorFlow Lite for efficient pest management in farm 

and garden settings. This methodology ensures systematic progression from 

conceptualization to implementation, targeting a validation accuracy of at least 85% 

[14], real-time on-device detection, pest-specific solutions, and QR code data 

sharing for farmers and gardeners. 

 

Agile methodology is a project management approach which emphasizes on 

flexibility, collaboration, and iterative development. Agile development 

methodology is the first methodology that been used in the software development 

sector. This is because, the software will constantly change due to the evolvement 

of technology where new features are created. Therefore, the product also must be 

changed by implementing these new features following to the new trend of the 

technology. The agile methodology also offered some advantages which is agile 

methods are adaptable by providing the ability to shift strategies quickly without 

affecting or disrupt the flow of the project [13]. Agile fosters collaborative 

teamwork. This agile principle promotes collaborative teamwork by prioritizing 

face-to-face communication. By combining this approach with the principle that 

encourages teams to break the project silos, the environment of conductive to 

effective collaboration teamwork would be created. Despite technological 

advancements and the rise of remote work, the fundamental value of face-to-face 

interaction remains unchanged in Agile methodology [13]. Lastly, the agile 
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methods prioritize on customer needs which give advantages in software 

development. The teams can get the feedback from their actual customers or users 

quickly or faster through the accessibility of cloud-based software. Customer 

satisfaction is a key driver for software development [13]. Therefore, by 

collaborating with customers of the application that provide continuous feedback 

that can enhance the performance and the development of the system. 

 

Figure 3.1 Agile Development Lifecycle 

 

Based on Figure 3.1, it shows the diagram of agile development lifecycle. 

There are 6 phases in the agile development lifecycle which are ‘Requirements’, 

‘Design’,’ Development’, ’Testing’, ’Deployment’ and ‘Review’. The initial 

phase establishes the project vision which is a mobile app that empowers farmers 

and gardeners to detect plant health (Healthy/Unhealthy), identify pests (Whiteflies 

or Caterpillars), propose solutions, and share results with QR code. This phase 

establishes the functional and non-functional requirements of the pest detection 

system. The functional requirements are capturing plant images through 

smartphone camera, classifying plant health as Healthy or Unhealthy, identifying 

three pest types (Whiteflies or Caterpillars). If the plants are detected unhealthy, the 

system will propose solutions (exp: Use neem oil or insecticidal soap for Whiteflies) 

and then will generate QR codes to encode results (status, pest, solution, 

confidence). Non-functional requirements encompass achieving >85% accuracy 

and offline capability. The target users would be farmers and gardeners. 

The design phase outlines the system architecture and technical specifications. 

The YOLOv5 convolutional neural network (CNN), pre-trained on the COCO 
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dataset, serves as the AI backbone, optimized with TensorFlow Lite for mobile 

deployment. The mobile app, built using Android Studio, integrates a camera 

module, inference engine, solution lookup table, and QR code generator. A use case 

diagram defines interactions: Farmers/Gardeners capture images, trigger detection, 

view results, and share QR codes with Agricultural Experts. The workflow is image 

capture → preprocessing (resize to 640x640, normalization) → inference → 

solution display → QR code generation, with data flow diagrams illustrating model 

inputs/outputs (bounding boxes, class labels) and app components. 

 

 The development phase implements the system in two main sub-phases: Model 

Deployment and App Development. For Model Deployment, a dataset of 859 

images (448 training, 277 validation and 134 testing) is collected from farm/garden 

settings, organized into healthy, whiteflies, and caterpillars subdirectories, and pre-

processed with augmentation (rotation 30°, width/height shifts 0.3, brightness 0.8-

1.2, zoom 0.2, horizontal/vertical flips) using tools like augmentations in Jupyter 

Notebook ,YOLOv5 (exp: yolov5s) is trained through transfer learning: initialized 

with pre-trained weights, the model is fine-tuned on the custom dataset for 100 

epochs. The trained model is converted to .tflite format (quantized, 14-20 MB) 

using YOLOv5’s export.py script with TensorFlow Lite support. For App 

Development, Android Studio builds the app, integrating the .tflite model (with 

TensorFlow Lite’s Android library), camera functionality (using Android’s 

CameraX API), a solution table (exp: " Apply Bacillus thuringiensis (Bt) or hand-

pick them" for caterpillars), and QR code generation (through ZXing library). The 

UI, designed with Android layouts (XML), features image capture buttons and 

result displays, coded in Java or Kotlin to process YOLOv5 inference outputs 

(bounding boxes, confidence scores) and present results to users. 

 

 The testing phase assesses the system’s performance and usability. The 

YOLOv5 model is evaluated on a held-out test set (exp: 20% of images not used in 

validation) for mean Average Precision (mAP (0.5) >85%), per-class 

precision/recall (exp: caterpillars’ detection), and inference speed (100-150ms on 

mobile). The app undergoes unit testing (exp: model inference accuracy), 

integration testing (camera to QR code workflow), and real-world testing on an 
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Android device (exp: API 21+), capturing live farm/garden images. Usability is 

tested with simulated users (exp: ease of result viewing, QR code scanning), and 

results are benchmarked against prior works (exp: YOLOv5 achieving 90% mAP 

in similar tasks). Issues (exp: mAP below target) prompt iterative refinements, such 

as adjusting hyperparameters or increasing training epochs. 

 

 The deployment phase delivers the completed prototype to users. The .tflite 

YOLOv5 model is embedded in the Android app, compiled into an APK using 

Android Studio, and installed on a test device (exp: Android phone). A user guide 

details operation: capture image, view detection results (pest type, location), share 

QR code. This phase ensures offline functionality and QR code compatibility with 

external scanners, providing a standalone solution within the project scope, with 

potential for broader distribution deferred to future work. 

 

The review phase evaluates the project against its objectives and outlines 

future directions. Model performance (exp: current 79.89% vs 85% target), 

inference speed, and app usability are analyzed, with findings compared to 

requirements and literature. Successes (exp: real-time detection, QR code sharing) 

and challenges (exp: accuracy shortfall) are discussed, with recommendations for 

improvement such as dataset expansion, additional pest types (exp aphids), or iOS 

porting concluding the project with a functional prototype and insights for 

enhancement. 

 

This six-phase approach integrates YOLOv5’s AI efficiency with 

TensorFlow Lite’s mobile optimization and Android Studio’s robust development 

environment, delivering a practical pest detection tool that enhances farm and 

garden management through accurate classification, actionable solutions, and 

efficient data sharing. 
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3.2  System Architecture Diagram 

 

 

 

Figure 3.2 System Architecture Diagram 

 

Based on the system architecture diagram above, there several components included 

which are User Interface (UI) Layer, Camera Module, Inference Engine, Solution Generator 

and QR Code Generator. User Interface (UI) Layer is the front-end part of the Android app that 

consists of screens and buttons the users see and use. It’s built using Android Studio with XML 

layouts and coded in Java or Kotlin.  

The purpose of this UI layer is to acts as user’s gateway to the app by letting them start 

actions (like taking a photo) and see results (like pest detection and QR codes). There are 

several parts in the UI layer which are Image Capture Interface, Result Display and QR Code 

View. The Image Capture Interface has a button (exp: Take Photo) that triggers the camera. 

For Result Display there would be text or views showing "Unhealthy, infected by Caterpillars. 
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Solution: Apply Bacillus thuringiensis (Bt) or hand-pick them. Confidence: 87%.". The QR 

Code View would generate an image of the QR code for sharing purposes. 

The Camera Module is the part that uses the phone’s camera to take pictures of plants. 

It’s powered by Android’s CameraX API, integrated in Android Studio. The purpose of this 

camera module is to capture raw image (exp: a tomato leaf with Caterpillars) for the app to 

analyze. This module works when the users press the capture button, CameraX grabs the image 

and sends it to the next component. 

The Inference Engine works the brain of the application as the pest detection using the 

YOLOv5 model. The Inference Engine consist of 2 sub-parts which are Image Preprocessor 

and TensorFlow Lite Model. The Image Preprocessor prepares the image for the model by 

resizing it to 224x224 pixels (YOLOv5’s required size) and normalizing pixel values (exp: 

from 0-255 to 0-1). The TensorFlow Lite Model consists of pre-trained .tflite file (exp: 

pest_detection_improved.tflite) that created in Jupyter Notebook loaded through TensorFlow 

Lite’s Android library. 

The Solution Generator maps inference outputs to pest-specific solutions. It uses a 

hardcoded lookup table (exp: HashMap in Kotlin) to associate pest types with solutions such 

as ("Healthy" → "No action needed" ,"Whiteflies" → "Use insecticidal soap", " Caterpillars" 

→ " Apply Bacillus thuringiensis (Bt) or hand-pick them". The Solution Generator is 

implemented in Java/Kotlin within Android Studio. 

The QR Code Module encodes detection results into a QR code for sharing. It converts 

results (exp: "status": "Unhealthy", "pest": " Caterpillars", "solution": " Apply Bacillus 

thuringiensis (Bt) or hand-pick them", "confidence": "87%") into a QR code image using the 

ZXing library. 

 

Data Flow in this System Architecture Diagram: 

Target users : Farmers/Gardeners 

1. User Start: Users open the app and tap "Take Photo" on the User Interface Layer. 

2. Photo Taken: The Camera Module (CameraX) snaps a picture of your plant and sends 

it to the Inference Engine. 

3. Detection Happens: Inside the Inference Engine: 

o The Image Preprocessor resizes and adjusts the photo. 
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o The TensorFlow Lite Model (YOLOv5) analyzes it and says, "80% chance it’s 

Beetles." 

4. Solution Added: The Solution Generator takes " Caterpillars" and adds, "Unhealthy, 

infected by Beetles. Solution: Apply Bacillus thuringiensis (Bt) or hand-pick them." 

5. Results Shown: The User Interface Layer shows you this text on-screen. 

6. QR Code Made: The QR Code Generator turns the result into a QR code, which the UI 

displays. 

7. User Share: Users send the QR code (exp through WhatsApp) to an Agricultural Expert, 

who scans it to see the details. 
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3.3 Use Case Diagram 

 

 

 

Figure 3.3 User Case Diagram 
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Based on Figure 3.4, it shows the use case diagram of the AI for pest Detection and 

outlines how the farmer as known as the user interact with the system. The farmer would 

capture the image of the plant. Then, the data would be sent to the AI System to analyze whether 

the plant is healthy or unhealthy. Then, the data would be sent to the solution generator. If the 

plant is healthy, the solution generator will generate "No action needed". If the plant is detected 

unhealthy, the AI identifies the pest (whiteflies or caterpillars) and generates a solution. After 

that, these results will be summarized and displayed to the farmer. Thus, a QR will be generated 

to the user for data sharing purposes or avoid confusion due to having many plants in a large 

farm.  
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3.3.1 Use Case Description 

 

Use Case 1: Capture Plant Image 

 

Use Case ID UC1 Use Case Name Capture Plant Image 

Actors Farmer/User 

Purpose To allow the user to take a photo of a plant for health and 

pest analysis. 

 

Preconditions The Android app is installed and running on a device 

with a functional camera; the user has granted camera 

permissions. 

 

Basic Flow: 

1) The Farmer/User opens the app on their Android device. 

2)  The user selects the "Capture Image" option. 

3)  The app activates the device’s camera. 

4) The user points the camera at the plant and takes a photo. 

5) The app saves the image and passes it to the AI System for analysis. 

 

Postconditions A plant image is captured and ready for analysis by the 

AI System. 

 

Exceptions • A plant image is captured and ready for analysis 

by the AI System. 

• If permissions are denied, the app prompts the 

user to enable them. 

 

 

Table 3.3.1 Use Case Description for “Capture Image” Use Case 
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Use Case 2: Analyze Plant Health 

 

Use Case ID UC2 Use Case Name Analyze Plant Health 

Actors AI System (invoked by Farmer/User) 

Purpose To determine whether the plant in the captured image is 

healthy or unhealthy. 

 

Preconditions A plant image has been captured and provided by the 

Farmer/User. 

 

Basic Flow: 

1) The AI System receives the plant image from the app. 

2) The system preprocesses the image (resizes 224x224, normalizes pixel 

values). 

3)  The AI model (YOLOv5-based) analyzes the image. 

4) The system outputs a classification: "Healthy" or "Unhealthy" with a 

confidence score 

Postconditions The plant’s health status is determined and ready for 

further processing if unhealthy. 

 

Exceptions If the image is blurry or invalid, the system returns an 

error message to the app. 

 

 

Table 3.3.2 Use Case Description for “Analyze Plant Health” Use Case 
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Use Case 3: Detect Pest Type 

 

Use Case ID UC3 Use Case Name Detect Pest Type 

Actors AI System (invoked by Analyze Plant Health) 

Purpose To identify the specific pest (whiteflies or caterpillars) 

affecting an unhealthy plant 

 

Preconditions The plant has been classified as "Unhealthy" by the 

Analyze Plant Health use case. 

 

Basic Flow: 

1) The AI System takes the "Unhealthy" classification and the original image. 

2) The system reanalyzes the image, focusing on pest-specific features. 

3) The AI model outputs the pest type: "Whiteflies" or "Caterpillars" with a 

confidence score. 

 

Postconditions The pest type is identified and ready for solution 

generation. 

 

Exceptions If the pest cannot be confidently identified (exp: low 

confidence), the system flags it as "Unknown Pest." 

  

 

Table 3.3.3 Use Case Description for “Detect Pest Type” Use Case 
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Use Case 4: Generate Solution 

 

Use Case ID UC4 Use Case Name Generate Solution 

Actors AI (invoked by Detect Pest Type or Analyze Plant 

Health if detected plant is healthy) 

Purpose To provide a pest-specific solution for the identified 

pest. 

 

Preconditions The pest type (whiteflies or caterpillars) has been 

identified. 

 

Basic Flow: 

1) The AI System receives the pest type from the Detect Pest Type use case. 

2) The system maps the predefined solution based on these 2 categories:  

a) For the plant that identified as healthy, the system will display "No 

action needed".  

b) For the plant that identified as unhealthy, the system maps the pest to 

a predefined solution: 

• Whiteflies: "Use neem oil or insecticidal soap." 

• Caterpillars: " Apply Bacillus thuringiensis (Bt) or hand-pick 

them." 

3) The solution text is generated. 

 

Postconditions A solution is prepared for display to the Farmer/User. 

 

Exceptions If the pest is "Unknown," a generic solution (exp: 

"Consult an expert") is provided. 

 

 

Table 3.3.4 Use Case Description for “Generate Solution” Use Case 
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Use Case 5: Summarize the Results 

 

Use Case ID UC5 Use Case Name Summarize the Results 

Actors AI (invoked by Detect Pest Type, Analyze Plant Health 

and Generate Solution) 

Purpose To provide a detailed result 

Preconditions The AI System has completed health analysis, pest 

detection (if applicable), and solution generation. 

 

Basic Flow: 

1) The AI system collect data such as: 

a) The status of the plant from Analyze Plant Health 

b) The type of pest that has been detected for unhealthy plants from 

Detect Pest Type 

c) The solution that has been generated from Generate Solution. 

2) The data would be summarized and ready to be displayed to the 

Farmers/User. 

Postconditions A summary of the results will be generated 

 

Exceptions If the results are incomplete, partial data would be 

summarized or show error. 

 

 

Table 3.3.5 Use Case Description for “Summarize the Results” Use Case 
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Use Case 6: Display Results 

 

Use Case ID UC6 Use Case Name Display Results 

Actors AI (invoked by Summarize the Results) 

Purpose To allow the user to view the analysis results on the app 

interface 

 

Preconditions The summary of the results has been generated and 

completed in the AI System. 

Basic Flow: 

1) The app receives the results from the AI System (health status, pest type, 

solution, confidence). 

2) The app displays the results in a user-friendly format (e.g., text fields or 

labels). 

3) The user reviews the information on the screen. 

 

Postconditions The Farmer/User is informed of the plant’s status and 

recommended actions. 

 

Exceptions If results are incomplete, the app shows an error or 

partial data. 

 

 

Table 3.3.6 Use Case Description for “Display Results” Use Case 
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Use Case 7: Generate QR Code 

 

Use Case ID UC7 Use Case Name Generate QR Code 

Actors AI (invoked by Summarize the Results) 

Purpose To encode the analysis results in a QR code for easy 

sharing or storage. 

 

Preconditions The analysis results (health status, pest type, solution, 

confidence) are available. 

 

Basic Flow: 

1) The AI System receives the results from the previous use cases. 

2) The system formats the data into a string 

• Result: The plant is unhealthy, infected by whiteflies. 

Solution: Use neem oil or insecticidal soap. 

Confidence: 92.27% 

Postconditions A QR code is created and ready for display. 

 

Exceptions If the data is too large, the system truncates it to fit QR 

code limits. 

 

 

Table 3.3.7 Use Case Description for “Generate QR Code” Use Case 
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Use Case 8: View QR Code 

 

Use Case ID UC8 Use Case Name View QR Code 

Actors Farmer/User, Expert 

Purpose To allow the user to view and interact with the generated 

QR code and share with experts (optional). 

 

Preconditions The QR code has been generated by the AI System. 

 

Basic Flow: 

1) The app displays the QR code on the screen. 

2) The Farmer/User views the QR code. 

3) The user can scan it with another device or save or share to the experts 

(optional). 

 

Postconditions The Farmer/User has access to the QR code for further 

use. 

Exceptions If the QR code fails to display, the app shows an error 

message. 

 

 

Table 3.3.8 Use Case Description for “View QR Code” Use Case 
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3.4 Activity Diagram 

 

 

Table 3.4 Activity Diagram for the AI model and proposed mobile application 
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Table 3.4 shows the activity diagram of the system which provides details about the 

interaction between the user and the system in a simplified procedure. The procedure 

begins when the user who is gardener or farmer which represents by the dark circle 

clicks the “Capture Plant Image” button in the mobile app through the interface which 

build in the Android Studio. The system will respond by displaying the user interface 

which includes a camera view for capturing the plant image. This is handled by the 

app’s Camera Module using Android’s CameraX API. Once the image is captured, the 

system preprocesses it. This involves the process of resizing the image to 224x224 

pixels which is required by YOLOv5 and normalizing pixel values (exp: scaling from 

0-255 to 0-1) to prepare it for AI analysis. Then, the system uses the YOLOv5 model 

through TensorFlow Lite to analyze the preprocessed image and classify the plant as 

"Healthy" or "Unhealthy." This step analyzes the plant’s health status with a confidence 

score. If the plant is classified as healthy, the system proceeds directly to generating a 

solution for a healthy plant which is “No Solution”. If the plant is detected as unhealthy, 

the system will move to the next step which identify the pest to identify either the pest 

is “Whiteflies” or ‘Caterpillars’. Then the system generates a tailored solution, such as 

"Use neem oil or insecticidal soap" for Whiteflies or "Apply Bacillus thuringiensis (Bt) 

or hand-pick them" for Caterpillars. Then, the system will summarize the results by 

compiling the plant’s health status, pest type, solution and confidence score such as: 

• Plant Status: Unhealthy (Whiteflies) 

• Pest: Whiteflies 

• Solution: Use neem oil or insecticidal soap 

• Confidence: 60.09% 

Then, these results will be encoded into a QR code using the ZXing library for sharing 

purposes. Finally, the system displays the results on the app’s interface for the user to 

review alongside with the QR code for the user to view or share to other people like 

agricultural experts through various platforms. 
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3.5 Project Timeline  

 

 

Figure 3.4 Project Timeline 
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Chapter 4  

System Design 

4.1 System Block Diagram 

 

Figure 4.1 System Block Diagram 

 

The system block diagram for the AI Pest Detection includes both training pipeline and 

mobile app deployment by illustrating the flow of data from dataset preparation to the user 

interaction. It begins with the dataset preparation and augmentation phase where 

main_script.py will organize the dataset of approximately 859 images into training, validation, 

and testing sets and apply augmentations like Gaussian noise and color jitter by using the 

albumentations library to enhance model robustness and saving the results in augmented 

directories. This stage contributes to the Model Training & Export component which trains a 

YOLOv5 model for 100 epochs, evaluating it for >85% accuracy and exporting it to 

TensorFlow Lite (best.tflite). The model will be implemented in the Mobile App on an Android 

device where the User Interface (UI) Layer (build with Android Studio) enables image capture, 

result display and QR code viewing. The Camera Module (CameraX API) captures the plant 

image and then send it to the Inference Engine which preprocesses the image (resize to 

224x224, normalize) and uses the YOLOv5 .tflite model to classify the plant as Healthy or 

Unhealthy and detect pests whether it is Whiteflies or Caterpillars. The Solution Generator will 

then generate the solutions (exp: "Use neem oil" for Whiteflies) After that, the QR Code 

Generator (ZXing library) will encode the results in form of status, pest, solution, confidence 

into a QR code. Finally, the results and the QR code will display through the UI Layer for the 

user. 
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4.2 System Components Specifications 

4.2.1  Hardware  

The hardware that is required for the development of this project are a processor, ethernet 

connection, storage (SSD), memory (RAM) and a graphic card. The processor function by 

increasing the performance of the computer. The graphic card is used to display quality images. 

The SSD used to increase the storage to store data and RAM is used to read data and increase 

the performance of the computer. The specifications of the laptop model used by the developer 

to develop this project is stated in the table below. 

 

Description Specifications 

Model ROG Strix G513IC_G513IC 

Processor AMD Ryzen 7 4800H 

Operating System Windows 10 

Graphic NVIDIA GeForce RTX 3050 

Memory 40GB DDR4 RAM 

Storage INTEL SSDPEKNU512GZ 477GB 

 

Table 4.2.1.1 Specifications of laptop 

 

The developer also uses a mobile device as the deployment environment for the app. The 

mobile device will run the Android app that integrates with the trained .tflite model for the 

on-device pest detection. The specification of the mobile device is stated in the table below. 

 

Description Specifications 

Model Huawei Nova 4 

Processor HiSilicon Kirin 970 

Operating System Android 9.0 

Resolution 2310 x 1080 

Memory 8 GB RAM 

Storage 128 GB 

 

Table 4.2.1.2 Specifications of mobile device 
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4.2.2 Software  

 

The software requirements that been showed are coding, database and operating 

system. As for the coding part, Android Studio 2023 were used to build the mobile 

payment application. The software that used to store the user data is Firebase 

Realtime Database. The AI model would be trained by using Jupyter Notebook by 

using python programming language. 

 

Specifications Description 

Android Studio 2024 Use for coding purposes to build the mobile payment app. 

Jupyter Notebook Use to train AI model 

Storage Minimum 8GB of available disk space 

Display Resolution 1280*800 

RAM 8GB 

 

Table 4.2.2 Specifications of software  

 

 

4.2.3 Software Setup for Deployment  

 

There is various software that need to be installed in the laptop for the development 

of this AI model. 

 

4.2.3.1 Python Environment 

• Python version: 3.12.4 (required by YOLOv5) 

• Library: 

1. Torch: For YOLOv5 model training and inference 

2. Cv2: For image processing such as reading, augmenting and saving 

images 

3. Albumentations: For image augmentation such as Gaussian noise and 

color jitter. 

4. Numpy: For data handling, evaluation and visualization 

5. Pandas: For data handling, evaluation and visualization 

6. Matplotlib: For data handling, evaluation and visualization 

7. Sklearn: For calculating accuracy and classification reports. 
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8. Shutil: For file operations and result saving. 

9. Glob: For file operations and result saving. 

10. Json: For file operations and result saving. 

 

4.2.3.2 Jupyter Notebook 

The Jupyter Notebook is used to execute the main_script.py for training and 

evaluation purposes. There are minimum requirements of this Jupyter Notebook. 

Minimum requirements: 

• Storage: 8GB of disk space 

• Display Resolution: 1280x800 for visualization of results in Jupyter 

Notebook 

• RAM: 8GB (minimum for running Jupyter and Python scripts) 

 

4.2.3.3 YOLOv5 Repository 

The purpose of this YOLOv5 is to facilitates the dataset augmentation, model 

training (100 epochs), evaluation and export to .tflite format. 

• Cloned from https://github.com/ultralytics/yolov5.git. 

• Dependencies installed through pip install -r requirements.txt that 

includes torch , torchvision and others. 

 

4.2.4 System Components for Mobile App 

There are various components which are part of the Android app. 

4.2.4.1 User Interface (UI) Layer 

• Framework: Android Studio Meerkat 2024 

• Programming Languages: Java/Kotlin 

• Components: 

1. Image Capture Interference: Button to trigger the camera (exp: 

Capture Image) 

2. Result Display: Show results with text views 

 

Example of the results: 

Plant Status: Healthy 

https://github.com/ultralytics/yolov5.git
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Pest: None 

Solution: No action needed 

Confidence: 0.00% 

 

3. QR Code View: Display the generated QR Code that contains the 

results. 

 

4.2.4.2 Camera Module 

• API: CameraX (Android Jetpack library for camera access) 

• Function: To capture raw images of the plant 

• Requirement: Rear camera of the android smartphone camera permission 

granted by the user 

 

4.2.4.3 Inference Engine 

There are few sub-components in the inference engine. 

 

• Image Preprocessor: Its function is to resize images to 224x224 pixels and 

normalizes pixel value (0-1). It handles by TensoFlow’s Lite preprocessing 

that utilities within the app. 

• TensorFlow Lite Model (YOLOv5):  

1. Model File: best.tflite which generated by main.script.py 

2. Input: Preprocessed images (224x224) 

3. Outputs: Classification of Healthy or Unhealthy, pest type 

(Whiteflies or Caterpillars) with confidence score. 

4. Framework: TensorFlow Lite 

5. Accuracy: 87.31% 

 

4.2.4.4 Solution Generator 

• Function: Maps detection results to solutions using a hardcoded lookup 

table (exp: HashMap in Kotlin) 

• Mappings: 

1. Healthy: “No action needed” 

2. Whiteflies: “Use neem oil or insecticidal soap” 
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3. Caterpillars: “Apply Bacillus thuringiensis (Bt) or hand-pick 

them” 

4. Unknown: “Consult a local expert” 

• Implementation: Coded with Java/Kotlin 

 

4.2.4.5 QR Code Generator 

• Library: ZXing (Zebra Crossing) library for QR code generator 

• Function: Encodes the detection results (status, pest, solution, confidence) 

into a QR code. 

• Output: QR code will be displayed on the UI 

 

4.2.4.6 Dataset Specifications 

• Dataset: Custom dataset for pest detection with annotation through 

Roboflow 

• Size: 859 images where 448 images for training, 277 images for validation 

and 134 images for testing. 

• Classes: 3 categories which are healthy, whiteflies and caterpillars. 

• Format:  

1. Images in form of jpg, JPEG, Ng will be stored in a folder with 

images/train, images/val and images/test. 

2. Labels in form of text file will be stored in in a folder with labels/train, 

labels/val and labels/test. 

 

4.3 Model Selection and Architecture 

 In this project, the YOLOv5 model was chosen due to its balance of efficiency, 

speed, and accuracy, making it ideal for real-time detection on resource-

constrained mobile devices. 
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Figure 4.2 YOLOv5 Model Structure 

 

Figure 4.2 shows the YOLOv5s architecture in the AI pest detection project is a 

three-stage framework specifically designed for efficient, multi-scale object 

detection, comprising the Backbone, PANet, and Output layers to identify Healthy 

plants, Whiteflies, and Caterpillars in farm settings. The Backbone, featuring 

BottleNeckCSP modules and an SPP block which extracts hierarchical features 

from a 640x640 RGB input image by down sampling through resolutions 

(640x640 to 20x20) by using stride-2 convolutions and cross-stage connections. 

With the SPP block applying multi-scale max-pooling (exp: 5x5, 9x9, 13x13 

kernels) at the 20x20 resolution (1,475,712 parameters) to capture features for 

small pests like whiteflies and caterpillars and producing feature maps with 

increasing channels (exp: 48 to 768) for semantic richness. The PANet aggregates 

these features through a bottom-up path (additional BottleNeckCSP and Conv3x3 

S2 layers for downsampling) and a top-down path (bilinear upsampling, Conv1x1 

for channel adjustment and concatenation at scales like 20x20, 40x40, 

80x80.Then, it will combine high-level semantic information with low-level 

spatial details to enhance detection across scales which can be seen in the model 

summary with tf_upsample and tf_concat The Output layers apply Conv1x1 

operations at each scale to generate predictions with shapes like (1, 80, 80, 24) (3 

anchors, 5 box coordinates, 3 classes), producing bounding boxes, class 
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probabilities, and confidence scores, followed by NMS (confidence threshold 0.1 

in detect_pest_status) to filter overlapping detections.  

 

4.4 Data Preprocessing 

 

 
Figure 4.3 Data Preprocessing Code snippet 

 

Based on Figure 4.3, the data processing focuses on preparing the training dataset by 

applying augmentation to enhance model robustness. The process begins by defining the 

dataset path as C:/Users/ASUS/Desktop/Year 4 Sem 2/My FYP 2/AI for Pest 

Detection/DatasetC and verifying the existence of training images (448 images) and labels in 

images/train and labels/train directories, ensuring the dataset is correctly structured for 

YOLOv5 training. The preprocessing then involves augmenting the training images using the 
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albumentations library, where a pipeline applies Gaussian noise with a variance limit of 10.0 

to 50.0 (30% probability) to simulate real-world imperfections and color jitter with ±20% 

adjustments to brightness, contrast, saturation, and hue (50% probability) to mimic varying 

lighting conditions, processing each image by reading it with cv2.imread, applying the 

augmentations, and saving the results to images/train_aug. These labels will be copied and 

remain unchanged to labels/train_aug since these augmentations do not affect bounding box 

coordinates and the process concludes with a verification step confirming 448 augmented 

images and labels, flagging any missing labels to ensure dataset integrity. While this code 

handles augmentation as a preprocessing step for training, it lacks explicit resizing and 

normalization, which are managed by YOLOv5’s data loader during training (resizing to 

640x640 and normalizing to [0, 1]) and does not address inference preprocessing requirements 

like resizing to 224x224 for the mobile app, which are handled separately in the Inference 

Engine. 

 

  

 

Figure 4.4 Files in the images folder for Dataset 

 

 

Figure 4.5 Files in the labels folder for Dataset 
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Based on Figure 4.4, there are various folders in the images folder in the dataset. As for the 

folder test, train and val , the folder is created based on YOLOv5, as training the AI model with 

YOLOv5 model requires the dataset to be separated into 3 categories which are testing, training 

and validation. As for the train_aug, this folder will be generated by the model while training 

the model for storing the augmentation images in it. This process sames goes to the folders in 

the labels as shown as in Figure 4.5. The only difference is, the images folder contains images 

meanwhile the labels folders contain txt files. 

 

 

 

Figure 4.6 data.yaml file 

 

 

 Figure 4.6 shows the data.yaml which is a configuration file used in the AI pest detection 

project to define the dataset structure and metadata for training the YOLOv5s model, 

facilitating the training, validation, and testing processes and indicating the dataset was sourced 

from Roboflow which is a platform for dataset management, which likely handled initial 

annotation and splitting. This file serves as a critical link between the dataset and the YOLOv5 

training pipeline to ensure the model correctly loads and processes the data for pest detection 
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4.5 Model Training and Tuning 

 

Figure 4.7 Model Architecture 

 

Figure 4.7 shows the summary of the YOLOv5s architecture that is used in the AI pest 

detection project, detailing its layers, output shapes, parameters, and connections. The model 

starts with an input layer accepting 640x640 RGB images (1, 640, 640, 3) followed by a 

Backbone with convolutional (TFConv) and Cross-Stage Partial (TFC3) layers that 

downsample to 20x20 (tf_conv_37, (1, 20, 20, 768)) that extract features for pest detection. An 

SPPF block (tfsppf, 1,475,712 parameters) captures multi-scale features and the Feature 

Pyramid Network (FPN) uses upsampling (TFUpsample) and concatenation (TFConcat) to 

aggregate features at scales like 20x20, 40x40, and 80x80 (tfc3_5, (1, 80, 80, 192)). The final 
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detection layer (tf_detect, (1, 25200, 7)) predicts bounding boxes, class probabilities (Healthy, 

Whiteflies, Caterpillars), and confidence scores across 25,200 anchor boxes with 7 values per 

anchor (4 box coordinates, 1 objectness score, 2 class probabilities). With 20,856,975 total 

parameters (79.56 MB), the model is lightweight for mobile deployment after TensorFlow Lite 

conversion (14-20 MB) and achieves 87.31% accuracy which surpasses the project’s >85% 

target.  

 

4.6 Performance evaluation of the model 

 

 

Figure 4.8 Model Accuracy 

 

Figure 4.8 shows the performance evaluation of the YOLOv5s model for the AI pest 

detection project which reports a model accuracy of 87.31% and classification report for the 

test set (134 images) across three classes which are “Healthy”, “caterpillars”, and “whiteflies”. 

The overall accuracy of 87.31% which indicates the model correctly classified 87.31% of the 

test images and surpasses the project’s target of >85%. The classification report provides 

precision, recall, and F1-score for each class. Healthy achieves a precision, recall and F1-score 

of 0.76 with 34 samples which show balanced but relatively low performance. Caterpillars 

scores 0.88 across all metrics with 50 samples, indicating strong detection capability. 

Whiteflies excel with 0.94 precision, 0.94 recall, and 0.94 F1-score across 50 samples which 

reflects the model’s best performance on this class. The macro average (unweighted mean) 

across classes is 0.86 for precision, recall, and F1-score. Meanwhile the weighted average 

(considering class support) is 0.87 for all metrics aligning with the overall accuracy.  
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These are the formulas for the Metrics: 

1. Precision: A performance metric that measures the proportion of predicted positive 

instances that are correct 

 

Formula:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 

 

 

2. Recall: A performance metric that measures the proportion of actual positives that are 

correctly identified 

 

Formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
 

 

3. F1-Score: A performance metric that represents the harmonic mean of precision and 

recall and providing a single score that balances both metrics to evaluate a model’s 

effectiveness 

 

Formula: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑋 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

4. Support: The count of true instances for each class in the test set. 

 

Formula:  

Support = Number of actual instances of the class in the test path 

 

5. Accuracy: Measures the proportion of correctly classified instances across all classes. 

 

Formula:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
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6. Macro average: Computes the unweighted mean of the metric across all classes, 

treating each class equally. 

 

Formula: 

i. 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =  
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑁
𝑖=1

𝑁
 

ii. 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 (𝑅𝑒𝑐𝑎𝑙𝑙) =  
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁
𝑖=1

𝑁
 

iii. 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 (𝐹1 − 𝑆𝑐𝑜𝑟𝑒) =  
∑ 𝐹1−𝑆𝑐𝑜𝑟𝑒𝑖

𝑁
𝑖=1

𝑁
 

 

7. Weighted Average: Accounts for class imbalance by weighting each class’s metric 

by its support 

 

Formula: 

i. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =  ∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡
)𝑁

𝑖=1  

ii. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 (𝑅𝑒𝑐𝑎𝑙𝑙) =  ∑ (𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡
)𝑁

𝑖=1  

iii. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 (𝐹1 − 𝑆𝑐𝑜𝑟𝑒) =  ∑ (𝐹1 − 𝑆𝑐𝑜𝑟𝑒 𝑥 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡
)𝑁

𝑖=1  

 

4.6.1 Graphs for performance evaluation 

1. F1-Confidence 

 

Figure 4.9 F1-Confidence Curve 
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Figure 4.9 shows the F1-Confidence Curve for the YOLOv5s model in this project 

and evaluating its performance across confidence thresholds for the classes which are 

caterpillars, whiteflies and all classes combined. The x-axis represents the confidence 

threshold (0.0 to 1.0) while the y-axis shows the F1-score (0.0 to 1.0) which balances 

precision and recall. The curve for "caterpillars" (blue line) peaks at approximately 0.55 

around a 0.25 threshold which indicates moderate performance. Meanwhile, 

"whiteflies" (orange line) reaches a higher peak of approximately at 0.60 and at 

approximately 0.2 which reflects better detection capability, consistent with earlier 

metrics (exp: AP = 0.527 for whiteflies vs 0.339 for caterpillars). The "all classes" curve 

(cyan line) peaks at an F1-score of 0.49 at a confidence threshold of 0.267, representing 

the average performance across Healthy, Whiteflies, and Caterpillars but this is lower 

than the classification report’s F1-scores (exp: weighted avg 0.87) and overall accuracy 

(87.31%), suggesting that this curve may reflect an earlier evaluation before tuning. 

The curves rise sharply from 0.0 to their peaks as the threshold increases then decline, 

indicates that there is a trade-off between precision and recall with the optimal threshold 

of 0.267 balancing both for all classes even though the lower F1-score highlights the 

challenges like the Healthy class’s initial poor performance (0% correct in the 

confusion matrix). 

  

2. Precision-Confidence  

 
Figure 4.10 Precision-Confidence Curve 
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Figure 4.10 shows a Precision-Confidence Curve for the YOLOv5s model in this project 

and illustrates how precision varies with different confidence thresholds for the classes’ 

caterpillars, whiteflies, and all classes combined. The x-axis represents the confidence 

threshold (0.0 to 1.0) while the y-axis shows precision (0.0 to 1.0) which measures the 

proportion of predicted positives that are correct. The curve for "caterpillars" (blue line) 

fluctuates by peaking at approximately 0.9 around 0.4 but dropping to near 0.0 at approximately 

0.6 before rising to 1.0 at higher thresholds. This indicates inconsistent performance due to 

small sample size or class overlap. The "whiteflies" curve (orange line) similarly peaks at 

approximately 0.9 around 0.4 but drops to near 0.0 at approximately 0.7then rises back to 1.0. 

This reflects variability but better overall precision than caterpillars and consistent with earlier 

metrics (AP = 0.527 vs. 0.339). The "all classes" curve (cyan line) steadily increases by 

reaching a perfect precision of 1.00 at a confidence threshold of 0.803. This shows that all 

predictions above this threshold are correct even though these likely sacrifices recall which can 

be seen in the Recall-Confidence Curve (max recall 0.86 at 0.0 threshold). This curve which 

likely from an earlier evaluation (before the final 87.31% accuracy) highlights that the trade-

off between precision and recall with the high threshold of 0.803 ensuring no false positives 

but potentially missing true positives, especially for the Healthy class which initially struggled 

(0% correct in the confusion matrix). 
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3. Precision-Recall 

 

 

Figure 4.11 Precision-Recall Curve 

 

Figure 4.11 shows a Precision-Recall Curve for the YOLOv5s model in this 

project and evaluates its performance across different recall levels for the classes’ 

caterpillars, whiteflies and all classes combined. The x-axis represents recall which 

the proportion of actual positives correctly identified while the y-axis shows the 

proportion of predicted positives that are correct. The "caterpillars" curve (blue line) 

has an Average Precision (AP) of 0.339 that starts at high precision (1.0) at low 

recall (0.0) but dropping to below 0.4 by recall 0.5 which indicates more false 

positives as recall increases. The "whiteflies" curve (orange line) performs better 

with an AP of 0.527, maintaining higher precision (0.8 at recall 0.2) and staying 

above 0.4 until recall 0.6. This reflects stronger detection capability and consistency 

with the classification report (precision 0.94, recall 0.98). The "all classes" curve 

(cyan line) yields an mAP@0.5 of 0.433, averaging performance across Healthy, 

Whiteflies, and Caterpillars but falls below 0.4 by recall 0.6 as influenced by the 

Healthy class due to its initial poor performance (0% correct in the confusion 

matrix).  
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4. Recall-Confidence 

 

 
Figure 4.12 Recall-Confidence Curve 

 

 

Figure 4.12 shows a Recall-Confidence Curve for the YOLOv5s model in this 

project and shows how recall varies with different confidence thresholds for the 

classes’ caterpillars, whiteflies and all classes combined. The x-axis represents the 

confidence threshold (0.0 to 1.0) while the y-axis shows recall, the proportion of 

actual positives correctly identified. The "caterpillars" curve (blue line) starts at 0.9 

then recalls at a 0.0 threshold but drops to approximately 0.4 by 0.2 and nearing 0.0 

by 0.8. This indicates that the model misses many true caterpillars as the threshold 

increases. The "whiteflies" curve (orange line) also starts at approximately 0.9 and 

maintains a slightly higher recall (0.5 at 0.2), then drops to near 0.0 by 0.8 and aligns 

with its stronger performance (recall 0.98 in the classification report). The "all 

classes" curve (cyan line) achieves a maximum recall of 0.86 at a 0.000 threshold 

with average performance across Healthy, Whiteflies, and Caterpillars but then 

declines to approximately 0.4 by 0.2 and approaches 0.0 by 0.8. This reflects the 

low confidence scores for true positives especially for the Healthy class (initially 0% 

correct in the confusion matrix).  
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4.6.2 Confusion Matrix 

 

 

Figure 4.13 Confusion Matrix 

 

Figure 4.13 shows a confusion matrix for the YOLOv5s model in the AI pest detection 

project and evaluating its performance on the test set (134 images) across three classes which 

are caterpillars, whiteflies, and background (Healthy). The matrix compares true labels (rows) 

against predicted labels (columns) with values that are normalized to represent proportions. For 

true caterpillars, the model correctly predicts 46% as caterpillars but misclassifies 1% as 

whiteflies and 22% as background. This indicates moderate performance (aligned with AP = 

0.339 in the Precision-Recall Curve). For true whiteflies, it correctly predicts 78% as whiteflies 

but 54% misclassified 54% as caterpillars and 44% as background. This shows stronger 

performance (AP = 0.527) even though with notable errors. For true background (Healthy), the 

model fails entirely by predicting 0% correctly and misclassified 54% as caterpillars and also 

44% as whiteflies.  
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4.7 Mobile App Development 

 The mobile app for this AI model developed by using Android Studio 2024. The AI model 

that is exported in the form of Tensorflow Lite, will be implemented in the mobile app. This 

mobile app is developed based on the function of the AI model so it is compatible with the AI 

model so it can execute it successful performance for the user without any errors. The mobile 

app contains a homepage with the logo and a “Lets Get Started” for the user. Then, the main 

function for this app is for the user to capture the live image of the plant or upload the image 

of the plant from their image directory in their phone for the AI model to process the image. 

Then the results will be displayed in the user interface along with the QR code that will be 

generated. Other users also can scan the QR code with their mobile phone doesn’t matter it is 

an Android phone or IOS phone. 

. 
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Chapter 5  

System Implementation 

5.1 Hardware Setup 

 

Figure 5.0 Hardware Setup Environment (Laptop) 

 

  Figure 5.0 shows the hardware setup environment which is a laptop that is used for the 

AI model development and mobile app development. This machine is sufficient to train the AI 

model and develop the mobile app as the specifications meet the requirements of developing 

the AI model and mobile app. 
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Figure 5.1 Hardware Setup Environment (Smartphone) 

 

 Figure 5.1 shows an Android smartphone that is used to execute the mobile application that 

is developed from the machine for testing purposes as the mobile application of this AI model 

requires the smartphone’s physical front camera to capture the live image. 

 

5.2 Software Setup  

5.2.1 Anaconda 

 

Figure 5.2 Anaconda prompt installation 



Bachelor of Information Technology (Honours) Communications and Networking 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    60 
 

 The Anaconda Prompt is a command-line interface included with the Anaconda 

Distribution (or Miniconda) that provides a pre-configured environment for managing Python, 

Conda environments and data science tools. It simplifies package management, environment 

isolation, and execution of Python-based tools like Jupyter Notebook, Spyder, or scripts. 

Therefore, to execute the Jupyter Notebook for the AI model development purposes, the 

anaconda prompt needs to be installed first. 

 

 

Figure 5.3 Anaconda Navigator 

  

After the installation of the anaconda prompt, there will be a anaconda navigator which 

will show all the development tools and environment isolation that can be used to develop 

any AI models or other developments such as data science, R Programming and etc. 
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5.2.2 Jupyter Notebook 

 

 

Figure 5.4 Jupyter Notebook 

Jupyter Notebook is a versatile tool for interactive coding, data analysis, visualization, 

machine learning, education, and research. Its ability to combine code, text, and visuals makes 

it ideal for prototyping, documenting workflows, and sharing results. Jupyter Notebook is not 

limited to AI as it supports general programming, scientific computing, etc. 

 

 

 Figure 5.5 Installation of Jupyter Notebook 

 

To develop the AI model, the jupyter notebook tools must be installed by entering those 

commands that are shown in Figure 5.5. 
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Figure 5.6 Opening Jupyter Notebook with anaconda prompt 

 

 

Figure 5.7 Select a notebook to open in Jupyter Notebook 

 To open the jupyter notebook, developer must open anaconda prompt and type jupyter 

notebook as shown in Figure 5.6. Then it will proceed to the chrome for opening the jupyter 

notebook as shown in Figure 5.7. 
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Figure 5.8 Code Snippet in Jupyter Notebook 

 Then, the developer can begin their development of AI model project by typing codes and 

executing them in the Jupyter Notebook as shown in Figure 5.8. 

 

5.2.3 Roboflow 

 

 

Figure 5.9 Roboflow 

Roboflow is an end-to-end computer vision platform that is designed to simplify the process 

of building, training, and deploying computer vision models. It provides a comprehensive suite 
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of tools for developers, data scientists and enterprises, making computer vision accessible 

regardless of expertise level.  

 

 

Figure 5.10 Interface for Roboflow 

  

 The developer uses the Roboflow to annotate all the images in the dataset that was prepared 

for the AI model training as the developer is using YOLOv5 to train the AI model. Therefore, 

the developer needs to use this platform to manually annotate all the images in the dataset and 

then divide the images into 3 categories which are training, testing and validating. 

 

5.2.4 Android Studio 

 

 

Figure 5.11 Android Studio 
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Android Studio is a powerful IDE for building, testing, and deploying Android applications, 

offering tools for coding, UI design, emulation, debugging, and integration with AI models, 

cloud services, and databases. It’s not limited to any single type of app as it supports mobile, 

wearable, automotive, and TV apps with robust support for machine learning . 

 

Figure 5.12 Android Studio Installation  

 

 To develop the mobile application, the developer needs to download the Android Studio to 

build the mobile application. After downloading it, the developer needs to create a project an 

select the file path to store and save their work. The developer also needs to specify whether 

they need to use Java or Kotlin language. As for this project, it is developed by using Kotlin. 

 

Figure 5.13 Coding snippet in Android Studio 
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 The developer will begin the development of the mobile application by putting all the code 

and execute to check whether the mobile app is working or not and fixed it if there are any 

bugs or errors which as shown as Figure 5.13. 

 

5.3 System Operations (with screenshot) 

5.3.1 Output of the Results shown by AI Model 

 

Figure 5.14 Results of the plant that infected by whiteflies 

 

 During the training process of the AI model, the developer also includes the image for 

testing purposes by putting it in the dataset path of where the testing image is stored for the 

AI model to detect whether the detection that is done by the AI model is correct or incorrect 

and accurate or not accurate. Based on Figure 5.14, the image of the plant infected by 

whiteflies is used for the AI detection testing purposes. As the results shown by the AI are: 

• Plant Status: Unhealthy (Whiteflies) 

• Pest: Whiteflies 

• Solution: Use neem oil or insecticidal soap 

• Confidence: 47.96% 

The results generated by the AI model have proven that its detection is accurate and precise. 
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Figure 5.15 Results of the plant infected by caterpillars 

 

Then, the developer changed the previous image to the new image of the plant that was infected 

with caterpillars in the dataset path for testing purposes. Based on Figure 5.15, the results 

shown by the AI model are: 

• Plant Status: Unhealthy (Caterpillars) 

• Pest: Caterpillars 

• Solution: Apply Bacillus thuringiensis (Bt) or hand-pic them 

• Confidence: 72.42% 

The results generated by the AI model have proven that its detection is accurate and precise. 
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Figure 5.16 Results of the healthy plant 

 

 The developer does the final testing on the AI model by providing an image of the healthy 

plant which is infected by none of the pests. The AI model once again detected correctly of the 

plant status as the results generated by the AI model are as shown as in Figure 5.16 which are: 

• Plant Status: Healthy 

• Pest: None 

• Solution: No action needed 

• Confidence: 0.00% 

The results generated by the AI model have proven that its detection is accurate and precise. 

 

 

 

 

 

 



Bachelor of Information Technology (Honours) Communications and Networking 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    69 
 

5.3.2 Output of the Results shown by the Smart Pest Detection App 

 The developer then implements the AI model that has been converted to. tflite into the 

mobile application for the user to test and use for detecting the condition of their plant and the 

type of pest in their plant. 

 

5.3.2 1 Homepage 

 

 

Figure 5.17 Homepage of the Mobile App 

 

 Figure 5.17 shows the Homepage of the Mobile App. The homepage shows the name of 

this mobile app which is “Smart Pest Detection” for the user to know what is the name of the 

mobile application that they are using. The, there is a “Let’s Get Started” button for the user to 

click so they can proceed to the next page of the mobile application. 
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5.3.2.2 Main page 

 

 

Figure 5.18 Main page of the Mobile App 

 

 Figure 5.18 shows the Main page of the Mobile App where the user will redirect to this 

page after they click the “Let’s Get Started Button” in the Homepage as shown in Figure 5.17. 

Based on this Main page, there is a camera view which is connected to the phone camera. This 

camera view is for the user to view the environment or the object that they need to capture as 

an image. Below the camera view, there are 2 buttons which is “Capture” and “Upload Image”. 

The “Capture” button is allowing the user to capture the image and then the AI will preprocess 

the image and detect the status of the plant. As for the “Upload Image” button, allowing the 

user to select the image of the plant for the AI model to preprocess and detect the status of the 

plant. 
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5.3.2.3 Results provided by the mobile app 

The Smart Pest Detection mobile app has been used to detect plants with several conditions 

which are infected by caterpillars, infected by whiteflies and healthy. 

 

5.3.2.3.1 Plants infected with caterpillars 

 

 

Figure 5.19 Results of plant infected with caterpillars 

 

 Figure 5.19 shows the results of the plant status when capturing the image of the plant that 

is infected with caterpillars. The results that are provided by the Smart Pest Detection App as 

shown based in Figure 5.19 are: 

• Plant Status: Unhealthy (Caterpillars) 

• Pest: caterpillars 

• Solution: Apply Bacillus thuringiensis (Bt) or hand-pick them 

• Confidence: 63.56% 

Below the results, there are also the QR code which can be scanned by the users as this QR 

code is used for sharing purposes. 
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Figure 5.20 Results displayed by QR code after scanning with Android smartphone 

 

 

 

Figure 5.21 Results displayed by QR code after scanning with IOS smartphone 

 

Based on the results shown by Figure 5.20 and 5.21, it has proven that the QR code is 

working and eligible for both Android and IOS smartphones. 
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5.3.2.3.2 Plant infected by whiteflies 

 

 

Figure 5.22 Results of plant infected with whiteflies 

 

Figure 5.22 shows the results of the plant status when capturing the image of the plant that is 

infected with whiteflies. The results that are provided by the Smart Pest Detection App as 

shown based in Figure 5.22 are: 

• Plant Status: Unhealthy (Whiteflies) 

• Pest: whiteflies 

• Solution: Use neem oil or insecticidal soap 

• Confidence: 65.30% 

Below the results, there are also the QR code which can be scanned by the users as this QR 

code is used for sharing purposes. 
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Figure 5.23 Results displayed by QR code after scanning with Android smartphone 

 

 

Figure 5.24 Results displayed by QR code after scanning with IOS smartphone 

 

Based on the results shown by Figure 5.23 and 5.24, it has proven that the QR code is 

working and eligible for both Android and IOS smartphones. 
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5.3.2.3.3 Healthy Plant 

 

 

Figure 5.25 Results of healthy plant 

 

Figure 5.25 shows the results of plant status when capturing the image of a healthy plant. The 

results that are provided by the Smart Pest Detection App as shown based in Figure 5.25 are: 

• Plant Status: Healthy 

• Pest: None 

• Solution: No action needed 

• Confidence: 0.00% 

Below the results, there are also the QR code which can be scanned by the users as this QR 

code is used for sharing purposes. 
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Figure 5.26 Results displayed by QR code after scanning with Android smartphone 

 

 

Figure 5.27 Results displayed by QR code after scanning with IOS smartphone 

 

Based on the results shown by Figure 5.26 and 5.27, it has proven that the QR code is working 

and eligible for both Android and IOS smartphones. 
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5.3.2.4 Results of the uploaded image 

 

 

Figure 5.28 User’s image directory interface 

 

 When the user clicks the “Upload Image” button, the Smart Pest Detection mobile app will 

redirect the user to their images directory for them to select the image that they need to upload 

for the application to provide the results of their plant status. Based on Figure 5.28, the user 

will select the images of the plants that are infected by whiteflies. 
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Figure 5.29 Results of the uploaded image 

  

Figure 5.29 shows the results of the image that was uploaded by the user. The results stated 

by the Smart Pest Detection are:  

• Plant Status: Unhealthy (Whiteflies) 

• Pest: whiteflies 

• Solution: Use neem oil or insecticidal soap 

• Confidence: 62.95% 

 

This proven that the Smart Pest Detection detected the status of the plants correctly as the user 

uploaded the image of the plant that is infected by whiteflies as shown in Figure 5.29. Below 

the results, there is also a QR which encoded with the results generated by the Smart pest 

Detection mobile app for the user to save or share to other people like their friends or 

agricultural experts. 
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5.4 Implementation Issues and Challenges 

 

The AI pest detection app’s development faced challenges like a small number of datasets 

where it couldn’t boost the accuracy of the model to > 90%. As the current accuracy of the 

model is 87.31%, it still could detect the status of the plant incorrectly on some other images 

of the plant. It somehow could misclassify the plant which was infected by whiteflies and 

caterpillars as healthy plant as the developer didn’t annotate the healthy plant dataset. There is 

also a case where the object which is not a plant and a plant which infected with other pests 

such as spider mites, mealybugs, fungus gnats and etc will also been classify as healthy for the 

plant status where it should have detected as unknown object and “Consult an expert” as 

solution. This is also due to no annotation of the healthy plant dataset. There is also a reason 

why the healthy plant dataset is not annotated which is the classification of the plant that 

detected by whiteflies and caterpillars could also be misclassified as healthy plants more often 

as the annotation of the healthy plant which is green leaves. Hence there are also green leaves 

on the plants that are infected by whiteflies and caterpillars. Therefore, the plants that are 

infected by whiteflies and caterpillars have a high chance to be misclassified as healthy plants 

by the AI model. 

 

 Furthermore, during the training of the AI model by using Jupyter notebook, it could take 

a long time such as 5 hours to 8 hours to train the AI model as the developer uses CPU to train 

the AI model instead of GPU. This is because there is a failure for the developer to configure 

the Jupyter Notebook to train the AI model by using GPU due to unknown errors such as the 

Jupyter Notebook failing to detect the GPU of the machine. While training the AI models, there 

are some errors such as high misclassification issues and low model accuracy issues. Therefore, 

there is much time that has been spent, and research has been made in order to correct and 

enhance the AI model into more successful and more accurate in detecting the condition of the 

plants. 

 

 

 

 

 

 



Bachelor of Information Technology (Honours) Communications and Networking 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    80 
 

 

Chapter 6  

System Evaluation and Discussion 

 

6.1 System Testing  

 

6.1.1 AI Pest Detection Model Testing 

 

Test Case Test 

Description 

Test Data Expected Result Pass/Fail 

Pest Detection 

(Image of plants 

that are infected 

by caterpillars) 

Test AI model’s 

ability to detect 

pests correctly. 

 

Image of a plant 

infected by 

caterpillar 

(from test 

images set). 

 

Model should detect the 

plant as unhealthy and 

detect the pest type as 

caterpillars 

Pass 

Pest Detection 

(Image of plants 

that are infected 

by whiteflies) 

Test AI model’s 

ability to detect 

pests correctly 

Image of a plant 

infected by 

whiteflies (from 

test images set). 

 

Model should detect the 

plant as unhealthy and 

detect the pest type as 

whiteflies. 

Pass 

Pest Detection 

(Image of 

healthy plants) 

Test AI model’s 

ability to detect 

the status of the 

plants correctly 

Image of a 

healthy plant 

(from test 

images set). 

 

Model should detect the 

plant as healthy with no 

pests. 

Pass 

Pest Detection 

(Image of plants 

that are infected 

by other pests) 

Test AI model’s 

ability to detect 

the status of the 

plants correctly 

Image of a plant 

infected by 

spider mites. 

(from test 

images set). 

Model should detect 

the plant as unhealthy 

(unknown) and detect 

the pest type as 

unknown. 

Fail 
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Pest Detection 

(Image of an 

object which is 

not a plant) 

Test AI model’s 

ability to detect 

the status of the 

plants correctly 

Image of a 

laptop 

(from test 

images set) 

Model should detect 

the object as unhealthy 

(unknown) and detect 

the pest type as 

unknown. 

Fail 

Low-Light 

Image 

Detection 

(Image of plants 

that are infected 

by caterpillars) 

Test model’s 

performance in 

low-light 

conditions. 

 

Image of a plant 

with caterpillars 

in low light. 

 

Model should detect 

the plant as infected by 

caterpillars. 

Pass 

Low-Light 

Image 

Detection 

(Image of plants 

that are infected 

by whiteflies) 

Test model’s 

performance in 

low-light 

conditions. 

 

Image of a plant 

with whiteflies 

in low light. 

 

Model should detect 

the plant as infected by 

whiteflies. 

Pass 

Low-Light 

Image 

Detection 

(Image of 

healthy plants) 

Test model’s 

performance in 

low-light 

conditions. 

 

Image of a 

healthy plant in 

low light. 

 

Model should detect 

the plant as healthy 

with no pests. 

Pass 

Solution 

Generator 

(Image of plants 

that are infected 

by caterpillars) 

Test model’s 

ability to 

generate the 

correct solution 

for the plants 

that are infected 

by caterpillars. 

Image of a plant 

infected by 

caterpillar 

(from test 

images set). 

 

Model should generate 

the solution for the 

plant that infected by 

caterpillars which is 

“Apply Bacillus 

thuringiensis (Bt) or 

hand-pick them”. 

Pass 

Solution 

Generator 

Test model’s 

ability to 

generate the 

Image of a plant 

infected by 

Model should generate 

the solution for the 

plant that infected by 

Pass 
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(Image of plants 

that are infected 

by whiteflies) 

correct solution 

for the plants 

that are infected 

by whiteflies. 

whiteflies (from 

test images set). 

 

whiteflies which is 

“Use neem oil or 

insecticidal soap”. 

Solution 

Generator 

(Image of 

healthy plants) 

Test model’s 

ability to 

generate the 

solution for 

healthy plants.  

Images of a 

healthy plant 

(from test 

images set) 

Model should generate 

the solution for the 

healthy plant which is 

“No action needed”. 

Pass 

Solution 

Generator 

(Image of plants 

that are infected 

by other pests) 

Test model’s 

ability to 

generate the 

solution for 

healthy plants. 

Image of a plant 

infected by 

spider mites. 

(from test 

images set). 

 

Model should generate 

the solution for the 

plant that infected by 

other pest which is 

“Consult a local 

expert”. 

Fail 

Solution 

Generator 

(Image of an 

object which is 

not a plant) 

Test model’s 

ability to 

generate the 

solution for the 

object which is 

not a plant. 

Image of a 

laptop (from 

test images set) 

Model should generate 

the solution for the 

object which is 

“Consult a local 

expert”. 

Fail 

 

Table 6.1 Test Cases for AI for Pest Detection Model 

 

6.1.2 Mobile App with AI Model Implementation Testing 

 

Test Case Test 

Description 

Test Data Expected Result Pass/Fail 

Real-Time 

Inference 

 

Test app’s 

inference speed 

on the Huawei 

Nova 4. 

 

Any plant 

image captured 

with camera. 

 

Inference should 

complete within 100-

150ms and display the 

result of the detected 

plant. 

Pass 
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Camera Capture 

Functionality 

(Plant infected 

by caterpillars) 

 

Test app’s 

ability to 

capture and 

process images. 

 

Live camera 

captures a plant 

infected with 

caterpillars. 

 

App should capture 

images, process it, and 

display the result with 

bounding boxes for the 

plant that is infected 

with caterpillars 

Pass 

Camera Capture 

Functionality 

(Plant infected 

by whiteflies) 

 

Test app’s 

ability to 

capture and 

process images. 

 

Live camera 

captures a plant 

infected with 

whiteflies. 

 

App should capture 

images, process it, and 

display the result with 

bounding boxes for the 

plant that is infected 

with whiteflies. 

Pass 

Camera Capture 

Functionality 

(Healthy plant) 

 

Test app’s 

ability to 

capture and 

process images. 

 

Live camera 

captures a 

healthy plant. 

App should capture 

images, process it, and 

display the result with 

no bounding boxes for 

the healthy plant. 

Pass 

Camera Capture 

Functionality 

(Plant infected 

by other pests) 

 

Test app’s 

ability to 

capture and 

process images. 

 

Live camera 

captures a plant 

infected by 

spider mites. 

App should capture 

images, process it, and 

display the result with 

no bounding boxes for 

the plant that infected 

by other pests. 

Fail 

Camera Capture 

Functionality 

(Object which 

is not a plant) 

 

Test app’s 

ability to 

capture and 

process images. 

 

Live camera 

captures a 

laptop. 

App should capture 

images, process it, and 

display the result with 

no bounding boxes for 

the laptop. 

Fail 

Result Display 

(Plant infected 

by caterpillars) 

 

Test app’s 

ability to 

display the 

correct results 

based on the 

Live camera 

captures a plant 

infected by 

caterpillars. 

App should display the 

results of the plant that 

infected by caterpillars 

such as (Plant Status, 

Pass 
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status of the 

plant. 

Pests, Solution and 

Confidence). 

Result Display 

(Plant infected 

by whiteflies) 

 

Test app’s 

ability to 

display the 

correct results 

based on the 

status of the 

plant. 

Live camera 

captures a plant 

infected by 

whiteflies. 

App should display the 

results of the plant that 

infected by whiteflies 

such as (Plant Status, 

Pests, Solution and 

Confidence). 

Pass 

Result Display 

(Healthy Plant) 

 

Test app’s 

ability to 

display the 

correct results 

based on the 

status of the 

plant. 

Live camera 

captures a 

healthy plant. 

App should display the 

results of the healthy 

plant such as (Plant 

Status, Pests, Solution 

and Confidence). 

Pass 

Result Display 

(Plant infected 

by other pests) 

Test app’s 

ability to 

display the 

correct results 

based on the 

status of the 

plant. 

Live camera 

captures a plant 

that is infected 

by spider mites. 

App should display the 

results of the plant that 

infected by other pests 

such as (Plant Status, 

Pests, Solution and 

Confidence). 

Fail 

Result Display 

(Plant infected 

by other object 

which is not a 

plant) 

Test app’s 

ability to 

display the 

correct results 

based on the 

status of the 

plant. 

Live camera 

captures a 

laptop. 

App should display the 

results of the plant that 

infected by laptop such 

as (Plant Status, Pests, 

Solution and 

Confidence). 

Fail 

Gallery Image 

Selection 

Test app’s 

ability to 

Select an image 

of plant with 

caterpillars 

App should process 

image and display the 

results of the plant that 

Pass 
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(Image of a 

plant which 

infected by 

caterpillars) 

process gallery 

image 

 

from the 

gallery. 

 

infected by caterpillars 

such as (Plant Status, 

Pests, Solution and 

Confidence). 

Gallery Image 

Selection 

(Image of a 

plant which 

infected by 

whiteflies) 

Test app’s 

ability to 

process gallery 

image 

 

Select an image 

of plant with 

whiteflies from 

the gallery. 

 

App should process 

image and display the 

results of the plant that 

infected by whiteflies 

such as (Plant Status, 

Pests, Solution and 

Confidence). 

Pass 

Gallery Image 

Selection 

(Image of a 

healthy plant) 

Test app’s 

ability to 

process gallery 

image 

 

Select an image 

of healthy plant 

from the 

gallery. 

 

App should process 

image and display the 

results of the healthy 

plant such as (Plant 

Status, Pests, Solution 

and Confidence). 

Pass 

Gallery Image 

Selection 

(Image of a 

plant infected 

with other 

pests) 

Test app’s 

ability to 

process gallery 

image 

 

Select an image 

of plant infected 

by spider mites 

image from the 

gallery. 

 

App should process 

image and display the 

results of the plant that 

is infected by spider 

mites such as (Plant 

Status, Pests, Solution 

and Confidence). 

Fail 

Gallery Image 

Selection 

(Image of a 

object which is 

not a plant) 

Test app’s 

ability to 

process gallery 

image 

 

Select an image 

of laptop from 

the gallery. 

App should process 

image and display the 

results of the laptop 

such as (Plant Status, 

Pests, Solution and 

Confidence). 

Fail 

QR Code 

Generator 

Test app’s 

ability to 

generate the QR 

Live capture or 

upload images 

of the plants 

App should be able to 

encode the results into 

Pass 
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code based on 

the condition of 

the plants. 

(exp: 

caterpillars, 

whiteflies and 

healthy) 

the QR code and 

display on the UI. 

QR Code 

scanned with 

Android device. 

Test app’s 

ability to 

generate the QR 

code that can be 

scanned by any 

Android 

devices. 

QR code 

generated by 

the mobile app. 

The QR code 

generated by the 

mobile app should be 

able to be scanned by 

Android devices and 

the user is able to read 

the results that are 

encoded in ther QR 

code. 

Pass 

QR Code 

scanned with 

IOS device. 

Test app’s 

ability to 

generate the QR 

code that can be 

scanned by any 

IOS devices. 

QR code 

generated by 

the mobile app. 

The QR code 

generated by the 

mobile app should be 

able to be scanned by 

IOS devices and the 

user is able to read the 

results that are encoded 

in ther QR code. 

Pass 

Use app without 

network 

connectivity 

Test app’s 

whether the app 

can work when 

there is no 

internet 

connection. 

Turn off the 

Wi-Fi icon in 

the mobile app 

and all other 

internet 

connection. 

The app should be able 

to work normally and 

able to detect the plant 

status and display the 

results. 

Pass 

 

Table 6.2 Test Cases for Mobile App with AI Model Implementation 
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6.2 Project Challenges 

  

 The main challenge of developing this project is to build and maintain an accurate 

classification on the Pest Detection AI model. This is because there is a lack of datasets that 

have been used to train this AI model as the dataset needed to train a super accurate AI model 

would be incredibly large. There is also a significant underfit for the Healthy class as they are 

only 0% correct due to class imbalance and a small dataset. The developer didn’t annotate for 

the “Healthy” plant dataset as after annotation, it has high change on misclassification on the 

plants that infected by caterpillars or whiteflies as the annotation of the healthy plant is green 

leaves where these green leaves also appeared on the plant that infected whiteflies or 

caterpillars as they are also a plant. Therefore, the model accuracy for this AI for Pest Detection 

only reaches 87.31% which just passes the aim of the model accuracy for this project which is 

85%. This also causes the plants infected by whiteflies and caterpillars to be misclassified as 

healthy. 

  

 The second challenge is this AI model cannot detect the plant that infected by other pest 

such as “Spider Mites”, “Fungus gnats”, “Mealybugs”, etc. This is due that it is hard to obtain 

the dataset of the images that contain these types of pests from the social media platform as 

these plant pests are quite rare. The AI Model also failed to predict the object which is not a 

plant as unknown objects. This is due to there are no datasets of this unknown object category 

as this project aims to focus on the pest types which are caterpillars and whiteflies. This project 

also focuses on plants, not objects which are not plants. Therefore, the developer didn’t feel 

that the category of unknown objects should be included as it didn’t meet the project objectives. 

 

 The last challenge is that tis AI model is trained with the YOLOv5 model where there 

consists Deep Learning knowledge. Since the developer didn’t take any course that is related 

to Deep Learning, the developer need time to do research and learn about the Deep Learning 

knowledge and information that is related to YOLOv5 model. 
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6.3 Objectives Evaluation 

 

 The first objective of this project is to investigate the feasibility of YOLOv5 for Pest 

Detection. This objective has been fulfilled as the YOLOv5 model which trained on 859 

images (448 images for training, 277 for validation, and 134 images for testing) has achieved 

the model accuracy of 87.31% which surpassed the target which is 85%. The classification 

report shows balanced performance with F1-scores of 0.76 (Healthy), 0.86 (Caterpillars), and 

0.94 (Whiteflies), demonstrating effective pest detection across all categories. 

  

 The second objective of this project is developing a real-time-on-device system. This 

objective is fully achieved as the mobile app with the implementation of the Pest Detection AI 

model has been deployed on an Android mobile device and successfully perform real-time pest 

detection, classifying plant health status and identifying pest types (Healthy, Whiteflies, 

Caterpillars). The TensorFlow Lite model also ensures on-device processing without internet 

dependency and ideal for remote farm settings. 

 

 The third objective of this project is to propose targeted pest management solutions. This 

objective has successfully met as the mobile app accurately identifies pest types when a plant 

is Unhealthy, with high F1-scores for Whiteflies (0.94) and Caterpillars (0.86), and displays 

results like “Unhealthy, infected by Caterpillars and Confidence: 87%. The app includes a 

mechanism to provide targeted solutions such as recommending neem oil or insecticidal soap 

for plants that are infected by whiteflies and Bacillus thuringiensis (Bt) or hand-picking for 

plants that are infected by caterpillars as specified by the developer. These evidence-based 

solutions were integrated into the app’s result display and guiding the farmers effectively on 

detecting the status of the plants. For example, after detecting the plant is infected by whiteflies, 

the app suggests using neem oil or insecticidal soap as the solution for the plant).  

 

 The last objective of this project is to enable data sharing through QR code integration. 

This objective was achieved as the mobile app includes a QR code generation feature that 

encodes detection results for the farmers to share this information with agricultural experts or 

record systems for consultation and documentation. In large farms, QR codes can be placed on 

each plant and enable the farmers to scan them and retrieve pest management instructions 

avoiding confusion and supporting collaborative strategies. 
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Chapter 7  

Conclusion 

7.1 Conclusion 

  

In conclusion, this AI Pest Detection project has successfully developed and deployed as a 

mobile application named Smart Pest Detection. This project has successfully fulfilled the 4 

objectives which are investigate the feasibility of YOLOv5 for Pest Detection, developing 

a real-time-on-device system, propose targeted pest management solutions and enable 

data sharing through QR code integration as this project has successfully trained the Pest 

Detection AI model with the accuracy of 87.31% and has successfully detected the plant status 

correctly and generated the results that contains data like plant status, type of pest, solution and 

the confidence score accordingly. The Smart Pest Detection also has successfully encoded the 

results that are generated into the QR code for the farmers to share or for them to manage their 

large crops. However, there are also flaws in this project as the Smart Pest Detection sometimes 

could misclassify the plant status of the plant that is infected by whiteflies or caterpillars as 

healthy. This project also can’t classify the plants that are infected by other pests besides 

whiteflies and caterpillars and also failed to classify the object which are not plant by providing 

the results such as Plant Status: unknown, Pest: unknown, Pest: Unknown and Confidence: 

0.00%. Therefore, there are also some enhancements on this project in the future so that it can 

become more effective and reliable for farmers and gardeners on detecting the plant status not 

just on the whiteflies and caterpillar’s category only. 
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7.2 Recommendations 

 

 Firstly, the future work can be done by expanding the diversifying the dataset to solve the 

misclassification of the infected plant as healthy and improve the model accuracy. This can be 

done by expanding the dataset beyond 859 images by collecting more images from diverse 

farm and garden environments, including varied lighting conditions (exp: dawn, dusk, 

shadows) and different plant types. This recommendation can enhance the robustness of the 

Pest Detection AI model. 

 

 Secondly, future work can be done by extending the pest detection to additional pest by 

expanding the category of the plants to aphids, spider mites, fungus gnats etc. The current 

model is limited to detecting whiteflies and caterpillars and failed to identify other common 

pests. This recommendation can be made by training the Pest Detection AI model to detect 

additional pests like aphids, spider mites, or beetles, which are prevalent in farm settings. This 

action requires updating the dataset with labeled images of these pests by including new classes 

of the new pest’s category and then retrain the Pest Detection AI model. This enhancement of 

the Pest Detection AI model will make the app more versatile by providing the farmers with a 

broader pest management tool and the corresponding pest management solutions. 

 

 Lastly, future work can be done by improving handling of non-plants object. The current 

Smart Pest Detection app failed to classify the non-plant objects by providing the results which 

are Plant Status: unknown, Pest: unknown, Pest: Unknown and Confidence: 0.00%. This issue 

can confuse the user and might demotivate them to use this app. To address his issue, the 

developer has to implement a pre-classification step to identify non-plant objects before 

running pest detection. This can be achieved by training a binary classifier such as plant vs 

non-plant as a preliminary step by using a simple model like a small CNN or leveraging 

YOLOv5’s objectness score to filter out non-plant detections. If a non-plant object is detected, 

the app should display the message like “Non-Plant Object Detected” instead of “Unknown,” 

improving user experience and trust. This feature can be tested with a small dataset of non-

plant objects such as rocks, tools, soil or other objects to ensure the model’s classification 

accuracy. 
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