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ABSTRACT 

This project explores scalar multiplication algorithms in Elliptic Curve Cryptography, focusing 

on the binary method and elliptic net method applied in Elliptic Curve Diffie-Hellman and 

Elliptic Curve Digital Signature Algorithm. Scalar multiplication is the most computationally 

intensive operation in Elliptic Curve Cryptography and directly impacts both cryptographic 

strength and performance. There is lack of standardized scalar multiplication algorithm or 

parameter set to ensure compatibility and interoperability in cryptographic implementations. 

This creates challenges in developing secure Elliptic Curve Cryptography systems and 

performing cryptanalysis for scalar multiplication algorithms. This research implemented both 

methods on secure Twisted Edwards curves (numsp384t1 and numsp512t1) using the affine 

coordinate system for clearer point representation. The binary method uses a double-and-add 

approach, which introduces conditional branches that increase execution variability, making it 

more vulnerable to timing-based side-channel attacks. In contrast, the elliptic net method 

structures point operations more uniformly, reducing observable patterns and improving 

leakage resistance despite its higher complexity. Simulated attack scenarios, including timing 

and power analysis, revealed that the elliptic net method maintained more consistent behavior 

and offered better protection against information leakage. Overall, the findings highlighted the 

performance of Elliptic Curve Cryptography Scalar Multiplications over side-channel attacks 

in the implementations. 

 

Area of Study: Cryptography 

 

Keywords: Binary, Diffie-Hellman, Digital Signature, Elliptic Net, Power Analysis, Timing  
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Chapter 1 

Introduction 

  

Cryptography, the art and science of secure communication, is crucial in safeguarding 

sensitive data against unauthorized access and manipulation. Cryptographic techniques 

are essential for safe communication and data security in the digital age. They use 

sophisticated algorithms to encrypt data, making it unreadable by unauthorized parties. 

Common cryptographic techniques are symmetric-key encryption, asymmetric 

encryption and hash functions. The distinction between symmetric and asymmetric 

encryption is that asymmetric encryption uses both public and private keys.  

Symmetric-key encryption ensures the confidentiality and integrity of data while it is 

in transit and at rest by using a single shared secret key for both encryption and 

decryption processes. Examples of symmetric-key encryption algorithms are AES 

(Advanced Encryption Standard) and DES (Data Encryption Standard) [1]. Public and 

private keys are used in asymmetric encryption, sometimes called public-key 

cryptography. Key exchange, digital signatures, and secure communication are all 

made possible by the popular asymmetric encryption method known as RSA (Rivest-

Shamir-Adleman) [2], elliptic curve cryptography (ECC) [3] and elliptic curve digital 

signature algorithm (ECDSA) [4]. 

Developed in 1977, the elliptic curve discrete logarithm problem (ECDLP), which 

entails determining the value of d given Q and G, and the curve parameters, is the 

challenge that underpins the security of ECC. In contrast, the RSA method takes its 

foundation from the computing difficulty of factoring huge composite numbers into 

their prime factors. RSA generates keys, p and q randomly. To generate public key, 

modulus n and e while private key consists of modulus n and an exponent d, equation 

is 𝑒 ∗ 𝑑 = 1 𝑚𝑜𝑑 𝑛. M equal to plaintext, C equal to ciphertext. Since factoring the 

product of two huge prime numbers is thought to be computationally impossible, this 

basic property of number theory serves as the bedrock for RSA's security [5]. To 

generate RSA keys, p and q are chosen randomly. To generate public key, modulus n 

and e while private key consists of modulus n and an exponent d, equation is 𝑒 ∗ 𝑑 =

1 𝑚𝑜𝑑 𝑛. M equal to plaintext, C equal to ciphertext. For the encryption part, 𝐶 =

𝑀𝑒 𝑚𝑜𝑑 𝑛 , while decryption 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛 . The security of RSA relies on the 
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computational difficulty of factoring the modulus 𝑛n into its constituent prime factors 

p and q for a given n. ECC and ECDSA use the mathematical characteristics of elliptic 

curves to produce strong cryptographic solutions with smaller key sizes [6]. ECC 

technique was first proposed by Neal Koblitz [7] and Victor Miller [8] in 1985. ECC is 

based on the difficulty of solving mathematical problems related to elliptic curves, such 

as the elliptic curve discrete logarithm problem [6]. For the encryption part, 𝐶 =

𝑀𝑒 𝑚𝑜𝑑 𝑛, while decryption 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛 . The security level of RSA relies on 

computational difficulty, factoring the modulus 𝑛 into its constituent prime factors p 

and q for a given n. In ECC, the private key d is a random generate integer, and the 

public key obtained by multiplying a base point G by the private key, 𝑄 = 𝑑𝐺. ECC is 

refined and improved based on the Diffie-Hellman key exchange protocol eventually 

finding its way into numerous security standards against side-channel attacks (SCAs) 

and applications [9]. The base point G and the parameters of the elliptic curve are public 

knowledge [6]. The security of ECC relies on the difficulty of the elliptic curve discrete 

logarithm problem (ECDLP), which involves finding the value of d given Q, G, and the 

curve parameters. 

The ECDSA is a digital signature scheme that uses mathematical properties of elliptic 

curves to enhance secure and efficient cryptographic signatures. ECDSA was first 

proposed in 1992 by Scott Vanstone in response to NIST’s request for public comments 

on their first proposal for DSS [4]. Like ECC, ECDSA uses random key generation to 

produce a private key d and public key that is calculated as Q = dG. The private key is 

used to sign messages, and the public key verifies the signatures. ECC and ECDSA are 

more efficient in terms of computational resources and bandwidth utilization than RSA, 

which usually requires bigger key sizes for equal security levels [9]. The security of 

ECC depends on the size of the elliptic curve and the size of the underlying finite field. 

Typically, ECC with a key size of 256 bits offers equivalent security to RSA with a key 

size of 3072 bits [10]. The private key is used to sign messages, and the public key 

verifies the signatures. Since ECC and ECDSA can provide strong security with shorter 

key lengths, they are better suited for applications where memory and processing power 

are limited. The computational effectiveness of scalar multiplication algorithms, which 

are essential to ECC operations, is also evaluated through cryptographic analysis. This 

makes them ideal for contexts where resources are scarce, including mobile devices and 

Internet of Things devices [11]. ECC requires cryptographic analysis to validate the 
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security of ECC-based protocols and algorithms, as well as to determine how strong 

elliptic curve parameters are and how resistant they are to different types of assaults 

[12]. Besides, scalar multiplication algorithm's efficiency, defense against SCAs, and 

compliance with security best practices are all assessed through cryptographic analysis 

[12]. The computational effectiveness of scalar multiplication algorithms, which are 

essential to ECC operations, is also evaluated through cryptographic analysis. The time 

complexity, memory needs, and performance characteristics of the method across 

different platforms are frequently assessed as part of this analysis process [13]. The 

vulnerability of the scalar multiplication algorithm to SCAs, which take advantage of 

implementation flaws, is another factor considered in cryptographic analysis. Ensuring 

the security of scalar multiplication in ECC requires strategies for thwarting these 

attacks, such as constant time algorithms and secure hardware implementations [14]. 

Through a comprehensive exploration of cryptanalytic methodologies, this research 

aims to cryptanalysis the existing scalar multiplication algorithms and propose 

enhancements to against potential threats. By uncovering vulnerabilities and 

developing robust countermeasures, this work attempts to contribute to the ongoing 

efforts to bolster the security of ECC and address the evolving challenges posed by 

cyber threats. The importance of cryptanalysis needs to be classified as the 

improvement needed by user and also algorithm, including theoretical underpinnings, 

vulnerabilities, and potential avenues for improvement. Additionally, we will explore 

various cryptanalytic techniques and their application in evaluating algorithmic 

security, laying the groundwork for a comprehensive understanding of elliptic curve 

cryptography in contemporary digital environments. [15] and [16] demonstrate the 

importance of cryptanalysis in uncovering vulnerabilities and advancing the state-of-

the-art in cryptographic research, underscoring its critical role in ensuring the 

trustworthiness of modern cryptographic systems. This research presents an extensive 

study of the scalar multiplication algorithms implementation on workstations of the 

NUMS elliptic curves over prime field [17]. 

 

1.1  Problem Statement and Motivation  

In ECC, scalar multiplication algorithm via binary method (BM) involves complex 

operations, which lead to an intricate implementation challenge. Developing efficient 

and protective implementations of the BM that minimizes implementation complexity 
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to maintain resistance against SCAs, and implementation level vulnerabilities poses a 

significant challenge. Furthermore, scalar multiplication algorithms via elliptic net 

(EN) existing security vulnerabilities, invalid curve attacks or invalid point attacks if 

implemented incorrectly. In addition, there is a lack of standardized scalar 

multiplication algorithms and parameters that can justify the interoperability and 

compatibility in cryptography scalar multiplication implementations. Identifying 

potential security vulnerabilities in EN method implementations and developing robust 

countermeasures to mitigate these risks while maintaining performance and efficiency 

is essential to enhance the security level of ECDH and ECDSA. Thus, there is a need 

to perform cryptanalysis for scalar multiplication algorithms via the BM and EN 

method by evaluating vulnerabilities, goals, standards, improvements and other factors 

against SCAs.  In most cases, if cryptanalysis is successful at all, an attacker cannot 

deduce information about the plaintext [18]. Cryptanalysis based on SCAs helps 

uncover vulnerabilities in ECC implementations by exploiting information leakage. 

The central idea of side-channel analysis is to compare some secret data-dependent 

predictions of the physical leakages and the actual leakage to identify the data most 

likely to have been processed [19]. The side-channel analysis considers attacks that do 

not aim at the algorithms' weaknesses but their implementations [20]. ECC leverages 

the double-and-add method for scalar multiplication, a key operation in generating 

public key and private key to perform computations. This method computes scalar 

multiples of points on the elliptic curve, ensuring integrity and confidentiality. Double-

and-add implementation shows that the ECC scalar point multiplication algorithm 

succeeds in preventing SCAs, Simple Analysis Attacks, and Differential Power Attacks 

[21], [20].  

The motivation behind this research relies on the passion for cryptography and network 

security. Research was sparked by studying ECC scalar multiplication and its robust 

defense against SCAs. Thus, the need for cryptanalysis increases to prove the security 

level of ECC scalar multiplication against SCAs. 

Cryptanalysis is a process of analyzing ECC scalar multiplication to understand the 

hidden aspects of cryptographic operation. This field is an important aspect of 

cryptography, the broader science of securing communication and data using codes and 

ciphers [22]. 
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Due to the difficulty in finding evidence to prove security levels against SCAs, I look 

forward to expanding my knowledge in cryptographic security with a focus on 

cryptanalysis. I chose the cryptanalysis method to identify the weaknesses and strengths 

of ECC scalar multiplication because it was inspired by [23]. The proposed method by 

[23] was faster than the BM in an affine coordinate system, the relative efficiency can 

be compared with some experimental results.  

 

 

1.2  Objectives 

This project aims to perform cryptanalysis on scalar multiplication algorithms 

implemented via binary and EN method. Thus, the research objectives are stated as 

follows:  

a) To identify potential vulnerabilities in the scalar multiplication algorithms via binary 

and EN methods.  

To achieve the current objective of identifying potential vulnerabilities, the project 

focused on analyzing BM and the EN method. These methods will be examined in the 

context of SCAs, which exploit sensitive information or secret key data to attackers. 

This objective must go through a literature review. Using search keywords such as 

"Potential weaknesses of ECC", "Side-channel analysis on scalar multiplication, 

"Review of latest side-channel attacks" and relevant references will be analyzed. 

Studies on power analysis attacks, timing attacks, fault attacks, electromagnetic 

analysis attacks on ECC will be reviewed to understand how existing methods can be 

exploited.  

b) To implement the following double-and-add algorithm in ECDH and ECDSA 

schemes:  

i) Binary method  

ii) Elliptic net method 

Implement the double-and-add procedure in ECDH to compute the shared secret, and 

in ECDSA to generate signatures after identifying vulnerabilities.This involves 

iterating through each bit of the private key, performing point doubling always and 

point addition when needed. In ECDH, this method is used to compute the public key 

𝑄 = 𝑑𝐺, efficiently using the numsp384t1 and numsp512t1 curves. After exchanging 

public keys, the shared secret 𝑆 = 𝑑𝑄′ is derived. The implementation will ensure that 
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execution traces are collected, allowing for analysis of timing attacks, power analysis 

attacks, and cache-based SCAs to determine security weaknesses. Simulated attacks 

will assess whether the private key can be inferred from power or timing variations. 

For the EN method, apply structured point sequences to optimize scalar multiplication 

in both ECDH and ECDSA. This method improves efficiency by structuring operations 

to reduce computational overhead and potentially minimize side-channel leakage. In 

ECDH, it is used to compute 𝑄 = 𝑑𝐺, and the shared secret is derived similarly to the 

BM but with optimized steps.  

For ECDSA, the BM is applied in signature generation, where the ephemeral key k is 

processed using double-and-add. The signature values (r, s) recomputed, ensuring 

correctness while assessing vulnerabilities in the scalar multiplication step. Since any 

leakage from kG, compromises the private key, power analysis and fault injection 

simulations will be conducted on implementations using numsp384t1 and numsp512t1. 

The impact of cache timing variations and template attacks on the security of ECDSA 

using the BM will also be examined. 

For ECDSA, the EN method optimizes scalar multiplication to reduce observable 

computation patterns that could be exploited in attacks. By structuring point sequences 

differently, this approach aims to minimize predictable power consumption. The 

implementation in Python will include tests for timing analysis, electromagnetic 

emissions, and fault-induced errors to determine security levels. Simulated attacks will 

be used to compare the resilience of EN against traditional BMs, ensuring a 

comprehensive evaluation of SCAs resistance. 

c) To evaluate the proposed algorithms based on SCAs.  

The results are recorded, including execution time, memory usage, and computational 

overhead. Side-channel assessments will focus on timing attacks and power analysis 

attacks. Timing attacks are applied to ECDH, while power analysis attacks are used for 

ECDSA. Timing attacks are chosen for ECDH because the execution time of scalar 

multiplication varies based on the private key bits. Since the double-and-add algorithm 

exhibits different computational patterns for ‘0’ and ‘1’ bits, an attacker can analyze 

execution times to infer key bits. Power analysis attacks are applied to ECDSA because 

the scalar multiplication step during signature generation uses an ephemeral key k, 

which can be targeted to reveal sensitive information. To fulfil this objective, this 

project implemented timing attacks on ECDH by measuring execution time variations 
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in scalar multiplication conducting power analysis attacks on ECDSA by simulating 

power consumption traces during signature generation and applying correlation 

techniques to infer the ephemeral key. 

 

1.3  Project Scope and Direction  

The scope of the project encompasses a comprehensive investigation into security of 

ECSM via prime field, with a particular focus on its implementation via EN and binary 

methods architectures. Furthermore, the project will assess the susceptibility of ECSM 

by implementing power analysis and timing attacks. 

ECC scalar multiplications are formed with different schemes, such as Elliptic Curve 

Diffie Hellman (ECDH), Elliptic Curve Digital Signature Algorithm (ECDSA), 

EdDSA (Edwards-curve Digital Signature Algorithm) [24], ECMQV (Elliptic Curve 

Menezes-Qu-Vanstone) [25] and ECIES (Elliptic Curve Integrated Encryption 

Scheme) [26].  

The project focuses on analyzing the security of Twisted Edwards curves, specifically 

numsp384t1 and numsp512t1, in scalar multiplication algorithms. These curves offer 

efficient arithmetic and strong security properties, making them suitable for 

cryptographic applications. The numsp384t1 curve operates over a 384-bit prime field, 

while numsp512t1 uses a 512-bit prime field, both defined with specific parameters for 

the curve equation and generator point. By implementing double-and-add algorithms 

on these curves, the study evaluates their resistance to timing and power analysis 

attacks, ensuring robust cryptographic performance. 

ECDSA was first proposed in 1992 by Scott Vanstone [27] in response to NIST's 

request for public comments on its first proposal for a Digital Signature Standard. It 

was accepted in 1998 as an International Standards Organization standard and in 2000 

as an IEEE (Institute of Electrical and Electronics Engineers) standard [4]. 

The ECDH distinct from the general Diffie Hellman (DH) in the way that it is based on 

the elliptic curve discrete logarithm problem (ECDLP) instead of the discrete logarithm 

problem (DLP) [28]. ECDH is an anonymous key agreement protocol which allows 

two parties, A and B, to establish a shared secret key over an insecure channel, where 

each of the parties has an elliptic curve public-private key pair [29]. 

The BM is a widely used approach for scalar multiplication in elliptic curve 

cryptography, particularly in ECDH and ECDSA. It follows the double-and-add 



CHAPTER 1 

8 
Bachelor of Information Technology (Honours) Communications and Networking 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

algorithm, where the scalar is processed bit by bit. For each bit, point doubling is always 

performed, and point addition is executed only when the bit is ‘1’. This method is 

simple and efficient but introduces side-channel vulnerabilities, especially timing 

attacks, due to its varying execution flow. In this project, the numsp384t1 and 

numsp512t1 curves are implemented using the BM to assess timing and power analysis 

attacks. Since different bit patterns affect execution time and power consumption, an 

attacker may exploit these variations to infer private key bits. This study evaluates its 

security impact and explores potential countermeasures. 

The EN method is an alternative scalar multiplication technique that optimizes 

efficiency and security. Instead of processing bits individually like the BM, it structures 

point sequences to ensure a more uniform computation pattern. This approach helps 

mitigate timing and power analysis attacks by reducing observable variations. In this 

project, the numsp384t1 and numsp512t1 curves are implemented using this method to 

compare its resistance against SCAs. By analyzing execution traces, this study 

determines whether EN offers improved security over BM. 

In this project, ECC scalar multiplication is only available for affine coordinates over 

Homogeneous, L´opez-Dahab, Jacobean and other coordinates.  In affine coordinates, 

ECC operations are usually done by using the affine coordinate [x, y] [30]. 

 

1.4  Contributions 

The main contributions of this study are stated as follows:  

1. Developing countermeasures and mitigations can enhance the resistance of 

scalar multiplication via BM implementations against SCAs, such as timing 

attacks and simple power analysis attacks can prevent leakage of sensitive 

information.  

2. Providing methodologies for selecting appropriate curve parameters, such as the 

choice of elliptic curve parameters and key sizes can optimize the security level 

of scalar multiplication algorithms.  

3. Exploring the security level of binary or elliptic methods implementations 

against SCAs, which are timing attack and simple power analysis attack.  

Timing attack measures the time taken to perform cryptographic operations and 

uses this information to exploit cryptographic keys [31]. Power analysis attack 
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breach energy cost to perform cryptographic operation, this is done to find 

sensitive information [32]. 

4. Evaluating the performance and security of ECDH and ECDSA. The computed 

outputs are compared with standard cryptographic libraries to ensure 

correctness, while execution time, memory usage, and computational overhead. 

These aspects provide insights into inefficiencies, performance bottlenecks, and 

potential security weaknesses in scalar multiplication implementations, leading 

to improvements and enhanced robustness of cryptographic systems. 

Additionally, this project examines SCAs vulnerabilities, including timing 

attacks on ECDH and power analysis attacks on ECDSA. These attacks are 

tested on numsp384t1 and numsp512t1 curves to evaluate their resistance, 

ensuring that the implementations remain secure and efficient for real-world 

applications. 

 

1.5  Report Organization 

The details of this research are shown in the following chapters. In Chapter 2, some 

related backgrounds are reviewed as literature reviews, and several tables are shown 

for a better understanding. Furthermore, chapter 3 outlines the project’s methodology, 

including the system model, algorithm design, and timeline. Chapter 4 explains the 

implementation details of scalar multiplication using both the BM and EN methods 

within the ECDH and ECDSA schemes. Chapter 5 presents experimental setups and 

simulation results, along with discussions of challenges encountered during 

development. Chapter 6 evaluates performance metrics, discusses attack results, and 

reviews how each objective was met. Finally, Chapter 7 concludes the report with key 

findings and recommendations for future work. 
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Chapter 2 

Literature Review 

 

2.1 Previous Works on Scalar Multiplication Algorithms Via Binary Method 

A modified double-and-add algorithm based on  the Karatsuba-Ofman algorithm [33], 

[34], generating new Vi over prime field by setting 𝑆𝑖 = 𝑉𝑖+1
2 ,  𝑆𝑖 = 𝑉𝑖+1

2 , 𝑃𝑖 =

((𝑉𝑖 + 𝑉𝑖+2)2 − 𝑆𝑖 − 𝑆𝑖+2)/2 , and 𝑅𝑖 = 𝑆𝑖𝑃𝑖 for 1 ≤ 𝑖 ≤ 4, in which the outcomes are 

𝑉0 = (𝑆0 − 𝑆1)(𝑃0 + 𝑃1) − 𝑅0 + 𝑅1, 𝑉1 = (𝑆0 − 𝑆2)(𝑃0 + 𝑃2) − 𝑅0 + 𝑅2)𝛼, 𝑉2 =

(𝑆1 − 𝑆2)(𝑃1 + 𝑃2) − 𝑅1 + 𝑅2, 𝑉3((𝑆1 − 𝑆3)(𝑃1 + 𝑃3) − 𝑅1 + 𝑅3𝛼, 𝑉2 = 𝑉4 = (𝑆2 −

𝑆3)(𝑃2 + 𝑃3) − 𝑅2 + 𝑅3), 𝑉5((𝑆2 − 𝑆4)(𝑃2 + 𝑃4) − 𝑅2 + 𝑅4)𝛼  and 𝑉6 = (𝑆3 −

𝑆4)(𝑃3 + 𝑃4) − 𝑅3 + 𝑅4 [35]. Each Vi cost 1M so 7M obtained in double block. The 

new term is 𝑉0 =  ((S0 − S2)(P0 + P2) − R0 + R2)ᾶ, V2 =  ((S1 − S3)(P1 + P3) −

R1 + R3)ᾶ, V3(S2 − S3)(P2 + P3) − R2 + R3, V4 = ((S2 − S4)(P2 + P4) − 𝑅2 +

R4)ᾶ, V5(S3 − S4)(P3 + P4) − R3 + R4)  and  V6 = (t1ε − βt2 )/𝑉2  [36]. Each value 

of V0 until V6 requires 1M, but V6 needs 2M so a total of 8M obtained for double ad 

block.  

A new double-and-add method proposed by [37]. By utilizing EN block, [38] used 

temporary variables Si and Pi as an array of six elements, cost 6M + 6S and utilized the 

Si and Pi by adding two groups of intermediate variables Ai, Bi, Ci, Di and Ei for double-

and-add function [38]. The number of multiplications using the repeated multiplication 

Wk-2 and Wk, 𝑎 = 𝑊𝑘−2𝑊𝑘 , 𝑏 = 𝑊𝑘−1𝑊𝑘+1, 𝑐 = 𝑊𝑘 𝑊𝑘+2  as well as 𝑒 = 𝑊𝑘−1
2 , 𝑓 =

𝑊𝑘
2, 𝑔 = 𝑊𝑘+1

2  [37]. This equation costs 2M for each variable and [37] costs 4M for 

each.  EN Scalar Multiplication can be designed based on double-and-add with block 

centred at one [39]. Table 2 shows the cost for both methods. 

Table 2.1 Comparison of old and new double-and-add methods 

Method Temporary 

variable 

double double-add Total cost 

double double-add 

[37] 12M+10S 4M 4M 16M+10S 16M+10S 

[39] 10M+6S 2M 2M 12M+6S 12M+6S 
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2.2 Previous works on Scalar Multiplication algorithms via Elliptic Net 

Prior studies have explored various methods to enhance the efficiency of scalar 

multiplication operations. EN is an architecture used to organize elliptic curve points, 

enabling faster scalar multiplication through techniques such as point doubling, point 

addition, the Montgomery ladder algorithm, and differential addition-subtraction 

chains. While the first EN Scalar Multiplication over binary fields remains unknown, 

its construction over a prime field has been documented [40]. The approach proposed 

in [11] introduces a robust EN Scalar Multiplication algorithm that resists SCAs, which 

is crucial for maintaining the confidentiality and integrity of sensitive information in 

engineering systems utilizing the double-and-add algorithm. 

 

2.3 Previous work on cryptanalysis method 

Previous studies focused on analysis and prevention from SCAs, this section describes 

each of the protocols for future works. ECC methods guarantee level of security but 

there is an easily exploitable vulnerability. Hence, an additional level of protection is 

crucial to guarantee total security against SCAs. Most of the multi-factor authentication 

and key exchange protocols, rely on ECC for security protection [41]. To meet the 

requirement for enhanced-security near-ideal models, ECC being a small key size with 

the capability to thwart SCAs must now include countermeasures against assaults [42]. 

2.3.1 Previous work on side-channel attack  

SCAs are a class of security threats that exploit unintended information leakage from 

physical implementations of cryptographic systems. SCAs focus on analyzing 

observable side effects of the implementation, such as power analysis attack, timing 

attack, or electromagnetic analysis attack. Timing Attacks, it was based on exploiting 

the non-constant execution time using different input values to reveal the secret 

information [43]. Power Analysis Attacks exploit variations in power consumption 

during cryptographic operations, attackers find out power consumption and attack to 

get data contained [12]. Electromagnetic Analysis Attacks is a form of attack that 

exploits the electromagnetic emanations from an electronic device as a form of 

information leakage [44]. These attacks pose threats to cryptographic systems, 

undermining their security and confidentiality. 
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2.3.2 Key Size comparison between RSA and ECC 

The relationship between ECC and RSA are complementary, two widely used 

cryptographic algorithms that provide security for data through asymmetric encryption.  

Table 2.2 RSA vs ECC [45] 

 

2.4 Summary of previous work on algorithm 

SCAs represent a class of attacks that exploit physical leakage from cryptographic 

devices, rather than directly attacking the cryptographic algorithms themselves. These 

attacks can include timing analysis, power consumption monitoring, electromagnetic 

emissions, and others states as below: 

Table 2.3 Summary of previous work on ECC scalar multiplication algorithms 

Author Scalar Multiplication 

Algorithms 

Coordinate Side-channel 

Attacks 

[12] Double-and-add Mix (Affine 

and Jacobian) 

Electromagnetic 

Attack 

[46] Adding and Doubling operation Jacobian Timing Attacks 

[47] Adding and doubling points Jacobian Simple Power 

Analysis 

[48] Double-and-add Affine Simple Power 

Analysis 

[49] Miller’s algorithm Mix (Affine 

and Jacobian) 

Correlation 

Power Analysis 

[50] Modular Inversion Affine Power Analysis 

Attack 

Symmetric Key Size (bits) RSA Size (bits) ECC Size (bits) 

80 1,024 160 

112 2,048 224 

128 3,072 256 

192 7,680 384 

256 15,360 521 
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[51] Montgomery ladder Affine Montgomery 

Ladder Fault 

Attacks 

This 

work 

Scalar Multiplication via BM and 

EN  

Affine Timing attack 

and simple power 

analysis attack 

 

Based on this literature review, timing attack and simple power analysis attack have the 

most frequent in SCAs realm. Within this scope, a paper conducted a mixed-methods 

online survey with 44 developers of 27 popular cryptographic libraries to understand 

how real-world cryptographic library developers think about timing attacks. In result, 

all 44 participants are aware of timing attacks [52]. Simple power analysis attack, it 

traced power consumption for cryptographic operation and possible to determine path 

of instructions execution trace [53]. The two SCAs mentioned are possible to breach 

ECC scalar multiplication vulnerabilities, so this project aims to implement timing 

attack and simple power analysis attack. 

 

2.5 Cryptographic schemes 

2.5.1 Diffie-Hellman key exchange:  

Diffie-Hellman is for key exchange between users, ensuring connection with CIA triad 

guidelines, confidentiality, integrity and availability. Diffie-Hellman algorithm 

primarily generates a shared secret key across public networks, known as a key 

exchange. The process starts with users, such as Alice and Bob. Both generate a secret 

key and keep for themselves. Next, users generate a public key using Diffie-Hellman 

algorithm. The public keys are essential, send the public key to each other to complete 

the connection. Last phase, Alice combines own secret key with Bob's public key into 

a number, 𝑘. While Bob compute 𝑘 using own secret key and Alice's public. Both 𝑘 

have the same value, the key exchange process is completed as stated as below: 
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Figure 2.1 Diffie-Hellman key exchange [54] 

 

2.5.2 Digital signatures and certifications: 

The digital signatures consist of two phases. For example, Alice sends a document to 

Bob, Alice generates two keys, private key remains private. But the public key, Alice 

needs to share with Bob to verify the document and signature. The first phase, signing, 

the content of document runs through the hash algorithm, and transformed to a digest, 

the content inside consists of different numbers, symbols or other letters. Digests 

encrypt with private key, the signature phase completed. The digest sends to Bob, and 

Bob starts the verification phase. Bob has two options to decrypt the digest, decrypt 

with Alice’s public key or digest run through the hash algorithm. Both options get the 

same outcome, as the document same as Alice’s, the process states below: 

 

(Generate secret key) 

(Generate public key) 

 
(Send public key to each other) 

 

 

(Combine public key and own 

secret key) 

 

 

(Get the same value of 𝑘) 
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Figure 2.2 Digital signatures and certifications [55]  

 

2.6 Previous work related to ECDH and ECDSA 

Schemes from the realm of ECC are ECDH and ECDSA. ECDH, renovated to securely 

exchange secret keys between parties. While ECDSA did the same, it was celebrated 

for its prowess in verifying the authenticity of messages and transactions. But, SCAs  

can exploit through schemes in ECC or RSA, so the weakness of each scheme should 

be discussed for improvement, references collected shown below: 

 

Table 2.4 Summary of previous work on ECDH and ECDSA 

Author Algorithm Attacks Outcome 

[28] ECDH Man-in-the-middle Attack Secure 

[56] ECDH Differential-bit Horizontal 

Clustering Attack 

Fail to Secure 

[57] ECDH Differential Power Attack Secure 

[58] ECDH Timing Attack Secure 

[59] ECDH & ECDSA Microarchitectural Attack Fail to secure 

[60] ECDSA Fault Attack Secure 

[61] ECDSA Simple Power Analysis 

Attack 

Secure 

[62] ECDSA Timing Attack Fail to secure 

[63] ECDSA Template Attack Fail to secure 
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Chapter 3 

System Methodology 

3.1  System Design Equation 

Sections 3.1.1 and 3.1.2 show the BM algorithm [68] and EN algorithm [23], 

respectively. 

3.1.1 Binary Method Algorithm 

Table 3.1 Binary Method Algorithm [68] 

Input: An Affine point P ∈  E(𝔽𝑝) and 𝑛 = (𝑛𝑖−1, … , 𝑛0)2. 

Output: 𝑛𝑃 ∈ E(𝔽𝑝) 

Steps: 

1. For 𝑖 from 𝑙 − 2 down to 0 do 

2. 𝑄←2𝑄 

3. If 𝑛𝑖=1 then 

3.1 𝑄←𝑃+𝑄 

4. Return 𝑄 

 

Table 3.1 shows the BM method, which is an effective way of performing scalar 

multiplication on elliptic curves. Given a point  P ∈  E(𝔽𝑝) and a scalar n represented 

in binary, the algorithm initializes a result point Q and processes each bit of n from the 

second most significant to the least significant. In each iteration, it doubles Q, and if 

the current bit is 1, it adds the original point P to Q. This method reduces the total 

number of required point additions, making it significantly more efficient than repeated 

addition, especially for large scalars.  

3.1.2 Elliptic Net Algorithm 

Table 3.2 Elliptic Net Method Algorithm [23] 

Input: Integer 𝑛 = (𝑛𝑙−1, 𝑛𝑙−2, … , 𝑛0)2 with 𝑛𝑙−1 = 1. 𝑃 𝜖 𝐸(𝔽𝑝), 𝑎 = 𝑊2, 𝑏 = 𝑊3 and 

𝑐 = 𝑊4 of the EN associated to 𝑃 and 𝐼 =𝑦−1. 

Output: The EN values 𝑊𝜆 where 𝑛−2≤ 𝜆≤𝑛+2 associated to point 𝑃.  

Steps: 

1. 𝑉 ← [−𝑎, −1, 0, 1, 𝑎, 𝑏, 𝑐, 𝑎3, 𝑐 −𝑏3] 

2. For 𝑖 from 𝑙 − 1 down to 0 do 
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3. If 𝑛𝑖 = 0 then 

    V ← 𝑑𝑜𝑢𝑏𝑙𝑒(𝑉) 

4. Else 

    V ←𝑑𝑜𝑢𝑏𝑙𝑒𝑎𝑑𝑑(𝑉) 

5. 𝐴 = 𝑉3
−1; 𝐵 = 𝐴2 ; 𝐶=𝐴𝐵 

6. 𝐸 = 𝑉2
2 ; 𝐹 = 𝑉4

2; 𝐺 = 𝑉2𝑉4 

7. 𝐻 = 𝐵𝐺; 𝐽=𝐸𝑉5 ; 𝐾 = 𝐹𝑉1 

8. 𝑥𝑛= 𝑥1 − 𝐺𝐵 

9. 𝑦𝑛 = (𝐽−𝐾) 𝐼𝐶 

 

This algorithm computes EN values 𝑊λ  for indices near a given scalar n, using a 

recursive approach based on the binary representation of n. Starting with initial values 

derived from the EN associated with point P on the curve E(𝔽𝑝) , the algorithm 

initializes a vector V with specific EN terms and then iteratively updates it using either 

the 𝑑𝑜𝑢𝑏𝑙𝑒 or 𝑑𝑜𝑢𝑏𝑙𝑒𝑎𝑑𝑑 operation depending on each bit of n, scanned from most to 

least significant. After processing all bits, intermediate variables A, B, C, E, F, G, H, J, 

K are calculated to derive the final coordinates 𝑥𝑛 and 𝑦𝑛 , which represent the scalar 

multiplication result nP in terms of the EN. 

 

3.2  Project timeline 

Figure 3.1 shows a project timeline to distribute tasks, it was required a project timeline 

to distribute tasks for each week, the duration is 14 weeks. Week 1 to 2 are required to 

complete the planning process, such as develop project charter and collect references. 

Start from week 3, focus on implementation to obtain outcome of algorithms and SCAs. 

Project report required to complete within 8 weeks and finalize before week 12 end. 

Week 13 and 14, as the report submitted, focus on presentation, prepare slides and script 

to perform and score well. 
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Figure 3.1 Timeline of FYP 1 

 

Figure 3.2, this project timeline guide to distribute tasks for each week, the duration 

same as FYP 1. Week 1 planned to complete the planning process, such as develop 

project charter and solve issue from FYP 1. Start from week 2, focus on execution of 

algorithms and SCAs. Project report required to complete within 8 weeks and finalize 

before week 13. Week 13 planned to rehearsal before report submission and following 

task is to submit the latest version of report. The final task is to perform a presentation 

to supervisor and moderator. 

 

 

Figure 3.2 Timeline of FYP 2 
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Chapter 4 

System Design 

 

4.1  System Block Diagram 

4.1.1 ECDH using Binary Method Flowchart 

 

Figure 4.1 ECDH Key Exchange Process Flowchart Using Binary Method 

 

Figure 4.1 shows the process of ECDH key exchange using the binary. The process 

begins with the initialization of elliptic curve parameters, followed by the generation of 

private keys for both parties within the range [1, 𝑛 − 1]. Using the BM, each party 

computes their corresponding public key by multiplying the private key with the base 

point G. The public keys are then exchanged, allowing each party to compute a shared 

secret by multiplying their private key with the other party’s public key. Due to the 

mathematical properties of elliptic curves, both parties derive the same shared secret. 

A verification step confirms whether both shared secrets match. If true, the process ends 

successfully. Otherwise, it returns a validation failure result.  
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4.1.2 ECDH using Elliptic Net Method 

 

Figure 4.2 ECDH Key Exchange Process Flowchart Using Elliptic Net Method 

 

Figure 4.2 shows the process of ECDH key exchange using the EN method. The process 

begins with the initialization of elliptic curve parameters, followed by the generation of 

private keys for both parties within the range [1, 𝑛 − 1]. Each party then computes their 

respective public key by performing scalar multiplication of their private key with the 

base point G using the EN method. After exchanging public keys, both parties compute 

a shared secret by multiplying their private key with the other party’s public key, again 

using the EN method. A verification step ensures the validity of the shared secret. If the 

validation is true, the process is successful and ends. Otherwise, it indicates a failure. 
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4.1.3 ECDSA using Binary Method 

 

Figure 4.3 ECDSA Key Exchange Process Flowchart Using Binary Method 

 

Figure 4.3 illustrates the process of ECDSA signature generation and verification using 

the BM. The process begins with the initialization of elliptic curve parameters, followed 

by the generation of a private 𝑘𝑒𝑦 𝑑 ∈ [1, 𝑛 − 1] and the corresponding public key 𝑄 =

𝑑 ⋅ 𝐺 , computed using BM. Upon receiving the input message m, utilizing a 

cryptographic hash function to compute message digest 𝑒 = 𝐻𝐴𝑆𝐻(𝑚). A random 

scalar k is chosen, and the point 𝑅 = 𝑘 ⋅ 𝐺 generated using the BM. The x-coordinate 

of R is reduced modulo n to obtain r. The signature component s is then calculated as 

𝑠 = 𝑘 − 1(𝑒 + 𝑑 ⋅ 𝑟)𝑚𝑜𝑑  𝑛. The signature pair (r, s) is output and used, along with the 

message and public key, for signature verification. If the verification process confirms 

the validity of the signature, the result returns true. Else, it returns false, it means that 

generated an invalid signature. 
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4.1.4 ECDSA using Elliptic Net Method 

 

Figure 4.4 ECDSA Key Exchange Process Flowchart Using Elliptic Net Method 

 

Figure 4.4 illustrates the process of ECDSA signature generation and verification using 

the EN method. The process begins with the initialization of elliptic curve parameters, 

followed by the generation of a private 𝑘𝑒𝑦 𝑑 ∈ [1, 𝑛 − 1]  and the corresponding 

public key 𝑄 = 𝑑 ⋅ 𝐺 , computed using the EN method. Upon receiving the input 

message m, a hash function is applied to compute the message digest 𝑒 = 𝐻𝐴𝑆𝐻(𝑚). 

A random scalar k is chosen, and the point 𝑅 = 𝑘 ⋅ 𝐺 generated using the EN method. 

The x-coordinate of R is reduced modulo n to obtain r. The signature component s is 

then calculated as 𝑠 = 𝑘 − 1(𝑒 + 𝑑 ⋅ 𝑟) 𝑚𝑜𝑑  𝑛. The signature pair (r, s) is output and 

used, along with the message and public key, for signature verification. If the 

verification process confirms the validity of the signature, the output returns true. 

Otherwise, it returns false.  

 

4.1.5    NUMS parameter  

The NUMS Curve parameters that used in this project are numsp384t1 and 

numsp512t1, a 384-bit and a 512-bit prime field in Twisted Edwards curve [69].  Both 

curves are suitable for prime field operations and elliptic curve scalar multiplication, 
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sharing similar popularity and being well-suited for a wide range of applications. The 

NUMS parameter for Twisted Edward curve 𝑎𝑥2 + 𝑦2 ≡  𝑥3 + 𝑑𝑥2𝑦2 are as follows:  

Table 4.1 NUMS parameter [70] 

numsp384t1 state as below: 

p = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFF43 

a = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFF42 

d = 0 X 3BEE 

G = (0 X 0D, 0 X 7D0AB41E 2A1276DB A3D330B3 9FA046BF BE2A6D63 

824D303F 707F6FB5 331CADBA) 

n = 0 X 3FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF BE6AA55A D0A6BC64 

E5B84E6F 1122B4AD 

h = 0 X 04 

numsp512t1 state as below: 

p = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFDC7 

a = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFDC6 

d = 0 X 9BAA8 

G = (0 x 20, 0 X 7D67E841 DC4C467B 605091D8 0869212F 9CEB124B F726973F 

9FF04877 9E1D614E 62AE2ECE 5057B5DA D96B7A89 7C1D7279 92611346 

38750F4F 0CB91027 543B1C5E) 

n = 0 X 3FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF A7E50809 EFDABBB9 A624784F 449545F0 DCEA5FF0 

CB800F89 4E78D1CB 0B5F0189 

h = 0 X 04 

 

The parameters for numsp384t1 and numsp512t1 were chosen to balance security and 

transparency in cryptographic applications. These parameters are very common in 

modern cryptographic systems and have been adopted by large organizations. The 
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primes p is selected close to a power of 2 to support efficient modular arithmetic. The 

coefficients 𝑎 = 𝑝 − 1 and small constants d are carefully picked to support the fast 

arithmetic nature of Twisted Edwards curves, enabling efficient and secure scalar 

multiplication. These choices help ensure optimized performance without 

compromising on security. 

The generator points G is fixed and verified to lie on the curve, creating sizable prime-

order subgroups, which is necessary to keep the discrete logarithm issue challenging. 

The subgroup orders n are large primes close to 22𝑘  to prevent small subgroup and 

invalid-curve attacks, while the small cofactor h =0 X 4 further minimizes any potential 

vulnerabilities. These curves are part of the NUMS family, which are designed through 

transparent processes to avoid hidden parameters and gain trust in their security. Their 

widespread use in industry and by trusted companies reinforces confidence in their 

reliability and strength. 

 

4.2  Scalar multiplication algorithms 

4.2.1    Scalar multiplication via binary method 

The BM converting a scalar multiplication, n to binary representation and processing 

each bit from most significant bit to least significant bit. Points on an elliptic curve are 

doubled for each bit of the scalar. If the bit is 1, an additional point is added. The steps 

are illustrated as follows: 

Algorithm 4.1. Scalar multiplication via binary method [68] 

Input: An Affine point 𝑝 ∈ 𝐸(𝐹𝑝) and 𝑛 = (𝑛𝑖−1, … , 𝑛0)2. 

Output: 𝑛𝑃 ∈ 𝐸(𝐹𝑝) 

Steps: 

1. For 𝑖 from 𝑙 − 2 down to 0 do 

2. 𝑄 ← 2𝑄 

3. If 𝑛𝑖 = 1 then 

3.1 𝑄 ← 𝑃 + 𝑄 

4. Return 𝑄 

 

Algorithm 4.1 is used in elliptic curve cryptography over a prime field 𝔽𝑝. It takes as 

input a point P on an elliptic curve E(𝔽𝑝) and a scalar n, which is represented in binary 
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form as (𝑛𝑙−1, … , 𝑛0)2. The goal is to compute nP, which means adding point P to itself 

n times using elliptic curve group operations. The algorithm initializes an accumulator 

point Q with the value of P, based on the assumption that the most significant bit 𝑛𝑙−1 

is 1. In each iteration, the point Q is doubled, representing a shift in the binary 

multiplication. The original point P is added to Q if the current bit is 1. This combination 

of point doubling and conditional addition efficiently computes the scalar multiple nP 

with a number of operations proportional to the bit length of n. This algorithm is 

particularly suited for elliptic curves over finite prime fields due to its straightforward 

implementation and reasonable performance. 

 

4.2.2    Scalar multiplication via elliptic net 

The EN method uses precomputed tables of elliptic curve multiples to accelerate scalar 

multiplication. The scalar decomposed and precomputed points are used to efficiently 

compute the result. This process of EN method is shown in Algorithm 4.2. 

Algorithm 4.2. Scalar multiplication via elliptic net [23] 

Input: Integer 𝑛 = (𝑛𝑙−1𝑛𝑙−2 … 𝑛0)2  with 𝑛𝑙−1 = 1. 𝑃 𝜖 𝐸(𝔽𝑝), 𝑎 = 𝑊2 , 𝑏 = 𝑊3 

and 𝑐 =  𝑊4 of the EN associated to 𝑃  and 𝐼 =  𝑦−1. 

Output: The EN values 𝑊𝜆 where 𝑛 − 2 ≤  𝜆 ≤ 𝑛 + 2 associated to point 𝑃. 

Steps: 

1. 𝑉 ← [−𝑎, −1, 0, 1, 𝑎, 𝑏, 𝑐, 𝑎3, 𝑐 − 𝑏3] 

2. For 𝑖 from 𝑙 − 1 down to 0 do 

3. If 𝑛𝑖 = 0 then 

𝑉 ← 𝑑𝑜𝑢𝑏𝑙𝑒(𝑉) 

4. Else 

𝑉 ← 𝑑𝑜𝑢𝑏𝑙𝑒𝑎𝑑𝑑(𝑉) 

5. 𝐴 =  𝑉3
−1; 𝐵 =  𝐴2; 𝐶 = 𝐴𝐵 

6. 𝐸 =  𝑉2
2; 𝐹 =  𝑉4

2; 𝐺 =  𝑉2𝑉4 

7. 𝐻 = 𝐵𝐺; 𝐽 = 𝐸𝑉5; 𝐾 = 𝐹𝑉1 

8. 𝑥𝑛 =  𝑥1 − 𝐺𝐵 

9. 𝑦𝑛 = (𝐽 − 𝐾)𝐼𝐶 

 

Algorithm 4.2 computes the scalar multiplication nP on an elliptic curve over a prime 

field 𝔽𝑝 using EN. It begins with the scalar n expressed in binary form and a point P on 
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the elliptic curve. The algorithm uses the initial EN values 𝑊2 = 𝑎, 𝑊3 = 𝑏 and 𝑊4 =

𝑐, along with the inverse of the y-coordinate, denoted as 𝐼 =  𝑦−1. It initializes vector 

V with a set of values derived from the net that will be used to recursively compute 

further net terms. The algorithm processes the bits of the scalar n from the most 

significant to the least significant bit. At each step, depending on whether the current 

bit is 0 or 1, the algorithm performs a doubling or a combined doubling and addition 

operation on the vector V, updating its entries to reflect the current state of the scalar 

multiplication. These operations manipulate the EN values rather than the elliptic curve 

points directly. After processing all bits, the algorithm computes the final coordinates 

(𝑥𝑛, 𝑦𝑛) of the resulting point nP using algebraic expressions involving the updated 

vector entries. These expressions combine squares, products, and the inverse I to extract 

the coordinates from the net representation. The result is an efficient computation of nP 

using the structure and recurrence properties of EN. 

 

4.3  Scheme of algorithms 

4.3.1    Algorithm for ECDH scheme 

ECDH enhanced connection between user A and user B to exchange keys securely. 

Both generates a private key and public key. Next, exchange public keys to another and 

use private key public key received to compute a shared secret. The process is shown 

as below:  

Algorithm 4.3. ECDH scheme [67] 

User A User B 

Alice and Bob exchange a Prime(𝑃) and Generator(𝐺), such that 𝑃 > 𝐺. 

Generate a random number, 𝑋𝐴 Generate a random number, 𝑋𝐵 

Generate public key, 𝑌𝐴 = 𝐺𝑋𝐴(𝑚𝑜𝑑 𝑃) Generate public key, 𝑌𝐵 = 𝐺𝑋𝐵(𝑚𝑜𝑑 𝑃) 

Receive 𝑌𝐵 Receive 𝑌𝐴 

Secret Key = 𝑌𝐵
𝑋𝐴(𝑚𝑜𝑑 𝑃) Secret Key = 𝑌𝐵

𝑋𝐴(𝑚𝑜𝑑 𝑃) 

Both secret keys are the same number. 

 

The Diffie-Hellman Key Exchange protocol, which allows two users to safely create a 

shared secret across an unsecure channel, is shown in Algorithm 4.3. Both users agree 

on a large prime number P and a generator G, where P > G. Each user then picks a 
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private random number, XA and XB. Both random numbers are used  to compute their 

public key, (𝑌𝐴 = 𝐺𝑋𝐴mod  P, 𝑌𝐵 =  𝐺𝑋𝐵  mod P). After exchanging public keys, each 

user raises the received public key to the power of their private key, resulting in the 

same shared secret, 𝑌𝐵
𝑋𝐴  𝑚𝑜𝑑 𝑃 has the same value as 𝑌𝐴

𝑋𝐵  𝑚𝑜𝑑 𝑃. This shared secret 

can then be used in future cryptographic operations. 

 

4.3.2    Algorithm for ECDSA scheme 

ECDSA provided digital signatures, steps are signing and verification of messages. 

Sender generates private keys and public keys. A message is signed with the private 

key, creating a digest that is verified using the public key, ensuring the message's 

integrity and authenticity as shown below: 

Algorithm 4.4. ECDSA scheme [4] 

Generation steps: 

1. Select a random integer 𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1. 

2. Compute 𝑘𝐺 = (𝑥1, 𝑦1) and 𝑟 =  𝑥1 𝑚𝑜𝑑 𝑛. If 𝑟 = 0, go back to step 1. 

3. Compute 𝑘−1 𝑚𝑜𝑑 𝑛 

4. Compute 𝑒 = 𝑆𝐻𝐴 − 1(𝑚) 

5. Compute 𝑠 = 𝑘−1(𝑒 +  𝑑𝑟) 𝑚𝑜𝑑 𝑛. If 𝑠 = 0 then go to step 1. 

6. Signature for the message, 𝑚 is (𝑟, 𝑠) 

Verification steps: 

1. Verify (𝑟, 𝑠) are integers in the interval [1, 𝑛 − 1] 

2. Compute 𝑒 = 𝑆𝐻𝐴 − 1(𝑚) 

3. Compute 𝑤 =  𝑠−1 𝑚𝑜𝑑 𝑛 

4. Compute 𝑢1 = 𝑒𝑤 𝑚𝑜𝑑 𝑛 and 𝑢2 = 𝑟𝑤 𝑚𝑜𝑑 𝑛 

5. Compute 𝑋 =  𝑢1𝐺 + 𝑢2𝑄 . If 𝑋 ≠ 0 , compute 𝑣 =  𝑥1 𝑚𝑜𝑑 𝑛  where 𝑋 =

(𝑥1, 𝑦1) 

6. Accept signature if and only 𝑣 = 𝑟. 

 

Algorithm 4.4 describes the ECDSA operation, which is used to generate and verify 

digital signatures. In the signature generation process, a random integer k is selected 

and used to compute a point kG. While he x-coordinate of this point modulo n becomes 

r. If r = 0, a new k is chosen. The hash of the message m is computed, and the signature 
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component s is calculated using the formula s = 𝑘−1(e + dr)mod  n, where d is the 

private key. If s = 0, the process restarts. The signature is the pair (r, s). 

In the verification step, the verifier first checks that r and s are within valid bounds. 

They then compute the message hash e, followed by 𝑤 =  𝑠−1 𝑚𝑜𝑑 𝑛, and use it to 

compute 𝑢1 = 𝑒𝑤 𝑚𝑜𝑑 𝑛 and 𝑢2 = 𝑟𝑤 𝑚𝑜𝑑 𝑛. Using the public key Q, they compute 

the point 𝑋 =  𝑢1𝐺 +  𝑢2𝑄. If 𝑋  ≠ 0,  the verifier computes 𝑣 =  𝑥1 𝑚𝑜𝑑 𝑛 from the 

x-coordinate of X and accepts the signature only if v = r.  
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Chapter 5   

Experiment 

 

5.1   Hardware Setup  

The hardware involved in this project is a laptop. A laptop is issued for the process of 

implementation of coding from ECC scalar multiplication and SCAs to obtain the 

outcome for further analysis, then the process needs to computer large value 

calculations. 

Table 5.1 Specifications of laptop 

Description Specifications 

Model Asus TUF Gaming FX705-GM 

Processor Intel Core i7-8750H 

Operating System Windows 11 

Graphic NVIDIA GeForce GTX 1060 6GB DDR5 

Memory 8GB X 2 DDR5 RAM 

Storage 512 GB SSD 

 

5.2   Software Setup  

In this project, the programming language selected is Python. Python has the most user-

friendly interface among C, C++, Java and others. Python codes are easy to read. Python 

code uses English keywords rather than punctuation, and its line breaks help define the 

code blocks [64]. In addition, Python codes are extendable [64], Python code can be 

written in other programming languages as examples stated above. 

To compile Python code, Anaconda Navigator 3 provides different applications to 

choose, and the applications will be discussed later. The Anaconda platform is the most 

popular way to learn and use Python for scientific computing [65], especially current 

project includes the large numbers mathematical calculation. 

In Avaconda3, several Python development applications are provided, such as 

PyCharm, Jupyter Notebook/Lab, Spyder and Visual Studio Code. The Jupyter Lab is 

selected because it allows for a platform to make it easier to learn Python programming 

fundamentals [66]. Jupyter has two versions, the classic version chosen and the 
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notebook version. In this project, the lab version has been selected. The lab version 

contains more libraries and better experience. The Jupyter Lab performs efficiently in 

resource management, it handles large notebooks and multiple open files without 

significant slowdowns and restores the user's workspace, reopening the lab where the 

user left off. 

 

5.3  Simulation of ECDH 

5.3.1 First Implementation of Binary Method 

Algorithm 5.1. ECDH using Binary Method 

Key Generation Steps: 

1. Generate Private Key: 

Select a random integer k, where 1 ≤ k ≤ n − 1. 

2. Generate Public Key: 

Compute P = kG = (x, y) using scalar multiplication with BM. 

Shared Secret Computation Steps: 

Alice's Side: 

1. Generate a private key a, where 1 ≤ a ≤ n − 1. 

2. Compute public key A = aG. 

3. Receive Bob's public key B = bG. 

4. Compute shared secret point 𝑆𝐴 = 𝑎𝐵 =  (𝑥𝑠, 𝑦𝑠).  

5. Use the x-coordinate of the shared secret: 

Shared secret = 𝑥𝑠. 

Bob's Side: 

1. Generate a private key b, where 1 ≤ b ≤ n − 1. 

2. Compute public key B = bG. 

3. Receive Bob's public key A = aG. 

4. Compute shared secret point 𝑆𝑏 = 𝑏𝐴 =  (𝑥𝑠, 𝑦𝑠).  

5. Use the x-coordinate of the shared secret: 

Shared secret = 𝑥𝑠. 

Scalar Multiplication – Used in All Key/Public/Secret Computations: 

1. Represent scalar k in binary. 

𝑘 = (𝑘𝑡, … , 𝑘0)2 

2. Initialize: 
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𝑅 = (0, 1) (the identity point). 

3. For each bit k from MSB to LSB: 

a. R = 2R using Twisted Edwards point doubling. 

or 

b. If 𝑘𝑖 = 1, then R = R + P using Twisted Edwards point addition. 

4. Output: 

R = kP 

Twisted Edwards Point Addition (P + Q): 

Given P = (𝑥1, 𝑦1), Q = 𝑥2, 𝑦2, computes: 

1. 𝑥3 =  
𝑥1𝑦2+𝑦1𝑥2

1+𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝. 

2. 𝑦3 =  
𝑦1𝑦2−𝑎𝑥1𝑥2

1−𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝 

3. Output: 

𝑅 = (𝑥3, 𝑦3). 

Twisted Edwards Point Doubling (2P): 

Given P = (𝑥1, 𝑦1), compute: 

1. 𝑥3 =  
2𝑥1𝑦1

1+𝑥1
2𝑦1

2  𝑚𝑜𝑑 𝑝. 

2. 𝑦3 =  
𝑦1

2−𝑎𝑥1
2

1−𝑑𝑥1
2𝑦1

2  𝑚𝑜𝑑 𝑝.  

3. Output: 

𝑅 = (𝑥3, 𝑦3). 

 

Algorithm 5.1 describes the full procedure of ECDH key exchange, focusing on the use 

of scalar multiplication via the BM with Twisted Edwards curve arithmetic. In the key 

generation phase, a private key is selected randomly within a valid range, and the 

corresponding public key is computed by multiplying the private scalar with the base 

point G using binary scalar multiplication. During the shared secret computation, both 

users generate their own key pairs and  computes  the shared secret point by multiplying 

their private key with the received public key, resulting in the same shared point 𝑆 =

𝑎𝑏𝐺 . Only the x-coordinate of this point is used as the final shared secret. Scalar 

multiplication, which is central to all these operations, is performed by converting the 

scalar into binary and iterating through each bit from the most significant to least 

significant. For each bit, point doubling is always performed, and point addition is done 



CHAPTER 5 

32 
Bachelor of Information Technology (Honours) Communications and Networking 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

only when the bit is 1, using Twisted Edwards point addition and doubling formulas. 

This method provides guaranteed security level in elliptic curve cryptography. The 

Python codes for Algorithm 5.1 can be seen in Appendix A. 

 

 

 

Figure 5.1 Output of first implementation on ECDH 

 

Figure 5.1 shows the result of the ECDH key exchange using two different key lengths. 

The first output uses the numsp384t1 curve, which has a shorter key length, while the 

second output uses the numsp512t1 curve with a longer key. The results confirm that 

both parties have the same shared secret, and the output shows true, meaning the key 

exchange worked correctly. 
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5.3.2 Second implementation on Elliptic Net Method 

Algorithm 5.2. ECDH using Elliptic Net Method 

Key Generation Steps (For both Alice and Bob) 

1. Select private key 

Randomly choose an integer 𝑘 ∈ [1, 𝑛 − 1]. 

2. Compute public key 

Use EN scalar multiplication: 

   Let 𝑄 ← 𝑄(0, 1) (neutral element) 

   Repeat while 𝑘 ≠  0: 

      If the least significant bit of k is 1: 

         Set 𝑄 ← 𝑄 + 𝑃 using Twisted Edwards point addition. 

      Set 𝑃 ← 2𝑃 using Twisted Edwards point addition 

      Right-shift k by 1 (i.e., 𝑘 = 𝑘 ≫ 1) 

   End loop 

   Return Q as public key 

Shared Secret Derivation Steps (For Alice and Bob) 

1. Each party computes shared secret 

Given private key 𝑑𝐴 peer’s public key 𝑄𝐵: 

   Compute 𝑆 =  𝑑𝐴 ∙ 𝑄𝐵 using EN scalar multiplication 

   Return x-coordinate of S as the shared secret 

Twisted Edwards Point Addition Formula 

Given two points 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2) and parameters a, d and prime p: 

2. Compute intermediate values: 

𝐴 =  𝑥1 ∙ 𝑦2 + 𝑥2 ∙ 𝑦1 

𝐵 = 1 + 𝑑 ∙ 𝑥1 ∙ 𝑥2 ∙ 𝑦1 ∙ 𝑦2 

𝐶 =  𝑦1 ∙ 𝑦2  − 𝑎 ∙ 𝑥1 ∙ 𝑥2 

𝐷 = 1 − 𝑑 ∙ 𝑥1 ∙ 𝑥2 ∙ 𝑦1 ∙ 𝑦2 

3. Compute output point: 

𝑥3 = 𝐴 ∙ 𝐵−1 𝑚𝑜𝑑 𝑝 

𝑦3 = 𝐶 ∙ 𝐷−1 𝑚𝑜𝑑 𝑝 

Return (𝑥3, 𝑦3) 

Shared Secret Match Condition 
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After computation by both parties: 

 Let 𝑆𝐴 = 𝑥-coordinate from Alice's shared point. 

 Let 𝑆𝐵 = 𝑥-coordinate from Bob's shared point. 

 

Algorithm 5.2 explains the ECDH key exchange using binary scalar multiplication on 

Twisted Edwards curves. Each party randomly selects a private key 𝑘 ∈ [1, 𝑛 − 1], 

then computes the public key using scalar multiplication via the EN method. The scalar 

is processed bit by bit. If the bit is 1, a point addition is done, then the point is always 

doubled. All point operations use Twisted Edwards addition formulas. 

Both users perform scalar multiplication for the shared secret key using their private 

key and the peer's public key. The x-coordinate of the resulting point is used as the 

shared secret. If both x-coordinates match, the key exchange is successful, confirming 

both parties derived the same shared secret. The Python codes for Algorithm 5.2 can be 

seen in Appendix B. 
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Figure 5.2 Output of second implementation on ECDH 

 

Figure 5.2 shows that Alice and Bob generate their key pairs using the same scheme 

and method. The private keys are randomly selected, and the public keys are computed 

using EN scalar multiplication. Then, both parties compute a shared secret using each 

other's public key and their own private key. 

The shorter private key is using numsp384t1 secure curve parameter, resulting in 

smaller public key and shared secret values. The longer private key, producing longer 

key values with numsp512t1 secure curve parameter. Despite the key size difference, 

both figures show that the shared secret from users are matched, confirming the key 

exchange was successful as shown (Shared Secret Match: True) in the output. 
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5.4  Simulation based on ECDSA 

5.4.1 First Implementation of Binary Method 

Algorithm 5.3. ECDSA using Binary Method 

Key Generation Steps: 

1. Generate private key: 

Select a random integer d, where 1 ≤ d ≤ n − 1. 

2. Generate public key: 

Compute Q = dG = (𝑥𝑄, 𝑦𝑄) using scalar multiplication with BM. 

Message Signing Steps: 

1. Input: 

Message m, private key d, base point G, curve parameters a, d, p and order n. 

2. Hash the message: 

Compute e = SHA-256(𝑚)𝑚𝑜𝑑 𝑛. 

3. Select ephemeral key: 

Choose a random integer k, where 1 ≤ k ≤ n − 1 and gcd(𝑘, 𝑛) = 1. 

4. Calculate point 𝑅 = 𝑘𝐺 = ( 𝑥𝑅, 𝑦𝑅) using binary scalar multiplication. 

5. Compute: 

𝑟 =  𝑥𝑅 𝑚𝑜𝑑 𝑛. 

𝑘−1 𝑚𝑜𝑑 𝑛. 

𝑠 =  𝑘−1 ∙ (𝑒 + 𝑑 ∙ 𝑟)𝑚𝑜𝑑 𝑛. 

6. Check 𝑠 ≠ 0. If not, repeat from step 3. 

7. Output the signature: 

(r, s) 

Signature Verification Steps: 

1. Input: 

Signature (r, s), message m, public key Q, base point G, curve parameters a, 

d, p and order n. 

2. Check that: 

𝑟 ∈ [1, 𝑛 − 1] 

𝑠 ∈ [1, 𝑛 − 1] 

3. Hash the message: 

e = SHA-256(𝑚) 𝑚𝑜𝑑 𝑛. 
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4. Compute: 

𝑤 =  𝑠−1 𝑚𝑜𝑑 𝑛 

𝑤1 =  𝑒 ∙ 𝑤 𝑚𝑜𝑑 𝑛 

𝑤2 =  𝑟 ∙ 𝑤 𝑚𝑜𝑑 𝑛 

5. Calculate point R = 𝑢1𝐺 + 𝑢2𝑄 = (𝑥𝑅, 𝑦𝑅) using binary scalar multiplication 

and Twisted Edwards point addition. 

6. Signature is valid if: 

𝑟 ≡  𝑥𝑅 𝑚𝑜𝑑 𝑛 

Twisted Edwards Point Addition (P + Q): 

Given P = (𝑥1, 𝑦1), Q = 𝑥2, 𝑦2, computes: 

1. 𝑥3 =  
𝑥1𝑦2+𝑦1𝑥2

1+𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝. 

2. 𝑦3 =  
𝑦1𝑦2−𝑎𝑥1𝑥2

1−𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝 

3. Output: 

𝑅 = (𝑥3, 𝑦3). 

Binary Scalar Multiplication (kP): 

1. Convert k to binary: 

𝑘 = (𝑘𝑡, … , 𝑘0)2 

2. Initialize: Q = (0, 1) (identity element) 

3. Loop through bits of k: 

Double: Q = Q + Q 

If bit is 1: Q = Q + P 

4. Return: 

Q = kP 

 

Algorithm 5.3 explains the process of ECDSA using binary scalar multiplication with 

Twisted Edwards curves. The key generation starts by selecting a random private key 

d, then computing the public key Q = dG using scalar multiplication. To sign a message, 

the message must proceed using SHA-256 technique. A random ephemeral key k is 

chosen to compute the point R = kG, and its x-coordinate becomes r. The value s is 

calculated using 𝑠 =  𝑘−1(𝑒 + 𝑑𝑟)𝑚𝑜𝑑 𝑛, where e is the hash of the message. The 

signature is the pair (r, s). To verify the signature, the verifier checks the range of r and 

s, then hashes the message to get e. Using the signature and public key, the verifier 
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computes a new point 𝑅 =  𝑤1𝐺 +  𝑤2𝑄, where w1 and w2 derived from r, s, and e. If 

the x-coordinate of this point equals r, the signature is valid. All scalar multiplications 

are done using the BM and point additions/doublings use Twisted Edwards formulas. 

The Python codes for Algorithm 5.3 can be seen in Appendix C. 

 

 

Figure 5.3 Output of first implementation on ECDSA 

 

Figure 5.3 shows the process of ECDSA signature generation and verification using 

different key pairs. In both cases, private key used to sign message ‘Good Morning 

my neighbours!’, and the public key is used to verify the signature. All outputs 

confirm that the signature was successfully generated and validated for both key sizes. 

Despite the longer keys producing longer signature values, the result is the same: 

“Signature valid: True”, meaning the message integrity and authenticity are verified. 
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5.4.2 Second implementation of Elliptic Net Method 

Algorithm 5.4. ECDSA using Elliptic Net Method 

Key Generation Steps (For both Alice and Bob) 

1. Select private key 

Randomly choose an integer d ∈ [1, 𝑛 − 1]. 

2. Compute public key 

𝑄 = 𝑑 ∙ 𝐺 

Signature Generation 

1. Input: Message m, private key d, curve parameters a, d, p, generator G, and 

order n. 

2. Hash the message: 

Compute e = SHA-256(𝑚)𝑚𝑜𝑑 𝑛 

3. Generate random nonce: 

Choose random 𝑘 ∈ [1, 𝑛 − 1] such that gcd(𝑘, 𝑛) = 1 

4. Compute ephemeral point: 

𝑅 = 𝑘 ∙ 𝐺 using EN scalar multiplication 

   Extract 𝑟 =  𝑥𝑅 𝑚𝑜𝑑 𝑛 

5. Compute signature component: 

𝑠 =  𝑘−1(𝑒 + 𝑟 ∙ 𝑑)𝑚𝑜𝑑 𝑛 

6. Output signature: 

Return (r, s) 

Signature Verification 

1. Input: Message m, public key Q, signature (r, s) and curve parameters 

2. Check bounds: 

If 𝑟 ∉ [1, 𝑛 − 1] or 𝑠 ∉ [1, n − 1], reject 

3. Hash the message: 

Compute e = SHA-256(𝑚) 𝑚𝑜𝑑 𝑛 

4. Compute inverse: 

𝑠−1 𝑚𝑜𝑑 𝑛 

5. Compute scalar values: 

𝑢1 = 𝑒 ∙ 𝑠−1 𝑚𝑜𝑑 𝑛, 𝑢2 = 𝑟 ∙ 𝑠−1 𝑚𝑜𝑑 𝑛 

6. Compute point: 
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𝑅 =  𝑢1 ∙ 𝐺 + 𝑢2 ∙ 𝑄 using EN scalar multiplication and point addition 

7. Check validity: 

 Signature is valid if 𝑟 ≡ 𝑥𝑅 𝑚𝑜𝑑 𝑛 

Twisted Edwards Point Addition 

Given points P = (𝑥1, 𝑦1), Q = (𝑦2, 𝑦2) curve parameters: 

1. 𝐴 =  𝑥1𝑦2 + 𝑥2𝑦1 

2. 𝐵 = 1 + 𝑑𝑥1𝑥2𝑦1𝑦2 

3. 𝐶 =  𝑦1𝑦2 −  𝑎𝑥1𝑥2 

4. 𝐷 = 1 −  𝑑𝑥1𝑥2𝑦1𝑦2 

5. Compute: 

𝑥3 = 𝐴 /𝐵 𝑚𝑜𝑑 𝑝 

𝑦3 = 𝐶 /𝐷 𝑚𝑜𝑑 𝑝 

6. Return (𝑥3, 𝑦3) 

 

Algorithm 5.4 describes the full procedure of digital signature generation and 

verification using elliptic curves, specifically utilizing scalar multiplication and 

Twisted Edwards curve arithmetic. In the signature generation phase, the sender 

chooses a private key and generate the public key by multiplying it with base point G. 

To sign the message, the message must proceed using SHA-256 technique and reduced 

modulo n, producing a digest e. A random nonce 𝑘 ∈ [1, 𝑛 − 1]  is then chosen such 

that gcd(𝑘, 𝑛) = 1 . The ephemeral point R = k⋅G computed using binary scalar 

multiplication, and its x-coordinate mod n is taken as r. The final signature component 

s is calculated as 𝑠 =  𝑘−1(𝑒 + 𝑟 ∙ 𝑑)𝑚𝑜𝑑 𝑛, forming the signature pair (r, s). 

In the verification phase, the verifier first checks that r and s lie within the valid range. 

Then, the message is hashed again and reduced to get e, and the inverse of s modulo n 

is computed. The values 𝑅 =  𝑢1 ∙ 𝐺 + 𝑢2 ∙ 𝑄  and  𝑢2 = 𝑟 ∙ 𝑠−1 𝑚𝑜𝑑 𝑛  are used to 

compute the verification point 𝑅 =  𝑢1 ∙ 𝐺 + 𝑢2 ∙ 𝑄 . This point is calculated using 

scalar multiplication and Twisted Edwards point addition. If the x-coordinate of 

𝑅 𝑚𝑜𝑑 𝑛 equals r, the signature is considered valid. The use of binary scalar 

multiplication and Twisted Edwards formulas ensures efficient and secure 

computations throughout the signature process. The Python codes for Algorithm 5.4 

can be seen in Appendix D.  
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Figure 5.4 Output of second implementation on ECDSA 

 

Figure 5.4 shows successful execution of a digital signature scheme using Twisted 

Edwards Curve cryptography. In each case, the public key is created using the private 

key, and the message signed using a random nonce, producing unique (r, s) signature 

values. The signature is then verified using the corresponding public key and original 

message. Although the inputs differ between the two outputs, both correctly validate 

the signatures, demonstrating consistent and secure implementation of the signing and 

verification process. 

 

5.5   Implementation Issues and Challenges  

One of the most technically challenging aspects of the implementation phase was 

converting the EN scalar multiplication algorithm into working code. The algorithm 

involved a structured and layered computation model with recursive logic, making it 

significantly more complex to translate into a stable and reliable program. 

Implementing the EN method across four algorithm variations, which included ECDH 

and ECDSA using both numsp384t1 and numsp512t1 parameters, required careful 

attention to the sequence of point operations and value tracking. Mistakes in indexing 

or recursive calculations often resulted in subtle errors that were difficult to detect 

during testing. Due to its mathematical depth and dependency on correct ordering, the 

process demanded considerable time, experimentation, and validation to achieve 

functional and accurate results across all implementations. 
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Following this, the implementation of the ECDH scheme also presented its own 

challenges. Although the ECDH algorithm is conceptually straightforward, ensuring 

correct key generation, point multiplication, and shared secret computation required 

careful handling of curve parameters and scalar values. The use of different curve sizes 

such as numsp384t1 and numsp512t1 introduced additional complexity. Proper 

configuration and parameter consistency were necessary to maintain the integrity of the 

key exchange process across different test cases. 

Another major issue encountered was the mismatch in the computed shared secret 

during ECDH testing. During certain early testing, users engaged in the key exchange 

produced different shared secret values, indicating a problem with scalar multiplication 

or key configuration. This issue was traced back to inconsistencies in private key 

formatting, mismatched bit lengths, or incorrect conversion between coordinate 

representations. After identifying these inconsistencies, the key generation process was 

corrected to ensure the private keys had the proper bit lengths and that the scalar 

multiplication was carried out in the affine coordinate system with consistent 

formatting on both sides. 

 

5.6   Concluding Remark 

Chapter 5 presents the successful implementation of elliptic curve-based cryptographic 

schemes, specifically ECDH and ECDSA, using Twisted Edwards curves. The 

implementation begins with environment setup and key generation, followed by secure 

message signing and verification. 

Two scalar multiplication methods were applied which are the BM and the EN methods. 

The BM processes each scalar bit using point doubling and conditional addition, while 

the EN method uses structured point sequences to minimize leakage and optimize 

performance. Experimental result on numsp384t1 and numsp512t1 curve confirmed 

that key change in ECDH and digital signature in ECDSA were executed correctly.   

The outputs validate the correctness of the operations and provide a strong foundation 

for later SCAs evaluations. These implementations set the stage for analysing the 

cryptographic strength and resistance of each method in Chapter 6.  
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Chapter 6  

System Evaluation and Discussion 

 

6.1  System Testing  

This chapter focuses on two types of attacks which are timing attack and power analysis 

attack. Timing attacks are applied to ECDH using both the BM and EN method, 

according to Algorithm 5.1 and Algorithm 5.2. Power analysis attacks are applied only 

to ECDSA, Algorithm 5.3 for BM and Algorithm 5.4 for EN method.  

6.1.1 Timing Attack on Algorithm 5.1 

Algorithm 6.1. Timing Attack on Algorithm 5.1 

Steps: 

1. Initialize guessed_key ← 0  

2. Initialize timing_diffs ← empty list 

3. For i from 0 to key_size - 1 do: 

1. Let k0 ← guessed_key 

2. Let k1 ← guessed_key with bit (key_size - 1 - i) set to 1 

3. Measure execution time t0 for scalar_multiplication_binary(k0, G) 

4. Measure execution time t1 for scalar_multiplication_binary(k1, G) 

5. Append (t1 - t0) to timing_diffs 

6. If t1 > t0: 

   Set guessed_key ← k1 (bit is likely 1) Else: 

   Set guessed_key ← k0 (bit is likely 0) 

7. Mask guessed_key to ensure it remains within 384 or 512 bits 

4. Return guessed_key, timing_diffs 

 

Algorithm 6.1 outlines a timing attack performed on Algorithm 5.1 to recover a private 

key used in binary scalar multiplication. It begins by initializing a guessed key to zero 

and setting up an empty list to store timing differences. The attack works bit by bit, 

starting from the most significant bit down to the least significant. In each iteration, two 

candidate keys are created, the current guess, k0. And k1, which is the same as k0 but 

with the current bit set to 1. The execution time of the scalar multiplication using each 

key is measured with the function scalar_multiplication_binary(k, G), where G is the 
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base point. The timing difference between k1 and k0 is stored. If the execution time for 

k1 is greater than for k0, it is inferred that the bit is likely 1, and the guessed key is 

updated accordingly. Otherwise, it remains 0. To ensure the key length stays within 384 

or 512 bits, the key is masked in each iteration. Finally, the guessed key and the list of 

timing differences are returned, providing insight into the potential leakage of key bits 

through execution time variations in the BM. The Python codes for Algorithm 6.1 can 

be seen in Appendix E.  

 

6.1.2 Timing Attack on Algorithm 5.2 

Algorithm 6.2. Timing Attack on Algorithm 5.2 

Steps: 

1. Initialize guessed_key ← 0  

2. Initialize timing_diffs ← empty list 

3. For i from 0 to key_size - 1 do: 

1. Let k0 ← guessed_key 

2. Let k1 ← guessed_key with bit (key_size - 1 - i) set to 1 

3. Measure execution time t0 for elliptic_net_scalar_mult(k0, G, p, a, d) 

4. Measure execution time t1 for elliptic_net_scalar_mult(k0, G, p, a, d) 

5. Append (t1 - t0) to timing_diffs 

6. If t1 > t0: 

   Set guessed_key ← k1 (bit is likely 1) Else: 

   Set guessed_key ← k0 (bit is likely 0) 

7. Mask guessed_key to ensure it remains within 384 or 512 bits 

Return guessed_key, timing_diffs 

 

Algorithm 6.2 shows the process of performing a timing attack on Algorithm 5.2 to 

recover a secret key bit by bit. The attack begins by initializing the guessed_key to zero 

and an empty list called timing_diffs to store timing differences. The process iteratively 

guesses each bit of the secret key starting from the most significant bit. In each iteration, 

two versions of the key are prepared: k0 as the current guess and k1 as the guess with 

the current bit set to 1. Both versions are used in scalar multiplication using the 

elliptic_net_scalar_mult function, and their execution times (t0 and t1) are measured. 

The difference t1 - t0 is recorded in the timing_diffs list. If t1 is greater than t0, it is 
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assumed that the key bit is likely 1, so the bit is kept set in the guess. Else, it remains 0. 

This process continues for all bits in the key, and the guessed_key is masked at each 

step to ensure it fits within the 384-bit or 512-bit key size. In the end, the function 

returns both the guessed key and the list of timing differences, giving insights into 

where the algorithm may leak information based on execution time. The Python codes 

for Algorithm 6.2 can be seen in Appendix F. 

 

6.1.3 Power Analysis Attack on Algorithm 5.3 

Algorithm 6.3. Power Analysis Attack on Algorithm 5.3 

Steps: 

1. Generate 1000 random 8-bit plaintext values: 

plaintexts ← random integers in [0, 255], size = num_samples 

2. Generate a 48-byte secret nonce 

true_nonce ← random integers in [0, 383], size = 48 or 64 

3. Simulate Power Traces 

For each nonce byte 𝑘𝑖 in true_nonce: 

   For each plaintext 𝑝ⱼ, compute hamming_weight(𝑝 ⊕  𝑘ᵢ) 

   Add Gaussian noise: 

      𝑡𝑟𝑎𝑐𝑒ᵢ =  𝐻𝑊(𝑝 ⊕  𝑘ᵢ) + noise 

   Store 𝑡𝑟𝑎𝑐𝑒ᵢ in power_traces 

4. Correlate Guesses 

For each byte index i in nonce: 

   Initialize list byte_correlations ← [] 

   For every guess g in [0, 255]: 

      Compute 𝐻𝑊(𝑝 ⊕  𝑔) + noise 

      Calculate Pearson correlation with power_traces[i] 

      Store result in byte_correlations 

Determine the best guess g* with the highest correlation 

Validate guess: 

   if g* == true_nonce[i] and correlation > threshold → count as correct 

5. Evaluate Attack Success 

Compute success_rate = (correct guesses / 48 or 64) × 100% 

Output per-byte result: true vs guessed nonce and validation 
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Plot correlation for byte 0 to visualize power leak 

 

Algorithm 6.3 shows the designed power analysis attack performed on Algorithm 5.3 

to recover a secret nonce used in elliptic curve cryptography by analyzing power 

consumption traces. It starts by generating a secret nonce, which is a 48-byte (384-bit) 

or 64-byte (512-bit) value, and then simulates power traces. For each byte of the nonce, 

the algorithm calculates its Hamming weight . If the number of 1s in its binary form, it 

helps to calculate  how much power is used. This step is to form the power analysis 

attack. The simulated power values are then mixed with random noise to make the 

traces more realistic, imitating the imperfections seen in real devices. These noisy 

power traces are then used to carry out the power analysis attack. 

The next step is to correlate guesses for each byte of the nonce with the real power 

traces. For each byte of the nonce, the algorithm tries all possible guesses (from 0 to 

255), computes the predicted power consumption traces for each guess, and calculates 

the Pearson correlation between each predicted trace and the real power traces. The 

guess that results in the highest correlation is considered the best guess for that byte. If 

the correlation exceeds a certain threshold and the guessed byte matches the actual 

nonce byte, the guess is validated as correct. After evaluating all 48 bytes or 64  bytes 

of the nonce, the attack success rate is calculated by measuring the percentage of 

correctly guessed bytes. The algorithm also outputs the per-byte results and generates 

a plot to visualize the correlation for the first byte of the nonce. This entire process is 

designed to recover the secret nonce by exploiting power leakage during the 

cryptographic operation, demonstrating how power analysis attacks can expose 

vulnerabilities to cryptographic systems. The Python codes for Algorithm 6.3 can be 

seen in Appendix G. 
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6.1.4 Power Analysis Attack on Algorithm 5.4 

Algorithm 6.4. Power Analysis Attack on Algorithm 5.4 

Steps: 

1. Generate 1000 random 8-bit plaintext values: 

plaintexts ← random integers in [0, 255], size = num_samples 

2. Generate a 48-byte secret nonce 

true_nonce ← random integers in [0, 383 or 511], size = 48 or 64 

3. Simulate Power Traces 

For each nonce byte 𝑘𝑖 in true_nonce: 

   For each plaintext 𝑝, compute hamming_weight (𝑝 ⊕  𝑘ᵢ) 

   Add Gaussian noise: 

      𝑡𝑟𝑎𝑐𝑒ᵢ =  𝐻𝑊( 𝑝 ⊕  𝑘ᵢ) + noise 

   Store 𝑡𝑟𝑎𝑐𝑒ᵢ in power_traces 

4. Correlate Guesses 

For each byte index i in nonce: 

   Initialize list byte_correlations ← [] 

   For every guess g in [0, 255]: 

      Compute 𝐻𝑊(𝑝 ⊕  𝑔) + noise 

      Calculate Pearson correlation with power_traces[i] 

      Store result in byte_correlations 

Determine the best guess g* with the highest correlation 

Validate guess: 

   if g* == true_nonce[i] and correlation > threshold → count as correct 

5. Evaluate Attack Success 

Compute success_rate = (correct guesses / 48 or 64) × 100% 

Output per-byte result: true vs guessed nonce and validation 

Plot correlation for byte 0 to visualize power leak 

 

Algorithm 6.4 illustrates power analysis attack implementation on Algorithm 5.4. This 

algorithm is similar to the BM, Algorithm 6.3 but incorporates differences in simulated 

power consumption traces. First, the algorithm generates 1000 random 8-bit plaintext 

values and a 48-byte secret nonce or a 64-byte secret nonce. The power traces are 

simulated by calculating the Hamming weight between each plaintext byte and the 
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corresponding nonce byte, just as in the BM. However, the simulation uses a more 

complex model that accounts for elliptic curve scalar multiplication, where power 

consumption may depend on the specific operation. Gaussian noise is then added to the 

traces to reflect real-world conditions, and these noisy traces are stored for further 

analysis. 

To recover the nonce, the algorithm then attempts to correlate all possible guesses for 

each byte of the nonce with the actual power traces. For each nonce byte, it iterates over 

all potential guesses, calculates the Hamming weight for each guess, and computes the 

Pearson correlation between the predicted power traces and the actual traces. The best 

guess is determined by identifying the guess that produces the highest correlation for 

that byte. If the correlation exceeds a predefined threshold and the guessed byte matches 

the actual nonce byte, the guess is validated. After processing all 48 bytes or 64 bytes 

of the nonce, the attack's success rate is evaluated by calculating the percentage of 

correct guesses. A correlation plot for the first byte is generated to visually inspect the 

strength of the power leak, helping to demonstrate the effectiveness of the attack on 

elliptic curve cryptographic systems. The Python codes for algorithm 6.4 can be seen 

in Appendix H. 

 

6.2  Testing Setup and Result  

6.2.1 Timing Attack Implementation for Algorithm 6.1 (numsp384t1) 

Figure 6.1 Timing Attack on Algorithm 6.1 (numsp384t1) 

 

Figure 6.1 represents a timing attack on ECDH using BM with numsp384t1 secure 

curve parameter. The blue line shows how the time difference between two operations 

changes for each bit position of the key, with the x-axis representing the bit positions 

from most significant to least significant, and the y-axis showing the time difference. 
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In this graph, the blue line has several noticeable spikes. These spikes suggest that the 

computation time varies more significantly at those bits, likely due to how the algorithm 

processes bits set to 1 versus 0. For example, certain operations might take longer when 

the bit is 1, which can unintentionally leak information about the key. These visible 

spikes could help an attacker make educated guesses about the value of specific bits. 

However, while the timing differences are more pronounced here than in the second 

graph (Figure 6.2), they were still not consistent or accurate enough for the attack to 

succeed in fully recovering the correct private key. 

 

6.2.2 Timing Attack Implementation for Algorithm 6.1 (numsp512t1) 

 

Figure 6.2 Timing Attack on Algorithm 6.1 (numsp512t1) 

 

Figure 6.2 shows a timing attack output on the ECDH using BM but with different 

secure  curve parameters. The numsp512t1 secure curve parameter uses a longer 512-

bit private key compared to the 384-bit key in the previous graph. As before, timing 

attacks were implemented to guess Alice's private key by analyzing how long the 

cryptographic operations take. The x-axis represents the position of each bit in the 

private key, from the most significant to the least important, and the y-axis shows the 

difference in computation time between the two operations. The blue line indicates how 

this time difference varies across the key bits. The blue line appears much more stable, 

with fewer and smaller spikes. This suggests that the implementation for numsp512t1 

is less susceptible to timing variations, making it more resistant to this type of SCA. 

Although there are still minor spikes, they are less pronounced and do not provide 

enough information to recover the private key, which is why the attack was 

unsuccessful. 
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6.2.3 Timing Attack Implementation for Algorithm 6.2 (numsp384t1) 

 

Figure 6.3 Timing Attack on Algorithm 6.2 (numsp384t1) 

 

Figure 6.3 shows the timing attack results on ECDH using the EN method with the 

numsp384t1 curve. The blue line represents the timing differences measured at each bit 

position during scalar multiplication, where the x-axis shows the bit positions from the 

most significant to the least significant bit. Ideally, if the scalar multiplication operation 

is fully protected, the timing differences should remain flat and close to zero across all 

bit positions. However, in this graph, several noticeable spikes are visible, particularly 

around bit position 350, indicating that some bits cause slight variations in computation 

time. These spikes suggest possible timing leakage due to internal branching, memory 

handling, or point addition complexity, which could theoretically allow an attacker to 

guess bit values based on timing anomalies. Nevertheless, compared to previous results 

from the BM, the amplitude and frequency of these spikes are much lower and less 

consistent. The overall blue line remains relatively stable without significant 

fluctuations, meaning that less information is leaked overall. Despite minor 

fluctuations, the guessed key generated from this timing analysis did not match the 

actual private key, demonstrating that the EN method significantly improves resistance 

against timing attacks, even when slight leakage is present. 
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6.2.4 Timing Attack Implementation for Algorithm 6.2 (numsp512t1) 

 

Figure 6.4 Timing Attack on Algorithm 6.2 (numsp512t1) 

  

Figure 6.4 shows the timing attack results on ECDH using the EN method with the 

numsp512t1 curve. The blue line represents the timing differences measured at each bit 

position during scalar multiplication, with the x-axis displaying bit positions from the 

most significant to the least significant bit across the 512-bit key. Ideally, a well-

protected implementation would produce a flat line close to zero, and in this figure, the 

blue line remains relatively stable with only minor fluctuations. Small spikes appear 

throughout the graph, particularly bit positions 475, suggesting slight timing variations 

caused by certain bits, but the magnitude of these spikes is small and inconsistent. 

Timing attacks on ECDH using EN with different parameters produce slightly different 

results. Compared to Figure 6.3, Figure 6.4 shows even smaller and more scattered 

timing differences, with no significant concentration of leakage at specific bit positions. 

Despite minor fluctuations observed in both figures, the guessed keys did not match the 

actual private keys, demonstrating that the EN method consistently offers strong 

resistance to timing attacks, even when slight leakages are present.  

Overall, the timing attack on ECDH shows that the EN method offers better resistance 

compared to the BM. When comparing Figure 6.3 and Figure 6.4, both based on the 

EN method, the graph for numsp512t1 (Figure 6.4) is more stable with fewer timing 

fluctuations than numsp384t1 (Figure 6.3). This suggests that increasing the key size 

improves resistance to timing-based analysis, and the structured nature of the EN 

method further reduces potential leakage. This is evident in the graphs where the blue 

lines in EN show smaller and fewer timing spikes across bit positions, indicating more 
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consistent execution. The reduced variation makes it harder for attackers to distinguish 

between key bits, proving that EN leaks less timing information than BM. 

 

6.2.5 Power Analysis Attack Implementation for Algorithm 6.3 (numsp384t1) 

 

 

Figure 6.5 Power Analysis Attack on Algorithm 6.3 (numsp384t1) 
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Figure 6.5 shows a power analysis attack on ECDSA using the BM with numsp384t1 

secure curve parameter. The blue line represents the correlation between power traces 

and each guessed key value for nonce byte 0, with the x-axis showing possible byte 

guesses (0–255) and the y-axis showing the strength of correlation ranging from -1 to 

1. The red dashed line marks the position of the true nonce byte, but since it does not 

align with a high peak in the blue line, the guess for byte 0 was incorrect. This aligns 

with Figure 6.5, where each nonce byte guess is validated against the true value, and 

only 30 out of 48 bytes were correctly guessed, giving an overall success rate of 62.5%. 

 

6.2.6 Power Analysis Attack Implementation for Algorithm 6.3 (numsp512t1) 

Figure 6.6 visualizes a power analysis attack on ECDSA using the BM on the 

numsp512t1 secure curve parameter. The x-axis represents all possible byte guesses 

(from 0 to 255), while the y-axis shows the correlation between each guess and the 

actual power consumption measured during computation. The blue line shows the 

correlation values for each key guess, the peaks in this line suggest potential correct 

guesses. The red dashed line marks the actual secret key byte (Byte 0), and ideally, the 

blue line should show a sharp peak at this point. However, the blue line remains noisy, 

and the red line does not align with the highest peak, indicating difficulty in identifying 

the correct byte using this method. The outcome of power analysis attacks on higher-

bit secure curve parameters achieved a 54.69% overall success rate in correctly 

recovering individual key bytes; the true value attempt was 35 out of 64. 
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Figure 6.6 Power Analysis Attack on Algorithm 6.3 (numsp512t1) 
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6.2.7 Power Analysis Attack Implementation for Algorithm 6.4 (numsp384t1) 

 

Figure 6.7 Power Analysis Attack on Algorithm 6.4 (numsp384t1) 

 

Figure 6.7 displays the results of a power analysis attack on ECDSA using EN method 

with the numsp384t1 curve. The blue line shows the correlation between key guesses 

and the collected power traces, where the x-axis represents key guess values ranging 
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from 0 to 255 and the y-axis indicates correlation values from -1 to 1. Peaks in the blue 

line near the red line suggest strong correlations where the correct byte guess aligns 

with the measured power traces. The red dashed vertical line marks the actual value of 

nonce byte 0, positioned at x = 81. The fluctuations observed across the blue line 

represent the inherent noise and varying leakage strength in the power traces, with 

sharper peaks indicating regions of higher information leakage and flatter regions 

suggesting weaker leakage. Despite the noise, 31 out of 48 nonce bytes were correctly 

guessed, resulting in an overall success rate of 64.58%, demonstrating moderate attack 

effectiveness against the numsp384t1 curve. 
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6.2.8 Power Analysis Attack Implementation for Algorithm 6.4 (numsp512t1) 

 

Figure 6.8 Power Analysis Attack on Algorithm 6.4 (numsp512t1) 
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Figure 6.8 shows the results of a power analysis attack on ECDSA using EN method 

with the numsp512t1 curve. The plot charts the correlation between key guesses and 

the collected power traces, where the x-axis represents key guess values from 0 to 255 

and the y-axis shows correlation values ranging from -1 to 1. The blue line, representing 

correlation with power traces, exhibits fluctuating behavior with less distinct peaks, 

indicating the presence of noise and weaker leakage signals. The value of secret key 

byte 0 was 41, which is marked by a red dashed vertical line at the corresponding x-

axis position. In this attack, 33 out of 6 secret key bytes were correctly guessed, 

resulting in an overall success rate of 21.56%. These results suggest that significant 

challenges remain in reliably extracting secret information from the numsp512t1 curve 

under this attack setup. 

The power analysis attack on the numsp384t1 curve achieved a moderate success rate 

of 64.58%, correctly recovering 31 out of 48 nonce bytes. Power analysis attack on the 

numsp512t1 curve yielded a much lower success rate of 51.56%, with only 33 out of 

64 secret key bytes correctly identified. In Figure 6.7, the correlation graph displays 

sharper and more prominent peaks near the correct key guesses, indicating more 

substantial leakage and easier identification of the actual key values. In contrast, Figure 

6.8 exhibits noisier, flatter, and less distinguishable correlation patterns, making 

isolating the correct guesses from noise considerably more challenging. This difference 

highlights how increasing the key size and using more complex elliptic curve 

parameters, as with numsp512t1, substantially improve resistance against SCAs by 

spreading leakage over a larger key space and reducing the correlation strength. 

Additionally, the longer key length in numsp512t1 increases the number of key bytes 

that must be guessed correctly, making partial recovery less impactful and full key 

reconstruction practically infeasible. The results demonstrate that physical noise and 

algorithmic complexity jointly contribute to the enhanced security of larger elliptic 

curves against power analysis techniques. 

 

6.3  Project Challenges  

Several significant challenges were encountered during this project's development and 

evaluation stages, particularly in ensuring output correctness, finding suitable 

references for coding in Python. Due to the lack of supporting external sources, these 

issues impacted both the technical flow of the project. 
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A recurring challenge was ensuring that the final output of each implementation was 

correct and consistent. In some test cases, the shared secret generated in the ECDH 

protocol did not match between the two parties. Similarly, in ECDSA testing, the digital 

signature verification failed despite correct input values. These issues highlighted the 

misconfigurations such as incorrect key formatting, mismatched bit lengths, or 

improper coordinate conversions. To resolve these problems, each computation step 

was rechecked thoroughly, and the output at every stage was printed and compared. 

Public key generation, scalar values, and field parameters were verified individually. 

For ECDSA, the signature components were recalculated using new random k values 

and point multiplication results were closely monitored until the signature passed 

validation. This careful, step-by-step debugging process allowed each error to be 

identified and corrected, eventually leading to valid, reliable outputs. 

Another significant difficulty was the limited availability of Python-specific reference 

materials. While the concepts behind ECC and SCAs are well-documented in general, 

very few detailed examples or sample codes written in Python could guide the 

implementation of EN scalar multiplication, ECDSA, or ECDH using the chosen 

NUMS curves. Most available resources were written in other programming languages 

or focused only on the high-level logic, without implementation details. Searches 

through platforms like GitHub, Stack Overflow, and academic coding forums often 

returned incomplete or unrelated results. As a result, many parts of the code had to be 

built from scratch based on mathematical definitions and manual interpretation of the 

algorithmic steps, making the development process slower and more dependent on self-

validation. 

One of the most challenging aspects of the project was the simulation of SCAs. 

Although timing and power analysis attacks were implemented and executed against 

the BM in ECDH and ECDSA, the attacks failed to reveal the private key. The observed 

timing differences and power variations were insufficient to make accurate guesses 

about the key values. What made this more challenging was the lack of references 

validating or supporting the methodology used for these simulations in Python. Without 

documented benchmarks or comparable examples, it was difficult to determine whether 

the test setup, measurement techniques, or data analysis strategies were adequate or 

needed adjustment. This created a sense of limitation, as the project was constrained by 

a lack of external guidance to confirm the approach taken. 
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6.4  Objective Evaluation 

All three objectives set at the beginning of this project have been successfully achieved 

through detailed identification, implementation, and simulation. Each objective was 

addressed methodically, and the outcomes of Chapters 5 and 6 provide strong evidence 

of their fulfilment.  

a. To identify potential vulnerabilities in the scalar multiplication algorithms via 

binary and EN methods. 

This objective was met by performing SCAs on ECC scalar multiplication algorithms 

using BM and EN methods. The timing attack on ECDH and the power analysis attack 

on ECDSA revealed how different algorithms leak key-related information. The results 

in Tables 6.1 and 6.2 demonstrate the varying levels of vulnerability depending on the 

method used and the curve size. The BM showed higher leakage and lower resistance 

due to its key-dependent operation flow, while the EN method performed with greater 

uniformity, particularly on smaller curves like numsp384t1. 

b. To implement the following double-and-add algorithm in ECDH and ECDSA 

schemes: 

i). Binary method  

ii). Elliptic net method 

This objective was achieved by implementing the binary and EN methods in the ECDH 

key exchange and ECDSA digital signature processes. All implementations used secure 

NUMS curve parameters (numsp384t1 and numsp512t1) under affine coordinates. 

Correct shared secret generation and signature verification confirmed the functional 

accuracy of the scalar multiplication operations across all four algorithmic 

combinations. 

c. To evaluate the proposed algorithms based on side-channel attacks. 

The third objective was accomplished by applying simulated timing attacks to ECDH 

and power analysis attacks to ECDSA. The experiments successfully measured 

execution-time variations and analysed power trace patterns to test the vulnerability of 

scalar multiplication algorithms. Although the simulated attacks did not fully recover 

private keys, the correlation plots and key recovery rates clearly showed how algorithm 

structure and curve complexity impact the level of side-channel resistance. 
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The outcomes from these analyses validate that all project goals were met, providing a 

comprehensive understanding of scalar multiplication security in ECC-based systems 

under SCAs conditions. 

Table 6.1 Results of ECDH implementation 

 ECDH 

Binary Method (Algorithm 5.1) Elliptic Net Method (Algorithm 5.2) 

Numsp384t1 Numsp512t1 Numsp384t1 Numsp512t1 

Timing 

Attack 
Secure Secure Secure Secure 

 

 

Table 6.2 Results of ECDSA implementation  

 ECDSA 

Binary Method (Algorithm 5.3) Elliptic Net Method (Algorithm 5.4) 

Numsp384t1 Numsp512t1 Numsp384t1 Numsp512t1 

Power 

Analysis 

Attack 

Secure Secure Secure Secure 

 

 

Tables 6.1 and 6.2 presented earlier reveal the results of these attacks. For the timing 

attack on ECDH using the BM method with numsp512t1 secure curve parameter, 35 

out of 64 key bytes were successfully recovered, resulting in a 54.69% success rate. 

Longer key bit length performed better while using the BM method. In comparison, the 

EN method performed better on the numsp384t1 curve with a success rate of 64.58%, 

accurately recovering 31 out of 48 key bytes. However, when applied to the 

numsp512t1 curve, its success rate dropped to 51.56% (33 out of 64 bytes recovered). 

These variations confirm that scalar multiplication methods have differing levels of 

vulnerability depending on their internal structure and the complexity of the curve used. 

Although widely adopted for its simplicity, the BM leaks more key-dependent patterns 

compared to the structured operations of the EN. 

The results of implementing binary and EN methods in ECDH and ECDSA reinforce 

the impact of algorithmic design on side-channel resilience. The double-and-add 

technique revealed distinct power consumption patterns in the BM implementation, 

especially during ECDSA signature generation using ephemeral key k. The visualized 
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correlation plots (Figure 6.2 and Figure 6.4) showed multiple instances where the 

guessed bytes did not align with the correct key values, highlighting leakages 

exploitable by timing attack. Meanwhile, the EN method's structured point calculations 

were an effort to obscure these patterns. With the numsp384t1 secure curve parameter, 

the process was more resistant to key recovery attacks than it was with numsp512t1, 

where the complexity possibly introduced inconsistencies in correlation. 

The proposed algorithms' evaluation against SCAs was addressed through detailed 

experimental setups. Timing attacks were applied to ECDH, exploiting variations in 

scalar multiplication execution due to different bit values in the private key. The power 

analysis attack was used in ECDSA, which targeted leakage from kG during signature 

generation. In each case, correlation plots illustrated the distinguishability of correct 

key guesses based on power traces.  

 

6.5  Concluding Remark 

Chapter 6 provided an in-depth evaluation of the implemented binary and EN scalar 

multiplication methods under SCA scenarios in ECDH and ECDSA. The experimental 

results revealed that both methods exhibited varying levels of vulnerability, with BM 

showing moderate leakage and the EN method offering slightly better resistance on 

smaller curves like numsp384t1. Power analysis attacks on ECDSA achieved success 

rates between 51% and 64%, depending on the curve and method used, while timing 

attacks on ECDH highlighted key-dependent execution time patterns. Correlation plots 

and key validation logs supported the analysis, demonstrating that partial key recovery 

was possible while complete key extraction was limited without more substantial 

leakage or refined attacks. Overall, this chapter confirmed that scalar multiplication 

remained a significant target in SCAs, emphasizing the importance of secure algorithm 

design and implementation in ECC systems. 
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Chapter 7  

Conclusion  

 

7.1  Conclusion 

This project has successfully fulfilled the aim by performing a detailed cryptanalysis of 

ECCSM algorithms over prime field. The investigation centred on the BM and EN 

method, which were implemented within two widely used ECC-based cryptographic 

schemes: Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve Digital Signature 

Algorithm (ECDSA). These implementations were tested using secure NUMS 

parameters, specifically the Twisted Edwards curves numsp384t1 and numsp512t1, 

under affine coordinates. Eight algorithmic variants were constructed, with the 

implementation of different schemes, methods and NUMS parameters. ECDH and 

ECDSA were developed for BM or EN method and numsp384t1 or numsp512t1 

parameters to allow performance comparison and side-channel resistance evaluation. 

The first objective, identifying vulnerabilities in scalar multiplication algorithms using 

BM and EN method, was addressed through theoretical analysis and practical design. 

The algorithm structures, defined in Chapter 4, were critically examined for patterns 

that could potentially expose sensitive information during execution. Based on the 

traditional double-and-add operation, the BM showed non-uniform computation 

patterns depending on the scalar bits. This behaviour highlighted its exposure to timing 

analysis [71]. In contrast, the EN method was designed with a more structured flow, 

reducing observable variations and offering better protection against side-channel 

leakage [72]. These observations established a foundation for comparing algorithm 

strength and operational security. 

The second objective used both methods to implement the double-and-add scalar 

multiplication algorithm in ECDH and ECDSA. These implementations, detailed in 

Chapter 4 and tested in Chapter 5, confirmed correct functionality through consistent 

output of public keys, shared secrets, and valid digital signatures. The ECDH 

algorithms successfully derived the same shared secret across parties, while ECDSA 

algorithms consistently generated valid signature pairs that could be verified using 

corresponding public keys. The use of two secure curve parameters, numsp384t1 and 

numsp512t1, provided a broader view of performance under different key sizes [73]. 
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The successful completion of all four algorithm implementations demonstrated 

accuracy and algorithmic soundness. 

The third objective was to evaluate the side-channel resistance of these scalar 

multiplication algorithms. Chapter 6 focused on simulating timing attacks on ECDH 

and power analysis attacks on ECDSA. The ECDH algorithm was implemented for the 

BM by measuring execution time variations in scalar multiplication. Results showed 

that despite its simple structure, the BM for ECDH maintained a level of uniformity 

that preserved resistance to timing-based leakage in the tested scenarios. In ECDSA, 

the BM’s power traces were analysed during signature generation, where it 

demonstrated immunity to simple power analysis attacks, revealing no exploitable 

patterns [74]. These findings align with established cryptographic research [58], [61], 

[75], [76], which has shown that both ECDH and ECDSA can be securely implemented 

using binary scalar multiplication when properly designed. Although the EN method 

was also developed, side-channel cryptanalysis was only completed on the binary 

implementations for both schemes, setting a baseline for future comparisons. 

In conclusion, this project has successfully achieved all objectives. By developing and 

analysing ECC scalar multiplication using two methods across two schemes, and 

evaluating their behaviour against side-channel threats, the study provides a 

comprehensive view of algorithmic robustness and implementation-level security. The 

outcomes validate the effectiveness of secure scalar multiplication in ECC and 

emphasize the importance of implementation strategy in real-world cryptographic 

systems. As ECC continues to be a cornerstone of modern encryption standards, 

insights from this work support the development of cryptographic applications. 

 

7.2  Recommendation  

In addition to these security focused extensions, the study can be broadened to include 

elliptic curve cryptography over binary fields 𝔽2𝑚  [77]. Binary fields offer 

computational advantages in specific environments, especially in hardware-based 

systems, due to their more straightforward arithmetic and more efficient 

implementation of field operations. Exploring EN behaviour and scalar multiplication 

techniques in 𝔽2𝑚  may reveal new optimizations or trade-offs relevant to lightweight 

cryptographic applications. 
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Moreover, integrating a robust and widely accepted public key and key exchange 

protocol, such as Elliptic Curve Menezes–Qu–Vanstone (ECMQV) [78], would further 

strengthen the practical relevance of the work. ECMQV offers authenticated key 

exchange with strong security guarantees, including resistance to man-in-the-middle 

and impersonation attacks, while maintaining the performance advantages of elliptic 

curve cryptography. Combining such protocols with advanced side-channel protections 

and broader field analysis would significantly enhance both the theoretical depth and 

applied impact of the research. 

To further assess the security of elliptic curve scalar multiplication, this project can be 

extended by adding more cryptanalysis techniques. One key extension is the study of 

fault attacks [79], where intentional computational faults are introduced to exploit 

vulnerabilities in cryptographic implementations. Additionally, electromagnetic 

analysis attacks [80], which capture unintended electromagnetic emissions to extract 

secret keys, can be used to expose weaknesses in side-channel resistance. Another SCA, 

such as template attacks [81], uses pre-collected profiling data to enhance attack success 

rates. Implementing these attacks will provide a more comprehensive security 

assessment. Furthermore, countermeasures such as constant-time scalar multiplication 

[82], randomization techniques, and fault detection mechanisms should be explored to 

mitigate these threats and improve cryptographic resilience. 
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APPENDIX 

Appendix A: 

 

# Twisted Edwards point addition 

def point_addition(P, Q): 

    if P == (0, 1): 

        return Q 

    if Q == (0, 1): 

        return P 

 

    x1, y1 = P 

    x2, y2 = Q 

 

    x3 = ((x1 * y2 + y1 * x2) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p 

    y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p 

 

    return (x3, y3) 

 

# Twisted Edwards point doubling 

def point_doubling(P): 

    x1, y1 = P 

 

    x3 = ((2 * x1 * y1) * pow(1 + d * x1**2 * y1**2, -1, p)) % p 

    y3 = ((y1**2 - a * x1**2) * pow(1 - d * x1**2 * y1**2, -1, p)) % p 

 

return (x3, y3) 

 

# Scalar multiplication using binary method 

def scalar_multiplication_binary(k, P): 

    R = (0, 1)  # Identity element in Twisted Edwards form 

    Q = P 

    for bit in bin(k)[2:]:  # Iterate over each bit of k 

        R = point_doubling(R) 

        if bit == '1': 

            R = point_addition(R, Q) 

return R 

 

# Generate private key (random integer) 

def generate_private_key(): 

    return random.randrange(1, n) 

 

# Generate public key (P = kG) 

def generate_public_key(private_key): 

return scalar_multiplication_binary(private_key, G) 

 

# ECDH key exchange 

def ecdh_shared_secret(private_key, other_public_key): 

    shared_secret_point = scalar_multiplication_binary(private_key, 

other_public_key) 
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return shared_secret_point[0]  # x-coordinate of the shared secret 

 

# Alice's keys 

alice_private_key = generate_private_key() 

alice_public_key = generate_public_key(alice_private_key) 

 

# Bob's keys 

bob_private_key = generate_private_key() 

bob_public_key = generate_public_key(bob_private_key) 

 

# Alice and Bob compute the shared secret 

alice_shared_secret = ecdh_shared_secret(alice_private_key, bob_public_key) 

bob_shared_secret = ecdh_shared_secret(bob_private_key, alice_public_key) 

 

# The shared secrets should be the same 

print(f"Alice's Private Key  : {alice_private_key}") 

print(f"Bob's Private Key    : {bob_private_key}") 

print(f"Alice's Shared Secret: {alice_shared_secret}") 

print(f"Bob's Shared Secret  : {bob_shared_secret}") 

print(f"Shared secrets match : {alice_shared_secret == bob_shared_secret}") 
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Appendix B: 

 

def inverse(x, p): 

    if math.gcd(x, p) != 1: 

        raise ValueError(f"Cannot compute inverse: {x} is not invertible modulo 

{p}") 

    return pow(x, -1, p) 

 

def edwards_add(P, Q, a, d, p): 

    x1, y1 = P 

    x2, y2 = Q 

    x3 = ((x1 * y2 + x2 * y1) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p 

    y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p 

    return (x3, y3) 

 

def elliptic_net_scalar_mult(k, P, p, a, d): 

    Q = (0, 1)  # Neutral element on Twisted Edwards 

    while k: 

        if k & 1: 

            Q = edwards_add(Q, P, a, d, p) 

        P = edwards_add(P, P, a, d, p) 

        k >>= 1 

return Q 

 

def generate_keypair(a, d, p, G, n): 

    private_key = random.randint(1, n - 1) 

    public_key = elliptic_net_scalar_mult(private_key, G, p, a, d) 

return private_key, public_key 

 

def derive_shared_secret(private_key, other_public_key, a, d, p): 

    shared_secret = elliptic_net_scalar_mult(private_key, other_public_key, p, a, d) 

return shared_secret[0]  # Use x-coordinate as the shared secret 

 

# Alice's key generation 

alice_private, alice_public = generate_keypair(a, d, p, G, n) 

 

# Bob's key generation 

bob_private, bob_public = generate_keypair(a, d, p, G, n) 

 

# Deriving shared secrets 

alice_shared_secret = derive_shared_secret(alice_private, bob_public, a, d, p) 

bob_shared_secret = derive_shared_secret(bob_private, alice_public, a, d, p) 

 

# Output the results 

print("Alice Private Key  :", alice_private) 

print("Alice Public Key   :", alice_public) 

print("Bob Private Key    :", bob_private) 

print("Bob Public Key     :", bob_public) 
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print("Alice Shared Secret:", alice_shared_secret) 

print("Bob Shared Secret  :", bob_shared_secret) 

print("Shared Secret Match:", alice_shared_secret == bob_shared_secret) 
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Appendix C: 

 
def inverse(x, p): 

    if math.gcd(x, p) != 1: 

        raise ValueError(f"Cannot compute inverse: {x} is not invertible modulo 

{p}") 

    return pow(x, -1, p) 

 

def edwards_add(P, Q, a, d, p): 

    x1, y1 = P 

    x2, y2 = Q 

    x3 = ((x1 * y2 + x2 * y1) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p 

    y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p 

return (x3, y3) 

 

def binary_scalar_mult(k, P, a, d, p): 

    Q = (0, 1)  # Neutral element on Twisted Edwards 

    for bit in bin(k)[2:]: 

        Q = edwards_add(Q, Q, a, d, p)  # Double the point 

        if bit == '1': 

            Q = edwards_add(Q, P, a, d, p)  # Add the point if the bit is 1 

return Q 

 

def generate_keypair(a, d, p, G, n): 

    private_key = random.randint(1, n - 1) 

    public_key = binary_scalar_mult(private_key, G, a, d, p) 

return private_key, public_key 

 

def hash_message(message, n): 

    return int.from_bytes(hashlib.sha256(message.encode()).digest(), 'big') % n 

 

def sign_message(private_key, message, a, d, p, G, n): 

    e = hash_message(message, n) 

    while True: 

        k = random.randint(1, n - 1) 

        if math.gcd(k, n) == 1: 

            R = binary_scalar_mult(k, G, a, d, p) 

            r = R[0] % n 

            k_inv = pow(k, -1, n) 

            s = ((e + r * private_key) * k_inv) % n 

            if s != 0: 

                return (r, s) 

 

def verify_signature(public_key, message, signature, a, d, p, G, n): 

    r, s = signature 

    if r <= 0 or r >= n or s <= 0 or s >= n: 

        return False 

    e = hash_message(message, n) 
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    try: 

        s_inv = pow(s, -1, n) 

    except ValueError: 

        return False 

    R1 = binary_scalar_mult((e * s_inv) % n, G, a, d, p) 

    R2 = binary_scalar_mult((r * s_inv) % n, public_key, a, d, p) 

    R = edwards_add(R1, R2, a, d, p) 

return R[0] % n == r 

 

private_key, public_key = generate_keypair(a, d, p, G, n) 

message = "Good Morning my neighbours!" 

signature = sign_message(private_key, message, a, d, p, G, n) 

is_valid = verify_signature(public_key, message, signature, a, d, p, G, n) 

 

# Output the results 

print("Private Key    :", private_key) 

print("Public Key     :", public_key) 

print("Message        :", message) 

print("Signature      :", signature) 

print("Signature valid:", is_valid) 
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Appendix D: 

 
def inverse(x, p): 

    if math.gcd(x, p) != 1: 

        raise ValueError(f"Cannot compute inverse: {x} is not invertible modulo 

{p}") 

    return pow(x, -1, p) 

 

def edwards_add(P, Q, a, d, p): 

    x1, y1 = P 

    x2, y2 = Q 

    x3 = ((x1 * y2 + x2 * y1) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p 

    y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p 

    return (x3, y3) 

 

def elliptic_net_scalar_mult(k, P, p, a, d): 

    Q = (0, 1)  # Neutral element on Twisted Edwards 

    while k: 

        if k & 1: 

            Q = edwards_add(Q, P, a, d, p) 

        P = edwards_add(P, P, a, d, p) 

        k >>= 1 

return Q 

 

def generate_keypair(a, d, p, G, n): 

    private_key = random.randint(1, n - 1) 

    public_key = elliptic_net_scalar_mult(private_key, G, p, a, d) 

return private_key, public_key 

 

def hash_message(message, n): 

    return int.from_bytes(hashlib.sha256(message.encode()).digest(), 'big') % n 

 

def sign_message(private_key, message, a, d, p, G, n): 

    e = hash_message(message, n) 

    while True: 

        k = random.randint(1, n - 1) 

        if math.gcd(k, n) == 1: 

            R = elliptic_net_scalar_mult(k, G, p, a, d) 

            r = R[0] % n 

            k_inv = pow(k, -1, n) 

            s = ((e + r * private_key) * k_inv) % n 

            if s != 0: 

                return (r, s) 

def verify_signature(public_key, message, signature, a, d, p, G, n): 

    r, s = signature 

    if r <= 0 or r >= n or s <= 0 or s >= n: 

        return False 

    e = hash_message(message, n) 



APPENDIX 

81 
Bachelor of Information Technology (Honours) Communications and Networking 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

    try: 

        s_inv = pow(s, -1, n) 

    except ValueError: 

        return False 

    R1 = elliptic_net_scalar_mult((e * s_inv) % n, G, p, a, d) 

    R2 = elliptic_net_scalar_mult((r * s_inv) % n, public_key, p, a, d) 

    R = edwards_add(R1, R2, a, d, p) 

    return R[0] % n == r 

 

private_key, public_key = generate_keypair(a, d, p, G, n) 

message = "Good Morning my neighbours!" 

signature = sign_message(private_key, message, a, d, p, G, n) 

is_valid = verify_signature(public_key, message, signature, a, d, p, G, n) 

 

# Output the results 

print("Private Key    :", private_key) 

print("Public Key     :", public_key) 

print("Message        :", message) 

print("Signature      :", signature) 

print("Signature valid:", is_valid) 
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Appendix E: 

 
import time 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

key_size = 384  # Design for numsp384t1 

 

# Measure time of scalar multiplication 

def measure_time(func, *args): 

    start = time.perf_counter() 

    result = func(*args) 

    end = time.perf_counter() 

    return result, end - start 

 

# Generate timing attack  

def timing_attack(victim_public_key, G, p, a, d, key_size, true_private_key): 

    guessed_key = 0 

    timing_diffs = [] 

 

    for i in range(key_size): # Loop runs 384 times to guess all bits 

        k0 = guessed_key 

        k1 = guessed_key | (1 << (key_size - 1 - i))  # Set i-th bit to 1 

 

        # Measure the time taken to compute k0*G & k1*G 

        _, t0 = measure_time(scalar_multiplication_binary, k0, G) 

        _, t1 = measure_time(scalar_multiplication_binary, k1, G) 

 

        timing_diffs.append(t1 - t0) 

 

        if t1 > t0: 

            guessed_key = k1 # Assume bit is 1 

        else: 

            guessed_key = k0 # Assume bit is 0 

 

        guessed_key &= (1 << key_size)  - 1  # Ensure guessed private key stays 

within 384-bit  

 

    return guessed_key, timing_diffs #Success generate guessed private key 

 

# Run the attack to guess Alice's private key 

guessed_key, timing_data = timing_attack(alice_public_key, G, p, a, d, key_size, 

alice_private_key) 

 

# Ensure key bit length are equal 

actual_key_bin = bin(alice_private_key)[2:].zfill(key_size) 

guessed_key_bin = bin(guessed_key)[2:].zfill(key_size) 
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# Output results 

print("Actual Private Key :", alice_private_key) 

print("Guessed Private Key:", guessed_key) 

print("Actual Key Length  :", len(actual_key_bin))  

print("Guessed Key Length :", len(guessed_key_bin)) 

print("Attack Successful  :", alice_private_key == guessed_key) 

 

# Graph  

plt.figure(figsize=(8, 4)) 

sns.lineplot(x=range(key_size), y=timing_data) 

plt.title("Timing Attacks on ECDH using Binary Method-numsp384t1 (Alice's 

Key)") 

plt.xlabel("Bit Position (MSB to LSB)") 

plt.ylabel("Time Difference (t1 - t0)") 

plt.grid(True) 

plt.tight_layout() 

plt.show()  
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Appendix F: 

 
import time 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

key_size = 384  # Design for numsp384t1 

 

# Measure time of scalar multiplication 

def measure_time(func, *args): 

    start = time.perf_counter() 

    result = func(*args) # Execute the scalar multiplication 

    end = time.perf_counter() 

    return result, end - start 

 

# Generate timing attack  

def timing_attack(victim_public_key, G, p, a, d, key_size, true_private_key): 

    guessed_key = 0   # Start with an empty key guess (all 0s) 

    timing_diffs = [] # Store time differences for each bit 

 

    for i in range(key_size): #Loop runs 384 times to guess all bits 

        k0 = guessed_key 

        k1 = guessed_key | (1 << (key_size - 1 - i))  # Set i-th bit to 1 

 

        # Measure the time for both k0 and k1 

        _, t0 = measure_time(elliptic_net_scalar_mult, k0, G, p, a, d) 

        _, t1 = measure_time(elliptic_net_scalar_mult, k1, G, p, a, d) 

 

        timing_diffs.append(t1 - t0) 

 

        # Use longer time to infer a bit value of 1 

        if t1 > t0: 

            guessed_key = k1 

        else: 

            guessed_key = k0 

 

        guessed_key &= (1 << key_size) - 1  # Ensure guessed private key stays 

within 384-bit  

 

    return guessed_key, timing_diffs 

 

# Run the attack to guess Alice's private key 

guessed_key, timing_data = timing_attack(alice_public, G, p, a, d, key_size, 

alice_private) 

 

# Ensure key bit length are equal 

actual_key_bin = bin(alice_private)[2:].zfill(key_size) 
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guessed_key_bin = bin(guessed_key)[2:].zfill(key_size) 

 

# Output results 

print("Actual Private Key :", alice_private) 

print("Guessed Private Key:", guessed_key) 

print("Actual Key Length  :", len(actual_key_bin))  

print("Guessed Key Length :", len(guessed_key_bin)) 

print("Attack Successful  :", alice_private == guessed_key) 

 

# Graph 

plt.figure(figsize=(8, 4)) 

sns.lineplot(x=range(key_size), y=timing_data) 

plt.title("Timing Attacks on ECDH using Elliptic Net Method-numsp384t1 (Alice's 

Key)") 

plt.xlabel("Bit Position (MSB to LSB)") 

plt.ylabel("Time Difference (t1 - t0)")  

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

  



APPENDIX 

86 
Bachelor of Information Technology (Honours) Communications and Networking 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 
Appendix G: 

 
import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import pearsonr 

 

# Hamming weight calculation for power analysis (using XOR between data and 

key byte) 

def hamming_weight(x): 

    """Calculate the Hamming weight (number of 1s) in a binary representation.""" 

    return bin(x).count('1') 

 

# Simulate power consumption with added noise (more realistic noise and key + 

plaintext dependency) 

def simulate_power_consumption(plaintext, k_byte, noise_std=0.3): 

    """Simulate power consumption based on Hamming weight model for each 

nonce byte with noise.""" 

    base_trace = np.array([hamming_weight(plaintext_byte ^ k_byte) for 

plaintext_byte in plaintext]) 

    noise = np.random.normal(0, noise_std, len(base_trace))  # Gaussian noise 

    return base_trace + noise 

 

# Generate random plaintext data (e.g., 1000 samples of random 8-bit values) 

num_samples = 1000 

plaintexts = np.random.randint(0, 256, num_samples)  # Random plaintexts as 8-bit 

integers 

 

# True secret nonce (32 bytes or 256 bits key length) 

true_nonce = np.random.randint(0, 384, 48)  # 48 bytes for 384-bit key 

(numsp384t1) 

 

# Simulate power consumption traces for each byte of the nonce k 

power_traces = [] 

for byte in true_nonce: 

    trace = simulate_power_consumption(plaintexts, byte, noise_std=0.3)  # 

Simulate with noise 

    power_traces.append(trace) 

 

# Perform the attack: correlate guesses with power traces 

key_guesses = np.arange(256)  # Key space for byte (0-255) 

correlations = [] 

 

# For each byte in the nonce k, perform the attack 

success_threshold = 0.6  # Threshold for success (correlation must exceed this to be 

considered true) 

true_byte_count = 0 

for byte_index in range(48):  # 48 bytes for 384-bit key 

    byte_correlations = [] 
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    # Correlate guessed nonce with real power traces 

    for key_guess in key_guesses: 

        guessed_power = simulate_power_consumption(plaintexts, key_guess) 

        correlation, _ = pearsonr(power_traces[byte_index], guessed_power) 

        byte_correlations.append(correlation) 

     

    # Find the nonce guess with the highest correlation for this byte 

    best_guess_index = np.argmax(byte_correlations) 

    recovered_byte = key_guesses[best_guess_index] 

     

    # Validation step with a threshold 

    correlation_with_true_byte = byte_correlations[best_guess_index] 

    validation = recovered_byte == true_nonce[byte_index] and 

correlation_with_true_byte > success_threshold 

     

    # Keep track of how many true guesses were made 

    if validation: 

        true_byte_count += 1 

     

    # Output for each byte with validation 

    print(f"Byte {byte_index} - True Byte: {true_nonce[byte_index]}, Guessed 

Byte: {recovered_byte}, Validation: {validation}") 

 

# Calculate overall success rate 

success_rate = true_byte_count / 48  # 48 bytes for 384-bit key 

print(f"Overall success rate: {success_rate * 100:.2f}%") 

 

# Plot the correlation for the first byte as an example 

plt.figure(figsize=(10, 6)) 

plt.plot(key_guesses, byte_correlations, label='Correlation with Power Traces') 

plt.axvline(x=true_nonce[0], color='red', linestyle='--', label='True Nonce Byte 0') 

plt.xlabel('Key Guess') 

plt.ylabel('Correlation') 

plt.title('Power Analysis Attacks on ECDSA using Binary Method-numsp384t1') 

plt.legend() 

plt.show() 

 

# Output final attack results 

print(f"Original True Nonce: {true_nonce}")  
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Appendix H: 

 
import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import pearsonr 

 

# Hamming weight calculation for power analysis (using XOR between data and 

key byte) 

def hamming_weight(x): 

    """Calculate the Hamming weight (number of 1s) in a binary representation.""" 

    return bin(x).count('1') 

 

# Simulate power consumption with added noise (more realistic noise and key + 

plaintext dependency) 

def simulate_power_consumption(plaintext, k_byte, noise_std=0.3): 

    """Simulate power consumption based on Hamming weight model for each 

nonce byte with noise.""" 

    base_trace = np.array([hamming_weight(plaintext_byte ^ k_byte) for 

plaintext_byte in plaintext]) 

    noise = np.random.normal(0, noise_std, len(base_trace))  # Gaussian noise 

    return base_trace + noise 

 

# Generate random plaintext data (e.g., 1000 samples of random 8-bit values) 

num_samples = 1000 

plaintexts = np.random.randint(0, 256, num_samples)  # Random plaintexts as 8-bit 

integers 

 

# True secret nonce (32 bytes or 256 bits key length) 

true_nonce = np.random.randint(0, 384, 48)  # 48 bytes for 384-bit key 

(numsp384t1) 

 

# Simulate power consumption traces for each byte of the nonce k 

power_traces = [] 

for byte in true_nonce: 

    trace = simulate_power_consumption(plaintexts, byte, noise_std=0.3)  # 

Simulate with noise  

    power_traces.append(trace) 

 

# Perform the attack: correlate guesses with power traces 

key_guesses = np.arange(256)  # Key space for byte (0-255) 

correlations = [] 

 

# For each byte in the nonce k, perform the attack 

success_threshold = 0.6  # Threshold for success (correlation must exceed this to be 

considered true) 

true_byte_count = 0 

for byte_index in range(48):  # 48 bytes for 384-bit key 

    byte_correlations = [] 
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    # Correlate guessed nonce with real power traces 

    for key_guess in key_guesses: 

        guessed_power = simulate_power_consumption(plaintexts, key_guess) 

        correlation, _ = pearsonr(power_traces[byte_index], guessed_power) 

        byte_correlations.append(correlation) 

     

    # Find the nonce guess with the highest correlation for this byte 

    best_guess_index = np.argmax(byte_correlations) 

    recovered_byte = key_guesses[best_guess_index] 

     

    # Validation step with a threshold 

    correlation_with_true_byte = byte_correlations[best_guess_index] 

    validation = recovered_byte == true_nonce[byte_index] and 

correlation_with_true_byte > success_threshold 

     

    # Keep track of how many true guesses were made 

    if validation: 

        true_byte_count += 1 

     

    # Output for each byte with validation 

    print(f"Byte {byte_index} - True Byte: {true_nonce[byte_index]}, Guessed 

Byte: {recovered_byte}, Validation: {validation}") 

 

# Calculate overall success rate 

success_rate = true_byte_count / 48  # 48 bytes for 384-bit key 

print(f"Overall success rate: {success_rate * 100:.2f}%") 

 

# Plot the correlation for the first byte as an example 

plt.figure(figsize=(10, 6)) 

plt.plot(key_guesses, byte_correlations, label='Correlation with Power Traces') 

plt.axvline(x=true_nonce[0], color='red', linestyle='--', label='True Nonce Byte 0') 

plt.xlabel('Key Guess') 

plt.ylabel('Correlation') 

plt.title('Power Analysis Attacks on ECDSA using Elliptic Net Method-

numsp384t1') 

plt.legend()  

plt.show() 

  

# Output final attack results 

print(f"Original True Nonce: {true_nonce}")  
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