

Cryptanalysis of Elliptic Curve Scalar Multiplication Algorithms

BY

LEONG ZHEN HONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMMUNICATIONS

AND NETWORKING

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Leong Zhen Hong. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Technology (Honours) Communications

and Networking at Universiti Tunku Abdul Rahman (UTAR). This Final Year

Project report represents the work of the author, except where due acknowledgment

has been made in the text. No part of this Final Year Project report may be

reproduced, stored, or transmitted in any form or by any means, whether electronic,

mechanical, photocopying, recording, or otherwise, without the prior written

permission of the author or UTAR, in accordance with UTAR's Intellectual Property

Policy.

Example

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Norliana Binti

Muslims, who has given me this bright opportunity to engage in a cryptanalysis. It is my first

step to establish a career in the cryptographic field. A million thanks to supervisor and

moderator. Their guidance, encouragement, and constructive feedback have been instrumental

throughout the progress of this project. I am deeply grateful for their patience and willingness

to share their knowledge, which has helped me develop a better understanding of both

theoretical and practical aspects of cryptography. This project has not only expanded my

technical skills but also strengthened my analytical thinking and research capabilities. Special

thanks go to my family for their unwavering support, motivation, and belief in my potential,

especially during challenging phases of this research. Their constant encouragement has been

a major source of strength and perseverance. I would also like to acknowledge the support and

collaboration of my peers and friends, who provided valuable discussions, feedback, and

assistance throughout the journey. This project would not have reached its full potential without

the collective contributions, encouragement, and inspiration I received from those around me.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This project explores scalar multiplication algorithms in Elliptic Curve Cryptography, focusing

on the binary method and elliptic net method applied in Elliptic Curve Diffie-Hellman and

Elliptic Curve Digital Signature Algorithm. Scalar multiplication is the most computationally

intensive operation in Elliptic Curve Cryptography and directly impacts both cryptographic

strength and performance. There is lack of standardized scalar multiplication algorithm or

parameter set to ensure compatibility and interoperability in cryptographic implementations.

This creates challenges in developing secure Elliptic Curve Cryptography systems and

performing cryptanalysis for scalar multiplication algorithms. This research implemented both

methods on secure Twisted Edwards curves (numsp384t1 and numsp512t1) using the affine

coordinate system for clearer point representation. The binary method uses a double-and-add

approach, which introduces conditional branches that increase execution variability, making it

more vulnerable to timing-based side-channel attacks. In contrast, the elliptic net method

structures point operations more uniformly, reducing observable patterns and improving

leakage resistance despite its higher complexity. Simulated attack scenarios, including timing

and power analysis, revealed that the elliptic net method maintained more consistent behavior

and offered better protection against information leakage. Overall, the findings highlighted the

performance of Elliptic Curve Cryptography Scalar Multiplications over side-channel attacks

in the implementations.

Area of Study: Cryptography

Keywords: Binary, Diffie-Hellman, Digital Signature, Elliptic Net, Power Analysis, Timing

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES x

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 3

1.2 Objectives 5

1.3 Project Scope and Direction 7

1.4 Contributions 8

1.5 Report Organization 9

CHAPTER 2 LITERATURE REVIEW 10

2.1 Previous Works on Scalar Multiplication algorithms via Binary

Method

10

2.2 Previous works on Scalar Multiplication algorithms via Elliptic

Net

11

2.3 Previous work on cryptanalysis method

 2.3.1 Previous work on side-channel attacks

 2.3.2 Key Size comparison between RSA and ECC

11

11

12

2.4 Summary of previous work 12

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

2.5 Cryptographic schemes

 2.5.1 Diffie-Hellman key exchange

 2.5.2 Digital signatures and certifications

2.6 Previous work related to ECDH and ECDSA

13

13

14

15

CHAPTER 3 SYSTEM MODEL 16

3.1 System Design Equation

 3.1.1 Binary Method Algorithm

 3.1.2 Elliptic Net Method Algorithm

3.2 Project timeline

16

16

16

17

CHAPTER 4 SYSTEM DESIGN 19

 4.1 System Block Diagram

 4.1.1 ECDH using Binary Method

 4.1.2 ECDH using Elliptic Net Method

 4.1.3 ECDSA using Binary Method

 4.1.4 ECDSA using Elliptic Net Method

 4.1.5 NUMS Parameters

19

19

20

21

22

22

 4.2 Scalar multiplication algorithms

 4.2.1 Scalar multiplication via Binary Method

 4.2.2 Scalar multiplication via Elliptic Net Method

24

24

25

 4.3 Scheme of algorithms

 4.3.1 Algorithm for ECDH scheme

 4.3.2 Algorithm for ECDSA scheme

26

26

27

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 5 EXPERIMENT 29

 5.1 Hardware Setup 29

5.2 Software Setup 29

5.3 Simulation of ECDH

 5.3.1 First Implementation of Binary Method

 5.3.2 Second Implementation on Elliptic Net Method

30

30

33

5.4 Simulation of ECDSA

 5.4.1 First Implementation of Binary Method

 5.4.2 Second Implementation of Elliptic Net Method

36

36

39

5.5 Implementation Issues and Challenges 41

5.6 Concluding Remark 42

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 43

6.1 System Testing and Performance Metrics

 6.1.1 Timing Attack on Algorithm 5.1

 6.1.2 Timing Attack on Algorithm 5.2

 6.1.3 Power Analysis Attack on Algorithm 5.3

 6.1.4 Power Analysis Attack on Algorithm 5.4

6.2 Testing Setup and Result

 6.2.1 Timing Attack Implementation for Algorithm 6.1

(numsp384t1)

 6.2.2 Timing Attack Implementation for Algorithm 6.1

(numsp512t1)

 6.2.3 Timing Attack Implementation for Algorithm 6.2

(numsp384t1)

 6.2.4 Timing Attack Implementation for Algorithm 6.2

(numsp512t1)

 6.2.5 Power Analysis Attack Implementation for Algorithm 6.3

(numsp384t1)

 6.2.6 Power Analysis Attack Implementation for Algorithm 6.3

(numsp512t1)

43

43

44

45

47

48

48

49

50

51

52

53

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

 6.2.7 Power Analysis Attack Implementation for Algorithm 6.4

(numsp384t1)

 6.2.8 Power Analysis Attack Implementation for Algorithm 6.4

(numsp512t1)

56

58

6.3 Project Challenges 59

6.4 Objectives Evaluation 61

6.5 Concluding Remark 63

CHAPTER 7 CONCLUSION 64

7.1 Conclusion

7.2 Recommendation

64

65

REFERENCES 67

 APPENDIX 75

 POSTER 91

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Diffie-Hellman key exchange 14

Figure 2.2

Figure 3.1

Figure 3.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Digital signatures and certifications

Timeline of FYP 1

Timeline of FYP 2

ECDH Key Exchange Process Flowchart Using Binary

Method

ECDH Key Exchange Process Flowchart Using Elliptic Net

Method

ECDSA Key Exchange Process Flowchart Using Binary

Method

ECDSA Key Exchange Process Flowchart Using Elliptic Net

Method

Output of first implementation on ECDH

Output of second implementation on ECDH

Output of first implementation on ECDSA

Output of second implementation on ECDSA

Timing Attack on Algorithm 6.1 (numsp384t1)

Timing Attack on Algorithm 6.1 (numsp512t1)

Timing Attack on Algorithm 6.2 (numsp384t1)

Timing Attack on Algorithm 6.2 (numsp512t1)

Power Analysis Attack on ECDSA Algorithm 6.3

(numsp384t1)

Power Analysis Attack on ECDSA Algorithm 6.3

(numsp512t1)

Power Analysis Attack on ECDSA Algorithm 6.4

(numsp384t1)

Power Analysis Attack on ECDSA Algorithm 6.4

(numsp512t1)

15

18

18

19

20

21

22

32

35

38

41

48

49

50

51

52

54

55

57

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF TABLES

Table Number Title Page

Table 2.1 Comparison of old and new double-and-add methods 10

Table 2.2 RSA vs ECC 12

Table 2.3

Table 2.4

Table 3.1

Table 3.2

Table 4.1

Table 5.1

Table 6.1

Table 6.2

Summary of previous work on ECC scalar multiplication

algorithms

Summary of previous work on ECDH and ECDSA

Binary Method Algorithm

Elliptic Net Method Algorithm

NUMS parameters

Specifications of laptop

Results of ECDH implementation

Results of ECDSA implementation

12

15

16

16

23

29

61

61

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF SYMBOLS

P Point on the elliptic curve

k

Scalar, private key or multiplier in scalar multiplication

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF ABBREVIATIONS

BM

ECC

Binary Method

Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EN

SCA

Elliptic Net

Side-channel attacks

CHAPTER 1

1
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1

Introduction

Cryptography, the art and science of secure communication, is crucial in safeguarding

sensitive data against unauthorized access and manipulation. Cryptographic techniques

are essential for safe communication and data security in the digital age. They use

sophisticated algorithms to encrypt data, making it unreadable by unauthorized parties.

Common cryptographic techniques are symmetric-key encryption, asymmetric

encryption and hash functions. The distinction between symmetric and asymmetric

encryption is that asymmetric encryption uses both public and private keys.

Symmetric-key encryption ensures the confidentiality and integrity of data while it is

in transit and at rest by using a single shared secret key for both encryption and

decryption processes. Examples of symmetric-key encryption algorithms are AES

(Advanced Encryption Standard) and DES (Data Encryption Standard) [1]. Public and

private keys are used in asymmetric encryption, sometimes called public-key

cryptography. Key exchange, digital signatures, and secure communication are all

made possible by the popular asymmetric encryption method known as RSA (Rivest-

Shamir-Adleman) [2], elliptic curve cryptography (ECC) [3] and elliptic curve digital

signature algorithm (ECDSA) [4].

Developed in 1977, the elliptic curve discrete logarithm problem (ECDLP), which

entails determining the value of d given Q and G, and the curve parameters, is the

challenge that underpins the security of ECC. In contrast, the RSA method takes its

foundation from the computing difficulty of factoring huge composite numbers into

their prime factors. RSA generates keys, p and q randomly. To generate public key,

modulus n and e while private key consists of modulus n and an exponent d, equation

is 𝑒 ∗ 𝑑 = 1 𝑚𝑜𝑑 𝑛. M equal to plaintext, C equal to ciphertext. Since factoring the

product of two huge prime numbers is thought to be computationally impossible, this

basic property of number theory serves as the bedrock for RSA's security [5]. To

generate RSA keys, p and q are chosen randomly. To generate public key, modulus n

and e while private key consists of modulus n and an exponent d, equation is 𝑒 ∗ 𝑑 =

1 𝑚𝑜𝑑 𝑛. M equal to plaintext, C equal to ciphertext. For the encryption part, 𝐶 =

𝑀𝑒 𝑚𝑜𝑑 𝑛 , while decryption 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛 . The security of RSA relies on the

CHAPTER 1

2
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

computational difficulty of factoring the modulus 𝑛n into its constituent prime factors

p and q for a given n. ECC and ECDSA use the mathematical characteristics of elliptic

curves to produce strong cryptographic solutions with smaller key sizes [6]. ECC

technique was first proposed by Neal Koblitz [7] and Victor Miller [8] in 1985. ECC is

based on the difficulty of solving mathematical problems related to elliptic curves, such

as the elliptic curve discrete logarithm problem [6]. For the encryption part, 𝐶 =

𝑀𝑒 𝑚𝑜𝑑 𝑛, while decryption 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛 . The security level of RSA relies on

computational difficulty, factoring the modulus 𝑛 into its constituent prime factors p

and q for a given n. In ECC, the private key d is a random generate integer, and the

public key obtained by multiplying a base point G by the private key, 𝑄 = 𝑑𝐺. ECC is

refined and improved based on the Diffie-Hellman key exchange protocol eventually

finding its way into numerous security standards against side-channel attacks (SCAs)

and applications [9]. The base point G and the parameters of the elliptic curve are public

knowledge [6]. The security of ECC relies on the difficulty of the elliptic curve discrete

logarithm problem (ECDLP), which involves finding the value of d given Q, G, and the

curve parameters.

The ECDSA is a digital signature scheme that uses mathematical properties of elliptic

curves to enhance secure and efficient cryptographic signatures. ECDSA was first

proposed in 1992 by Scott Vanstone in response to NIST’s request for public comments

on their first proposal for DSS [4]. Like ECC, ECDSA uses random key generation to

produce a private key d and public key that is calculated as Q = dG. The private key is

used to sign messages, and the public key verifies the signatures. ECC and ECDSA are

more efficient in terms of computational resources and bandwidth utilization than RSA,

which usually requires bigger key sizes for equal security levels [9]. The security of

ECC depends on the size of the elliptic curve and the size of the underlying finite field.

Typically, ECC with a key size of 256 bits offers equivalent security to RSA with a key

size of 3072 bits [10]. The private key is used to sign messages, and the public key

verifies the signatures. Since ECC and ECDSA can provide strong security with shorter

key lengths, they are better suited for applications where memory and processing power

are limited. The computational effectiveness of scalar multiplication algorithms, which

are essential to ECC operations, is also evaluated through cryptographic analysis. This

makes them ideal for contexts where resources are scarce, including mobile devices and

Internet of Things devices [11]. ECC requires cryptographic analysis to validate the

CHAPTER 1

3
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

security of ECC-based protocols and algorithms, as well as to determine how strong

elliptic curve parameters are and how resistant they are to different types of assaults

[12]. Besides, scalar multiplication algorithm's efficiency, defense against SCAs, and

compliance with security best practices are all assessed through cryptographic analysis

[12]. The computational effectiveness of scalar multiplication algorithms, which are

essential to ECC operations, is also evaluated through cryptographic analysis. The time

complexity, memory needs, and performance characteristics of the method across

different platforms are frequently assessed as part of this analysis process [13]. The

vulnerability of the scalar multiplication algorithm to SCAs, which take advantage of

implementation flaws, is another factor considered in cryptographic analysis. Ensuring

the security of scalar multiplication in ECC requires strategies for thwarting these

attacks, such as constant time algorithms and secure hardware implementations [14].

Through a comprehensive exploration of cryptanalytic methodologies, this research

aims to cryptanalysis the existing scalar multiplication algorithms and propose

enhancements to against potential threats. By uncovering vulnerabilities and

developing robust countermeasures, this work attempts to contribute to the ongoing

efforts to bolster the security of ECC and address the evolving challenges posed by

cyber threats. The importance of cryptanalysis needs to be classified as the

improvement needed by user and also algorithm, including theoretical underpinnings,

vulnerabilities, and potential avenues for improvement. Additionally, we will explore

various cryptanalytic techniques and their application in evaluating algorithmic

security, laying the groundwork for a comprehensive understanding of elliptic curve

cryptography in contemporary digital environments. [15] and [16] demonstrate the

importance of cryptanalysis in uncovering vulnerabilities and advancing the state-of-

the-art in cryptographic research, underscoring its critical role in ensuring the

trustworthiness of modern cryptographic systems. This research presents an extensive

study of the scalar multiplication algorithms implementation on workstations of the

NUMS elliptic curves over prime field [17].

1.1 Problem Statement and Motivation

In ECC, scalar multiplication algorithm via binary method (BM) involves complex

operations, which lead to an intricate implementation challenge. Developing efficient

and protective implementations of the BM that minimizes implementation complexity

CHAPTER 1

4
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

to maintain resistance against SCAs, and implementation level vulnerabilities poses a

significant challenge. Furthermore, scalar multiplication algorithms via elliptic net

(EN) existing security vulnerabilities, invalid curve attacks or invalid point attacks if

implemented incorrectly. In addition, there is a lack of standardized scalar

multiplication algorithms and parameters that can justify the interoperability and

compatibility in cryptography scalar multiplication implementations. Identifying

potential security vulnerabilities in EN method implementations and developing robust

countermeasures to mitigate these risks while maintaining performance and efficiency

is essential to enhance the security level of ECDH and ECDSA. Thus, there is a need

to perform cryptanalysis for scalar multiplication algorithms via the BM and EN

method by evaluating vulnerabilities, goals, standards, improvements and other factors

against SCAs. In most cases, if cryptanalysis is successful at all, an attacker cannot

deduce information about the plaintext [18]. Cryptanalysis based on SCAs helps

uncover vulnerabilities in ECC implementations by exploiting information leakage.

The central idea of side-channel analysis is to compare some secret data-dependent

predictions of the physical leakages and the actual leakage to identify the data most

likely to have been processed [19]. The side-channel analysis considers attacks that do

not aim at the algorithms' weaknesses but their implementations [20]. ECC leverages

the double-and-add method for scalar multiplication, a key operation in generating

public key and private key to perform computations. This method computes scalar

multiples of points on the elliptic curve, ensuring integrity and confidentiality. Double-

and-add implementation shows that the ECC scalar point multiplication algorithm

succeeds in preventing SCAs, Simple Analysis Attacks, and Differential Power Attacks

[21], [20].

The motivation behind this research relies on the passion for cryptography and network

security. Research was sparked by studying ECC scalar multiplication and its robust

defense against SCAs. Thus, the need for cryptanalysis increases to prove the security

level of ECC scalar multiplication against SCAs.

Cryptanalysis is a process of analyzing ECC scalar multiplication to understand the

hidden aspects of cryptographic operation. This field is an important aspect of

cryptography, the broader science of securing communication and data using codes and

ciphers [22].

CHAPTER 1

5
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Due to the difficulty in finding evidence to prove security levels against SCAs, I look

forward to expanding my knowledge in cryptographic security with a focus on

cryptanalysis. I chose the cryptanalysis method to identify the weaknesses and strengths

of ECC scalar multiplication because it was inspired by [23]. The proposed method by

[23] was faster than the BM in an affine coordinate system, the relative efficiency can

be compared with some experimental results.

1.2 Objectives

This project aims to perform cryptanalysis on scalar multiplication algorithms

implemented via binary and EN method. Thus, the research objectives are stated as

follows:

a) To identify potential vulnerabilities in the scalar multiplication algorithms via binary

and EN methods.

To achieve the current objective of identifying potential vulnerabilities, the project

focused on analyzing BM and the EN method. These methods will be examined in the

context of SCAs, which exploit sensitive information or secret key data to attackers.

This objective must go through a literature review. Using search keywords such as

"Potential weaknesses of ECC", "Side-channel analysis on scalar multiplication,

"Review of latest side-channel attacks" and relevant references will be analyzed.

Studies on power analysis attacks, timing attacks, fault attacks, electromagnetic

analysis attacks on ECC will be reviewed to understand how existing methods can be

exploited.

b) To implement the following double-and-add algorithm in ECDH and ECDSA

schemes:

i) Binary method

ii) Elliptic net method

Implement the double-and-add procedure in ECDH to compute the shared secret, and

in ECDSA to generate signatures after identifying vulnerabilities.This involves

iterating through each bit of the private key, performing point doubling always and

point addition when needed. In ECDH, this method is used to compute the public key

𝑄 = 𝑑𝐺, efficiently using the numsp384t1 and numsp512t1 curves. After exchanging

public keys, the shared secret 𝑆 = 𝑑𝑄′ is derived. The implementation will ensure that

CHAPTER 1

6
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

execution traces are collected, allowing for analysis of timing attacks, power analysis

attacks, and cache-based SCAs to determine security weaknesses. Simulated attacks

will assess whether the private key can be inferred from power or timing variations.

For the EN method, apply structured point sequences to optimize scalar multiplication

in both ECDH and ECDSA. This method improves efficiency by structuring operations

to reduce computational overhead and potentially minimize side-channel leakage. In

ECDH, it is used to compute 𝑄 = 𝑑𝐺, and the shared secret is derived similarly to the

BM but with optimized steps.

For ECDSA, the BM is applied in signature generation, where the ephemeral key k is

processed using double-and-add. The signature values (r, s) recomputed, ensuring

correctness while assessing vulnerabilities in the scalar multiplication step. Since any

leakage from kG, compromises the private key, power analysis and fault injection

simulations will be conducted on implementations using numsp384t1 and numsp512t1.

The impact of cache timing variations and template attacks on the security of ECDSA

using the BM will also be examined.

For ECDSA, the EN method optimizes scalar multiplication to reduce observable

computation patterns that could be exploited in attacks. By structuring point sequences

differently, this approach aims to minimize predictable power consumption. The

implementation in Python will include tests for timing analysis, electromagnetic

emissions, and fault-induced errors to determine security levels. Simulated attacks will

be used to compare the resilience of EN against traditional BMs, ensuring a

comprehensive evaluation of SCAs resistance.

c) To evaluate the proposed algorithms based on SCAs.

The results are recorded, including execution time, memory usage, and computational

overhead. Side-channel assessments will focus on timing attacks and power analysis

attacks. Timing attacks are applied to ECDH, while power analysis attacks are used for

ECDSA. Timing attacks are chosen for ECDH because the execution time of scalar

multiplication varies based on the private key bits. Since the double-and-add algorithm

exhibits different computational patterns for ‘0’ and ‘1’ bits, an attacker can analyze

execution times to infer key bits. Power analysis attacks are applied to ECDSA because

the scalar multiplication step during signature generation uses an ephemeral key k,

which can be targeted to reveal sensitive information. To fulfil this objective, this

project implemented timing attacks on ECDH by measuring execution time variations

CHAPTER 1

7
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

in scalar multiplication conducting power analysis attacks on ECDSA by simulating

power consumption traces during signature generation and applying correlation

techniques to infer the ephemeral key.

1.3 Project Scope and Direction

The scope of the project encompasses a comprehensive investigation into security of

ECSM via prime field, with a particular focus on its implementation via EN and binary

methods architectures. Furthermore, the project will assess the susceptibility of ECSM

by implementing power analysis and timing attacks.

ECC scalar multiplications are formed with different schemes, such as Elliptic Curve

Diffie Hellman (ECDH), Elliptic Curve Digital Signature Algorithm (ECDSA),

EdDSA (Edwards-curve Digital Signature Algorithm) [24], ECMQV (Elliptic Curve

Menezes-Qu-Vanstone) [25] and ECIES (Elliptic Curve Integrated Encryption

Scheme) [26].

The project focuses on analyzing the security of Twisted Edwards curves, specifically

numsp384t1 and numsp512t1, in scalar multiplication algorithms. These curves offer

efficient arithmetic and strong security properties, making them suitable for

cryptographic applications. The numsp384t1 curve operates over a 384-bit prime field,

while numsp512t1 uses a 512-bit prime field, both defined with specific parameters for

the curve equation and generator point. By implementing double-and-add algorithms

on these curves, the study evaluates their resistance to timing and power analysis

attacks, ensuring robust cryptographic performance.

ECDSA was first proposed in 1992 by Scott Vanstone [27] in response to NIST's

request for public comments on its first proposal for a Digital Signature Standard. It

was accepted in 1998 as an International Standards Organization standard and in 2000

as an IEEE (Institute of Electrical and Electronics Engineers) standard [4].

The ECDH distinct from the general Diffie Hellman (DH) in the way that it is based on

the elliptic curve discrete logarithm problem (ECDLP) instead of the discrete logarithm

problem (DLP) [28]. ECDH is an anonymous key agreement protocol which allows

two parties, A and B, to establish a shared secret key over an insecure channel, where

each of the parties has an elliptic curve public-private key pair [29].

The BM is a widely used approach for scalar multiplication in elliptic curve

cryptography, particularly in ECDH and ECDSA. It follows the double-and-add

CHAPTER 1

8
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

algorithm, where the scalar is processed bit by bit. For each bit, point doubling is always

performed, and point addition is executed only when the bit is ‘1’. This method is

simple and efficient but introduces side-channel vulnerabilities, especially timing

attacks, due to its varying execution flow. In this project, the numsp384t1 and

numsp512t1 curves are implemented using the BM to assess timing and power analysis

attacks. Since different bit patterns affect execution time and power consumption, an

attacker may exploit these variations to infer private key bits. This study evaluates its

security impact and explores potential countermeasures.

The EN method is an alternative scalar multiplication technique that optimizes

efficiency and security. Instead of processing bits individually like the BM, it structures

point sequences to ensure a more uniform computation pattern. This approach helps

mitigate timing and power analysis attacks by reducing observable variations. In this

project, the numsp384t1 and numsp512t1 curves are implemented using this method to

compare its resistance against SCAs. By analyzing execution traces, this study

determines whether EN offers improved security over BM.

In this project, ECC scalar multiplication is only available for affine coordinates over

Homogeneous, L´opez-Dahab, Jacobean and other coordinates. In affine coordinates,

ECC operations are usually done by using the affine coordinate [x, y] [30].

1.4 Contributions

The main contributions of this study are stated as follows:

1. Developing countermeasures and mitigations can enhance the resistance of

scalar multiplication via BM implementations against SCAs, such as timing

attacks and simple power analysis attacks can prevent leakage of sensitive

information.

2. Providing methodologies for selecting appropriate curve parameters, such as the

choice of elliptic curve parameters and key sizes can optimize the security level

of scalar multiplication algorithms.

3. Exploring the security level of binary or elliptic methods implementations

against SCAs, which are timing attack and simple power analysis attack.

Timing attack measures the time taken to perform cryptographic operations and

uses this information to exploit cryptographic keys [31]. Power analysis attack

CHAPTER 1

9
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

breach energy cost to perform cryptographic operation, this is done to find

sensitive information [32].

4. Evaluating the performance and security of ECDH and ECDSA. The computed

outputs are compared with standard cryptographic libraries to ensure

correctness, while execution time, memory usage, and computational overhead.

These aspects provide insights into inefficiencies, performance bottlenecks, and

potential security weaknesses in scalar multiplication implementations, leading

to improvements and enhanced robustness of cryptographic systems.

Additionally, this project examines SCAs vulnerabilities, including timing

attacks on ECDH and power analysis attacks on ECDSA. These attacks are

tested on numsp384t1 and numsp512t1 curves to evaluate their resistance,

ensuring that the implementations remain secure and efficient for real-world

applications.

1.5 Report Organization

The details of this research are shown in the following chapters. In Chapter 2, some

related backgrounds are reviewed as literature reviews, and several tables are shown

for a better understanding. Furthermore, chapter 3 outlines the project’s methodology,

including the system model, algorithm design, and timeline. Chapter 4 explains the

implementation details of scalar multiplication using both the BM and EN methods

within the ECDH and ECDSA schemes. Chapter 5 presents experimental setups and

simulation results, along with discussions of challenges encountered during

development. Chapter 6 evaluates performance metrics, discusses attack results, and

reviews how each objective was met. Finally, Chapter 7 concludes the report with key

findings and recommendations for future work.

CHAPTER 2

10
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Previous Works on Scalar Multiplication Algorithms Via Binary Method

A modified double-and-add algorithm based on the Karatsuba-Ofman algorithm [33],

[34], generating new Vi over prime field by setting 𝑆𝑖 = 𝑉𝑖+1
2 , 𝑆𝑖 = 𝑉𝑖+1

2 , 𝑃𝑖 =

((𝑉𝑖 + 𝑉𝑖+2)2 − 𝑆𝑖 − 𝑆𝑖+2)/2 , and 𝑅𝑖 = 𝑆𝑖𝑃𝑖 for 1 ≤ 𝑖 ≤ 4, in which the outcomes are

𝑉0 = (𝑆0 − 𝑆1)(𝑃0 + 𝑃1) − 𝑅0 + 𝑅1, 𝑉1 = (𝑆0 − 𝑆2)(𝑃0 + 𝑃2) − 𝑅0 + 𝑅2)𝛼, 𝑉2 =

(𝑆1 − 𝑆2)(𝑃1 + 𝑃2) − 𝑅1 + 𝑅2, 𝑉3((𝑆1 − 𝑆3)(𝑃1 + 𝑃3) − 𝑅1 + 𝑅3𝛼, 𝑉2 = 𝑉4 = (𝑆2 −

𝑆3)(𝑃2 + 𝑃3) − 𝑅2 + 𝑅3), 𝑉5((𝑆2 − 𝑆4)(𝑃2 + 𝑃4) − 𝑅2 + 𝑅4)𝛼 and 𝑉6 = (𝑆3 −

𝑆4)(𝑃3 + 𝑃4) − 𝑅3 + 𝑅4 [35]. Each Vi cost 1M so 7M obtained in double block. The

new term is 𝑉0 = ((S0 − S2)(P0 + P2) − R0 + R2)ᾶ, V2 = ((S1 − S3)(P1 + P3) −

R1 + R3)ᾶ, V3(S2 − S3)(P2 + P3) − R2 + R3, V4 = ((S2 − S4)(P2 + P4) − 𝑅2 +

R4)ᾶ, V5(S3 − S4)(P3 + P4) − R3 + R4) and V6 = (t1ε − βt2)/𝑉2 [36]. Each value

of V0 until V6 requires 1M, but V6 needs 2M so a total of 8M obtained for double ad

block.

A new double-and-add method proposed by [37]. By utilizing EN block, [38] used

temporary variables Si and Pi as an array of six elements, cost 6M + 6S and utilized the

Si and Pi by adding two groups of intermediate variables Ai, Bi, Ci, Di and Ei for double-

and-add function [38]. The number of multiplications using the repeated multiplication

Wk-2 and Wk, 𝑎 = 𝑊𝑘−2𝑊𝑘 , 𝑏 = 𝑊𝑘−1𝑊𝑘+1, 𝑐 = 𝑊𝑘 𝑊𝑘+2 as well as 𝑒 = 𝑊𝑘−1
2 , 𝑓 =

𝑊𝑘
2, 𝑔 = 𝑊𝑘+1

2 [37]. This equation costs 2M for each variable and [37] costs 4M for

each. EN Scalar Multiplication can be designed based on double-and-add with block

centred at one [39]. Table 2 shows the cost for both methods.

Table 2.1 Comparison of old and new double-and-add methods

Method Temporary

variable

double double-add Total cost

double double-add

[37] 12M+10S 4M 4M 16M+10S 16M+10S

[39] 10M+6S 2M 2M 12M+6S 12M+6S

CHAPTER 2

11
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Previous works on Scalar Multiplication algorithms via Elliptic Net

Prior studies have explored various methods to enhance the efficiency of scalar

multiplication operations. EN is an architecture used to organize elliptic curve points,

enabling faster scalar multiplication through techniques such as point doubling, point

addition, the Montgomery ladder algorithm, and differential addition-subtraction

chains. While the first EN Scalar Multiplication over binary fields remains unknown,

its construction over a prime field has been documented [40]. The approach proposed

in [11] introduces a robust EN Scalar Multiplication algorithm that resists SCAs, which

is crucial for maintaining the confidentiality and integrity of sensitive information in

engineering systems utilizing the double-and-add algorithm.

2.3 Previous work on cryptanalysis method

Previous studies focused on analysis and prevention from SCAs, this section describes

each of the protocols for future works. ECC methods guarantee level of security but

there is an easily exploitable vulnerability. Hence, an additional level of protection is

crucial to guarantee total security against SCAs. Most of the multi-factor authentication

and key exchange protocols, rely on ECC for security protection [41]. To meet the

requirement for enhanced-security near-ideal models, ECC being a small key size with

the capability to thwart SCAs must now include countermeasures against assaults [42].

2.3.1 Previous work on side-channel attack

SCAs are a class of security threats that exploit unintended information leakage from

physical implementations of cryptographic systems. SCAs focus on analyzing

observable side effects of the implementation, such as power analysis attack, timing

attack, or electromagnetic analysis attack. Timing Attacks, it was based on exploiting

the non-constant execution time using different input values to reveal the secret

information [43]. Power Analysis Attacks exploit variations in power consumption

during cryptographic operations, attackers find out power consumption and attack to

get data contained [12]. Electromagnetic Analysis Attacks is a form of attack that

exploits the electromagnetic emanations from an electronic device as a form of

information leakage [44]. These attacks pose threats to cryptographic systems,

undermining their security and confidentiality.

CHAPTER 2

12
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3.2 Key Size comparison between RSA and ECC

The relationship between ECC and RSA are complementary, two widely used

cryptographic algorithms that provide security for data through asymmetric encryption.

Table 2.2 RSA vs ECC [45]

2.4 Summary of previous work on algorithm

SCAs represent a class of attacks that exploit physical leakage from cryptographic

devices, rather than directly attacking the cryptographic algorithms themselves. These

attacks can include timing analysis, power consumption monitoring, electromagnetic

emissions, and others states as below:

Table 2.3 Summary of previous work on ECC scalar multiplication algorithms

Author Scalar Multiplication

Algorithms

Coordinate Side-channel

Attacks

[12] Double-and-add Mix (Affine

and Jacobian)

Electromagnetic

Attack

[46] Adding and Doubling operation Jacobian Timing Attacks

[47] Adding and doubling points Jacobian Simple Power

Analysis

[48] Double-and-add Affine Simple Power

Analysis

[49] Miller’s algorithm Mix (Affine

and Jacobian)

Correlation

Power Analysis

[50] Modular Inversion Affine Power Analysis

Attack

Symmetric Key Size (bits) RSA Size (bits) ECC Size (bits)

80 1,024 160

112 2,048 224

128 3,072 256

192 7,680 384

256 15,360 521

CHAPTER 2

13
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[51] Montgomery ladder Affine Montgomery

Ladder Fault

Attacks

This

work

Scalar Multiplication via BM and

EN

Affine Timing attack

and simple power

analysis attack

Based on this literature review, timing attack and simple power analysis attack have the

most frequent in SCAs realm. Within this scope, a paper conducted a mixed-methods

online survey with 44 developers of 27 popular cryptographic libraries to understand

how real-world cryptographic library developers think about timing attacks. In result,

all 44 participants are aware of timing attacks [52]. Simple power analysis attack, it

traced power consumption for cryptographic operation and possible to determine path

of instructions execution trace [53]. The two SCAs mentioned are possible to breach

ECC scalar multiplication vulnerabilities, so this project aims to implement timing

attack and simple power analysis attack.

2.5 Cryptographic schemes

2.5.1 Diffie-Hellman key exchange:

Diffie-Hellman is for key exchange between users, ensuring connection with CIA triad

guidelines, confidentiality, integrity and availability. Diffie-Hellman algorithm

primarily generates a shared secret key across public networks, known as a key

exchange. The process starts with users, such as Alice and Bob. Both generate a secret

key and keep for themselves. Next, users generate a public key using Diffie-Hellman

algorithm. The public keys are essential, send the public key to each other to complete

the connection. Last phase, Alice combines own secret key with Bob's public key into

a number, 𝑘. While Bob compute 𝑘 using own secret key and Alice's public. Both 𝑘

have the same value, the key exchange process is completed as stated as below:

CHAPTER 2

14
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1 Diffie-Hellman key exchange [54]

2.5.2 Digital signatures and certifications:

The digital signatures consist of two phases. For example, Alice sends a document to

Bob, Alice generates two keys, private key remains private. But the public key, Alice

needs to share with Bob to verify the document and signature. The first phase, signing,

the content of document runs through the hash algorithm, and transformed to a digest,

the content inside consists of different numbers, symbols or other letters. Digests

encrypt with private key, the signature phase completed. The digest sends to Bob, and

Bob starts the verification phase. Bob has two options to decrypt the digest, decrypt

with Alice’s public key or digest run through the hash algorithm. Both options get the

same outcome, as the document same as Alice’s, the process states below:

(Generate secret key)

(Generate public key)

(Send public key to each other)

(Combine public key and own

secret key)

(Get the same value of 𝑘)

CHAPTER 2

15
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2 Digital signatures and certifications [55]

2.6 Previous work related to ECDH and ECDSA

Schemes from the realm of ECC are ECDH and ECDSA. ECDH, renovated to securely

exchange secret keys between parties. While ECDSA did the same, it was celebrated

for its prowess in verifying the authenticity of messages and transactions. But, SCAs

can exploit through schemes in ECC or RSA, so the weakness of each scheme should

be discussed for improvement, references collected shown below:

Table 2.4 Summary of previous work on ECDH and ECDSA

Author Algorithm Attacks Outcome

[28] ECDH Man-in-the-middle Attack Secure

[56] ECDH Differential-bit Horizontal

Clustering Attack

Fail to Secure

[57] ECDH Differential Power Attack Secure

[58] ECDH Timing Attack Secure

[59] ECDH & ECDSA Microarchitectural Attack Fail to secure

[60] ECDSA Fault Attack Secure

[61] ECDSA Simple Power Analysis

Attack

Secure

[62] ECDSA Timing Attack Fail to secure

[63] ECDSA Template Attack Fail to secure

CHAPTER 3

16
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3

System Methodology

3.1 System Design Equation

Sections 3.1.1 and 3.1.2 show the BM algorithm [68] and EN algorithm [23],

respectively.

3.1.1 Binary Method Algorithm

Table 3.1 Binary Method Algorithm [68]

Input: An Affine point P ∈ E(𝔽𝑝) and 𝑛 = (𝑛𝑖−1, … , 𝑛0)2.

Output: 𝑛𝑃 ∈ E(𝔽𝑝)

Steps:

1. For 𝑖 from 𝑙 − 2 down to 0 do

2. 𝑄←2𝑄

3. If 𝑛𝑖=1 then

3.1 𝑄←𝑃+𝑄

4. Return 𝑄

Table 3.1 shows the BM method, which is an effective way of performing scalar

multiplication on elliptic curves. Given a point P ∈ E(𝔽𝑝) and a scalar n represented

in binary, the algorithm initializes a result point Q and processes each bit of n from the

second most significant to the least significant. In each iteration, it doubles Q, and if

the current bit is 1, it adds the original point P to Q. This method reduces the total

number of required point additions, making it significantly more efficient than repeated

addition, especially for large scalars.

3.1.2 Elliptic Net Algorithm

Table 3.2 Elliptic Net Method Algorithm [23]

Input: Integer 𝑛 = (𝑛𝑙−1, 𝑛𝑙−2, … , 𝑛0)2 with 𝑛𝑙−1 = 1. 𝑃 𝜖 𝐸(𝔽𝑝), 𝑎 = 𝑊2, 𝑏 = 𝑊3 and

𝑐 = 𝑊4 of the EN associated to 𝑃 and 𝐼 =𝑦−1.

Output: The EN values 𝑊𝜆 where 𝑛−2≤ 𝜆≤𝑛+2 associated to point 𝑃.

Steps:

1. 𝑉 ← [−𝑎, −1, 0, 1, 𝑎, 𝑏, 𝑐, 𝑎3, 𝑐 −𝑏3]

2. For 𝑖 from 𝑙 − 1 down to 0 do

CHAPTER 3

17
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. If 𝑛𝑖 = 0 then

 V ← 𝑑𝑜𝑢𝑏𝑙𝑒(𝑉)

4. Else

 V ←𝑑𝑜𝑢𝑏𝑙𝑒𝑎𝑑𝑑(𝑉)

5. 𝐴 = 𝑉3
−1; 𝐵 = 𝐴2 ; 𝐶=𝐴𝐵

6. 𝐸 = 𝑉2
2 ; 𝐹 = 𝑉4

2; 𝐺 = 𝑉2𝑉4

7. 𝐻 = 𝐵𝐺; 𝐽=𝐸𝑉5 ; 𝐾 = 𝐹𝑉1

8. 𝑥𝑛= 𝑥1 − 𝐺𝐵

9. 𝑦𝑛 = (𝐽−𝐾) 𝐼𝐶

This algorithm computes EN values 𝑊λ for indices near a given scalar n, using a

recursive approach based on the binary representation of n. Starting with initial values

derived from the EN associated with point P on the curve E(𝔽𝑝) , the algorithm

initializes a vector V with specific EN terms and then iteratively updates it using either

the 𝑑𝑜𝑢𝑏𝑙𝑒 or 𝑑𝑜𝑢𝑏𝑙𝑒𝑎𝑑𝑑 operation depending on each bit of n, scanned from most to

least significant. After processing all bits, intermediate variables A, B, C, E, F, G, H, J,

K are calculated to derive the final coordinates 𝑥𝑛 and 𝑦𝑛 , which represent the scalar

multiplication result nP in terms of the EN.

3.2 Project timeline

Figure 3.1 shows a project timeline to distribute tasks, it was required a project timeline

to distribute tasks for each week, the duration is 14 weeks. Week 1 to 2 are required to

complete the planning process, such as develop project charter and collect references.

Start from week 3, focus on implementation to obtain outcome of algorithms and SCAs.

Project report required to complete within 8 weeks and finalize before week 12 end.

Week 13 and 14, as the report submitted, focus on presentation, prepare slides and script

to perform and score well.

CHAPTER 3

18
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.1 Timeline of FYP 1

Figure 3.2, this project timeline guide to distribute tasks for each week, the duration

same as FYP 1. Week 1 planned to complete the planning process, such as develop

project charter and solve issue from FYP 1. Start from week 2, focus on execution of

algorithms and SCAs. Project report required to complete within 8 weeks and finalize

before week 13. Week 13 planned to rehearsal before report submission and following

task is to submit the latest version of report. The final task is to perform a presentation

to supervisor and moderator.

Figure 3.2 Timeline of FYP 2

CHAPTER 4

19
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4

System Design

4.1 System Block Diagram

4.1.1 ECDH using Binary Method Flowchart

Figure 4.1 ECDH Key Exchange Process Flowchart Using Binary Method

Figure 4.1 shows the process of ECDH key exchange using the binary. The process

begins with the initialization of elliptic curve parameters, followed by the generation of

private keys for both parties within the range [1, 𝑛 − 1]. Using the BM, each party

computes their corresponding public key by multiplying the private key with the base

point G. The public keys are then exchanged, allowing each party to compute a shared

secret by multiplying their private key with the other party’s public key. Due to the

mathematical properties of elliptic curves, both parties derive the same shared secret.

A verification step confirms whether both shared secrets match. If true, the process ends

successfully. Otherwise, it returns a validation failure result.

CHAPTER 4

20
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.2 ECDH using Elliptic Net Method

Figure 4.2 ECDH Key Exchange Process Flowchart Using Elliptic Net Method

Figure 4.2 shows the process of ECDH key exchange using the EN method. The process

begins with the initialization of elliptic curve parameters, followed by the generation of

private keys for both parties within the range [1, 𝑛 − 1]. Each party then computes their

respective public key by performing scalar multiplication of their private key with the

base point G using the EN method. After exchanging public keys, both parties compute

a shared secret by multiplying their private key with the other party’s public key, again

using the EN method. A verification step ensures the validity of the shared secret. If the

validation is true, the process is successful and ends. Otherwise, it indicates a failure.

CHAPTER 4

21
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.3 ECDSA using Binary Method

Figure 4.3 ECDSA Key Exchange Process Flowchart Using Binary Method

Figure 4.3 illustrates the process of ECDSA signature generation and verification using

the BM. The process begins with the initialization of elliptic curve parameters, followed

by the generation of a private 𝑘𝑒𝑦 𝑑 ∈ [1, 𝑛 − 1] and the corresponding public key 𝑄 =

𝑑 ⋅ 𝐺 , computed using BM. Upon receiving the input message m, utilizing a

cryptographic hash function to compute message digest 𝑒 = 𝐻𝐴𝑆𝐻(𝑚). A random

scalar k is chosen, and the point 𝑅 = 𝑘 ⋅ 𝐺 generated using the BM. The x-coordinate

of R is reduced modulo n to obtain r. The signature component s is then calculated as

𝑠 = 𝑘 − 1(𝑒 + 𝑑 ⋅ 𝑟)𝑚𝑜𝑑  𝑛. The signature pair (r, s) is output and used, along with the

message and public key, for signature verification. If the verification process confirms

the validity of the signature, the result returns true. Else, it returns false, it means that

generated an invalid signature.

CHAPTER 4

22
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.4 ECDSA using Elliptic Net Method

Figure 4.4 ECDSA Key Exchange Process Flowchart Using Elliptic Net Method

Figure 4.4 illustrates the process of ECDSA signature generation and verification using

the EN method. The process begins with the initialization of elliptic curve parameters,

followed by the generation of a private 𝑘𝑒𝑦 𝑑 ∈ [1, 𝑛 − 1] and the corresponding

public key 𝑄 = 𝑑 ⋅ 𝐺 , computed using the EN method. Upon receiving the input

message m, a hash function is applied to compute the message digest 𝑒 = 𝐻𝐴𝑆𝐻(𝑚).

A random scalar k is chosen, and the point 𝑅 = 𝑘 ⋅ 𝐺 generated using the EN method.

The x-coordinate of R is reduced modulo n to obtain r. The signature component s is

then calculated as 𝑠 = 𝑘 − 1(𝑒 + 𝑑 ⋅ 𝑟) 𝑚𝑜𝑑  𝑛. The signature pair (r, s) is output and

used, along with the message and public key, for signature verification. If the

verification process confirms the validity of the signature, the output returns true.

Otherwise, it returns false.

4.1.5 NUMS parameter

The NUMS Curve parameters that used in this project are numsp384t1 and

numsp512t1, a 384-bit and a 512-bit prime field in Twisted Edwards curve [69]. Both

curves are suitable for prime field operations and elliptic curve scalar multiplication,

CHAPTER 4

23
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

sharing similar popularity and being well-suited for a wide range of applications. The

NUMS parameter for Twisted Edward curve 𝑎𝑥2 + 𝑦2 ≡ 𝑥3 + 𝑑𝑥2𝑦2 are as follows:

Table 4.1 NUMS parameter [70]

numsp384t1 state as below:

p = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFF43

a = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFF42

d = 0 X 3BEE

G = (0 X 0D, 0 X 7D0AB41E 2A1276DB A3D330B3 9FA046BF BE2A6D63

824D303F 707F6FB5 331CADBA)

n = 0 X 3FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF BE6AA55A D0A6BC64

E5B84E6F 1122B4AD

h = 0 X 04

numsp512t1 state as below:

p = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFDC7

a = 0 X FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFDC6

d = 0 X 9BAA8

G = (0 x 20, 0 X 7D67E841 DC4C467B 605091D8 0869212F 9CEB124B F726973F

9FF04877 9E1D614E 62AE2ECE 5057B5DA D96B7A89 7C1D7279 92611346

38750F4F 0CB91027 543B1C5E)

n = 0 X 3FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF A7E50809 EFDABBB9 A624784F 449545F0 DCEA5FF0

CB800F89 4E78D1CB 0B5F0189

h = 0 X 04

The parameters for numsp384t1 and numsp512t1 were chosen to balance security and

transparency in cryptographic applications. These parameters are very common in

modern cryptographic systems and have been adopted by large organizations. The

CHAPTER 4

24
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

primes p is selected close to a power of 2 to support efficient modular arithmetic. The

coefficients 𝑎 = 𝑝 − 1 and small constants d are carefully picked to support the fast

arithmetic nature of Twisted Edwards curves, enabling efficient and secure scalar

multiplication. These choices help ensure optimized performance without

compromising on security.

The generator points G is fixed and verified to lie on the curve, creating sizable prime-

order subgroups, which is necessary to keep the discrete logarithm issue challenging.

The subgroup orders n are large primes close to 22𝑘 to prevent small subgroup and

invalid-curve attacks, while the small cofactor h =0 X 4 further minimizes any potential

vulnerabilities. These curves are part of the NUMS family, which are designed through

transparent processes to avoid hidden parameters and gain trust in their security. Their

widespread use in industry and by trusted companies reinforces confidence in their

reliability and strength.

4.2 Scalar multiplication algorithms

4.2.1 Scalar multiplication via binary method

The BM converting a scalar multiplication, n to binary representation and processing

each bit from most significant bit to least significant bit. Points on an elliptic curve are

doubled for each bit of the scalar. If the bit is 1, an additional point is added. The steps

are illustrated as follows:

Algorithm 4.1. Scalar multiplication via binary method [68]

Input: An Affine point 𝑝 ∈ 𝐸(𝐹𝑝) and 𝑛 = (𝑛𝑖−1, … , 𝑛0)2.

Output: 𝑛𝑃 ∈ 𝐸(𝐹𝑝)

Steps:

1. For 𝑖 from 𝑙 − 2 down to 0 do

2. 𝑄 ← 2𝑄

3. If 𝑛𝑖 = 1 then

3.1 𝑄 ← 𝑃 + 𝑄

4. Return 𝑄

Algorithm 4.1 is used in elliptic curve cryptography over a prime field 𝔽𝑝. It takes as

input a point P on an elliptic curve E(𝔽𝑝) and a scalar n, which is represented in binary

CHAPTER 4

25
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

form as (𝑛𝑙−1, … , 𝑛0)2. The goal is to compute nP, which means adding point P to itself

n times using elliptic curve group operations. The algorithm initializes an accumulator

point Q with the value of P, based on the assumption that the most significant bit 𝑛𝑙−1

is 1. In each iteration, the point Q is doubled, representing a shift in the binary

multiplication. The original point P is added to Q if the current bit is 1. This combination

of point doubling and conditional addition efficiently computes the scalar multiple nP

with a number of operations proportional to the bit length of n. This algorithm is

particularly suited for elliptic curves over finite prime fields due to its straightforward

implementation and reasonable performance.

4.2.2 Scalar multiplication via elliptic net

The EN method uses precomputed tables of elliptic curve multiples to accelerate scalar

multiplication. The scalar decomposed and precomputed points are used to efficiently

compute the result. This process of EN method is shown in Algorithm 4.2.

Algorithm 4.2. Scalar multiplication via elliptic net [23]

Input: Integer 𝑛 = (𝑛𝑙−1𝑛𝑙−2 … 𝑛0)2 with 𝑛𝑙−1 = 1. 𝑃 𝜖 𝐸(𝔽𝑝), 𝑎 = 𝑊2 , 𝑏 = 𝑊3

and 𝑐 = 𝑊4 of the EN associated to 𝑃 and 𝐼 = 𝑦−1.

Output: The EN values 𝑊𝜆 where 𝑛 − 2 ≤ 𝜆 ≤ 𝑛 + 2 associated to point 𝑃.

Steps:

1. 𝑉 ← [−𝑎, −1, 0, 1, 𝑎, 𝑏, 𝑐, 𝑎3, 𝑐 − 𝑏3]

2. For 𝑖 from 𝑙 − 1 down to 0 do

3. If 𝑛𝑖 = 0 then

𝑉 ← 𝑑𝑜𝑢𝑏𝑙𝑒(𝑉)

4. Else

𝑉 ← 𝑑𝑜𝑢𝑏𝑙𝑒𝑎𝑑𝑑(𝑉)

5. 𝐴 = 𝑉3
−1; 𝐵 = 𝐴2; 𝐶 = 𝐴𝐵

6. 𝐸 = 𝑉2
2; 𝐹 = 𝑉4

2; 𝐺 = 𝑉2𝑉4

7. 𝐻 = 𝐵𝐺; 𝐽 = 𝐸𝑉5; 𝐾 = 𝐹𝑉1

8. 𝑥𝑛 = 𝑥1 − 𝐺𝐵

9. 𝑦𝑛 = (𝐽 − 𝐾)𝐼𝐶

Algorithm 4.2 computes the scalar multiplication nP on an elliptic curve over a prime

field 𝔽𝑝 using EN. It begins with the scalar n expressed in binary form and a point P on

CHAPTER 4

26
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

the elliptic curve. The algorithm uses the initial EN values 𝑊2 = 𝑎, 𝑊3 = 𝑏 and 𝑊4 =

𝑐, along with the inverse of the y-coordinate, denoted as 𝐼 = 𝑦−1. It initializes vector

V with a set of values derived from the net that will be used to recursively compute

further net terms. The algorithm processes the bits of the scalar n from the most

significant to the least significant bit. At each step, depending on whether the current

bit is 0 or 1, the algorithm performs a doubling or a combined doubling and addition

operation on the vector V, updating its entries to reflect the current state of the scalar

multiplication. These operations manipulate the EN values rather than the elliptic curve

points directly. After processing all bits, the algorithm computes the final coordinates

(𝑥𝑛, 𝑦𝑛) of the resulting point nP using algebraic expressions involving the updated

vector entries. These expressions combine squares, products, and the inverse I to extract

the coordinates from the net representation. The result is an efficient computation of nP

using the structure and recurrence properties of EN.

4.3 Scheme of algorithms

4.3.1 Algorithm for ECDH scheme

ECDH enhanced connection between user A and user B to exchange keys securely.

Both generates a private key and public key. Next, exchange public keys to another and

use private key public key received to compute a shared secret. The process is shown

as below:

Algorithm 4.3. ECDH scheme [67]

User A User B

Alice and Bob exchange a Prime(𝑃) and Generator(𝐺), such that 𝑃 > 𝐺.

Generate a random number, 𝑋𝐴 Generate a random number, 𝑋𝐵

Generate public key, 𝑌𝐴 = 𝐺𝑋𝐴(𝑚𝑜𝑑 𝑃) Generate public key, 𝑌𝐵 = 𝐺𝑋𝐵(𝑚𝑜𝑑 𝑃)

Receive 𝑌𝐵 Receive 𝑌𝐴

Secret Key = 𝑌𝐵
𝑋𝐴(𝑚𝑜𝑑 𝑃) Secret Key = 𝑌𝐵

𝑋𝐴(𝑚𝑜𝑑 𝑃)

Both secret keys are the same number.

The Diffie-Hellman Key Exchange protocol, which allows two users to safely create a

shared secret across an unsecure channel, is shown in Algorithm 4.3. Both users agree

on a large prime number P and a generator G, where P > G. Each user then picks a

CHAPTER 4

27
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

private random number, XA and XB. Both random numbers are used to compute their

public key, (𝑌𝐴 = 𝐺𝑋𝐴mod  P, 𝑌𝐵 = 𝐺𝑋𝐵 mod P). After exchanging public keys, each

user raises the received public key to the power of their private key, resulting in the

same shared secret, 𝑌𝐵
𝑋𝐴 𝑚𝑜𝑑 𝑃 has the same value as 𝑌𝐴

𝑋𝐵 𝑚𝑜𝑑 𝑃. This shared secret

can then be used in future cryptographic operations.

4.3.2 Algorithm for ECDSA scheme

ECDSA provided digital signatures, steps are signing and verification of messages.

Sender generates private keys and public keys. A message is signed with the private

key, creating a digest that is verified using the public key, ensuring the message's

integrity and authenticity as shown below:

Algorithm 4.4. ECDSA scheme [4]

Generation steps:

1. Select a random integer 𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1.

2. Compute 𝑘𝐺 = (𝑥1, 𝑦1) and 𝑟 = 𝑥1 𝑚𝑜𝑑 𝑛. If 𝑟 = 0, go back to step 1.

3. Compute 𝑘−1 𝑚𝑜𝑑 𝑛

4. Compute 𝑒 = 𝑆𝐻𝐴 − 1(𝑚)

5. Compute 𝑠 = 𝑘−1(𝑒 + 𝑑𝑟) 𝑚𝑜𝑑 𝑛. If 𝑠 = 0 then go to step 1.

6. Signature for the message, 𝑚 is (𝑟, 𝑠)

Verification steps:

1. Verify (𝑟, 𝑠) are integers in the interval [1, 𝑛 − 1]

2. Compute 𝑒 = 𝑆𝐻𝐴 − 1(𝑚)

3. Compute 𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑛

4. Compute 𝑢1 = 𝑒𝑤 𝑚𝑜𝑑 𝑛 and 𝑢2 = 𝑟𝑤 𝑚𝑜𝑑 𝑛

5. Compute 𝑋 = 𝑢1𝐺 + 𝑢2𝑄 . If 𝑋 ≠ 0 , compute 𝑣 = 𝑥1 𝑚𝑜𝑑 𝑛 where 𝑋 =

(𝑥1, 𝑦1)

6. Accept signature if and only 𝑣 = 𝑟.

Algorithm 4.4 describes the ECDSA operation, which is used to generate and verify

digital signatures. In the signature generation process, a random integer k is selected

and used to compute a point kG. While he x-coordinate of this point modulo n becomes

r. If r = 0, a new k is chosen. The hash of the message m is computed, and the signature

CHAPTER 4

28
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

component s is calculated using the formula s = 𝑘−1(e + dr)mod  n, where d is the

private key. If s = 0, the process restarts. The signature is the pair (r, s).

In the verification step, the verifier first checks that r and s are within valid bounds.

They then compute the message hash e, followed by 𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑛, and use it to

compute 𝑢1 = 𝑒𝑤 𝑚𝑜𝑑 𝑛 and 𝑢2 = 𝑟𝑤 𝑚𝑜𝑑 𝑛. Using the public key Q, they compute

the point 𝑋 = 𝑢1𝐺 + 𝑢2𝑄. If 𝑋 ≠ 0, the verifier computes 𝑣 = 𝑥1 𝑚𝑜𝑑 𝑛 from the

x-coordinate of X and accepts the signature only if v = r.

CHAPTER 5

29
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5

Experiment

5.1 Hardware Setup

The hardware involved in this project is a laptop. A laptop is issued for the process of

implementation of coding from ECC scalar multiplication and SCAs to obtain the

outcome for further analysis, then the process needs to computer large value

calculations.

Table 5.1 Specifications of laptop

Description Specifications

Model Asus TUF Gaming FX705-GM

Processor Intel Core i7-8750H

Operating System Windows 11

Graphic NVIDIA GeForce GTX 1060 6GB DDR5

Memory 8GB X 2 DDR5 RAM

Storage 512 GB SSD

5.2 Software Setup

In this project, the programming language selected is Python. Python has the most user-

friendly interface among C, C++, Java and others. Python codes are easy to read. Python

code uses English keywords rather than punctuation, and its line breaks help define the

code blocks [64]. In addition, Python codes are extendable [64], Python code can be

written in other programming languages as examples stated above.

To compile Python code, Anaconda Navigator 3 provides different applications to

choose, and the applications will be discussed later. The Anaconda platform is the most

popular way to learn and use Python for scientific computing [65], especially current

project includes the large numbers mathematical calculation.

In Avaconda3, several Python development applications are provided, such as

PyCharm, Jupyter Notebook/Lab, Spyder and Visual Studio Code. The Jupyter Lab is

selected because it allows for a platform to make it easier to learn Python programming

fundamentals [66]. Jupyter has two versions, the classic version chosen and the

CHAPTER 5

30
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

notebook version. In this project, the lab version has been selected. The lab version

contains more libraries and better experience. The Jupyter Lab performs efficiently in

resource management, it handles large notebooks and multiple open files without

significant slowdowns and restores the user's workspace, reopening the lab where the

user left off.

5.3 Simulation of ECDH

5.3.1 First Implementation of Binary Method

Algorithm 5.1. ECDH using Binary Method

Key Generation Steps:

1. Generate Private Key:

Select a random integer k, where 1 ≤ k ≤ n − 1.

2. Generate Public Key:

Compute P = kG = (x, y) using scalar multiplication with BM.

Shared Secret Computation Steps:

Alice's Side:

1. Generate a private key a, where 1 ≤ a ≤ n − 1.

2. Compute public key A = aG.

3. Receive Bob's public key B = bG.

4. Compute shared secret point 𝑆𝐴 = 𝑎𝐵 = (𝑥𝑠, 𝑦𝑠).

5. Use the x-coordinate of the shared secret:

Shared secret = 𝑥𝑠.

Bob's Side:

1. Generate a private key b, where 1 ≤ b ≤ n − 1.

2. Compute public key B = bG.

3. Receive Bob's public key A = aG.

4. Compute shared secret point 𝑆𝑏 = 𝑏𝐴 = (𝑥𝑠, 𝑦𝑠).

5. Use the x-coordinate of the shared secret:

Shared secret = 𝑥𝑠.

Scalar Multiplication – Used in All Key/Public/Secret Computations:

1. Represent scalar k in binary.

𝑘 = (𝑘𝑡, … , 𝑘0)2

2. Initialize:

CHAPTER 5

31
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

𝑅 = (0, 1) (the identity point).

3. For each bit k from MSB to LSB:

a. R = 2R using Twisted Edwards point doubling.

or

b. If 𝑘𝑖 = 1, then R = R + P using Twisted Edwards point addition.

4. Output:

R = kP

Twisted Edwards Point Addition (P + Q):

Given P = (𝑥1, 𝑦1), Q = 𝑥2, 𝑦2, computes:

1. 𝑥3 =
𝑥1𝑦2+𝑦1𝑥2

1+𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝.

2. 𝑦3 =
𝑦1𝑦2−𝑎𝑥1𝑥2

1−𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝

3. Output:

𝑅 = (𝑥3, 𝑦3).

Twisted Edwards Point Doubling (2P):

Given P = (𝑥1, 𝑦1), compute:

1. 𝑥3 =
2𝑥1𝑦1

1+𝑥1
2𝑦1

2 𝑚𝑜𝑑 𝑝.

2. 𝑦3 =
𝑦1

2−𝑎𝑥1
2

1−𝑑𝑥1
2𝑦1

2 𝑚𝑜𝑑 𝑝.

3. Output:

𝑅 = (𝑥3, 𝑦3).

Algorithm 5.1 describes the full procedure of ECDH key exchange, focusing on the use

of scalar multiplication via the BM with Twisted Edwards curve arithmetic. In the key

generation phase, a private key is selected randomly within a valid range, and the

corresponding public key is computed by multiplying the private scalar with the base

point G using binary scalar multiplication. During the shared secret computation, both

users generate their own key pairs and computes the shared secret point by multiplying

their private key with the received public key, resulting in the same shared point 𝑆 =

𝑎𝑏𝐺 . Only the x-coordinate of this point is used as the final shared secret. Scalar

multiplication, which is central to all these operations, is performed by converting the

scalar into binary and iterating through each bit from the most significant to least

significant. For each bit, point doubling is always performed, and point addition is done

CHAPTER 5

32
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

only when the bit is 1, using Twisted Edwards point addition and doubling formulas.

This method provides guaranteed security level in elliptic curve cryptography. The

Python codes for Algorithm 5.1 can be seen in Appendix A.

Figure 5.1 Output of first implementation on ECDH

Figure 5.1 shows the result of the ECDH key exchange using two different key lengths.

The first output uses the numsp384t1 curve, which has a shorter key length, while the

second output uses the numsp512t1 curve with a longer key. The results confirm that

both parties have the same shared secret, and the output shows true, meaning the key

exchange worked correctly.

CHAPTER 5

33
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.2 Second implementation on Elliptic Net Method

Algorithm 5.2. ECDH using Elliptic Net Method

Key Generation Steps (For both Alice and Bob)

1. Select private key

Randomly choose an integer 𝑘 ∈ [1, 𝑛 − 1].

2. Compute public key

Use EN scalar multiplication:

 Let 𝑄 ← 𝑄(0, 1) (neutral element)

 Repeat while 𝑘 ≠ 0:

 If the least significant bit of k is 1:

 Set 𝑄 ← 𝑄 + 𝑃 using Twisted Edwards point addition.

 Set 𝑃 ← 2𝑃 using Twisted Edwards point addition

 Right-shift k by 1 (i.e., 𝑘 = 𝑘 ≫ 1)

 End loop

 Return Q as public key

Shared Secret Derivation Steps (For Alice and Bob)

1. Each party computes shared secret

Given private key 𝑑𝐴 peer’s public key 𝑄𝐵:

 Compute 𝑆 = 𝑑𝐴 ∙ 𝑄𝐵 using EN scalar multiplication

 Return x-coordinate of S as the shared secret

Twisted Edwards Point Addition Formula

Given two points 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2) and parameters a, d and prime p:

2. Compute intermediate values:

𝐴 = 𝑥1 ∙ 𝑦2 + 𝑥2 ∙ 𝑦1

𝐵 = 1 + 𝑑 ∙ 𝑥1 ∙ 𝑥2 ∙ 𝑦1 ∙ 𝑦2

𝐶 = 𝑦1 ∙ 𝑦2 − 𝑎 ∙ 𝑥1 ∙ 𝑥2

𝐷 = 1 − 𝑑 ∙ 𝑥1 ∙ 𝑥2 ∙ 𝑦1 ∙ 𝑦2

3. Compute output point:

𝑥3 = 𝐴 ∙ 𝐵−1 𝑚𝑜𝑑 𝑝

𝑦3 = 𝐶 ∙ 𝐷−1 𝑚𝑜𝑑 𝑝

Return (𝑥3, 𝑦3)

Shared Secret Match Condition

CHAPTER 5

34
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

After computation by both parties:

 Let 𝑆𝐴 = 𝑥-coordinate from Alice's shared point.

 Let 𝑆𝐵 = 𝑥-coordinate from Bob's shared point.

Algorithm 5.2 explains the ECDH key exchange using binary scalar multiplication on

Twisted Edwards curves. Each party randomly selects a private key 𝑘 ∈ [1, 𝑛 − 1],

then computes the public key using scalar multiplication via the EN method. The scalar

is processed bit by bit. If the bit is 1, a point addition is done, then the point is always

doubled. All point operations use Twisted Edwards addition formulas.

Both users perform scalar multiplication for the shared secret key using their private

key and the peer's public key. The x-coordinate of the resulting point is used as the

shared secret. If both x-coordinates match, the key exchange is successful, confirming

both parties derived the same shared secret. The Python codes for Algorithm 5.2 can be

seen in Appendix B.

CHAPTER 5

35
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2 Output of second implementation on ECDH

Figure 5.2 shows that Alice and Bob generate their key pairs using the same scheme

and method. The private keys are randomly selected, and the public keys are computed

using EN scalar multiplication. Then, both parties compute a shared secret using each

other's public key and their own private key.

The shorter private key is using numsp384t1 secure curve parameter, resulting in

smaller public key and shared secret values. The longer private key, producing longer

key values with numsp512t1 secure curve parameter. Despite the key size difference,

both figures show that the shared secret from users are matched, confirming the key

exchange was successful as shown (Shared Secret Match: True) in the output.

CHAPTER 5

36
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Simulation based on ECDSA

5.4.1 First Implementation of Binary Method

Algorithm 5.3. ECDSA using Binary Method

Key Generation Steps:

1. Generate private key:

Select a random integer d, where 1 ≤ d ≤ n − 1.

2. Generate public key:

Compute Q = dG = (𝑥𝑄, 𝑦𝑄) using scalar multiplication with BM.

Message Signing Steps:

1. Input:

Message m, private key d, base point G, curve parameters a, d, p and order n.

2. Hash the message:

Compute e = SHA-256(𝑚)𝑚𝑜𝑑 𝑛.

3. Select ephemeral key:

Choose a random integer k, where 1 ≤ k ≤ n − 1 and gcd(𝑘, 𝑛) = 1.

4. Calculate point 𝑅 = 𝑘𝐺 = (𝑥𝑅, 𝑦𝑅) using binary scalar multiplication.

5. Compute:

𝑟 = 𝑥𝑅 𝑚𝑜𝑑 𝑛.

𝑘−1 𝑚𝑜𝑑 𝑛.

𝑠 = 𝑘−1 ∙ (𝑒 + 𝑑 ∙ 𝑟)𝑚𝑜𝑑 𝑛.

6. Check 𝑠 ≠ 0. If not, repeat from step 3.

7. Output the signature:

(r, s)

Signature Verification Steps:

1. Input:

Signature (r, s), message m, public key Q, base point G, curve parameters a,

d, p and order n.

2. Check that:

𝑟 ∈ [1, 𝑛 − 1]

𝑠 ∈ [1, 𝑛 − 1]

3. Hash the message:

e = SHA-256(𝑚) 𝑚𝑜𝑑 𝑛.

CHAPTER 5

37
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. Compute:

𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑛

𝑤1 = 𝑒 ∙ 𝑤 𝑚𝑜𝑑 𝑛

𝑤2 = 𝑟 ∙ 𝑤 𝑚𝑜𝑑 𝑛

5. Calculate point R = 𝑢1𝐺 + 𝑢2𝑄 = (𝑥𝑅, 𝑦𝑅) using binary scalar multiplication

and Twisted Edwards point addition.

6. Signature is valid if:

𝑟 ≡ 𝑥𝑅 𝑚𝑜𝑑 𝑛

Twisted Edwards Point Addition (P + Q):

Given P = (𝑥1, 𝑦1), Q = 𝑥2, 𝑦2, computes:

1. 𝑥3 =
𝑥1𝑦2+𝑦1𝑥2

1+𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝.

2. 𝑦3 =
𝑦1𝑦2−𝑎𝑥1𝑥2

1−𝑑𝑥1𝑥2𝑦1𝑦2
 𝑚𝑜𝑑 𝑝

3. Output:

𝑅 = (𝑥3, 𝑦3).

Binary Scalar Multiplication (kP):

1. Convert k to binary:

𝑘 = (𝑘𝑡, … , 𝑘0)2

2. Initialize: Q = (0, 1) (identity element)

3. Loop through bits of k:

Double: Q = Q + Q

If bit is 1: Q = Q + P

4. Return:

Q = kP

Algorithm 5.3 explains the process of ECDSA using binary scalar multiplication with

Twisted Edwards curves. The key generation starts by selecting a random private key

d, then computing the public key Q = dG using scalar multiplication. To sign a message,

the message must proceed using SHA-256 technique. A random ephemeral key k is

chosen to compute the point R = kG, and its x-coordinate becomes r. The value s is

calculated using 𝑠 = 𝑘−1(𝑒 + 𝑑𝑟)𝑚𝑜𝑑 𝑛, where e is the hash of the message. The

signature is the pair (r, s). To verify the signature, the verifier checks the range of r and

s, then hashes the message to get e. Using the signature and public key, the verifier

CHAPTER 5

38
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

computes a new point 𝑅 = 𝑤1𝐺 + 𝑤2𝑄, where w1 and w2 derived from r, s, and e. If

the x-coordinate of this point equals r, the signature is valid. All scalar multiplications

are done using the BM and point additions/doublings use Twisted Edwards formulas.

The Python codes for Algorithm 5.3 can be seen in Appendix C.

Figure 5.3 Output of first implementation on ECDSA

Figure 5.3 shows the process of ECDSA signature generation and verification using

different key pairs. In both cases, private key used to sign message ‘Good Morning

my neighbours!’, and the public key is used to verify the signature. All outputs

confirm that the signature was successfully generated and validated for both key sizes.

Despite the longer keys producing longer signature values, the result is the same:

“Signature valid: True”, meaning the message integrity and authenticity are verified.

CHAPTER 5

39
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.2 Second implementation of Elliptic Net Method

Algorithm 5.4. ECDSA using Elliptic Net Method

Key Generation Steps (For both Alice and Bob)

1. Select private key

Randomly choose an integer d ∈ [1, 𝑛 − 1].

2. Compute public key

𝑄 = 𝑑 ∙ 𝐺

Signature Generation

1. Input: Message m, private key d, curve parameters a, d, p, generator G, and

order n.

2. Hash the message:

Compute e = SHA-256(𝑚)𝑚𝑜𝑑 𝑛

3. Generate random nonce:

Choose random 𝑘 ∈ [1, 𝑛 − 1] such that gcd(𝑘, 𝑛) = 1

4. Compute ephemeral point:

𝑅 = 𝑘 ∙ 𝐺 using EN scalar multiplication

 Extract 𝑟 = 𝑥𝑅 𝑚𝑜𝑑 𝑛

5. Compute signature component:

𝑠 = 𝑘−1(𝑒 + 𝑟 ∙ 𝑑)𝑚𝑜𝑑 𝑛

6. Output signature:

Return (r, s)

Signature Verification

1. Input: Message m, public key Q, signature (r, s) and curve parameters

2. Check bounds:

If 𝑟 ∉ [1, 𝑛 − 1] or 𝑠 ∉ [1, n − 1], reject

3. Hash the message:

Compute e = SHA-256(𝑚) 𝑚𝑜𝑑 𝑛

4. Compute inverse:

𝑠−1 𝑚𝑜𝑑 𝑛

5. Compute scalar values:

𝑢1 = 𝑒 ∙ 𝑠−1 𝑚𝑜𝑑 𝑛, 𝑢2 = 𝑟 ∙ 𝑠−1 𝑚𝑜𝑑 𝑛

6. Compute point:

CHAPTER 5

40
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

𝑅 = 𝑢1 ∙ 𝐺 + 𝑢2 ∙ 𝑄 using EN scalar multiplication and point addition

7. Check validity:

 Signature is valid if 𝑟 ≡ 𝑥𝑅 𝑚𝑜𝑑 𝑛

Twisted Edwards Point Addition

Given points P = (𝑥1, 𝑦1), Q = (𝑦2, 𝑦2) curve parameters:

1. 𝐴 = 𝑥1𝑦2 + 𝑥2𝑦1

2. 𝐵 = 1 + 𝑑𝑥1𝑥2𝑦1𝑦2

3. 𝐶 = 𝑦1𝑦2 − 𝑎𝑥1𝑥2

4. 𝐷 = 1 − 𝑑𝑥1𝑥2𝑦1𝑦2

5. Compute:

𝑥3 = 𝐴 /𝐵 𝑚𝑜𝑑 𝑝

𝑦3 = 𝐶 /𝐷 𝑚𝑜𝑑 𝑝

6. Return (𝑥3, 𝑦3)

Algorithm 5.4 describes the full procedure of digital signature generation and

verification using elliptic curves, specifically utilizing scalar multiplication and

Twisted Edwards curve arithmetic. In the signature generation phase, the sender

chooses a private key and generate the public key by multiplying it with base point G.

To sign the message, the message must proceed using SHA-256 technique and reduced

modulo n, producing a digest e. A random nonce 𝑘 ∈ [1, 𝑛 − 1] is then chosen such

that gcd(𝑘, 𝑛) = 1 . The ephemeral point R = k⋅G computed using binary scalar

multiplication, and its x-coordinate mod n is taken as r. The final signature component

s is calculated as 𝑠 = 𝑘−1(𝑒 + 𝑟 ∙ 𝑑)𝑚𝑜𝑑 𝑛, forming the signature pair (r, s).

In the verification phase, the verifier first checks that r and s lie within the valid range.

Then, the message is hashed again and reduced to get e, and the inverse of s modulo n

is computed. The values 𝑅 = 𝑢1 ∙ 𝐺 + 𝑢2 ∙ 𝑄 and 𝑢2 = 𝑟 ∙ 𝑠−1 𝑚𝑜𝑑 𝑛 are used to

compute the verification point 𝑅 = 𝑢1 ∙ 𝐺 + 𝑢2 ∙ 𝑄 . This point is calculated using

scalar multiplication and Twisted Edwards point addition. If the x-coordinate of

𝑅 𝑚𝑜𝑑 𝑛 equals r, the signature is considered valid. The use of binary scalar

multiplication and Twisted Edwards formulas ensures efficient and secure

computations throughout the signature process. The Python codes for Algorithm 5.4

can be seen in Appendix D.

CHAPTER 5

41
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4 Output of second implementation on ECDSA

Figure 5.4 shows successful execution of a digital signature scheme using Twisted

Edwards Curve cryptography. In each case, the public key is created using the private

key, and the message signed using a random nonce, producing unique (r, s) signature

values. The signature is then verified using the corresponding public key and original

message. Although the inputs differ between the two outputs, both correctly validate

the signatures, demonstrating consistent and secure implementation of the signing and

verification process.

5.5 Implementation Issues and Challenges

One of the most technically challenging aspects of the implementation phase was

converting the EN scalar multiplication algorithm into working code. The algorithm

involved a structured and layered computation model with recursive logic, making it

significantly more complex to translate into a stable and reliable program.

Implementing the EN method across four algorithm variations, which included ECDH

and ECDSA using both numsp384t1 and numsp512t1 parameters, required careful

attention to the sequence of point operations and value tracking. Mistakes in indexing

or recursive calculations often resulted in subtle errors that were difficult to detect

during testing. Due to its mathematical depth and dependency on correct ordering, the

process demanded considerable time, experimentation, and validation to achieve

functional and accurate results across all implementations.

CHAPTER 5

42
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Following this, the implementation of the ECDH scheme also presented its own

challenges. Although the ECDH algorithm is conceptually straightforward, ensuring

correct key generation, point multiplication, and shared secret computation required

careful handling of curve parameters and scalar values. The use of different curve sizes

such as numsp384t1 and numsp512t1 introduced additional complexity. Proper

configuration and parameter consistency were necessary to maintain the integrity of the

key exchange process across different test cases.

Another major issue encountered was the mismatch in the computed shared secret

during ECDH testing. During certain early testing, users engaged in the key exchange

produced different shared secret values, indicating a problem with scalar multiplication

or key configuration. This issue was traced back to inconsistencies in private key

formatting, mismatched bit lengths, or incorrect conversion between coordinate

representations. After identifying these inconsistencies, the key generation process was

corrected to ensure the private keys had the proper bit lengths and that the scalar

multiplication was carried out in the affine coordinate system with consistent

formatting on both sides.

5.6 Concluding Remark

Chapter 5 presents the successful implementation of elliptic curve-based cryptographic

schemes, specifically ECDH and ECDSA, using Twisted Edwards curves. The

implementation begins with environment setup and key generation, followed by secure

message signing and verification.

Two scalar multiplication methods were applied which are the BM and the EN methods.

The BM processes each scalar bit using point doubling and conditional addition, while

the EN method uses structured point sequences to minimize leakage and optimize

performance. Experimental result on numsp384t1 and numsp512t1 curve confirmed

that key change in ECDH and digital signature in ECDSA were executed correctly.

The outputs validate the correctness of the operations and provide a strong foundation

for later SCAs evaluations. These implementations set the stage for analysing the

cryptographic strength and resistance of each method in Chapter 6.

CHAPTER 6

43
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6

System Evaluation and Discussion

6.1 System Testing

This chapter focuses on two types of attacks which are timing attack and power analysis

attack. Timing attacks are applied to ECDH using both the BM and EN method,

according to Algorithm 5.1 and Algorithm 5.2. Power analysis attacks are applied only

to ECDSA, Algorithm 5.3 for BM and Algorithm 5.4 for EN method.

6.1.1 Timing Attack on Algorithm 5.1

Algorithm 6.1. Timing Attack on Algorithm 5.1

Steps:

1. Initialize guessed_key ← 0

2. Initialize timing_diffs ← empty list

3. For i from 0 to key_size - 1 do:

1. Let k0 ← guessed_key

2. Let k1 ← guessed_key with bit (key_size - 1 - i) set to 1

3. Measure execution time t0 for scalar_multiplication_binary(k0, G)

4. Measure execution time t1 for scalar_multiplication_binary(k1, G)

5. Append (t1 - t0) to timing_diffs

6. If t1 > t0:

 Set guessed_key ← k1 (bit is likely 1) Else:

 Set guessed_key ← k0 (bit is likely 0)

7. Mask guessed_key to ensure it remains within 384 or 512 bits

4. Return guessed_key, timing_diffs

Algorithm 6.1 outlines a timing attack performed on Algorithm 5.1 to recover a private

key used in binary scalar multiplication. It begins by initializing a guessed key to zero

and setting up an empty list to store timing differences. The attack works bit by bit,

starting from the most significant bit down to the least significant. In each iteration, two

candidate keys are created, the current guess, k0. And k1, which is the same as k0 but

with the current bit set to 1. The execution time of the scalar multiplication using each

key is measured with the function scalar_multiplication_binary(k, G), where G is the

CHAPTER 6

44
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

base point. The timing difference between k1 and k0 is stored. If the execution time for

k1 is greater than for k0, it is inferred that the bit is likely 1, and the guessed key is

updated accordingly. Otherwise, it remains 0. To ensure the key length stays within 384

or 512 bits, the key is masked in each iteration. Finally, the guessed key and the list of

timing differences are returned, providing insight into the potential leakage of key bits

through execution time variations in the BM. The Python codes for Algorithm 6.1 can

be seen in Appendix E.

6.1.2 Timing Attack on Algorithm 5.2

Algorithm 6.2. Timing Attack on Algorithm 5.2

Steps:

1. Initialize guessed_key ← 0

2. Initialize timing_diffs ← empty list

3. For i from 0 to key_size - 1 do:

1. Let k0 ← guessed_key

2. Let k1 ← guessed_key with bit (key_size - 1 - i) set to 1

3. Measure execution time t0 for elliptic_net_scalar_mult(k0, G, p, a, d)

4. Measure execution time t1 for elliptic_net_scalar_mult(k0, G, p, a, d)

5. Append (t1 - t0) to timing_diffs

6. If t1 > t0:

 Set guessed_key ← k1 (bit is likely 1) Else:

 Set guessed_key ← k0 (bit is likely 0)

7. Mask guessed_key to ensure it remains within 384 or 512 bits

Return guessed_key, timing_diffs

Algorithm 6.2 shows the process of performing a timing attack on Algorithm 5.2 to

recover a secret key bit by bit. The attack begins by initializing the guessed_key to zero

and an empty list called timing_diffs to store timing differences. The process iteratively

guesses each bit of the secret key starting from the most significant bit. In each iteration,

two versions of the key are prepared: k0 as the current guess and k1 as the guess with

the current bit set to 1. Both versions are used in scalar multiplication using the

elliptic_net_scalar_mult function, and their execution times (t0 and t1) are measured.

The difference t1 - t0 is recorded in the timing_diffs list. If t1 is greater than t0, it is

CHAPTER 6

45
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

assumed that the key bit is likely 1, so the bit is kept set in the guess. Else, it remains 0.

This process continues for all bits in the key, and the guessed_key is masked at each

step to ensure it fits within the 384-bit or 512-bit key size. In the end, the function

returns both the guessed key and the list of timing differences, giving insights into

where the algorithm may leak information based on execution time. The Python codes

for Algorithm 6.2 can be seen in Appendix F.

6.1.3 Power Analysis Attack on Algorithm 5.3

Algorithm 6.3. Power Analysis Attack on Algorithm 5.3

Steps:

1. Generate 1000 random 8-bit plaintext values:

plaintexts ← random integers in [0, 255], size = num_samples

2. Generate a 48-byte secret nonce

true_nonce ← random integers in [0, 383], size = 48 or 64

3. Simulate Power Traces

For each nonce byte 𝑘𝑖 in true_nonce:

 For each plaintext 𝑝ⱼ, compute hamming_weight(𝑝 ⊕ 𝑘ᵢ)

 Add Gaussian noise:

 𝑡𝑟𝑎𝑐𝑒ᵢ = 𝐻𝑊(𝑝 ⊕ 𝑘ᵢ) + noise

 Store 𝑡𝑟𝑎𝑐𝑒ᵢ in power_traces

4. Correlate Guesses

For each byte index i in nonce:

 Initialize list byte_correlations ← []

 For every guess g in [0, 255]:

 Compute 𝐻𝑊(𝑝 ⊕ 𝑔) + noise

 Calculate Pearson correlation with power_traces[i]

 Store result in byte_correlations

Determine the best guess g* with the highest correlation

Validate guess:

 if g* == true_nonce[i] and correlation > threshold → count as correct

5. Evaluate Attack Success

Compute success_rate = (correct guesses / 48 or 64) × 100%

Output per-byte result: true vs guessed nonce and validation

CHAPTER 6

46
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plot correlation for byte 0 to visualize power leak

Algorithm 6.3 shows the designed power analysis attack performed on Algorithm 5.3

to recover a secret nonce used in elliptic curve cryptography by analyzing power

consumption traces. It starts by generating a secret nonce, which is a 48-byte (384-bit)

or 64-byte (512-bit) value, and then simulates power traces. For each byte of the nonce,

the algorithm calculates its Hamming weight . If the number of 1s in its binary form, it

helps to calculate how much power is used. This step is to form the power analysis

attack. The simulated power values are then mixed with random noise to make the

traces more realistic, imitating the imperfections seen in real devices. These noisy

power traces are then used to carry out the power analysis attack.

The next step is to correlate guesses for each byte of the nonce with the real power

traces. For each byte of the nonce, the algorithm tries all possible guesses (from 0 to

255), computes the predicted power consumption traces for each guess, and calculates

the Pearson correlation between each predicted trace and the real power traces. The

guess that results in the highest correlation is considered the best guess for that byte. If

the correlation exceeds a certain threshold and the guessed byte matches the actual

nonce byte, the guess is validated as correct. After evaluating all 48 bytes or 64 bytes

of the nonce, the attack success rate is calculated by measuring the percentage of

correctly guessed bytes. The algorithm also outputs the per-byte results and generates

a plot to visualize the correlation for the first byte of the nonce. This entire process is

designed to recover the secret nonce by exploiting power leakage during the

cryptographic operation, demonstrating how power analysis attacks can expose

vulnerabilities to cryptographic systems. The Python codes for Algorithm 6.3 can be

seen in Appendix G.

CHAPTER 6

47
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.4 Power Analysis Attack on Algorithm 5.4

Algorithm 6.4. Power Analysis Attack on Algorithm 5.4

Steps:

1. Generate 1000 random 8-bit plaintext values:

plaintexts ← random integers in [0, 255], size = num_samples

2. Generate a 48-byte secret nonce

true_nonce ← random integers in [0, 383 or 511], size = 48 or 64

3. Simulate Power Traces

For each nonce byte 𝑘𝑖 in true_nonce:

 For each plaintext 𝑝, compute hamming_weight (𝑝 ⊕ 𝑘ᵢ)

 Add Gaussian noise:

 𝑡𝑟𝑎𝑐𝑒ᵢ = 𝐻𝑊(𝑝 ⊕ 𝑘ᵢ) + noise

 Store 𝑡𝑟𝑎𝑐𝑒ᵢ in power_traces

4. Correlate Guesses

For each byte index i in nonce:

 Initialize list byte_correlations ← []

 For every guess g in [0, 255]:

 Compute 𝐻𝑊(𝑝 ⊕ 𝑔) + noise

 Calculate Pearson correlation with power_traces[i]

 Store result in byte_correlations

Determine the best guess g* with the highest correlation

Validate guess:

 if g* == true_nonce[i] and correlation > threshold → count as correct

5. Evaluate Attack Success

Compute success_rate = (correct guesses / 48 or 64) × 100%

Output per-byte result: true vs guessed nonce and validation

Plot correlation for byte 0 to visualize power leak

Algorithm 6.4 illustrates power analysis attack implementation on Algorithm 5.4. This

algorithm is similar to the BM, Algorithm 6.3 but incorporates differences in simulated

power consumption traces. First, the algorithm generates 1000 random 8-bit plaintext

values and a 48-byte secret nonce or a 64-byte secret nonce. The power traces are

simulated by calculating the Hamming weight between each plaintext byte and the

CHAPTER 6

48
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

corresponding nonce byte, just as in the BM. However, the simulation uses a more

complex model that accounts for elliptic curve scalar multiplication, where power

consumption may depend on the specific operation. Gaussian noise is then added to the

traces to reflect real-world conditions, and these noisy traces are stored for further

analysis.

To recover the nonce, the algorithm then attempts to correlate all possible guesses for

each byte of the nonce with the actual power traces. For each nonce byte, it iterates over

all potential guesses, calculates the Hamming weight for each guess, and computes the

Pearson correlation between the predicted power traces and the actual traces. The best

guess is determined by identifying the guess that produces the highest correlation for

that byte. If the correlation exceeds a predefined threshold and the guessed byte matches

the actual nonce byte, the guess is validated. After processing all 48 bytes or 64 bytes

of the nonce, the attack's success rate is evaluated by calculating the percentage of

correct guesses. A correlation plot for the first byte is generated to visually inspect the

strength of the power leak, helping to demonstrate the effectiveness of the attack on

elliptic curve cryptographic systems. The Python codes for algorithm 6.4 can be seen

in Appendix H.

6.2 Testing Setup and Result

6.2.1 Timing Attack Implementation for Algorithm 6.1 (numsp384t1)

Figure 6.1 Timing Attack on Algorithm 6.1 (numsp384t1)

Figure 6.1 represents a timing attack on ECDH using BM with numsp384t1 secure

curve parameter. The blue line shows how the time difference between two operations

changes for each bit position of the key, with the x-axis representing the bit positions

from most significant to least significant, and the y-axis showing the time difference.

CHAPTER 6

49
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

In this graph, the blue line has several noticeable spikes. These spikes suggest that the

computation time varies more significantly at those bits, likely due to how the algorithm

processes bits set to 1 versus 0. For example, certain operations might take longer when

the bit is 1, which can unintentionally leak information about the key. These visible

spikes could help an attacker make educated guesses about the value of specific bits.

However, while the timing differences are more pronounced here than in the second

graph (Figure 6.2), they were still not consistent or accurate enough for the attack to

succeed in fully recovering the correct private key.

6.2.2 Timing Attack Implementation for Algorithm 6.1 (numsp512t1)

Figure 6.2 Timing Attack on Algorithm 6.1 (numsp512t1)

Figure 6.2 shows a timing attack output on the ECDH using BM but with different

secure curve parameters. The numsp512t1 secure curve parameter uses a longer 512-

bit private key compared to the 384-bit key in the previous graph. As before, timing

attacks were implemented to guess Alice's private key by analyzing how long the

cryptographic operations take. The x-axis represents the position of each bit in the

private key, from the most significant to the least important, and the y-axis shows the

difference in computation time between the two operations. The blue line indicates how

this time difference varies across the key bits. The blue line appears much more stable,

with fewer and smaller spikes. This suggests that the implementation for numsp512t1

is less susceptible to timing variations, making it more resistant to this type of SCA.

Although there are still minor spikes, they are less pronounced and do not provide

enough information to recover the private key, which is why the attack was

unsuccessful.

CHAPTER 6

50
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.3 Timing Attack Implementation for Algorithm 6.2 (numsp384t1)

Figure 6.3 Timing Attack on Algorithm 6.2 (numsp384t1)

Figure 6.3 shows the timing attack results on ECDH using the EN method with the

numsp384t1 curve. The blue line represents the timing differences measured at each bit

position during scalar multiplication, where the x-axis shows the bit positions from the

most significant to the least significant bit. Ideally, if the scalar multiplication operation

is fully protected, the timing differences should remain flat and close to zero across all

bit positions. However, in this graph, several noticeable spikes are visible, particularly

around bit position 350, indicating that some bits cause slight variations in computation

time. These spikes suggest possible timing leakage due to internal branching, memory

handling, or point addition complexity, which could theoretically allow an attacker to

guess bit values based on timing anomalies. Nevertheless, compared to previous results

from the BM, the amplitude and frequency of these spikes are much lower and less

consistent. The overall blue line remains relatively stable without significant

fluctuations, meaning that less information is leaked overall. Despite minor

fluctuations, the guessed key generated from this timing analysis did not match the

actual private key, demonstrating that the EN method significantly improves resistance

against timing attacks, even when slight leakage is present.

CHAPTER 6

51
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.4 Timing Attack Implementation for Algorithm 6.2 (numsp512t1)

Figure 6.4 Timing Attack on Algorithm 6.2 (numsp512t1)

Figure 6.4 shows the timing attack results on ECDH using the EN method with the

numsp512t1 curve. The blue line represents the timing differences measured at each bit

position during scalar multiplication, with the x-axis displaying bit positions from the

most significant to the least significant bit across the 512-bit key. Ideally, a well-

protected implementation would produce a flat line close to zero, and in this figure, the

blue line remains relatively stable with only minor fluctuations. Small spikes appear

throughout the graph, particularly bit positions 475, suggesting slight timing variations

caused by certain bits, but the magnitude of these spikes is small and inconsistent.

Timing attacks on ECDH using EN with different parameters produce slightly different

results. Compared to Figure 6.3, Figure 6.4 shows even smaller and more scattered

timing differences, with no significant concentration of leakage at specific bit positions.

Despite minor fluctuations observed in both figures, the guessed keys did not match the

actual private keys, demonstrating that the EN method consistently offers strong

resistance to timing attacks, even when slight leakages are present.

Overall, the timing attack on ECDH shows that the EN method offers better resistance

compared to the BM. When comparing Figure 6.3 and Figure 6.4, both based on the

EN method, the graph for numsp512t1 (Figure 6.4) is more stable with fewer timing

fluctuations than numsp384t1 (Figure 6.3). This suggests that increasing the key size

improves resistance to timing-based analysis, and the structured nature of the EN

method further reduces potential leakage. This is evident in the graphs where the blue

lines in EN show smaller and fewer timing spikes across bit positions, indicating more

CHAPTER 6

52
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

consistent execution. The reduced variation makes it harder for attackers to distinguish

between key bits, proving that EN leaks less timing information than BM.

6.2.5 Power Analysis Attack Implementation for Algorithm 6.3 (numsp384t1)

Figure 6.5 Power Analysis Attack on Algorithm 6.3 (numsp384t1)

CHAPTER 6

53
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.5 shows a power analysis attack on ECDSA using the BM with numsp384t1

secure curve parameter. The blue line represents the correlation between power traces

and each guessed key value for nonce byte 0, with the x-axis showing possible byte

guesses (0–255) and the y-axis showing the strength of correlation ranging from -1 to

1. The red dashed line marks the position of the true nonce byte, but since it does not

align with a high peak in the blue line, the guess for byte 0 was incorrect. This aligns

with Figure 6.5, where each nonce byte guess is validated against the true value, and

only 30 out of 48 bytes were correctly guessed, giving an overall success rate of 62.5%.

6.2.6 Power Analysis Attack Implementation for Algorithm 6.3 (numsp512t1)

Figure 6.6 visualizes a power analysis attack on ECDSA using the BM on the

numsp512t1 secure curve parameter. The x-axis represents all possible byte guesses

(from 0 to 255), while the y-axis shows the correlation between each guess and the

actual power consumption measured during computation. The blue line shows the

correlation values for each key guess, the peaks in this line suggest potential correct

guesses. The red dashed line marks the actual secret key byte (Byte 0), and ideally, the

blue line should show a sharp peak at this point. However, the blue line remains noisy,

and the red line does not align with the highest peak, indicating difficulty in identifying

the correct byte using this method. The outcome of power analysis attacks on higher-

bit secure curve parameters achieved a 54.69% overall success rate in correctly

recovering individual key bytes; the true value attempt was 35 out of 64.

CHAPTER 6

54
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.6 Power Analysis Attack on Algorithm 6.3 (numsp512t1)

CHAPTER 6

55
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.7 Power Analysis Attack Implementation for Algorithm 6.4 (numsp384t1)

Figure 6.7 Power Analysis Attack on Algorithm 6.4 (numsp384t1)

Figure 6.7 displays the results of a power analysis attack on ECDSA using EN method

with the numsp384t1 curve. The blue line shows the correlation between key guesses

and the collected power traces, where the x-axis represents key guess values ranging

CHAPTER 6

56
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

from 0 to 255 and the y-axis indicates correlation values from -1 to 1. Peaks in the blue

line near the red line suggest strong correlations where the correct byte guess aligns

with the measured power traces. The red dashed vertical line marks the actual value of

nonce byte 0, positioned at x = 81. The fluctuations observed across the blue line

represent the inherent noise and varying leakage strength in the power traces, with

sharper peaks indicating regions of higher information leakage and flatter regions

suggesting weaker leakage. Despite the noise, 31 out of 48 nonce bytes were correctly

guessed, resulting in an overall success rate of 64.58%, demonstrating moderate attack

effectiveness against the numsp384t1 curve.

CHAPTER 6

57
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.8 Power Analysis Attack Implementation for Algorithm 6.4 (numsp512t1)

Figure 6.8 Power Analysis Attack on Algorithm 6.4 (numsp512t1)

CHAPTER 6

58
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.8 shows the results of a power analysis attack on ECDSA using EN method

with the numsp512t1 curve. The plot charts the correlation between key guesses and

the collected power traces, where the x-axis represents key guess values from 0 to 255

and the y-axis shows correlation values ranging from -1 to 1. The blue line, representing

correlation with power traces, exhibits fluctuating behavior with less distinct peaks,

indicating the presence of noise and weaker leakage signals. The value of secret key

byte 0 was 41, which is marked by a red dashed vertical line at the corresponding x-

axis position. In this attack, 33 out of 6 secret key bytes were correctly guessed,

resulting in an overall success rate of 21.56%. These results suggest that significant

challenges remain in reliably extracting secret information from the numsp512t1 curve

under this attack setup.

The power analysis attack on the numsp384t1 curve achieved a moderate success rate

of 64.58%, correctly recovering 31 out of 48 nonce bytes. Power analysis attack on the

numsp512t1 curve yielded a much lower success rate of 51.56%, with only 33 out of

64 secret key bytes correctly identified. In Figure 6.7, the correlation graph displays

sharper and more prominent peaks near the correct key guesses, indicating more

substantial leakage and easier identification of the actual key values. In contrast, Figure

6.8 exhibits noisier, flatter, and less distinguishable correlation patterns, making

isolating the correct guesses from noise considerably more challenging. This difference

highlights how increasing the key size and using more complex elliptic curve

parameters, as with numsp512t1, substantially improve resistance against SCAs by

spreading leakage over a larger key space and reducing the correlation strength.

Additionally, the longer key length in numsp512t1 increases the number of key bytes

that must be guessed correctly, making partial recovery less impactful and full key

reconstruction practically infeasible. The results demonstrate that physical noise and

algorithmic complexity jointly contribute to the enhanced security of larger elliptic

curves against power analysis techniques.

6.3 Project Challenges

Several significant challenges were encountered during this project's development and

evaluation stages, particularly in ensuring output correctness, finding suitable

references for coding in Python. Due to the lack of supporting external sources, these

issues impacted both the technical flow of the project.

CHAPTER 6

59
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A recurring challenge was ensuring that the final output of each implementation was

correct and consistent. In some test cases, the shared secret generated in the ECDH

protocol did not match between the two parties. Similarly, in ECDSA testing, the digital

signature verification failed despite correct input values. These issues highlighted the

misconfigurations such as incorrect key formatting, mismatched bit lengths, or

improper coordinate conversions. To resolve these problems, each computation step

was rechecked thoroughly, and the output at every stage was printed and compared.

Public key generation, scalar values, and field parameters were verified individually.

For ECDSA, the signature components were recalculated using new random k values

and point multiplication results were closely monitored until the signature passed

validation. This careful, step-by-step debugging process allowed each error to be

identified and corrected, eventually leading to valid, reliable outputs.

Another significant difficulty was the limited availability of Python-specific reference

materials. While the concepts behind ECC and SCAs are well-documented in general,

very few detailed examples or sample codes written in Python could guide the

implementation of EN scalar multiplication, ECDSA, or ECDH using the chosen

NUMS curves. Most available resources were written in other programming languages

or focused only on the high-level logic, without implementation details. Searches

through platforms like GitHub, Stack Overflow, and academic coding forums often

returned incomplete or unrelated results. As a result, many parts of the code had to be

built from scratch based on mathematical definitions and manual interpretation of the

algorithmic steps, making the development process slower and more dependent on self-

validation.

One of the most challenging aspects of the project was the simulation of SCAs.

Although timing and power analysis attacks were implemented and executed against

the BM in ECDH and ECDSA, the attacks failed to reveal the private key. The observed

timing differences and power variations were insufficient to make accurate guesses

about the key values. What made this more challenging was the lack of references

validating or supporting the methodology used for these simulations in Python. Without

documented benchmarks or comparable examples, it was difficult to determine whether

the test setup, measurement techniques, or data analysis strategies were adequate or

needed adjustment. This created a sense of limitation, as the project was constrained by

a lack of external guidance to confirm the approach taken.

CHAPTER 6

60
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Objective Evaluation

All three objectives set at the beginning of this project have been successfully achieved

through detailed identification, implementation, and simulation. Each objective was

addressed methodically, and the outcomes of Chapters 5 and 6 provide strong evidence

of their fulfilment.

a. To identify potential vulnerabilities in the scalar multiplication algorithms via

binary and EN methods.

This objective was met by performing SCAs on ECC scalar multiplication algorithms

using BM and EN methods. The timing attack on ECDH and the power analysis attack

on ECDSA revealed how different algorithms leak key-related information. The results

in Tables 6.1 and 6.2 demonstrate the varying levels of vulnerability depending on the

method used and the curve size. The BM showed higher leakage and lower resistance

due to its key-dependent operation flow, while the EN method performed with greater

uniformity, particularly on smaller curves like numsp384t1.

b. To implement the following double-and-add algorithm in ECDH and ECDSA

schemes:

i). Binary method

ii). Elliptic net method

This objective was achieved by implementing the binary and EN methods in the ECDH

key exchange and ECDSA digital signature processes. All implementations used secure

NUMS curve parameters (numsp384t1 and numsp512t1) under affine coordinates.

Correct shared secret generation and signature verification confirmed the functional

accuracy of the scalar multiplication operations across all four algorithmic

combinations.

c. To evaluate the proposed algorithms based on side-channel attacks.

The third objective was accomplished by applying simulated timing attacks to ECDH

and power analysis attacks to ECDSA. The experiments successfully measured

execution-time variations and analysed power trace patterns to test the vulnerability of

scalar multiplication algorithms. Although the simulated attacks did not fully recover

private keys, the correlation plots and key recovery rates clearly showed how algorithm

structure and curve complexity impact the level of side-channel resistance.

CHAPTER 6

61
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The outcomes from these analyses validate that all project goals were met, providing a

comprehensive understanding of scalar multiplication security in ECC-based systems

under SCAs conditions.

Table 6.1 Results of ECDH implementation

 ECDH

Binary Method (Algorithm 5.1) Elliptic Net Method (Algorithm 5.2)

Numsp384t1 Numsp512t1 Numsp384t1 Numsp512t1

Timing

Attack
Secure Secure Secure Secure

Table 6.2 Results of ECDSA implementation

 ECDSA

Binary Method (Algorithm 5.3) Elliptic Net Method (Algorithm 5.4)

Numsp384t1 Numsp512t1 Numsp384t1 Numsp512t1

Power

Analysis

Attack

Secure Secure Secure Secure

Tables 6.1 and 6.2 presented earlier reveal the results of these attacks. For the timing

attack on ECDH using the BM method with numsp512t1 secure curve parameter, 35

out of 64 key bytes were successfully recovered, resulting in a 54.69% success rate.

Longer key bit length performed better while using the BM method. In comparison, the

EN method performed better on the numsp384t1 curve with a success rate of 64.58%,

accurately recovering 31 out of 48 key bytes. However, when applied to the

numsp512t1 curve, its success rate dropped to 51.56% (33 out of 64 bytes recovered).

These variations confirm that scalar multiplication methods have differing levels of

vulnerability depending on their internal structure and the complexity of the curve used.

Although widely adopted for its simplicity, the BM leaks more key-dependent patterns

compared to the structured operations of the EN.

The results of implementing binary and EN methods in ECDH and ECDSA reinforce

the impact of algorithmic design on side-channel resilience. The double-and-add

technique revealed distinct power consumption patterns in the BM implementation,

especially during ECDSA signature generation using ephemeral key k. The visualized

CHAPTER 6

62
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

correlation plots (Figure 6.2 and Figure 6.4) showed multiple instances where the

guessed bytes did not align with the correct key values, highlighting leakages

exploitable by timing attack. Meanwhile, the EN method's structured point calculations

were an effort to obscure these patterns. With the numsp384t1 secure curve parameter,

the process was more resistant to key recovery attacks than it was with numsp512t1,

where the complexity possibly introduced inconsistencies in correlation.

The proposed algorithms' evaluation against SCAs was addressed through detailed

experimental setups. Timing attacks were applied to ECDH, exploiting variations in

scalar multiplication execution due to different bit values in the private key. The power

analysis attack was used in ECDSA, which targeted leakage from kG during signature

generation. In each case, correlation plots illustrated the distinguishability of correct

key guesses based on power traces.

6.5 Concluding Remark

Chapter 6 provided an in-depth evaluation of the implemented binary and EN scalar

multiplication methods under SCA scenarios in ECDH and ECDSA. The experimental

results revealed that both methods exhibited varying levels of vulnerability, with BM

showing moderate leakage and the EN method offering slightly better resistance on

smaller curves like numsp384t1. Power analysis attacks on ECDSA achieved success

rates between 51% and 64%, depending on the curve and method used, while timing

attacks on ECDH highlighted key-dependent execution time patterns. Correlation plots

and key validation logs supported the analysis, demonstrating that partial key recovery

was possible while complete key extraction was limited without more substantial

leakage or refined attacks. Overall, this chapter confirmed that scalar multiplication

remained a significant target in SCAs, emphasizing the importance of secure algorithm

design and implementation in ECC systems.

CHAPTER 7

63
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

Conclusion

7.1 Conclusion

This project has successfully fulfilled the aim by performing a detailed cryptanalysis of

ECCSM algorithms over prime field. The investigation centred on the BM and EN

method, which were implemented within two widely used ECC-based cryptographic

schemes: Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve Digital Signature

Algorithm (ECDSA). These implementations were tested using secure NUMS

parameters, specifically the Twisted Edwards curves numsp384t1 and numsp512t1,

under affine coordinates. Eight algorithmic variants were constructed, with the

implementation of different schemes, methods and NUMS parameters. ECDH and

ECDSA were developed for BM or EN method and numsp384t1 or numsp512t1

parameters to allow performance comparison and side-channel resistance evaluation.

The first objective, identifying vulnerabilities in scalar multiplication algorithms using

BM and EN method, was addressed through theoretical analysis and practical design.

The algorithm structures, defined in Chapter 4, were critically examined for patterns

that could potentially expose sensitive information during execution. Based on the

traditional double-and-add operation, the BM showed non-uniform computation

patterns depending on the scalar bits. This behaviour highlighted its exposure to timing

analysis [71]. In contrast, the EN method was designed with a more structured flow,

reducing observable variations and offering better protection against side-channel

leakage [72]. These observations established a foundation for comparing algorithm

strength and operational security.

The second objective used both methods to implement the double-and-add scalar

multiplication algorithm in ECDH and ECDSA. These implementations, detailed in

Chapter 4 and tested in Chapter 5, confirmed correct functionality through consistent

output of public keys, shared secrets, and valid digital signatures. The ECDH

algorithms successfully derived the same shared secret across parties, while ECDSA

algorithms consistently generated valid signature pairs that could be verified using

corresponding public keys. The use of two secure curve parameters, numsp384t1 and

numsp512t1, provided a broader view of performance under different key sizes [73].

CHAPTER 7

64
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The successful completion of all four algorithm implementations demonstrated

accuracy and algorithmic soundness.

The third objective was to evaluate the side-channel resistance of these scalar

multiplication algorithms. Chapter 6 focused on simulating timing attacks on ECDH

and power analysis attacks on ECDSA. The ECDH algorithm was implemented for the

BM by measuring execution time variations in scalar multiplication. Results showed

that despite its simple structure, the BM for ECDH maintained a level of uniformity

that preserved resistance to timing-based leakage in the tested scenarios. In ECDSA,

the BM’s power traces were analysed during signature generation, where it

demonstrated immunity to simple power analysis attacks, revealing no exploitable

patterns [74]. These findings align with established cryptographic research [58], [61],

[75], [76], which has shown that both ECDH and ECDSA can be securely implemented

using binary scalar multiplication when properly designed. Although the EN method

was also developed, side-channel cryptanalysis was only completed on the binary

implementations for both schemes, setting a baseline for future comparisons.

In conclusion, this project has successfully achieved all objectives. By developing and

analysing ECC scalar multiplication using two methods across two schemes, and

evaluating their behaviour against side-channel threats, the study provides a

comprehensive view of algorithmic robustness and implementation-level security. The

outcomes validate the effectiveness of secure scalar multiplication in ECC and

emphasize the importance of implementation strategy in real-world cryptographic

systems. As ECC continues to be a cornerstone of modern encryption standards,

insights from this work support the development of cryptographic applications.

7.2 Recommendation

In addition to these security focused extensions, the study can be broadened to include

elliptic curve cryptography over binary fields 𝔽2𝑚 [77]. Binary fields offer

computational advantages in specific environments, especially in hardware-based

systems, due to their more straightforward arithmetic and more efficient

implementation of field operations. Exploring EN behaviour and scalar multiplication

techniques in 𝔽2𝑚 may reveal new optimizations or trade-offs relevant to lightweight

cryptographic applications.

CHAPTER 7

65
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Moreover, integrating a robust and widely accepted public key and key exchange

protocol, such as Elliptic Curve Menezes–Qu–Vanstone (ECMQV) [78], would further

strengthen the practical relevance of the work. ECMQV offers authenticated key

exchange with strong security guarantees, including resistance to man-in-the-middle

and impersonation attacks, while maintaining the performance advantages of elliptic

curve cryptography. Combining such protocols with advanced side-channel protections

and broader field analysis would significantly enhance both the theoretical depth and

applied impact of the research.

To further assess the security of elliptic curve scalar multiplication, this project can be

extended by adding more cryptanalysis techniques. One key extension is the study of

fault attacks [79], where intentional computational faults are introduced to exploit

vulnerabilities in cryptographic implementations. Additionally, electromagnetic

analysis attacks [80], which capture unintended electromagnetic emissions to extract

secret keys, can be used to expose weaknesses in side-channel resistance. Another SCA,

such as template attacks [81], uses pre-collected profiling data to enhance attack success

rates. Implementing these attacks will provide a more comprehensive security

assessment. Furthermore, countermeasures such as constant-time scalar multiplication

[82], randomization techniques, and fault detection mechanisms should be explored to

mitigate these threats and improve cryptographic resilience.

REFERENCES

66
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] T. A. Berson, “Long Key Variants of DES,” in Advances in Cryptology —

CRYPTO ’82, Springer, Jan. 1983, pp. 311–313. doi:

https://doi.org/10.1007/978-1-4757-0602-4_30.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp.

120–126, 1978, doi: https://doi.org/10.1145/359340.359342.

[3] N. Koblitz, A. Menezes, and S. Vanstone, “The State of Elliptic Curve

Cryptography,” Designs, Codes and Cryptography, vol. 19, pp. 173–193, 2000.

[Online]. Available: https://static.cse.iitk.ac.in/users/nitin/courses/WS2010-

ref2.pdf.

[4] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital

Signature Algorithm (ECDSA),” Int. J. Inf. Secure., vol. 1, no. 1, pp. 36–63,

Aug. 2001, doi: https://doi.org/10.1007/s102070100002.

[5] GeeksForGeeks, “RSA Algorithm in Cryptography - GeeksforGeeks,”

GeeksforGeeks, Sep. 06, 2018. [Online]. Available:

https://www.geeksforgeeks.org/rsa-algorithm-cryptography/.

[6] S. Douglas R, Cryptography: Theory and Practice, Routledge & CRC Press,

Jan. 01, 2018. [Online]. Available: https://www.routledge.com/Cryptography-

Theory-and-Practice/Stinson-Paterson/p/book/9781032476049.

[7] V. Miller, “Uses of elliptic curves in cryptography,” in Advances in Cryptology

– CRYPTO ’85, Springer-Verlag, LNCS 218, pp. 417–426, 1986.

[8] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comp., vol. 48, 1987.

[9] O. J. F. FRSA, “Elliptic Curve Cryptography: A Revolution in Modern

Cryptography,” Medium, Mar. 28, 2023. [Online]. Available:

https://medium.com/@OjFRSA/elliptic-curve-cryptography-a-revolution-in-

modern-cryptography-cb0dc7179fcd.

[10] PracticalCryptographyForDevelopers, “ECDSA: Elliptic Curve Signatures,”

cryptobook.nakov.com, Jun. 19, 2019. [Online]. Available:

https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages.

[11] A. Hamlin, “Overview of Elliptic Curve Cryptography on Mobile Devices,”

2012. [Online]. Available:

https://www.cs.tufts.edu/comp/116/archive/ahamlin.pdf.

[12] Jake Hertz, “EM Side-Channel Attacks on Cryptography,” All About Circuits,

Jul. 26, 2023. [Online]. Available: https://www.allaboutcircuits.com/technical-

articles/em-side-channel-attacks-on-cryptography/.

https://doi.org/10.1007/978-1-4757-0602-4_30
https://doi.org/10.1145/359340.359342
https://static.cse.iitk.ac.in/users/nitin/courses/WS2010-ref2.pdf
https://static.cse.iitk.ac.in/users/nitin/courses/WS2010-ref2.pdf
https://doi.org/10.1007/s102070100002
https://www.geeksforgeeks.org/rsa-algorithm-cryptography/
https://www.routledge.com/Cryptography-Theory-and-Practice/Stinson-Paterson/p/book/9781032476049
https://www.routledge.com/Cryptography-Theory-and-Practice/Stinson-Paterson/p/book/9781032476049
https://medium.com/@OjFRSA/elliptic-curve-cryptography-a-revolution-in-modern-cryptography-cb0dc7179fcd
https://medium.com/@OjFRSA/elliptic-curve-cryptography-a-revolution-in-modern-cryptography-cb0dc7179fcd
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://www.cs.tufts.edu/comp/116/archive/ahamlin.pdf
https://www.allaboutcircuits.com/technical-articles/em-side-channel-attacks-on-cryptography/
https://www.allaboutcircuits.com/technical-articles/em-side-channel-attacks-on-cryptography/

REFERENCES

67
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[13] V. Gupta, S. Gupta, and S. Chang, “Performance Analysis of Elliptic Curve

Cryptography for SSL,” Sep. 2002. Accessed: Apr. 18, 2024. [Online].

Available:

https://www.princeton.edu/~rblee/ELE572Papers/ECCpapers/SUN_ECC_SSL

performance.pdf.

[14] Y. Miao, M. T. Kandemir, D. Zhang, Y. Zhang, G. Tan, and D. Wu, “Hardware

Support for Constant-Time Programming,” in Proc. ACM Symp. Operating

Syst. Principles, Oct. 2023, doi: https://doi.org/10.1145/3613424.3623796.

[15] F. Lastname, "Advancements in Cryptanalysis: Uncovering Vulnerabilities in

Modern Cryptographic Algorithms," J. Cryptographic Res., vol. 10, no. 3, pp.

123-135, 2023.

[16] G. Lastname, "Recent Developments in Cryptanalysis Techniques," in Proc. Int.

Conf. Cryptography and Network Security (CNS '24), 2024, pp. 45-58.

[17] J. Bos, N. Semiconductors, C. Costello, M. Research, M. Naehrig, and P. Longa,

“Post-Snowden Elliptic Curve Cryptography,” May 2015. Available:

https://rwc.iacr.org/2015/Slides/RWC-2015-Longa.pdf. [Accessed: Apr. 28,

2025]

[18] OWASP, “Cryptanalysis Software Attack | OWASP Foundation,” OWASP,

Sep. 06, 2006. [Online]. Available: https://owasp.org/www-

community/attacks/Cryptanalysis.

[19] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “SoK: Deep Learning-based

Physical Side-channel Analysis,” Cryptology ePrint Archive, 2021. [Online].

Available: https://eprint.iacr.org/2021/1092 (accessed Apr. 15, 2024).

[20] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the

Secrets of Smart Cards, Springer, 2006. [Online]. Available:

http://www.dpabook.org/.

[21] A. Lo'ai, T. Houssain, and T. Al-Somani, “Review of Side Channel Attacks and

Countermeasures on ECC, RSA, and AES Cryptosystems,” Apr. 2017.

[Online]. Available: https://infonomics-society.org/wp-

content/uploads/jitst/published-papers/volume-5-2016/Review-of-Side-

Channel-Attacks-and-Countermeasures-on-ECC-RSA-and-AES-

Cryptosystems.pdf.

[22] E. Udofia, “What is cryptanalysis? - EITCA Academy,” EITCA Academy, Aug.

10, 2024. [Online]. Available: https://eitca.org/cybersecurity/eitc-is-ccf-

classical-cryptography-fundamentals/introduction-eitc-is-ccf-classical-

cryptography-fundamentals/introduction-to-cryptography/what-is-

cryptanalysis/. [Accessed: Aug. 29, 2024].

[23] N. Kanayama, Y. Liu, E. Okamoto, K. Saito, T. Teruya, and S. Uchiyama,

“Implementation of an Elliptic Curve Scalar Multiplication Method Using

https://www.princeton.edu/~rblee/ELE572Papers/ECCpapers/SUN_ECC_SSLperformance.pdf
https://www.princeton.edu/~rblee/ELE572Papers/ECCpapers/SUN_ECC_SSLperformance.pdf
https://doi.org/10.1145/3613424.3623796
https://rwc.iacr.org/2015/Slides/RWC-2015-Longa.pdf
https://owasp.org/www-community/attacks/Cryptanalysis
https://owasp.org/www-community/attacks/Cryptanalysis
https://eprint.iacr.org/2021/1092
http://www.dpabook.org/
https://infonomics-society.org/wp-content/uploads/jitst/published-papers/volume-5-2016/Review-of-Side-Channel-Attacks-and-Countermeasures-on-ECC-RSA-and-AES-Cryptosystems.pdf
https://infonomics-society.org/wp-content/uploads/jitst/published-papers/volume-5-2016/Review-of-Side-Channel-Attacks-and-Countermeasures-on-ECC-RSA-and-AES-Cryptosystems.pdf
https://infonomics-society.org/wp-content/uploads/jitst/published-papers/volume-5-2016/Review-of-Side-Channel-Attacks-and-Countermeasures-on-ECC-RSA-and-AES-Cryptosystems.pdf
https://infonomics-society.org/wp-content/uploads/jitst/published-papers/volume-5-2016/Review-of-Side-Channel-Attacks-and-Countermeasures-on-ECC-RSA-and-AES-Cryptosystems.pdf
https://eitca.org/cybersecurity/eitc-is-ccf-classical-cryptography-fundamentals/introduction-eitc-is-ccf-classical-cryptography-fundamentals/introduction-to-cryptography/what-is-cryptanalysis/
https://eitca.org/cybersecurity/eitc-is-ccf-classical-cryptography-fundamentals/introduction-eitc-is-ccf-classical-cryptography-fundamentals/introduction-to-cryptography/what-is-cryptanalysis/
https://eitca.org/cybersecurity/eitc-is-ccf-classical-cryptography-fundamentals/introduction-eitc-is-ccf-classical-cryptography-fundamentals/introduction-to-cryptography/what-is-cryptanalysis/
https://eitca.org/cybersecurity/eitc-is-ccf-classical-cryptography-fundamentals/introduction-eitc-is-ccf-classical-cryptography-fundamentals/introduction-to-cryptography/what-is-cryptanalysis/

REFERENCES

68
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Division Polynomials,” IEICE Trans. Fundam. Electron., Commun. Comput.

Sci., vol. E97.A, no. 1, pp. 300–302, 2014, doi:

https://doi.org/10.1587/transfun.E97.A.300.

[24] D. J. Bernstein, S. Josefsson, T. Lange, P. Schwabe, and B. Y. Yang, “EdDSA

for more curves,” Jul. 2015. [Online]. Available:

https://pure.tue.nl/ws/portalfiles/portal/3850274/375386888374129.pdf.

[Accessed: Sep. 02, 2024].

[25] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An Efficient Protocol

for Authenticated Key Agreement,” Designs, Codes and Cryptography, vol. 28,

no. 2, pp. 119–134, Mar. 2003, doi: https://doi.org/10.1023/a:1022595222606.

[26] V. Shoup, “A Proposal for an ISO Standard for Public Key Encryption (version

2.1),” 2001. [Online]. Available: https://shoup.net/papers/iso-2_1.pdf.

[Accessed: Sep. 02, 2024].

[27] R. L. Rivest, M. E. Hellman, J. C. Anderson, and J. W. Lyons, “Responses to

NIST’s proposal,” Commun. ACM, vol. 35, no. 7, pp. 41–54, Jul. 1992, doi:

https://doi.org/10.1145/129902.129905.

[28] R. Haakegaard and J. Lang, “The Elliptic Curve Diffie-Hellman (ECDH),”

2015. [Online]. Available:

http://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang

.pdf.

[29] Wikipedia Contributors, “Elliptic-curve Diffie–Hellman,” Wikipedia, Dec. 12,

2019. [Online]. Available: https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–

Hellman.

[30] NIST, “National Institute of Standards and Technology | NIST,” NIST, Mar. 21,

2023. [Online]. Available: https://www.nist.gov/.

[31] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans.

Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976, doi:

https://doi.org/10.1109/TIT.1976.1055638.

[32] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996.

[33] J. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., New York: Springer,

2009.

[34] D. J. Bernstein, Curve25519: new Diffie-Hellman speed records, 2006.

[Online]. Available: https://cr.yp.to/ecdh/curve25519-20060209.pdf.

[Accessed: Sep. 02, 2024].

https://doi.org/10.1587/transfun.E97.A.300
https://pure.tue.nl/ws/portalfiles/portal/3850274/375386888374129.pdf
https://doi.org/10.1023/a:1022595222606
https://shoup.net/papers/iso-2_1.pdf
https://doi.org/10.1145/129902.129905
http://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pdf
http://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pdf
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman
https://www.nist.gov/
https://doi.org/10.1109/TIT.1976.1055638
https://cr.yp.to/ecdh/curve25519-20060209.pdf

REFERENCES

69
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[35] S. Blake-Wilson, D. Johnson, and A. Menezes, “Key Agreement Protocols and

their Security Analysis,” in Proc. IMA Int. Conf. Cryptography and Coding

(IMACC '97), 1997, pp. 30-45.

[36] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles and

Protocols, 2nd ed., CRC Press, 2014.

[37] D. Boneh and R. Lipton, “A Simple Method for Balancing High Dimensional

Histograms,” Advances in Cryptology - CRYPTO 97, 1997. [Online].

Available: https://link.springer.com/book/10.1007/BFb0052234. [Accessed:

Sep. 02, 2024].

[38] K. Hong, M. Long, and D. S. Ye, “A Study on Secure and Efficient

Implementations of Elliptic Curve Cryptosystems,” J. Cryptology, vol. 16, no.

4, pp. 241-261, Sep. 2003, doi: https://doi.org/10.1007/s00145-003-0202-5.

[39] Y. Zhao and J. Su, “A Brief Survey of Cryptanalysis of RSA and ECC,” IACR

Cryptol. ePrint Arch., vol. 2005, pp. 110-126, 2005.

[40] J. H. Cheon, “Security Analysis of the Strong RSA Assumption in the Random

Oracle Model,” J. Cryptology, vol. 16, no. 4, pp. 221-240, Sep. 2003, doi:

https://doi.org/10.1007/s00145-003-0201-6.

[41] S. Roy and C. Khatwani, “Cryptanalysis and Improvement of ECC Based

Authentication and Key Exchanging Protocols,” Cryptography, vol. 1, no. 1, p.

9, Jun. 2017, doi: 10.3390/cryptography1010009.

[42] I. Ali, “Error analysis and detection procedures for elliptic curve cryptography,”

Ain Shams Engineering Journal, Jan. 2019. [Online]. Available:

https://www.academia.edu/105122127/Error_analysis_and_detection_procedu

res_for_elliptic_curve_cryptography?uc-sb-sw=75022945.

[43] V. Gupta, S. Gupta, and S. Chang, “Performance Analysis of Elliptic Curve

Cryptography for SSL,” Sep. 2002. [Online]. Available:

https://www.princeton.edu/~rblee/ELE572Papers/ECCpapers/SUN_ECC_SSL

performance.pdf.

[44] J. A. Ambrose, H. Pettenghi, D. Jayasinghe, and L. Sousa, “Randomised multi‐

modulo residue number system architecture for double and‐add to prevent

power analysis side channel attacks,” IET Circuits, Devices & Systems, vol. 7,

no. 5, pp. 283–293, Sep. 2013, doi: 10.1049/iet-cds.2012.0367.

[45] J. Olenski, “Elliptic Curve Cryptography,” GlobalSign, May 29, 2015. [Online].

Available: https://www.globalsign.com/en/blog/elliptic-curve-cryptography.

[46] S. Fan and I. Verbauwhede, “An Updated Survey on Secure ECC

Implementations: Attacks, Countermeasures and Cost,” Lecture Notes in

Computer Science, pp. 265–282, Jan. 2012, doi: 10.1007/978-3-642-28368-

0_18.

https://link.springer.com/book/10.1007/BFb0052234
https://doi.org/10.1007/s00145-003-0202-5
https://doi.org/10.1007/s00145-003-0201-6
https://www.princeton.edu/~rblee/ELE572Papers/ECCpapers/SUN_ECC_SSLperformance.pdf
https://www.princeton.edu/~rblee/ELE572Papers/ECCpapers/SUN_ECC_SSLperformance.pdf
https://www.globalsign.com/en/blog/elliptic-curve-cryptography

REFERENCES

70
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[47] O. Billet and M. Joye, “The Jacobi Model of an Elliptic Curve and Side Channel

Analysis,” Cryptology ePrint Archive, 2002. [Online]. Available:

https://eprint.iacr.org/2002/125.

[48] J. Fields, S. Li, and Z. Gu, “High-Speed ECC Processor Over NIST Prime

Applied With Toom–Cook Multiplication,” Mar. 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8536860.

[49] W. U. Keke, L. I. Huiyun, Z. H. U. Dingju, and Y. U. Fengqi, “Efficient

Solution to Secure ECC Against Side-channel Attacks,” Chinese Journal of

Electronics, vol. 20, no. 3, pp. 471–475, Jul. 2011. [Online]. Available:

https://cje.ejournal.org.cn/en/article/id/5585.

[50] P. Choi, “Lightweight ECC Coprocessor With Resistance Against Power

Analysis Attacks Over NIST Prime Fields,” Nov. 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9816005.

[51] P.-A. Fouque, R. Lercier, D. Réal, F. Valette, D. Célar, and L. Roche, “Fault

Attack on Elliptic Curve with Montgomery Ladder Implementation,” Sep. 2009.

[Online]. Available: https://www.di.ens.fr/~fouque/pub/fdtc08.pdf.

[52] J. Jancar et al., “Article in monograph or proceedings,” 2022. [Online].

Available:

https://repository.ubn.ru.nl/bitstream/handle/2066/283072/283072.pdf?sequen

ce=1.

[53] X. Hu, Q. Meunier, and E. Encrenaz, “Blind-Folded: Simple Power Analysis

Attacks using Data with a Single Trace and no Training,” Apr. 2024. [Online].

Available: https://eprint.iacr.org/2024/589.pdf.

[54] P. P. du Preez, “Understanding EC Diffie-Hellman,” Medium, Oct. 06, 2020.

[Online]. Available: https://medium.com/swlh/understanding-ec-diffie-

hellman-9c07be338d4a.

[55] “Digital Signatures and Certificates - GeeksforGeeks,” GeeksforGeeks, Jan. 24,

2017. [Online]. Available: https://www.geeksforgeeks.org/digital-signatures-

certificates/.

[56] T. Xu, G. Cheng, and Y. Fei, “Protected ECC Still Leaks: A Novel Differential-

Bit Side-channel Power Attack on ECDH and Countermeasures,” Proceedings

of the Great Lakes Symposium on VLSI 2022, Jun. 2022, doi:

10.1145/3526241.3530342.

[57] K. Itoh, T. Izu, and M. Takenaka, “Address-Bit Differential Power Analysis of

Cryptographic Schemes OK-ECDH and OK-ECDSA,” Lecture Notes in

Computer Science, pp. 129–143, Jan. 2003, doi: 10.1007/3-540-36400-5_11.

[58] J. Großschädl, Z. Liu, Z. Hu, C. Su, and L. Zhou, “Fast ECDH Key Exchange

Using Twisted Edwards Curves with an Efficiently Computable

https://eprint.iacr.org/2002/125
https://ieeexplore.ieee.org/document/8536860
https://cje.ejournal.org.cn/en/article/id/5585
https://ieeexplore.ieee.org/document/9816005
https://www.di.ens.fr/~fouque/pub/fdtc08.pdf
https://repository.ubn.ru.nl/bitstream/handle/2066/283072/283072.pdf?sequence=1
https://repository.ubn.ru.nl/bitstream/handle/2066/283072/283072.pdf?sequence=1
https://eprint.iacr.org/2024/589.pdf
https://medium.com/swlh/understanding-ec-diffie-hellman-9c07be338d4a
https://medium.com/swlh/understanding-ec-diffie-hellman-9c07be338d4a
https://www.geeksforgeeks.org/digital-signatures-certificates/
https://www.geeksforgeeks.org/digital-signatures-certificates/

REFERENCES

71
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Endomorphism,” Utar.edu.my, Dec. 20, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9637091.

[59] X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A Survey of Microarchitectural Side-

channel Vulnerabilities, Attacks, and Defenses in Cryptography,” ACM

Computing Surveys, vol. 54, no. 6, pp. 1–37, Jul. 2021, doi: 10.1145/3456629.

[60] J.-M. Schmidt and M. Medwed, “A Fault Attack on ECDSA,” Utar.edu.my,

Sep. 2009. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412852.

[61] Y. Shang, “Efficient and Secure Algorithm: The Application and Improvement

of ECDSA,” Utar.edu.my, Apr. 20, 2022. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9758438.

[62] P. Mr, P. Barekar, and Hande, “Performance Analysis of Timing Attack on

Elliptic Curve Cryptosystem,” International Journal Of Computational

Engineering Research, vol. 2, no. 3, pp. 740–743, 2012. [Online]. Available:

https://ijceronline.com/papers/Vol2_issue3/U023740743.pdf.

[63] M. Medwed and E. Oswald, “Template Attacks on ECDSA,” Cryptology ePrint

Archive, Feb. 27, 2008. [Online]. Available: https://eprint.iacr.org/2008/081/.

[64] R. Scarlett, “Why Python keeps growing, explained,” The GitHub Blog, Mar.

02, 2023. [Online]. Available: https://github.blog/developer-

skills/programming-languages-and-frameworks/why-Python-keeps-growing-

explained/.

[65] D. Ellis, “What is Anaconda for Python & Why Should You Learn it?,”

blog.hubspot.com, Jan. 20, 2023. [Online]. Available:

https://blog.hubspot.com/website/anaconda-Python.

[66] N. Wijayaningrum and V. Ayu Lestari, “Jupyter Lab Platform-Based Interactive

Learning,” Utar.edu.my, Dec. 09, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9967857.

[67] N. Li, “Research on Diffie-Hellman Key Exchange Protocol,” Utar.edu.my,

Apr. 16, 2010. [Online]. Available:

https://ieeexplore.ieee.org/document/5485276.

[68] J. Jancar et al., “Article in monograph or proceedings,” 2022. [Online].

Available:https://repository.ubn.ru.nl/bitstream/handle/2066/283072/283072.p

df?sequence=1.

[69] M. Boudabra and A. Nitaj, “A new public key cryptosystem based on Edwards

curves,” Journal of Applied Mathematics and Computing, vol. 61, no. 1–2, pp.

431–450, Apr. 2019, doi: 10.1007/s

https://ieeexplore.ieee.org/document/9637091
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412852
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9758438
https://ijceronline.com/papers/Vol2_issue3/U023740743.pdf
https://eprint.iacr.org/2008/081/
https://github.blog/developer-skills/programming-languages-and-frameworks/why-python-keeps-growing-explained/
https://github.blog/developer-skills/programming-languages-and-frameworks/why-python-keeps-growing-explained/
https://github.blog/developer-skills/programming-languages-and-frameworks/why-python-keeps-growing-explained/
https://blog.hubspot.com/website/anaconda-python
https://ieeexplore.ieee.org/document/9967857
https://ieeexplore.ieee.org/document/5485276
https://repository.ubn.ru.nl/bitstream/handle/2066/283072/283072.pdf?sequence=1
https://repository.ubn.ru.nl/bitstream/handle/2066/283072/283072.pdf?sequence=1

REFERENCES

72
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[70] “numsp256t1,” Neuromancer.sk, 2020. [Online]. Available:

https://neuromancer.sk/std/nums/numsp256t1.

[71] P. Kocher, J. Ja, and B. Jun, “Differential Power Analysis,” Dec. 1999.

Available: https://paulkocher.com/doc/DifferentialPowerAnalysis.pdf

[72] Z. Liu, J. Großschädl and Ç. K. Koç, “Efficient and Side-Channel Resistant

Elliptic Curve Scalar Multiplication Using Double-Base Chains,” IET

Information Security, vol. 7, no. 2, pp. 103–113, 2013.

[73] D. Bernstein and T. Lange, “Faster addition and doubling on elliptic curves,”

Dec. 2007. Available: https://eprint.iacr.org/2007/286.pdf

[74] J.-S. Ebastien Coron, “Resistance against Di erential Power Analysis for Elliptic

Curve Cryptosystems,” Jan. 2002. Available: http://www.crypto-

uni.lu/jscoron/publications/dpaecc.pdf

[75] Lee Ren Ting, Yu-Beng Leau, Yong Jin Park, and Joe H. Obit, “Enhancing the

Performance of Elliptic Curve Digital Signature Algorithm (ECDSA) in Named

Data Networking (NDN),” Utar.edu.my, Apr. 11, 2019. Available:

https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/8684994.

[Accessed: Sep. 03, 2024]

[76] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz, “Comparing Elliptic

Curve Cryptography and RSA on 8-bit CPUs,” Aug. 2004. Accessed: Apr. 21,

2025. [Online]. Available:

https://www.iacr.org/archive/ches2004/31560117/31560117.pdf

[77] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of Computation, vol.

48, no. 177, pp. 203–209, 1987.

[78] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, "An efficient protocol

for authenticated key agreement," Designs, Codes and Cryptography, vol. 28,

no. 2, pp. 119–134, 2003.

[79] D. Boneh, R. DeMillo, and R. Lipton, "On the importance of checking

cryptographic protocols for faults," Advances in Cryptology —

EUROCRYPT’97, pp. 37–51, 1997.

[80] A. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, "The EM side-

channel(s)," Cryptographic Hardware and Embedded Systems — CHES 2002,

pp. 29–45, 2003.

[81] Clavier, J.-S. Coron, and N. Dabbous, "Differential Power Analysis in the

Presence of Hardware Countermeasures," CHES 2000, LNCS 1965, pp. 252–

263, 2000.

https://neuromancer.sk/std/nums/numsp256t1
https://paulkocher.com/doc/DifferentialPowerAnalysis.pdf
https://eprint.iacr.org/2007/286.pdf
http://www.crypto-uni.lu/jscoron/publications/dpaecc.pdf
http://www.crypto-uni.lu/jscoron/publications/dpaecc.pdf
https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/8684994
https://www.iacr.org/archive/ches2004/31560117/31560117.pdf

REFERENCES

73
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[82] D. J. Bernstein, "Curve25519: New Diffie-Hellman Speed Records,"

International Workshop on Public Key Cryptography — PKC 2006, pp. 207–

228, 2006.

APPENDIX

74
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Appendix A:

Twisted Edwards point addition

def point_addition(P, Q):

 if P == (0, 1):

 return Q

 if Q == (0, 1):

 return P

 x1, y1 = P

 x2, y2 = Q

 x3 = ((x1 * y2 + y1 * x2) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p

 y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p

 return (x3, y3)

Twisted Edwards point doubling

def point_doubling(P):

 x1, y1 = P

 x3 = ((2 * x1 * y1) * pow(1 + d * x1**2 * y1**2, -1, p)) % p

 y3 = ((y1**2 - a * x1**2) * pow(1 - d * x1**2 * y1**2, -1, p)) % p

return (x3, y3)

Scalar multiplication using binary method

def scalar_multiplication_binary(k, P):

 R = (0, 1) # Identity element in Twisted Edwards form

 Q = P

 for bit in bin(k)[2:]: # Iterate over each bit of k

 R = point_doubling(R)

 if bit == '1':

 R = point_addition(R, Q)

return R

Generate private key (random integer)

def generate_private_key():

 return random.randrange(1, n)

Generate public key (P = kG)

def generate_public_key(private_key):

return scalar_multiplication_binary(private_key, G)

ECDH key exchange

def ecdh_shared_secret(private_key, other_public_key):

 shared_secret_point = scalar_multiplication_binary(private_key,

other_public_key)

APPENDIX

75
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

return shared_secret_point[0] # x-coordinate of the shared secret

Alice's keys

alice_private_key = generate_private_key()

alice_public_key = generate_public_key(alice_private_key)

Bob's keys

bob_private_key = generate_private_key()

bob_public_key = generate_public_key(bob_private_key)

Alice and Bob compute the shared secret

alice_shared_secret = ecdh_shared_secret(alice_private_key, bob_public_key)

bob_shared_secret = ecdh_shared_secret(bob_private_key, alice_public_key)

The shared secrets should be the same

print(f"Alice's Private Key : {alice_private_key}")

print(f"Bob's Private Key : {bob_private_key}")

print(f"Alice's Shared Secret: {alice_shared_secret}")

print(f"Bob's Shared Secret : {bob_shared_secret}")

print(f"Shared secrets match : {alice_shared_secret == bob_shared_secret}")

APPENDIX

76
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix B:

def inverse(x, p):

 if math.gcd(x, p) != 1:

 raise ValueError(f"Cannot compute inverse: {x} is not invertible modulo

{p}")

 return pow(x, -1, p)

def edwards_add(P, Q, a, d, p):

 x1, y1 = P

 x2, y2 = Q

 x3 = ((x1 * y2 + x2 * y1) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p

 y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p

 return (x3, y3)

def elliptic_net_scalar_mult(k, P, p, a, d):

 Q = (0, 1) # Neutral element on Twisted Edwards

 while k:

 if k & 1:

 Q = edwards_add(Q, P, a, d, p)

 P = edwards_add(P, P, a, d, p)

 k >>= 1

return Q

def generate_keypair(a, d, p, G, n):

 private_key = random.randint(1, n - 1)

 public_key = elliptic_net_scalar_mult(private_key, G, p, a, d)

return private_key, public_key

def derive_shared_secret(private_key, other_public_key, a, d, p):

 shared_secret = elliptic_net_scalar_mult(private_key, other_public_key, p, a, d)

return shared_secret[0] # Use x-coordinate as the shared secret

Alice's key generation

alice_private, alice_public = generate_keypair(a, d, p, G, n)

Bob's key generation

bob_private, bob_public = generate_keypair(a, d, p, G, n)

Deriving shared secrets

alice_shared_secret = derive_shared_secret(alice_private, bob_public, a, d, p)

bob_shared_secret = derive_shared_secret(bob_private, alice_public, a, d, p)

Output the results

print("Alice Private Key :", alice_private)

print("Alice Public Key :", alice_public)

print("Bob Private Key :", bob_private)

print("Bob Public Key :", bob_public)

APPENDIX

77
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

print("Alice Shared Secret:", alice_shared_secret)

print("Bob Shared Secret :", bob_shared_secret)

print("Shared Secret Match:", alice_shared_secret == bob_shared_secret)

APPENDIX

78
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix C:

def inverse(x, p):

 if math.gcd(x, p) != 1:

 raise ValueError(f"Cannot compute inverse: {x} is not invertible modulo

{p}")

 return pow(x, -1, p)

def edwards_add(P, Q, a, d, p):

 x1, y1 = P

 x2, y2 = Q

 x3 = ((x1 * y2 + x2 * y1) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p

 y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p

return (x3, y3)

def binary_scalar_mult(k, P, a, d, p):

 Q = (0, 1) # Neutral element on Twisted Edwards

 for bit in bin(k)[2:]:

 Q = edwards_add(Q, Q, a, d, p) # Double the point

 if bit == '1':

 Q = edwards_add(Q, P, a, d, p) # Add the point if the bit is 1

return Q

def generate_keypair(a, d, p, G, n):

 private_key = random.randint(1, n - 1)

 public_key = binary_scalar_mult(private_key, G, a, d, p)

return private_key, public_key

def hash_message(message, n):

 return int.from_bytes(hashlib.sha256(message.encode()).digest(), 'big') % n

def sign_message(private_key, message, a, d, p, G, n):

 e = hash_message(message, n)

 while True:

 k = random.randint(1, n - 1)

 if math.gcd(k, n) == 1:

 R = binary_scalar_mult(k, G, a, d, p)

 r = R[0] % n

 k_inv = pow(k, -1, n)

 s = ((e + r * private_key) * k_inv) % n

 if s != 0:

 return (r, s)

def verify_signature(public_key, message, signature, a, d, p, G, n):

 r, s = signature

 if r <= 0 or r >= n or s <= 0 or s >= n:

 return False

 e = hash_message(message, n)

APPENDIX

79
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 try:

 s_inv = pow(s, -1, n)

 except ValueError:

 return False

 R1 = binary_scalar_mult((e * s_inv) % n, G, a, d, p)

 R2 = binary_scalar_mult((r * s_inv) % n, public_key, a, d, p)

 R = edwards_add(R1, R2, a, d, p)

return R[0] % n == r

private_key, public_key = generate_keypair(a, d, p, G, n)

message = "Good Morning my neighbours!"

signature = sign_message(private_key, message, a, d, p, G, n)

is_valid = verify_signature(public_key, message, signature, a, d, p, G, n)

Output the results

print("Private Key :", private_key)

print("Public Key :", public_key)

print("Message :", message)

print("Signature :", signature)

print("Signature valid:", is_valid)

APPENDIX

80
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix D:

def inverse(x, p):

 if math.gcd(x, p) != 1:

 raise ValueError(f"Cannot compute inverse: {x} is not invertible modulo

{p}")

 return pow(x, -1, p)

def edwards_add(P, Q, a, d, p):

 x1, y1 = P

 x2, y2 = Q

 x3 = ((x1 * y2 + x2 * y1) * pow(1 + d * x1 * x2 * y1 * y2, -1, p)) % p

 y3 = ((y1 * y2 - a * x1 * x2) * pow(1 - d * x1 * x2 * y1 * y2, -1, p)) % p

 return (x3, y3)

def elliptic_net_scalar_mult(k, P, p, a, d):

 Q = (0, 1) # Neutral element on Twisted Edwards

 while k:

 if k & 1:

 Q = edwards_add(Q, P, a, d, p)

 P = edwards_add(P, P, a, d, p)

 k >>= 1

return Q

def generate_keypair(a, d, p, G, n):

 private_key = random.randint(1, n - 1)

 public_key = elliptic_net_scalar_mult(private_key, G, p, a, d)

return private_key, public_key

def hash_message(message, n):

 return int.from_bytes(hashlib.sha256(message.encode()).digest(), 'big') % n

def sign_message(private_key, message, a, d, p, G, n):

 e = hash_message(message, n)

 while True:

 k = random.randint(1, n - 1)

 if math.gcd(k, n) == 1:

 R = elliptic_net_scalar_mult(k, G, p, a, d)

 r = R[0] % n

 k_inv = pow(k, -1, n)

 s = ((e + r * private_key) * k_inv) % n

 if s != 0:

 return (r, s)

def verify_signature(public_key, message, signature, a, d, p, G, n):

 r, s = signature

 if r <= 0 or r >= n or s <= 0 or s >= n:

 return False

 e = hash_message(message, n)

APPENDIX

81
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 try:

 s_inv = pow(s, -1, n)

 except ValueError:

 return False

 R1 = elliptic_net_scalar_mult((e * s_inv) % n, G, p, a, d)

 R2 = elliptic_net_scalar_mult((r * s_inv) % n, public_key, p, a, d)

 R = edwards_add(R1, R2, a, d, p)

 return R[0] % n == r

private_key, public_key = generate_keypair(a, d, p, G, n)

message = "Good Morning my neighbours!"

signature = sign_message(private_key, message, a, d, p, G, n)

is_valid = verify_signature(public_key, message, signature, a, d, p, G, n)

Output the results

print("Private Key :", private_key)

print("Public Key :", public_key)

print("Message :", message)

print("Signature :", signature)

print("Signature valid:", is_valid)

APPENDIX

82
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix E:

import time

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

key_size = 384 # Design for numsp384t1

Measure time of scalar multiplication

def measure_time(func, *args):

 start = time.perf_counter()

 result = func(*args)

 end = time.perf_counter()

 return result, end - start

Generate timing attack

def timing_attack(victim_public_key, G, p, a, d, key_size, true_private_key):

 guessed_key = 0

 timing_diffs = []

 for i in range(key_size): # Loop runs 384 times to guess all bits

 k0 = guessed_key

 k1 = guessed_key | (1 << (key_size - 1 - i)) # Set i-th bit to 1

 # Measure the time taken to compute k0*G & k1*G

 _, t0 = measure_time(scalar_multiplication_binary, k0, G)

 _, t1 = measure_time(scalar_multiplication_binary, k1, G)

 timing_diffs.append(t1 - t0)

 if t1 > t0:

 guessed_key = k1 # Assume bit is 1

 else:

 guessed_key = k0 # Assume bit is 0

 guessed_key &= (1 << key_size) - 1 # Ensure guessed private key stays

within 384-bit

 return guessed_key, timing_diffs #Success generate guessed private key

Run the attack to guess Alice's private key

guessed_key, timing_data = timing_attack(alice_public_key, G, p, a, d, key_size,

alice_private_key)

Ensure key bit length are equal

actual_key_bin = bin(alice_private_key)[2:].zfill(key_size)

guessed_key_bin = bin(guessed_key)[2:].zfill(key_size)

APPENDIX

83
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Output results

print("Actual Private Key :", alice_private_key)

print("Guessed Private Key:", guessed_key)

print("Actual Key Length :", len(actual_key_bin))

print("Guessed Key Length :", len(guessed_key_bin))

print("Attack Successful :", alice_private_key == guessed_key)

Graph

plt.figure(figsize=(8, 4))

sns.lineplot(x=range(key_size), y=timing_data)

plt.title("Timing Attacks on ECDH using Binary Method-numsp384t1 (Alice's

Key)")

plt.xlabel("Bit Position (MSB to LSB)")

plt.ylabel("Time Difference (t1 - t0)")

plt.grid(True)

plt.tight_layout()

plt.show()

APPENDIX

84
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix F:

import time

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

key_size = 384 # Design for numsp384t1

Measure time of scalar multiplication

def measure_time(func, *args):

 start = time.perf_counter()

 result = func(*args) # Execute the scalar multiplication

 end = time.perf_counter()

 return result, end - start

Generate timing attack

def timing_attack(victim_public_key, G, p, a, d, key_size, true_private_key):

 guessed_key = 0 # Start with an empty key guess (all 0s)

 timing_diffs = [] # Store time differences for each bit

 for i in range(key_size): #Loop runs 384 times to guess all bits

 k0 = guessed_key

 k1 = guessed_key | (1 << (key_size - 1 - i)) # Set i-th bit to 1

 # Measure the time for both k0 and k1

 _, t0 = measure_time(elliptic_net_scalar_mult, k0, G, p, a, d)

 _, t1 = measure_time(elliptic_net_scalar_mult, k1, G, p, a, d)

 timing_diffs.append(t1 - t0)

 # Use longer time to infer a bit value of 1

 if t1 > t0:

 guessed_key = k1

 else:

 guessed_key = k0

 guessed_key &= (1 << key_size) - 1 # Ensure guessed private key stays

within 384-bit

 return guessed_key, timing_diffs

Run the attack to guess Alice's private key

guessed_key, timing_data = timing_attack(alice_public, G, p, a, d, key_size,

alice_private)

Ensure key bit length are equal

actual_key_bin = bin(alice_private)[2:].zfill(key_size)

APPENDIX

85
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

guessed_key_bin = bin(guessed_key)[2:].zfill(key_size)

Output results

print("Actual Private Key :", alice_private)

print("Guessed Private Key:", guessed_key)

print("Actual Key Length :", len(actual_key_bin))

print("Guessed Key Length :", len(guessed_key_bin))

print("Attack Successful :", alice_private == guessed_key)

Graph

plt.figure(figsize=(8, 4))

sns.lineplot(x=range(key_size), y=timing_data)

plt.title("Timing Attacks on ECDH using Elliptic Net Method-numsp384t1 (Alice's

Key)")

plt.xlabel("Bit Position (MSB to LSB)")

plt.ylabel("Time Difference (t1 - t0)")

plt.grid(True)

plt.tight_layout()

plt.show()

APPENDIX

86
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix G:

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import pearsonr

Hamming weight calculation for power analysis (using XOR between data and

key byte)

def hamming_weight(x):

 """Calculate the Hamming weight (number of 1s) in a binary representation."""

 return bin(x).count('1')

Simulate power consumption with added noise (more realistic noise and key +

plaintext dependency)

def simulate_power_consumption(plaintext, k_byte, noise_std=0.3):

 """Simulate power consumption based on Hamming weight model for each

nonce byte with noise."""

 base_trace = np.array([hamming_weight(plaintext_byte ^ k_byte) for

plaintext_byte in plaintext])

 noise = np.random.normal(0, noise_std, len(base_trace)) # Gaussian noise

 return base_trace + noise

Generate random plaintext data (e.g., 1000 samples of random 8-bit values)

num_samples = 1000

plaintexts = np.random.randint(0, 256, num_samples) # Random plaintexts as 8-bit

integers

True secret nonce (32 bytes or 256 bits key length)

true_nonce = np.random.randint(0, 384, 48) # 48 bytes for 384-bit key

(numsp384t1)

Simulate power consumption traces for each byte of the nonce k

power_traces = []

for byte in true_nonce:

 trace = simulate_power_consumption(plaintexts, byte, noise_std=0.3) #

Simulate with noise

 power_traces.append(trace)

Perform the attack: correlate guesses with power traces

key_guesses = np.arange(256) # Key space for byte (0-255)

correlations = []

For each byte in the nonce k, perform the attack

success_threshold = 0.6 # Threshold for success (correlation must exceed this to be

considered true)

true_byte_count = 0

for byte_index in range(48): # 48 bytes for 384-bit key

 byte_correlations = []

APPENDIX

87
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # Correlate guessed nonce with real power traces

 for key_guess in key_guesses:

 guessed_power = simulate_power_consumption(plaintexts, key_guess)

 correlation, _ = pearsonr(power_traces[byte_index], guessed_power)

 byte_correlations.append(correlation)

 # Find the nonce guess with the highest correlation for this byte

 best_guess_index = np.argmax(byte_correlations)

 recovered_byte = key_guesses[best_guess_index]

 # Validation step with a threshold

 correlation_with_true_byte = byte_correlations[best_guess_index]

 validation = recovered_byte == true_nonce[byte_index] and

correlation_with_true_byte > success_threshold

 # Keep track of how many true guesses were made

 if validation:

 true_byte_count += 1

 # Output for each byte with validation

 print(f"Byte {byte_index} - True Byte: {true_nonce[byte_index]}, Guessed

Byte: {recovered_byte}, Validation: {validation}")

Calculate overall success rate

success_rate = true_byte_count / 48 # 48 bytes for 384-bit key

print(f"Overall success rate: {success_rate * 100:.2f}%")

Plot the correlation for the first byte as an example

plt.figure(figsize=(10, 6))

plt.plot(key_guesses, byte_correlations, label='Correlation with Power Traces')

plt.axvline(x=true_nonce[0], color='red', linestyle='--', label='True Nonce Byte 0')

plt.xlabel('Key Guess')

plt.ylabel('Correlation')

plt.title('Power Analysis Attacks on ECDSA using Binary Method-numsp384t1')

plt.legend()

plt.show()

Output final attack results

print(f"Original True Nonce: {true_nonce}")

APPENDIX

88
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix H:

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import pearsonr

Hamming weight calculation for power analysis (using XOR between data and

key byte)

def hamming_weight(x):

 """Calculate the Hamming weight (number of 1s) in a binary representation."""

 return bin(x).count('1')

Simulate power consumption with added noise (more realistic noise and key +

plaintext dependency)

def simulate_power_consumption(plaintext, k_byte, noise_std=0.3):

 """Simulate power consumption based on Hamming weight model for each

nonce byte with noise."""

 base_trace = np.array([hamming_weight(plaintext_byte ^ k_byte) for

plaintext_byte in plaintext])

 noise = np.random.normal(0, noise_std, len(base_trace)) # Gaussian noise

 return base_trace + noise

Generate random plaintext data (e.g., 1000 samples of random 8-bit values)

num_samples = 1000

plaintexts = np.random.randint(0, 256, num_samples) # Random plaintexts as 8-bit

integers

True secret nonce (32 bytes or 256 bits key length)

true_nonce = np.random.randint(0, 384, 48) # 48 bytes for 384-bit key

(numsp384t1)

Simulate power consumption traces for each byte of the nonce k

power_traces = []

for byte in true_nonce:

 trace = simulate_power_consumption(plaintexts, byte, noise_std=0.3) #

Simulate with noise

 power_traces.append(trace)

Perform the attack: correlate guesses with power traces

key_guesses = np.arange(256) # Key space for byte (0-255)

correlations = []

For each byte in the nonce k, perform the attack

success_threshold = 0.6 # Threshold for success (correlation must exceed this to be

considered true)

true_byte_count = 0

for byte_index in range(48): # 48 bytes for 384-bit key

 byte_correlations = []

APPENDIX

89
Bachelor of Information Technology (Honours) Communications and Networking
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # Correlate guessed nonce with real power traces

 for key_guess in key_guesses:

 guessed_power = simulate_power_consumption(plaintexts, key_guess)

 correlation, _ = pearsonr(power_traces[byte_index], guessed_power)

 byte_correlations.append(correlation)

 # Find the nonce guess with the highest correlation for this byte

 best_guess_index = np.argmax(byte_correlations)

 recovered_byte = key_guesses[best_guess_index]

 # Validation step with a threshold

 correlation_with_true_byte = byte_correlations[best_guess_index]

 validation = recovered_byte == true_nonce[byte_index] and

correlation_with_true_byte > success_threshold

 # Keep track of how many true guesses were made

 if validation:

 true_byte_count += 1

 # Output for each byte with validation

 print(f"Byte {byte_index} - True Byte: {true_nonce[byte_index]}, Guessed

Byte: {recovered_byte}, Validation: {validation}")

Calculate overall success rate

success_rate = true_byte_count / 48 # 48 bytes for 384-bit key

print(f"Overall success rate: {success_rate * 100:.2f}%")

Plot the correlation for the first byte as an example

plt.figure(figsize=(10, 6))

plt.plot(key_guesses, byte_correlations, label='Correlation with Power Traces')

plt.axvline(x=true_nonce[0], color='red', linestyle='--', label='True Nonce Byte 0')

plt.xlabel('Key Guess')

plt.ylabel('Correlation')

plt.title('Power Analysis Attacks on ECDSA using Elliptic Net Method-

numsp384t1')

plt.legend()

plt.show()

Output final attack results

print(f"Original True Nonce: {true_nonce}")

APPENDIX

91
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

	COPYRIGHT STATEMENT

