

Fraud Detection using Machine Learning in e-Commerce

By

Ang Su Huan

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) BUSINESS INFORMATION

SYSTEMS

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

ii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Ang Su Huan. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Information Systems (Honours) Business

Information Systems at Universiti Tunku Abdul Rahman (UTAR). This Final Year

Project proposal represents the work of the author, except where due

acknowledgment has been made in the text. No part of this Final Year Project

proposal may be reproduced, stored, or transmitted in any form or by any means,

whether electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Example

iii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ms. Nurul

Syafidah Binti Jamil and my moderator, Mr. Choo Peng Yin for giving me the valuable

opportunity to engage in a project on fraud detection using machine learning in the eCommerce

domain. This project provided me with hands-on experience in real-world data analysis, model

training and critical thinking, marking an important first step in establishing my career in data

science and machine learning. Finally, I would like to express my sincere gratitude to my

parents and my family for their endless love, support, and motivation throughout the course.

iv
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

The fast growth of e-commerce has resulted in a rise in fraudulent activities, posing significant

challenges to the security and trust of online transactions. Traditional fraud detection methods

often fall short in effectively identifying complex fraud patterns due to issues like data

imbalance, misclassification of costly errors, and the evolving nature of fraud tactics. This

research proposes a machine learning-based approach to improve fraud detection performance

in e-commerce platforms. Resampling techniques like SMOTE, oversampling and under-

sampling are applied to address class imbalance issue. The study aims to reduce false negatives

and enhance the detection of rare fraudulent transactions. Ensemble models such as Random

Forest, AdaBoost, and XGBoost, will be employed to capture complex patterns and improve

model performance. A systematic model evaluation was conducted using metrics such as

accuracy, F1-score, MCC, precision, recall and AUC to ensure robust performance.

Experimental results showed that Random Forest combined with oversampling achieved the

best trade-off between precision and recall, reducing false negatives while maintaining high

overall accuracy. Robustness was further validated through testing on both synthetic datasets

and the Kaggle dataset, confirming the model’s adaptability and reliability. Finally, the best-

performing model was integrated into a Power BI dashboard, enabling real-time monitoring of

fraud detection results and visualization of emerging fraud trends. This integration supports

decision-making by providing stakeholders with timely insights. The study contributes to the

development of adaptive fraud detection systems capable of mitigating financial risks and

maintaining customer trust in the e-commerce sector.

Area of Study: Fraud Detection in E-commerce

Keywords: E-commerce, Fraud Detection, Machine Learning, SMOTE, Ensemble Learning,

Power BI, Credit Card Fraud

v
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE I

COPYRIGHT STATEMENT II

ACKNOWLEDGEMENTS III

ABSTRACT IV

TABLE OF CONTENTS V

LIST OF FIGURES VIII

LIST OF TABLES XIV

LIST OF SYMBOLS XVI

LIST OF ABBREVIATIONS XVII

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation ... 2

1.2 Objectives .. 4

1.3 Project Scope and Direction ... 5

1.4 Contributions ... 6

1.5 Report Organization ... 7

CHAPTER 2 LITERATURE REVIEWS 8

2.1 Previous works on Fraud Detection .. 8

2.1.1 Dataset ... 8

2.1.2 Data Preprocessing ... 10

2.1.3 Feature Engineering ... 11

2.1.4 Modelling ... 12

2.1.5 Evaluation Metrics ... 18

2.2 Literature Matrix Table .. 20

2.3 Limitation of previous Studies .. 26

2.4 Proposed Solutions ... 27

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 28

3.1 System Requirement .. 28

3.1.1 Hardware ... 28

3.1.2 Software/Tools ... 28

vi
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 System Design ... 30

3.2.1 Dataset Collection .. 30

3.2.2 EDA & Data Preprocessing .. 31

3.2.3 Model Selection ... 32

3.2.4 Model Evaluation ... 35

3.2.5 Hyperparameter Tuning.. 37

3.2.6 Synthetic Data Generation .. 37

3.2.7 Model Deployment to Power BI ... 38

3.2.8 Dashboard Testing ... 39

3.3 User Case ... 41

3.3.1 Use Case Diagram .. 41

3.3.2 Use Case Description ... 42

3.4 Timeline ... 47

CHAPTER 4 SYSTEM DESIGN 50

4.1 System Block Diagram .. 50

4.2 System Components Design (Wireframe) .. 52

CHAPTER 5 SYSTEM IMPLEMENTATION 62

5.1 Setting up ... 62

5.1.1 Software/Tools ... 62

5.2 Initial Dataset (Aborted) ... 62

5.2.1 Dataset Selection .. 63

5.2.2 EDA and Preprocessing of Initial Dataset ... 63

5.3 Final Dataset .. 71

5.3.1 Data Selection .. 71

5.3.2 EDA and Data Cleaning ... 72

5.3.3 EDA and Data Visualization... 75

5.3.4 Encoding .. 96

5.3.5 Resampling, Data Splitting and Modelling 97

5.3.6 Model Evaluation and Comparison ... 100

5.3.7 Performance Across Different Pipelines ... 110

5.3.8 Hyperparameter Tuning.. 116

vii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.9 Final Model Choice .. 127

5.3.10 Synthetic Data Generation .. 128

5.3.11 Model and Pipeline Export ... 147

5.3.12 Power BI Deployment .. 148

5.3.13 Dashboard Development .. 150

5.3.14 Implementation Issues and Challenges .. 156

5.3.15 Concluding Remark .. 157

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 158

6.1 Comparison of Test Set.. 158

6.2 Model Evaluation on Kaggle Test Set .. 160

6.3 Dashboard Evaluation .. 161

6.3.1 Technical Evaluation ... 162

6.3.2 User Acceptance Evaluation (SUS Questionnaire) 166

6.4 Insights from Dashboard Results ... 172

6.5 Project Challenges ... 185

6.6 Objectives Evaluation .. 185

6.7 Concluding Remark ... 187

CHAPTER 7 CONCLUSION AND RECOMMENDATION 188

7.1 Conclusion .. 188

7.2 Recommendation ... 189

REFERENCES 190

APPENDIX 193

POSTER 193

viii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Comparison of MCC before and after applying SMOTE 10

Figure 2.1.2 Comparison of F1-Score before and after applying SMOTE 11

Figure 2.1.3 Comparison of Recall before and after applying SMOTE 12

Figure 2.1.4 Comparison of G-Mean before and after applying SMOTE 13

Figure 2.1.5 Performance comparison of Random Forest and AdaBoost 15

Figure 3.2.1 Project Workflow Overview 30

Figure 3.2.2 Workflow of Random Forest 33

Figure 3.2.3 Workflow of XGBoost 34

Figure 3.2.4 Workflow of the AdaBoost 34

Figure 3.3.1 Use case diagram 41

Figure 3.4.1 Gantt Chart for Final Year Project 1 48

Figure 3.4.2 Gantt Chart for Final Year Project 2 49

Figure 4.1.1 System Block Diagram of the Fraud Detection Dashboard 50

Figure 4.2.1 Wireframe of Homepage 52

Figure 4.2.2 Wireframe of Overview Page 53

Figure 4.2.3 Wireframe of Time Analysis Page 54

Figure 4.2.4 Wireframe of Geography Page 55

Figure 4.2.5 Wireframe of Demographics Page 56

Figure 4.2.6 Wireframe of Behavioral Analysis Page 57

Figure 4.2.7 Wireframe of Model Performance Page 58

Figure 4.2.8 Wireframe of Prediction Confidence & Key Influencers Page 59

Figure 4.2.9 Wireframe of Credit Card Transactions Page 60

Figure 4.2.10 Wireframe of Transaction Details Page 61

Figure 5.1.1 Version of Python and Various Libraries 62

Figure 5.2.1 Initial Dataset Information 63

Figure 5.2.2 Loading Dataset 64

Figure 5.2.3 Merging Dataset 64

Figure 5.2.4 Dataset Size Before and After Filtering for Online Credit

Card Transactions

65

ix
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.5 Initial Dataset Summary 65

Figure 5.2.6 First Five Rows of Initial Dataset 66

Figure 5.2.7 Monetary Columns After Removing Dollar Signs and

Commas

66

Figure 5.2.8 Feature Extraction from Date-Related Columns 67

Figure 5.2.9 Number of Unique Values for Each Feature 67

Figure 5.2.10 Number of Duplicated Rows 68

Figure 5.2.11 Boxplots of Numeric Features 68

Figure 5.2.12 Number of Outliers in Each Column 69

Figure 5.2.13 Outlier Handling Summary 69

Figure 5.2.14 One-Hot Encoding and Binary Encoding for Categorical

Columns

69

Figure 5.2.15 Heatmap and Correlation Table for is_fraud 70

Figure 5.3.1 Null Values and Duplicates Check in the Dataset 72

Figure 5.3.2 Drop Irrelevant Columns 72

Figure 5.3.3 Boxplots for Numerical Features 73

Figure 5.3.4 Total Rows with Outliers and Outliers per Column 73

Figure 5.3.5 Summary of Fraudulent Outliers Across Features 74

Figure 5.3.6 Outlier Handling Summary 75

Figure 5.3.7 Fraud vs Non-Fraud Transactions and Percentage

Distribution

75

Figure 5.3.8 Transaction Amount Distribution 76

Figure 5.3.9 Average Transaction Amount by Fraud and Non-Fraud 77

Figure 5.3.10 Percentage Distribution of Fraud and Non-Fraud by

Transaction Amount

77

Figure 5.3.11 Fraud and Non-Fraud Transactions by Gender 78

Figure 5.3.12 Fraud Ratio by Gender 79

Figure 5.3.13 Fraud Rate by Category 79

Figure 5.3.14 Rate Difference between Fraud and Non-Fraud Transactions

by Category

80

Figure 5.3.15 Fraud Count by Category 81

Figure 5.3.16 Fraud and Non-Fraud Transactions by Category 82

Figure 5.3.17 Fraudulent Transactions and Fraud Rate by Category 82

x
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.18 Top 10 Merchants with the Highest Fraud Rate 83

Figure 5.3.19 Fraud Count by Merchant 84

Figure 5.3.20 Percentage of Fraud Count for the Top 5 Merchant 84

Figure 5.3.21 Top 10 Jobs with the Highest Fraud Rate 85

Figure 5.3.22 Jobs with 100% Fraud Rate and Their Counts 85

Figure 5.3.23 Percentage of Fraud Count for the Top 10 Jobs 86

Figure 5.3.24 Total Transactions and Fraud Count by Age 87

Figure 5.3.25 Fraud and Non-Fraud Transactions by Age Group 87

Figure 5.3.26 Fraudulent Transactions and Fraud rate by Age Group 88

Figure 5.3.27 Total Transactions and Fraud Transactions by Hour 89

Figure 5.3.28 Percentage of Fraudulent Transaction Amount by Night and

Day

89

Figure 5.3.29 Conversion of is_night Feature 90

Figure 5.3.30 Fraud and Non-Fraud Transactions by Day of the Week 90

Figure 5.3.31 Fraudulent Transactions and Fraud Rate by Day of the Week 91

Figure 5.3.32 Distance Calculation Using Haversine Formula 92

Figure 5.3.33 Transaction and Fraud Count by Distance 92

Figure 5.3.34 Transaction and Fraud Rate by Distance 93

Figure 5.3.35 Boxplot of City Population with Outlier Ranges 93

Figure 5.3.36 Assignment of City Population Categories 94

Figure 4.3.37 Transaction and Fraud Count by City Population Group 94

Figure 5.3.38 Heatmap of Numerical Features for Final Dataset 95

Figure 5.3.39 Binary Encoding, One-hot Encoding and Target Encoding

Applied

96

Figure 5.3.40 Function Calling for Random Forest without Resampling 97

Figure 5.3.41 Function Definition for Model Training and Evaluation 97

Figure 5.3.42 Function Definition for Resampling 98

Figure 5.3.43 Code for Data Splitting 98

Figure 5.3.44 Code for Model Training 98

Figure 5.3.45 Function Definition for Model Evaluation 99

Figure 5.3.46 High cardinality columns 129

Figure 5.3.47 Dropping High-Cardinality Columns 129

Figure 5.3.48 Hybrid Generation of Synthetic Credit Card Numbers 130

xi
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.49 Normalized Data using Min-Max Scaling 130

Figure 5.3.50 CTGAN Training Configuration 130

Figure 5.3.51 Numeric Data after Restoration 131

Figure 5.3.52 Implementation of Post-Processing for Synthetic Dataset 1

Restoration

131

Figure 5.3.53 Synthetic Dataset 1 after Post-Processing 132

Figure 5.3.54 Oversampling of Fraudulent Transactions in Focus

Categories

133

Figure 5.3.55 Training Process of CTGAN with Reduced Dataset 134

Figure 5.3.56 Feature Engineering of Temporal Attributes 135

Figure 5.3.57 Use of Stratified Sampling for Balanced Training Data 135

Figure 5.3.58 CTGAN Training Settings in Dataset 3 136

Figure 5.3.59 Pearson Correlation and Cosine Similarity of Synthetic

Dataset 3

137

Figure 5.3.60 Distribution of Distance in Synthetic Dataset 3 138

Figure 5.3.61 Replacement of Raw Coordinates with Capped Distances

During Training

138

Figure 5.3.62 Distribution of Distance in Synthetic Dataset 4 139

Figure 5.3.63 Code for Age Group Creation and Adult Fraud Balancing 139

Figure 5.3.64 Maximum Synthetic Distance After Recalculation and 160

km Cap

140

Figure 5.3.65 Pearson Correlation and Cosine Similarity of Synthetic

Dataset 4

140

Figure 5.3.66 Training Data Distribution After Adjusting Fraud Rate to

15%

142

Figure 5.3.67 Defining Feature Types Using SingleTableMetadata 142

Figure 5.3.68 CTGAN Training Configuration in Data 5 143

Figure 5.3.69 TVAE Training Configuration in Data 6 144

Figure 5.3.70 Final Synthetic Dataset Generated by CTGAN in Data 5 145

Figure 5.3.71 Final Synthetic Dataset Generated by TVAE in Data 6 145

Figure 5.3.72 TVAE Training Configuration in Data 7 146

Figure 5.3.73 Saving the preprocessing pipeline and Random Forest model

using Joblib

147

xii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.74 Power BI data source connection from OneDrive 148

Figure 5.3.75 Python script preprocessing new transaction data 148

Figure 5.3.76 Python script generating predictions 149

Figure 5.3.77 Python script generating evaluation metrics 149

Figure 5.3.78 Output generated by Python script 149

Figure 5.3.79 Homepage 150

Figure 5.3.80 Overview Page 150

Figure 5.3.81 Time Analysis Page 151

Figure 5.3.82 Geography Page 151

Figure 5.3.83 Demographics Page 152

Figure 5.3.84 Behavioural Analysis Page 152

Figure 5.3.85 Model Performance Page 153

Figure 5.3.86 Prediction Confidence & Key Influencers Page 153

Figure 5.3.87 Credit Card Transactions Page (drill through from

Demographics Page)

154

Figure 5.3.88 Transaction Details Page (drill through from Credit Card

Transactions Page)

154

Figure 5.3.89 Interactive Dashboard Components Showing Slicers, Filters,

Tooltips and Smart Narrative

155

Figure 5.3.90 Mobile layout examples of the Fraud Detection Dashboard 156

Figure 6.3.1 Time Analysis Page with Category Slicer Not Applied 164

Figure 6.3.2 Time Analysis Page with Category Slicer Applied 164

Figure 6.3.3 Time Analysis Page with Category and Fraud Label Slicers

Applied

164

Figure 6.3.4 KPI Cards on Model Performance Page with Colour Coding

Applied

165

Figure 6.3.5 Transaction Table on Credit Card Transactions Page Showing

Fraud Case Highlighting

165

Figure 6.3.6 Selected Transaction in Credit Card Transactions Page Prior

to Drill-through

165

Figure 6.3.7 Transaction Details Page Showing Matching Transaction ID 166

Figure 6.3.8 Ease of Use Evaluation 167

Figure 6.3.9 Navigation Clarity Evaluation 167

xiii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.10 Ease of Learning Evaluation 168

Figure 6.3.11 Perceived Complexity Evaluation 168

Figure 6.3.12 Need for Support Evaluation 168

Figure 6.3.13 Consistency Evaluation 169

Figure 6.3.14 Visual Clarity Evaluation 169

Figure 6.3.15 Responsiveness Evaluation 170

Figure 6.3.16 Interactivity Evaluation 170

Figure 6.3.17 Overall Satisfaction 170

Figure 6.4.1 Overview Page 172

Figure 6.4.2 Time Analysis Page 173

Figure 6.4.3 Geography Page 174

Figure 6.4.4 Tooltip Information from Honokaa Transaction Point 175

Figure 6.4.5 Demographics Page 176

Figure 6.4.6 Example of Drill-Through Navigation from Credit Card

Fraud Table

177

Figure 6.4.7 Credit Card Transactions Page 178

Figure 6.4.8 Example of Drill-Through Navigation from Transaction-level

Details Table

179

Figure 6.4.9 Transaction Details Page 180

Figure 6.4.10 Behavioral Analysis Page 181

Figure 6.4.11 Model performance Page 182

Figure 6.4.12 Prediction confidence & Key Influencers Page 183

xiv
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.1.1 Attributes of European Dataset 8

Table 2.1.2 Attributes of E-commerce site data 9

Table 2.1.3 Attributes of E-commerce site for Boyner Group 9

Table 2.1.4 Performance comparison after applying SMOTE 11

Table 2.1.5 Performance comparison of LOF, iForest, LR, DT and

RF

14

Table 2.1.6 Performance comparison of RF, DT, LR, SVM and

ANN

14

Table 2.1.7 Model performance before including the IsGuestOrder

feature

15

Table 2.1.8 Model performance after including the IsGuestOrder

feature

15

Table 2.1.9 Performance comparison of base models 16

Table 2.1.10 Performance comparison of models combined with

AdaBoost

17

Table 2.1.11 Performance comparison of NB, SVM, LR, RF, DT

and XGboost

17

Table 3.1.1 Specifications of laptop 28

Table 3.1.2 Specifications of software 29

Table 3.2.1 Confusion Matrix 36

Table 5.3.1 Feature Description of Credit Card Transactions Fraud

Detection Dataset

71

Table 5.3.2 Evaluation Metrics of Random Forest, XGBoost and

AdaBoost with Different Resampling Techniques in

Fraud Detection

100

Table 5.3.3 Classification Reports of Random Forest, XGBoost

and AdaBoost with Different Resampling Techniques

in Fraud Detection

103

xv
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.3.4 Confusion Matrixes of Random Forest, XGBoost and

AdaBoost with Different Resampling Techniques in

Fraud Detection

106

Table 5.3.5 Performance of Random Forest with Pipeline 2 110

Table 5.3.6 Performance of XGBoost with Pipeline 2 110

Table 5.3.7 Performance of AdaBoost with Pipeline 2 110

Table 5.3.8 Performance of Random Forest with Pipeline 3 113

Table 5.3.9 Performance of XGBoost with Pipeline 3 113

Table 5.3.10 Performance of AdaBoost with Pipeline 3 113

Table 5.3.11 Random Forest Hyperparameter space settings 117

Table 5.3.12 Random Forest Hyperparameter Tuning Results 118

Table 5.3.13 XGBoost Hyperparameter space settings 121

Table 5.3.14 XGBoost Hyperparameter Tuning Results 122

Table 5.3.15 AdaBoost Hyperparameter space settings 124

Table 5.3.16 AdaBoost Hyperparameter Tuning Results 125

Table 5.3.17 Random Forest Evaluation Results on Different

Synthetic Dataset Version

128

Table 5.3.18 SHAP Comparison Between Train Dataset and

Synthetic Dataset 3

137

Table 5.3.19 SHAP Comparison Between Train Dataset and

Synthetic Dataset 4

140

Table 6.1.1 Performance Comparison of Kaggle and Synthetic Test

Sets

158

Table 6.2.1 Performance Comparison of Final Random Forest

Model on Split Test Set and Kaggle Test Set

160

Table 6.3.1 Technical Evaluation Test Cases and Results 162

Table 6.3.2 System Usability Scale (SUS) Evaluation Results 171

xvi
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF SYMBOLS

xvii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

AdaBoost Adaptive Boosting

ANN Artificial Neural Networks

AP Average Precision

AUC-ROC Area Under the Receiver Operating Characteristic Curve

AUC Area Under the Curve

CNP Card Not Present

CP Card Present

CTGAN Conditional Tabular Generative Adversarial Network

DAX Data Analysis Expressions

DT Decision Tree

FN False Negative

FP False Positive

iForest Isolation Forest

KNN K-Nearest Neighbours

LDA Linear Discriminant Analysis

LightGBM Light Gradient Boosting Machine

LR Logistic Regression

LOC Local Outlier Factor

MAE Mean Absolute Error

MCC Matthews Correlation Coefficient

NB Naïve Bayes

PCA Principal Component Analysis

RF Random Forest

RMSE Root Mean Squared Error

ROC Receiver Operating Characteristic

SMOTE Synthetic Minority Over-sampling Technique

SVM Support Vector Machine

TVAE Tabular Variational Autoencoder

XGBoost Extreme Gradient Boosting

CHAPTER 1

1
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Introduction

This chapter outlines the research background and motivation, highlighting the key problems

and the need for improved fraud detection in e-commerce. This chapter also presents the

objectives of the project, the scope and direction of the study, and the contributions made to

the field.

E-commerce is the result of a significant change driven by the rapid evolution of digital

technologies into conventional business methods [1]. It involves the buying and selling of

products, services and information through electronic platforms over the Internet [1]. The rise

of e-commerce has enabled business to reach global consumers, reduce costs, offer greater

flexibility for consumers, respond quickly to market demands, support various payment

methods and make transactions easier and faster through technology [2]. The accessibility and

ease of online shopping have made it very popular, changing the way people interact with

businesses and make purchases. However, with the swift expansion of e-commerce, fraud has

become a significant challenge. As online transactions have increased, fraudsters have more

opportunities to exploit the vulnerabilities of digital systems by using advanced techniques to

bypass security measures [3].

Fraud in e-commerce can take many forms, including card not present (CNP), fake websites,

chargeback fraud, account takeovers, identity thefts and phishing [4]. CNP fraud, in particular,

occurs when stolen or counterfeit credit card details are used for online purchases without the

physical card being required. This makes it one of the most prevalent and costly forms of fraud

in digital commerce. Fraudsters can exploit these transactions to make unauthorized purchases,

resulting in substantial financial losses for both consumers and businesses [5]. This form of

fraud is particularly concerning due to its widespread impact. Consumers may face

unauthorized charges on their accounts, while business must deal with chargebacks, legal fees

and reputational damage.

These fraudulent activities not only lead to financial losses but also damage customer trust [6],

which is a factor essential for the sustained success of e-commerce businesses. As customers

CHAPTER 1

2
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

grow increasingly concerned about the security of their payment information, e-commerce

businesses must navigate the challenge of maintaining trust while providing a seamless

shopping experience. To address these risks, e-commerce platforms are deployed machine

learning methods in fraud detection systems such as Logistic Regression, Random Forest,

Naïve Bayes, Support Vector Machine (SVM) and others to identify and block fraudulent

transactions in real time [6].

Traditional fraud detection methods are always relying on static rules and manual checks,

which are become less effective against the evolving tactics of fraudsters [7]. These systems

are difficult to detect complex fraud patterns because there are very few examples of fraud [6].

By using machine learning in fraud detection, e-commerce businesses can significantly

improve accuracy in identifying fraudulent transactions [7]. Ultimately, this leads to better

customer satisfaction, increased trust, and the continued growth of e-commerce businesses.

1.1 Problem Statement and Motivation

In the e-commerce industry, fraud detection is vital for ensuring the security of transactions

and maintain customer trust. However, several problems in fraud detection systems hinder their

effectiveness.

1. Data imbalance in fraud detection datasets.

Fraudulent transactions represent a very small proportion of the total dataset, often less than

1%, leading to an imbalance [8]. This imbalance leads to machine learning models become

biased toward the normal transactions, which are the majority. This makes the models effective

at identifying legitimate transactions but difficult to detect uncommon and critical fraudulent

transactions which are the minority [1]. As a result, many fraud cases are missed, increasing

financial losses and reducing trust in e-commerce system. Traditional resampling methods like

oversampling and under sampling help to balance the dataset, but they can introduce new issues

like overfitting or loss of useful data. To tackle this, resampling technique like SMOTE are

needed to build models that effectively detect uncommon fraudulent transactions while

maintaining accuracy [9].

CHAPTER 1

3
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Misclassification in machine learning

Misclassification in machine learning occurs when a model treats all errors equally. Most

models aim to minimize errors without considering that some mistakes are more costly than

others, this is known as cost-sensitive problem [9]. In fraud detection, failing to identify a

fraudulent transaction (false negative) is much more damaging than incorrectly flagging a

legitimate transaction as fraudulent (false positive). This is because they allow fraudulent

activities to go undetected, leading to financial losses and potential reputational damage. This

problem is further complicated by the overlap between legitimate and fraudulent transactions,

especially when patterns change over time, then worsens this issue. Such misclassifications

strain resources, impacts customer experience, and reduces overall detection effectiveness [9].

To address this issue, ensemble learning models, which are more robust and capable of

capturing complex and non-linear relationships, can be combined with resampling techniques.

These models can better recognize minority class patterns (i.e., fraud), thereby minimizing the

costly errors, especially false negatives and improving overall prediction accuracy.

3. Evolving Nature of fraud

Fraudulent patterns are not only rare but also change over time, making it challenging for

detection models to remain effective [1,10]. This phenomenon, known as concept drift, occurs

when fraudsters adapt their methods to bypass detection, while legitimate users may change

their spending behaviors [9]. If detection models are not updated regularly, their accuracy

declines, leading to missed fraud cases, financial losses, and a poor user experience. To address

this, a Power BI dashboard will be developed to monitor model performance and the fraud

patterns in real-time, allowing for continuous tracking of effectiveness and enabling timely

updates to adapt to shifting fraud patterns.

Motivation

The rapid expansion of e-commerce has resulted in a rise in fraudulent activities, creating major

challenges to the security of online transactions. While machine learning offers an effective

solution, but issues like data imbalance, misclassification of costly errors, and the evolving

nature of fraud still limit model performance. Fraudulent transactions are rare, causing models

to be biased towards legitimate ones, and missing fraud (false negatives) is more costly than

CHAPTER 1

4
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

incorrectly flagging legitimate transactions [9]. Moreover, as fraud tactics evolve, models can

become outdated and ineffective.

The motivation behind this work is to address these gaps by designing a strong machine

learning model capable of accurately detects fraud while considering the costs of different types

of errors. Additionally, the model will be integrated with a monitoring dashboard, enabling

continuous tracking of its performance and allowing for timely updates as fraud patterns

change. This approach will enhance detection accuracy, improve system adaptability, and

ultimately support better security and customer trust in e-commerce.

1.2 Objectives

The aim of this research is to develop advanced machine learning models and visualization

tools for improving fraud detection in e-commerce, specifically targeting credit card

transactions. By addressing problems like data imbalance, cost-sensitive misclassification, and

evolving fraud patterns, this study seeks to improve the performance and adaptability of fraud

detection systems. In this research, ensemble learning models with resampling techniques are

proposed, along with an interactive Power BI dashboard for real-time monitoring and

performance tracking.

Main Objective:

To integrate machine learning algorithm with a Power BI dashboard for real-time monitoring

and performance tracking.

Sub Objectives:

• To enhance fraud detection performance by addressing data imbalance through

resampling techniques.

• To develop ensemble models that reduce misclassification errors.

• To visualize fraud detection model performance and fraud patterns using Power BI.

CHAPTER 1

5
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Project Scope and Direction

The research is focusing on fraud detection in e-commerce by using advanced machine learning

techniques. The study aims to address critical challenges such as data imbalance, cost-sensitive

problem and evolving fraud patterns, which are common in fraud detection.

This project focuses on fraud detection in e-commerce, specifically targeting credit card fraud

within Card Not Present (CNP) transactions. Other sectors such as banking, healthcare, and

insurance are excluded, as are other e-commerce fraud types like account takeovers,

chargebacks, and promotional abuse. The study also excludes alternative payment methods

such as e-wallets, cryptocurrencies, and bank transfers. By narrowing the scope to credit card

CNP transactions in e-commerce, this research aims to design and refine machine learning

models that are directly relevant to current industry challenges. This focused approach avoids

the added complexity of multiple fraud types and payment methods, enabling more accurate

and effective model development.

The research also focuses on employing ensemble learning models such as Random Forest,

AdaBoost, and XGBoost exclusively for fraud detection tasks. Resampling techniques, such as

SMOTE, Oversampling and Under-sampling are applied to these models to address the issue

of class imbalance and reduce the impact of misclassification. These models and techniques

aim to enhance the models’ ability to identify fraudulent transactions accurately, especially by

reducing false negatives, while maintaining high overall performance.

The scope of Power BI development in this research focuses on creating a user-friendly

dashboard to visualize and monitor the performance of fraud detection models in real time. The

dashboard will visualize key metrics such as accuracy, precision, recall, F1-score, AUC and

confusion matrices, along with fraud patterns and trends.

CHAPTER 1

6
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Contributions

This research aims to enhance fraud detection in e-commerce by solving some key challenges

using machine learning techniques. A major focus is addressing class imbalance, which can

significantly affect model performance. To this end, this study compares different resampling

methods. SMOTE, an advanced resampling method, generates synthetic examples of

fraudulent transactions (minority class) to balance the dataset. In addition, the study examines

basic resampling methods such as random oversampling, which duplicates existing minority

class samples, and random under-sampling, which reduces the number of majority class

instances. By applying and comparing these techniques, the research determines how different

resampling strategies influence the model's ability to detect rare fraud cases in highly

imbalanced datasets.

Another key contribution of this research is using advanced ensemble models specifically

tailored for fraud detection. Unlike traditional models that treat all errors equally, these

ensemble approaches can better handle varying complexities of fraudulent and legitimate

transactions. By focusing on reducing false negatives (missing fraud) while maintaining

accuracy for legitimate transactions, these models improve fraud detection overall

performance. Furthermore, they help reduce false positives, lower manual review costs and

ensure smoother transaction processing for customers.

As a further contribution, this research also focuses on the development of a Power BI

dashboard to monitor fraud detection performance and emerging fraud patterns. The dashboard

will provide an interactive and comprehensive view of key metrics, enabling real-time

monitoring and decision-making. It will support e-commerce businesses in identifying

potential fraud trends, tracking accuracy of fraud detection models and improving operational

responses to fraud incidents, thereby enhancing overall fraud management in e-commerce.

CHAPTER 1

7
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Report Organization

This research is organized into several key chapters. Chapter 2 presents a literature review of

existing studies related to fraud detection in e-commerce and credit card transactions. Chapter

3 describes the system methodology, outlining the overall approach and framework adopted

for the project. Chapter 4 details the system design, including system block diagram and

dashboard wireframes. Chapter 5 focuses on system implementation, covering the software

setup, model training and integration, and dashboard development. Chapter 6 presents the

system evaluation and discussion, analysing the test results, dashboard testing and insights

derived from the dashboard. Finally, Chapter 7 concludes the study by summarizing key

findings and providing recommendations for future work.

CHAPTER 2

8
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Literature Reviews

Researchers have explored various datasets, machine learning algorithms and evaluation

metrics to tackle challenges such as data imbalance [4,9,11-16], cost-sensitive problem [9] and

changing fraud patterns and tactics [13,17,18]. This section reviews recent studies addressing

these challenges, focusing on the datasets, preprocessing techniques, feature engineering,

modelling methods, evaluation metrics and potential areas of study.

2.1 Previous works on Fraud Detection

2.1.1 Dataset

The most commonly used dataset for fraud detection studies is the European Credit Card

Fraud Detection dataset from Kaggle [9,11,14,16,18,19]. Due to confidentiality issues, the

dataset does not disclose detailed variable names. Instead, it includes anonymized features such

as transaction amount, time, and class which indicate whether the transaction is fraudulent or

not [9,11,18,19], as shown in Table 2.1. Despite its limitations, this dataset is widely adopted

because of its relevance to real-world scenarios.

Table 2.1.1: Attributes of European Dataset [16].

Other studies have proposed e-commerce or shopping activity datasets, which often provide

richer feature sets [3,12,15,17,20]. For example, Najem and Kadhem [15] and Tejasri et al. [20]

used similar datasets, which include user id, device id, IP address, source, browser, age, gender,

CHAPTER 2

9
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

sign up time, purchase time, purchase value as shown in Table 2.2. Gölyeri et al. [3] used a

dataset containing attributes such as total amount, order item count, successful orders, failed

orders, last 24-hour return orders, last week return orders, and payment method as shown in

Table 2.3. In another study, Kırelli et al. [15] used a dataset with selected features from 38

initial attributes. Key features included shopping amount, order hour, order day, name length,

city, gender, age, category, brand, shipped amount, coupon discount, email confirmation time

and label for fraud. These features are particularly valuable as they capture user behaviour

patterns that can significantly enhance fraud detection in e-commerce contexts.

Table 2.1.2: Attributes of E-commerce site data [15].

Table 2.1.3: Attributes of E-commerce site for Boyner Group [3].

Other studies do not clearly specify the datasets used [4,8], making it challenging to evaluate

the generalizability and applicability of their findings.

CHAPTER 2

10
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.2 Data Preprocessing

Gölyeri et al. [3] and Ray [8] used normalization for feature scaling to ensure all features

contributed equally to the model, while other studies applied standardization to scale features

like transaction amounts effectively [9,15]. Adepoju et al. [13] employed the conversion of

categorical data into binary format as a preprocessing step to handle categorical variables.

To handle imbalanced datasets, many studies proposed SMOTE to generate synthetic samples

for the minority class [8-9,11-12,14-16,18]. Dornadula and Geetha [11] showed that SMOTE

improved the performance of models like logistic regression, random forests and decision trees

in precision and MCC as shown in Figure 2.1. Ray [8], Saputra and Suharjito [12] also

observed that SMOTE effectively boosts the performance of models like neural networks,

decision trees, random forests, and Naive Bayes by improving the classification of imbalanced

data, especially for F1-score as shown in Figure 2.2. Abdulghani et al. [18] reported that after

balancing the dataset using SMOTE, all models showed strong performance, with F1-Score

exceeding 90% as shown in Table 2.4. Before applying SMOTE, the F1-Scores were

significantly lower: Logistic Regression scored 81.68%, XGBoost 89.49%, and both LDA and

Naïve Bayes only around 10% [18].

Figure 2.1.1: Comparison of MCC before and after applying SMOTE [11].

CHAPTER 2

11
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.2: Comparison of F1-Score before and after applying SMOTE [8].

Table 2.1.4: Performance comparison after applying SMOTE [18].

2.1.3 Feature Engineering

Most studies in fraud detection rely on Principal Component Analysis (PCA) for feature

engineering. PCA is widely used to reduce the dimensionality of dataset while simplify data

by highlighting the most important information [12]. Najem and Kdhem [15] highlighted

PCA’s effectiveness in improving machine learning performance by reducing the complexity

of high-dimensional data. While for studies using the European Credit Card Fraud Detection

dataset, the data has already been processed using PCA, except for the Amount, Time, and

Class features, which are kept as is due to confidentiality. These features are retained in their

original form while other variables have undergone dimensionality reduction through PCA

[9,11,16,18,19].

CHAPTER 2

12
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.4 Modelling

Several machine learning algorithms have been extensively studied for fraud detection in e-

commerce and credit card transactions. Researchers have explored diverse models, ranging

from basic classifiers to ensemble techniques and neural network-based approaches.

Ray [8] proposed four machine learning models, which are Decision Tree, Naïve Bayes,

Random Forest and Neural Network. Among these models, the neural network without

SMOTE achieved the highest accuracy of 96%. While for other metrics, the results were quite

low. Neural network with SMOTE achieved superior performance compared to other models,

particularly in terms of recall and G-mean as shown in Figure 2.3 and Figure 2.4. This suggest

that accuracy alone is not a reliable metric in imbalanced datasets. Using SMOTE can

significantly improve the model’s ability to detect fraud by better handling class imbalance.

Naïve Bayes with SMOTE achieved the highest F1-score, showing the strong balance between

precision and recall. However, its recall was the lowest without SMOTE and even with

SMOTE, it remained the second lowest among all models. This means that Naïve Bayes miss

many actual fraud cases, which is risky in real-world applications.

Figure 2.1.3: Comparison of Recall before and after applying SMOTE [8].

CHAPTER 2

13
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.4: Comparison of G-Mean before and after applying SMOTE [8].

Najem and Kadhem [15] applied ensemble models, including LightGBM, XGBoost and

Random Forest. After applying standardization and PCA, XGBoost and LightGBM achieved

the highest performance with perfect accuracy (100%), outperforming Random Forest with a

slightly lower accuracy of 99%. Using additional metrics like precision, recall, F1-score and

AUC, the results for XGBoost and LightGBM remain nearly perfect or perfect, confirming

their superior performance in fraud detection.

In Puh and Brkić [9] research, Random Forest outperformed SVM and Logistic Regression,

achieving the highest AUC and AP scores of 0.9448 and 0.8483 respectively. SVM recorded

the lowest AUC score (0.8877), showing its weaker capability in separating classes, while

Logistic Regression had the lowest AP score (0.7337), reflecting more false positives and less

reliability when detecting fraud at higher recall levels.

Dornadula and Geetha [11] observed that Random Forest, Decision Tree and Logistic

regression performed better than Isolation Forest and Local Outlier Factor in detecting credit

card fraud. Among these, Random Forest achieve the highest accuracy, precision and MCC

consistently as shown in Table 2.5. Among these, Random Forest achieve the highest accuracy

of 99.98%, precision of 99.96% and MCC of 0.9996 as shown in Table 2.5. After applying

SMOTE, Random Forest’s results became nearly perfect, showing its strong performance in

handling minority class detection.

CHAPTER 2

14
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.1.5: Performance comparison of LOF, iForest, LR, DT and RF [11].

Sadeneni [4] compared five models, including ANN, Random Forest, Decision Tree, Logistic

Regression and SVM based on accuracy, precision, and false alarm rate as shown in Table 2.6.

ANN achieved the highest accuracy of 99.92%, precision of 99.57% and a very low false alarm

rate with only 0.1%, suggesting that it is very effective at fraud detection. However, ANN

comes with high training costs and hardware dependency, making it less practical for all

business. Random Forest is a strong alternative, as it achieved a very high accuracy of 99.21%

and precision of 92.34%. SVM had the highest false alarm rate at 4.9%, suggesting that it is

less ideal for fraud detection where minimising false alarms is important. Decision Tree

performed slightly better than Logistic Regression across all metrics.

Table 2.1.6: Performance comparison of RF, DT, LR, SVM and ANN [4].

Gölyeri et al. [3] demonstrated including the IsGuestOrder feature significantly improved fraud

detection. Before including IsGuestOrder feature, XGBoost initially outperformed other

models with 0.90 accuracy and 0.92 recall, while Logistic Regression showed superior

precision (0.91) despite its lower recall (0.86) as shown in Table 2.7. After including the feature,

Logistic Regression achieved the highest accuracy at 0.93 and F1-score at 0.92 as shown in

Table 2.8. This showed that a good feature can boost a simple model’s performance when it

CHAPTER 2

15
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

captures the fraud pattern, while XGBoost already handled complex patterns, so a single binary

feature does not significantly change its performance.

Table 2.1.7: Model performance before including the IsGuestOrder feature [3].

Table 2.1.8: Model performance after including the IsGuestOrder feature [3].

Sailusha et al. [19] focused on comparing Random Forest and AdaBoost in credit card fraud

detection. While both models had the same high accuracy, Random Forest outperformed

AdaBoost in precision, recall and F1-score as shown in Figure 2.5, making it more reliable for

fraud detection. Random Forest detected more fraud cases with a recall over 70%, while for

AdaBoost with recall over 60%. Both models showed the signs of overfitting as the training

data was significantly better than that of test data. The AUC of AdaBoost was better, suggesting

it might be more effective in distinguishing between fraud and non-fraud cases among different

thresholds.

Figure 2.1.5: Performance comparison of Random Forest and AdaBoost [19].

CHAPTER 2

16
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Based on the study of Adepoju et al. [13], Logistic Regression emerged as the best-performing

model for credit card fraud detection, with the highest accuracy of 99.074%. It also achieved

the perfect sensitivity (recall) at 100%, meaning it was able to detect all actual fraud cases in

the test data. SVM also performed well with an accuracy of 97.53% and a recall of 97.56%.

KNN followed closely with 96.91% accuracy, however, its recall was only 89.36%, meaning

that it missed a portion of fraud cases. Naïve Bayes performed poorly despite having a perfect

specificity and precision of 100%. However, its recall was 0%, meaning it failed to identity

any of the actual fraud cases. This outcome is concerning because if a system cannot detect

fraud, it is useless, even it works well for normal transactions.

Ileberi et al. [14] proposed combining models like Decision Tree, Random Forest, Extra Tree,

XGBoost and Logistic Regression with AdaBoost. Without AdaBoost, Random Forest

performed the best with an MCC of 0.88 and an accuracy of 99.95% as shown in Table 2.9.

When combining with AdaBoost, all models showed significant improvement, with all metrics

above 90% as shown in Table 2.10. The recall for Extra Tree and XGBoost increased a lot from

78.19% and 59.39% to 99.96% and 99.97% respectively, making them became the best-

performing model, with nearly perfect scores across all metrics after combining with AdaBoost.

Among all the models, Logistic Regression performed the worst. This is due to its linear nature,

which limits its ability to capture complex and non-linear relationships in the data. While

ensemble methods like Random Forest, XGBoost and Extra Tree show superior performance,

especially when combined with AdaBoost, because they effectively capture complex, non-

linear relationships and reduce errors through boosting.

Table 2.1.9: Performance comparison of base models [14].

CHAPTER 2

17
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.1.10: Performance comparison of models combined with AdaBoost [14].

Abdulghani et al. [18] focused on machine learning algorithms like Logistic Regression, LDA,

Naïve Bayes and XGBoost. Among the models, XGBoost was the most effective one,

achieving the highest accuracy of 99.969%, precision of 99.938%, recall of 100%, F1-score of

99.969% and AUC of 99.969%. This best performance highlights XGBoost’s robustness in

handling large datasets and detecting fraud. In contrast, Logistic regression, LDA and Naïve

Bayes showed lower accuracy with 94.752%, 91.737% and 91.338% respectively.

Mohbey et al. [16] compared the performance of Naïve Bayes, SVM, Logistic, Random Forest,

Decision Tree and XGBoost for credit card fraud detection as shown in Table 2.11. Among

these, XGBoost showed the highest accuracy at 96.44%, significantly outperforming the others.

For instance, Logistic Regression achieved an accuracy of 94.43%, while SVM, Random

Forest and Decision Tree are below 94%. The precision, recall, F1-score and AUC values also

favoured XGBoost, indicating its robustness in handling imbalanced datasets and complex

transaction patterns. Naïve Bayes performed the worst, with an accuracy of 89.34% and F1-

score of 89%, which aligns with previous studies. This study highlights the effectiveness of

XGBoost as an ensemble model in improving performance, especially in scenarios involving

imbalanced datasets.

Table 2.1.11: Performance comparison of NB, SVM, LR, RF, DT and XGboost [16].

CHAPTER 2

18
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Based on the extensive research, the most effective models for fraud detection in e-commerce

and credit card transactions are Random Forest and XGBoost, which are widely used and

consistently achieve high scores across accuracy, precision, recall, F1-score and AUC. ANN

also performs well but are resource intensive. Logistic Regression and Decision Trees offer

good performance with simplicity, especially when enhanced with strong features or boosting

techniques, although they are generally outperformed by ensemble models. In contrast, Naïve

Bayes and SVM often perform poorly. Naïve Bayes has trouble in detecting fraud because its

recall is usually low, while SVM tends to produce more false alarms and lower AUC scores.

Overall, ensemble models are the most reliable and widely used, while simpler models require

enhancements to be competitive.

2.1.5 Evaluation Metrics

Accuracy is the most widely used metrics and often the primary parameter in many studies for

evaluating model performance. It is commonly considered as the base measure, but it is not

always a good metric, especially for imbalanced dataset [11,12]. Dornadula and Geetha S [11]

proposed the use of Matthews Correlation Coefficient (MCC) as more reliable measure for

evaluating binary (two-class) classifiers. The MCC considers all true and false values, making

it a balanced metric that works well even when the dataset contains imbalanced classes [11].

This is why MCC is often preferred in such scenarios, as it provides a more comprehensive

evaluation of model performance.

In addition to MCC, metrics such as recall, precision, and F1-score are commonly used

alongside accuracy. G-mean is another metric that measures a model’s overall performance by

assessing its ability to correctly classify both majority and minority classes [8,12]. The F1-

score is particularly valuable in imbalanced datasets, as it balances precision and recall

evaluating the classification of the minority class effectively [8,12].

Another important evaluation metric is Area Under the Curve (AUC), often used with the

Receiver Operating Characteristic (ROC) curve. However, in imbalanced datasets, where

the number of true negatives greatly exceeds true positives, the ROC curve may not be the most

appropriate metric. Puh and Brkic [9] proposed using Precision-Recall curves instead, as they

CHAPTER 2

19
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

focus on precision, which compares false positives to true positives, making them less sensitive

to class imbalance.

Among these studies, only Md. Nur-E-Arefin [15] used Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE) as evaluation metrics. However, these metrics may not

be suitable for this research as they are more commonly applied to regression tasks rather than

classification problems.

CHAPTER 2

20
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Literature Matrix Table

Author/year Task/Title Problem Mentioned Dataset Pre-processing

techniques

Feature

Engineeri

ng

Method for

Modeling

Evaluation

Metrics

Future study/

Conclusion

Murat

Gölyeri ,

Sedat Çelik,

Fatma
Bozyiğit,

Deniz Kılınç,

2023 [3]

Fraud Detection

on E-commerce

Transactions

Using Machine
Learning

Techniques

Not mentioned in the

research paper.

Shopping

activities during

ninety days on the

e-commerce
website and

mobile

application of

Boyner Group

(total amount,

order item count,

success order,

failed order, last

24 hour return

order, last week

return order,
payment method)

SimpleImputer

and

StandardScaler

classes from the
scikit-learn

library,

ChiSquare

feature

selection, 10-

fold cross

validation

Not

mentioned

in the

research
paper.

Decision tree,

Logistic

regression,

Random
Forest,

XGBoost

Accuracy,

Precision,

Recall, F1-score

- Model performance

improved with the

inclusion of the

IsGuestOrder feature.
- Logistic regression

achieved over 92%

accuracy, making the

findings promising for

future research.

- Future work include

developing

classification software

for the company.

Praveen

Kumar

Sadineni,

2020 [4]

Detection of

Fraudulent

Transactions in

Credit Card

using Machine

Learning

Algorithms

- Imbalanced data 150000

transactions data

from Kaggle

(time of

transcation,

amount, class)

Not mentioned

in the research

paper.

PCA Random

Forest,

Decision Tree,

Logistic

Regression,

SVM, ANN

Accuracy,

Precision, False

Alarm rate

- ANN achieves the

highest accuracy

(99.92%) and precision

(99.57%) and the

lowest false alarm rate

(0.1%)

Samrat Ray,

2022 [8]

Fraud Detection

in E-Commerce

Using Machine

Learning

- Datasets with

extremely small class

proportions result in

Online business

fraud dataset.

SMOTE,

Normalization,

Scale of

characteristics,

PCA Decision Tree,

Naïve Bayes,

Random

Confusion

Matrix,

Accuracy,

Recall,

- Leveraging advanced

computations or deep

learning can improve

the detection of e-

CHAPTER 2

21
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

biased or unbalanced

information.

Feature

extraction

Forest, Neural

Network

Precision, F1-

score, G-mean

commerce fraud and

boost neural network

performance with the

SMOTE technique.

Maja Puh,

Ljiljana Brkic,

2019 [9]

Detecting Credit

Card Fraud

Using Selected
Machine

Learning

Algorithms

-Data deficiency

-Imbalanced data

-Cost sensitive
problem

-Behavioral variation

Transaction made

in September

2013 by European
cardholders.

SMOTE, feature

scaling for

amount using
standardization,

data split

(70:30)

PCA Random

Forest, SVM,

Logistic
regression

Area Under

ROC Curve

(AUC), Average
precision

(AUPRC)

- SVM has slightly

lower results than other

two in AUC and Recall
scores

- Models with

incremental learning

have better results.

- Future work includes

exploring incremental

learning on a more

realistic dataset.

Vaishnavi

Nath

Dornadula,

Geetha S,

2019 [11]

Credit Card

Fraud Detection

using chine

arning

Algorithms

- Dataset is highly

imbalanced

European Credit

card transaction

dataset

(transaction id,

cardholder id,
amount, time,

label)

SMOTE PCA Local Outlier

factor,

Isolation

Forest, SVM,

Logistic
regression,

Decision tree,

Random

Forest

Accuracy,

precision, MCC

- Random Forest

performed the best

among the models with

accuracy (0.9998),

precision (0.9996),
MCC (0.9996)

- MCC is the better

metric for evaluating

imbalance dataset.

- By applying the

SMOTE, the models

perform better than

before.

- LR, DT and RF

achieved better results.

Adi Saputra,

Suharjito,
2019 [12]

Fraud Detection

using Machine
Learning in

- Imbalanced data E-commerce

fraud dataset
sourced from

SMOTE, feature

extraction,

PCA Decision tree,

Naïve Bayes,
Random

Accuracy,

precision, recall,
G-mean, F1

- The results showed

NN has the highest
accuracy with 96%,

CHAPTER 2

22
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

e-Commerce Kaggle transformation,

normalization

Forest, and

Neural

network

Score then NB and Random

Forest are 95%, DT

accuracy is 91%.

- Using SMOTE on

NN, RF, DT, and NB

was able to handle
dataset imbalance by

producing higher G-

Mean and F-1 scores.

- Future work is to use

other algorithms or

deep learning for fraud

detection in e-

commerce.

- Improve neural

network accuracy using

SMOTE.

Olawale

Adepoju,
Julius

Wosowei,

Shiwani lawte,

Hemaint

Jaiman, 2019

[13]

Comparative

Evaluation of
Credit Card

Fraud

Detection Using

Machine

Learning

Techniques

- Dynamic fraudulent

behavior patterns
make detection more

challenging.

- Datasets are often

limited and

imbalanced.

- Model performance

relies heavily on

testing and feature

selection.

- Evolving data can

lead to reversed or
outdated

classifications over

time.

Card transaction

dataset (average
daily transaction

amount,

transaction

amount,

transaction

declined, foreign

transaction, high

risk transaction,

six-month

average balance)

Binary

encoding, Data
split 80:20

Not

mentioned
in the

research

paper.

Logistic

Regression,
KNN, Naïve

Bayes, SVM

Accuracy,

Sensitivity,
Specificity

(Recall),

Precision

- LR was the most

accurate in detecting
credit card fraud, with

accuracy 99.074.

- Using a larger dataset

with more fraudulent

cases is recommended.

- Other resampling

strategies, cost-

sensitive learning

methods, and ensemble

learning methods could

be explored in future to
better handle a skewed

dataset.

CHAPTER 2

23
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Emmanuel

Ileberi,

Yanxia Sun,

Zenghui

Wang, 2021

[14]

Performance

Evaluation of

Machine

Learning

Methods for

Credit Card
Fraud Detection

Using SMOTE

and AdaBoost

Imbalanced data European credit

card dataset.

SMOTE Not

mentioned

in the

research

paper.

SVM,

Random

Forest, Extra

Tree,

XGBoost,

Logistic
Regression,

Decision tree,

ADABoost

Accuracy,

recall, precision,

MCC, AUC

- DT-AdaBoost, RF-

AdaBoost, ET-

AdaBoost,and XGB-

AdaBoost achieved

accuracies of 99.67%,

99.95%, 99.98%, and
99.98%, respectively.

- The results confirm

that AdaBoost

significantly enhances

the performance of

machine learning

models.

- Future work will

focus on testing and

validating the

framework using real

credit card fraud
datasets from financial

institutions.

Suha M.

Najem, Suhad

M. Kadhem,

2021 [15]

An Efficient

Feature

Engineering

Method for

Fraud Detection

in E-commerce

- Imbalance in

Datasets

Clothing sales

transaction

dataset (device-id,

IP address,

source, browser,

age, country, sex,

signup-time,

purchase-time,

purchase-value)

SMOTE,

standardization

for feature

scaling

PCA LightGBM,

XGboost,

Random

Forest

Accuracy,

Precision,

Recall, F1-

score, AUC-

ROC

- LightGBM and

XGboost achieved the

best accuracy after

preprocessing the

dataset.

- Future work is to use

larger dataset with new

feature engineering

Krishna

Kumar
Mohbey,

Mohammad

Credit Card

Fraud Prediction
Using XGBoost:

An ensemble

Data imbalance. European credit

card dataset.

Standardization,

normalization,
data split 70:30

PCA Naïve Bayes,

SVM,
Random

Forest,

Precision, recall,

accuracy, AUC,
f-measure

XGBoost performed

better.

CHAPTER 2

24
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Zubair Khan,

Ajay Indian,

2022 [16]

Learning

Approach

Logistic

Regression,

XGBoost

Hybrid models can be

built to improve the

research.

Yasin Kırelli,

Seher

Arslankaya,

Muhammed
Taha Zeren,

2020 [17]

Detection of

Credit Card

Fraud in E-

Commerce
Using Data

Mining

Fraudsters

are changing their

strategies and new

fraud patterns are
emerging

as now.

E-commerce

dataset (shopping

amount, order

hour, order day,
name length, city,

gender, age,

category, brand,

shipment amount,

discount, isFraud)

Gain

Ratio, Info Gain

and Chi-Squared

(feature
selection), data

split 70:30

Not

mentioned

in the

research
paper.

Naive

Bayesian,

Naive Bayes

Tree, Decision
Tree J48,

KNN, ANN,

RBF Network

TP rate, FP rate,

Precision,

Recall, F-

measure, ROC
Area

KNN achieved the

highest Precision

(0.956), Recall (0.959)

and F-measure (0.955)
among the models.

Naïve Bayesian and

NBTree perform better

in ROC Area with

0.963.

Ahmed Qasim

Abdulghani,

Osman Nuri

UCAN,

Khattab M.

Ali Alheeti,

2021 [18]

Credit Card

Fraud Detection

Using XGBoost

Algorithm

Significant changes

in fraud methods and

ever-changing

strategies.

European credit

card dataset.

SMOTE PCA Logistic

Regression,

LDA, Naïve

Bayes,

XGBoost

Accuracy,

precision, recall,

F1-score, AUC,

confusion

matrix

- XGBoost performs the

best.

- Performance is good

after balancing dataset.

Ruttala
Sailusha, V.

Gnaneswar, R.

Ramesh, G.

Ramakoteswar

a Rao, 2020

[19]

Credit Card
Fraud Detection

Using Machine

Learning

Data mining
techniques are used,

but the results are not

very accurate in

detecting credit card

fraud.

European credit
card dataset.

Not mentioned
in the research

paper.

PCA Random
Forest,

AdaBoost

Accuracy,
precision, recall,

F1-score

- Accuracy is the same
for both the Random

Forest and the

Adaboost algorithms.

- Precision, recall, and

the F1-score the

Random Forest has the

highest value than the

Adaboost.

- Future work is to

implement deep

learning algorithms to

detect credit card fraud
accurately

CHAPTER 2

25
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

C. Tejasri, CH

Sai Ushanth

Aryan, D.

Deekshith,

Arrolla

Chintu,
Dr. T. Subba

Reddy, 2022

[20]

Fraud Detection

in E-commerce

using Machine

Learning

Restricted to

identifying the

features that will

be used to classify
transactions as either

fraudulent or non-
fraudulent.

E-commerce

fraud dataset from

Kaggle (user id,

device id, gender,

age, source

browser, purchase
time, sign up

time, purchase

value, ip address,

label)

Feature

extraction,

transformation,

normalization

Not

mentioned

in the

research

paper.

Random

Forest,

Decision Tree,

Accuracy Random Forest

algorithm can achieve

higher accuracy

in fraud detection.

CHAPTER 2

26
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Limitation of previous Studies

Many studies using the European Credit Card Fraud Detection dataset lack detailed

information about the data. The anonymizes 28 variables (v1, v2…v28), and only disclose

three features: time, amount and class [9,11,16,22,23]. Confidentiality issues often prevent

researchers from revealing variable names or detailing the original and engineered features.

Furthermore, some studies lack clear descriptions of the dataset or its features. This

anonymization and lack of transparency make it difficult to interpret and evaluate the

importance of individual features in fraud detection. Consequently, it becomes challenging to

identify key features driving fraud detection and to understand how these findings apply to

real-world scenarios, especially in terms of their impact on model performance and detection

accuracy.

Although class imbalance is a common issue in fraud detection, some studies do not apply

any resampling techniques despite working with heavily imbalanced datasets. This oversight

can lead to biased models favour the majority class, reducing the effectiveness of fraud

detection. While many studies used SMOTE and reported improved results, there is limited

exploration of alternative resampling techniques such as Random Oversampling and

Random Under-sampling. Most studies also lack comprehensive comparisons between

different resampling methods, leaving a gap in understanding which techniques are most

suitable across various datasets and models.

Furthermore, existing studies have limited focus on developing interactive dashboards to

visualize and monitor the real-time performance of fraud detection models and the evolving

fraud patterns. The lack of such dashboards makes it difficult for e-commerce businesses to

track important metrics and ensures that the system remains reliable. This gap limits the ability

to identify performance drops quickly, observe the fraud cases and trends in real-time, and

adjust the model accordingly, which ultimately impacts effective fraud detection and decision-

making.

CHAPTER 2

27
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.4 Proposed Solutions

This project proposes that the use of dataset with clear, well-documented features is

essential to ensure transparency and interpretability in fraud detection. This project will focus

on utilizing datasets that provide variables with explicit feature names, which will enable a

clearer understanding of the important factors influencing fraud detection. For example,

publicly available datasets that contain transactional or demographic features, such as age,

transaction amount, transaction time, product category and job, these data provide richer

context and allow for a more comprehensive analysis. Using datasets with detailed information

will not only enhance model interpretability but also improve the ability to reproduce findings

and apply them to real-world scenarios.

To address the limitation of inadequate handling of imbalanced datasets, this project will

implement and compare multiple resampling methods, including SMOTE, Random

Oversampling and Random Under-sampling. These methods are easy to implement and

offer a balanced trade-off between effectiveness and computational efficiency. These methods

will be applied across different models to determine their individual and comparative impacts

on fraud detection performance. Performance will be assessed before and after applying

resampling methods to ensure that improvements are consistent and significant. By conducting

systematic analysis using metrics like F1-Score, Precision, Recall and MCC, the study aims to

identify the most effective resampling method for improving minority class detection.

Another proposed solution is the development of an interactive dashboard that can track and

visualize the real-time fraud detection models performance and fraud patterns. The dashboard

would provide continuous monitoring of confusion matrix and key metrics such as accuracy,

precision, recall, MCC, F1-score and AUC. Additionally, it would allow businesses to monitor

specific factors contributing to fraud, such as age, gender, transaction amount, transaction hour

and product category, which may influence model performance. This real-time monitoring will

enable stakeholders to identify performance drops promptly and make necessary adjustments

to improve detection accuracy. By integrating these features, the dashboard would enhance

decision-making and optimize fraud management, offering a practical tool for e-commerce

businesses.

CHAPTER 3

28
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

System Methodology/Approach

The chapter outlines the system requirements, design, use case and project timeline. It details

the hardware and software specifications, the overall system design for data preprocessing,

model training and deployment. The use case diagram illustrates this end-to-end flow from data

input to visual reporting.

3.1 System Requirement

3.1.1 Hardware

The hardware used in this project includes a personal laptop. The laptop is essential for

performing machine learning tasks such as data preprocessing, model training and result

analysis. A capable processor, sufficient RAM, and storage are required to handle large datasets

and computational workloads efficiently. Additionally, the same system is used for developing

and testing Power BI dashboard, which will visualise the performance of the machine learning

models.

Description Specifications

Model Inspiron 15 3511

Processor 11th Gen Intel® Core™ i5-1135G7 @ 2.40GHz

Operating System Windows 11

Graphic Intel® Iris® Xe Graphics

Memory 8GB DDR4 RAM

Storage 512GB NVMe Micron SSD

Table 3.1.1: Specifications of laptop

3.1.2 Software/Tools

The software and libraries used in this project are important for implementing the machine

learning tasks and generating Power BI dashboard. The following software are required for

different tasks such as data preprocessing, model training and visualization.

CHAPTER 3

29
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Description Specifications

Development Environment Jupyter Notebook, Google Colab

Programming Language Python

Machine Learning Libraries Pandas, Numpy, Scikit-learn, Matplotlib, Seaborn,

XGBoost, Imbalanced-learn, Joblib

Dashboard Power BI Desktop, Power BI Service

Table 3.1.2: Specifications of software

The primary development environment for the project is Jupyter Notebook, a platform that

supports interactive and iterative coding. Google Colab is also used to Jupyter Notebook,

especially when more advanced or larger visualizations are required, as it can handle complex

computations more efficiently.

Python is the main programming language, including rich libraries like pandas and NumPy

used for data manipulation, cleaning and preprocessing. Data visualization and EDA are

conducted using matplotlib and seaborn, which provide insightful plots and visualizations,

such as heatmaps, boxplots and various charts.

For data preprocessing, scikit-learn is used for encoding categorical features and splitting

datasets. To address class imbalances, the imbalanced-learn library is used to facilitate

synthetic data generation using SMOTE as well as Oversampling and Under-sampling.

During modelling phase, ensemble learning algorithms like Random Forest, AdaBoost and

XGBoost are implemented using scikit-learn and XGBoost. Model evaluation is also

conducted with scikit-learn to compute metrics such as accuracy, precision, recall, F1-score,

MCC, AUC, classification report and confusion matrix. Additionally, visualizations of

performance metrics, including confusion matrices, are generated using matplotlib and

seaborn.

For model deployment, the joblib library is used to export and import the trained model,

ensuring portability and ease of integration. The deployed model is integrated into Power BI

using Python scripts to enable fraud detection and visualization. Once the dashboard is

finalized, it is published to the Power BI Service, allowing online access. Finally, testing is

conducted to validate functionality, performance, and usability, leveraging both manual testing

processes and Python utilities for monitoring execution and responsiveness.

CHAPTER 3

30
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 System Design

Figure 3.2.1 illustrates the steps of an e-commerce fraud detection system using machine

learning. The process includes data collection, EDA, preprocessing and resampling to handle

class imbalance. The data is splitting into training and testing sets and models like Random

Forest, XGBoost and AdaBoost are trained and fine-tuned. The best model is evaluated and

deployed, with predictions monitored in real time through a dashboard.

Figure 3.2.1: Project Workflow Overview

3.2.1 Dataset Collection

The first step involves gathering relevant and high-quality data to train and evaluate the model.

For this project, the required data includes transaction details (e.g., transaction date and time,

transaction amounts, product category, order quantity), user information (e.g., customer age,

gender, location, job) and labels indicating whether each transaction is fraudulent or legitimate.

CHAPTER 3

31
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

These data are sourced from open repositories like Kaggle, which offer well-organized datasets

such as the Credit Card Fraud Detection Dataset and E-commerce Fraud Dataset. The source

is chosen for its domain relevance, detailed documentation, and reliable data quality. To ensure

the sufficiency of the dataset, at least 50,000 transactions will be targeted for analysis.

3.2.2 EDA & Data Preprocessing

Data preprocessing is a critical step in preparing the dataset for machine learning. It involves

cleaning, transforming, and organizing the raw data into a suitable format for analysis.

The first task is handling missing values. It is important to check for missing values in the

dataset, as they can cause data loss and bias. The isnull().sum() function helps to find any

missing values, while the info() method gives an overview of the dataset, showing how many

values are present in each column and also the number of null values.

Since duplicate records can distort analysis and impact model performance, if duplicate rows

are found, they need to be removed. It is common to retain only the first occurrence of each

record and remove subsequent duplicates.

Outliers are detected using the sns.boxplot function which generates boxplots that visually

reveal any unusual data points. To handle outliers, if an outlier is associated with the target

variable showing “fraud”, it will be kept as it might represent a legitimate high-risk transaction.

However, if the outlier is not associated with fraud, it will be removed from the dataset using

the drop() function.

Correlation analysis is performed using the corr() function to calculate the relationships

between numerical features and visualised with a heatmap. This helps identify strong

correlations, detect multicollinearity, and reveal insights such as relationships between features

and fraud risk.

Important features are extracted from existing fields to enrich the dataset. For example, the

customers’ age can be calculated from their date of birth, the hour and day of the week can be

derived from the transaction timestamp. Additionally, geographical distance to the merchant

can be calculated using location coordinates. These newly derived features help to improve the

model’s ability to recognize complex patterns in the data.

CHAPTER 3

32
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Categorical features are transformed using appropriate encoding techniques. One-hot

encoding is applied to nominal categories, binary encoding is used for high-cardinality

variables. Target encoding can be applied by extracting statistical information from the

original features, such as calculating the fraud rate for each credit card number, then replacing

the values with these aggregated metrics. This approach captures the likelihood of fraud

associated with each card, enabling the model to learn which cards are more susceptible to

fraudulent transactions. These methods convert non-numeric data into a format that can be

effectively understood and processed by machine learning models.

In cases of imbalanced datasets, where fraudulent transactions are far less frequent than

legitimate ones, techniques like SMOTE, Oversampling and Under-sampling are applied.

SMOTE generates synthetic samples for the minority class to balance the dataset.

Oversampling duplicates minority class data and under-sampling reduces majority class data.

The dataset is then split into training and testing sets using a 70:30 ratio, meaning 70% of the

data is used for training model, and the remaining 30% is reserved for testing model. This

ensures the model is evaluated on unseen data, which helps assess its generalization ability.

3.2.3 Model Selection

The Modelling phase involves the application of three ensemble machine learning algorithms:

Random Forest, XGBoost and AdaBoost. Each algorithm has its unique strengths, and this

section will detail how they are applied to the fraud detection problem in e-commerce

transactions.

Random Forest

Random Forest is a robust ensemble learning algorithm widely used for classification tasks due

to its simplicity and interpretability [9]. It builds multiple decision trees using a bagging

(bootstrap aggregating) approach, where each tree is trained on random subsets of data and

features. The randomness creates diversity among the trees, which helps minimise overfitting

and boosts the model’s generalization ability [3,9].

In e-commerce fraud detection, each tree is constructed using a random vector value with a

consistent distribution across all trees, and a predefined maximum depth is set to control

CHAPTER 3

33
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

complexity and prevent overfitting [12]. Once the trees are built, the final prediction is made

through majority voting, where the class most frequently predicted by the ensemble of trees is

selected as the model’s output [4,9]. Figure 3.2.2 demonstrates the structure of the Random

Forest process, starting with a dataset divided into random subsets to train individual decision

trees. Each tree predicts a class, and the majority vote determines the final class.

Figure 3.2.2: Workflow of Random Forest [21]

XGBoost

XGBoost (Extreme Gradient Boosting) is an advanced ensemble tree algorithm developed from

Gradient Boosting Decision Trees (GBDT). It is especially well-suited in managing high-

dimensional data and identifying complex, non-linear relationships between variables, making

it highly effective for classification tasks [3].

In XGBoost, the training process starts by splitting the data and training the first decision tree.

Each tree in the sequence is trained to correct the residual errors from the previous tree. The

process is repeated, with each subsequent tree focusing on the misclassified instances from the

prior tree. After all trees are trained, the results of all trees are combined by summing (or

weighted summing) their predictions to produce the final result. Figure 3.2.3 illustrates the

workflow of XGBoost.

CHAPTER 3

34
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2.3: Workflow of XGBoost [22]

AdaBoost

AdaBoost (Adaptive Boosting) is an ensemble learning method that strengthens classification

performance by sequentially combining multiple weak classifiers into a single robust model.

Figure 3.2.4 illustrates the workflow of the AdaBoost algorithm. It begins with training a weak

learner, then iteratively adjusts the weights of misclassified instances to focus on harder-to-

classify samples. Each weak learner contributes to the final model through a weighted sum

based on its performance. This process continues until the specified number of iterations is

reached or the dataset is accurately classified [4,19].

Figure 3.2.4: Workflow of the AdaBoost [19]

CHAPTER 3

35
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

AdaBoost is particularly effective for binary classification tasks, making it ideal for e-

commerce fraud detection. Its ability to adapt and emphasize challenging samples ensures high

accuracy while reducing false positives. But it is sensitive to noisy data and outliers, which can

impact performance. Despite this, AdaBoost’s iterative improvement and compatibility with

weak learners make it a powerful option for tackling complex fraud detection problems [14,19].

3.2.4 Model Evaluation

Once the models are trained, the next step is to evaluate their performance uisng the test data.

The models are assessed on the 30% testing set to determine how well they generalize to unseen

data. The performance evaluation is done using several key metrics to understand the models’

effectiveness and accuracy.

Accuracy measures the proportion of total correct predictions (both fraudulent and legitimate

transactions) out of all predictions made by the model.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

Precision represents the proportion of predicted fraudulent transactions that are actually

fraudulent.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Recall, also known as sensitivity, measures the proportion of actual fraudulent transactions

that are correctly identified by the model.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

F1-score, defined as the harmonic mean of precision and recall, provides a single metric that

balances the trade-off between the two.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

CHAPTER 3

36
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Matthews Correlation Coefficient (MCC) evaluates the correlation between predicted and

actual classifications, taking into account all four elements of the confusion matrix: true

positives, true negatives, false positives, and false negatives.

 𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (5)

Area Under the Curve (AUC) measures the model's capability to differentiate between

fraudulent and legitimate transactions. It summarises the performance of the ROC curve, which

depicts the relationship between true positive rate (recall) and the false positive rate across

different classification thresholds. A higher AUC reflects stronger model performance in

separating the two classes.

𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶 𝐶𝑢𝑟𝑣𝑒
1

0
 (6)

Classification Report provides a summary of evaluation metrics like precision, recall F1-

Score and support for each class, allowing to determine how well the model performs in

differentiate fraudulent and legitimate transactions.

Confusion Matrix shows the number of correct and incorrect predictions, break down by class

like fraudulent and legitimate transactions. It helps to identify the types of errors the model

makes, including false positives and false negatives.

Table 3.2.1: Confusion Matrix

CHAPTER 3

37
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.5 Hyperparameter Tuning

After the initial evaluation using default hyperparameters, the next step is to fine-tune these

hyperparameters to improve the model’s performance. Hyperparameter tuning involves

searching for the optimal set of hyperparameters that enable the model to generalize better on

unseen data.

In this study, both Grid Search and Randomized Search approaches were applied and compared.

Grid Search exhaustively evaluates all possible combinations of hyperparameters within the

defined search space. While it is more comprehensive, it is also computationally expensive,

especially when the number of parameters and search ranges are large. Randomized Search,

on the other hand, selects a fixed number of random combinations from the specified parameter

distributions. This makes it more efficient and faster than Grid Search, though it may miss

some optimal combinations.

The key hyperparameters considered for ensemble models include n_estimators,

learning_rate, max_depth, min_samples_split, min_samples_leaf, which are relevant to

models such as Random Forest, XGBoost, and AdaBoost. These parameters directly influence

model complexity, learning behavior, and generalization performance.

By applying and comparing both methods, the trade-off between computational efficiency

(Randomized Search) and thoroughness (Grid Search) can be evaluated. In cases where the

default hyperparameters already produce effective results, the model may retain those settings

to balance performance with computational cost.

3.2.6 Synthetic Data Generation

To enhance model evaluation and dashboard deployment, synthetic data was generated as an

alternative test set. Such datasets preserve privacy while maintaining the statistical properties

of the original, enabling reliable testing beyond limited real-world samples.

Generative models are commonly used to create synthetic data. Generative Adversarial

Networks (GANs) can produce new data by learning patterns from real datasets, so the

generated data looks statistically similar to the original [23][24]. Variational Autoencoders

(VAEs) work by compressing data into a smaller hidden space and then reconstructing it back,

CHAPTER 3

38
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

which allows them to generate new samples that still follow the main characteristics of the

original data [24][25].

In this study, two specialized approaches for tabular data were applied:

• Tabular Variational AutoEncoders (TVAE): TVAE excels in data replication and

augmentation by effectively learning the underlying data distribution through latent

space representations [26].

• Conditional Tabular Generative Adversarial Networks (CTGAN): CTGAN

achieves a balance across fidelity, synthesis quality, efficiency, privacy, and graph

structure [26].

The synthetic test sets produced by both TVAE and CTGAN were used to re-evaluate model

performance. This comparison aimed to identify whether synthetic data could serve as a

reliable proxy for real-world test data, especially during dashboard integration and continuous

evaluation. Finally, the results on the synthetic test sets were compared against the performance

on the Kaggle real test set. This comparison provided insights into the trade-offs between

using synthetic and real data, supporting the decision on whether to adopt synthetic datasets or

to retain reliance on the real Kaggle test set for final deployment.

3.2.7 Model Deployment to Power BI

Once the best-performing model is selected and thoroughly validated, the next step is to deploy

it into a production environment where it can provide real-time predictions and insights. In this

project, the model is integrated with Power BI, allowing users to visualize, monitor and interact

with fraud detection system dashboard efficiently.

1. Export the model for Deployment

The first step in model deployment is to export the trained model into a suitable format that

can be used in a production environment. The joblib library is used to serialize the trained

model into a file, making it portable and shareable across different environments. The model

export process is a key step to ensure that the model can be reloaded and reused without

retraining.

2. Integrating the Model with Power BI

CHAPTER 3

39
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Once the model is exported, it is integrated into Power BI for fraud detection. This is done by

adding a Python script in Power BI’s query editor to load the saved model and run predictions

on new data. Before making predictions, preprocessing steps like encoding techniques are

applied within the same Python script to ensure the new data is in the correct format for the

model. The model then predicts whether transactions are fraudulent or legitimate. The script is

executed automatically each time the data is refreshed in Power BI.

3. Designing the Dashboard Layout and Add Visualizations

The core of the deployment process is to create an interactive Power BI dashboard that

presents the fraud patterns, fraud prediction results and relevant metrics in a clear and

intuitive manner. This dashboard is tailored to help both data analysts and e-commerce

administrators monitor the effectiveness of the fraud detection system and identify actionable

insights quickly.

To improve interpretation, different types of visual elements such as cards, clustered column

charts, stacked column charts, doughnut charts, line charts, tables and others. will be used

to represent fraud patterns, model performance and other insights. Slicers will also be added to

allow users to filter data by variables such as date and prediction result to enable more flexible

and targeted analysis.

3.2.8 Dashboard Testing

Testing a Power BI dashboard involves a thorough process to ensure that data, visuals,

interactivity and overall user experience are functioning correctly.

1. Data accuracy testing

This involves checking that all data sources are properly connected and pulling the latest data

when refresh data. Sample data from the dashboard should be cross-checked against the raw

data to confirm consistency, and calculated metrics should be accurate.

2. Visual accuracy testing

Each visual should accurately represent the intended metric. Charts like line, bar and pie must

accurately reflect trends, distributions and proportions. Labels, axes, legends and data points

should be clear, properly formatted and easy to interpret. Visual design, such as font sizes,

colours, and spacing should also be verified to maintain readability and consistency.

CHAPTER 3

40
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Slicer testing

Slicers and filters should be tested to confirm they filter data correctly by categories or ranges.

It is important to verify that slicer selections update related visuals dynamically and do not

cause any display errors. Multiple slicers should function together without conflicts and

removing filters should reset visuals to their default view.

4. Performance testing

Performance testing is to make sure the dashboard responds quickly and operates smoothly.

This includes evaluating the loading time of the report, the responsiveness of visuals when

interacting with slicers and overall usability with large datasets. Measures and complex visuals

should be reviewed and optimised to avoid performance delays. Additionally, the time taken

to refresh data should be monitored to ensure it within an acceptable range.

5. User acceptance testing

This testing is conducted using the System Usability Scale (SUS) questionnaire. SUS is used

because it is recognized as the most commonly adopted instrument for dashboard evaluation,

providing a general and consistent measure of usability [27]. Respondents were first asked to

use the dashboard and then complete the SUS survey, which assesses key aspects such as

usability, clarity, responsiveness, interactivity, and overall user satisfaction.

The SUS consists of 10 statements rated on a 5-point Likert scale, ranging from “Strongly

Disagree” (1) to “Strongly Agree” (5), with both positively and negatively worded items. For

scoring, positive items are calculated as (Response − 1), and negative items are calculated as

(5 − Response). This process standardises all values to a range of 0 to 4. The recoded values

for each respondent are then summed to obtain a total score between 0 and 40, which is

multiplied by 2.5 to yield a final SUS score ranging from 0 to 100.

The success criteria for this testing include achieving an average SUS score of at least 70,

ensuring no major technical or usability issues, and confirming that the dashboard meets user

expectations. Feedback collected from the SUS survey is subsequently used to refine and

improve the dashboard, ensuring that it effectively supports fraud monitoring and analysis tasks

while providing a user-friendly experience.

CHAPTER 3

41
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 User Case

3.3.1 Use Case Diagram

Figure 3.3.1: Use case diagram

CHAPTER 3

42
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.2 Use Case Description

Use Case Name: Upload New Data ID: 01 Importance Level: High

Primary Actor(s): Data Analyst Use Case Type: Detail, essential

Stakeholders and Interests:

Data Analyst: Wants to upload new data for updated analysis, predictions, and dashboard

reporting.

Brief Description: Data Analyst uploads new dataset to the system. The system then automatically

preprocesses the data, applies a trained prediction model, and updates the Power BI dashboard

with the new data and predictions.

Trigger: A new or updated data file (e.g., CSV) is available and selected by the Data Analyst for

upload.

Relationship:

Association: Data Analyst

Include: Preprocess Data, Run prediction, Update Dashboard

Extend: None

Generalization: None

Normal Flow of Events:

1. The Data Analyst selects Get Data and chooses the data source type (e.g., CSV).

2. The Data Analyst provides connection details (e.g., file path).

3. The system retrieves the data from the source and displays a preview.

4. The Data Analyst confirms the data and clicks Load.

5. The system loads the data into Power BI.

6. The system creates a duplicate of the dataset to serve as a working copy (preserves

original/raw data).

7. The system applies preprocessing techniques (e.g., encoding) to the working dataset.

8. The trained prediction model is retrieved and initialized.

9. The system runs the prediction algorithm on the pre-processed data.

10. Prediction results are appended to the dataset.

11. The system checks for changes or additions in the data.

12. The dashboard elements are automatically updated based on the new data and predictions.

Sub Flows: None

Alternative/Exceptional Flows: None

Use Case Name: Refresh Data ID: 02 Importance Level: High

CHAPTER 3

43
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Primary Actor(s): Data Analyst, Ecommerce

Admin

Use Case Type: Detail, essential

Stakeholders and Interests:

Data Analyst: Requires up-to-date data for accurate analysis, dashboard reporting, and

insights.

Ecommerce Admin: Depends on current data to support timely decision-making and

operational strategies.

Brief Description: Data Analyst or Ecommerce Admin manually initiates a data refresh in

Power BI. This triggers automatic preprocessing and prediction steps using the updated data.

The results are then reflected in the Power BI dashboard.

Trigger: Manual selection of the “Refresh” option within Power BI.

Relationship:

Association: Data Analyst, Ecommerce Admin

Include: Preprocess Data, Run Prediction, Update Dashboard

Extend: None

Generalization: None

Normal Flow of Events:

1. Data Analyst or Ecommerce Admin selects the option to refresh the data.

2. Power BI retrieves the latest data from the connected source.

3. The system creates a duplicate of the dataset to serve as a working copy (preserves

original/raw data).

4. The system applies preprocessing techniques (e.g., encoding) to the working dataset.

5. The trained prediction model is retrieved and initialized.

6. The system runs the prediction algorithm on the pre-processed data.

7. Prediction results are appended to the dataset.

8. The system checks for changes or additions in the data.

9. The dashboard elements are automatically updated based on the new data and

predictions.

Sub Flows: None

Alternative/Exceptional Flows: None

CHAPTER 3

44
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Name: Build/Update Visuals ID: 03 Importance Level: High

Primary Actor(s): Data Analyst Use Case Type: Detail, essential

Stakeholders and Interests:

Data Analyst: Requires the flexibility to create or customize dashboard visuals to align

with business goals and analytical needs.

Ecommerce Admin: Benefits from clear, relevant, and easy-to-understand visuals to

monitor fraud trends and make informed decisions.

Brief Description: The Data Analyst creates new visuals or updates existing ones in the

dashboard using selected data fields and visual types.

Trigger: Data Analyst initiates the creation or update of dashboard visuals in Power BI.

Relationship:

Association: Data Analyst

Include: Update Dashboard

Extend: None

Generalization: None

Normal Flow of Events:

1. The Data Analyst selects data fields from the model within Power BI.

2. The Data Analyst chooses the type of visual (e.g., bar chart, line chart, cards).

3. The system generates new visual based on selected fields and format.

4. The system automatically refreshes and displays the updated dashboard view.

Sub Flows:

Update Existing Visual: If an existing visual is being updated, the system replaces the

current visual with the newly configured one while retaining layout consistency.

Alternative/Exceptional Flows: None

CHAPTER 3

45
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Name: View Dashboard ID: 04 Importance Level: High

Primary Actor(s): Data Analyst, Ecommerce

Admin

Use Case Type: Detail, essential

Stakeholders and Interests:

Data Analyst: Requires visibility into up-to-date data, predictive outputs, and visual trends

for monitoring and analysis.

Ecommerce Admin: Uses dashboard insights to support decision-making and guide

business strategy.

Brief Description: Data analyst and Ecommerce admin view the Power BI dashboard to

access current data, prediction results, and visualizations related to model performance

and trends.

Trigger: Open or navigate to the dashboard within the Power BI platform.

Relationship:

Association: Data Analyst, Ecommerce Admin

Include: None

Extend: None

Generalization: None

Normal Flow of Events:

1. User navigates to the dashboard.

2. The system displays the dashboard.

3. User selects a specific page to view (e.g., Overview, Fraud Patterns, Model

Performance).

Sub Flows: None

Alternative/Exceptional Flows: None

CHAPTER 3

46
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Name: Export Report ID: 05 Importance Level: Medium

Primary Actor(s): Data Analyst,

Ecommerce Admin

Use Case Type: Detail, essential

Stakeholders and Interests:

Data Analyst: Needs to generate and share visual reports for meetings, documentation, or

offline analysis.

Ecommerce Admin: Requires snapshot reports to review business performance and share

insights with stakeholders.

Brief Description: Data analyst and Ecommerce admin export a report of the current

dashboard view, including visuals, in PDF format.

Trigger: Initiates the export process from the Power BI dashboard settings menu.

Relationship:

Association: Data Analyst, Ecommerce Admin

Include: None

Extend: None

Generalization: None

Normal Flow of Events:

1. The user can apply desired filters/slicers to select specific data to include in the

report.

2. The user clicks on the ‘File’ tab and selects ‘Export’ > ‘Export to PDF’.

3. The system generates a PDF report of the current dashboard view.

4. The system automatically downloads the PDF file to the user's device.

Sub Flows: None

Alternative/Exceptional Flows: None

CHAPTER 3

47
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4 Timeline

The project timeline is divided across two semesters. In Final Year Project 1, it will be start

with research and planning, followed by data collection and preprocessing. Once the data is

prepared, preliminary modelling will be conducted, and progress will be documented in the

report. In Final Year Project 2, the work will begin with hyperparameter tuning to optimize

model performance, followed by finalizing the best model. The selected model will then be

deployed to Power BI, where a functional dashboard will be created to visualize and interact

with predictions. Afterward, various testing will be carried out to evaluate the dashboard’s

effectiveness. The project will conclude with the preparation and submission of the final report

and presentation. Gantt charts are used to illustrate the detailed timeline and key milestones

for both semesters.

CHAPTER 3

48
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.4.1: Gantt Chart for Final Year Project 1

CHAPTER 3

49
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.4.2: Gantt Chart for Final Year Project 2

CHAPTER 4

50
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

System Design

This chapter outlines the design of the fraud detection dashboard, covering data flow, model

integration from Jupyter to Power BI, and the dashboard’s layout and user interactions through

wireframes.

4.1 System Block Diagram

The system block diagram illustrates the overall structure of the fraud detection dashboard

system, as shown in Figure 4.1.1. It emphasizes how data flows from the input dataset to the

end-user interface, as well as how machine learning components, which were originally

developed in Jupyter Notebook, are integrated into Power BI for automated use.

Figure 4.1.1: System Block Diagram of the Fraud Detection Dashboard

E-commerce Fraud Dataset (Input Source)

The dataset, stored in OneDrive in CSV format, acts as the primary input. It contains transaction

records that include both fraudulent and non-fraudulent cases. The dataset can be updated by

replacing the file or link, after which the dashboard will automatically refresh.

Preprocessing Pipeline (Developed in Jupyter, Integrated in Power BI)

CHAPTER 4

51
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

During development, preprocessing steps such as encoding and resampling were designed and

tested in Jupyter Notebook. Once finalized, the pipeline was exported and embedded into

Power BI through Python scripting. Inside Power BI, the pipeline is not retrained but reused to

transform any new incoming dataset consistently.

Trained Machine Learning Model (Developed in Jupyter, Integrated in Power BI)

Model training and evaluation (e.g., Random Forest) were conducted in Jupyter Notebook

using the processed dataset. The final trained model was saved and then integrated into Power

BI. Similar to the preprocessing pipeline, the model does not undergo retraining in Power BI.

Instead, it is loaded and applied directly to generate predictions whenever the dashboard data

is refreshed.

Deployment Module (Power BI Integration)

After preprocessing and prediction, the results are loaded into Power BI’s data model. This

deployment step links the Python output with Power BI tables, ensuring that visuals (charts,

KPIs, metrics) automatically update based on the latest dataset.

Power BI Dashboard (User Interface)

The dashboard presents the final results to end-users in a structured and interactive way. It

consists of multiple pages—Homepage, Overview, Time Analysis, Geography, Demographics,

Behavioural Analysis, Model Performance, Prediction Confidence & Key Influencers, Credit

Crad Transaction and Transaction Details—that allow fraud patterns and model performance

to be explored at different levels of detail. From the user’s perspective, the workflow is simple:

they only need to refresh the dashboard, and all preprocessing, prediction, and visualization

updates occur automatically in the background.

CHAPTER 4

52
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Components Design (Wireframe)

The wireframe acts as a blueprint for the fraud detection dashboard, showing the layout, key

components, and user interactions. It ensures clarity in organizing visuals and navigation from

summary insights to detailed analysis.

Homepage

Figure 4.2.1: Wireframe of Homepage

Purpose: Entry point of the system; provides navigation to all pages.

Components & Implementation:

• Navigation Buttons: Power BI Blank Buttons, set Action = Page Navigation.

Redirects to Overview, Time Analysis, Geography, Demographics, Behavioral

Analysis, Model Performance, Prediction Confidence & Key Influencers, Credit Card

Transactions, and Transaction Details.

CHAPTER 4

53
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Overview Page

Figure 4.2.2: Wireframe of Overview Page

Purpose: Summary dashboard of dataset insights and model performance.

Components & Implementation:

• KPI Metrics Cards: Total transactions, total & average transaction amounts, fraud

count & amount, predicted fraud count & amount, fraud rate, model accuracy, false

positive rate.

o Linked to DAX measures (SUM, COUNTROWS, AVERAGE,

CALCULATE).

o Conditional formatting:

▪ Fraud rate: <0.1 green, <0.3 yellow, >0.3 red

▪ Accuracy: >0.9 green, >0.75 yellow, <0.75 red

• Line Charts: Fraud vs non-fraud trends over time, Fraud rate over time

• Navigation Buttons: Bottom of page using Page Navigator buttons.

CHAPTER 4

54
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Time Analysis Page

Figure 4.2.3: Wireframe of Time Analysis Page

Purpose: Identify fraud patterns across periods.

Components & Implementation:

• Column Charts: Fraud vs non-fraud by day of week, Fraud count over time (day of

month), and Fraud vs non-fraud by month.

• Doughnut Chart: Fraud by time (day/night).

• Line Chart: Fraud vs non-fraud by hour.

• Slicers: Fraud label, transaction category, transaction period.

CHAPTER 4

55
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Geography Page

Figure 4.2.4: Wireframe of Geography Page

Purpose: Spatial insights for fraud detection.

Components & Implementation:

• Map Visual: Plot transactions by city.

o Color: Blue = normal, Red = fraud.

o Tooltips: city, fraud label, lat/long, transaction count, distance from merchant.

o Enable zoom/pan.

• Column Chart: Fraud vs non-fraud by population group.

• Line Chart: Fraud vs non-fraud by distance from merchant.

• Summary: Smart Narrative Visual, linked to DAX measures.

• Slicers: Fraud label, population group, distance from merchant (between-style slicer).

CHAPTER 4

56
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Demographics Page

Figure 4.2.5: Wireframe of Demographics Page

Purpose: Explore fraud based on customer attributes.

Components & Implementation:

• Column Chart: Fraud vs non-fraud by age group.

• Doughnut Chart: Fraud by gender.

• Cross Table: Fraud by age group and gender using Heatmap.

• Credit Card Transactions Table:

o Columns: Credit card no, fraud count, total transactions, fraud rate.

o Drill-through to Credit Card Transactions Page via right-click on credit card

no.

o Conditional formatting: Fraud rate near 100% = red, near 0% = no color.

• Summary: Smart Narrative Visual, DAX measures for insights.

• Slicers: Fraud label, age group, category, transaction period.

CHAPTER 4

57
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Behavioral Analysis Page

Figure 4.2.6: Wireframe of Behavioral Analysis Page

Purpose: Examine patterns in customer behaviour for anomalies.

Components & Implementation:

• Column Chart: Fraud vs non-fraud by category.

• Doughnut Chart: Total transaction amount by fraud label.

• Bar Chart: Average transaction amount by fraud label.

• Summary: Smart Narrative Visual, DAX measures for insights.

• Slicers: Fraud label, category, transaction date.

CHAPTER 4

58
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Model Performance Page

Figure 4.2.7: Wireframe of Model Performance Page

Purpose: Evaluate ML model performance in detecting fraud.

Components & Implementation:

• Confusion Matrix: Using Heatmap visual.

• Performance Metrics Cards: Accuracy, Precision, Recall, F1-score, MCC, AUC.

o Conditional formatting: >90% green, >75% yellow, <75% red.

• Column Charts: Prediction results by category and age group

• Summary: Smart Narrative Visual with dynamic insights based on DAX measures.

• Slicer: Prediction result (TP, FP, TN, FN); default selection = FN & FP.

CHAPTER 4

59
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Prediction Confidence & Key Influencers Page

Figure 4.2.8: Wireframe of Prediction Confidence & Key Influencers Page

Purpose: Provide model explainability and key influencers for fraud prediction.

Components & Implementation:

• Cards: High confidence count & percentage (Predicted probability >0.8 is considered

High confidence).

• Pie Chart: Fraud count by confidence level (Very High >0.9, High >0.8, Medium >0.5,

Low <0.5).

• Transaction History Table:

o Columns: Transaction ID, prediction, actual, predicted probability, confidence

level.

o Drill-through to Transactions Page via right-click on credit card no.

• Key Influencers Visual: AI visual automatically identify which features (e.g.,

transaction amount, category, time of day) most strongly influence whether a

transaction is fraud or non-fraud. The visual then ranks these fields by influence

strength, expressed as a relative factor (x times more likely).

CHAPTER 4

60
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Credit Card Transactions Page

Figure 4.2.9: Wireframe of Credit Card Transactions Page

Purpose: Aggregated view of credit card activity; drill-through from Demographics Page.

Components & Implementation:

• Cards: Credit card no, Fraud count, total transactions, fraud rate, fraud amount, total

transaction amount.

o Conditional formatting: For Fraud Count card, if Fraud >0 highlighted red.

• Transaction History Table:

o Columns: Transaction ID, date & time, predicted label, actual label, prediction

result.

o Drill-through to Transaction Detail Page via right-click on one of the

transactions.

o Conditional formatting: Fraud = red, Non-Fraud = Green; Wrong prediction

(False Negative/ False Positive) = red, Correct prediction = Green.

• Column Chart: Fraud over time.

CHAPTER 4

61
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Transaction Details Page

Figure 4.2.10: Wireframe of Transaction Details Page

Purpose: Most detailed analysis; drill-through from other pages.

Components & Implementation:

• Cards: Transaction ID, actual label, predicted label, fraud probability, prediction result.

o Actual Label & Predicted Label: Fraud = red, Non-fraud = green.

o Fraud probability: Gradient formatting, 0% = green, 100% = red.

o Prediction result Correct = green; False Negative/False Positive = red.

• Transaction Details Cards: Date, time, amount, category, city, city size, distance,

credit card no, credit card fraud rate, gender, age, age group.

CHAPTER 5

62
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

System Implementation

This chapter details the project implementation, covering software setup, data understanding,

and preprocessing for machine learning model development. It also describes initial model

testing, hyperparameter tuning, and performance evaluation to optimize each algorithm.

Additionally, synthetic data generation was performed to support robust model evaluation and

dashboard deployment. Finally, the trained models and preprocessing pipelines were integrated

into Power BI, where the interactive dashboard was developed to visualize predictions and

insights.

5.1 Setting up

5.1.1 Software/Tools

Before starting the project, there are several software/tools are downloaded and installed on the

laptop. These includes:

• Jupyter Notebook

• Python

• Google Collaboratory (no need installation)

• Power BI Desktop

Figure 4.1.1 shows the versions of the key Python libraries used in this project, including

pandas, numpy, scikit-learn, matplotlib, seaborn, xgboost, and imbalanced-learn.

Figure 5.1.1: Version of Python and Various Libraries.

5.2 Initial Dataset (Aborted)

Aborted in here refers to the decision to discontinue the use of the initially selected dataset for

model training due to the weak correlations between features and the target variable (is_fraud).

CHAPTER 5

63
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This limitation may reduce its effectiveness for fraud detection. A more suitable dataset with

stronger predictive features was sourced instead.

5.2.1 Dataset Selection

The initial dataset used in this project is the “Financial Transactions Dataset: Analytics” from

Kaggle, which consisted of five separate files, with a total of 39 columns as shown in Figure

4.2.1. The dataset is designed for various financial applications such as fraud detection,

customer analytics and expense forecasting. The dataset includes the following files:

Figure 5.2.1: Initial Dataset Information

• transactions_data.csv: Containing detailed records of transactions such as timestamps,

amounts, and merchant information

• users_data.csv: Containing demographic and account-related information about users

• cards_data.csv: Containing card-specific information including card types and limits

• train_fraud_labels.json: Containing binary fraud labels (fraudulent vs. legitimate) for

supervised learning

• mcc_codes.json: Containing listed merchant category codes (MCC) with

corresponding descriptions for categorizing transaction types.

5.2.2 EDA and Preprocessing of Initial Dataset

All datasets are loaded. To process the fraud labels and MCC descriptions, the data is

converted from a json file into a DataFrame.

CHAPTER 5

64
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.2: Loading Dataset

Transactions are merged with fraud labels using the transaction id, then merged with MCC

codes via the mcc column. User data is merged using client_id as the key, followed by card

data using card_id. Duplicate ID-related columns are removed after merging.

Figure 5.2.3: Merging Dataset

After merging, transactions are filtered to retain only online transactions made by credit

card. Before filtering, the dataset contained over 8 million transactions, after filtering, only

313,783 transactions remained.

CHAPTER 5

65
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.4: Dataset Size Before and After Filtering for Online Credit Card Transactions

Next, obtaining a summary of the dataset using df.info() and displaying the first 5 rows with

df.head(5) to check its structure. The dataset contains 313,783 entries and 38 columns with a

mix of numerical and categorical data. Some columns like merchant_state and zip are entirely

null and are dropped in later a step. While 'errors' has significant missing values. Financial

data is stored as objects, requiring cleaning and conversion to numeric types. Date columns

need conversion to datetime format, and categorical features may require encoding. The target

variable, 'is_fraud', classifies transactions as fraudulent or not.

Figure 5.2.5: Initial Dataset Summary

CHAPTER 5

66
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.6: First Five Rows of Initial Dataset

Dollar signs and commas in monetary value columns are removed, allowing conversion to

numerical formats.

Figure 5.2.7: Monetary Columns After Removing Dollar Signs and Commas

Date-related columns like date and expires are converted into datetime format to allow further

manipulation. For the expires column, the expiration date is set to the last day of the month.

The days_to_expiry is computed by calculating the difference between the transaction date

(date) and the expiration date (expires). Additionally, the account age is computed by

calculating the difference between the transaction date and the account opening date,

converting this into the account_age column in years. Finally, the age of the PIN, represented

by the year_pin_last_changed column, is calculated by finding the difference between the

transaction year and the year of the last PIN change. If the PIN is changed after the transaction

date, the age is set to 0.

CHAPTER 5

67
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.8: Feature Extraction from Date-Related Columns

Next, columns were dropped based on their uniqueness and relevance. Features like id_x,

client_id_x, card_id, merchant_id, and mcc are removed as they are unique identifiers, while

use_chip, merchant_city, card_type, and card_on_dark_web are dropped because they contain

only one unique value. Columns like address, latitude, and longitude are excluded due to high

cardinality and because the variables themselves do not provide meaningful information.

Features related to card details, such as card_number and cvv, are removed as they are not

useful for fraud detection.

While birth_year and birth_month are dropped because age had already been extracted,

making them redundant. Columns like date, expires, acct_open_date, and

year_pin_last_changed are removed since they have already been used to create new features

such as days_to_expiry, account_age, and year_pin_last_changed. By removing these

unnecessary columns, the dataset is streamlined, improving efficiency for fraud detection

analysis.

Figure 5.2.9: Number of Unique Values for Each Feature

CHAPTER 5

68
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After dropping the specified columns, the dataset is checked for duplicate rows, and 21

duplicate rows are removed.

Figure 5.2.10: Number of Duplicated Rows

The next step is to remove outliers using the Interquartile Range (IQR) method. It visualized

the distribution of the data using boxplots to identify potential outliers. Then, for each numeric

column, the IQR is calculated, and values outside the range of 1.5 * IQR from the first and

third quartiles are marked as outliers.

Figure 5.2.11: Boxplots of Numeric Features

The analysis below shows that columns like amount, current_age, per_capita_income,

yearly_income and credit_limit have many outliers, suggesting the presence of extreme values

or potential data quality issues, while columns like num_cards_issued and days_to_expiry have

no outliers, indicating more consistency in those features.

CHAPTER 5

69
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.12: Number of Outliers in Each Column

The outliers are split into fraud and non-fraud cases. Fraudulent outliers are kept, while non-

fraudulent outliers are removed from the dataset to retain only relevant fraud data.

In the updated analysis below, 1,283 fraud-related outliers are kept, as they could represent

important, extreme fraudulent cases important for fraud detection. 105,573 non-fraudulent

outliers are removed to eliminate irrelevant extreme values that could distort further analysis.

As a result, the dataset was reduced to 242,680 records. Overall, this process helps refine the

dataset by retaining important fraud data while removing non-relevant outliers.

Figure 5.2.13: Outlier Handling Summary

Next, one-hot encoding is applied to categorical columns such as errors and card_brand.

Binary encoding is then used for columns like is_fraud, gender and has_chip.

Figure 5.2.14: One-Hot Encoding and Binary Encoding for Categorical Columns

CHAPTER 5

70
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After using heatmap and correlation analysis to identify potential relationships between the

features and the target variable (is_fraud), it proves that many of the correlations are weak or

near zero. The presence of a lot of blue in the heatmap as shown in Figure 4.2.15, typically

indicates weak or insignificant correlations between variables.

Figure 5.2.15: Heatmap and Correlation Table for is_fraud

The correlation analysis between target variable and other numerical features reveals several

key insights. The highest correlation is with amount (0.14606), suggesting a weak positive

relationship. Other features like days_to_expiry, Bad CVV and num_credit_cards had very

weak positive correlations, while total debt, retirement_age, account_age and pin_age_years

show weak negative correlations. Many variables, such as Technical Glitch and has_chip,

exhibit minimal correlations, indicating limited relevance for fraud prediction.

Given the weak correlations, the current dataset may not provide strong predictive power for

fraud detection because most features do not show meaningful relationships with target

variable. This may make it difficult for the models to differentiate fraudulent from legitimate

transactions. This limitation prompts the need to explore a different dataset with stronger

relationships for better model performance.

CHAPTER 5

71
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Final Dataset

5.3.1 Data Selection

In this project, the final dataset chosen is the “Credit Card Transactions Fraud Detection

Dataset” from Kaggle. Unlike the previous dataset, which has low correlation and limited

usage, this dataset is considered more reliable due to its widespread use by other researchers.

It contains both fraudulent and non-fraudulent transactions recorded between January 1, 2019,

and December 31, 2020. It provides a rich set of features, including transaction date and time,

amount, merchant details, product categories, job, cardholder information and geographical

data as shown in Table 4.3.1.

Feature Description

trans_date_trans_time Date and time of the transaction

cc_num Credit card number used for the transaction

merchant Name of the merchant where the transaction occurred

category Type of merchant or business category

amt Amount of money spent in the transaction

first First name of the cardholder

last Last name of the cardholder

gender Gender of the cardholder (Male or Female)

street Street address of the cardholder

city City of the cardholder

state State of the cardholder

zip ZIP code of the cardholder's address

lat Latitude of the cardholder’s location

long Longitude of the cardholder’s location

city_pop Population of the cardholder’s city

job Job title of the cardholder

dob Date of birth of the cardholder

trans_num Unique transaction ID

unix_time Transaction time in Unix timestamp format

merch_lat Latitude of the merchant’s location

CHAPTER 5

72
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

merch_long Longitude of the merchant’s location

is_fraud Target variable showing if the transaction is fraud (1) or non-

fraud (0)

Table 5.3.1: Feature Description of Credit Card Transactions Fraud Detection Dataset

5.3.2 EDA and Data Cleaning

1. Handling null value and duplicate

Since there were no null values and duplicate, then skipped to the step of removing irrelevant

columns.

Figure 5.3.1: Null Values and Duplicates Check in the Dataset

2. Remove irrelevant columns

Features like trans_num, first, and last were removed because they contained transaction or

personal identifiers that do not contribute meaningfully to fraud detection. Features like street,

city, state, and zip were removed since location information is already represented by lat, long,

merch_lat and merch_long, making them redundant.

Figure 5.3.2: Drop Irrelevant Columns

CHAPTER 5

73
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Remove outlier

To detect outliers in the dataset, the Interquartile Range (IQR) method is applied to numeric

features. Each feature is analysed separately, and the results are shown in the boxplots below.

Figure 5.3.3: Boxplots for Numerical Features

The outlier detection step identifies a significant number of anomalies across various features,

with a total of 328,615 rows containing at least one outlier.

Figure 5.3.4: Total Rows with Outliers and Outliers per Column

The transaction amount (amt) has 67,290 outliers, indicating a wide range of transaction

values with extreme cases, primarily involving high transaction amounts, as observed in the

boxplot.

CHAPTER 5

74
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Geographical features, such as latitude (lat), longitude (long), merchant latitude (merch_lat)

and merchant longitude (merch_long), show 4,679, 49,922, 4,967 and 41,994 outliers,

respectively. The boxplots show that latitude has outliers at both ends of the range, while

longitude outliers are mostly on the lower extreme, for both customer and merchant locations.

City population (city_pop) has the highest number of outliers at 242,674, likely due to the

extreme variations in population sizes across different cities.

Transaction time (unix_time) does not show any outliers, indicating a uniform distribution

of transactions over time. These findings highlight the need for proper handling of extreme

values to improve the fraud detection model's performance.

Figure 5.3.5: Summary of Fraudulent Outliers Across Features

To check whether outliers contributed to fraudulent transactions, the dataset is split into

fraudulent and non-fraudulent transactions. The analysis shows 6,081 fraudulent transactions

with outliers and 322,534 non-fraudulent transactions with outliers. A total of 242,674

outliers were detected in the city population, but only 1,434 are linked to fraud. The

transaction amount has the highest number of fraudulent outliers, totalling 5,705, followed

by city population (1,434), longitude (298), merchant longitude (261), merchant latitude (46)

and latitude (43). Since most outliers are found in non-fraudulent transactions, this suggests

that extreme values alone do not necessarily indicate fraud.

CHAPTER 5

75
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Since fraudulent transactions with outliers may contain valuable fraud patterns, only non-

fraudulent outliers were removed from the dataset. This step aimed to reduce noise while

retaining important fraud indicators. After removing these non-fraudulent outliers, the dataset

size decreased from 1,296,675 to 974,141.

Figure 5.3.6: Outlier Handling Summary

5.3.3 EDA and Data Visualization

1. Fraud Count and Rate

To understand the distribution of fraudulent transactions within the dataset, an analysis of

fraud occurrence rates and their proportion to non-fraudulent transactions.

Figure 5.3.7: Fraud vs Non-Fraud Transactions and Percentage Distribution

After removing outliers, the dataset still displays a serious class imbalance, with non-

fraudulent transaction making up 99.23% (966,635 records) and fraudulent transactions

only 0.77% (7,506 records). This large contrast is visually showed in the bar chart, where

CHAPTER 5

76
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

fraud cases are barely visible compared to non-fraud transactions, and in the pie chart, which

shows that fraud makes up less than 1% of all transactions.

This imbalance creates a challenge for machine learning models, as they may bias towards

the majority class (non-fraud), resulting in high accuracy but poor fraud detection. To solve

this, techniques like SMOTE, oversampling and under-sampling will be applied in the later

steps to improve model performance.

2. Transaction Amount

Figure 5.3.8: Transaction Amount Distribution

The transaction amount distribution plot shows that most transactions are small amounts,

with focus on transactions below $200. This distribution is highly right skewed, meaning a few

transactions involve significantly larger amounts.

CHAPTER 5

77
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.9: Average Transaction Amount by Fraud and Non-Fraud

The bar chart comparing average transaction amounts between fraudulent and non-

fraudulent transactions. Average amount for non-fraudulent transactions is $51.07, while for

fraudulent transactions is $531.32. This means that fraudulent transactions normally involve

higher amounts compared to legitimate transactions.

Figure 5.3.10: Percentage Distribution of Fraud and Non-Fraud by Transaction Amount

CHAPTER 5

78
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This histogram comparing fraud and non-fraud rate across different transaction amounts

further supports previous findings. Lower transaction amounts have a higher non-fraud rate,

while the fraud rate increases as transaction amounts rise, especially in the range from $200

to $1,000. This pattern suggests that transaction amount is an important feature for fraud

detection models. Higher amount transactions should be closely monitored, as they are more

likely to be fraudulent.

3. Gender

Figure 5.3.11: Fraud and Non-Fraud Transactions by Gender

The analysis of fraud and non-fraud transactions by gender reveals that the total number of

transactions is higher for females (523,172) compared to males (443,463). However, the

number of fraudulent transactions is nearly same for both genders, with 3,735 fraud cases

among females and 3,771 among males.

CHAPTER 5

79
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.12: Fraud Ratio by Gender

Even though the number of fraud cases is almost the same for both genders, the fraud ratio is

different because the total number of transactions varies. Males have a higher fraud ratio of

0.84%, while females have a slightly lower fraud ratio of 0.71%. This suggests that

compared to their total transactions, fraud is more common among males than females.

4. Category

Figure 5.3.13: Fraud Rate by Category

CHAPTER 5

80
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This chart visualises the fraud rate across different transaction categories. The highest fraud

rate is observed in ‘shopping_net’ (2.41%), followed by ‘misc_net’ (2.00%) and

‘grocery_pos’ (1.94%), indicating that these three transaction categories are more vulnerable

to fraud. Moderate fraud rates are found in categories like ‘shopping_pos’ (1.01%),

‘gas_transport’ (0.57%), ‘misc_pos’ (0.44%), ‘travel’ (0.43%) and ‘grocery_net’ (0.40%),

suggesting that fraudsters also target essential services and frequent transactions. In contrast,

categories such as entertainment, personal care, kids/pets, foods/dining, home and

health/fitness exhibit fraud rate below 0.35%.

Figure 5.3.14: Rate Difference between Fraud and Non-Fraud Transactions by Category

This chart visualises the difference in fraud rates compared to non-fraud rates across various

transaction categories. Categories with positive values indicate a higher probability of fraud,

while negative values suggest a lower fraud risk. Category ‘shopping_net’ has the highest

rate difference of 15.65%, followed by ‘grocery_pos’ (+14.09%). Other risky categories

include ‘misc_net’ and ‘shopping_pos’ have positive rate differences of 7.56% and 2.72%

respectively.

The remaining categories have negative rate differences, indicating that fraud is less common

in these types of transactions. The home category shows the lowest fraud difference at -7.12%,

followed by kids/pets (-5.80%), food/dining (-5.17%), and health/fitness (-5.13%). Other

categories such as personal care (-4.26%) and entertainment (-4.24%) also have lower fraud

risk, possibly due to transaction verification processes or lower fraud attractiveness.

CHAPTER 5

81
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The dataset distinguishes between online (Card Not Present, CNP) and in-store (Card Present,

CP) transactions through its category labels. Categories ending with “_net” (e.g., shopping_net,

grocery_net) are CNP, while those ending with “_pos” (e.g., shopping_pos, grocery_pos) are

CP. Since CNP transactions lack physical verification, they are more exposed to fraud and are

the main focus of this study.

Figure 5.3.15: Fraud Count by Category

This analysis shows that ‘grocery_pos’ has the highest fraud count (1,743 cases), followed

by shopping_net (1,713), misc_net (915) and shopping_pos (843). However, a high fraud count

does not necessarily mean a high fraud rate. Although grocery_pos has the highest fraud count,

‘shopping_net’ has the highest fraud rate (2.41%).

Additionally, the top 4 fraud-heavy categories (grocery_pos, shopping_net, misc_net, and

shopping_pos) make up nearly 70% of all fraud cases. This means that fraud is mostly

happening in just a few transaction types, making them the most critical areas to focus on in

fraud detection. The remaining categories are grouped as ‘other’, as they contribute less to

overall fraud.

CHAPTER 5

82
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.16: Fraud and Non-Fraud Transactions by Category

After grouping the transaction categories, the bar chart shows the majority transactions belong

to the ‘other’ category, with 681,993 non-fraudulent transactions and 2,292 fraudulent ones.

Other categories like grocery_pos, misc_net, shopping_net and shopping_pos have

significantly fewer transactions in total, but the number of fraudulent transactions is relatively

evenly distributed across these categories.

Figure 5.3.17: Fraudulent Transactions and Fraud Rate by Category

CHAPTER 5

83
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This chart provides deeper insights by showing the fraud rate for each transaction category.

Although the ‘other’ category has the highest number of fraudulent transactions, its fraud rate

is only 0.33%, meaning fraud is relatively rare compared to the total number of transactions.

On the other hand, shopping_net has the highest fraud rate of 2.41%, indicating that even

though there are fewer fraud cases in total transactions, fraudulent activity is more concentrated

within this category. Similarly, misc_net (2.00%) and grocery_pos (1.94%) have high fraud

rates, indicating a high concentration of fraudulent transactions. Shopping_pos (1.01%) has a

lower fraud rate but remains higher than the ‘other’ category.

5. Merchant

Figure 5.3.18: Top 10 Merchants with the Highest Fraud Rate

The chart shows the top 10 merchants with the highest fraud rates, which range from 2.7%

to 3.6%. The merchant “fraud_Kozey-Boehm” has the highest fraud rate at 3.6%, followed

closely by “fraud_Herman, Treutel and Dickens” at 3.46%. These findings suggest that

some merchants are more susceptible to fraudulent transactions, either due to weaknesses in

their fraud prevention mechanisms or because they are targeted more frequently by fraudsters.

Notably, only four merchants have the fraud rates exceeding 3%.

CHAPTER 5

84
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.19: Fraud Count by Merchant

To complement these findings, the total fraud count per merchant is analysed. The results show

that fraud occurs across 679 merchants. The merchant with the highest fraud count is

“fraud_Rau and Sons” with 49 fraud cases, followed by “fraud_Cormier LLC” and

“fraud_Kozey-Boehm”, each with 48 cases. However, when evaluating fraud risk, the fraud

rate is often more meaningful than the fraud counts because it handles the overall transaction

volume at each merchant. A merchant with a high fraud counts but a low fraud rate may simply

process a large number of transactions, whereas a high fraud rate indicates a greater likelihood

of fraud occurring.

Figure 5.3.20: Percentage of Fraud Count for the Top 5 Merchant

Further analysis reveals that the top five merchants in term of fraud count only make up 3.18%

of total fraud cases, indicating that fraudulent transactions are widely distributed across a large

number of merchants. Since fraud is not highly focused within a small number of merchants,

it means that the merchant feature may not a strong indicator of fraud. As a result, this feature

is removed from the dataset to simplify the model and prevent it from learning patterns that

might not generalize well.

CHAPTER 5

85
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6. Job

Figure 5.3.21: Top 10 Jobs with the Highest Fraud Rate

The chart highlights the top 10 jobs with the highest fraud rates, all of them have a fraud rate

of 100%. However, the fraud count among these jobs varies, ranging from 7 to 16 cases. This

indicates that while every transaction recorded under these job titles was fraudulent, the total

number of fraudulent transactions per job remains relatively low.

Figure 5.3.22: Jobs with 100% Fraud Rate and Their Counts

CHAPTER 5

86
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The analysis further shows that there are 68 job categories with a 100% fraud rate, meaning

every recorded transaction under these jobs is fraudulent. However, as seen in the fraud count

distribution, fraudulent transactions are spread across 443 different job titles, with the

highest fraud count recorded under “Materials engineer” at 62 cases, followed by “Trading

standards officer” (56) and “Naval architect” (53).

Many job categories show a 100% fraud rate but with low fraud counts. Such findings suggests

that these job categories might not be truly high risk, it is likely due to sample size bias, leading

to misleading fraud rates. Since fraud cases are widely distributed, job titles alone may not be

strong fraud indicators.

Figure 5.3.23: Percentage of Fraud Count for the Top 10 Jobs

Since the top 10 categories with the most fraud cases make up only 6.77% of the total fraud

cases, this suggests that job is not a strong fraud indicator again. The decision to remove the

job column is justified to reduce noise and prevent the model from learning patterns that may

not generalize well.

CHAPTER 5

87
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7. Age

The trans_date_trans_time and dob features are converted to datetime format, then age is

extracted by calculating their difference in years.

Figure 5.3.24: Total Transactions and Fraud Count by Age

The highest total transactions occur at age 47, with 31,482 transactions, while the highest

fraud count is observed at age 53, with 198 fraudulent transactions. The fraud transaction

trends fluctuate, often crossing the total transaction line after age 30 and fraudulent

transactions tend to be relatively higher beyond age 47.

Figure 5.3.25: Fraud and Non-Fraud Transactions by Age Group

CHAPTER 5

88
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Age is categorised into four group: Young (0-18), Adult (19-44), Mid-Age (45-50) and Senior

(61+), allowing for a more detailed analysis of fraud trends across different life stages. Adult

group dominates in total transactions, with 478,029 non-fraud and 3,171 fraud cases. The Mid-

Age and Senior groups, though having fewer transactions, still show significant fraud cases,

with 2,195 and 2,003 fraud cases respectively. The Young group has the lowest non-fraud and

fraud count at 14,639 and 137 respectively.

Figure 5.3.26: Fraudulent Transactions and Fraud rate by Age Group

Further analysis of fraud rates reveals that the Young group has the highest fraud rate (0.93%),

closely followed by Seniors (0.92%). Despite having the highest transaction volume, Adult

group experiences the lowest fraud rate (0.66%), while the Mid-Age group falls in between at

0.84%. Both the Young and Senior groups show an increasing trend in fraudulent transactions,

highlighting their vulnerabilities. Therefore, fraud prevention efforts should focus on these

groups, even though Adult group contributes the highest number of transactions.

8. Hour

The analysis of fraud transactions by hour reveals significant trends in transaction activity and

fraudulent behaviour. First, trans_date_trans_time is converted into hourly data to examine

patterns throughout the day.

CHAPTER 5

89
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.27: Total Transactions and Fraud Transactions by Hour

The peak transaction hour is identified as 10 PM (Hour 22) with 50,498 transactions, which

also overlap with the highest number of fraud cases at 1,931. This suggests that fraudsters

may be exploiting the high transaction volume during late hours. Fraud activity remains

significantly higher between 10 PM and 3 AM compared to other hours.

Figure 5.3.28: Percentage of Fraudulent Transaction Amount by Night and Day

CHAPTER 5

90
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Further analysis separated fraud into night (10 PM - 3 AM) and day (4 AM - 9 PM), showing

that 84.43% of fraudulent transaction amounts occur at night, compared to only 15.57%

during the day. This indicates that nighttime is a high-risk period for fraudulent activities,

likely due to reduced monitoring and delayed detection. To mitigate these risks, financial

institutions and e-commerce platforms should enhance fraud detection measures, particularly

during late hours.

Figure 5.3.29: Conversion of is_night Feature

For machine learning purposes, the is_night feature is created to indicate whether a transaction

occurred during high-risk nighttime hours (10 PM - 3 AM). A value of 1 represents nighttime

transactions, while 0 represents transactions during the rest of the day.

9. Day of Week

Figure 5.3.30: Fraud and Non-Fraud Transactions by Day of the Week

CHAPTER 5

91
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The chart shows the total transactions for each day, distinguishing between fraud and non-fraud

transactions. Monday has the highest total transactions (188,953), while Wednesday records

the lowest (98,107). Fraudulent transactions are present throughout the week, with peaks on

Saturday (1,227) and Sunday (1,216), suggesting that fraud activity increases over weekends.

Figure 5.3.31: Fraudulent Transactions and Fraud Rate by Day of the Week

This graph further highlights fraud trends by using the fraud rate. The fraud rate increases from

Monday to Friday, with a peak on Friday with 0.94%, then slightly declining over the

weekend. Despite a high number of fraud cases on Saturday and Sunday, the fraud rate itself

is relatively lower compared to Friday.

This pattern suggests that fraudsters may take advantage of more spending on weekends, but

the risk per transaction is slightly lower. The higher fraud rate on Fridays may indicate that

fraudsters target end-of-week financial activities. These insights highlight the need for more

fraud monitoring on Fridays and weekends to reduce risks.

CHAPTER 5

92
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

10. Distance to Merchant

Figure 5.3.32: Distance Calculation Using Haversine Formula

The Haversine formula is applied to calculate the distance (in km) between the transaction

location and the merchant's location using latitude and longitude. The result is stored in the

distance column, helping to identify unusual transactions that may indicate fraud.

Figure 5.3.33: Transaction and Fraud Count by Distance

This analysis examines the relationship between transaction distance and fraud occurrence. The

histogram (green bars) represents the frequency of transactions at different distance ranges,

while the blue line shows the number of fraudulent transactions within each distance ranges.

The transaction frequency follows a normal-like distribution, with a peak at around 80 km.

Fraud transactions also follow a similar trend, with the highest counts observed in middle range

distances (70-90 km).

CHAPTER 5

93
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.34: Transaction and Fraud Rate by Distance

This graph further showed how fraud rates vary with transaction distance. Similar to previous

graph, the histogram represents the frequency of transactions at different distances, but the blue

line shows the fraud rate across those distances. The fraud rates remain relatively stable across

most distances but show an increase at very long distances, with a sharp peak around 140 km.

This suggests that fraudsters may exploit extreme distances for fraudulent activities, possibly

to bypass location-based security measures.

11. City Population

To understand how city populations are distributed, a box plot analysis is conducted using IQR

method to identify the normal range and outliers.

Figure 5.3.35: Boxplot of City Population with Outlier Ranges

CHAPTER 5

94
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the previous step, outliers with non-fraudulent transactions were removed to focus on

meaningful fraud trends. Most cities have populations below 11,611, indicating that smaller

cities dominate the dataset. However, 122,857 cities were identified as outliers, meaning their

populations significantly exceed this threshold.

Figure 5.3.36: Assignment of City Population Categories

Since city populations range from 23 to over 2.9 million, they are grouped into four categories:

Small Cities, Medium Cities, Large Cities, and Very Large Cities. This grouping ensures a

meaningful classification, balancing the majority of cities within reasonable population sizes

while accounting for larger urban centres.

Figure 5.3.37: Transaction and Fraud Count by City Population Group

The bar chart represents the number of transactions across these population groups, while the

dotted line represents the corresponding fraud count. Small cities have the highest transaction

CHAPTER 5

95
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

volume, with 731,825 transactions, followed by large, medium and very large cities. Fraud

count follows a similar pattern, with small cities have the most fraud cases (4,526), while

medium and large cities have significantly lower fraud counts (638 and 908 respectively).

Interestingly, fraud cases rise again in very large cities even though with fewer transactions,

where all 1,434 transactions are fraudulent. This observation suggests a potential sampling or

reporting bias due to the prior removal of outliers.

12. Correlation Analysis

Figure 5.3.38: Heatmap of Numerical Features for Final Dataset

The heatmap visualizes the correlation between various features in the dataset, helping to

identify potential relationships that may be useful for fraud detection. The correlation values

that close to 1 or -1 indicate a strong correlation, values near 0 indicate little to no correlation.

In this case, the highest correlation with fraud (is_fraud) is observed in the transaction

amount (amt), with a correlation of 0.6, suggesting that fraudulent transactions tend to have

higher amounts. The city population (city_pop) also shows a moderate correlation of 0.26,

indicating that fraud is slightly more frequent in larger cities. Additionally, is_night has a

weaker but still notable correlation of 0.13, implying that fraudulent transactions are more

CHAPTER 5

96
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

likely to occur at night. Other features like lat, long, unix_time, merch_lat, merch_long, hour

and age have very low correlations, while day and distance showed almost no correlation with

fraud.

The analysis revealed a very high correlation between lat and merch_lat (0.99) and between

long and merch_long (1.00). Due to this strong multicollinearity, their individual correlations

with is_fraud are very low, indicating potential redundancy. Additionally, the features

trans_date_trans_time, dob and unix_time do not provide direct value for fraud detection, as

key information such as hour and age has already been extracted. To avoid unnecessary

features and improve model efficiency, these variables are removed from the dataset.

5.3.4 Encoding

Figure 5.3.39: Binary Encoding, One-hot Encoding and Target Encoding Applied

The encoding process transforms categorical and boolean variables into a format suitable for

machine learning. First, the gender column is converted into numerical values using binary

encoding, where 'M' is replaced with 1 and 'F' with 0.

One-hot encoding is applied to categorical variables such as category, age_group and

pop_group, creating separate binary columns for each unique category. These binary columns

are then converted into integer values (0 and 1) to ensure compatibility with machine learning

models.

CHAPTER 5

97
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Additionally, the target encoding is applied to the cc_num column by calculating the fraud

rate for each unique credit card number based on the mean fraud occurrence. This

transformation preserves useful fraud risk information while preventing potential data leakage.

5.3.5 Resampling, Data Splitting and Modelling

1. Initiating the Modelling Process

The process begins by calling the fit_and_evaluate_model() function. This function integrates

all the necessary steps in the machine learning workflow. It performs the following tasks

sequentially: Resampling the Data, Splitting the Data, Initializing and Training the Model and

Evaluating the Model.

Figure 5.3.40: Function Calling for Random Forest without Resampling

Figure 5.3.41: Function Definition for Model Training and Evaluation

2. Resampling the Data

The first operation inside fit_and_evaluate_model() addresses the class imbalance issue. The

resample_data() function is called to apply the specified resampling technique — SMOTE,

random oversampling, random undersampling, or no resampling. It returns the resampled

CHAPTER 5

98
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

feature set (X_res) and label set (y_res). This step ensures that the dataset is balance before the

data is split into training and testing sets.

Figure 5.3.42: Function Definition for Resampling

3. Splitting the Data

The resampled data (X_res, y_res) is then split into training and testing datasets using a 70:30

split. The split is performed using train_test_split() with the stratify=y_res parameter to

maintain consistent class distribution across both sets. This ensures that the model is trained

and tested on representative samples.

Figure 5.3.43: Code for Data Splitting

4. Initializing and Training the Model

Based on the model_type parameter, the function initializes one of the selected classifiers:

Random Forest, XGBoost, or AdaBoost. The chosen model is then trained using the training

dataset (X_train, y_train) through the fit() method.

Figure 5.3.44: Code for Model Training

CHAPTER 5

99
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5. Evaluating the model

Once the model is trained, the evaluate_model() function is called to assess its performance.

This function calculates various performance metrics such as accuracy, recall, precision, F1-

score, MCC, and AUC. Additionally, it outputs the confusion matrix and classification report

for further insights into how the model performs on testing datasets.

Figure 5.3.45: Function Definition for Model Evaluation

6. Repeating for All Combinations

Steps 1 to 5 are repeated for all combinations of resampling methods (SMOTE,

oversampling, under-sampling and no resampling) and machine learning models (Random

Forest, XGBoost and AdaBoost). This allows for a comprehensive comparison of how

different model-resampling pairs perform in detecting fraud, enabling the selection of the

best-performing configuration.

CHAPTER 5

100
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.6 Model Evaluation and Comparison

Pipeline 1: Target Encoding → Resampling → Data Splitting

1. Performance Metrics

 Random Forest XGBoost AdaBoost

No

Resampling

SMOTE

Over-

sampling

Under-

sampling

Table 5.3.2: Evaluation Metrics of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection

CHAPTER 5

101
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Without resampling, Random Forest achieves a high Precision of 0.9969, but the Recall

drops to 0.8441, suggesting poor handling of the minority class. With the use of Oversampling

and SMOTE, Random Forest achieves perfect and near-perfect Recall (1.000 and 0.9992) and

F1-Score (0.9999 and 0.9990). This suggests Random Forest excellent in fraud detection but

raise the concerns about overfitting. For Under-sampling, the performance drops significantly

with the lowest accuracy of 0.9691, among all Random Forest configurations, showing its

inefficiency for highly imbalanced dataset.

For XGBoost, Oversampling achieves the best performance, with an outstanding Recall

of 0.9999, F1-Score of 0.9959 and MCC of 0.9919. SMOTE also performs well, with slightly

lower scores than Oversampling, but it offers a higher Precision of 0.9939. Without resampling,

XGBoost achieves the highest Accuracy of 0.9997, but its Recall drops significantly to 0.8552,

which is similar to Random Forest. This significant drop suggests poor handling of the model

with minority class. Under-sampling shows a decline across all performance metrics, further

supporting the conclusion that it is not an effective resampling technique for this dataset.

AdaBoost shows weaker performance compared to other models across all resampling

techniques. Its best results are achieved with the Oversampling, reaching a F1-Score of 0.9632

and an AUC of 0.9935. However, the worst performance occurs without resampling, where the

Recall is only 0.8157, even though achieving a perfect Precision. This suggests that AdaBoost

is too focus on minimising false alarms when no resampling technique is applied. This means

that the model has strong bias toward the majority class. As a result, it tends to misclassify the

minority class, leading to imbalanced predictions and poor detection of fraud cases.

In comparing the different resampling techniques, it becomes clear that no resampling

leads to high Precision but poor Recall. It is not suitable for imbalanced datasets, especially in

fraud detection where Recall is very important. SMOTE significantly improves Recall, F1-

Score and MCC, especially for Random Forest and XGBoost, showing the better in

generalization. Oversampling performs similarly or slightly better than SMOTE, achieving

near-perfect scores in both Random Forest and XGBoost. Conversely, Under-sampling

consistently reduces performance across all models, likely due to the loss of valuable

information from the majority class.

CHAPTER 5

102
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To find the best-performing model, the combination of model and resampling technique

that consistently achieving the highest metrics should be considered. Based on the analysis,

Random Forest with Oversampling archives perfect or near perfect scores across all metrics,

indicating high generalization. Random Forest with SMOTE follows closely behind, with

slightly lower overall performance compared to that of Oversampling. XGBoost with

Oversampling also performs excellently, with slightly lower Precision and MCC than Random

Forest but offering more balanced performance.

In short, Random Forest and XGBoost consistently deliver the best performance.

Random Forest and XGBoost have the similar performance. This is because both of them are

tree-based ensemble models. This type of models inherently handles class imbalance through

feature selection and strong pattern learning. However, since they share similar strengths, direct

comparison may not be valuable unless tested under more challenging conditions. Resampling

methods like SMOTE and Oversampling help improving model performance by addressing

imbalanced dataset, generating synthetic samples or duplicating existing ones to better classify

minority class instances. In contrast, Under-sampling tends to reduce effectiveness, especially

for XGBoost and AdaBoost.

CHAPTER 5

103
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Classification Report

 Random Forest XGBoost AdaBoost

No

Resampling

SMOTE

Over-

sampling

Under-

sampling

Table 5.3.3: Classification Reports of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection

CHAPTER 5

104
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A classification report is important to determine how well a model performs on different

classes, providing metrics like Precision, Recall, F1-Score and Support for each class. Unlike

performance metrics which summarise performance in a single value, a classification report

provides a breakdown for each class, enabling for deeper insights into how the model behaves,

especially in imbalanced datasets where the majority class often dominates performance. Each

combination of model and resampling method was evaluated using a classification report to

determine how well the models handle both majority class (class 0) and minority class (class

1).

Without resampling, all models showed a bias toward the majority class (Class 0),

especially with AdaBoost achieves the lowest Recall of 0.82 for Class 1, meaning that it missed

18% of minority-class instances, despite its Precision is perfect. Although XGBoost performs

slightly better than Random Forest and AdaBoost in Recall with 0.86, but it still shows

limitation with minority-class identification. Without resampling leads to high Precision but

poor Recall, which is a critical issue in fraud detection, where missing positive fraud cases is

costly.

The use of SMOTE and Oversampling shows a large improvement in performance

across all models. Random Forest and XGBoost achieves nearly perfect Precision, Recall and

F1-Score for Class 1 under these resampling methods. AdaBoost also improved significantly,

with a high F1-Score of 0.96 in Class 1, even though it still behind the other two models.

However, perfect or near-perfect scores may indicate overfitting, especially for Oversampling,

This is because the same minority samples are repeated too often, the model has potentially to

memorise patterns in the oversampled data rather than generalising to unseen data.

With the use of Under-sampling, the performance of models drops compared to

SMOTE and Oversampling because a portion of data is removed. Despite this, the results

remain strong, with XGBoost achieving the highest F1-Score of 0.98 for Class 1, followed by

Random Forest of 0.97 and AdaBoost of 0.96. These results show that these models can

perform well even with a smaller and balanced dataset. However, Under-sampling comes with

risk of discarding valuable information, which could hinder generalisation on unseen data. This

trade-off becomes even more critical when considering the original class distribution, where

Class 0 includes 289,991 transactions, while Class 1 consists of only 2,552, meaning that 99%

CHAPTER 5

105
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

of the majority class is discarded. Given this imbalance, Under-sampling may not be the most

suitable approach, especially when data retention is important.

When comparing models overall, XGBoost is proven to be the most robust and

consistent across all resampling strategies, showing strong recall and F1-Scores even without

using resampling technique. Random forest shows excellent performance when combining

with SMOTE and Oversampling, but its Recall dropped more significantly without resampling.

AdaBoost tends to underperform slightly while it is still competitive, especially with

imbalanced data.

CHAPTER 5

106
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Confusion Matrix

 Random Forest XGBoost AdaBoost

No

Resampling

SMOTE

CHAPTER 5

107
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Over-

sampling

Under-

sampling

Table 5.3.4: Confusion Matrixes of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection

CHAPTER 5

108
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The confusion matrix provides clear breakdown into how models classify fraud (class

1) and non-fraud (class 0) transactions by showing exact numbers of correct and incorrect

predictions. This helps to identify specific errors that cannot be directly found in performance

metrics or classification report.

When training and testing on the original imbalanced dataset with 289,991 non-fraud

cases and 2,552 fraud cases, all three models show somewhat difficult to identify fraud cases

correctly. Random Forest and XGBoost show relatively better performance, correctly

identifying 1,901 and 1,926 fraudulent transactions, but still missing 351 and 326 respectively.

AdaBoost performs the worst without resampling, detecting only 1,837 frauds while missing

415 frauds, which shows a bias towards the majority class. This is a normal problem in

imbalanced datasets where minority class is underrepresented. Surprisingly, it produces no

False Positive, achieving perfect Precision for fraud detection.

The models’ ability to detect fraud is improved by using SMOTE. Random Forest with

SMOTE shows a very strong performance with only 239 False Negative and 316 False

Positives. This means that among all actual fraud cases (289,990), only 239 was predicted

incorrectly as non-fraud, while 316 legitimate transactions are wrongly flagged as fraud.

XGBoost also performs well under SMOTE with a False Negative of 2,342 and False Negative

of 1,774, although higher than those of Random Forest. AdaBoost benefits the least from

SMOTE and misclassifying a large number of both frauds (16,875 False Negatives) and non-

frauds (5,271 False Positives), which indicate difficulty in capturing patterns in synthetically

balanced data as SMOTE may introduce noise for some models.

Oversampling reach nearly perfect results for Random Forest, which detects all 289,990

fraudulent transactions with only 47 False Positives. This may indicate potential overfitting as

such high scores may not generalise well to unseen data. XGBoost also performs strongly, only

25 frauds are missed, and 2,336 legitimate transactions are misclassified as fraud. AdaBoost

shows an improvement in False Negative if compared to using SMOTE, with a number of

14,589 fraud missed, but the False Positive is increase to 6,428. AdaBoost still remain the

weakest model among all.

Under-sampling reduces the dataset to a balanced but smaller size, retaining only 2,252

non-fraudulent out of original of 289,991. This leads to a slightly lower overall performance.

CHAPTER 5

109
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

However, the results remain good, with XGBoost achieves the best balance here with only 51

False Negatives and 58 False Positives. Random Forest follows closely with 84 False Negatives

and 55 False Positives, while AdaBoost misclassifies the most again with 111 frauds missed

and 76 legitimate transactions flagged incorrectly. Despite loss of data and patterns from

majority class, the models still generalise quite well, which shows that they can work on smaller

datasets.

CHAPTER 5

110
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.7 Performance Across Different Pipelines

Pipeline 2: Resampling → Data Splitting → Target Encoding

Random Forest

 No Resampling SMOTE Oversampling Under-sampling

Accuracy 0.9987 0.9986 0.9999 0.9658

Recall 0.8406 0.9981 1.0000 0.9636

Precision 0.9963 0.9991 0.9998 0.9679

F1-Score 0.9118 0.9986 0.9999 0.9657

MCC 0.9146 0.9971 0.9998 0.9316

AUC 0.9816 1.0000 1.0000 0.9942

Table 5.3.5: Performance of Random Forest with Pipeline 2

XGBoost

 No Resampling SMOTE Oversampling Under-sampling

Accuracy 0.9986 0.9932 0.9955 0.9720

Recall 0.8477 0.9907 0.9996 0.9738

Precision 0.9690 0.9957 0.9914 0.9704

F1-Score 0.9043 0.9932 0.9955 0.9721

MCC 0.9057 0.9865 0.9910 0.9441

AUC 0.9976 0.9998 0.9998 0.9967

Table 5.3.6: Performance of XGBoost with Pipeline 2

AdaBoost

 No Resampling SMOTE Oversampling Under-sampling

Accuracy 0.9986 0.9508 0.9635 0.9594

Recall 0.8157 0.9174 0.9490 0.9480

Precision 1.0000 0.9831 0.9773 0.9700

F1-Score 0.8985 0.9491 0.9630 0.9589

MCC 0.9025 0.9036 0.9274 0.919

AUC 0.9943 0.9894 0.9935 0.992

Table 5.3.7: Performance of AdaBoost with Pipeline 2

In the previous evaluation of Pipeline 1, target encoding was applied before the data

splitting, followed by resampling and model training. However, this sequence introduces a

potential issue of data leakage. Target encoding replaces the original feature values (cc_num

CHAPTER 5

111
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

in this case) with their derived values (fraud rate per cc_num). If this encoding is done before

the dataset splitting into training and testing sets, information from the entire dataset, including

the testing part will contributes to the encoded values. As a result, the model unintentionally

accesses to target information from testing set during training. This will lead to artificially high-

performance metrics and poor generalizability to unseen data. So, alternative modelling

sequence was tested where target encoding is applied after data splitting. This allows for a

comparison between the two approaches and helps evaluate the impact of potential data leakage

on model performance.

When comparing Random Forest across both modelling pipelines, the performance is

slightly dropped when No Resampling, SMOTE or Under-sampling applied, as shown Table

5.3.5. However, with Oversampling, there is no difference in results between both pipelines.

This indicates that Oversampling is robust to changes in processing sequence, likely because it

replicates existing samples without introducing synthetic patterns based on target variable. The

slightly drop in other methods suggests that when target encoding is applied before data

splitting, the model may unintentionally refer to the target distribution across the whole dataset,

causing data leakage. This leakage improves the model performance during training, which

may not generalise well to unseen data, this is why the scores are slightly lower in this pipeline.

For XGBoost, the trend is quite similar to Random Forest. The performance dropped

slightly across most metrics when switching to Pipeline 2, which gain supports the presence of

mild data leakage in Pipeline 1. However, SMOTE stands out with slightly improvements in

Accuracy, Precision, F1-Score and MCC in Pipeline 2 as shown in Table 5.3.6, highlighting

that XGBoost may better utilise the balanced structure introduce by SMOTE once data leakage

is controlled. In contrast, no resampling and Under-sampling result in more noticeable

performance drops, by which F1-Score for no resampling drops from 0.9085 to 0.9043 and for

SMOTE drops from 0.9085 to 0.9043. This highlights that these two resampling methods are

less effective and possibly more dependent on pipeline ordering for maintaining performance.

Basically, XGBoost performs best when the data is balanced. If the data is not balanced or too

much information lost, it does not perform as well, especially in a proper setup without data

leakage.

AdaBoost shows a different pattern. With no resampling method applied, its

performance is stable between both pipelines, only AUC drops marginally from 0.9951 to

CHAPTER 5

112
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

0.9943, as shown in Table 5.3.7. This suggests that AdaBoost is relatively insensitive to

pipeline changes when no resampling is applied. This might be due to its sequential boosting

nature, which can correct individual misclassifications without relying heavily on target-

encoded data.

In contrast, SMOTE causes a more noticeable drop in metrics, where Accuracy drops

from 0.9618 to.0.9508, Recall drops from 0.9418 to 0.9174, F1-Score drops from 0.9610 to

0.9491 and MCC from 0.9244 to 0.9036. Interestingly, Precision and AUC increase to 0.9831

and 0.9894 respectively. This may mean that the model becomes more cautious and gives more

false alarms, but it is confident and accurate when it does predict fraud, thus raising AUC and

Precision. This reflects the changes in decision threshold or learning pattern due to the synthetic

samples introduced by SMOTE.

In short, the order of steps in the pipeline is important. If target encoding is done before

splitting the data, it can leak information from the labels into training. This makes the model

seem better than it actually is. This is especially a problem when using resampling methods

like SMOTE that create fake data. Pipeline 2 is more realistic because it follows how things

would work in real life. Random Forest and XGBoost are slightly affected by this change, but

AdaBoost is more sensitive to whether the data is balanced than to the sequence of steps, which

makes it worth looking into further.

CHAPTER 5

113
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Pipeline 3: Target Encoding → Data Splitting → Resampling

Random Forest

 No Resampling SMOTE Oversampling Under-sampling

Accuracy 0.9988 0.9983 0.9988 0.9786

Recall 0.8441 0.8726 0.8512 0.9645

Precision 0.9969 0.9055 0.9851 0.2601

F1-Score 0.9142 0.8887 0.9133 0.4097

MCC 0.9168 0.8880 0.9151 0.4950

AUC 0.9830 0.9896 0.9860 0.9956

Table 5.3.8: Performance of Random Forest with Pipeline 3

XGBoost

 No Resampling SMOTE Oversampling Under-sampling

Accuracy 0.9987 0.9944 0.9926 0.9755

Recall 0.8552 0.9094 0.9418 0.9711

Precision 0.9688 0.586 0.5118 0.2357

F1-Score 0.9085 0.7127 0.6632 0.3794

MCC 0.9096 0.7276 0.6914 0.4722

AUC 0.9978 0.9947 0.9972 0.9969

Table 5.3.9: Performance of XGBoost with Pipeline 3

AdaBoost

 No Resampling SMOTE Oversampling Under-sampling

Accuracy 0.9986 0.9783 0.9759 0.9749

Recall 0.8157 0.9294 0.9529 0.9547

Precision 1.0000 0.2532 0.2362 0.2294

F1-Score 0.8985 0.398 0.3786 0.3699

MCC 0.9025 0.479 0.4680 0.4615

AUC 0.9951 0.9904 0.9942 0.9943

Table 5.3.10: Performance of AdaBoost with Pipeline 3

In Pipeline 3, the sequence of operations starts from target encoding, followed by

splitting dataset into training and testing sets and finally applying resampling techniques only

to the training set. This approach is different from Pipeline 1 and Pipeline 2, where resampling

is applied before data splitting. As a result, Pipeline 3 introduces a key problem, which

CHAPTER 5

114
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

resampling is applied in isolation to only part of the data, leading to an incomplete correction

of class imbalance and potential distribution mismatch between training and testing sets.

For Random Forest, the best performance is when no resampling applied. It achieves a

high F1-Score of 0.9142, Precision of 0.9969 and MCC of 0.9168, as shown in Table 5.3.8.

However, when resampling techniques like SMOTE and Oversampling are applied after

splitting, the performance does not improve in some cases worsened. For example, SMOTE

achieves a better Recall of 0.8726, but its Precision drops to 0.9055 and F1-Score drops to

0.8887. Under-sampling has significantly improved Recall to 0.9645 but caused a drastic drop

in Precision to only 0.2601, which led to a sharp decrease in F1-Score to 0.4097. This indicates

that the model is aggressively predicting positives, even though many of them are incorrect.

This is due to the skewed training distribution created by Under-sampling a small subset of the

majority class. The low Precision and F1-Score confirm that although the model can detect

many fraud cases (high Recall), it also misclassified many normal transactions as fraudulent

(low Precision).

XGBoost follows a similar trend. It performs well without any resampling, achieving

Accuracy of 0.9987, F1-Score of 0.9085, MCC of 0.9096 and AUC of 0.9978, as shown in

Table 5.3.9. When resampling techniques are applied after splitting, especially SMOTE and

Oversampling, there is a significant decline in Precision, where it drops to 0.586 and 0.5118

respectively. The decline is even bigger with under-sampling, where precision falls to just

0.2357. These low Precision values significantly reduce the F1-Score to 0.7127, 0.6636 and

0.3794 respectively, although the Recall is high. This imbalance indicates that resampling

methods fail to generalise well on the unseen test data because they only applied to the training

set. This can be attributed to overfitting on the resampled training set, where synthetic minority

samples or duplicated minority observations skewed the learning patterns. The model learns

the resampled training data too much instead of learning real patterns, so it fails on new data.

AdaBoost shows even worse performance degradation. Without resampling applied, it

achieves a modest F1-Score of 0.8985, even lower than Random Forest and XGBoost, as shown

in Table 5.3.10. While using SMOTE, Oversampling and Under-sampling, Precision falls to

just 23%-25%, while F1-Score and MCC are below 0.4 and 0.5 respectively. This suggests that

AdaBoost is more sensitive to noise from synthetic or duplicated samples generated during

CHAPTER 5

115
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

resampling. Under-sampling introduces another problem where the model becomes overly

biased toward the minority class, sacrificing Precision and generalizability in the process.

Pipeline 3 generally not performs well because of applying resampling methods after

data splitting. This sequence of operations is not recommended because the model learns from

a training set whose class distribution has been artificially changed, but the testing set remains

imbalanced. This creates a mismatch between what the model learns and what it sees during

testing. As a result, the model performs well during training but fails to generalise on new data.

It often gives a high Recall but low Precision.

In contrast, Pipeline 1 and Pipeline 2 fix this issue by resampling before data splitting.

This makes sure both training and testing sets have a consistent class distribution. It helps the

model to learn the patterns better and provides more reliable results. In short, Pipeline 3 with

data splitting done first before resampling is not suitable for imbalanced classification tasks

like fraud detection, as it creates mismatches in data distribution, increases the risk of

overfitting and reduce ability of model to generalise well to unseen data.

CHAPTER 5

116
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.8 Hyperparameter Tuning

Model performance is highly influenced by hyperparameters, which control complexity,

regularization, and decision rules. Instead of relying on defaults, systematic tuning can improve

generalization and help balance recall, precision, and stability—especially in imbalanced tasks

like fraud detection.

Two widely used approaches for hyperparameter optimization are Randomized Search and

Grid Search. Randomized Search samples parameter combinations at random from defined

ranges. It is faster and more efficient when the parameter space is large. Grid Search, in contrast,

evaluates all possible combinations within a smaller, targeted space. While slower, it ensures

thorough exploration of promising values.

In this study, Randomized Search was limited to 20 iterations (n_iter=20) with 3-fold cross-

validation (cv=3) to balance efficiency and robustness. Grid Search also used 3-fold cross-

validation, but systematically explored a smaller, more focused hyperparameter space. This

ensured comparability between the two methods, while keeping computational cost

manageable.

Both methods were tested under four resampling strategies: no resampling, SMOTE,

oversampling, and under-sampling. This allowed comparison of whether performance gains

came from algorithm tuning, data balancing, or both. The same approach was applied across

Random Forest, XGBoost, and AdaBoost for consistency.

CHAPTER 5

117
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Random Forest

Randomised Search Hyperparameter Space Grid Search Hyperparameter Space

Table 5.3.11: Random Forest Hyperparameter space settings

For Random Forest, the hyperparameter space was designed to balance model complexity,

generalization, and computational cost, as shown in Table 5.3.11. The number of estimators

(n_estimators) was set between 50 and 200 in Randomized Search to explore both smaller and

larger ensembles, while Grid Search focused on 100 and 200 as practical defaults that provide

stability without excessive computation. The maximum depth (max_depth) parameter

included both unrestricted trees (None) and constrained depths (5, 10, 15, 20) in Randomized

Search to test how limiting tree growth impacts overfitting, whereas Grid Search narrowed this

to None, 10, and 20 for targeted optimization. The minimum samples required to split an

internal node (min_samples_split) and minimum samples required at a leaf

(min_samples_leaf) were varied across small values (2, 5, 10 for split; 1, 2, 4 for leaf) to

regulate how finely trees partition the data, with Grid Search refining this range to 2 and 5 for

splits and 1 and 2 for leaves for efficiency. Finally, the max_features parameter was restricted

to 'sqrt' and 'log2', two common strategies in Random Forests that promote diversity among

trees and help reduce correlation between them

CHAPTER 5

118
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.3.12: Random Forest Hyperparameter Tuning Results

Without hyperparameter tuning Randomised search Grid search

No resampling + Random Forest

Accuracy: 0.9987

Recall: 0.8406

Precision: 0.9963

F1-Score: 0.9118

MCC: 0.9146

AUC: 0.9816

Best Accuracy (CV): 0.9987

Best Params: {'n_estimators': 150, 'min_samples_split': 5,

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': None}

Accuracy: 0.9988

Recall: 0.8401

Precision: 0.9995

F1-Score: 0.9129

MCC: 0.9158

AUC: 0.9892

Best Accuracy (CV): 0.9987

Best Params: {'max_depth': None, 'max_features': 'sqrt',

'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}

Accuracy: 0.9988

Recall: 0.8424

Precision: 0.9963

F1-Score: 0.9129

MCC: 0.9155

AUC: 0.9872

SMOTE + Random Forest

Accuracy: 0.9986

Recall: 0.9981

Precision: 0.9991

F1-Score: 0.9986
MCC: 0.9971

AUC: 1.0000

Best Accuracy (CV): 0.9982
Best Params: {'n_estimators': 150, 'min_samples_split': 5,

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': None}

Accuracy: 0.9984

Recall: 0.9977

Precision: 0.9991

F1-Score: 0.9984

MCC: 0.9968

AUC: 1.0000

Best Accuracy (CV): 0.9985
Best Params: {'max_depth': None, 'max_features': 'sqrt',

'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}

Accuracy: 0.9986

Recall: 0.9981

Precision: 0.9990

F1-Score: 0.9986

MCC: 0.9971

AUC: 1.0000

Oversampling + Random Forest

Accuracy: 0.9999

Recall: 1.0000

Precision: 0.9998
F1-Score: 0.9999

MCC: 0.9998

AUC: 1.0000

Best Accuracy (CV): 0.9999

Best Params: {'n_estimators': 150, 'min_samples_split': 5,

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': None}

Accuracy: 0.9999

Recall: 1.0000
Precision: 0.9998

F1-Score: 0.9999

MCC: 0.9998

AUC: 1.0000

Best Accuracy (CV): 0.9999

Best Params: {'max_depth': None, 'max_features': 'sqrt',

'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}

Accuracy: 0.9999

Recall: 1.0000
Precision: 0.9998

F1-Score: 0.9999

MCC: 0.9998

AUC: 1.0000

Undersampling + Random Forest

Accuracy: 0.9658

Recall: 0.9636

Precision: 0.9679

F1-Score: 0.9657

MCC: 0.9316

AUC: 0.9942

Best Accuracy (CV): 0.9673

Best Params: {'n_estimators': 200, 'min_samples_split': 2,

'min_samples_leaf': 2, 'max_features': 'sqrt', 'max_depth': None}

Accuracy: 0.9660

Recall: 0.9618

Precision: 0.9700

F1-Score: 0.9659

MCC: 0.9321
AUC: 0.9944

Best Accuracy (CV): 0.9677

Best Params: {'max_depth': None, 'max_features': 'sqrt',

'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 200}

Accuracy: 0.9658

Recall: 0.9609

Precision: 0.9704

F1-Score: 0.9656

MCC: 0.9317
AUC: 0.9945

CHAPTER 5

119
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Random Forest Hyperparameter Tuning Results Interpretation

When no resampling was applied, the results indicated that Random Search and Grid Search

produced nearly identical performance. Both configurations achieved training and testing

accuracies close to 0.9987 and 0.9988 respectively, with MCC values around 0.915. This shows

that the default parameters of Random Forest were already highly effective, and fine-tuning

did not bring significant improvements. Grid Search slightly improved recall, while Random

Search provided better precision, but the difference was negligible. Compared to the model

performance before fine-tuning, both approaches showed almost no improvement, confirming

that the default Random Forest parameters were already highly effective. This suggests that in

the absence of resampling, Random Forest is robust enough to perform well without the need

for extensive parameter optimization.

When SMOTE was applied, Random Forest performance remained almost the same before

fine-tuning, with only very small changes across metrics since the model was already

performing at a high level. Both Random Search and Grid Search produced almost identical

results, with training and testing accuracies remaining above 0.998 and MCC values close to

0.997. Grid Search showed slightly higher recall, reflecting a marginally stronger ability to

identify minority class cases, while Random Search provided slightly better performance in

precision. The main difference in parameter settings between the two approaches was that Grid

Search favoured a smaller split size, which tends to improve recall, whereas Random Search

leaned toward settings that maintained stronger precision. Compared to the model before fine-

tuning, the differences in performance were minimal, showing only a very slight drop or gain

across metrics. This confirms that the fine-tuning process did not significantly alter the

effectiveness of Random Forest under SMOTE, and that the real performance improvement

came from the resampling itself rather than hyperparameter adjustments.

When oversampling was applied, Random Forest achieved the strongest performance, with

both Random Search and Grid Search producing identical outcomes. Training and testing

accuracies were nearly perfect and MCC values reached 0.9998, indicating near-perfect

classification. Although the two search methods selected different parameter settings, these

differences had no effect on the results, as both models converged to the same performance

level. Compared to the model before fine-tuning, there was no real improvement, since

Random Forest already performed at its maximum under oversampling. This shows that

CHAPTER 5

120
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

oversampling was the key factor driving the near-perfect results, while fine-tuning brought no

measurable gains despite the different parameter choices.

When under-sampling was applied, Random Forest performance was lower compared to other

resampling methods and fine-tuning did not provide meaningful improvements. Training and

testing accuracies were around 0.966, while MCC values were slightly above 0.93. Compared

to before fine-tuning, recall dropped a bit, while precision improved slightly, showing that the

model became more conservative in identifying minority class cases. Between the two search

approaches, Grid Search produced slightly better precision but at the cost of lower recall, while

Random Search maintained a more balanced performance with a marginally higher MCC and

F1-score. Overall, fine-tuning under under-sampling did not enhance performance and in fact

introduced a small trade-off between recall and precision, confirming that Random Forest

remains strong in its default form and that under-sampling itself is the main factor behind the

reduced accuracy.

In short, hyperparameter tuning Random Forest through Random Search and Grid Search

showed only minimal differences compared to the default settings, with no meaningful

improvement across resampling methods. Grid Search generally offered slightly higher

recall, while Random Search gave marginally better precision, though recall dropped a bit. The

overall impact of fine-tuning was negligible, confirming that Random Forest is already strong

with default parameters. The choice of resampling strategy was far more important, with

oversampling giving the best results, followed by SMOTE, under-sampling, and finally no

resampling.

CHAPTER 5

121
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XGBoost

Randomised Search Hyperparameter Space Grid Search Hyperparameter Space

Table 5.3.13: XGBoost Hyperparameter space settings

For XGBoost, the hyperparameter search space was carefully designed to balance model

complexity, regularization, and ensemble diversity, as shown in Table 5.3.13. The number of

estimators (n_estimators) was varied more broadly in Randomized Search (50–300) to

capture both faster, lightweight models and deeper, more stable ensembles, while Grid Search

narrowed this to 100 and 200 for efficiency. The learning_rate was tuned between 0.01 and

0.3, where smaller rates allow gradual learning with more trees, and higher rates converge

faster but risk overfitting; Grid Search focused on 0.05–0.3 for more practical optimization.

max_depth was explored between 3 and 10 in Randomized Search, enabling both shallow

trees for generalization and deeper ones to capture complex fraud patterns, with Grid Search

emphasizing moderate depths (4, 6, 8) for stability. To handle overfitting, subsample (row

sampling) and colsample_bytree (feature sampling) were tuned between 0.6 and 1.0, enforcing

randomness that increases robustness, with Grid Search restricting to 0.8 and 1.0 for more

reliable evaluation. The gamma parameter was included to control split creation, ranging from

0 (more splits allowed) to 5 (restrictive), reducing noise-driven patterns in Randomized Search

while Grid Search focused on smaller values (0, 1, 3). For regularization, reg_alpha (L1) and

reg_lambda (L2) were tuned to improve generalization and reduce overfitting; Randomized

Search tested wider ranges (0–1 for L1, 0.5–2 for L2), while Grid Search restricted to fewer

values (0, 0.1 for L1 and 0.5, 1 for L2) for computational efficiency.

CHAPTER 5

122
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.3.14: XGBoost Hyperparameter Tuning Results

Without hyperparameter tuning Randomised search Grid search

No Resampling + XGBoost

Accuracy: 0.9986
Recall: 0.8512
Precision: 0.9682

F1-Score: 0.9060
MCC: 0.9072
AUC: 0.9970

Best Accuracy (CV): 0.9986

Best Params: {'subsample': 1.0, 'reg_lambda': 0.5, 'reg_alpha': 0.1,
'n_estimators': 300, 'max_depth': 8, 'learning_rate': 0.05, 'gamma': 0,
'colsample_bytree': 0.8}
Accuracy: 0.9986
Recall: 0.8428
Precision: 0.9753
F1-Score: 0.9042
MCC: 0.9060
AUC: 0.9978

Best Accuracy (CV): 0.9986

Best Params: {'colsample_bytree': 0.8, 'gamma': 0, 'learning_rate': 0.1,
'max_depth': 8, 'n_estimators': 100, 'reg_alpha': 0.1, 'reg_lambda': 0.5,
'subsample': 1.0}
Accuracy: 0.9986
Recall: 0.8401
Precision: 0.9738
F1-Score: 0.9020
MCC: 0.9038
AUC: 0.9975

SMOTE + XGBoost

Accuracy: 0.9932
Recall: 0.9907
Precision: 0.9957
F1-Score: 0.9932
MCC: 0.9865
AUC: 0.9998

Best Accuracy (CV): 0.9982
Best Params: {'subsample': 0.8, 'reg_lambda': 0.5, 'reg_alpha': 1,
'n_estimators': 150, 'max_depth': 10, 'learning_rate': 0.3, 'gamma': 0,
'colsample_bytree': 0.8}
Accuracy: 0.9982
Recall: 0.9982
Precision: 0.9983

F1-Score: 0.9982
MCC: 0.9964
AUC: 1.0000

Best Accuracy (CV): 0.9981
Best Params: {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.3,
'max_depth': 8, 'n_estimators': 200, 'reg_alpha': 0.1, 'reg_lambda': 0.5,
'subsample': 0.8}
Accuracy: 0.9981
Recall: 0.9980
Precision: 0.9982

F1-Score: 0.9981
MCC: 0.9962
AUC: 1.0000

Oversampling + XGBoost

Accuracy: 0.9955
Recall: 0.9996
Precision: 0.9914
F1-Score: 0.9955
MCC: 0.9910
AUC: 0.9998

Best Accuracy (CV): 0.9993
Best Params: {'subsample': 0.8, 'reg_lambda': 0.5, 'reg_alpha': 1,
'n_estimators': 150, 'max_depth': 10, 'learning_rate': 0.3, 'gamma': 0,
'colsample_bytree': 0.8}
Accuracy: 0.9995

Recall: 1.0000
Precision: 0.9989
F1-Score: 0.9995
MCC: 0.9989
AUC: 1.0000

Best Accuracy (CV): 0.9993
Best Params: {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.3,
'max_depth': 8, 'n_estimators': 200, 'reg_alpha': 0.1, 'reg_lambda': 0.5,
'subsample': 0.8}
Accuracy: 0.9994

Recall: 1.0000
Precision: 0.9989
F1-Score: 0.9994
MCC: 0.9989
AUC: 1.0000

Undersampling + XGBoost

Accuracy: 0.9720
Recall: 0.9738
Precision: 0.9704
F1-Score: 0.9721

MCC: 0.9441
AUC: 0.9967

Best Accuracy (CV): 0.9735
Best Params: {'subsample': 1.0, 'reg_lambda': 0.5, 'reg_alpha': 0.1,

'n_estimators': 300, 'max_depth': 8, 'learning_rate': 0.05, 'gamma': 0,
'colsample_bytree': 0.8}
Accuracy: 0.9736
Recall: 0.9756
Precision: 0.9717
F1-Score: 0.9736
MCC: 0.9472
AUC: 0.9971

Best Accuracy (CV): 0.9730
Best Params: {'colsample_bytree': 0.8, 'gamma': 0, 'learning_rate': 0.1,

'max_depth': 8, 'n_estimators': 200, 'reg_alpha': 0, 'reg_lambda': 0.5,
'subsample': 0.8}
Accuracy: 0.9725
Recall: 0.9738
Precision: 0.9712
F1-Score: 0.9725
MCC: 0.9449
AUC: 0.9971

CHAPTER 5

123
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XGBoost Hyperparameter Tuning Results Interpretation

When no resampling was applied, both Random Search and Grid Search produced very similar

outcomes. Training and testing accuracies remained around 0.9986, which was essentially

unchanged from before fine-tuning. Random Search provided overall better performance,

delivering slightly higher recall, precision, F1, and MCC. However, compared to the untuned

baseline, recall, F1, and MCC dropped slightly, while precision and AUC increased. This

indicates that fine-tuning brought no real benefit and, in some metrics, even slightly reduced

performance.

When SMOTE was applied, performance improved compared to the baseline, with training

and testing accuracies above 0.998 and MCC values above 0.996. Both Random Search and

Grid Search produced near-identical results, with Random Search maintaining a small edge

across all metrics. The gain compared to before fine-tuning was very minor (less than 0.01),

but after fine-tuning, the model achieved a perfect AUC of 1.0. This shows that the real

performance gain came from resampling rather than parameter optimization.

With oversampling, XGBoost achieved its strongest performance. Training and testing

accuracies reached nearly 0.9995, and MCC values were close to 0.999. Both Random Search

and Grid Search converged to almost same outcomes, with Random Search again showing

slightly better balance across accuracy and F1-score. Recall and AUC both reached 1.000,

reflecting near-perfect classification. The effect of fine-tuning was negligible, as oversampling

alone allowed the model to reach its optimal level.

When under-sampling was applied, performance declined compared to SMOTE and

oversampling but results still remained solid. Training and testing accuracies dropped to around

0.973, while MCC values were about 0.945. Both Random Search and Grid Search gave

comparable outcomes, but Random Search consistently provided a slight advantage across all

metrics. Compared to before fine-tuning, improvements were minimal, suggesting that the

lower results were caused by information loss from undersampling rather than hyperparameter

tuning.

In summary, fine-tuning XGBoost through Random Search and Grid Search did not provide

substantial improvements compared to the default settings. Random Search consistently

performed better across all resampling methods, although in the case of no resampling, the

CHAPTER 5

124
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

untuned baseline outperformed both Random Search and Grid Search. Performance mainly

depended on the resampling strategy, with oversampling giving the best results, followed by

SMOTE, under-sampling, and no resampling, which was the same order as Random Forest.

AdaBoost

Randomised Search Hyperparameter Space Grid Search Hyperparameter Space

Table 15.3.15: AdaBoost Hyperparameter space settings

For AdaBoost, Table 15.3.15 showed the hyperparameter space settings. The number of

estimators (n_estimators) was varied widely in Randomized Search (50–300) to capture

models ranging from lightweight ensembles to deeper boosting chains, while Grid Search

narrowed this to 100, 200, and 300 for more focused evaluation. The learning_rate was tuned

between 0.01 and 1.0 in Randomized Search, where smaller values ensure gradual updates for

stability and larger values accelerate convergence but may risk overfitting; Grid Search

emphasized practical ranges of 0.1, 0.5, and 1.0. Since AdaBoost typically uses shallow trees

as weak learners, the base estimator’s max_depth was limited to small values (1–3) to

maintain weak but diverse learners, with Grid Search focusing on slightly deeper splits (2 and

3) for stronger base classifiers. To further refine the tree structure, min_samples_split (2, 5,

10 in Randomized Search) and min_samples_leaf (1, 2, 4 in Randomized Search) were

included to regulate overfitting, ensuring nodes split only when sufficient data supports the

division. Grid Search refined these to fewer combinations (min_samples_split: 2, 5;

min_samples_leaf: 2, 4) for efficiency and interpretability.

CHAPTER 5

125
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Without hyperparameter tuning Randomised search Grid search

No Resampling + Adaboost

Accuracy: 0.9986
Recall: 0.8157
Precision: 1.0000
F1-Score: 0.8985
MCC: 0.9025
AUC: 0.9943

Best Accuracy (CV): 0.9987
Best Params: {'n_estimators': 200, 'learning_rate': 1.0,
'estimator__min_samples_split': 10, 'estimator__min_samples_leaf': 4,
'estimator__max_depth': 3}
Accuracy: 0.9987

Recall: 0.8424
Precision: 0.9860
F1-Score: 0.9085
MCC: 0.9107
AUC: 0.9971

Best Accuracy (CV): 0.9987
Best Params: {'estimator__max_depth': 3,
'estimator__min_samples_leaf': 2, 'estimator__min_samples_split': 2,
'learning_rate': 1.0, 'n_estimators': 100}
Accuracy: 0.9987

Recall: 0.8344
Precision: 0.9921
F1-Score: 0.9064
MCC: 0.9092
AUC: 0.9968

SMOTE + Adaboost

Accuracy: 0.9508
Recall: 0.9174
Precision: 0.9831
F1-Score: 0.9491

MCC: 0.9036
AUC: 0.9894

Best Accuracy (CV): 0.9820
Best Params: {'n_estimators': 200, 'learning_rate': 1.0,

'estimator__min_samples_split': 10, 'estimator__min_samples_leaf': 4,
'estimator__max_depth': 3}
Accuracy: 0.9810
Recall: 0.9731
Precision: 0.9888
F1-Score: 0.9809
MCC: 0.9622
AUC: 0.9980

Best Accuracy (CV): 0.9833
Best Params: {'estimator__max_depth': 3,

'estimator__min_samples_leaf': 4, 'estimator__min_samples_split': 2,
'learning_rate': 1.0, 'n_estimators': 300}
Accuracy: 0.9818
Recall: 0.9743
Precision: 0.9891
F1-Score: 0.9816
MCC: 0.9636
AUC: 0.9982

Oversampling + Adaboost

Accuracy: 0.9635

Recall: 0.9490
Precision: 0.9773
F1-Score: 0.9630
MCC: 0.9274
AUC: 0.9935

Best Accuracy (CV): 0.9778
Best Params: {'n_estimators': 200, 'learning_rate': 1.0,
'estimator__min_samples_split': 10, 'estimator__min_samples_leaf': 4,
'estimator__max_depth': 3}
Accuracy: 0.9774
Recall: 0.9750
Precision: 0.9797
F1-Score: 0.9773

MCC: 0.9548
AUC: 0.9983

Best Accuracy (CV): 0.9791
Best Params: {'estimator__max_depth': 3,
'estimator__min_samples_leaf': 2, 'estimator__min_samples_split': 2,
'learning_rate': 1.0, 'n_estimators': 300}
Accuracy: 0.9790
Recall: 0.9760
Precision: 0.9818
F1-Score: 0.9789

MCC: 0.9579
AUC: 0.9987

Undersampling + Adaboost

Accuracy: 0.9594
Recall: 0.9480
Precision: 0.9700
F1-Score: 0.9589
MCC: 0.9190
AUC: 0.9920

Best Accuracy (CV): 0.9706
Best Params: {'n_estimators': 300, 'learning_rate': 0.5,
'estimator__min_samples_split': 5, 'estimator__min_samples_leaf': 4,
'estimator__max_depth': 3}
Accuracy: 0.9680
Recall: 0.9689

Precision: 0.9672
F1-Score: 0.9681
MCC: 0.9361
AUC: 0.9962

Best Accuracy (CV): 0.9714
Best Params: {'estimator__max_depth': 3,
'estimator__min_samples_leaf': 2, 'estimator__min_samples_split': 5,
'learning_rate': 0.5, 'n_estimators': 300}
Accuracy: 0.9700
Recall: 0.9711

Precision: 0.9690
F1-Score: 0.9701
MCC: 0.9401
AUC: 0.9960

Table 5.3.16: AdaBoost Hyperparameter Tuning Results

CHAPTER 5

126
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

AdaBoost Hyperparameter Tuning Results Interpretation

When no resampling was applied, AdaBoost performed well under both Random Search and

Grid Search, with training and testing accuracies of 0.998. Random Search achieved a slightly

higher MCC (0.9107) compared to Grid Search (0.9092), indicating a better balance across F1

and MCC. Grid Search, however, achieved marginally higher precision. Compared to before

fine-tuning, both methods showed small gains: recall increased from 0.8157 to 0.8424

(Random Search) and 0.8344 (Grid Search), while F1 rose to just above 0.90. Precision

dropped slightly from near 1.0 to the 0.98–0.99 range, but overall the model remained strong,

suggesting only minor benefits from fine-tuning.

When SMOTE was applied, AdaBoost achieved its greatest improvement. Training and testing

accuracies rose to 0.982–0.983, and MCC reached 0.963 under Grid Search, the highest among

all resampling methods. Grid Search performed slightly better than Random Search across all

metrics. The improvement compared to before fine-tuning was also the most significant under

SMOTE, confirming it as the most effective resampling strategy for AdaBoost.

With oversampling, AdaBoost also improved compared to no resampling. Training and testing

accuracies reached around 0.978–0.979. Grid Search again performed slightly better than

Random Search across all metrics, while Random Search maintained a reasonable balance

across metrics. However, the improvements compared to the untuned baseline were more

modest than those achieved with SMOTE.

When under-sampling was applied, AdaBoost performance dropped compared to SMOTE

and oversampling, though it still improved compared to the baseline. Training and testing

accuracies were around 0.968–0.970, while MCC values ranged from 0.936 (Random Search)

to 0.940 (Grid Search). Both search methods performed well, but Grid Search provided better

MCC and recall, making it slightly superior in this setting. However, the lower results

compared to other resampling strategies were largely due to information loss from reducing

the dataset size.

In summary, fine-tuning AdaBoost led to overall improvements compared to the baseline,

though precision dropped slightly under no resampling and under-sampling. Random Search

performed better without resampling, but Grid Search outperformed Random Search in

SMOTE, oversampling, and under-sampling by delivering higher recall, MCC, and F1-

CHAPTER 5

127
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

scores. The best results were achieved with SMOTE, which gave the highest F1 and MCC

values, making it the best-performing resampling strategy for AdaBoost. The ranking of

effectiveness was: SMOTE > Oversampling > Under-sampling > No resampling.

Compared to Random Forest and XGBoost, AdaBoost showed clearer benefits from fine-

tuning under SMOTE, whereas Random Forest and XGBoost were less sensitive to tuning and

relied more heavily on resampling strategies to reach their peak performance.

5.3.9 Final Model Choice

The final choice for deployment was Random Forest combined with oversampling using

default parameters. Random Forest consistently delivered strong performance across all

settings, with its default configuration already achieving near-optimal results. Fine-tuning

through Random Search or Grid Search brought almost no measurable improvement,

confirming that Random Forest is naturally robust and well-suited to the dataset without the

need for extensive parameter optimization.

Among the resampling strategies, oversampling provided the best overall outcomes. It

produced nearly perfect accuracies and F1-score, highlighting its ability to balance the dataset

effectively and improve the detection of minority class cases. This result demonstrated that the

real performance gains came from the resampling strategy rather than hyperparameter

adjustments, with oversampling standing out as the most effective method.

In addition to superior results, this configuration offers simplicity and stability for deployment.

Using the default Random Forest parameters reduces computational cost, avoids overfitting

risks from over-tuning, and ensures reproducibility. At the same time, oversampling retains all

available data while addressing class imbalance, making it more reliable than under-sampling.

Random Forest’s robustness across scenarios, combined with its ease of integration into

platforms like Power BI through joblib export, makes it an efficient and practical solution for

real-world deployment.

CHAPTER 5

128
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.10 Synthetic Data Generation

Version Key Adjustments Training Setup Accuracy Recall Precision F1 MCC AUC

1 - Dropped unique identifiers & high-cardinality columns

- Removed cc_num then restored (70/30 split)

- Normalized numeric cols

- Random restoration of city and datetime

CTGAN, 50 epochs,

batch=100

0.8987 0.1114 0.3506 0.1690 0.1550 0.6566

2 - Fraud oversampled ×3 in focus categories

- Reduced sample size (200k→100k)

- Same CTGAN config

CTGAN, 50 epochs,

batch=100
0.9119 0.7345 0.6395 0.6837 0.6348 0.8736

3 - Extracted time features (day, hour, night)

- Stratified sampling for training data

- Datetime rebuilt from hour

- Increase epochs (longer training)

CTGAN, 300 epochs,

batch=100, pac=10

0.9295 0.7809 0.5529 0.6474 0.6207 0.9062

4 - Added distance feature (instead of raw lat/long)

- Derived age & age_group (instead of raw dob)

- Reduced Adult frauds 50%

CTGAN, 300 epochs,

batch=100, pac=10

0.9433 0.9149 0.5800 0.7100 0.7020

0.9636

5 - Fraud ratio target = 15% (instead of ×3)

- Metadata defined column types

- Reduce epochs (shorter training), remove pac

CTGAN, 200 epochs,

batch=100

0.8810 0.8193 0.6722 0.7385 0.6679 0.8990

6 - Model switch: CTGAN → TVAE TVAE, 200 epochs,

batch=100

0.9307 0.9451 0.6426 0.7650 0.7447 0.9683

7 - Increase sample size (100k→500k)

- Epochs = 100

TVAE, 100 epochs,

batch=100

0.9400 0.9646 0.7133 0.8202 0.7980 0.9808

Table 5.3.17: Random Forest Evaluation Results on Different Synthetic Dataset Version

CHAPTER 5

129
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Synthetic Data 1

The first synthetic dataset was created as a baseline experiment to evaluate whether a

straightforward CTGAN-based approach could generate structurally valid synthetic data

suitable for fraud detection. The dataset was prepared by first removing several high-

cardinality and unique identifier columns, such as trans_num, merchant, job, city, lat, long,

and trans_date_trans_time, as shown in Figure 5.3.46. These features were excluded because

they contained either too many unique values or strong identifiers as shown in Figure 5.3.47,

which would cause the CTGAN to memorize them rather than learn meaningful fraud patterns.

Figure 5.3.46: High cardinality columns

Figure 5.3.47: Dropping High-Cardinality Columns

Special attention was given to the credit card number (cc_num). Unlike transaction IDs, which

are completely unique, the same cc_num can be linked to many transactions. This makes it a

quasi-identifier: high cardinality but still useful for describing customer behavior.

However, training GANs directly on raw 16-digit card numbers is not meaningful, since the

digits themselves do not encode useful fraud signals. Therefore, cc_num was dropped during

training to avoid noise, as shown in Figure 5.3.47. After generation, it was restored with a

hybrid approach: 70% of the synthetic dataset used existing values sampled from the original

dataset to preserve repeat usage patterns, while the remaining 30% were filled with randomly

generated Visa-like 16-digit numbers to introduce diversity, as shown in Figure 5.3.48. This

approach retained some behavioural realism while preventing the CTGAN from overfitting on

raw card numbers.

CHAPTER 5

130
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.48: Hybrid Generation of Synthetic Credit Card Numbers

To stabilize training, all numerical columns were normalized using a Min Max Scaler so that

values fell within the range of 0 to 1, as shown in Figure 5.3.49. This ensured that large-value

features, such as transaction amounts or population counts, did not dominate smaller-value

features.

Figure 5.3.49: Normalized Data using Min-Max Scaling

The CTGAN model was then trained on a 200,000-row sample of the dataset, with training

conducted for 50 epochs using a batch size of 100 and default hyperparameter settings, as

shown in Figure 5.3.50. This relatively short training run was deliberately chosen as a baseline

configuration, serving as a reference point for comparison against later experiments that used

longer training durations, advanced sampling strategies, or additional model adjustments. By

starting with a moderate sample size and limited epochs, the goal was to establish a clear

performance benchmark before progressively scaling complexity in subsequent datasets.

Figure 5.3.50: CTGAN Training Configuration

CHAPTER 5

131
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After generation, post-processing was applied to restore the synthetic dataset to match the

original schema, as shown in Figure 5.3.51. Numeric columns were inverse transformed to

their original scales: transaction amounts (amt) were rounded and forced positive, city

populations (city_pop) clipped to ≥1, and unix_time rounded back to integers.

Figure 5.3.51: Numeric Data after Restoration

Figure 5.3.52 showed implementation of post-processing for synthetic dataset restoration.

Identifiers were reconstructed. A unique trans_num was assigned (e.g., T0000001), and

credit card numbers (cc_num) were created using a 70/30 mix of existing and new accounts,

balancing realism with diversity. City, latitude, longitude, and population were resampled

together as blocks to maintain consistency, while transaction timestamps were randomly

sampled from the original dataset to ensure temporal coverage.

Figure 5.3.52: Implementation of Post-Processing for Synthetic Dataset 1 Restoration

CHAPTER 5

132
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.53: Synthetic Dataset 1 after Post-Processing

While this restored structure and realism, it introduced a weakness: random resampling of

location and time broke natural fraud patterns. In real data, fraud often happens more in certain

cities or late-night hours, but random resampling spread these patterns out. The dataset still

looked correct, but it no longer reflected fraud behaviour as clearly.

The evaluation metrics confirmed these limitations. The synthetic dataset achieved an

accuracy of 0.8987, but recall dropped sharply to 0.1114, meaning the model failed to detect

the majority of fraud cases. Precision was moderate at 0.3506, and both the F1 score and

MCC remained very low at 0.1690 and 0.1550 respectively. Similarly, the AUC value of

0.6566 indicated poor separation between fraud and non-fraud classes.

In short, Synthetic Data 1 successfully established a structural baseline for synthetic data

generation but failed to capture meaningful fraud patterns. The absence of class imbalance

handling and the reliance on random resampling of critical features such as time and location

resulted in very poor fraud detection performance. These findings highlighted the need for

more targeted adjustments in later datasets, including fraud oversampling, feature engineering

(extract distance, time, age), and refined training strategies to improve the model’s ability to

replicate real fraud patterns.

CHAPTER 5

133
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Synthetic Data 2

Synthetic Data 2 was developed as the first major improvement over the baseline. The main

motivation was to address the severe class imbalance that undermined fraud detection in

Synthetic Data 1. In the real dataset, fraudulent transactions were extremely rare compared to

non-fraudulent ones, and CTGAN had learned to mostly generate non-fraud samples, leading

to very poor recall. To counter this, a targeted oversampling strategy was introduced.

Fraudulent samples belonging to specific high-risk categories—grocery_pos, shopping_net,

misc_net, and shopping_pos—were oversampled three times. These categories were chosen

because they are historically associated with higher fraud rate in e-commerce contexts. Before

resampling, the number of fraud cases in these focus categories was 5,214, which increased to

15,642 after oversampling as shown in Figure 5.3.54. By oversampling frauds in these

categories, the training distribution became more balanced and provided CTGAN with stronger

fraud-related signals to learn from. This approach was designed to improve the generator’s

ability to model fraud patterns without overwhelming the training process with noise.

Figure 5.3.54: Oversampling of Fraudulent Transactions in Focus Categories

Another change from Data 1 was the adjustment of the training sample size. Instead of training

CTGAN on 200,000 records, the dataset was reduced to 100,000 records before oversampling

to reduce computational time and resource usage, as shown in Figure 5.3.55. The reduction

was intentional as CTGAN often struggles to converge with very large datasets unless carefully

CHAPTER 5

134
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

tuned, which also makes training much slower. A smaller but more balanced dataset made the

training more efficient and allowed the model to better capture fraud-related patterns. The

CTGAN configuration remained unchanged at 50 epochs with a batch size of 100, keeping the

focus of this iteration on the effects of resampling rather than tuning.

Figure 5.3.55: Training Process of CTGAN with Reduced Dataset

The results of Synthetic Data 2 demonstrated the significant impact of oversampling. Table

5.3.17 showed that recall increased dramatically from 0.1114 to 0.7345, indicating that the

model could now detect the majority of fraud cases. Precision also improved to 0.6395, which

indicated that a much larger proportion of fraud predictions were correct compared to Data 1.

As a result, the F1 score rose to 0.6837 and MCC rose to 0.6348, reflecting a stronger balance

between recall and precision. The AUC also increased sharply to 0.8736, showing better

separation between fraud and non-fraud classes. Accuracy increased only slightly, from

0.8987 to 0.9119, which was expected. In imbalanced datasets, accuracy can be misleading,

catching more frauds often adds some false positives, but this trade-off actually improves the

dataset’s value for fraud detection.

In short, Synthetic Data 2 marked a turning point in the synthetic generation process. By

explicitly correcting the class imbalance through targeted oversampling of high-risk fraud

categories, the dataset enabled the CTGAN to generate synthetic samples that were far more

effective for fraud detection. While still limited in its feature representation, this version

demonstrated that resampling is a critical adjustment to improve recall and AUC, directly

addressing the weaknesses of the baseline Synthetic Data 1.

CHAPTER 5

135
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Synthetic Data 3

Synthetic Data 3 built upon the improvements of Data 2 and focused on enhancing the feature

representation available to CTGAN. While oversampling had successfully improved fraud

detection, the synthetic model still lacked access to temporal patterns, which are crucial in fraud

behaviour. Fraudulent activity often happens at unusual times (e.g., late at night, certain days

of the week), but in the baseline datasets, temporal information was either dropped or randomly

restored, weakening its predictive value.

To address this, Data 3 introduced several engineered temporal features derived from

trans_date_trans_time, as shown in Figure 5.3.56. Specifically, new variables were created for

day of the week, hour of the day, and a binary flag is_night (set to 1 for transactions between

10 PM and 3 AM). These features provided CTGAN with structured representations of

temporal context, allowing it to learn fraud-related timing patterns directly rather than relying

on noisy random resampling of datetime.

Figure 5.3.56: Feature Engineering of Temporal Attributes

Another improvement in Data 3 was the use of stratified sampling when preparing the training

data as shown in Figure 5.3.57. Instead of selecting random subsets, the sampling process

preserved the fraud-to-non-fraud ratio across training splits. This adjustment ensured that

CTGAN was consistently exposed to representative fraud patterns during training, further

mitigating imbalance issues.

Figure 5.3.57: Use of Stratified Sampling for Balanced Training Data

CHAPTER 5

136
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The CTGAN training itself was also strengthened. Compared to the short 50-epoch run

previously, Data 3 was trained for 300 epochs with pac=10 (PacGAN setting), as shown in

Figure 5.3.58. The longer training duration gave the generator more opportunities to refine the

synthetic data distribution, while the pac adjustment helped reduce mode collapse—a common

problem where GANs generate overly similar samples instead of diverse patterns.

Figure 5.3.58: CTGAN Training Settings in Dataset 3

The performance results highlighted both strengths and trade-offs. Accuracy improved to

0.9295, and recall increased further to 0.7809, showing that the inclusion of temporal features

helped the model detect more fraud cases. However, precision dropped to 0.5529 compared

to Data 2, meaning the model generated more false positives alongside the true positives. This

imbalance caused the F1 score and MCC to fall slightly to 0.6474 and 0.6207 respectively,

even though the overall AUC rose to 0.9062. In other words, the dataset became better at

finding fraud but at the cost of sometimes mislabelling legitimate transactions.

In short, Synthetic Data 3 demonstrated the value of feature engineering, particularly the

inclusion of temporal attributes. The results confirmed that fraud patterns are often time-

dependent, and capturing this structure helped improve recall and AUC. The trade-off was a

decline in precision, as the generator became more sensitive to potential fraud but less selective.

This version showed that while oversampling was essential (Data 2), adding informative

features (Data 3) was equally critical to move closer toward realistic and effective fraud

detection.

CHAPTER 5

137
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Synthetic Data 4

SHAP Analysis before training for Synthetic Data 4

Before developing Synthetic Data 4, SHAP analysis was conducted to compare feature

importance between the original training dataset and the synthetic dataset from Data 3 As

shown in Figure 5.3.59, the two datasets displayed a very strong alignment, with a Pearson

correlation of 0.998 and a cosine similarity of 0.998. This indicates that the synthetic data

broadly reproduced the same fraud-related signals as the real data. Key predictors such as

transaction amount (amt), temporal indicators (is_night, hour, day), city population (city_pop),

and age consistently ranked among the most influential features, with differences of less than

10%, as shown in Table 5.3.18.

Figure 5.3.59: Pearson Correlation and Cosine Similarity of Synthetic Dataset 3

Table 5.3.18: SHAP Comparison Between Train Dataset and Synthetic Dataset 3

However, the SHAP comparison shown in Table 5.3.18 also revealed important discrepancies.

The distance feature, derived from latitude and longitude, showed overemphasized in synthetic

data (+83.6%), suggesting CTGAN struggled to model raw geographic variables reliably.

Demographic features such as Adult age group (+42%) and gender (+36%) also appeared more

influential in the synthetic dataset than in the real one, raising concerns about demographic

CHAPTER 5

138
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

bias. These findings showed that while Data 3 broadly captured fraud behaviour, it distorted or

misrepresented certain signals, particularly around location and demographics.

Train for Synthetic Data 4

To address these limitations, Synthetic Data 4 introduced several key adjustments. The key

improvement in Synthetic Data 4 was the introduction of the distance feature, calculated using

the Haversine formula between customer and merchant coordinates and capped at 160 km.

This cap was important because raw latitude and longitude are continuous, noisy, and difficult

for CTGAN to model, often leading to unrealistic outputs. In fact, even small coordinate shifts

could lead to extremely large distances—sometimes over 7,000 km, as observed in Synthetic

Data 3 (see Figure 5.3.60), which clearly did not reflect real transaction behaviour. By

replacing raw coordinates with capped distances during training and later recomputing them in

post-processing, the dataset kept geographic patterns realistic while avoiding distorted outliers.

Figure 5.3.60: Distribution of Distance in Synthetic Dataset 3

Figure 5.3.61: Replacement of Raw Coordinates with Capped Distances During Training

CHAPTER 5

139
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.62: Distribution of Distance in Synthetic Dataset 4

Another major adjustment was the introduction of age and age group, shown in Figure 5.3.63.

Instead of training on raw date of birth (dob), which introduces unnecessary complexity and

difficult for CTGAN, the age was calculated at the transaction time and grouped into four

categories: Young (0–18), Adult (19–44), Mid-Age (45–59), and Senior (60+). This

transformation provided CTGAN with interpretable demographic features while reducing

noise from exact dates. Furthermore, since SHAP analysis showed an overemphasis on Adults,

fraudulent transactions in this group were reduced by 50% to prevent the generator from

disproportionately modelling “Adult = fraud” behaviour. This balancing prevented the

generator from disproportionately modelling Adult fraud at the expense of other age groups.

Figure 5.3.63: Code for Age Group Creation and Adult Fraud Balancing

After training, extensive post-processing was performed to restore dropped or transformed

variables. The distance feature was recomputed in post-processing using the Haversine

formula on customer and merchant coordinates and capped at 160 km to avoid unrealistic

travel values, as shown in Figure 5.3.64. However, since distance, age, and age_group were

CHAPTER 5

140
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

engineered only to guide CTGAN training, they were dropped from the final synthetic output.

This allowed the dataset to retain the same schema as the real data, while still benefiting from

the extra fraud-related signals during training.

Figure 5.3.64: Maximum Synthetic Distance After Recalculation and 160 km Cap

SHAP Analysis after training for Synthetic Data 4

After training Synthetic Data 4, SHAP analysis showed that it achieved near-perfect alignment

with the real dataset (Pearson = 1.0, Cosine = 1.0) as shown in Figure 5.3.65. Key features

such as amount, is_night, cc_num_fraud_rate, hour, and city_pop closely matched their real-

data importance (all within ±10%) as shown in Table 5.3.19.

Figure 5.3.65: Pearson Correlation and Cosine Similarity of Synthetic Dataset 4

Table 5.3.19: SHAP Comparison Between Train Dataset and Synthetic Dataset 4

CHAPTER 5

141
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The distance feature, which was unstable in Data 3, was now well-aligned (+8.1%),

confirming the effectiveness of capping and recomputation. The main remaining differences

were in gender (+39%) and age_group_Adult (+53%), but their overall contribution to fraud

detection was small.

Overall, the SHAP analysis confirmed that Synthetic Data 4 represented a turning point: by

introducing spatial (distance) and demographic (age/age group) features, the model not only

improved predictive performance but also preserved the real-world importance structure of

fraud signals with near-perfect alignment. This provided strong evidence that the engineered

features guided the CTGAN to capture fraud behaviour more realistically.

Results

The results showed a further step forward in balancing fraud detection. Accuracy improved

to 0.9433, recall increased dramatically to 0.9140, and AUC reached 0.9636, the highest

achieved so far as shown in Table 5.3.17. Precision, however, remained at 0.5800, lower than

Data 2 but slightly higher than Data 3, reflecting a middle ground between recall and precision.

The F1 score improved to 0.7100 and the MCC rose to 0.7020, confirming that the synthetic

dataset captured fraud patterns with much stronger balance and reliability. These results

confirmed that spatial and demographic features contributed significant predictive value,

especially in helping the model distinguish fraudulent from non-fraudulent patterns in a more

realistic way.

In short, Synthetic Data 4 highlighted the importance of feature engineering beyond time

variables. By introducing distance and age-related attributes, the dataset captured crucial fraud

signals that improved recall and AUC without overwhelming precision. Balancing Adult fraud

cases further ensured a more representative dataset, avoiding demographic bias. This version

established a strong foundation by showing that integrating temporal, spatial, and demographic

features together with resampling strategies yields more robust synthetic data for fraud

detection.

CHAPTER 5

142
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Synthetic Data 5

Synthetic Data 5 introduced two major refinements over the previous version: fraud ratio

control and explicit metadata guidance.

The first adjustment was fraud ratio control. Unlike Data 4, which oversampled fraud using

a fixed multiplier, Data 5 explicitly targeted a 15% fraud prevalence in the training set as

shown in Figure 5.3.66. This rate is much higher than in real life but still believable. The

motivation was to improve precision by reducing the overwhelming dominance of non-fraud

cases while still giving CTGAN enough fraud examples to learn meaningful patterns. Fraud

rows—especially from high-risk categories such as grocery_pos, shopping_net, misc_net, and

shopping_pos—were oversampled dynamically until the 15% threshold was reached.

Figure 5.3.66: Training Data Distribution After Adjusting Fraud Rate to 15%

The second adjustment was the use of SingleTableMetadata to explicitly define feature types

as shown in Figure 5.3.67. Earlier versions occasionally misclassified variables (e.g., treating

city_pop as categorical), which led CTGAN to generate misaligned distributions. By correcting

these definitions, CTGAN was able to interpret numerical, categorical, and datetime features

more reliably, improving stability.

Figure 5.3.67: Defining Feature Types Using SingleTableMetadata

CHAPTER 5

143
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Other aspects from Data 4 were retained as standard practice: reducing Adult fraud cases by

50% to mitigate demographic bias, restoring schema consistency in post-processing, and using

CTGAN for training. However, training epochs were reduced to 200 (compared to 300 in

Data 4), as shown in Figure 5.3.68. This is because improved metadata stability lessened the

need for extended runs or PacGAN regularization.

Figure 5.3.68: CTGAN Training Configuration in Data 5

The evaluation of Synthetic Data 5 confirmed that the main improvement was in precision,

which rose to 0.6722, the highest across all versions. This meant that a larger share of detected

fraud cases were truly fraudulent, reducing false alarms compared to earlier datasets. However,

this gain came with a trade-off in recall, which decreased to 0.8193 (from 0.9140 in Data 4),

showing that the model caught slightly fewer fraud cases overall. Despite this, the F1 score

improved to 0.7385, showing that the dataset produced a better balance between catching fraud

(recall) and avoiding false alarms (precision). The MCC of 0.6679 further demonstrated a

robust overall correlation between predictions and true labels, confirming that the

improvements were not one-sided. On the other hand, accuracy dropped to 0.8810 and AUC

declined to 0.8990, indicating weaker modelling of normal transaction behaviour.

In summary, Synthetic Data 5 showed that controlling fraud ratio and improving feature

handling can shift performance trade-offs. It gave the best fraud detection so far, though with

weaker overall transaction realism (lower AUC).

CHAPTER 5

144
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Synthetic Data 6

Synthetic Data 6 marked the first shift from GAN-based models to a variational autoencoder

approach, replacing CTGAN with TVAE (Tabular Variational Autoencoder). This change

was motivated by the limitations of GANs in modelling continuous numerical features such as

transaction amount (amt), distance, and age. CTGAN had shown improvements with feature

engineering and oversampling, but it was unstable and sometimes collapsed, producing less

diverse data. In contrast, TVAE learns a smooth internal representation of the data, making it

more stable and better at handling both numbers and categories.

For training, TVAE was configured with 200 epochs and a batch size of 100 as shown in Figure

5.3.69. Unlike GAN-based models, TVAE did not require PacGAN or extended epochs to

prevent collapse, since its architecture naturally models both fraud and non-fraud cases in a

smooth latent space. This makes training more stable and efficient, avoiding the adversarial

competition present in CTGAN, which often requires extra epochs or stabilizing tricks to

converge. As a result, TVAE converged reliably within fewer epochs and completed training

faster than CTGAN, reducing computational time while maintaining high-quality synthetic

data.

Figure 5.3.68: TVAE Training Configuration in Data 6

Post-processing followed the same steps as in Data 5. After generation, features such as dob,

merchant coordinates, and card numbers (cc_num) were restored from the original dataset.

Distance was recomputed using restored coordinates, and engineered variables (distance, age,

age_group) were dropped to maintain schema consistency. This ensured that the final synthetic

dataset aligned structurally with the raw dataset while retaining the benefits of engineered

features during training.

CHAPTER 5

145
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.70: Final Synthetic Dataset Generated by CTGAN in Data 5

Figure 5.3.71: Final Synthetic Dataset Generated by TVAE in Data 6

The results demonstrated a big improvement in performance. Recall reached 0.9451, the

highest of all datasets so far, showing that TVAE was effective at detecting fraudulent

transactions. AUC also improved to 0.9683, setting a new benchmark for discrimination

between fraud and non-fraud. Precision, at 0.6426, was slightly lower than Data 5 but still

competitive, while the F1 score rose to 0.7650, reflecting a stronger balance between recall

and precision. Accuracy also improved to 0.9307, recovering much of the loss seen in Data

5.

CHAPTER 5

146
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In short, Synthetic Data 6 highlighted the advantages of model architecture choice in synthetic

data generation. By moving from CTGAN to TVAE, the dataset gained much stronger

generalization over continuous features, leading to dramatic improvements in recall and AUC.

Although some precision was sacrificed compared to CTGAN, the overall balance (F1) and

discriminative power (AUC) were superior. This version demonstrated that TVAE was better

suited for fraud detection tasks where continuous variables play a critical role in distinguishing

fraudulent behaviour.

Synthetic Data 7

Synthetic Data 7 expanded upon the previous TVAE experiment by scaling up the training

process. While Data 6 had already demonstrated the stability and representational power of

TVAE over CTGAN, its training was limited to 100,000 rows. Data 7 increased the training

sample size to 500,000 rows as shown in Figure 5.3.72, providing TVAE with significantly

more examples of both fraud and non-fraud patterns to learn from. The objective of this

adjustment was to test whether a larger training base would enable TVAE to generate more

realistic synthetic data, especially in capturing rare fraud patterns.

The TVAE configuration differed from Data 6 by reducing the epochs from 200 to 100. Despite

the shorter training duration, the much larger dataset ensured that TVAE was exposed to a

richer and more diverse set of features.

Figure 5.3.72: TVAE Training Configuration in Data 7

The results confirmed the benefit of scaling up training size. Recall increased further to 0.9646,

demonstrating that TVAE trained on more data was even more effective at detecting fraud.

Precision also improved markedly to 0.7133, reducing false alarms compared to Data 6. These

gains translated into an F1 score of 0.8202, an MCC of 0.7980, and an AUC of 0.9808—the

highest values achieved so far. Accuracy also rose to 0.9400, showing consistent overall

improvements across all evaluation metrics.

CHAPTER 5

147
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In summary, Synthetic Data 7 highlighted the importance of training size in synthetic data

generation. By giving TVAE five times more training examples, the model was able to

generalize better across both fraud and non-fraud transactions. Compared to Data 6, this version

achieved stronger recall without sacrificing precision, leading to better balance (F1 score),

correlation (MCC), and discrimination (AUC). This confirmed that, beyond choosing the right

model, using a larger training sample size is a key factor in producing synthetic data that

improves fraud detection model performance.

5.3.11 Model and Pipeline Export

Before deploying the model into Power BI, the trained Random Forest model (oversampling

+ default settings) and its preprocessing pipeline were exported as shown in Figure 5.3.73.

During model development, several transformations were applied, including gender encoding,

one-hot encoding for transaction categories, and target encoding for credit card numbers. To

ensure these transformations would be applied consistently during deployment, both the

pipeline and the trained model were serialized and saved using the Joblib library. By exporting

the pipeline alongside the model, the system guarantees that identical feature engineering and

encoding steps are performed on any new data, reducing the risk of inconsistency and ensuring

portability across different environments.

Figure 5.3.73: Saving the preprocessing pipeline and Random Forest model using Joblib

CHAPTER 5

148
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.12 Power BI Deployment

Data Source Connection

Following the model export, the data source was connected to Power BI. Transaction data was

retrieved directly via a OneDrive link as shown in Figure 5.3.74, allowing the dashboard to

work with updated records when the dataset is refreshed in Power BI. For this purpose, the

Kaggle test set was sampled to 100,000 records. This dataset size was chosen to strike a

balance between providing sufficient representation of fraud cases and ensuring efficient

processing within Power BI’s Python execution environment. The use of the Kaggle test set in

Power BI is further justified in Chapter 6, where it is compared against synthetic alternatives.

Figure 5.3.74: Power BI data source connection from OneDrive

Python Script Integration

Once the data connection was established, the dataset could be accessed and inspected via

Transform Data (Power Query Editor) in Power BI. A Python script was embedded in Power

BI to load both the preprocessing pipeline and the trained model. When new data is imported,

the script applies the same preprocessing transformations as during training, including

categorical encoding and target encoding. The processed features are then aligned to the

expected order used by the model, as shown in Figure 5.3.75.

Figure 5.3.75: Python script preprocessing new transaction data

CHAPTER 5

149
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After this step, the Random Forest model predicts and generates two outputs for each

transaction: a binary classification (predicted_fraud) indicating whether the transaction is

fraudulent, and a probability score (fraud_prob) representing the likelihood of fraud, as

shown in Figure 5.3.76.

Figure 5.3.76: Python script generating predictions

Finally, the script produces evaluation results. If the dataset contains true fraud labels

(is_fraud), performance metrics such as accuracy, recall, precision, F1-score, Matthews

Correlation Coefficient (MCC), and Area Under the Curve (AUC) are computed and presented

in tabular form within Power BI. If the dataset does not contain labels, the system outputs only

fraud predictions and probability scores, as shown in Figure 5.3.77. The generated outputs are

then ready for visualization, as shown in Figure 5.3.78, forming the foundation for the

dashboard development stage of deployment.

Figure 5.3.77: Python script generating evaluation metrics

Figure 5.3.78: Output generated by Python script

CHAPTER 5

150
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.13 Dashboard Development

The Power BI dashboard was developed as the final stage of the system implementation,

providing the interactive interface through which users can monitor and analyse fraud detection

outcomes. The design was guided by the wireframe created earlier (see Chapter 4), ensuring a

consistent structure and smooth navigation across different analytical perspectives. Navigation

follows a hierarchical structure, with the Homepage and Overview Page serving as central

hubs, with other pages accessed through them for a clear, structured flow.

The Homepage acts as the entry point, containing interactive buttons with tooltips that direct

users to the respective analysis pages.

Figure 5.3.79: Homepage

The Overview Page presents key performance indicators (KPIs) through card visuals,

summarising overall transaction activity, fraud statistics, and model performance. To

complement the KPIs, trend charts illustrate changes in fraud amount and fraud rate over time,

providing a quick view of both scale and temporal behaviour.

Figure 5.3.80: Overview Page

CHAPTER 5

151
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Time Analysis Page examines fraud patterns by day, hour, and month, with additional

views comparing daytime versus nighttime fraud activity and fraud trends across days in a

month.

Figure 5.3.81: Time Analysis Page

The Geography Page highlights fraud distribution across city sizes and transaction distances,

supplemented with an interactive hotspot map.

Figure 5.3.82: Geography Page

CHAPTER 5

152
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Demographics Page analyses fraud by age and gender, including a heatmap to show

intersections, and supports drill-through to card-level details for deeper investigation.

Figure 5.3.83: Demographics Page

Fraud behaviour by category and spending patterns is analysed in the Behavioural Analysis

Page, which compares different category transactions and evaluates fraud by total and average

amounts.

Figure 5.3.84: Behavioural Analysis Page

CHAPTER 5

153
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Model performance is assessed in the Model Performance Page, which includes a confusion

matrix, performance metric cards, and misclassification breakdowns by category and

demographic group. Conditional formatting is applied to performance metrics: values below

0.9 are highlighted in yellow, and values below 0.75 are highlighted in red.

Figure 5.3.85: Model Performance Page

The Prediction Confidence & Key Influencers Page shows model certainty, key factors

driving fraud predictions, and a table of transactions—highlighting incorrect predictions while

leaving fraud cases unhighlighted. Users can drill through to view each transaction.

Figure 5.3.86: Prediction Confidence & Key Influencers Page

CHAPTER 5

154
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In addition to the main analysis pages, two drill-through pages were developed to support

detailed investigation, providing a seamless workflow from aggregated views to case-level

insights, supporting in-depth fraud investigation.

The Credit Card Transactions Page allows users to examine all transactions linked to a

specific card, supported by fraud metrics, transaction history, and visual trend analysis. KPI

cards with a non-zero fraud count are highlighted to draw attention. In the transaction history

table, fraud cases and transactions with incorrect predictions are highlighted for easy

identification.

Figure 5.3.87: Credit Card Transactions Page (drill through from Demographics Page)

From there, users can navigate to the Transaction Details Page, which provides full

information for a single transaction, including prediction details, related credit card data, and

cardholder demographics. For the KPI cards, conditional formatting is applied to highlight

key information: actual or predicted fraud labels are shown in red, fraud probability uses a

gradient from green (0%) to red (100%), and the predicted result is coloured green if correct

and red if incorrect.

CHAPTER 5

155
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.88: Transaction Details Page (drill through from Credit Card Transactions Page)

To enhance usability, slicers and filters were added to allow dynamic exploration of fraud

patterns by date, category, demographic segment, and location. Tooltips were configured for

charts to provide detailed values on demand, maintaining visual clarity while retaining

precision. Smart Narrative were also applied to generate automated insights. Together, these

features create an interactive, user-friendly system capable of supporting fraud analysts in

monitoring patterns, identifying risks, and evaluating model reliability.

Figure 5.3.89: Interactive Dashboard Components Showing Slicers, Filters, Tooltips and

Smart Narrative

CHAPTER 5

156
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The dashboard was also designed with a mobile layout in mind, ensuring key metrics and

visualizations remain accessible and readable on smaller screens. Example pages of the

dashboard on mobile view are shown in Figure 5.3.90.

Figure 5.3.90: Mobile layout examples of the Fraud Detection Dashboard

5.3.14 Implementation Issues and Challenges

Publicly available fraud detection datasets often contain missing values, noise, and outliers,

which can undermine model reliability, making proper selection and preprocessing essential.

In this project, the first dataset tested was found unsuitable due to weak feature correlations,

limiting its usefulness for fraud analysis. Many Kaggle datasets are also anonymized,

replacing feature names with generic labels, which hinders interpretability for dashboard

development. Additionally, the strong class imbalance, where fraud cases are rare, requires

resampling techniques. After evaluation, a second dataset was chosen for its stronger feature

relationships and practical relevance.

The implementation phase was marked by several significant challenges that impacted the

project's workflow. A primary obstacle was the severe computational and hardware

constraints faced during model training. Running complex algorithms such as Random Forest

CHAPTER 5

157
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

and AdaBoost on a large dataset, combined with extensive hyperparameter tuning through

Grid Search and Randomized Search, was extremely time-consuming, often taking hours for

a single run. This issue was further showed by synthetic data generation using CTGAN and

TVAE, which, even with Google Colab’s GPU resources, required many hours of processing

for a single experiment.

Another critical challenge was the instability of Google Colab sessions. Long-running

experiments were frequently interrupted due to idle timeouts, session duration limits, or

memory overuse. On several occasions, runs that had progressed halfway stopped unexpectedly

when left unattended, forcing complete reruns and wasting computational resources. This

instability proved particularly problematic during resource-intensive tasks such as synthetic

data generation using CTGAN, where interruptions could mean the loss of hours of work.

From a dashboard development perspective, a key challenge was designing an intuitive UI

for a complex, multi-faceted analysis. Creating a logical navigation structure from the

homepage to various drill-through pages (e.g., from Demographics to Credit Card Transactions

to Transaction Details) required careful planning to ensure a seamless user journey for fraud

analysts. Implementing advanced features like conditional formatting (e.g., highlighting high-

risk cards, colouring metrics based on performance) and interactive elements (slicers, filters,

tooltips) without making the dashboard visually cluttered or overwhelming was a delicate

balancing act between functionality and usability.

5.3.15 Concluding Remark

In conclusion, this chapter outlined the full implementation of the fraud detection system,

covering software setup, data preprocessing, model development, synthetic data generation,

and dashboard deployment. After testing multiple datasets and algorithms, a Random Forest

model with oversampling was selected for its strong performance, achieving high recall and

F1-score in detecting fraud. The model was successfully integrated into Power BI, creating an

interactive dashboard that turns predictive analytics into actionable insights. Despite challenges

with dataset quality, computational limits, Google Colab instability, and dashboard design

complexity, the system delivers a robust and practical foundation for real-world fraud

monitoring and analysis.

CHAPTER 6

158
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

System Evaluation and Discussion

6.1 Comparison of Test Set

Before selecting the final dataset for deployment in the Power BI dashboard, two candidate test

sets were evaluated to determine which would provide the most reliable and representative

assessment of model performance: a real Kaggle test set and a synthetic test set generated

through the model pipeline. The performance metrics for both sets are summarized in Table

6.1.1.

 Kaggle Test Set Synthetic Test Set

Accuracy 0.9991 0.9400

Recall 0.8410 0.9646

Precision 0.9640 0.7133

F1-Score 0.8983 0.8202

MCC 0.9000 0.7980

AUC 0.9552 0.9808

Table 6.1.1: Performance Comparison of Kaggle and Synthetic Test Sets

The real test set, sampled at 100,000 records, produced very strong performance with an

accuracy of 0.9991, recall of 0.8410, precision of 0.9640, F1 score of 0.8983, MCC of 0.9000,

and AUC of 0.9552.

In contrast, the synthetic test set, which was also sampled with 100,000 records, achieved an

accuracy of 0.9400, a recall of 0.9646, a precision of 0.7133, an F1 score of 0.8202, an MCC

of 0.7980, and an AUC of 0.9808. These results show that while the synthetic dataset

produced higher recall and AUC, it came at the cost of much lower precision and MCC. In

practical terms, this means that the synthetic data suggested the model could catch more fraud

cases, but with a far higher rate of false alarms. Such false positives could overwhelm

investigation teams, increase operational cost, and negatively affect customer experience.

CHAPTER 6

159
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

On the other hand, the Kaggle test set demonstrated a much better balance between precision

and recall. Its higher MCC reflects strong overall classification quality across both classes,

while its precision of 0.964 indicates very few false alarms—an essential property in financial

fraud detection. Although recall was somewhat lower than on synthetic data, the trade-off is

acceptable because fewer genuine frauds are missed without significantly compromising

efficiency. Furthermore, because the Kaggle test set represents the actual data distribution,

it offers a more trustworthy estimate of model performance in real-world deployment. The

synthetic test set, while useful, can introduce optimistic bias by smoothing distributions or

reducing noisy, borderline cases, which inflates metrics such as AUC and recall but may not

hold under production conditions.

Nevertheless, an important limitation must be acknowledged: the Kaggle test set does not

come from real company or e-commerce transactions, but from a publicly available

benchmark dataset. While it serves as a strong proxy for real-world conditions, its transaction

patterns, fraud rate, and feature distributions may not fully match what would be seen in an

actual business environment. Therefore, the reported results should be viewed with caution,

and further testing on real company data will be necessary to confirm the model’s

performance in practice. For future studies, the model should be validated on actual e-

commerce transaction data, tested against different fraud patterns, and monitored over time to

capture data drift and changing customer behaviour. This will help ensure the model remains

accurate, reliable, and ready for real deployment in a business environment.

CHAPTER 6

160
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Model Evaluation on Kaggle Test Set

The final model selected for deployment is a Random Forest model with oversampling

(default settings). Its performance on the split test set (held-out portion of the original dataset)

and the Kaggle test set (sampled 100,000 records for deployment) is summarized in Table

6.2.1 below:

Metric Internal Split Test Set Kaggle Test Set

Accuracy 0.9999 0.9991

Recall 1.0000 0.8410

Precision 0.9998 0.9640

F1-Score 0.9999 0.8983

MCC 0.9998 0.9000

AUC 1.0000 0.9552

Table 6.2.1: Performance Comparison of Final Random Forest Model on Split Test Set and

Kaggle Test Set

The metrics on the split test set indicate near-perfect performance, which is expected

because this set was drawn from the same dataset used for training. The model has effectively

learned patterns present in the original distribution.

The Kaggle test set, although drawn from the same overall dataset, shows noticeably lower

recall, F1-score, MCC, and AUC. This difference highlights that even within the same dataset,

variations in sampling, feature distributions, and the presence of borderline or rare fraud cases

can affect model performance.

The lower recall (0.8410) on the Kaggle test set indicates that the model misses more actual

fraud cases compared to the split test set, suggesting that this subset contains transactions that

are harder to classify, such as subtle or borderline fraud patterns. Correspondingly, the drop in

F1-score and MCC reflects the challenge of balancing fraud detection with minimizing false

positives; the Kaggle set is more difficult, providing a more realistic picture of operational

performance. Additionally, the slightly lower AUC (0.9552) shows that the model’s ability to

rank transactions by fraud likelihood is somewhat weaker on truly unseen examples,

emphasizing the importance of evaluating the model on an independent dataset before

deployment.

CHAPTER 6

161
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The comparison shows that while the model performs exceptionally on the split test set, the

Kaggle test set provides more practical insights into real-world performance. Its lower

metrics reveal challenging transaction cases and emphasize that deployment must consider

such variability. This analysis highlights the importance of evaluating the model on a

representative, independent dataset before operational use.

6.3 Dashboard Evaluation

The evaluation of the developed Power BI dashboard was conducted to assess its functionality,

usability, and analytical effectiveness. The process considered both technical aspects—such as

data accuracy, visual correctness, interactivity, and performance—as well as user-focused

aspects, including usability, clarity, and satisfaction. This dual perspective ensures that the

dashboard not only functions correctly from a system perspective but also provides a positive

experience for end-users. To present the findings clearly, the evaluation is divided into two

parts: technical evaluation and user acceptance evaluation.

CHAPTER 6

162
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3.1 Technical Evaluation

Component Objective Procedures and Expected Outcomes Actual Result Pass/Fail

Data

Accuracy

Verify correct data source

link and metrics

Confirm dashboard is connected to

OneDrive; compare dashboard totals vs raw

dataset. Dashboard should match OneDrive

data and reflect updates after refresh.

Dashboard successfully connected to

OneDrive and show no error; total

transactions = 100,000, fraud cases =

478, matching the raw dataset totals;

metrics update correctly after refresh

Pass

Visual

Accuracy

Ensure charts and tables

represent data correctly

Inspect line, bar, and pie charts. Labels,

axes, legends should be correct. Charts

should reflect accurate trends, proportions,

and values.

All charts accurately displayed trends

and proportions. Axes, labels, and

legends were correct.

Pass

Slicer

Functionality

Confirm slicers interact

correctly with visuals

On Time Analysis page, apply different

slicer (category, fraud label) sequentially.

All visuals should update dynamically

without conflicts.

Slicer selections updated all visuals

correctly. Multiple slicers worked

together without issues (see Figure

6.3.1–6.3.3).

Pass

Conditional

Formatting

Validate performance card

colour coding

On Model Performance Page, check KPI

cards. Metrics ≥ 90% should display green,

75–89% yellow, <75% red.

Colours applied correctly for all

metrics (see Figure 6.3.4).

Pass

Conditional

Formatting

Validate fraud/wrong

prediction highlighting

On Credit Card Transactions Page, check

transaction table. Fraud cases and wrong

predictions should display in red.

Highlighting worked as expected —

only fraud cases were highlighted, and

since no wrong predictions existed,

none were marked (see Figure 6.3.5).

Pass

CHAPTER 6

163
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Drill-through Ensure navigation to

detailed view works

On Credit Card Transactions Page, click

a transaction in the Transaction History

table. Dashboard should open Transaction

Details Page with matching metrics, card

info, and demographics.

Drill-through worked correctly.

Details matched the selected record,

and Transaction ID was consistent

with the selected row (see Figure

6.3.6–6.3.7).

Pass

Performance Test load and refresh speed Measure time to open PBIX file and refresh

dataset of 100k records. File should open

<1 min, refresh <2 min.

Dashboard PBIX file opened in 30s;

refresh completed in 1 min.

Pass

Table 6.3.1: Technical Evaluation Test Cases and Results

CHAPTER 6

164
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.1: Time Analysis Page with Category Slicer Not Applied

Figure 6.3.2: Time Analysis Page with Category Slicer Applied

Figure 6.3.3: Time Analysis Page with Category and Fraud Label Slicers Applied

CHAPTER 6

165
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.4: KPI Cards on Model Performance Page with Colour Coding Applied

Figure 6.3.5: Transaction Table on Credit Card Transactions Page Showing Fraud Case

Highlighting

Figure 6.3.6: Selected Transaction in Credit Card Transactions Page Prior to Drill-through

CHAPTER 6

166
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.7: Transaction Details Page Showing Matching Transaction ID

The technical evaluation confirmed that the dashboard performed reliably across all tested

components. Data accuracy was validated by matching dashboard metrics with the raw dataset,

while visual accuracy checks ensured charts, labels, and legends were displayed correctly.

Interactive features such as slicers, conditional formatting, and drill-through functionality all

operated without error, providing smooth navigation and clear visual feedback. Finally,

performance testing showed that the dashboard opened and refreshed efficiently within the

expected time limits. Overall, all test cases passed successfully, demonstrating that the

dashboard meets the required technical standards for accuracy, usability, and performance.

6.3.2 User Acceptance Evaluation (SUS Questionnaire)

To complement the technical evaluation, user acceptance testing was conducted using the

System Usability Scale (SUS) questionnaire. 10 standardised questions were adapted to the

context of the fraud detection dashboard, covering usability, clarity, responsiveness, and

interactivity. The survey was created using Google Forms and distributed to respondents, who

rated each statement on a five-point Likert scale (1 = Strongly Disagree to 5 = Strongly Agree).

This approach provides a structured and quantifiable evaluation of the dashboard’s usability

and user satisfaction.

CHAPTER 6

167
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A total of 15 respondents participated in the evaluation. The feedback gathered from the

respondents was used to calculate the SUS score and provide insights into the usability, clarity,

responsiveness, and interactivity of the dashboard. To provide a clearer interpretation of the

results, the SUS statements were grouped into five themes: ease of use, perceived complexity,

visual clarity, responsiveness and interactivity, and overall satisfaction.

The ease-of-use theme (Q1, Q3, Q7), which contained positively worded items, received high

ratings, with the majority of respondents selecting 4 or 5, as shown in Figure 6.3.8-6.3.10. Only

one respondent gave a neutral score of 3 for navigation (Q3), as shown in Figure 6.3.9. This

indicates that the dashboard is intuitive, requires minimal learning effort, and provides clear

navigation paths. Overall, the results suggest that users can quickly adapt to the system without

prior training.

Figure 6.3.8: Ease of Use Evaluation

Figure 6.3.9: Navigation Clarity Evaluation

CHAPTER 6

168
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.10: Ease of Learning Evaluation

In contrast, the perceived complexity theme (Q2, Q4, Q6), which contained negatively

worded items, scored very low, with most respondents choosing 1 or 2, as shown in Figure

6.3.11-6.3.13. Notably, all respondents rated Q6 with a 1, indicating strong agreement that the

dashboard was neither inconsistent nor confusing. These results suggest that users did not

perceive the dashboard as unnecessarily complex or requiring technical support.

Figure 6.3.11: Perceived Complexity Evaluation

Figure 6.3.12: Need for Support Evaluation

CHAPTER 6

169
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.13: Consistency Evaluation

The clarity of visuals (Q5) was rated particularly highly, with almost all respondents strongly

agreeing that charts, tables, and numbers were easy to understand, as shown in Figure 6.3.14.

Figure 6.3.14: Visual Clarity Evaluation

For the responsiveness and interactivity theme (Q8, Q9), Figures 6.3.15-–6.3.17 illustrate

that nearly all respondents selected 4 or 5, indicating that the dashboard responds quickly to

filters and slicers and that interactive features work as expected. This demonstrates that the

system provides a smooth, responsive, and reliable interaction experience.

CHAPTER 6

170
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.15: Responsiveness Evaluation

Figure 6.3.16: Interactivity Evaluation

Finally, as seen in Figure 6.3.17, all respondents rated satisfaction highly (4 or 5), showing

strong acceptance and confidence in the dashboard. This confirms that the system meets user

expectations and achieves a high level of usability.

Figure 6.3.17: Overall Satisfaction

CHAPTER 6

171
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After analysing the individual questions, the overall System Usability Scale (SUS) scores

were calculated to provide a single benchmark of usability. The SUS scoring followed the

standard procedure: for positively worded items (Q1, Q3, Q5, Q7, Q8, Q9, Q10), the adjusted

score was calculated as Response − 1, while for negatively worded items (Q2, Q4, Q6), the

adjusted score was calculated as 5 − Response. This converted all responses into a range from

0 to 4. The adjusted scores were then summed across all 10 statements to obtain a total score

between 0 and 40, which was subsequently multiplied by 2.5 to produce the final SUS score,

ranging from 0 to 100.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total (0-40) SUS (0-100)

5 2 5 2 5 1 5 4 4 5 36 90

4 1 4 1 5 1 5 5 5 5 38 95

5 1 4 2 4 1 4 4 5 4 34 85

5 1 5 1 5 1 5 5 5 5 40 100

5 1 5 2 5 1 4 5 4 4 36 90

5 2 5 2 5 1 5 5 4 5 37 92.5

4 2 4 2 5 1 4 4 4 4 32 80

5 1 4 1 5 1 5 4 5 5 38 95

4 2 5 2 5 1 4 5 4 4 34 85

5 2 4 1 5 1 4 4 5 5 36 90

5 2 3 2 5 1 4 5 4 4 33 82.5

5 1 5 1 5 1 5 5 5 5 40 100

5 1 4 1 5 1 5 5 5 5 39 97.5

5 1 5 2 5 1 4 4 5 5 37 92.5

5 1 5 1 5 1 4 4 5 4 37 92.5

Average 36.47 91.17

Table 6.3.2: System Usability Scale (SUS) Evaluation Results

Table 6.3.2 presents the SUS scoring results for all 15 respondents. The scores ranged from 80

to 100, with an overall average of 91.17, which is above the commonly accepted usability

benchmark of 70. This indicates that the dashboard achieved a high level of usability and user

satisfaction, meeting the success criteria set for the evaluation.

When considered alongside the technical evaluation, these results confirm that the dashboard

is not only functionally accurate and reliable but also user-friendly and well-accepted by end

users.

CHAPTER 6

172
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Insights from Dashboard Results

The dashboard not only serves as a visualization tool but also provides valuable insights into

fraud behaviour across temporal, spatial, demographic, and behavioural dimensions. Using the

Kaggle credit card fraud test set as the underlying data source, the analysis of outputs across

different dashboard pages revealed several key patterns and risk factors.

Overview

Figure 6.4.1: Overview Page

The Overview Page provides a clear summary of the dataset, fraud patterns, and model

performance. It covered 100,000 transactions with a total value of $5.36 million, averaging

$53.58 per transaction. Although fraud cases made up only 0.48% of all transactions, their

financial impact was significant, with a total fraud amount of $272,163.81 and an average of

$569.38 per fraudulent transaction—more than ten times higher than the average non-fraud

amount of $51.10. The model successfully identified 422 fraud cases with very high accuracy

(99.91%) while maintaining a very low false positive rate (0.02%), indicating its strong ability

to distinguish between legitimate and fraudulent activity.

The trend charts provide further insight, as both fraud amount and fraud rate show irregular

spikes at certain periods, suggesting that fraud occurs in sudden increases rather than

consistently over time. This opportunistic behaviour highlights the importance of continuous

monitoring and timely detection, since fraud cases are not evenly distributed but concentrated

in specific high-risk periods.

CHAPTER 6

173
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Time Analysis

Figure 6.4.2: Time Analysis Page

The first chart, Fraud vs Non-Fraud by Day, compares daily transaction amounts between

fraud and normal cases. From the chart, it can be seen that fraud does not always rise in line

with total transactions. It is evident that fraud is disproportionately higher during weekends,

particularly on Sundays, which recorded the highest fraud count despite not having the peak

transaction volume. Mondays and Saturdays also show elevated levels of fraudulent activity,

while mid-weekdays such as Tuesday and Wednesday display comparatively lower fraud

counts. This pattern suggests that fraudsters may take advantage of weekends when both

customer vigilance and institutional monitoring are potentially weaker.

The Fraud by Time chart shows that over 80% of fraud takes place at night, suggesting that

fraudsters prefer to operate when monitoring is weaker, such as late at night or early in the

morning. This observation is further supported by the Fraud vs Non-Fraud by Hour chart,

which compares fraudulent and legitimate transactions across the day. It highlights that fraud

risk starts to rise around 10 PM and remains elevated until about 3 AM. Although the overall

number of transactions is lower during these hours, the proportion of fraud is significantly

higher than during the day, making late-night hours the most vulnerable period for fraudulent

activity.

CHAPTER 6

174
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Fraud vs Non-Fraud Count Over Time chart shows that while non-fraud transactions

remain stable across the days, fraud cases appear in small, scattered amounts. The variation

does not indicate a strong pattern but rather suggests random or opportunistic fraud attempts.

This reinforces the need for continuous monitoring, as fraud can occur unpredictably at any

time, even when transaction volumes appear normal.

The last chart, Fraud vs Non-Fraud by Month, shows longer-term patterns. The monthly

view shows that while December records the highest number of transactions overall, the fraud

count during this period is relatively low. This suggests that higher transaction volume does

not necessarily lead to higher fraud cases. In contrast, months with fewer total transactions,

such as August and October, show higher fraud counts, indicating that fraud patterns are not

strictly tied to transaction activity levels. Instead, fraud appears to occur more steadily across

months, without a direct seasonal spike.

Geography

Figure 6.4.3: Geography Page

The Fraud Hotspot Map visualizes the distribution of fraudulent and non-fraudulent

transactions across the United States. Each dot represents a transaction location, with red

indicating fraud and blue indicating non-fraud, while a half-red, half-blue marker signifies the

presence of both types at the same location. This visualization makes it easier to identify

CHAPTER 6

175
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

geographical clusters and potential hotspots. For instance, Figure 6.4.4 illustrates that when

the cursor hovers over an isolated point, the tooltip displays detailed information such as the

city name Honokaa, the fraud label indicating it as a fraudulent case, the latitude and longitude

coordinates, a transaction count of four, the corresponding merchant coordinates, and a

recorded distance of 84.16 km from the merchant. The results indicate that fraud is not evenly

distributed: while most transactions are concentrated in the eastern and central United States,

fraud hotspots appear scattered within these clusters, suggesting that fraudulent activity tends

to emerge in particular areas rather than being uniformly spread.

Figure 6.4.4: Tooltip Information from Honokaa Transaction Point

The Fraud vs Non-Fraud by Population Group bar chart compares transaction counts across

city sizes. Small Cities record the highest transaction volumes overall, making them the biggest

source of fraud in absolute terms. However, fraud cases are also observed in Large Cities,

Medium Cities, and Very Large Cities, though in smaller numbers. This indicates that fraud is

not exclusive to one type of city—while small cities dominate due to volume, larger urban

areas are not immune to fraud risk.

The Fraud vs Non-Fraud by Distance from Merchant line chart plots fraud and non-fraud

counts against distance. Both fraud and non-fraud transactions increase together as distance

grows, peaking around 80 km, before declining again. The parallel trend suggests that

fraudsters often mimic normal transaction distance patterns to avoid detection, but the elevated

fraud share at 80 km shows a hotspot where risk is disproportionately high. Beyond 100 km,

both fraud and non-fraud counts drop sharply, showing that long-distance transactions are less

common overall.

CHAPTER 6

176
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Demographics

Figure 6.4.5: Demographics Page

The Fraud vs Non-Fraud by Age Group chart compares the volume of fraudulent and

legitimate transactions across different age categories. Fraud is represented in red, while non-

fraudulent transactions are displayed in blue. From this chart, it is evident that the adult age

group records the highest number of fraud cases, while the young age group shows the

least. This suggests that adults, due to higher transaction activity, face greater exposure to fraud

compared to younger or mid-age groups.

Fraud by Gender chart provides a clear breakdown of fraud cases between male and female

cardholders. While the difference is not extreme, the chart shows that female cardholders

record slightly more fraud cases than male cardholders. This finding suggests minor

variations in fraud exposure or transaction behaviour between genders.

The Fraud by Age Group and Gender heatmap combines the two demographics to reveal

intersections. Darker shades indicate higher fraud counts. The heatmap shows that adult

females represent the group with the highest fraud count, followed by adult males.

Meanwhile, younger groups records minimal fraud activity regardless of gender. This

combined view provides deeper insight, showing not only which groups are most affected

individually, but also how fraud concentrates at the intersection of gender and age.

CHAPTER 6

177
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Summary Box highlights the age and gender groups with the highest and lowest fraud

counts and rates, as well as the age–gender combination most affected, giving a quick view of

key demographic risks.

The Credit Card Fraud table lists all cards associated with fraudulent transactions. It displays

the card number, fraud count, total transactions, and fraud rate. The fraud rate column is

highlighted in red, where darker shades indicate higher rates, with some cases reaching 100%.

This table provides investigators with detailed visibility into which specific credit cards are

consistently linked to fraudulent activity. In addition, it supports drill-through functionality,

allowing users to right-click on a card number and navigate to the Credit Card Transaction page

for further analysis. For instance, drilling through on card number ‘573000000000’ provides

a detailed view of its associated transactions as shown in Figure 6.4.6.

Figure 6.4.6: Example of Drill-Through Navigation from Credit Card Fraud Table

CHAPTER 6

178
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Credit Card Transactions

Figure 6.4.7: Credit Card Transactions Page

Drilling through to the transaction-level view of credit card number ‘573000000000’ provides

deeper insights into the fraud patterns associated with this account. Overall, the card has 40

recorded transactions, out of which 4 were confirmed as fraudulent, resulting in a fraud

rate of 10%. This is a significant proportion, given the financial impact: fraudulent

transactions alone amounted to $3,809.02, which represents more than 70% of the total

amount spent ($5,343.63). This highlights that while fraudulent activity was limited in count,

it carried a disproportionately large monetary impact compared to legitimate transactions.

The Transaction-level details table further confirm the accuracy of the fraud detection model.

Each of the four fraudulent transactions was correctly identified and flagged, reflecting strong

predictive performance. These fraud cases occurred primarily during late-night hours (e.g.,

11:32 PM and 11:54 PM), which aligns with broader time-analysis findings that fraudsters

exploit reduced monitoring during night periods. In contrast, non-fraudulent transactions were

distributed more evenly across different times of the day, suggesting a clear behavioural

distinction between fraudulent and legitimate usage.

The Fraud Over Time chart shows transaction activity between July and November 2020.

Most of the card’s transactions were legitimate and spread evenly across the months, but the

fraudulent ones appeared in small clusters, especially in late October. These spikes are

CHAPTER 6

179
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

important because they suggest planned attempts at fraud rather than random events.

Investigators can use this trend to check if fraud matches seasonal patterns, busy shopping

periods, or possible leaks of cardholder information.

Overall, the drill-through analysis shows that even though only 10% of this card’s transactions

were fraudulent, they caused most of the financial loss. The fraud cases mainly happened late

at night and were grouped into certain months, pointing to deliberate and opportunistic misuse.

For investigators, this page provides useful evidence to strengthen fraud controls on the account,

such as adding extra checks for late-night transactions, reviewing high-value purchases more

closely, and monitoring for repeated bursts of suspicious activity.

By right-clicking on a transaction, users can navigate to the Transaction Details page for deeper

analysis. For example, drilling through on the first transaction reveals its full details as shown

in Figure 6.4.8.

Figure 6.4.8: Example of Drill-Through Navigation from Transaction-level Details Table

CHAPTER 6

180
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Transaction Details

Figure 6.4.9: Transaction Details Page

The transaction details page provides a deeper look into one of the fraudulent transactions

linked to this credit card account. In this case, transaction ID

‘34fe2b80f76aca88e3a890f3e5799cf0’ was correctly identified as fraud with a high

confidence score of 95%, confirming the accuracy of the detection model. The transaction

amount of $939.95 is relatively large, consistent with the broader pattern where fraudulent

activity on this card tends to involve disproportionately high-value purchases. The payment

was made under the shopping_net category, indicating an online channel that is generally more

susceptible to misuse compared to in-person transactions.

Additional context highlights that the cardholder is a 70-year-old female from Jaffrey,

categorized as a senior in a medium-sized city—a demographic that can be more vulnerable

to fraud attempts. Furthermore, the transaction occurred 115.66 km away from the merchant

location, suggesting a possible geographic inconsistency that may raise suspicion. Although

many fraud cases on this card occurred late at night, this one happened earlier in the evening

(8 PM), showing that fraud is not limited to specific hours. Overall, the case reinforces how

high value and online transactions are strong indicators of fraudulent behaviour.

CHAPTER 6

181
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Behavioral Analysis

Figure 6.4.10: Behavioral Analysis Page

The first visualization, Fraud vs Non-Fraud by Category chart, compares the number of

fraudulent and non-fraudulent transactions across various categories such as shopping_net,

grocery_pos, misc_net, shopping_pos, and others. Fraudulent transactions are represented in

red, while non-fraudulent transactions appear in blue. From the chart, while categories like

shopping_net and grocery_pos record the highest transaction counts, fraud is

disproportionately concentrated in shopping_net, which registers the highest fraud cases. This

indicates that fraudsters prefer online shopping platforms over point-of-sale transactions,

likely due to weaker verification measures and the ease of executing remote purchases.

The Total Amount by Fraud vs Non-Fraud chart shows that although fraudulent transactions

make up only a small fraction of the overall count, they account for a disproportionately large

share of the total value, reaching $272,163.81 compared to $5,086,065.63 for non-fraudulent

transactions. This highlights that fraud is often concentrated in higher-value cases rather than

in volume. The Average Transaction Amount by Fraud vs Non-Fraud chart further supports

this pattern, showing that the average fraudulent transaction is $569.38, which is more than

eleven times higher than the $51.10 average for legitimate transactions. Together, these

findings suggest that fraudsters deliberately target high-value purchases to maximize returns,

underscoring the importance of applying stricter monitoring and risk controls to larger

transactions.

CHAPTER 6

182
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Summary box provides a concise overview of fraud trends. It shows that the highest fraud

activity occurs in the online shopping category, while point-of-sale transactions record the

lowest. Online channels also have the highest fraud rate and overall fraud amount, indicating

that they are the most vulnerable environment and represent the greatest financial exposure.

Model Performance

Figure 6.4.11: Model performance Page

Confusion Matrix heatmap shows that the majority of predictions fall correctly into their

categories, with 405 true positives and 99,505 true negatives, while only 17 false positives

and 73 false negatives appear. This demonstrates excellent predictive strength, but the

presence of missed fraud cases (false negatives) highlights a key risk area, since undetected

fraud can cause significant financial losses.

The Performance Metrics cards give a concise yet powerful snapshot of model quality across

six dimensions. Accuracy (0.9991), precision (0.9597), F1-score (0.9000), MCC (0.9013), and

AUC (0.9828) are all in green, reflecting excellent results. Recall (0.8473), however, is

highlighted in yellow, signalling a relative weakness. This indicates that while the model is

highly precise in detecting fraud, it sometimes misses fraudulent cases.

CHAPTER 6

183
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Prediction Result slicer is set by default to display false negatives and false positives,

since these errors are most critical for fraud detection. The Predicted Results by category

chart breaks down misclassifications into false negatives and false positives across transaction

categories. The “other” category stands out, with 73 missed frauds and 17 false alarms. This

suggests that certain types of transactions, possibly due to their diverse or irregular patterns,

present more challenges for the model.

Similarly, the Predicted results by age group chart shows that most errors occur in the adult

group, with 42 missed frauds and 10 false positives, while seniors and mid-age groups show

moderate levels of misclassification, and young users experience very few errors. These

insights reveal where the model struggles most, allowing targeted refinements.

Prediction confidence & Key Influencers

Figure 6.4.12: Prediction confidence & Key Influencers Page

The prediction confidence section, located on the left side of the page, begins with two KPI

cards that summarize overall certainty. The first card shows that 38.90% of predictions fall

into the high-confidence range, while the second indicates this corresponds to 389

transactions. High confidence is defined as cases where the model’s predicted probability is

at least 0.8, meaning the model is strongly confident in its decision for fraud cases. This gives

CHAPTER 6

184
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

stakeholders a clear benchmark for trust in the model’s outputs, while also showing how often

the model produces highly reliable predictions.

Beside these cards, a Fraud Count by Confidence Level pie chart breaks down predictions

into Very High, High, Medium, and Low categories. The chart reveals that most cases fall into

the Low-confidence range (77.41%), with far fewer in the Medium, High, and Very High

ranges. In this model, a probability of 0.5 or higher is classified as fraud, while anything

below 0.5 is classified as non-fraud. As a result, the large share of Low-confidence predictions

(< 0.5) mostly represents legitimate transactions, which aligns with real-world conditions

where genuine transactions far outnumber fraudulent ones. However, the key limitation is that

some fraud cases also fall into this Low-confidence group, where the model assigns them a

probability below 0.5 and misclassifies them as legitimate, showing the difficulty of detecting

fraud that mimics normal behaviour.

The transaction-level details table provides a tabular breakdown of all individual predictions.

Each row displays the Transaction ID, Predicted Label, Actual Label, Predicted Probability,

and Confidence Level. Incorrect predictions are highlighted in red, making errors easy to spot.

For example, some fraud cases were misclassified as non-fraud because they had very low

probability scores, showing situations where the model lacked sufficient confidence to

correctly flag them.

The key influencers section, on the right side of the page, explains what drives the model to

classify a transaction as fraud. Using AI-driven analysis, the visual ranks the most important

factors. The most significant driver is whether the Population Group is in Very Large Cities,

which increases the likelihood of fraud by nearly 284 times. Other strong influencers include

whether the transaction occurs at night (17.96x higher likelihood), whether the amount

exceeds 61.96 (5.59x higher), and whether the category is shopping_net, grocery_pos, or

misc_net, all of which increase the likelihood by 3–5 times. These findings not only validate

the model’s reasoning but also provide actionable insights for investigators, such as focusing

additional scrutiny on urban, late-night, high-value online transactions.

CHAPTER 6

185
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.5 Project Challenges

This project faced several important challenges that shaped the approach, methods, and results.

One key issue was the strong class imbalance, as fraud made up less than 1% of all

transactions. This created a risk of building a model that looked accurate but failed to detect

fraud, since predicting only non-fraud would still give high accuracy. To address this, different

resampling methods such as SMOTE, oversampling, and under-sampling were tested. These

helped improve recall but also brought trade-offs, such as lower precision, higher

computation time, and the risk of generating unrealistic patterns.

Another challenge was ensuring the model could work well on unseen data and avoiding

data leakage. The very high performance seen on the internal test set did not carry over to the

independent Kaggle test set, showing that the model was too optimistic when tested on familiar

data. In addition, an early mistake in the pipeline—applying target encoding before splitting

the data—caused leakage, which made the model look better than it really was. Fixing this

required carefully rebuilding the preprocessing pipeline to give a fairer measure of real-world

performance.

Finally, evaluation was limited by the lack of strong benchmarks. Unlike software areas with

well-known standards, fraud detection dashboards have very few public examples for

comparison. This made it hard to judge if the dashboard created was competitive or just

functional. As a result, the evaluation focused on meeting project goals and user feedback,

rather than direct comparison with industry-leading tools.

6.6 Objectives Evaluation

This project aimed to address key problems in fraud detection, including data imbalance,

misclassification and evolving fraud patterns through the development of machine learning

models and a Power BI dashboard. The extent to which each objective was achieved is

discussed below.

CHAPTER 6

186
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Addressing data imbalance through resampling techniques

The extreme class imbalance, with fraud making up less than 1% of all transactions, was

addressed using SMOTE, oversampling and under-sampling. Oversampling combined with

Random Forest gave the most reliable results, producing a balanced trade-off between recall,

precision, and F1-score. SMOTE also improved minority detection, while under-sampling

performed poorly due to information loss. No resampling gave high accuracy but weak recall,

F1, and MCC, showing that accuracy alone is misleading under imbalance. Prior research

highlighted SMOTE’s performance for fraud detection [11,12,18]. This project extends their

findings by systematically comparing multiple resampling methods, proving oversampling to

be the most effective. Although reevaluated results were not as strong as the near-perfect scores

initially seen on the split test set, the model still achieved a solid F1-score of 0.9, which is

considered satisfactory under highly imbalanced conditions. This successfully met the first sub-

objective of enhancing fraud detection performance.

Reducing misclassification with ensemble models

To reduce costly misclassification errors, particularly false negatives, this project compared

Random Forest, AdaBoost, and XGBoost. While all three models performed strongly on the

internal split test, re-evaluation on the independent Kaggle test set confirmed Random Forest

with oversampling is still reliable, achieving accuracy of 0.9991, precision of 0.96, recall of

0.85, and an F1-score of 0.90. This balance demonstrated its strength in minimizing false

negatives while maintaining high precision. This directly addressed the second sub-objective

of developing models that reduce misclassification.

Monitoring evolving fraud patterns through visualization

The evolving nature of fraud was addressed by deploying the chosen model within an

interactive Power BI dashboard. The dashboard provides real-time monitoring of fraudulent

activity and model performance through drill-through pages, conditional formatting, and

interactive filters. This enables continuous tracking of fraud patterns, supporting timely updates

when concept drift occurs. Thus, the third sub-objective of visualizing fraud detection

performance and patterns was effectively achieved.

CHAPTER 6

187
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Integration of machine learning and Power BI for real-time monitoring

The main objective, integrating machine learning with a Power BI dashboard, was successfully

realized. The exported Random Forest model and its preprocessing pipeline were embedded

into the dashboard, resulting in a user-friendly system that combines predictive analytics with

actionable visualization. This integration ensures the solution is not only technically sound but

also practically valuable for fraud analysts.

6.7 Concluding Remark

This chapter provided a full review of the fraud detection system, covering both the machine

learning model and the Power BI dashboard. The comparison of test sets showed that the real

Kaggle dataset, while not perfect, is a better and more realistic way to measure performance

than a synthetic one. This revealed the trade-off between recall and precision. Testing the final

Random Forest model on this independent dataset proved it was strong, with a solid F1-score

of 0.90, but also showed a drop in recall compared to the internal test set, reminding us why

outside validation is important.

The dashboard was also carefully tested in two ways. The technical check confirmed that it

worked correctly from data input to visualization. The user test, with a very high SUS score of

91.17, showed that people found it easy to use and helpful. The dashboard gave clear insights

into fraud patterns over time, location, demographics, and behaviour, making the system not

just predictive but also an investigation tool.

In short, this chapter shows that the project goals were achieved. The system handles class

imbalance, reduces misclassification errors, and provides a strong platform for tracking fraud

trends. By combining a reliable model with an easy-to-use dashboard, the project delivers a

complete solution that is useful for both research and real-world fraud detection.

CHAPTER 7

188
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

The preliminary phase of this project established a strong foundation for building an

effective fraud detection system in e-commerce. Key steps included thorough EDA, data

preprocessing and handling class imbalance using resampling techniques. These efforts were

essential in preparing the dataset for robust model training and evaluation.

Based on the analysis of model performance, Random Forest and XGBoost consistently

outperformed AdaBoost in fraud detection. Among the resampling methods tested, both

SMOTE and Oversampling significantly improved key metrics such as Recall, F1-score, and

MCC, effectively addressing the challenges of class imbalance. Pipeline 2, which applied

resampling before data splitting and then target encoding, was implemented during

hyperparameter tuning. This pipeline was better to prevent target leakage and provided more

reliable performance metrics that better reflect real-world deployment conditions.

Hyperparameter tuning further refined the models, but results indicated that the base

models were already highly effective. Random Forest and XGBoost showed only marginal

improvements, while AdaBoost benefited more obviously, though it still lagged behind the

other two. Random Forest combined with Oversampling achieved near-perfect performance

across multiple evaluation metrics, confirming its suitability as the final deployed model.

Robustness was validated through testing on both synthetic datasets and the Kaggle

dataset, where the model demonstrated strong generalization and adaptability. Although the

performance was not as high as on the internal split test set (which was near perfect), it still

remained strong, ensuring reliability beyond internal testing and addressing concerns of

overfitting and concept drift.

The integration of the final model into Power BI transformed predictive outcomes into

a decision-support tool. The dashboard enabled monitoring of model performance and fraud

patterns across dimensions such as time, geography, demographics, and behavioural attributes.

Interactive features like slicers, drill-through navigation, and smart narratives enhanced

CHAPTER 7

189
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

usability, while evaluation using the System Usability Scale (SUS) yielded a score of 91.17,

reflecting excellent acceptance and satisfaction among users.

In short, the project successfully addressed key challenges in fraud detection such as

data imbalance, costly misclassification, and evolving fraud patterns through machine learning

and visualization. By selecting Random Forest with Oversampling as the final model and

embedding it within an interactive dashboard, the system achieved the objectives of improving

detection accuracy, reducing false negatives, and providing actionable insights for fraud

management in e-commerce.

7.2 Recommendation

Future studies can extend this work in several directions. First, deep learning

techniques, as highlighted in previous studies [12,19] should be explored for fraud detection.

Unlike ensemble models, deep learning can capture sequential, non-linear, and relational

patterns, making it more effective for detecting complex and evolving fraud strategies.

Second, although this project has already employed CTGAN and TVAE for synthetic

data generation, future work could involve training these models on the full dataset or

developing hybrid approaches that combine synthetic and real-world data. This would improve

the diversity and realism of the generated samples, further enhancing model robustness and

privacy preservation.

Third, real-world data integration is important to validate the system’s usefulness in

industry. Collaborating with e-commerce platforms or financial institutions to test the model

on real transactions would help identify challenges like handling large volumes of data, speed

of processing and meeting security or regulatory requirements. This would make the system

more prepared for actual deployment.

Finally, the system should be moved from Power BI Desktop to Power BI Service for

real-time monitoring. Because Python scripts cannot run directly in the Service, the model

should be hosted outside (for example in Azure ML or a cloud function). Power BI can then

connect to the processed results using dataflows with automatic refresh, live data streams, and

alerts. This would remove the need for manual refresh and give fraud analysts faster updates

and timely warnings.

REFERENCES

190
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES
[1] R. Khurana, “Fraud Detection in eCommerce Payment Systems: The Role of Predictive

AI in Real-Time Transaction Security and Risk Management,” International Journal

of Applied Machine Learning and Computational Intelligence, 2020, vol. 10, no. 6, pp.

1–32, Available: https://neuralslate.com/index.php/Machine-Learning-Computational-

I/article/view/155.

[2] V. F. Rodrigues et al., “Fraud detection and prevention in e-commerce: A systematic

literature review,” Electronic Commerce Research and Applications, Oct. 2022, vol.

56, p. 101207, doi: https://doi.org/10.1016/j.elerap.2022.101207.

[3] M. GolyerI, S. Celik, F. Bozyigit and D. Kılınç, “Fraud Detection on E-Commerce

Transactions Using Machine Learning Techniques,” Artificial Intelligence Theory and

Applications, 2023, vol. 3, no. 1, pp. 45–50, Available:

https://dergipark.org.tr/en/pub/aita/issue/77113/1273652.

[4] P. K. Sadineni, "Detection of Fraudulent Transactions in Credit Card using Machine

Learning Algorithms," 2020 Fourth International Conference on I-SMAC (IoT in

Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 659-660,

doi: 10.1109/I-SMAC49090.2020.9243545.

[5] S. N. Pundkar and M. Zubei, “Credit Card Fraud Detection Methods: A Review,” E3S

web of conferences, Jan. 2023, vol. 453, pp. 01015–01015, doi:

https://doi.org/10.1051/e3sconf/202345301015.

[6] S. R. Gayam, “AI-Driven Fraud Detection in E-Commerce: Advanced Techniques for

Anomaly Detection, Transaction Monitoring, and Risk Mitigation,” Distributed

Learning and Broad Applications in Scientific Research, 2020, vol. 6, pp. 124–151,

Available: https://dlabi.org/index.php/journal/article/view/108

[7] Md. Nur-E-Arefin, “A Comparative Study of Machine Learning Classifiers for Credit

Card Fraud Detection,” International Journal of Innovative Technology and

Interdisciplinary Sciences, Jan. 2020, vol. 3, no. 1, pp. 395–406, doi:

https://doi.org/10.15157/ijitis.2020.3.1.395-406.

[8] S. Ray, “Fraud Detection in E-Commerce Using Machine Learning,” BOHR

International Journal of Advances in Management Research, 2022, vol. 1, no. 1, pp. 7–

14, doi: https://doi.org/10.54646/bijamr.002.

REFERENCES

191
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[9] M. Puh and L. Brkić, "Detecting Credit Card Fraud Using Selected Machine Learning

Algorithms," 2019 42nd International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2019, pp.

1250-1255, doi: 10.23919/MIPRO.2019.8757212.

[10] U. Porwal and S. Mukund, “Credit Card Fraud Detection in e-Commerce: An Outlier

Detection Approach,” arXiv:1811.02196 [cs, stat], May 2019, Available:

https://arxiv.org/abs/1811.02196.

[11] V. N. Dornadula and S. Geetha, “Credit Card Fraud Detection using Machine Learning

Algorithms,” Procedia Computer Science, 2019, vol. 165, pp. 631–641, doi:

https://doi.org/10.1016/j.procs.2020.01.057.

[12] A. Saputra and Suharjito, “Fraud Detection using Machine Learning in e-

Commerce,” International Journal of Advanced Computer Science and Applications,

2019, vol. 10, no. 9, doi: https://doi.org/10.14569/ijacsa.2019.0100943.

[13] O. Adepoju, J. Wosowei, S. lawte and H. Jaiman, “Comparative Evaluation of Credit

Card Fraud Detection Using Machine Learning Techniques,” 2019 Global Conference

for Advancement in Technology (GCAT), Bangalore, India, 2019, pp. 1–6, doi:

10.1109/GCAT47503.2019.8978372.

[14] E. Ileberi, Y. Sun and Z. Wang, “Performance Evaluation of Machine Learning

Methods for Credit Card Fraud Detection Using SMOTE and AdaBoost,” in IEEE

Access, vol. 9, pp. 165286-165294, 2021, doi: 10.1109/ACCESS.2021.3134330.

[15] S. Najem and S. Kadhem, “An efficient feature engineering method for fraud detection

in e-commerce,” Iraqi Journal of Computer Communication Control and System

Engineering, pp. 40–52, Sep. 2021, doi: 10.33103/uot.ijccce.21.3.4.

[16] K. K. Mohbey, M. Z. Khan, and A. Indian, “Credit card fraud prediction using

XGBoost,” International Journal of Information Retrieval Research, vol. 12, no. 2, pp.

1–17, May 2022, doi: 10.4018/ijirr.299940.

[17] Y. Kırelli, S. Arslankaya, and M. T. Zeren. “Detection of Credit Card Fraud in E-

Commerce Using Data Mining,” European Journal of Science and Technology, Nov.

2020, doi: https://doi.org/10.31590/ejosat.747399.

[18] A. Q. Abdulghani, O. N. UCAN and K. M. A. Alheeti, “Credit Card Fraud Detection

Using XGBoost Algorithm,” 2021 14th International Conference on Developments in

eSystems Engineering (DeSE), Sharjah, United Arab Emirates, 2021, pp. 487-492, doi:

10.1109/DeSE54285.2021.9719580.

https://doi.org/10.31590/ejosat.747399

REFERENCES

192
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[19] R. Sailusha, V. Gnaneswar, R. Ramesh and G. R. Rao, “Credit Card Fraud Detection

Using Machine Learning,” 2020 4th International Conference on Intelligent

Computing and Control Systems (ICICCS), Madurai, India, 2020, pp. 1264-1270, doi:

10.1109/ICICCS48265.2020.9121114.

[20] C. Tejasri, C. S. U. Aryan, D. Deekshith, A. Chintu and T. S. Reddy “FRAUD

DETECTION IN E-COMMERCE USING MACHINE LEARNING,” International

Research Journal of Modernization in Engineering Technology and Science, 2022, vol.

4, no. 6, pp. 2924–2926. [Online]. Available: https://www.irjmets.com/

[21] S. Sen and A. Ghosh, “Analysis and Prediction of Parkinson’s Disease using Machine

Learning Algorithms,” TechRxiv, 2022. doi:

https://doi.org/10.36227/techrxiv.20005703.v1.

[22] W. Wang, G. Chakraborty, and B. Chakraborty, “Predicting the Risk of Chronic Kidney

Disease (CKD) Using Machine Learning Algorithm,” Applied Sciences, vol. 11, no. 1,

p. 202, Dec. 2020, doi: https://doi.org/10.3390/app11010202.

[23] E. Martiri, “Synthetic Data Generation,” IGI Global, 2024, pp. 118–138. doi:

10.4018/979-8-3693-0255-2.ch005

[24] U. B. Bhadange, S. Jadhav, B. Jadhav, S. Ghatol, and P. Kahale, “Comprehensive

Review of Synthetic Data Generation Techniques and Their Applications in Healthcare,

Finance, and Marketing,” International Journal of Advanced Research in Science,

Communication and Technology, Nov. 2024, doi: 10.48175/ijarsct-22066

[25] M. Goyal and Q. H. Mahmoud, “A Systematic Review of Synthetic Data Generation

Techniques Using Generative AI,” Electronics, vol. 13, no. 17, p. 3509, Sep. 2024, doi:

10.3390/electronics13173509

[26] F. S. Karst, S.-Y. Chong, A. A. Antenor, E.-Y. Lin, M. M. Li, and J. M. Leimeister,

“Generative AI for Banks: Benchmarks and Algorithms for Synthetic Financial

Transaction Data,” Dec. 2024, doi: 10.48550/arxiv.2412.14730

[27] S. Almasi, K. Bahaadinbeigy, H. Ahmadi, S. Sohrabei, and R. Rabiei, “Usability

Evaluation of Dashboards: A Systematic Literature Review of Tools,” BioMed

Research International, vol. 2023, no. 1, pp. 1–11, Feb. 2023, doi:

https://doi.org/10.1155/2023/9990933.

https://www.irjmets.com/

193
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

POSTER

