Fraud Detection using Machine Learning in e-Commerce
By

Ang Su Huan

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION SYSTEMS (HONOURS) BUSINESS INFORMATION
SYSTEMS
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Ang Su Huan. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the
requirements for the degree of Bachelor of Information Systems (Honours) Business
Information Systems at Universiti Tunku Abdul Rahman (UTAR). This Final Year
Project proposal represents the work of the author, except where due
acknowledgment has been made in the text. No part of this Final Year Project
proposal may be reproduced, stored, or transmitted in any form or by any means,
whether electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ms. Nurul
Syafidah Binti Jamil and my moderator, Mr. Choo Peng Yin for giving me the valuable
opportunity to engage in a project on fraud detection using machine learning in the eCommerce
domain. This project provided me with hands-on experience in real-world data analysis, model
training and critical thinking, marking an important first step in establishing my career in data
science and machine learning. Finally, I would like to express my sincere gratitude to my

parents and my family for their endless love, support, and motivation throughout the course.

iii
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

The fast growth of e-commerce has resulted in a rise in fraudulent activities, posing significant
challenges to the security and trust of online transactions. Traditional fraud detection methods
often fall short in effectively identifying complex fraud patterns due to issues like data
imbalance, misclassification of costly errors, and the evolving nature of fraud tactics. This
research proposes a machine learning-based approach to improve fraud detection performance
in e-commerce platforms. Resampling techniques like SMOTE, oversampling and under-
sampling are applied to address class imbalance issue. The study aims to reduce false negatives
and enhance the detection of rare fraudulent transactions. Ensemble models such as Random
Forest, AdaBoost, and XGBoost, will be employed to capture complex patterns and improve
model performance. A systematic model evaluation was conducted using metrics such as
accuracy, Fl-score, MCC, precision, recall and AUC to ensure robust performance.
Experimental results showed that Random Forest combined with oversampling achieved the
best trade-off between precision and recall, reducing false negatives while maintaining high
overall accuracy. Robustness was further validated through testing on both synthetic datasets
and the Kaggle dataset, confirming the model’s adaptability and reliability. Finally, the best-
performing model was integrated into a Power BI dashboard, enabling real-time monitoring of
fraud detection results and visualization of emerging fraud trends. This integration supports
decision-making by providing stakeholders with timely insights. The study contributes to the
development of adaptive fraud detection systems capable of mitigating financial risks and

maintaining customer trust in the e-commerce sector.

Area of Study: Fraud Detection in E-commerce

Keywords: E-commerce, Fraud Detection, Machine Learning, SMOTE, Ensemble Learning,

Power BI, Credit Card Fraud

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE I
COPYRIGHT STATEMENT 11
ACKNOWLEDGEMENTS I
ABSTRACT v
TABLE OF CONTENTS \%
LIST OF FIGURES VIII
LIST OF TABLES X1v
LIST OF SYMBOLS XVI
LIST OF ABBREVIATIONS XVII
CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation.............coocceeeiiiiiiiiiniiiiieeieee, 2

1.2 ODBJECLIVES 1eeieeeeeiiiiiiiee e e e e eeeer e e e e e e e et e e e e e e e e s s nntaareaaeeeeeennnnnes 4

1.3 Project Scope and DIreCtionceeeeeeeeeiiiiiiiieeeeeeeeciiiieeee e e e e e 5

1.4 CONLITIDULIONS ...eeieiiiiiiee ettt e et e e e e e 6

1.5 Report Organizationeeeeiiiiieiiiiiiiiee et 7
CHAPTER 2 LITERATURE REVIEWS 8

2.1 Previous works on Fraud Detectioncoocceeiiiiiiiiiiniiiiiiieiee, 8

2101 DALASEL ...eeeeeeeeeeeee e e e e e 8

2.1.2 Data PreproCeSSINg.......cceeeeeiieiuirriieeeeeeeeiiiirreeeeeeeeeeesnenrreeaeeseeesssnnnns 10

2.1.3 Feature ENINEEringcceeviuiiiiiiiiiiieeeiiiiee e e 11

2,14 MOEIING......coiiiiiiiiiiiiie e 12

2.1.5 Evaluation MEtriCScuueiieiiiiiiieiiiiee e 18

2.2 Literature Matrix Tablecooooiiiiiiiiiiiie e, 20

23 Limitation of previous Studies.........ccovveirriiiiniieiniiieeiieeeieeeieeenns 26

2.4 Proposed SOIUtIONS.........coocuiiiiiiiiiiie e 27
CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 28

3.1 System ReqUITEMENtcceevvviiieiiiiiiieeiiiiee e 28

3 101 HArAWATLE .ot 28

3.1.2 Software/TOOlScoouuiiiiiiiiiii i 28
v

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 System DeSiZN ...ccuvvviiieeiiiiieeiiiiee et

3.2.1 Dataset ColleCtioneeevveiiniieeniieeniiee e
3.2.2 EDA & Data Preprocessing.........cc.veeeeeuveeeeercnveeeeenoveeeeenns
3.2.3 Model SeleCtionceevuueeerieiiniiieiiieeeiee e
3.2.4 Model Evaluation............ccoeceiiniiieniiieniiieniee e
3.2.5 Hyperparameter TUNINg............ccccvvveeeerivieeeeriniireeenineeeeanens
3.2.6 Synthetic Data Generation..........cccccceeeeeuvvvveeeeeeeeenncnnneenn.
3.2.7 Model Deployment to Power Blcccccoevveiiiiiinnnnnn.
3.2.8 Dashboard Testingccccceuvviiiieeeeeeiiiiiiiieeee e
33 USET CASE ...eeeiniiiiieeiiitee ettt e e
3.3.1 Use Case Diagram..........coceeuviviiieeeeeeiiiiiiiiieeee e eeeeveeeene
3.3.2 Use Case DesCriptioncccuvvreereeeeeeiiiiiiiiiieeeeeeeeiineeeenn
3.4 TIMEINE. ..coiiiiiiiiii e

CHAPTER 4 SYSTEM DESIGN

4.1 System Block Diagramccccvvviiieeiiiiiiiiiiiiiieee e
4.2 System Components Design (Wireframe)ccccceeeeeeecivviviieeeeeeeeennns

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1 SEtNZ UP.eiieiiiiiiiiiee et e e e e
5.1.1 Software/ToolS....ccccoueiiiiiiiiiiiiieeee e
5.2 Initial Dataset (Aborted)........ccvvveveeeeeiiiiiiiiieeeee e,
5.2.1 Dataset Selection...........cccecvveeriiiiiriiieiniiieiieceieceec e
5.2.2 EDA and Preprocessing of Initial Dataset..........................
53 Final Datasetcooooiiiiiiiiiiiieiiiee e
5.3.1 Data SeleCtioncccuuiiiiiiiiiiieiiiiiee e
5.3.2 EDA and Data Cleaning.............ccccceeeviuireierniiieeeenniieeeeenne
5.3.3 EDA and Data Visualization.............ccocceeervueennieeinieeennnen.
534 ENCOAING...cciiiiiiiiiiiiiiiie et
5.3.5 Resampling, Data Splitting and Modelling
5.3.6 Model Evaluation and CompariSOn..........cccceeevuveernveernnnen.
5.3.7 Performance Across Different Pipelines...........cccccccuveeennnn.
5.3.8 Hyperparameter TUuning.............ccccueeeeeiiiieeenniiieeeenniieeeeennns

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

62

Vi

5.3.9 FINAl MOAEl ChOICE...ccuuneeeieeee e 127

5.3.10 Synthetic Data Generation..............ceeeeevveeeeniivireeeriiieeeerreeee e 128

5.3.11 Model and Pipeline EXport.........ccceeeeeviiiieiniiiiieeeiiiee e 147

5.3.12 Power Bl Deployment.............ccccvuiiieeriiiiieeniiiiee e 148

5.3.13 Dashboard Developmentccceeeeeeviiieeeniiiieeeeniiieeeeeireeeeeenns 150

5.3.14 Implementation Issues and Challengescccccoeeevveeeeeeireeeeennnnen. 156

5.3.15 Concluding Remarkcccoovieiiiiiiiii e, 157
CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 158

6.1 Comparison Of Test Set..........uuviiiiiiiiiiiiiiiiiiee e 158

6.2 Model Evaluation on Kaggle Test Set..........cceveiiiiiiiiiiiieeeeeeeeciiieeeee e 160

6.3 Dashboard Evaluation...........c..eeiiiiiiiiiiiiiiiiiiiceee e 161

6.3.1 Technical Evaluation.............cccceiiiiiiiiiiiiiiiiieee e 162

6.3.2 User Acceptance Evaluation (SUS Questionnaire)............ccceeeeeeennnne 166

6.4 Insights from Dashboard Resultsccoeiiiiiiiiiiiiiiiceeee e, 172

6.5 Project Challengescccouiiiiiiiee et e e et e e e e e e e e nanens 185

6.6 Objectives Evaluation.........ccc..uiiiiiiiiiiiiiiiiicee e e e e e e 185

6.7 Concluding Remark...........cccvviiiiiiiiiiiieee e e 187
CHAPTER 7 CONCLUSION AND RECOMMENDATION 188

7.1 CONCIUSIONiiiiiiiiieeee e e ettt e e e e e ettt e e e e e e e e e sataaaeaeeeeeeeesnnnsaseaeaaaeeasnnnnnnns 188

7.2 ReCOMMENAATIONcceiiiiiiiiiiiiiie ettt et e et e e ettt e e e e enebeeeeeaes 189
REFERENCES 190
APPENDIX 193
POSTER 193
vii

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure Number

Figure 2.1.1
Figure 2.1.2
Figure 2.1.3
Figure 2.1.4
Figure 2.1.5
Figure 3.2.1
Figure 3.2.2
Figure 3.2.3
Figure 3.2.4
Figure 3.3.1
Figure 3.4.1
Figure 3.4.2
Figure 4.1.1
Figure 4.2.1
Figure 4.2.2
Figure 4.2.3
Figure 4.2.4
Figure 4.2.5
Figure 4.2.6
Figure 4.2.7
Figure 4.2.8
Figure 4.2.9
Figure 4.2.10
Figure 5.1.1
Figure 5.2.1
Figure 5.2.2
Figure 5.2.3
Figure 5.2.4

LIST OF FIGURES

Title

Comparison of MCC before and after applying SMOTE
Comparison of F1-Score before and after applying SMOTE
Comparison of Recall before and after applying SMOTE
Comparison of G-Mean before and after applying SMOTE
Performance comparison of Random Forest and AdaBoost
Project Workflow Overview

Workflow of Random Forest

Workflow of XGBoost

Workflow of the AdaBoost

Use case diagram

Gantt Chart for Final Year Project 1

Gantt Chart for Final Year Project 2

System Block Diagram of the Fraud Detection Dashboard
Wireframe of Homepage

Wireframe of Overview Page

Wireframe of Time Analysis Page

Wireframe of Geography Page

Wireframe of Demographics Page

Wireframe of Behavioral Analysis Page

Wireframe of Model Performance Page

Wireframe of Prediction Confidence & Key Influencers Page
Wireframe of Credit Card Transactions Page

Wireframe of Transaction Details Page

Version of Python and Various Libraries

Initial Dataset Information

Loading Dataset

Merging Dataset

Dataset Size Before and After Filtering for Online Credit

Card Transactions

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

10
11
12
13
15
30
33
34
34
41
48
49
50
52
53
54
55
56
57
58
59
60
61
62
63
64
64
65

viii

Figure 5.2.5
Figure 5.2.6
Figure 5.2.7

Figure 5.2.8

Figure 5.2.9

Figure 5.2.10
Figure 5.2.11
Figure 5.2.12
Figure 5.2.13
Figure 5.2.14

Figure 5.2.15
Figure 5.3.1
Figure 5.3.2
Figure 5.3.3
Figure 5.3.4
Figure 5.3.5
Figure 5.3.6
Figure 5.3.7

Figure 5.3.8
Figure 5.3.9
Figure 5.3.10

Figure 5.3.11
Figure 5.3.12
Figure 5.3.13
Figure 5.3.14

Figure 5.3.15
Figure 5.3.16
Figure 5.3.17

Initial Dataset Summary

First Five Rows of Initial Dataset

Monetary Columns After Removing Dollar Signs and
Commas

Feature Extraction from Date-Related Columns
Number of Unique Values for Each Feature

Number of Duplicated Rows

Boxplots of Numeric Features

Number of Outliers in Each Column

Outlier Handling Summary

One-Hot Encoding and Binary Encoding for Categorical
Columns

Heatmap and Correlation Table for is_fraud

Null Values and Duplicates Check in the Dataset
Drop Irrelevant Columns

Boxplots for Numerical Features

Total Rows with Outliers and Outliers per Column
Summary of Fraudulent Outliers Across Features
Outlier Handling Summary

Fraud vs Non-Fraud Transactions and Percentage
Distribution

Transaction Amount Distribution

Average Transaction Amount by Fraud and Non-Fraud
Percentage Distribution of Fraud and Non-Fraud by
Transaction Amount

Fraud and Non-Fraud Transactions by Gender

Fraud Ratio by Gender

Fraud Rate by Category

Rate Difference between Fraud and Non-Fraud Transactions

by Category

Fraud Count by Category

Fraud and Non-Fraud Transactions by Category
Fraudulent Transactions and Fraud Rate by Category

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65
66
66

67
67
68
68
69
69

70
72
72
73
73
74
75
75

76
77
77

78
79
79
80

81
82

Figure 5.3.18
Figure 5.3.19
Figure 5.3.20
Figure 5.3.21
Figure 5.3.22
Figure 5.3.23
Figure 5.3.24
Figure 5.3.25
Figure 5.3.26
Figure 5.3.27
Figure 5.3.28

Figure 5.3.29
Figure 5.3.30
Figure 5.3.31
Figure 5.3.32
Figure 5.3.33
Figure 5.3.34
Figure 5.3.35
Figure 5.3.36
Figure 4.3.37
Figure 5.3.38
Figure 5.3.39

Figure 5.3.40
Figure 5.3.41
Figure 5.3.42
Figure 5.3.43
Figure 5.3.44
Figure 5.3.45
Figure 5.3.46
Figure 5.3.47
Figure 5.3.48

Top 10 Merchants with the Highest Fraud Rate

Fraud Count by Merchant

Percentage of Fraud Count for the Top 5 Merchant
Top 10 Jobs with the Highest Fraud Rate

Jobs with 100% Fraud Rate and Their Counts
Percentage of Fraud Count for the Top 10 Jobs

Total Transactions and Fraud Count by Age

Fraud and Non-Fraud Transactions by Age Group
Fraudulent Transactions and Fraud rate by Age Group
Total Transactions and Fraud Transactions by Hour
Percentage of Fraudulent Transaction Amount by Night and
Day

Conversion of is_night Feature

Fraud and Non-Fraud Transactions by Day of the Week

Fraudulent Transactions and Fraud Rate by Day of the Week

Distance Calculation Using Haversine Formula
Transaction and Fraud Count by Distance

Transaction and Fraud Rate by Distance

Boxplot of City Population with Outlier Ranges
Assignment of City Population Categories

Transaction and Fraud Count by City Population Group
Heatmap of Numerical Features for Final Dataset

Binary Encoding, One-hot Encoding and Target Encoding
Applied

Function Calling for Random Forest without Resampling
Function Definition for Model Training and Evaluation
Function Definition for Resampling

Code for Data Splitting

Code for Model Training

Function Definition for Model Evaluation

High cardinality columns

Dropping High-Cardinality Columns

Hybrid Generation of Synthetic Credit Card Numbers

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

90
90
91
92
92
93
93
94
94
95

97
97
98
98
98
99
129
129
130

Figure 5.3.49
Figure 5.3.50
Figure 5.3.51
Figure 5.3.52

Figure 5.3.53
Figure 5.3.54

Figure 5.3.55
Figure 5.3.56
Figure 5.3.57
Figure 5.3.58
Figure 5.3.59

Figure 5.3.60
Figure 5.3.61

Figure 5.3.62
Figure 5.3.63
Figure 5.3.64

Figure 5.3.65

Figure 5.3.66

Figure 5.3.67
Figure 5.3.68
Figure 5.3.69
Figure 5.3.70
Figure 5.3.71
Figure 5.3.72
Figure 5.3.73

Normalized Data using Min-Max Scaling

CTGAN Training Configuration

Numeric Data after Restoration

Implementation of Post-Processing for Synthetic Dataset 1
Restoration

Synthetic Dataset 1 after Post-Processing

Oversampling of Fraudulent Transactions in Focus
Categories

Training Process of CTGAN with Reduced Dataset
Feature Engineering of Temporal Attributes

Use of Stratified Sampling for Balanced Training Data
CTGAN Training Settings in Dataset 3

Pearson Correlation and Cosine Similarity of Synthetic
Dataset 3

Distribution of Distance in Synthetic Dataset 3
Replacement of Raw Coordinates with Capped Distances
During Training

Distribution of Distance in Synthetic Dataset 4

Code for Age Group Creation and Adult Fraud Balancing
Maximum Synthetic Distance After Recalculation and 160
km Cap

Pearson Correlation and Cosine Similarity of Synthetic
Dataset 4

Training Data Distribution After Adjusting Fraud Rate to
15%

Defining Feature Types Using SingleTableMetadata
CTGAN Training Configuration in Data 5

TVAE Training Configuration in Data 6

Final Synthetic Dataset Generated by CTGAN in Data 5
Final Synthetic Dataset Generated by TVAE in Data 6
TVAE Training Configuration in Data 7

Saving the preprocessing pipeline and Random Forest model

using Joblib

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

130
130
131
131

132
133

134
135
135
136
137

138
138

139
139
140

140

142

142
143
144
145
145
146
147

Xi

Figure 5.3.74
Figure 5.3.75
Figure 5.3.76
Figure 5.3.77
Figure 5.3.78
Figure 5.3.79
Figure 5.3.80
Figure 5.3.81
Figure 5.3.82
Figure 5.3.83
Figure 5.3.84
Figure 5.3.85
Figure 5.3.86
Figure 5.3.87

Figure 5.3.88

Figure 5.3.89

Figure 5.3.90

Figure 6.3.1

Figure 6.3.2

Figure 6.3.3

Figure 6.3.4

Figure 6.3.5

Figure 6.3.6

Figure 6.3.7

Figure 6.3.8
Figure 6.3.9

Power BI data source connection from OneDrive

Python script preprocessing new transaction data

Python script generating predictions

Python script generating evaluation metrics

Output generated by Python script

Homepage

Overview Page

Time Analysis Page

Geography Page

Demographics Page

Behavioural Analysis Page

Model Performance Page

Prediction Confidence & Key Influencers Page

Credit Card Transactions Page (drill through from
Demographics Page)

Transaction Details Page (drill through from Credit Card
Transactions Page)

Interactive Dashboard Components Showing Slicers, Filters,
Tooltips and Smart Narrative

Mobile layout examples of the Fraud Detection Dashboard
Time Analysis Page with Category Slicer Not Applied
Time Analysis Page with Category Slicer Applied

Time Analysis Page with Category and Fraud Label Slicers
Applied

KPI Cards on Model Performance Page with Colour Coding
Applied

Transaction Table on Credit Card Transactions Page Showing
Fraud Case Highlighting

Selected Transaction in Credit Card Transactions Page Prior
to Drill-through

Transaction Details Page Showing Matching Transaction ID
Ease of Use Evaluation

Navigation Clarity Evaluation

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

148
148
149
149
149
150
150
151
151
152
152
153
153
154

154

155

156

164

164

164

165

165

165

166

167
167

Xii

Figure 6.3.10
Figure 6.3.11
Figure 6.3.12
Figure 6.3.13
Figure 6.3.14
Figure 6.3.15
Figure 6.3.16
Figure 6.3.17
Figure 6.4.1
Figure 6.4.2
Figure 6.4.3
Figure 6.4.4
Figure 6.4.5
Figure 6.4.6

Figure 6.4.7
Figure 6.4.8

Figure 6.4.9

Figure 6.4.10
Figure 6.4.11
Figure 6.4.12

Ease of Learning Evaluation

Perceived Complexity Evaluation

Need for Support Evaluation

Consistency Evaluation

Visual Clarity Evaluation

Responsiveness Evaluation

Interactivity Evaluation

Overall Satisfaction

Overview Page

Time Analysis Page

Geography Page

Tooltip Information from Honokaa Transaction Point
Demographics Page

Example of Drill-Through Navigation from Credit Card
Fraud Table

Credit Card Transactions Page

Example of Drill-Through Navigation from Transaction-level
Details Table

Transaction Details Page

Behavioral Analysis Page

Model performance Page

Prediction confidence & Key Influencers Page

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

168
168
168
169
169
170
170
170
172
173
174
175
176
177

178
179

180
181
182
183

Xiii

LIST OF TABLES

Table Number Title Page

Table 2.1.1 Attributes of European Dataset 8

Table 2.1.2 Attributes of E-commerce site data 9

Table 2.1.3 Attributes of E-commerce site for Boyner Group 9

Table 2.1.4 Performance comparison after applying SMOTE 11

Table 2.1.5 Performance comparison of LOF, iForest, LR, DT and 14
RF

Table 2.1.6 Performance comparison of RF, DT, LR, SVM and 14
ANN

Table 2.1.7 Model performance before including the IsGuestOrder 15
feature

Table 2.1.8 Model performance after including the IsGuestOrder 15
feature

Table 2.1.9 Performance comparison of base models 16

Table 2.1.10 Performance comparison of models combined with 17
AdaBoost

Table 2.1.11 Performance comparison of NB, SVM, LR, RF, DT 17
and XGboost

Table 3.1.1 Specifications of laptop 28

Table 3.1.2 Specifications of software 29

Table 3.2.1 Confusion Matrix 36

Table 5.3.1 Feature Description of Credit Card Transactions Fraud 71

Detection Dataset

Table 5.3.2 Evaluation Metrics of Random Forest, XGBoost and 100
AdaBoost with Different Resampling Techniques in
Fraud Detection

Table 5.3.3 Classification Reports of Random Forest, XGBoost 103
and AdaBoost with Different Resampling Techniques

in Fraud Detection

Xiv
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.3.4

Table 5.3.5
Table 5.3.6
Table 5.3.7
Table 5.3.8
Table 5.3.9
Table 5.3.10
Table 5.3.11
Table 5.3.12
Table 5.3.13
Table 5.3.14
Table 5.3.15
Table 5.3.16
Table 5.3.17

Table 5.3.18

Table 5.3.19

Table 6.1.1

Table 6.2.1

Table 6.3.1
Table 6.3.2

Confusion Matrixes of Random Forest, XGBoost and
AdaBoost with Different Resampling Techniques in
Fraud Detection

Performance of Random Forest with Pipeline 2
Performance of XGBoost with Pipeline 2
Performance of AdaBoost with Pipeline 2
Performance of Random Forest with Pipeline 3
Performance of XGBoost with Pipeline 3
Performance of AdaBoost with Pipeline 3

Random Forest Hyperparameter space settings
Random Forest Hyperparameter Tuning Results
XGBoost Hyperparameter space settings

XGBoost Hyperparameter Tuning Results
AdaBoost Hyperparameter space settings

AdaBoost Hyperparameter Tuning Results

Random Forest Evaluation Results on Different
Synthetic Dataset Version

SHAP Comparison Between Train Dataset and
Synthetic Dataset 3

SHAP Comparison Between Train Dataset and

Synthetic Dataset 4

Performance Comparison of Kaggle and Synthetic Test

Sets

Performance Comparison of Final Random Forest
Model on Split Test Set and Kaggle Test Set
Technical Evaluation Test Cases and Results

System Usability Scale (SUS) Evaluation Results

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

106

110
110
110
113
113
113
117
118
121
122
124
125
128

137

140

158

160

162
171

XV

LIST OF SYMBOLS

XVi
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

AdaBoost
ANN

AP
AUC-ROC
AUC
CNP

CP
CTGAN
DAX

DT

FN

FP
iForest
KNN
LDA
LightGBM
LR

LOC
MAE
mcc

NB

PCA

RF
RMSE
ROC
SMOTE
SVYM
TVAE
XGBoost

LIST OF ABBREVIATIONS

Adaptive Boosting

Artificial Neural Networks

Average Precision

Area Under the Receiver Operating Characteristic Curve
Area Under the Curve

Card Not Present

Card Present

Conditional Tabular Generative Adversarial Network
Data Analysis Expressions

Decision Tree

False Negative

False Positive

Isolation Forest

K-Nearest Neighbours

Linear Discriminant Analysis

Light Gradient Boosting Machine

Logistic Regression

Local Outlier Factor

Mean Absolute Error

Matthews Correlation Coefficient

Naive Bayes

Principal Component Analysis

Random Forest

Root Mean Squared Error

Receiver Operating Characteristic

Synthetic Minority Over-sampling Technique
Support Vector Machine

Tabular Variational Autoencoder

Extreme Gradient Boosting

XVii

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

CHAPTER 1

Introduction

This chapter outlines the research background and motivation, highlighting the key problems
and the need for improved fraud detection in e-commerce. This chapter also presents the
objectives of the project, the scope and direction of the study, and the contributions made to

the field.

E-commerce is the result of a significant change driven by the rapid evolution of digital
technologies into conventional business methods [1]. It involves the buying and selling of
products, services and information through electronic platforms over the Internet [1]. The rise
of e-commerce has enabled business to reach global consumers, reduce costs, offer greater
flexibility for consumers, respond quickly to market demands, support various payment
methods and make transactions easier and faster through technology [2]. The accessibility and
ease of online shopping have made it very popular, changing the way people interact with
businesses and make purchases. However, with the swift expansion of e-commerce, fraud has
become a significant challenge. As online transactions have increased, fraudsters have more
opportunities to exploit the vulnerabilities of digital systems by using advanced techniques to

bypass security measures [3].

Fraud in e-commerce can take many forms, including card not present (CNP), fake websites,
chargeback fraud, account takeovers, identity thefts and phishing [4]. CNP fraud, in particular,
occurs when stolen or counterfeit credit card details are used for online purchases without the
physical card being required. This makes it one of the most prevalent and costly forms of fraud
in digital commerce. Fraudsters can exploit these transactions to make unauthorized purchases,
resulting in substantial financial losses for both consumers and businesses [5]. This form of
fraud is particularly concerning due to its widespread impact. Consumers may face
unauthorized charges on their accounts, while business must deal with chargebacks, legal fees

and reputational damage.

These fraudulent activities not only lead to financial losses but also damage customer trust [6],

which is a factor essential for the sustained success of e-commerce businesses. As customers

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

grow increasingly concerned about the security of their payment information, e-commerce
businesses must navigate the challenge of maintaining trust while providing a seamless
shopping experience. To address these risks, e-commerce platforms are deployed machine
learning methods in fraud detection systems such as Logistic Regression, Random Forest,
Naive Bayes, Support Vector Machine (SVM) and others to identify and block fraudulent

transactions in real time [6].

Traditional fraud detection methods are always relying on static rules and manual checks,
which are become less effective against the evolving tactics of fraudsters [7]. These systems
are difficult to detect complex fraud patterns because there are very few examples of fraud [6].
By using machine learning in fraud detection, e-commerce businesses can significantly
improve accuracy in identifying fraudulent transactions [7]. Ultimately, this leads to better

customer satisfaction, increased trust, and the continued growth of e-commerce businesses.

1.1 Problem Statement and Motivation

In the e-commerce industry, fraud detection is vital for ensuring the security of transactions
and maintain customer trust. However, several problems in fraud detection systems hinder their

effectiveness.
1. Data imbalance in fraud detection datasets.

Fraudulent transactions represent a very small proportion of the total dataset, often less than
1%, leading to an imbalance [8]. This imbalance leads to machine learning models become
biased toward the normal transactions, which are the majority. This makes the models effective
at identifying legitimate transactions but difficult to detect uncommon and critical fraudulent
transactions which are the minority [1]. As a result, many fraud cases are missed, increasing
financial losses and reducing trust in e-commerce system. Traditional resampling methods like
oversampling and under sampling help to balance the dataset, but they can introduce new issues
like overfitting or loss of useful data. To tackle this, resampling technique like SMOTE are
needed to build models that effectively detect uncommon fraudulent transactions while

maintaining accuracy [9].

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

2. Misclassification in machine learning

Misclassification in machine learning occurs when a model treats all errors equally. Most
models aim to minimize errors without considering that some mistakes are more costly than
others, this is known as cost-sensitive problem [9]. In fraud detection, failing to identify a
fraudulent transaction (false negative) is much more damaging than incorrectly flagging a
legitimate transaction as fraudulent (false positive). This is because they allow fraudulent
activities to go undetected, leading to financial losses and potential reputational damage. This
problem is further complicated by the overlap between legitimate and fraudulent transactions,
especially when patterns change over time, then worsens this issue. Such misclassifications
strain resources, impacts customer experience, and reduces overall detection effectiveness [9].
To address this issue, ensemble learning models, which are more robust and capable of
capturing complex and non-linear relationships, can be combined with resampling techniques.
These models can better recognize minority class patterns (i.e., fraud), thereby minimizing the

costly errors, especially false negatives and improving overall prediction accuracy.
3. Evolving Nature of fraud

Fraudulent patterns are not only rare but also change over time, making it challenging for
detection models to remain effective [1,10]. This phenomenon, known as concept drift, occurs
when fraudsters adapt their methods to bypass detection, while legitimate users may change
their spending behaviors [9]. If detection models are not updated regularly, their accuracy
declines, leading to missed fraud cases, financial losses, and a poor user experience. To address
this, a Power BI dashboard will be developed to monitor model performance and the fraud
patterns in real-time, allowing for continuous tracking of effectiveness and enabling timely

updates to adapt to shifting fraud patterns.

Motivation

The rapid expansion of e-commerce has resulted in a rise in fraudulent activities, creating major
challenges to the security of online transactions. While machine learning offers an effective
solution, but issues like data imbalance, misclassification of costly errors, and the evolving
nature of fraud still limit model performance. Fraudulent transactions are rare, causing models

to be biased towards legitimate ones, and missing fraud (false negatives) is more costly than

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

incorrectly flagging legitimate transactions [9]. Moreover, as fraud tactics evolve, models can
become outdated and ineffective.

The motivation behind this work is to address these gaps by designing a strong machine
learning model capable of accurately detects fraud while considering the costs of different types
of errors. Additionally, the model will be integrated with a monitoring dashboard, enabling
continuous tracking of its performance and allowing for timely updates as fraud patterns
change. This approach will enhance detection accuracy, improve system adaptability, and

ultimately support better security and customer trust in e-commerce.

1.2 Objectives

The aim of this research is to develop advanced machine learning models and visualization
tools for improving fraud detection in e-commerce, specifically targeting credit card
transactions. By addressing problems like data imbalance, cost-sensitive misclassification, and
evolving fraud patterns, this study seeks to improve the performance and adaptability of fraud
detection systems. In this research, ensemble learning models with resampling techniques are
proposed, along with an interactive Power BI dashboard for real-time monitoring and

performance tracking.
Main Objective:

To integrate machine learning algorithm with a Power BI dashboard for real-time monitoring

and performance tracking.
Sub Objectives:

. To enhance fraud detection performance by addressing data imbalance through
resampling techniques.
. To develop ensemble models that reduce misclassification errors.

o To visualize fraud detection model performance and fraud patterns using Power BI.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.3 Project Scope and Direction

The research is focusing on fraud detection in e-commerce by using advanced machine learning
techniques. The study aims to address critical challenges such as data imbalance, cost-sensitive

problem and evolving fraud patterns, which are common in fraud detection.

This project focuses on fraud detection in e-commerce, specifically targeting credit card fraud
within Card Not Present (CNP) transactions. Other sectors such as banking, healthcare, and
insurance are excluded, as are other e-commerce fraud types like account takeovers,
chargebacks, and promotional abuse. The study also excludes alternative payment methods
such as e-wallets, cryptocurrencies, and bank transfers. By narrowing the scope to credit card
CNP transactions in e-commerce, this research aims to design and refine machine learning
models that are directly relevant to current industry challenges. This focused approach avoids
the added complexity of multiple fraud types and payment methods, enabling more accurate

and effective model development.

The research also focuses on employing ensemble learning models such as Random Forest,
AdaBoost, and XGBoost exclusively for fraud detection tasks. Resampling techniques, such as
SMOTE, Oversampling and Under-sampling are applied to these models to address the issue
of class imbalance and reduce the impact of misclassification. These models and techniques
aim to enhance the models’ ability to identify fraudulent transactions accurately, especially by

reducing false negatives, while maintaining high overall performance.

The scope of Power BI development in this research focuses on creating a user-friendly
dashboard to visualize and monitor the performance of fraud detection models in real time. The
dashboard will visualize key metrics such as accuracy, precision, recall, Fl1-score, AUC and

confusion matrices, along with fraud patterns and trends.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

14 Contributions

This research aims to enhance fraud detection in e-commerce by solving some key challenges
using machine learning techniques. A major focus is addressing class imbalance, which can
significantly affect model performance. To this end, this study compares different resampling
methods. SMOTE, an advanced resampling method, generates synthetic examples of
fraudulent transactions (minority class) to balance the dataset. In addition, the study examines
basic resampling methods such as random oversampling, which duplicates existing minority
class samples, and random under-sampling, which reduces the number of majority class
instances. By applying and comparing these techniques, the research determines how different
resampling strategies influence the model's ability to detect rare fraud cases in highly

1imbalanced datasets.

Another key contribution of this research is using advanced ensemble models specifically
tailored for fraud detection. Unlike traditional models that treat all errors equally, these
ensemble approaches can better handle varying complexities of fraudulent and legitimate
transactions. By focusing on reducing false negatives (missing fraud) while maintaining
accuracy for legitimate transactions, these models improve fraud detection overall
performance. Furthermore, they help reduce false positives, lower manual review costs and

ensure smoother transaction processing for customers.

As a further contribution, this research also focuses on the development of a Power BI
dashboard to monitor fraud detection performance and emerging fraud patterns. The dashboard
will provide an interactive and comprehensive view of key metrics, enabling real-time
monitoring and decision-making. It will support e-commerce businesses in identifying
potential fraud trends, tracking accuracy of fraud detection models and improving operational

responses to fraud incidents, thereby enhancing overall fraud management in e-commerce.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.5 Report Organization

This research is organized into several key chapters. Chapter 2 presents a literature review of
existing studies related to fraud detection in e-commerce and credit card transactions. Chapter
3 describes the system methodology, outlining the overall approach and framework adopted
for the project. Chapter 4 details the system design, including system block diagram and
dashboard wireframes. Chapter 5 focuses on system implementation, covering the software
setup, model training and integration, and dashboard development. Chapter 6 presents the
system evaluation and discussion, analysing the test results, dashboard testing and insights
derived from the dashboard. Finally, Chapter 7 concludes the study by summarizing key

findings and providing recommendations for future work.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

CHAPTER 2

Literature Reviews

Researchers have explored various datasets, machine learning algorithms and evaluation
metrics to tackle challenges such as data imbalance [4,9,11-16], cost-sensitive problem [9] and
changing fraud patterns and tactics [13,17,18]. This section reviews recent studies addressing
these challenges, focusing on the datasets, preprocessing techniques, feature engineering,

modelling methods, evaluation metrics and potential areas of study.

2.1 Previous works on Fraud Detection

2.1.1 Dataset

The most commonly used dataset for fraud detection studies is the European Credit Card
Fraud Detection dataset from Kaggle [9,11,14,16,18,19]. Due to confidentiality issues, the
dataset does not disclose detailed variable names. Instead, it includes anonymized features such
as transaction amount, time, and class which indicate whether the transaction is fraudulent or
not [9,11,18,19], as shown in Table 2.1. Despite its limitations, this dataset is widely adopted

because of its relevance to real-world scenarios.

Features Data types Description
Time Integer Time difference between each transaction (second)
Vi Double | principle component
V2 Double 2 principle component
V28 Double 28 principle component
Amount Double Transaction amount
Class Integer I=fraud, O=not fraud

Table 2.1.1: Attributes of European Dataset [16].

Other studies have proposed e-commerce or shopping activity datasets, which often provide
richer feature sets [3,12,15,17,20]. For example, Najem and Kadhem [15] and Tejasri et al. [20]

used similar datasets, which include user id, device id, IP address, source, browser, age, gender,
8

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

sign up time, purchase time, purchase value as shown in 7able 2.2. Golyeri et al. [3] used a

dataset containing attributes such as total amount, order item count, successful orders, failed

orders, last 24-hour return orders, last week return orders, and payment method as shown in

Table 2.3. In another study, Kirelli et al. [15] used a dataset with selected features from 38

initial attributes. Key features included shopping amount, order hour, order day, name length,

city, gender, age, category, brand, shipped amount, coupon discount, email confirmation time

and label for fraud. These features are particularly valuable as they capture user behaviour

patterns that can significantly enhance fraud detection in e-commerce contexts.

variables
user_id
signup_time
purchase_time
purchase_wvalue
device_id
SOurce
browser
sex
age
ip_address

class

Type
MNumber

Date Time

MNumber

Categorical

MNumber
Categorical

MNumber

Table 2.1.2: Attributes of E-commerce site data [15].

Feature Feature Name Feature Description

Feature 1 TotalAmount basket amount

Feature 2 OrderltemCount number of items in the basket

Feature 3 SuccessOrder number of successful orders in the last 24
hours

Feature 4 FailedOrder number of failed orders in the last 24 hours

Feature 5 Last24HoursReturnOrder number of returns in the last 24 hours

Feature 6 LastWeekReturnOrder number of returns in the last week

Feature 7 OrderlD order ID

Feature 8 PaymentMethodCode payment method

Table 2.1.3: Attributes of E-commerce site for Boyner Group [3].

Other studies do not clearly specify the datasets used [4,8], making it challenging to evaluate

the generalizability and applicability of their findings.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.2 Data Preprocessing

Golyeri et al. [3] and Ray [8] used normalization for feature scaling to ensure all features
contributed equally to the model, while other studies applied standardization to scale features
like transaction amounts effectively [9,15]. Adepoju et al. [13] employed the conversion of

categorical data into binary format as a preprocessing step to handle categorical variables.

To handle imbalanced datasets, many studies proposed SMOTE to generate synthetic samples
for the minority class [8-9,11-12,14-16,18]. Dornadula and Geetha [11] showed that SMOTE
improved the performance of models like logistic regression, random forests and decision trees
in precision and MCC as shown in Figure 2.1. Ray [8], Saputra and Suharjito [12] also
observed that SMOTE effectively boosts the performance of models like neural networks,
decision trees, random forests, and Naive Bayes by improving the classification of imbalanced
data, especially for F1-score as shown in Figure 2.2. Abdulghani et al. [18] reported that after
balancing the dataset using SMOTE, all models showed strong performance, with F1-Score
exceeding 90% as shown in Table 2.4. Before applying SMOTE, the FI1-Scores were
significantly lower: Logistic Regression scored 81.68%, XGBoost 89.49%, and both LDA and
Naive Bayes only around 10% [18].

-
Le Logaatee Desnonver Raadom Dreat
rezrmng

ol Outher Liclation forent
factor

r fler SMOTE

L8

Differesnt clasnsier

® Before SMOTE @ Afler SMOTE

Figure 2.1.1: Comparison of MCC before and after applying SMOTE [11].

10

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Fl~5(9re

NN NN+SM NB NB4+SM RF RF+SM DT DT+SM

Figure 2.1.2: Comparison of F1-Score before and after applying SMOTE [8].

Classifier accuracy % | precision | Recall% F1% ALCY,
y

LE 4752 9'.-‘.-4#?] 91.963 94.61 94756

LA 41.737 08.467 #4.822 91.137 91.749

MNB 01338 07.158 R5.19% Q0. 786 91.349

X(GBoost 99.969 99938 100 99969 | 99909

Table 2.1.4: Performance comparison after applying SMOTE [18].

2.1.3 Feature Engineering

Most studies in fraud detection rely on Principal Component Analysis (PCA) for feature
engineering. PCA is widely used to reduce the dimensionality of dataset while simplify data
by highlighting the most important information [12]. Najem and Kdhem [15] highlighted
PCA’s effectiveness in improving machine learning performance by reducing the complexity
of high-dimensional data. While for studies using the European Credit Card Fraud Detection
dataset, the data has already been processed using PCA, except for the Amount, Time, and
Class features, which are kept as is due to confidentiality. These features are retained in their
original form while other variables have undergone dimensionality reduction through PCA

[9,11,16,18,19].

11
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.4 Modelling

Several machine learning algorithms have been extensively studied for fraud detection in e-
commerce and credit card transactions. Researchers have explored diverse models, ranging

from basic classifiers to ensemble techniques and neural network-based approaches.

Ray [8] proposed four machine learning models, which are Decision Tree, Naive Bayes,
Random Forest and Neural Network. Among these models, the neural network without
SMOTE achieved the highest accuracy of 96%. While for other metrics, the results were quite
low. Neural network with SMOTE achieved superior performance compared to other models,
particularly in terms of recall and G-mean as shown in Figure 2.3 and Figure 2.4. This suggest
that accuracy alone is not a reliable metric in imbalanced datasets. Using SMOTE can
significantly improve the model’s ability to detect fraud by better handling class imbalance.
Naive Bayes with SMOTE achieved the highest F1-score, showing the strong balance between
precision and recall. However, its recall was the lowest without SMOTE and even with
SMOTE, it remained the second lowest among all models. This means that Naive Bayes miss

many actual fraud cases, which is risky in real-world applications.

Recall

Count

g ¥ 8 8 8 3 8

o

NN NN+SM NB NB+SM RF RF+SM DT DT+SM

Figure 2.1.3: Comparison of Recall before and after applying SMOTE [8].

12

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

G-Mean

Count

g ¥ 8 ¥ 8 38

-
(=]

o

NN NN+SM NB NB+SM RF RF+SM DT DT+SM

Figure 2.1.4: Comparison of G-Mean before and after applying SMOTE [8].

Najem and Kadhem [15] applied ensemble models, including LightGBM, XGBoost and
Random Forest. After applying standardization and PCA, XGBoost and LightGBM achieved
the highest performance with perfect accuracy (100%), outperforming Random Forest with a
slightly lower accuracy of 99%. Using additional metrics like precision, recall, F1-score and
AUC, the results for XGBoost and LightGBM remain nearly perfect or perfect, confirming

their superior performance in fraud detection.

In Puh and Brki¢ [9] research, Random Forest outperformed SVM and Logistic Regression,
achieving the highest AUC and AP scores of 0.9448 and 0.8483 respectively. SVM recorded
the lowest AUC score (0.8877), showing its weaker capability in separating classes, while
Logistic Regression had the lowest AP score (0.7337), reflecting more false positives and less

reliability when detecting fraud at higher recall levels.

Dornadula and Geetha [11] observed that Random Forest, Decision Tree and Logistic
regression performed better than Isolation Forest and Local Outlier Factor in detecting credit
card fraud. Among these, Random Forest achieve the highest accuracy, precision and MCC
consistently as shown in 7able 2.5. Among these, Random Forest achieve the highest accuracy
of 99.98%, precision of 99.96% and MCC of 0.9996 as shown in Table 2.5. After applying
SMOTE, Random Forest’s results became nearly perfect, showing its strong performance in

handling minority class detection.

13

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Methods Accuracy Precision MCC
Local Qutlier factor 0.4582 0.2941 0.1376
Isolation forest 0.5883 0.9447 0.2961
Logistic regression 0.9718 0.9831 0.9438
Decision tree 09708 0.9814 0.9420
Random forest 0.9998 0.9996 0.9996

Table 2.1.5: Performance comparison of LOF, iForest, LR, DT and RF [11].

Sadeneni [4] compared five models, including ANN, Random Forest, Decision Tree, Logistic
Regression and SVM based on accuracy, precision, and false alarm rate as shown in Table 2.6.
ANN achieved the highest accuracy of 99.92%, precision of 99.57% and a very low false alarm
rate with only 0.1%, suggesting that it is very effective at fraud detection. However, ANN
comes with high training costs and hardware dependency, making it less practical for all
business. Random Forest is a strong alternative, as it achieved a very high accuracy of 99.21%
and precision of 92.34%. SVM had the highest false alarm rate at 4.9%, suggesting that it is
less ideal for fraud detection where minimising false alarms is important. Decision Tree

performed slightly better than Logistic Regression across all metrics.

False

ML Technique Accuracy Precision

4 °y Alarm Rate
Fandom Forest 99 2 1% 92 34% 38%
Decision Tree 08 47% B4 98, 2.0%
Logistic Regression 05.55% B3.76% 2.7%
Support Vector Machine 95.16% BE.42% 4.9%
Artiticial Meural .
0G 920 G0 570 0.1%
Metworks

Table 2.1.6: Performance comparison of RF, DT, LR, SVM and ANN [4].

Golyeri et al. [3] demonstrated including the IsGuestOrder feature significantly improved fraud
detection. Before including IsGuestOrder feature, XGBoost initially outperformed other
models with 0.90 accuracy and 0.92 recall, while Logistic Regression showed superior
precision (0.91) despite its lower recall (0.86) as shown in Table 2.7. After including the feature,
Logistic Regression achieved the highest accuracy at 0.93 and F1-score at 0.92 as shown in

Table 2.8. This showed that a good feature can boost a simple model’s performance when it
14

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

captures the fraud pattern, while XGBoost already handled complex patterns, so a single binary

feature does not significantly change its performance.

Classifier Accuracy Precision Recall F-measure
Decision Tree 0.83 0.82 0.78 0.80
Logistic Regression 0.89 0.91 0.86 0.88
Extreme Gradient Boosting 0.90 0.85 0.92 0.88
Random Forest 0.81 0.80 0.87 0.83

Table 2.1.7: Model performance before including the IsGuestOrder feature [3].

Classifier Accuracy Precision Recall F-measure
Decision Tree 0.83 0.82 0.79 0.80
Logistic Regression 0.93 0.95 0.89 0.92
Extreme Gradient Boosting 0.90 0.87 0.91 0.89
Random Forest 0.86 0.81 0.0 0.85

Table 2.1.8: Model performance after including the IsGuestOrder feature [3].

Sailusha et al. [19] focused on comparing Random Forest and AdaBoost in credit card fraud
detection. While both models had the same high accuracy, Random Forest outperformed
AdaBoost in precision, recall and F1-score as shown in Figure 2.5, making it more reliable for
fraud detection. Random Forest detected more fraud cases with a recall over 70%, while for
AdaBoost with recall over 60%. Both models showed the signs of overfitting as the training
data was significantly better than that of test data. The AUC of AdaBoost was better, suggesting

it might be more effective in distinguishing between fraud and non-fraud cases among different

thresholds.
0.3
0.5 ;
0.4
0.2
o i __ - . -

ACCURACY PRECISION RECALL F1-5CORE

B RANDOMFOREST
m ADABOOST

Figure 2.1.5: Performance comparison of Random Forest and AdaBoost [19].

15

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Based on the study of Adepoju et al. [13], Logistic Regression emerged as the best-performing
model for credit card fraud detection, with the highest accuracy of 99.074%. It also achieved
the perfect sensitivity (recall) at 100%, meaning it was able to detect all actual fraud cases in
the test data. SVM also performed well with an accuracy of 97.53% and a recall of 97.56%.
KNN followed closely with 96.91% accuracy, however, its recall was only 89.36%, meaning
that it missed a portion of fraud cases. Naive Bayes performed poorly despite having a perfect
specificity and precision of 100%. However, its recall was 0%, meaning it failed to identity
any of the actual fraud cases. This outcome is concerning because if a system cannot detect

fraud, it is useless, even it works well for normal transactions.

[leberi et al. [14] proposed combining models like Decision Tree, Random Forest, Extra Tree,
XGBoost and Logistic Regression with AdaBoost. Without AdaBoost, Random Forest
performed the best with an MCC of 0.88 and an accuracy of 99.95% as shown in Table 2.9.
When combining with AdaBoost, all models showed significant improvement, with all metrics
above 90% as shown in Table 2.10. The recall for Extra Tree and XGBoost increased a lot from
78.19% and 59.39% to 99.96% and 99.97% respectively, making them became the best-
performing model, with nearly perfect scores across all metrics after combining with AdaBoost.
Among all the models, Logistic Regression performed the worst. This is due to its linear nature,
which limits its ability to capture complex and non-linear relationships in the data. While
ensemble methods like Random Forest, XGBoost and Extra Tree show superior performance,
especially when combined with AdaBoost, because they effectively capture complex, non-

linear relationships and reduce errors through boosting.

Model AC RC PR MCC
DT paol® T557T% T9.83% 078
EF 00.95% TO3R% 07.19% (.88

ET 00.95% TEI9% 96.29% 0.86
XGB 000% 5939% B4d% 071
LR DOo0% 56.55% B 1B% 059

Table 2.1.9: Performance comparison of base models [14].

16

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Model AC RC FR MCC

DT 99.67% 99.00% 98.79% 098
EF 00.95% 99.77% 99.91% 0.99
ET 00 O8% 9996% 9993% (099
XGB QUO9E% 9997% 9992% 099
LE O8.75% 93E3% 9756% 0.9

Table 2.1.10: Performance comparison of models combined with AdaBoost [14].

Abdulghani et al. [18] focused on machine learning algorithms like Logistic Regression, LDA,
Naive Bayes and XGBoost. Among the models, XGBoost was the most effective one,
achieving the highest accuracy of 99.969%, precision of 99.938%, recall of 100%, F1-score of
99.969% and AUC of 99.969%. This best performance highlights XGBoost’s robustness in
handling large datasets and detecting fraud. In contrast, Logistic regression, LDA and Naive

Bayes showed lower accuracy with 94.752%, 91.737% and 91.338% respectively.

Mohbey et al. [16] compared the performance of Naive Bayes, SVM, Logistic, Random Forest,
Decision Tree and XGBoost for credit card fraud detection as shown in Table 2.11. Among
these, XGBoost showed the highest accuracy at 96.44%, significantly outperforming the others.
For instance, Logistic Regression achieved an accuracy of 94.43%, while SVM, Random
Forest and Decision Tree are below 94%. The precision, recall, F1-score and AUC values also
favoured XGBoost, indicating its robustness in handling imbalanced datasets and complex
transaction patterns. Naive Bayes performed the worst, with an accuracy of 89.34% and F1-
score of 89%, which aligns with previous studies. This study highlights the effectiveness of
XGBoost as an ensemble model in improving performance, especially in scenarios involving

imbalanced datasets.

Accuracy Precision Recall F1-Score
Naive Bayes 0.8934 0.90 0.90 (.39
SVM 0.9390 0.94 0.94 0.94
Logistic Regression 0.9443 0.94 .95 0.94
RandomForest 0.934] 0.93 0.94 0.94
DecisionTree 0.9340 0.9z 0.92 0.92
Xghoost 0.9644 0.96 0.97 0.96

Table 2.1.11: Performance comparison of NB, SVM, LR, RF, DT and XGboost [16].

17

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Based on the extensive research, the most effective models for fraud detection in e-commerce
and credit card transactions are Random Forest and XGBoost, which are widely used and
consistently achieve high scores across accuracy, precision, recall, F1-score and AUC. ANN
also performs well but are resource intensive. Logistic Regression and Decision Trees offer
good performance with simplicity, especially when enhanced with strong features or boosting
techniques, although they are generally outperformed by ensemble models. In contrast, Naive
Bayes and SVM often perform poorly. Naive Bayes has trouble in detecting fraud because its
recall is usually low, while SVM tends to produce more false alarms and lower AUC scores.
Overall, ensemble models are the most reliable and widely used, while simpler models require

enhancements to be competitive.

2.1.5 Evaluation Metrics

Accuracy is the most widely used metrics and often the primary parameter in many studies for
evaluating model performance. It is commonly considered as the base measure, but it is not
always a good metric, especially for imbalanced dataset [11,12]. Dornadula and Geetha S [11]
proposed the use of Matthews Correlation Coefficient (MCC) as more reliable measure for
evaluating binary (two-class) classifiers. The MCC considers all true and false values, making
it a balanced metric that works well even when the dataset contains imbalanced classes [11].
This is why MCC is often preferred in such scenarios, as it provides a more comprehensive

evaluation of model performance.

In addition to MCC, metrics such as recall, precision, and F1-score are commonly used
alongside accuracy. G-mean is another metric that measures a model’s overall performance by
assessing its ability to correctly classify both majority and minority classes [8,12]. The F1-
score is particularly valuable in imbalanced datasets, as it balances precision and recall

evaluating the classification of the minority class effectively [8,12].

Another important evaluation metric is Area Under the Curve (AUC), often used with the
Receiver Operating Characteristic (ROC) curve. However, in imbalanced datasets, where
the number of true negatives greatly exceeds true positives, the ROC curve may not be the most

appropriate metric. Puh and Brkic [9] proposed using Precision-Recall curves instead, as they

18

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

focus on precision, which compares false positives to true positives, making them less sensitive

to class imbalance.

Among these studies, only Md. Nur-E-Arefin [15] used Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) as evaluation metrics. However, these metrics may not
be suitable for this research as they are more commonly applied to regression tasks rather than

classification problems.

19

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.2 Literature Matrix Table
Author/year Task/Title Problem Mentioned Dataset Pre-processing Feature Method for Evaluation Future study/
techniques Engineeri Modeling Metrics Conclusion
ng
Murat Fraud Detection | Not mentioned in the | Shopping Simplelmputer | Not Decision tree, | Accuracy, - Model performance
Golyeri on E-commerce | research paper. activities during and mentioned | Logistic Precision, improved with the
Sedat Celik, Transactions ninety days on the | StandardScaler in the regression, Recall, F1-score | inclusion of the
Fatma Using Machine e-commerce classes from the | research Random IsGuestOrder feature.
Bozyigit, Learning website and scikit-learn paper. Forest, - Logistic regression
Deniz Kiling, | Techniques mobile library, XGBoost achieved over 92%
2023 [3] application of ChiSquare accuracy, making the
Boyner Group feature findings promising for
(total amount, selection, 10- future research.
order item count, | fold cross - Future work include
success order, validation developing
failed order, last classification software
24 hour return for the company.
order, last week
return order,
payment method)
Praveen Detection of - Imbalanced data 150000 Not mentioned PCA Random Accuracy, - ANN achieves the
Kumar Fraudulent transactions data | in the research Forest, Precision, False | highest accuracy
Sadineni, Transactions in from Kaggle paper. Decision Tree, | Alarm rate (99.92%) and precision
2020 [4] Credit Card (time of Logistic (99.57%) and the
using Machine transcation, Regression, lowest false alarm rate
Learning amount, class) SVM, ANN (0.1%)
Algorithms
Samrat Ray, Fraud Detection | - Datasets with Online business SMOTE, PCA Decision Tree, | Confusion - Leveraging advanced
2022 [8] in E-Commerce | extremely small class | fraud dataset. Normalization, Naive Bayes, | Matrix, computations or deep
Using Machine | proportions result in Scale of Random Accuracy, learning can improve
Learning characteristics, Recall, the detection of e-

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

CHAPTER 2

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

biased or unbalanced Feature Forest, Neural | Precision, F1- commerce fraud and
information. extraction Network score, G-mean boost neural network
performance with the
SMOTE technique.
Maja Puh, Detecting Credit | -Data deficiency Transaction made | SMOTE, feature | PCA Random Area Under - SVM has slightly
Ljiljana Brkic, | Card Fraud -Imbalanced data in September scaling for Forest, SVM, | ROC Curve lower results than other
2019 [9] Using Selected | -Cost sensitive 2013 by European | amount using Logistic (AUC), Average | two in AUC and Recall
Machine problem cardholders. standardization, regression precision scores
Learning -Behavioral variation data split (AUPRC) - Models with
Algorithms (70:30) incremental learning
have better results.
- Future work includes
exploring incremental
learning on a more
realistic dataset.
Vaishnavi Credit Card - Dataset is highly European Credit SMOTE PCA Local Outlier | Accuracy, - Random Forest
Nath Fraud Detection | imbalanced card transaction factor, precision, MCC | performed the best
Dornadula, using chine dataset Isolation among the models with
Geetha S, arning (transaction id, Forest, SVM, accuracy (0.9998),
2019 [11] Algorithms cardholder id, Logistic precision (0.9996),
amount, time, regression, MCC (0.9996)
label) Decision tree, - MCC is the better
Random metric for evaluating
Forest imbalance dataset.
- By applying the
SMOTE, the models
perform better than
before.
- LR, DT and RF
achieved better results.
Adi Saputra, Fraud Detection | - Imbalanced data E-commerce SMOTE, feature | PCA Decision tree, | Accuracy, - The results showed
Suharjito, using Machine fraud dataset extraction, Naive Bayes, | precision, recall, | NN has the highest
2019 [12] Learning in sourced from Random G-mean, F1 accuracy with 96%,
21

CHAPTER 2

e-Commerce

Kaggle

transformation,
normalization

Forest, and
Neural
network

Score

then NB and Random
Forest are 95%, DT
accuracy is 91%.

- Using SMOTE on
NN, RF, DT, and NB
was able to handle
dataset imbalance by
producing higher G-
Mean and F-1 scores.

- Future work is to use
other algorithms or
deep learning for fraud
detection in e-
commerce.

- Improve neural
network accuracy using
SMOTE.

Olawale
Adepoju,
Julius
Wosowel,
Shiwani lawte,
Hemaint
Jaiman, 2019
[13]

Comparative
Evaluation of
Credit Card
Fraud
Detection Using
Machine
Learning
Techniques

- Dynamic fraudulent
behavior patterns
make detection more
challenging.

- Datasets are often
limited and
imbalanced.

- Model performance
relies heavily on
testing and feature
selection.

- Evolving data can
lead to reversed or
outdated
classifications over
time.

Card transaction
dataset (average
daily transaction
amount,
transaction
amount,
transaction
declined, foreign
transaction, high
risk transaction,
six-month
average balance)

Binary
encoding, Data
split 80:20

Not
mentioned
in the
research

paper.

Logistic
Regression,
KNN, Naive
Bayes, SVM

Accuracy,
Sensitivity,
Specificity
(Recall),
Precision

- LR was the most
accurate in detecting
credit card fraud, with
accuracy 99.074.

- Using a larger dataset
with more fraudulent
cases is recommended.
- Other resampling
strategies, cost-
sensitive learning
methods, and ensemble
learning methods could
be explored in future to
better handle a skewed
dataset.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

CHAPTER 2

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Emmanuel Performance Imbalanced data European credit SMOTE Not SVM, Accuracy, - DT-AdaBoost, RF-
Ileberi, Evaluation of card dataset. mentioned | Random recall, precision, | AdaBoost, ET-
Yanxia Sun, Machine in the Forest, Extra MCC, AUC AdaBoost,and XGB-
Zenghui Learning research Tree, AdaBoost achieved
Wang, 2021 Methods for paper. XGBoost, accuracies of 99.67%,
[14] Credit Card Logistic 99.95%, 99.98%, and
Fraud Detection Regression, 99.98%, respectively.
Using SMOTE Decision tree, - The results confirm
and AdaBoost ADABoost that AdaBoost
significantly enhances
the performance of
machine learning
models.
- Future work will
focus on testing and
validating the
framework using real
credit card fraud
datasets from financial
institutions.
Suha M. An Efficient - Imbalance in Clothing sales SMOTE, PCA LightGBM, Accuracy, - LightGBM and
Najem, Suhad | Feature Datasets transaction standardization XGboost, Precision, XGboost achieved the
M. Kadhem, Engineering dataset (device-id, | for feature Random Recall, F1- best accuracy after
2021 [15] Method for IP address, scaling Forest score, AUC- preprocessing the
Fraud Detection source, browser, ROC dataset.
in E-commerce age, country, sex, - Future work is to use
signup-time, larger dataset with new
purchase-time, feature engineering
purchase-value)
Krishna Credit Card Data imbalance. European credit Standardization, | PCA Naive Bayes, | Precision, recall, | XGBoost performed
Kumar Fraud Prediction card dataset. normalization, SVM, accuracy, AUC, | better.
Mohbey, Using XGBoost: data split 70:30 Random f-measure
Mohammad An ensemble Forest,
23

CHAPTER 2

Zubair Khan, | Learning Logistic Hybrid models can be

Ajay Indian, Approach Regression, built to improve the

2022 [16] XGBoost research.

Yasin Kurelli, | Detection of Fraudsters E-commerce Gain Not Naive TP rate, FP rate, | KNN achieved the

Seher Credit Card are changing their dataset (shopping | Ratio, Info Gain | mentioned | Bayesian, Precision, highest Precision

Arslankaya, Fraud in E- strategies and new amount, order and Chi-Squared | in the Naive Bayes Recall, F- (0.956), Recall (0.959)

Muhammed Commerce fraud patterns are hour, order day, (feature research Tree, Decision | measure, ROC and F-measure (0.955)

Taha Zeren, Using Data emerging name length, city, | selection), data | paper. Tree J48, Area among the models.

2020 [17] Mining as now. gender, age, split 70:30 KNN, ANN, Naive Bayesian and
category, brand, RBF Network NBTree perform better
shipment amount, in ROC Area with
discount, isFraud) 0.963.

Ahmed Qasim | Credit Card Significant changes European credit SMOTE PCA Logistic Accuracy, - XGBoost performs the

Abdulghani, Fraud Detection | in fraud methods and | card dataset. Regression, precision, recall, | best.

Osman Nuri Using XGBoost | ever-changing LDA, Naive Fl-score, AUC, | - Performance is good

UCAN, Algorithm strategies. Bayes, confusion after balancing dataset.

Khattab M. XGBoost matrix

Ali Alheeti,

2021 [18]

Ruttala Credit Card Data mining European credit Not mentioned PCA Random Accuracy, - Accuracy is the same

Sailusha, V. Fraud Detection | techniques are used, card dataset. in the research Forest, precision, recall, | for both the Random

Gnaneswar, R. | Using Machine | but the results are not paper. AdaBoost F1-score Forest and the

Ramesh, G. Learning very accurate in Adaboost algorithms.

Ramakoteswar detecting credit card - Precision, recall, and

a Rao, 2020 fraud. the F1-score the

[19] Random Forest has the

highest value than the
Adaboost.

- Future work is to
implement deep
learning algorithms to
detect credit card fraud
accurately

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

CHAPTER 2

C. Tejasri, CH | Fraud Detection | Restricted to E-commerce Feature Not Random Accuracy Random Forest
Sai Ushanth in E-commerce | identifying the fraud dataset from | extraction, mentioned | Forest, algorithm can achieve
Aryan, D. using Machine features that will Kaggle (user id, transformation, | in the Decision Tree, higher accuracy
Deekshith, Learning be used to classify device id, gender, | normalization research in fraud detection.
Arrolla transactions as either | age, source paper.
Chintu, fraudulent or non- browser, purchase
Dr. T. Subba fraudulent. time, sign up
Reddy, 2022 time, purchase
[20] value, ip address,
label)
25

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.3 Limitation of previous Studies

Many studies using the European Credit Card Fraud Detection dataset lack detailed
information about the data. The anonymizes 28 variables (v1, v2...v28), and only disclose
three features: time, amount and class [9,11,16,22,23]. Confidentiality issues often prevent
researchers from revealing variable names or detailing the original and engineered features.
Furthermore, some studies lack clear descriptions of the dataset or its features. This
anonymization and lack of transparency make it difficult to interpret and evaluate the
importance of individual features in fraud detection. Consequently, it becomes challenging to
identify key features driving fraud detection and to understand how these findings apply to
real-world scenarios, especially in terms of their impact on model performance and detection

accuracy.

Although class imbalance is a common issue in fraud detection, some studies do not apply
any resampling techniques despite working with heavily imbalanced datasets. This oversight
can lead to biased models favour the majority class, reducing the effectiveness of fraud
detection. While many studies used SMOTE and reported improved results, there is limited
exploration of alternative resampling techniques such as Random Oversampling and
Random Under-sampling. Most studies also lack comprehensive comparisons between
different resampling methods, leaving a gap in understanding which techniques are most

suitable across various datasets and models.

Furthermore, existing studies have limited focus on developing interactive dashboards to
visualize and monitor the real-time performance of fraud detection models and the evolving
fraud patterns. The lack of such dashboards makes it difficult for e-commerce businesses to
track important metrics and ensures that the system remains reliable. This gap limits the ability
to identify performance drops quickly, observe the fraud cases and trends in real-time, and
adjust the model accordingly, which ultimately impacts effective fraud detection and decision-

making.

26

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.4 Proposed Solutions

This project proposes that the use of dataset with clear, well-documented features is
essential to ensure transparency and interpretability in fraud detection. This project will focus
on utilizing datasets that provide variables with explicit feature names, which will enable a
clearer understanding of the important factors influencing fraud detection. For example,
publicly available datasets that contain transactional or demographic features, such as age,
transaction amount, transaction time, product category and job, these data provide richer
context and allow for a more comprehensive analysis. Using datasets with detailed information
will not only enhance model interpretability but also improve the ability to reproduce findings

and apply them to real-world scenarios.

To address the limitation of inadequate handling of imbalanced datasets, this project will
implement and compare multiple resampling methods, including SMOTE, Random
Oversampling and Random Under-sampling. These methods are easy to implement and
offer a balanced trade-off between effectiveness and computational efficiency. These methods
will be applied across different models to determine their individual and comparative impacts
on fraud detection performance. Performance will be assessed before and after applying
resampling methods to ensure that improvements are consistent and significant. By conducting
systematic analysis using metrics like F1-Score, Precision, Recall and MCC, the study aims to

identify the most effective resampling method for improving minority class detection.

Another proposed solution is the development of an interactive dashboard that can track and
visualize the real-time fraud detection models performance and fraud patterns. The dashboard
would provide continuous monitoring of confusion matrix and key metrics such as accuracy,
precision, recall, MCC, F1-score and AUC. Additionally, it would allow businesses to monitor
specific factors contributing to fraud, such as age, gender, transaction amount, transaction hour
and product category, which may influence model performance. This real-time monitoring will
enable stakeholders to identify performance drops promptly and make necessary adjustments
to improve detection accuracy. By integrating these features, the dashboard would enhance
decision-making and optimize fraud management, offering a practical tool for e-commerce

businesses.

27

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

CHAPTER 3

System Methodology/Approach

The chapter outlines the system requirements, design, use case and project timeline. It details
the hardware and software specifications, the overall system design for data preprocessing,
model training and deployment. The use case diagram illustrates this end-to-end flow from data

input to visual reporting.

3.1 System Requirement

3.1.1 Hardware

The hardware used in this project includes a personal laptop. The laptop is essential for
performing machine learning tasks such as data preprocessing, model training and result
analysis. A capable processor, sufficient RAM, and storage are required to handle large datasets
and computational workloads efficiently. Additionally, the same system is used for developing

and testing Power BI dashboard, which will visualise the performance of the machine learning

models.
Description Specifications
Model Inspiron 15 3511
Processor 11th Gen Intel® Core™ 15-1135G7 @ 2.40GHz
Operating System Windows 11
Graphic Intel® Iris® Xe Graphics
Memory 8GB DDR4 RAM
Storage 512GB NVMe Micron SSD

Table 3.1.1: Specifications of laptop

3.1.2 Software/Tools

The software and libraries used in this project are important for implementing the machine
learning tasks and generating Power BI dashboard. The following software are required for

different tasks such as data preprocessing, model training and visualization.

28

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Description Specifications

Development Environment Jupyter Notebook, Google Colab

Programming Language Python

Machine Learning Libraries Pandas, Numpy, Scikit-learn, Matplotlib, Seaborn,
XGBoost, Imbalanced-learn, Joblib

Dashboard Power BI Desktop, Power BI Service

Table 3.1.2: Specifications of software

The primary development environment for the project is Jupyter Notebook, a platform that
supports interactive and iterative coding. Google Colab is also used to Jupyter Notebook,
especially when more advanced or larger visualizations are required, as it can handle complex

computations more efficiently.

Python is the main programming language, including rich libraries like pandas and NumPy
used for data manipulation, cleaning and preprocessing. Data visualization and EDA are
conducted using matplotlib and seaborn, which provide insightful plots and visualizations,

such as heatmaps, boxplots and various charts.

For data preprocessing, scikit-learn is used for encoding categorical features and splitting
datasets. To address class imbalances, the imbalanced-learn library is used to facilitate

synthetic data generation using SMOTE as well as Oversampling and Under-sampling.

During modelling phase, ensemble learning algorithms like Random Forest, AdaBoost and
XGBoost are implemented using scikit-learn and XGBoost. Model evaluation is also
conducted with scikit-learn to compute metrics such as accuracy, precision, recall, F1-score,
MCC, AUC, classification report and confusion matrix. Additionally, visualizations of
performance metrics, including confusion matrices, are generated using matplotlib and

seaborn.

For model deployment, the joblib library is used to export and import the trained model,
ensuring portability and ease of integration. The deployed model is integrated into Power BI
using Python scripts to enable fraud detection and visualization. Once the dashboard is
finalized, it is published to the Power BI Service, allowing online access. Finally, testing is
conducted to validate functionality, performance, and usability, leveraging both manual testing

processes and Python utilities for monitoring execution and responsiveness.
29

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.2 System Design

Figure 3.2.1 illustrates the steps of an e-commerce fraud detection system using machine
learning. The process includes data collection, EDA, preprocessing and resampling to handle
class imbalance. The data is splitting into training and testing sets and models like Random
Forest, XGBoost and AdaBoost are trained and fine-tuned. The best model is evaluated and

deployed, with predictions monitored in real time through a dashboard.

E-Commerce Fraud
Dataset

Resampling W

L‘ QOversampling ‘ ‘ SMOTE ‘ | Undersampling U

Training Set (70%) Testing Set (30%)

A 4
Training Model

\

—

Testing / Evaluating
Model

Phase 1
Random

Forest

Y

stistl

XGBoost AdaBoost J

Phase 2 Search Search Power BI

Y

{ Generating Synthetic Data W

| CTGAN } TVAE

Hyperparameter Tuning A
Randomised Grid Deployment to
A

J Dashboard Testing

Figure 3.2.1: Project Workflow Overview

3.2.1 Dataset Collection

The first step involves gathering relevant and high-quality data to train and evaluate the model.
For this project, the required data includes transaction details (e.g., transaction date and time,
transaction amounts, product category, order quantity), user information (e.g., customer age,

gender, location, job) and labels indicating whether each transaction is fraudulent or legitimate.

30

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

These data are sourced from open repositories like Kaggle, which offer well-organized datasets
such as the Credit Card Fraud Detection Dataset and E-commerce Fraud Dataset. The source
is chosen for its domain relevance, detailed documentation, and reliable data quality. To ensure

the sufficiency of the dataset, at least 50,000 transactions will be targeted for analysis.

3.2.2 EDA & Data Preprocessing

Data preprocessing is a critical step in preparing the dataset for machine learning. It involves

cleaning, transforming, and organizing the raw data into a suitable format for analysis.

The first task is handling missing values. It is important to check for missing values in the
dataset, as they can cause data loss and bias. The isnull().sum() function helps to find any
missing values, while the info() method gives an overview of the dataset, showing how many

values are present in each column and also the number of null values.

Since duplicate records can distort analysis and impact model performance, if duplicate rows
are found, they need to be removed. It is common to retain only the first occurrence of each

record and remove subsequent duplicates.

Outliers are detected using the sns.boxplot function which generates boxplots that visually
reveal any unusual data points. To handle outliers, if an outlier is associated with the target
variable showing “fraud”, it will be kept as it might represent a legitimate high-risk transaction.
However, if the outlier is not associated with fraud, it will be removed from the dataset using

the drop() function.

Correlation analysis is performed using the corr() function to calculate the relationships
between numerical features and visualised with a heatmap. This helps identify strong
correlations, detect multicollinearity, and reveal insights such as relationships between features

and fraud risk.

Important features are extracted from existing fields to enrich the dataset. For example, the
customers’ age can be calculated from their date of birth, the hour and day of the week can be
derived from the transaction timestamp. Additionally, geographical distance to the merchant
can be calculated using location coordinates. These newly derived features help to improve the

model’s ability to recognize complex patterns in the data.

31

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Categorical features are transformed using appropriate encoding techniques. One-hot
encoding is applied to nominal categories, binary encoding is used for high-cardinality
variables. Target encoding can be applied by extracting statistical information from the
original features, such as calculating the fraud rate for each credit card number, then replacing
the values with these aggregated metrics. This approach captures the likelihood of fraud
associated with each card, enabling the model to learn which cards are more susceptible to
fraudulent transactions. These methods convert non-numeric data into a format that can be

effectively understood and processed by machine learning models.

In cases of imbalanced datasets, where fraudulent transactions are far less frequent than
legitimate ones, techniques like SMOTE, Oversampling and Under-sampling are applied.
SMOTE generates synthetic samples for the minority class to balance the dataset.

Oversampling duplicates minority class data and under-sampling reduces majority class data.

The dataset is then split into training and testing sets using a 70:30 ratio, meaning 70% of the
data is used for training model, and the remaining 30% is reserved for testing model. This

ensures the model is evaluated on unseen data, which helps assess its generalization ability.

3.2.3 Model Selection

The Modelling phase involves the application of three ensemble machine learning algorithms:
Random Forest, XGBoost and AdaBoost. Each algorithm has its unique strengths, and this
section will detail how they are applied to the fraud detection problem in e-commerce

transactions.
Random Forest

Random Forest is a robust ensemble learning algorithm widely used for classification tasks due
to its simplicity and interpretability [9]. It builds multiple decision trees using a bagging
(bootstrap aggregating) approach, where each tree is trained on random subsets of data and
features. The randomness creates diversity among the trees, which helps minimise overfitting

and boosts the model’s generalization ability [3,9].

In e-commerce fraud detection, each tree is constructed using a random vector value with a

consistent distribution across all trees, and a predefined maximum depth is set to control
32

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

complexity and prevent overfitting [12]. Once the trees are built, the final prediction is made
through majority voting, where the class most frequently predicted by the ensemble of trees is
selected as the model’s output [4,9]. Figure 3.2.2 demonstrates the structure of the Random
Forest process, starting with a dataset divided into random subsets to train individual decision

trees. Each tree predicts a class, and the majority vote determines the final class.

DATASET
N Features N, Fgatures N; Features
m %
0 0 0

Class A Class B Class A
|]

Majority Voting

Final Class

Figure 3.2.2: Workflow of Random Forest [21]

XGBoost

XGBoost (Extreme Gradient Boosting) is an advanced ensemble tree algorithm developed from
Gradient Boosting Decision Trees (GBDT). It is especially well-suited in managing high-
dimensional data and identifying complex, non-linear relationships between variables, making

it highly effective for classification tasks [3].

In XGBoost, the training process starts by splitting the data and training the first decision tree.
Each tree in the sequence is trained to correct the residual errors from the previous tree. The
process is repeated, with each subsequent tree focusing on the misclassified instances from the
prior tree. After all trees are trained, the results of all trees are combined by summing (or
weighted summing) their predictions to produce the final result. Figure 3.2.3 illustrates the

workflow of XGBoost.

33

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

AdaBoost

B 3.6 X
0000 00 00

N

-~

Tree-1

NS Residual
0600000 OO

Instance

ACTONN
X) |

A

Tree-2
Result 2
\

v

l

Sum [

_ Final Result

Residual
> Q \Q q ‘
608060 dd

o

Tree-3

Figure 3.2.3: Workflow of XGBoost [22]

>
A

AdaBoost (Adaptive Boosting) is an ensemble learning method that strengthens classification

performance by sequentially combining multiple weak classifiers into a single robust model.

Figure 3.2.4 illustrates the workflow of the AdaBoost algorithm. It begins with training a weak

learner, then iteratively adjusts the weights of misclassified instances to focus on harder-to-

classify samples. Each weak learner contributes to the final model through a weighted sum

based on its performance. This process continues until the specified number of iterations is

reached or the dataset is accurately classified [4,19].

Original Dataset, D1

Updated Weighted
Training Dataset, D2

Updated Weighted
Training Dataset, D3

h 4

h 4

h 4

Model-1
(Iteration-1)

Maodel-2
(Iteration-2)

Maodel-3
(Iteration-3)

Predictions on Same
Training Data D1

Predictions on
Weighted Data, D2

Predictions on
Weighted Data, D3

Figure 3.2.4: Workflow of the AdaBoost [19]

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

CHAPTER 3

AdaBoost is particularly effective for binary classification tasks, making it ideal for e-
commerce fraud detection. Its ability to adapt and emphasize challenging samples ensures high
accuracy while reducing false positives. But it is sensitive to noisy data and outliers, which can
impact performance. Despite this, AdaBoost’s iterative improvement and compatibility with

weak learners make it a powerful option for tackling complex fraud detection problems [14,19].

3.2.4 Model Evaluation

Once the models are trained, the next step is to evaluate their performance uisng the test data.
The models are assessed on the 30% testing set to determine how well they generalize to unseen
data. The performance evaluation is done using several key metrics to understand the models’

effectiveness and accuracy.
Accuracy measures the proportion of total correct predictions (both fraudulent and legitimate
transactions) out of all predictions made by the model.

TP+TN
TP+TN+FP+FN

Accuracy =

(1)

Precision represents the proportion of predicted fraudulent transactions that are actually

fraudulent.

TP
TP+FP

Precision =

2)

Recall, also known as sensitivity, measures the proportion of actual fraudulent transactions

that are correctly identified by the model.

TP
TP+FN

Recall =

€)

F1-score, defined as the harmonic mean of precision and recall, provides a single metric that

balances the trade-off between the two.

Precision XRecall

F1 Score = 2 X (4)

Precision+Recall

35

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Matthews Correlation Coefficient (MCC) evaluates the correlation between predicted and
actual classifications, taking into account all four elements of the confusion matrix: true

positives, true negatives, false positives, and false negatives.

TPXTN—FPXFN
MCC = J(TP+FP)(TP+FN)(TN+FP)(TN+FN))

Area Under the Curve (AUC) measures the model's capability to differentiate between
fraudulent and legitimate transactions. It summarises the performance of the ROC curve, which
depicts the relationship between true positive rate (recall) and the false positive rate across
different classification thresholds. A higher AUC reflects stronger model performance in

separating the two classes.
1
AUC = fo ROC Curve (6)

Classification Report provides a summary of evaluation metrics like precision, recall F1-
Score and support for each class, allowing to determine how well the model performs in

differentiate fraudulent and legitimate transactions.

Confusion Matrix shows the number of correct and incorrect predictions, break down by class
like fraudulent and legitimate transactions. It helps to identify the types of errors the model

makes, including false positives and false negatives.

Confusion Matrix

True Negative | False Positive
(TN) (FP)

False Negative | True Positive
(FN) (TP)

Actual Label

Predicted Label

Table 3.2.1: Confusion Matrix

36

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.2.5 Hyperparameter Tuning

After the initial evaluation using default hyperparameters, the next step is to fine-tune these
hyperparameters to improve the model’s performance. Hyperparameter tuning involves
searching for the optimal set of hyperparameters that enable the model to generalize better on
unseen data.

In this study, both Grid Search and Randomized Search approaches were applied and compared.
Grid Search exhaustively evaluates all possible combinations of hyperparameters within the
defined search space. While it is more comprehensive, it is also computationally expensive,
especially when the number of parameters and search ranges are large. Randomized Search,
on the other hand, selects a fixed number of random combinations from the specified parameter
distributions. This makes it more efficient and faster than Grid Search, though it may miss
some optimal combinations.

The key hyperparameters considered for ensemble models include n_estimators,
learning_rate, max_depth, min_samples_split, min_samples_leaf, which are relevant to
models such as Random Forest, XGBoost, and AdaBoost. These parameters directly influence
model complexity, learning behavior, and generalization performance.

By applying and comparing both methods, the trade-off between computational efficiency
(Randomized Search) and thoroughness (Grid Search) can be evaluated. In cases where the
default hyperparameters already produce effective results, the model may retain those settings

to balance performance with computational cost.

3.2.6 Synthetic Data Generation

To enhance model evaluation and dashboard deployment, synthetic data was generated as an
alternative test set. Such datasets preserve privacy while maintaining the statistical properties

of the original, enabling reliable testing beyond limited real-world samples.

Generative models are commonly used to create synthetic data. Generative Adversarial
Networks (GANSs) can produce new data by learning patterns from real datasets, so the
generated data looks statistically similar to the original [23][24]. Variational Autoencoders

(VAEs) work by compressing data into a smaller hidden space and then reconstructing it back,

37

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

which allows them to generate new samples that still follow the main characteristics of the

original data [24][25].
In this study, two specialized approaches for tabular data were applied:

e Tabular Variational AutoEncoders (TVAE): TVAE excels in data replication and
augmentation by effectively learning the underlying data distribution through latent

space representations [26].

e Conditional Tabular Generative Adversarial Networks (CTGAN): CTGAN
achieves a balance across fidelity, synthesis quality, efficiency, privacy, and graph

structure [26].

The synthetic test sets produced by both TVAE and CTGAN were used to re-evaluate model
performance. This comparison aimed to identify whether synthetic data could serve as a
reliable proxy for real-world test data, especially during dashboard integration and continuous
evaluation. Finally, the results on the synthetic test sets were compared against the performance
on the Kaggle real test set. This comparison provided insights into the trade-offs between
using synthetic and real data, supporting the decision on whether to adopt synthetic datasets or

to retain reliance on the real Kaggle test set for final deployment.

3.2.7 Model Deployment to Power BI

Once the best-performing model is selected and thoroughly validated, the next step is to deploy
it into a production environment where it can provide real-time predictions and insights. In this
project, the model is integrated with Power BI, allowing users to visualize, monitor and interact

with fraud detection system dashboard efficiently.

1. Export the model for Deployment

The first step in model deployment is to export the trained model into a suitable format that
can be used in a production environment. The joblib library is used to serialize the trained
model into a file, making it portable and shareable across different environments. The model
export process is a key step to ensure that the model can be reloaded and reused without
retraining.

2. Integrating the Model with Power BI
38

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Once the model is exported, it is integrated into Power BI for fraud detection. This is done by
adding a Python script in Power BI’s query editor to load the saved model and run predictions
on new data. Before making predictions, preprocessing steps like encoding techniques are
applied within the same Python script to ensure the new data is in the correct format for the
model. The model then predicts whether transactions are fraudulent or legitimate. The script is

executed automatically each time the data is refreshed in Power BI.

3. Designing the Dashboard Layout and Add Visualizations

The core of the deployment process is to create an interactive Power BI dashboard that
presents the fraud patterns, fraud prediction results and relevant metrics in a clear and
intuitive manner. This dashboard is tailored to help both data analysts and e-commerce
administrators monitor the effectiveness of the fraud detection system and identify actionable
insights quickly.

To improve interpretation, different types of visual elements such as cards, clustered column
charts, stacked column charts, doughnut charts, line charts, tables and others. will be used
to represent fraud patterns, model performance and other insights. Slicers will also be added to
allow users to filter data by variables such as date and prediction result to enable more flexible

and targeted analysis.

3.2.8 Dashboard Testing

Testing a Power BI dashboard involves a thorough process to ensure that data, visuals,

interactivity and overall user experience are functioning correctly.

1. Data accuracy testing
This involves checking that all data sources are properly connected and pulling the latest data
when refresh data. Sample data from the dashboard should be cross-checked against the raw

data to confirm consistency, and calculated metrics should be accurate.

2. Visual accuracy testing

Each visual should accurately represent the intended metric. Charts like line, bar and pie must
accurately reflect trends, distributions and proportions. Labels, axes, legends and data points
should be clear, properly formatted and easy to interpret. Visual design, such as font sizes,

colours, and spacing should also be verified to maintain readability and consistency.
39

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3. Slicer testing

Slicers and filters should be tested to confirm they filter data correctly by categories or ranges.
It is important to verify that slicer selections update related visuals dynamically and do not
cause any display errors. Multiple slicers should function together without conflicts and

removing filters should reset visuals to their default view.

4. Performance testing

Performance testing is to make sure the dashboard responds quickly and operates smoothly.
This includes evaluating the loading time of the report, the responsiveness of visuals when
interacting with slicers and overall usability with large datasets. Measures and complex visuals
should be reviewed and optimised to avoid performance delays. Additionally, the time taken

to refresh data should be monitored to ensure it within an acceptable range.

5. User acceptance testing

This testing is conducted using the System Usability Scale (SUS) questionnaire. SUS is used
because it is recognized as the most commonly adopted instrument for dashboard evaluation,
providing a general and consistent measure of usability [27]. Respondents were first asked to
use the dashboard and then complete the SUS survey, which assesses key aspects such as

usability, clarity, responsiveness, interactivity, and overall user satisfaction.

The SUS consists of 10 statements rated on a 5-point Likert scale, ranging from “Strongly
Disagree” (1) to “Strongly Agree” (5), with both positively and negatively worded items. For
scoring, positive items are calculated as (Response — 1), and negative items are calculated as
(5 — Response). This process standardises all values to a range of 0 to 4. The recoded values
for each respondent are then summed to obtain a total score between 0 and 40, which is

multiplied by 2.5 to yield a final SUS score ranging from 0 to 100.

The success criteria for this testing include achieving an average SUS score of at least 70,
ensuring no major technical or usability issues, and confirming that the dashboard meets user
expectations. Feedback collected from the SUS survey is subsequently used to refine and
improve the dashboard, ensuring that it effectively supports fraud monitoring and analysis tasks

while providing a user-friendly experience.

40

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.3 User Case

3.3.1 Use Case Diagram

Fraud Detection and Dashboard System

Upload New
Data

e

<<Include>>

Preprocess
Data

~

<<Include>> *
- <<Include>>

Refresh Data }*~ .

Run Prediction
Data Analyst

<<Include>>

Build/Update
Visuals

Update
Dashboard

iew Dashboard

Ecommerce Admin

Print Report

Figure 3.3.1: Use case diagram

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

CHAPTER 3

3.3.2 Use Case Description

Use Case Name: Upload New Data ID: 01 Importance Level: High

Primary Actor(s): Data Analyst Use Case Type: Detail, essential

Stakeholders and Interests:
Data Analyst: Wants to upload new data for updated analysis, predictions, and dashboard
reporting.

Brief Description: Data Analyst uploads new dataset to the system. The system then automatically
preprocesses the data, applies a trained prediction model, and updates the Power BI dashboard

with the new data and predictions.

Trigger: A new or updated data file (e.g., CSV) is available and selected by the Data Analyst for
upload.

Relationship:
Association: Data Analyst
Include: Preprocess Data, Run prediction, Update Dashboard
Extend: None

Generalization: None

Normal Flow of Events:
1. The Data Analyst selects Get Data and chooses the data source type (e.g., CSV).
The Data Analyst provides connection details (e.g., file path).
The system retrieves the data from the source and displays a preview.
The Data Analyst confirms the data and clicks Load.
The system loads the data into Power BIL.

AN T

The system creates a duplicate of the dataset to serve as a working copy (preserves
original/raw data).

7. The system applies preprocessing techniques (e.g., encoding) to the working dataset.
8. The trained prediction model is retrieved and initialized.

9. The system runs the prediction algorithm on the pre-processed data.

10. Prediction results are appended to the dataset.

11. The system checks for changes or additions in the data.

12. The dashboard elements are automatically updated based on the new data and predictions.

Sub Flows: None

Alternative/Exceptional Flows: None

Use Case Name: Refresh Data ID: 02 Importance Level: High

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

CHAPTER 3

Primary Actor(s): Data Analyst, Ecommerce Use Case Type: Detail, essential

Admin

Stakeholders and Interests:

Data Analyst: Requires up-to-date data for accurate analysis, dashboard reporting, and
insights.

Ecommerce Admin: Depends on current data to support timely decision-making and

operational strategies.

Brief Description: Data Analyst or Ecommerce Admin manually initiates a data refresh in
Power BI. This triggers automatic preprocessing and prediction steps using the updated data.

The results are then reflected in the Power BI dashboard.

Trigger: Manual selection of the “Refresh” option within Power BI.

Relationship:
Association: Data Analyst, Ecommerce Admin
Include: Preprocess Data, Run Prediction, Update Dashboard
Extend: None

Generalization: None

Normal Flow of Events:

1. Data Analyst or Ecommerce Admin selects the option to refresh the data.

2. Power BI retrieves the latest data from the connected source.

3. The system creates a duplicate of the dataset to serve as a working copy (preserves
original/raw data).
The system applies preprocessing techniques (e.g., encoding) to the working dataset.
The trained prediction model is retrieved and initialized.
The system runs the prediction algorithm on the pre-processed data.
Prediction results are appended to the dataset.

The system checks for changes or additions in the data.

o x® N b

The dashboard elements are automatically updated based on the new data and

predictions.

Sub Flows: None

Alternative/Exceptional Flows: None

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

CHAPTER 3

Use Case Name: Build/Update Visuals ID: 03 Importance Level: High

Primary Actor(s): Data Analyst Use Case Type: Detail, essential

Stakeholders and Interests:

Data Analyst: Requires the flexibility to create or customize dashboard visuals to align
with business goals and analytical needs.

Ecommerce Admin: Benefits from clear, relevant, and easy-to-understand visuals to

monitor fraud trends and make informed decisions.

Brief Description: The Data Analyst creates new visuals or updates existing ones in the

dashboard using selected data fields and visual types.

Trigger: Data Analyst initiates the creation or update of dashboard visuals in Power BI.

Relationship:
Association: Data Analyst
Include: Update Dashboard
Extend: None

Generalization: None

Normal Flow of Events:
1. The Data Analyst selects data fields from the model within Power BI.
2. The Data Analyst chooses the type of visual (e.g., bar chart, line chart, cards).
3. The system generates new visual based on selected fields and format.
4. The system automatically refreshes and displays the updated dashboard view.
Sub Flows:

Update Existing Visual: If an existing visual is being updated, the system replaces the

current visual with the newly configured one while retaining layout consistency.

Alternative/Exceptional Flows: None

44

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Use Case Name: View Dashboard ID: 04 Importance Level: High

Primary Actor(s): Data Analyst, Ecommerce | Use Case Type: Detail, essential

Admin

Stakeholders and Interests:

Data Analyst: Requires visibility into up-to-date data, predictive outputs, and visual trends
for monitoring and analysis.

Ecommerce Admin: Uses dashboard insights to support decision-making and guide

business strategy.

Brief Description: Data analyst and Ecommerce admin view the Power BI dashboard to
access current data, prediction results, and visualizations related to model performance

and trends.

Trigger: Open or navigate to the dashboard within the Power BI platform.

Relationship:
Association: Data Analyst, Ecommerce Admin
Include: None
Extend: None

Generalization: None

Normal Flow of Events:
1. User navigates to the dashboard.
2. The system displays the dashboard.
3. User selects a specific page to view (e.g., Overview, Fraud Patterns, Model

Performance).

Sub Flows: None

Alternative/Exceptional Flows: None

45

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Use Case Name: Export Report ID: 05 | Importance Level: Medium

Primary Actor(s): Data Analyst, Use Case Type: Detail, essential

Ecommerce Admin

Stakeholders and Interests:

Data Analyst: Needs to generate and share visual reports for meetings, documentation, or
offline analysis.

Ecommerce Admin: Requires snapshot reports to review business performance and share

insights with stakeholders.

Brief Description: Data analyst and Ecommerce admin export a report of the current

dashboard view, including visuals, in PDF format.

Trigger: Initiates the export process from the Power BI dashboard settings menu.

Relationship:
Association: Data Analyst, Ecommerce Admin
Include: None
Extend: None

Generalization: None

Normal Flow of Events:
1. The user can apply desired filters/slicers to select specific data to include in the
report.
2. The user clicks on the ‘File’ tab and selects ‘Export’ > ‘Export to PDF’.
3. The system generates a PDF report of the current dashboard view.

4. The system automatically downloads the PDF file to the user's device.

Sub Flows: None

Alternative/Exceptional Flows: None

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

CHAPTER 3

34 Timeline

The project timeline is divided across two semesters. In Final Year Project 1, it will be start
with research and planning, followed by data collection and preprocessing. Once the data is
prepared, preliminary modelling will be conducted, and progress will be documented in the
report. In Final Year Project 2, the work will begin with hyperparameter tuning to optimize
model performance, followed by finalizing the best model. The selected model will then be
deployed to Power BI, where a functional dashboard will be created to visualize and interact
with predictions. Afterward, various testing will be carried out to evaluate the dashboard’s
effectiveness. The project will conclude with the preparation and submission of the final report
and presentation. Gantt charts are used to illustrate the detailed timeline and key milestones

for both semesters.

47

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Final Year Project 1

2025-02 202503 2025-04 2025-05
Task Name
03 09 16 23 02 09 16 23 30 06 13 20 27

~ Research & Planning Phase _

Project Planning L|_—"
Problem Statement & Research Gbjective L'—_J
Project Scope & Contribution

Literature Review '—I—:Iﬁ
Methodology L.!—‘
*

Phase Completed

~ Dala Collection Phase []
Define Data Requirements ﬁ
Collect Initial Data ﬁ
Verify Data Quality -,T—‘
Phase Completed 3

~ Data Preprocessing Phase

Data Selection (

EDA & Data Cleaning i L_—I’:L’_]

Data Visualization Q

Feature Transformation (B
Phase Complated Lu_j

~ Modelling Phase
Resampling ﬁ
Data Splitting ?
Model Setup ﬁ
Model Training

Model Evaluation El_’r—‘
Phase Competed &

¥ Report Generation Phase _
Review Project Work ﬁ
Write Repart ﬁ
Finalise & Check Repart -,T_I
Phase Completed >

Figure 3.4.1: Gantt Chart for Final Year Project 1

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Task Name

~ Hyperparameter Tuning Phase
Hyperparameter tuning
Evaluate and compare result
Identify best params

Phase completed

‘

Finalise Model Phase
Recheck Model
Finalise model
Phase completed
~ Model Deployment Phase
Export model
Create prediclion seript for deployment
Load model into Power Bl
Test predictions

Phase completed

‘

Dashboard Creating Phase
Creale summary page
Create fraud pattern page
Create model performance page
Add interactivity
Phase completed
~ Dashboard Tesling Phase
Data accuracy testing
Visual accuracy testing
Slicer and Performance testing
User acceptance testing
Phase completed
~ Report Generation Phase
Review project work
Write report
Finalise & Check Report

Phase completed

2025-06

16

Final Year Project 2

2025-07 2025-08

Figure 3.4.2: Gantt Chart for Final Year Project 2

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2025-09

17 24 Eal o7 14

49

CHAPTER 4

CHAPTER 4

System Design

This chapter outlines the design of the fraud detection dashboard, covering data flow, model
integration from Jupyter to Power BI, and the dashboard’s layout and user interactions through

wireframes.

4.1 System Block Diagram

The system block diagram illustrates the overall structure of the fraud detection dashboard
system, as shown in Figure 4.1.1. It emphasizes how data flows from the input dataset to the
end-user interface, as well as how machine learning components, which were originally
developed in Jupyter Notebook, are integrated into Power BI for automated use.

Input - CSV Develop in Jupyter, Develop in Jupyter,
from OneDrive Integrated in Power Bl Integrated in Power BI

Ecommerce
Fraud Dataset

Preprocessing

o Trained ML Model
Pipeline

Y

Power Bl
Deployment Module Integration
Y
Power BI Output -

Dashboard User Interface

Figure 4.1.1: System Block Diagram of the Fraud Detection Dashboard

E-commerce Fraud Dataset (Input Source)

The dataset, stored in OneDrive in CSV format, acts as the primary input. It contains transaction
records that include both fraudulent and non-fraudulent cases. The dataset can be updated by
replacing the file or link, after which the dashboard will automatically refresh.

Preprocessing Pipeline (Developed in Jupyter, Integrated in Power BI)

50

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

During development, preprocessing steps such as encoding and resampling were designed and
tested in Jupyter Notebook. Once finalized, the pipeline was exported and embedded into
Power BI through Python scripting. Inside Power BI, the pipeline is not retrained but reused to

transform any new incoming dataset consistently.

Trained Machine Learning Model (Developed in Jupyter, Integrated in Power BI)
Model training and evaluation (e.g., Random Forest) were conducted in Jupyter Notebook
using the processed dataset. The final trained model was saved and then integrated into Power
BI. Similar to the preprocessing pipeline, the model does not undergo retraining in Power BI.
Instead, it is loaded and applied directly to generate predictions whenever the dashboard data

is refreshed.

Deployment Module (Power BI Integration)
After preprocessing and prediction, the results are loaded into Power BI’s data model. This
deployment step links the Python output with Power BI tables, ensuring that visuals (charts,

KPIs, metrics) automatically update based on the latest dataset.

Power BI Dashboard (User Interface)

The dashboard presents the final results to end-users in a structured and interactive way. It
consists of multiple pages—Homepage, Overview, Time Analysis, Geography, Demographics,
Behavioural Analysis, Model Performance, Prediction Confidence & Key Influencers, Credit
Crad Transaction and Transaction Details—that allow fraud patterns and model performance
to be explored at different levels of detail. From the user’s perspective, the workflow is simple:
they only need to refresh the dashboard, and all preprocessing, prediction, and visualization

updates occur automatically in the background.

51

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.2 System Components Design (Wireframe)

The wireframe acts as a blueprint for the fraud detection dashboard, showing the layout, key
components, and user interactions. It ensures clarity in organizing visuals and navigation from

summary insights to detailed analysis.

Homepage
‘&5‘ Fraud Detection Intelligence Dashboard
24 A A 20
Overview Time Analysis Geography Demographics

Benavioral | Model A0 Prediction Confidence @

Analysis Performance & Key Influencers

Figure 4.2.1: Wireframe of Homepage

Purpose: Entry point of the system; provides navigation to all pages.
Components & Implementation:
o Navigation Buttons: Power Bl Blank Buttons, set Action = Page Navigation.
Redirects to Overview, Time Analysis, Geography, Demographics, Behavioral
Analysis, Model Performance, Prediction Confidence & Key Influencers, Credit Card

Transactions, and Transaction Details.

52

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Overview Page

-~
A3
_ .4’-'l -
Overview
KX
HAK " it Line chart: Fraud Trends by Amount
Total Transaction Total Transaction Averege Transaction
Amount Amount
XX XXX XXX
Tatal Fraud Total Fraud Average Fraud
Amount Amount
WX KX XHX i hars Fraud R -
Predicted Fraud Predicted Fraud Average Non- Ing chart: Fraud Rate over Time
Count Amount Fraud Amount
KAK XX N WHK
Fraud Rate False Positive Accuracy rate
Rate (%)

Home [Time .Cmalysis| Geography | Demographics | Behavimalﬁnal}'sisl Prediction Confidence & Key Influencers

Figure 4.2.2: Wireframe of Overview Page

Purpose: Summary dashboard of dataset insights and model performance.
Components & Implementation:

e KPI Metrics Cards: Total transactions, total & average transaction amounts, fraud

count & amount, predicted fraud count & amount, fraud rate, model accuracy, false

positive rate.

o Linked to DAX measures (SUM, COUNTROWS, AVERAGE,
CALCULATE).

o Conditional formatting:
» Fraud rate: <0.1 green, <0.3 yellow, >0.3 red
= Accuracy: >0.9 green, >0.75 yellow, <0.75 red
o Line Charts: Fraud vs non-fraud trends over time, Fraud rate over time

o Navigation Buttons: Bottom of page using Page Navigator buttons.

53

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Time Analysis Page
(e
&)
- . . Fraud Label Category Transaction Period
Fraud Patterns — Time Analysis
‘All TH’B‘“ v||Au v
Clustered Column chart: Doughnut chart: Line chart:
Fraud wvs Non-Fraud by Day Fraud by Time Fraud vs Mon-Fraud by Hour

Clustered Column chart:
Fraud Count Over Time

Clustered Column chart:
Fraud vs Non-Fraud by Month

Figure 4.2.3: Wireframe of Time Analysis Page

Purpose: Identify fraud patterns across periods.
Components & Implementation:

e Column Charts: Fraud vs non-fraud by day of week, Fraud count over time (day of

month), and Fraud vs non-fraud by month.
e Doughnut Chart: Fraud by time (day/night).
e Line Chart: Fraud vs non-fraud by hour.

o Slicers: Fraud label, transaction category, transaction period.

54

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Geography Page
© .
o Fraud Label Population Group Distance
Fraud Patterns — Geography [v | [w0 180
Map: -
5 TN tive:
Fraud Hatspot Map mart Rarrave
Summary
e.2. ‘The population with the highest fraud
countis...”
Clustered Column chart: Line Chart:
Fraud vs Non-Fraud by Population Group Fraud ws Mon-Fraud by Distance from Merchant

Figure 4.2.4: Wireframe of Geography Page

Purpose: Spatial insights for fraud detection.
Components & Implementation:
e Map Visual: Plot transactions by city.
o Color: Blue = normal, Red = fraud.
o Tooltips: city, fraud label, lat/long, transaction count, distance from merchant.
o Enable zoom/pan.
e Column Chart: Fraud vs non-fraud by population group.
e Line Chart: Fraud vs non-fraud by distance from merchant.
e Summary: Smart Narrative Visual, linked to DAX measures.

e Slicers: Fraud label, population group, distance from merchant (between-style slicer).

55

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Demographics Page
©
N\, - —
raud Label Age Group Category Transaction Period
. v A All
Fraud Patterns - Demographics | au P T Il M
Clusered Celumn chart: Doughnut chart: Heatmap:
Fraud vs Mon-Fraud by Age Fraud by Gender Fraud by Age Group and Gender

Group

Credit Card No. Fraud Count | Total Transaction | Fraud Rate

Smart Marrative:

Summary
e.g2. ‘[Age Group] had the highest fraud count...”

Figure 4.2.5: Wireframe of Demographics Page

Purpose: Explore fraud based on customer attributes.
Components & Implementation:
e Column Chart: Fraud vs non-fraud by age group.
e Doughnut Chart: Fraud by gender.
e Cross Table: Fraud by age group and gender using Heatmap.
¢ Credit Card Transactions Table:
o Columns: Credit card no, fraud count, total transactions, fraud rate.

o Drill-through to Credit Card Transactions Page via right-click on credit card

no.
o Conditional formatting: Fraud rate near 100% = red, near 0% = no color.
e Summary: Smart Narrative Visual, DAX measures for insights.

o Slicers: Fraud label, age group, category, transaction period.

56

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Behavioral Analysis Page

(\,’ ™
NS
Fraud Label Catagory Transaction Date
: - All
Fraud Patterns — Behavioral Analysis M M v
Clustered Celumn chart: Doughnut chart: Clustered Bar chart:
Fraud vs Non-Fraud by Category Total Amount by Fraud vs Non- Average Transaction Amount by
Fraud Fraud vs Non-Fraud
.
I
]
II I I —
Smart Narrative:
Summary
e.g. ‘The highest fraud countis in....!

Figure 4.2.6: Wireframe of Behavioral Analysis Page

Purpose: Examine patterns in customer behaviour for anomalies.
Components & Implementation:

e Column Chart: Fraud vs non-fraud by category.

e Doughnut Chart: Total transaction amount by fraud label.

o Bar Chart: Average transaction amount by fraud label.

e Summary: Smart Narrative Visual, DAX measures for insights.

o Slicers: Fraud label, category, transaction date.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Model Performance Page

'/<-) Prediction Result
W
- Model Performance
FE
Model Name ‘ ™ H H ™ || ® |
Confusion Matrix Smart Narrative: Stacked Column chart:
Prediction Results by Category
Summary
TP FP e.g ‘Al metrics are....
™™ iﬂn
Performance Metrics
WK KK NN Stacked Column chart:
Accuracy Precizion Recall Prediction Results by Age Group

KX HxX N i i
Fl1-Score MCC AUC u

Figure 4.2.7: Wireframe of Model Performance Page

Purpose: Evaluate ML model performance in detecting fraud.
Components & Implementation:
e Confusion Matrix: Using Heatmap visual.
e Performance Metrics Cards: Accuracy, Precision, Recall, F1-score, MCC, AUC.
o Conditional formatting: >90% green, >75% yellow, <75% red.
e Column Charts: Prediction results by category and age group
e Summary: Smart Narrative Visual with dynamic insights based on DAX measures.

e Slicer: Prediction result (TP, FP, TN, FN); default selection = FN & FP.

58

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Prediction Confidence & Key Influencers Page

(e

- Prediction Confidence & Key Influencers

K Pie chart: Key Influencers:

High Confidence Fraud Count by Confidence Level
Parcentage

KK
High Confidence .
Count

Transaction 1D Prediction | Actual Predicied Proba Confidence Level

Figure 4.2.8: Wireframe of Prediction Confidence & Key Influencers Page

Purpose: Provide model explainability and key influencers for fraud prediction.

Components & Implementation:

Cards: High confidence count & percentage (Predicted probability >0.8 is considered
High confidence).
Pie Chart: Fraud count by confidence level (Very High >0.9, High >0.8, Medium >0.5,
Low <0.5).
Transaction History Table:

o Columns: Transaction ID, prediction, actual, predicted probability, confidence

level.

o Dirill-through to Transactions Page via right-click on credit card no.
Key Influencers Visual: Al visual automatically identify which features (e.g.,
transaction amount, category, time of day) most strongly influence whether a
transaction is fraud or non-fraud. The visual then ranks these fields by influence

strength, expressed as a relative factor (x times more likely).

59

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Credit Card Transactions Page

Credit Card Transaction

Credit Card No: &k

JOORMR I IR HK
HAK XXX XX% XX BXKX
Total Transaction Fraud Count Fraud Aate Fraud Amount Total Transaction
Count Amount Spent

Transaction ID | Date & Time | Predicted | Actual | Prediction Result Stacked Column chart:

Fraud Ower Time

'

Figure 4.2.9: Wireframe of Credit Card Transactions Page

Purpose: Aggregated view of credit card activity; drill-through from Demographics Page.
Components & Implementation:
e Cards: Credit card no, Fraud count, total transactions, fraud rate, fraud amount, total
transaction amount.
o Conditional formatting: For Fraud Count card, if Fraud >0 highlighted red.
e Transaction History Table:
o Columns: Transaction ID, date & time, predicted label, actual label, prediction
result.
o Dirill-through to Transaction Detail Page via right-click on one of the
transactions.
o Conditional formatting: Fraud = red, Non-Fraud = Green; Wrong prediction
(False Negative/ False Positive) = red, Correct prediction = Green.

e Column Chart: Fraud over time.

60

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Transaction Details Page

(©)
Transaction Details
L-]
Transaction ID: &X
RO OO
[Fraud] [Fraud] (% [Correct]
Actusl Label Predicted Label Fraud Probability Pradiction Result
Transaction Date: Distance from Merchant:
Transaction Time: Credit Card No:
Transaction Amount: Credit Card Fraud Rate:
Product Category: Gender:
City Age:
City Size: Age Group:

Figure 4.2.10: Wireframe of Transaction Details Page
Purpose: Most detailed analysis; drill-through from other pages.
Components & Implementation:
e Cards: Transaction ID, actual label, predicted label, fraud probability, prediction result.
o Actual Label & Predicted Label: Fraud = red, Non-fraud = green.
o Fraud probability: Gradient formatting, 0% = green, 100% = red.
o Prediction result Correct = green; False Negative/False Positive = red.

e Transaction Details Cards: Date, time, amount, category, city, city size, distance,

credit card no, credit card fraud rate, gender, age, age group.

61

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

CHAPTER S5

System Implementation

This chapter details the project implementation, covering software setup, data understanding,
and preprocessing for machine learning model development. It also describes initial model
testing, hyperparameter tuning, and performance evaluation to optimize each algorithm.
Additionally, synthetic data generation was performed to support robust model evaluation and
dashboard deployment. Finally, the trained models and preprocessing pipelines were integrated
into Power BI, where the interactive dashboard was developed to visualize predictions and

insights.
5.1 Setting up

5.1.1 Software/Tools

Before starting the project, there are several software/tools are downloaded and installed on the

laptop. These includes:

e Jupyter Notebook
e Python
e Google Collaboratory (no need installation)

e Power BI Desktop

Figure 4.1.1 shows the versions of the key Python libraries used in this project, including

pandas, numpy, scikit-learn, matplotlib, seaborn, xgboost, and imbalanced-learn.

Python: 3.11.7 | packaged by Anaconda, Inc. | (main, Dec 15 2823, 18:05:47) [M5C v.1916 64 bit (AMDS4)]
pandas: 2.1.4

numpy: 1.26.4

scikit-learn: 1.6.1

matplotlib: 3.5.@

segborn: 9.12.2

xghoost: 2.1.3

imbalanced-learn: @.13.@

Figure 5.1.1: Version of Python and Various Libraries.

5.2 Initial Dataset (Aborted)

Aborted in here refers to the decision to discontinue the use of the initially selected dataset for

model training due to the weak correlations between features and the target variable (is_fraud).
62

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

This limitation may reduce its effectiveness for fraud detection. A more suitable dataset with

stronger predictive features was sourced instead.

5.2.1 Dataset Selection

The initial dataset used in this project is the “Financial Transactions Dataset: Analytics” from
Kaggle, which consisted of five separate files, with a total of 39 columns as shown in Figure
4.2.1. The dataset is designed for various financial applications such as fraud detection,

customer analytics and expense forecasting. The dataset includes the following files:

Data Explorer
Version 1(1.42 GB)

[D cards_data.csv
{i} mec_codes.json
{i} train_fraud_labels.json
[transactions_data.csv
[users_data.csv

Summary
+ O 5files

+ [D 39 columns

Figure 5.2.1: Initial Dataset Information

e transactions data.csv: Containing detailed records of transactions such as timestamps,
amounts, and merchant information

e users_data.csv: Containing demographic and account-related information about users

e cards_data.csv: Containing card-specific information including card types and limits

e train_fraud_labels.json: Containing binary fraud labels (fraudulent vs. legitimate) for
supervised learning

e mcc_codes.json: Containing listed merchant category codes (MCC) with

corresponding descriptions for categorizing transaction types.

5.2.2 EDA and Preprocessing of Initial Dataset

All datasets are loaded. To process the fraud labels and MCC descriptions, the data is

converted from a json file into a DataFrame.

63

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Load the CSV files into DataFrames

transactions_df = pd.read_csv('transactions_data.csv')
users_df = pd.read_csv(users_data.csv')

cards df = pd.read csv('cards data.csv')

with open(train_fraud_labels.json’, 'r') as file:
fraud = json.load(file)

fraud_id = list(fraud[target'].keys())
fraud_status = list(fraud[target’].values())

fraud = pd.DataFrame({"ID": fraud id, "is fraud': fraud status})

with open('mcc_codes.json’, "r') as file:
code = json.load(file)

codes = list(code.keys())
name = list(code.values())
description = pd.DataFrame({'MCC': codes, 'mcc_name': name})

fraud["ID"] = fraud[ID"].astype(int)

description["MCC'] = description['MCC'].astype(int)

Figure 5.2.2: Loading Dataset

Transactions are merged with fraud labels using the transaction id, then merged with MCC
codes via the mcc column. User data is merged using client id as the key, followed by card
data using card_id. Duplicate ID-related columns are removed after merging.

merge_df = pd.merge(transactions_df, fraud, how="left', left on="id', right_on="ID")

merge_df = merge_df.dropna(subset=["is fraud'])

Drop the 'ID" column from the merged DataFrame

merge_df = merge_df.drop(columns=["ID"])

merge_df = pd.merge(merge df, description, how='left', left _on='mcc’, right_on="MCC')

Drop the 'mcc’ column from the merged DataFrame

merge_df = merge_df.drop{columns=["MCC"])

merge_df = pd.merge(merge df, users_df, left on="client id", right on="id’, how="left")

Drop the "id y' column from the merged DataFrame

merge_df = merge_df.drop{columns=["id_y"])

merge_df = pd.merge(merge df, cards_df, left on="card_id', right on="id", how='left')

Drop the "id" & ‘client_id y' column from the merged DataFrame
merge_df = merge_df.drop(columns=["id", ‘client id y'])

Figure 5.2.3: Merging Dataset

After merging, transactions are filtered to retain only online transactions made by credit
card. Before filtering, the dataset contained over 8 million transactions, after filtering, only

313,783 transactions remained.

64

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

merge_df.shape

(8914963, 38)

df = merge_df[(merge_df['use_chip'] == "Online Transaction') & (merge_df['card_type'] == 'Credit')]
df.shape

(313783, 38)
Figure 5.2.4: Dataset Size Before and After Filtering for Online Credit Card Transactions

Next, obtaining a summary of the dataset using df.info() and displaying the first 5 rows with
df-head(5) to check its structure. The dataset contains 313,783 entries and 38 columns with a
mix of numerical and categorical data. Some columns like merchant state and zip are entirely
null and are dropped in later a step. While ‘errors’ has significant missing values. Financial
data is stored as objects, requiring cleaning and conversion to numeric types. Date columns
need conversion to datetime format, and categorical features may require encoding. The target

variable, 'is_fraud', classifies transactions as fraudulent or not.

<class "pandas.core.frame.DataFrame’ >
RangeIndex: 313783 entries, @ to 313782
Data columns (total 38 columns):

1% address 313783 non-null object
Column Non-hull Count Dtype 20 latitude 313783 non-null floaté4
é ;;_;__ ;;;;é;_;;;:;;il ;;;A; 21 longitude 313783 non-null floates
1 date 313783 non-null object 22 per_capita_income 313783 non-null object
2 client id x 213783 non-null intea 23 yearly_income 313783 non-null object
2 card id 313783 non-null inté4 24 total_debt 313783 non-null object
4 amount 313783 non-null object 25 credit_score 313783 non-null inte4
5 use_chip 313783 non-null object 26 num_credit_cards 313783 non-null inte4
6 merchant_id 313783 non-null inté4 27 card_brand 313783 non-null object
7 mer‘chant:city 313783 non-null object 28 card_type 313783 non-null object
8 merchant state 2 non-null floatea 29 card_number 313783 non-null intéd
9 zip - @ non-null floatsd 3@ expires 313783 non-null object
10 mcc 313783 non-null inté4 31 cwv 313783 non-null inté4
11 errors 7569 non-null object 32 has_chip 313783 non-null object
12 is_fraud 313783 non-null object 33 num_cards_issued 313783 non-null inte4
13 mcc_name 313783 non-null object 34 credit_limit 313783 non-null object
14 current_age 313783 non-null inté4 35 acct_open_date 313783 non-null object
15 retirement_age 313783 non-null inté4 36 year_pin_last_changed 313783 non-null inte4
16 birth_year 313783 non-null inté4 37 card_on_dark_web 313783 non-null object
17 birth_month 313783 non-null inté4 dtypes: floatG4(4), int64(15), object(19)
18 gender 313783 non-null object memory usage: 91.8+ MB

Figure 5.2.5: Initial Dataset Summary

65

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

id_x date client_id x card_id amount \

@ 7475353 2010-081-81 9@:43:00 301 3742 %10.17

1 7475372 2010-81-21 @1:11:00 566 5577 3$14.66

2 7475483 2010-81-81 81:56:00 768 5876 $52.98

3 7475427 2010-01-01 ©2:17:00 1776 4938 $66.85

4 7475485 2010-81-81 @3:57:00 1385 5361 $15.89

use_chip merchant_id merchant_city merchant_state =zip ... \
@ Online Transaction 390821 OMLINE NaM NaN ...
1 online Transaction 16798 OMNLINE MaM NaN ...
2 Online Transaction 390821 OMLINE NaM NaN ...
3 online Transaction 39821 OMNLINE MaM NaN ...
4 Online Transaction 39261 OMLINE NaM NaN ...
card_type card_number expires cwv has_chip num_cards_issued

a Credit 4186974548713374 @5/2823 975 YES 1

1 Credit 558863864722888% 09/2012 525 YES 1

2 Credit 36@330585295399 @5/2022 887 YES 1

3 Credit 357731684070533 @5/2020 27 YES 1

4 Credit 3086@9782832003 @1/2024 663 YES 1

credit_limit acct_open date year_pin last_changed card_on_dark web

a £21000 a7/2ea5 2989 Mo
1 $1e100 11/2009 28a9 No
2 $9100 12/2007 20988 Mo
3 £13400 18/1939 2812 No
4 $6900 11/2000 2913 Mo

[5 rows x 38 columns]

Figure 5.2.6: First Five Rows of Initial Dataset

Dollar signs and commas in monetary value columns are removed, allowing conversion to

numerical formats.

amount per_capita_income yearly_ income total_debt credit_limit

0 107 25654.0 52308.0 135319.0 21000.0
1 14.66 22680.0 45244.0 108449.0 10100.0
2 52.98 18420.0 37558.0 72514.0 9100.0
3 66.05 21156.0 43133.0 44263.0 13400.0
4 15.89 153175.0 30942.0 71066.0 6900.0

Figure 5.2.7: Monetary Columns After Removing Dollar Signs and Commas

Date-related columns like date and expires are converted into datetime format to allow further
manipulation. For the expires column, the expiration date is set to the last day of the month.
The days_to_expiry is computed by calculating the difference between the transaction date
(date) and the expiration date (expires). Additionally, the account age is computed by
calculating the difference between the transaction date and the account opening date,
converting this into the account_age column in years. Finally, the age of the PIN, represented
by the year pin_last changed column, is calculated by finding the difference between the
transaction year and the year of the last PIN change. If the PIN is changed after the transaction
date, the age is set to 0.

66

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

date expires days to_expiry acct open_date account_age pin_age years
0 2010-01-01 00:43:00 2023-05-31 4397 2005-07-01 4 1
1 2010-01-01 01:11:00 2012-09-30 1002 2009-11-01 0 1
2 2010-01-01 01:5&:00 2022-05-31 4532 2007-12-01 2 2
3 2010-01-01 02:17:00 2020-05-31 3802 1999-10-01 10 0
4 2010-01-01 03:57:00 2024-01-31 5142 2000-11-01 9 0

Figure 5.2.8: Feature Extraction from Date-Related Columns

Next, columns were dropped based on their uniqueness and relevance. Features like id x,
client_id x, card id, merchant id, and mcc are removed as they are unique identifiers, while
use_chip, merchant city, card_type, and card_on_dark web are dropped because they contain
only one unique value. Columns like address, latitude, and longitude are excluded due to high
cardinality and because the variables themselves do not provide meaningful information.
Features related to card details, such as card number and cvv, are removed as they are not

useful for fraud detection.

While birth year and birth_month are dropped because age had already been extracted,
making them redundant. Columns like date, expires, acct open date, and
yvear pin_last_changed are removed since they have already been used to create new features
such as days to expiry, account age, and year pin last changed. By removing these
unnecessary columns, the dataset is streamlined, improving efficiency for fraud detection

analysis.

df.nunique()

latitude 579
id_x 313783 longitude 663
date 3@1958 per_capita_income 801
client id x 854 yearly_income 847
card id 1345 tota%_debt 8a7v
— credit_score 239
amount 34489 numicr;diticards 9
use_chip 1 card_brand 4
merchant_id 215 card_type 1
merchant_city 1 card_number 1345
mec 76 expires 157
errors 16 ;:: chip 74;
is_fraud 2 num_cards_issued 3
mcc_name 75 credit_limit 263
current_age 73 acct_open_date 254
retirement_age 26 year_pin_last_changed 19
birth_year 73 card_on_dark_web 1
birth month 12 days_to_expiry 5464
- account_age 31
gender 2 pin_age_years 18
address 854

dtype: integ4

Figure 5.2.9: Number of Unique Values for Each Feature

67

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

After dropping the specified columns, the dataset is checked for duplicate rows, and 21

duplicate rows are removed.
;u;‘]‘.::.c;t‘es =U;;hc;l;:.)t;:p.lilcf;ted{)

Count the number of duplicate rows

duplicate count = df.duplicated().sum()

print ("Number of duplicate rows: ", duplicate_count)

Number of duplicate rows: 21

Figure 5.2.10: Number of Duplicated Rows

The next step is to remove outliers using the Interquartile Range (IQR) method. It visualized

the distribution of the data using boxplots to identify potential outliers. Then, for each numeric

column, the IQR is calculated, and values outside the range of 1.5 * IQR from the first and

third quartiles are marked as outliers.

Boxplot of Numeric Features

o

400000
300000 A

200000 A

)
Pl i

& @ o @ & e 0 2
N 2> sl & & . o & Qrz.“" & & & &
'éon & & 0(9 QLO “ & & & \47 § \\)\ ej'-Q & .f’
& o B -\E & zb‘tl Sl el & ®r & &
S & F & ° § & & S
&
& @ ¥ &7 & ¥ ¢
& & S

Figure 5.2.11: Boxplots of Numeric Features

The analysis below shows that columns like amount, current age, per capita_income,

vearly income and credit [imit have many outliers, suggesting the presence of extreme values

or potential data quality issues, while columns like num_cards_issued and days to_expiry have

no outliers, indicating more consistency in those features.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 5

Number of outliers in each column:

amount 29631
current_age 18459
retirement_age 9248
per_capita_income 19129
yearly_income 17535
total_debt 1436
credit_score 6304
num_credit_cards 236
num_cards_issued a
credit_limit 10856
days_to_expiry a
account_age 1792
pin_age_years 538

Figure 5.2.12: Number of Outliers in Each Column

The outliers are split into fraud and non-fraud cases. Fraudulent outliers are kept, while non-

fraudulent outliers are removed from the dataset to retain only relevant fraud data.

In the updated analysis below, 1,283 fraud-related outliers are kept, as they could represent

important, extreme fraudulent cases important for fraud detection. 105,573 non-fraudulent

outliers are removed to eliminate irrelevant extreme values that could distort further analysis.

As a result, the dataset was reduced to 242,680 records. Overall, this process helps refine the

dataset by retaining important fraud data while removing non-relevant outliers.

Total outliers kept for fraud cases: 1283
Total outliers removed for non-fraud cases: 185573
New dataset size after removing outliers: 242688

Figure 5.2.13: Outlier Handling Summary

Next, one-hot encoding is applied to categorical columns such as errors and card brand.

Binary encoding is then used for columns like is_fraud, gender and has_chip.

List of all possible error types

error_types = ['Bad Card Number', 'Insufficient Balance', 'Bad Expiration', 'Bad CW', 'Technical Glitch'

Create binary columns for each error type and fill with 1 if error is present
for error in error_types:

df[error] = df['errors'].apply(lambda x: 1 if isinstance(x, str) and error in x else ©)

Drop the original 'error' column

df = df.drop(columns=["errors'])

Apply one-hot encoding to 'card_brand’ column
df = pd.get_dummies(df, columns=['card_brand'], dtypesint)

Replace 'Yes' with 1 and 'No' with @ in the 'is fraud 1' column
df['is_fraud'] = df['is_fraud'].replace({'Yes': 1, 'No': @})

Replace 'Male' with 1 and 'Female' with @ in the 'gender’ column
df['gender'] = df['gender'].replace({'Male’: 1, 'Female': 8})

Replace 'Yes' with 1 and 'No' with @ in the 'has_chip' column
df['has_chip'] = df['has_chip'].replace({'VES': 1, 'NO': @})

Figure 5.2.14: One-Hot Encoding and Binary Encoding for Categorical Columns

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

CHAPTER 5

After using heatmap and correlation analysis to identify potential relationships between the
features and the target variable (is_fraud), it proves that many of the correlations are weak or
near zero. The presence of a lot of blue in the heatmap as shown in Figure 4.2.15, typically

indicates weak or insignificant correlations between variables.

Correlation Heatmap
10

amount -XN0. 19.020.08.09.0.0D.06.08.04).085.00.05.03.08.00.00.05.00.0D.06).00.00.0D.02 is_fraud Nclalalsl=]
e | amount . 146060

current_age - .
retirement_age - os days_to_expiry . @34641
Bad CwV .B27e19

gender -
820446

.819246
.813141
Bas249
.Ba579a
.Ba4383
84119
.Ba2687
.B81391
.B2a195
.Bea476
.Belele
.B@1756
.B83849
.Be8927
.Bla3ea
813635
815734

num_credit_cards
-oe current_age
card_brand_Discover

per_capita_income -
yearly_income -
total_debt -

credit_score -
card_brand_Mastercard

gender

Bad Card Mumber

_pz hum_cards_issued
Insufficient Balance

num_credit_cards -
has_chip -
num_cards_issued -
credit_limit -
days_to_expiry -
account_age -
pin_age_years -
Bad Card Number -

Insufficient Balance -

Bad Expiration
"0 Technical Glitch
has_chip
card_brand_Amex
per_capita_income
yearly_income
04 credit_limit
credit_score
card_brand_Visa
total_debt
retirement_age .820939
account_age .829491
pin_age_years -8.83@974
Name: is fraud, dtvpe: float64

Bad Expiration -
Bad CVV -
Technical Glitch -

--0.2

card_brand_Amex -
card_brand_Discover -
card_brand_Mastercard -
card_brand_Visa -

hip
ued -
imit
piry -
ge

S

Bad CVWV -

Technical Glitch -
card_brand_Amex
card_brand_Discover -

w
E
S
+]
£

gender -

amount
is_fraud -
per_capita_income -

current_age -

Y

_is
credit_|
's_to_e

accoun

cre:

T O DO DO DO OO OO OO EDOOO OO E

retirement_age -
yearh
day:
pin_age_years -
Bad Card Number -
Insufficient Balance —
Bad Expiration -
card_brand_Visa

num_cred
num_cards_i

card_brand_Mastercard

Figure 5.2.15: Heatmap and Correlation Table for is_fraud

The correlation analysis between target variable and other numerical features reveals several
key insights. The highest correlation is with amount (0.14606), suggesting a weak positive
relationship. Other features like days to expiry, Bad CVV and num credit cards had very
weak positive correlations, while fotal debt, retirement _age, account _age and pin_age years
show weak negative correlations. Many variables, such as Technical Glitch and has chip,

exhibit minimal correlations, indicating limited relevance for fraud prediction.

Given the weak correlations, the current dataset may not provide strong predictive power for
fraud detection because most features do not show meaningful relationships with target
variable. This may make it difficult for the models to differentiate fraudulent from legitimate
transactions. This limitation prompts the need to explore a different dataset with stronger

relationships for better model performance.

70

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3 Final Dataset

5.3.1 Data Selection

In this project, the final dataset chosen is the “Credit Card Transactions Fraud Detection
Dataset” from Kaggle. Unlike the previous dataset, which has low correlation and limited
usage, this dataset is considered more reliable due to its widespread use by other researchers.
It contains both fraudulent and non-fraudulent transactions recorded between January 1, 2019,
and December 31, 2020. It provides a rich set of features, including transaction date and time,
amount, merchant details, product categories, job, cardholder information and geographical

data as shown in Table 4.3.1.

Feature Description

trans date trans time Date and time of the transaction

cC_num Credit card number used for the transaction
merchant Name of the merchant where the transaction occurred
category Type of merchant or business category

amt Amount of money spent in the transaction
first First name of the cardholder

last Last name of the cardholder

gender Gender of the cardholder (Male or Female)
street Street address of the cardholder

city City of the cardholder

state State of the cardholder

Zip ZIP code of the cardholder's address

lat Latitude of the cardholder’s location

long Longitude of the cardholder’s location

city pop Population of the cardholder’s city

job Job title of the cardholder

dob Date of birth of the cardholder

trans_num Unique transaction ID

unix_time Transaction time in Unix timestamp format
merch_lat Latitude of the merchant’s location

71

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

merch_long Longitude of the merchant’s location
is_fraud Target variable showing if the transaction is fraud (1) or non-
fraud (0)

Table 5.3.1: Feature Description of Credit Card Transactions Fraud Detection Dataset

5.3.2 EDA and Data Cleaning

1. Handling null

value and duplicate

Since there were no null values and duplicate, then skipped to the step of removing irrelevant

columns.

Checki

df.isnaf).

trans_date
cc_num
merchant
category
amt

first
last
gender
street
city
state

zip

lat

long
city_pop
Fob

dob
trans_num
unix_time
merch_lat
merch_long
is_fraud

_trans_time

ng null value

sum{ }

Checking duplicate

duplicates = df[df.duplicated()

Count the number of duplicate

GO DO D OODODOODHDDDDHD DD D

dtype: int64 Number of duplicate rows: @

Figure 5.3.1: Null Values and Duplicates Check in the Dataset

2. Remove irrelevant columns

duplicate_count = df.duplicated().sum()

print("Number of duplicate rows: ", duplicate_count)

Features like trans_num, first, and last were removed because they contained transaction or

personal identifiers that do not contribute meaningfully to fraud detection. Features like street,

city, state, and zip were removed since location information is already represented by /at, long,

merch_lat and merch_long, making them redundant.

df.drop{columns=["trans_num', 'first"',"last'],inplace=True)

df.drop(columns=["street’, "city', 'state’, "zip'],inplace=True)

Figure 5.3.2: Drop Irrelevant Columns

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 5

3. Remove outlier

To detect outliers in the dataset, the Interquartile Range (IQR) method is applied to numeric

features. Each feature is analysed separately, and the results are shown in the boxplots below.

30000

lat

long

4
}]
25000 4 60 -80
20000 - _
N 50 100
£ 15000 o
T E 40 -120
10000 -
w -140
5000 4 L]
-160
04 . 20 L] *
T
106 city_pop 169 unix_time merch_lat
304
* 137 .
259 b4 60
136
2.0 %
=
s g z
2154 5135 =
z x g a0
i+ E
1o 5 g
: 134
30
05
133
0.0 4 _ 20 []
merch_long
-80
& ~100 1
g
s
|
= i
E -120
-140 4
~160 1 ¢
¢

Figure 5.3.3: Boxplots for Numerical Features

The outlier detection step identifies a significant number of anomalies across various features,

with a total of 328,615 rows containing at least one outlier.

Total rows containing at least one outlier (IQR method): 328615

Number of outliers per column:

amt 67298
lat 4679
long 49922
city_pop 242674
unix_time a
merch_lat 4967
merch_long 41994

dtype: inte4
Figure 5.3.4: Total Rows with Outliers and Outliers per Column

The transaction amount (amf) has 67,290 outliers, indicating a wide range of transaction
values with extreme cases, primarily involving high transaction amounts, as observed in the

boxplot.

73

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Geographical features, such as latitude (lat), longitude (long), merchant latitude (merch_/lar)
and merchant longitude (merch_long), show 4,679, 49,922, 4,967 and 41,994 outliers,
respectively. The boxplots show that latitude has outliers at both ends of the range, while

longitude outliers are mostly on the lower extreme, for both customer and merchant locations.

City population (city_pop) has the highest number of outliers at 242,674, likely due to the

extreme variations in population sizes across different cities.

Transaction time (unix_time) does not show any outliers, indicating a uniform distribution
of transactions over time. These findings highlight the need for proper handling of extreme

values to improve the fraud detection model's performance.

Feature: amt
Total fraudulent outliers: 57@5

Feature: lat
Total fraudulent outliers: 43

Feature: long
Total fraudulent outliers: 298

Feature: city pop
Total fraudulent outliers: 1434

Feature: unix_time
Total fraudulent outliers: @

Feature: merch_lat
Total fraudulent outliers: 46

Feature: merch_long
Total fraudulent outliers: 261

Total rows with fraudulent cutliers: 6081
Total rows with non-frawdulent outliers: 322534

Figure 5.3.5: Summary of Fraudulent Outliers Across Features

To check whether outliers contributed to fraudulent transactions, the dataset is split into
fraudulent and non-fraudulent transactions. The analysis shows 6,081 fraudulent transactions
with outliers and 322,534 non-fraudulent transactions with outliers. A total of 242,674
outliers were detected in the city population, but only 1,434 are linked to fraud. The
transaction amount has the highest number of fraudulent outliers, totalling 5,705, followed
by city population (1,434), longitude (298), merchant longitude (261), merchant latitude (46)
and latitude (43). Since most outliers are found in non-fraudulent transactions, this suggests

that extreme values alone do not necessarily indicate fraud.

74

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Since fraudulent transactions with outliers may contain valuable fraud patterns, only non-
fraudulent outliers were removed from the dataset. This step aimed to reduce noise while
retaining important fraud indicators. After removing these non-fraudulent outliers, the dataset

size decreased from 1,296,675 to 974,141.

Total rows after removing non-fraudulent ouwtliers: 974141

Figure 5.3.6: Outlier Handling Summary

5.3.3 EDA and Data Visualization

1. Fraud Count and Rate

To understand the distribution of fraudulent transactions within the dataset, an analysis of

fraud occurrence rates and their proportion to non-fraudulent transactions.

166 Fraud vs Non-Fraud Transactions

1.0+

Fraud vs Non-Fraud Percentage

0.8 1

Fraud

0.6 1

0.4 1

Number of Transactions

Nen-Fraud
0.2 1

7506
Non-Fraud Fraud
Fraud (1) vs Non-Fraud (0)

0.0 -

Figure 5.3.7: Fraud vs Non-Fraud Transactions and Percentage Distribution

After removing outliers, the dataset still displays a serious class imbalance, with non-
fraudulent transaction making up 99.23% (966,635 records) and fraudulent transactions

only 0.77% (7,506 records). This large contrast is visually showed in the bar chart, where

75

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

fraud cases are barely visible compared to non-fraud transactions, and in the pie chart, which

shows that fraud makes up less than 1% of all transactions.

This imbalance creates a challenge for machine learning models, as they may bias towards
the majority class (non-fraud), resulting in high accuracy but poor fraud detection. To solve
this, techniques like SMOTE, oversampling and under-sampling will be applied in the later

steps to improve model performance.

2. Transaction Amount

Transaction Amount Distribution

500000

400000 A

300000

Transaction Count

200000 A

100000 A

U U U U U U T
0 200 400 600 800 1000 1200 1400
Amount

Figure 5.3.8: Transaction Amount Distribution

The transaction amount distribution plot shows that most transactions are small amounts,
with focus on transactions below $200. This distribution is highly right skewed, meaning a few

transactions involve significantly larger amounts.

76

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Average Transaction Amount by Fraud Status

500 ~

400 ~

300 ~
531.32

Average Amount

200

100 ~

51.07

T T
Non-Fraud Fraud
Fraud Status

Figure 5.3.9: Average Transaction Amount by Fraud and Non-Fraud

The bar chart comparing average transaction amounts between fraudulent and non-
fraudulent transactions. Average amount for non-fraudulent transactions is $51.07, while for
fraudulent transactions is $531.32. This means that fraudulent transactions normally involve

higher amounts compared to legitimate transactions.

Type
[Fraud

[Not Fraud
40 -

30 1

20

Percentage in Each Type

10 4

N i qummnﬂﬂmﬂﬂm

0 200 400 600 800 1000
Transaction Amount

Figure 5.3.10: Percentage Distribution of Fraud and Non-Fraud by Transaction Amount

77

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

This histogram comparing fraud and non-fraud rate across different transaction amounts
further supports previous findings. Lower transaction amounts have a higher non-fraud rate,
while the fraud rate increases as transaction amounts rise, especially in the range from $200
to $1,000. This pattern suggests that transaction amount is an important feature for fraud

detection models. Higher amount transactions should be closely monitored, as they are more

likely to be fraudulent.
3. Gender
Fraud vs. Non-Fraud Transactions by Gender
3735 Non-Fraud (0)
500000 - Fraud (1)
3771
400000 -
15
3
L8]
£ 300000
ks 523172
&
& 443463
F 200000
100000
0 ‘ T
Female Male
Gender

Figure 5.3.11: Fraud and Non-Fraud Transactions by Gender

The analysis of fraud and non-fraud transactions by gender reveals that the total number of
transactions is higher for females (523,172) compared to males (443,463). However, the
number of fraudulent transactions is nearly same for both genders, with 3,735 fraud cases

among females and 3,771 among males.

78

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Fraud Ratio by Gender

0.84%

0.8

0.71%

0.7

0.6

0.5 A

0.4

Fraud Ratio (%)

0.3 A

0.2 A

0.1 A

0.0 T T
Female Male

Gender

Figure 5.3.12: Fraud Ratio by Gender

Even though the number of fraud cases is almost the same for both genders, the fraud ratio is
different because the total number of transactions varies. Males have a higher fraud ratio of
0.84%, while females have a slightly lower fraud ratio of 0.71%. This suggests that

compared to their total transactions, fraud is more common among males than females.

4. Category

Fraud Rate by Category

0.025

0.020 A

0.015 A

2.41%

Fraud Rate

0.010 2.00% 949
0.005 1 1.01%
0-57% 0.44% 0.43%
.] 0.40% o
0.33% 032% 027% 022% 0.21% | 020%
0.000 T T ‘ T ‘ T . . : : ‘ . T T
& & F S P E & e ¢ & &
p p ¥ g &R b P ; & ¢) & *® &
S o A 5 & o7 ¢ A & > o7 8 &
& & & & & & & 2 & ol > o~
§\OQ © K ,bz.,*: é" .@6 Qéto‘:’ s &’.}"
&
Category

Figure 5.3.13: Fraud Rate by Category

79
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

This chart visualises the fraud rate across different transaction categories. The highest fraud
rate is observed in ‘shopping net’ (2.41%), followed by ‘misc net’ (2.00%) and
‘grocery pos’ (1.94%), indicating that these three transaction categories are more vulnerable
to fraud. Moderate fraud rates are found in categories like ‘shopping pos’ (1.01%),
‘gas_transport’ (0.57%), ‘misc_pos’ (0.44%), ‘travel’ (0.43%) and ‘grocery net’ (0.40%),
suggesting that fraudsters also target essential services and frequent transactions. In contrast,
categories such as entertainment, personal care, kids/pets, foods/dining, home and

health/fitness exhibit fraud rate below 0.35%.

Fraud vs Non-Fraud by Category

shopping_net
grocery_pos -
misc_net
shopping_pos
travel +

grocery_net

-1.22%

-1.67%

7.56%
2.72%

15.6p%
14.09%

g misc_pos - -2.54%
§ gas_transport 4 -2.85%
entertainment - -4.24%
personal_care - -4.26%
health_fitness - -5.13%
food_dining -5.17%
kids_pets -5.80%
home - 1.12%
—0:05 0.60 0.|05 0.|10 0.|15

Rate Difference

Figure 5.3.14: Rate Difference between Fraud and Non-Fraud Transactions by Category

This chart visualises the difference in fraud rates compared to non-fraud rates across various
transaction categories. Categories with positive values indicate a higher probability of fraud,
while negative values suggest a lower fraud risk. Category ‘shopping_net’ has the highest
rate difference of 15.65%, followed by ‘grocery_pos’ (+14.09%). Other risky categories
include ‘misc_net’ and ‘shopping_pos’ have positive rate differences of 7.56% and 2.72%

respectively.

The remaining categories have negative rate differences, indicating that fraud is less common
in these types of transactions. The home category shows the lowest fraud difference at -7.12%,
followed by kids/pets (-5.80%), food/dining (-5.17%), and health/fitness (-5.13%). Other
categories such as personal care (-4.26%) and entertainment (-4.24%) also have lower fraud

risk, possibly due to transaction verification processes or lower fraud attractiveness.

80

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The dataset distinguishes between online (Card Not Present, CNP) and in-store (Card Present,

(13

CP) transactions through its category labels. Categories ending with “ net” (e.g., shopping_net,

grocery net) are CNP, while those ending with “ pos” (e.g., shopping_pos, grocery pos) are
CP. Since CNP transactions lack physical verification, they are more exposed to fraud and are

the main focus of this study.

category

gracery_pos 1743
shopping_net 1713
misc_net 915
shopping_pos 843
gas_transport 618
misc_pos 25@
kids_pets 239
entertainment 233
personal_care 2z2@
home 133
food_dining 151
grocery_net 134
health_fitness 133
travel 116

MName: count, dtype: int64

Percentage of top 4 categories with the most fraud cases: B9.46%

Figure 5.3.15: Fraud Count by Category

This analysis shows that ‘grocery_pos’ has the highest fraud count (1,743 cases), followed
by shopping net (1,713), misc_net (915) and shopping pos (843). However, a high fraud count
does not necessarily mean a high fraud rate. Although grocery pos has the highest fraud count,

‘shopping_net’ has the highest fraud rate (2.41%).

Additionally, the top 4 fraud-heavy categories (grocery pos, shopping net, misc_net, and
shopping pos) make up nearly 70% of all fraud cases. This means that fraud is mostly
happening in just a few transaction types, making them the most critical areas to focus on in
fraud detection. The remaining categories are grouped as ‘other’, as they contribute less to

overall fraud.

81

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Fraud vs. Non-Fraud Transactions by Category

700000 1 s s Non-Fraud (0)
Fraud (1)

600000 -
_ 500000 -
c
3
3
2 400000 -
2
©
& 300000
x
=

200000 -

100000 - 1743 1713 843

915
D -
grocery_pos misc_net other shopping_net shopping_pos

Category

Figure 5.3.16: Fraud and Non-Fraud Transactions by Category

After grouping the transaction categories, the bar chart shows the majority transactions belong
to the ‘other’ category, with 681,993 non-fraudulent transactions and 2,292 fraudulent ones.
Other categories like grocery pos, misc net, shopping net and shopping pos have
significantly fewer transactions in total, but the number of fraudulent transactions is relatively

evenly distributed across these categories.

Fraudulent Transactions and Fraud Rate by Category

241% -25
g 2000 4
§ -20
w
% —
= 1500 3
E - 1.5%
3 b
3 o
© 1000 E
w [
- -10
]
E
E 500
z

-05

grocery_pos misc_net other shopping_net shopping_pos
Category

Figure 5.3.17: Fraudulent Transactions and Fraud Rate by Category

82

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

This chart provides deeper insights by showing the fraud rate for each transaction category.
Although the ‘other’ category has the highest number of fraudulent transactions, its fraud rate
is only 0.33%, meaning fraud is relatively rare compared to the total number of transactions.
On the other hand, shopping net has the highest fraud rate of 2.41%, indicating that even
though there are fewer fraud cases in total transactions, fraudulent activity is more concentrated
within this category. Similarly, misc_net (2.00%) and grocery pos (1.94%) have high fraud
rates, indicating a high concentration of fraudulent transactions. Shopping pos (1.01%) has a

lower fraud rate but remains higher than the ‘other’ category.

5. Merchant

Top 10 Merchants with Highest Fraud Rate

0.035 A

0.030 4

0.025 4

0.020 4

Fraud Rate

e 3.46%
3.15% 3.06% 2.97% o
0.015 4 g 2.93% 2.93% 2.93% 2.70% 2.70%
0.010 4
0.005 4
0.000 T T
& 2 &
‘0“\\ &‘f\!’ q & ‘Q\@ \'}b & ng o Q’QQ &
£ oF o B & @ b 9 o o
o < o &)?" & (d & & &
_Lq;\ & BN « & b@\ A2 7 & 52
oF & S & <« &7 & < £ S
’ & v o of
4-83 ‘\@o o &7 & q,‘b" & \@9
o <« & @&
B & o
& S -+
b e (2
& o &
& «@

Merchant

Figure 5.3.18: Top 10 Merchants with the Highest Fraud Rate

The chart shows the top 10 merchants with the highest fraud rates, which range from 2.7%
to 3.6%. The merchant “fraud_Kozey-Boehm” has the highest fraud rate at 3.6%, followed
closely by “fraud_Herman, Treutel and Dickens” at 3.46%. These findings suggest that
some merchants are more susceptible to fraudulent transactions, either due to weaknesses in
their fraud prevention mechanisms or because they are targeted more frequently by fraudsters.

Notably, only four merchants have the fraud rates exceeding 3%.

83

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Calculate the value counts for the ‘merchant’ column jfor rows where is_fraud = 1

fraud_merchant_counts = df[df['is_fraud'] == 1][‘merchant’].valus_ counts()
fraud_merchant_counts

merchant

fraud_Rau and Sons 493
fraud _Cormier LLC 438
fraud_Kozey-Boehm 43
fraud_Doyle Ltd 47
fraud_Vandervort-Funk 47

fraud_Kuphal-Toy
fraud_Eichmann-Kilback
fraud_Lynch-Mohr
fraud_Tillman LLC
fraud_Hills-Olson 1

Mame: count, Length: 679, dtype: int64

[=R =

Figure 5.3.19: Fraud Count by Merchant

To complement these findings, the total fraud count per merchant is analysed. The results show
that fraud occurs across 679 merchants. The merchant with the highest fraud count is
“fraud_Rau and Sons” with 49 fraud cases, followed by “fraud Cormier LLC” and
“fraud_Kozey-Boehm”, each with 48 cases. However, when evaluating fraud risk, the fraud
rate is often more meaningful than the fraud counts because it handles the overall transaction
volume at each merchant. A merchant with a high fraud counts but a low fraud rate may simply
process a large number of transactions, whereas a high fraud rate indicates a greater likelihood
of fraud occurring.

Calculate the sum of the counts for the top 5 merchant

top_5_fraud_sum = fraud_merchant_counts.head(5).sum{)

fraud_percentage = (top 5_fraud_sum / fraud_merchant_counts.sum({)) * 18@
print(f"Percentage of top 5 merchant with the most fraud cases: {fraud percentage:.2f}%")

Percentage of top 5 merchant with the most fraud cases: 3.18%

Figure 5.3.20: Percentage of Fraud Count for the Top 5 Merchant

Further analysis reveals that the top five merchants in term of fraud count only make up 3.18%
of total fraud cases, indicating that fraudulent transactions are widely distributed across a large
number of merchants. Since fraud is not highly focused within a small number of merchants,
it means that the merchant feature may not a strong indicator of fraud. As a result, this feature
is removed from the dataset to simplify the model and prevent it from learning patterns that

might not generalize well.

84

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

6. Job
Top 10 Jobs with Highest Fraud Rate

1.0 4

0.8
2 0.6
P 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 (11) (10) 7 (11) 9 (16) 2) (13) (7) (12)
£

0.4

0.2

0.0 T T T T . T T T . T

S * & £ S
&P Sﬁ) Qsp & 5 ® é* *Sé é* 5&
& ~ & & g & & oS & &
W P & & 2 o & & & &
& 43 fed 20 & & @ N dp
& & > & & &£ ot

i 5 ~ AL I & <
I ¥ N & & &
% & & ¥ &

& & & S
F «dp &
Job

Figure 5.3.21: Top 10 Jobs with the Highest Fraud Rate

The chart highlights the top 10 jobs with the highest fraud rates, all of them have a fraud rate
of 100%. However, the fraud count among these jobs varies, ranging from 7 to 16 cases. This
indicates that while every transaction recorded under these job titles was fraudulent, the total

number of fraudulent transactions per job remains relatively low.

Count jobs where fraud rate is 106%
fraudulent_jobs_count = (job_fraud_rate['fraud_rate'] == 1.8).sum()
print (f"Number of jobs with 188% fraud rate: [fraudulent jobs_count}")

Mumber of jobs with 1@8% fraud rate: 68
Calculate the value counts for the "job' column for rows where "is froud' equals 1

fraud_job_counts = df[df['is_fraud'] == 1]["job'].value_counts()

fraud_job_counts

job

Materials engineer 62
Trading standards officer 56
MNaval architect 53
Exhibition designer 51
surveyor, land/geomatics E1:]
Statistician

Health physicist

Chartered loss adjuster

English as a second language teacher
Contractor

Mame: count, Length: 443, dtype: inte4

[T

Figure 5.3.22: Jobs with 100% Fraud Rate and Their Counts

85

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The analysis further shows that there are 68 job categories with a 100% fraud rate, meaning
every recorded transaction under these jobs is fraudulent. However, as seen in the fraud count
distribution, fraudulent transactions are spread across 443 different job titles, with the
highest fraud count recorded under “Materials engineer” at 62 cases, followed by “Trading

standards officer” (56) and “Naval architect” (53).

Many job categories show a 100% fraud rate but with low fraud counts. Such findings suggests
that these job categories might not be truly high risk, it is likely due to sample size bias, leading
to misleading fraud rates. Since fraud cases are widely distributed, job titles alone may not be
strong fraud indicators.

Caleulate the sum of the counts for the top 10 jobs

top_fraud_sum = fraud job_counts.head(18).sum()

fraud_percentage = (top_fraud sum / fraud_category counts.sum()) * 1@@
print(f"Percentage of top 1@ categories with the most fraud cases: {fraud percentage:.2f}%")

Percentage of top 1@ categories with the most fraud cases: 6.77%

Figure 5.3.23: Percentage of Fraud Count for the Top 10 Jobs

Since the top 10 categories with the most fraud cases make up only 6.77% of the total fraud
cases, this suggests that job is not a strong fraud indicator again. The decision to remove the
job column is justified to reduce noise and prevent the model from learning patterns that may

not generalize well.

86

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

7. Age

The trans date trans time and dob features are converted to datetime format, then age is

extracted by calculating their difference in years.

Total Transactions and Fraud Count by Age

?
30000 Age 47
(31482

n Y /\/\A
Wi AN j\\/\

Total Transactions

{
10000 /

5000 4

20 40 60 80
Age

Figure 5.3.24: Total Transactions and Fraud Count by Age

The highest total transactions occur at age 47, with 31,482 transactions, while the highest
fraud count is observed at age 53, with 198 fraudulent transactions. The fraud transaction
trends fluctuate, often crossing the total transaction line after age 30 and fraudulent

transactions tend to be relatively higher beyond age 47.

Fraud vs. Non-Fraud Transactions by Age Group

500000 A]
171 Non-Fraud (0)
Fraud (1)
400000
-
5 300000
S
= 2195
=l
G 478029 S
a 2003
c
E 200000 4
258878
100000 - 215089
137
14639
1] T T T T
Young Adult Mid-Age Senior

Age Group

Figure 5.3.25: Fraud and Non-Fraud Transactions by Age Group
87

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Age is categorised into four group: Young (0-18), Adult (19-44), Mid-Age (45-50) and Senior
(61+), allowing for a more detailed analysis of fraud trends across different life stages. Adult
group dominates in total transactions, with 478,029 non-fraud and 3,171 fraud cases. The Mid-
Age and Senior groups, though having fewer transactions, still show significant fraud cases,
with 2,195 and 2,003 fraud cases respectively. The Young group has the lowest non-fraud and
fraud count at 14,639 and 137 respectively.

Fraudulent Transactions and Fraud Rate by Age Group

3000 A
- 0.0090

2500 4

- 0.0085

2000 4

- 0.0080

1500 A

Fraud Rate

- 0.0075
1000 4

Number of Fraudulent Transactions

r 0.0070

- 0.0065

Young Adult Mid-Age Senior
Age Group

Figure 5.3.26: Fraudulent Transactions and Fraud rate by Age Group

Further analysis of fraud rates reveals that the Young group has the highest fraud rate (0.93%),
closely followed by Seniors (0.92%). Despite having the highest transaction volume, Adult
group experiences the lowest fraud rate (0.66%), while the Mid-Age group falls in between at
0.84%. Both the Young and Senior groups show an increasing trend in fraudulent transactions,
highlighting their vulnerabilities. Therefore, fraud prevention efforts should focus on these

groups, even though Adult group contributes the highest number of transactions.

8. Hour

The analysis of fraud transactions by hour reveals significant trends in transaction activity and
fraudulent behaviour. First, trans_date trans_time is converted into hourly data to examine

patterns throughout the day.

88

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Total Transactions vs Fraud Transactions by Hour

Hour 22} 2000
] (50498),p=g
50000 Hour 22
—— e ", f (1931) L1750
47500 1 i
F 1500
45000 A
" 1250 @
5 s
£ 42500 1 £
T 2
§ [1000 £
= 40000 1 s
[
= b=
e 750 ®
37500 { o s,
k500
35000 A
k250
32500 1 e——®——e—
.\..-l:::.-.di._"‘.':‘; - —e
Fo
0 5 10 15 20

Hour of the Day

Figure 5.3.27: Total Transactions and Fraud Transactions by Hour

The peak transaction hour is identified as 10 PM (Hour 22) with 50,498 transactions, which
also overlap with the highest number of fraud cases at 1,931. This suggests that fraudsters
may be exploiting the high transaction volume during late hours. Fraud activity remains

significantly higher between 10 PM and 3 AM compared to other hours.

Percentage of Fraudulent Transaction Amounts at Night vs Day
84.43%

I Night Fraud (10 PM - 3 AM)
I Day Fraud (4 AM - 9 PM)

&
o
1

Amount Percentage (%)
w
[=]
L

%)
[=]
1

15.57%

=
(=]
L

0 -

Night Fraud (10 PM - 3 AM) Day Fraud (4 AM - 9 PM)

Figure 5.3.28: Percentage of Fraudulent Transaction Amount by Night and Day

89
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Further analysis separated fraud into night (10 PM - 3 AM) and day (4 AM - 9 PM), showing
that 84.43% of fraudulent transaction amounts occur at night, compared to only 15.57%
during the day. This indicates that nighttime is a high-risk period for fraudulent activities,
likely due to reduced monitoring and delayed detection. To mitigate these risks, financial
institutions and e-commerce platforms should enhance fraud detection measures, particularly
during late hours.

Convert hour to is night (1 for 18 PM - 3 AM, otherwise @)

df["is_night'] = df["hour'].apply(lambda x: 1 if 22 <= % or x <= 3 else 8)

Figure 5.3.29: Conversion of is_night Feature

For machine learning purposes, the is _night feature is created to indicate whether a transaction
occurred during high-risk nighttime hours (10 PM - 3 AM). A value of 1 represents nighttime

transactions, while 0 represents transactions during the rest of the day.

9. Day of Week

Fraud vs. Non-Fraud Transactions by Day of the Week

1182 Non-Fraud (0)
Fraud (1)

175000 4

150000 -
£ 125000 A 935
2] 1079
o 1(
]
5 100000 .
g 188953 186392
m
= 75000 - 149700

50000 - 98107

25000 -

0 T T T T T T T
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Day of the Week

Figure 5.3.30: Fraud and Non-Fraud Transactions by Day of the Week

90

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The chart shows the total transactions for each day, distinguishing between fraud and non-fraud
transactions. Monday has the highest total transactions (188,953), while Wednesday records
the lowest (98,107). Fraudulent transactions are present throughout the week, with peaks on

Saturday (1,227) and Sunday (1,216), suggesting that fraud activity increases over weekends.

Fraudulent Transactions and Fraud Rate by Day of Week
0.0094 - 0.0095

- 0.0090

- 0.0085

- 0.0080

Fraud Rate

- 0.0075

Number of Fraudulent Transactions

r 0.0070

- 0.0065

Monday Tuesday Wednesday Thursday Saturday Sunday
Day of Week

Figure 5.3.31: Fraudulent Transactions and Fraud Rate by Day of the Week

This graph further highlights fraud trends by using the fraud rate. The fraud rate increases from
Monday to Friday, with a peak on Friday with 0.94%, then slightly declining over the
weekend. Despite a high number of fraud cases on Saturday and Sunday, the fraud rate itself

is relatively lower compared to Friday.

This pattern suggests that fraudsters may take advantage of more spending on weekends, but
the risk per transaction is slightly lower. The higher fraud rate on Fridays may indicate that
fraudsters target end-of-week financial activities. These insights highlight the need for more

fraud monitoring on Fridays and weekends to reduce risks.

91
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

10. Distance to Merchant

Convert degrees to radians

def haversine(latl, lonl, lat2, lon2):
latl, lonl, lat2, lon2 = map(np.radians, [latl, lonl, lat2, lon2])
dlat = lat2 - latl
dlon = lon2 - lonl
a = np.sin{dlat/2)**2 + np.cos(latl) * np.ces(lat2) * np.sin(dlon/2)**2
c = 2 * np.arctan2(np.sqrt{a), np.sqrt(l-a))
return 6371 * ¢ # 6371 is the rodius of Earth in kilometers

Apply Haversine formula to calculate distance
df["distance’] = df.apply(lambda row: haversine(row['lat’], row['long'], row['merch_lat'], row['merch_long']), axis=1)

Figure 5.3.32: Distance Calculation Using Haversine Formula

The Haversine formula is applied to calculate the distance (in km) between the transaction
location and the merchant's location using latitude and longitude. The result is stored in the

distance column, helping to identify unusual transactions that may indicate fraud.

Fraud Count by Distance

I Distance Frequency —&— Fraud Count by Distance

60000

- 800
50000 A

> 600
< 40000 A
@ et
= =
o 2
[T Q
= w
Y K]
g 30000 1 00 &
v
3

20000 A

200

10000 +

80
Distance

Figure 5.3.33: Transaction and Fraud Count by Distance

This analysis examines the relationship between transaction distance and fraud occurrence. The
histogram (green bars) represents the frequency of transactions at different distance ranges,

while the blue line shows the number of fraudulent transactions within each distance ranges.

The transaction frequency follows a normal-like distribution, with a peak at around 80 km.
Fraud transactions also follow a similar trend, with the highest counts observed in middle range

distances (70-90 km).

92
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Fraud Rate by Distance

—&— Fraud Rate by Distance

[\ 1.

- 0.008

T
I Distance Frequency

60000 -

50000

&
=]
=1
=]
o
o
=]
&

30000 A

Distance Frequency
Fraud Rate

- 0.004

20000 -

- 0.002

10000 -

- 0.000

0 20 40 60 80 100 120 140
Distance

Figure 5.3.34: Transaction and Fraud Rate by Distance

This graph further showed how fraud rates vary with transaction distance. Similar to previous
graph, the histogram represents the frequency of transactions at different distances, but the blue
line shows the fraud rate across those distances. The fraud rates remain relatively stable across
most distances but show an increase at very long distances, with a sharp peak around 140 km.
This suggests that fraudsters may exploit extreme distances for fraudulent activities, possibly

to bypass location-based security measures.

11. City Population

To understand how city populations are distributed, a box plot analysis is conducted using IQR

method to identify the normal range and outliers.

City Population Box Plot with Outlier Ranges

' —--- Lower Bound (-6037)
=== Upper Bound (11611)

—..“ - 4 B L AN 4 i 2 2 + ¢ *
u
I T 1 T v
0.0 0.5 1.0 15 2.0 25 3.0
City Population le6

MNormal Population Range: -6@837 - 11611
Number of Outliers: 122857

Figure 5.3.35: Boxplot of City Population with Outlier Ranges
93

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

In the previous step, outliers with non-fraudulent transactions were removed to focus on
meaningful fraud trends. Most cities have populations below 11,611, indicating that smaller
cities dominate the dataset. However, 122,857 cities were identified as outliers, meaning their

populations significantly exceed this threshold.

f 'city pop’

print{ ‘Minimum population:
print(‘Maximum population:

df ["city_pop'].min())
', df['city pop'].max())

Minimum population: 23
Maximum population: 2986788

Define custom bins and labels

8, 5809, 18088, SEPE0, 3PEDEEE
‘Small Cities®, 'Medium Cities', ‘Large Cities®, 'Very Large Cities’

bins =
labels =

The range of city populations

Assign categories based on the ‘city pop'

df['pop_group'] = pd.cut(df[‘city pop'], bins=bins, labels=labels, right=True)

Figure 5.3.36: Assignment of City Population Categories

Since city populations range from 23 to over 2.9 million, they are grouped into four categories:
Small Cities, Medium Cities, Large Cities, and Very Large Cities. This grouping ensures a
meaningful classification, balancing the majority of cities within reasonable population sizes

while accounting for larger urban centres.

City Population Distribution and Fraud Count by Group

731825
45%6 - 4500
700000 4 1
A
A
\ - 4000
600000 - 5\
A
\ L 3500
A
500000 A ¥
€ \
5 3 - 3000
=1 \ a
s} \ =
o
£ 400000 \)
B Y -2500 g
n Y m
c \]
© 300000 Y%
= \ - 2000
A
A}
i
200000 . !
\\ . 1500
\ 130875 =7
110007 908 _.--
100000 - 638 - + 1000
\ I
v mm————"
*.—
1434 - 500
0 — LA L— 333
Small Cities Medium Cities Large Cities Very Large Cities

Population Group
Figure 5.3.37: Transaction and Fraud Count by City Population Group

The bar chart represents the number of transactions across these population groups, while the
dotted line represents the corresponding fraud count. Small cities have the highest transaction

94

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

volume, with 731,825 transactions, followed by large, medium and very large cities. Fraud
count follows a similar pattern, with small cities have the most fraud cases (4,526), while
medium and large cities have significantly lower fraud counts (638 and 908 respectively).
Interestingly, fraud cases rise again in very large cities even though with fewer transactions,
where all 1,434 transactions are fraudulent. This observation suggests a potential sampling or

reporting bias due to the prior removal of outliers.

12. Correlation Analysis

-0.01 i 0.01 (-0.01 DED

Iat . ..mm

city_pop -l

amt

- 0.6

unix_time

merch_lat -SiReES

- 0.4
merch_long -EERER

© £
=] =
5])

o
2

HEL_.EI

is_fraud

&
@

- 0.2

o
o
w

g

(&
chnum EEEE O E
g

is_night 1.00

e e
(=} (=1
= w

=
o
[
=

da y E 3
diStan(e HEEEEEE g EEE
(=) 2

(=%
@
3

e
=]
(=1

distance

9

ay-pop EE .

unix_time
merch_lat
merch_loni
is_ni

Figure 5.3.38: Heatmap of Numerical Features for Final Dataset

The heatmap visualizes the correlation between various features in the dataset, helping to
identify potential relationships that may be useful for fraud detection. The correlation values

that close to 1 or -1 indicate a strong correlation, values near 0 indicate little to no correlation.

In this case, the highest correlation with fraud (is_fraud) is observed in the transaction
amount (amt), with a correlation of 0.6, suggesting that fraudulent transactions tend to have
higher amounts. The city population (city_pop) also shows a moderate correlation of 0.26,
indicating that fraud is slightly more frequent in larger cities. Additionally, is night has a

weaker but still notable correlation of 0.13, implying that fraudulent transactions are more

95

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

likely to occur at night. Other features like lat, long, unix_time, merch_lat, merch_long, hour
and age have very low correlations, while day and distance showed almost no correlation with

fraud.

The analysis revealed a very high correlation between lat and merch_lat (0.99) and between
long and merch_long (1.00). Due to this strong multicollinearity, their individual correlations
with is fraud are very low, indicating potential redundancy. Additionally, the features
trans_date trans_time, dob and unix_time do not provide direct value for fraud detection, as
key information such as hour and age has already been extracted. To avoid unnecessary

features and improve model efficiency, these variables are removed from the dataset.

5.3.4 Encoding

Replace 'M'" with 1 and 'F' with @
df['gender’] = df['gender'].replace({'M': 1, 'F': @})

Perform one-hot encoding on the 'category' column

df = pd.get_dummies(df, columns=['category"'], drop_first=False)
category_columns = [col for col in df.columns if ‘category_' in col
df[category columns] = df[category columns].astype(int)

df = pd.get_dummies(df, columns=['age_group'], prefix='age group')

df = pd.get_dummies(df, columns=['pop group'], prefix="pop_group’)

Convert all boolean columns to I and @ (int type)
df = df.apply(lambda x: x.astype(int) if x.dtype == 'bool' else x)
Compute fraud rate per “cc_num™ using the entire dataset

cc_fraud_rate = df.groupby('cc_num'}["is_fraud'].mean()
df['cc_fraud_rate’] = df['cc_num'].map(cc_fraud_rate)
df = df.drop(columns=["cc_num"])

Figure 5.3.39: Binary Encoding, One-hot Encoding and Target Encoding Applied

The encoding process transforms categorical and boolean variables into a format suitable for
machine learning. First, the gender column is converted into numerical values using binary

encoding, where 'M' is replaced with 1 and 'F' with 0.

One-hot encoding is applied to categorical variables such as category, age group and
pop_group, creating separate binary columns for each unique category. These binary columns
are then converted into integer values (0 and 1) to ensure compatibility with machine learning

models.

96

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Additionally, the target encoding is applied to the cc_num column by calculating the fraud
rate for each unique credit card number based on the mean fraud occurrence. This

transformation preserves useful fraud risk information while preventing potential data leakage.

5.3.5 Resampling, Data Splitting and Modelling

1. Initiating the Modelling Process

The process begins by calling the fit and evaluate model() function. This function integrates
all the necessary steps in the machine learning workflow. It performs the following tasks
sequentially: Resampling the Data, Splitting the Data, Initializing and Training the Model and
Evaluating the Model.

Fvalugte with no resompling for Random Forest

print{"Evaluating with Mo Resampling (Random Forest):")
fit_and_evaluate_model(X, v, model_type="RF', resampling_method=Mone)

Figure 5.3.40: Function Calling for Random Forest without Resampling

Function to Fit and evaluate the model w ifferent resampling methods and classifiers

def fit_and_evaluate_model(X, y, model_type='RF', resampling_method=None):
Apply resampling

¥ _res, y_res = resample_data(X, y, method=resampling_method)

Split dota (78:38)

X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test size=8.3, random_state=42, stratify=y_res)

Initialize the model based on the selected type
if model_type == 'RF":

model = RandomForestClassifier(random_state=42)
elif model_type == 'XGBoost':

model = XGBClassifier(random_state=42)
elif model_type == 'AdaBoost":

model = AdaBoostClassifier({random state=42)

Train the model

model.fit{X_train, y_train}

Evaluate the model

evaluate_model(model, X _test, y_test)

Figure 5.3.41: Function Definition for Model Training and Evaluation
2. Resampling the Data

The first operation inside fit and evaluate _model() addresses the class imbalance issue. The
resample_data() function is called to apply the specified resampling technique — SMOTE,

random oversampling, random undersampling, or no resampling. It returns the resampled

97

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

feature set (X res) and label set (y_res). This step ensures that the dataset is balance before the

data is split into training and testing sets.

Function to resample data (SMOTE, oversampling, undersampling, or no resampling)
def resample_data(X, vy, method=None):
if method == 'SMOTE':

smote = SMOTE(random_state=42)

¥_res, y_res = smote.fit_resample(X, v)
elif method == ‘oversample’

ros = RandomOverSampler(random_state=42)

¥_res, y_res = ros.fit_resample(X, y)
elif method == "undersample':

rus = RandomUnderSampler (random_state=42)

X_res, y_res = rus.fit_resample(X, y)
else:

X_res, y_res = X, y # No resampling
return X_res, y_res

Figure 5.3.42: Function Definition for Resampling
3. Splitting the Data

The resampled data (X res, y_res) is then split into training and testing datasets using a 70:30
split. The split is performed using train test split() with the stratify=y res parameter to
maintain consistent class distribution across both sets. This ensures that the model is trained

and tested on representative samples.

Split data (78:38)

X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_sire=0.3, random_state=42, stratify=y_res)
Figure 5.3.43: Code for Data Splitting
4. Initializing and Training the Model

Based on the model type parameter, the function initializes one of the selected classifiers:
Random Forest, XGBoost, or AdaBoost. The chosen model is then trained using the training

dataset (X train, y_train) through the fit() method.

Initiaglize the model baosed on the selected type
if model_type == 'RF':

model = RandomForestClassifier(random_state=42)
elif model_type == 'XGBoost':

model = ¥GBClassifier(random_state=42)
elif model_type == 'AdaBoost':

model = AdaBoostClassifier{random_state=42)

Train the model

model.fit(X¥_train, y_train)

Figure 5.3.44: Code for Model Training

98

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5. Evaluating the model

Once the model is trained, the evaluate model() function is called to assess its performance.
This function calculates various performance metrics such as accuracy, recall, precision, F1-
score, MCC, and AUC. Additionally, it outputs the confusion matrix and classification report

for further insights into how the model performs on testing datasets.

def evaluate_model(model, X_test, y_test):
Make predictions om the test doto

y_test_pred = model.predict(¥_test)
y_test_prob = model.predict_proba(X_test)[:, 1

Helper function to print and plot the metrics

def print_metrics{data_type, y_true, y_pred, y_prob):
print{f"{data_type} Data Metrics:")
print{f"Accuracy: {accuracy_score(y_true, y_pred):.4f}"}
print{f"Recall: {recall_score(y_true, y_pred):.4f}")
print{f"Precision: {precision_score(y_true, y_pred):.4f}")
print{f"Fl-Score: {fl_score(y_true, y_pred):.4f}")
print{f"MCC: {matthews_corrcoef(y_true, y_pred):.4f}")
print{f"AUC: {roc_auc_score(y_true, y_prob}:.4f}")
print{"Classification Report:")
print{classification_report(y_true, y_pred})

Confusion matrix

cm = confusion_matrix(y_true, y_pred)

plt.figure(figsize=(5, 4))}

sns.heatmap{cm, annot=True, fmt="d", cmap="Blues', cbar=False,
xticklabels=['Not Fraud', "Fraud'],
yticklabels=['Not Fraud', "Fraud'])

plt.xlabel("Predicted Label'}

plt.ylabel("True Label')

plt.title(f"{data_type} Confusion Matrix')

plt.tight_layout()

plt.show()

2 Fualuate Fectin =
Evaluate testing data

print_metrics{"Testing", y_test, y_test pred, y_test_prob)

Figure 5.3.45: Function Definition for Model Evaluation
6. Repeating for All Combinations

Steps 1 to 5 are repeated for all combinations of resampling methods (SMOTE,
oversampling, under-sampling and no resampling) and machine learning models (Random
Forest, XGBoost and AdaBoost). This allows for a comprehensive comparison of how
different model-resampling pairs perform in detecting fraud, enabling the selection of the

best-performing configuration.

99

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.6 Model Evaluation and Comparison

Pipeline 1: Target Encoding — Resampling — Data Splitting

1. Performance Metrics

Random Forest

XGBoost

AdaBoost

Accuracy: ©.9988
Recall: &.5441

No Precision: 8.9969
Resampling | Fl-Score: @.5914Z
MCC: @.9168
AUC: @.9830

Accuracy: @.9987
Recall: @.8552
Precision: ©.9683
F1-Score: @.9835
MCC: @.98%6

AUC: @,9978

Accuracy: @.9986
Recall: @.8157
Precizion: 1.0888
Fl-5core: @.3985
MCC: 8.9825

AUC: 8.9951

Accuracy: ©.9994
Recall: 8.9992
Precision: @.9989

Accuracy: ©.9929
Recall: 8.9919
Precizion: @.9939

Accuracy: @.9618
Recall: @.9418
Precision: ©.9811

SMOTE Fl-5core: ©.9998 F1-Score: B.9929 Fl-Score: @.961@
MCC: @.9981 MCC: @.9858 MCC: @.9244
AUC: 1.@020 AUC: @.9998 AUC: @.9938
Accuracy: @.9999 Accuracy: @.9959 Accuracy: @.9638
Recall: 1.oode Recall: B.9999 Recall: @.0497
Over- Precision: ©8.9998 Precizion: @.9928 Precision: @.9772
sampling F1-5core: @.9399 F1-Score: @.9959 Fl-Score: ©.9632
MCC: @.9998 MCC: @.991% MCC: @.9279
AUC: 1.0898 AlC: @.9998 AUC: @.9935
Accuracy: 8.9691 Accuracy: ©.9758 Accuracy: @.9585
Recall: @.9627 Recall: @8.9774 Recall: @.9587
Under- Precision: 8.9753 Precision: 8.9743 Precision: @.9657
sampling F1-5core: ©.9689 F1-5core: @.9758 Fl-5core: @.9582
MCC: 8.9384 MCC: 8.9516 MCC: &.5171
AINC: @,9955 AUC: 8.9973 AUC: @.9941

Table 5.3.2: Evaluation Metrics of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

100

CHAPTER 5

Without resampling, Random Forest achieves a high Precision of 0.9969, but the Recall
drops to 0.8441, suggesting poor handling of the minority class. With the use of Oversampling
and SMOTE, Random Forest achieves perfect and near-perfect Recall (1.000 and 0.9992) and
F1-Score (0.9999 and 0.9990). This suggests Random Forest excellent in fraud detection but
raise the concerns about overfitting. For Under-sampling, the performance drops significantly
with the lowest accuracy of 0.9691, among all Random Forest configurations, showing its

inefficiency for highly imbalanced dataset.

For XGBoost, Oversampling achieves the best performance, with an outstanding Recall
0f 0.9999, F1-Score of 0.9959 and MCC of 0.9919. SMOTE also performs well, with slightly
lower scores than Oversampling, but it offers a higher Precision of 0.9939. Without resampling,
XGBoost achieves the highest Accuracy of 0.9997, but its Recall drops significantly to 0.8552,
which is similar to Random Forest. This significant drop suggests poor handling of the model
with minority class. Under-sampling shows a decline across all performance metrics, further

supporting the conclusion that it is not an effective resampling technique for this dataset.

AdaBoost shows weaker performance compared to other models across all resampling
techniques. Its best results are achieved with the Oversampling, reaching a F1-Score of 0.9632
and an AUC of 0.9935. However, the worst performance occurs without resampling, where the
Recall is only 0.8157, even though achieving a perfect Precision. This suggests that AdaBoost
is too focus on minimising false alarms when no resampling technique is applied. This means
that the model has strong bias toward the majority class. As a result, it tends to misclassify the

minority class, leading to imbalanced predictions and poor detection of fraud cases.

In comparing the different resampling techniques, it becomes clear that no resampling
leads to high Precision but poor Recall. It is not suitable for imbalanced datasets, especially in
fraud detection where Recall is very important. SMOTE significantly improves Recall, F1-
Score and MCC, especially for Random Forest and XGBoost, showing the better in
generalization. Oversampling performs similarly or slightly better than SMOTE, achieving
near-perfect scores in both Random Forest and XGBoost. Conversely, Under-sampling
consistently reduces performance across all models, likely due to the loss of valuable

information from the majority class.

101

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

To find the best-performing model, the combination of model and resampling technique
that consistently achieving the highest metrics should be considered. Based on the analysis,
Random Forest with Oversampling archives perfect or near perfect scores across all metrics,
indicating high generalization. Random Forest with SMOTE follows closely behind, with
slightly lower overall performance compared to that of Oversampling. XGBoost with
Oversampling also performs excellently, with slightly lower Precision and MCC than Random

Forest but offering more balanced performance.

In short, Random Forest and XGBoost consistently deliver the best performance.
Random Forest and XGBoost have the similar performance. This is because both of them are
tree-based ensemble models. This type of models inherently handles class imbalance through
feature selection and strong pattern learning. However, since they share similar strengths, direct
comparison may not be valuable unless tested under more challenging conditions. Resampling
methods like SMOTE and Oversampling help improving model performance by addressing
imbalanced dataset, generating synthetic samples or duplicating existing ones to better classify
minority class instances. In contrast, Under-sampling tends to reduce effectiveness, especially

for XGBoost and AdaBoost.

102

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

2. Classification Report

Random Forest XGBoost AdaBoost
precision recall fl-score support precision recall fl-score support precision recall fl-score support
B 1.88 1.89 1.8 289991 @ 1.28 1.88 1.@9 289951 @ 1.08 1.088 1.88 289991
N() 1 1.88 2,54 2.91 2252 1 2.97 a.86 @.91 2252 1 1.688 @.82 @.98 2252
Resampling
accuracy 1.82 292243 accuracy 1.688 292243 accuracy 1.688 292243
macro avg 1.88 @.92 2.96 292243 macro avg D.98 @.93 @.95 292243 macro avg 1.08 @.91 @.95 292243
welghted avg 1.88 1.08 1.88 292243 weighted avg 1.88 1.@a 1.88 202243 weighted avg 1.8@ 1.88 1.88 292243
precision recall +l-score support precision recall fl-score suppert precision recall fl-score support
B 1.88 1.8 1.8 289991 @ 2.99 8.99 2.99 289991 a 9.04 8.08 8.96 280001
1 1.80 1.80 1.00 280908 1 @.99 2.99 a.99 289398 1 a.98 .94 @.96 289990
SMOTE
accuracy 1.09 579981 accuracy @.99 579981 accuracy 8.96 579981
macro avg 1.08 1.88 1.08 579981 macro avg 8.99 9.99 a.99 579981 macro ave a.96 .96 @.96 579981
weighted avg 1.848 1.89 1.8 579981 welghted avg @.99 2.9% @.99 579981 weighted avg @.96 @.96 @.06 570081
precision recall fl-score support precision recall fl-score support precision recall fl-score suppert
8 1.80 1.89 1.89 280901 8 1.08 @.99 l.e2 259991 8 @.95 9.9% a.96 280991
Over- 1 1.88 1.89 1.89 289998 1 8.99 1.08 1.2 289999 1 ?.98 8.95 @.96 280500
samplin
pling accuracy 1l.0@ 579981 accuracy 1.08 579981 accuracy .96 576481
macro avg 1.88 1.89 1.09 579981 macro avg 1.04 1.8 1.88 579981 macre avg @.96 3.96 a.96 579981
welghted avg 1.88 1.89 1.89 579981 | welghted avg 1.08 1.0 1.08 579981 weighted ave 3.96 .96 .96 570481
precision recall Ffl-score support precision recall fl-score support precision recall fl-score support
8 B.96 8.98 8.97 2252 a 2.98 @.97 2.98 2252 <] @.95 @.97 @.96 2252
Under- 1 a.98 a.96 a.97 2252 1 2.97 @.98 2.98 2252 1 @.97 @.95 @.96 2252
sampling
accuracy 8.97 4584 accuracy @.98 4584 accuracy a.96 4594
macro avg 2.97 2.97 2.97 4594 macro avg 3.98 @.98 @.98 4584 macro avg @.96 @.96 a.96 4594
weighted avg 2.97 2.97 2.97 4594 weighted avg 8.98 @.98 @.98 4584 weighted avg @.96 @.96 @.96 4584

Table 5.3.3: Classification Reports of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

103

CHAPTER 5

A classification report is important to determine how well a model performs on different
classes, providing metrics like Precision, Recall, F1-Score and Support for each class. Unlike
performance metrics which summarise performance in a single value, a classification report
provides a breakdown for each class, enabling for deeper insights into how the model behaves,
especially in imbalanced datasets where the majority class often dominates performance. Each
combination of model and resampling method was evaluated using a classification report to

determine how well the models handle both majority class (class 0) and minority class (class
1).

Without resampling, all models showed a bias toward the majority class (Class 0),
especially with AdaBoost achieves the lowest Recall of 0.82 for Class 1, meaning that it missed
18% of minority-class instances, despite its Precision is perfect. Although XGBoost performs
slightly better than Random Forest and AdaBoost in Recall with 0.86, but it still shows
limitation with minority-class identification. Without resampling leads to high Precision but
poor Recall, which is a critical issue in fraud detection, where missing positive fraud cases is

costly.

The use of SMOTE and Oversampling shows a large improvement in performance
across all models. Random Forest and XGBoost achieves nearly perfect Precision, Recall and
F1-Score for Class 1 under these resampling methods. AdaBoost also improved significantly,
with a high F1-Score of 0.96 in Class 1, even though it still behind the other two models.
However, perfect or near-perfect scores may indicate overfitting, especially for Oversampling,
This is because the same minority samples are repeated too often, the model has potentially to

memorise patterns in the oversampled data rather than generalising to unseen data.

With the use of Under-sampling, the performance of models drops compared to
SMOTE and Oversampling because a portion of data is removed. Despite this, the results
remain strong, with XGBoost achieving the highest F1-Score of 0.98 for Class 1, followed by
Random Forest of 0.97 and AdaBoost of 0.96. These results show that these models can
perform well even with a smaller and balanced dataset. However, Under-sampling comes with
risk of discarding valuable information, which could hinder generalisation on unseen data. This
trade-off becomes even more critical when considering the original class distribution, where

Class 0 includes 289,991 transactions, while Class 1 consists of only 2,552, meaning that 99%

104

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

of the majority class is discarded. Given this imbalance, Under-sampling may not be the most

suitable approach, especially when data retention is important.

When comparing models overall, XGBoost is proven to be the most robust and
consistent across all resampling strategies, showing strong recall and F1-Scores even without
using resampling technique. Random forest shows excellent performance when combining
with SMOTE and Oversampling, but its Recall dropped more significantly without resampling.
AdaBoost tends to underperform slightly while it is still competitive, especially with

1mbalanced data.

105

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

3. Confusion Matrix

Random Forest XGBoost AdaBoost
Testing Confusion Matrix Testing Confusion Matrix Testing Confusion Matrix
he] he] h=l
= = =
=] o o o
i 289985 6 i 62 & 289991 0
o g g
= = =
z z z
3 3 3
No e e e
Resamplin £ g 2
pimng % E E
- - b=
3- 351 1901 3- 326 1926 2- 415 1837
= = b=
I 1 I I | 1
Not Fraud Fraud Not Fraud Fraud Not Fraud Fraud
Predicted Label Predicted Label Predicted Label
Testing Confusion Matrix Testing Confusion Matrix Testing Confusion Matrix
h=} ° °
=) = =
[[o
w w [T
= o v
o o o
_ = _ = =
2 2 z
3 3 3
SMOTE g g g
=) o -
=1 3 3
m m m
i i it
I I 1
Not Fraud Fraud Not Fraud Fraud Not Fraud Fraud
Predicted Label Predicted Label Predicted Label

106

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Testing Confusion Matrix Testing Confusion Matrix Testing Confusion Matrix
=} ° °
3 3 3
o e o
'™ '™ w
= o o
=] o o
_ = _ = _ =
u 7 7
=} =} =2
3 3 3
Over- = = =
. 3 3 =1
sampling g g g
=] =] =]
= =4 3
m [l []
i i it
I I 1
Not Fraud Fraud Not Fraud Fraud Not Fraud Fraud
Predicted Label Predicted Label Predicted Label
Testing Confusion Matrix Testing Confusion Matrix Testing Confusion Matrix
h=} h=l h=l
= 3 =
& i &
'™ '™ '™
3 S 3
_ = _ = _ =
[) (0] (0]
=2 =2 =
3 3 3
Under- = = 5
. E E =
sampling g 2 E
el =} =]
= _ = _ =4
m m m
i i i
I I 1
Not Fraud Fraud Not Fraud Fraud Not Fraud Fraud
Predicted Label Predicted Label Predicted Label

Table 5.3.4: Confusion Matrixes of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection

107

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The confusion matrix provides clear breakdown into how models classify fraud (class
1) and non-fraud (class 0) transactions by showing exact numbers of correct and incorrect
predictions. This helps to identify specific errors that cannot be directly found in performance

metrics or classification report.

When training and testing on the original imbalanced dataset with 289,991 non-fraud
cases and 2,552 fraud cases, all three models show somewhat difficult to identify fraud cases
correctly. Random Forest and XGBoost show relatively better performance, correctly
identifying 1,901 and 1,926 fraudulent transactions, but still missing 351 and 326 respectively.
AdaBoost performs the worst without resampling, detecting only 1,837 frauds while missing
415 frauds, which shows a bias towards the majority class. This is a normal problem in
imbalanced datasets where minority class is underrepresented. Surprisingly, it produces no

False Positive, achieving perfect Precision for fraud detection.

The models’ ability to detect fraud is improved by using SMOTE. Random Forest with
SMOTE shows a very strong performance with only 239 False Negative and 316 False
Positives. This means that among all actual fraud cases (289,990), only 239 was predicted
incorrectly as non-fraud, while 316 legitimate transactions are wrongly flagged as fraud.
XGBoost also performs well under SMOTE with a False Negative of 2,342 and False Negative
of 1,774, although higher than those of Random Forest. AdaBoost benefits the least from
SMOTE and misclassifying a large number of both frauds (16,875 False Negatives) and non-
frauds (5,271 False Positives), which indicate difficulty in capturing patterns in synthetically

balanced data as SMOTE may introduce noise for some models.

Oversampling reach nearly perfect results for Random Forest, which detects all 289,990
fraudulent transactions with only 47 False Positives. This may indicate potential overfitting as
such high scores may not generalise well to unseen data. XGBoost also performs strongly, only
25 frauds are missed, and 2,336 legitimate transactions are misclassified as fraud. AdaBoost
shows an improvement in False Negative if compared to using SMOTE, with a number of
14,589 fraud missed, but the False Positive is increase to 6,428. AdaBoost still remain the

weakest model among all.

Under-sampling reduces the dataset to a balanced but smaller size, retaining only 2,252
non-fraudulent out of original of 289,991. This leads to a slightly lower overall performance.

108

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

However, the results remain good, with XGBoost achieves the best balance here with only 51
False Negatives and 58 False Positives. Random Forest follows closely with 84 False Negatives
and 55 False Positives, while AdaBoost misclassifies the most again with 111 frauds missed
and 76 legitimate transactions flagged incorrectly. Despite loss of data and patterns from

majority class, the models still generalise quite well, which shows that they can work on smaller

datasets.

109
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.7 Performance Across Different Pipelines

Pipeline 2: Resampling — Data Splitting — Target Encoding

Random Forest

No Resampling SMOTE Oversampling | Under-sampling
Accuracy 0.9987 0.9986 0.9999 0.9658
Recall 0.8406 0.9981 1.0000 0.9636
Precision 0.9963 0.9991 0.9998 0.9679
F1-Score 09118 0.9986 0.9999 0.9657
MCC 0.9146 0.9971 0.9998 0.9316
AUC 0.9816 1.0000 1.0000 0.9942

Table 5.3.5: Performance of Random Forest with Pipeline 2

XGBoost
No Resampling SMOTE Oversampling | Under-sampling
Accuracy 0.9986 0.9932 0.9955 0.9720
Recall 0.8477 0.9907 0.9996 0.9738
Precision 0.9690 0.9957 0.9914 0.9704
F1-Score 0.9043 0.9932 0.9955 0.9721
MCC 0.9057 0.9865 0.9910 0.9441
AUC 0.9976 0.9998 0.9998 0.9967
Table 5.3.6: Performance of XGBoost with Pipeline 2
AdaBoost
No Resampling SMOTE Oversampling | Under-sampling
Accuracy 0.9986 0.9508 0.9635 0.9594
Recall 0.8157 0.9174 0.9490 0.9480
Precision 1.0000 0.9831 0.9773 0.9700
F1-Score 0.8985 0.9491 0.9630 0.9589
MCC 0.9025 0.9036 0.9274 0.919
AUC 0.9943 0.9894 0.9935 0.992

In the previous evaluation of Pipeline 1, target encoding was applied before the data
splitting, followed by resampling and model training. However, this sequence introduces a

potential issue of data leakage. Target encoding replaces the original feature values (cc_num

Table 5.3.7: Performance of AdaBoost with Pipeline 2

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

in this case) with their derived values (fraud rate per cc_num). If this encoding is done before
the dataset splitting into training and testing sets, information from the entire dataset, including
the testing part will contributes to the encoded values. As a result, the model unintentionally
accesses to target information from testing set during training. This will lead to artificially high-
performance metrics and poor generalizability to unseen data. So, alternative modelling
sequence was tested where target encoding is applied after data splitting. This allows for a
comparison between the two approaches and helps evaluate the impact of potential data leakage

on model performance.

When comparing Random Forest across both modelling pipelines, the performance is
slightly dropped when No Resampling, SMOTE or Under-sampling applied, as shown 7Table
5.3.5. However, with Oversampling, there is no difference in results between both pipelines.
This indicates that Oversampling is robust to changes in processing sequence, likely because it
replicates existing samples without introducing synthetic patterns based on target variable. The
slightly drop in other methods suggests that when target encoding is applied before data
splitting, the model may unintentionally refer to the target distribution across the whole dataset,
causing data leakage. This leakage improves the model performance during training, which

may not generalise well to unseen data, this is why the scores are slightly lower in this pipeline.

For XGBoost, the trend is quite similar to Random Forest. The performance dropped
slightly across most metrics when switching to Pipeline 2, which gain supports the presence of
mild data leakage in Pipeline 1. However, SMOTE stands out with slightly improvements in
Accuracy, Precision, F1-Score and MCC in Pipeline 2 as shown in Table 5.3.6, highlighting
that XGBoost may better utilise the balanced structure introduce by SMOTE once data leakage
is controlled. In contrast, no resampling and Under-sampling result in more noticeable
performance drops, by which F1-Score for no resampling drops from 0.9085 to 0.9043 and for
SMOTE drops from 0.9085 to 0.9043. This highlights that these two resampling methods are
less effective and possibly more dependent on pipeline ordering for maintaining performance.
Basically, XGBoost performs best when the data is balanced. If the data is not balanced or too
much information lost, it does not perform as well, especially in a proper setup without data

leakage.

AdaBoost shows a different pattern. With no resampling method applied, its

performance is stable between both pipelines, only AUC drops marginally from 0.9951 to
111

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

0.9943, as shown in Table 5.3.7. This suggests that AdaBoost is relatively insensitive to
pipeline changes when no resampling is applied. This might be due to its sequential boosting
nature, which can correct individual misclassifications without relying heavily on target-

encoded data.

In contrast, SMOTE causes a more noticeable drop in metrics, where Accuracy drops
from 0.9618 t0.0.9508, Recall drops from 0.9418 to 0.9174, F1-Score drops from 0.9610 to
0.9491 and MCC from 0.9244 to 0.9036. Interestingly, Precision and AUC increase to 0.9831
and 0.9894 respectively. This may mean that the model becomes more cautious and gives more
false alarms, but it is confident and accurate when it does predict fraud, thus raising AUC and
Precision. This reflects the changes in decision threshold or learning pattern due to the synthetic

samples introduced by SMOTE.

In short, the order of steps in the pipeline is important. If target encoding is done before
splitting the data, it can leak information from the labels into training. This makes the model
seem better than it actually is. This is especially a problem when using resampling methods
like SMOTE that create fake data. Pipeline 2 is more realistic because it follows how things
would work in real life. Random Forest and XGBoost are slightly affected by this change, but
AdaBoost is more sensitive to whether the data is balanced than to the sequence of steps, which

makes it worth looking into further.

112

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Pipeline 3: Target Encoding — Data Splitting — Resampling

Random Forest

No Resampling SMOTE Oversampling | Under-sampling
Accuracy 0.9988 0.9983 0.9988 0.9786
Recall 0.8441 0.8726 0.8512 0.9645
Precision 0.9969 0.9055 0.9851 0.2601
F1-Score 0.9142 0.8887 0.9133 0.4097
MCC 0.9168 0.8880 0.9151 0.4950
AUC 0.9830 0.9896 0.9860 0.9956

Table 5.3.8: Performance of Random Forest with Pipeline 3

XGBoost
No Resampling SMOTE Oversampling | Under-sampling
Accuracy 0.9987 0.9944 0.9926 0.9755
Recall 0.8552 0.9094 0.9418 0.9711
Precision 0.9688 0.586 0.5118 0.2357
F1-Score 0.9085 0.7127 0.6632 0.3794
MCC 0.9096 0.7276 0.6914 0.4722
AUC 0.9978 0.9947 0.9972 0.9969
Table 5.3.9: Performance of XGBoost with Pipeline 3
AdaBoost
No Resampling SMOTE Oversampling | Under-sampling
Accuracy 0.9986 0.9783 0.9759 0.9749
Recall 0.8157 0.9294 0.9529 0.9547
Precision 1.0000 0.2532 0.2362 0.2294
F1-Score 0.8985 0.398 0.3786 0.3699
MCC 0.9025 0.479 0.4680 0.4615
AUC 0.9951 0.9904 0.9942 0.9943

Table 5.3.10: Performance of AdaBoost with Pipeline 3

In Pipeline 3, the sequence of operations starts from target encoding, followed by
splitting dataset into training and testing sets and finally applying resampling techniques only
to the training set. This approach is different from Pipeline 1 and Pipeline 2, where resampling

is applied before data splitting. As a result, Pipeline 3 introduces a key problem, which

113

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

resampling is applied in isolation to only part of the data, leading to an incomplete correction

of class imbalance and potential distribution mismatch between training and testing sets.

For Random Forest, the best performance is when no resampling applied. It achieves a
high F1-Score of 0.9142, Precision of 0.9969 and MCC of 0.9168, as shown in Table 5.3.8.
However, when resampling techniques like SMOTE and Oversampling are applied after
splitting, the performance does not improve in some cases worsened. For example, SMOTE
achieves a better Recall of 0.8726, but its Precision drops to 0.9055 and F1-Score drops to
0.8887. Under-sampling has significantly improved Recall to 0.9645 but caused a drastic drop
in Precision to only 0.2601, which led to a sharp decrease in F1-Score to 0.4097. This indicates
that the model 1s aggressively predicting positives, even though many of them are incorrect.
This is due to the skewed training distribution created by Under-sampling a small subset of the
majority class. The low Precision and F1-Score confirm that although the model can detect
many fraud cases (high Recall), it also misclassified many normal transactions as fraudulent

(low Precision).

XGBoost follows a similar trend. It performs well without any resampling, achieving
Accuracy of 0.9987, F1-Score of 0.9085, MCC of 0.9096 and AUC of 0.9978, as shown in
Table 5.3.9. When resampling techniques are applied after splitting, especially SMOTE and
Oversampling, there is a significant decline in Precision, where it drops to 0.586 and 0.5118
respectively. The decline is even bigger with under-sampling, where precision falls to just
0.2357. These low Precision values significantly reduce the F1-Score to 0.7127, 0.6636 and
0.3794 respectively, although the Recall is high. This imbalance indicates that resampling
methods fail to generalise well on the unseen test data because they only applied to the training
set. This can be attributed to overfitting on the resampled training set, where synthetic minority
samples or duplicated minority observations skewed the learning patterns. The model learns

the resampled training data too much instead of learning real patterns, so it fails on new data.

AdaBoost shows even worse performance degradation. Without resampling applied, it
achieves a modest F1-Score of 0.8985, even lower than Random Forest and XGBoost, as shown
in Table 5.3.10. While using SMOTE, Oversampling and Under-sampling, Precision falls to
just 23%-25%, while F1-Score and MCC are below 0.4 and 0.5 respectively. This suggests that

AdaBoost is more sensitive to noise from synthetic or duplicated samples generated during

114

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

resampling. Under-sampling introduces another problem where the model becomes overly

biased toward the minority class, sacrificing Precision and generalizability in the process.

Pipeline 3 generally not performs well because of applying resampling methods after
data splitting. This sequence of operations is not recommended because the model learns from
a training set whose class distribution has been artificially changed, but the testing set remains
imbalanced. This creates a mismatch between what the model learns and what it sees during
testing. As a result, the model performs well during training but fails to generalise on new data.

It often gives a high Recall but low Precision.

In contrast, Pipeline 1 and Pipeline 2 fix this issue by resampling before data splitting.
This makes sure both training and testing sets have a consistent class distribution. It helps the
model to learn the patterns better and provides more reliable results. In short, Pipeline 3 with
data splitting done first before resampling is not suitable for imbalanced classification tasks
like fraud detection, as it creates mismatches in data distribution, increases the risk of

overfitting and reduce ability of model to generalise well to unseen data.

115

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.8 Hyperparameter Tuning

Model performance is highly influenced by hyperparameters, which control complexity,
regularization, and decision rules. Instead of relying on defaults, systematic tuning can improve
generalization and help balance recall, precision, and stability—especially in imbalanced tasks

like fraud detection.

Two widely used approaches for hyperparameter optimization are Randomized Search and
Grid Search. Randomized Search samples parameter combinations at random from defined
ranges. It is faster and more efficient when the parameter space is large. Grid Search, in contrast,
evaluates all possible combinations within a smaller, targeted space. While slower, it ensures

thorough exploration of promising values.

In this study, Randomized Search was limited to 20 iterations (n_iter=20) with 3-fold cross-
validation (cv=3) to balance efficiency and robustness. Grid Search also used 3-fold cross-
validation, but systematically explored a smaller, more focused hyperparameter space. This
ensured comparability between the two methods, while keeping computational cost

manageable.

Both methods were tested under four resampling strategies: no resampling, SMOTE,
oversampling, and under-sampling. This allowed comparison of whether performance gains
came from algorithm tuning, data balancing, or both. The same approach was applied across

Random Forest, XGBoost, and AdaBoost for consistency.

116

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Random Forest

Randomised Search Hyperparameter Space Grid Search Hyperparameter Space
random_params = grid_params =
‘n_estimators': [oe, 1ee, 158, 28a], 'n_estimators': [186, 288],
'max_depth': [None, 5, 18, 15, 28], ‘max_depth': [None, 18, 28],
'min_samples_split': [2, 5, 18], ‘min_samples_split®: [2, 5],
‘min_samples_leaf': [1, 2, 4], ‘min_samples_leaf': [1, 2],
'max_features': ['sgrt', 'log?’ ‘max_features': ['sgrt*, "log2’

Table 5.3.11: Random Forest Hyperparameter space settings

For Random Forest, the hyperparameter space was designed to balance model complexity,
generalization, and computational cost, as shown in Table 5.3.11. The number of estimators
(n_estimators) was set between 50 and 200 in Randomized Search to explore both smaller and
larger ensembles, while Grid Search focused on 100 and 200 as practical defaults that provide
stability without excessive computation. The maximum depth (max_depth) parameter
included both unrestricted trees (None) and constrained depths (5, 10, 15, 20) in Randomized
Search to test how limiting tree growth impacts overfitting, whereas Grid Search narrowed this
to None, 10, and 20 for targeted optimization. The minimum samples required to split an
internal node (min_samples split) and minimum samples required at a leaf
(min_samples_leaf) were varied across small values (2, 5, 10 for split; 1, 2, 4 for leaf) to
regulate how finely trees partition the data, with Grid Search refining this range to 2 and 5 for
splits and 1 and 2 for leaves for efficiency. Finally, the max_features parameter was restricted
to 'sqrt' and 'log2', two common strategies in Random Forests that promote diversity among

trees and help reduce correlation between them

117

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Without hyperparameter tuning

Randomised search

Grid search

No resampling + Random Forest

Best Accuracy (CV): 0.9987
Best Params: {'n_estimators": 150, 'min_samples_split": 5,

Best Accuracy (CV): 0.9987
Best Params: {'max_depth": None, 'max_features': 'sqrt',

Accuracy: 0.9987 'min_samples leaf": 1, 'max_features" 'log2', 'max_depth": None} 'min_samples_leaf": 1, 'min_samples_split": 2, 'n_estimators": 200}
Recall: 0.8406 Accuracy: 0.9988 Accuracy: 0.9988
Precision: 0.9963 Recall: 0.8401 Recall: 0.8424
F1-Score: 0.9118 Precision: 0.9995 Precision: 0.9963
MCC: 0.9146 F1-Score: 0.9129 F1-Score: 0.9129
AUC: 0.9816 MCC: 0.9158 MCC: 0.9155

AUC: 0.9892 AUC: 0.9872
SMOTE + Random Forest Best Accuracy (CV): 0.9982 Best Accuracy (CV): 0.9985
Accuracy: 0.9986 Best Params: {'n_estimators": 150, 'min_samples_split": 5, Best Params: {'max_depth": None, 'max_features': 'sqrt’,
Recall: 0.9981 'min_samples_leaf": 1, 'max_features": 'log2', 'max_depth': None} 'min_samples_leaf": 1, 'min_samples_split": 2, 'n_estimators': 200}
Precision: 0.9991 Accuracy: 0.9984 Accuracy: 0.9986
F1-Score: 0.9986 Recall: 0.9977 Recall: 0.9981
MCC: 0.9971 Precision: 0.9991 Precision: 0.9990
AUC: 1.0000 F1-Score: 0.9984 F1-Score: 0.9986

MCC: 0.9968 MCC: 0.9971

AUC: 1.0000 AUC: 1.0000

Best Accuracy (CV): 0.9999 Best Accuracy (CV): 0.9999
Oversampling + Random Forest Best Params: {'n_estimators": 150, 'min_samples_split": 5, Best Params: {'max_depth': None, 'max_features': 'sqrt',
Accuracy: 0.9999 'min_samples leaf": 1, 'max features" 'log2', 'max depth': None} 'min_samples_leaf": 1, 'min_samples_split": 2, 'n_estimators": 200}
Recall: 1.0000 Accuracy: 0.9999 Accuracy: 0.9999
Precision: 0.9998 Recall: 1.0000 Recall: 1.0000
F1-Score: 0.9999 Precision: 0.9998 Precision: 0.9998
MCC: 0.9998 F1-Score: 0.9999 F1-Score: 0.9999
AUC: 1.0000 MCC: 0.9998 MCC: 0.9998

AUC: 1.0000 AUC: 1.0000
Undersampling + Random Forest Best Accura?y ,(CV):- 0.9673’. » . Best Accura?y '(CV): 0.9?1?.7 v o
Accuracy: 0.9658 '}3§st Params: {n_e.stlm’ators. 200, rrf.n'l_sa{n‘ples_spht. %, 'Be.st Params: {max._de'pt' : None, max_'fev:.atur’es. sqrt, .
Recall: 0.9636 min_samples_leaf': 2, 'max_features': 'sqrt', 'max_depth': None} min_samples_leaf': 1, 'min_samples_split": 5, 'n_estimators': 200}

LT Accuracy: 0.9660 Accuracy: 0.9658

Precision: 0.9679 })
Fl-Score: 0.9657 Recallll. 0.9618 Recaill.. 0.9609

Precision: 0.9700 Precision: 0.9704
MCC: 0.9316
AUC: 0.9942 F1-Score: 0.9659 F1-Score: 0.9656

MCC: 0.9321 MCC: 0.9317

AUC: 0.9944 AUC: 0.9945

Table 5.3.12: Random Forest Hyperparameter Tuning Results
118

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Random Forest Hyperparameter Tuning Results Interpretation

When no resampling was applied, the results indicated that Random Search and Grid Search
produced nearly identical performance. Both configurations achieved training and testing
accuracies close to 0.9987 and 0.9988 respectively, with MCC values around 0.915. This shows
that the default parameters of Random Forest were already highly effective, and fine-tuning
did not bring significant improvements. Grid Search slightly improved recall, while Random
Search provided better precision, but the difference was negligible. Compared to the model
performance before fine-tuning, both approaches showed almost no improvement, confirming
that the default Random Forest parameters were already highly effective. This suggests that in
the absence of resampling, Random Forest is robust enough to perform well without the need

for extensive parameter optimization.

When SMOTE was applied, Random Forest performance remained almost the same before
fine-tuning, with only very small changes across metrics since the model was already
performing at a high level. Both Random Search and Grid Search produced almost identical
results, with training and testing accuracies remaining above 0.998 and MCC values close to
0.997. Grid Search showed slightly higher recall, reflecting a marginally stronger ability to
identify minority class cases, while Random Search provided slightly better performance in
precision. The main difference in parameter settings between the two approaches was that Grid
Search favoured a smaller split size, which tends to improve recall, whereas Random Search
leaned toward settings that maintained stronger precision. Compared to the model before fine-
tuning, the differences in performance were minimal, showing only a very slight drop or gain
across metrics. This confirms that the fine-tuning process did not significantly alter the
effectiveness of Random Forest under SMOTE, and that the real performance improvement

came from the resampling itself rather than hyperparameter adjustments.

When oversampling was applied, Random Forest achieved the strongest performance, with
both Random Search and Grid Search producing identical outcomes. Training and testing
accuracies were nearly perfect and MCC values reached 0.9998, indicating near-perfect
classification. Although the two search methods selected different parameter settings, these
differences had no effect on the results, as both models converged to the same performance
level. Compared to the model before fine-tuning, there was no real improvement, since
Random Forest already performed at its maximum under oversampling. This shows that

119

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

oversampling was the key factor driving the near-perfect results, while fine-tuning brought no

measurable gains despite the different parameter choices.

When under-sampling was applied, Random Forest performance was lower compared to other
resampling methods and fine-tuning did not provide meaningful improvements. Training and
testing accuracies were around 0.966, while MCC values were slightly above 0.93. Compared
to before fine-tuning, recall dropped a bit, while precision improved slightly, showing that the
model became more conservative in identifying minority class cases. Between the two search
approaches, Grid Search produced slightly better precision but at the cost of lower recall, while
Random Search maintained a more balanced performance with a marginally higher MCC and
F1-score. Overall, fine-tuning under under-sampling did not enhance performance and in fact
introduced a small trade-off between recall and precision, confirming that Random Forest
remains strong in its default form and that under-sampling itself is the main factor behind the

reduced accuracy.

In short, hyperparameter tuning Random Forest through Random Search and Grid Search
showed only minimal differences compared to the default settings, with no meaningful
improvement across resampling methods. Grid Search generally offered slightly higher
recall, while Random Search gave marginally better precision, though recall dropped a bit. The
overall impact of fine-tuning was negligible, confirming that Random Forest is already strong
with default parameters. The choice of resampling strategy was far more important, with
oversampling giving the best results, followed by SMOTE, under-sampling, and finally no

resampling.

120

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

XGBoost

Randomised Search Hyperparameter Space | Grid Search Hyperparameter Space

random_params = grid_params =
‘n_estimators': [58, 188, 158, 2088, 388], ‘n_estimators': [188, 284],
‘learning rate': [@.e1, e.8s, 8.1, ©.3], ‘learning_rate': [@.e5, 8.1, 8.3],
‘max_depth': [3, 4, 5, &, 8, 18], "‘max_depth': [4, &, 8],
'subsample': [8.6, 8.8, 1.8], 'subsample’': [@8.8, 1.8],
‘colsample_bytree": [e.6, 8.8, 1.8], "colsample_bytree': [@.8, 1.8],
'gamma': [&, 1, 3, &], 'gamma': [8, 1, 2],
‘reg_alpha': [@, @.81, .1, 1], ‘reg_alpha': [@, 8.1],
‘reg_lambda': [e@.5, 1, 1.5, 2], '‘reg_lambda': [8.5, 1

Table 5.3.13: XGBoost Hyperparameter space settings

For XGBoost, the hyperparameter search space was carefully designed to balance model
complexity, regularization, and ensemble diversity, as shown in Table 5.3./3. The number of
estimators (n_estimators) was varied more broadly in Randomized Search (50-300) to
capture both faster, lightweight models and deeper, more stable ensembles, while Grid Search
narrowed this to 100 and 200 for efficiency. The learning_rate was tuned between 0.01 and
0.3, where smaller rates allow gradual learning with more trees, and higher rates converge
faster but risk overfitting; Grid Search focused on 0.05—0.3 for more practical optimization.
max_depth was explored between 3 and 10 in Randomized Search, enabling both shallow
trees for generalization and deeper ones to capture complex fraud patterns, with Grid Search
emphasizing moderate depths (4, 6, 8) for stability. To handle overfitting, subsample (row
sampling) and colsample_bytree (feature sampling) were tuned between 0.6 and 1.0, enforcing
randomness that increases robustness, with Grid Search restricting to 0.8 and 1.0 for more
reliable evaluation. The gamma parameter was included to control split creation, ranging from
0 (more splits allowed) to 5 (restrictive), reducing noise-driven patterns in Randomized Search
while Grid Search focused on smaller values (0, 1, 3). For regularization, reg_alpha (L.1) and
reg_lambda (L2) were tuned to improve generalization and reduce overfitting; Randomized
Search tested wider ranges (0—1 for L1, 0.5-2 for L2), while Grid Search restricted to fewer

values (0, 0.1 for L1 and 0.5, 1 for L2) for computational efficiency.

121

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Without hyperparameter tuning

Randomised search

Grid search

No Resampling + XGBoost
Accuracy: 0.9986

Recall: 0.8512

Precision: 0.9682

F1-Score: 0.9060

Best Accuracy (CV): 0.9986

Best Params: {'subsample”: 1.0, 'reg_lambda": 0.5, 'reg_alpha" 0.1,
'n_estimators': 300, 'max_depth": 8, 'learning_rate': 0.05, 'gamma': 0,
'colsample bytree": 0.8}

Accuracy: 0.9986

Recall: 0.8428

Precision: 0.9753

Best Accuracy (CV): 0.9986

Best Params: {'colsample_bytree'": 0.8, 'gamma': 0, 'learning_rate": 0.1,
'max_depth": 8, 'n_estimators": 100, 'reg_alpha": 0.1, 'reg_lambda": 0.5,
'subsample”: 1.0}

Accuracy: 0.9986

Recall: 0.8401

Precision: 0.9738

Accuracy: 0.9932
Recall: 0.9907

Precision: 0.9957
F1-Score: 0.9932

'n_estimators": 150, 'max_depth': 10, 'learning_rate': 0.3, 'gamma": 0,
'colsample_bytree': 0.8}

Accuracy: 0.9982

Recall: 0.9982

Precision: 0.9983

IXISS 838773 F1-Score: 0.9042 F1-Score: 0.9020
T MCC: 0.9060 MCC: 0.9038
AUC: 0.9978 AUC: 0.9975
Best Accuracy (CV): 0.9982 Best Accuracy (CV): 0.9981
SMOTE + XGBoost Best Params: {'subsample’: 0.8, 'reg_lambda": 0.5, 'reg_alpha" 1, Best Params: {'colsample bytree": 1.0, 'gamma': 0, 'learning_rate": 0.3,

'max_depth": 8, 'n_estimators": 200, 'reg_alpha': 0.1, reg_lambda': 0.5,
'subsample': 0.8}

Accuracy: 0.9981

Recall: 0.9980

Precision: 0.9982

Accuracy: 0.9955
Recall: 0.9996
Precision: 0.9914
F1-Score: 0.9955
MCC: 0.9910
AUC: 0.9998

'n_estimators': 150, 'max_depth': 10, 'learning_rate': 0.3, 'gamma': 0,
'colsample bytree": 0.8}

Accuracy: 0.9995

Recall: 1.0000

Precision: 0.9989

F1-Score: 0.9995

MCC: 0.9989

AUC: 1.0000

X[I?CC (())99989685 F1-Score: 0.9982 F1-Score: 0.9981
T MCC: 0.9964 MCC: 0.9962
AUC: 1.0000 AUC: 1.0000
Best Accuracy (CV): 0.9993 Best Accuracy (CV): 0.9993
Oversampling + XGBoost Best Params: {'subsample': 0.8, 'reg lambda': 0.5, 'reg_alpha": 1, Best Params: {'colsample_bytree": 1.0, 'gamma': 0, 'learning_rate": 0.3,

'max_depth": 8, 'n_estimators" 200, 'reg_alpha': 0.1, 'reg_lambda': 0.5,
'subsample': 0.8}

Accuracy: 0.9994

Recall: 1.0000

Precision: 0.9989

F1-Score: 0.9994

MCC: 0.9989

AUC: 1.0000

Undersampling + XGBoost
Accuracy: 0.9720

Recall: 0.9738

Precision: 0.9704

F1-Score: 0.9721

MCC: 0.9441

AUC: 0.9967

Best Accuracy (CV): 0.9735

Best Params: {'subsample": 1.0, 'reg_lambda": 0.5, 'reg_alpha" 0.1,
'n_estimators": 300, 'max_depth': 8, 'learning_rate': 0.05, 'gamma": 0,
'colsample_bytree": 0.8}

Accuracy: 0.9736

Recall: 0.9756

Precision: 0.9717

F1-Score: 0.9736

MCC: 0.9472

AUC: 0.9971

Best Accuracy (CV): 0.9730

Best Params: {'colsample_bytree": 0.8, 'gamma': 0, 'learning_rate": 0.1,
'max_depth": 8, 'n_estimators": 200, 'reg_alpha': 0, 'reg_lambda': 0.5,
'subsample': 0.8}

Accuracy: 0.9725

Recall: 0.9738

Precision: 0.9712

F1-Score: 0.9725

MCC: 0.9449

AUC: 0.9971

Table 5.3.14: XGBoost Hyperparameter Tuning Results

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

122

CHAPTER 5

XGBoost Hyperparameter Tuning Results Interpretation

When no resampling was applied, both Random Search and Grid Search produced very similar
outcomes. Training and testing accuracies remained around 0.9986, which was essentially
unchanged from before fine-tuning. Random Search provided overall better performance,
delivering slightly higher recall, precision, F1, and MCC. However, compared to the untuned
baseline, recall, F1, and MCC dropped slightly, while precision and AUC increased. This
indicates that fine-tuning brought no real benefit and, in some metrics, even slightly reduced

performance.

When SMOTE was applied, performance improved compared to the baseline, with training
and testing accuracies above 0.998 and MCC values above 0.996. Both Random Search and
Grid Search produced near-identical results, with Random Search maintaining a small edge
across all metrics. The gain compared to before fine-tuning was very minor (less than 0.01),
but after fine-tuning, the model achieved a perfect AUC of 1.0. This shows that the real

performance gain came from resampling rather than parameter optimization.

With oversampling, XGBoost achieved its strongest performance. Training and testing
accuracies reached nearly 0.9995, and MCC values were close to 0.999. Both Random Search
and Grid Search converged to almost same outcomes, with Random Search again showing
slightly better balance across accuracy and Fl-score. Recall and AUC both reached 1.000,
reflecting near-perfect classification. The effect of fine-tuning was negligible, as oversampling

alone allowed the model to reach its optimal level.

When under-sampling was applied, performance declined compared to SMOTE and
oversampling but results still remained solid. Training and testing accuracies dropped to around
0.973, while MCC values were about 0.945. Both Random Search and Grid Search gave
comparable outcomes, but Random Search consistently provided a slight advantage across all
metrics. Compared to before fine-tuning, improvements were minimal, suggesting that the
lower results were caused by information loss from undersampling rather than hyperparameter

tuning.

In summary, fine-tuning XGBoost through Random Search and Grid Search did not provide
substantial improvements compared to the default settings. Random Search consistently

performed better across all resampling methods, although in the case of no resampling, the

123

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

untuned baseline outperformed both Random Search and Grid Search. Performance mainly
depended on the resampling strategy, with oversampling giving the best results, followed by

SMOTE, under-sampling, and no resampling, which was the same order as Random Forest.

AdaBoost
Randomised Search Hyperparameter Space Grid Search Hyperparameter Space
random_params_2 = grid_params =

'n_estimators': [5@, 188, 158, 208, 308], 'n_estimators': [188, 288, 388],
'learning_rate': [@.e1, @.e5, 8.1, 8.5, 1.8], 'learning_rate': [8.1, 8.5, 1.8],
'estimator__max_depth': [1, 2, 3], ‘estimator__max_depth': [2, 2],
‘estimator__min_samples_split': [2, 5, 18], ‘estimator__min_samples_split': [2, 51,
‘estimator__min_samples_leaf': [1, 2, 4], ‘estimator__min_samples_leaf': [2, 4],

Table 15.3.15: AdaBoost Hyperparameter space settings

For AdaBoost, Table 15.3.15 showed the hyperparameter space settings. The number of
estimators (n_estimators) was varied widely in Randomized Search (50-300) to capture
models ranging from lightweight ensembles to deeper boosting chains, while Grid Search
narrowed this to 100, 200, and 300 for more focused evaluation. The learning_rate was tuned
between 0.01 and 1.0 in Randomized Search, where smaller values ensure gradual updates for
stability and larger values accelerate convergence but may risk overfitting; Grid Search
emphasized practical ranges of 0.1, 0.5, and 1.0. Since AdaBoost typically uses shallow trees
as weak learners, the base estimator’s max depth was limited to small values (1-3) to
maintain weak but diverse learners, with Grid Search focusing on slightly deeper splits (2 and
3) for stronger base classifiers. To further refine the tree structure, min_samples_split (2, 5,
10 in Randomized Search) and min_samples leaf (1, 2, 4 in Randomized Search) were
included to regulate overfitting, ensuring nodes split only when sufficient data supports the
division. Grid Search refined these to fewer combinations (min_samples split: 2, 5;

min_samples_leaf: 2, 4) for efficiency and interpretability.

124

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Without hyperparameter tuning

Randomised search

Grid search

No Resampling + Adaboost
Accuracy: 0.9986

Recall: 0.8157

Precision: 1.0000

F1-Score: 0.8985

Best Accuracy (CV): 0.9987

Best Params: {'n_estimators': 200, 'learning_rate': 1.0,

'estimator _min_samples_split": 10, 'estimator min_samples leaf': 4,
'estimator _max_depth": 3}

Accuracy: 0.9987

Recall: 0.8424

Precision: 0.9860

Best Accuracy (CV): 0.9987

Best Params: {'estimator _max_depth": 3,

'estimator _min_samples_leaf": 2, 'estimator min samples_split': 2,
'learning_rate': 1.0, 'n_estimators": 100}

Accuracy: 0.9987

Recall: 0.8344

Precision: 0.9921

Accuracy: 0.9508
Recall: 0.9174
Precision: 0.9831
F1-Score: 0.9491
MCC: 0.9036
AUC: 0.9894

'estimator _min_samples_split": 10, 'estimator min_samples leaf': 4,
'estimator _max_depth": 3}

Accuracy: 0.9810

Recall: 0.9731

Precision: 0.9888

F1-Score: 0.9809

MCC: 0.9622

AUC: 0.9980

IXISS 838535 F1-Score: 0.9085 F1-Score: 0.9064
T MCC: 0.9107 MCC: 0.9092
AUC: 0.9971 AUC: 0.9968
Best Accuracy (CV): 0.9820 Best Accuracy (CV): 0.9833
SMOTE + Adaboost Best Params: {'n_estimators': 200, 'learning_rate': 1.0, Best Params: {'estimator max_depth'": 3,

'estimator _min_samples_leaf": 4, 'estimator min_samples_split": 2,
'learning_rate': 1.0, 'n_estimators': 300}

Accuracy: 0.9818

Recall: 0.9743

Precision: 0.9891

F1-Score: 0.9816

MCC: 0.9636

AUC: 0.9982

Oversampling + Adaboost
Accuracy: 0.9635

Recall: 0.9490

Precision: 0.9773
F1-Score: 0.9630

MCC: 0.9274

AUC: 0.9935

Best Accuracy (CV): 0.9778

Best Params: {'n_estimators': 200, 'learning_rate': 1.0,

'estimator _min_samples_split": 10, 'estimator _min_samples_leaf': 4,
'estimator __max_depth": 3}

Accuracy: 0.9774

Recall: 0.9750

Precision: 0.9797

F1-Score: 0.9773

MCC: 0.9548

AUC: 0.9983

Best Accuracy (CV): 0.9791

Best Params: {'estimator _max_depth": 3,

'estimator _min_samples_leaf": 2, 'estimator _min_samples_split': 2,
'learning_rate': 1.0, 'n_estimators": 300}

Accuracy: 0.9790

Recall: 0.9760

Precision: 0.9818

F1-Score: 0.9789

MCC: 0.9579

AUC: 0.9987

Undersampling + Adaboost
Accuracy: 0.9594

Recall: 0.9480

Precision: 0.9700

F1-Score: 0.9589

MCC: 0.9190

AUC: 0.9920

Best Accuracy (CV): 0.9706

Best Params: {'n_estimators': 300, 'learning_rate': 0.5,
'estimator__min_samples_split": 5, 'estimator _min_samples_leaf": 4,
'estimator _max_depth": 3}

Accuracy: 0.9680

Recall: 0.9689

Precision: 0.9672

F1-Score: 0.9681

MCC: 0.9361

AUC: 0.9962

Best Accuracy (CV): 0.9714

Best Params: {'estimator _max_depth": 3,

'estimator __min_samples_leaf": 2, 'estimator _min_samples_split": 5,
'learning_rate': 0.5, 'n_estimators": 300}

Accuracy: 0.9700

Recall: 0.9711

Precision: 0.9690

F1-Score: 0.9701

MCC: 0.9401

AUC: 0.9960

Table 5.3.16: AdaBoost Hyperparameter Tuning Results

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

125

CHAPTER 5

AdaBoost Hyperparameter Tuning Results Interpretation

When no resampling was applied, AdaBoost performed well under both Random Search and
Grid Search, with training and testing accuracies of 0.998. Random Search achieved a slightly
higher MCC (0.9107) compared to Grid Search (0.9092), indicating a better balance across F1
and MCC. Grid Search, however, achieved marginally higher precision. Compared to before
fine-tuning, both methods showed small gains: recall increased from 0.8157 to 0.8424
(Random Search) and 0.8344 (Grid Search), while F1 rose to just above 0.90. Precision
dropped slightly from near 1.0 to the 0.98—0.99 range, but overall the model remained strong,

suggesting only minor benefits from fine-tuning.

When SMOTE was applied, AdaBoost achieved its greatest improvement. Training and testing
accuracies rose to 0.982—-0.983, and MCC reached 0.963 under Grid Search, the highest among
all resampling methods. Grid Search performed slightly better than Random Search across all
metrics. The improvement compared to before fine-tuning was also the most significant under

SMOTE, confirming it as the most effective resampling strategy for AdaBoost.

With oversampling, AdaBoost also improved compared to no resampling. Training and testing
accuracies reached around 0.978-0.979. Grid Search again performed slightly better than
Random Search across all metrics, while Random Search maintained a reasonable balance
across metrics. However, the improvements compared to the untuned baseline were more

modest than those achieved with SMOTE.

When under-sampling was applied, AdaBoost performance dropped compared to SMOTE
and oversampling, though it still improved compared to the baseline. Training and testing
accuracies were around 0.968—0.970, while MCC values ranged from 0.936 (Random Search)
to 0.940 (Grid Search). Both search methods performed well, but Grid Search provided better
MCC and recall, making it slightly superior in this setting. However, the lower results
compared to other resampling strategies were largely due to information loss from reducing

the dataset size.

In summary, fine-tuning AdaBoost led to overall improvements compared to the baseline,
though precision dropped slightly under no resampling and under-sampling. Random Search
performed better without resampling, but Grid Search outperformed Random Search in

SMOTE, oversampling, and under-sampling by delivering higher recall, MCC, and F1-

126

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

scores. The best results were achieved with SMOTE, which gave the highest F1 and MCC
values, making it the best-performing resampling strategy for AdaBoost. The ranking of
effectiveness was: SMOTE > Oversampling > Under-sampling > No resampling.
Compared to Random Forest and XGBoost, AdaBoost showed clearer benefits from fine-
tuning under SMOTE, whereas Random Forest and XGBoost were less sensitive to tuning and

relied more heavily on resampling strategies to reach their peak performance.

5.3.9 Final Model Choice

The final choice for deployment was Random Forest combined with oversampling using
default parameters. Random Forest consistently delivered strong performance across all
settings, with its default configuration already achieving near-optimal results. Fine-tuning
through Random Search or Grid Search brought almost no measurable improvement,
confirming that Random Forest is naturally robust and well-suited to the dataset without the

need for extensive parameter optimization.

Among the resampling strategies, oversampling provided the best overall outcomes. It
produced nearly perfect accuracies and F1-score, highlighting its ability to balance the dataset
effectively and improve the detection of minority class cases. This result demonstrated that the
real performance gains came from the resampling strategy rather than hyperparameter

adjustments, with oversampling standing out as the most effective method.

In addition to superior results, this configuration offers simplicity and stability for deployment.
Using the default Random Forest parameters reduces computational cost, avoids overfitting
risks from over-tuning, and ensures reproducibility. At the same time, oversampling retains all
available data while addressing class imbalance, making it more reliable than under-sampling.
Random Forest’s robustness across scenarios, combined with its ease of integration into
platforms like Power BI through joblib export, makes it an efficient and practical solution for

real-world deployment.

127

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.10 Synthetic Data Generation

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Version | Key Adjustments Training Setup Accuracy | Recall | Precision F1 MCC AUC
1 - Dropped unique identifiers & high-cardinality columns CTGAN, 50 epochs, 0.8987 0.1114 | 0.3506 0.1690 | 0.1550 | 0.6566
- Removed cc_num then restored (70/30 split) batch=100
- Normalized numeric cols
- Random restoration of city and datetime
2 - Fraud oversampled %3 in focus categories CTGAN, 50 epochs, 09119 0.7345 | 0.6395 0.6837 | 0.6348 | 0.8736
- Reduced sample size (200k— 100k) batch=100
- Same CTGAN config
3 - Extracted time features (day, hour, night) CTGAN, 300 epochs, | 0.9295 0.7809 | 0.5529 0.6474 | 0.6207 | 0.9062
- Stratified sampling for training data batch=100, pac=10
- Datetime rebuilt from hour
- Increase epochs (longer training)
4 - Added distance feature (instead of raw lat/long) CTGAN, 300 epochs, | 0.9433 0.9149 | 0.5800 0.7100 | 0.7020 | 0.9636
- Derived age & age_group (instead of raw dob) batch=100, pac=10
- Reduced Adult frauds 50%
5 - Fraud ratio target = 15% (instead of x3) CTGAN, 200 epochs, | 0.8810 0.8193 | 0.6722 0.7385 | 0.6679 | 0.8990
- Metadata defined column types batch=100
- Reduce epochs (shorter training), remove pac
6 - Model switch: CTGAN — TVAE TVAE, 200 epochs, 0.9307 0.9451 | 0.6426 0.7650 | 0.7447 | 0.9683
batch=100
7 - Increase sample size (100k—500k) TVAE, 100 epochs, 0.9400 0.9646 | 0.7133 0.8202 | 0.7980 | 0.9808
- Epochs = 100 batch=100
Table 5.3.17: Random Forest Evaluation Results on Different Synthetic Dataset Version
128

CHAPTER 5

Svynthetic Data 1

The first synthetic dataset was created as a baseline experiment to evaluate whether a
straightforward CTGAN-based approach could generate structurally valid synthetic data
suitable for fraud detection. The dataset was prepared by first removing several high-
cardinality and unique identifier columns, such as trans num, merchant, job, city, lat, long,
and trans_date trans time, as shown in Figure 5.3.46. These features were excluded because
they contained either too many unique values or strong identifiers as shown in Figure 5.3.47,

which would cause the CTGAN to memorize them rather than learn meaningful fraud patterns.

trans_date_trans_time: 522111 unique values
merchant: &893 wunique wvalues

category: 14 unigque walues

gender: 2 unique walues

city: 261 unique walues

job: 42& unique wvalues

dob: 922 unique wvalues

trans num: 974141 unigue wvalues

Figure 5.3.46: High cardinality columns

Dropped "trans_num' from training data

Dropped columns: ['merchant®, "jeob', 'city', 'lat', "long"]

Dropped "trans_date_trans_time' from trainimg data

Dropped "cc_num' for CTGAN training (will re-add later)

Final categorical columns for CTeaN: ['category', "gender®, 'dob', 'is_fraud®]
Training data shape: (974141, 9)

Figure 5.3.47: Dropping High-Cardinality Columns

Special attention was given to the credit card number (cc_num). Unlike transaction IDs, which
are completely unique, the same cc_num can be linked to many transactions. This makes it a
quasi-identifier: high cardinality but still useful for describing customer behavior.
However, training GANs directly on raw 16-digit card numbers is not meaningful, since the
digits themselves do not encode useful fraud signals. Therefore, cc_num was dropped during
training to avoid noise, as shown in Figure 5.3.47. After generation, it was restored with a
hybrid approach: 70% of the synthetic dataset used existing values sampled from the original
dataset to preserve repeat usage patterns, while the remaining 30% were filled with randomly
generated Visa-like 16-digit numbers to introduce diversity, as shown in Figure 5.3.48. This
approach retained some behavioural realism while preventing the CTGAN from overfitting on

raw card numbers.

129

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

2. cc_num: 7% existing, 38% new

unique_cecs = df_ref['cc_num'].drepna().unique()
num_existing = int{n_rows * 8.7)

num_new = N_rows - num_existing

Somple existing

existing_sample = np.random.choice{unique_ccs, size-num_existing, replace=True)
Generate 16-digit new volues sequentially after mox

start_new = int{unigue_ccs.max(}} + 1

new_sample = np.arange(start_new, start_new + num_new, diype=np.intss4)

Combine and shuffle
cc_nums = np.concatenate([existing_sample, new_sample]}
safety check
if len(cc_nums) != n_rows:
shortfall = n_rows - len{cc_nums)
print(f" a Fixing shortfall of {shortfall} cc_num values")
extra = np.random.choice(unique_ccs, size=shortfall, replace=True)
cc_nums = np.concatenate([cc_nums, extra])

np.random. shuffle{cc_nums)
synthetic_final['cc_num'] = cc_nums

Figure 5.3.48: Hybrid Generation of Synthetic Credit Card Numbers

To stabilize training, all numerical columns were normalized using a Min Max Scaler so that
values fell within the range of 0 to 1, as shown in Figure 5.3.49. This ensured that large-value

features, such as transaction amounts or population counts, did not dominate smaller-value

features.
category amt gender city_pop dob unix_time merch_lat

a grocery_net 8.885579 M -2.088827 28/2/2828 0.201639 9.453222
1 perscnal_care ©.827663 F @.88@573 17/12/1983 0.896373 9.438932
2 travel ©.887385 M 2.e08811 7/5/2083 ©.793763 @.223322
2 food_dining @.e35856 M -2.8e@782 §/12/1992 9.8@7253 @.524684
4 misc_net 8.1@8822 F 2.883382 13/18/1952 @.593713 @.586355

merch_long is_fraud
a 2.851e71 @
1 8.745235 2]
2 8.368756 a
3 8.896162 8
4 8.718886 8

Figure 5.3.49: Normalized Data using Min-Max Scaling
The CTGAN model was then trained on a 200,000-row sample of the dataset, with training
conducted for 50 epochs using a batch size of 100 and default hyperparameter settings, as
shown in Figure 5.3.50. This relatively short training run was deliberately chosen as a baseline
configuration, serving as a reference point for comparison against later experiments that used
longer training durations, advanced sampling strategies, or additional model adjustments. By
starting with a moderate sample size and limited epochs, the goal was to establish a clear

performance benchmark before progressively scaling complexity in subsequent datasets.

df_sampled = df_cleaned.sample(2e2ee2, random_state=42)
primt({"Training sample shape:", df_sampled.shape)

ctgan = CTGAN{epochs=5%8, batch_size=18@, verbose=True}
ctgan.fit(df_sampled, discrete_columns=categorical cols)

Figure 5.3.50: CTGAN Training Configuration
130

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

After generation, post-processing was applied to restore the synthetic dataset to match the
original schema, as shown in Figure 5.3.51. Numeric columns were inverse transformed to
their original scales: transaction amounts (amt) were rounded and forced positive, city

populations (city pop) clipped to =1, and unix_time rounded back to integers.

Preview after restoration:
amt city_pop unix_time merch_lat merch_long

8 118.67 56 1334748283 41.586575 -81.734286
1 30,84 1288 1357716158 42.937873 -92.325448
2 11.13 Tt 1358859312 328.16357% -B8.8189573
3 5a.38 Z@le 1325712868 44.854539 -TF7F.283135
4 138.53 2853 1353227154 43.773268 -95.829547

Figure 5.3.51: Numeric Data after Restoration

Figure 5.3.52 showed implementation of post-processing for synthetic dataset restoration.
Identifiers were reconstructed. A unique trans num was assigned (e.g., T0000001), and
credit card numbers (cc_num) were created using a 70/30 mix of existing and new accounts,
balancing realism with diversity. City, latitude, longitude, and population were resampled
together as blocks to maintain consistency, while transaction timestamps were randomly

sampled from the original dataset to ensure temporal coverage.

synthetic_final]'

str{isl

unique_<Cs

synthetic_finall['city', 'lat’, 'long', ‘city_pop')] = city_block

existing sample = np.random.choice(unique_ccs, sire=num_existing, replace=True)

synthetic_final['tra
1es) of_ref["trans_date

5(float(x)), 2))

¢c_num values®)
ortfall, replace=True)

Figure 5.3.52: Implementation of Post-Processing for Synthetic Dataset 1 Restoration

131
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

synthetic_final["city_pop synthetic_final(‘city_pop').apply(lambda x: max(int(round(abs(x))), 1))

CHAPTER 5

Final synthetic dataset shape: (28@8@8, 15)

category amt gender city_pop dob unix_time merch_lat
a grocery_net 118.&7 M 18182 28/2/2888 13347408283 41.586878
1 perscnal_care 39.84 F 236 17/12/1989 1357716158 42.937873
2 travel 11.13 M 743 7/5/2883 1358859312 38.163575
El food_dining ce. e L 91 /181992 1325712868 44.654639
4 misc_net 138.53 F 545 13/18/1952 1353227154 43.773258

merch_leng is_fraud trans_num cc_num city lat

8 -Bl.784286 a Tegegeel 3.5E8795le+lt Belgrade 45,7381
1 -52.325448 8 Teoeeeaz 2.131568e+14 Thomas 35.1585
2 -B8.819572 a Tegegees 3.744980e+14 orient 41.1437
3 -77.293135 8 Teeesead 4.992346e+18 Eagarville 39.1118
4 -95.829547 B Tagessas 3.506841e+15 Mentandon 48,9661

leng trans_date_trans_time
8 -111.1439 6/12/2019 19:31
1 -79.5838 27/5/2819 18:57
2 -72.2879 15/18/2819 16:17
3 -BB.78G5 16/12/2819 23:85
4 -76.8575 26/5/2819 9:51

Figure 5.3.53: Synthetic Dataset 1 after Post-Processing

While this restored structure and realism, it introduced a weakness: random resampling of
location and time broke natural fraud patterns. In real data, fraud often happens more in certain
cities or late-night hours, but random resampling spread these patterns out. The dataset still

looked correct, but it no longer reflected fraud behaviour as clearly.

The evaluation metrics confirmed these limitations. The synthetic dataset achieved an
accuracy of 0.8987, but recall dropped sharply to 0.1114, meaning the model failed to detect
the majority of fraud cases. Precision was moderate at 0.3506, and both the F1 score and
MCC remained very low at 0.1690 and 0.1550 respectively. Similarly, the AUC value of

0.6566 indicated poor separation between fraud and non-fraud classes.

In short, Synthetic Data 1 successfully established a structural baseline for synthetic data
generation but failed to capture meaningful fraud patterns. The absence of class imbalance
handling and the reliance on random resampling of critical features such as time and location
resulted in very poor fraud detection performance. These findings highlighted the need for
more targeted adjustments in later datasets, including fraud oversampling, feature engineering
(extract distance, time, age), and refined training strategies to improve the model’s ability to

replicate real fraud patterns.

132

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Svynthetic Data 2

Synthetic Data 2 was developed as the first major improvement over the baseline. The main
motivation was to address the severe class imbalance that undermined fraud detection in
Synthetic Data 1. In the real dataset, fraudulent transactions were extremely rare compared to
non-fraudulent ones, and CTGAN had learned to mostly generate non-fraud samples, leading

to very poor recall. To counter this, a targeted oversampling strategy was introduced.

Fraudulent samples belonging to specific high-risk categories—grocery pos, shopping net,
misc_net, and shopping pos—were oversampled three times. These categories were chosen
because they are historically associated with higher fraud rate in e-commerce contexts. Before
resampling, the number of fraud cases in these focus categories was 5,214, which increased to
15,642 after oversampling as shown in Figure 5.3.54. By oversampling frauds in these
categories, the training distribution became more balanced and provided CTGAN with stronger
fraud-related signals to learn from. This approach was designed to improve the generator’s

ability to model fraud patterns without overwhelming the training process with noise.

Step 2.5: oversample FRAUD in Focus Categories

focus_categories = ['grocery_pos', 'shoppinmg_met', 'misc_net', 'shopping_pos'
split data
df_focus_fraud = df_cleaned

(df_cleaned['category'].isin(focus_categories)) & (df_cleaned['is_fraud'] == 1}

df_necn_focus = df_cleaned
~{{df_cleaned['category'].isin{focus_categories}} & (df _cleaned['is_fraud'] == 1})
primt("Fraud in focus categories before oversampling:", len{df_focus_fraud})
oversample froud in focus categories (e.g., 3%}
df_focus_fraud_oversampled = df_focus_fraud.sample(

n=len{df_focus_fraud) * 3, replace=True, random_state=42

)

Combine
df_balanced = pd.concat([df_focus_fraud_oversampled, df_non_focus]).reset_index{drop=True)

Fraud in focus categories before oversampling: 5214

primt(“"Fraud in focus categories after oversampling:©,
df_balanced[(df_balanced["category'].isin({focus_categories)) &
(df_balanced["is_fraud'] == 1)].shape[e]}
Fraud in focus categories after oversampling: 15842

Figure 5.3.54: Oversampling of Fraudulent Transactions in Focus Categories

Another change from Data 1 was the adjustment of the training sample size. Instead of training
CTGAN on 200,000 records, the dataset was reduced to 100,000 records before oversampling
to reduce computational time and resource usage, as shown in Figure 5.3.55. The reduction

was intentional as CTGAN often struggles to converge with very large datasets unless carefully

133

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

tuned, which also makes training much slower. A smaller but more balanced dataset made the
training more efficient and allowed the model to better capture fraud-related patterns. The
CTGAN configuration remained unchanged at 50 epochs with a batch size of 100, keeping the

focus of this iteration on the effects of resampling rather than tuning.

Training sample shape: (l8e288, 3)

Gen. (e.12) | piscrim. (-2.51): 1eox| ENEENERENENNENNRNNRNRRRRNRRNNRNN | cc/ce [3:46:23<09:99, 271.795/it]
Figure 5.3.55: Training Process of CTGAN with Reduced Dataset

The results of Synthetic Data 2 demonstrated the significant impact of oversampling. Table
5.3.17 showed that recall increased dramatically from 0.1114 to 0.7345, indicating that the
model could now detect the majority of fraud cases. Precision also improved to 0.6395, which
indicated that a much larger proportion of fraud predictions were correct compared to Data 1.
As aresult, the F1 score rose to 0.6837 and MCC rose to 0.6348, reflecting a stronger balance
between recall and precision. The AUC also increased sharply to 0.8736, showing better
separation between fraud and non-fraud classes. Accuracy increased only slightly, from
0.8987 to 0.9119, which was expected. In imbalanced datasets, accuracy can be misleading,
catching more frauds often adds some false positives, but this trade-off actually improves the

dataset’s value for fraud detection.

In short, Synthetic Data 2 marked a turning point in the synthetic generation process. By
explicitly correcting the class imbalance through targeted oversampling of high-risk fraud
categories, the dataset enabled the CTGAN to generate synthetic samples that were far more
effective for fraud detection. While still limited in its feature representation, this version
demonstrated that resampling is a critical adjustment to improve recall and AUC, directly

addressing the weaknesses of the baseline Synthetic Data 1.

134

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Svynthetic Data 3

Synthetic Data 3 built upon the improvements of Data 2 and focused on enhancing the feature
representation available to CTGAN. While oversampling had successfully improved fraud
detection, the synthetic model still lacked access to temporal patterns, which are crucial in fraud
behaviour. Fraudulent activity often happens at unusual times (e.g., late at night, certain days
of the week), but in the baseline datasets, temporal information was either dropped or randomly

restored, weakening its predictive value.

To address this, Data 3 introduced several engineered temporal features derived from
trans date trans time, as shown in Figure 5.3.56. Specifically, new variables were created for
day of the week, hour of the day, and a binary flag is_night (set to 1 for transactions between
10 PM and 3 AM). These features provided CTGAN with structured representations of
temporal context, allowing it to learn fraud-related timing patterns directly rather than relying

on noisy random resampling of datetime.

Extroct time features BEFORE dropping datetime
if '"trans_date_trans_time' in df_cleaned.columns:
df_cleaned["trans_date_trans_time'] = pd.to_datetime(
df_cleaned["trans_date_trans_time"],
format="%d/¥m/ Xy EH:¥EM',
errors="coerce')
df_cleaned["day_of_week'] = df_cleaned['trans_date_trans_time'].dt.dayoctweek
df_cleaned["hour'] = df_cleaned| "trans_date_trans_time"].dt.hour
df_cleaned["is_night'] = df_cleaned['hour'].apply{lambda h: 1 if h in [22,23,8,1,2,3] else @)
df_cleaned = df_cleaned.drop(columns=["trans_date_trans_time'])

Figure 5.3.56: Feature Engineering of Temporal Attributes

Another improvement in Data 3 was the use of stratified sampling when preparing the training
data as shown in Figure 5.3.57. Instead of selecting random subsets, the sampling process
preserved the fraud-to-non-fraud ratio across training splits. This adjustment ensured that
CTGAN was consistently exposed to representative fraud patterns during training, further

mitigating imbalance issues.

5. Stratified Sampling for CTGAN Troining
train_df, _ = train_test_split(
df_balanced,
train_size-1860688, # somple size for CTGAN
stratify=df _balanced['is_fraud"],
random_state=42

)

primt("Training sample shape:", train_df.shape)
primt("Froud ratio in training sample:", traim_df[is_fraud®].mean{})

Tralning sample shape: (leeaes, 12)
Fraud ratic in training sample: @.81822

Figure 5.3.57: Use of Stratified Sampling for Balanced Training Data
135

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The CTGAN training itself was also strengthened. Compared to the short 50-epoch run
previously, Data 3 was trained for 300 epochs with pac=10 (PacGAN setting), as shown in
Figure 5.3.58. The longer training duration gave the generator more opportunities to refine the
synthetic data distribution, while the pac adjustment helped reduce mode collapse—a common

problem where GANs generate overly similar samples instead of diverse patterns.

u o Trme T AN
&. Trawn CTEAN

ctgan = CTGAN{epochs=208, batch_size-=188, pac=18, verbose=True)
ctgan.fit(train_df, discrete_columns=categorical cols)

Figure 5.3.58: CTGAN Training Settings in Dataset 3

The performance results highlighted both strengths and trade-offs. Accuracy improved to
0.9295, and recall increased further to 0.7809, showing that the inclusion of temporal features
helped the model detect more fraud cases. However, precision dropped to 0.5529 compared
to Data 2, meaning the model generated more false positives alongside the true positives. This
imbalance caused the F1 score and MCC to fall slightly to 0.6474 and 0.6207 respectively,
even though the overall AUC rose to 0.9062. In other words, the dataset became better at

finding fraud but at the cost of sometimes mislabelling legitimate transactions.

In short, Synthetic Data 3 demonstrated the value of feature engineering, particularly the
inclusion of temporal attributes. The results confirmed that fraud patterns are often time-
dependent, and capturing this structure helped improve recall and AUC. The trade-off was a
decline in precision, as the generator became more sensitive to potential fraud but less selective.
This version showed that while oversampling was essential (Data 2), adding informative
features (Data 3) was equally critical to move closer toward realistic and effective fraud

detection.

136

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Svynthetic Data 4

SHAP Analysis before training for Synthetic Data 4

Before developing Synthetic Data 4, SHAP analysis was conducted to compare feature
importance between the original training dataset and the synthetic dataset from Data 3 As
shown in Figure 5.3.59, the two datasets displayed a very strong alignment, with a Pearson
correlation of 0.998 and a cosine similarity of 0.998. This indicates that the synthetic data
broadly reproduced the same fraud-related signals as the real data. Key predictors such as
transaction amount (amt), temporal indicators (is_night, hour, day), city population (city pop),
and age consistently ranked among the most influential features, with differences of less than

10%, as shown in Table 5.3.18.

Pearson correlation: 8.998
Cosine similarity: 8.998

Figure 5.3.59: Pearson Correlation and Cosine Similarity of Synthetic Dataset 3

Feature Real Data Importance Synthetic Data Importance Difference Diff %

0 amit 0.2838 0.3005 -0.0147 514
5 is_night 0.0632 00574 00057 -9.05
21 cc_num_fraud_rate 0.0538 0.0669 -00131 2442
4 hour 0.0349 0.0320 00029 -B42
2 city_pop 0.0287 00283 ooooz 079
10 categeory_other 0.0213 0.0236 -00023 1097
7 distance 00138 0.0230 -00114 8353
20 pop_group Very Large Cities 0.0115 0.0113 00002 -1.50
3 age 0.0111 0.0107 noond4 -3.98
6 day 0.0073 0.0075 -0.0001 1.61
8 category_grocery_pos 0.0057 0.0063 -0000e 10.62
11 category_shopping_net 0.0047 0.0048 -00o02 4,02
17 pop_group_Small Cities 0.0041 0.0035 00002 -5.69
1 gender 0.0028 0.0037 -0.0010 3595
14 age_group_Adult 0.0018 0.0026 -00008 4200

Table 5.3.18: SHAP Comparison Between Train Dataset and Synthetic Dataset 3

However, the SHAP comparison shown in 7able 5.3.18 also revealed important discrepancies.
The distance feature, derived from latitude and longitude, showed overemphasized in synthetic
data (+83.6%), suggesting CTGAN struggled to model raw geographic variables reliably.
Demographic features such as Adult age group (+42%) and gender (+36%) also appeared more

influential in the synthetic dataset than in the real one, raising concerns about demographic

137

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

bias. These findings showed that while Data 3 broadly captured fraud behaviour, it distorted or

misrepresented certain signals, particularly around location and demographics.

Train for Synthetic Data 4

To address these limitations, Synthetic Data 4 introduced several key adjustments. The key
improvement in Synthetic Data 4 was the introduction of the distance feature, calculated using
the Haversine formula between customer and merchant coordinates and capped at 160 km.
This cap was important because raw latitude and longitude are continuous, noisy, and difficult
for CTGAN to model, often leading to unrealistic outputs. In fact, even small coordinate shifts
could lead to extremely large distances—sometimes over 7,000 km, as observed in Synthetic
Data 3 (see Figure 5.3.60), which clearly did not reflect real transaction behaviour. By
replacing raw coordinates with capped distances during training and later recomputing them in

post-processing, the dataset kept geographic patterns realistic while avoiding distorted outliers.

Fraud Count by Distance

—&— Fraud Count by Distance | 1750

12000

10000

8000

6000

Distance Frequency
Fraud Count

4000

2000

2000 3000 4000 5000 6000
Distance

Figure 5.3.60: Distribution of Distance in Synthetic Dataset 3

--- Extract distance (Haversine) ---
if {'lat", "long’, 'merch_lat', ‘"merch_long'}.issubset({df cleaned_original.cclumns}:
def haversine({latl, loml, lat2, lon2):
lati1, lonl, lat2, lon2 = map{np.radians, [latl, lonl, latz, lonz])
dlat = latz - lat1l
dlon = lonZz - lonl
a = np.sin{dlat/2)**2 + np.ces{latl) * np.cos{lat2} * np.sin{dlon/2)**2
¢ = 2 * pp.arctanz{np.sqrt(a), np.sqrit{l-a))
return 6371 * ¢

df_cleaned["distance'] = df_cleaned origimal.apply(
lambda row: haversine(row["lat'], row['lomg'], row['merch_lat'], row['merch_long']), axis=1

)

Cap distance at 168 km
df_cleaned["distance'] = df_cleaned['distance'].clip{upper=15a)

Figure 5.3.61: Replacement of Raw Coordinates with Capped Distances During Training

138

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Fraud Count by Distance

BB Distance Frequency —e— fraud Count by Distance

6000
800

2
2
s

4000

8
S
8
Fraud Count

Distance Frequency

2000

1000

60 80
Distance

Figure 5.3.62: Distribution of Distance in Synthetic Dataset 4

Another major adjustment was the introduction of age and age group, shown in Figure 5.3.63.
Instead of training on raw date of birth (dob), which introduces unnecessary complexity and
difficult for CTGAN, the age was calculated at the transaction time and grouped into four
categories: Young (0-18), Adult (19-44), Mid-Age (45-59), and Senior (60+). This
transformation provided CTGAN with interpretable demographic features while reducing
noise from exact dates. Furthermore, since SHAP analysis showed an overemphasis on Adults,
fraudulent transactions in this group were reduced by 50% to prevent the generator from
disproportionately modelling “Adult = fraud” behaviour. This balancing prevented the

generator from disproportionately modelling Adult fraud at the expense of other age groups.

Extract age & reduce Adult fraud ---

if 'deb’ in df_cleaned_original.cclumns:
df_cleaned = df_cleaned.reset_index(drop=True)
df_cleaned_original = df cleaned_original.reset_index{drop=True}

df_cleaned| "dob'] = pd.to_datetime(df_cleaned_original['dob'], format='%Xd/¥m/%v', errors='coerce’}
df_cleaned| "age'] = (df_cleaned["trans_date_trans_time'] - df_cleaned['dcb’]}.dt.days // 365
median_age = df_cleaned| "age’].median()

df_cleaned["age'].fillna(median_age, inplace=True)

age_bins = [e, 12, 45, &8, 188]

age_labels = ['voung', 'Adult®, 'Mid-Age', 'Senicr']
df_cleaned["age_group'] = pd.cut({df_cleaned['age’], bins=age_bins, labels=age_labels, right-=False)
df_cleaned["age_group'] = df_cleaned['age_group'].cat.add_categories('Unknown').fillna('Unknown'}

Reduce fraud for Adults (keep 58%)
adult_fraud = df_cleaned[(df cleaned['age_group'] == "Adult') & (df_cleaned['is_fraud'] == 1)]
adult_fraud_reduced = adult fraud.sample(frac=8.5, random state-42)
df_cleaned = pd.concat([
df_cleaned[~{{df_cleaned['age_group'] == 'Adult') & (df_cleaned['is_fraud'] == 1))1,
adult_fraud_reduced
1} .reset_index{drop=True)

Figure 5.3.63: Code for Age Group Creation and Adult Fraud Balancing

After training, extensive post-processing was performed to restore dropped or transformed
variables. The distance feature was recomputed in post-processing using the Haversine
formula on customer and merchant coordinates and capped at 160 km to avoid unrealistic

travel values, as shown in Figure 5.3.64. However, since distance, age, and age group were

139

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

engineered only to guide CTGAN training, they were dropped from the final synthetic output.
This allowed the dataset to retain the same schema as the real data, while still benefiting from

the extra fraud-related signals during training.

check for distonce if present

tance' in synthetic_data.columns:

max_distance = synthetic_data[‘distance’'].max()

print(f" 4. Max synthetic distance: {max_distance:.2f} km")
if max_distance > 160:

print(" X warning: Distance exceeded 160 km!")

I Max synthetic distance: 146.49 km

Figure 5.3.64: Maximum Synthetic Distance After Recalculation and 160 km Cap

SHAP Analysis after training for Synthetic Data 4

After training Synthetic Data 4, SHAP analysis showed that it achieved near-perfect alignment
with the real dataset (Pearson = 1.0, Cosine = 1.0) as shown in Figure 5.3.65. Key features
such as amount, is_night, cc num_fraud rate, hour, and city pop closely matched their real-

data importance (all within £10%) as shown in Table 5.3.19.

Fearson correlation: 1.8
Cosine similarity: 1.8

Figure 5.3.65: Pearson Correlation and Cosine Similarity of Synthetic Dataset 4

Feature Real Data Importance Synthetic Data Importance Difference Diff %

a amit 0.2858 03072 -00z214 7.50
5 is_night 0.0632 0.0619 o002 145
21 cc_num_fraud_rate 0.0538 00608 -0.0070 13
4 hour 0.0349 0.0330 nools 544
2 city_pop 0.0257 0.0301 00014 473
10 category_other 0.0213 00228 -0.0015 1.27
7 distance 0.0136 0.0147 -0.0011 8.09
20 pop_group Very Large Cities 0.0115 0.0114 0.0001 -0.57
3 age 0.0111 00113 -0.0007 623
& day 0.0073 0.0080 -0.0006 84T
] category_grocery pos 0.0057 0.0063 -0.000e 1076
1 category_shopping_net 0.0047 0.0052 -0.0o00e 1219
17 pop_group_Small Cities 0.0041 0,004 -0.0000 1.17
1 gender 0.0028 0.0038 -0.0011 38,10
14 age_group_Adult 0.001 0.0028 -0.0010 5308

Table 5.3.19: SHAP Comparison Between Train Dataset and Synthetic Dataset 4
140

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The distance feature, which was unstable in Data 3, was now well-aligned (+8.1%),
confirming the effectiveness of capping and recomputation. The main remaining differences
were in gender (+39%) and age group Adult (+53%), but their overall contribution to fraud

detection was small.

Overall, the SHAP analysis confirmed that Synthetic Data 4 represented a turning point: by
introducing spatial (distance) and demographic (age/age group) features, the model not only
improved predictive performance but also preserved the real-world importance structure of
fraud signals with near-perfect alignment. This provided strong evidence that the engineered

features guided the CTGAN to capture fraud behaviour more realistically.
Results

The results showed a further step forward in balancing fraud detection. Accuracy improved
to 0.9433, recall increased dramatically to 0.9140, and AUC reached 0.9636, the highest
achieved so far as shown in Table 5.3.17. Precision, however, remained at 0.5800, lower than
Data 2 but slightly higher than Data 3, reflecting a middle ground between recall and precision.
The F1 score improved to 0.7100 and the MCC rose to 0.7020, confirming that the synthetic
dataset captured fraud patterns with much stronger balance and reliability. These results
confirmed that spatial and demographic features contributed significant predictive value,
especially in helping the model distinguish fraudulent from non-fraudulent patterns in a more

realistic way.

In short, Synthetic Data 4 highlighted the importance of feature engineering beyond time
variables. By introducing distance and age-related attributes, the dataset captured crucial fraud
signals that improved recall and AUC without overwhelming precision. Balancing Adult fraud
cases further ensured a more representative dataset, avoiding demographic bias. This version
established a strong foundation by showing that integrating temporal, spatial, and demographic
features together with resampling strategies yields more robust synthetic data for fraud

detection.

141

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Svynthetic Data 5

Synthetic Data 5 introduced two major refinements over the previous version: fraud ratio

control and explicit metadata guidance.

The first adjustment was fraud ratio control. Unlike Data 4, which oversampled fraud using
a fixed multiplier, Data 5 explicitly targeted a 15% fraud prevalence in the training set as
shown in Figure 5.3.66. This rate is much higher than in real life but still believable. The
motivation was to improve precision by reducing the overwhelming dominance of non-fraud
cases while still giving CTGAN enough fraud examples to learn meaningful patterns. Fraud
rows—especially from high-risk categories such as grocery pos, shopping net, misc_net, and

shopping pos—were oversampled dynamically until the 15% threshold was reached.

P C Sten 3¢

focus_categories = ['grocery_pos', 'shopping net', ‘misc_net®, ‘shopping pos

af_focus_fraud = df_cleaned
(df_cleaned| 'category’ |.isin(focus_categories)) & (df_cleaned|'is_fraud'] == 1)

df_non_focus = df_cleaned
~((af _cleaned| 'category'].isin{focus_categories)) & (df_cleaned|"is_fraud'] == 1))

target_ratic « 2.15
num_non_fraud = len(df_non_focus)
nun_fraud_needed = int((target_ratio / (1 - target_ratio)) * num_non_fraud)
df_focus_fraud_oversanpled « df_focus_fraud.sample(
n=num_fraud_needed, replace=True, random_state=42

)
/

df_balanced = pd.concat([df_focus_fraud_oversampled, df_non_focus]).reset_index(drop=True)
print(“Fraud ratio after oversampling:", df balanced!'is fraud'l.mean())

Fraud ratio after oversampling: @.15150145273561968
Figure 5.3.66: Training Data Distribution After Adjusting Fraud Rate to 15%
The second adjustment was the use of SingleTableMetadata to explicitly define feature types
as shown in Figure 5.3.67. Earlier versions occasionally misclassified variables (e.g., treating
city pop as categorical), which led CTGAN to generate misaligned distributions. By correcting
these definitions, CTGAN was able to interpret numerical, categorical, and datetime features

more reliably, improving stability.

--- step 4: Build metadota for CTGAN ---
metadata = SingleTableMetadata()

metadata.detect from_dataframe(data=train_df)

metadata.update_column("city pop”, sdtype="numerical®}

metadata.save to json('/comtent/drive/MyDrive/Colab Mctebooks/syn 7/metadata ctgan.ison')

Figure 5.3.67: Defining Feature Types Using SingleTableMetadata

142

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Other aspects from Data 4 were retained as standard practice: reducing Adult fraud cases by
50% to mitigate demographic bias, restoring schema consistency in post-processing, and using
CTGAN for training. However, training epochs were reduced to 200 (compared to 300 in
Data 4), as shown in Figure 5.3.68. This is because improved metadata stability lessened the

need for extended runs or PacGAN regularization.

--- Step 5: Troin CTGAN ---
ctgan = CTGANSynthesizer(metadata, epochs=288, batch_size=18@, verbose=True}
ctgan.fit(train_df)

Sfusr/lecal/lib/python2.11/dist-packages/=sdv/single_table/base.py:163: FutureWarning: The

'singleTableMetadata’ is deprecated. Please use the new 'Metadata' class for synthesizers.
warnings.warn{DEPRECATION_MSG, FutureWarning)

Gen. (@.85) | piscrim. (e.11): 122%|NEEEEEEE 229/292 [2:28:53<00:88, 44.67s/it]

Figure 5.3.68: CTGAN Training Configuration in Data 5

The evaluation of Synthetic Data 5 confirmed that the main improvement was in precision,
which rose to 0.6722, the highest across all versions. This meant that a larger share of detected
fraud cases were truly fraudulent, reducing false alarms compared to earlier datasets. However,
this gain came with a trade-off in recall, which decreased to 0.8193 (from 0.9140 in Data 4),
showing that the model caught slightly fewer fraud cases overall. Despite this, the F1 score
improved to 0.7385, showing that the dataset produced a better balance between catching fraud
(recall) and avoiding false alarms (precision). The MCC of 0.6679 further demonstrated a
robust overall correlation between predictions and true labels, confirming that the
improvements were not one-sided. On the other hand, accuracy dropped to 0.8810 and AUC

declined to 0.8990, indicating weaker modelling of normal transaction behaviour.

In summary, Synthetic Data 5 showed that controlling fraud ratio and improving feature
handling can shift performance trade-offs. It gave the best fraud detection so far, though with

weaker overall transaction realism (lower AUC).

143

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Svynthetic Data 6

Synthetic Data 6 marked the first shift from GAN-based models to a variational autoencoder
approach, replacing CTGAN with TVAE (Tabular Variational Autoencoder). This change
was motivated by the limitations of GANs in modelling continuous numerical features such as
transaction amount (amt), distance, and age. CTGAN had shown improvements with feature
engineering and oversampling, but it was unstable and sometimes collapsed, producing less
diverse data. In contrast, TVAE learns a smooth internal representation of the data, making it

more stable and better at handling both numbers and categories.

For training, TVAE was configured with 200 epochs and a batch size of 100 as shown in Figure
5.3.69. Unlike GAN-based models, TVAE did not require PacGAN or extended epochs to
prevent collapse, since its architecture naturally models both fraud and non-fraud cases in a
smooth latent space. This makes training more stable and efficient, avoiding the adversarial
competition present in CTGAN, which often requires extra epochs or stabilizing tricks to
converge. As a result, TVAE converged reliably within fewer epochs and completed training
faster than CTGAN, reducing computational time while maintaining high-quality synthetic

data.

twae = TvAESynthesizer(metadata, epochs=288, batch _size=188, verbose=True)
tvae.fit(train_df)

C:\Usersh\pellhanaconda3\Libh\site-packagesisdvi\single_table\base.py:163: FutureWarning:
The "SingleTableMetadata' is deprecated. Please use the new ‘Metadata' class for synthesizers.

Loss: -2.947: 1eoX||NNNNNDDDDEEEEEEENE | :co 200 [49:23<22:00, 14.72s/it]

Figure 5.3.68: TVAE Training Configuration in Data 6

Post-processing followed the same steps as in Data 5. After generation, features such as dob,
merchant coordinates, and card numbers (cc_num) were restored from the original dataset.
Distance was recomputed using restored coordinates, and engineered variables (distance, age,
age group) were dropped to maintain schema consistency. This ensured that the final synthetic
dataset aligned structurally with the raw dataset while retaining the benefits of engineered

features during training.

144

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Final synthetic CTeAN dataset shape: (1lee8s2, 18)
Fraud ratic: e.2esiz

category amt gender city_pop unix_time merch_lat
B gas_transport 87.92 F 23 1.242848e+29 45,713482
1 misc_pos 185.67 F 4482 1.366884e+89 38.523681
2 shopping_net 3Se4.49 L 2259 1.33376le+29 41.821758
Ed misc_net 1.99 F 3774 1.352593e+89 39.861586
4 kids_pets 93.85 L 3367 1.345885e+839 48.37I8I1

merch_long is_frawd day_of_week hour 3is_night trans_num

@ -112.867354] 5 4 2.2 Teaeasal
1 -79.753413] 3 19 8.2 Teseasalz
2 -7i.1e2443 1 -] 22 1.2 Teeeooas
3 -38.526673] [22 1.2 Teaeaoad
4 -77.795458] 1 21 8.8 Teeeasas
co_num city lat long dob
@ 4589142395811241.8 Belgrade 45.7381 -111.143% 1975-85-29
1 3566373869538628.8 Thomas 32.1585 -79.5832 1981-88-29
2 421596532335282991 orient 4£1.1437 -72.2879 19&88-89-13
3 35093895972388782.8 Eagarville 29.1118 -89.7855 1952-11-18
4 3598215285824754.8 Montandon 48,3851 -75.8575 1974-85-18

trans_date_trans_time
2019-81-81 84;80;89
2@19-21-21 19:08:88
2@19-21-21 22:08:88
2819-21-81 22:08.88
2@19-281-21 21:08:88

B R @

Figure 5.3.70: Final Synthetic Dataset Generated by CTGAN in Data 5

Final synthetic dataset shape: (1ee@ee, 13)
Fraud ratio: e.11931

category amt gender city_pop unix_time merch_lat
a grocery_pos 188,21 F 676 1.264728e+89 45.713483
1 health_fitness 22.97 F 42 1.358548e+89 3E.523681
2 gas_transport 58.5% F 1827 1.35538%e+89 41.821758
3 gas_transport 124.7% F 812 1.358457e+83 39.061586
4 gas_transport 89.81 M 4577 1.345838e+89 48.372821

merch_long is_fraud day_of_week hour 1is_night trans_num 3

8 -112.867354 e -] 7 2.2 Teeeooal
1 -79.753413 2] -1 17 8.2 Tesgasaz
2 -72.182443 2] 2] 8.8 Teagaeaz
3 -598.526873 ;] 6 5 2.2 Teafaoas
4 -77.785452 2] 2 [} 8.8 Teegasas
co_num city lat long dob %\

120855282800080 ., 8 Belgrade 45,7881 -111.1439 1375-85-23
6811399591928186.8 Thomas 39.1%@5 -79.5838 1981-88-29
448E779573547164 orient £1.1437 -72.2879 1958-89-19

4798992452821239.8 Eagarville 39,1118 -89.7855 1952-11-18
44405038033957323.0 Montanden £@.9661 -76.8575 1974-85-18

Bowor e @

trans_date_trans_time
2@19-@1-e1 87:08:08
2@19-21-81 17:08:80
2819-21-21 @9:08:80
2e19-21-21 85:08:80
2919-21-81 @&:08:88

Bowor e @

Figure 5.3.71: Final Synthetic Dataset Generated by TVAE in Data 6

The results demonstrated a big improvement in performance. Recall reached 0.9451, the
highest of all datasets so far, showing that TVAE was effective at detecting fraudulent
transactions. AUC also improved to 0.9683, setting a new benchmark for discrimination
between fraud and non-fraud. Precision, at 0.6426, was slightly lower than Data 5 but still
competitive, while the F1 score rose to 0.7650, reflecting a stronger balance between recall
and precision. Accuracy also improved to 0.9307, recovering much of the loss seen in Data
5.

145

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

In short, Synthetic Data 6 highlighted the advantages of model architecture choice in synthetic
data generation. By moving from CTGAN to TVAE, the dataset gained much stronger
generalization over continuous features, leading to dramatic improvements in recall and AUC.
Although some precision was sacrificed compared to CTGAN, the overall balance (F1) and
discriminative power (AUC) were superior. This version demonstrated that TVAE was better
suited for fraud detection tasks where continuous variables play a critical role in distinguishing

fraudulent behaviour.

Synthetic Data 7

Synthetic Data 7 expanded upon the previous TVAE experiment by scaling up the training
process. While Data 6 had already demonstrated the stability and representational power of
TVAE over CTGAN, its training was limited to 100,000 rows. Data 7 increased the training
sample size to 500,000 rows as shown in Figure 5.3.72, providing TVAE with significantly
more examples of both fraud and non-fraud patterns to learn from. The objective of this
adjustment was to test whether a larger training base would enable TVAE to generate more

realistic synthetic data, especially in capturing rare fraud patterns.

The TVAE configuration differed from Data 6 by reducing the epochs from 200 to 100. Despite
the shorter training duration, the much larger dataset ensured that TVAE was exposed to a

richer and more diverse set of features.

train_df, _ = train_test_split(
df_balanced,
train_size=5eeeee,
stratify=df_balanced['is_fraud'],
random_state=42

)

tvae = TVAESynthesizer(metadata, epochs=10@, batch_size=1@e, verbose=True)
tvae.fit(train_df)

Figure 5.3.72: TVAE Training Configuration in Data 7

The results confirmed the benefit of scaling up training size. Recall increased further to 0.9646,
demonstrating that TVAE trained on more data was even more effective at detecting fraud.
Precision also improved markedly to 0.7133, reducing false alarms compared to Data 6. These
gains translated into an F1 score of 0.8202, an MCC of 0.7980, and an AUC of 0.9808—the
highest values achieved so far. Accuracy also rose to 0.9400, showing consistent overall

improvements across all evaluation metrics.
146

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

In summary, Synthetic Data 7 highlighted the importance of training size in synthetic data
generation. By giving TVAE five times more training examples, the model was able to
generalize better across both fraud and non-fraud transactions. Compared to Data 6, this version
achieved stronger recall without sacrificing precision, leading to better balance (F1 score),
correlation (MCC), and discrimination (AUC). This confirmed that, beyond choosing the right
model, using a larger training sample size is a key factor in producing synthetic data that

improves fraud detection model performance.

5.3.11 Model and Pipeline Export

Before deploying the model into Power BI, the trained Random Forest model (oversampling
+ default settings) and its preprocessing pipeline were exported as shown in Figure 5.3.73.
During model development, several transformations were applied, including gender encoding,
one-hot encoding for transaction categories, and target encoding for credit card numbers. To
ensure these transformations would be applied consistently during deployment, both the
pipeline and the trained model were serialized and saved using the Joblib library. By exporting
the pipeline alongside the model, the system guarantees that identical feature engineering and
encoding steps are performed on any new data, reducing the risk of inconsistency and ensuring

portability across different environments.

cregte the pipeline with vour custom preprocessor T (FTISSTTS
Create the pipeline with your custom preprocesso # ——-— BUILD PIPELINE ----

encoder = Pipeline(pipeline = Pipeline(steps=
{'custom_preprocessing’, CustomPreprocessor{}) {'target_encoder®, TargeteEncoder(col="cc_num', target_col="is_fraud'}},
} {'classifier', RandomForestClassifier(random_state-=42))

Fit the pipeline (if needed, e.g., before transiorming))
encoder. fit{df)

- i # Fit the pipeline on training daota
Transform the dota N

N pipeline.fit(X_train, y_train)
df = encoder.transform{df}

Save the pipeline # save pipeline

joblib.dump(encoder, ‘custom_encoding pipeline.joblib') joblib.dump(pipeline, "target_encoding_rf oversampling_pipeline.joblib"})

Figure 5.3.73: Saving the preprocessing pipeline and Random Forest model using Joblib

147

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.12 Power BI Deployment

Data Source Connection

Following the model export, the data source was connected to Power BI. Transaction data was
retrieved directly via a OneDrive link as shown in Figure 5.3.74, allowing the dashboard to
work with updated records when the dataset is refreshed in Power BI. For this purpose, the
Kaggle test set was sampled to 100,000 records. This dataset size was chosen to strike a
balance between providing sufficient representation of fraud cases and ensuring efficient
processing within Power BI’s Python execution environment. The use of the Kaggle test set in

Power Bl is further justified in Chapter 6, where it is compared against synthetic alternatives.

Data source settings
Manage settings for data sources that you have connected to using Power Bl Desktop.

@ Data sources in current file Global permissions

2

*':—‘ https://utarict-my.sharepoint....P-PowerBl/100000_test_data.csv

<%= Python

Figure 5.3.74: Power BI data source connection from OneDrive

Python Script Integration

Once the data connection was established, the dataset could be accessed and inspected via
Transform Data (Power Query Editor) in Power BI. A Python script was embedded in Power
BI to load both the preprocessing pipeline and the trained model. When new data is imported,
the script applies the same preprocessing transformations as during training, including
categorical encoding and target encoding. The processed features are then aligned to the

expected order used by the model, as shown in Figure 5.3.735.

Load dataset
df = dataset.copy()

Load pipeline

preprocessor = joblib.load(r'C:\Users\Dell\OneDrive - Universiti Tunku Abdul Rahman\FYP-
PowerBIhcustom_encoding_pipeline.joblib')
model_pipeline = joblib.load(r'C:\Users\Dell\OneDrive - Universiti Tunku Abdul Rahman\FYP-

PowerBIVtarget_encoding_rf_oversampling_pipeline.joblib’)

Preprocess data

X_encoded = preprocessor.transform(df)

y = X_encoded['is_fraud'] if 'is_fraud® in X_encoded.columns else None
X = X_encoded.drop(columns=["is_fraud'], errors='ignore')

Figure 5.3.75: Python script preprocessing new transaction data
148

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

After this step, the Random Forest model predicts and generates two outputs for each
transaction: a binary classification (predicted_fraud) indicating whether the transaction is
fraudulent, and a probability score (fraud_prob) representing the likelihood of fraud, as

shown in Figure 5.3.76.

Predict class labels

predictions = model_pipeline.predict(X)
df['predicted_fraud'] = predictions

dataset['predicted_fraud'] = predictions

y_pred_proba = model_pipeline.predict_proba(X)[:, 1]
df['fraud_prob'] = y_pred_proba

Figure 5.3.76: Python script generating predictions

Finally, the script produces evaluation results. If the dataset contains true fraud labels
(is_fraud), performance metrics such as accuracy, recall, precision, Fl-score, Matthews
Correlation Coefficient (MCC), and Area Under the Curve (AUC) are computed and presented
in tabular form within Power BI. If the dataset does not contain labels, the system outputs only
fraud predictions and probability scores, as shown in Figure 5.3.77. The generated outputs are
then ready for visualization, as shown in Figure 5.3.78, forming the foundation for the

dashboard development stage of deployment.

if y is not None:
Calculate metrics
accuracy = accuracy_score(y, predictions)
recall = recall_score(y, predictions)
precision = precision_score(y, predictions)
fl = f1_score(y, predictions)
mce = matthews_corrcoef(y, predictions)
auc_score = roc_auc_score(y, y_pred_proba)

Format metrics into a table
metrics_df = pd.DataFrame({
“"Accuracy™: [round(accuracy, 4)],
"Recall”: [round(recall, 4)],
"Precisien”: [round(precision, 4)],
"F1 Score”: [round(fl, 4)],
"MCC": [round{mcc, 4)],
"AUC": [round(auc_score, 4}]

¥

Output metrics table
output = metrics_df
else:
If no labels are available, return dataset with predictions
df["predicted_fraud'] = predictions
df[*fraud_prob'] = y_pred_proba
output = df

Figure 5.3.77: Python script generating evaluation metrics

1.2 Accuracy - 1.2 Recall ~|1.2 Precision ~ |12 FiScore |12 mcC |12 AuC -
0.9991 0.8473 0.9537 0.9 0.59012 0.9828

Figure 5.3.78: Output generated by Python script

149

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.13 Dashboard Development

The Power BI dashboard was developed as the final stage of the system implementation,
providing the interactive interface through which users can monitor and analyse fraud detection
outcomes. The design was guided by the wireframe created earlier (see Chapter 4), ensuring a
consistent structure and smooth navigation across different analytical perspectives. Navigation
follows a hierarchical structure, with the Homepage and Overview Page serving as central

hubs, with other pages accessed through them for a clear, structured flow.

The Homepage acts as the entry point, containing interactive buttons with tooltips that direct

users to the respective analysis pages.

=]
@ Fraud Detection Intelligence Dashboard |ES @
[D

Overview Time Analysis Geography Demographics
ora &) @
Behavioral 7 /_} Model Dn 2 Prediction Confidence & Key

Analysis Performance Influencers

Figure 5.3.79: Homepage

The Overview Page presents key performance indicators (KPIs) through card visuals,
summarising overall transaction activity, fraud statistics, and model performance. To
complement the KPIs, trend charts illustrate changes in fraud amount and fraud rate over time,

providing a quick view of both scale and temporal behaviour.

Overview
Fraud Trend by Amount
50,000 $2,687,890.44 $53.76
Total Transaction Total Transaction Amount | | Average Transaction Amoun
244 $137,636.97 $564.09
Total Fraud Total Fraud Amount Average Fraud Amount
Fraud Rate Over Time
211 $136.616.70 $51.26
Predicted Fraud Count Predicted Fraud Amount Average Non-Fraud Amount

0.49% 0.02 0.9990

Fraud Rate False Positive Rate (%) Accuracy Rate

I I | I [|

Figure 5.3.80: Overview Page
150

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The Time Analysis Page examines fraud patterns by day, hour, and month, with additional
views comparing daytime versus nighttime fraud activity and fraud trends across days in a
month.

@ Fraud Label Category Transaction Pericd

Fraud Pattern - Time Analysis .

Fraud vs Non-Fraud by Day Fraud by Time Fraud vs Non-Fraud by Hour
@ Fraud Count @ Mo Fraud Count By d 1 (180 @Fraud Count O Nen-Fravd Cout
e e :
| -
g o B4 B s : 3
H 1
5 i %
= - - = - = . o = H
: A oy e *
Day Heur
Fraud Count Over Time Fraud vs Mon-Fraud by Month

B Frmeal St @ N Gt @ i Count i Nom-Frpusl Gouns
g 830 i

e

Figure 5.3.81: Time Analysis Page

The Geography Page highlights fraud distribution across city sizes and transaction distances,

supplemented with an interactive hotspot map.

@ Fraud Label Population Group Distance from Merchant
All v All v 0.00 137.56
Fraud Pattern - Geography _—
b Q= &8 -
Fraud Hotspot Map Summary

@®Fraud ®Non-Fraud

. The population group with the highest fraud count is Small Cities, with
159 cases, contributing 65.43 % of all fraud.
. The population group with the highest fraud rate is Very Large Cities at
100.00 %.
- The distance group with the highest fraud rate is 10 km at 0.68 %.
. The distance group with the highest fraud count is 80 km, with 35
R fraud cases (14.40 % of total fraud).
1 - Fraud transactions occurred as close as 6.08 km and as far as 132.59
km from the merchant.

I Mo iog
Fraud vs Non-Fraud by Distance from Merchant
= Fraud Count === Non-Fraud Count
46000 Ty
30

5 30000 5 i
s R H
Z 20000 g (=
2 20 22005

10000 6492 5593

0] o
Small Cities Very Large Cities Large Cities Medium Cities 0 20 40 60 2 100 120
Population Group Distance

Figure 5.3.82: Geography Page

151
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The Demographics Page analyses fraud by age and gender, including a heatmap to show

intersections, and supports drill-through to card-level details for deeper investigation.

©

Fraud Pattern - Demographics

Fraud vs Non-Fraud by Age Group

®Fraud Count @ Non-Fraud Count

47406

Adult Senior Mid-Age

Age Group

5 1152

Young

Fraud by Gender

@®Female ®Male

222
(46.44%)

Fraud Label Transaction Period 7

All v

Age Group
All v

Category 3

All g All e

Fraud by Age Group and Gender

Adult Mid-Age Senior Young
Female 83 (Blank) 1s
B

2

a2

2

s

Male 52 5

256
(53.56%)

Credit Card No.

Fraud Count

Total Transaction
-

3540420000000000
3550410000000000
3581130000000000
3586010000000000
4229730000000000
4352310000000000000
4560400000000000000
572000000000

Fraud Rate Summary

- Adult had the highest fraud count (227 cases, 47.49 % of total).

- Fraud in Adult was 4440.00 % higher than Young (5 cases), which had
the lowest fraud count.

- The age group with the highest fraud rate is Senior at 0.58 %.

-Fraud for Female (256 cases) was higher than Male (222 cases).

- The gender with the highest fraud rate is Male at 0.49 %.

- Female Adult recorded the highest fraud count at 116 cases.

Figure 5.3.83: Demographics Page

Fraud behaviour by category and spending patterns is analysed in the Behavioural Analysis

Page, which compares different category transactions and evaluates fraud by total and average

amounts.

©

Fraud Pattern - Behavioral Analysis

Fraud vs Non-Fraud by Category

@Fraud Count ®Non-Fraud Count

70327

Transaction Count

7163
‘BD. 124

x <
& &
\(\@5\ S
&

= «

9011
119.

3 &
< oS b
oY & OQQ\QQ

Category

62
-

8393

43-

&

Fraud Label Category &7 Transaction Date &

All v All v 21/6/2020 B 31/12/2020 B

L |

Average Transaction Amount by Fraud vs
Non-Fraud

Total Amount by Fraud vs Non Fraud

Fraud

$272,163.81
Fraud Average of Amount: $569.38
Non-Fraud I Average of Amount: $51.10
Non-Fraud
$5,086,065.63
Summary

- The highest fraud count is in shopping_net category with 130 cases, while the lowest is in shopping_pos category with 43 cases.
- Fraud transactions account for 5.08 % of the total transaction amount.

- The category with the highest fraud rate is shopping_net, with a fraud rate of 1.78 %.

- The category with the highest overall fraud amount is shopping_net, with a total fraud value of $129,346.20.

-On average, fraud transactions are 11.14x larger than non-fraud transactions ($569.38 vs $51.10).

Figure 5.3.84: Behavioural Analysis Page

152

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Model performance is assessed in the Model Performance Page, which includes a confusion
matrix, performance metric cards, and misclassification breakdowns by category and
demographic group. Conditional formatting is applied to performance metrics: values below
0.9 are highlighted in yellow, and values below 0.75 are highlighted in red.
@)) Predictton Result . .
Model Performance ‘\ I [~ [~)

Random Forest + Oversampling

Confusion Matrix E Summar Predicted Results by Category
Actual Class All metrics are excellent; model performance is Oy
outstanding. D
Fraud Non-fraud Precision is excellent, recall is lower than precision, so
2 fraud detection may miss some cases.
8 Fraud 405 17 The F1-score is excellent, with strong Pr.ec\s\on—retall =
- balance. The medel successfully identifying frauds 5 50
g while minimizing false alarms. 73
= The MCC is excellent. This shows strong balance in
-g Non-Fraud 73 99,505 predictions, even considering class imbalance.
= The AUC is excellent, showing strong capability in 0
distinguishing fraud. other
Category
Performance Metrics Prediction Result by Age Group
®FN ®FP
60
Accuracy Precision €
S
1 20 [rr—
n
0.9000 0.9013 0.9828 i KN ___
Adult Senior Mid-Age Young
F1 Score MCC AUC Age Group

Figure 5.3.85: Model Performance Page

The Prediction Confidence & Key Influencers Page shows model certainty, key factors
driving fraud predictions, and a table of transactions—highlighting incorrect predictions while

leaving fraud cases unhighlighted. Users can drill through to view each transaction.

©

Prediction Confidence & Key Influencers

Fraud Count by Confidence Level] Key influencers Top segments & G
16

3 8 9 0 % 73 B354 What influences Predicted Label to be Fraud 2 7
- 15.27%
d ! onfidence
© . o

High Confidence Percentage

389

High Confidence Count

Medium opui Very
Large
Note: Predicted probabilities >= 0.8 are considered high confidence, while those < 0.5 are considered low confidence. Time i< Night
55%

283.89x

370 (77.41%)

lransaction D Prediction Actual Predicted Proba Confidence Level e RS
ff4ddb2448bc7d316d2r5e264fh5ed47 0 1 0.05 Low s
fe9a85156e35e083ab59bdc74d97bb68 0 1 0.29 Low

fdda56e8c754897aba310370f14b8b71 0 1 0.04 Low Category is shopping_net 54@
731153416f2ad16f4474c8383bc5f80 0 1 0.00 Low

320ea7390c46c272b89334f14691733 0 1 0.00 Low

€f0c8841700422b92899¢00cc1 7ades 0 1 024 Low C g ’ 79
ec457550d031a89280caf94d 11bdc852 0 1 0.00 Low

e90fd1b484aeaadc987ef461deffaad 0 1 0.03 Low Category is misc._net JAD
€70e903b4621a3c8d9c005a2134447b8 0 1 0.26 Low

de37¢23662398f69bd10dch743¢2c861 0 1 0.00 Low

de2cdf488416da74fb7044adc6658e6a 0 1 0.09 Low

Sortby: Impact Count

Note: Highlighted Transaction IDs represent incorrect predictions.

Figure 5.3.86: Prediction Confidence & Key Influencers Page

153

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

In addition to the main analysis pages, two drill-through pages were developed to support
detailed investigation, providing a seamless workflow from aggregated views to case-level

insights, supporting in-depth fraud investigation.

The Credit Card Transactions Page allows users to examine all transactions linked to a
specific card, supported by fraud metrics, transaction history, and visual trend analysis. KPI
cards with a non-zero fraud count are highlighted to draw attention. In the transaction history
table, fraud cases and transactions with incorrect predictions are highlighted for easy

identification.

Credit Card Transactions

]
Credit Card No.: b
573000000000
40 4 10.00% $3,809.02 $5.343.63
Total Transaction Count Fraud Count Fraud Rate Fraud Amount Total Transaction Amount Spent
Transaction ID Transaction Date & Time Predicted ~ Actual Prediction Result Fraud Over Time
-
Fraud Count ®N 1 Count

045020624d98173b68262C016558596 9/9/2020 10:50:00 PM Non-Fraud Non-Fraud Correct ‘ e
0b7020601c83989a00fe14f9718c971d 5/9/2020 6:52:00 AM Non-Fraud Non-Fraud Correct
204599ca33fc6519e48733619a7e1274 6/12/2020 7:26:00 PM Non-Fraud Non-Fraud Correct
278f99bfd37a58ee4a86594d7804984d 27/8/2020 2:51:00 AM Nen-Fraud Nen-Fraud Correct z

5
2c4663a8f95af72abf3d106876a3acaf 11/8/2020 11:43:00 PM Non-Fraud Non-Fraud Correct & :
34fe2b80f76aca88e3a890f3e5799cf0 27/10/2020 8:29:00 PM Fraud Fraud Correct s
38eed4dba0fe3261chebs144dal8eb1f 2/7/2020 2:32:00 PM Non-Fraud Non-Fraud Correct 2
39ffc5b7d01d5e6cb76333c4c1764249 29/10/2020 452:00 AM Non-Fraud Nen-Fraud Correct E 1
44fcd839d523c96336d89b319e5dcf4f 30/7/2020 11:38:.00 AM Non-Fraud Non-Fraud Correct
479c5378269750cedaf11135ae8406ab 23/8/2020 4:02:00 AM Nen-Fraud Non-Fraud Correct
438025cdab5535e6b13aebb2671€9596 11/8/2020 2:35:00 AM Non-Fraud Non-Fraud Correct 0
4203ae076bed57f47b0cad71258c637 28/12/2020 8:30:00 AM Non-Fraud Non-Fraud Correct Jul 2020 Sep200 Nov2020
502efb313d5a3263ab0094e71b5a3959 29/9/2020 8:09:00 PM Nen-Fraud Non-Fraud Correct o, O

Date

Figure 5.3.87: Credit Card Transactions Page (drill through from Demographics Page)

From there, users can navigate to the Transaction Details Page, which provides full
information for a single transaction, including prediction details, related credit card data, and
cardholder demographics. For the KPI cards, conditional formatting is applied to highlight
key information: actual or predicted fraud labels are shown in red, fraud probability uses a
gradient from green (0%) to red (100%), and the predicted result is coloured green if correct

and red if incorrect.

154
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

©

Transaction Details

34fe2b80f76acaB88e3a890f3e5799cf0

Transaction ID: ‘

Prediction Result

Fraud ’ Fraud ’ 95.00% Correct

Actual Label Predicted Label Fraud Probability

Transaction Date: Tuesday, 27 October, 2020 Distance from Merchant : 115.66km
Transaction Time : 2000 (Day) Credit Card No.: 573000000000
Transaction Amount : $939.95 Credit Card Fraud Rate : 10.00%
Product Category : shopping_net Gender : Female
City : Jaffrey Age: 70
City Size : Medium Cities Age Group : Senior

Figure 5.3.88: Transaction Details Page (drill through from Credit Card Transactions Page)

To enhance usability, slicers and filters were added to allow dynamic exploration of fraud
patterns by date, category, demographic segment, and location. Tooltips were configured for
charts to provide detailed values on demand, maintaining visual clarity while retaining
precision. Smart Narrative were also applied to generate automated insights. Together, these
features create an interactive, user-friendly system capable of supporting fraud analysts in

monitoring patterns, identifying risks, and evaluating model reliability.

. Filter
Slicers
@ Fr e Ll Ly Travsattos Gals ¥ Fiten :
Fraud Pattern - Behavioral Analysis _ e
Frave w8 Men Fraud by Calegery Totsl Ausa iy Frausd v Mioss Fravd Avrage Trangarion Amound by Fraud v
Na=-Frawd

Tooltip

Smart Narrative -

ey

Figure 5.3.89: Interactive Dashboard Components Showing Slicers, Filters, Tooltips and

Smart Narrative

155
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

The dashboard was also designed with a mobile layout in mind, ensuring key metrics and
visualizations remain accessible and readable on smaller screens. Example pages of the

dashboard on mobile view are shown in Figure 5.3.90.

latest v : latest v s & latest v
< Home (1 of 1) ‘Z' : < Demographics 'Zl i Credit Card Transactions s
Fraud Detection Intelligence : @
Fraud Pattern - Demographics Credit Card Transactions
- Dashboard
B Fraud Label Age Group
., % :) = Credit Card No.:
573000000000
Category Transaction Period
Al .
40 4
Overview Time Analysis
y Eraudy=han:Lraud byAge/Group Total Transaction Count Fraud Count
@ Fraud Count @ Non-Fraud Count

10.00% $3,809.02

6 47406
Demograph@ Geography 73‘ I o 27712 Fraud Rate Fraud Amount
I l 5 112 $5.343.63
o Adult dicl-Age Yc T

BehaV'?"al @3 Model - Total Transaction Amount Spent
Analysis Performance

i Y
Age Group

Fraud by Gender Predicted Actual Predictio

Transaction Transacti
C n Result

D

@ Female @ Male

Prediction o SNGE (oo
Confidence & Key...

c
0b7020601c8 9/5/2020 Non- Non- Correct
3989a00fe14f 6:5200 AM Fraud Fraud
9718¢971d

k] A 0 © b ~ g © = b -

Reset Filters Pages More

Pages More Comments Reset Pages More

Fraud by Age Group and Gender c4aB659 25100AM Fraud Fraud

~ - — ~ —
(@) iz | = () |

Figure 5.3.90: Mobile layout examples of the Fraud Detection Dashboard

5.3.14 Implementation Issues and Challenges

Publicly available fraud detection datasets often contain missing values, noise, and outliers,
which can undermine model reliability, making proper selection and preprocessing essential.
In this project, the first dataset tested was found unsuitable due to weak feature correlations,
limiting its usefulness for fraud analysis. Many Kaggle datasets are also anonymized,
replacing feature names with generic labels, which hinders interpretability for dashboard
development. Additionally, the strong class imbalance, where fraud cases are rare, requires
resampling techniques. After evaluation, a second dataset was chosen for its stronger feature

relationships and practical relevance.

The implementation phase was marked by several significant challenges that impacted the
project's workflow. A primary obstacle was the severe computational and hardware
constraints faced during model training. Running complex algorithms such as Random Forest

156

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

and AdaBoost on a large dataset, combined with extensive hyperparameter tuning through
Grid Search and Randomized Search, was extremely time-consuming, often taking hours for
a single run. This issue was further showed by synthetic data generation using CTGAN and
TVAE, which, even with Google Colab’s GPU resources, required many hours of processing

for a single experiment.

Another critical challenge was the instability of Google Colab sessions. Long-running
experiments were frequently interrupted due to idle timeouts, session duration limits, or
memory overuse. On several occasions, runs that had progressed halfway stopped unexpectedly
when left unattended, forcing complete reruns and wasting computational resources. This
instability proved particularly problematic during resource-intensive tasks such as synthetic

data generation using CTGAN, where interruptions could mean the loss of hours of work.

From a dashboard development perspective, a key challenge was designing an intuitive Ul
for a complex, multi-faceted analysis. Creating a logical navigation structure from the
homepage to various drill-through pages (e.g., from Demographics to Credit Card Transactions
to Transaction Details) required careful planning to ensure a seamless user journey for fraud
analysts. Implementing advanced features like conditional formatting (e.g., highlighting high-
risk cards, colouring metrics based on performance) and interactive elements (slicers, filters,
tooltips) without making the dashboard visually cluttered or overwhelming was a delicate

balancing act between functionality and usability.

5.3.15 Concluding Remark

In conclusion, this chapter outlined the full implementation of the fraud detection system,
covering software setup, data preprocessing, model development, synthetic data generation,
and dashboard deployment. After testing multiple datasets and algorithms, a Random Forest
model with oversampling was selected for its strong performance, achieving high recall and
F1-score in detecting fraud. The model was successfully integrated into Power BI, creating an
interactive dashboard that turns predictive analytics into actionable insights. Despite challenges
with dataset quality, computational limits, Google Colab instability, and dashboard design
complexity, the system delivers a robust and practical foundation for real-world fraud
monitoring and analysis.

157

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

CHAPTER 6

System Evaluation and Discussion

6.1 Comparison of Test Set

Before selecting the final dataset for deployment in the Power BI dashboard, two candidate test
sets were evaluated to determine which would provide the most reliable and representative
assessment of model performance: a real Kaggle test set and a synthetic test set generated
through the model pipeline. The performance metrics for both sets are summarized in Table

6.1.1.

Kaggle Test Set Synthetic Test Set
Accuracy 0.9991 0.9400
Recall 0.8410 0.9646
Precision 0.9640 0.7133
F1-Score 0.8983 0.8202
MCC 0.9000 0.7980
AUC 0.9552 0.9808

Table 6.1.1: Performance Comparison of Kaggle and Synthetic Test Sets

The real test set, sampled at 100,000 records, produced very strong performance with an
accuracy of 0.9991, recall of 0.8410, precision of 0.9640, F1 score of 0.8983, MCC of 0.9000,
and AUC of 0.9552.

In contrast, the synthetic test set, which was also sampled with 100,000 records, achieved an
accuracy of 0.9400, a recall of 0.9646, a precision of 0.7133, an F1 score of 0.8202, an MCC
of 0.7980, and an AUC of 0.9808. These results show that while the synthetic dataset
produced higher recall and AUC, it came at the cost of much lower precision and MCC. In
practical terms, this means that the synthetic data suggested the model could catch more fraud
cases, but with a far higher rate of false alarms. Such false positives could overwhelm

investigation teams, increase operational cost, and negatively affect customer experience.

158

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

On the other hand, the Kaggle test set demonstrated a much better balance between precision
and recall. Its higher MCC reflects strong overall classification quality across both classes,
while its precision of 0.964 indicates very few false alarms—an essential property in financial
fraud detection. Although recall was somewhat lower than on synthetic data, the trade-off is
acceptable because fewer genuine frauds are missed without significantly compromising
efficiency. Furthermore, because the Kaggle test set represents the actual data distribution,
it offers a more trustworthy estimate of model performance in real-world deployment. The
synthetic test set, while useful, can introduce optimistic bias by smoothing distributions or
reducing noisy, borderline cases, which inflates metrics such as AUC and recall but may not

hold under production conditions.

Nevertheless, an important limitation must be acknowledged: the Kaggle test set does not
come from real company or e-commerce transactions, but from a publicly available
benchmark dataset. While it serves as a strong proxy for real-world conditions, its transaction
patterns, fraud rate, and feature distributions may not fully match what would be seen in an
actual business environment. Therefore, the reported results should be viewed with caution,
and further testing on real company data will be necessary to confirm the model’s
performance in practice. For future studies, the model should be validated on actual e-
commerce transaction data, tested against different fraud patterns, and monitored over time to
capture data drift and changing customer behaviour. This will help ensure the model remains

accurate, reliable, and ready for real deployment in a business environment.

159

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.2 Model Evaluation on Kaggle Test Set

The final model selected for deployment is a Random Forest model with oversampling
(default settings). Its performance on the split test set (held-out portion of the original dataset)
and the Kaggle test set (sampled 100,000 records for deployment) is summarized in Table
6.2.1 below:

Metric Internal Split Test Set Kaggle Test Set
Accuracy 0.9999 0.9991
Recall 1.0000 0.8410
Precision 0.9998 0.9640
F1-Score 0.9999 0.8983
MCC 0.9998 0.9000
AUC 1.0000 0.9552

Table 6.2.1: Performance Comparison of Final Random Forest Model on Split Test Set and
Kaggle Test Set

The metrics on the split test set indicate near-perfect performance, which is expected
because this set was drawn from the same dataset used for training. The model has effectively

learned patterns present in the original distribution.

The Kaggle test set, although drawn from the same overall dataset, shows noticeably lower
recall, F1-score, MCC, and AUC. This difference highlights that even within the same dataset,
variations in sampling, feature distributions, and the presence of borderline or rare fraud cases

can affect model performance.

The lower recall (0.8410) on the Kaggle test set indicates that the model misses more actual
fraud cases compared to the split test set, suggesting that this subset contains transactions that
are harder to classify, such as subtle or borderline fraud patterns. Correspondingly, the drop in
F1-score and MCC reflects the challenge of balancing fraud detection with minimizing false
positives; the Kaggle set is more difficult, providing a more realistic picture of operational
performance. Additionally, the slightly lower AUC (0.9552) shows that the model’s ability to
rank transactions by fraud likelihood is somewhat weaker on truly unseen examples,
emphasizing the importance of evaluating the model on an independent dataset before

deployment.
160

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

The comparison shows that while the model performs exceptionally on the split test set, the
Kaggle test set provides more practical insights into real-world performance. Its lower
metrics reveal challenging transaction cases and emphasize that deployment must consider
such variability. This analysis highlights the importance of evaluating the model on a

representative, independent dataset before operational use.

6.3 Dashboard Evaluation

The evaluation of the developed Power BI dashboard was conducted to assess its functionality,
usability, and analytical effectiveness. The process considered both technical aspects—such as
data accuracy, visual correctness, interactivity, and performance—as well as user-focused
aspects, including usability, clarity, and satisfaction. This dual perspective ensures that the
dashboard not only functions correctly from a system perspective but also provides a positive
experience for end-users. To present the findings clearly, the evaluation is divided into two

parts: technical evaluation and user acceptance evaluation.

161

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.3.1 Technical Evaluation

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Component Objective Procedures and Expected Outcomes Actual Result Pass/Fail
Data Verify correct data source Confirm dashboard is connected to Dashboard successfully connected to | Pass
Accuracy link and metrics OneDrive; compare dashboard totals vs raw | OneDrive and show no error; total

dataset. Dashboard should match OneDrive | transactions = 100,000, fraud cases =

data and reflect updates after refresh. 478, matching the raw dataset totals;

metrics update correctly after refresh

Visual Ensure charts and tables Inspect line, bar, and pie charts. Labels, All charts accurately displayed trends | Pass
Accuracy represent data correctly axes, legends should be correct. Charts and proportions. Axes, labels, and

should reflect accurate trends, proportions, | legends were correct.

and values.
Slicer Confirm slicers interact On Time Analysis page, apply different Slicer selections updated all visuals Pass
Functionality | correctly with visuals slicer (category, fraud label) sequentially. correctly. Multiple slicers worked

All visuals should update dynamically together without issues (see Figure

without conflicts. 6.3.1-6.3.3).
Conditional | Validate performance card | On Model Performance Page, check KPI | Colours applied correctly for all Pass
Formatting | colour coding cards. Metrics > 90% should display green, | metrics (see Figure 6.3.4).

75-89% yellow, <75% red.
Conditional | Validate fraud/wrong On Credit Card Transactions Page, check | Highlighting worked as expected — Pass
Formatting | prediction highlighting transaction table. Fraud cases and wrong only fraud cases were highlighted, and

predictions should display in red. since no wrong predictions existed,

none were marked (see Figure 6.3.5).
162

CHAPTER 6

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Drill-through | Ensure navigation to On Credit Card Transactions Page, click | Drill-through worked correctly. Pass
detailed view works a transaction in the Transaction History Details matched the selected record,
table. Dashboard should open Transaction | and Transaction ID was consistent
Details Page with matching metrics, card with the selected row (see Figure
info, and demographics. 6.3.6-6.3.7).
Performance | Test load and refresh speed | Measure time to open PBIX file and refresh | Dashboard PBIX file opened in 30s; Pass
dataset of 100k records. File should open refresh completed in 1 min.
<1 min, refresh <2 min.
Table 6.3.1: Technical Evaluation Test Cases and Results
163

CHAPTER 6

@ Fraud Label Category Transaction Period
Al VoA ~ 2020 ~

Fraud Pattern - Time Analysis

Fraud vs Non-Fraud by Day Fraud by Time Fraud vs Non-Fraud by Hour
 Fraud Count @ Non-Fraud Count ®Fraud Count @ Non-Fraud Count
E] 4745 706
= orea 1135 TS 1
5 o503 2
= 8
E " “ & te s
= 1 K 8 K 0 B E 2
o 401 (83,89 0 0
Day Hour
Fraud Count Over Time Fraud vs Non-Fraud by Menth

& Froud Count @iNon-Froud Count

sy e
-m-H-R-0-H:-N-

Tl

Figure 6.3.1: Time Analysis Page with Category Slicer Not Applied

@ Fraud Label - Category 2 Transaction Period
Al misc_net v 2020 ~

Fraud Pattern - Time Analysis

Fraud vs Non-Fraud by Day Fraud by Time Fraud vs Non-Fraud by Hour

tion Count

Fraud Count
MNon-Fraud Count

®Fraud Count @ Non-Fraud G ®Fraud Count @Nen-Fraud Count
Fraud Count Over Time Fraud vs Non-Fraud by Month

T TEEEL

Hour
@Fraud Count @Non-Fraud Count

Figure 6.3.2: Time Analysis Page with Category Slicer Applied

@ Fraud Label Category v Transac tion Period o
~ 0, >

Fraud Pattern - Time Analysis - e

Fraud vs Non-Fraud by Day Fraud by Time Fraud vs Non-Fraud by Hour

®Fraud Count @Non-Fraud Count T ®Fraud Count @ Noa-Fraud Count
T u & &
H - o L » g
o 4 E 2
2 = B
g i 10 ‘cg
" 3 3
B A R B - g g

. 895 J
Day Hour
Fraud Count Over Time Fraud vs Non-Fraud by Month

@ raud Count @ Nom Fraud Count @Froud Count @Nen-Froud Caunt
_ _ E 12
2 [[
T 30303 3 s 3 i . I I .

Figure 6.3.3: Time Analysis Page with Category and Fraud Label Slicers Applied

164

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Performance Metrics

0.9991 0.9597
0.9000 0.9013

L

0.9828

AUC

Figure 6.3.4: KPI Cards on Model Performance Page with Colour Coding Applied

Transaction ID
rF.

2c4663a8f95af72abf3d106876a3ac4f
34fe2b80f7baca88e3a890f3e5799cf0
38eed4dbB80f63261cbbb5144da18eb1f
39ffc5b7d01d5e6cb76333cdc1764a49
44fcd839d523c96336d89b3 19e5dcfaf
479¢5378269750cedaf11135ae8406ab
4a8025cdab5535e6b13aebb2671e9596
4e03ae076be457f47fb0cad71258c637
502efb313d5a3263ab0094e7fb5a3959
534bf5f53bba506801237c87e6f33bcs
5596bdd96ed1a23ea7fc1a2326491219
59fdaaf4af02ae2614009a3e0dbd8f38
685db86celaZzesfedoddbf40450c9181

Transaction Date & Time Predicted
11/8/2020 11:43:00 PM Non-Fraud
27/10/2020 8:29:00 PM Fraud
2/7/2020 2:32:00 PM Non-Fraud
29/10/2020 4:52:00 AM Non-Fraud
30/7/2020 11:38:00 AM Non-Fraud
23/8/2020 4:02:00 AM Non-Fraud
11/8/2020 2:35:00 AM Non-Fraud
28/12/2020 8:30:00 AM Non-Fraud
29/9/2020 8:09:00 PM Non-Fraud
5/12/2020 8:41:00 AM Non-Fraud
25/8/2020 4:44:00 AM Non-Fraud
7/9/2020 10:01:00 AM Non-Fraud
27/10/2020 11:54:00 PM Fraud

Actual

Non-Fraud
Fraud

MNon-Fraud
MNon-Fraud
MNon-Fraud
Non-Fraud
Non-Fraud
Non-Fraud
Non-Fraud
Non-Fraud
Non-Fraud
Non-Fraud
Fraud

Prediction Result

Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct

Figure 6.3.5: Transaction Table on Credit Card Transactions Page Showing Fraud Case

Highlighting

¥ ooBRhGoCTT
Transaction ID Transaction Date & Time Predicted Actual Prediction Result
-
045d20624d98173b68e262c9f6558596 9/9/2020 10:50:00 PM Non-Fraud Non-Fraud Correct
0b7020601c83989a00fe14f9718c971d 5/9/2020 6:52:00 AM Non-Fraud Non-Fraud Correct
204599ca33fc6519e48733619a7e1274 6/12/2020 7:26:00 PM Non-Fraud Non-Fraud Correct
278f99bfd37a58ee4a86594d7804984d 27/8/2020 251:00 AM Non-Fraud Non-Fraud Correct =
2¢c4663a8f95af72abf3d106876a3ac4f 11/8/2020 11:43:00 PM Non-Fraud Non-Fraud Correct é
|34fe2b80f766ca88€36590f395799cf0 27/10/2020 8:29:00 PM Fraud Fraud ~ ~———* =
38eedddb80i63261cb6b5144da18eb1f 2/7/2020 23200 PM Non-Fraud Non-f oW @satable
39ffc5b7d01d5e6ch76333c4c1764249 29/10/2020 45200 AM Non-Fraud Non-F ~ New visual calculation
44fcd839d523c96336d89b319e5dcf4f 30/7/2020 11:38:00 AM Non-Fraud Non-F Include
479¢5378269750cedaf11135ae8406ab 23/8/2020 4:02:00 AM Non-Fraud Non-F Exclude
4aB025cdab5535e6b13aebb2671e9596 11/8/2020 2:35:00 AM Non-Fraud Non-F © Drill through >
4e03ae076bed57f47tb0cad71258c637 28/12/2020 8:30:00 AM Non-Fraud Non-F .
502efb313d5a3263ab0094e7fb5a3959 29/9/2020 8:09:00 PM Non-Fraud oup

Non-F

Fraud Over T

Fraud Count @ Non-Fi

Transaction Details

O

Nata

Figure 6.3.6: Selected Transaction in Credit Card Transactions Page Prior to Drill-through

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

165

CHAPTER 6

©

Transaction Details

Transaction ID :
34fe2b80f76aca88e3a890f3e5799cf0

—_—
Fraud Fraud ‘ ‘ 95.00% Correct
Actual Label Predicted Label Fraud Probability Prediction Result
Transaction Date : Tuesday, 27 October. 2020 Distance from Merchant : 115.66km
Transaction Time : 2000 (Day) Credit Card No.: 573000000000
Transaction Amount : $939.95 Credit Card Fraud Rate : 10.00%
Product Category : shopping_net Gender: Female
City : Jaffrey Age : 70
City Size: Medium Cities Age Group : Senior

Figure 6.3.7: Transaction Details Page Showing Matching Transaction ID

The technical evaluation confirmed that the dashboard performed reliably across all tested
components. Data accuracy was validated by matching dashboard metrics with the raw dataset,
while visual accuracy checks ensured charts, labels, and legends were displayed correctly.
Interactive features such as slicers, conditional formatting, and drill-through functionality all
operated without error, providing smooth navigation and clear visual feedback. Finally,
performance testing showed that the dashboard opened and refreshed efficiently within the
expected time limits. Overall, all test cases passed successfully, demonstrating that the

dashboard meets the required technical standards for accuracy, usability, and performance.

6.3.2 User Acceptance Evaluation (SUS Questionnaire)

To complement the technical evaluation, user acceptance testing was conducted using the
System Usability Scale (SUS) questionnaire. 10 standardised questions were adapted to the
context of the fraud detection dashboard, covering usability, clarity, responsiveness, and
interactivity. The survey was created using Google Forms and distributed to respondents, who
rated each statement on a five-point Likert scale (1 = Strongly Disagree to 5 = Strongly Agree).
This approach provides a structured and quantifiable evaluation of the dashboard’s usability

and user satisfaction.

166

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

A total of 15 respondents participated in the evaluation. The feedback gathered from the
respondents was used to calculate the SUS score and provide insights into the usability, clarity,
responsiveness, and interactivity of the dashboard. To provide a clearer interpretation of the
results, the SUS statements were grouped into five themes: ease of use, perceived complexity,

visual clarity, responsiveness and interactivity, and overall satisfaction.

The ease-of-use theme (Q1, Q3, Q7), which contained positively worded items, received high
ratings, with the majority of respondents selecting 4 or 5, as shown in Figure 6.3.8-6.3.10. Only
one respondent gave a neutral score of 3 for navigation (Q3), as shown in Figure 6.3.9. This
indicates that the dashboard is intuitive, requires minimal learning effort, and provides clear
navigation paths. Overall, the results suggest that users can quickly adapt to the system without
prior training.

1. 1 think the dashboard is easy to use.
15 responses

19

12 (80%)

0 (0%) 0(0%) 0(0%) 3 (20%)

1 2 3 4 5

Figure 6.3.8: Ease of Use Evaluation

3. I found the navigation clear and straightforward.
15 responses

8
8 (53.3%)

6
6 (40%)

4

0(0%) 0(0%)

1 2 3 4 5

Figure 6.3.9: Navigation Clarity Evaluation

167

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

7. 1would imagine most users could learn to use this dashboard quickly.
15 responses

8

8 (53.3%)

7 (46.7%)

0(0%) 0 (0%) 0(0%)
o | \ |
1 2 3

Figure 6.3.10: Ease of Learning Evaluation

In contrast, the perceived complexity theme (Q2, Q4, Q6), which contained negatively
worded items, scored very low, with most respondents choosing 1 or 2, as shown in Figure
6.3.11-6.3.13. Notably, all respondents rated Q6 with a 1, indicating strong agreement that the
dashboard was neither inconsistent nor confusing. These results suggest that users did not

perceive the dashboard as unnecessarily complex or requiring technical support.

2. 1 found the dashboard unnecessarily complex.
15 responses

10.0

9 (60%)

7.5

©,
5.0 6 (40%)

2.5

0 (?%) 0 (0%) 0 (0%)

0.0

Figure 6.3.11: Perceived Complexity Evaluation

4. 1think | would need technical support to use this dashboard.
15 responses

8 (53.3%)
7 (46.7%)

0 (?%) 0(0%) 0 (0%)

3 4 5

Figure 6.3.12: Need for Support Evaluation

168

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6. | found the dashboard inconsistent or confusing.
15 responses

15

15 (100%)

0(0%) 0(0%) 0 (0%) 0(0%)

1 2 3 4 5

Figure 6.3.13: Consistency Evaluation

The clarity of visuals (Q5) was rated particularly highly, with almost all respondents strongly

agreeing that charts, tables, and numbers were easy to understand, as shown in Figure 6.3.14.

5. The visuals (charts, tables, numbers) are clear and easy to understand.
15 responses

15

14 (93.3%)

1(6.7%)

0 (0%) 0(0%) 0(0%)

1 2 3 4 5

Figure 6.3.14: Visual Clarity Evaluation

For the responsiveness and interactivity theme (QS8, Q9), Figures 6.3.15-—6.3.17 illustrate
that nearly all respondents selected 4 or 5, indicating that the dashboard responds quickly to
filters and slicers and that interactive features work as expected. This demonstrates that the

system provides a smooth, responsive, and reliable interaction experience.

169
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

8. The dashboard responds quickly when applying filters, slicers, or refreshing data.
15 responses

8 8 (53.3%)

7 (46.7%)

0(0%) 0 (0%) 0(0%)
o | \ |
1 2 3

Figure 6.3.15: Responsiveness Evaluation

9. The interactive features (slicers, filters, drill-through) worked as | expected.
15 responses

10.0

9 (60%)

7.5

o
5.0 6 (40%)

25
0(0%) 0 (0%) 0 (?%)

0.0 | ‘
1 2 3 4 5

Figure 6.3.16: Interactivity Evaluation

Finally, as seen in Figure 6.3.17, all respondents rated satisfaction highly (4 or 5), showing

strong acceptance and confidence in the dashboard. This confirms that the system meets user

expectations and achieves a high level of usability.

10. Overall, | am satisfied with this dashboard.
15 responses

10.0

9 (60%)

7.5

o
50 6 (40%)

2.5

0(0%) 0 (0%) 0(0%)

Figure 6.3.17: Overall Satisfaction

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

170

CHAPTER 6

After analysing the individual questions, the overall System Usability Scale (SUS) scores
were calculated to provide a single benchmark of usability. The SUS scoring followed the
standard procedure: for positively worded items (Q1, Q3, Q5, Q7, Q8, Q9, Q10), the adjusted
score was calculated as Response — 1, while for negatively worded items (Q2, Q4, Q6), the
adjusted score was calculated as 5§ — Response. This converted all responses into a range from
0 to 4. The adjusted scores were then summed across all 10 statements to obtain a total score
between 0 and 40, which was subsequently multiplied by 2.5 to produce the final SUS score,
ranging from 0 to 100.

QL | Q21 Q3 [Q4[| Q5|1 Q6| Q7| Q8| Q9| QIO [Total (0-40) | SUS (0-100)
5 2 5 2 5 1 5 4 4 5 36 90
4 1 4 1 5 1 5 5 5 5 38 95
5 1 4 2 4 1 4 4 5 4 34 85
5 1 5 1 5 1 5 5 5 5 40 100
5 1 5 2 5 1 4 5 4 4 36 90
5 2 5 2 5 1 5 5 4 5 37 92.5
4 2 4 2 5 1 4 4 4 4 32 80
5 1 4 1 5 1 5 4 5 5 38 95
4 2 5 2 5 1 4 5 4 4 34 85
5 2 4 1 5 1 4 4 5 5 36 90
5 2 3 2 5 1 4 5 4 4 33 82.5
5 1 5 1 5 1 5 5 5 5 40 100
5 1 4 1 5 1 5 5 5 5 39 97.5
5 1 5 2 5 1 4 4 5 5 37 92.5
5 1 5 1 5 1 4 4 5 4 37 92.5

Average 36.47 91.17

Table 6.3.2: System Usability Scale (SUS) Evaluation Results

Table 6.3.2 presents the SUS scoring results for all 15 respondents. The scores ranged from 80
to 100, with an overall average of 91.17, which is above the commonly accepted usability
benchmark of 70. This indicates that the dashboard achieved a high level of usability and user

satisfaction, meeting the success criteria set for the evaluation.

When considered alongside the technical evaluation, these results confirm that the dashboard
is not only functionally accurate and reliable but also user-friendly and well-accepted by end

UuSers.

171

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.4 Insights from Dashboard Results

The dashboard not only serves as a visualization tool but also provides valuable insights into
fraud behaviour across temporal, spatial, demographic, and behavioural dimensions. Using the
Kaggle credit card fraud test set as the underlying data source, the analysis of outputs across

different dashboard pages revealed several key patterns and risk factors.

Overview
Overview
\ Fraud Trend by Amount
100,000 $5.358,229.44 $53.58
Total Transaction Total Transaction Amount | | Average Transaction Amount
478 $272,163.81 $569.38 -
Total Fraud Total Fraud Amount Average Fraud Amount T 20 SEpdtEl .
| Fraud Rate Over Time
422 $269,549.99 $51.10
Predicted Fraud Count | | Predicted Fraud Amount Average Non-Fraud Amount
0.48% 0.02 0.9991 —
Fraud Rate False Positive Rate (%) Accuracy Rate

Figure 6.4.1: Overview Page

The Overview Page provides a clear summary of the dataset, fraud patterns, and model
performance. It covered 100,000 transactions with a total value of $5.36 million, averaging
$53.58 per transaction. Although fraud cases made up only 0.48% of all transactions, their
financial impact was significant, with a total fraud amount of $272,163.81 and an average of
$569.38 per fraudulent transaction—more than ten times higher than the average non-fraud
amount of $51.10. The model successfully identified 422 fraud cases with very high accuracy
(99.91%) while maintaining a very low false positive rate (0.02%), indicating its strong ability

to distinguish between legitimate and fraudulent activity.

The trend charts provide further insight, as both fraud amount and fraud rate show irregular
spikes at certain periods, suggesting that fraud occurs in sudden increases rather than
consistently over time. This opportunistic behaviour highlights the importance of continuous
monitoring and timely detection, since fraud cases are not evenly distributed but concentrated
in specific high-risk periods.

172

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Time Analysis

@ Fraud Label e Category =7 Transaction Period

. . All N All hd 2020 ~
Fraud Pattern - Time Analysis
Fraud vs Non-Fraud by Day Fraud by Time Fraud vs Non-Fraud by Hour
@ Fraud Count @Non-Fraud Count @®Fraud Count @ Non-Fraud Count

Day
%)

77 (1611
5K

2fi88c 1g@a°

709 11135 175
osgz 10709
7 7 ssIaIssIsAI 83
R P N P g

=

Fraud Count
B

Transaction Count
Non-Fraud Count

&
: Night

401 (83.80%) 10 20
Day Hour

e
w

Fraud Count Over Time Fraud vs Non-Fraud by Month

ud Count @Non-Fraud Count @Froud Count @Non-Fraud Count

il <enen

.......

Transaction Count

Figure 6.4.2: Time Analysis Page

The first chart, Fraud vs Non-Fraud by Day, compares daily transaction amounts between
fraud and normal cases. From the chart, it can be seen that fraud does not always rise in line
with total transactions. It is evident that fraud is disproportionately higher during weekends,
particularly on Sundays, which recorded the highest fraud count despite not having the peak
transaction volume. Mondays and Saturdays also show elevated levels of fraudulent activity,
while mid-weekdays such as Tuesday and Wednesday display comparatively lower fraud
counts. This pattern suggests that fraudsters may take advantage of weekends when both

customer vigilance and institutional monitoring are potentially weaker.

The Fraud by Time chart shows that over 80% of fraud takes place at night, suggesting that
fraudsters prefer to operate when monitoring is weaker, such as late at night or early in the
morning. This observation is further supported by the Fraud vs Non-Fraud by Hour chart,
which compares fraudulent and legitimate transactions across the day. It highlights that fraud
risk starts to rise around 10 PM and remains elevated until about 3 AM. Although the overall
number of transactions is lower during these hours, the proportion of fraud is significantly
higher than during the day, making late-night hours the most vulnerable period for fraudulent

activity.

173

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

The Fraud vs Non-Fraud Count Over Time chart shows that while non-fraud transactions
remain stable across the days, fraud cases appear in small, scattered amounts. The variation
does not indicate a strong pattern but rather suggests random or opportunistic fraud attempts.
This reinforces the need for continuous monitoring, as fraud can occur unpredictably at any

time, even when transaction volumes appear normal.

The last chart, Fraud vs Non-Fraud by Month, shows longer-term patterns. The monthly
view shows that while December records the highest number of transactions overall, the fraud
count during this period is relatively low. This suggests that higher transaction volume does
not necessarily lead to higher fraud cases. In contrast, months with fewer total transactions,
such as August and October, show higher fraud counts, indicating that fraud patterns are not
strictly tied to transaction activity levels. Instead, fraud appears to occur more steadily across

months, without a direct seasonal spike.

Geography
@ Fraud Label Population Group Distance from Merchant
All v All % 0.00 140.00
Fraud Pattern - Geography _
Fraud Hotspot Map Summary
®Fraud @ Non-Fraud - The population group with the highest fraud count is Small Cities, with
v ® 4 311 cases, contributing 65.06 % of all fraud.
- The population group with the highest fraud rate is Very Large Cities at
100.00 %.
- The distance group with the highest fraud rate is 140 km at 4.00 %.
- The distance group with the highest fraud count is 80 km, with 69
fraud cases (14.44 % of total fraud).
argasso - Fraud transactions occurred as close as 6.08 km and as far as 142.85
mexico. cuBA km from the merchant.
¥ Micggpt B 2025 TomiTom. © 2025 Microsot Cofporgtion, Tems
Fraud vs Non-Fraud by Population Group Fraud vs Non-Fraud by Distance from Merchant

@Fraud Count @Non-Fraud Count ——Fraud Count —— Non-Fraud Count

Non-Fraud Count
Non-Fraud Count

Figure 6.4.3: Geography Page
The Fraud Hotspot Map visualizes the distribution of fraudulent and non-fraudulent
transactions across the United States. Each dot represents a transaction location, with red
indicating fraud and blue indicating non-fraud, while a half-red, half-blue marker signifies the
presence of both types at the same location. This visualization makes it easier to identify

174

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

geographical clusters and potential hotspots. For instance, Figure 6.4.4 illustrates that when
the cursor hovers over an isolated point, the tooltip displays detailed information such as the
city name Honokaa, the fraud label indicating it as a fraudulent case, the latitude and longitude
coordinates, a transaction count of four, the corresponding merchant coordinates, and a
recorded distance of 84.16 km from the merchant. The results indicate that fraud is not evenly
distributed: while most transactions are concentrated in the eastern and central United States,
fraud hotspots appear scattered within these clusters, suggesting that fraudulent activity tends

to emerge in particular areas rather than being uniformly spread.

Fraud Hotspot Map

® Fraud @ Non-Fraud

City Honokaa
Fraud Label Fraud
Cardholder Latitude 20.0827
Cardholder Longitude -155.488
! Transaction Count 4
' Merchant Latitude 20.16 : -
Merchant Longitude -155.84 | Gult of C SB{GEI10

Distance from Merchant 84.16 o U R
8" Micggptt i 2025 TomTom, © 2025 Microsoft crpmgz;oingms

Figure 6.4.4: Tooltip Information from Honokaa Transaction Point

The Fraud vs Non-Fraud by Population Group bar chart compares transaction counts across
city sizes. Small Cities record the highest transaction volumes overall, making them the biggest
source of fraud in absolute terms. However, fraud cases are also observed in Large Cities,
Medium Cities, and Very Large Cities, though in smaller numbers. This indicates that fraud is
not exclusive to one type of city—while small cities dominate due to volume, larger urban

areas are not immune to fraud risk.

The Fraud vs Non-Fraud by Distance from Merchant line chart plots fraud and non-fraud
counts against distance. Both fraud and non-fraud transactions increase together as distance
grows, peaking around 80 km, before declining again. The parallel trend suggests that
fraudsters often mimic normal transaction distance patterns to avoid detection, but the elevated
fraud share at 80 km shows a hotspot where risk is disproportionately high. Beyond 100 km,
both fraud and non-fraud counts drop sharply, showing that long-distance transactions are less

common overall.
175

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

.
Demographics
@ Fraud Label Age Group Category v Transaction Period N
All e All e All v All N
Fraud Pattern - Demographics
Fraud vs Non-Fraud by Age Group Fraud by Gender Fraud by Age Group and Gender E
®Fraud Count ®Non-Fraud Count @female ®Male Adult Mid-Age Senior Young

47406

222

(46.44%) Female 116 57 83 (Blank) 16
£
27z .
23252
=
Male 111 54 52 5
227 135 1 5 1152 256

7
s
Adult Senior Mid-Age Young (53.56%)
Age Group

Credit Card No. Fraud Count Iutal Transaction Fraud Rate Summary

3540420000000000 - Adult had the highest fraud count (227 cases, 47.49 % of total).
3550410000000000 - Fraud in Adult was 4440.00 % higher than Young (5 cases), which had
3581130000000000 the lowest fraud count.

3586010000000000 - The age group with the highest fraud rate is Senior at 0.58 %.
4229730000000000 . Fraud for Female (256 cases) was higher than Male (222 cases).

- The gender with the highest fraud rate is Male at 0.49 %.
- Female Adult recorded the highest fraud count at 116 cases.

4352310000000000000
4560400000000000000
572000000000

Figure 6.4.5: Demographics Page

The Fraud vs Non-Fraud by Age Group chart compares the volume of fraudulent and
legitimate transactions across different age categories. Fraud is represented in red, while non-
fraudulent transactions are displayed in blue. From this chart, it is evident that the adult age
group records the highest number of fraud cases, while the young age group shows the
least. This suggests that adults, due to higher transaction activity, face greater exposure to fraud

compared to younger or mid-age groups.

Fraud by Gender chart provides a clear breakdown of fraud cases between male and female
cardholders. While the difference is not extreme, the chart shows that female cardholders
record slightly more fraud cases than male cardholders. This finding suggests minor

variations in fraud exposure or transaction behaviour between genders.

The Fraud by Age Group and Gender heatmap combines the two demographics to reveal
intersections. Darker shades indicate higher fraud counts. The heatmap shows that adult
females represent the group with the highest fraud count, followed by adult males.
Meanwhile, younger groups records minimal fraud activity regardless of gender. This
combined view provides deeper insight, showing not only which groups are most affected

individually, but also how fraud concentrates at the intersection of gender and age.

176

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

The Summary Box highlights the age and gender groups with the highest and lowest fraud
counts and rates, as well as the age—gender combination most affected, giving a quick view of

key demographic risks.

The Credit Card Fraud table lists all cards associated with fraudulent transactions. It displays
the card number, fraud count, total transactions, and fraud rate. The fraud rate column is
highlighted in red, where darker shades indicate higher rates, with some cases reaching 100%.
This table provides investigators with detailed visibility into which specific credit cards are
consistently linked to fraudulent activity. In addition, it supports drill-through functionality,
allowing users to right-click on a card number and navigate to the Credit Card Transaction page
for further analysis. For instance, drilling through on card number ‘573000000000’ provides

a detailed view of its associated transactions as shown in Figure 6.4.6.

‘Credit Card No. Fraud Count Total Transaction Fraud Rate
|573000000000 * 40 10.00% |
I Show as a table -
2358120000000000 . _ 43 4.65%
4030000000000 MNew visual calculation 43 4.65%_
570000000000 Include 46 2.17%
2222160000000000 Exclude 48 6.25% |
2714020000000000 ® Drill through > Credit Card Transactions
472584000000000000 48 2.08% I
£N4 1 A0NNANNNNNNANNA Clear selections Ao £ DEoL

Figure 6.4.6: Example of Drill-Through Navigation from Credit Card Fraud Table

177
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Credit Card Transactions

Credit Card Transactions

Credit Card No.:
573000000000

40 4 10.00% $3.809.02 $5,343.63

Total Transaction Count Fraud Count Fraud Rate Fraud Amount Total Transaction Amount Spent

Transaction ID Transaction Date & Time Predicted Actual Prediction Result Fraud Over Time

34fe2b80f76aca88e3a890f3e5799cf0 27/10/2020 8:29:00 PM Fraud Fraud Correct
685db86ce0aZesfe864dbf40450c9181 27/10/2020 11:54:00 PM Fraud Fraud Correct
75a08f669800ac16bdc32c9b0706bf82 26/10/2020 11:32:00 PM Fraud Fraud Correct
900c7e0cb0dd575f086dc1be877ace07 26/10/2020 9:53:00 PM Fraud Fraud Correct
045d20624d98173b68e262c3f6558596 9/9/2020 10:50:00 PM Non-Fraud Non-Fraud Correct
0b7020601c83989a00fe14f9718c971d 5/9/2020 6:52:00 AM Non-Fraud Non-Fraud Correct
204599ca33fc6519e48733619a721274 6/12/2020 7:26:00 PM Non-Fraud Non-Fraud Correct
278f99bfd37a58ee4a86594d7804984d 27/8/2020 2:51:00 AM Non-Fraud Non-Fraud Correct
2c4663a8f95af72abf3d106876a3ac4f 11/8/2020 11:43:00 PM Non-Fraud Non-Fraud Correct
38eed4db80f63261cb6b5144dal8eb1f 2/7/2020 2:32:00 PM Non-Fraud Non-Fraud Correct
39ffc5b7d01d5e6ch76333c4c1764349 29/10/2020 4:52:00 AM Non-Fraud Non-Fraud Correct
44fcdB839d523c96336d89b319e5dcfaf 30/7/2020 11:38:00 AM Non-Fraud Non-Fraud Correct

479c5378269750cedaf11135ae8406ab 23/8/2020 4:02:00 AM Non-Fraud Non-Fraud Correct O - O]
ate

Fraud Count @ Non-Fraud Count

Transaction Count

i
5

Figure 6.4.7: Credit Card Transactions Page

Drilling through to the transaction-level view of credit card number ‘573000000000’ provides
deeper insights into the fraud patterns associated with this account. Overall, the card has 40
recorded transactions, out of which 4 were confirmed as fraudulent, resulting in a fraud
rate of 10%. This is a significant proportion, given the financial impact: fraudulent
transactions alone amounted to $3,809.02, which represents more than 70% of the total
amount spent ($5,343.63). This highlights that while fraudulent activity was limited in count,

it carried a disproportionately large monetary impact compared to legitimate transactions.

The Transaction-level details table further confirm the accuracy of the fraud detection model.
Each of the four fraudulent transactions was correctly identified and flagged, reflecting strong
predictive performance. These fraud cases occurred primarily during late-night hours (e.g.,
11:32 PM and 11:54 PM), which aligns with broader time-analysis findings that fraudsters
exploit reduced monitoring during night periods. In contrast, non-fraudulent transactions were
distributed more evenly across different times of the day, suggesting a clear behavioural

distinction between fraudulent and legitimate usage.

The Fraud Over Time chart shows transaction activity between July and November 2020.
Most of the card’s transactions were legitimate and spread evenly across the months, but the

fraudulent ones appeared in small clusters, especially in late October. These spikes are
178

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

important because they suggest planned attempts at fraud rather than random events.
Investigators can use this trend to check if fraud matches seasonal patterns, busy shopping

periods, or possible leaks of cardholder information.

Overall, the drill-through analysis shows that even though only 10% of this card’s transactions
were fraudulent, they caused most of the financial loss. The fraud cases mainly happened late
at night and were grouped into certain months, pointing to deliberate and opportunistic misuse.
For investigators, this page provides useful evidence to strengthen fraud controls on the account,
such as adding extra checks for late-night transactions, reviewing high-value purchases more

closely, and monitoring for repeated bursts of suspicious activity.

By right-clicking on a transaction, users can navigate to the Transaction Details page for deeper
analysis. For example, drilling through on the first transaction reveals its full details as shown

in Figure 6.4.8.

Transaction 1D Transaction Date & Time Predicted ictual Prediction Result
|34fe2b80f76aca8893a890f" ’";r:m;"as . 1aﬂbﬂ|e“ TTTTT T T00PM Fraud Fraud Correct
685db86cela2edfe8b4dbt. 34:00 PM Fraud Fraud Correct
75a08f669800ac16bdc32c New visual calculation 32:00PM Fraud Fraud Correct
900c7e0cb0dd575f086dc1 Include 3:00 PM Fraud Fraud Correct
045d20624d98173b68e26. Exclude 00 PM Non-Fraud Non-Fraud Correct
0b7020601c83989a00fe14 ©) Drill through S Transaction Details aud Correct
204599ca33fc6519e487331 — S ———— (1 [s B @o]y (o}
278f99bfd37a58ee4a8659: 00 AM Non-Fraud Non-Fraud Correct
2c4663a8195af72abf3d106 ~ Clear selections 300PM Non-Fraud Non-Fraud Correct
38eed4db80f63261chbb51 0 PM Non-Fraud Non-Fraud Correct
39ffc5b7d01d5ebch76333 Copy 5> 200AM Non-Fraud Non-Fraud Correct

A4fcd839d523¢96336d89b319esdctar 307772020 11:38:00 AM - Non-Fraud Non-Fraud Correct
479c5378269750cedaf11135ae8406ab 23/8/2020 4:02:00 AM MNon-Fraud Non-Fraud Correct

Figure 6.4.8: Example of Drill-Through Navigation from Transaction-level Details Table

179

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Transaction Details

©

Transaction Details

Transaction ID :
34fe2b80f76aca88e3a890f3e5799cf0

—_—
Fraud Fraud 95.00% Correct
Actual Label Predicted Label Fraud Probability Prediction Result
Transaction Date : Tuesday, 27 October, 2020 Distance from Merchant : 115.66km
Transaction Time : 2000 (Day) Credit Card No.: 573000000000
Transaction Amount : $939.95 Credit Card Fraud Rate : 10.00%
Product Category : shopping_net Gender: Female
City : Jaffrey Age: 70
City Size : Medium Cities Age Group : Senior

Figure 6.4.9: Transaction Details Page

The transaction details page provides a deeper look into one of the fraudulent transactions
linked to this credit card account. In this case, transaction ID
‘34fe2b80f76aca88e3a890f3e5799cf0’ was correctly identified as fraud with a high
confidence score of 95%, confirming the accuracy of the detection model. The transaction
amount of $939.95 is relatively large, consistent with the broader pattern where fraudulent
activity on this card tends to involve disproportionately high-value purchases. The payment
was made under the shopping net category, indicating an online channel that is generally more

susceptible to misuse compared to in-person transactions.

Additional context highlights that the cardholder is a 70-year-old female from Jaffrey,
categorized as a senior in a medium-sized city—a demographic that can be more vulnerable
to fraud attempts. Furthermore, the transaction occurred 115.66 km away from the merchant
location, suggesting a possible geographic inconsistency that may raise suspicion. Although
many fraud cases on this card occurred late at night, this one happened earlier in the evening
(8 PM), showing that fraud is not limited to specific hours. Overall, the case reinforces how

high value and online transactions are strong indicators of fraudulent behaviour.

180

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Behavioral Analysis

@ Fraud Label Category v Transaction Date
. - All 7 All v 21/6/2020 B 31/12/2020 B
Fraud Pattern - Behavioral Analysis ' .
Fraud vs Non-Fraud by Category Total Amount by Fraud vs Non Fraud Average Transaction Amount by Fraud vs

Non-Fraud

Fraud Average of Amount: $569.38

.
130 124 119 62 43
- | H e “H Y] I Average of Amount: §51.10
Y 5 s

s ‘ < s
N _o@“ & 0O Non-Fraud
& 5° $5,086,065.63

®Fraud Count @®Non-Fraud Count

70327 Fraud
$272,163.81

Transaction Count

Category

Summary
- The highest fraud count is in shopping_net category with 130 cases, while the lowest is in shopping_pos category with 43 cases.
- Fraud transactions account for 5.08 % of the total transaction amount.
- The category with the highest fraud rate is shopping_net, with a fraud rate of 1.78 %.
- The category with the highest overall fraud amount is shopping_net, with a total fraud value of $129,346.20.
-On average, fraud transactions are 11.14x larger than non-fraud transactions ($569.38 vs $51.10).

Figure 6.4.10: Behavioral Analysis Page

The first visualization, Fraud vs Non-Fraud by Category chart, compares the number of
fraudulent and non-fraudulent transactions across various categories such as shopping net,
grocery pos, misc_net, shopping pos, and others. Fraudulent transactions are represented in
red, while non-fraudulent transactions appear in blue. From the chart, while categories like
shopping net and grocery pos record the highest transaction counts, fraud is
disproportionately concentrated in shopping net, which registers the highest fraud cases. This
indicates that fraudsters prefer online shopping platforms over point-of-sale transactions,

likely due to weaker verification measures and the ease of executing remote purchases.

The Total Amount by Fraud vs Non-Fraud chart shows that although fraudulent transactions
make up only a small fraction of the overall count, they account for a disproportionately large
share of the total value, reaching $272,163.81 compared to $5,086,065.63 for non-fraudulent
transactions. This highlights that fraud is often concentrated in higher-value cases rather than
in volume. The Average Transaction Amount by Fraud vs Non-Fraud chart further supports
this pattern, showing that the average fraudulent transaction is $569.38, which is more than
eleven times higher than the $51.10 average for legitimate transactions. Together, these
findings suggest that fraudsters deliberately target high-value purchases to maximize returns,
underscoring the importance of applying stricter monitoring and risk controls to larger
transactions.

181

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

The Summary box provides a concise overview of fraud trends. It shows that the highest fraud
activity occurs in the online shopping category, while point-of-sale transactions record the
lowest. Online channels also have the highest fraud rate and overall fraud amount, indicating

that they are the most vulnerable environment and represent the greatest financial exposure.

Model Performance

Prediction Result
@ Model Performance | \

[™ { P
Random Forest + Oversampling d)

Confusion Matrix E Summar Predicted Results by Category
Actual Class All metrics are excellent; model performance is Ly (1
outstanding. D
fraud Non-Fraud Precision is excellent, recall is lower than precision, so
A fraud detection may miss some cases.
8 Eraud 405 17 The F1-score is excellent, with strong _prf:cwsion—recall =
- balance. The model successfully identifying frauds 5 50
% while minimizing false alarms.
5 The MCC is excellent. This shows strong balance in
2 Non-Fraud 73 predictions, even considering class imbalance.
= The AUC is excellent, showing strong capability in 0
distinguishing fraud. other
Category
i rediction Result by Age Group
Performance Metrics Pred Result by Age G
®FN ®FP
60
Accuracy ‘ Precision g
S
20 —
0.9000 0.9013 0.9828 R
Adult Senior Mid-Age Young
F1 Score MCC AUC Age Group

Figure 6.4.11: Model performance Page

Confusion Matrix heatmap shows that the majority of predictions fall correctly into their
categories, with 405 true positives and 99,505 true negatives, while only 17 false positives
and 73 false negatives appear. This demonstrates excellent predictive strength, but the
presence of missed fraud cases (false negatives) highlights a key risk area, since undetected

fraud can cause significant financial losses.

The Performance Metrics cards give a concise yet powerful snapshot of model quality across
six dimensions. Accuracy (0.9991), precision (0.9597), F1-score (0.9000), MCC (0.9013), and
AUC (0.9828) are all in green, reflecting excellent results. Recall (0.8473), however, is
highlighted in yellow, signalling a relative weakness. This indicates that while the model is

highly precise in detecting fraud, it sometimes misses fraudulent cases.

182

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

The Prediction Result slicer is set by default to display false negatives and false positives,
since these errors are most critical for fraud detection. The Predicted Results by category
chart breaks down misclassifications into false negatives and false positives across transaction
categories. The “other” category stands out, with 73 missed frauds and 17 false alarms. This
suggests that certain types of transactions, possibly due to their diverse or irregular patterns,

present more challenges for the model.

Similarly, the Predicted results by age group chart shows that most errors occur in the adult
group, with 42 missed frauds and 10 false positives, while seniors and mid-age groups show
moderate levels of misclassification, and young users experience very few errors. These

insights reveal where the model struggles most, allowing targeted refinements.

Prediction confidence & Key Influencers

©

Prediction Confidence & Key Influencers

Fraud Count by Canfidence Level Key influencers Top segments Y &2

16 e
3 8 . 9 0 % L What influences Predicted Label to be Fraud ?

(15.:
Confidence Level

High Confidence Percentage Very High

Low

High

3 8 9 e Population Group is Very p—
Large Cities =

370 77.41%)

High Confidence Count ' ~
Note: Predicted probabilities >= 0.8 are considered high confidence, while those < 0.5 are considered low confidence. el i=lHight @'
D’ansaction D Prediction Actual Predicted Proba Confidence Level Transaction Amount goes o
ff4ddb2448bc7d316d2f5e264fbSed47 0 1 0.05 Low *
fe9a85156e35¢083ab59bdc74d97bb68 0 1 0.29 Low N
fdda56e8c754897aba310370f14b8b71 0 1 0.04 Low Category is shopping_net 5400 |
f731153416f2ad16f4474c8383bc5f80 0 1 0.00 Low
320ea7390c46c272b89334114691733 0 1 0.00 Low
£f0c884F700423b9a899c0f0d c17ade5 0 1 024 Low s : g
ec457550d031a89280caf94d11bdc852 0 1 0.00 Low -
€90fd1b484acaadc987ef461deSffaad 0 1 0.03 Low . - . 4‘\
©70e903b4621a3c8d9c005a2194447b8 0 1 0.26 Low
de37c23662398f69bd10dcb743c2c861 0 1 0.00 Low
de2cdf488416da74fb7044adc6658eba 0 1 0.09 Low

Sortby: Impact Count

Note: Highlighted Transaction IDs represent incorrect predictions.

Figure 6.4.12: Prediction confidence & Key Influencers Page

The prediction confidence section, located on the left side of the page, begins with two KPI
cards that summarize overall certainty. The first card shows that 38.90% of predictions fall
into the high-confidence range, while the second indicates this corresponds to 389
transactions. High confidence is defined as cases where the model’s predicted probability is
at least 0.8, meaning the model is strongly confident in its decision for fraud cases. This gives

183

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

stakeholders a clear benchmark for trust in the model’s outputs, while also showing how often

the model produces highly reliable predictions.

Beside these cards, a Fraud Count by Confidence Level pie chart breaks down predictions
into Very High, High, Medium, and Low categories. The chart reveals that most cases fall into
the Low-confidence range (77.41%), with far fewer in the Medium, High, and Very High
ranges. In this model, a probability of 0.5 or higher is classified as fraud, while anything
below 0.5 is classified as non-fraud. As a result, the large share of Low-confidence predictions
(< 0.5) mostly represents legitimate transactions, which aligns with real-world conditions
where genuine transactions far outnumber fraudulent ones. However, the key limitation is that
some fraud cases also fall into this Low-confidence group, where the model assigns them a
probability below 0.5 and misclassifies them as legitimate, showing the difficulty of detecting

fraud that mimics normal behaviour.

The transaction-level details table provides a tabular breakdown of all individual predictions.
Each row displays the Transaction ID, Predicted Label, Actual Label, Predicted Probability,
and Confidence Level. Incorrect predictions are highlighted in red, making errors easy to spot.
For example, some fraud cases were misclassified as non-fraud because they had very low
probability scores, showing situations where the model lacked sufficient confidence to

correctly flag them.

The key influencers section, on the right side of the page, explains what drives the model to
classify a transaction as fraud. Using Al-driven analysis, the visual ranks the most important
factors. The most significant driver is whether the Population Group is in Very Large Cities,
which increases the likelihood of fraud by nearly 284 times. Other strong influencers include
whether the transaction occurs at night (17.96x higher likelihood), whether the amount
exceeds 61.96 (5.59x higher), and whether the category is shopping_net, grocery_pos, or
misc_net, all of which increase the likelihood by 3—5 times. These findings not only validate
the model’s reasoning but also provide actionable insights for investigators, such as focusing

additional scrutiny on urban, late-night, high-value online transactions.

184

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.5 Project Challenges

This project faced several important challenges that shaped the approach, methods, and results.
One key issue was the strong class imbalance, as fraud made up less than 1% of all
transactions. This created a risk of building a model that looked accurate but failed to detect
fraud, since predicting only non-fraud would still give high accuracy. To address this, different
resampling methods such as SMOTE, oversampling, and under-sampling were tested. These
helped improve recall but also brought trade-offs, such as lower precision, higher

computation time, and the risk of generating unrealistic patterns.

Another challenge was ensuring the model could work well on unseen data and avoiding
data leakage. The very high performance seen on the internal test set did not carry over to the
independent Kaggle test set, showing that the model was too optimistic when tested on familiar
data. In addition, an early mistake in the pipeline—applying target encoding before splitting
the data—caused leakage, which made the model look better than it really was. Fixing this
required carefully rebuilding the preprocessing pipeline to give a fairer measure of real-world

performance.

Finally, evaluation was limited by the lack of strong benchmarks. Unlike software areas with
well-known standards, fraud detection dashboards have very few public examples for
comparison. This made it hard to judge if the dashboard created was competitive or just
functional. As a result, the evaluation focused on meeting project goals and user feedback,

rather than direct comparison with industry-leading tools.

6.6 Objectives Evaluation

This project aimed to address key problems in fraud detection, including data imbalance,
misclassification and evolving fraud patterns through the development of machine learning
models and a Power BI dashboard. The extent to which each objective was achieved is

discussed below.

185

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Addressing data imbalance through resampling techniques

The extreme class imbalance, with fraud making up less than 1% of all transactions, was
addressed using SMOTE, oversampling and under-sampling. Oversampling combined with
Random Forest gave the most reliable results, producing a balanced trade-off between recall,
precision, and Fl-score. SMOTE also improved minority detection, while under-sampling
performed poorly due to information loss. No resampling gave high accuracy but weak recall,
F1, and MCC, showing that accuracy alone is misleading under imbalance. Prior research
highlighted SMOTE’s performance for fraud detection [11,12,18]. This project extends their
findings by systematically comparing multiple resampling methods, proving oversampling to
be the most effective. Although reevaluated results were not as strong as the near-perfect scores
initially seen on the split test set, the model still achieved a solid F1-score of 0.9, which is
considered satisfactory under highly imbalanced conditions. This successfully met the first sub-

objective of enhancing fraud detection performance.
Reducing misclassification with ensemble models

To reduce costly misclassification errors, particularly false negatives, this project compared
Random Forest, AdaBoost, and XGBoost. While all three models performed strongly on the
internal split test, re-evaluation on the independent Kaggle test set confirmed Random Forest
with oversampling is still reliable, achieving accuracy of 0.9991, precision of 0.96, recall of
0.85, and an Fl-score of 0.90. This balance demonstrated its strength in minimizing false
negatives while maintaining high precision. This directly addressed the second sub-objective

of developing models that reduce misclassification.
Monitoring evolving fraud patterns through visualization

The evolving nature of fraud was addressed by deploying the chosen model within an
interactive Power BI dashboard. The dashboard provides real-time monitoring of fraudulent
activity and model performance through drill-through pages, conditional formatting, and
interactive filters. This enables continuous tracking of fraud patterns, supporting timely updates
when concept drift occurs. Thus, the third sub-objective of visualizing fraud detection

performance and patterns was effectively achieved.

186

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Integration of machine learning and Power BI for real-time monitoring

The main objective, integrating machine learning with a Power BI dashboard, was successfully
realized. The exported Random Forest model and its preprocessing pipeline were embedded
into the dashboard, resulting in a user-friendly system that combines predictive analytics with
actionable visualization. This integration ensures the solution is not only technically sound but

also practically valuable for fraud analysts.

6.7 Concluding Remark

This chapter provided a full review of the fraud detection system, covering both the machine
learning model and the Power BI dashboard. The comparison of test sets showed that the real
Kaggle dataset, while not perfect, is a better and more realistic way to measure performance
than a synthetic one. This revealed the trade-off between recall and precision. Testing the final
Random Forest model on this independent dataset proved it was strong, with a solid F1-score
of 0.90, but also showed a drop in recall compared to the internal test set, reminding us why

outside validation is important.

The dashboard was also carefully tested in two ways. The technical check confirmed that it
worked correctly from data input to visualization. The user test, with a very high SUS score of
91.17, showed that people found it easy to use and helpful. The dashboard gave clear insights
into fraud patterns over time, location, demographics, and behaviour, making the system not

just predictive but also an investigation tool.

In short, this chapter shows that the project goals were achieved. The system handles class
imbalance, reduces misclassification errors, and provides a strong platform for tracking fraud
trends. By combining a reliable model with an easy-to-use dashboard, the project delivers a

complete solution that is useful for both research and real-world fraud detection.

187

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

The preliminary phase of this project established a strong foundation for building an
effective fraud detection system in e-commerce. Key steps included thorough EDA, data
preprocessing and handling class imbalance using resampling techniques. These efforts were

essential in preparing the dataset for robust model training and evaluation.

Based on the analysis of model performance, Random Forest and XGBoost consistently
outperformed AdaBoost in fraud detection. Among the resampling methods tested, both
SMOTE and Oversampling significantly improved key metrics such as Recall, F1-score, and
MCC, effectively addressing the challenges of class imbalance. Pipeline 2, which applied
resampling before data splitting and then target encoding, was implemented during
hyperparameter tuning. This pipeline was better to prevent target leakage and provided more

reliable performance metrics that better reflect real-world deployment conditions.

Hyperparameter tuning further refined the models, but results indicated that the base
models were already highly effective. Random Forest and XGBoost showed only marginal
improvements, while AdaBoost benefited more obviously, though it still lagged behind the
other two. Random Forest combined with Oversampling achieved near-perfect performance

across multiple evaluation metrics, confirming its suitability as the final deployed model.

Robustness was validated through testing on both synthetic datasets and the Kaggle
dataset, where the model demonstrated strong generalization and adaptability. Although the
performance was not as high as on the internal split test set (which was near perfect), it still
remained strong, ensuring reliability beyond internal testing and addressing concerns of

overfitting and concept drift.

The integration of the final model into Power BI transformed predictive outcomes into
a decision-support tool. The dashboard enabled monitoring of model performance and fraud
patterns across dimensions such as time, geography, demographics, and behavioural attributes.

Interactive features like slicers, drill-through navigation, and smart narratives enhanced

188

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

usability, while evaluation using the System Usability Scale (SUS) yielded a score of 91.17,

reflecting excellent acceptance and satisfaction among users.

In short, the project successfully addressed key challenges in fraud detection such as
data imbalance, costly misclassification, and evolving fraud patterns through machine learning
and visualization. By selecting Random Forest with Oversampling as the final model and
embedding it within an interactive dashboard, the system achieved the objectives of improving
detection accuracy, reducing false negatives, and providing actionable insights for fraud

management in e-commerce.

7.2 Recommendation

Future studies can extend this work in several directions. First, deep learning
techniques, as highlighted in previous studies [12,19] should be explored for fraud detection.
Unlike ensemble models, deep learning can capture sequential, non-linear, and relational

patterns, making it more effective for detecting complex and evolving fraud strategies.

Second, although this project has already employed CTGAN and TVAE for synthetic
data generation, future work could involve training these models on the full dataset or
developing hybrid approaches that combine synthetic and real-world data. This would improve
the diversity and realism of the generated samples, further enhancing model robustness and

privacy preservation.

Third, real-world data integration is important to validate the system’s usefulness in
industry. Collaborating with e-commerce platforms or financial institutions to test the model
on real transactions would help identify challenges like handling large volumes of data, speed
of processing and meeting security or regulatory requirements. This would make the system

more prepared for actual deployment.

Finally, the system should be moved from Power BI Desktop to Power BI Service for
real-time monitoring. Because Python scripts cannot run directly in the Service, the model
should be hosted outside (for example in Azure ML or a cloud function). Power BI can then
connect to the processed results using dataflows with automatic refresh, live data streams, and
alerts. This would remove the need for manual refresh and give fraud analysts faster updates

and timely warnings.

189

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

R. Khurana, “Fraud Detection in eCommerce Payment Systems: The Role of Predictive
Al in Real-Time Transaction Security and Risk Management,” International Journal
of Applied Machine Learning and Computational Intelligence, 2020, vol. 10, no. 6, pp.
1-32, Available: https://neuralslate.com/index.php/Machine-Learning-Computational-
I/article/view/155.

V. F. Rodrigues et al., “Fraud detection and prevention in e-commerce: A systematic
literature review,” Electronic Commerce Research and Applications, Oct. 2022, vol.
56, p. 101207, dot: https://doi.org/10.1016/j.elerap.2022.101207.

M. Golyerl, S. Celik, F. Bozyigit and D. Kiling, “Fraud Detection on E-Commerce
Transactions Using Machine Learning Techniques,” Artificial Intelligence Theory and
Applications, 2023, vol. 3, no. 1, pp- 45-50, Available:
https://dergipark.org.tr/en/pub/aita/issue/77113/1273652.

P. K. Sadineni, "Detection of Fraudulent Transactions in Credit Card using Machine
Learning Algorithms," 2020 Fourth International Conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 659-660,
doi: 10.1109/I-SMAC49090.2020.9243545.

S. N. Pundkar and M. Zubei, “Credit Card Fraud Detection Methods: A Review,” E3S
web of conferences, Jan. 2023, vol. 453, pp. 01015-01015, doi:
https://doi.org/10.1051/e3scont/202345301015.

S. R. Gayam, “Al-Driven Fraud Detection in E-Commerce: Advanced Techniques for
Anomaly Detection, Transaction Monitoring, and Risk Mitigation,” Distributed
Learning and Broad Applications in Scientific Research, 2020, vol. 6, pp. 124-151,
Available: https://dlabi.org/index.php/journal/article/view/108

Md. Nur-E-Arefin, “A Comparative Study of Machine Learning Classifiers for Credit
Card Fraud Detection,” International Journal of Innovative Technology and
Interdisciplinary Sciences, Jan. 2020, vol. 3, no. 1, pp. 395-406, doi:
https://doi.org/10.15157/1jitis.2020.3.1.395-406.

S. Ray, “Fraud Detection in E-Commerce Using Machine Learning,” BOHR
International Journal of Advances in Management Research, 2022, vol. 1, no. 1, pp. 7—

14, doi: https://doi.org/10.54646/bijamr.002.

190

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Puh and L. Brki¢, "Detecting Credit Card Fraud Using Selected Machine Learning
Algorithms," 2019 42nd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2019, pp.
1250-1255, doi: 10.23919/MIPRO.2019.8757212.

U. Porwal and S. Mukund, “Credit Card Fraud Detection in e-Commerce: An Outlier
Detection Approach,” arXiv:1811.02196 [cs, stat], May 2019, Available:
https://arxiv.org/abs/1811.02196.

V. N. Dornadula and S. Geetha, “Credit Card Fraud Detection using Machine Learning
Algorithms,” Procedia Computer Science, 2019, vol. 165, pp. 631-641, doi:
https://doi.org/10.1016/j.procs.2020.01.057.

A. Saputra and Suharjito, “Fraud Detection using Machine Learning in e-
Commerce,” International Journal of Advanced Computer Science and Applications,
2019, vol. 10, no. 9, doi: https://doi.org/10.14569/ijacsa.2019.0100943.

O. Adepoju, J. Wosowei, S. lawte and H. Jaiman, “Comparative Evaluation of Credit
Card Fraud Detection Using Machine Learning Techniques,” 2019 Global Conference
for Advancement in Technology (GCAT), Bangalore, India, 2019, pp. 1-6, doi:
10.1109/GCAT47503.2019.8978372.

E. ITleberi, Y. Sun and Z. Wang, “Performance Evaluation of Machine Learning
Methods for Credit Card Fraud Detection Using SMOTE and AdaBoost,” in I[EEE
Access, vol. 9, pp. 165286-165294, 2021, doi: 10.1109/ACCESS.2021.3134330.

S. Najem and S. Kadhem, “An efficient feature engineering method for fraud detection
in e-commerce,” Iraqi Journal of Computer Communication Control and System
Engineering, pp. 40-52, Sep. 2021, doi: 10.33103/uot.ijccce.21.3.4.

K. K. Mohbey, M. Z. Khan, and A. Indian, “Credit card fraud prediction using
XGBoost,” International Journal of Information Retrieval Research, vol. 12, no. 2, pp.
1-17, May 2022, doi: 10.4018/ijirr.299940.

Y. Kurelli, S. Arslankaya, and M. T. Zeren. “Detection of Credit Card Fraud in E-
Commerce Using Data Mining,” European Journal of Science and Technology, Nov.
2020, doi: https://doi.org/10.31590/ejosat.747399.

A. Q. Abdulghani, O. N. UCAN and K. M. A. Alheeti, “Credit Card Fraud Detection
Using XGBoost Algorithm,” 2021 14th International Conference on Developments in
eSystems Engineering (DeSE), Sharjah, United Arab Emirates, 2021, pp. 487-492, doi:
10.1109/DeSE54285.2021.9719580.

191

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://doi.org/10.31590/ejosat.747399

REFERENCES

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. Sailusha, V. Gnaneswar, R. Ramesh and G. R. Rao, “Credit Card Fraud Detection
Using Machine Learning,” 2020 4th International Conference on Intelligent
Computing and Control Systems (ICICCS), Madurai, India, 2020, pp. 1264-1270, doi:
10.1109/ICICCS48265.2020.9121114.

C. Tejasri, C. S. U. Aryan, D. Deekshith, A. Chintu and T. S. Reddy “FRAUD
DETECTION IN E-COMMERCE USING MACHINE LEARNING,” International
Research Journal of Modernization in Engineering Technology and Science, 2022, vol.
4, no. 6, pp. 2924-2926. [Online]. Available: https://www.irjmets.com/

S. Sen and A. Ghosh, “Analysis and Prediction of Parkinson’s Disease using Machine
Learning Algorithms,” TechRxiv, 2022. doi:
https://doi.org/10.36227/techrxiv.20005703.v1.

W. Wang, G. Chakraborty, and B. Chakraborty, “Predicting the Risk of Chronic Kidney
Disease (CKD) Using Machine Learning Algorithm,” Applied Sciences, vol. 11, no. 1,
p. 202, Dec. 2020, doi: https://doi.org/10.3390/app11010202.

E. Martiri, “Synthetic Data Generation,” IGI Global, 2024, pp. 118-138. doi:
10.4018/979-8-3693-0255-2.ch005

U. B. Bhadange, S. Jadhav, B. Jadhav, S. Ghatol, and P. Kahale, “Comprehensive
Review of Synthetic Data Generation Techniques and Their Applications in Healthcare,
Finance, and Marketing,” International Journal of Advanced Research in Science,
Communication and Technology, Nov. 2024, doi: 10.48175/ijarsct-22066

M. Goyal and Q. H. Mahmoud, “A Systematic Review of Synthetic Data Generation
Techniques Using Generative Al,” Electronics, vol. 13, no. 17, p. 3509, Sep. 2024, doi:
10.3390/electronics13173509

F. S. Karst, S.-Y. Chong, A. A. Antenor, E.-Y. Lin, M. M. Li, and J. M. Leimeister,
“Generative Al for Banks: Benchmarks and Algorithms for Synthetic Financial
Transaction Data,” Dec. 2024, doi: 10.48550/arxiv.2412.14730

S. Almasi, K. Bahaadinbeigy, H. Ahmadi, S. Sohrabei, and R. Rabiei, “Usability
Evaluation of Dashboards: A Systematic Literature Review of Tools,” BioMed
Research International, wvol. 2023, no. 1, pp. 1-11, Feb. 2023, doi:
https://doi.org/10.1155/2023/9990933.

192

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://www.irjmets.com/

APPENDIX
POSTER

FACULTY OF INFORMATION
COMMUNICATION AND TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Introduction
E-commerce has transformed traditional business through digita| techno|ogies, offering
convenience and g|obc1| reach. However, the rise in online transactions has led to
increased fraud, making machine |earning methods essential for detecting and

preventing fraudulent activities in real time.

Problem Statements

« Data imbalance in fraud detection
datasets.

« Misclassification in machine |eqrning, where
the models treat all errors equct”y.

+ Evolving nature of fraud, where fraudulent

patterns c:hcmge over time.

Methodology

E-Commerce Fraud
Dataset

Randorm

Forest

Training Model
‘AdaBoost

XGBoost ‘

Hyperparameter Tuning
Randomised | [Grid Deployment to
Search Search Power B

Testing Set (30%)

Tesling / Evaluating
Model

Generaling Synihetic Dala

CTGAN TVAE

Dashboard Testing

Objectives

To enhance fraud detection performance by
addressing data imbalance through resampling
techniques.

To develop ensemble models that reduce
misclassification errors.

To visualize fraud detection model performance
and fraud patterns using Power BI.

Discussion

Ensemble models (Random Forest, XGBoost &
AdaBoost) show strong performance in fraud
detection.

SMOTE class
imbalance we||, significanﬂy improving recall
and reducing false negatives.

XGBoost and Random Forest outperformed
AdaBoost.
Hyperparameter

& Oversampling address

tuning
model

brought little

improvement; final used default
Random Forest + Oversamphng.

On Kaggle test set, final model achieved FI-
score = 0.90.

Dashboard integration in Power Bl provided

real-time monitoring and actionable insights.

Conclusion

The system successfully improved detection accuracy, reduced costly false negatives, and
enhanced fraud visualization through integration with a Power Bl dashboard. For future work,
deep learning approaches, real-time data integration, and deployment on Power Bl Service
with cloud hosting (e.g., Azure ML or cloud functions) are recommended to enable real-time

fraud alerts.

Project Deve|oper: Ang Su Huan

Project Supervisor: Ms Nurul Syafidah Binti Jamil

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

