
         

 

 

 

Fraud Detection using Machine Learning in e-Commerce 

By 

Ang Su Huan 

 

 

 

 

 

 

 

 

 

 

 

A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF INFORMATION SYSTEMS (HONOURS) BUSINESS INFORMATION 

SYSTEMS    

Faculty of Information and Communication Technology 

(Kampar Campus) 

 

 

JUNE 2025 

        



ii 
Bachelor of Information Systems (Honours) Business Information Systems 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

COPYRIGHT STATEMENT 
 

© 2025 Ang Su Huan. All rights reserved. 

 

This Final Year Project proposal is submitted in partial fulfillment of the 

requirements for the degree of Bachelor of Information Systems (Honours) Business 

Information Systems at Universiti Tunku Abdul Rahman (UTAR). This Final Year 

Project proposal represents the work of the author, except where due 

acknowledgment has been made in the text. No part of this Final Year Project 

proposal may be reproduced, stored, or transmitted in any form or by any means, 

whether electronic, mechanical, photocopying, recording, or otherwise, without the 

prior written permission of the author or UTAR, in accordance with UTAR's 

Intellectual Property Policy. 

  

Example 



iii 
Bachelor of Information Systems (Honours) Business Information Systems 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

ACKNOWLEDGEMENTS 
 

I would like to express my sincere thanks and appreciation to my supervisors, Ms. Nurul 

Syafidah Binti Jamil and my moderator, Mr. Choo Peng Yin for giving me the valuable 

opportunity to engage in a project on fraud detection using machine learning in the eCommerce 

domain. This project provided me with hands-on experience in real-world data analysis, model 

training and critical thinking, marking an important first step in establishing my career in data 

science and machine learning. Finally, I would like to express my sincere gratitude to my 

parents and my family for their endless love, support, and motivation throughout the course.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
Bachelor of Information Systems (Honours) Business Information Systems 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

ABSTRACT 
 

The fast growth of e-commerce has resulted in a rise in fraudulent activities, posing significant 

challenges to the security and trust of online transactions. Traditional fraud detection methods 

often fall short in effectively identifying complex fraud patterns due to issues like data 

imbalance, misclassification of costly errors, and the evolving nature of fraud tactics. This 

research proposes a machine learning-based approach to improve fraud detection performance 

in e-commerce platforms. Resampling techniques like SMOTE, oversampling and under-

sampling are applied to address class imbalance issue. The study aims to reduce false negatives 

and enhance the detection of rare fraudulent transactions. Ensemble models such as Random 

Forest, AdaBoost, and XGBoost, will be employed to capture complex patterns and improve 

model performance. A systematic model evaluation was conducted using metrics such as 

accuracy, F1-score, MCC, precision, recall and AUC to ensure robust performance. 

Experimental results showed that Random Forest combined with oversampling achieved the 

best trade-off between precision and recall, reducing false negatives while maintaining high 

overall accuracy. Robustness was further validated through testing on both synthetic datasets 

and the Kaggle dataset, confirming the model’s adaptability and reliability. Finally, the best-

performing model was integrated into a Power BI dashboard, enabling real-time monitoring of 

fraud detection results and visualization of emerging fraud trends. This integration supports 

decision-making by providing stakeholders with timely insights. The study contributes to the 

development of adaptive fraud detection systems capable of mitigating financial risks and 

maintaining customer trust in the e-commerce sector. 

 

Area of Study: Fraud Detection in E-commerce 

Keywords: E-commerce, Fraud Detection, Machine Learning, SMOTE, Ensemble Learning, 

Power BI, Credit Card Fraud 
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CHAPTER 1 

 

Introduction 

This chapter outlines the research background and motivation, highlighting the key problems 

and the need for improved fraud detection in e-commerce. This chapter also presents the 

objectives of the project, the scope and direction of the study, and the contributions made to 

the field. 

E-commerce is the result of a significant change driven by the rapid evolution of digital 

technologies into conventional business methods [1]. It involves the buying and selling of 

products, services and information through electronic platforms over the Internet [1]. The rise 

of e-commerce has enabled business to reach global consumers, reduce costs, offer greater 

flexibility for consumers, respond quickly to market demands, support various payment 

methods and make transactions easier and faster through technology [2]. The accessibility and 

ease of online shopping have made it very popular, changing the way people interact with 

businesses and make purchases. However, with the swift expansion of e-commerce, fraud has 

become a significant challenge. As online transactions have increased, fraudsters have more 

opportunities to exploit the vulnerabilities of digital systems by using advanced techniques to 

bypass security measures [3].  

Fraud in e-commerce can take many forms, including card not present (CNP), fake websites, 

chargeback fraud, account takeovers, identity thefts and phishing [4]. CNP fraud, in particular, 

occurs when stolen or counterfeit credit card details are used for online purchases without the 

physical card being required. This makes it one of the most prevalent and costly forms of fraud 

in digital commerce. Fraudsters can exploit these transactions to make unauthorized purchases, 

resulting in substantial financial losses for both consumers and businesses [5]. This form of 

fraud is particularly concerning due to its widespread impact. Consumers may face 

unauthorized charges on their accounts, while business must deal with chargebacks, legal fees 

and reputational damage. 

These fraudulent activities not only lead to financial losses but also damage customer trust [6], 

which is a factor essential for the sustained success of e-commerce businesses. As customers 
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grow increasingly concerned about the security of their payment information, e-commerce 

businesses must navigate the challenge of maintaining trust while providing a seamless 

shopping experience. To address these risks, e-commerce platforms are deployed machine 

learning methods in fraud detection systems such as Logistic Regression, Random Forest, 

Naïve Bayes, Support Vector Machine (SVM) and others to identify and block fraudulent 

transactions in real time [6].  

Traditional fraud detection methods are always relying on static rules and manual checks, 

which are become less effective against the evolving tactics of fraudsters [7]. These systems 

are difficult to detect complex fraud patterns because there are very few examples of fraud [6]. 

By using machine learning in fraud detection, e-commerce businesses can significantly 

improve accuracy in identifying fraudulent transactions [7]. Ultimately, this leads to better 

customer satisfaction, increased trust, and the continued growth of e-commerce businesses. 

 

1.1 Problem Statement and Motivation 

In the e-commerce industry, fraud detection is vital for ensuring the security of transactions 

and maintain customer trust. However, several problems in fraud detection systems hinder their 

effectiveness. 

1. Data imbalance in fraud detection datasets. 

Fraudulent transactions represent a very small proportion of the total dataset, often less than 

1%, leading to an imbalance [8]. This imbalance leads to machine learning models become 

biased toward the normal transactions, which are the majority. This makes the models effective 

at identifying legitimate transactions but difficult to detect uncommon and critical fraudulent 

transactions which are the minority [1]. As a result, many fraud cases are missed, increasing 

financial losses and reducing trust in e-commerce system. Traditional resampling methods like 

oversampling and under sampling help to balance the dataset, but they can introduce new issues 

like overfitting or loss of useful data. To tackle this, resampling technique like SMOTE are 

needed to build models that effectively detect uncommon fraudulent transactions while 

maintaining accuracy [9]. 
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2. Misclassification in machine learning 

Misclassification in machine learning occurs when a model treats all errors equally. Most 

models aim to minimize errors without considering that some mistakes are more costly than 

others, this is known as cost-sensitive problem [9]. In fraud detection, failing to identify a 

fraudulent transaction (false negative) is much more damaging than incorrectly flagging a 

legitimate transaction as fraudulent (false positive). This is because they allow fraudulent 

activities to go undetected, leading to financial losses and potential reputational damage. This 

problem is further complicated by the overlap between legitimate and fraudulent transactions, 

especially when patterns change over time, then worsens this issue. Such misclassifications 

strain resources, impacts customer experience, and reduces overall detection effectiveness [9]. 

To address this issue, ensemble learning models, which are more robust and capable of 

capturing complex and non-linear relationships, can be combined with resampling techniques. 

These models can better recognize minority class patterns (i.e., fraud), thereby minimizing the 

costly errors, especially false negatives and improving overall prediction accuracy. 

3. Evolving Nature of fraud 

Fraudulent patterns are not only rare but also change over time, making it challenging for 

detection models to remain effective [1,10]. This phenomenon, known as concept drift, occurs 

when fraudsters adapt their methods to bypass detection, while legitimate users may change 

their spending behaviors [9]. If detection models are not updated regularly, their accuracy 

declines, leading to missed fraud cases, financial losses, and a poor user experience. To address 

this, a Power BI dashboard will be developed to monitor model performance and the fraud 

patterns in real-time, allowing for continuous tracking of effectiveness and enabling timely 

updates to adapt to shifting fraud patterns. 

 

Motivation 

The rapid expansion of e-commerce has resulted in a rise in fraudulent activities, creating major 

challenges to the security of online transactions. While machine learning offers an effective 

solution, but issues like data imbalance, misclassification of costly errors, and the evolving 

nature of fraud still limit model performance. Fraudulent transactions are rare, causing models 

to be biased towards legitimate ones, and missing fraud (false negatives) is more costly than 
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incorrectly flagging legitimate transactions [9]. Moreover, as fraud tactics evolve, models can 

become outdated and ineffective. 

The motivation behind this work is to address these gaps by designing a strong machine 

learning model capable of accurately detects fraud while considering the costs of different types 

of errors. Additionally, the model will be integrated with a monitoring dashboard, enabling 

continuous tracking of its performance and allowing for timely updates as fraud patterns 

change. This approach will enhance detection accuracy, improve system adaptability, and 

ultimately support better security and customer trust in e-commerce. 

 

1.2  Objectives 

The aim of this research is to develop advanced machine learning models and visualization 

tools for improving fraud detection in e-commerce, specifically targeting credit card 

transactions. By addressing problems like data imbalance, cost-sensitive misclassification, and 

evolving fraud patterns, this study seeks to improve the performance and adaptability of fraud 

detection systems. In this research, ensemble learning models with resampling techniques are 

proposed, along with an interactive Power BI dashboard for real-time monitoring and 

performance tracking. 

Main Objective:  

To integrate machine learning algorithm with a Power BI dashboard for real-time monitoring 

and performance tracking. 

Sub Objectives: 

• To enhance fraud detection performance by addressing data imbalance through 

resampling techniques.  

• To develop ensemble models that reduce misclassification errors. 

• To visualize fraud detection model performance and fraud patterns using Power BI. 
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1.3  Project Scope and Direction  

The research is focusing on fraud detection in e-commerce by using advanced machine learning 

techniques. The study aims to address critical challenges such as data imbalance, cost-sensitive 

problem and evolving fraud patterns, which are common in fraud detection.  

This project focuses on fraud detection in e-commerce, specifically targeting credit card fraud 

within Card Not Present (CNP) transactions. Other sectors such as banking, healthcare, and 

insurance are excluded, as are other e-commerce fraud types like account takeovers, 

chargebacks, and promotional abuse. The study also excludes alternative payment methods 

such as e-wallets, cryptocurrencies, and bank transfers. By narrowing the scope to credit card 

CNP transactions in e-commerce, this research aims to design and refine machine learning 

models that are directly relevant to current industry challenges. This focused approach avoids 

the added complexity of multiple fraud types and payment methods, enabling more accurate 

and effective model development. 

The research also focuses on employing ensemble learning models such as Random Forest, 

AdaBoost, and XGBoost exclusively for fraud detection tasks. Resampling techniques, such as 

SMOTE, Oversampling and Under-sampling are applied to these models to address the issue 

of class imbalance and reduce the impact of misclassification. These models and techniques 

aim to enhance the models’ ability to identify fraudulent transactions accurately, especially by 

reducing false negatives, while maintaining high overall performance. 

The scope of Power BI development in this research focuses on creating a user-friendly 

dashboard to visualize and monitor the performance of fraud detection models in real time. The 

dashboard will visualize key metrics such as accuracy, precision, recall, F1-score, AUC and 

confusion matrices, along with fraud patterns and trends.  
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1.4 Contributions 

This research aims to enhance fraud detection in e-commerce by solving some key challenges 

using machine learning techniques. A major focus is addressing class imbalance, which can 

significantly affect model performance. To this end, this study compares different resampling 

methods. SMOTE, an advanced resampling method, generates synthetic examples of 

fraudulent transactions (minority class) to balance the dataset. In addition, the study examines 

basic resampling methods such as random oversampling, which duplicates existing minority 

class samples, and random under-sampling, which reduces the number of majority class 

instances. By applying and comparing these techniques, the research determines how different 

resampling strategies influence the model's ability to detect rare fraud cases in highly 

imbalanced datasets. 

Another key contribution of this research is using advanced ensemble models specifically 

tailored for fraud detection. Unlike traditional models that treat all errors equally, these 

ensemble approaches can better handle varying complexities of fraudulent and legitimate 

transactions. By focusing on reducing false negatives (missing fraud) while maintaining 

accuracy for legitimate transactions, these models improve fraud detection overall 

performance. Furthermore, they help reduce false positives, lower manual review costs and 

ensure smoother transaction processing for customers. 

As a further contribution, this research also focuses on the development of a Power BI 

dashboard to monitor fraud detection performance and emerging fraud patterns. The dashboard 

will provide an interactive and comprehensive view of key metrics, enabling real-time 

monitoring and decision-making. It will support e-commerce businesses in identifying 

potential fraud trends, tracking accuracy of fraud detection models and improving operational 

responses to fraud incidents, thereby enhancing overall fraud management in e-commerce. 
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1.5  Report Organization 

This research is organized into several key chapters. Chapter 2 presents a literature review of 

existing studies related to fraud detection in e-commerce and credit card transactions. Chapter 

3 describes the system methodology, outlining the overall approach and framework adopted 

for the project. Chapter 4 details the system design, including system block diagram and 

dashboard wireframes. Chapter 5 focuses on system implementation, covering the software 

setup, model training and integration, and dashboard development. Chapter 6 presents the 

system evaluation and discussion, analysing the test results, dashboard testing and insights 

derived from the dashboard. Finally, Chapter 7 concludes the study by summarizing key 

findings and providing recommendations for future work. 
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CHAPTER 2 

 

Literature Reviews 

Researchers have explored various datasets, machine learning algorithms and evaluation 

metrics to tackle challenges such as data imbalance [4,9,11-16], cost-sensitive problem [9] and 

changing fraud patterns and tactics [13,17,18]. This section reviews recent studies addressing 

these challenges, focusing on the datasets, preprocessing techniques, feature engineering, 

modelling methods, evaluation metrics and potential areas of study. 

 

2.1  Previous works on Fraud Detection 

2.1.1  Dataset  

The most commonly used dataset for fraud detection studies is the European Credit Card 

Fraud Detection dataset from Kaggle [9,11,14,16,18,19]. Due to confidentiality issues, the 

dataset does not disclose detailed variable names. Instead, it includes anonymized features such 

as transaction amount, time, and class which indicate whether the transaction is fraudulent or 

not [9,11,18,19], as shown in Table 2.1. Despite its limitations, this dataset is widely adopted 

because of its relevance to real-world scenarios. 

 

Table 2.1.1: Attributes of European Dataset [16]. 

Other studies have proposed e-commerce or shopping activity datasets, which often provide 

richer feature sets [3,12,15,17,20]. For example, Najem and Kadhem [15] and Tejasri et al. [20] 

used similar datasets, which include user id, device id, IP address, source, browser, age, gender, 
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sign up time, purchase time, purchase value as shown in Table 2.2. Gölyeri et al. [3] used a 

dataset containing attributes such as total amount, order item count, successful orders, failed 

orders, last 24-hour return orders, last week return orders, and payment method as shown in 

Table 2.3. In another study, Kırelli et al. [15] used a dataset with selected features from 38 

initial attributes. Key features included shopping amount, order hour, order day, name length, 

city, gender, age, category, brand, shipped amount, coupon discount, email confirmation time 

and label for fraud. These features are particularly valuable as they capture user behaviour 

patterns that can significantly enhance fraud detection in e-commerce contexts. 

 

Table 2.1.2: Attributes of E-commerce site data [15]. 

 

Table 2.1.3: Attributes of E-commerce site for Boyner Group [3]. 

Other studies do not clearly specify the datasets used [4,8], making it challenging to evaluate 

the generalizability and applicability of their findings. 
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2.1.2 Data Preprocessing 

Gölyeri et al. [3] and Ray [8] used normalization for feature scaling to ensure all features 

contributed equally to the model, while other studies applied standardization to scale features 

like transaction amounts effectively [9,15]. Adepoju et al. [13] employed the conversion of 

categorical data into binary format as a preprocessing step to handle categorical variables.  

To handle imbalanced datasets, many studies proposed SMOTE to generate synthetic samples 

for the minority class [8-9,11-12,14-16,18]. Dornadula and Geetha [11] showed that SMOTE 

improved the performance of models like logistic regression, random forests and decision trees 

in precision and MCC as shown in Figure 2.1. Ray [8], Saputra and Suharjito [12] also 

observed that SMOTE effectively boosts the performance of models like neural networks, 

decision trees, random forests, and Naive Bayes by improving the classification of imbalanced 

data, especially for F1-score as shown in Figure 2.2. Abdulghani et al. [18] reported that after 

balancing the dataset using SMOTE, all models showed strong performance, with F1-Score 

exceeding 90% as shown in Table 2.4. Before applying SMOTE, the F1-Scores were 

significantly lower: Logistic Regression scored 81.68%, XGBoost 89.49%, and both LDA and 

Naïve Bayes only around 10% [18].  

 

Figure 2.1.1: Comparison of MCC before and after applying SMOTE [11]. 
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Figure 2.1.2: Comparison of F1-Score before and after applying SMOTE [8]. 

 

Table 2.1.4: Performance comparison after applying SMOTE [18]. 

 

2.1.3 Feature Engineering 

Most studies in fraud detection rely on Principal Component Analysis (PCA) for feature 

engineering. PCA is widely used to reduce the dimensionality of dataset while simplify data 

by highlighting the most important information [12]. Najem and Kdhem [15] highlighted 

PCA’s effectiveness in improving machine learning performance by reducing the complexity 

of high-dimensional data. While for studies using the European Credit Card Fraud Detection 

dataset, the data has already been processed using PCA, except for the Amount, Time, and 

Class features, which are kept as is due to confidentiality. These features are retained in their 

original form while other variables have undergone dimensionality reduction through PCA 

[9,11,16,18,19].   
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2.1.4 Modelling 

Several machine learning algorithms have been extensively studied for fraud detection in e-

commerce and credit card transactions. Researchers have explored diverse models, ranging 

from basic classifiers to ensemble techniques and neural network-based approaches.  

Ray [8] proposed four machine learning models, which are Decision Tree, Naïve Bayes, 

Random Forest and Neural Network. Among these models, the neural network without 

SMOTE achieved the highest accuracy of 96%. While for other metrics, the results were quite 

low. Neural network with SMOTE achieved superior performance compared to other models, 

particularly in terms of recall and G-mean as shown in Figure 2.3 and Figure 2.4. This suggest 

that accuracy alone is not a reliable metric in imbalanced datasets. Using SMOTE can 

significantly improve the model’s ability to detect fraud by better handling class imbalance. 

Naïve Bayes with SMOTE achieved the highest F1-score, showing the strong balance between 

precision and recall. However, its recall was the lowest without SMOTE and even with 

SMOTE, it remained the second lowest among all models. This means that Naïve Bayes miss 

many actual fraud cases, which is risky in real-world applications. 

 

Figure 2.1.3: Comparison of Recall before and after applying SMOTE [8]. 
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Figure 2.1.4: Comparison of G-Mean before and after applying SMOTE [8]. 

 

Najem and Kadhem [15] applied ensemble models, including LightGBM, XGBoost and 

Random Forest. After applying standardization and PCA, XGBoost and LightGBM achieved 

the highest performance with perfect accuracy (100%), outperforming Random Forest with a 

slightly lower accuracy of 99%. Using additional metrics like precision, recall, F1-score and 

AUC, the results for XGBoost and LightGBM remain nearly perfect or perfect, confirming 

their superior performance in fraud detection.  

In Puh and Brkić [9] research, Random Forest outperformed SVM and Logistic Regression, 

achieving the highest AUC and AP scores of 0.9448 and 0.8483 respectively. SVM recorded 

the lowest AUC score (0.8877), showing its weaker capability in separating classes, while 

Logistic Regression had the lowest AP score (0.7337), reflecting more false positives and less 

reliability when detecting fraud at higher recall levels. 

Dornadula and Geetha [11] observed that Random Forest, Decision Tree and Logistic 

regression performed better than Isolation Forest and Local Outlier Factor in detecting credit 

card fraud. Among these, Random Forest achieve the highest accuracy, precision and MCC 

consistently as shown in Table 2.5. Among these, Random Forest achieve the highest accuracy 

of 99.98%, precision of 99.96% and MCC of 0.9996 as shown in Table 2.5. After applying 

SMOTE, Random Forest’s results became nearly perfect, showing its strong performance in 

handling minority class detection.  
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Table 2.1.5: Performance comparison of LOF, iForest, LR, DT and RF [11]. 

Sadeneni [4] compared five models, including ANN, Random Forest, Decision Tree, Logistic 

Regression and SVM based on accuracy, precision, and false alarm rate as shown in Table 2.6. 

ANN achieved the highest accuracy of 99.92%, precision of 99.57% and a very low false alarm 

rate with only 0.1%, suggesting that it is very effective at fraud detection. However, ANN 

comes with high training costs and hardware dependency, making it less practical for all 

business. Random Forest is a strong alternative, as it achieved a very high accuracy of 99.21% 

and precision of 92.34%. SVM had the highest false alarm rate at 4.9%, suggesting that it is 

less ideal for fraud detection where minimising false alarms is important.  Decision Tree 

performed slightly better than Logistic Regression across all metrics. 

 

Table 2.1.6: Performance comparison of RF, DT, LR, SVM and ANN [4]. 

Gölyeri et al. [3] demonstrated including the IsGuestOrder feature significantly improved fraud 

detection. Before including IsGuestOrder feature, XGBoost initially outperformed other 

models with 0.90 accuracy and 0.92 recall, while Logistic Regression showed superior 

precision (0.91) despite its lower recall (0.86) as shown in Table 2.7. After including the feature, 

Logistic Regression achieved the highest accuracy at 0.93 and F1-score at 0.92 as shown in 

Table 2.8. This showed that a good feature can boost a simple model’s performance when it 
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captures the fraud pattern, while XGBoost already handled complex patterns, so a single binary 

feature does not significantly change its performance. 

 

Table 2.1.7: Model performance before including the IsGuestOrder feature [3]. 

 

Table 2.1.8: Model performance after including the IsGuestOrder feature [3]. 

Sailusha et al. [19] focused on comparing Random Forest and AdaBoost in credit card fraud 

detection. While both models had the same high accuracy, Random Forest outperformed 

AdaBoost in precision, recall and F1-score as shown in Figure 2.5, making it more reliable for 

fraud detection. Random Forest detected more fraud cases with a recall over 70%, while for 

AdaBoost with recall over 60%. Both models showed the signs of overfitting as the training 

data was significantly better than that of test data. The AUC of AdaBoost was better, suggesting 

it might be more effective in distinguishing between fraud and non-fraud cases among different 

thresholds. 

 

Figure 2.1.5: Performance comparison of Random Forest and AdaBoost [19]. 
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Based on the study of Adepoju et al. [13], Logistic Regression emerged as the best-performing 

model for credit card fraud detection, with the highest accuracy of 99.074%. It also achieved 

the perfect sensitivity (recall) at 100%, meaning it was able to detect all actual fraud cases in 

the test data. SVM also performed well with an accuracy of 97.53% and a recall of 97.56%. 

KNN followed closely with 96.91% accuracy, however, its recall was only 89.36%, meaning 

that it missed a portion of fraud cases. Naïve Bayes performed poorly despite having a perfect 

specificity and precision of 100%. However, its recall was 0%, meaning it failed to identity 

any of the actual fraud cases. This outcome is concerning because if a system cannot detect 

fraud, it is useless, even it works well for normal transactions. 

Ileberi et al. [14] proposed combining models like Decision Tree, Random Forest, Extra Tree, 

XGBoost and Logistic Regression with AdaBoost. Without AdaBoost, Random Forest 

performed the best with an MCC of 0.88 and an accuracy of 99.95% as shown in Table 2.9. 

When combining with AdaBoost, all models showed significant improvement, with all metrics 

above 90% as shown in Table 2.10. The recall for Extra Tree and XGBoost increased a lot from 

78.19% and 59.39% to 99.96% and 99.97% respectively, making them became the best-

performing model, with nearly perfect scores across all metrics after combining with AdaBoost. 

Among all the models, Logistic Regression performed the worst. This is due to its linear nature, 

which limits its ability to capture complex and non-linear relationships in the data. While 

ensemble methods like Random Forest, XGBoost and Extra Tree show superior performance, 

especially when combined with AdaBoost, because they effectively capture complex, non-

linear relationships and reduce errors through boosting. 

 

Table 2.1.9: Performance comparison of base models [14]. 
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Table 2.1.10: Performance comparison of models combined with AdaBoost [14]. 

Abdulghani et al. [18] focused on machine learning algorithms like Logistic Regression, LDA, 

Naïve Bayes and XGBoost. Among the models, XGBoost was the most effective one, 

achieving the highest accuracy of 99.969%, precision of 99.938%, recall of 100%, F1-score of 

99.969% and AUC of 99.969%. This best performance highlights XGBoost’s robustness in 

handling large datasets and detecting fraud. In contrast, Logistic regression, LDA and Naïve 

Bayes showed lower accuracy with 94.752%, 91.737% and 91.338% respectively. 

Mohbey et al. [16] compared the performance of Naïve Bayes, SVM, Logistic, Random Forest, 

Decision Tree and XGBoost for credit card fraud detection as shown in Table 2.11. Among 

these, XGBoost showed the highest accuracy at 96.44%, significantly outperforming the others. 

For instance, Logistic Regression achieved an accuracy of 94.43%, while SVM, Random 

Forest and Decision Tree are below 94%. The precision, recall, F1-score and AUC values also 

favoured XGBoost, indicating its robustness in handling imbalanced datasets and complex 

transaction patterns. Naïve Bayes performed the worst, with an accuracy of 89.34% and F1-

score of 89%, which aligns with previous studies. This study highlights the effectiveness of 

XGBoost as an ensemble model in improving performance, especially in scenarios involving 

imbalanced datasets. 

 

Table 2.1.11: Performance comparison of NB, SVM, LR, RF, DT and XGboost [16]. 
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Based on the extensive research, the most effective models for fraud detection in e-commerce 

and credit card transactions are Random Forest and XGBoost, which are widely used and 

consistently achieve high scores across accuracy, precision, recall, F1-score and AUC. ANN 

also performs well but are resource intensive. Logistic Regression and Decision Trees offer 

good performance with simplicity, especially when enhanced with strong features or boosting 

techniques, although they are generally outperformed by ensemble models. In contrast, Naïve 

Bayes and SVM often perform poorly. Naïve Bayes has trouble in detecting fraud because its 

recall is usually low, while SVM tends to produce more false alarms and lower AUC scores. 

Overall, ensemble models are the most reliable and widely used, while simpler models require 

enhancements to be competitive. 

 

2.1.5 Evaluation Metrics 

Accuracy is the most widely used metrics and often the primary parameter in many studies for 

evaluating model performance. It is commonly considered as the base measure, but it is not 

always a good metric, especially for imbalanced dataset [11,12]. Dornadula and Geetha S [11] 

proposed the use of Matthews Correlation Coefficient (MCC) as more reliable measure for 

evaluating binary (two-class) classifiers. The MCC considers all true and false values, making 

it a balanced metric that works well even when the dataset contains imbalanced classes [11]. 

This is why MCC is often preferred in such scenarios, as it provides a more comprehensive 

evaluation of model performance.  

In addition to MCC, metrics such as recall, precision, and F1-score are commonly used 

alongside accuracy. G-mean is another metric that measures a model’s overall performance by 

assessing its ability to correctly classify both majority and minority classes [8,12]. The F1-

score is particularly valuable in imbalanced datasets, as it balances precision and recall 

evaluating the classification of the minority class effectively [8,12]. 

Another important evaluation metric is Area Under the Curve (AUC), often used with the 

Receiver Operating Characteristic (ROC) curve. However, in imbalanced datasets, where 

the number of true negatives greatly exceeds true positives, the ROC curve may not be the most 

appropriate metric. Puh and Brkic [9] proposed using Precision-Recall curves instead, as they 
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focus on precision, which compares false positives to true positives, making them less sensitive 

to class imbalance.  

Among these studies, only Md. Nur-E-Arefin [15] used Mean Absolute Error (MAE) and 

Root Mean Squared Error (RMSE) as evaluation metrics. However, these metrics may not 

be suitable for this research as they are more commonly applied to regression tasks rather than 

classification problems.
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2.2  Literature Matrix Table 

Author/year Task/Title Problem Mentioned Dataset Pre-processing 

techniques 

Feature 

Engineeri

ng 

Method for 

Modeling 

Evaluation 

Metrics 

Future study/ 

Conclusion 

Murat 

Gölyeri , 

Sedat Çelik, 

Fatma 
Bozyiğit, 

Deniz Kılınç, 

2023 [3] 

Fraud Detection 

on E-commerce 

Transactions 

Using Machine 
Learning 

Techniques 

Not mentioned in the 

research paper. 

Shopping  

activities during 

ninety days on the 

e-commerce 
website and 

mobile 

application of 

Boyner Group 

(total amount, 

order item count, 

success order, 

failed order, last 

24 hour return 

order, last week 

return order, 
payment method) 

SimpleImputer 

and 

StandardScaler 

classes from the 
scikit-learn 

library,  

ChiSquare 

feature 

selection, 10-

fold cross 

validation 

Not 

mentioned 

in the 

research 
paper. 

Decision tree, 

Logistic 

regression, 

Random 
Forest, 

XGBoost 

Accuracy, 

Precision, 

Recall, F1-score 

- Model performance 

improved with the 

inclusion of the 

IsGuestOrder feature. 
- Logistic regression 

achieved over 92% 

accuracy, making the 

findings promising for 

future research. 

- Future work include 

developing 

classification software 

for the company. 

Praveen 

Kumar 

Sadineni, 

2020 [4] 

Detection of 

Fraudulent 

Transactions in 

Credit Card 

using Machine 

Learning 

Algorithms 

- Imbalanced data 150000 

transactions data 

from Kaggle 

(time of 

transcation, 

amount, class) 

Not mentioned 

in the research 

paper. 

PCA Random 

Forest, 

Decision Tree, 

Logistic 

Regression, 

SVM, ANN 

Accuracy, 

Precision, False 

Alarm rate 

- ANN achieves the 

highest accuracy 

(99.92%) and precision 

(99.57%) and the 

lowest false alarm rate 

(0.1%) 

Samrat Ray, 

2022 [8] 

Fraud Detection 

in E-Commerce 

Using Machine 

Learning 

- Datasets with 

extremely small class 

proportions result in 

Online business 

fraud dataset. 

SMOTE, 

Normalization, 

Scale of 

characteristics, 

PCA Decision Tree, 

Naïve Bayes, 

Random 

Confusion 

Matrix, 

Accuracy, 

Recall, 

- Leveraging advanced 

computations or deep 

learning can improve 

the detection of e-
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biased or unbalanced 

information. 

Feature 

extraction 

Forest, Neural 

Network 

Precision, F1-

score, G-mean 

commerce fraud and 

boost neural network 

performance with the 

SMOTE technique. 

Maja Puh, 

Ljiljana Brkic, 

2019 [9] 

Detecting Credit 

Card Fraud 

Using Selected 
Machine 

Learning 

Algorithms 

-Data deficiency 

-Imbalanced data 

-Cost sensitive 
problem 

-Behavioral variation 

 

Transaction made 

in September 

2013 by European 
cardholders. 

SMOTE, feature 

scaling for 

amount using 
standardization, 

data split 

(70:30) 

PCA Random 

Forest, SVM, 

Logistic 
regression 

Area Under 

ROC Curve 

(AUC), Average 
precision 

(AUPRC) 

- SVM has slightly 

lower results than other 

two in AUC and Recall 
scores 

- Models with 

incremental learning 

have better results. 

- Future work includes 

exploring incremental 

learning on a more 

realistic dataset.  

Vaishnavi 

Nath 

Dornadula, 

Geetha S, 

2019 [11] 

Credit Card 

Fraud Detection 

using chine 

arning 

Algorithms 

- Dataset is highly 

imbalanced 

European Credit 

card transaction 

dataset 

(transaction id, 

cardholder id, 
amount, time, 

label)  

SMOTE PCA Local Outlier 

factor, 

Isolation 

Forest, SVM, 

Logistic 
regression, 

Decision tree, 

Random 

Forest 

Accuracy, 

precision, MCC 

- Random Forest 

performed the best 

among the models with 

accuracy (0.9998), 

precision (0.9996), 
MCC (0.9996) 

- MCC is the better 

metric for evaluating 

imbalance dataset. 

- By applying the 

SMOTE, the models 

perform better than 

before. 

- LR, DT and RF 

achieved better results. 

Adi Saputra, 

Suharjito, 
2019 [12] 

Fraud Detection 

using Machine 
Learning in   

- Imbalanced data E-commerce 

fraud dataset 
sourced from  

SMOTE, feature 

extraction, 

PCA Decision tree,  

Naïve Bayes, 
Random 

Accuracy, 

precision, recall, 
G-mean, F1 

- The results showed 

NN has the highest 
accuracy with 96%, 
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e-Commerce  Kaggle  transformation, 

normalization 

Forest, and 

Neural 

network 

Score then NB and Random 

Forest are 95%, DT 

accuracy is 91%. 

-  Using SMOTE on 

NN, RF, DT, and NB 

was able to handle 
dataset imbalance by 

producing higher G-

Mean and F-1 scores. 

- Future work is to use 

other algorithms or 

deep learning for fraud 

detection in e-

commerce. 

- Improve neural 

network accuracy using 

SMOTE. 

Olawale 

Adepoju, 
Julius 

Wosowei, 

Shiwani lawte, 

Hemaint 

Jaiman, 2019 

[13] 

Comparative 

Evaluation of 
Credit Card 

Fraud  

Detection Using 

Machine 

Learning 

Techniques 

- Dynamic fraudulent 

behavior patterns 
make detection more 

challenging. 

- Datasets are often 

limited and 

imbalanced. 

- Model performance 

relies heavily on 

testing and feature 

selection. 

- Evolving data can 

lead to reversed or 
outdated 

classifications over 

time. 

Card transaction 

dataset (average 
daily transaction 

amount, 

transaction 

amount, 

transaction 

declined, foreign 

transaction, high 

risk transaction, 

six-month 

average balance) 

Binary 

encoding, Data 
split 80:20 

Not 

mentioned 
in the 

research 

paper. 

Logistic 

Regression, 
KNN, Naïve 

Bayes, SVM 

Accuracy, 

Sensitivity, 
Specificity 

(Recall), 

Precision 

- LR was the most 

accurate in detecting 
credit card fraud, with 

accuracy 99.074. 

- Using a larger dataset 

with more fraudulent 

cases is recommended. 

- Other resampling 

strategies, cost-

sensitive learning 

methods, and ensemble 

learning methods could 

be explored in future to 
better handle a skewed 

dataset. 
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Emmanuel 

Ileberi, 

Yanxia Sun, 

Zenghui 

Wang, 2021 

[14] 

Performance 

Evaluation of 

Machine 

Learning 

Methods for 

Credit Card 
Fraud Detection 

Using SMOTE 

and AdaBoost 

Imbalanced data European credit 

card dataset. 

SMOTE Not 

mentioned 

in the 

research 

paper. 

SVM, 

Random 

Forest, Extra 

Tree, 

XGBoost, 

Logistic 
Regression, 

Decision tree, 

ADABoost 

Accuracy, 

recall, precision, 

MCC, AUC 

- DT-AdaBoost, RF-

AdaBoost, ET-

AdaBoost,and XGB-

AdaBoost achieved 

accuracies of 99.67%, 

99.95%, 99.98%, and 
99.98%, respectively. 

-  The results confirm 

that AdaBoost 

significantly enhances 

the performance of 

machine learning 

models. 

-  Future work will 

focus on testing and 

validating the 

framework using real 

credit card fraud 
datasets from financial 

institutions. 

Suha M. 

Najem, Suhad 

M. Kadhem, 

2021 [15] 

An Efficient 

Feature 

Engineering 

Method for 

Fraud Detection 

in E-commerce 

- Imbalance in  

Datasets 

Clothing sales 

transaction 

dataset (device-id, 

IP address, 

source, browser, 

age, country, sex, 

signup-time, 

purchase-time, 

purchase-value) 

SMOTE, 

standardization 

for feature 

scaling 

PCA LightGBM, 

XGboost, 

Random  

Forest 

Accuracy, 

Precision, 

Recall, F1-

score, AUC-

ROC 

- LightGBM and 

XGboost achieved the 

best accuracy after 

preprocessing the 

dataset. 

- Future work is to use 

larger dataset with new 

feature engineering 

Krishna 

Kumar 
Mohbey, 

Mohammad 

Credit Card 

Fraud Prediction 
Using XGBoost: 

An ensemble 

Data imbalance. European credit 

card dataset. 

Standardization, 

normalization, 
data split 70:30 

PCA Naïve Bayes, 

SVM, 
Random 

Forest, 

Precision, recall, 

accuracy, AUC, 
f-measure 

XGBoost performed 

better. 
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Zubair Khan, 

Ajay Indian, 

2022 [16] 

Learning 

Approach 

Logistic 

Regression, 

XGBoost 

Hybrid models can be 

built to improve the 

research. 

Yasin Kırelli, 

Seher 

Arslankaya, 

Muhammed 
Taha Zeren, 

2020 [17] 

Detection of 

Credit Card 

Fraud in E-

Commerce 
Using Data 

Mining 

Fraudsters  

are changing their 

strategies and new 

fraud patterns are 
emerging  

as now. 

E-commerce 

dataset (shopping 

amount, order 

hour, order day, 
name length, city, 

gender, age, 

category, brand, 

shipment amount, 

discount, isFraud) 

Gain  

Ratio, Info Gain 

and Chi-Squared 

(feature 
selection), data 

split 70:30 

Not 

mentioned 

in the 

research 
paper. 

Naive 

Bayesian, 

Naive Bayes 

Tree, Decision 
Tree J48, 

KNN, ANN, 

RBF Network 

TP rate, FP rate, 

Precision, 

Recall, F-

measure, ROC 
Area 

KNN achieved the 

highest Precision 

(0.956), Recall (0.959) 

and F-measure (0.955) 
among the models. 

Naïve Bayesian and 

NBTree perform better 

in ROC Area with 

0.963. 

Ahmed Qasim 

Abdulghani, 

Osman Nuri 

UCAN, 

Khattab M. 

Ali Alheeti, 

2021 [18] 

Credit Card 

Fraud Detection 

Using XGBoost 

Algorithm 

Significant changes 

in fraud methods and 

ever-changing 

strategies. 

European credit 

card dataset. 

SMOTE PCA Logistic 

Regression, 

LDA, Naïve 

Bayes, 

XGBoost 

Accuracy, 

precision, recall, 

F1-score, AUC, 

confusion 

matrix 

- XGBoost performs the 

best. 

- Performance is good 

after balancing dataset. 

Ruttala 
Sailusha,  V. 

Gnaneswar, R. 

Ramesh, G. 

Ramakoteswar

a Rao, 2020 

[19] 

Credit Card 
Fraud Detection 

Using Machine 

Learning 

Data mining 
techniques are used, 

but the results are not 

very accurate in 

detecting credit card  

fraud. 

European credit 
card dataset. 

Not mentioned 
in the research 

paper. 

PCA Random 
Forest, 

AdaBoost 

Accuracy, 
precision, recall, 

F1-score 

- Accuracy is the same 
for both the Random 

Forest and the 

Adaboost algorithms. 

- Precision, recall, and 

the F1-score the 

Random Forest has the 

highest value than the 

Adaboost. 

- Future work is to 

implement deep 

learning algorithms to 

detect credit card fraud 
accurately 
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C. Tejasri, CH 

Sai Ushanth 

Aryan, D. 

Deekshith, 

Arrolla 

Chintu,  
Dr. T. Subba 

Reddy, 2022 

[20] 

Fraud Detection 

in E-commerce 

using Machine 

Learning 

Restricted to 

identifying the 

features that will  

be used to classify  
transactions as either 

fraudulent or non-
fraudulent. 

E-commerce 

fraud dataset from  

Kaggle (user id, 

device id, gender, 

age, source 

browser, purchase 
time, sign up 

time, purchase 

value, ip address, 

label) 

Feature 

extraction, 

transformation, 

normalization 

Not 

mentioned 

in the 

research 

paper. 

Random 

Forest, 

Decision Tree,  

Accuracy Random Forest 

algorithm can achieve 

higher accuracy  

in fraud detection. 
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2.3  Limitation of previous Studies 

Many studies using the European Credit Card Fraud Detection dataset lack detailed 

information about the data. The anonymizes 28 variables (v1, v2…v28), and only disclose 

three features: time, amount and class [9,11,16,22,23]. Confidentiality issues often prevent 

researchers from revealing variable names or detailing the original and engineered features. 

Furthermore, some studies lack clear descriptions of the dataset or its features. This 

anonymization and lack of transparency make it difficult to interpret and evaluate the 

importance of individual features in fraud detection. Consequently, it becomes challenging to 

identify key features driving fraud detection and to understand how these findings apply to 

real-world scenarios, especially in terms of their impact on model performance and detection 

accuracy. 

Although class imbalance is a common issue in fraud detection, some studies do not apply 

any resampling techniques despite working with heavily imbalanced datasets. This oversight 

can lead to biased models favour the majority class, reducing the effectiveness of fraud 

detection. While many studies used SMOTE and reported improved results, there is limited 

exploration of alternative resampling techniques such as Random Oversampling and 

Random Under-sampling. Most studies also lack comprehensive comparisons between 

different resampling methods, leaving a gap in understanding which techniques are most 

suitable across various datasets and models.  

Furthermore, existing studies have limited focus on developing interactive dashboards to 

visualize and monitor the real-time performance of fraud detection models and the evolving 

fraud patterns. The lack of such dashboards makes it difficult for e-commerce businesses to 

track important metrics and ensures that the system remains reliable. This gap limits the ability 

to identify performance drops quickly, observe the fraud cases and trends in real-time, and 

adjust the model accordingly, which ultimately impacts effective fraud detection and decision-

making. 
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2.4 Proposed Solutions 

This project proposes that the use of dataset with clear, well-documented features is 

essential to ensure transparency and interpretability in fraud detection. This project will focus 

on utilizing datasets that provide variables with explicit feature names, which will enable a 

clearer understanding of the important factors influencing fraud detection. For example, 

publicly available datasets that contain transactional or demographic features, such as age, 

transaction amount, transaction time, product category and job, these data provide richer 

context and allow for a more comprehensive analysis. Using datasets with detailed information 

will not only enhance model interpretability but also improve the ability to reproduce findings 

and apply them to real-world scenarios. 

To address the limitation of inadequate handling of imbalanced datasets, this project will 

implement and compare multiple resampling methods, including SMOTE, Random 

Oversampling and Random Under-sampling. These methods are easy to implement and 

offer a balanced trade-off between effectiveness and computational efficiency. These methods 

will be applied across different models to determine their individual and comparative impacts 

on fraud detection performance. Performance will be assessed before and after applying 

resampling methods to ensure that improvements are consistent and significant. By conducting 

systematic analysis using metrics like F1-Score, Precision, Recall and MCC, the study aims to 

identify the most effective resampling method for improving minority class detection.  

Another proposed solution is the development of an interactive dashboard that can track and 

visualize the real-time fraud detection models performance and fraud patterns. The dashboard 

would provide continuous monitoring of confusion matrix and key metrics such as accuracy, 

precision, recall, MCC, F1-score and AUC. Additionally, it would allow businesses to monitor 

specific factors contributing to fraud, such as age, gender, transaction amount, transaction hour 

and product category, which may influence model performance. This real-time monitoring will 

enable stakeholders to identify performance drops promptly and make necessary adjustments 

to improve detection accuracy. By integrating these features, the dashboard would enhance 

decision-making and optimize fraud management, offering a practical tool for e-commerce 

businesses. 



CHAPTER 3 

28 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 
 

CHAPTER 3 
 

System Methodology/Approach  

The chapter outlines the system requirements, design, use case and project timeline. It details 

the hardware and software specifications, the overall system design for data preprocessing, 

model training and deployment. The use case diagram illustrates this end-to-end flow from data 

input to visual reporting. 

 

3.1  System Requirement 

3.1.1  Hardware 

The hardware used in this project includes a personal laptop. The laptop is essential for 

performing machine learning tasks such as data preprocessing, model training and result 

analysis. A capable processor, sufficient RAM, and storage are required to handle large datasets 

and computational workloads efficiently. Additionally, the same system is used for developing 

and testing Power BI dashboard, which will visualise the performance of the machine learning 

models. 

Description Specifications 

Model Inspiron 15 3511 

Processor 11th Gen Intel® Core™ i5-1135G7 @ 2.40GHz 

Operating System Windows 11 

Graphic Intel® Iris® Xe Graphics 

Memory 8GB DDR4 RAM 

Storage 512GB NVMe Micron SSD 

Table 3.1.1: Specifications of laptop 

3.1.2  Software/Tools 

The software and libraries used in this project are important for implementing the machine 

learning tasks and generating Power BI dashboard. The following software are required for 

different tasks such as data preprocessing, model training and visualization. 
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Description Specifications 

Development Environment Jupyter Notebook, Google Colab 

Programming Language Python 

Machine Learning Libraries Pandas, Numpy, Scikit-learn, Matplotlib, Seaborn, 

XGBoost, Imbalanced-learn, Joblib 

Dashboard Power BI Desktop, Power BI Service 

Table 3.1.2: Specifications of software 

The primary development environment for the project is Jupyter Notebook, a platform that 

supports interactive and iterative coding. Google Colab is also used to Jupyter Notebook, 

especially when more advanced or larger visualizations are required, as it can handle complex 

computations more efficiently. 

Python is the main programming language, including rich libraries like pandas and NumPy 

used for data manipulation, cleaning and preprocessing. Data visualization and EDA are 

conducted using matplotlib and seaborn, which provide insightful plots and visualizations, 

such as heatmaps, boxplots and various charts.  

For data preprocessing, scikit-learn is used for encoding categorical features and splitting 

datasets. To address class imbalances, the imbalanced-learn library is used to facilitate 

synthetic data generation using SMOTE as well as Oversampling and Under-sampling. 

During modelling phase, ensemble learning algorithms like Random Forest, AdaBoost and 

XGBoost are implemented using scikit-learn and XGBoost. Model evaluation is also 

conducted with scikit-learn to compute metrics such as accuracy, precision, recall, F1-score, 

MCC, AUC, classification report and confusion matrix. Additionally, visualizations of 

performance metrics, including confusion matrices, are generated using matplotlib and 

seaborn. 

For model deployment, the joblib library is used to export and import the trained model, 

ensuring portability and ease of integration. The deployed model is integrated into Power BI 

using Python scripts to enable fraud detection and visualization. Once the dashboard is 

finalized, it is published to the Power BI Service, allowing online access. Finally, testing is 

conducted to validate functionality, performance, and usability, leveraging both manual testing 

processes and Python utilities for monitoring execution and responsiveness. 
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3.2  System Design 

Figure 3.2.1 illustrates the steps of an e-commerce fraud detection system using machine 

learning. The process includes data collection, EDA, preprocessing and resampling to handle 

class imbalance. The data is splitting into training and testing sets and models like Random 

Forest, XGBoost and AdaBoost are trained and fine-tuned. The best model is evaluated and 

deployed, with predictions monitored in real time through a dashboard. 

 

Figure 3.2.1: Project Workflow Overview 

3.2.1  Dataset Collection 

The first step involves gathering relevant and high-quality data to train and evaluate the model. 

For this project, the required data includes transaction details (e.g., transaction date and time, 

transaction amounts, product category, order quantity), user information (e.g., customer age, 

gender, location, job) and labels indicating whether each transaction is fraudulent or legitimate. 
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These data are sourced from open repositories like Kaggle, which offer well-organized datasets 

such as the Credit Card Fraud Detection Dataset and E-commerce Fraud Dataset. The source 

is chosen for its domain relevance, detailed documentation, and reliable data quality. To ensure 

the sufficiency of the dataset, at least 50,000 transactions will be targeted for analysis.  

 

3.2.2  EDA & Data Preprocessing 

Data preprocessing is a critical step in preparing the dataset for machine learning. It involves 

cleaning, transforming, and organizing the raw data into a suitable format for analysis. 

The first task is handling missing values. It is important to check for missing values in the 

dataset, as they can cause data loss and bias. The isnull().sum() function helps to find any 

missing values, while the info() method gives an overview of the dataset, showing how many 

values are present in each column and also the number of null values.  

Since duplicate records can distort analysis and impact model performance, if duplicate rows 

are found, they need to be removed. It is common to retain only the first occurrence of each 

record and remove subsequent duplicates. 

Outliers are detected using the sns.boxplot function which generates boxplots that visually 

reveal any unusual data points. To handle outliers, if an outlier is associated with the target 

variable showing “fraud”, it will be kept as it might represent a legitimate high-risk transaction. 

However, if the outlier is not associated with fraud, it will be removed from the dataset using 

the drop() function.  

Correlation analysis is performed using the corr() function to calculate the relationships 

between numerical features and visualised with a heatmap. This helps identify strong 

correlations, detect multicollinearity, and reveal insights such as relationships between features 

and fraud risk. 

Important features are extracted from existing fields to enrich the dataset. For example, the 

customers’ age can be calculated from their date of birth, the hour and day of the week can be 

derived from the transaction timestamp. Additionally, geographical distance to the merchant 

can be calculated using location coordinates. These newly derived features help to improve the 

model’s ability to recognize complex patterns in the data. 
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Categorical features are transformed using appropriate encoding techniques. One-hot 

encoding is applied to nominal categories, binary encoding is used for high-cardinality 

variables. Target encoding can be applied by extracting statistical information from the 

original features, such as calculating the fraud rate for each credit card number, then replacing 

the values with these aggregated metrics. This approach captures the likelihood of fraud 

associated with each card, enabling the model to learn which cards are more susceptible to 

fraudulent transactions. These methods convert non-numeric data into a format that can be 

effectively understood and processed by machine learning models.  

In cases of imbalanced datasets, where fraudulent transactions are far less frequent than 

legitimate ones, techniques like SMOTE, Oversampling and Under-sampling are applied. 

SMOTE generates synthetic samples for the minority class to balance the dataset. 

Oversampling duplicates minority class data and under-sampling reduces majority class data. 

The dataset is then split into training and testing sets using a 70:30 ratio, meaning 70% of the 

data is used for training model, and the remaining 30% is reserved for testing model. This 

ensures the model is evaluated on unseen data, which helps assess its generalization ability. 

 

3.2.3  Model Selection 

The Modelling phase involves the application of three ensemble machine learning algorithms: 

Random Forest, XGBoost and AdaBoost. Each algorithm has its unique strengths, and this 

section will detail how they are applied to the fraud detection problem in e-commerce 

transactions. 

Random Forest 

Random Forest is a robust ensemble learning algorithm widely used for classification tasks due 

to its simplicity and interpretability [9]. It builds multiple decision trees using a bagging 

(bootstrap aggregating) approach, where each tree is trained on random subsets of data and 

features. The randomness creates diversity among the trees, which helps minimise overfitting 

and boosts the model’s generalization ability [3,9].  

In e-commerce fraud detection, each tree is constructed using a random vector value with a 

consistent distribution across all trees, and a predefined maximum depth is set to control 
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complexity and prevent overfitting [12]. Once the trees are built, the final prediction is made 

through majority voting, where the class most frequently predicted by the ensemble of trees is 

selected as the model’s output [4,9]. Figure 3.2.2 demonstrates the structure of the Random 

Forest process, starting with a dataset divided into random subsets to train individual decision 

trees. Each tree predicts a class, and the majority vote determines the final class. 

 

Figure 3.2.2: Workflow of Random Forest [21] 

XGBoost 

XGBoost (Extreme Gradient Boosting) is an advanced ensemble tree algorithm developed from 

Gradient Boosting Decision Trees (GBDT). It is especially well-suited in managing high-

dimensional data and identifying complex, non-linear relationships between variables, making 

it highly effective for classification tasks [3]. 

In XGBoost, the training process starts by splitting the data and training the first decision tree. 

Each tree in the sequence is trained to correct the residual errors from the previous tree. The 

process is repeated, with each subsequent tree focusing on the misclassified instances from the 

prior tree. After all trees are trained, the results of all trees are combined by summing (or 

weighted summing) their predictions to produce the final result. Figure 3.2.3 illustrates the 

workflow of XGBoost. 
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Figure 3.2.3: Workflow of XGBoost [22] 

AdaBoost 

AdaBoost (Adaptive Boosting) is an ensemble learning method that strengthens classification 

performance by sequentially combining multiple weak classifiers into a single robust model. 

Figure 3.2.4 illustrates the workflow of the AdaBoost algorithm. It begins with training a weak 

learner, then iteratively adjusts the weights of misclassified instances to focus on harder-to-

classify samples. Each weak learner contributes to the final model through a weighted sum 

based on its performance. This process continues until the specified number of iterations is 

reached or the dataset is accurately classified [4,19].  

 

Figure 3.2.4: Workflow of the AdaBoost [19] 
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AdaBoost is particularly effective for binary classification tasks, making it ideal for e-

commerce fraud detection. Its ability to adapt and emphasize challenging samples ensures high 

accuracy while reducing false positives. But it is sensitive to noisy data and outliers, which can 

impact performance. Despite this, AdaBoost’s iterative improvement and compatibility with 

weak learners make it a powerful option for tackling complex fraud detection problems [14,19]. 

 

3.2.4  Model Evaluation 

Once the models are trained, the next step is to evaluate their performance uisng the test data. 

The models are assessed on the 30% testing set to determine how well they generalize to unseen 

data. The performance evaluation is done using several key metrics to understand the models’ 

effectiveness and accuracy. 

Accuracy measures the proportion of total correct predictions (both fraudulent and legitimate 

transactions) out of all predictions made by the model. 

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (1)  

Precision represents the proportion of predicted fraudulent transactions that are actually 

fraudulent.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (2) 

Recall, also known as sensitivity, measures the proportion of actual fraudulent transactions 

that are correctly identified by the model.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (3) 

F1-score, defined as the harmonic mean of precision and recall, provides a single metric that 

balances the trade-off between the two. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (4) 
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Matthews Correlation Coefficient (MCC) evaluates the correlation between predicted and 

actual classifications, taking into account all four elements of the confusion matrix: true 

positives, true negatives, false positives, and false negatives. 

       𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   (5) 

Area Under the Curve (AUC) measures the model's capability to differentiate between 

fraudulent and legitimate transactions. It summarises the performance of the ROC curve, which 

depicts the relationship between true positive rate (recall) and the false positive rate across 

different classification thresholds. A higher AUC reflects stronger model performance in 

separating the two classes. 

𝐴𝑈𝐶 =  ∫ 𝑅𝑂𝐶 𝐶𝑢𝑟𝑣𝑒
1

0
     (6) 

Classification Report provides a summary of evaluation metrics like precision, recall F1-

Score and support for each class, allowing to determine how well the model performs in 

differentiate fraudulent and legitimate transactions. 

Confusion Matrix shows the number of correct and incorrect predictions, break down by class 

like fraudulent and legitimate transactions. It helps to identify the types of errors the model 

makes, including false positives and false negatives. 

 

Table 3.2.1: Confusion Matrix 
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3.2.5  Hyperparameter Tuning 

After the initial evaluation using default hyperparameters, the next step is to fine-tune these 

hyperparameters to improve the model’s performance. Hyperparameter tuning involves 

searching for the optimal set of hyperparameters that enable the model to generalize better on 

unseen data. 

In this study, both Grid Search and Randomized Search approaches were applied and compared. 

Grid Search exhaustively evaluates all possible combinations of hyperparameters within the 

defined search space. While it is more comprehensive, it is also computationally expensive, 

especially when the number of parameters and search ranges are large. Randomized Search, 

on the other hand, selects a fixed number of random combinations from the specified parameter 

distributions. This makes it more efficient and faster than Grid Search, though it may miss 

some optimal combinations. 

The key hyperparameters considered for ensemble models include n_estimators, 

learning_rate, max_depth, min_samples_split, min_samples_leaf, which are relevant to 

models such as Random Forest, XGBoost, and AdaBoost. These parameters directly influence 

model complexity, learning behavior, and generalization performance. 

By applying and comparing both methods, the trade-off between computational efficiency 

(Randomized Search) and thoroughness (Grid Search) can be evaluated. In cases where the 

default hyperparameters already produce effective results, the model may retain those settings 

to balance performance with computational cost. 

 

3.2.6  Synthetic Data Generation 

To enhance model evaluation and dashboard deployment, synthetic data was generated as an 

alternative test set. Such datasets preserve privacy while maintaining the statistical properties 

of the original, enabling reliable testing beyond limited real-world samples. 

Generative models are commonly used to create synthetic data. Generative Adversarial 

Networks (GANs) can produce new data by learning patterns from real datasets, so the 

generated data looks statistically similar to the original [23][24]. Variational Autoencoders 

(VAEs) work by compressing data into a smaller hidden space and then reconstructing it back, 
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which allows them to generate new samples that still follow the main characteristics of the 

original data [24][25]. 

In this study, two specialized approaches for tabular data were applied: 

• Tabular Variational AutoEncoders (TVAE): TVAE excels in data replication and 

augmentation by effectively learning the underlying data distribution through latent 

space representations [26]. 

• Conditional Tabular Generative Adversarial Networks (CTGAN): CTGAN 

achieves a balance across fidelity, synthesis quality, efficiency, privacy, and graph 

structure [26]. 

The synthetic test sets produced by both TVAE and CTGAN were used to re-evaluate model 

performance. This comparison aimed to identify whether synthetic data could serve as a 

reliable proxy for real-world test data, especially during dashboard integration and continuous 

evaluation. Finally, the results on the synthetic test sets were compared against the performance 

on the Kaggle real test set. This comparison provided insights into the trade-offs between 

using synthetic and real data, supporting the decision on whether to adopt synthetic datasets or 

to retain reliance on the real Kaggle test set for final deployment.  

 

3.2.7  Model Deployment to Power BI 

Once the best-performing model is selected and thoroughly validated, the next step is to deploy 

it into a production environment where it can provide real-time predictions and insights. In this 

project, the model is integrated with Power BI, allowing users to visualize, monitor and interact 

with fraud detection system dashboard efficiently. 

1. Export the model for Deployment 

The first step in model deployment is to export the trained model into a suitable format that 

can be used in a production environment. The joblib library is used to serialize the trained 

model into a file, making it portable and shareable across different environments. The model 

export process is a key step to ensure that the model can be reloaded and reused without 

retraining. 

2. Integrating the Model with Power BI 
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Once the model is exported, it is integrated into Power BI for fraud detection. This is done by 

adding a Python script in Power BI’s query editor to load the saved model and run predictions 

on new data. Before making predictions, preprocessing steps like encoding techniques are 

applied within the same Python script to ensure the new data is in the correct format for the 

model. The model then predicts whether transactions are fraudulent or legitimate. The script is 

executed automatically each time the data is refreshed in Power BI. 

3. Designing the Dashboard Layout and Add Visualizations 

The core of the deployment process is to create an interactive Power BI dashboard that 

presents the fraud patterns, fraud prediction results and relevant metrics in a clear and 

intuitive manner. This dashboard is tailored to help both data analysts and e-commerce 

administrators monitor the effectiveness of the fraud detection system and identify actionable 

insights quickly. 

To improve interpretation, different types of visual elements such as cards, clustered column 

charts, stacked column charts, doughnut charts, line charts, tables and others. will be used 

to represent fraud patterns, model performance and other insights. Slicers will also be added to 

allow users to filter data by variables such as date and prediction result to enable more flexible 

and targeted analysis. 

 

3.2.8  Dashboard Testing 

Testing a Power BI dashboard involves a thorough process to ensure that data, visuals, 

interactivity and overall user experience are functioning correctly. 

1. Data accuracy testing 

This involves checking that all data sources are properly connected and pulling the latest data 

when refresh data. Sample data from the dashboard should be cross-checked against the raw 

data to confirm consistency, and calculated metrics should be accurate. 

2. Visual accuracy testing 

Each visual should accurately represent the intended metric. Charts like line, bar and pie must 

accurately reflect trends, distributions and proportions. Labels, axes, legends and data points 

should be clear, properly formatted and easy to interpret. Visual design, such as font sizes, 

colours, and spacing should also be verified to maintain readability and consistency. 
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3. Slicer testing 

Slicers and filters should be tested to confirm they filter data correctly by categories or ranges. 

It is important to verify that slicer selections update related visuals dynamically and do not 

cause any display errors. Multiple slicers should function together without conflicts and 

removing filters should reset visuals to their default view.  

4. Performance testing 

Performance testing is to make sure the dashboard responds quickly and operates smoothly. 

This includes evaluating the loading time of the report, the responsiveness of visuals when 

interacting with slicers and overall usability with large datasets. Measures and complex visuals 

should be reviewed and optimised to avoid performance delays. Additionally, the time taken 

to refresh data should be monitored to ensure it within an acceptable range. 

5. User acceptance testing 

This testing is conducted using the System Usability Scale (SUS) questionnaire. SUS is used 

because it is recognized as the most commonly adopted instrument for dashboard evaluation, 

providing a general and consistent measure of usability [27]. Respondents were first asked to 

use the dashboard and then complete the SUS survey, which assesses key aspects such as 

usability, clarity, responsiveness, interactivity, and overall user satisfaction. 

The SUS consists of 10 statements rated on a 5-point Likert scale, ranging from “Strongly 

Disagree” (1) to “Strongly Agree” (5), with both positively and negatively worded items. For 

scoring, positive items are calculated as (Response − 1), and negative items are calculated as 

(5 − Response). This process standardises all values to a range of 0 to 4. The recoded values 

for each respondent are then summed to obtain a total score between 0 and 40, which is 

multiplied by 2.5 to yield a final SUS score ranging from 0 to 100. 

The success criteria for this testing include achieving an average SUS score of at least 70, 

ensuring no major technical or usability issues, and confirming that the dashboard meets user 

expectations. Feedback collected from the SUS survey is subsequently used to refine and 

improve the dashboard, ensuring that it effectively supports fraud monitoring and analysis tasks 

while providing a user-friendly experience. 
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3.3  User Case 

3.3.1  Use Case Diagram 

 

Figure 3.3.1: Use case diagram 
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3.3.2  Use Case Description 

Use Case Name: Upload New Data ID: 01 Importance Level: High 

Primary Actor(s): Data Analyst Use Case Type: Detail, essential 

Stakeholders and Interests: 

Data Analyst: Wants to upload new data for updated analysis, predictions, and dashboard 

reporting. 

Brief Description: Data Analyst uploads new dataset to the system. The system then automatically 

preprocesses the data, applies a trained prediction model, and updates the Power BI dashboard 

with the new data and predictions. 

Trigger: A new or updated data file (e.g., CSV) is available and selected by the Data Analyst for 

upload. 

Relationship: 

Association: Data Analyst 

Include: Preprocess Data, Run prediction, Update Dashboard 

Extend: None 

Generalization: None 

Normal Flow of Events: 

1. The Data Analyst selects Get Data and chooses the data source type (e.g., CSV). 

2. The Data Analyst provides connection details (e.g., file path). 

3. The system retrieves the data from the source and displays a preview. 

4. The Data Analyst confirms the data and clicks Load. 

5. The system loads the data into Power BI. 

6. The system creates a duplicate of the dataset to serve as a working copy (preserves 

original/raw data). 

7. The system applies preprocessing techniques (e.g., encoding) to the working dataset. 

8. The trained prediction model is retrieved and initialized. 

9. The system runs the prediction algorithm on the pre-processed data. 

10. Prediction results are appended to the dataset. 

11. The system checks for changes or additions in the data. 

12. The dashboard elements are automatically updated based on the new data and predictions. 

Sub Flows: None 

Alternative/Exceptional Flows: None 

Use Case Name: Refresh Data ID: 02 Importance Level: High 
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Primary Actor(s): Data Analyst, Ecommerce 

Admin 

Use Case Type: Detail, essential 

Stakeholders and Interests: 

Data Analyst: Requires up-to-date data for accurate analysis, dashboard reporting, and 

insights. 

Ecommerce Admin: Depends on current data to support timely decision-making and 

operational strategies. 

Brief Description: Data Analyst or Ecommerce Admin manually initiates a data refresh in 

Power BI. This triggers automatic preprocessing and prediction steps using the updated data. 

The results are then reflected in the Power BI dashboard. 

Trigger: Manual selection of the “Refresh” option within Power BI. 

Relationship: 

Association: Data Analyst, Ecommerce Admin 

Include: Preprocess Data, Run Prediction, Update Dashboard 

Extend: None 

Generalization: None 

Normal Flow of Events: 

1. Data Analyst or Ecommerce Admin selects the option to refresh the data. 

2. Power BI retrieves the latest data from the connected source. 

3. The system creates a duplicate of the dataset to serve as a working copy (preserves 

original/raw data). 

4. The system applies preprocessing techniques (e.g., encoding) to the working dataset. 

5. The trained prediction model is retrieved and initialized. 

6. The system runs the prediction algorithm on the pre-processed data. 

7. Prediction results are appended to the dataset. 

8. The system checks for changes or additions in the data. 

9. The dashboard elements are automatically updated based on the new data and 

predictions. 

Sub Flows: None 

Alternative/Exceptional Flows: None 
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Use Case Name: Build/Update Visuals ID: 03 Importance Level: High 

Primary Actor(s): Data Analyst Use Case Type: Detail, essential 

Stakeholders and Interests: 

Data Analyst: Requires the flexibility to create or customize dashboard visuals to align 

with business goals and analytical needs. 

Ecommerce Admin: Benefits from clear, relevant, and easy-to-understand visuals to 

monitor fraud trends and make informed decisions. 

Brief Description: The Data Analyst creates new visuals or updates existing ones in the 

dashboard using selected data fields and visual types. 

Trigger: Data Analyst initiates the creation or update of dashboard visuals in Power BI. 

Relationship: 

Association: Data Analyst 

Include: Update Dashboard 

Extend: None 

Generalization: None 

Normal Flow of Events: 

1. The Data Analyst selects data fields from the model within Power BI. 

2. The Data Analyst chooses the type of visual (e.g., bar chart, line chart, cards). 

3. The system generates new visual based on selected fields and format. 

4. The system automatically refreshes and displays the updated dashboard view. 

Sub Flows:  

Update Existing Visual: If an existing visual is being updated, the system replaces the 

current visual with the newly configured one while retaining layout consistency. 

Alternative/Exceptional Flows: None 
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Use Case Name: View Dashboard ID: 04 Importance Level: High 

Primary Actor(s): Data Analyst, Ecommerce 

Admin 

Use Case Type: Detail, essential 

Stakeholders and Interests: 

Data Analyst: Requires visibility into up-to-date data, predictive outputs, and visual trends 

for monitoring and analysis. 

Ecommerce Admin: Uses dashboard insights to support decision-making and guide 

business strategy. 

Brief Description: Data analyst and Ecommerce admin view the Power BI dashboard to 

access current data, prediction results, and visualizations related to model performance 

and trends. 

Trigger: Open or navigate to the dashboard within the Power BI platform. 

Relationship: 

Association: Data Analyst, Ecommerce Admin 

Include: None 

Extend: None 

Generalization: None 

Normal Flow of Events: 

1. User navigates to the dashboard. 

2. The system displays the dashboard. 

3. User selects a specific page to view (e.g., Overview, Fraud Patterns, Model 

Performance). 

Sub Flows: None 

Alternative/Exceptional Flows: None 
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Use Case Name: Export Report ID: 05 Importance Level: Medium 

Primary Actor(s): Data Analyst, 

Ecommerce Admin 

Use Case Type: Detail, essential 

Stakeholders and Interests: 

Data Analyst: Needs to generate and share visual reports for meetings, documentation, or 

offline analysis. 

Ecommerce Admin: Requires snapshot reports to review business performance and share 

insights with stakeholders. 

Brief Description: Data analyst and Ecommerce admin export a report of the current 

dashboard view, including visuals, in PDF format. 

Trigger: Initiates the export process from the Power BI dashboard settings menu. 

Relationship: 

Association: Data Analyst, Ecommerce Admin 

Include: None 

Extend: None 

Generalization: None 

Normal Flow of Events: 

1. The user can apply desired filters/slicers to select specific data to include in the 

report. 

2. The user clicks on the ‘File’ tab and selects ‘Export’ > ‘Export to PDF’. 

3. The system generates a PDF report of the current dashboard view. 

4. The system automatically downloads the PDF file to the user's device. 

Sub Flows: None 

Alternative/Exceptional Flows: None 
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3.4  Timeline 

The project timeline is divided across two semesters. In Final Year Project 1, it will be start 

with research and planning, followed by data collection and preprocessing. Once the data is 

prepared, preliminary modelling will be conducted, and progress will be documented in the 

report. In Final Year Project 2, the work will begin with hyperparameter tuning to optimize 

model performance, followed by finalizing the best model. The selected model will then be 

deployed to Power BI, where a functional dashboard will be created to visualize and interact 

with predictions. Afterward, various testing will be carried out to evaluate the dashboard’s 

effectiveness. The project will conclude with the preparation and submission of the final report 

and presentation.  Gantt charts are used to illustrate the detailed timeline and key milestones 

for both semesters.
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Figure 3.4.1: Gantt Chart for Final Year Project 1 
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Figure 3.4.2: Gantt Chart for Final Year Project 2 
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CHAPTER 4  

 

System Design 

This chapter outlines the design of the fraud detection dashboard, covering data flow, model 

integration from Jupyter to Power BI, and the dashboard’s layout and user interactions through 

wireframes. 

 

4.1 System Block Diagram 

The system block diagram illustrates the overall structure of the fraud detection dashboard 

system, as shown in Figure 4.1.1. It emphasizes how data flows from the input dataset to the 

end-user interface, as well as how machine learning components, which were originally 

developed in Jupyter Notebook, are integrated into Power BI for automated use. 

 

Figure 4.1.1: System Block Diagram of the Fraud Detection Dashboard 

 

E-commerce Fraud Dataset (Input Source) 

The dataset, stored in OneDrive in CSV format, acts as the primary input. It contains transaction 

records that include both fraudulent and non-fraudulent cases. The dataset can be updated by 

replacing the file or link, after which the dashboard will automatically refresh. 

Preprocessing Pipeline (Developed in Jupyter, Integrated in Power BI) 
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During development, preprocessing steps such as encoding and resampling were designed and 

tested in Jupyter Notebook. Once finalized, the pipeline was exported and embedded into 

Power BI through Python scripting. Inside Power BI, the pipeline is not retrained but reused to 

transform any new incoming dataset consistently. 

 

Trained Machine Learning Model (Developed in Jupyter, Integrated in Power BI) 

Model training and evaluation (e.g., Random Forest) were conducted in Jupyter Notebook 

using the processed dataset. The final trained model was saved and then integrated into Power 

BI. Similar to the preprocessing pipeline, the model does not undergo retraining in Power BI. 

Instead, it is loaded and applied directly to generate predictions whenever the dashboard data 

is refreshed. 

 

Deployment Module (Power BI Integration) 

After preprocessing and prediction, the results are loaded into Power BI’s data model. This 

deployment step links the Python output with Power BI tables, ensuring that visuals (charts, 

KPIs, metrics) automatically update based on the latest dataset. 

 

Power BI Dashboard (User Interface) 

The dashboard presents the final results to end-users in a structured and interactive way. It 

consists of multiple pages—Homepage, Overview, Time Analysis, Geography, Demographics, 

Behavioural Analysis, Model Performance, Prediction Confidence & Key Influencers, Credit 

Crad Transaction and Transaction Details—that allow fraud patterns and model performance 

to be explored at different levels of detail. From the user’s perspective, the workflow is simple: 

they only need to refresh the dashboard, and all preprocessing, prediction, and visualization 

updates occur automatically in the background. 
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4.2 System Components Design (Wireframe) 

The wireframe acts as a blueprint for the fraud detection dashboard, showing the layout, key 

components, and user interactions. It ensures clarity in organizing visuals and navigation from 

summary insights to detailed analysis. 

 

Homepage 

 

Figure 4.2.1: Wireframe of Homepage 

Purpose: Entry point of the system; provides navigation to all pages. 

Components & Implementation: 

• Navigation Buttons: Power BI Blank Buttons, set Action = Page Navigation. 

Redirects to Overview, Time Analysis, Geography, Demographics, Behavioral 

Analysis, Model Performance, Prediction Confidence & Key Influencers, Credit Card 

Transactions, and Transaction Details. 
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Overview Page 

 

Figure 4.2.2: Wireframe of Overview Page 

Purpose: Summary dashboard of dataset insights and model performance. 

Components & Implementation: 

• KPI Metrics Cards: Total transactions, total & average transaction amounts, fraud 

count & amount, predicted fraud count & amount, fraud rate, model accuracy, false 

positive rate. 

o Linked to DAX measures (SUM, COUNTROWS, AVERAGE, 

CALCULATE). 

o Conditional formatting: 

▪ Fraud rate: <0.1 green, <0.3 yellow, >0.3 red 

▪ Accuracy: >0.9 green, >0.75 yellow, <0.75 red 

• Line Charts: Fraud vs non-fraud trends over time, Fraud rate over time 

• Navigation Buttons: Bottom of page using Page Navigator buttons. 
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Time Analysis Page 

 

Figure 4.2.3: Wireframe of Time Analysis Page 

Purpose: Identify fraud patterns across periods. 

Components & Implementation: 

• Column Charts: Fraud vs non-fraud by day of week, Fraud count over time (day of 

month), and Fraud vs non-fraud by month.  

• Doughnut Chart: Fraud by time (day/night). 

• Line Chart: Fraud vs non-fraud by hour. 

• Slicers: Fraud label, transaction category, transaction period. 

  



CHAPTER 4 

55 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 
 

Geography Page 

 

Figure 4.2.4: Wireframe of Geography Page 

Purpose: Spatial insights for fraud detection. 

Components & Implementation: 

• Map Visual: Plot transactions by city. 

o Color: Blue = normal, Red = fraud. 

o Tooltips: city, fraud label, lat/long, transaction count, distance from merchant. 

o Enable zoom/pan. 

• Column Chart: Fraud vs non-fraud by population group. 

• Line Chart: Fraud vs non-fraud by distance from merchant. 

• Summary: Smart Narrative Visual, linked to DAX measures. 

• Slicers: Fraud label, population group, distance from merchant (between-style slicer). 
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Demographics Page 

 

Figure 4.2.5: Wireframe of Demographics Page 

Purpose: Explore fraud based on customer attributes. 

Components & Implementation: 

• Column Chart: Fraud vs non-fraud by age group. 

• Doughnut Chart: Fraud by gender. 

• Cross Table: Fraud by age group and gender using Heatmap. 

• Credit Card Transactions Table: 

o Columns: Credit card no, fraud count, total transactions, fraud rate. 

o Drill-through to Credit Card Transactions Page via right-click on credit card 

no. 

o Conditional formatting: Fraud rate near 100% = red, near 0% = no color. 

• Summary: Smart Narrative Visual, DAX measures for insights. 

• Slicers: Fraud label, age group, category, transaction period. 
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Behavioral Analysis Page 

 

Figure 4.2.6: Wireframe of Behavioral Analysis Page 

Purpose: Examine patterns in customer behaviour for anomalies. 

Components & Implementation: 

• Column Chart: Fraud vs non-fraud by category. 

• Doughnut Chart: Total transaction amount by fraud label. 

• Bar Chart: Average transaction amount by fraud label. 

• Summary: Smart Narrative Visual, DAX measures for insights. 

• Slicers: Fraud label, category, transaction date. 
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Model Performance Page 

 

Figure 4.2.7: Wireframe of Model Performance Page 

Purpose: Evaluate ML model performance in detecting fraud. 

Components & Implementation: 

• Confusion Matrix: Using Heatmap visual. 

• Performance Metrics Cards: Accuracy, Precision, Recall, F1-score, MCC, AUC. 

o Conditional formatting: >90% green, >75% yellow, <75% red. 

• Column Charts: Prediction results by category and age group  

• Summary: Smart Narrative Visual with dynamic insights based on DAX measures. 

• Slicer: Prediction result (TP, FP, TN, FN); default selection = FN & FP. 
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Prediction Confidence & Key Influencers Page 

 

Figure 4.2.8: Wireframe of Prediction Confidence & Key Influencers Page 

Purpose: Provide model explainability and key influencers for fraud prediction. 

Components & Implementation: 

• Cards: High confidence count & percentage (Predicted probability >0.8 is considered 

High confidence). 

• Pie Chart: Fraud count by confidence level (Very High >0.9, High >0.8, Medium >0.5, 

Low <0.5). 

• Transaction History Table:  

o Columns: Transaction ID, prediction, actual, predicted probability, confidence 

level. 

o Drill-through to Transactions Page via right-click on credit card no. 

• Key Influencers Visual: AI visual automatically identify which features (e.g., 

transaction amount, category, time of day) most strongly influence whether a 

transaction is fraud or non-fraud. The visual then ranks these fields by influence 

strength, expressed as a relative factor (x times more likely). 
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Credit Card Transactions Page 

 

Figure 4.2.9: Wireframe of Credit Card Transactions Page 

Purpose: Aggregated view of credit card activity; drill-through from Demographics Page. 

Components & Implementation: 

• Cards: Credit card no, Fraud count, total transactions, fraud rate, fraud amount, total 

transaction amount. 

o Conditional formatting: For Fraud Count card, if Fraud >0 highlighted red. 

• Transaction History Table: 

o Columns: Transaction ID, date & time, predicted label, actual label, prediction 

result. 

o Drill-through to Transaction Detail Page via right-click on one of the 

transactions. 

o Conditional formatting: Fraud = red, Non-Fraud = Green; Wrong prediction 

(False Negative/ False Positive) = red, Correct prediction = Green. 

• Column Chart: Fraud over time. 
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Transaction Details Page 

 

Figure 4.2.10: Wireframe of Transaction Details Page 

Purpose: Most detailed analysis; drill-through from other pages. 

Components & Implementation: 

• Cards: Transaction ID, actual label, predicted label, fraud probability, prediction result. 

o Actual Label & Predicted Label: Fraud = red, Non-fraud = green. 

o Fraud probability: Gradient formatting, 0% = green, 100% = red. 

o Prediction result Correct = green; False Negative/False Positive = red. 

• Transaction Details Cards: Date, time, amount, category, city, city size, distance, 

credit card no, credit card fraud rate, gender, age, age group. 
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CHAPTER 5 

 

System Implementation 

This chapter details the project implementation, covering software setup, data understanding, 

and preprocessing for machine learning model development. It also describes initial model 

testing, hyperparameter tuning, and performance evaluation to optimize each algorithm. 

Additionally, synthetic data generation was performed to support robust model evaluation and 

dashboard deployment. Finally, the trained models and preprocessing pipelines were integrated 

into Power BI, where the interactive dashboard was developed to visualize predictions and 

insights. 

5.1  Setting up  

5.1.1  Software/Tools 

Before starting the project, there are several software/tools are downloaded and installed on the 

laptop. These includes: 

• Jupyter Notebook 

• Python 

• Google Collaboratory (no need installation) 

• Power BI Desktop 

Figure 4.1.1 shows the versions of the key Python libraries used in this project, including 

pandas, numpy, scikit-learn, matplotlib, seaborn, xgboost, and imbalanced-learn. 

 

Figure 5.1.1: Version of Python and Various Libraries. 

5.2  Initial Dataset (Aborted) 

Aborted in here refers to the decision to discontinue the use of the initially selected dataset for 

model training due to the weak correlations between features and the target variable (is_fraud). 
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This limitation may reduce its effectiveness for fraud detection. A more suitable dataset with 

stronger predictive features was sourced instead. 

5.2.1  Dataset Selection 

The initial dataset used in this project is the “Financial Transactions Dataset: Analytics” from 

Kaggle, which consisted of five separate files, with a total of 39 columns as shown in Figure 

4.2.1. The dataset is designed for various financial applications such as fraud detection, 

customer analytics and expense forecasting. The dataset includes the following files: 

 

Figure 5.2.1: Initial Dataset Information 

• transactions_data.csv: Containing detailed records of transactions such as timestamps, 

amounts, and merchant information 

• users_data.csv: Containing demographic and account-related information about users 

• cards_data.csv: Containing card-specific information including card types and limits 

• train_fraud_labels.json: Containing binary fraud labels (fraudulent vs. legitimate) for 

supervised learning 

• mcc_codes.json: Containing listed merchant category codes (MCC) with 

corresponding descriptions for categorizing transaction types. 

 

5.2.2  EDA and Preprocessing of Initial Dataset 

All datasets are loaded. To process the fraud labels and MCC descriptions, the data is 

converted from a json file into a DataFrame. 
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Figure 5.2.2: Loading Dataset 

Transactions are merged with fraud labels using the transaction id, then merged with MCC 

codes via the mcc column. User data is merged using client_id as the key, followed by card 

data using card_id. Duplicate ID-related columns are removed after merging. 

 

Figure 5.2.3: Merging Dataset 

After merging, transactions are filtered to retain only online transactions made by credit 

card. Before filtering, the dataset contained over 8 million transactions, after filtering, only 

313,783 transactions remained. 
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Figure 5.2.4: Dataset Size Before and After Filtering for Online Credit Card Transactions 

Next, obtaining a summary of the dataset using df.info() and displaying the first 5 rows with 

df.head(5) to check its structure. The dataset contains 313,783 entries and 38 columns with a 

mix of numerical and categorical data. Some columns like merchant_state and zip are entirely 

null and are dropped in later a step. While 'errors' has significant missing values. Financial 

data is stored as objects, requiring cleaning and conversion to numeric types. Date columns 

need conversion to datetime format, and categorical features may require encoding. The target 

variable, 'is_fraud', classifies transactions as fraudulent or not. 

 

Figure 5.2.5: Initial Dataset Summary 
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Figure 5.2.6: First Five Rows of Initial Dataset 

Dollar signs and commas in monetary value columns are removed, allowing conversion to 

numerical formats. 

 

Figure 5.2.7: Monetary Columns After Removing Dollar Signs and Commas 

Date-related columns like date and expires are converted into datetime format to allow further 

manipulation. For the expires column, the expiration date is set to the last day of the month. 

The days_to_expiry is computed by calculating the difference between the transaction date 

(date) and the expiration date (expires). Additionally, the account age is computed by 

calculating the difference between the transaction date and the account opening date, 

converting this into the account_age column in years. Finally, the age of the PIN, represented 

by the year_pin_last_changed column, is calculated by finding the difference between the 

transaction year and the year of the last PIN change. If the PIN is changed after the transaction 

date, the age is set to 0. 
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Figure 5.2.8: Feature Extraction from Date-Related Columns 

Next, columns were dropped based on their uniqueness and relevance. Features like id_x, 

client_id_x, card_id, merchant_id, and mcc are removed as they are unique identifiers, while 

use_chip, merchant_city, card_type, and card_on_dark_web are dropped because they contain 

only one unique value. Columns like address, latitude, and longitude are excluded due to high 

cardinality and because the variables themselves do not provide meaningful information. 

Features related to card details, such as card_number and cvv, are removed as they are not 

useful for fraud detection. 

While birth_year and birth_month are dropped because age had already been extracted, 

making them redundant. Columns like date, expires, acct_open_date, and 

year_pin_last_changed are removed since they have already been used to create new features 

such as days_to_expiry, account_age, and year_pin_last_changed. By removing these 

unnecessary columns, the dataset is streamlined, improving efficiency for fraud detection 

analysis. 

 

Figure 5.2.9: Number of Unique Values for Each Feature 
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After dropping the specified columns, the dataset is checked for duplicate rows, and 21 

duplicate rows are removed. 

 

Figure 5.2.10: Number of Duplicated Rows 

The next step is to remove outliers using the Interquartile Range (IQR) method. It visualized 

the distribution of the data using boxplots to identify potential outliers. Then, for each numeric 

column, the IQR is calculated, and values outside the range of 1.5 * IQR from the first and 

third quartiles are marked as outliers.  

 

Figure 5.2.11: Boxplots of Numeric Features 

The analysis below shows that columns like amount, current_age, per_capita_income, 

yearly_income and credit_limit have many outliers, suggesting the presence of extreme values 

or potential data quality issues, while columns like num_cards_issued and days_to_expiry have 

no outliers, indicating more consistency in those features.  
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Figure 5.2.12: Number of Outliers in Each Column 

The outliers are split into fraud and non-fraud cases. Fraudulent outliers are kept, while non-

fraudulent outliers are removed from the dataset to retain only relevant fraud data. 

In the updated analysis below, 1,283 fraud-related outliers are kept, as they could represent 

important, extreme fraudulent cases important for fraud detection. 105,573 non-fraudulent 

outliers are removed to eliminate irrelevant extreme values that could distort further analysis. 

As a result, the dataset was reduced to 242,680 records. Overall, this process helps refine the 

dataset by retaining important fraud data while removing non-relevant outliers. 

 

Figure 5.2.13: Outlier Handling Summary 

Next, one-hot encoding is applied to categorical columns such as errors and card_brand. 

Binary encoding is then used for columns like is_fraud, gender and has_chip. 

 

Figure 5.2.14: One-Hot Encoding and Binary Encoding for Categorical Columns 
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After using heatmap and correlation analysis to identify potential relationships between the 

features and the target variable (is_fraud), it proves that many of the correlations are weak or 

near zero. The presence of a lot of blue in the heatmap as shown in Figure 4.2.15, typically 

indicates weak or insignificant correlations between variables.  

  

Figure 5.2.15: Heatmap and Correlation Table for is_fraud 

The correlation analysis between target variable and other numerical features reveals several 

key insights. The highest correlation is with amount (0.14606), suggesting a weak positive 

relationship. Other features like days_to_expiry, Bad CVV and num_credit_cards had very 

weak positive correlations, while total debt, retirement_age, account_age and pin_age_years 

show weak negative correlations. Many variables, such as Technical Glitch and has_chip, 

exhibit minimal correlations, indicating limited relevance for fraud prediction.  

Given the weak correlations, the current dataset may not provide strong predictive power for 

fraud detection because most features do not show meaningful relationships with target 

variable. This may make it difficult for the models to differentiate fraudulent from legitimate 

transactions. This limitation prompts the need to explore a different dataset with stronger 

relationships for better model performance. 

 

 



CHAPTER 5 

71 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 
 

5.3  Final Dataset 

5.3.1  Data Selection 

In this project, the final dataset chosen is the “Credit Card Transactions Fraud Detection 

Dataset” from Kaggle. Unlike the previous dataset, which has low correlation and limited 

usage, this dataset is considered more reliable due to its widespread use by other researchers. 

It contains both fraudulent and non-fraudulent transactions recorded between January 1, 2019, 

and December 31, 2020.  It provides a rich set of features, including transaction date and time, 

amount, merchant details, product categories, job, cardholder information and geographical 

data as shown in Table 4.3.1. 

Feature Description 

trans_date_trans_time Date and time of the transaction 

cc_num Credit card number used for the transaction 

merchant Name of the merchant where the transaction occurred 

category Type of merchant or business category 

amt Amount of money spent in the transaction 

first First name of the cardholder 

last Last name of the cardholder 

gender Gender of the cardholder (Male or Female) 

street Street address of the cardholder 

city City of the cardholder 

state State of the cardholder 

zip ZIP code of the cardholder's address 

lat Latitude of the cardholder’s location 

long Longitude of the cardholder’s location 

city_pop Population of the cardholder’s city 

job Job title of the cardholder 

dob Date of birth of the cardholder 

trans_num Unique transaction ID 

unix_time Transaction time in Unix timestamp format 

merch_lat Latitude of the merchant’s location 
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merch_long Longitude of the merchant’s location 

is_fraud Target variable showing if the transaction is fraud (1) or non-

fraud (0) 

Table 5.3.1: Feature Description of Credit Card Transactions Fraud Detection Dataset 

 

5.3.2  EDA and Data Cleaning 

1. Handling null value and duplicate 

Since there were no null values and duplicate, then skipped to the step of removing irrelevant 

columns.  

 

Figure 5.3.1: Null Values and Duplicates Check in the Dataset 

2. Remove irrelevant columns 

Features like trans_num, first, and last were removed because they contained transaction or 

personal identifiers that do not contribute meaningfully to fraud detection. Features like street, 

city, state, and zip were removed since location information is already represented by lat, long, 

merch_lat and merch_long, making them redundant. 

 

 

Figure 5.3.2: Drop Irrelevant Columns 
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3. Remove outlier 

To detect outliers in the dataset, the Interquartile Range (IQR) method is applied to numeric 

features. Each feature is analysed separately, and the results are shown in the boxplots below. 

 

Figure 5.3.3: Boxplots for Numerical Features 

The outlier detection step identifies a significant number of anomalies across various features, 

with a total of 328,615 rows containing at least one outlier.  

 

Figure 5.3.4: Total Rows with Outliers and Outliers per Column 

The transaction amount (amt) has 67,290 outliers, indicating a wide range of transaction 

values with extreme cases, primarily involving high transaction amounts, as observed in the 

boxplot.  
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Geographical features, such as latitude (lat), longitude (long), merchant latitude (merch_lat) 

and merchant longitude (merch_long), show 4,679, 49,922, 4,967 and 41,994 outliers, 

respectively. The boxplots show that latitude has outliers at both ends of the range, while 

longitude outliers are mostly on the lower extreme, for both customer and merchant locations.  

City population (city_pop) has the highest number of outliers at 242,674, likely due to the 

extreme variations in population sizes across different cities.  

Transaction time (unix_time) does not show any outliers, indicating a uniform distribution 

of transactions over time. These findings highlight the need for proper handling of extreme 

values to improve the fraud detection model's performance. 

 

Figure 5.3.5: Summary of Fraudulent Outliers Across Features 

To check whether outliers contributed to fraudulent transactions, the dataset is split into 

fraudulent and non-fraudulent transactions. The analysis shows 6,081 fraudulent transactions 

with outliers and 322,534 non-fraudulent transactions with outliers. A total of 242,674 

outliers were detected in the city population, but only 1,434 are linked to fraud. The 

transaction amount has the highest number of fraudulent outliers, totalling 5,705, followed 

by city population (1,434), longitude (298), merchant longitude (261), merchant latitude (46) 

and latitude (43). Since most outliers are found in non-fraudulent transactions, this suggests 

that extreme values alone do not necessarily indicate fraud. 
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Since fraudulent transactions with outliers may contain valuable fraud patterns, only non-

fraudulent outliers were removed from the dataset. This step aimed to reduce noise while 

retaining important fraud indicators. After removing these non-fraudulent outliers, the dataset 

size decreased from 1,296,675 to 974,141. 

 

Figure 5.3.6: Outlier Handling Summary 

 

5.3.3  EDA and Data Visualization 

1. Fraud Count and Rate 

To understand the distribution of fraudulent transactions within the dataset, an analysis of 

fraud occurrence rates and their proportion to non-fraudulent transactions. 

 

Figure 5.3.7: Fraud vs Non-Fraud Transactions and Percentage Distribution 

After removing outliers, the dataset still displays a serious class imbalance, with non-

fraudulent transaction making up 99.23% (966,635 records) and fraudulent transactions 

only 0.77% (7,506 records). This large contrast is visually showed in the bar chart, where 
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fraud cases are barely visible compared to non-fraud transactions, and in the pie chart, which 

shows that fraud makes up less than 1% of all transactions. 

This imbalance creates a challenge for machine learning models, as they may bias towards 

the majority class (non-fraud), resulting in high accuracy but poor fraud detection. To solve 

this, techniques like SMOTE, oversampling and under-sampling will be applied in the later 

steps to improve model performance. 

 

2. Transaction Amount 

 

Figure 5.3.8: Transaction Amount Distribution 

The transaction amount distribution plot shows that most transactions are small amounts, 

with focus on transactions below $200. This distribution is highly right skewed, meaning a few 

transactions involve significantly larger amounts. 
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Figure 5.3.9: Average Transaction Amount by Fraud and Non-Fraud 

 

The bar chart comparing average transaction amounts between fraudulent and non-

fraudulent transactions. Average amount for non-fraudulent transactions is $51.07, while for 

fraudulent transactions is $531.32. This means that fraudulent transactions normally involve 

higher amounts compared to legitimate transactions.  

 

 

Figure 5.3.10: Percentage Distribution of Fraud and Non-Fraud by Transaction Amount 
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This histogram comparing fraud and non-fraud rate across different transaction amounts 

further supports previous findings. Lower transaction amounts have a higher non-fraud rate, 

while the fraud rate increases as transaction amounts rise, especially in the range from $200 

to $1,000. This pattern suggests that transaction amount is an important feature for fraud 

detection models. Higher amount transactions should be closely monitored, as they are more 

likely to be fraudulent. 

 

3. Gender 

 

Figure 5.3.11: Fraud and Non-Fraud Transactions by Gender 

 

The analysis of fraud and non-fraud transactions by gender reveals that the total number of 

transactions is higher for females (523,172) compared to males (443,463). However, the 

number of fraudulent transactions is nearly same for both genders, with 3,735 fraud cases 

among females and 3,771 among males.  
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Figure 5.3.12: Fraud Ratio by Gender 

Even though the number of fraud cases is almost the same for both genders, the fraud ratio is 

different because the total number of transactions varies. Males have a higher fraud ratio of 

0.84%, while females have a slightly lower fraud ratio of 0.71%. This suggests that 

compared to their total transactions, fraud is more common among males than females.  

 

4. Category 

 

Figure 5.3.13: Fraud Rate by Category 
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This chart visualises the fraud rate across different transaction categories. The highest fraud 

rate is observed in ‘shopping_net’ (2.41%), followed by ‘misc_net’ (2.00%) and 

‘grocery_pos’ (1.94%), indicating that these three transaction categories are more vulnerable 

to fraud. Moderate fraud rates are found in categories like ‘shopping_pos’ (1.01%), 

‘gas_transport’ (0.57%), ‘misc_pos’ (0.44%), ‘travel’ (0.43%) and ‘grocery_net’ (0.40%), 

suggesting that fraudsters also target essential services and frequent transactions. In contrast, 

categories such as entertainment, personal care, kids/pets, foods/dining, home and 

health/fitness exhibit fraud rate below 0.35%.  

 

Figure 5.3.14: Rate Difference between Fraud and Non-Fraud Transactions by Category 

This chart visualises the difference in fraud rates compared to non-fraud rates across various 

transaction categories. Categories with positive values indicate a higher probability of fraud, 

while negative values suggest a lower fraud risk. Category ‘shopping_net’ has the highest 

rate difference of 15.65%, followed by ‘grocery_pos’ (+14.09%). Other risky categories 

include ‘misc_net’ and ‘shopping_pos’ have positive rate differences of 7.56% and 2.72% 

respectively.  

The remaining categories have negative rate differences, indicating that fraud is less common 

in these types of transactions. The home category shows the lowest fraud difference at -7.12%, 

followed by kids/pets (-5.80%), food/dining (-5.17%), and health/fitness (-5.13%). Other 

categories such as personal care (-4.26%) and entertainment (-4.24%) also have lower fraud 

risk, possibly due to transaction verification processes or lower fraud attractiveness. 
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The dataset distinguishes between online (Card Not Present, CNP) and in-store (Card Present, 

CP) transactions through its category labels. Categories ending with “_net” (e.g., shopping_net, 

grocery_net) are CNP, while those ending with “_pos” (e.g., shopping_pos, grocery_pos) are 

CP. Since CNP transactions lack physical verification, they are more exposed to fraud and are 

the main focus of this study. 

 

 

Figure 5.3.15: Fraud Count by Category 

This analysis shows that ‘grocery_pos’ has the highest fraud count (1,743 cases), followed 

by shopping_net (1,713), misc_net (915) and shopping_pos (843). However, a high fraud count 

does not necessarily mean a high fraud rate. Although grocery_pos has the highest fraud count, 

‘shopping_net’ has the highest fraud rate (2.41%).  

Additionally, the top 4 fraud-heavy categories (grocery_pos, shopping_net, misc_net, and 

shopping_pos) make up nearly 70% of all fraud cases. This means that fraud is mostly 

happening in just a few transaction types, making them the most critical areas to focus on in 

fraud detection. The remaining categories are grouped as ‘other’, as they contribute less to 

overall fraud. 
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Figure 5.3.16: Fraud and Non-Fraud Transactions by Category 

After grouping the transaction categories, the bar chart shows the majority transactions belong 

to the ‘other’ category, with 681,993 non-fraudulent transactions and 2,292 fraudulent ones. 

Other categories like grocery_pos, misc_net, shopping_net and shopping_pos have 

significantly fewer transactions in total, but the number of fraudulent transactions is relatively 

evenly distributed across these categories. 

 

Figure 5.3.17: Fraudulent Transactions and Fraud Rate by Category 
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This chart provides deeper insights by showing the fraud rate for each transaction category. 

Although the ‘other’ category has the highest number of fraudulent transactions, its fraud rate 

is only 0.33%, meaning fraud is relatively rare compared to the total number of transactions. 

On the other hand, shopping_net has the highest fraud rate of 2.41%, indicating that even 

though there are fewer fraud cases in total transactions, fraudulent activity is more concentrated 

within this category. Similarly, misc_net (2.00%) and grocery_pos (1.94%) have high fraud 

rates, indicating a high concentration of fraudulent transactions. Shopping_pos (1.01%) has a 

lower fraud rate but remains higher than the ‘other’ category. 

 

5. Merchant 

 

Figure 5.3.18: Top 10 Merchants with the Highest Fraud Rate 

The chart shows the top 10 merchants with the highest fraud rates, which range from 2.7% 

to 3.6%. The merchant “fraud_Kozey-Boehm” has the highest fraud rate at 3.6%, followed 

closely by “fraud_Herman, Treutel and Dickens” at 3.46%. These findings suggest that 

some merchants are more susceptible to fraudulent transactions, either due to weaknesses in 

their fraud prevention mechanisms or because they are targeted more frequently by fraudsters. 

Notably, only four merchants have the fraud rates exceeding 3%. 
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Figure 5.3.19: Fraud Count by Merchant 

To complement these findings, the total fraud count per merchant is analysed. The results show 

that fraud occurs across 679 merchants. The merchant with the highest fraud count is 

“fraud_Rau and Sons” with 49 fraud cases, followed by “fraud_Cormier LLC” and 

“fraud_Kozey-Boehm”, each with 48 cases. However, when evaluating fraud risk, the fraud 

rate is often more meaningful than the fraud counts because it handles the overall transaction 

volume at each merchant. A merchant with a high fraud counts but a low fraud rate may simply 

process a large number of transactions, whereas a high fraud rate indicates a greater likelihood 

of fraud occurring. 

 

Figure 5.3.20: Percentage of Fraud Count for the Top 5 Merchant 

Further analysis reveals that the top five merchants in term of fraud count only make up 3.18% 

of total fraud cases, indicating that fraudulent transactions are widely distributed across a large 

number of merchants. Since fraud is not highly focused within a small number of merchants, 

it means that the merchant feature may not a strong indicator of fraud. As a result, this feature 

is removed from the dataset to simplify the model and prevent it from learning patterns that 

might not generalize well. 
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6. Job 

 

Figure 5.3.21: Top 10 Jobs with the Highest Fraud Rate 

The chart highlights the top 10 jobs with the highest fraud rates, all of them have a fraud rate 

of 100%. However, the fraud count among these jobs varies, ranging from 7 to 16 cases. This 

indicates that while every transaction recorded under these job titles was fraudulent, the total 

number of fraudulent transactions per job remains relatively low.  

 

Figure 5.3.22: Jobs with 100% Fraud Rate and Their Counts 
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The analysis further shows that there are 68 job categories with a 100% fraud rate, meaning 

every recorded transaction under these jobs is fraudulent. However, as seen in the fraud count 

distribution, fraudulent transactions are spread across 443 different job titles, with the 

highest fraud count recorded under “Materials engineer” at 62 cases, followed by “Trading 

standards officer” (56) and “Naval architect” (53). 

Many job categories show a 100% fraud rate but with low fraud counts. Such findings suggests 

that these job categories might not be truly high risk, it is likely due to sample size bias, leading 

to misleading fraud rates. Since fraud cases are widely distributed, job titles alone may not be 

strong fraud indicators. 

 

Figure 5.3.23: Percentage of Fraud Count for the Top 10 Jobs 

Since the top 10 categories with the most fraud cases make up only 6.77% of the total fraud 

cases, this suggests that job is not a strong fraud indicator again. The decision to remove the 

job column is justified to reduce noise and prevent the model from learning patterns that may 

not generalize well. 
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7. Age 

The trans_date_trans_time and dob features are converted to datetime format, then age is 

extracted by calculating their difference in years. 

 

Figure 5.3.24: Total Transactions and Fraud Count by Age 

The highest total transactions occur at age 47, with 31,482 transactions, while the highest 

fraud count is observed at age 53, with 198 fraudulent transactions. The fraud transaction 

trends fluctuate, often crossing the total transaction line after age 30 and fraudulent 

transactions tend to be relatively higher beyond age 47. 

 

Figure 5.3.25: Fraud and Non-Fraud Transactions by Age Group 
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Age is categorised into four group: Young (0-18), Adult (19-44), Mid-Age (45-50) and Senior 

(61+), allowing for a more detailed analysis of fraud trends across different life stages. Adult 

group dominates in total transactions, with 478,029 non-fraud and 3,171 fraud cases. The Mid-

Age and Senior groups, though having fewer transactions, still show significant fraud cases, 

with 2,195 and 2,003 fraud cases respectively. The Young group has the lowest non-fraud and 

fraud count at 14,639 and 137 respectively. 

 

Figure 5.3.26: Fraudulent Transactions and Fraud rate by Age Group 

Further analysis of fraud rates reveals that the Young group has the highest fraud rate (0.93%), 

closely followed by Seniors (0.92%). Despite having the highest transaction volume, Adult 

group experiences the lowest fraud rate (0.66%), while the Mid-Age group falls in between at 

0.84%. Both the Young and Senior groups show an increasing trend in fraudulent transactions, 

highlighting their vulnerabilities. Therefore, fraud prevention efforts should focus on these 

groups, even though Adult group contributes the highest number of transactions. 

 

8. Hour 

The analysis of fraud transactions by hour reveals significant trends in transaction activity and 

fraudulent behaviour. First, trans_date_trans_time is converted into hourly data to examine 

patterns throughout the day. 
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Figure 5.3.27: Total Transactions and Fraud Transactions by Hour 

The peak transaction hour is identified as 10 PM (Hour 22) with 50,498 transactions, which 

also overlap with the highest number of fraud cases at 1,931. This suggests that fraudsters 

may be exploiting the high transaction volume during late hours. Fraud activity remains 

significantly higher between 10 PM and 3 AM compared to other hours. 

 

Figure 5.3.28: Percentage of Fraudulent Transaction Amount by Night and Day 
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Further analysis separated fraud into night (10 PM - 3 AM) and day (4 AM - 9 PM), showing 

that 84.43% of fraudulent transaction amounts occur at night, compared to only 15.57% 

during the day. This indicates that nighttime is a high-risk period for fraudulent activities, 

likely due to reduced monitoring and delayed detection. To mitigate these risks, financial 

institutions and e-commerce platforms should enhance fraud detection measures, particularly 

during late hours. 

 

Figure 5.3.29: Conversion of is_night Feature 

For machine learning purposes, the is_night feature is created to indicate whether a transaction 

occurred during high-risk nighttime hours (10 PM - 3 AM). A value of 1 represents nighttime 

transactions, while 0 represents transactions during the rest of the day. 

 

9. Day of Week 

 

Figure 5.3.30: Fraud and Non-Fraud Transactions by Day of the Week 
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The chart shows the total transactions for each day, distinguishing between fraud and non-fraud 

transactions. Monday has the highest total transactions (188,953), while Wednesday records 

the lowest (98,107). Fraudulent transactions are present throughout the week, with peaks on 

Saturday (1,227) and Sunday (1,216), suggesting that fraud activity increases over weekends. 

 

Figure 5.3.31: Fraudulent Transactions and Fraud Rate by Day of the Week 

This graph further highlights fraud trends by using the fraud rate. The fraud rate increases from 

Monday to Friday, with a peak on Friday with 0.94%, then slightly declining over the 

weekend. Despite a high number of fraud cases on Saturday and Sunday, the fraud rate itself 

is relatively lower compared to Friday. 

This pattern suggests that fraudsters may take advantage of more spending on weekends, but 

the risk per transaction is slightly lower. The higher fraud rate on Fridays may indicate that 

fraudsters target end-of-week financial activities. These insights highlight the need for more 

fraud monitoring on Fridays and weekends to reduce risks. 
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10. Distance to Merchant 

 

Figure 5.3.32: Distance Calculation Using Haversine Formula 

The Haversine formula is applied to calculate the distance (in km) between the transaction 

location and the merchant's location using latitude and longitude. The result is stored in the 

distance column, helping to identify unusual transactions that may indicate fraud. 

 

Figure 5.3.33: Transaction and Fraud Count by Distance 

This analysis examines the relationship between transaction distance and fraud occurrence. The 

histogram (green bars) represents the frequency of transactions at different distance ranges, 

while the blue line shows the number of fraudulent transactions within each distance ranges. 

The transaction frequency follows a normal-like distribution, with a peak at around 80 km. 

Fraud transactions also follow a similar trend, with the highest counts observed in middle range 

distances (70-90 km).  
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Figure 5.3.34: Transaction and Fraud Rate by Distance 

This graph further showed how fraud rates vary with transaction distance. Similar to previous 

graph, the histogram represents the frequency of transactions at different distances, but the blue 

line shows the fraud rate across those distances. The fraud rates remain relatively stable across 

most distances but show an increase at very long distances, with a sharp peak around 140 km. 

This suggests that fraudsters may exploit extreme distances for fraudulent activities, possibly 

to bypass location-based security measures.  

 

11. City Population 

To understand how city populations are distributed, a box plot analysis is conducted using IQR 

method to identify the normal range and outliers.  

 

Figure 5.3.35: Boxplot of City Population with Outlier Ranges 
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In the previous step, outliers with non-fraudulent transactions were removed to focus on 

meaningful fraud trends. Most cities have populations below 11,611, indicating that smaller 

cities dominate the dataset. However, 122,857 cities were identified as outliers, meaning their 

populations significantly exceed this threshold. 

 

Figure 5.3.36: Assignment of City Population Categories 

Since city populations range from 23 to over 2.9 million, they are grouped into four categories: 

Small Cities, Medium Cities, Large Cities, and Very Large Cities. This grouping ensures a 

meaningful classification, balancing the majority of cities within reasonable population sizes 

while accounting for larger urban centres. 

 

Figure 5.3.37: Transaction and Fraud Count by City Population Group 

The bar chart represents the number of transactions across these population groups, while the 

dotted line represents the corresponding fraud count. Small cities have the highest transaction 
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volume, with 731,825 transactions, followed by large, medium and very large cities. Fraud 

count follows a similar pattern, with small cities have the most fraud cases (4,526), while 

medium and large cities have significantly lower fraud counts (638 and 908 respectively). 

Interestingly, fraud cases rise again in very large cities even though with fewer transactions, 

where all 1,434 transactions are fraudulent. This observation suggests a potential sampling or 

reporting bias due to the prior removal of outliers. 

 

12. Correlation Analysis 

 

Figure 5.3.38: Heatmap of Numerical Features for Final Dataset 

The heatmap visualizes the correlation between various features in the dataset, helping to 

identify potential relationships that may be useful for fraud detection. The correlation values 

that close to 1 or -1 indicate a strong correlation, values near 0 indicate little to no correlation.  

In this case, the highest correlation with fraud (is_fraud) is observed in the transaction 

amount (amt), with a correlation of 0.6, suggesting that fraudulent transactions tend to have 

higher amounts. The city population (city_pop) also shows a moderate correlation of 0.26, 

indicating that fraud is slightly more frequent in larger cities. Additionally, is_night has a 

weaker but still notable correlation of 0.13, implying that fraudulent transactions are more 
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likely to occur at night. Other features like lat, long, unix_time, merch_lat, merch_long, hour 

and age have very low correlations, while day and distance showed almost no correlation with 

fraud. 

The analysis revealed a very high correlation between lat and merch_lat (0.99) and between 

long and merch_long (1.00). Due to this strong multicollinearity, their individual correlations 

with is_fraud are very low, indicating potential redundancy. Additionally, the features 

trans_date_trans_time, dob and unix_time do not provide direct value for fraud detection, as 

key information such as hour and age has already been extracted. To avoid unnecessary 

features and improve model efficiency, these variables are removed from the dataset. 

 

5.3.4  Encoding 

 

Figure 5.3.39: Binary Encoding, One-hot Encoding and Target Encoding Applied 

The encoding process transforms categorical and boolean variables into a format suitable for 

machine learning. First, the gender column is converted into numerical values using binary 

encoding, where 'M' is replaced with 1 and 'F' with 0.  

One-hot encoding is applied to categorical variables such as category, age_group and 

pop_group, creating separate binary columns for each unique category. These binary columns 

are then converted into integer values (0 and 1) to ensure compatibility with machine learning 

models.  
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Additionally, the target encoding is applied to the cc_num column by calculating the fraud 

rate for each unique credit card number based on the mean fraud occurrence. This 

transformation preserves useful fraud risk information while preventing potential data leakage. 

 

5.3.5  Resampling, Data Splitting and Modelling 

1. Initiating the Modelling Process 

The process begins by calling the fit_and_evaluate_model() function. This function integrates 

all the necessary steps in the machine learning workflow. It performs the following tasks 

sequentially: Resampling the Data, Splitting the Data, Initializing and Training the Model and 

Evaluating the Model. 

 

Figure 5.3.40: Function Calling for Random Forest without Resampling 

 

Figure 5.3.41: Function Definition for Model Training and Evaluation  

2. Resampling the Data 

The first operation inside fit_and_evaluate_model() addresses the class imbalance issue. The 

resample_data() function is called to apply the specified resampling technique — SMOTE, 

random oversampling, random undersampling, or no resampling. It returns the resampled 
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feature set (X_res) and label set (y_res). This step ensures that the dataset is balance before the 

data is split into training and testing sets. 

 

Figure 5.3.42: Function Definition for Resampling  

3. Splitting the Data 

The resampled data (X_res, y_res) is then split into training and testing datasets using a 70:30 

split. The split is performed using train_test_split() with the stratify=y_res parameter to 

maintain consistent class distribution across both sets. This ensures that the model is trained 

and tested on representative samples. 

 

Figure 5.3.43: Code for Data Splitting  

4. Initializing and Training the Model 

Based on the model_type parameter, the function initializes one of the selected classifiers: 

Random Forest, XGBoost, or AdaBoost. The chosen model is then trained using the training 

dataset (X_train, y_train) through the fit() method. 

 

Figure 5.3.44: Code for Model Training 
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5. Evaluating the model 

Once the model is trained, the evaluate_model() function is called to assess its performance. 

This function calculates various performance metrics such as accuracy, recall, precision, F1-

score, MCC, and AUC. Additionally, it outputs the confusion matrix and classification report 

for further insights into how the model performs on testing datasets. 

 

Figure 5.3.45: Function Definition for Model Evaluation  

6. Repeating for All Combinations 

Steps 1 to 5 are repeated for all combinations of resampling methods (SMOTE, 

oversampling, under-sampling and no resampling) and machine learning models (Random 

Forest, XGBoost and AdaBoost). This allows for a comprehensive comparison of how 

different model-resampling pairs perform in detecting fraud, enabling the selection of the 

best-performing configuration. 
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5.3.6  Model Evaluation and Comparison 

Pipeline 1: Target Encoding → Resampling → Data Splitting 

1. Performance Metrics 

 Random Forest XGBoost AdaBoost 

No 

Resampling 

   

SMOTE 

   

Over-

sampling 

   

Under-

sampling 

   

Table 5.3.2: Evaluation Metrics of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection
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Without resampling, Random Forest achieves a high Precision of 0.9969, but the Recall 

drops to 0.8441, suggesting poor handling of the minority class. With the use of Oversampling 

and SMOTE, Random Forest achieves perfect and near-perfect Recall (1.000 and 0.9992) and 

F1-Score (0.9999 and 0.9990). This suggests Random Forest excellent in fraud detection but 

raise the concerns about overfitting. For Under-sampling, the performance drops significantly 

with the lowest accuracy of 0.9691, among all Random Forest configurations, showing its 

inefficiency for highly imbalanced dataset. 

For XGBoost, Oversampling achieves the best performance, with an outstanding Recall 

of 0.9999, F1-Score of 0.9959 and MCC of 0.9919. SMOTE also performs well, with slightly 

lower scores than Oversampling, but it offers a higher Precision of 0.9939. Without resampling, 

XGBoost achieves the highest Accuracy of 0.9997, but its Recall drops significantly to 0.8552, 

which is similar to Random Forest. This significant drop suggests poor handling of the model 

with minority class. Under-sampling shows a decline across all performance metrics, further 

supporting the conclusion that it is not an effective resampling technique for this dataset.  

AdaBoost shows weaker performance compared to other models across all resampling 

techniques. Its best results are achieved with the Oversampling, reaching a F1-Score of 0.9632 

and an AUC of 0.9935. However, the worst performance occurs without resampling, where the 

Recall is only 0.8157, even though achieving a perfect Precision. This suggests that AdaBoost 

is too focus on minimising false alarms when no resampling technique is applied. This means 

that the model has strong bias toward the majority class. As a result, it tends to misclassify the 

minority class, leading to imbalanced predictions and poor detection of fraud cases. 

In comparing the different resampling techniques, it becomes clear that no resampling 

leads to high Precision but poor Recall. It is not suitable for imbalanced datasets, especially in 

fraud detection where Recall is very important. SMOTE significantly improves Recall, F1-

Score and MCC, especially for Random Forest and XGBoost, showing the better in 

generalization. Oversampling performs similarly or slightly better than SMOTE, achieving 

near-perfect scores in both Random Forest and XGBoost. Conversely, Under-sampling 

consistently reduces performance across all models, likely due to the loss of valuable 

information from the majority class. 
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To find the best-performing model, the combination of model and resampling technique 

that consistently achieving the highest metrics should be considered. Based on the analysis, 

Random Forest with Oversampling archives perfect or near perfect scores across all metrics, 

indicating high generalization. Random Forest with SMOTE follows closely behind, with 

slightly lower overall performance compared to that of Oversampling. XGBoost with 

Oversampling also performs excellently, with slightly lower Precision and MCC than Random 

Forest but offering more balanced performance. 

In short, Random Forest and XGBoost consistently deliver the best performance. 

Random Forest and XGBoost have the similar performance. This is because both of them are 

tree-based ensemble models. This type of models inherently handles class imbalance through 

feature selection and strong pattern learning. However, since they share similar strengths, direct 

comparison may not be valuable unless tested under more challenging conditions. Resampling 

methods like SMOTE and Oversampling help improving model performance by addressing 

imbalanced dataset, generating synthetic samples or duplicating existing ones to better classify 

minority class instances. In contrast, Under-sampling tends to reduce effectiveness, especially 

for XGBoost and AdaBoost. 
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2. Classification Report 

 Random Forest XGBoost AdaBoost 

No 

Resampling 

   

SMOTE 

   

Over-

sampling 

   

Under-

sampling 

   

Table 5.3.3: Classification Reports of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection
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A classification report is important to determine how well a model performs on different 

classes, providing metrics like Precision, Recall, F1-Score and Support for each class. Unlike 

performance metrics which summarise performance in a single value, a classification report 

provides a breakdown for each class, enabling for deeper insights into how the model behaves, 

especially in imbalanced datasets where the majority class often dominates performance. Each 

combination of model and resampling method was evaluated using a classification report to 

determine how well the models handle both majority class (class 0) and minority class (class 

1).  

Without resampling, all models showed a bias toward the majority class (Class 0), 

especially with AdaBoost achieves the lowest Recall of 0.82 for Class 1, meaning that it missed 

18% of minority-class instances, despite its Precision is perfect. Although XGBoost performs 

slightly better than Random Forest and AdaBoost in Recall with 0.86, but it still shows 

limitation with minority-class identification. Without resampling leads to high Precision but 

poor Recall, which is a critical issue in fraud detection, where missing positive fraud cases is 

costly. 

The use of SMOTE and Oversampling shows a large improvement in performance 

across all models. Random Forest and XGBoost achieves nearly perfect Precision, Recall and 

F1-Score for Class 1 under these resampling methods. AdaBoost also improved significantly, 

with a high F1-Score of 0.96 in Class 1, even though it still behind the other two models. 

However, perfect or near-perfect scores may indicate overfitting, especially for Oversampling, 

This is because the same minority samples are repeated too often, the model has potentially to 

memorise patterns in the oversampled data rather than generalising to unseen data. 

With the use of Under-sampling, the performance of models drops compared to 

SMOTE and Oversampling because a portion of data is removed. Despite this, the results 

remain strong, with XGBoost achieving the highest F1-Score of 0.98 for Class 1, followed by 

Random Forest of 0.97 and AdaBoost of 0.96. These results show that these models can 

perform well even with a smaller and balanced dataset. However, Under-sampling comes with 

risk of discarding valuable information, which could hinder generalisation on unseen data. This 

trade-off becomes even more critical when considering the original class distribution, where 

Class 0 includes 289,991 transactions, while Class 1 consists of only 2,552, meaning that 99% 
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of the majority class is discarded. Given this imbalance, Under-sampling may not be the most 

suitable approach, especially when data retention is important.  

When comparing models overall, XGBoost is proven to be the most robust and 

consistent across all resampling strategies, showing strong recall and F1-Scores even without 

using resampling technique. Random forest shows excellent performance when combining 

with SMOTE and Oversampling, but its Recall dropped more significantly without resampling. 

AdaBoost tends to underperform slightly while it is still competitive, especially with 

imbalanced data.
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3. Confusion Matrix 

 Random Forest XGBoost AdaBoost 

No 

Resampling 

   

SMOTE 
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Over-

sampling 

   

Under-

sampling 

   

Table 5.3.4: Confusion Matrixes of Random Forest, XGBoost and AdaBoost with Different Resampling Techniques in Fraud Detection
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The confusion matrix provides clear breakdown into how models classify fraud (class 

1) and non-fraud (class 0) transactions by showing exact numbers of correct and incorrect 

predictions. This helps to identify specific errors that cannot be directly found in performance 

metrics or classification report. 

When training and testing on the original imbalanced dataset with 289,991 non-fraud 

cases and 2,552 fraud cases, all three models show somewhat difficult to identify fraud cases 

correctly. Random Forest and XGBoost show relatively better performance, correctly 

identifying 1,901 and 1,926 fraudulent transactions, but still missing 351 and 326 respectively. 

AdaBoost performs the worst without resampling, detecting only 1,837 frauds while missing 

415 frauds, which shows a bias towards the majority class. This is a normal problem in 

imbalanced datasets where minority class is underrepresented. Surprisingly, it produces no 

False Positive, achieving perfect Precision for fraud detection. 

The models’ ability to detect fraud is improved by using SMOTE. Random Forest with 

SMOTE shows a very strong performance with only 239 False Negative and 316 False 

Positives. This means that among all actual fraud cases (289,990), only 239 was predicted 

incorrectly as non-fraud, while 316 legitimate transactions are wrongly flagged as fraud. 

XGBoost also performs well under SMOTE with a False Negative of 2,342 and False Negative 

of 1,774, although higher than those of Random Forest. AdaBoost benefits the least from 

SMOTE and misclassifying a large number of both frauds (16,875 False Negatives) and non-

frauds (5,271 False Positives), which indicate difficulty in capturing patterns in synthetically 

balanced data as SMOTE may introduce noise for some models. 

Oversampling reach nearly perfect results for Random Forest, which detects all 289,990 

fraudulent transactions with only 47 False Positives. This may indicate potential overfitting as 

such high scores may not generalise well to unseen data. XGBoost also performs strongly, only 

25 frauds are missed, and 2,336 legitimate transactions are misclassified as fraud. AdaBoost 

shows an improvement in False Negative if compared to using SMOTE, with a number of 

14,589 fraud missed, but the False Positive is increase to 6,428. AdaBoost still remain the 

weakest model among all. 

Under-sampling reduces the dataset to a balanced but smaller size, retaining only 2,252 

non-fraudulent out of original of 289,991. This leads to a slightly lower overall performance. 
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However, the results remain good, with XGBoost achieves the best balance here with only 51 

False Negatives and 58 False Positives. Random Forest follows closely with 84 False Negatives 

and 55 False Positives, while AdaBoost misclassifies the most again with 111 frauds missed 

and 76 legitimate transactions flagged incorrectly. Despite loss of data and patterns from 

majority class, the models still generalise quite well, which shows that they can work on smaller 

datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

110 
Bachelor of Information Systems (Honours) Business Information Systems 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 
 

5.3.7  Performance Across Different Pipelines 

Pipeline 2: Resampling → Data Splitting → Target Encoding 

Random Forest 

  No Resampling SMOTE Oversampling Under-sampling 

Accuracy 0.9987 0.9986 0.9999 0.9658 

Recall 0.8406 0.9981 1.0000 0.9636 

Precision 0.9963 0.9991 0.9998 0.9679 

F1-Score 0.9118 0.9986 0.9999 0.9657 

MCC 0.9146 0.9971 0.9998 0.9316 

AUC 0.9816 1.0000 1.0000 0.9942 

Table 5.3.5: Performance of Random Forest with Pipeline 2  

XGBoost 

  No Resampling SMOTE Oversampling Under-sampling 

Accuracy 0.9986 0.9932 0.9955 0.9720 

Recall 0.8477 0.9907 0.9996 0.9738 

Precision 0.9690 0.9957 0.9914 0.9704 

F1-Score 0.9043 0.9932 0.9955 0.9721 

MCC 0.9057 0.9865 0.9910 0.9441 

AUC 0.9976 0.9998 0.9998 0.9967 

Table 5.3.6: Performance of XGBoost with Pipeline 2  

AdaBoost 

  No Resampling SMOTE Oversampling Under-sampling 

Accuracy 0.9986 0.9508 0.9635 0.9594 

Recall 0.8157 0.9174 0.9490 0.9480 

Precision 1.0000 0.9831 0.9773 0.9700 

F1-Score 0.8985 0.9491 0.9630 0.9589 

MCC 0.9025 0.9036 0.9274 0.919 

AUC 0.9943 0.9894 0.9935 0.992 

Table 5.3.7: Performance of AdaBoost with Pipeline 2  

 

In the previous evaluation of Pipeline 1, target encoding was applied before the data 

splitting, followed by resampling and model training. However, this sequence introduces a 

potential issue of data leakage. Target encoding replaces the original feature values (cc_num 
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in this case) with their derived values (fraud rate per cc_num). If this encoding is done before 

the dataset splitting into training and testing sets, information from the entire dataset, including 

the testing part will contributes to the encoded values. As a result, the model unintentionally 

accesses to target information from testing set during training. This will lead to artificially high-

performance metrics and poor generalizability to unseen data. So, alternative modelling 

sequence was tested where target encoding is applied after data splitting. This allows for a 

comparison between the two approaches and helps evaluate the impact of potential data leakage 

on model performance. 

When comparing Random Forest across both modelling pipelines, the performance is 

slightly dropped when No Resampling, SMOTE or Under-sampling applied, as shown Table 

5.3.5. However, with Oversampling, there is no difference in results between both pipelines. 

This indicates that Oversampling is robust to changes in processing sequence, likely because it 

replicates existing samples without introducing synthetic patterns based on target variable. The 

slightly drop in other methods suggests that when target encoding is applied before data 

splitting, the model may unintentionally refer to the target distribution across the whole dataset, 

causing data leakage. This leakage improves the model performance during training, which 

may not generalise well to unseen data, this is why the scores are slightly lower in this pipeline. 

For XGBoost, the trend is quite similar to Random Forest. The performance dropped 

slightly across most metrics when switching to Pipeline 2, which gain supports the presence of 

mild data leakage in Pipeline 1. However, SMOTE stands out with slightly improvements in 

Accuracy, Precision, F1-Score and MCC in Pipeline 2 as shown in Table 5.3.6, highlighting 

that XGBoost may better utilise the balanced structure introduce by SMOTE once data leakage 

is controlled. In contrast, no resampling and Under-sampling result in more noticeable 

performance drops, by which F1-Score for no resampling drops from 0.9085 to 0.9043 and for 

SMOTE drops from 0.9085 to 0.9043. This highlights that these two resampling methods are 

less effective and possibly more dependent on pipeline ordering for maintaining performance. 

Basically, XGBoost performs best when the data is balanced. If the data is not balanced or too 

much information lost, it does not perform as well, especially in a proper setup without data 

leakage.  

AdaBoost shows a different pattern. With no resampling method applied, its 

performance is stable between both pipelines, only AUC drops marginally from 0.9951 to 
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0.9943, as shown in Table 5.3.7. This suggests that AdaBoost is relatively insensitive to 

pipeline changes when no resampling is applied. This might be due to its sequential boosting 

nature, which can correct individual misclassifications without relying heavily on target-

encoded data.  

In contrast, SMOTE causes a more noticeable drop in metrics, where Accuracy drops 

from 0.9618 to.0.9508, Recall drops from 0.9418 to 0.9174, F1-Score drops from 0.9610 to 

0.9491 and MCC from 0.9244 to 0.9036. Interestingly, Precision and AUC increase to 0.9831 

and 0.9894 respectively. This may mean that the model becomes more cautious and gives more 

false alarms, but it is confident and accurate when it does predict fraud, thus raising AUC and 

Precision. This reflects the changes in decision threshold or learning pattern due to the synthetic 

samples introduced by SMOTE. 

In short, the order of steps in the pipeline is important. If target encoding is done before 

splitting the data, it can leak information from the labels into training. This makes the model 

seem better than it actually is. This is especially a problem when using resampling methods 

like SMOTE that create fake data. Pipeline 2 is more realistic because it follows how things 

would work in real life. Random Forest and XGBoost are slightly affected by this change, but 

AdaBoost is more sensitive to whether the data is balanced than to the sequence of steps, which 

makes it worth looking into further. 

  



CHAPTER 5 

113 
Bachelor of Information Systems (Honours) Business Information Systems 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 
 

Pipeline 3: Target Encoding → Data Splitting → Resampling 

Random Forest 

  No Resampling SMOTE Oversampling Under-sampling 

Accuracy 0.9988 0.9983 0.9988 0.9786 

Recall 0.8441 0.8726 0.8512 0.9645 

Precision 0.9969 0.9055 0.9851 0.2601 

F1-Score 0.9142 0.8887 0.9133 0.4097 

MCC 0.9168 0.8880 0.9151 0.4950 

AUC 0.9830 0.9896 0.9860 0.9956 

Table 5.3.8: Performance of Random Forest with Pipeline 3  

XGBoost 

  No Resampling SMOTE Oversampling Under-sampling 

Accuracy 0.9987 0.9944 0.9926 0.9755 

Recall 0.8552 0.9094 0.9418 0.9711 

Precision 0.9688 0.586 0.5118 0.2357 

F1-Score 0.9085 0.7127 0.6632 0.3794 

MCC 0.9096 0.7276 0.6914 0.4722 

AUC 0.9978 0.9947 0.9972 0.9969 

Table 5.3.9: Performance of XGBoost with Pipeline 3 

AdaBoost 

  No Resampling SMOTE Oversampling Under-sampling 

Accuracy 0.9986 0.9783 0.9759 0.9749 

Recall 0.8157 0.9294 0.9529 0.9547 

Precision 1.0000 0.2532 0.2362 0.2294 

F1-Score 0.8985 0.398 0.3786 0.3699 

MCC 0.9025 0.479 0.4680 0.4615 

AUC 0.9951 0.9904 0.9942 0.9943 

Table 5.3.10: Performance of AdaBoost with Pipeline 3 

 

In Pipeline 3, the sequence of operations starts from target encoding, followed by 

splitting dataset into training and testing sets and finally applying resampling techniques only 

to the training set. This approach is different from Pipeline 1 and Pipeline 2, where resampling 

is applied before data splitting. As a result, Pipeline 3 introduces a key problem, which 
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resampling is applied in isolation to only part of the data, leading to an incomplete correction 

of class imbalance and potential distribution mismatch between training and testing sets. 

For Random Forest, the best performance is when no resampling applied. It achieves a 

high F1-Score of 0.9142, Precision of 0.9969 and MCC of 0.9168, as shown in Table 5.3.8. 

However, when resampling techniques like SMOTE and Oversampling are applied after 

splitting, the performance does not improve in some cases worsened. For example, SMOTE 

achieves a better Recall of 0.8726, but its Precision drops to 0.9055 and F1-Score drops to 

0.8887. Under-sampling has significantly improved Recall to 0.9645 but caused a drastic drop 

in Precision to only 0.2601, which led to a sharp decrease in F1-Score to 0.4097. This indicates 

that the model is aggressively predicting positives, even though many of them are incorrect. 

This is due to the skewed training distribution created by Under-sampling a small subset of the 

majority class. The low Precision and F1-Score confirm that although the model can detect 

many fraud cases (high Recall), it also misclassified many normal transactions as fraudulent 

(low Precision). 

XGBoost follows a similar trend. It performs well without any resampling, achieving 

Accuracy of 0.9987, F1-Score of 0.9085, MCC of 0.9096 and AUC of 0.9978, as shown in 

Table 5.3.9. When resampling techniques are applied after splitting, especially SMOTE and 

Oversampling, there is a significant decline in Precision, where it drops to 0.586 and 0.5118 

respectively. The decline is even bigger with under-sampling, where precision falls to just 

0.2357. These low Precision values significantly reduce the F1-Score to 0.7127, 0.6636 and 

0.3794 respectively, although the Recall is high. This imbalance indicates that resampling 

methods fail to generalise well on the unseen test data because they only applied to the training 

set. This can be attributed to overfitting on the resampled training set, where synthetic minority 

samples or duplicated minority observations skewed the learning patterns. The model learns 

the resampled training data too much instead of learning real patterns, so it fails on new data. 

AdaBoost shows even worse performance degradation. Without resampling applied, it 

achieves a modest F1-Score of 0.8985, even lower than Random Forest and XGBoost, as shown 

in Table 5.3.10. While using SMOTE, Oversampling and Under-sampling, Precision falls to 

just 23%-25%, while F1-Score and MCC are below 0.4 and 0.5 respectively. This suggests that 

AdaBoost is more sensitive to noise from synthetic or duplicated samples generated during 
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resampling. Under-sampling introduces another problem where the model becomes overly 

biased toward the minority class, sacrificing Precision and generalizability in the process. 

Pipeline 3 generally not performs well because of applying resampling methods after 

data splitting. This sequence of operations is not recommended because the model learns from 

a training set whose class distribution has been artificially changed, but the testing set remains 

imbalanced. This creates a mismatch between what the model learns and what it sees during 

testing. As a result, the model performs well during training but fails to generalise on new data. 

It often gives a high Recall but low Precision. 

In contrast, Pipeline 1 and Pipeline 2 fix this issue by resampling before data splitting. 

This makes sure both training and testing sets have a consistent class distribution. It helps the 

model to learn the patterns better and provides more reliable results. In short, Pipeline 3 with 

data splitting done first before resampling is not suitable for imbalanced classification tasks 

like fraud detection, as it creates mismatches in data distribution, increases the risk of 

overfitting and reduce ability of model to generalise well to unseen data. 
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5.3.8  Hyperparameter Tuning 

Model performance is highly influenced by hyperparameters, which control complexity, 

regularization, and decision rules. Instead of relying on defaults, systematic tuning can improve 

generalization and help balance recall, precision, and stability—especially in imbalanced tasks 

like fraud detection.  

Two widely used approaches for hyperparameter optimization are Randomized Search and 

Grid Search. Randomized Search samples parameter combinations at random from defined 

ranges. It is faster and more efficient when the parameter space is large. Grid Search, in contrast, 

evaluates all possible combinations within a smaller, targeted space. While slower, it ensures 

thorough exploration of promising values.  

In this study, Randomized Search was limited to 20 iterations (n_iter=20) with 3-fold cross-

validation (cv=3) to balance efficiency and robustness. Grid Search also used 3-fold cross-

validation, but systematically explored a smaller, more focused hyperparameter space. This 

ensured comparability between the two methods, while keeping computational cost 

manageable. 

Both methods were tested under four resampling strategies: no resampling, SMOTE, 

oversampling, and under-sampling. This allowed comparison of whether performance gains 

came from algorithm tuning, data balancing, or both. The same approach was applied across 

Random Forest, XGBoost, and AdaBoost for consistency. 
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Random Forest 

Randomised Search Hyperparameter Space Grid Search Hyperparameter Space 

  

Table 5.3.11: Random Forest Hyperparameter space settings 

For Random Forest, the hyperparameter space was designed to balance model complexity, 

generalization, and computational cost, as shown in Table 5.3.11. The number of estimators 

(n_estimators) was set between 50 and 200 in Randomized Search to explore both smaller and 

larger ensembles, while Grid Search focused on 100 and 200 as practical defaults that provide 

stability without excessive computation. The maximum depth (max_depth) parameter 

included both unrestricted trees (None) and constrained depths (5, 10, 15, 20) in Randomized 

Search to test how limiting tree growth impacts overfitting, whereas Grid Search narrowed this 

to None, 10, and 20 for targeted optimization. The minimum samples required to split an 

internal node (min_samples_split) and minimum samples required at a leaf 

(min_samples_leaf) were varied across small values (2, 5, 10 for split; 1, 2, 4 for leaf) to 

regulate how finely trees partition the data, with Grid Search refining this range to 2 and 5 for 

splits and 1 and 2 for leaves for efficiency. Finally, the max_features parameter was restricted 

to 'sqrt' and 'log2', two common strategies in Random Forests that promote diversity among 

trees and help reduce correlation between them
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Table 5.3.12: Random Forest Hyperparameter Tuning Results

Without hyperparameter tuning Randomised search Grid search 

No resampling + Random Forest 

Accuracy: 0.9987 

Recall: 0.8406 

Precision: 0.9963 

F1-Score: 0.9118 

MCC: 0.9146 

AUC: 0.9816 

Best Accuracy (CV): 0.9987 

Best Params: {'n_estimators': 150, 'min_samples_split': 5, 

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': None} 

Accuracy: 0.9988 

Recall: 0.8401 

Precision: 0.9995 

F1-Score: 0.9129 

MCC: 0.9158 

AUC: 0.9892 

Best Accuracy (CV): 0.9987 

Best Params: {'max_depth': None, 'max_features': 'sqrt', 

'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200} 

Accuracy: 0.9988 

Recall: 0.8424 

Precision: 0.9963 

F1-Score: 0.9129 

MCC: 0.9155 

AUC: 0.9872 

SMOTE + Random Forest 

Accuracy: 0.9986 

Recall: 0.9981 

Precision: 0.9991 

F1-Score: 0.9986 
MCC: 0.9971 

AUC: 1.0000 

 

Best Accuracy (CV): 0.9982 
Best Params: {'n_estimators': 150, 'min_samples_split': 5, 

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': None} 

Accuracy: 0.9984 

Recall: 0.9977 

Precision: 0.9991 

F1-Score: 0.9984 

MCC: 0.9968 

AUC: 1.0000 

Best Accuracy (CV): 0.9985 
Best Params: {'max_depth': None, 'max_features': 'sqrt', 

'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200} 

Accuracy: 0.9986 

Recall: 0.9981 

Precision: 0.9990 

F1-Score: 0.9986 

MCC: 0.9971 

AUC: 1.0000 

Oversampling + Random Forest 

Accuracy: 0.9999 

Recall: 1.0000 

Precision: 0.9998 
F1-Score: 0.9999 

MCC: 0.9998 

AUC: 1.0000 

Best Accuracy (CV): 0.9999 

Best Params: {'n_estimators': 150, 'min_samples_split': 5, 

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': None} 

Accuracy: 0.9999 

Recall: 1.0000 
Precision: 0.9998 

F1-Score: 0.9999 

MCC: 0.9998 

AUC: 1.0000 

Best Accuracy (CV): 0.9999 

Best Params: {'max_depth': None, 'max_features': 'sqrt', 

'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200} 

Accuracy: 0.9999 

Recall: 1.0000 
Precision: 0.9998 

F1-Score: 0.9999 

MCC: 0.9998 

AUC: 1.0000 

Undersampling + Random Forest  

Accuracy: 0.9658 

Recall: 0.9636 

Precision: 0.9679 

F1-Score: 0.9657 

MCC: 0.9316 

AUC: 0.9942 

 

Best Accuracy (CV): 0.9673 

Best Params: {'n_estimators': 200, 'min_samples_split': 2, 

'min_samples_leaf': 2, 'max_features': 'sqrt', 'max_depth': None} 

Accuracy: 0.9660 

Recall: 0.9618 

Precision: 0.9700 

F1-Score: 0.9659 

MCC: 0.9321 
AUC: 0.9944 

Best Accuracy (CV): 0.9677 

Best Params: {'max_depth': None, 'max_features': 'sqrt', 

'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 200} 

Accuracy: 0.9658 

Recall: 0.9609 

Precision: 0.9704 

F1-Score: 0.9656 

MCC: 0.9317 
AUC: 0.9945 
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Random Forest Hyperparameter Tuning Results Interpretation 

When no resampling was applied, the results indicated that Random Search and Grid Search 

produced nearly identical performance. Both configurations achieved training and testing 

accuracies close to 0.9987 and 0.9988 respectively, with MCC values around 0.915. This shows 

that the default parameters of Random Forest were already highly effective, and fine-tuning 

did not bring significant improvements. Grid Search slightly improved recall, while Random 

Search provided better precision, but the difference was negligible. Compared to the model 

performance before fine-tuning, both approaches showed almost no improvement, confirming 

that the default Random Forest parameters were already highly effective. This suggests that in 

the absence of resampling, Random Forest is robust enough to perform well without the need 

for extensive parameter optimization. 

When SMOTE was applied, Random Forest performance remained almost the same before 

fine-tuning, with only very small changes across metrics since the model was already 

performing at a high level. Both Random Search and Grid Search produced almost identical 

results, with training and testing accuracies remaining above 0.998 and MCC values close to 

0.997. Grid Search showed slightly higher recall, reflecting a marginally stronger ability to 

identify minority class cases, while Random Search provided slightly better performance in 

precision. The main difference in parameter settings between the two approaches was that Grid 

Search favoured a smaller split size, which tends to improve recall, whereas Random Search 

leaned toward settings that maintained stronger precision. Compared to the model before fine-

tuning, the differences in performance were minimal, showing only a very slight drop or gain 

across metrics. This confirms that the fine-tuning process did not significantly alter the 

effectiveness of Random Forest under SMOTE, and that the real performance improvement 

came from the resampling itself rather than hyperparameter adjustments. 

When oversampling was applied, Random Forest achieved the strongest performance, with 

both Random Search and Grid Search producing identical outcomes. Training and testing 

accuracies were nearly perfect and MCC values reached 0.9998, indicating near-perfect 

classification. Although the two search methods selected different parameter settings, these 

differences had no effect on the results, as both models converged to the same performance 

level. Compared to the model before fine-tuning, there was no real improvement, since 

Random Forest already performed at its maximum under oversampling. This shows that 
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oversampling was the key factor driving the near-perfect results, while fine-tuning brought no 

measurable gains despite the different parameter choices. 

When under-sampling was applied, Random Forest performance was lower compared to other 

resampling methods and fine-tuning did not provide meaningful improvements. Training and 

testing accuracies were around 0.966, while MCC values were slightly above 0.93. Compared 

to before fine-tuning, recall dropped a bit, while precision improved slightly, showing that the 

model became more conservative in identifying minority class cases. Between the two search 

approaches, Grid Search produced slightly better precision but at the cost of lower recall, while 

Random Search maintained a more balanced performance with a marginally higher MCC and 

F1-score. Overall, fine-tuning under under-sampling did not enhance performance and in fact 

introduced a small trade-off between recall and precision, confirming that Random Forest 

remains strong in its default form and that under-sampling itself is the main factor behind the 

reduced accuracy. 

In short, hyperparameter tuning Random Forest through Random Search and Grid Search 

showed only minimal differences compared to the default settings, with no meaningful 

improvement across resampling methods. Grid Search generally offered slightly higher 

recall, while Random Search gave marginally better precision, though recall dropped a bit. The 

overall impact of fine-tuning was negligible, confirming that Random Forest is already strong 

with default parameters. The choice of resampling strategy was far more important, with 

oversampling giving the best results, followed by SMOTE, under-sampling, and finally no 

resampling. 
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XGBoost 

Randomised Search Hyperparameter Space Grid Search Hyperparameter Space 

  

Table 5.3.13: XGBoost Hyperparameter space settings 

For XGBoost, the hyperparameter search space was carefully designed to balance model 

complexity, regularization, and ensemble diversity, as shown in Table 5.3.13. The number of 

estimators (n_estimators) was varied more broadly in Randomized Search (50–300) to 

capture both faster, lightweight models and deeper, more stable ensembles, while Grid Search 

narrowed this to 100 and 200 for efficiency. The learning_rate was tuned between 0.01 and 

0.3, where smaller rates allow gradual learning with more trees, and higher rates converge 

faster but risk overfitting; Grid Search focused on 0.05–0.3 for more practical optimization. 

max_depth was explored between 3 and 10 in Randomized Search, enabling both shallow 

trees for generalization and deeper ones to capture complex fraud patterns, with Grid Search 

emphasizing moderate depths (4, 6, 8) for stability. To handle overfitting, subsample (row 

sampling) and colsample_bytree (feature sampling) were tuned between 0.6 and 1.0, enforcing 

randomness that increases robustness, with Grid Search restricting to 0.8 and 1.0 for more 

reliable evaluation. The gamma parameter was included to control split creation, ranging from 

0 (more splits allowed) to 5 (restrictive), reducing noise-driven patterns in Randomized Search 

while Grid Search focused on smaller values (0, 1, 3). For regularization, reg_alpha (L1) and 

reg_lambda (L2) were tuned to improve generalization and reduce overfitting; Randomized 

Search tested wider ranges (0–1 for L1, 0.5–2 for L2), while Grid Search restricted to fewer 

values (0, 0.1 for L1 and 0.5, 1 for L2) for computational efficiency.  
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Table 5.3.14: XGBoost Hyperparameter Tuning Results 

Without hyperparameter tuning Randomised search Grid search 

No Resampling + XGBoost 

Accuracy: 0.9986 
Recall: 0.8512 
Precision: 0.9682 

F1-Score: 0.9060 
MCC: 0.9072 
AUC: 0.9970 

Best Accuracy (CV): 0.9986 

Best Params: {'subsample': 1.0, 'reg_lambda': 0.5, 'reg_alpha': 0.1, 
'n_estimators': 300, 'max_depth': 8, 'learning_rate': 0.05, 'gamma': 0, 
'colsample_bytree': 0.8} 
Accuracy: 0.9986 
Recall: 0.8428 
Precision: 0.9753 
F1-Score: 0.9042 
MCC: 0.9060 
AUC: 0.9978 

Best Accuracy (CV): 0.9986 

Best Params: {'colsample_bytree': 0.8, 'gamma': 0, 'learning_rate': 0.1, 
'max_depth': 8, 'n_estimators': 100, 'reg_alpha': 0.1, 'reg_lambda': 0.5, 
'subsample': 1.0} 
Accuracy: 0.9986 
Recall: 0.8401 
Precision: 0.9738 
F1-Score: 0.9020 
MCC: 0.9038 
AUC: 0.9975 

SMOTE + XGBoost 

Accuracy: 0.9932 
Recall: 0.9907 
Precision: 0.9957 
F1-Score: 0.9932 
MCC: 0.9865 
AUC: 0.9998 

Best Accuracy (CV): 0.9982 
Best Params: {'subsample': 0.8, 'reg_lambda': 0.5, 'reg_alpha': 1, 
'n_estimators': 150, 'max_depth': 10, 'learning_rate': 0.3, 'gamma': 0, 
'colsample_bytree': 0.8} 
Accuracy: 0.9982 
Recall: 0.9982 
Precision: 0.9983 

F1-Score: 0.9982 
MCC: 0.9964 
AUC: 1.0000 

Best Accuracy (CV): 0.9981 
Best Params: {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.3, 
'max_depth': 8, 'n_estimators': 200, 'reg_alpha': 0.1, 'reg_lambda': 0.5, 
'subsample': 0.8} 
Accuracy: 0.9981 
Recall: 0.9980 
Precision: 0.9982 

F1-Score: 0.9981 
MCC: 0.9962 
AUC: 1.0000 

Oversampling + XGBoost 

Accuracy: 0.9955 
Recall: 0.9996 
Precision: 0.9914 
F1-Score: 0.9955 
MCC: 0.9910 
AUC: 0.9998 

Best Accuracy (CV): 0.9993 
Best Params: {'subsample': 0.8, 'reg_lambda': 0.5, 'reg_alpha': 1, 
'n_estimators': 150, 'max_depth': 10, 'learning_rate': 0.3, 'gamma': 0, 
'colsample_bytree': 0.8} 
Accuracy: 0.9995 

Recall: 1.0000 
Precision: 0.9989 
F1-Score: 0.9995 
MCC: 0.9989 
AUC: 1.0000 

Best Accuracy (CV): 0.9993 
Best Params: {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.3, 
'max_depth': 8, 'n_estimators': 200, 'reg_alpha': 0.1, 'reg_lambda': 0.5, 
'subsample': 0.8} 
Accuracy: 0.9994 

Recall: 1.0000 
Precision: 0.9989 
F1-Score: 0.9994 
MCC: 0.9989 
AUC: 1.0000 

Undersampling + XGBoost  

Accuracy: 0.9720 
Recall: 0.9738 
Precision: 0.9704 
F1-Score: 0.9721 

MCC: 0.9441 
AUC: 0.9967 

Best Accuracy (CV): 0.9735 
Best Params: {'subsample': 1.0, 'reg_lambda': 0.5, 'reg_alpha': 0.1, 

'n_estimators': 300, 'max_depth': 8, 'learning_rate': 0.05, 'gamma': 0, 
'colsample_bytree': 0.8} 
Accuracy: 0.9736 
Recall: 0.9756 
Precision: 0.9717 
F1-Score: 0.9736 
MCC: 0.9472 
AUC: 0.9971 

Best Accuracy (CV): 0.9730 
Best Params: {'colsample_bytree': 0.8, 'gamma': 0, 'learning_rate': 0.1, 

'max_depth': 8, 'n_estimators': 200, 'reg_alpha': 0, 'reg_lambda': 0.5, 
'subsample': 0.8} 
Accuracy: 0.9725 
Recall: 0.9738 
Precision: 0.9712 
F1-Score: 0.9725 
MCC: 0.9449 
AUC: 0.9971 
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XGBoost Hyperparameter Tuning Results Interpretation 

When no resampling was applied, both Random Search and Grid Search produced very similar 

outcomes. Training and testing accuracies remained around 0.9986, which was essentially 

unchanged from before fine-tuning. Random Search provided overall better performance, 

delivering slightly higher recall, precision, F1, and MCC. However, compared to the untuned 

baseline, recall, F1, and MCC dropped slightly, while precision and AUC increased. This 

indicates that fine-tuning brought no real benefit and, in some metrics, even slightly reduced 

performance. 

When SMOTE was applied, performance improved compared to the baseline, with training 

and testing accuracies above 0.998 and MCC values above 0.996. Both Random Search and 

Grid Search produced near-identical results, with Random Search maintaining a small edge 

across all metrics. The gain compared to before fine-tuning was very minor (less than 0.01), 

but after fine-tuning, the model achieved a perfect AUC of 1.0. This shows that the real 

performance gain came from resampling rather than parameter optimization. 

With oversampling, XGBoost achieved its strongest performance. Training and testing 

accuracies reached nearly 0.9995, and MCC values were close to 0.999. Both Random Search 

and Grid Search converged to almost same outcomes, with Random Search again showing 

slightly better balance across accuracy and F1-score. Recall and AUC both reached 1.000, 

reflecting near-perfect classification. The effect of fine-tuning was negligible, as oversampling 

alone allowed the model to reach its optimal level. 

When under-sampling was applied, performance declined compared to SMOTE and 

oversampling but results still remained solid. Training and testing accuracies dropped to around 

0.973, while MCC values were about 0.945. Both Random Search and Grid Search gave 

comparable outcomes, but Random Search consistently provided a slight advantage across all 

metrics. Compared to before fine-tuning, improvements were minimal, suggesting that the 

lower results were caused by information loss from undersampling rather than hyperparameter 

tuning. 

In summary, fine-tuning XGBoost through Random Search and Grid Search did not provide 

substantial improvements compared to the default settings. Random Search consistently 

performed better across all resampling methods, although in the case of no resampling, the 
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untuned baseline outperformed both Random Search and Grid Search. Performance mainly 

depended on the resampling strategy, with oversampling giving the best results, followed by 

SMOTE, under-sampling, and no resampling, which was the same order as Random Forest. 

 

AdaBoost 

Randomised Search Hyperparameter Space Grid Search Hyperparameter Space 

  

Table 15.3.15: AdaBoost Hyperparameter space settings 

For AdaBoost, Table 15.3.15 showed the hyperparameter space settings. The number of 

estimators (n_estimators) was varied widely in Randomized Search (50–300) to capture 

models ranging from lightweight ensembles to deeper boosting chains, while Grid Search 

narrowed this to 100, 200, and 300 for more focused evaluation. The learning_rate was tuned 

between 0.01 and 1.0 in Randomized Search, where smaller values ensure gradual updates for 

stability and larger values accelerate convergence but may risk overfitting; Grid Search 

emphasized practical ranges of 0.1, 0.5, and 1.0. Since AdaBoost typically uses shallow trees 

as weak learners, the base estimator’s max_depth was limited to small values (1–3) to 

maintain weak but diverse learners, with Grid Search focusing on slightly deeper splits (2 and 

3) for stronger base classifiers. To further refine the tree structure, min_samples_split (2, 5, 

10 in Randomized Search) and min_samples_leaf (1, 2, 4 in Randomized Search) were 

included to regulate overfitting, ensuring nodes split only when sufficient data supports the 

division. Grid Search refined these to fewer combinations (min_samples_split: 2, 5; 

min_samples_leaf: 2, 4) for efficiency and interpretability.  
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Without hyperparameter tuning Randomised search Grid search 

No Resampling + Adaboost 

Accuracy: 0.9986 
Recall: 0.8157 
Precision: 1.0000 
F1-Score: 0.8985 
MCC: 0.9025 
AUC: 0.9943 

Best Accuracy (CV): 0.9987 
Best Params: {'n_estimators': 200, 'learning_rate': 1.0, 
'estimator__min_samples_split': 10, 'estimator__min_samples_leaf': 4, 
'estimator__max_depth': 3} 
Accuracy: 0.9987 

Recall: 0.8424 
Precision: 0.9860 
F1-Score: 0.9085 
MCC: 0.9107 
AUC: 0.9971 

Best Accuracy (CV): 0.9987 
Best Params: {'estimator__max_depth': 3, 
'estimator__min_samples_leaf': 2, 'estimator__min_samples_split': 2, 
'learning_rate': 1.0, 'n_estimators': 100} 
Accuracy: 0.9987 

Recall: 0.8344 
Precision: 0.9921 
F1-Score: 0.9064 
MCC: 0.9092 
AUC: 0.9968 

SMOTE + Adaboost 

Accuracy: 0.9508 
Recall: 0.9174 
Precision: 0.9831 
F1-Score: 0.9491 

MCC: 0.9036 
AUC: 0.9894 

Best Accuracy (CV): 0.9820 
Best Params: {'n_estimators': 200, 'learning_rate': 1.0, 

'estimator__min_samples_split': 10, 'estimator__min_samples_leaf': 4, 
'estimator__max_depth': 3} 
Accuracy: 0.9810 
Recall: 0.9731 
Precision: 0.9888 
F1-Score: 0.9809 
MCC: 0.9622 
AUC: 0.9980 

Best Accuracy (CV): 0.9833 
Best Params: {'estimator__max_depth': 3, 

'estimator__min_samples_leaf': 4, 'estimator__min_samples_split': 2, 
'learning_rate': 1.0, 'n_estimators': 300} 
Accuracy: 0.9818 
Recall: 0.9743 
Precision: 0.9891 
F1-Score: 0.9816 
MCC: 0.9636 
AUC: 0.9982 

Oversampling + Adaboost 

Accuracy: 0.9635 

Recall: 0.9490 
Precision: 0.9773 
F1-Score: 0.9630 
MCC: 0.9274 
AUC: 0.9935 

Best Accuracy (CV): 0.9778 
Best Params: {'n_estimators': 200, 'learning_rate': 1.0, 
'estimator__min_samples_split': 10, 'estimator__min_samples_leaf': 4, 
'estimator__max_depth': 3} 
Accuracy: 0.9774 
Recall: 0.9750 
Precision: 0.9797 
F1-Score: 0.9773 

MCC: 0.9548 
AUC: 0.9983 

Best Accuracy (CV): 0.9791 
Best Params: {'estimator__max_depth': 3, 
'estimator__min_samples_leaf': 2, 'estimator__min_samples_split': 2, 
'learning_rate': 1.0, 'n_estimators': 300} 
Accuracy: 0.9790 
Recall: 0.9760 
Precision: 0.9818 
F1-Score: 0.9789 

MCC: 0.9579 
AUC: 0.9987 

Undersampling + Adaboost 

Accuracy: 0.9594 
Recall: 0.9480 
Precision: 0.9700 
F1-Score: 0.9589 
MCC: 0.9190 
AUC: 0.9920 

Best Accuracy (CV): 0.9706 
Best Params: {'n_estimators': 300, 'learning_rate': 0.5, 
'estimator__min_samples_split': 5, 'estimator__min_samples_leaf': 4, 
'estimator__max_depth': 3} 
Accuracy: 0.9680 
Recall: 0.9689 

Precision: 0.9672 
F1-Score: 0.9681 
MCC: 0.9361 
AUC: 0.9962 

Best Accuracy (CV): 0.9714 
Best Params: {'estimator__max_depth': 3, 
'estimator__min_samples_leaf': 2, 'estimator__min_samples_split': 5, 
'learning_rate': 0.5, 'n_estimators': 300} 
Accuracy: 0.9700 
Recall: 0.9711 

Precision: 0.9690 
F1-Score: 0.9701 
MCC: 0.9401 
AUC: 0.9960 

Table 5.3.16: AdaBoost Hyperparameter Tuning Results 
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AdaBoost Hyperparameter Tuning Results Interpretation 

When no resampling was applied, AdaBoost performed well under both Random Search and 

Grid Search, with training and testing accuracies of 0.998. Random Search achieved a slightly 

higher MCC (0.9107) compared to Grid Search (0.9092), indicating a better balance across F1 

and MCC. Grid Search, however, achieved marginally higher precision. Compared to before 

fine-tuning, both methods showed small gains: recall increased from 0.8157 to 0.8424 

(Random Search) and 0.8344 (Grid Search), while F1 rose to just above 0.90. Precision 

dropped slightly from near 1.0 to the 0.98–0.99 range, but overall the model remained strong, 

suggesting only minor benefits from fine-tuning. 

When SMOTE was applied, AdaBoost achieved its greatest improvement. Training and testing 

accuracies rose to 0.982–0.983, and MCC reached 0.963 under Grid Search, the highest among 

all resampling methods. Grid Search performed slightly better than Random Search across all 

metrics. The improvement compared to before fine-tuning was also the most significant under 

SMOTE, confirming it as the most effective resampling strategy for AdaBoost. 

With oversampling, AdaBoost also improved compared to no resampling. Training and testing 

accuracies reached around 0.978–0.979. Grid Search again performed slightly better than 

Random Search across all metrics, while Random Search maintained a reasonable balance 

across metrics. However, the improvements compared to the untuned baseline were more 

modest than those achieved with SMOTE. 

When under-sampling was applied, AdaBoost performance dropped compared to SMOTE 

and oversampling, though it still improved compared to the baseline. Training and testing 

accuracies were around 0.968–0.970, while MCC values ranged from 0.936 (Random Search) 

to 0.940 (Grid Search). Both search methods performed well, but Grid Search provided better 

MCC and recall, making it slightly superior in this setting. However, the lower results 

compared to other resampling strategies were largely due to information loss from reducing 

the dataset size. 

In summary, fine-tuning AdaBoost led to overall improvements compared to the baseline, 

though precision dropped slightly under no resampling and under-sampling. Random Search 

performed better without resampling, but Grid Search outperformed Random Search in 

SMOTE, oversampling, and under-sampling by delivering higher recall, MCC, and F1-
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scores. The best results were achieved with SMOTE, which gave the highest F1 and MCC 

values, making it the best-performing resampling strategy for AdaBoost. The ranking of 

effectiveness was: SMOTE > Oversampling > Under-sampling > No resampling. 

Compared to Random Forest and XGBoost, AdaBoost showed clearer benefits from fine-

tuning under SMOTE, whereas Random Forest and XGBoost were less sensitive to tuning and 

relied more heavily on resampling strategies to reach their peak performance. 

 

5.3.9  Final Model Choice 

The final choice for deployment was Random Forest combined with oversampling using 

default parameters. Random Forest consistently delivered strong performance across all 

settings, with its default configuration already achieving near-optimal results. Fine-tuning 

through Random Search or Grid Search brought almost no measurable improvement, 

confirming that Random Forest is naturally robust and well-suited to the dataset without the 

need for extensive parameter optimization. 

Among the resampling strategies, oversampling provided the best overall outcomes. It 

produced nearly perfect accuracies and F1-score, highlighting its ability to balance the dataset 

effectively and improve the detection of minority class cases. This result demonstrated that the 

real performance gains came from the resampling strategy rather than hyperparameter 

adjustments, with oversampling standing out as the most effective method. 

In addition to superior results, this configuration offers simplicity and stability for deployment. 

Using the default Random Forest parameters reduces computational cost, avoids overfitting 

risks from over-tuning, and ensures reproducibility. At the same time, oversampling retains all 

available data while addressing class imbalance, making it more reliable than under-sampling. 

Random Forest’s robustness across scenarios, combined with its ease of integration into 

platforms like Power BI through joblib export, makes it an efficient and practical solution for 

real-world deployment.
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5.3.10  Synthetic Data Generation 

Version Key Adjustments Training Setup Accuracy Recall Precision F1 MCC AUC 

1  - Dropped unique identifiers & high-cardinality columns 

- Removed cc_num then restored (70/30 split) 

- Normalized numeric cols 

- Random restoration of city and datetime 

CTGAN, 50 epochs, 

batch=100 

0.8987 0.1114 0.3506 0.1690 0.1550 0.6566 

2  - Fraud oversampled ×3 in focus categories 

- Reduced sample size (200k→100k) 

- Same CTGAN config 

CTGAN, 50 epochs, 

batch=100 
0.9119 0.7345 0.6395 0.6837 0.6348 0.8736 

3  - Extracted time features (day, hour, night) 

- Stratified sampling for training data 

- Datetime rebuilt from hour 

- Increase epochs (longer training) 

CTGAN, 300 epochs, 

batch=100, pac=10 

0.9295 0.7809 0.5529 0.6474 0.6207 0.9062 

4  - Added distance feature (instead of raw lat/long) 

- Derived age & age_group (instead of raw dob) 

- Reduced Adult frauds 50% 

CTGAN, 300 epochs, 

batch=100, pac=10 

0.9433 0.9149 0.5800 0.7100 0.7020 

 

0.9636 

5  - Fraud ratio target = 15% (instead of ×3) 

- Metadata defined column types 

- Reduce epochs (shorter training), remove pac 

CTGAN, 200 epochs, 

batch=100 

0.8810 0.8193 0.6722 0.7385 0.6679 0.8990 

6  - Model switch: CTGAN → TVAE TVAE, 200 epochs, 

batch=100 

0.9307 0.9451 0.6426 0.7650 0.7447 0.9683 

7  - Increase sample size (100k→500k) 

- Epochs = 100 

TVAE, 100 epochs, 

batch=100 

0.9400 0.9646 0.7133 0.8202 0.7980 0.9808 

Table 5.3.17:  Random Forest Evaluation Results on Different Synthetic Dataset Version
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Synthetic Data 1 

The first synthetic dataset was created as a baseline experiment to evaluate whether a 

straightforward CTGAN-based approach could generate structurally valid synthetic data 

suitable for fraud detection. The dataset was prepared by first removing several high-

cardinality and unique identifier columns, such as trans_num, merchant, job, city, lat, long, 

and trans_date_trans_time, as shown in Figure 5.3.46. These features were excluded because 

they contained either too many unique values or strong identifiers as shown in Figure 5.3.47, 

which would cause the CTGAN to memorize them rather than learn meaningful fraud patterns. 

 

Figure 5.3.46: High cardinality columns 

 

Figure 5.3.47: Dropping High-Cardinality Columns 

Special attention was given to the credit card number (cc_num). Unlike transaction IDs, which 

are completely unique, the same cc_num can be linked to many transactions. This makes it a 

quasi-identifier: high cardinality but still useful for describing customer behavior. 

However, training GANs directly on raw 16-digit card numbers is not meaningful, since the 

digits themselves do not encode useful fraud signals. Therefore, cc_num was dropped during 

training to avoid noise, as shown in Figure 5.3.47. After generation, it was restored with a 

hybrid approach: 70% of the synthetic dataset used existing values sampled from the original 

dataset to preserve repeat usage patterns, while the remaining 30% were filled with randomly 

generated Visa-like 16-digit numbers to introduce diversity, as shown in Figure 5.3.48. This 

approach retained some behavioural realism while preventing the CTGAN from overfitting on 

raw card numbers. 
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Figure 5.3.48: Hybrid Generation of Synthetic Credit Card Numbers 

To stabilize training, all numerical columns were normalized using a Min Max Scaler so that 

values fell within the range of 0 to 1, as shown in Figure 5.3.49. This ensured that large-value 

features, such as transaction amounts or population counts, did not dominate smaller-value 

features. 

 

Figure 5.3.49: Normalized Data using Min-Max Scaling 

The CTGAN model was then trained on a 200,000-row sample of the dataset, with training 

conducted for 50 epochs using a batch size of 100 and default hyperparameter settings, as 

shown in Figure 5.3.50. This relatively short training run was deliberately chosen as a baseline 

configuration, serving as a reference point for comparison against later experiments that used 

longer training durations, advanced sampling strategies, or additional model adjustments. By 

starting with a moderate sample size and limited epochs, the goal was to establish a clear 

performance benchmark before progressively scaling complexity in subsequent datasets. 

 

Figure 5.3.50: CTGAN Training Configuration 
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After generation, post-processing was applied to restore the synthetic dataset to match the 

original schema, as shown in Figure 5.3.51. Numeric columns were inverse transformed to 

their original scales: transaction amounts (amt) were rounded and forced positive, city 

populations (city_pop) clipped to ≥1, and unix_time rounded back to integers. 

 

Figure 5.3.51: Numeric Data after Restoration 

Figure 5.3.52 showed implementation of post-processing for synthetic dataset restoration. 

Identifiers were reconstructed. A unique trans_num was assigned (e.g., T0000001), and 

credit card numbers (cc_num) were created using a 70/30 mix of existing and new accounts, 

balancing realism with diversity. City, latitude, longitude, and population were resampled 

together as blocks to maintain consistency, while transaction timestamps were randomly 

sampled from the original dataset to ensure temporal coverage. 

 

Figure 5.3.52: Implementation of Post-Processing for Synthetic Dataset 1 Restoration 
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Figure 5.3.53: Synthetic Dataset 1 after Post-Processing 

While this restored structure and realism, it introduced a weakness: random resampling of 

location and time broke natural fraud patterns. In real data, fraud often happens more in certain 

cities or late-night hours, but random resampling spread these patterns out. The dataset still 

looked correct, but it no longer reflected fraud behaviour as clearly. 

The evaluation metrics confirmed these limitations. The synthetic dataset achieved an 

accuracy of 0.8987, but recall dropped sharply to 0.1114, meaning the model failed to detect 

the majority of fraud cases. Precision was moderate at 0.3506, and both the F1 score and 

MCC remained very low at 0.1690 and 0.1550 respectively. Similarly, the AUC value of 

0.6566 indicated poor separation between fraud and non-fraud classes.  

In short, Synthetic Data 1 successfully established a structural baseline for synthetic data 

generation but failed to capture meaningful fraud patterns. The absence of class imbalance 

handling and the reliance on random resampling of critical features such as time and location 

resulted in very poor fraud detection performance. These findings highlighted the need for 

more targeted adjustments in later datasets, including fraud oversampling, feature engineering 

(extract distance, time, age), and refined training strategies to improve the model’s ability to 

replicate real fraud patterns. 
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Synthetic Data 2 

Synthetic Data 2 was developed as the first major improvement over the baseline. The main 

motivation was to address the severe class imbalance that undermined fraud detection in 

Synthetic Data 1. In the real dataset, fraudulent transactions were extremely rare compared to 

non-fraudulent ones, and CTGAN had learned to mostly generate non-fraud samples, leading 

to very poor recall. To counter this, a targeted oversampling strategy was introduced. 

Fraudulent samples belonging to specific high-risk categories—grocery_pos, shopping_net, 

misc_net, and shopping_pos—were oversampled three times. These categories were chosen 

because they are historically associated with higher fraud rate in e-commerce contexts. Before 

resampling, the number of fraud cases in these focus categories was 5,214, which increased to 

15,642 after oversampling as shown in Figure 5.3.54. By oversampling frauds in these 

categories, the training distribution became more balanced and provided CTGAN with stronger 

fraud-related signals to learn from. This approach was designed to improve the generator’s 

ability to model fraud patterns without overwhelming the training process with noise. 

 

Figure 5.3.54: Oversampling of Fraudulent Transactions in Focus Categories 

Another change from Data 1 was the adjustment of the training sample size. Instead of training 

CTGAN on 200,000 records, the dataset was reduced to 100,000 records before oversampling 

to reduce computational time and resource usage, as shown in Figure 5.3.55. The reduction 

was intentional as CTGAN often struggles to converge with very large datasets unless carefully 
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tuned, which also makes training much slower. A smaller but more balanced dataset made the 

training more efficient and allowed the model to better capture fraud-related patterns. The 

CTGAN configuration remained unchanged at 50 epochs with a batch size of 100, keeping the 

focus of this iteration on the effects of resampling rather than tuning. 

 

Figure 5.3.55: Training Process of CTGAN with Reduced Dataset 

The results of Synthetic Data 2 demonstrated the significant impact of oversampling. Table 

5.3.17 showed that recall increased dramatically from 0.1114 to 0.7345, indicating that the 

model could now detect the majority of fraud cases. Precision also improved to 0.6395, which 

indicated that a much larger proportion of fraud predictions were correct compared to Data 1. 

As a result, the F1 score rose to 0.6837 and MCC rose to 0.6348, reflecting a stronger balance 

between recall and precision. The AUC also increased sharply to 0.8736, showing better 

separation between fraud and non-fraud classes. Accuracy increased only slightly, from 

0.8987 to 0.9119, which was expected. In imbalanced datasets, accuracy can be misleading, 

catching more frauds often adds some false positives, but this trade-off actually improves the 

dataset’s value for fraud detection. 

In short, Synthetic Data 2 marked a turning point in the synthetic generation process. By 

explicitly correcting the class imbalance through targeted oversampling of high-risk fraud 

categories, the dataset enabled the CTGAN to generate synthetic samples that were far more 

effective for fraud detection. While still limited in its feature representation, this version 

demonstrated that resampling is a critical adjustment to improve recall and AUC, directly 

addressing the weaknesses of the baseline Synthetic Data 1. 
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Synthetic Data 3 

Synthetic Data 3 built upon the improvements of Data 2 and focused on enhancing the feature 

representation available to CTGAN. While oversampling had successfully improved fraud 

detection, the synthetic model still lacked access to temporal patterns, which are crucial in fraud 

behaviour. Fraudulent activity often happens at unusual times (e.g., late at night, certain days 

of the week), but in the baseline datasets, temporal information was either dropped or randomly 

restored, weakening its predictive value. 

To address this, Data 3 introduced several engineered temporal features derived from 

trans_date_trans_time, as shown in Figure 5.3.56. Specifically, new variables were created for 

day of the week, hour of the day, and a binary flag is_night (set to 1 for transactions between 

10 PM and 3 AM). These features provided CTGAN with structured representations of 

temporal context, allowing it to learn fraud-related timing patterns directly rather than relying 

on noisy random resampling of datetime. 

 

Figure 5.3.56: Feature Engineering of Temporal Attributes 

Another improvement in Data 3 was the use of stratified sampling when preparing the training 

data as shown in Figure 5.3.57. Instead of selecting random subsets, the sampling process 

preserved the fraud-to-non-fraud ratio across training splits. This adjustment ensured that 

CTGAN was consistently exposed to representative fraud patterns during training, further 

mitigating imbalance issues. 

 

Figure 5.3.57: Use of Stratified Sampling for Balanced Training Data 



CHAPTER 5 

136 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 
 

The CTGAN training itself was also strengthened. Compared to the short 50-epoch run 

previously, Data 3 was trained for 300 epochs with pac=10 (PacGAN setting), as shown in 

Figure 5.3.58. The longer training duration gave the generator more opportunities to refine the 

synthetic data distribution, while the pac adjustment helped reduce mode collapse—a common 

problem where GANs generate overly similar samples instead of diverse patterns. 

 

Figure 5.3.58: CTGAN Training Settings in Dataset 3 

The performance results highlighted both strengths and trade-offs. Accuracy improved to 

0.9295, and recall increased further to 0.7809, showing that the inclusion of temporal features 

helped the model detect more fraud cases. However, precision dropped to 0.5529 compared 

to Data 2, meaning the model generated more false positives alongside the true positives. This 

imbalance caused the F1 score and MCC to fall slightly to 0.6474 and 0.6207 respectively, 

even though the overall AUC rose to 0.9062. In other words, the dataset became better at 

finding fraud but at the cost of sometimes mislabelling legitimate transactions. 

In short, Synthetic Data 3 demonstrated the value of feature engineering, particularly the 

inclusion of temporal attributes. The results confirmed that fraud patterns are often time-

dependent, and capturing this structure helped improve recall and AUC. The trade-off was a 

decline in precision, as the generator became more sensitive to potential fraud but less selective. 

This version showed that while oversampling was essential (Data 2), adding informative 

features (Data 3) was equally critical to move closer toward realistic and effective fraud 

detection. 
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Synthetic Data 4 

SHAP Analysis before training for Synthetic Data 4 

Before developing Synthetic Data 4, SHAP analysis was conducted to compare feature 

importance between the original training dataset and the synthetic dataset from Data 3 As 

shown in Figure 5.3.59, the two datasets displayed a very strong alignment, with a Pearson 

correlation of 0.998 and a cosine similarity of 0.998. This indicates that the synthetic data 

broadly reproduced the same fraud-related signals as the real data. Key predictors such as 

transaction amount (amt), temporal indicators (is_night, hour, day), city population (city_pop), 

and age consistently ranked among the most influential features, with differences of less than 

10%, as shown in Table 5.3.18. 

 

Figure 5.3.59: Pearson Correlation and Cosine Similarity of Synthetic Dataset 3 

 

Table 5.3.18: SHAP Comparison Between Train Dataset and Synthetic Dataset 3 

However, the SHAP comparison shown in Table 5.3.18 also revealed important discrepancies. 

The distance feature, derived from latitude and longitude, showed overemphasized in synthetic 

data (+83.6%), suggesting CTGAN struggled to model raw geographic variables reliably. 

Demographic features such as Adult age group (+42%) and gender (+36%) also appeared more 

influential in the synthetic dataset than in the real one, raising concerns about demographic 
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bias. These findings showed that while Data 3 broadly captured fraud behaviour, it distorted or 

misrepresented certain signals, particularly around location and demographics.  

Train for Synthetic Data 4 

To address these limitations, Synthetic Data 4 introduced several key adjustments. The key 

improvement in Synthetic Data 4 was the introduction of the distance feature, calculated using 

the Haversine formula between customer and merchant coordinates and capped at 160 km. 

This cap was important because raw latitude and longitude are continuous, noisy, and difficult 

for CTGAN to model, often leading to unrealistic outputs. In fact, even small coordinate shifts 

could lead to extremely large distances—sometimes over 7,000 km, as observed in Synthetic 

Data 3 (see Figure 5.3.60), which clearly did not reflect real transaction behaviour. By 

replacing raw coordinates with capped distances during training and later recomputing them in 

post-processing, the dataset kept geographic patterns realistic while avoiding distorted outliers. 

 

Figure 5.3.60: Distribution of Distance in Synthetic Dataset 3 

 

Figure 5.3.61: Replacement of Raw Coordinates with Capped Distances During Training 
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Figure 5.3.62: Distribution of Distance in Synthetic Dataset 4 

Another major adjustment was the introduction of age and age group, shown in Figure 5.3.63. 

Instead of training on raw date of birth (dob), which introduces unnecessary complexity and 

difficult for CTGAN, the age was calculated at the transaction time and grouped into four 

categories: Young (0–18), Adult (19–44), Mid-Age (45–59), and Senior (60+). This 

transformation provided CTGAN with interpretable demographic features while reducing 

noise from exact dates. Furthermore, since SHAP analysis showed an overemphasis on Adults, 

fraudulent transactions in this group were reduced by 50% to prevent the generator from 

disproportionately modelling “Adult = fraud” behaviour. This balancing prevented the 

generator from disproportionately modelling Adult fraud at the expense of other age groups.  

 

Figure 5.3.63: Code for Age Group Creation and Adult Fraud Balancing 

After training, extensive post-processing was performed to restore dropped or transformed 

variables. The distance feature was recomputed in post-processing using the Haversine 

formula on customer and merchant coordinates and capped at 160 km to avoid unrealistic 

travel values, as shown in Figure 5.3.64. However, since distance, age, and age_group were 
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engineered only to guide CTGAN training, they were dropped from the final synthetic output. 

This allowed the dataset to retain the same schema as the real data, while still benefiting from 

the extra fraud-related signals during training. 

 

Figure 5.3.64:  Maximum Synthetic Distance After Recalculation and 160 km Cap 

SHAP Analysis after training for Synthetic Data 4 

After training Synthetic Data 4, SHAP analysis showed that it achieved near-perfect alignment 

with the real dataset (Pearson = 1.0, Cosine = 1.0) as shown in Figure 5.3.65. Key features 

such as amount, is_night, cc_num_fraud_rate, hour, and city_pop closely matched their real-

data importance (all within ±10%) as shown in Table 5.3.19. 

 

Figure 5.3.65: Pearson Correlation and Cosine Similarity of Synthetic Dataset 4 

 

Table 5.3.19: SHAP Comparison Between Train Dataset and Synthetic Dataset 4 
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The distance feature, which was unstable in Data 3, was now well-aligned (+8.1%), 

confirming the effectiveness of capping and recomputation. The main remaining differences 

were in gender (+39%) and age_group_Adult (+53%), but their overall contribution to fraud 

detection was small. 

Overall, the SHAP analysis confirmed that Synthetic Data 4 represented a turning point: by 

introducing spatial (distance) and demographic (age/age group) features, the model not only 

improved predictive performance but also preserved the real-world importance structure of 

fraud signals with near-perfect alignment. This provided strong evidence that the engineered 

features guided the CTGAN to capture fraud behaviour more realistically. 

Results 

The results showed a further step forward in balancing fraud detection. Accuracy improved 

to 0.9433, recall increased dramatically to 0.9140, and AUC reached 0.9636, the highest 

achieved so far as shown in Table 5.3.17. Precision, however, remained at 0.5800, lower than 

Data 2 but slightly higher than Data 3, reflecting a middle ground between recall and precision. 

The F1 score improved to 0.7100 and the MCC rose to 0.7020, confirming that the synthetic 

dataset captured fraud patterns with much stronger balance and reliability. These results 

confirmed that spatial and demographic features contributed significant predictive value, 

especially in helping the model distinguish fraudulent from non-fraudulent patterns in a more 

realistic way. 

In short, Synthetic Data 4 highlighted the importance of feature engineering beyond time 

variables. By introducing distance and age-related attributes, the dataset captured crucial fraud 

signals that improved recall and AUC without overwhelming precision. Balancing Adult fraud 

cases further ensured a more representative dataset, avoiding demographic bias. This version 

established a strong foundation by showing that integrating temporal, spatial, and demographic 

features together with resampling strategies yields more robust synthetic data for fraud 

detection. 
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Synthetic Data 5 

Synthetic Data 5 introduced two major refinements over the previous version: fraud ratio 

control and explicit metadata guidance.  

The first adjustment was fraud ratio control. Unlike Data 4, which oversampled fraud using 

a fixed multiplier, Data 5 explicitly targeted a 15% fraud prevalence in the training set as 

shown in Figure 5.3.66. This rate is much higher than in real life but still believable. The 

motivation was to improve precision by reducing the overwhelming dominance of non-fraud 

cases while still giving CTGAN enough fraud examples to learn meaningful patterns. Fraud 

rows—especially from high-risk categories such as grocery_pos, shopping_net, misc_net, and 

shopping_pos—were oversampled dynamically until the 15% threshold was reached. 

 

Figure 5.3.66: Training Data Distribution After Adjusting Fraud Rate to 15% 

The second adjustment was the use of SingleTableMetadata to explicitly define feature types 

as shown in Figure 5.3.67. Earlier versions occasionally misclassified variables (e.g., treating 

city_pop as categorical), which led CTGAN to generate misaligned distributions. By correcting 

these definitions, CTGAN was able to interpret numerical, categorical, and datetime features 

more reliably, improving stability. 

 

Figure 5.3.67: Defining Feature Types Using SingleTableMetadata 
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Other aspects from Data 4 were retained as standard practice: reducing Adult fraud cases by 

50% to mitigate demographic bias, restoring schema consistency in post-processing, and using 

CTGAN for training. However, training epochs were reduced to 200 (compared to 300 in 

Data 4), as shown in Figure 5.3.68. This is because improved metadata stability lessened the 

need for extended runs or PacGAN regularization. 

 

Figure 5.3.68: CTGAN Training Configuration in Data 5 

The evaluation of Synthetic Data 5 confirmed that the main improvement was in precision, 

which rose to 0.6722, the highest across all versions. This meant that a larger share of detected 

fraud cases were truly fraudulent, reducing false alarms compared to earlier datasets. However, 

this gain came with a trade-off in recall, which decreased to 0.8193 (from 0.9140 in Data 4), 

showing that the model caught slightly fewer fraud cases overall. Despite this, the F1 score 

improved to 0.7385, showing that the dataset produced a better balance between catching fraud 

(recall) and avoiding false alarms (precision). The MCC of 0.6679 further demonstrated a 

robust overall correlation between predictions and true labels, confirming that the 

improvements were not one-sided. On the other hand, accuracy dropped to 0.8810 and AUC 

declined to 0.8990, indicating weaker modelling of normal transaction behaviour. 

In summary, Synthetic Data 5 showed that controlling fraud ratio and improving feature 

handling can shift performance trade-offs. It gave the best fraud detection so far, though with 

weaker overall transaction realism (lower AUC). 
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Synthetic Data 6 

Synthetic Data 6 marked the first shift from GAN-based models to a variational autoencoder 

approach, replacing CTGAN with TVAE (Tabular Variational Autoencoder). This change 

was motivated by the limitations of GANs in modelling continuous numerical features such as 

transaction amount (amt), distance, and age. CTGAN had shown improvements with feature 

engineering and oversampling, but it was unstable and sometimes collapsed, producing less 

diverse data. In contrast, TVAE learns a smooth internal representation of the data, making it 

more stable and better at handling both numbers and categories. 

For training, TVAE was configured with 200 epochs and a batch size of 100 as shown in Figure 

5.3.69. Unlike GAN-based models, TVAE did not require PacGAN or extended epochs to 

prevent collapse, since its architecture naturally models both fraud and non-fraud cases in a 

smooth latent space. This makes training more stable and efficient, avoiding the adversarial 

competition present in CTGAN, which often requires extra epochs or stabilizing tricks to 

converge. As a result, TVAE converged reliably within fewer epochs and completed training 

faster than CTGAN, reducing computational time while maintaining high-quality synthetic 

data. 

 

Figure 5.3.68: TVAE Training Configuration in Data 6 

Post-processing followed the same steps as in Data 5. After generation, features such as dob, 

merchant coordinates, and card numbers (cc_num) were restored from the original dataset. 

Distance was recomputed using restored coordinates, and engineered variables (distance, age, 

age_group) were dropped to maintain schema consistency. This ensured that the final synthetic 

dataset aligned structurally with the raw dataset while retaining the benefits of engineered 

features during training. 
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Figure 5.3.70: Final Synthetic Dataset Generated by CTGAN in Data 5 

 

Figure 5.3.71: Final Synthetic Dataset Generated by TVAE in Data 6 

The results demonstrated a big improvement in performance. Recall reached 0.9451, the 

highest of all datasets so far, showing that TVAE was effective at detecting fraudulent 

transactions. AUC also improved to 0.9683, setting a new benchmark for discrimination 

between fraud and non-fraud. Precision, at 0.6426, was slightly lower than Data 5 but still 

competitive, while the F1 score rose to 0.7650, reflecting a stronger balance between recall 

and precision. Accuracy also improved to 0.9307, recovering much of the loss seen in Data 

5. 
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In short, Synthetic Data 6 highlighted the advantages of model architecture choice in synthetic 

data generation. By moving from CTGAN to TVAE, the dataset gained much stronger 

generalization over continuous features, leading to dramatic improvements in recall and AUC. 

Although some precision was sacrificed compared to CTGAN, the overall balance (F1) and 

discriminative power (AUC) were superior. This version demonstrated that TVAE was better 

suited for fraud detection tasks where continuous variables play a critical role in distinguishing 

fraudulent behaviour. 

 

Synthetic Data 7 

Synthetic Data 7 expanded upon the previous TVAE experiment by scaling up the training 

process. While Data 6 had already demonstrated the stability and representational power of 

TVAE over CTGAN, its training was limited to 100,000 rows. Data 7 increased the training 

sample size to 500,000 rows as shown in Figure 5.3.72, providing TVAE with significantly 

more examples of both fraud and non-fraud patterns to learn from. The objective of this 

adjustment was to test whether a larger training base would enable TVAE to generate more 

realistic synthetic data, especially in capturing rare fraud patterns. 

The TVAE configuration differed from Data 6 by reducing the epochs from 200 to 100. Despite 

the shorter training duration, the much larger dataset ensured that TVAE was exposed to a 

richer and more diverse set of features.  

 

Figure 5.3.72: TVAE Training Configuration in Data 7 

The results confirmed the benefit of scaling up training size. Recall increased further to 0.9646, 

demonstrating that TVAE trained on more data was even more effective at detecting fraud. 

Precision also improved markedly to 0.7133, reducing false alarms compared to Data 6. These 

gains translated into an F1 score of 0.8202, an MCC of 0.7980, and an AUC of 0.9808—the 

highest values achieved so far. Accuracy also rose to 0.9400, showing consistent overall 

improvements across all evaluation metrics. 
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In summary, Synthetic Data 7 highlighted the importance of training size in synthetic data 

generation. By giving TVAE five times more training examples, the model was able to 

generalize better across both fraud and non-fraud transactions. Compared to Data 6, this version 

achieved stronger recall without sacrificing precision, leading to better balance (F1 score), 

correlation (MCC), and discrimination (AUC). This confirmed that, beyond choosing the right 

model, using a larger training sample size is a key factor in producing synthetic data that 

improves fraud detection model performance. 

 

5.3.11  Model and Pipeline Export 

Before deploying the model into Power BI, the trained Random Forest model (oversampling 

+ default settings) and its preprocessing pipeline were exported as shown in Figure 5.3.73. 

During model development, several transformations were applied, including gender encoding, 

one-hot encoding for transaction categories, and target encoding for credit card numbers. To 

ensure these transformations would be applied consistently during deployment, both the 

pipeline and the trained model were serialized and saved using the Joblib library. By exporting 

the pipeline alongside the model, the system guarantees that identical feature engineering and 

encoding steps are performed on any new data, reducing the risk of inconsistency and ensuring 

portability across different environments. 

   

Figure 5.3.73: Saving the preprocessing pipeline and Random Forest model using Joblib 
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5.3.12  Power BI Deployment 

Data Source Connection 

Following the model export, the data source was connected to Power BI. Transaction data was 

retrieved directly via a OneDrive link as shown in Figure 5.3.74, allowing the dashboard to 

work with updated records when the dataset is refreshed in Power BI. For this purpose, the 

Kaggle test set was sampled to 100,000 records. This dataset size was chosen to strike a 

balance between providing sufficient representation of fraud cases and ensuring efficient 

processing within Power BI’s Python execution environment. The use of the Kaggle test set in 

Power BI is further justified in Chapter 6, where it is compared against synthetic alternatives. 

 

Figure 5.3.74: Power BI data source connection from OneDrive 

 

Python Script Integration 

Once the data connection was established, the dataset could be accessed and inspected via 

Transform Data (Power Query Editor) in Power BI. A Python script was embedded in Power 

BI to load both the preprocessing pipeline and the trained model. When new data is imported, 

the script applies the same preprocessing transformations as during training, including 

categorical encoding and target encoding. The processed features are then aligned to the 

expected order used by the model, as shown in Figure 5.3.75.  

 

Figure 5.3.75: Python script preprocessing new transaction data 
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After this step, the Random Forest model predicts and generates two outputs for each 

transaction: a binary classification (predicted_fraud) indicating whether the transaction is 

fraudulent, and a probability score (fraud_prob) representing the likelihood of fraud, as 

shown in Figure 5.3.76. 

 

Figure 5.3.76: Python script generating predictions 

Finally, the script produces evaluation results. If the dataset contains true fraud labels 

(is_fraud), performance metrics such as accuracy, recall, precision, F1-score, Matthews 

Correlation Coefficient (MCC), and Area Under the Curve (AUC) are computed and presented 

in tabular form within Power BI. If the dataset does not contain labels, the system outputs only 

fraud predictions and probability scores, as shown in Figure 5.3.77. The generated outputs are 

then ready for visualization, as shown in Figure 5.3.78, forming the foundation for the 

dashboard development stage of deployment. 

 

Figure 5.3.77: Python script generating evaluation metrics 

 

Figure 5.3.78: Output generated by Python script 
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5.3.13 Dashboard Development 

The Power BI dashboard was developed as the final stage of the system implementation, 

providing the interactive interface through which users can monitor and analyse fraud detection 

outcomes. The design was guided by the wireframe created earlier (see Chapter 4), ensuring a 

consistent structure and smooth navigation across different analytical perspectives. Navigation 

follows a hierarchical structure, with the Homepage and Overview Page serving as central 

hubs, with other pages accessed through them for a clear, structured flow. 

The Homepage acts as the entry point, containing interactive buttons with tooltips that direct 

users to the respective analysis pages.  

 

Figure 5.3.79: Homepage 

The Overview Page presents key performance indicators (KPIs) through card visuals, 

summarising overall transaction activity, fraud statistics, and model performance. To 

complement the KPIs, trend charts illustrate changes in fraud amount and fraud rate over time, 

providing a quick view of both scale and temporal behaviour. 

 

Figure 5.3.80: Overview Page 
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The Time Analysis Page examines fraud patterns by day, hour, and month, with additional 

views comparing daytime versus nighttime fraud activity and fraud trends across days in a 

month. 

 

Figure 5.3.81: Time Analysis Page 

The Geography Page highlights fraud distribution across city sizes and transaction distances, 

supplemented with an interactive hotspot map.  

 

Figure 5.3.82: Geography Page 
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The Demographics Page analyses fraud by age and gender, including a heatmap to show 

intersections, and supports drill-through to card-level details for deeper investigation. 

 

Figure 5.3.83: Demographics Page 

Fraud behaviour by category and spending patterns is analysed in the Behavioural Analysis 

Page, which compares different category transactions and evaluates fraud by total and average 

amounts.  

 

Figure 5.3.84: Behavioural Analysis Page 
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Model performance is assessed in the Model Performance Page, which includes a confusion 

matrix, performance metric cards, and misclassification breakdowns by category and 

demographic group. Conditional formatting is applied to performance metrics: values below 

0.9 are highlighted in yellow, and values below 0.75 are highlighted in red. 

 

Figure 5.3.85: Model Performance Page 

The Prediction Confidence & Key Influencers Page shows model certainty, key factors 

driving fraud predictions, and a table of transactions—highlighting incorrect predictions while 

leaving fraud cases unhighlighted. Users can drill through to view each transaction. 

 

Figure 5.3.86: Prediction Confidence & Key Influencers Page 
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In addition to the main analysis pages, two drill-through pages were developed to support 

detailed investigation, providing a seamless workflow from aggregated views to case-level 

insights, supporting in-depth fraud investigation. 

The Credit Card Transactions Page allows users to examine all transactions linked to a 

specific card, supported by fraud metrics, transaction history, and visual trend analysis. KPI 

cards with a non-zero fraud count are highlighted to draw attention. In the transaction history 

table, fraud cases and transactions with incorrect predictions are highlighted for easy 

identification. 

 

Figure 5.3.87: Credit Card Transactions Page (drill through from Demographics Page) 

From there, users can navigate to the Transaction Details Page, which provides full 

information for a single transaction, including prediction details, related credit card data, and 

cardholder demographics. For the KPI cards, conditional formatting is applied to highlight 

key information: actual or predicted fraud labels are shown in red, fraud probability uses a 

gradient from green (0%) to red (100%), and the predicted result is coloured green if correct 

and red if incorrect. 
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Figure 5.3.88: Transaction Details Page (drill through from Credit Card Transactions Page) 

To enhance usability, slicers and filters were added to allow dynamic exploration of fraud 

patterns by date, category, demographic segment, and location. Tooltips were configured for 

charts to provide detailed values on demand, maintaining visual clarity while retaining 

precision. Smart Narrative were also applied to generate automated insights. Together, these 

features create an interactive, user-friendly system capable of supporting fraud analysts in 

monitoring patterns, identifying risks, and evaluating model reliability. 

 

Figure 5.3.89: Interactive Dashboard Components Showing Slicers, Filters, Tooltips and 

Smart Narrative 
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The dashboard was also designed with a mobile layout in mind, ensuring key metrics and 

visualizations remain accessible and readable on smaller screens. Example pages of the 

dashboard on mobile view are shown in Figure 5.3.90. 

     

Figure 5.3.90: Mobile layout examples of the Fraud Detection Dashboard 

 

5.3.14 Implementation Issues and Challenges 

Publicly available fraud detection datasets often contain missing values, noise, and outliers, 

which can undermine model reliability, making proper selection and preprocessing essential. 

In this project, the first dataset tested was found unsuitable due to weak feature correlations, 

limiting its usefulness for fraud analysis. Many Kaggle datasets are also anonymized, 

replacing feature names with generic labels, which hinders interpretability for dashboard 

development. Additionally, the strong class imbalance, where fraud cases are rare, requires 

resampling techniques. After evaluation, a second dataset was chosen for its stronger feature 

relationships and practical relevance. 

The implementation phase was marked by several significant challenges that impacted the 

project's workflow. A primary obstacle was the severe computational and hardware 

constraints faced during model training. Running complex algorithms such as Random Forest 
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and AdaBoost on a large dataset, combined with extensive hyperparameter tuning through 

Grid Search and Randomized Search, was extremely time-consuming, often taking hours for 

a single run. This issue was further showed by synthetic data generation using CTGAN and 

TVAE, which, even with Google Colab’s GPU resources, required many hours of processing 

for a single experiment. 

Another critical challenge was the instability of Google Colab sessions. Long-running 

experiments were frequently interrupted due to idle timeouts, session duration limits, or 

memory overuse. On several occasions, runs that had progressed halfway stopped unexpectedly 

when left unattended, forcing complete reruns and wasting computational resources. This 

instability proved particularly problematic during resource-intensive tasks such as synthetic 

data generation using CTGAN, where interruptions could mean the loss of hours of work. 

From a dashboard development perspective, a key challenge was designing an intuitive UI 

for a complex, multi-faceted analysis. Creating a logical navigation structure from the 

homepage to various drill-through pages (e.g., from Demographics to Credit Card Transactions 

to Transaction Details) required careful planning to ensure a seamless user journey for fraud 

analysts. Implementing advanced features like conditional formatting (e.g., highlighting high-

risk cards, colouring metrics based on performance) and interactive elements (slicers, filters, 

tooltips) without making the dashboard visually cluttered or overwhelming was a delicate 

balancing act between functionality and usability. 

 

5.3.15 Concluding Remark 

In conclusion, this chapter outlined the full implementation of the fraud detection system, 

covering software setup, data preprocessing, model development, synthetic data generation, 

and dashboard deployment. After testing multiple datasets and algorithms, a Random Forest 

model with oversampling was selected for its strong performance, achieving high recall and 

F1-score in detecting fraud. The model was successfully integrated into Power BI, creating an 

interactive dashboard that turns predictive analytics into actionable insights. Despite challenges 

with dataset quality, computational limits, Google Colab instability, and dashboard design 

complexity, the system delivers a robust and practical foundation for real-world fraud 

monitoring and analysis.
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CHAPTER 6 

 

System Evaluation and Discussion 

6.1 Comparison of Test Set 

Before selecting the final dataset for deployment in the Power BI dashboard, two candidate test 

sets were evaluated to determine which would provide the most reliable and representative 

assessment of model performance: a real Kaggle test set and a synthetic test set generated 

through the model pipeline. The performance metrics for both sets are summarized in Table 

6.1.1. 

 Kaggle Test Set Synthetic Test Set 

Accuracy 0.9991 0.9400 

Recall 0.8410 0.9646 

Precision 0.9640 0.7133 

F1-Score 0.8983 0.8202 

MCC 0.9000 0.7980 

AUC 0.9552 0.9808 

Table 6.1.1: Performance Comparison of Kaggle and Synthetic Test Sets 

The real test set, sampled at 100,000 records, produced very strong performance with an 

accuracy of 0.9991, recall of 0.8410, precision of 0.9640, F1 score of 0.8983, MCC of 0.9000, 

and AUC of 0.9552. 

In contrast, the synthetic test set, which was also sampled with 100,000 records, achieved an 

accuracy of 0.9400, a recall of 0.9646, a precision of 0.7133, an F1 score of 0.8202, an MCC 

of 0.7980, and an AUC of 0.9808. These results show that while the synthetic dataset 

produced higher recall and AUC, it came at the cost of much lower precision and MCC. In 

practical terms, this means that the synthetic data suggested the model could catch more fraud 

cases, but with a far higher rate of false alarms. Such false positives could overwhelm 

investigation teams, increase operational cost, and negatively affect customer experience. 
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On the other hand, the Kaggle test set demonstrated a much better balance between precision 

and recall. Its higher MCC reflects strong overall classification quality across both classes, 

while its precision of 0.964 indicates very few false alarms—an essential property in financial 

fraud detection. Although recall was somewhat lower than on synthetic data, the trade-off is 

acceptable because fewer genuine frauds are missed without significantly compromising 

efficiency. Furthermore, because the Kaggle test set represents the actual data distribution, 

it offers a more trustworthy estimate of model performance in real-world deployment. The 

synthetic test set, while useful, can introduce optimistic bias by smoothing distributions or 

reducing noisy, borderline cases, which inflates metrics such as AUC and recall but may not 

hold under production conditions. 

Nevertheless, an important limitation must be acknowledged: the Kaggle test set does not 

come from real company or e-commerce transactions, but from a publicly available 

benchmark dataset. While it serves as a strong proxy for real-world conditions, its transaction 

patterns, fraud rate, and feature distributions may not fully match what would be seen in an 

actual business environment. Therefore, the reported results should be viewed with caution, 

and further testing on real company data will be necessary to confirm the model’s 

performance in practice. For future studies, the model should be validated on actual e-

commerce transaction data, tested against different fraud patterns, and monitored over time to 

capture data drift and changing customer behaviour. This will help ensure the model remains 

accurate, reliable, and ready for real deployment in a business environment.
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6.2 Model Evaluation on Kaggle Test Set 

The final model selected for deployment is a Random Forest model with oversampling 

(default settings). Its performance on the split test set (held-out portion of the original dataset) 

and the Kaggle test set (sampled 100,000 records for deployment) is summarized in Table 

6.2.1 below: 

Metric Internal Split Test Set Kaggle Test Set 

Accuracy 0.9999 0.9991 

Recall 1.0000 0.8410 

Precision 0.9998 0.9640 

F1-Score 0.9999 0.8983 

MCC 0.9998 0.9000 

AUC 1.0000 0.9552 

Table 6.2.1: Performance Comparison of Final Random Forest Model on Split Test Set and 

Kaggle Test Set 

The metrics on the split test set indicate near-perfect performance, which is expected 

because this set was drawn from the same dataset used for training. The model has effectively 

learned patterns present in the original distribution. 

The Kaggle test set, although drawn from the same overall dataset, shows noticeably lower 

recall, F1-score, MCC, and AUC. This difference highlights that even within the same dataset, 

variations in sampling, feature distributions, and the presence of borderline or rare fraud cases 

can affect model performance. 

The lower recall (0.8410) on the Kaggle test set indicates that the model misses more actual 

fraud cases compared to the split test set, suggesting that this subset contains transactions that 

are harder to classify, such as subtle or borderline fraud patterns. Correspondingly, the drop in 

F1-score and MCC reflects the challenge of balancing fraud detection with minimizing false 

positives; the Kaggle set is more difficult, providing a more realistic picture of operational 

performance. Additionally, the slightly lower AUC (0.9552) shows that the model’s ability to 

rank transactions by fraud likelihood is somewhat weaker on truly unseen examples, 

emphasizing the importance of evaluating the model on an independent dataset before 

deployment. 
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The comparison shows that while the model performs exceptionally on the split test set, the 

Kaggle test set provides more practical insights into real-world performance. Its lower 

metrics reveal challenging transaction cases and emphasize that deployment must consider 

such variability. This analysis highlights the importance of evaluating the model on a 

representative, independent dataset before operational use. 

 

6.3 Dashboard Evaluation 

The evaluation of the developed Power BI dashboard was conducted to assess its functionality, 

usability, and analytical effectiveness. The process considered both technical aspects—such as 

data accuracy, visual correctness, interactivity, and performance—as well as user-focused 

aspects, including usability, clarity, and satisfaction. This dual perspective ensures that the 

dashboard not only functions correctly from a system perspective but also provides a positive 

experience for end-users. To present the findings clearly, the evaluation is divided into two 

parts: technical evaluation and user acceptance evaluation. 
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6.3.1 Technical Evaluation 

Component Objective Procedures and Expected Outcomes Actual Result Pass/Fail 

Data 

Accuracy 

Verify correct data source 

link and metrics 

Confirm dashboard is connected to 

OneDrive; compare dashboard totals vs raw 

dataset. Dashboard should match OneDrive 

data and reflect updates after refresh. 

Dashboard successfully connected to 

OneDrive and show no error; total 

transactions = 100,000, fraud cases = 

478, matching the raw dataset totals; 

metrics update correctly after refresh 

Pass 

Visual 

Accuracy 

Ensure charts and tables 

represent data correctly 

Inspect line, bar, and pie charts. Labels, 

axes, legends should be correct. Charts 

should reflect accurate trends, proportions, 

and values. 

All charts accurately displayed trends 

and proportions. Axes, labels, and 

legends were correct. 

Pass 

Slicer 

Functionality 

Confirm slicers interact 

correctly with visuals 

On Time Analysis page, apply different 

slicer (category, fraud label) sequentially. 

All visuals should update dynamically 

without conflicts. 

Slicer selections updated all visuals 

correctly. Multiple slicers worked 

together without issues (see Figure 

6.3.1–6.3.3). 

Pass 

Conditional 

Formatting 

Validate performance card 

colour coding 

On Model Performance Page, check KPI 

cards. Metrics ≥ 90% should display green, 

75–89% yellow, <75% red. 

Colours applied correctly for all 

metrics (see Figure 6.3.4). 

Pass 

Conditional 

Formatting 

Validate fraud/wrong 

prediction highlighting 

On Credit Card Transactions Page, check 

transaction table. Fraud cases and wrong 

predictions should display in red. 

Highlighting worked as expected — 

only fraud cases were highlighted, and 

since no wrong predictions existed, 

none were marked (see Figure 6.3.5). 

Pass 
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Drill-through Ensure navigation to 

detailed view works 

On Credit Card Transactions Page, click 

a transaction in the Transaction History 

table. Dashboard should open Transaction 

Details Page with matching metrics, card 

info, and demographics. 

Drill-through worked correctly. 

Details matched the selected record, 

and Transaction ID was consistent 

with the selected row (see Figure 

6.3.6–6.3.7). 

Pass 

Performance Test load and refresh speed Measure time to open PBIX file and refresh 

dataset of 100k records. File should open 

<1 min, refresh <2 min. 

Dashboard PBIX file opened in 30s; 

refresh completed in 1 min. 

Pass 

 

Table 6.3.1: Technical Evaluation Test Cases and Results
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Figure 6.3.1: Time Analysis Page with Category Slicer Not Applied 

 

 

Figure 6.3.2: Time Analysis Page with Category Slicer Applied 

 

 

Figure 6.3.3: Time Analysis Page with Category and Fraud Label Slicers Applied 
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Figure 6.3.4: KPI Cards on Model Performance Page with Colour Coding Applied 

 

 

Figure 6.3.5: Transaction Table on Credit Card Transactions Page Showing Fraud Case 

Highlighting 

 

 

Figure 6.3.6: Selected Transaction in Credit Card Transactions Page Prior to Drill-through 
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Figure 6.3.7:  Transaction Details Page Showing Matching Transaction ID 

The technical evaluation confirmed that the dashboard performed reliably across all tested 

components. Data accuracy was validated by matching dashboard metrics with the raw dataset, 

while visual accuracy checks ensured charts, labels, and legends were displayed correctly. 

Interactive features such as slicers, conditional formatting, and drill-through functionality all 

operated without error, providing smooth navigation and clear visual feedback. Finally, 

performance testing showed that the dashboard opened and refreshed efficiently within the 

expected time limits. Overall, all test cases passed successfully, demonstrating that the 

dashboard meets the required technical standards for accuracy, usability, and performance. 

 

6.3.2 User Acceptance Evaluation (SUS Questionnaire) 

To complement the technical evaluation, user acceptance testing was conducted using the 

System Usability Scale (SUS) questionnaire. 10 standardised questions were adapted to the 

context of the fraud detection dashboard, covering usability, clarity, responsiveness, and 

interactivity. The survey was created using Google Forms and distributed to respondents, who 

rated each statement on a five-point Likert scale (1 = Strongly Disagree to 5 = Strongly Agree). 

This approach provides a structured and quantifiable evaluation of the dashboard’s usability 

and user satisfaction. 
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A total of 15 respondents participated in the evaluation. The feedback gathered from the 

respondents was used to calculate the SUS score and provide insights into the usability, clarity, 

responsiveness, and interactivity of the dashboard. To provide a clearer interpretation of the 

results, the SUS statements were grouped into five themes: ease of use, perceived complexity, 

visual clarity, responsiveness and interactivity, and overall satisfaction.  

The ease-of-use theme (Q1, Q3, Q7), which contained positively worded items, received high 

ratings, with the majority of respondents selecting 4 or 5, as shown in Figure 6.3.8-6.3.10. Only 

one respondent gave a neutral score of 3 for navigation (Q3), as shown in Figure 6.3.9. This 

indicates that the dashboard is intuitive, requires minimal learning effort, and provides clear 

navigation paths. Overall, the results suggest that users can quickly adapt to the system without 

prior training. 

 

Figure 6.3.8: Ease of Use Evaluation 

 

Figure 6.3.9: Navigation Clarity Evaluation 
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Figure 6.3.10: Ease of Learning Evaluation 

In contrast, the perceived complexity theme (Q2, Q4, Q6), which contained negatively 

worded items, scored very low, with most respondents choosing 1 or 2, as shown in Figure 

6.3.11-6.3.13. Notably, all respondents rated Q6 with a 1, indicating strong agreement that the 

dashboard was neither inconsistent nor confusing. These results suggest that users did not 

perceive the dashboard as unnecessarily complex or requiring technical support. 

 

Figure 6.3.11: Perceived Complexity Evaluation 

 

Figure 6.3.12: Need for Support Evaluation 
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Figure 6.3.13: Consistency Evaluation 

The clarity of visuals (Q5) was rated particularly highly, with almost all respondents strongly 

agreeing that charts, tables, and numbers were easy to understand, as shown in Figure 6.3.14. 

 

Figure 6.3.14: Visual Clarity Evaluation 

 

For the responsiveness and interactivity theme (Q8, Q9), Figures 6.3.15-–6.3.17 illustrate 

that nearly all respondents selected 4 or 5, indicating that the dashboard responds quickly to 

filters and slicers and that interactive features work as expected. This demonstrates that the 

system provides a smooth, responsive, and reliable interaction experience. 
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Figure 6.3.15: Responsiveness Evaluation 

 

Figure 6.3.16: Interactivity Evaluation 

 

Finally, as seen in Figure 6.3.17, all respondents rated satisfaction highly (4 or 5), showing 

strong acceptance and confidence in the dashboard. This confirms that the system meets user 

expectations and achieves a high level of usability.  

 

Figure 6.3.17: Overall Satisfaction 
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After analysing the individual questions, the overall System Usability Scale (SUS) scores 

were calculated to provide a single benchmark of usability. The SUS scoring followed the 

standard procedure: for positively worded items (Q1, Q3, Q5, Q7, Q8, Q9, Q10), the adjusted 

score was calculated as Response − 1, while for negatively worded items (Q2, Q4, Q6), the 

adjusted score was calculated as 5 − Response. This converted all responses into a range from 

0 to 4. The adjusted scores were then summed across all 10 statements to obtain a total score 

between 0 and 40, which was subsequently multiplied by 2.5 to produce the final SUS score, 

ranging from 0 to 100. 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total (0-40) SUS (0-100) 

5 2 5 2 5 1 5 4 4 5 36 90 

4 1 4 1 5 1 5 5 5 5 38 95 

5 1 4 2 4 1 4 4 5 4 34 85 

5 1 5 1 5 1 5 5 5 5 40 100 

5 1 5 2 5 1 4 5 4 4 36 90 

5 2 5 2 5 1 5 5 4 5 37 92.5 

4 2 4 2 5 1 4 4 4 4 32 80 

5 1 4 1 5 1 5 4 5 5 38 95 

4 2 5 2 5 1 4 5 4 4 34 85 

5 2 4 1 5 1 4 4 5 5 36 90 

5 2 3 2 5 1 4 5 4 4 33 82.5 

5 1 5 1 5 1 5 5 5 5 40 100 

5 1 4 1 5 1 5 5 5 5 39 97.5 

5 1 5 2 5 1 4 4 5 5 37 92.5 

5 1 5 1 5 1 4 4 5 4 37 92.5 

Average 36.47 91.17 

Table 6.3.2: System Usability Scale (SUS) Evaluation Results 

Table 6.3.2 presents the SUS scoring results for all 15 respondents. The scores ranged from 80 

to 100, with an overall average of 91.17, which is above the commonly accepted usability 

benchmark of 70. This indicates that the dashboard achieved a high level of usability and user 

satisfaction, meeting the success criteria set for the evaluation.  

When considered alongside the technical evaluation, these results confirm that the dashboard 

is not only functionally accurate and reliable but also user-friendly and well-accepted by end 

users. 
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6.4 Insights from Dashboard Results 

The dashboard not only serves as a visualization tool but also provides valuable insights into 

fraud behaviour across temporal, spatial, demographic, and behavioural dimensions. Using the 

Kaggle credit card fraud test set as the underlying data source, the analysis of outputs across 

different dashboard pages revealed several key patterns and risk factors. 

 

Overview  

 

Figure 6.4.1: Overview Page 

The Overview Page provides a clear summary of the dataset, fraud patterns, and model 

performance. It covered 100,000 transactions with a total value of $5.36 million, averaging 

$53.58 per transaction. Although fraud cases made up only 0.48% of all transactions, their 

financial impact was significant, with a total fraud amount of $272,163.81 and an average of 

$569.38 per fraudulent transaction—more than ten times higher than the average non-fraud 

amount of $51.10. The model successfully identified 422 fraud cases with very high accuracy 

(99.91%) while maintaining a very low false positive rate (0.02%), indicating its strong ability 

to distinguish between legitimate and fraudulent activity.  

The trend charts provide further insight, as both fraud amount and fraud rate show irregular 

spikes at certain periods, suggesting that fraud occurs in sudden increases rather than 

consistently over time. This opportunistic behaviour highlights the importance of continuous 

monitoring and timely detection, since fraud cases are not evenly distributed but concentrated 

in specific high-risk periods. 
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Time Analysis 

 

Figure 6.4.2: Time Analysis Page 

The first chart, Fraud vs Non-Fraud by Day, compares daily transaction amounts between 

fraud and normal cases. From the chart, it can be seen that fraud does not always rise in line 

with total transactions. It is evident that fraud is disproportionately higher during weekends, 

particularly on Sundays, which recorded the highest fraud count despite not having the peak 

transaction volume. Mondays and Saturdays also show elevated levels of fraudulent activity, 

while mid-weekdays such as Tuesday and Wednesday display comparatively lower fraud 

counts. This pattern suggests that fraudsters may take advantage of weekends when both 

customer vigilance and institutional monitoring are potentially weaker. 

The Fraud by Time chart shows that over 80% of fraud takes place at night, suggesting that 

fraudsters prefer to operate when monitoring is weaker, such as late at night or early in the 

morning. This observation is further supported by the Fraud vs Non-Fraud by Hour chart, 

which compares fraudulent and legitimate transactions across the day. It highlights that fraud 

risk starts to rise around 10 PM and remains elevated until about 3 AM. Although the overall 

number of transactions is lower during these hours, the proportion of fraud is significantly 

higher than during the day, making late-night hours the most vulnerable period for fraudulent 

activity. 
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The Fraud vs Non-Fraud Count Over Time chart shows that while non-fraud transactions 

remain stable across the days, fraud cases appear in small, scattered amounts. The variation 

does not indicate a strong pattern but rather suggests random or opportunistic fraud attempts. 

This reinforces the need for continuous monitoring, as fraud can occur unpredictably at any 

time, even when transaction volumes appear normal. 

The last chart, Fraud vs Non-Fraud by Month, shows longer-term patterns. The monthly 

view shows that while December records the highest number of transactions overall, the fraud 

count during this period is relatively low. This suggests that higher transaction volume does 

not necessarily lead to higher fraud cases. In contrast, months with fewer total transactions, 

such as August and October, show higher fraud counts, indicating that fraud patterns are not 

strictly tied to transaction activity levels. Instead, fraud appears to occur more steadily across 

months, without a direct seasonal spike. 

 

Geography 

 

Figure 6.4.3: Geography Page 

The Fraud Hotspot Map visualizes the distribution of fraudulent and non-fraudulent 

transactions across the United States. Each dot represents a transaction location, with red 

indicating fraud and blue indicating non-fraud, while a half-red, half-blue marker signifies the 

presence of both types at the same location. This visualization makes it easier to identify 
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geographical clusters and potential hotspots. For instance, Figure 6.4.4 illustrates that when 

the cursor hovers over an isolated point, the tooltip displays detailed information such as the 

city name Honokaa, the fraud label indicating it as a fraudulent case, the latitude and longitude 

coordinates, a transaction count of four, the corresponding merchant coordinates, and a 

recorded distance of 84.16 km from the merchant. The results indicate that fraud is not evenly 

distributed: while most transactions are concentrated in the eastern and central United States, 

fraud hotspots appear scattered within these clusters, suggesting that fraudulent activity tends 

to emerge in particular areas rather than being uniformly spread.  

 

Figure 6.4.4: Tooltip Information from Honokaa Transaction Point 

The Fraud vs Non-Fraud by Population Group bar chart compares transaction counts across 

city sizes. Small Cities record the highest transaction volumes overall, making them the biggest 

source of fraud in absolute terms. However, fraud cases are also observed in Large Cities, 

Medium Cities, and Very Large Cities, though in smaller numbers. This indicates that fraud is 

not exclusive to one type of city—while small cities dominate due to volume, larger urban 

areas are not immune to fraud risk. 

The Fraud vs Non-Fraud by Distance from Merchant line chart plots fraud and non-fraud 

counts against distance. Both fraud and non-fraud transactions increase together as distance 

grows, peaking around 80 km, before declining again. The parallel trend suggests that 

fraudsters often mimic normal transaction distance patterns to avoid detection, but the elevated 

fraud share at 80 km shows a hotspot where risk is disproportionately high. Beyond 100 km, 

both fraud and non-fraud counts drop sharply, showing that long-distance transactions are less 

common overall. 
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Demographics 

 

Figure 6.4.5: Demographics Page 

The Fraud vs Non-Fraud by Age Group chart compares the volume of fraudulent and 

legitimate transactions across different age categories. Fraud is represented in red, while non-

fraudulent transactions are displayed in blue. From this chart, it is evident that the adult age 

group records the highest number of fraud cases, while the young age group shows the 

least. This suggests that adults, due to higher transaction activity, face greater exposure to fraud 

compared to younger or mid-age groups. 

Fraud by Gender chart provides a clear breakdown of fraud cases between male and female 

cardholders. While the difference is not extreme, the chart shows that female cardholders 

record slightly more fraud cases than male cardholders. This finding suggests minor 

variations in fraud exposure or transaction behaviour between genders. 

The Fraud by Age Group and Gender heatmap combines the two demographics to reveal 

intersections. Darker shades indicate higher fraud counts. The heatmap shows that adult 

females represent the group with the highest fraud count, followed by adult males. 

Meanwhile, younger groups records minimal fraud activity regardless of gender. This 

combined view provides deeper insight, showing not only which groups are most affected 

individually, but also how fraud concentrates at the intersection of gender and age. 
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The Summary Box highlights the age and gender groups with the highest and lowest fraud 

counts and rates, as well as the age–gender combination most affected, giving a quick view of 

key demographic risks. 

The Credit Card Fraud table lists all cards associated with fraudulent transactions. It displays 

the card number, fraud count, total transactions, and fraud rate. The fraud rate column is 

highlighted in red, where darker shades indicate higher rates, with some cases reaching 100%. 

This table provides investigators with detailed visibility into which specific credit cards are 

consistently linked to fraudulent activity. In addition, it supports drill-through functionality, 

allowing users to right-click on a card number and navigate to the Credit Card Transaction page 

for further analysis. For instance, drilling through on card number ‘573000000000’ provides 

a detailed view of its associated transactions as shown in Figure 6.4.6. 

 

Figure 6.4.6: Example of Drill-Through Navigation from Credit Card Fraud Table 
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Credit Card Transactions 

 

Figure 6.4.7: Credit Card Transactions Page 

Drilling through to the transaction-level view of credit card number ‘573000000000’ provides 

deeper insights into the fraud patterns associated with this account. Overall, the card has 40 

recorded transactions, out of which 4 were confirmed as fraudulent, resulting in a fraud 

rate of 10%. This is a significant proportion, given the financial impact: fraudulent 

transactions alone amounted to $3,809.02, which represents more than 70% of the total 

amount spent ($5,343.63). This highlights that while fraudulent activity was limited in count, 

it carried a disproportionately large monetary impact compared to legitimate transactions. 

The Transaction-level details table further confirm the accuracy of the fraud detection model. 

Each of the four fraudulent transactions was correctly identified and flagged, reflecting strong 

predictive performance. These fraud cases occurred primarily during late-night hours (e.g., 

11:32 PM and 11:54 PM), which aligns with broader time-analysis findings that fraudsters 

exploit reduced monitoring during night periods. In contrast, non-fraudulent transactions were 

distributed more evenly across different times of the day, suggesting a clear behavioural 

distinction between fraudulent and legitimate usage. 

The Fraud Over Time chart shows transaction activity between July and November 2020. 

Most of the card’s transactions were legitimate and spread evenly across the months, but the 

fraudulent ones appeared in small clusters, especially in late October. These spikes are 
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important because they suggest planned attempts at fraud rather than random events. 

Investigators can use this trend to check if fraud matches seasonal patterns, busy shopping 

periods, or possible leaks of cardholder information. 

Overall, the drill-through analysis shows that even though only 10% of this card’s transactions 

were fraudulent, they caused most of the financial loss. The fraud cases mainly happened late 

at night and were grouped into certain months, pointing to deliberate and opportunistic misuse. 

For investigators, this page provides useful evidence to strengthen fraud controls on the account, 

such as adding extra checks for late-night transactions, reviewing high-value purchases more 

closely, and monitoring for repeated bursts of suspicious activity. 

By right-clicking on a transaction, users can navigate to the Transaction Details page for deeper 

analysis. For example, drilling through on the first transaction reveals its full details as shown 

in Figure 6.4.8. 

 

Figure 6.4.8: Example of Drill-Through Navigation from Transaction-level Details Table 
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Transaction Details 

 

Figure 6.4.9: Transaction Details Page 

The transaction details page provides a deeper look into one of the fraudulent transactions 

linked to this credit card account. In this case, transaction ID 

‘34fe2b80f76aca88e3a890f3e5799cf0’ was correctly identified as fraud with a high 

confidence score of 95%, confirming the accuracy of the detection model. The transaction 

amount of $939.95 is relatively large, consistent with the broader pattern where fraudulent 

activity on this card tends to involve disproportionately high-value purchases. The payment 

was made under the shopping_net category, indicating an online channel that is generally more 

susceptible to misuse compared to in-person transactions.  

Additional context highlights that the cardholder is a 70-year-old female from Jaffrey, 

categorized as a senior in a medium-sized city—a demographic that can be more vulnerable 

to fraud attempts. Furthermore, the transaction occurred 115.66 km away from the merchant 

location, suggesting a possible geographic inconsistency that may raise suspicion. Although 

many fraud cases on this card occurred late at night, this one happened earlier in the evening 

(8 PM), showing that fraud is not limited to specific hours. Overall, the case reinforces how 

high value and online transactions are strong indicators of fraudulent behaviour. 
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Behavioral Analysis 

 

Figure 6.4.10: Behavioral Analysis Page 

The first visualization, Fraud vs Non-Fraud by Category chart, compares the number of 

fraudulent and non-fraudulent transactions across various categories such as shopping_net, 

grocery_pos, misc_net, shopping_pos, and others. Fraudulent transactions are represented in 

red, while non-fraudulent transactions appear in blue. From the chart, while categories like 

shopping_net and grocery_pos record the highest transaction counts, fraud is 

disproportionately concentrated in shopping_net, which registers the highest fraud cases. This 

indicates that fraudsters prefer online shopping platforms over point-of-sale transactions, 

likely due to weaker verification measures and the ease of executing remote purchases. 

The Total Amount by Fraud vs Non-Fraud chart shows that although fraudulent transactions 

make up only a small fraction of the overall count, they account for a disproportionately large 

share of the total value, reaching $272,163.81 compared to $5,086,065.63 for non-fraudulent 

transactions. This highlights that fraud is often concentrated in higher-value cases rather than 

in volume. The Average Transaction Amount by Fraud vs Non-Fraud chart further supports 

this pattern, showing that the average fraudulent transaction is $569.38, which is more than 

eleven times higher than the $51.10 average for legitimate transactions. Together, these 

findings suggest that fraudsters deliberately target high-value purchases to maximize returns, 

underscoring the importance of applying stricter monitoring and risk controls to larger 

transactions. 
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The Summary box provides a concise overview of fraud trends. It shows that the highest fraud 

activity occurs in the online shopping category, while point-of-sale transactions record the 

lowest. Online channels also have the highest fraud rate and overall fraud amount, indicating 

that they are the most vulnerable environment and represent the greatest financial exposure. 

 

Model Performance 

 

Figure 6.4.11: Model performance Page 

Confusion Matrix heatmap shows that the majority of predictions fall correctly into their 

categories, with 405 true positives and 99,505 true negatives, while only 17 false positives 

and 73 false negatives appear. This demonstrates excellent predictive strength, but the 

presence of missed fraud cases (false negatives) highlights a key risk area, since undetected 

fraud can cause significant financial losses. 

The Performance Metrics cards give a concise yet powerful snapshot of model quality across 

six dimensions. Accuracy (0.9991), precision (0.9597), F1-score (0.9000), MCC (0.9013), and 

AUC (0.9828) are all in green, reflecting excellent results. Recall (0.8473), however, is 

highlighted in yellow, signalling a relative weakness. This indicates that while the model is 

highly precise in detecting fraud, it sometimes misses fraudulent cases.  
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The Prediction Result slicer is set by default to display false negatives and false positives, 

since these errors are most critical for fraud detection. The Predicted Results by category 

chart breaks down misclassifications into false negatives and false positives across transaction 

categories. The “other” category stands out, with 73 missed frauds and 17 false alarms. This 

suggests that certain types of transactions, possibly due to their diverse or irregular patterns, 

present more challenges for the model.  

Similarly, the Predicted results by age group chart shows that most errors occur in the adult 

group, with 42 missed frauds and 10 false positives, while seniors and mid-age groups show 

moderate levels of misclassification, and young users experience very few errors. These 

insights reveal where the model struggles most, allowing targeted refinements. 

 

Prediction confidence & Key Influencers 

 

Figure 6.4.12: Prediction confidence & Key Influencers Page 

The prediction confidence section, located on the left side of the page, begins with two KPI 

cards that summarize overall certainty. The first card shows that 38.90% of predictions fall 

into the high-confidence range, while the second indicates this corresponds to 389 

transactions. High confidence is defined as cases where the model’s predicted probability is 

at least 0.8, meaning the model is strongly confident in its decision for fraud cases. This gives 
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stakeholders a clear benchmark for trust in the model’s outputs, while also showing how often 

the model produces highly reliable predictions. 

Beside these cards, a Fraud Count by Confidence Level pie chart breaks down predictions 

into Very High, High, Medium, and Low categories. The chart reveals that most cases fall into 

the Low-confidence range (77.41%), with far fewer in the Medium, High, and Very High 

ranges. In this model, a probability of 0.5 or higher is classified as fraud, while anything 

below 0.5 is classified as non-fraud. As a result, the large share of Low-confidence predictions 

(< 0.5) mostly represents legitimate transactions, which aligns with real-world conditions 

where genuine transactions far outnumber fraudulent ones. However, the key limitation is that 

some fraud cases also fall into this Low-confidence group, where the model assigns them a 

probability below 0.5 and misclassifies them as legitimate, showing the difficulty of detecting 

fraud that mimics normal behaviour. 

The transaction-level details table provides a tabular breakdown of all individual predictions. 

Each row displays the Transaction ID, Predicted Label, Actual Label, Predicted Probability, 

and Confidence Level. Incorrect predictions are highlighted in red, making errors easy to spot. 

For example, some fraud cases were misclassified as non-fraud because they had very low 

probability scores, showing situations where the model lacked sufficient confidence to 

correctly flag them. 

The key influencers section, on the right side of the page, explains what drives the model to 

classify a transaction as fraud. Using AI-driven analysis, the visual ranks the most important 

factors. The most significant driver is whether the Population Group is in Very Large Cities, 

which increases the likelihood of fraud by nearly 284 times. Other strong influencers include 

whether the transaction occurs at night (17.96x higher likelihood), whether the amount 

exceeds 61.96 (5.59x higher), and whether the category is shopping_net, grocery_pos, or 

misc_net, all of which increase the likelihood by 3–5 times. These findings not only validate 

the model’s reasoning but also provide actionable insights for investigators, such as focusing 

additional scrutiny on urban, late-night, high-value online transactions. 
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6.5 Project Challenges 

This project faced several important challenges that shaped the approach, methods, and results. 

One key issue was the strong class imbalance, as fraud made up less than 1% of all 

transactions. This created a risk of building a model that looked accurate but failed to detect 

fraud, since predicting only non-fraud would still give high accuracy. To address this, different 

resampling methods such as SMOTE, oversampling, and under-sampling were tested. These 

helped improve recall but also brought trade-offs, such as lower precision, higher 

computation time, and the risk of generating unrealistic patterns. 

Another challenge was ensuring the model could work well on unseen data and avoiding 

data leakage. The very high performance seen on the internal test set did not carry over to the 

independent Kaggle test set, showing that the model was too optimistic when tested on familiar 

data. In addition, an early mistake in the pipeline—applying target encoding before splitting 

the data—caused leakage, which made the model look better than it really was. Fixing this 

required carefully rebuilding the preprocessing pipeline to give a fairer measure of real-world 

performance. 

Finally, evaluation was limited by the lack of strong benchmarks. Unlike software areas with 

well-known standards, fraud detection dashboards have very few public examples for 

comparison. This made it hard to judge if the dashboard created was competitive or just 

functional. As a result, the evaluation focused on meeting project goals and user feedback, 

rather than direct comparison with industry-leading tools. 

 

6.6 Objectives Evaluation 

This project aimed to address key problems in fraud detection, including data imbalance, 

misclassification and evolving fraud patterns through the development of machine learning 

models and a Power BI dashboard. The extent to which each objective was achieved is 

discussed below. 
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Addressing data imbalance through resampling techniques 

The extreme class imbalance, with fraud making up less than 1% of all transactions, was 

addressed using SMOTE, oversampling and under-sampling. Oversampling combined with 

Random Forest gave the most reliable results, producing a balanced trade-off between recall, 

precision, and F1-score. SMOTE also improved minority detection, while under-sampling 

performed poorly due to information loss. No resampling gave high accuracy but weak recall, 

F1, and MCC, showing that accuracy alone is misleading under imbalance. Prior research 

highlighted SMOTE’s performance for fraud detection [11,12,18]. This project extends their 

findings by systematically comparing multiple resampling methods, proving oversampling to 

be the most effective. Although reevaluated results were not as strong as the near-perfect scores 

initially seen on the split test set, the model still achieved a solid F1-score of 0.9, which is 

considered satisfactory under highly imbalanced conditions. This successfully met the first sub-

objective of enhancing fraud detection performance. 

Reducing misclassification with ensemble models 

To reduce costly misclassification errors, particularly false negatives, this project compared 

Random Forest, AdaBoost, and XGBoost. While all three models performed strongly on the 

internal split test, re-evaluation on the independent Kaggle test set confirmed Random Forest 

with oversampling is still reliable, achieving accuracy of 0.9991, precision of 0.96, recall of 

0.85, and an F1-score of 0.90. This balance demonstrated its strength in minimizing false 

negatives while maintaining high precision. This directly addressed the second sub-objective 

of developing models that reduce misclassification. 

Monitoring evolving fraud patterns through visualization 

The evolving nature of fraud was addressed by deploying the chosen model within an 

interactive Power BI dashboard. The dashboard provides real-time monitoring of fraudulent 

activity and model performance through drill-through pages, conditional formatting, and 

interactive filters. This enables continuous tracking of fraud patterns, supporting timely updates 

when concept drift occurs. Thus, the third sub-objective of visualizing fraud detection 

performance and patterns was effectively achieved. 
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Integration of machine learning and Power BI for real-time monitoring 

The main objective, integrating machine learning with a Power BI dashboard, was successfully 

realized. The exported Random Forest model and its preprocessing pipeline were embedded 

into the dashboard, resulting in a user-friendly system that combines predictive analytics with 

actionable visualization. This integration ensures the solution is not only technically sound but 

also practically valuable for fraud analysts. 

 

6.7 Concluding Remark 

This chapter provided a full review of the fraud detection system, covering both the machine 

learning model and the Power BI dashboard. The comparison of test sets showed that the real 

Kaggle dataset, while not perfect, is a better and more realistic way to measure performance 

than a synthetic one. This revealed the trade-off between recall and precision. Testing the final 

Random Forest model on this independent dataset proved it was strong, with a solid F1-score 

of 0.90, but also showed a drop in recall compared to the internal test set, reminding us why 

outside validation is important. 

The dashboard was also carefully tested in two ways. The technical check confirmed that it 

worked correctly from data input to visualization. The user test, with a very high SUS score of 

91.17, showed that people found it easy to use and helpful. The dashboard gave clear insights 

into fraud patterns over time, location, demographics, and behaviour, making the system not 

just predictive but also an investigation tool. 

In short, this chapter shows that the project goals were achieved. The system handles class 

imbalance, reduces misclassification errors, and provides a strong platform for tracking fraud 

trends. By combining a reliable model with an easy-to-use dashboard, the project delivers a 

complete solution that is useful for both research and real-world fraud detection. 
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CHAPTER 7 

 

Conclusion and Recommendation 

7.1 Conclusion 

The preliminary phase of this project established a strong foundation for building an 

effective fraud detection system in e-commerce. Key steps included thorough EDA, data 

preprocessing and handling class imbalance using resampling techniques. These efforts were 

essential in preparing the dataset for robust model training and evaluation. 

Based on the analysis of model performance, Random Forest and XGBoost consistently 

outperformed AdaBoost in fraud detection. Among the resampling methods tested, both 

SMOTE and Oversampling significantly improved key metrics such as Recall, F1-score, and 

MCC, effectively addressing the challenges of class imbalance. Pipeline 2, which applied 

resampling before data splitting and then target encoding, was implemented during 

hyperparameter tuning. This pipeline was better to prevent target leakage and provided more 

reliable performance metrics that better reflect real-world deployment conditions. 

Hyperparameter tuning further refined the models, but results indicated that the base 

models were already highly effective. Random Forest and XGBoost showed only marginal 

improvements, while AdaBoost benefited more obviously, though it still lagged behind the 

other two. Random Forest combined with Oversampling achieved near-perfect performance 

across multiple evaluation metrics, confirming its suitability as the final deployed model. 

Robustness was validated through testing on both synthetic datasets and the Kaggle 

dataset, where the model demonstrated strong generalization and adaptability. Although the 

performance was not as high as on the internal split test set (which was near perfect), it still 

remained strong, ensuring reliability beyond internal testing and addressing concerns of 

overfitting and concept drift. 

The integration of the final model into Power BI transformed predictive outcomes into 

a decision-support tool. The dashboard enabled monitoring of model performance and fraud 

patterns across dimensions such as time, geography, demographics, and behavioural attributes. 

Interactive features like slicers, drill-through navigation, and smart narratives enhanced 
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usability, while evaluation using the System Usability Scale (SUS) yielded a score of 91.17, 

reflecting excellent acceptance and satisfaction among users. 

In short, the project successfully addressed key challenges in fraud detection such as 

data imbalance, costly misclassification, and evolving fraud patterns through machine learning 

and visualization. By selecting Random Forest with Oversampling as the final model and 

embedding it within an interactive dashboard, the system achieved the objectives of improving 

detection accuracy, reducing false negatives, and providing actionable insights for fraud 

management in e-commerce. 

 

7.2 Recommendation 

Future studies can extend this work in several directions. First, deep learning 

techniques, as highlighted in previous studies [12,19] should be explored for fraud detection. 

Unlike ensemble models, deep learning can capture sequential, non-linear, and relational 

patterns, making it more effective for detecting complex and evolving fraud strategies. 

Second, although this project has already employed CTGAN and TVAE for synthetic 

data generation, future work could involve training these models on the full dataset or 

developing hybrid approaches that combine synthetic and real-world data. This would improve 

the diversity and realism of the generated samples, further enhancing model robustness and 

privacy preservation. 

Third, real-world data integration is important to validate the system’s usefulness in 

industry. Collaborating with e-commerce platforms or financial institutions to test the model 

on real transactions would help identify challenges like handling large volumes of data, speed 

of processing and meeting security or regulatory requirements. This would make the system 

more prepared for actual deployment. 

Finally, the system should be moved from Power BI Desktop to Power BI Service for 

real-time monitoring. Because Python scripts cannot run directly in the Service, the model 

should be hosted outside (for example in Azure ML or a cloud function). Power BI can then 

connect to the processed results using dataflows with automatic refresh, live data streams, and 

alerts. This would remove the need for manual refresh and give fraud analysts faster updates 

and timely warnings. 
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