

AUDIO FILES COMPARATOR USING WAVELET TRANSFORM AND

SIMILARITY METRICS

BY

LEE DA LONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Lee Da Long. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Technology (Honours) Computer

Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project

report represents the work of the author, except where due acknowledgment has been

made in the text. No part of this Final Year Project report may be reproduced, stored,

or transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to everyone who has supported me throughout

the completion of my first Final Year Project.

First and foremost, I extend my deepest thanks and appreciation to my supervisor, Mr Lee

Heng Yew for giving me the opportunity to engage in this project on audio comparison. His

guidance has not only deepened my understanding of Signal Processing but also provided me

with the chance to expand my academic horizons. A million thanks to you.

I also wish to express my sincerest appreciation to my parents and family for their

unconditional love, support, and encouragement throughout this journey. Their continuous

belief in my abilities has been a source of strength for me.

Finally, to my dear friends, thank you for your companionship and for understanding by my

side during challenging times. Your support and motivation have been invaluable, and I am

grateful to have shared this experience with all of you.

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This project is a development-based project revolving around signal processing. The aim of

this project is to develop a program that utilizes continuous wavelet transform (CWT) for audio

similarity recognition. Its primary objective is to identify the similarities among audio files

with different information such as file names or formats.

In today’s diverse musical landscape, songs undergo various interpretations, covered in

different languages, or rendered using a myriad of instruments. Compositions may span the

spectrum, ranging from performances with real musical instruments to those composed solely

of synthesized sounds, typically electronic dance music (EDM).

Furthermore, songs exhibit versatility in their presentation, ranging from vocal renditions

accompanied by instruments to whistling, humming or acapella performances. The evolution

of music has also fostered the emergence of mashups and remixes, where distinct tracks

seamlessly blend together to create new compositions. Despite these variations, the tunes or

pitches of songs remain recognizable to the human ear and even audio detection algorithms.

With the proliferation of digital music, people download songs from music applications or the

internet, whether for personal listening in vehicles or to play in parties. However, these

downloaded songs may vary depending on their file names and formats. Consequently, this

project aims to identify identical or akin songs with various information and display out the

percentage of differences between the audio files. The project’s methodology centres on Python

programming, where comparisons of audio similarities will be conducted.

Area of Study (Minimum 1 and Maximum 2): Signal Processing

Keywords (Minimum 5 and Maximum 10): Audio Comparison, Music Cover Detection,

Wavelet Transform, MFCC Analysis, Python Programming, User-Friendly Application

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 1

1.2 Motivation 1

1.3 Objectives 2

1.4 Project Scope and Direction 3

1.5 Contributions 3

1.6 Report Organization 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Previous Works on Audio Files Comparison 4

 2.1.1 Wavelet Transform Analysis 4

 2.1.2 Cross-Correlation 5

 2.1.3 Mel-Frequency Cepstral Coefficient (MFCC) 5

 2.1.4 Fast Fourier System (FFT) 6

 2.1.5 Dynamic Time Warping (DTW) 7

2.2 Strengths of Previous Works 7

2.3 Limitations of Previous Studies 8

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 9

3.1 Methods and Approaches 9

3.1.1 Continuous Wavelet Transform (CWT) 9

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

3.1.2 Cross-Correlation 10

3.1.3 Mel-Frequency Cepstral Coefficient (MFCC) 11

CHAPTER 4 SYSTEM DESIGN 12

 4.1 Graphic User Interface (GUI) 12

4.1.1 Interface Design 12

4.1.2 Audio Preprocessing 13

4.1.3 Data Visualization 14

 4.2 System Architecture Diagram 16

CHAPTER 5 SYSTEM IMPLEMENTATION 17

 5.1 Hardware Setup 17

5.2 Software Setup / Programming Language 17

5.3 Code Implementation 17

5.3.1 CWT Implementation 17

5.3.2 Cross-Correlation Implementation 18

5.3.3 MFCC Implementation 19

5.3.4 Weighted Scoring System 20

5.4 Implementation Issues and Challenges 20

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 21

6.1 Test Case Setup

21

6.2 Results of Test Cases 21

6.2.1 Test Case 1: Both Same Songs 21

6.2.2 Test Case 2: Same Song, Different Formats 22

6.2.3 Test Case 2: Same Song, Different Duration 22

6.2.4 Test Case 2: Same Song, Different Artists 23

6.2.5 Test Case 2: Same Song, Different Languages 23

6.2.6 Test Case 2: Both Different Songs 24

6.3 Project Challenges 25

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 7 CONCLUSION AND RECOMMENDATION 27

7.1 Conclusion 27

7.2 Recommendation 27

REFERENCES 28

APPENDIX 30

POSTER 41

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Equation of CWT 4

Figure 2.2 Cross-Correlation 5

Figure 2.3 Sample of MFCC Visualization 6

Figure 2.4 Equation of DFT 6

Figure 2.5 Dynamic Time Warping 7

Figure 3.1 Mexican Hat Wavelet 10

Figure 4.1 GUI of Audio Files Comparator 12

Figure 4.2 Visualization of Similarity Score 14

Figure 4.3 Audio Analysis Window 15

Figure 4.4 Raw Waveform Visualization 15

Figure 4.5 Flowchart of Audio Files Comparator 15

Figure 5.1 Code Snippet of CWT Implementation 18

Figure 5.2 Sample Set of CWT Coefficients of a Song 18

Figure 5.3 Code Snippet of Cross-Correlation 19

Figure 5.4 Code Snippet of MFCC Implementation 19

Figure 5.5 Code Snippet of Combining Comparison Metrics 20

Figure 6.1 Comparison between Same Songs 21

Figure 6.2 Comparison between Different MP3 and OGG 22

Figure 6.3 Comparison between Songs of Different Duration (Using 1-

second segment)

22

Figure 6.4 Comparison between Songs of Different Duration (Using 2-

second segment)

23

Figure 6.5 Comparison between Different Covers 23

Figure 6.6 Comparison between Different Languages 24

Figure 6.7 Comparison between Different Songs 24

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF TABLES

Table Number Title Page

Table 5.1 Specifications of Laptop 17

Table 6.1 Test Cases and Results 25

Table 6.2 Feasibility of Methods 26

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF SYMBOLS

π Pi

ϕ Phi

ψ Phi

τ Tau

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF ABBREVIATIONS

CWT Continuous Wavelet Transform

DFT Discrete Fourier Transform

DTW Dynamic Time Warping

FFT Fast Fourier Transform

GUI Graphic User Interface

MFCC Mel-Frequency Cepstral Coefficient

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1

Introduction

1.1 Problem Statement

In this modern era of digital music consumption, users frequently download and store songs

from various platforms and devices such as YouTube, SoundCloud, Spotify, and many more.

However, these audios often differ significantly in attributes like their format, bitrates and even

time-alignment discrepancies. These variations can complicate tasks such as verifying the

audio integrity, assessing audio quality, and making informed decisions about song selection.

Existing audio comparison tools are limited in their ability to accurately compare and analyze

these differences in audio files. Additionally, they often fail to detect more complex scenarios

such differentiating songs covered by different instruments, languages, or even covered by

different artists. This project addresses these gaps by developing a wavelet-based audio files

comparator capable of identifying formats, time-shifts, cover versions, and other content-based

differences.

1.2 Motivation

Music is one of the most prominent forms of digital audio content, available in a variety of

genres such as classic, folk, pop, and EDM. With the proliferation of digital platforms, users

now have access to vast music libraries that allows us to download songs to listen at any place

or time [10]. However, users often encounter files with inconsistent quality, timing shifts, or

unrecognized covers. For instance, Spotify suggests at least 160kbps while YouTube

recommends at least 128kbps for streaming [7]. This variation poses a challenge for users who

want to ensure that they are selecting the highest quality audio files or identifying the correct

version of the song. The motivation behind this project is to implement a program that not only

compares these audio files across various attributes but also delves deeper into content-based

comparison, enabling the identification of similarities and differences even in complex cases

like covers or remixes.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Objectives

The primary objective of this project is to develop a program that can analyze and compare

audio files from designated folders using wavelet-based pre-processing and similarity metrics.

The key functions of the program will include:

1. Detecting differences in time shifts and alignment between audio files.

 The program will identify temporal discrepancies such as delays and

unsynchronized sequences between two audio files.

 The function is expected to return a higher similarity between two similar audio

files despite having different duration or delays.

2. Identifying different cover versions of the same audio file.

 The program will distinguish between the original and covered versions of two

audio files by analyzing variations in artists and languages.

 The function is expected to return a moderate to high similarity between two

similar audio files with different versions.

3. Utilizing Continuous Wavelet Transform (CWT) for pre-processing to enhance

comparison accuracy.

 The Continuous Wavelet Transform (CWT) will be used to extract time and

frequency features for comparison.

 This step ensures more reliable similarity measurements compared to raw signal

analysis.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Project Scope and Direction

This project involves the design, development, and testing of the Python program aimed at

comparing audio files using wavelet-based techniques. The scope includes preprocessing audio

files using the Mexican Hat wavelet and the use of similarity metrics such as MFCC and cross-

correlation. The focus is on developing a reliable tool that has a lightweight computation

suitable for a personal PC or laptop to compare songs in different formats, time-shifts, and

cover versions. The scope excludes demanding computational methods such as Dynamic Time

Warping (DTW) and machine learning due to hardware constraints. The output will include

similarity scores and basic visualizations for user-friendly interpretation and analysis of the

audio comparison.

1.5 Contributions

The primary contributions of this project include the validation and enhancement of audio

comparison techniques, particularly using wavelet-based methods and similarity metrics. The

project advances accessible audio comparison by proving the efficiency of the Continuous

Wavelet Transform (CWT) and similarity metrics in environments with limited resource

capabilities. Therefore, this project will deliver a user-friendly tool that bypasses the need for

high-end computation while maintaining accuracy.

1.6 Report Organization

This format of this report is structured to provide a thorough summary of the development

progress and findings of the project. Chapter 1 introduces the problem statement, motivations,

objectives, project scope, and contributions of the study. Chapter 2, some previous relevant

works on audio comparison have been reviewed while highlighting their strengths and

limitations. Chapter 3 details the methodology and how the current project aims to address

them. Chapter 4 explains the system design and the whole architecture used. Chapter 5 briefs

the system implementation based on hardware and software used. Chapter 6 describes the test

cases used and their results while determining the project challenges. Finally, Chapter 7

recommendations, and directions for

further research.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Previous Works on Audio Files Comparison

2.1.1 Wavelet Transform Analysis

Wavelet transforms are time-localized wave oscillations with two basic properties which are

scale and position. By adjusting the scale parameter, the wavelet transform may identify and

locate different frequencies in the signal [1]. By decomposing signals into a series of wavelet

coefficients across different scales and frequencies, wavelet analysis captures both time and

frequency information with high resolution. This capability enables more robust and efficient

methods for audio comparison.

Continuous Wavelet Transform (CWT) allows for the analysis of signals with varying

frequencies over time, making it suitable for capturing transient changes and non-stationary

behavior in audio recordings. By convolving signals with a continuously varying wavelet

function, CWT offers high flexibility and precision in characterizing complex audio features

[11]. The equation of CWT is expressed as:

Figure 2.1 Equation of CWT

Where:

 a is the scale parameter to determine the wavelet frequency.

 b is the position parameter that locates the wavelet.

 * is the complex conjugate of the wavelet function.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.2 Cross-Correlation

Cross-correlation is a similarity metric often used in audio signal processing used to analyze

the differences between two various signals by applying a time delay to either one of them [4].

By computing the correlation of samples from two audio segments across varying delays, it

identifies the alignment points where patterns output a higher similarity. This approach is

particularly useful for detecting shifted or overlapping audio segments.

Figure 2.2 Cross-Correlation

2.1.3 Mel-Frequency Cepstral Coefficients (MFCC)

MFCC is one of the methods used to extract features from audio files, especially to analyze

different types of music and speech. These are designed to replicate how human ears receive

the frequency of sounds. By applying a mel-scale filterbank to the spectrogram of a signal and

computing the cepstral coefficients, MFCCs compactly encode the timbral and spectral

characteristics of audio analysis tasks such as speech recognition and music genre classification

[3]. MFCCs are initially developed for speaker identification and now evolved to modern music

analysis such as detecting cover versions of songs.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.3 Sample of MFCC Visualization

2.1.4 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) has been mostly used in audio comparison projects due to its

efficiency in analyzing frequency components of audio signals. Its application involves the

time and frequency domains of the audio signals, enabling spectral analysis and facilitating

comparison between different audio recordings. Common applications of FFT-based

techniques include pitch detection, spectrum analysis, and spectral characteristics comparison

between audio files [9].

FFT can also compute Discrete Fourier Transform (DFT), which is crucial for analyzing the

frequency components of discrete-time signals like digital audio waveforms. The DFT equation

is expressed as:

Figure 2.4 Equation of DFT

Where:

 N is the fundamental period.

 j is the imaginary unit.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.5 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is an algorithm that is used to analyze the similarity and

difference between two signals that might have different speed or tempo. It is particularly

useful in aligning time series data, such as wavelet coefficients that are extracted from audio

signals. DTW is widely used in applications like speech recognition and audio classification,

which are essential for precise alignment of temporal data [13].

The key idea behind DTW is to find the most optimal alignment between two sequences such

as audio waveforms by non-linearly warping them in the time dimension [12]. This allows the

algorithm to match the similar elements between the sequences, even if they occur at different

pitch, timing or tempo. The algorithm computes a cost matrix to find the most minimum

distance path between signals to accommodate temporal distortions without requiring uniform

signal lengths.

Figure 2.5 Dynamic Time Warping

2.2 Strengths of Previous Works

Wavelet transform provides a high multiscale resolution which differentiates coarse and fine

scales. The coarse scales capture broad spectral trends, while fine scales isolate abrupt changes.

CWT is efficient in analyzing non-stationary signals such as audio, as it provides a time-

frequency representation that adapts to variations within the signal over time. CWT is also

noise-resistant to noise due to their ability to decompose signals into different resolution levels.

 [6].

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The simplicity of cross-correlation proves to be a widely used tool for time-domain audio

comparison. Its computational efficiency allows real-time implementation, even for longer

recordings. Studies have demonstrated its robustness in noisy environments, as shown in its

ability to accurately detect signal arrival times in underwater acoustic positioning and neutrino

telescope calibration (ANTARES/KM3NeT), despite the low SNR and reverberation

interference [2].

MFCCs excels in audio comparison due to their computational efficiency. Their mel-scale

compression emphasizes mid-frequency bands where human hearing is the most sensitive,

which reduces redundancy in raw spectra. The low dimensionality of MFCCs enables real-time

processing, which makes them practical for analysis of longer audio files.

2.3 Limitations of Previous Studies

Despite the widespread use of FFT, it struggles with handling non-stationary signals and

capturing transient changes in audio characteristics. This is because FFT assumes stationarity

in the audio signals analysed, which can lead to overlooking important temporal variations in

audio signals that leads to distorted analysis and result visualization. Recent hybrid approaches

such as STFT and Constant-Q Transform aim to mitigate these issues but still introduced a high

computational overhead due to their complex calculations and adjustments [8].

DTW may have more versatility but still suffers from a high computational complexity of

O(N2), which is very extensive for long signals and limits real-time applications. The excessive

warping flexibility forces the alignment of two completely different signals, leading to high

similarity scores. Constraints like the Sakoe-Chiba band are often applied to mitigate these

problems by limiting the warping path to a predefined region to prevent over-warping, however

it only restricts the warping path width to only 10% of the signal length and still cannot cater

longer signals [14].

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3

System Methodology/Approach

3.1 Methods and Approaches

3.1.1 Continuous Wavelet Transform (CWT)

CWT is a robust method to analyze non-stationary signals such as audio files by preprocessing

them into time-frequency representations. This method is done using a mother wavelet that is

adjusted according to the scales [11].

For audio decomposition, Mexican Hat wavelet, also known as the Ricker wavelet, is chosen

as the mother wavelet due to its single oscillation that aligns with transient audio signals.

Additionally, it offers a balanced time-frequency localization, which makes it possible to

accurately represent audio with both short high-frequency and lengthy low-frequency

components. While other wavelets such as Morlet (morl) and Complex Morlet (cmor) offer

higher quality in frequency resolution for components, their values tend to be complex which

complicates the interpretation for real-world audio processing.

The Mexican Hat wavelet is derived as:

Where

 t is the time variable

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.1 Mexican Hat Wavelet

3.1.2 Cross-Correlation

Cross-correlation is a statistical method used to analyze the similarity and differences between

two audio signals using a time lag applied to one of them. Unlike autocorrelation which

compares a signal to itself, cross-correlation identifies aligned patterns between two distinct

signals, which makes it suitable for audio alignment and rhythm analysis [5]. This method will

reveal hidden periodic structures by measuring the similarity between a signal and its delayed

counterpart. The mathematical expression for cross-correlation is expressed as:

Where

 represents the time lag

 x[n] represents the signal at time, t

 N represents the total samples

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.3 Mel-Frequency Cepstral Coefficients (MFCC)

MFCCs are designed to estimate the perception and frequency response of the human ear. They

are effective for comparing different covers of the same song since they can capture the timbre

of songs while reducing pitch and harmonic redundancies. The extraction process begins with

computing STFT to obtain the spectrogram of the audio signal. Then, a mel-scale filterbank is

applied to warp frequencies into bands with an approximate perception of the human ear. The

logarithm of the spectrogram is then computed to decorrelate its features using Discrete Cosine

Transform (DCT) [15].

However, practical implementation requires careful parameter selections such as the number

of mel bands and computational cost. The DCT step retains the first 12 to 13 coefficients to

discard high-order spectral fluctuations.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4

System Design

4.1 Graphic User Interface (GUI)

The GUI is an essential part of the Audio Files Comparator, providing users with an intuitive

interface to interact with the system. The main interface has buttons that allow users to load

audio files, preview audio analysis and initiate comparison. The GUI also includes playback

features such as the Play and Stop button for preview. The figure below shows the interface

design of the audio files comparator.

Figure 4.1 GUI of Audio Files Comparator

4.1.1 Interface Design

The GUI is designed using the Tkinter library from Python. The main window features some

key elements:

1. Playback Controls

 a variety of formats such as MP3,

WAV, OGG and FLAC files.

 The Play and Stop buttons allow users to enable audio preview for the audio files.

 A timer to display the current playback position of either audio file in MM:SS format.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Audio Analysis Tools

 both audio

files that consists of their duration and sample rate.

Matplotlib library.

3. Comparison and Results

 The window will change to display a progress bar that updates during preprocessing.

 The results will be displayed at the last window.

The key elements also featured error handling whenever audio files are not loaded into the

program. The program will prompt error messages to remind users to upload their desired audio

files for comparison.

4.1.2 Audio Preprocessing

Once the program has been started, users will have the option to load their preferred audio files

for comparison. The audio files are loaded using out any fixed

sample rate so that the audio files can be loaded with their original sample rate. Each entire

audio is stored as a NumPy array, and the sample is captured. The program currently supports

only WAV, MP3, OGG and FLAC files as they are the more common audio file formats.

The pygame.mixer module handles the playback functions for the loaded audio files with real-

time timer. The playback can be stopped with the Stop button but will also be done

automatically when the comparison starts or the window closes.

The loaded audio will then be preprocessed to ensure its suitability for analysis. The loaded

audio will first be divided into smaller segments based on a predefined segment duration of 1

second. The segment size is calculated by multiplying the segment duration by the sample rate.

The total segments are then determined by dividing the total samples depending on the audio

length.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

After segmentation, each segment is processed using CWT with Mexican Hat Wavelet (mexh)

as the mother wavelet. The CWT then preprocesses the audio segment into wavelet coefficients

across a range of scales. These coefficients capture both time and frequency information, which

are critical for comparing audio files. These coefficients for all segments are then collected into

a 3D array for subsequent analysis.

Once both audio files have been successfully preprocessed into wavelet coefficients collected

in 3D arrays, the arrays are then flattened and normalized in the comparison metrics.

The GUI can also catch exceptions during the processes within the audio preprocessing by

displaying user-friendly error messages via tk.messagebox.

4.1.3 Data Visualization

After audio preprocessing and comparing using metrics, the similarity percentages will be

displayed via the GUI. The results of pattern consistency, timbre similarity and final

comparison results are presented with different colors and messages based on the similarity

score. A high similarity percentage ranging from 90% to 100%, is shown in green, indicating

that the files are the same song. Percentages between 40% to 90% are displayed in orange,

suggesting that the songs are likely similar. For scores below 40%, the text is shown in red,

signifying that the songs are completely different.

Figure 4.2 Visualization of Similarity Scores

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The GUI also enables functions to preview audio analysis such as audio properties, raw

the audio properties such as the file name, duration and sample rate.

Figure 4.3 Audio Analysis Window

both audio

files loaded. The raw waveforms are downsampled to balance the computational efficiency and

optimized visualization. This allows users to quickly observe the audio waveforms before

starting the comparison.

Figure 4.4 Raw Waveform Visualization

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Architecture Diagram

Figure 4.5 Flowchart of Audio Files Comparator

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5

System Implementation

5.1 Hardware Setup

The hardware involved in this project is only a personal laptop as the project primarily revolves

around software implementation.

Description Specifications

Model ASUS TUF Dash F15 FX516PC

Processor Intel Core i5-11300H

Operating System Windows 11

Graphic NVIDIA GeForce RTX 3050 Laptop GPU

Memory 16GB RAM

Storage NVME 512GB SSD

Table 5.1 Specifications of Laptop

5.2 Software Setup / Programming Language

This project utilizes Python 3.12 as the primary programming language for developing the

audio files comparator. Python 3.12 offers enhanced performance, improved syntax features,

and a variety of libraries, making it well suited for audio processing and wavelet analysis tasks.

Key libraries such as librosa for audio analysis, pywt for wavelet transforms, numpy for

numerical operations, and many more are integrated into the project to facilitate efficient

processing and analysis of audio data.

5.3 Code Implementation

5.3.1 CWT Implementation

The CWT is implemented using a discretized version of the equation from Figure 2.1. The

audio signal is first segmented into consecutive non-overlapping segments with a duration of

1 second. For each segment, the CWT is computed using the Mexican Hat wavelet at multiple

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

scales ranging from 1 to 127, resulting in a set of wavelet coefficients. The coefficients are

stored in an array with dimensions (segments, scales, time).

Figure 5.1 Code Snippet of CWT Implementation

Figure 5.2 Sample Set of CWT Coefficients of a Song

5.3.2 Cross-Correlation Implementation

In the context of Audio Files Comparator, cross-correlation is used to compare the wavelet

coefficients from the two audio signals and measure their similarity. While this may be useful

for audio files comparison, the similarity results are often either too high or too low, such that

the results are either 100% or 0% when comparing very different or almost identical signals.

In the - computes a normalized cross-correlation

between the two sets of wavelet coefficients obtained from the CWT. For each scale, it

computes the maximum correlation value normalized by signal energy and averages the results

across all scales and segments. This approach helps identify high similarities even for two

songs with different time shifts.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3 Code Snippet for Cross-Correlation

5.3.3 MFCC Implementation

In the context of Audio Files Comparator, MFCCs are used to compare the timbre of the two

different audio signals. MFCCs can capture perceptual features by approximating the

frequency heard by the human ear, which makes them effective to detect different variations

of songs like different artists and languages.

Unlike the wavelet preprocessing, the loaded audio files are extracted using 13 MFCCs. The

means of each MFCC vector are taken and the Euclidean distance between the means are

measured. Larger Euclidean distance results in a higher difference. The distance is normalized

to a 0-100% similarity score to avoid negative values when the distance exceeds the maximum

value.

Figure 5.4 Code Snippet for MFCC Implementation

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.4 Weighted Scoring System

The two distinct comparison metrics are called to evaluate the similarity between audio files

which are Cross-Correlation and MFCC. Each of these metrics offers a different perspective

From the code snippet in Figure 5.5, the weightages of both comparison metrics are equal to

50% each. The balanced weights reflect the equal strengths of each method, where cross-

correlation can detect time shifts and MFCCs can detect timbral differences between two songs,

suitable for cover detection.

Figure 5.5 Code Snippet of Combining Comparison Metrics

5.4 Implementation Issues and Challenges

There is only one major issue encountered in the implementation of the project, which is the

computational demand for comparisons of longer songs. While comparison of longer songs can

be successfully computed, the program or hardware may crash, especially if the charger is not

connected. The preprocessing process takes approximately 3 minutes while the comparison

metrics take about 2 minutes. Although the computation time has improved a lot compared to

the preliminary version of the program which computes 20 minutes for a longer audio file, the

program cannot be guaranteed to work efficiently without any overheating concerns.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6

System Evaluation and Discussion

6.1 Test Case Setup

Several test cases were conducted to assess the performance of the developed techniques in

real-world circumstances to validate the feasibility of the Audio Files Comparator program.

The test cases were selected to cover a range of audio comparison challenges as listed below:

1. Both Same Songs

2. Same Song, Different Formats

3. Same Song, Different Duration

4. Same Song, Different Artists

5. Same Song, Different Languages

6. Both Different Songs

6.2 Results of Test Cases

6.2.1 Test Case 1: Both Same Songs

For this test case, only one audio file will be loaded twice, which is a chorus of a song titled

Blue Yung Kai about 18 seconds long. Based on the results in Figure 6.1, it is proven that

both pattern consistency and timbre similarity result in 100% which also results in 100%

overall similarity for completely identical songs.

Figure 6.1 Comparison between Same Songs

6.2.2 Test Case 2: Same Song, Different Formats

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

formats:

MP3 and OGG. Based on the results in Figure 6.2, the high similarity score indicates that the

system effectively recognized the same song despite differences in formats. Most of the

similarity scores resulted 100% except OGG files which are considered lossless formats.

Figure 6.2 Comparison between MP3 and OGG Files

6.2.3 Test Case 3: Same Song, Different Duration

For this test case, two versions of a song titled by Zhao Fangjing. The original

song is 3 minutes 42 seconds while the second version is trimmed 1 second at the intro. Based

on the results in Figure 6.3, the system effectively identifies both songs have a higher similarity

in timbre similarity. However, the pattern consistency of both songs has a moderate score due

to a smaller segment duration for CWT preprocessing. When the segment duration increases

to 2 seconds, the pattern consistency increases from 40.71% to 55.07% as shown in Figure 6.4.

Figure 6.3 Comparison between Songs of Different Duration (Using 1-second segment)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.4 Comparison between Songs of Different Duration (Using 2-second segment)

6.2.4 Test Case 4: Same Song, Different Artists

For this test case, two songs originally composed by JVKE and covered by

Henry Lau respectively are tested. Based on the results in Figure 6.5, the similarity score is

lower compared to the previous test cases, reflecting the differences in vocal style and

instrumentation between two artists. The timbre similarity is usually higher than the pattern

consistency since different covers tend to have similar melodies. This test case demonstrates

Figure 6.5 Comparison between Different Covers

6.2.5 Test Case 5: Same Song, Different Languages

For this test case,

versions: English and Mandarin. Based on the results in Figure 6.6, similar to Test Case 4, the

similarity score is relatively moderate, reflecting the differences in not only vocal

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

instrumentation but language as well. Both pattern consistency and timbre similarity are

balanced to maintain the moderate similarity score.

Figure 6.6 Comparison between Different Languages

6.2.6 Test Case 6: Both Different Songs

For this test case, two completely different songs are tested. Based on the results in Figure 6.7,

the pattern consistency has a very low score. However, the timbre similarity still results in a

moderate score due to MFCCs mostly capture the texture of the songs instead of their whole

melody. Eventually the averaged low similarity score confirms that the system has successfully

differentiates between entirely different songs, validating its effectiveness in distinguishing

non-matching audio files.

Figure 6.7 Comparison between Different Songs

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Project Challenges

Audio File 1 Audio File 2

Cross-

Correlation

(%)

MFCC (%)
Total Similarity

(%)

Blue Yung

Kai 18s.mp3

Blue Yung

Kai 18s.mp3
100.00 100.00 100.00

Golden Hour -

JVKE.mp3

Golden Hour -

JVKE.mp3
97.22 100.00 98.61

prime

podcast.mp3

prime

podcast.wav
100.00 100.00 100.00

prime

podcast.mp3

prime

podcast.ogg
99.71 98.76 99.23

Mang

Zhong.mp3

Mang Zhong (-

1 second).mp3
40.71 98.36 69.54

Golden Hour -

JVKE.mp3

Golden Hour -

Henry.mp3
55.03 78.81 66.92

Glow

(Chinese).mp3

Glow

(English).mp3
66.88 71.41 69.14

Mang

Zhong.mp3

Mang Zhong

(Japanese).mp3
32.76 70.03 51.39

Blue Yung

Kai 18s.mp3

Blue (with

MINNIE).mp3
91.39 88.59 89.99

Blue Yung

Kai 18s.mp3

Blue Yung

Kai (UIIA

version).mp3

68.79 56.18 62.48

Golden Hour -

JVKE.mp3

Mang

Zhong.mp3
8.50 47.85 28.18

Table 6.1 Test Cases & Results

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Differences

Cross-

Correlation

(%)

MFCC (%)
Total Similarity

(%)

Same Songs High High 90-100

Different Formats

(e.g. mp3, wav)
High High 90-100

Different Duration Medium High 40-89

Different Artists Medium Medium 40-89

Different Languages Medium Medium 40-89

Different Songs Low Medium 0-39

Table 6.2 Feasibility of Methods

Based on Table 6.1, both cross-correlation and MFCCs show varying levels of feasibility

depending on the type of audio comparison being performed. Although the program seemed to

work well for some test cases, the program still faced some challenges during the comparison

process.

Cross-correlation is supposed to obtain a higher similarity result since it can potentially detect

time shifts. However, its capabilities are limited due to the adjustments of the segment size for

CWT preprocessing. If the segment size is smaller than the duration offset, the similarity score

will be lower, and some information may be missing when comparing the CWT coefficients.

MFCCs have proven to capture high timbral similarities for similar songs with minor

differences. However, songs that are completely different will still result in a moderate

similarity score since they are designed to capture the general texture of the songs, which might

include same instruments used in the songs. This implies that MFCCs do not specifically

compare the melody of the songs.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

This project aims to effectively detect durations or time shifts and identify different covers of

songs made by different artists or composed with different languages. This project also

leverages CWT in audio preprocessing to enhance comparison accuracy.

The program demonstrates that traditional signal processing techniques can effectively

compare audio files without relying on machine learning. While this approach works

reasonably well for checking alignments and detecting covers, this is still a mechanical and

rule-based method, which lacks the adaptability of modern machine learning solutions. This

project is unable to fulfil that approach due to the limitations of hardware used.

Despite the computational constraints for longer files, the project successfully provides a

functional alternative to compare audio files systematically. Unlike commercial software that

hides behind paywalls, this tool offers a clear and user-friendly comparison method without

complicated algorithms.

7.2 Recommendation

To further improve this program, future work could implement machine learning models to

enhance audio comparisons with better hardware that can handle high computational demands.

Additional features such as pitch and tempo variation analysis can also be integrated for more

comprehensive comparison. Ultimately, this project could evolve into a web-based application,

making it more accessible to users without the need to be installed into their hardware.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

-classification-using-

wavelet-transform-and-deep-learning-f9f0978fa246 (Accessed: Mar. 19, 2024)

[2] Adrián-Martínez et al. -correlation method in

 arXiv.org,

2015. https://arxiv.org/abs/1502.05038 (Accessed: Apr. 10, 2024)

-frequency

Signal

Processing Magazine, IEEE, vol. 30, no. 3, pp. 359-389, May 2013.

[4] D. W. Systems Analysis and Modeling, pp. 211 227, 2001,

doi: https://doi.org/10.1016/b978-012121851-5/50008-3.

[5] tion: Bitstream

-and-efficient-

pitch-detection-bitstream-autocorrelation/ (Accessed: Aug. 19, 2024)

[6] music

 Noise & Vibration Worldwide, vol. 56, no. 1 2, pp. 120 125, Dec. 2024, doi:

https://doi.org/10.1177/09574565241306334

[7] vailable at:

https://www.gumlet.com/learn/audio-bitrate/ (Accessed: Mar. 16, 2025)

[8] Lilia, K. Lajmi, B. Blum, Eng, Marc-André, and Tucholke

of a new time-

https://doi.org/10.26271/opus-1254

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[9] M. A. Nguyen (2016).

able at: https://biomedicalsignalandimage.blogspot.com/2016/03/the-

method-of-comparing-two-audio-files.html?m=1 (Accessed: Mar. 19, 2024)

[10]

ps://www.subjectivesounds.com/tips/why-you-

should-download-music-from-your-preferred-streaming-service (Accessed: Mar. 16, 2025)

[11]

https://www.mathworks.com//discovery/wavelet-transforms.html (Accessed: Mar. 19, 2024)

[12]

at: https://www.theaidream.com/post/dynamic-time-warping-dtw-

algorithm-in-time-series (Accessed: Aug. 20, 2024)

[13]

-mora.com/classification/time-

series/clustering/python/Dynamic-Time-Warping-Explanation-and-Testing-on-Audio-

and-Tabular-Data/ (Accessed: Aug. 20, 2024)

[14] Sakoe, H. & Chiba, S. (1978). Dynamic programming algorithm optimization fro spoken

word recognition. IEEE Trans. Acoustics, Speech, and Signal Proc., Vol. ASSP-26. pp. 43-49

[15] S. Davis and P. Mermelstein (1980).

 IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357 366, Aug. 1980, doi:

https://doi.org/10.1109/tassp.1980.1163420.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Python Script

import tkinter as tk
from tkinter import filedialog, messagebox
from tkinter import ttk
import threading
import time
import librosa
import librosa.display
import numpy as np
import pywt
import os
from scipy.signal import correlate
import matplotlib.pyplot as plt
from functools import partial
import pygame
from pygame import mixer

Function to process audio and compute wavelet coefficients
def process_audio(file_path, update_progress, segment_duration=1):
 # Load the audio file
 audio_data, sample_rate = librosa.load(file_path, sr=None)
 segment_samples = int(segment_duration * sample_rate)
 num_segments = len(audio_data) // segment_samples

 coefficients = []
 scales = np.arange(1, 128)

 # Process each segment
 for seg in range(num_segments):
 start_idx = seg * segment_samples
 end_idx = start_idx + segment_samples
 segment = audio_data[start_idx:end_idx]

 # Perform CWT
 cwt_segment, _ = pywt.cwt(segment, scales, 'mexh') # Mexican Hat wavelet used
 coefficients.append(cwt_segment)

 # Update the progress bar
 update_progress(1)

 print(f"All segments of '{os.path.basename(file_path)}' processed.")
 return np.array(coefficients)

Perform Cross-Correlation
def cross_correlate(coeffs1, coeffs2):
 try:
 correlations = []

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 for seg1, seg2 in zip(coeffs1, coeffs2):
 min_len = min(seg1.shape[1], seg2.shape[1])
 seg1 = seg1[:, :min_len]
 seg2 = seg2[:, :min_len]

 scale_corrs = []

 for scale in range(seg1.shape[0]):
 corr = correlate(seg1[scale], seg2[scale], mode='same', method='fft')

 norm = np.sqrt(np.sum(seg1[scale]**2) * np.sum(seg2[scale]**2))
 scale_corrs.append(np.max(corr)/norm if norm > 0 else 0)

 correlations.append(np.mean(scale_corrs))

 print(f"Optimized Cross-correlation: {np.mean(scale_corrs):.4f}")
 return np.mean(correlations) * 100

 except Exception as e:
 raise Exception(f"Error computing Cross-correlation: {str(e)}")

Perform MFCC Comparison
def mfcc_compare(file1, file2):
 try:
 y1, sr1 = librosa.load(file1, sr=None)
 y2, sr2 = librosa.load(file2, sr=None)

 mfcc1 = librosa.feature.mfcc(y=y1, sr=sr1, n_mfcc=13)
 mfcc2 = librosa.feature.mfcc(y=y2, sr=sr2, n_mfcc=13)

 dist = np.linalg.norm(mfcc1.mean(axis=1) - mfcc2.mean(axis=1))

 max_dist = 100
 similarity = max(0, 100 - (dist/max_dist)*100)

 return similarity

 except Exception as e:
 raise Exception(f"Error computing MFCC comparison: {str(e)}")

Function to compare coefficients
def compare_coefficients(self, coeffs1, coeffs2):
 try:

 print("\nComputing Cross-Correlation...")
 cor_similarity = cross_correlate(coeffs1, coeffs2)
 print("\nComputing MFCC Similarity...")
 mfcc_similarity = mfcc_compare(self.file1_path, self.file2_path)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 self.cor_similarity = cor_similarity
 self.mfcc_similarity = mfcc_similarity

 weights = {'cross_corr': 0.5, 'mfcc': 0.5}
 total_similarity = (weights['cross_corr'] * cor_similarity + weights['mfcc'] *
mfcc_similarity)

 self.total_similarity = total_similarity
 similarity_text = f"{total_similarity:.2f}%"

 print(f"Cross-Correlation Similarity: {cor_similarity:.2f}%")
 print(f"MFCC Similarity: {mfcc_similarity:.2f}%")
 print(f"Total Similarity: {total_similarity:.2f}%")
 return similarity_text

 except Exception as e:
 raise Exception(f"Error in comparison: {str(e)}")

Function to preprocess both audio files concurrently
def preprocess_both_files(file1_path, file2_path, update_progress):
 coeffs1 = process_audio(file1_path, update_progress)
 coeffs2 = process_audio(file2_path, update_progress)
 return coeffs1, coeffs2

class GUI:
 def __init__(self, root):
 self.root = root
 self.root.title("Audio Files Comparator")
 self.root.geometry("400x400")
 self.root.resizable(True, True)

 self.file1_path = None
 self.file2_path = None

 self.wavelet1 = None
 self.wavelet2 = None

 self.init_ui()

 # Initialize pygame mixer for playback
 pygame.init()
 mixer.init()

 self.playback_position = 0
 self.song_length = 0
 self.is_playing = False
 self.update_interval = 100
 self.currently_playing = None

 self.root.protocol("WM_DELETE_WINDOW", self.on_close)

 def on_close(self):

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 try:
 self.stop_audio()
 except:
 pass # Ignore errors during cleanup
 try:
 mixer.quit()
 pygame.quit()
 except:
 pass # Ignore errors during cleanup
 self.root.destroy()

 def init_ui(self):
 # Clear any existing widgets
 for widget in self.root.winfo_children():
 widget.destroy()

 # Frame for file selection
 self.file_frame = tk.Frame(root)
 self.file_frame.pack(pady=10)

 self.file_frame.grid_columnconfigure(0, minsize=80)
 self.file_frame.grid_columnconfigure(1, minsize=200)
 self.file_frame.grid_columnconfigure(2, minsize=40)
 self.file_frame.grid_columnconfigure(3, minsize=40)

 self.file1_label = tk.Label(self.file_frame, text="File 1:", anchor="w")
 self.file1_label.grid(row=0, column=0, sticky='w', padx=5, pady=5)
 self.file1_name_label = tk.Label(self.file_frame, text="Not selected", anchor="w",
width=25)
 self.file1_name_label.grid(row=0, column=1, sticky="w", padx=5)
 self.file1_button = tk.Button(self.file_frame, text="Select",
command=self.select_file1, width=8)
 self.file1_button.grid(row=0, column=1, sticky="e", padx=5)
 self.play1_button = tk.Button(self.file_frame, text=" ", command=lambda:
self.play_audio(1), state=tk.DISABLED)
 self.play1_button.grid(row=0, column=2, padx=5)

 self.stop1_button = tk.Button(self.file_frame, text=" ", command=lambda:
self.stop_audio(1), state=tk.DISABLED)
 self.stop1_button.grid(row=0, column=3, padx=5)

 self.file2_label = tk.Label(self.file_frame, text="File 2:", anchor="w")
 self.file2_label.grid(row=1, column=0, sticky="w", padx=5, pady=5)
 self.file2_name_label = tk.Label(self.file_frame, text="Not selected", anchor="w",
width=25)
 self.file2_name_label.grid(row=1, column=1, sticky="w", padx=5)
 self.file2_button = tk.Button(self.file_frame, text="Select",
command=self.select_file2, width=8)
 self.file2_button.grid(row=1, column=1, sticky="e", padx=5)
 self.play2_button = tk.Button(self.file_frame, text=" ", command=lambda:
self.play_audio(2), state=tk.DISABLED)
 self.play2_button.grid(row=1, column=2, padx=5)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 self.stop2_button = tk.Button(self.file_frame, text=" ", command=lambda:
self.stop_audio(2), state=tk.DISABLED)
 self.stop2_button.grid(row=1, column=3, padx=5)

 self.timer_frame = tk.Frame(self.root)
 self.timer_frame.pack(pady=5)
 self.timer_label = tk.Label(self.timer_frame, text="0:00", font=("Arial", 12))
 self.timer_label.pack()

 self.analysis_button = tk.Button(self.root, text="Show Audio Analysis",
command=self.show_analysis)
 self.analysis_button.pack(pady=10)

 self.display_button = tk.Button(self.root, text="Display Waveforms",
command=self.display_waveforms)
 self.display_button.pack(pady=10)

 # Button to start comparison
 self.compare_button = tk.Button(root, text="Start Comparison",
command=self.start_comparison, width=20, height=2, font=("", 12))
 self.compare_button.pack(pady=20)
 self.root.bind('<Return>', self.on_enter_pressed)

 def play_audio(self, file_num):
 file_path = self.file1_path if file_num == 1 else self.file2_path
 if file_path:
 try:
 mixer.music.stop()
 mixer.music.load(file_path)
 mixer.music.play()
 self.is_playing = True
 self.currently_playing = file_num

 # Get song length
 audio_data, sr = librosa.load(file_path, sr=None)
 self.song_length = librosa.get_duration(y=audio_data, sr=sr)
 self.playback_position = 0

 # Update timer
 self.update_timer()

 except Exception as e:
 messagebox.showerror("Playback Error", f"Could not play audio: {e}")

 def stop_audio(self, file_num=None):
 try:
 mixer.music.stop()
 self.is_playing = False
 self.currently_playing = None
 if hasattr(self, 'timer_label') and self.timer_label.winfo_exists():
 self.timer_label.config(text="0:00")

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 except:
 pass

 def update_timer(self):
 if not self.is_playing:
 return

 # Get current playback position
 self.playback_position = mixer.music.get_pos() / 1000 # convert to seconds

 # Update timer label
 current_time = self.format_time(self.playback_position)
 self.timer_label.config(text=current_time)

 # Schedule next update
 self.root.after(self.update_interval, self.update_timer)

 def format_time(self, seconds):
 minutes = int(seconds // 60)
 seconds = int(seconds % 60)
 return f"{minutes}:{seconds:02d}"

 def on_enter_pressed(self, event):
 # Trigger the button's command when Enter is pressed
 self.start_comparison()

 def show_progress(self):
 self.stop_audio()

 # Clear any existing widgets
 for widget in self.root.winfo_children():
 widget.destroy()

 self.progress = ttk.Progressbar(root, orient="horizontal", length=300,
mode="determinate")
 self.progress.pack(pady=20)

 self.progress_label = tk.Label(root, text="Loading... 0%")
 self.progress_label.pack(pady=10)

 self.root.protocol("WM_DELETE_WINDOW", self.on_close)

 def update_progress(self, step):
 self.progress['value'] += step
 percentage = min(99, int((self.progress['value'] / self.progress['maximum']) * 100))
 self.progress_label.config(text=f"Loading... {percentage}%")

 def select_file1(self):
 self.file1_path = filedialog.askopenfilename(filetypes=[("Audio Files", "*.wav
*.mp3 *.ogg *.flac")])
 if self.file1_path:
 short_name = os.path.basename(self.file1_path)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if len(short_name) > 25:
 short_name = short_name[:22] + "..."
 self.file1_name_label.config(text=short_name)
 self.play1_button.config(state=tk.NORMAL)
 self.stop1_button.config(state=tk.NORMAL)

 def select_file2(self):
 self.file2_path = filedialog.askopenfilename(filetypes=[("Audio Files", "*.wav
*.mp3 *.ogg *.flac")])
 if self.file2_path:
 short_name = os.path.basename(self.file2_path)
 if len(short_name) > 25:
 short_name = short_name[:22] + "..."
 self.file2_name_label.config(text=short_name)
 self.play2_button.config(state=tk.NORMAL)
 self.stop2_button.config(state=tk.NORMAL)

 def show_analysis(self):
 if not self.file1_path or not self.file2_path:
 tk.messagebox.showerror("Error", "Please select both audio files.")
 return

 analysis_window = tk.Toplevel(self.root)
 analysis_window.title("Audio Analysis")

 audio_data1, sr1 = librosa.load(self.file1_path, sr=None)
 audio_data2, sr2 = librosa.load(self.file2_path, sr=None)

 analysis_text = (f"File 1: {os.path.basename(self.file1_path)}\n"
 f" - Duration: {librosa.get_duration(y=audio_data1, sr=sr1):.2f}
seconds\n"
 f" - Sample Rate: {sr1} Hz\n\n"
 f"File 2: {os.path.basename(self.file2_path)}\n"
 f" - Duration: {librosa.get_duration(y=audio_data2, sr=sr2):.2f}
seconds\n"
 f" - Sample Rate: {sr2} Hz\n")

 analysis_label = tk.Label(analysis_window, text=analysis_text, font=("Arial", 12),
anchor="w", justify="left")
 analysis_label.pack(pady=20, padx=20)

 def display_waveforms(self):
 if not self.file1_path or not self.file2_path:
 tk.messagebox.showerror("Error", "Please select both audio files.")
 return

 audio_data1, sr1 = librosa.load(self.file1_path, sr=None)
 audio_data2, sr2 = librosa.load(self.file2_path, sr=None)

 duration1 = len(audio_data1) / sr1
 duration2 = len(audio_data2) / sr2

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # Downsampling
 max_samples = 10000 # per seconds
 max_points = min(int(max_samples * max(duration1, duration2)), 500000)

 # Create time vector for x-axis
 time1 = np.linspace(0, duration1, len(audio_data1))
 time2 = np.linspace(0, duration2, len(audio_data2))

 def decimate_waveform(time, data, max_points):
 if len(data) <= max_points:
 return time, data
 step = int(len(data) / max_points)
 return time[::step], data[::step]

 time1, audio_data1 = decimate_waveform(time1, audio_data1, max_points)
 time2, audio_data2 = decimate_waveform(time2, audio_data2, max_points)

 fig, axs = plt.subplots(2, 1, figsize=(10, 6), sharex=True)
 fig.canvas.manager.set_window_title("Audio Waveforms")

 axs[0].plot(time1, audio_data1, color='b', alpha=0.7, linewidth=0.5)
 axs[0].set_title(f"{os.path.basename(self.file1_path)}")
 axs[0].legend([f"{os.path.basename(self.file1_path)}"])
 axs[0].set_ylabel("Amplitude")
 axs[0].grid(True, alpha=0.3)

 axs[1].plot(time2, audio_data2, color='r', alpha=0.7, linewidth=0.5)
 axs[1].set_title(f"{os.path.basename(self.file2_path)}")
 axs[1].legend([f"{os.path.basename(self.file2_path)}"])
 axs[1].set_ylabel("Amplitude")
 axs[1].grid(True, alpha=0.3)

 plt.xlabel("Time (seconds)")
 plt.tight_layout()
 plt.show()

 def start_comparison(self):
 if not self.file1_path or not self.file2_path:
 messagebox.showerror("Error", "Please select both audio files.")
 return

 self.stop_audio()
 self.show_progress()

 # User threading to prevent GUI from freezing
 threading.Thread(target=self.preprocess_compare, args=(self.file1_path,
self.file2_path)).start()

 def show_result(self, similarity_text):
 # Clear any existing widgets
 for widget in self.root.winfo_children():
 widget.destroy()

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # Create a frame for the result display
 result_frame = tk.Frame(self.root)
 result_frame.pack(pady=20)

 # Display the result with formatted text
 total_similarity = float(similarity_text.strip('%'))

 def get_metric_color(value):
 if value >= 90:
 return "green"
 elif value < 40:
 return "red"
 else:
 return "orange"

 if total_similarity >= 90:
 similarity_color = "green"
 interpretation = "Both Songs Are The Same Song"
 elif total_similarity < 90:
 if total_similarity < 40:
 similarity_color = "red"
 interpretation = "Both Songs Are Not The Same Song"
 else:
 similarity_color = "orange"
 interpretation = "Both Songs Are Likely To Be The Same Song"

 info_frame = tk.Frame(result_frame)
 info_frame.pack()

 tk.Label(info_frame,
 text=f"File 1: {os.path.basename(self.file1_path)}\nFile 2:
{os.path.basename(self.file2_path)}",
 font=("Arial", 10)).pack(pady=(0, 5))

 metrics_frame = tk.Frame(result_frame)
 metrics_frame.pack(pady=(0, 20))

 # Pattern Consistency
 pattern_frame = tk.Frame(result_frame)
 pattern_frame.pack()
 tk.Label(pattern_frame,
 text="Pattern Consistency: ",
 font=("Arial", 10)).pack(side=tk.LEFT)
 tk.Label(pattern_frame,
 text=f"{self.cor_similarity:.2f}%",
 font=("Arial", 10),
 fg=get_metric_color(self.cor_similarity)).pack(side=tk.LEFT)

 # Timbre Similarity
 timbre_frame = tk.Frame(result_frame)
 timbre_frame.pack()

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 tk.Label(timbre_frame,
 text="Timbre Similarity: ",
 font=("Arial", 10)).pack(side=tk.LEFT)
 tk.Label(timbre_frame,
 text=f"{self.mfcc_similarity:.2f}%",
 font=("Arial", 10),
 fg=get_metric_color(self.mfcc_similarity)).pack(side=tk.LEFT)

 tk.Frame(result_frame, height=15).pack()

 # Overall similarity
 result_section = tk.Frame(result_frame)
 result_section.pack()

 tk.Label(result_section,
 text="Comparison Result:",
 font=("Arial", 14, "bold")).pack()

 tk.Label(result_frame, text=similarity_text,
 font=("Arial", 24, "bold"),
 fg=similarity_color).pack(pady=(10, 0))

 tk.Label(result_frame, text=interpretation,
 font=("Arial", 12),
 fg=similarity_color,
 wraplength=300).pack(pady=10)

 new_compare_button = tk.Button(self.root,
 text="New Comparison",
 command=self.init_ui)
 new_compare_button.pack(pady=10)

 def preprocess_compare(self, file1_path, file2_path):
 try:
 # Set the maximum value for the progress bar
 self.progress['maximum'] = 2 * (len(librosa.load(file1_path, sr=None)[0]) //
(44100))

 print("Starting concurrent audio processing for both audio files...")
 start_preprocessing = time.time()
 coeffs1, coeffs2 = preprocess_both_files(file1_path, file2_path, lambda step:
self.update_progress(step))
 end_preprocessing = time.time()
 print("\nProcessing complete!")
 print(f"Processing time: {end_preprocessing - start_preprocessing:.2f} seconds")

 # Manually set progress to 99% before comparison starts
 self.progress['value'] = self.progress['maximum'] - 1
 self.update_progress(0)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 self.wavelet1 = coeffs1
 self.wavelet2 = coeffs2

 print("\nStarting comparison...")
 start_comparison = time.time()
 result_text = compare_coefficients(self, coeffs1, coeffs2)
 end_comparison = time.time()
 print("\nComparison complete!")
 print(f"Comparison time: {end_comparison - start_comparison:.2f} seconds")
 self.show_result(result_text)

 except Exception as e:
 messagebox.showerror("Error", f"Error during preprocessing: {e}")

if __name__ == '__main__':

 root = tk.Tk()
 app = GUI(root)
 root.mainloop()

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

	COPYRIGHT STATEMENT

