

IOT-BASED HEALTHCARE MONITORING AND ALERT SYSTEM

By

Rachel Leung Onn Yneng

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Rachel Leung Onn Yneng. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Technology (Honours) Computer

Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project

report represents the work of the author, except where due acknowledgment has

been made in the text. No part of this Final Year Project report may be reproduced,

stored, or transmitted in any form or by any means, whether electronic,

mechanical, photocopying, recording, or otherwise, without the prior written

permission of the author or UTAR, in accordance with UTAR's Intellectual

Property Policy.

Example

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my project supervisor, Dr Teoh

Shen Khang who has given me this bright opportunity to engage in an IoT-based project. It is

my first step to establish a career in the IoT field. I would like to thank him for his insightful

guidance and patience throughout the development of this research.

Finally, I must say thanks to my parents and my family and friends for their love, support,

and continuous encouragement throughout the whole process.

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

In order to safeguard people's health, we want efficient healthcare solutions as the number of

health issues worldwide rises. One proposed solution for this problem is a real-time Internet

of Things (IoT)-based health monitoring system. People may now easily check their vital

signs from home using new technology, eliminating the need for them to visit hospitals. This

is especially helpful for those who reside in remote or rural areas with limited access to

healthcare. This lowers healthcare costs while simultaneously saving time. Additionally,

hospitals may monitor their patients' vital signs with this equipment. With the use of IoT,

doctors can rapidly and efficiently get relevant patient data, enabling them to make the best

judgements. The goal of this project is to present an intuitive IoT-based healthcare

monitoring and alarm system that gives people proactive tools to effectively manage their

health. The system makes use of sensors to record vital indications such as body temperature,

heart rate, and activity level, giving the user useful information. a central processing unit with

the capacity to manage several inputs from different sensors. Comprehensive health data is

collected using an accelerometer, temperature sensor, and pulse sensor. For accurate analysis,

these inputs are transformed from analog to digital format The collected data is processed and

analyzed in real-time, and efficient data storage and retrieval are accomplished by utilizing a

robust database management system. A user-friendly interface makes it easy and

straightforward for patients and medical professionals to access and evaluate health data.

Area of Study (Minimum 1 and Maximum 2): Internet of Things, Healthcare Technology

Keywords (Minimum 5 and Maximum 10): Data Collection in IoT, Monitoring Application,

Biomedical Sensor Technology, Vital Signs Measurement, Real-time Data, Data Analysis,

Alert System, Health Data Logging, Data Visualization

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Objectives 3

1.3 Project Scope and Direction 3

1.4 Contributions 5

1.5 Report Organization 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Previous Works on Deep Learning 7

 2.1.1 ECG-based Machine-learning algorithms 7

 2.1.2 Telemedicine in Healthcare 8

 2.1.3 Remote Patient Monitoring (RPM) Systems 9

 2.1.4 Machine Learning and Wearable Biomedical Devices 10

 2.1.5 Summary of previous work on deep learning 11

2.2 Limitations of Previous Studies 12

 2.2.1 ECG-based Machine-learning algorithms 12

 2.2.2 Telemedicine in Healthcare 12

 2.2.3 Remote Patient Monitoring (RPM) Systems 13

 2.2.4 Machine Learning and Wearable Biomedical Devices 13

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 15

3.1 System Design Diagram 15

3.1.1 System Architecture Diagram 15

3.1.2 Use Case Diagram and Description 17

3.1.3 Activity Diagram 18

 3.2 Timeline 18

CHAPTER 4 SYSTEM DESIGN 21

 4.1 System Components Specifications 21

 4.1.1 Hardware 21

 4.1.2 Software 27

 4.2 Circuits and Components Design 30

 4.3 System Components Interaction Operations 31

CHAPTER 5 SYSTEM IMPLEMENTATION 33

 5.1 Hardware Setup 33

5.2 Software Setup 35

5.3 Setting and Configuration 38

5.4 System Operation (with Screenshot) 45

5.5 Implementation Issues and Challenges 52

5.6 Concluding Remark 53

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 54

6.1 System Testing and Performance Metrics

54

6.2 Testing Setup and Result 55

 6.2.1 Sensor Accuracy Testing 55

 6.2.2 Hourly Monitoring Results 57

6.3 Project Challenges 69

6.4 Objectives Evaluation 70

6.5 Concluding Remark 70

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 7 CONCLUSION AND RECOMMENDATION 71

7.1 Conclusion 71

7.2 Recommendation 72

REFERENCES 73

APPENDIX 75

POSTER 90

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Block Diagram of the Proposed Methodology 8

Figure 2.2 Remote Monitoring via IoT Healthcare System 10

Figure 2.3 Wearable Biomedical Devices 11

Figure 3.1 Block Diagram of the Health Monitoring System 15

Figure 3.2 Use Case Diagram between User and Healthcare Provider 17

Figure 3.3 Flowchart of the Whole System 18

Figure 4.1 Raspberry Pi 4 Model B 21

Figure 4.2 Raspberry Pi 4 Model B Pinout Diagram 22

Figure 4.3 MAX30102 Sensor 23

Figure 4.4 MLX90614 Sensor 24

Figure 4.5 Dupont jumper wires 25

Figure 4.6 3D-printed Raspberry Pi Case 26

Figure 4.7 Python Logo 27

Figure 4.8 Geany Programming Logo 28

Figure 4.9 Tkinter Python Logo 28

Figure 4.10 MariaDB Logo 29

Figure 4.11 Telegram API Logo 29

Figure 4.12 Y-split jumper cables 30

Figure 4.13 3D-Printed Raspberry Pi Case 31

Figure 5.1 Hardware Pinout Diagram 34

Figure 5.2 Hardware Setup 34

Figure 5.3 Raspberry Pi Configuration Tool 39

Figure 5.4 Raspberry Pi Interface Options 39

Figure 5.5 ARM I²C Interface Enabled Notification 39

Figure 5.6 Verification of I²C connections 40

Figure 5.7 Update Command Result 40

Figure 5.8 Install MariaDB Command Result 40

Figure 5.9 Start MariaDB Service Command Result 41

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

Figure 5.10 Secure Script Command Result 41

Figure 5.11 MariaDB Login Command Result 41

Figure 5.12 Create Database and User Command Result 42

Figure 5.13 SQL Connector Command 42

Figure 5.14 SQL Connector Command Result 42

Figure 5.15 Terminal Method to obtain chat ID 42

Figure 5.16 Web Tool Method to obtain chat ID 43

Figure 5.17 Codes for updating results on GUI 43

Figure 5.18 Installation of matplotlib Library 44

Figure 5.19 Function Code to Plot Graph on GUI 44

Figure 5.20 Code to Update History Table on GUI 45

Figure 5.21 GUI When No Data is Available in The Database 46

Figure 5.22 GUI Indicating Sensor is Reading 46

Figure 5.23 Terminal Indicating Telegram in Standby Mode 47

Figure 5.24 GUI Indicating Measurement Stopped 47

Figure 5.25 GUI Indicating No Finger Detected 47

Figure 5.26 Finger Placement on Both Sensors 48

Figure 5.27 Tkinter GUI of the Measurement 49

Figure 5.28 Telegram Message for the Measurement 49

Figure 5.29 Mobile View of Telegram Message Sent by the System 50

Figure 5.30 ‘/recent’ Command in Telegram 51

Figure 5.31 ‘/history’ Command in Telegram 51

Figure 5.32 Input/Output Error in Terminal 52

Figure 6.1 MAX30102 Sensor Reading for Both BPM and SpO2 55

Figure 6.2 Smartwatch’s SpO2 reading 56

Figure 6.3 Smartwatch’s BPM reading 56

Figure 6.4 Formula to Adjust the Body Temperature 56

Figure 6.5 MLX90614 Sensor Reading for Temperatures 57

Figure 6.6 Comparison between MLX90614 Sensor and Infrared

Thermometer

57

Figure 6.7 GUI for the First Measure at 9.33 am 58

Figure 6.8 Telegram Message for the First Measure 59

Figure 6.9 GUI for the Second Measure at 10.35 am 59

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 6.10 Notification Shown on Mobile 60

Figure 6.11 Telegram Message for the Second Measure 60

Figure 6.12 GUI for the Third Measure at 11.30 am 61

Figure 6.13 Telegram Message for the Third Measure 61

Figure 6.14 GUI for the Fourth Measure at 12.31 pm 62

Figure 6.15 Telegram Message for the Fourth Measure 62

Figure 6.16 GUI for the Fifth Measure at 1.37 pm 63

Figure 6.17 Telegram Message for the Fifth Measure 63

Figure 6.18 GUI for the Sixth Measure at 2.33 pm 64

Figure 6.19 Telegram Message for the Sixth Measure 64

Figure 6.20 GUI for the Seventh Measure at 3.24 pm 65

Figure 6.21 Telegram Message for the Seventh Measure 65

Figure 6.22 GUI for the Eighth Measure at 4.32 pm 66

Figure 6.23 Telegram Message for the Eighth Measure 66

Figure 6.24 GUI for the Ninth Measure at 5.30 pm 67

Figure 6.25 Telegram Message for the Ninth Measure 67

Figure 6.26 Database Result of Hourly Data in A Day 68

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF TABLES

Table Number Title Page

Table 3.1 Gantt Chart for FYP1 19

Table 3.2 Gantt Chart for FYP 2 20

Table 4.1 Specifications of Raspberry Pi 4 Model B 22

Table 4.2 Specifications of MAX30102 Sensor 23

Table 4.3 Specifications of MLX90614 Sensor 25

Table 4.4 Specifications of Dupont Jumper Wires 26

Table 4.5 Specifications of 3D-printed Raspberry Pi Case 27

Table 5.1 Pin Connection of Raspberry Pi and MAX30102 35

Table 5.2 Pin Connection of Raspberry Pi and MLX90614 35

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF ABBREVIATIONS

IoT Internet of Things

ECG Electrocardiogram

CVD Cardiovascular diseases

DWT Design Rule Checker

MLP Scalable CMOS N-Well Analog

FrFT Application Specific Integrated Circuit

RT Hardware Description Language

PR Protease

IT Information Technology

RPM Remote Patient Monitoring

GUI Graphical User Interface

SQL Structured Query Language

LED Light Emitting Diode

DC Direct Current

LAN Local Area Network

RDBMS Relational Database Management System

IEEE Institute of Electrical and Electronics Engineers

LPDDR Low-Power Double Data Rate

Hz Hertz

GB Gigabyte

ARM Advanced RISC Machine

SoC System-on-a-Chip

USB Universal Serial Bus

IDE Integrated Development Environment

API Application Programming Interface

FYP Final Year Project

I²C Inter-Integrated Circuit

GPIO General Purpose Input / Output

BPM beats per minute

SpO₂ Peripheral Oxygen Saturation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

VCC Voltage at the Common Collector

GND Ground

AWG American Wire Gauge

SDA Serial Data Line

SCL Serial Clock

HDMI High-Definition Multimedia Interface

VIN Input Voltage

FIFO First-In, First-Out

VGA Video Graphics Array

Chapter 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

This chapter will provide background information on the research on the IoT-based

healthcare monitoring system, including information on how remote healthcare monitoring

was developed, how IoT technology was introduced, and the project's objectives.

 In today's interconnected world, the Internet of Things (IoT) has become an innovative

force that is transforming various aspects of our daily lives. IoT refers to the collective

network of connected devices including sensors, software, and other various technologies.

The goal is to enable seamless connection, transfer, and exchange of data with other systems

over the Internet autonomously without requiring human intervention (Kamarozaman et al.,

2021). IoT can be used in nearly every area, including agriculture, energy, transportation,

manufacturing, and healthcare.

 IoT technology has significantly changed how we interact with our environment. We no

longer live, work, or play the same way thanks to the Internet of Things. IoT devices have

increased human well-being and convenience in our daily lives by allowing us to remotely

operate our home appliances and security systems.

 In the past, people have depended on routine check-ups at hospitals and clinics, which

had the disadvantage of not providing real-time information on a patient's condition or acting

quickly when there was a major health issue. Fortunately, IoT has opened up new choices for

healthcare management because of technical advances.

 This project aims to solve the inadequacies of conventional healthcare monitoring

techniques. My suggested idea intends to enable people to take charge of their well-being by

using IoT technology to monitor their health remotely and make informed decisions.

Simultaneously, lowering healthcare expenses and facilitating prompt intervention by

healthcare professionals when needed, guaranteeing prompt resolution of any health

concerns. Through these efforts, the project aims to improve overall healthcare efficiency by

focusing on patients’ needs.

Chapter 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.1 Problem Statement and Motivation

 Even with the advances in medical technology, there is still a significant gap in terms of

offering patients outside of hospitals comfortable and efficient monitoring options. Patients

with chronic diseases or limited mobility may find it burdensome to attend healthcare

institutions on a frequent basis for check-ups or monitoring, which is a common need of the

traditional method. The dependence on recurring visits restricts the prompt identification of

health problems and could impede the application of preventative care, thereby leading to

unfavorable outcomes for the patient. Therefore, it is important to develop cutting-edge

solutions that utilize IoT technology to offer smooth and continuous remote patient

monitoring in order to close the gap between clinical treatment and home-based monitoring.

 Due to extended hospital stays and numerous in-person visits, the traditional method of

health monitoring is costly and time-consuming. Both healthcare systems and individual

patients are heavily burdened by these expenditures, which causes financial hardship and

restricts access to essential medical services for those with low incomes.

 Additionally, traditional monitoring methods often capture vital signs of the heart rate and

blood pressure only at specific times during scheduled appointments. However, this periodic

approach to data collection only provides a partial picture of the patient's health, leading to a

disjointed knowledge of their general state of health. This disjointed data gathering may miss

small variations or patterns in vital signs, delaying the detection of underlying illnesses or

issues.

 Even though traditional ways of keeping tabs on health have been a cornerstone of

medical care for decades, they are not without drawbacks. These include high healthcare

costs, limitations on prompt diagnosis and treatment, and dispersed data collecting.

Identifying these obstacles emphasizes the need for creative methods of healthcare

monitoring that put the needs of patients, the economy, and thorough data collecting first in

order to improve patient outcomes.

Chapter 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

1.2 Objectives

The aim of this thesis is to propose an IoT-based healthcare monitoring system that leverages

new technologies and efficient algorithms to improve patient care. The objectives include:

- To develop a health monitoring system by using affordable platforms and sensors.

- To enable remote health monitoring to allow healthcare providers to access patient

information anytime.

- To incorporate real-time vital sign analysis for timely healthcare intervention to reduce

healthcare expenses and unnecessary hospital visits.

- To combine a Raspberry Pi database with a Python graphical user interface module to

provide effective data management and user interaction within the interface.

1.3 Project Scope and Direction

The goal of this project is to create an IoT-based healthcare monitoring and alarm system that

is fully operational at the conclusion. The project's title, "IoT-based Healthcare Monitoring

and Alert System," accurately describes our goal of utilizing IoT technology to address the

drawbacks of traditional healthcare monitoring systems, as stated in the problem statement.

This system will be composed of wearable sensors, smart medical devices, a centralized data

platform, and related algorithms for data analysis and alarm production. It will also include

software components.

1.3.1 System Design and Architecture:

 – Based on a thorough examination of the needs for healthcare monitoring, specify the

functions, goals, and requirements for the system.

 – Create the overall system architecture, taking into account the data storage, user

interfaces, hardware, and software components.

– Determine how different sensors, gadgets, and IoT technologies can be integrated to

allow for the real-time monitoring of health indicators and vital signs.

Chapter 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

1.3.2 Hardware and Software Development:

– Create or acquire the required hardware, such as microcontrollers, communication

modules, and sensors that work with Raspberry Pi.

– Create new libraries and software or utilize current ones to process the information

gathered from every sensor, making sure the Raspberry Pi can generate an extensive report

from the variety of inputs.

– Provide patient and healthcare provider-friendly interfaces for the monitoring system,

such as mobile applications, web-based dashboards, and alarm systems.

1.3.3 Data Management and Integration:

– Install and set up the Raspberry Pi's database system to securely store and handle the

massive amounts of medical data that the monitoring system has gathered.

– Provide database management features to ensure that data is efficiently arranged,

queried, and retrieved while adhering to the specifications of the monitoring system.

– To safeguard patient privacy and stop unwanted access to private health information,

put security measures in place and make sure data privacy laws are followed.

1.3.4 Integration and Testing:

 – Integrate the Raspberry Pi, database, sensors, and GUI with the other hardware and

software elements of the monitoring system.

 – Prior to integration into the system, every sensor must be separately checked to ensure

operation. In order to make sure that every sensor produces reliable and consistent data, use

simple test codes.

 – Integrate every sensor with the Raspberry Pi, making sure that the connections are safe

and that no sensor affects the readings of any other sensor.

1.3.5 Deployment and Evaluation:

 – Make sure the system is flexible and simple to use in a variety of contexts by

concentrating the deployment approach on portability.

 – Test the system on people to see how well it works for a wide range of people with

different demands for health monitoring.

Chapter 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

 – Analyze the system's performance using quantitative measurements and qualitative

input to enhance patient outcomes, healthcare delivery, and operational efficiency.

The project's overall goal is to create a novel and workable IoT-based healthcare monitoring

solution, with an emphasis on data collecting, storage, and graphical interface presentation.

1.4 Contributions

Through creative methods and modern technology, this project significantly improves

healthcare administration and monitoring. First of all, by giving patients more control over

their health through remote monitoring capabilities, it empowers them. This encourages

patient autonomy and improves general well-being by allowing patients to examine their vital

signs and health data from the comfort of their homes, particularly for those managing

ongoing medical illnesses or recovering from surgery.

Additionally, the initiative provides proactive healthcare management through real-time

data analysis and continuous vital sign monitoring. Healthcare providers can optimize

treatment plans and act quickly by adopting a proactive approach that helps them spot

anomalies or changes in a patient's health state early on. Thus, fewer unnecessary in-person

consultations and hospital readmissions are required, which enhances patient outcomes and

reduces healthcare costs.

Moreover, the idea offers potential cost benefits for individuals as well as healthcare

organizations by reducing healthcare expenditures associated with prolonged hospital stays

and frequent visits. The project improves resource usage and simplifies healthcare delivery

by utilizing IoT technology to facilitate remote monitoring, leading to increased efficiency

and cost-effectiveness.

Additionally, the project improves the quality of healthcare services by offering

possibilities for thorough and ongoing monitoring. Healthcare professionals may make

educated decisions and provide individualized care by gathering vital signs and health data in

real-time. This provides them with important insights into patients' health status. Together,

these efforts modernize remote patient monitoring, boost the quality of healthcare services,

and improve healthcare outcomes.

Chapter 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

1.5 Report Organization

The details of this research are shown in the following chapters. Chapter 2 reviews the

existing literature on IoT technology and its application in healthcare. It explores the

evolution of remote healthcare monitoring, key technological advancements, and the current

state of IoT-based solutions in the medical field. Then, the method for developing the IoT-

based healthcare monitoring system is proposed in Chapter 3. It includes the system's design

and architecture, the selection of hardware and software components, and the integration of

various sensors and data management techniques to enable real-time health monitoring.

Chapter 4 presents the preliminary work, including the development of the prototype, initial

testing results, and challenges encountered during implementation. Finally, Chapter 5

concludes the thesis by summarizing the key findings of the research, discussing the

contributions of the project, and suggesting potential directions for future research. It also

evaluates the impact of the proposed system on healthcare delivery and patient outcomes.

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Chapter 2

Literature Review

2.1 Previous Works on Deep Learning

2.1.1 ECG-based Machine-learning algorithms

 Electrocardiogram (ECG) is a test that records the electrical activity of the heart over a

period of time using electrodes placed on the skin. This test helps to diagnose various heart

conditions by measuring the electrical impulses that control heart rhythm. The

Electrocardiogram (ECG) signals illustrate the electrical behavior of the human heart and

comprise various waveforms.

 S. Aziz in [7] presents a novel methodology for diagnosing cardiovascular diseases

(CVD) using electrocardiogram (ECG) signals without the need for a probe or a cardiologist.

The proposed system involves placing probe-less ECG sensors on a patient's body,

transmitting the signals via Bluetooth to a processing device like a mobile phone, and using a

machine learning algorithm for automatic CVD diagnosis.

 The methodology discussed in the paper involves various key components. Signal

filtering is crucial due to the non-stationary nature of ECG signals and the presence of noise

and artifacts. The Discrete Wavelet Transform (DWT) is used for baseline drift removal.

Feature extraction and classification are then performed using machine learning techniques.

Researchers have previously used the MIT-BIH arrhythmia database for ECG signal

classification, employing techniques like DWT and Multi-Layer Perceptron (MLP) for high

accuracy but with a large number of features.

 The proposed algorithm aims to overcome the limitations of existing algorithms by

combining event-related moving averages with Fractional Fourier Transform (FrFT) for

improved detection of ECG waveform components. The classification of CVD involves

feature extraction and model selection. The SVM and MLP classifiers are used, with features

like PR and RT intervals, age, and sex showing promising results. The methodology is tested

on the MIT-BIH database and the Shaoxing SPH database, achieving high accuracies with

reduced feature sets.

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

 Overall, the paper presents a detailed methodology for probe-less CVD diagnosis using

ECG signals, combining signal processing, feature extraction, and machine learning

classification techniques. The proposed algorithm shows promise for accurate and efficient

CVD diagnosis, paving the way for future developments in remote healthcare monitoring

systems.

Figure 2.1 Block Diagram of the Proposed Methodology

2.1.2 Telemedicine in Healthcare

 M. Stoltzfus et al. in [8] discusses the technical workings of telemedicine, detailing its

reliance on advanced telecommunications and information technologies to deliver healthcare

services remotely. Telemedicine employs a variety of digital communication tools, such as

video conferencing, health informatics data, and real-time audio communications, to facilitate

remote clinical services. These technologies enable healthcare providers to perform

consultations, diagnostics, treatment planning, and patient monitoring without the need for

physical presence. The system's architecture is designed to support seamless data flow

between patients and providers, ensuring that critical health information is accessible and

actionable in real time. This setup not only enhances the capability of healthcare systems to

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

provide services to remote or underserved populations but also increases the overall

efficiency and effectiveness of medical care.

 Technologically, telemedicine integrates with existing healthcare IT systems, requiring

robust cybersecurity measures to protect patient data and privacy. As telemedicine continues

to evolve, it incorporates newer technologies like artificial intelligence and machine learning

to further refine the accuracy and responsiveness of remote healthcare delivery.

2.1.3 Remote Patient Monitoring (RPM) Systems

RPM systems leverage IoT to enhance healthcare delivery, allowing for continuous

patient monitoring outside traditional medical settings. These systems are particularly

beneficial for chronic disease management and post-operative care, where regular monitoring

is crucial. By integrating with cloud services, RPM systems can store vast amounts of

medical data and provide healthcare professionals with real-time access. This integration

supports advanced analytics and helps in making informed medical decisions (Muhammad

Waleed et al. [9]) (S. Iranpak et al. [10]).

 Advanced RPM systems utilize multi-hop IoT networks and biosensors. These networks

enhance the range and reliability of data transmission, crucial for monitoring patients across

different environments. Biosensors play a key role in collecting accurate health data, which is

then processed to provide insights into the patient's health status (R. Uddin et al. [11]).

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Figure 2.2 Remote Monitoring via IoT Healthcare System

2.1.4 Machine Learning and Wearable Biomedical Devices

A. Olyanasab in [12] delves into how wearable devices equipped with machine learning

technologies are revolutionizing personalized health monitoring. These devices are broadly

classified into three categories based on the type of measurements they perform: bio-

electrical, bio-impedance and electro-chemical, and electro-mechanical.

The bio-electrical devices analyze electrical signals from the body, like heart activity

from ECGs, using machine learning to detect cardiac health issues. Bio-impedance and

electrochemical devices measure body tissue impedance and chemical changes, such as

glucose levels, helping manage conditions like diabetes. Electro-mechanical devices assess

physical activity and muscle function through sensors like EMG, with machine learning

helping to analyze movement patterns to prevent injuries and optimize physical health.

In each case, machine learning is central to processing and interpreting the vast amounts

of data these devices collect, enabling them to offer personalized health insights and

interventions based on real-time data analysis. This approach not only enhances the accuracy

of health monitoring but also enables more personalized healthcare by modifying actions

according to unique data trends and forecasts.

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

Figure 2.3 Wearable Biomedical Devices

2.1.5 Summary of previous work on deep learning

 The literature study showcases technological advancements and their uses while

providing a thorough overview of healthcare systems for cardiac monitoring. The first step is

the creation of an IoT-based ECG monitoring system that provides real-time monitoring of

vital signs including heart rate and ECG signals. This system is designed to address

healthcare difficulties, particularly in low- and middle-income nations.

 As a key element of remote healthcare delivery, telemedicine combines innovative

information and communications technology with strong cybersecurity safeguards to deliver

clinical services virtually. It also incorporates artificial intelligence and other advanced

technologies.

 Furthermore, RPM systems are emphasized for their function in ongoing patient

monitoring beyond conventional healthcare environments, utilizing IoT networks and

biosensors for information gathering and analysis.

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

 Finally, real-time data analysis across several wearable categories allows for specific

health monitoring and actions through the integration of machine learning with wearable

biomedical equipment.

 All things considered, these evaluations of the literature highlight how heartbeat

monitoring technologies are developing and how they have the potential to improve patient

care and healthcare delivery worldwide.

2.2 Limitations of Previous Studies

2.2.1 ECG-based Machine-learning algorithms

 The electrocardiogram (ECG) is a tool used to record cardiac electrical activity. It is not

always suitable for identifying other medical diseases or heart conditions that call for

additional testing or imaging methods. Interpreting ECG data can be difficult and requires

certain knowledge and experience. Making the wrong diagnosis or treatment choice can

result from misinterpreting ECG signals. Specialized testing and advanced ECG monitoring

devices may not be widely available or affordable in all healthcare settings, which restricts

their utilization. Accurate diagnosis may be hindered by a patient's weight, lung illness, or

anatomical differences, which can all have an impact on the quality and interpretation of

ECG readings. False-positive or false-negative ECG readings can occasionally result in

unneeded follow-up testing or missed diagnoses. An ECG may miss intermittent or

temporary abnormalities that could be missed during the test since it records the heart's

electrical activity at a single moment in time. Although traditional ECG recordings are

usually brief, they may not be able to detect anomalies that occur infrequently or capture

long-term heart activity.

2.2.2 Telemedicine in Healthcare

 There are various barriers to the widespread adoption and efficacy of telemedicine in the

healthcare industry. Since telemedicine does not allow for in-depth physical examinations

like in-person consultations do, missed diagnoses could occur. This represents a significant

drawback of the technique. Moreover, the kind of interpersonal and emotional connection

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

that occurs during in-person visits is sometimes not possible for patients and clinicians in

telemedicine.

 The technology and infrastructure needs for efficient telemedicine present another set of

difficulties. Among these is the requirement for dependable internet access, which is not

always available, particularly in rural or underprivileged places. Since telemedicine involves

communicating private medical data over the Internet, there are additional worries regarding

patient data security and privacy.

 The costs associated with setting up and maintaining telemedicine equipment, training

medical staff, and managing these networks are high. Finally, due to varying regulations and

payment rules, the financial side of telemedicine deployment may provide greater difficulties.

2.2.3 Remote Patient Monitoring (RPM) Systems

 The limitations of Remote Patient Monitoring (RPM) systems can have a significant

impact on their effectiveness and use in healthcare settings. Certain RPM systems might not

be able to provide precise diagnostic data, which could result in significant categorization

errors. Some RPM systems may have an intricate model or architecture, which can make

computation time longer and present difficulties for users. RPM systems may have trouble

correctly categorizing patient data, which could lead to significant classification errors. RPM

systems can generate an enormous amount of data, which can be overwhelming to store and

analyze, especially when connected to IoT devices. Particularly in mobile devices, RPM

systems that depend on constant data transfer and processing may use a lot of energy. It is

imperative that efforts be made to reduce energy use.

2.2.4 Machine Learning and Wearable Biomedical Devices

 A significant limitation is the reliance on large-scale data collection, which is necessary to

guarantee the precision and dependability of machine learning models but presents practical

difficulties in situations involving ongoing health monitoring. Because handling and

processing sensitive health information requires robust security measures to protect user

privacy, privacy issues are especially significant. Furthermore, these devices may become

less accessible and user-friendly to the general population due to the complexity added by

Chapter 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

advanced machine learning algorithms. The expensive cost of sophisticated sensors and

complex algorithms is another crucial factor to take into account. This drives up the cost of

these devices, making them inaccessible to a wider range of individuals.

 Despite the benefits that machine learning presents, attaining steady precision and

dependability in many real-life scenarios still poses a challenge to the successful integration

of these technologies in wearable medical equipment.

Chapter 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Chapter 3

System Methodology/Approach

Project pre-development was the first of the project's several phases. To guarantee

dependable data collection and transmission, the hardware components of the IoT-based

healthcare monitoring system are carefully chosen and integrated. The software architecture

is made to facilitate user engagement and communication in addition to data processing,

storage, and visualization.

3.1 System Design Diagram

3.1.1 System Architecture

The system architecture for the IoT-based healthcare monitoring and alert system is carefully

structured to facilitate seamless data collection, processing, storage, and communication

among the different system components. The architecture is organized into several layers,

each dedicated to a particular function, ensuring an efficient and integrated operation.

Figure 3.1 Block Diagram of the Health Monitoring System

Chapter 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

The system architecture is composed of the following essential layers:

● Sensor Layer

 This layer is responsible for capturing vital signs and environmental data through sensors

like the MAX30102 and MLX90614. The MAX30102 sensor monitors heart rate (BPM) and

blood oxygen levels (SpO₂), while the MLX90614 sensor measures body and ambient

temperatures. These sensors transmit the collected data to the processing layer for further

analysis.

● Processing Layer

The core of the system’s processing activities occurs within the Raspberry Pi 4 Model B,

using Python as the primary programming language. The code, developed in the Geany IDE,

handles data acquisition, processing, and control logic. Python’s extensive libraries enable

efficient implementation of the algorithms needed to process sensor data and determine if any

health anomalies require immediate attention.

● Storage Layer

Data management is handled by the MariaDB database, which stores all the vital sign

readings and related health information. This layer ensures that the system maintains a

comprehensive history of patient data, enabling healthcare providers to review past records

and identify trends or changes in the patient's health over time.

● Communication Layer

The system uses the Telegram API to manage communication between the system and

healthcare providers. When vital signs are detected, the system automatically sends alerts via

Telegram, ensuring that medical professionals are promptly informed and can take necessary

actions when abnormal readings are detected. This layer is crucial for real-time intervention

and continuous patient monitoring.

● User Interface Layer

The user interface is built with Python’s Tkinter library, offering a graphical interface that is

intuitive and easy to navigate. This GUI allows patients and healthcare providers to view

Chapter 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

real-time data, access historical records, and interact with the system effortlessly. The

interface is designed to be user-friendly, ensuring that even those with minimal technical

knowledge can operate the system effectively.

3.1.1 Use Case Diagram and Description

The use case diagram shows the main interactions between users (doctors, patients, and IoT

sensors) and the healthcare monitoring system. It helps in identifying the system’s functional

requirements and user interactions. The primary user is the patient or individual monitoring

their health. The secondary user is the healthcare provider receiving alerts via Telegram.

Use Cases:

Measure vitals: User initiates data reading.

Store data: Data is automatically saved into the database after each check.

Receive alerts: Telegram sends notifications for every vital check.

View real-time data: GUI displays the user’s latest health records.

View history data: GUI displays history data for the user and healthcare provider can request

for history data through Telegram.

Figure 3.2 Use Case Diagram between User and Healthcare Provider

Chapter 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

3.1.2 Activity Diagram

The activity diagram outlines the process flow of a system, showing the sequence of actions

and decisions taken throughout a process.

Figure 3.3 Flowchart of the Whole System

3.2 Timeline

The timeline for the project is divided into two main phases: FYP1 and FYP2. Each phase

spans multiple weeks, focusing on different aspects of the system development and research.

The Gantt Chart for both parts of the project is shown at Table 3.4 and Table 3.5.

 The first phase of the project (FYP1) focused on laying the foundation for the system by

defining the project scope and objectives over the initial two weeks. Following this, research

Chapter 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

on sensors and IoT systems was conducted for three weeks to identify suitable components

and technologies. Simultaneously, a literature review was undertaken to understand the

existing knowledge and gaps in the field. The system design, including hardware and

software selection, was carried out over a four-week period to ensure all components were

well-integrated. By Week 6, the hardware and software setup began, taking three weeks to

complete. Integration with the database and testing of the sensor data was done in the

subsequent four weeks to ensure functionality. Finally, the preliminary results were gathered,

analyzed, and documented in a report. This phase also included the preparation of a

presentation and poster for the project, with these tasks running concurrently with report

writing in the final four weeks.

Table 3.1 Gantt Chart for FYP1

No

.

Project Activities W1 W

2

W

3

W

4

W

5

W

6

W

7

W

8

W9 W10 W11 W12

1 Project Planning,

Scope &

Objectives

2 Research On

Sensors & IoT

System

3 Literature

Review

4 Components

Selection &

System Design

5 Hardware &

Software Setup

6 System

Integration with

Database &

Testing

7 Obtain

Preliminary

Results & Report

Writing

 FYP2 builds upon the foundation established in FYP1, focusing on enhancing the system

by adding a Graphical User Interface (GUI) using Tkinter. The GUI development spans five

weeks, providing users with a more accessible and user-friendly way to interact with the

system. Additionally, an alert system using Telegram API to connect to the system is

developed over five weeks, starting from Week 3, allowing real-time notifications for health

monitoring. System integration and testing take place from Week 6 to Week 10, ensuring that

Chapter 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

all components, including the GUI and alert system, function cohesively. In parallel, data

collection and system analysis begin in Week 7, running for six weeks to provide insights

into the system’s performance. Lastly, to ensure the Raspberry Pi has better protection and a

more professional look, a case is designed and printed out within a few weeks. The project

concludes with four weeks dedicated to report writing and presentation preparation, where

the final system's results and analysis are documented in a comprehensive report and

prepared for presentation.

Table 3.2 Gantt Chart for FYP 2

No. Project Activities W1 W2 W3 W4 W5 W6 W7 W8 W9 W

10

W

11

W

12

W

13

1 GUI

Development

2 Alert System

Development

3 System

Integration &

Testing

4 Data Collection

& System

Analysis

5 Casing design

& 3D printing

6 Report Writing

& Presentation

 This timeline ensures that the project progresses in an organized manner, balancing

research, development, testing, and documentation within the period for both FYP1 and

FYP2.

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Chapter 4

System Design

This chapter explains the structure and internal workings of the IoT-based healthcare

monitoring system. It outlines the specifications of the hardware and software components,

how the circuits were designed, and how the system components interact to carry out data

collection, processing, and communication.

4.1 System Components Specifications

This section outlines the hardware and software components used in the IoT-based healthcare

monitoring and alert system.

4.1.1 Hardware

● Raspberry Pi 4 Model B

The IoT-based healthcare monitoring system's central processing unit was a Raspberry Pi 4

Model B. It enabled both data collecting and remote data transmission by offering the

computing capacity and adaptability needed for data processing, system control, and

communication with external hardware components via GPIO pins, USB ports, and

additional connection choices including Wi-Fi and Bluetooth.

Figure 4.1 Raspberry Pi 4 Model B

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Figure 4.2 Raspberry Pi 4 Model B Pinout Diagram

Table 4.1 Specifications of Raspberry Pi 4 Model B

Specifications Parameters

Processor Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-

bit SoC @1.5GHz

Memory 1GB, 2GB or 4GB LPDDR4

(depending on model)

Connectivity 2.4GHz and 5.0GHz IEEE 802.11b/g/n/ac wireless LAN,

Bluetooth 5.0, BLE Gigabit Ethernet

GPIO Standard 40-pin GPIO header

Input Power 5V DC

● MAX30102 Sensor

The MAX30102 is a specialized sensor designed for the non-invasive monitoring of heart

rate (BPM) and blood oxygen saturation levels (SpO₂). It integrates two LEDs (one emitting

red light and the other infrared light), a photodetector, and optimized optics. The red and

infrared light are absorbed differently by oxygenated and deoxygenated blood, allowing the

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

sensor to measure SpO₂ levels based on the ratio of absorbed light. Additionally, the sensor

uses the light absorption variation caused by the pulsing of blood in the arteries to calculate

the heart rate. The MAX30102's compact design and low power consumption make it ideal

for wearable health monitoring devices. The sensor is interfaced with the Raspberry Pi

through I²C communication, ensuring efficient data transfer and real-time monitoring

capabilities.

Figure 4.3 MAX30102 Sensor

Table 4.2 Specifications of MAX30102 Sensor

Specifications Parameters

Power consumption Very low, suitable for mobile devices

Programmable sample rate and LED current Energy-saving

Sampling rates High

Communication protocol Standard I²C, 0x57 fixed 7-bit

address

Detection Signal Type Optical Reflection Signal (PPG)

Immunity to movement artifacts Solid

Signal-to-Noise Ratio (SNR) High SNR

Power supply 3.3-5V

Operating temperature range -40°C to 85°C

PCB size 14 x 14mm

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

● MLX90614 Sensor

The MLX90614 is an infrared thermometer sensor that measures both body and ambient

temperatures without direct contact. It operates based on the principle of infrared radiation,

where the sensor detects the infrared energy emitted by objects within its field of view and

converts it into a temperature reading. This sensor features a built-in digital signal processor

and a 17-bit analog-to-digital converter, providing high accuracy and sensitivity. It is

particularly useful for continuous monitoring of body temperature in a healthcare setting, as it

can detect even small variations in temperature, which may be indicative of changes in a

patient's condition. The MLX90614 is connected to the Raspberry Pi via the I²C interface,

allowing for seamless integration into the healthcare monitoring system and enabling real-

time temperature data collection and analysis.

Figure 4.4 MLX90614 Sensor

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Table 4.3 Specifications of MLX90614 Sensor

Specifications Parameters

Size 11.5 x 16.5mm (+-2mm)

Power supply 3-5V DC (internal low dropout regulator)

Communication protocol Standard I²C, 0x5A fixed 7-bit address

Calibration Factory calibrated

Sensor temperature range -40°C to +125°C

Object temperature range -70°C to +380°C

Temperature accuracy ±0.5°C around room temperatures

Field of view 90°

Power-saving feature Power saving mode

Grade Automotive-grade

● Dupont jumper wires

Dupont jumper wires are essential to connect the Raspberry Pi’s GPIO pins to the sensors via

the breadboard. The flexible male-to-female and male-to-male jumper wires are used to

enable the sharing of some GPIO pins, ensuring efficient use of available connections on the

Raspberry Pi. Female-to-female jumper wires are used mostly to connect Raspberry Pi’s

GPIO pins directly to the sensors. Y-split jumper wires are used to split the I²C connection to

accommodate both sensors using the same GPIO pins without connecting to a breadboard.

Figure 4.5 Dupont jumper wires

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Table 4.4 Specifications of Dupont Jumper Wires

Specifications Parameters

Connector type DuPont (2.54 mm pitch)

Wire Type 28 AWG (standard), some are 26 or 30 AWG

Wire Material Usually tinned copper or copper-clad

aluminum (CCA)

Insulation Material PVC (Polyvinyl Chloride)

Voltage Rating Up to 300V DC (depending on insulation)

Current Capacity Around 1A (for 28 AWG wires)

Temperature Range -20°C to +80°C

Pin Type Male to Male (M-M),

Male to Female (M-F),

Female to Female (F-F)

● 3D-printed case

The 3D-printed case is necessary for protecting the Raspberry Pi or holding sensors in place

during operation.

Figure 4.6 3D-printed Raspberry Pi Case

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Table 4.5 Specifications of 3D-printed Raspberry Pi Case

Specifications Parameters

Material PLA (Polylactic Acid)

Color Orange

Design Software SolidWorks

Printing Technology Fused Deposition Modeling (FDM)

Printer Used Creality Ender 3 & Raise3D N2

Layer Height 0.2 mm

Infill Density 20%

Print Time 6 hrs 22 mins

Mounting Features Holes for sensor brackets, slots for ventilation

4.1.2 Software

The IoT-based healthcare monitoring system's software architecture consists of a number of

essential parts that make data processing, management, and visualization easier.

● Python programming

Python is the main programming language used to create the system's software components.

Python is a flexible and user-friendly programming language that can be used to construct a

wide range of functionalities, such as data processing methods, communication protocols, and

user interfaces. It also has a large library support.

Figure 4.7 Python Logo

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

● Geany Programming IDE

Geany is a lightweight and fast integrated development environment (IDE) used for writing

and editing the Python code that powers the system. It provides essential features like syntax

highlighting, code folding, and an integrated terminal, making it a convenient tool for

software development. Its simplicity and efficiency make it ideal for managing the project’s

codebase.

Figure 4.8 Geany Programming Logo

● Tkinter

Tkinter is the standard Python library used for creating the graphical user interface (GUI) of

the healthcare monitoring system. It provides a simple yet powerful toolkit for designing the

front end of the system, allowing users to visualize real-time health data, access historical

records, and interact with various features of the application. The interface is designed to be

user-friendly, ensuring that both patients and healthcare providers can easily navigate the

system.

Figure 4.9 Tkinter Python Logo

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

● MariaDB

MariaDB is the chosen relational database management system (RDBMS) for this project,

providing a robust platform for storing and managing the healthcare data collected from the

sensors. MariaDB is known for its high performance, security, and compatibility with other

systems, making it an excellent choice for handling sensitive medical data. In this system,

MariaDB stores critical information such as heart rate, SpO₂ levels, and temperature readings,

along with timestamps and patient identifiers. The database structure is designed to allow

easy querying and retrieval of historical data, which is essential for tracking patient health

trends over time.

Figure 4.10 MariaDB Logo

● Telegram API

The Telegram API is utilized to implement the alert system within the healthcare monitoring

application. When the system detects that any health parameters fall outside of the normal

range, it will automatically send an alert to healthcare providers via Telegram. This real-time

notification system ensures that healthcare professionals are promptly informed of any

potential issues, allowing them to take immediate action if necessary.

Figure 4.11 Telegram API Logo

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

4.2 Circuits and Components Design

The hardware components in this system are arranged within a custom-designed 3D-

printed Raspberry Pi case. Instead of using the initial breadboard-based design during FYP1

prototyping, the final prototype utilizes custom wire connections neatly routed inside a 3D-

printed case.

The sensors are connected to the Raspberry Pi through the GPIO and I²C interface. To

achieve dual I²C sensor communication, the I²C interface is shared between the two sensors

via a Y-split jumper cable as shown in Figure 4.12, allowing both sensors to share the same

SDA and SCL lines while maintaining individual power and ground connections through

additional female-to-female jumper wires.

Figure 4.12 Y-split jumper cables

The MAX30102 sensor, used for measuring heart rate and oxygen saturation levels, and

the MLX90614 sensor, used for recording both body and ambient temperatures, are

strategically mounted at a 45-degree angle on top of the case. This is to allow users to place

their fingers comfortably and consistently while measuring their vitals. This ergonomic

orientation ensures more accurate readings while enhancing user experience. The internal

wiring is concealed within the case to minimize visual clutter and prevent accidental

disconnections, resulting in a cleaner and more professional appearance. The case plays a

crucial role in stabilizing the sensors, organizing internal wiring, and improving the overall

usability and aesthetics of the device.

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

Figure 4.13 3D-Printed Raspberry Pi Case

Power is supplied to the Raspberry Pi via the USB-C port. A mouse and keyboard are

connected through the USB ports, while a micro-HDMI to VGA adapter links the Raspberry

Pi to a monitor for GUI display. This compact and organized layout not only enhances system

durability and portability but also supports efficient sensor operation and user interaction.

4.3 System Components Interaction Operations

The healthcare monitoring and alert system is designed to provide real-time tracking and

analysis of vital health parameters, specifically focusing on heart rate (BPM), blood oxygen

saturation (SpO₂), and body temperature. The system integrates various sensors, a Raspberry

Pi for real-time processing, Tkinter-based GUI for user interaction, MariaDB database for

data storage, and Telegram for instant health data notifications to healthcare providers,

enabling an effective solution for continuous health monitoring.

At the core of the system are the MAX30102 and MLX90614 sensors. When the user

initiates a measurement through the GUI, the system begins by activating both sensors via the

I²C interface. The MAX30102 sensor continuously measures heart rate and oxygen

saturation, while the MLX90614 sensor monitors body and ambient temperature. These

sensors are connected to a Raspberry Pi, which acts as the system’s central processing unit.

The Raspberry Pi collects raw data from the sensors, processes it to calculate average values,

and then classifies the readings as normal, high, or low based on predefined thresholds.

Chapter 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

The processed data is stored in a MariaDB database, which records each measurement

along with a timestamp and status indicators for historical tracking and analysis.

Simultaneously, the real-time data is then displayed on a user-friendly interface built with

Tkinter. The Tkinter-based GUI presents current readings, the last 10 database entries in a

table format, and a visual graph showing the trends of all vitals, allowing users to view real-

time and historical data.

The system also includes an alert mechanism. Every time a measurement is taken, the

system will send a formatted message containing the vitals to healthcare providers via

Telegram. If any health parameters fall outside of the normal range, a warning message will

be sent along with the vital data, allowing healthcare providers to receive instant updates.

This ensures remote monitoring is not only possible but proactive.

The interaction between hardware and software components is coordinated by Python

scripts, from sensor activation to GUI output and Telegram alerts. These scripts also include

logic for interpreting sensor signals, performing basic validations, and ensuring data

consistency before database entry and message transmission.

In summary, this system provides a robust and scalable solution for monitoring key health

metrics, offering users detailed insights and timely alerts. By combining reliable hardware

components with efficient data processing and storage, the system ensures that critical health

information is both accessible and actionable.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Chapter 5

System Implementation

This chapter outlines the steps taken to implement the IoT-based healthcare monitoring and

alert system, covering the hardware and software setup, configuration procedures, system

operation, encountered challenges, and final remarks on the implementation phase.

5.1 Hardware Setup

The initial step in setting up the healthcare monitoring and alert system involved assembling

the hardware components. The Raspberry Pi 4 Model B was selected as the central

processing unit due to its versatility and sufficient processing power for handling the sensor

data and running the necessary software. The following components were connected:

● MAX30102 Sensor: This sensor is connected directly to the Raspberry Pi’s I²C

interface using a Y-split jumper wire. It is mounted on top of a custom 3D-printed

case at a 45-degree angle to provide a more ergonomic position for users to place their

finger for measurements of heart rate (BPM) and SpO₂ levels.

● MLX90614 Sensor: Connect to the same I²C interface using the shared Y-split

jumper wire, this sensor is fixed beside the MAX30102 on the 3D-printed case. This

sensor was used to measure both body temperature and ambient temperature.

● Jumper Wires: Essential for simplifying the wiring and ensuring stable connections

between the Raspberry Pi and the sensors. Y-type jumper wires are used to split the

SDA and SCL I²C lines between both sensors. Additional female-to-female jumper

wires are used to connect the VCC and GND pins from the Raspberry Pi to the

sensors. The wiring is organized within the 3D-printed case to maintain a neat layout.

● Custom 3D-Printed Case: Designed to securely hold the Raspberry Pi and both

sensors, this enclosure hides internal wiring for a cleaner look and includes angled

mounting (45°) for better finger placement and user comfort during measurements.

● Power Supply and Peripheral Connections:

- The Raspberry Pi is powered via the USB-C power port.

- A mouse and keyboard are connected through the USB ports for input control.

- A monitor is connected to the Raspberry Pi’s micro-HDMI port, using a micro-

HDMI to VGA adapter to support VGA displays during setup and operation.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Figure 5.1 Hardware Pinout Diagram

Figure 5.2 Hardware Setup

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Table 5.1 Pin Connection of Raspberry Pi and MAX30102

Raspberry Pi MAX30102

5V (Pin 2) VIN

I²C SDA (GPIO 2; Pin 3) SDA

I²C SCL (GPIO 3; Pin 5) SCL

GND (Pin 6) GND

Table 5.2 Pin Connection of Raspberry Pi and MLX90614

Raspberry Pi MLX90614

5V (Pin 3) VIN

I²C SDA (GPIO 2; Pin 3) SDA

I²C SCL (GPIO 3; Pin 5) SCL

GND (Pin 9) GND

5.2 Software Setup

The software setup for the healthcare monitoring and alert system involved the integration of

various Python scripts that interact with the hardware components (MAX30102 and

MLX90614 sensors) and manage the system's operations. The Geany programming IDE is

used to provide a user-friendly environment for writing and debugging the Python code.

Essential libraries are imported to enable certain functionalities:

time: Used for introducing delays, managing time intervals between measurements, and

timestamping data entries.

numpy: Employed for numerical computations and calculating the average values of heart

rate and SpO₂ from collected samples.

argparse: Included to handle command-line arguments, if needed, particularly useful during

testing or debugging phases.

smbus2: This library is critical for I²C communication between the Raspberry Pi and the

connected sensors (MAX30102 and MLX90614).

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

mysql.connector: Enables direct interaction with the MariaDB database to store and retrieve

sensor data entries.

tkinter: Provides the framework for the system's graphical user interface (GUI), allowing

users to view real-time readings, graphs, and historical data.

matplotlib: Used to generate and display graphs that visualize trends in vital signs, enhancing

user insight.

telepot: Handles Telegram bot communication, allowing the system to send vital sign

readings to caregivers or remote users instantly upon each measurement.

Below is a breakdown of the essential Python scripts and the libraries used within each.

● MAX30102

The MAX30102 sensor is responsible for measuring heart rate (BPM) and blood oxygen

saturation (SpO₂). The following scripts were developed to handle data collection,

processing, and storage from the MAX30102 sensor:

- hrcalc.py: This script contains the necessary functions to calculate heart rate and SpO₂

from the raw data collected by the MAX30102 sensor.

Library used:

➔ ‘numpy’: For efficient numerical computations.

- max30102.py: This script provides the necessary functions to interface with the

MAX30102 sensor. It includes functions to read data from the sensor's FIFO registers

and handle the sensor's configuration.

Library used:

➔ ‘time’: For introducing delays in the data collection process.

➔ ‘smbus’: For I²C communication with the MAX30102 sensor.

- heartrate_monitor.py: This script acts as a wrapper around the MAX30102 sensor,

providing a class that manages the sensor's operation, including starting, stopping, and

running the sensor in a separate thread. It processes the raw data, calculates the BPM

and SpO₂, and handles alerts for abnormal readings.

Library used:

➔ ‘numpy’: For processing and averaging BPM and SpO₂ values.

➔ ‘max30102’: Import max30102.py file to interface with MAX30102 sensor.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

➔ ‘hrcalc’: Import hrcalc.py file to process raw data and calculate the BPM and

SpO₂.

➔ ‘threading’: To run the sensor in a separate thread, enabling concurrent data

collection.

‘time’: For timing and delays in the data collection loop.

● MLX90614

The MLX90614 sensor is responsible for measuring body and ambient temperature. The

following script was developed to interface with the MLX90614 sensor:

- mlx90614.py: This script provides functions to read temperature data from the

MLX90614 sensor, including both object (body) and ambient temperature readings.

Library used:

‘time’: For introducing delays as necessary during data collection.

● Combine Operation of MAX30102 and MLX90614

The main script that combines the functionalities of both the MAX30102 and MLX90614

sensors, integrating their data collection and storage processes:

- combined.py: This script integrates the heart rate, oxygen saturation level, and

temperature monitoring functionalities. It reads data from both the MAX30102 and

MLX90614 sensors, processes the data, and stores it in the MariaDB database. It also

provides the user with real-time feedback and stores results in a way that includes

alerts for high, low, or normal readings.

Library used:

➔ ‘numpy’: For data processing and calculations.

➔ ‘heartrate_monitor’: Import heartrate_monitor.py file for managing the heart

rate and SpO₂ data collection.

➔ ‘mlx90614’: Import mlx90614.py file for interfacing with the MLX90614

sensor.

➔ ‘smbus2’: For I²C communication with both sensors.

➔ ‘mysql.connector’: To connect to the MariaDB database and executing SQL

queries to store and retrieve data.

➔ ‘time’: For timing and delays in data collection and overall operation.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

➔ ‘argparse’: For parsing command-line arguments to customize sensor

operation (e.g., duration of data collection).

➔ ‘tkinter’: To provides the framework for the system's GUI

➔ ‘matplotlib’: To generate and display graphs of the data collection.

➔ ‘telepot’: To handle Telegram bot communication

These scripts collectively manage the healthcare monitoring and alert system, ensuring

accurate data collection, storage and user interaction.

All scripts were tested and executed in Python 3 on the Raspberry Pi OS. The GUI and all

backend processes run locally on the Raspberry Pi to ensure offline capability and low

latency. Proper error handling was implemented to ensure the system remains responsive

even if the sensor temporarily fails or network connectivity to Telegram is disrupted.

5.3 Setting and Configuration

The system required several essential configurations to ensure seamless integration between

the hardware, software, database, and external services like Telegram. These settings were

carefully implemented on the Raspberry Pi to establish full system functionality.

● I²C Interface Activation

The I²C interface was enabled through the Raspberry Pi Configuration Tool to allow

communication with the MAX30102 and MLX90614 sensors.

This was done by:

1. Opening the terminal and running: sudo raspi-config

2. Navigating to Interface Options > I2C and enabling it

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

Figure 5.3 Raspberry Pi Configuration Tool

Figure 5.4 Raspberry Pi Interface Options

Figure 5.5 ARM I²C Interface Enabled Notification

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

3. Verifying I²C connections with the command: i2cdetect -y 1

Figure 5.6 Verification of I²C connections

● MariaDB

MariaDB was set up as the database management system to store the collected health data.

The database schema was designed to efficiently handle the storage of sensor readings and

other relevant patient information.

1. Before installing MariaDB, update the system to the latest packages:

- sudo apt-get update

Figure 5.7 Update Command Result

2. Install MariaDB database:

- sudo apt install mariadb-server

Figure 5.8 Install MariadDB Command Result

3. After installing MariaDB Server, start the service with these two commands:

- sudo systemctl start mariadb

- sudo systemctl enable mariadb

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Figure 5.9 Start MariaDB Service Command Result

4. Run the security script:

- sudo mysql_secure_installation

Figure 5.10 Secure Script Command Result

5. Login to MariaDB as root user:

- sudo mariadb -u root -p

Figure 5.11 MariadDB Login Command Result

6. Create a new database and a new user and grant privileges:

- CREATE DATABASE mydatabase;

- CREATE USER 'myuser'@'localhost' IDENTIFIED BY 'mypassword';

- GRANT ALL PRIVILEGES ON mydatabase.* TO 'myuser'@'localhost';

- FLUSH PRIVILEGES;

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Figure 5.12 Create Database and User Command Result

7. Exit the MariaDB shell by typing ‘exit’

8. Install the MySQL connector for Python:

- pip install mysql-connector-python

Figure 5.13 SQL Connector Command

Figure 5.14 SQL Connector Command Result

Import ‘mysql.connector’ library at combined.py and include the mysql.connector.connect()

method to establish a connection to your MySQL database using the credentials and database

name you provide.

● Telegram

A Telegram bot was set up to enable real-time remote data sharing. The bot was created using

‘BotFather’ on Telegram, and the generated bot token was integrated into the Python script

using the telepot library. To enable the bot to send messages to the correct recipient, the chat

ID is required.

There are two ways to obtain the telegram bot @rachelHealthcareBot chat ID:

Method 1 (Terminal): Send a message to the bot and use a script or telepot to print the chat

ID from incoming messages.

Figure 5.15 Terminal Method to obtain chat ID

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Method 2: (Web Tool): Use a third-party website such as

https://api.telegram.org/bot<your_token>/getUpdates to view the chat ID after sending a

message to the bot.

Figure 5.16 Web Tool Method to obtain chat ID

The bot was programmed to automatically send formatted messages containing the user's

vital signs after each user-initiated measurement, allowing healthcare providers or users

themselves to receive immediate updates remotely.

● Tkinter GUI

The Tkinter GUI was configured to run on the Raspberry Pi desktop environment:

The GUI windows were designed to be resolution-friendly for the connected HDMI monitor.

It allows users to interact with the system without needing to use the terminal or command

line. The main interface includes buttons to initiate real-time measurements and displays live

data for heart rate, SpO2, and body temperature.

Figure 5.17 Codes for updating results on GUI

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Moreover, a graphing section was implemented using the matplotlib library to visualize

trends in the vital signs over time. A command is used to install the matplotlib library:

- pip install matplotlib –break-system-packages

Figure 5.18 Installation of matplotlib Library

Figure 5.19 Function Code to Plot Graph on GUI

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

In addition to real-time display, the GUI features a table showing the 10 most recent data

entries retrieved from the MariaDB database, providing users with a quick historical

overview.

Figure 5.20 Code to Update History Table on GUI

The integration of Tkinter enhances accessibility and ease of use, making the system more

practical for non-technical users.

5.4 System Operation (with Screenshot)

The system begins operation through a graphical user interface (GUI) developed using the

Tkinter library. When the application is first used for the first time, the database does not

contain any records yet, the GUI will display a message indicating that no data is available.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Figure 5.21 GUI When No Data is Available in The Database

When the user presses the “Start Measure” button on the Tkinter interface, the button

itself will be disabled to prevent multiple readings from being initiated simultaneously. At the

same time, a “Stop measure” button will appear, allowing the user to stop the measurement

process at any point before it completes.

Figure 5.22 GUI Indicating Sensor is Reading

 The system will then begin its operation by initializing the sensors and setting the

Telegram bot to standby mode, ready to send messages.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Figure 5.23 Terminal Indicating Telegram in Standby Mode

The user is then required to place their fingers on the sensor surface angled at 45 degrees

for the MAX30102 and MLX90614 sensors to begin collecting data. If the user decides to

press the “Stop measure” button, the ongoing measurement will be halted, a message

“Measurement stopped” will be displayed, and the “Start measure” button will be re-enabled,

giving the user the option to initiate a new measurement.

Figure 5.24 GUI Indicating Measurement Stopped

 If fingers are not detected during sensor reading, the system will display “Finger not

detected” and there will be a “Measure again” button displayed for user to start a new

measurement. This process ensures that only accurate and valid health data is processed and

stored.

Figure 5.25 GUI Indicating No Finger Detected

To ensure accurate readings, proper finger placement is shown in the picture below.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Figure 5.26 Finger Placement on Both Sensors

During the sensor reading period, provided the user's finger is correctly placed on the

sensors, the system actively collects heart rate and oxygen saturation data for 20 seconds.

Throughout this duration, multiple individual readings are taken, and the system calculates

the average BPM and SpO2 values from these readings. Both the BPM and SpO2 data are

then classified as either "Normal," "Low," or "High" based on predefined thresholds.

Immediately following this, the system reads the user's body temperature using the

MLX90614 sensor. The temperature value and status are displayed immediately after the

reading is taken.

When readings for heart rate, oxygen level, and body temperature are obtained, it will

display “Measurement Complete!” at the GUI, and a “Measure again” button will appear for

the user to initiate another new measurement. At the same time, the system will display the

values in real-time on the GUI and store them in the MariaDB database. Simultaneously, the

graph that visualizes recent data trends and a table showing the last ten records will also be

updated on the GUI, as shown below.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

Figure 5.27 Tkinter GUI of the Measurement

 A Telegram alert containing the results is instantly sent via Telegram to the

designated healthcare provider. This ensures timely communication and facilitates remote

health supervision.

Figure 5.28 Telegram Message for the Measurement

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

Figure 5.29 Mobile View of Telegram Message Sent by the System

The results are saved in the database and can be accessed through a secured login portal,

ensuring data privacy while providing extended access to comprehensive health history.

In addition to automatic alerts, users or healthcare providers can manually interact with

the Telegram bot using the /recent command to retrieve the latest measurement or /history to

request a short list of past results. These commands make it convenient for healthcare

professionals to check vital signs remotely without accessing the full system interface.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Figure 5.30 ‘/recent’ Command in Telegram

Figure 5.31 ‘/history’ Command in Telegram

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

5.5 Implementation Issues and Challenges

The development of the health monitoring system encountered several implementation issues

and practical challenges that required iterative debugging and hardware adjustments. One

significant challenge involved the internet connection during the software setup phase. At

several points, the installation of crucial Python libraries such as matplotlib, telepot, and

mysql.connector failed repeatedly, leading to confusion about possible compatibility or

package errors. After considerable troubleshooting, it was discovered that the root cause was

an unstable Wi-Fi connection. Once the Raspberry Pi was rebooted and connected to a

reliable Wi-Fi network, the required libraries were downloaded and installed successfully.

This issue highlighted the importance of stable internet connectivity during software

configuration, especially on Linux-based systems like Raspberry Pi OS.

Hardware configuration presented another set of difficulties, particularly in wiring both the

MAX30102 and MLX90614 sensors to the Raspberry Pi via I2C. Since these sensors share

the same communication bus, it was necessary to build a custom insulated Y-splitter that

allowed both to operate concurrently. This involved manually cutting wires, connecting three

insulated wires together, and wrapping them securely with insulation tape. However, this

solution led to inconsistent sensor communication and triggered I/O errors:

Figure 5.32 Input/Output Error in Terminal

After repeated failures, the issue was traced back to faulty or loosely connected wires within

the splitter. The wiring was disassembled and tested one by one to see which is the faulty

wire. The damaged segment was replaced with a new workable Y-split cable, which restored

stable data transmission.

Chapter 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Space constraints inside the 3D-printed case also made cable management difficult, but

internal wire organization helped maintain cleanliness and functionality.

These challenges, though time-consuming and occasionally frustrating, led to a deeper

understanding of both the hardware and software aspects of the system. Through persistence

and testing, each issue was gradually resolved, resulting in a stable and reliable health

monitoring platform.

5.6 Concluding Remark

The implementation phase of the health monitoring system marked a significant

milestone in transforming the conceptual design into a fully functional and interactive

solution. Through the integration of hardware components such as the Raspberry Pi,

MAX30102, and MLX90614 sensors, along with the development of a comprehensive

software system using Python, the system successfully achieved its intended functionality. A

user-friendly graphical interface was created using Tkinter, real-time health data were

processed and displayed, and a Telegram bot was integrated to support remote notifications

and data retrieval.

Despite encountering challenges in both hardware configuration and software setup, each

obstacle was addressed through iterative troubleshooting and refinement. The use of a

custom-designed 3D-printed case helped organize internal components and improve user

ergonomics, while the database integration and Telegram bot enabled both local and remote

data access.

The implementation outcomes demonstrate the system’s capability to support user-

friendly, real-time health monitoring in a compact and affordable form.

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

Chapter 6

System Evaluation and Discussion

This chapter evaluates the developed health monitoring system, focusing on its functionality,

performance, and the challenges encountered. The effectiveness of the system is measured

through a series of test scenarios, real-time data readings, and data visualization. The chapter

also discusses how well the system met the initial objectives and how user experience was

considered in its design.

6.1 System Testing and Performance Metrics

To evaluate the functionality and reliability of the IoT-based healthcare monitoring system,

Testing was conducted to evaluate its accuracy, responsiveness, and stability.

The primary components tested include the MAX30102 sensor for heart rate and SpO₂

monitoring, the MLX90614 sensor for body temperature measurement, the Raspberry Pi as

the processing unit, the MariaDB database for data storage, the GUI built using Tkinter, and

the Telegram notification system.

The performance metrics included:

Measurement Duration and Sampling: Each reading was captured over a 20-second

interval, allowing the system to compute average values and reduce the impact of noise or

motion artifacts.

Sensor Accuracy: Measurements were compared against reference devices such as a Xiaomi

smartwatch (for BPM and SpO₂) and an infrared forehead thermometer (for body

temperature).

Wi-Fi Dependency: A stable internet connection was essential for retrieving accurate

timestamps and enabling real-time Telegram communication.

Data Logging Reliability: The system’s ability to store and retrieve data without failure was

assessed.

Response Time: The interval between measurement completion and Telegram message

delivery was measured.

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

These metrics demonstrate the system's capability to offer timely and accurate health

monitoring in a compact and affordable setup.

6.2 Testing Setup and Result

Before conducting hourly monitoring, the system's sensor accuracy was evaluated by

comparing its readings to commercially available devices in a controlled indoor environment.

This preliminary testing aimed to ensure the sensors were capable of providing consistent and

reliable health measurements.

6.2.1 Sensor Accuracy Testing

1. Heart Rate (BPM) and Oxygen Saturation (SpO₂):

• Compared with: Xiaomi smartwatch

• Results:

Figure 6.1 MAX30102 Sensor Reading for Both BPM and SpO2

- BPM readings of the MAX30102 sensor showed slight fluctuations but

remained within a reasonable physiological range. Minor discrepancies were

attributed to hand motion or variability in heart rhythm.

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Figure 6.2 Smartwatch’s SpO2 reading

Figure 6.3 Smartwatch’s BPM reading

- SpO₂ readings were stable, while BPM showed mild variations but stayed

within a normal physiological range.

2. Body Temperature:

• Compared with: Infrared thermometer

• Results:

- The system that measures temperature from the user’s finger recorded lower

values than the forehead thermometer due to ambient temperature influence on

peripheral skin (fingers), especially in an air-conditioned environment.

- To improve accuracy, a formula was applied in the software to adjust the

finger-based temperature readings closer to core body temperature estimates.

Figure 6.4 Formula to Adjust the Body Temperature

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Figure 6.5 MLX90614 Sensor Reading for Temperatures

Finger temperature in Figure 6.5 is the temperature without using a formula.

Body temperature Figure 6.5 is the adjusted temperature by using the

predefined formula.

It is still too low even after using the formula when staying in an air-

conditioned room for a period of time.

Figure 6.6 Comparison between MLX90614 Sensor and Infrared Thermometer

- While the values remained slightly lower than forehead thermometer results,

the adjustment provided a more realistic baseline for health tracking. The

readings followed a consistent trend, suitable for non-critical health

monitoring.

These tests validated that the system’s sensors could produce reasonable and consistent

outputs for non-critical, home-based health monitoring. With calibration in place, the system

proceeded to perform scheduled hourly measurements from 9:30 AM to 5:30 PM.

6.2.2 Hourly Monitoring Results

Following the initial sensor accuracy testing, the system was used to perform hourly

health monitoring throughout a typical day, from 9:30 AM to 5:30 PM. This process is

repeated hourly, and the user is required to place their finger on the sensors at the start of

each new hour to generate new readings. At the end of the day, the data collected from

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

multiple intervals will allow healthcare providers or the user to analyze their health status

trends throughout the day.

The system was evaluated in a typical indoor environment, primarily in an air-

conditioned room with consistent lighting and stable power supply. A stable Wi-Fi

connection was essential to retrieve accurate timestamps and enable real-time communication

through the Telegram bot. The testing covered an entire working day, with health

measurements taken hourly from 9:30 AM to 5:30 PM. Each measurement included heart rate

(BPM), oxygen saturation (SpO₂), and body temperature.

Below are the hourly monitoring results of the GUI and Telegram alerts:

Figure 6.7 GUI for the First Measure at 9.33 am

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Figure 6.8 Telegram Message for the First Measure

Figure 6.9 GUI for the Second Measure at 10.35 am

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Figure 6.10 Notification Shown on Mobile

Figure 6.11 Telegram Message for the Second Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Figure 6.12 GUI for the Third Measure at 11.30 am

Figure 6.13 Telegram Message for the Third Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Figure 6.14 GUI for the Fourth Measure at 12.31 pm

Figure 6.15 Telegram Message for the Fourth Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

Figure 6.16 GUI for the Fifth Measure at 1.37 pm

Figure 6.17 Telegram Message for the Fifth Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

Figure 6.18 GUI for the Sixth Measure at 2.33 pm

Figure 6.19 Telegram Message for the Sixth Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Figure 6.20 GUI for the Seventh Measure at 3.24 pm

Figure 6.21 Telegram Message for the Seventh Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

Figure 6.22 GUI for the Eighth Measure at 4.32 pm

Figure 6.23 Telegram Message for the Eighth Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Figure 6.24 GUI for the Ninth Measure at 5.30 pm

Figure 6.25 Telegram Message for the Ninth Measure

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Figure 6.26 Database Result of Hourly Data in A Day

As a summary of the result analysis, the system collected nine sets of health data from

9.30 AM to 5.30 PM, with each hour's readings stored in the database. The heart rate (BPM)

ranged from approximately 60.57 to 105 bpm, with variations attributed to different activity

levels or environmental conditions between measurement times. Oxygen saturation (SpO2)

readings were generally stable, ranging from 78.49% to 99.05%, indicating the sensor's

consistency. Lower readings occasionally occurred but remained within acceptable non-

critical limits. The body temperature values ranged between 32.58°C and 35.96°C. These

lower-than-expected readings were primarily due to measurement through the finger,

especially in a cooled indoor setting. However, the application of a correction formula helped

moderate this variance.

The system demonstrated strong data logging reliability, as all measurements were

consistently saved to the MariaDB database without interruption. Telegram alert timing was

also effective, with health data being successfully sent to the user's Telegram within 1–2

seconds after each measurement, reflecting the real-time capability of the system.

Furthermore, environmental impact was evident in the body temperature data, with slight

variability caused by finger-based measurements in an air-conditioned environment. Overall,

the collected data illustrates both the sensor's sensitivity and accuracy, while also highlighting

how external conditions can influence certain physiological readings.

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

6.3 Project Challenges

Several challenges were encountered during the development and testing of the system,

especially when combining different parts like sensors, the graphical interface, and Telegram

messaging.

One challenge was getting accurate readings from the sensors. For example, the body

temperature sensor gave lower readings when used in an air-conditioned room, especially

since the measurement was taken from the finger. To improve this, a correction formula was

used, and testing was repeated several times to check the results against a standard infrared

thermometer.

The user interaction part also brought some problems. For the Telegram bot, it took time

to make sure messages were sent correctly after each reading. This involved fixing token-

related issues, dealing with internet connection problems, and learning how to get the correct

chat ID. On the GUI side, designing a Tkinter window that could update in real time without

freezing was not easy. It had to be tested many times to make sure it stayed responsive and

easy to use while showing live data and saving it to the database.

There were also hardware-related difficulties. The system was built into a small 3D-

printed case, so all the wiring had to be arranged carefully to fit and stay neat. Jumper wires

had to be adjusted and sometimes replaced to avoid loose connections. Another issue came

from the micro HDMI to VGA adapter, which the monitor sometimes cannot display the

Raspberry Pi interface because the connection was not firm. This needed manual checking

and reconnecting the adapter when the screen didn’t turn on.

These challenges made the project more difficult, but they also helped improve the final

system. Each problem was solved step by step, leading to better design, stronger connections,

and more reliable results.

Chapter 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

6.4 Objectives Evaluation

 MariaDB and Tkinter are integrated for real-time display, history table, and graphing

The system effectively met all its stated objectives, demonstrating its potential as a practical

and affordable health monitoring solution. The system was developed using affordable

components such as Raspberry Pi and low-cost sensors, meeting the goal of cost-

effectiveness. Remote health monitoring was enabled through Telegram, allowing users or

caregivers to access vital sign data in real time. Real-time analysis of heart rate, oxygen

saturation level, and body temperature was implemented, supporting timely health decisions

and potentially reducing unnecessary hospital visits. Lastly, the integration of a MariaDB

database with a Python Tkinter GUI provided efficient data management and a responsive,

user-friendly interface. The interface not only displayed real-time measurements but also

maintained a history of recent data entries and provided graphical visualization to help users

track trends over time. This ensured both accessibility and ease of understanding for users

managing their health. Overall, the system fulfilled its intended purpose as a reliable and

accessible health monitoring solution.

6.5 Concluding Remark

The evaluation of the system demonstrated that all the major components functioned as

intended, with reliable performance across multiple test sessions. From data acquisition to

real-time display and remote communication, each feature operates together to achieve the

project's primary goals. The system showed that remote health monitoring using affordable

hardware can be implemented effectively, offering users a convenient way to track their vital

signs in everyday settings. This validation sets a strong foundation for future improvements

and potential deployment in real-world scenarios, particularly for individuals who require

regular monitoring without needing to visit a healthcare facility.

Chapter 7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

This project aimed to develop a low-cost, real-time health monitoring system using

readily available hardware and open-source software. The IoT-based healthcare monitoring

and alert system presented in this project demonstrates the potential for leveraging

technology to improve patient autonomy and healthcare efficiency. By integrating sensors

such as the MAX30102 and MLX90614, the system continuously tracks vital health

parameters like heart rate, oxygen saturation, and body temperature, providing real-time

monitoring and data storage in a MariaDB database. The inclusion of a Tkinter-based GUI

for user interaction and an alert system via Telegram bot was developed to notify users

immediately after each measurement, extending the system’s usability beyond physical

presence.

Throughout the testing phase, the system consistently demonstrated its ability to record

vital signs accurately and send updates within 1–2 seconds, ensuring that users remain

informed of their health status in near real time. By logging hourly readings from morning to

evening, the system helped simulate a daily health routine, supporting users in monitoring

trends and detecting any irregularities.

In conclusion, this project demonstrates how embedded systems and IoT technologies can

be applied to improve personal healthcare, especially in times when remote monitoring is

crucial. The success of this implementation reflects the growing potential of personalized,

technology-driven solutions in healthcare.

Chapter 7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

7.2 Recommendation

Although the health monitoring system achieved its primary objectives, several areas can

be improved to enhance its practicality and long-term usability. Firstly, the sensor placement

can be optimized by designing a proper wearable form, such as a clip-on or wrist-mounted

enclosure, which would ensure consistent contact and improve reading accuracy.

The current setup involves manual wiring and the use of Y-splitters to share the I²C bus,

but it has introduced risks of disconnection and I/O errors. Future versions should consider

using a custom PCB or integrated sensor module to reduce wiring complexity and potential

errors, improving the durability and compactness of the system.

Additionally, extending the interface to mobile or web platforms would make the system

more accessible to a wider range of users, especially for healthcare providers and family

members who want to monitor the user’s health remotely.

Integrating a rechargeable battery would also allow for portable use, removing

dependency on a fixed power source and making the system more practical for continuous

health tracking.

 From a software perspective, adding intelligent analytics such as health trend detection,

abnormality warnings, or generating daily reports could support early intervention and long-

term health planning.

Lastly, to ensure data privacy and integrity, especially if expanded to cloud storage or

mobile apps, future development should include secure data transmission and user

authentication features.

With these improvements, the system can evolve from a functional prototype to a more user-

friendly and practical tool for daily health management. It has the potential to serve not only

individuals with chronic conditions but also general users seeking to maintain their well-

being through regular monitoring.

References

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

REFERENCES

[1] N. B. Kamarozaman and A. H. Awang, “IOT COVID-19 Portable Health Monitoring

System using Raspberry Pi, Node-Red and ThingSpeak,” IEEE Xplore, Aug. 01, 2021.

https://ieeexplore.ieee.org/document/9587444

[2] S. Abdulmalek et al., “IoT-Based Healthcare-Monitoring System towards Improving

Quality of Life: A Review,” Healthcare, vol. 10, no. 10, p. 1993, 2022, doi:

https://doi.org/10.3390/healthcare10101993

[3] Sharrath M, Saran V, Pradeep Kp and Rudrasamy K, “PATIENT HEALTH

MONITORING SYSTEM USING IOT,” International Journal of Creative Research

Thoughts, vol. 10, no. 6, pp. 2320–2882, 2022, Accessed: Apr. 11, 2024. [Online]. Available:

https://ijcrt.org/papers/IJCRT22A6788.pdf

[4] Dr. E. N. Ganesh, “Health Monitoring System using Raspberry Pi and IOT,” Oriental

Journal of Computer Science and Technology, vol. 12, no. 1, pp. 08-13, Apr. 2019, Available:

https://www.computerscijournal.org/vol12no1/health-monitoring-system-using-raspberry-piand-iot/

[5] N. Lakkundi, “Health monitoring using Raspberry pi,” www.skyfilabs.com, 2022

https://www.skyfilabs.com/project-ideas/health-monitoring-using-raspberry-pi

[6] J. Heaney, J. Buick, M. U. Hadi, and N. Soin, “Internet of Things-Based ECG and Vitals

Healthcare Monitoring System,” Micromachines, vol. 13, no. 12, p. 2153, Dec. 2022, doi:

https://doi.org/10.3390/mi13122153

[7] S. Aziz, S. Ahmed, and M.-S. Alouini, “ECG-based machine-learning algorithms for

heartbeat classification,” Scientific Reports, vol. 11, no. 1, Sep. 2021, doi:

https://doi.org/10.1038/s41598-021-97118-5

[8] M. Stoltzfus, A. Kaur, A. Chawla, V. Gupta, F. N. U. Anamika, and R. Jain, “The role of

telemedicine in healthcare: An overview and update,” The Egyptian Journal of Internal

Medicine, vol. 35, no. 1, Jun. 2023, doi: https://doi.org/10.1186/s43162-023-00234-z

[9] Muhammad Waleed, T. Kamal, T.-W. Um, A. Hafeez, B. Habib, and Knud Erik Skouby,

“Unlocking Insights in IoT-Based Patient Monitoring: Methods for Encompassing Large-Data

Challenges,” Sensors, vol. 23, no. 15, pp. 6760–6760, Jul. 2023, doi:

https://doi.org/10.3390/s23156760

[10] S. Iranpak, A. Shahbahrami, and H. Shakeri, “Remote patient monitoring and classifying

using the internet of things platform combined with cloud computing,” Journal of Big Data,

vol. 8, no. 1, Sep. 2021, doi: https://doi.org/10.1186/s40537-021-00507-w

[11] R. Uddin and I. Koo, “Real-Time Remote Patient Monitoring: A Review of Biosensors

Integrated with Multi-Hop IoT Systems via Cloud Connectivity,” Applied Sciences, vol. 14,

no. 5, p. 1876, Jan. 2024, doi: https://doi.org/10.3390/app14051876

[12] A. Olyanasab and M. Annabestani, “Leveraging Machine Learning for Personalized

Wearable Biomedical Devices: A Review,” Journal of Personalized Medicine, vol. 14, no. 2,

p. 203, Feb. 2024, doi: https://doi.org/10.3390/jpm14020203

[13] “Raspberry Pi 4 Model B (4GB),” www.autobotic.com.my.

https://ieeexplore.ieee.org/document/9587444
https://doi.org/10.3390/healthcare10101993
https://ijcrt.org/papers/IJCRT22A6788.pdf
https://www.computerscijournal.org/vol12no1/health-monitoring-system-using-raspberry-piand-iot/
https://www.skyfilabs.com/project-ideas/health-monitoring-using-raspberry-pi
https://doi.org/10.3390/mi13122153
https://doi.org/10.1038/s41598-021-97118-5
https://doi.org/10.1186/s43162-023-00234-z
https://doi.org/10.3390/s23156760
https://doi.org/10.1186/s40537-021-00507-w
https://doi.org/10.3390/app14051876
https://doi.org/10.3390/jpm14020203

References

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

https://www.autobotic.com.my/Raspberry-Pi-4-Model-B-4GB-1-Yr-Warranty

[14]“IoT Based Contactless Body Temperature Monitoring using MLX90614 Infrared Temperature

Sensor, Raspberry Pi with Camera and Email Alert,” circuitdigest.com.

https://circuitdigest.com/microcontroller-projects/iot-based-contactless-body-temperature-monitoring-

using-raspberry-pi-with-camera-and-email-alert

[15]“MAX30102 Oximeter and Heart Rate Sensor Module,” Cytron Technologies Malaysia.

https://my.cytron.io/p-max30102-oximeter-and-heart-rate-sensor-module?r=1

[16]“MLX90614 Non-Contact Infrared Temperature Sensor,” Cytron Technologies Malaysia, 2024.

https://my.cytron.io/p-mlx90614-non-contact-infrared-temperature-sensor

[17]“Interfacing MAX30100 Pulse Oximeter and Heart Rate Sensor with Arduino,” Last Minute

Engineers, Feb. 05, 2022. https://lastminuteengineers.com/max30100-pulse-oximeter-heart-rate-

sensor-arduino-tutorial/

[18]D. Das, “How MAX30102 Pulse Oximeter and Heart Rate Sensor Works and how to Interface it

with Arduino?,” circuitdigest.com, May 04, 2022. https://circuitdigest.com/microcontroller-

projects/how-max30102-pulse-oximeter-and-heart-rate-sensor-works-and-how-to-interface-with-

arduino

[19]P. Valiya, S. Shinde, and M. Paraye, “GUI BASED HEALTH MONITORING SYSTEM USING

RASPBERRY PI.” Accessed: Sep. 04, 2024. [Online]. Available:

https://repo.ijiert.org/index.php/ijiert/article/download/2243/2105/4217

[20]“Raspberry Pi 4 Model B Default GPIO Pinout with PoE Header - Documents - Raspberry Pi -

element14 Community,” community.element14.com.

https://community.element14.com/products/raspberry-pi/w/documents/4317/raspberry-pi-4-model-b-

default-gpio-pinout-with-poe-header

https://www.autobotic.com.my/Raspberry-Pi-4-Model-B-4GB-1-Yr-Warranty
https://circuitdigest.com/microcontroller-projects/iot-based-contactless-body-temperature-monitoring-using-raspberry-pi-with-camera-and-email-alert
https://circuitdigest.com/microcontroller-projects/iot-based-contactless-body-temperature-monitoring-using-raspberry-pi-with-camera-and-email-alert
https://my.cytron.io/p-max30102-oximeter-and-heart-rate-sensor-module?r=1
https://my.cytron.io/p-mlx90614-non-contact-infrared-temperature-sensor
https://lastminuteengineers.com/max30100-pulse-oximeter-heart-rate-sensor-arduino-tutorial/
https://lastminuteengineers.com/max30100-pulse-oximeter-heart-rate-sensor-arduino-tutorial/
https://circuitdigest.com/microcontroller-projects/how-max30102-pulse-oximeter-and-heart-rate-sensor-works-and-how-to-interface-with-arduino
https://circuitdigest.com/microcontroller-projects/how-max30102-pulse-oximeter-and-heart-rate-sensor-works-and-how-to-interface-with-arduino
https://circuitdigest.com/microcontroller-projects/how-max30102-pulse-oximeter-and-heart-rate-sensor-works-and-how-to-interface-with-arduino
https://repo.ijiert.org/index.php/ijiert/article/download/2243/2105/4217
https://community.element14.com/products/raspberry-pi/w/documents/4317/raspberry-pi-4-model-b-default-gpio-pinout-with-poe-header
https://community.element14.com/products/raspberry-pi/w/documents/4317/raspberry-pi-4-model-b-default-gpio-pinout-with-poe-header

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

APPENDIX

Raspberry Pi 4 Model B Datasheet

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

MAX30102 Sensor Datasheet

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

MLX90614 Sensor Datasheet

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

3D-Printed Raspberry Pi 4B Case Full Design

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Appendix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

Poster

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

POSTER

