

STUDYMATE: A SMART MOBILE TASK MANAGER FOR PEAK STUDENT

PRODUCTIVITY

By

Mandy Teoh Jiayi

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS)

BUSINESS INFORMATION SYSTEMS

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

ii
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr. Yong Tien

Fui, for providing me with invaluable guidance, encouragement, and support throughout the

course of my final year project. His expertise, constructive feedback, and dedication were

fundamental in the successful completion of this project. I am truly grateful for the opportunity

to work under his mentorship, and I have learned a great deal from his insights.

A special thank you to my family for their unwavering love, patience, and support, especially

during the difficult times when I faced stress and challenges. Their constant encouragement,

understanding, and presence by my side were my pillars of strength, and I cannot express

enough how much it means to me. They have always been my source of motivation, and I truly

appreciate everything they have done for me.

Finally, I would like to thank everyone who indirectly supported me, whether through their

advice or being part of my journey.

iii
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Mandy Teoh Jiayi. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Information Systems (Honours) Business

Information Systems at Universiti Tunku Abdul Rahman (UTAR). This Final Year

Project proposal represents the work of the author, except where due

acknowledgment has been made in the text. No part of this Final Year Project

proposal may be reproduced, stored, or transmitted in any form or by any means,

whether electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Example

iv
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project aims to address critical challenges in academic task management through the

development of an innovative task management system tailored specifically for any level of

students who need a personalized assistant with their studies. Many existing productivity tools

fall short in key areas such as task prioritization, real-time collaboration, and progress tracking,

leading to confusion, miscommunication, and increased stress. This system introduces several

advanced features, including a dynamic task prioritization algorithm, real-time collaboration

capabilities, and comprehensive project tracking and visualization tools. The system seeks to

enhance students' organizational efficiency, improve collaboration, and provide clear visibility

into task progress. The project employs a prototyping approach and utilizes modern

technologies to develop a robust platform that addresses the unique needs of students in

managing their academic workloads.

Area of Study: Mobile Application Development, Productivity and Time Management

Keywords: Dynamic Weighted Task Prioritization Algorithm, Earliest Deadline First (EDF),

Task Completion Detection, Mobile Task Management, Student Productivity App

v
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

ACKNOWLEDGEMENTS ii

COPYRIGHT STATEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1 - 8

1.1 Problem Statement and Motivation 2

1.2 Objectives 3

1.3 Project Scope and Direction 4

1.4 Contributions 5

1.5 Report Organization 8

CHAPTER 2 LITERATURE REVIEW 9 - 36

2.1 Review of Technologies 9 - 22

 2.1.1 Hardware Platform 9

 2.1.2 Firmware/Operating System 9

 2.1.3 Database 10

 2.1.4 Programming Language 10

 2.1.5 Algorithm 11

 2.1.6 Summary of the Technologies Review 20

2.2 Existing Systems 23 - 32

2.2.1 Apple Reminders 23

2.2.2 Microsoft To-Do 25

2.2.3 Todoist 27

2.2.4 TickTick 29

 2.2.5 Trello 31

vi
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Limitation of Previous Studies 33

2.4 Proposed Solutions 35

2.5 Comparison Between Existing and Proposed Applications 36

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 37 - 87

3.1 System Design Diagram

37 - 84

 3.1.1 Block Diagram 37

 3.1.2 Entity Relationship Diagram 38

 3.1.3 Class Diagram 39

 3.1.4 Use Case Diagram 40

3.2 Methodology 85

 3.3 Implementation Challenges and Issues 86

 3.4 Project Timeline 87

CHAPTER 4 SYSTEM EVALUATION AND DISCUSSION 88 - 112

 4.1 Blackbox 88 - 94

4.2 Client Satisfaction Survey Analysis 97 -111

4.3 Results and Benchmark 112

4.4 Objectives Evaluation 113

4.5 Concluding Remark 114

CONCLUSION 115

REFERENCES 116 - 118

APPENDIX A

 A.1 Poster A-1

APPENDIX B

 A.2 Operating Manual A-2

vii
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure V.I Transformer architecture (Figure obtained from [17]) 16

Figure 2.2.1 Apple Reminders 23

Figure 2.2.2 Microsoft To-Do 25

Figure 2.2.3 Todoist 27

Figure 2.2.4 TickTick 29

Figure 2.2.5 Trello 31

Figure 3.1.1 Block Diagram 37

Figure 3.1.2 Entity Relationship Diagram 38

Figure 3.1.3 Class Diagram 39

Figure 3.1.4 Use Case Diagram 40

Figure 3.1.5 Activity Diagram – Dashboard 41

Figure 3.1.6 Activity Diagram – Progress Bar 43

Figure 3.1.7 Activity Diagram – Personalized AI Assistant 46

Figure 3.1.8 Activity Diagram – Task Collaboration 50

Figure 3.1.9 Activity Diagram – Manage Comments 53

Figure 3.1.10 Activity Diagram – Voice/Text/URLs Comment Searching 57

Figure 3.1.11 Activity Diagram – Notifications 60

Figure 3.1.12 Activity Diagram – Device Calendar Sync 62

Figure 3.1.13 Activity Diagram – Register and User Login 65

Figure 3.1.14 Activity Diagram – Home Page 67

Figure 3.1.15 Activity Diagram – Manage Schedule 70

Figure 3.1.16 Activity Diagram – Schedule Dynamic Reordering 74

Figure 3.1.17 Activity Diagram – Manage To-Do 76

Figure 3.1.18 Activity Diagram – Dynamic Weighted Task Prioritization 79

Figure 3.1.19 Activity Diagram – Past Activity 82

Figure 3.2 Prototyping Methodology 85

Figure 3.4.1 FYP 1 Timeline – Gantt Chart 87

Figure 3.4.2 FYP 2 Timeline – Gantt Chart 87

viii
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure B1.1 Login Page A-2

Figure B1.2 Sign Up Page A-3

Figure B1.3 AI Assistant (AI panel) A-4

Figure B1.4 AI Assistant (Chatbot) A-5

Figure B1.5 Home Page A-6

Figure B1.6 Settings A-7

Figure B1.7 Schedule List A-8

Figure B1.7.1 Schedule Details A-9

Figure B1.7.2 Schedule Add/ Edit A-10

Figure B1.8 To-Do List A-11

Figure B1.8.1 To-Do Details (Individual) A-12

Figure B1.8.2 To-Do View (Collaborated) A-13

Figure B1.8.3 To-Do Add/ Edit A-14

Figure B1.9 Dashboard A-15

Figure B1.10 Notification A-16

ix
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 3.1.1 Specification of laptop 9

Table I.I Dynamic Reordering Algorithm Behavioural Logic 11

Table II.I Deadline Urgency Score 12

Table II.II Subtask Scores 12

Table II.III Alert Scores 13

Table II.IV Priority Scores 13

Table 2.1.6(a) Comparison of Cloud Generative AI APIs and Models 21

Table 2.1.6(b) Comparison of Speech-to-Text Options 21-22

Table 2.4 Comparison between existing and proposed applications 36

Table 3.1.4 Use Case Description – Dashboard 42

Table 3.1.5 Use Case Description – Progress Bar 44-45

Table 3.1.6 Use Case Description – Personalized AI Assistant 47-49

Table 3.1.7 Use Case Description – Task Collaboration 51-52

Table 3.1.8 Use Case Description – Manage Comments 54-56

Table 3.1.9 Use Case Description – Voice/Text/URLs Comment Searching 58-59

Table 3.1.10 Use Case Description – Notifications 61

Table 3.1.11 Use Case Description –Device Calendar Sync 63-64

Table 3.1.12 Use Case Description – Register and User Login 66

Table 3.1.13 Use Case Description – Home Page 68-69

Table 3.1.14 Use Case Description – Manage Schedule 71-73

Table 3.1.15 Use Case Description – Schedule Dynamic Reordering 75

Table 3.1.16 Use Case Description – Manage To-Do 77-78

Table 3.1.17 Use Case Description – Dynamic Weighted Task Prioritization 80-81

Table 3.1.18 Use Case Description – Past Activity 83-84

x
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

EDF Earliest Deadline First

TCD Task Completion Detection

CSP Completion of Structured Processes

MoE Mixture-of-Experts

STT Speech-to-Text

ASR Automatic Speech Recognition

STFT Short-Time Fourier Transform

MFCCs Mel-Frequency Cepstral Coefficients

RNN-T Recurrent Neural Network Transducer

VAD Voice Activity Detection

CHAPTER 1

 1
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Introduction

In today’s fast-paced academic environment, students face a multitude of challenges in

managing their workload effectively. Task management, which encompasses organizing,

prioritizing, and tracking tasks, is crucial for academic success. However, many existing

productivity tools fall short in addressing the unique needs of students, resulting in widespread

issues such as procrastination, disorganization, and inefficient collaboration.

Procrastination, a tendency to delay tasks in favor of more immediately gratifying activities,

significantly impacts students' productivity [1]. This tendency is often exacerbated by the

inability to effectively prioritize tasks, which can lead to confusion and a lack of clear direction.

Current tools, such as Apple Reminders [2] and Microsoft To-Do [3], offer basic functionalities

but fail to address the complexities of task prioritization when multiple tasks share the same

priority level. These limitations result in students overlooking urgent tasks or struggling to

determine which task to tackle first.

Moreover, real-time collaboration is an integral part of academic life, especially for group

projects and collaborative assignments. Despite the importance of effective communication

and document management, many existing tools lack robust collaboration features. For

example, Microsoft To-Do does not support real-time comments on tasks or the integration of

shared document links, leading to fragmented communication and inefficiencies [4]. This

fragmentation forces students to rely on multiple platforms for communication and document

management, complicating teamwork and reducing overall productivity.

Another critical issue is the lack of visibility into task status and project progress. Tools like

Todoist offer basic task categorization but fall short in providing detailed insights into task

completion and project status [3]. Without a clear understanding of where they stand on their

tasks, students may experience heightened stress, missed deadlines, and last-minute rushes.

The absence of advanced tracking and visualization features prevents students from monitoring

their progress accurately and managing their workload effectively.

In light of these challenges, there is a pressing need for a task management system specifically

designed to address these issues. This proposal aims to develop a comprehensive system that

incorporates dynamic task prioritization, seamless real-time collaboration, and advanced

CHAPTER 1

 2
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

project tracking to improve students' task management efficiency and collaborative

effectiveness. By addressing the shortcomings of existing tools, this system will provide

students with a more effective solution for managing their academic responsibilities, ultimately

enhancing their organizational skills and reducing stress.

1.1 Problem Statement and Motivation

Managing academic responsibilities effectively is a crucial skill for students, yet existing task

management tools often fall short in addressing their specific needs. The overwhelming nature

of multiple deadlines, projects, and assignments necessitates a structured, intuitive system for

task organization and collaboration. However, current tools present three major limitations that

hinder students’ efficiency and productivity.

Problem Statement #1: Ineffective Task Organization and Prioritization

Effective task organization and prioritization are critical for students to manage their academic

workload efficiently. However, students often face challenges when it comes to distinguishing

the importance of various tasks, especially when multiple assignments are deemed equally

important. This can lead to confusion and a lack of clear direction. Apple Reminders [1] has

the functionality to set tasks as low, medium, and high priority; however, issues occur when

more than one task has the same priority level. The system will not rearrange or reorganize the

tasks based on other applied conditions, such as deadlines. This limitation can result in students

overlooking urgent tasks or struggling to determine which task to tackle first.

Problem Statement #2: Limited Real-Time Collaboration and Document Integration

Collaboration is an essential aspect of student life, particularly for group assignments and

projects. However, many existing tools lack robust collaboration features, making it difficult

for students to stay on the same page. This can result in miscommunication, duplicated efforts,

and missed deadlines. Microsoft To Do [2] lacks the ability to add real-time comments on tasks,

preventing team members from providing instant feedback, discussing details, or asking

questions directly within the task. This limitation forces users to rely on separate

communication channels like WhatsApp and WeChat, leading to fragmented conversations and

misunderstandings. Additionally, users cannot add shared document links directly into the

workspace, requiring them to store and manage task-related documents in separate channels.

This disjointed approach complicates task management and hampers efficient collaboration.

CHAPTER 1

 3
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Problem Statement #3: Lack of visibility into task status and project progress

A significant issue students face is the lack of visibility into task status and project progress.

Without a clear understanding of where they stand on their assignments and projects, students

can easily fall behind or become overwhelmed. This lack of insight can lead to last-minute

rushes, incomplete work, and heightened stress levels. Currently, tools like Todoist [3] allow

for basic task categorization, but they fall short in several critical areas. For example, it does

not offer features to categorize each task with detailed statuses such as "in progress" or to show

granular completion levels like 50% or 80%. This absence of detailed task status tracking

prevents students from monitoring their progress accurately and understanding which tasks

require immediate attention.

1.2 Project Objectives

Objective #1: Enhance Task Organization and Prioritization Using Dynamic Weighted

Task Prioritizing Algorithm

To improve how students manage their tasks, a sophisticated task management system will be

developed that dynamically rearranges and prioritizes tasks based on multiple factors, such as

deadlines, dependencies, and workloads. This multifaceted system will not just categorize tasks

by priority but will also account for overlapping deadlines and task dependencies, ensuring

students tackle the most urgent and critical assignments first. The platform will feature detailed

task statuses (e.g. "in progress" or "awaiting review") and offer intuitive visualizations like

progress bars and charts to keep users informed about the progress and upcoming deadlines.

By providing real-time updates on task status and a clear visual representation of workload,

students can better manage their time, avoid task overload, and reduce stress.

Objective #2: Enhancing Real-Time Collaboration with Unified Messaging and File

Integration with Smart Search

Effective collaboration is vital, especially in group projects and shared academic assignments.

To strengthen teamwork, the system will include real-time commenting directly within tasks,

allowing students and collaborators to exchange feedback, ask questions, and resolve issues

without relying on external platforms. In addition, a comprehensive messaging feature will be

implemented, supporting both text and voice input. Voice recordings will be automatically

transcribed into text for accessibility, ensuring that spoken contributions are searchable and

CHAPTER 1

 4
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

readable by all team members. The system will also provide a powerful search function that

scans across all forms of communication in the comment section including text messages, voice

messages, attached files, and shared URLs. This enables users to quickly locate important

information without manually browsing long discussion threads. Alongside this, shared

document links and attachments will be integrated into the workspace, ensuring that all

resources and discussions remain centralized. By consolidating real-time communication,

transcription, and advanced search capabilities into one platform, the system minimizes

fragmentation, reduces information loss, and promotes efficient, transparent collaboration.

Objective #3: Implementing Smart AI Assistant for Daily Planning and Project Oversight

This objective not only focuses on enhancing visibility into task progress and overall project

status through real-time tracking and visualization but also integrates a Smart AI Assistant to

act as a virtual secretary. The AI assistant leverages user data including tasks, schedules, and

deadlines, etc. to suggest personalized daily plans, highlight urgent priorities, and recommend

optimal time allocations. It will allow users to interact naturally through text or speech,

enabling commands such as “Plan my day” or “Reschedule my meeting”. Next, the project

tracking system will continue to provide granular completion levels (e.g., 50% or 80%

complete), progress dashboards, and timeline views to help users monitor workload and

deadlines. Alongside this, the AI assistant will proactively organize schedules, suggest focus

sessions, and remind users of pending obligations, ensuring that their daily workflow is both

efficient and manageable. By combining visualization tools with an intelligent personal

assistant, users will gain not only awareness of their progress but also actionable guidance to

stay organized and productive.

1.3 Project Scope and Direction

The project aims to develop a specialized mobile-based task management system that addresses

common challenges faced by students, professionals, and teams in managing their daily

workload. This system will provide a tailored solution to these issues by enhancing overall task

management and productivity. The system will offer a dynamic task management framework

that automatically arranges tasks based on urgency, deadlines, and workload, ensuring users

focus on what matters most. It will also include a unified collaboration space with messaging

and file-sharing features, supporting both text and voice input. Voice recordings will be

transcribed into searchable text, and an integrated search function will allow users to find any

CHAPTER 1

 5
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

comment, attachment, or URL shared in the workspace. Finally, the system will feature a smart

AI assistant that acts like a personal secretary, helping users plan their day, reschedule tasks,

and receive personalized recommendations through natural interaction.

Target user:

• Individual students who need a structured approach to managing academic workloads.

• Student groups collaborating on academic assignments and projects.

• Professionals and teams who require better organization, communication, and planning

tools.

Since each individual has a unique pace and working style, this system will not impose any

standardize performance metrics. Instead, it will serve as a flexible and adaptable tool to help

users organize their tasks according to their own preferences.

1.4 Contributions

The proposed task management system introduces several innovative features and advanced

technologies aimed at significantly enhancing students’ productivity and collaboration in

handling academic workloads. By addressing key challenges such as missed deadlines,

inefficient teamwork, and disorganized tasks, this platform provides a smart, dynamic, and

user-friendly solution that caters specifically to the needs of students, study groups, and

possibly university lecturer.

Contribution #1: Dynamic Task Prioritization and Scheduling to Prevent Missed

Deadlines, Addressing the First Problem Statement, Ineffective Task Organization and

Prioritization

Our system leverages a sophisticated dynamic weighted task prioritization algorithm that

adjusts task hierarchies based on multifaceted factors such as deadlines urgency, dependencies,

and individual workload which is addressing the first problem statement. Unlike static task

management systems, this adaptive algorithm ensures that students focus on the most urgent

and important task first, preventing last-minute rushes and helping them stay on track [5].

Addressing the challenge of managing and scheduling tasks efficiently, this advance cost-

efficient task prioritization algorithm based on Earliest Deadline First (EDF) principles as

studied by Spuri and Buttazzo [6], ensures that tasks with the nearest dues dates receive the

CHAPTER 1

 6
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

highest priority. By dynamically adjusting to new tasks and deadlines, our system reduces

delays and minimizes the risk of missing critical submissions. This approach helps students

manage their workload effectively, prevent last-minute rushes, and meet deadlines with

reduced stress.

Contribution #2: Seamless Collaboration Framework to Enhance Teamwork Efficiency,

Addressing the Second Problem Statement, Limited Real-Time Collaboration and

Document Integration

Another major contribution is the seamless collaboration framework that are specifically

designed for group projects. This is due to group projects often suffer from miscommunication

and inefficient task distribution, which can hinder productivity. To address the problem stated

in the second statement, our system includes a real-time task collaboration feature, allowing

students to communicate, assign responsibilities, and track progress directly within their

workspace. The integration of comment section with chat functionality and document-sharing

features ensures that discussions and resources are centralized, eliminating the need for external

apps and ensuring all team members stay aligned and productive throughout the collaboration.

Additionally, the collaboration feature will be expanded into a unified messaging system that

supports text, voice, file attachments, and shared URLs. Voice recordings will be automatically

transcribed into searchable text, ensuring accessibility and convenience. A universal search

function will allow users to locate any past message, transcription, or file in the comment

section, reducing information loss and enabling faster retrieval of important details.

Contribution #3: Comprehensive Task Tracking and Visualization to Minimized

Disorganization, Addressing the Third Problem Statement, Lack of Visibility into Task

Status and Project Progress

To enhance visibility into task progress and overall project status, our system includes a

comprehensive project tracking and visualization framework. This feature provides granular

completion levels and a unified dashboard for monitoring all ongoing projects and tasks. We

have incorporated visual aids such as dashboards and progress bars, which offer students a

detailed understanding of task interconnections and project timelines. This advanced tracking

system aids in better prioritization and helps students manage their projects with greater

precision.

CHAPTER 1

 7
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Our system also integrates User Device Calendar to streamline task management related to

scheduled events. This feature enables users to schedule tasks and events efficiently, while

automatic updates ensure that deadlines and important academic activities are never missed.

Additionally, our system supports the Completion of Structured Processes (CSP), breaking

down complex assignments into smaller, manageable milestones with clear tracking of

progress until completion [7].

A novel aspect of our system is the integration of Task Completion Detection (TCD) to enhance

task management. This feature automatically tracks and updates task progress, providing

students with timely feedback and insights into their workload. By detecting completed tasks

in real-time, the system ensures that students stay organized and aware of their progress. This

approach helps them maintain efficiency, avoid redundant work, and stay motivated throughout

their academic journey [7].

Contribution #4: Smart AI Assistant for Personalized Daily Planning, Addressing the

First and Third Problem Statement

Finally, the system introduces a Smart AI Assistant that functions as a virtual secretary. These

assistant leverages user data including tasks, subtasks, and schedules to generate personalized

daily plans, suggest focus sessions, and highlight urgent priorities. Users can interact naturally

through text or voice, asking the assistant to schedule meetings, reschedule deadlines, or

recommend optimal study/work blocks. By combining dynamic task awareness with progress

visibility and proactive guidance, the AI assistant transforms the platform from a static task

tracker into a dynamic productivity partner, empowering users to manage their day with

confidence and reduced stress.

CHAPTER 1

 8
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Report Organization

This report is structured to guide readers through the development of our task management

system for students. Chapter 1 (Introduction) establishes the overall purpose and direction of

the project including background of the study, the problem statement and motivation, project

objectives, scope, target users, and expected contributions. Chapter 2 (Literature Review)

reviews the technologies adopted in this project, highlights the limitations of previous studies,

proposes solutions to overcome them, and compares the proposed system against existing

applications. Chapter 3 (Proposed Method/Approach) describes the methodology employed in

the development of the system, including system design diagrams. It also explains the

prototyping methodology used, discusses implementation challenges and issues encountered

during development, and presents the project timeline. Chapter 4 (System Evaluation and

Discussion) provides the evaluation and testing of the system through methods such as black-

box testing, survey-based client satisfaction analysis, and performance benchmarks. The

chapter also discusses the results obtained, highlights the challenges faced, and evaluates the

extent to which the stated objectives have been achieved. Finally, Chapter 5 (Conclusion)

summarizes the project’s overall achievements, reflects on the success of the objectives, and

discusses future work and potential enhancements to improve the system further.

CHAPTER 2

 9
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Literature Reviews

2.1 Review of Technologies

2.1.1 Hardware Platform

The hardware for this project includes a laptop, serving distinct roles in the development

process. The laptop is the primary device used for writing, running, and testing the software,

providing the necessary computing power to handle the integrated development environment

(IDE), database management, and simulation tools. It allows developers to code, debug, and

implement the features of the task management system.

Description Specifications

Model Matebook D 15 (Boh-WAQ9R)

Processor AMD RYZEN 5

Operating System Windows 10

Graphic NVIDIA GeForce RTX 3070, 8 GB GDDR6

Memory 8GB RAM

Storage 512GB NVME SSD

Table 2.1.1 Specifications of laptop

2.1.2 Firmware/Operating System

The project was developed primarily on Windows 10, which offered stable support for the

Flutter SDK, Android Studio, and Firebase CLI. Visual Studio Code served as the main code

editor, while Android Studio was used exclusively for running mobile emulators. For mobile

testing, Android Studio’s emulator runtime (Ladybug Feature Drop 2024.2.2) is used to

simulate real Android devices, ensuring the system’s features can be tested effectively before

deployment. The development environment thus ensured compatibility with required

frameworks, while also allowing real-time debugging through Android Debug Bridge (ADB)

for both emulated and physical devices.

CHAPTER 2

 10
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.3 Database

The project uses Google Firebase Firestore as its primary database. Firestore is a NoSQL cloud

database that provides real-time data synchronization across clients, supporting offline

persistence and scalability. It is well-suited for mobile task management applications as it

allows efficient storage and retrieval of hierarchical data, such as schedules, tasks, subtasks,

collaborators, and notifications. Firestore’s flexible schema enables the dynamic storage of

various data types, which is important for features like prioritization, messaging, and schedule

tracking.

Primary store: Firebase Firestore (NoSQL, document/collection model).

Object store: Firebase Storage (enabled under the paid tier with budget constraints).

Collections: users, notifications, schedules, todos (subcollections: comments, voices,

 attachments), categories, completed_tasks

In addition to Firestore, Firebase Storage was utilized to manage binary objects such as voice

recordings and file attachments. Since this project operates under a constrained billing plan,

several cost-control measures were implemented, including file size restrictions, format

validation, and lifecycle policies to delete temporary or unused files. Together, Firestore and

Storage provided a balance between structured data management and flexible multimedia

storage. Firebase Authentication was used to manage user accounts securely, while Firebase

Cloud Messaging (FCM) supported the delivery of task reminders, assistant responses, and

collaborative updates.

2.1.4 Programming Language

The client application was developed in Dart using the Flutter framework. Flutter’s widget-

based architecture enabled the design of a consistent and responsive user interface across

Android devices. Its integration with Firebase plugins provided seamless support for

authentication, real-time updates, and notifications. On the backend, Node.js was used within

Firebase Cloud Functions to implement serverless operations such as handling voice

transcription requests and managing interactions with the Google Generative AI API. To ensure

version control and collaborative development practices, all source code was pushed to GitHub.

GitHub served not only as a repository for maintaining different versions of the system but also

as a backup solution for safe storage and synchronization across development environments.

CHAPTER 2

 11
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.5 Algorithm

I. Dynamic Reordering Algorithm

This approach introduces a real-time schedule reordering mechanism that organizes all

schedules entries from present to future based on the scheduled start date. The aim is to increase

clarity and usability by ensuring that ongoing and recent events appear, followed by upcoming

ones.

Schedules are categorized and sorted dynamically using the following formula:

𝐼𝑓 𝑇𝑠𝑡𝑎𝑟𝑡 ≤ 𝑇𝑛𝑜𝑤 → 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

𝐼𝑓 𝑇𝑠𝑡𝑎𝑟𝑡 > 𝑇𝑛𝑜𝑤 → 𝐹𝑢𝑡𝑢𝑟𝑒

Where:

• 𝑇𝑛𝑜𝑤 = Current Time

• 𝑇𝑠𝑡𝑎𝑟𝑡 = Schedule’s start time

Behavioural Logic

Condition Category Placement Sorting Criteria

𝑇𝑠𝑡𝑎𝑟𝑡 ≤ 𝑇𝑛𝑜𝑤 Present Appears at the top Ascending 𝑠𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒

𝑇𝑠𝑡𝑎𝑟𝑡 > 𝑇𝑛𝑜𝑤 Future Appears below present Ascending 𝑠𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒

𝑠𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒 == 𝑛𝑢𝑙𝑙 Present Appears at the very top Treated as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒

Table I.I Dynamic Reordering Algorithm Behavioural Logic

This dynamic sorting approach improves chronological clarity, ensuring users see their most

relevant schedules first. Besides, it supports real-time interaction, requires no manual refresh,

and adapts to both user changes and time-based transitions naturally [20 -> 8].

CHAPTER 2

 12
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

II. Dynamic Weighted Task Prioritization Algorithm

This approach focuses on automatically evaluating and prioritizing tasks using a scoring model

that adapts in real-time based on urgency, workload, task type, and current task status [21 ->

9]. Hence, higher score will be prioritized first.

Each task is assigned a dynamic priority score Ƥ calculated as:

𝑃 = (𝑊𝑑 × 𝑈𝑑) + (𝑊𝑙 × 𝑈𝑙) + (𝑊𝑡 × 𝑈𝑡) + (𝑊𝑠 × 𝑈𝑠)

Where:

• 𝑊𝑑: Weight of Deadline Urgency

• 𝑈𝑑: Urgency score based on proximity to the deadline (closer deadline = higher score)

• 𝑊𝑙: Weight of Estimated Workload

• 𝑈𝑙: Number of subtasks or estimated effort (scaled 0–1 based on max workload)

• 𝑊𝑟: Weight of Selected Reminder Urgency

• 𝑈𝑟: Score based on alert setting (More proactive reminders = higher score)

• 𝑊𝑝: Weight of Selected Priority Level

• 𝑈𝑝: Score based on High/Medium/Low selection

Time Remaining Until Deadline 𝑼𝒅

Within 1 hour 1.0

Within 1 day 0.8

Within 1 week 0.5

Within 1 month 0.3

Beyond 1 month 0.1

Table II.I Deadline Urgency Score

Number of Subtasks 𝑼𝒍

10 or more 1.0

7-9 0.8

4-6 0.6

2-3 0.4

1 1.2

0 0.0

Table II.II Subtasks Scores

CHAPTER 2

 13
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Alert Setting 𝑼𝒓

At time of event or None 0.1

5–15 minutes before 0.3

30 minutes – 1 hour before 0.5

1 day before 0.7

1 week before 1.0

Table II.III Alert Scores

Priority Level 𝑼𝒑

High 1.0

Medium 0.5

Low 0.2

Table II.IV Priority Scores

III. Completion Detection

Schedule Completion Detection

Schedule completion is determined by comparing the current time with the schedule’s deadline.

To account for a grace period, the system will consider a schedule as “overdue” if the current

time is greater than one day after the deadline. Hence, the schedule will be dynamically

removed from the “Schedule” list and move to “Overdue Schedule” list.

Formula:

𝑂𝑣𝑒𝑟𝑑𝑢𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 > 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 + 1 𝑑𝑎𝑦

This logic ensures that a task is only marked as overdue after a full day has passed beyond the

original deadline, reducing false positives from minor delays.

Task Completion Detection

Task completion is determined in the following ways:

1. If the task is explicitly marked as completed by the user.

2. If all associated subtasks are individually marked as completed.

Once task is marked as completed, it will be dynamically removed from the “Task” list and

move to “Completed Task” List.

CHAPTER 2

 14
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

IV. Speech-to-Text Algorithm

The Speech-to-Text (STT) algorithm, also known as Automatic Speech Recognition (ASR), is

responsible for converting spoken audio into text. In this project, it is applied to allow users to

record comments and issue voice commands to the AI assistant. The system integrates Google

Cloud Speech-to-Text, which employs advanced deep learning models trained on multilingual

datasets to achieve accurate recognition.

(a) Front-end feature extraction

The first stage of ASR is acoustic feature extraction, which transforms the raw waveform into

compact representations that preserve phonetic information. Commonly, the speech signal 𝑥(𝑡)

is segmented into short frames using a window function before applying the Short-Time

Fourier Transform (STFT) [10]. The STFT is expressed as:

𝑋(𝑛, 𝑤) = ∑ 𝑥[𝑚] ∙ 𝑤[𝑛 − 𝑚] ∙ 𝑒−𝑗𝑤𝑚

𝑚

Where 𝑤[𝑛] is a windowing function such as the Hamming window. From the magnitude

spectrum, Mel filterbanks and Mel-Frequency Cepstral Coefficients (MFCCs) are derived,

which map the spectrum to a perceptual frequency scale approximating human auditory

perception [11], [12]. These features reduce dimensionality while retaining phonetic

distinctions critical for recognition.

In the application, the Google Cloud Speech-to-Text API transcodes uploaded audio into 16

kHz mono WAV using FFmpeg before extracting log-Mel features, ensuring that multilingual

recordings (English, Bahasa Malaysia, and Mandarin Chinese) are standardized for model

input.

(b) Acoustic and Language Modeling

Google Speech-to-Text then processes the extracted features through deep neural networks that

map acoustic patterns to linguistic units. While the internal implementation uses advanced

architectures such as the Recurrent Neural Network Transducer (RNN-T) and Conformer

encoders [13], [14], the principle remains the same:

• The acoustic model captures relationships between sound features and phonemes.

CHAPTER 2

 15
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• The language model incorporates context to predict which word sequence is most

likely.

For example, if the input audio corresponds to “Submit assignment by Friday”, the acoustic

model recognizes the phonetic sequence, while the language model ensures that the output

forms a grammatically correct sentence instead of unrelated words.

(c) Decoding Process

The decoding stage determines the final text output by selecting the word sequence with the

highest probability. This is formulated as:

ŷ = arg max 𝑃 (𝑦|𝑥)

where 𝑥 represents the sequence of acoustic features and 𝑦 represents a possible word

sequence. In practice, Google’s API employs beam search decoding to evaluate multiple

candidate hypotheses in parallel before choosing the most likely transcription [15].

In this project, the speech-to-text process is integrated into two key features:

1. Voice Comments: When a user records a comment, the audio file is uploaded to the

server and sent to Google Speech-to-Text. The recognized text is then stored in

Firestore alongside the audio file reference, making the comment searchable by both

voice and text.

2. AI Assistant Commands: When the assistant microphone is activated, the audio

stream is transcribed in real time. The recognized text is then passed to the AI assistant

(Gemini 2.5 Flash) as input, enabling users to issue natural voice commands such as

“Plan my day” or “Reschedule meeting to 3 PM.”

The recognition system supports multiple languages, and this project enables recognition in

English, Bahasa Malaysia, and Mandarin Chinese. For Mandarin input, the transcription output

is forced into Han characters instead of Pinyin, ensuring readability and accuracy for native

users. Additionally, the system handles background noise by applying voice activity detection

(VAD), ensuring that only speech segments are processed [16].

CHAPTER 2

 16
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

V. Generative AI

Figure V.I Transformer architecture

Google’s Gemini 2.5 Flash is a large-scale generative artificial intelligence model built on the

transformer architecture, specifically a decoder-only variant [17]. Transformers are neural

network architectures that excel at processing sequential data, making them ideal for language

and other multimodal tasks [18]. A key component of the Transformer is the self-attention

mechanism, which allows the model to weigh the importance of different parts of the input

sequence when processing each element [17]. The model functions as a multimodal reasoning

engine capable of processing and generating text, audio, and images. In the context of this

project, it is employed as the personal AI assistant that analyses Firestore data (tasks, schedules,

and notifications) and returns structured responses in JSON format.

(a) Self-Attention Mechanism: The Core of Transformer

The self-attention mechanism is crucial for the Transformer architecture, allowing the model

to weigh the importance of different words in the input sequence when processing each word

17]. It consists of applies self-attention to capture long-range dependencies between input

tokens. Given a sequence of tokens 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), each token is projected into a vector

embedding [17]. These embeddings are then processed through multi-head self-attention

layers.

CHAPTER 2

 17
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The self-attention calculation is defined as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉

Where:

• Q = query; K = key; V = value matrices derived from the input embeddings.

• 𝑑𝑘 is the dimensionality of the key vectors.

• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function normalizes the attention weights across the sequences.

This calculation allows the model to capture long-range dependencies and contextual

relationships within the input sequence. For example, when processing the word "it" in a

sentence, the self-attention mechanism can determine whether "it" refers to a "cat" or a "house"

by looking at the surrounding words and their relationships. In this project, self-attention

enables Gemini to reason over Firestore data holistically. For instance, when the user requests

“Plan my day”, the model simultaneously attends to multiple attributes such as task deadlines,

priority levels, and scheduled events. This ensures that urgent tasks (e.g., “ITPE assignment

due tomorrow”) receive more attention than less critical items (e.g., “Buy groceries”). By

dynamically focusing on relevant inputs, the assistant highlights the most urgent and

contextually appropriate tasks for the user.

(b) Mixture-of-Experts (MoE)

Mixture-of-Experts (MoE) is a technique used to improve the efficiency and capacity of large

models like Gemini 2.5 Flash. Instead of activating all model parameters for every input, MoE

dynamically selects a subset of specialized "experts" (sub-networks) to process each input [18].

This significantly reduces the computational cost during inference while maintaining or even

increasing the model's overall capacity.

Mathematically, for an input vector ℎ:

𝑦 = ∑ 𝑔𝑖

𝐸

𝑖=1

(ℎ)𝑓𝑖(ℎ)

Where:

• 𝐸: total number of experts

• 𝑓
𝑖
(ℎ): output of expert 𝑖

CHAPTER 2

 18
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• 𝑔𝑖(ℎ): gating function that assigns a weight to each expert (often sparse, so only top-k

experts are active).

The gating function often uses a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 or 𝑡𝑜𝑝 − 𝑘 selection mechanism to ensure that only

a few experts are active for each input [18]. This sparsity is what makes MoE models

computationally efficient. By routing inputs to specialized experts, the model can learn a wider

range of patterns and handle more diverse tasks without a proportional increase in

computational resources. In practice, this allows Gemini to efficiently allocate resources

depending on the user’s request.

Example:

• If the user says, “Summarize my overdue tasks”, the task reasoning expert is routed.

• If the user says, “Change meeting time to 3 PM”, the schedule/time reasoning expert

is activated.

This selective activation ensures fast, low-latency responses while maintaining a broad

knowledge capacity. For the mobile-based assistant, this efficiency is critical in delivering real-

time task suggestions without overloading computational resources.

(c) Attention and Probability Calculation

At each decoding step, Gemini predicts the next token by computing a probability distribution

for the next token in JSON format [17]. The probability of generating token 𝑡𝑗 given context

tokens 𝑡1, … , 𝑡𝑗−1 is:

𝑃(𝑡𝑗|𝑡1, … , 𝑡𝑗−1) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜ℎ𝑗)

Where:

• ℎ𝑗 : hidden state output of the decoder for position 𝑗.

• 𝑊𝑜: output projection matrix

• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function ensures the probabilities sum to 1 across all vocabulary tokens

This ensures that the most likely next token is selected during generation. In this project, this

mechanism drives task suggestions and scheduling decisions. For example, given the context:

CHAPTER 2

 19
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

{
 "𝑡𝑜𝑑𝑜𝑠𝑂𝑝𝑒𝑛": [
 { "𝑡𝑖𝑡𝑙𝑒": "𝑆𝑡𝑢𝑑𝑦 𝐹𝑌𝑃 𝑟𝑒𝑝𝑜𝑟𝑡", "𝑑𝑢𝑒𝐷𝑎𝑡𝑒": "2025 − 09 − 01", "𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦": "𝐻𝑖𝑔ℎ" },
 { "𝑡𝑖𝑡𝑙𝑒": "𝐵𝑢𝑦 𝑔𝑟𝑜𝑐𝑒𝑟𝑖𝑒𝑠", "𝑑𝑢𝑒𝐷𝑎𝑡𝑒": "2025 − 09 − 20", "𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦": "𝐿𝑜𝑤" }
]
}

The model computes higher probability for tokens related to “Study FYP report” due to its

earlier deadline and higher priority. Consequently, the assistant suggests:

{
 "𝑚𝑜𝑑𝑒": "𝑠𝑢𝑔𝑔𝑒𝑠𝑡",
 "𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠": [
 { "𝑡𝑎𝑠𝑘𝑇𝑖𝑡𝑙𝑒": "𝑆𝑡𝑢𝑑𝑦 𝐹𝑌𝑃 𝑟𝑒𝑝𝑜𝑟𝑡", "𝑟𝑒𝑎𝑠𝑜𝑛": "𝐷𝑢𝑒 𝑜𝑛 2025 − 09 − 01, ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦. " }
]
}

This demonstrates how the attention mechanism and probability distribution directly result in

prioritized, context-aware task recommendations.

CHAPTER 2

 20
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.6 Summary of the Technologies Review

In summary, the technologies selected for this project collectively form a robust and well-

integrated platform for developing a mobile-based task management system that supports

prioritization, collaboration, and intelligent daily planning. The hardware platform, comprising

a mid-range laptop and physical Android device, provides adequate computational power and

compatibility for development, emulation, and deployment testing. The use of Windows 10

ensures stable support for the Flutter SDK, Android Studio, and Firebase CLI, enabling smooth

development workflows and reliable debugging across both simulated and real environments.

At the data layer, Firebase Firestore was chosen as the primary database due to its real-time

synchronization, flexible document-based schema, and offline persistence, which are essential

for collaborative task management. Complementing Firestore, Firebase Storage enables the

secure storage of multimedia files such as voice recordings and attachments, while Firebase

Authentication and Cloud Messaging ensure secure user management and effective delivery of

task reminders. Together, these services provide a scalable and cost-efficient cloud backend

that supports both structured and unstructured data under the constraints of a controlled billing

plan.

The programming environment, built on the Dart language and Flutter framework, allows

cross-platform development with a single codebase, reducing both development time and

maintenance effort. Flutter’s widget-based UI architecture ensures a consistent and responsive

interface across devices, while backend processes are supported by Node.js Cloud Functions,

which integrate seamlessly with Firebase and Google Cloud services. GitHub further enhances

the workflow by serving as the central repository for version control, collaboration, and project

tracking.

A set of specialized algorithms ensures that the system is not only functional but also intelligent

in its behavior. The Dynamic Reordering Algorithm automatically organizes schedules to

prioritize present and upcoming events, improving clarity and reducing cognitive load. The

Dynamic Weighted Task Prioritization Algorithm calculates a composite score for each task

based on urgency, workload, alerts, and user-defined priority, ensuring that the most critical

items are surfaced first. The Completion Detection Algorithm provides automated tracking of

overdue and completed tasks, maintaining accuracy in progress monitoring. Beyond these core

mechanisms, two advanced service-based algorithms extend the system’s functionality. Google

CHAPTER 2

 21
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Speech-to-Text processes voice comments and commands into searchable text, enabling

multimodal collaboration, while Google Generative AI (Gemini 2.5 Flash) analyses Firestore

data to generate context-aware plans, suggestions, and insights, acting as a personal AI assistant

to support daily scheduling and task management.

Provider Model Key Features Integration Suitability for Project

OpenAI GPT-4o,

GPT-3.5

High reasoning ability;

supports structured

JSON outputs;

multimodal (text,

image, audio)

Requires separate

API, billing, and

integration outside

Firebase

Strong model, but adds

complexity and cost

management outside the

existing Google Cloud

stack

Anthropic Claude 3

(Opus,

Sonnet,

Haiku)

Emphasis on safety,

alignment, and long-

context reasoning;

supports structured

outputs

External API, no

direct Firebase

integration

Reliable conversational

model, but less suited for

Firebase-based task

management system

Google Gemini

2.5 Flash

Built on Transformer

architecture with

Mixture-of-Experts

and sparse attention;

optimized for low-

latency responses;

multimodal capability

Native integration

with Cloud

Generative AI API

and Firebase

Functions; schema-

constrained JSON

output supported

Best fit: provides

structured outputs for

tasks and schedules,

integrates directly with

Firestore, and benefits

from Google’s free usage

tier

Table 2.1.6(a): Comparison of Cloud Generative AI APIs and Models [19][20][21][22]

Option Strengths Limitation Suitability for Project

Google Cloud

Speech-to-Text

(v2)

High accuracy,

multilingual (EN, BM,

CN), integrates with

Firebase

Requires internet; usage

is billed after free tier;

latency depends on

network

Best fit: seamless

Firebase integration,

reliable multilingual

support

Flutter On-Device

STT

Works offline, no

cloud charges, fast

response

Accuracy varies by

device/OS, limited

language coverage

Useful as fallback but

not consistent for

collaboration

CHAPTER 2

 22
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Open-source

models

(Whisper /

local server)

Free to use; supports

many languages;

Whisper is robust in

noisy conditions

Large model size, heavy

CPU/GPU, hard to

integrate in Flutter

Impractical for mobile-

first Firebase app

Other Cloud APIs

(Microsoft Azure,

AWS Transcribe)

Competitive accuracy;

scalable infrastructure

Separate integration,

extra billing setup

Less suited since project

already uses Google

Cloud

Table 2.1.6(b): Comparison of Speech-to-Text Options [23][24][25][26][27][28]

Overall, the integration of these technologies and algorithms allows the system to extend

beyond conventional task management applications. By combining a stable cloud backend with

intelligent algorithms and modern development practices, the platform achieves a

comprehensive, scalable, and user-centered solution that enhances productivity through

dynamic prioritization, seamless collaboration, and proactive planning support. After

evaluating multiple cloud generative AI APIs, Google Gemini 2.5 Flash was selected due to its

direct Firebase integration, schema-constrained JSON outputs for structured scheduling, and

low-latency performance within a cost-controlled free tier. Similarly, after comparing speech-

to-text approaches, Google Cloud Speech-to-Text v2 was chosen because it provides accurate

multilingual transcription (English, Bahasa Malaysia, Mandarin Chinese). It integrates

seamlessly with Firebase Cloud Functions and Firestore and ensures consistency across devices

unlike the on-device STT or open-source models which could not guarantee.

CHAPTER 2

 23
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Review on Existing System

2.2.1 Apple Reminder

Figure 2.2.1 Apple Reminders

Apple Reminders [2] is a task management tool built specifically for Apple's ecosystem,

making it accessible to users of iPhones, iPads, Macs, and other Apple devices. Its core

functionalities revolve around task creation, organization, and management, with a key feature

being Siri integration. Siri enables voice-based task creation, allowing users to quickly add

tasks without needing to type. Another prominent feature is iCloud synchronization, which

ensures that all tasks are synced across Apple devices, providing a seamless experience for

users who switch between different devices. Subtasks, due dates, and location-based reminders

are other helpful features that allow users to break down larger tasks, assign deadlines, and

receive reminders when they reach specific locations. The tool also offers collaboration

features, allowing users to share lists with others, which is particularly useful for small group

projects or household task management. However, its exclusive integration with Apple's

ecosystem limits its use for individuals or teams that rely on non-Apple devices.

Strengths

1. Uses iCloud for seamless real-time synchronization across Apple devices with minimal

latency.

CHAPTER 2

 24
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Simple and intuitive interface, making it user friendly.

3. Works with Siri, Shortcuts, Calendar, and Apple Mail natively.

4. Supports shared lists for basic collaboration among Apple users. There are no extra

collaboration tools like commenting.

Weaknesses

1. Only available on Apple devices [29].

2. Tasks do not automatically adjust based on deadlines or priorities. [29].

3. Tasks updates are not reflected instantly across collaborators which may cause potential

miscommunication [30].

4. No granular task progress tracking [31].

5. Does not automatically reorder tasks based on urgency or workload changes [32].

6. Lacks advanced reporting tools or project visualization tools for project progress

tracking [33].

CHAPTER 2

 25
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.2 Microsoft To-Do

Figure 2.2.2 Microsoft To-Do

Microsoft To-Do [3] is part of the Microsoft 365 suite. It is a versatile task management app

that integrates deeply with Outlook. This tool allows users to create and organize tasks into

lists, set due dates and reminders, and break down larger tasks into subtasks. File attachments

to tasks are supported, making it ideal for users who need to manage both personal and

professional projects. With its ability to sync across platforms like Windows, iOS, Android,

and the web. It provides flexibility for users working across different devices. One of its strong

points is the collaboration feature, allowing users to share lists and assign tasks to team

members, thus making teamwork more efficient. Additionally, Microsoft To-Do offers end-to-

end encryption, ensuring that all user data is securely stored, which is a significant advantage

for users handling sensitive information.

CHAPTER 2

 26
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strengths

1. Integration of Microsoft 365 enables users to sync tasks with Outlook and other

Microsoft applications.

2. Simple and clean interface with basic task management features.

3. “My Day” feature helps users focus on daily tasks.

Weaknesses

1. Tasks do not automatically prioritize based on deadlines or urgency [29].

2. Changes made to shared tasks are not updated in real-time, which may cause potential

delays [30].

3. Lacks of advanced tracking features for project progress tracking [31].

4. Does not support dynamic task priorities based on the changes of deadlines or

dependencies [32].

5. Does not have detailed dashboards or visualization tools for tasks created [33].

CHAPTER 2

 27
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.3 Todoist

Figure 2.2.3 Todoist

Todoist [4] is widely recognized for its customizability and ability to manage everything from

simple tasks to complex projects. One of its standout features is the Kanban-style boards, which

offer a visual method for managing tasks, helping users see their workflow at a glance. Todoist

supports real-time syncing across devices, ensuring that updates are reflected instantly across

all platforms, making it convenient for users on the go. The platform offers subtasks, labels,

filters, and priority levels, enabling users to organize their tasks in a highly personalized way.

Additionally, Todoist shines in its integration with third-party apps, such as Google Calendar,

Slack, and Trello, enhancing its capabilities for automation and workflow management. The

platform's collaboration features allow for task delegation, which is helpful for team projects

where responsibilities need to be assigned.

CHAPTER 2

 28
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strengths

1. Excellent visual task management through boards, lists and cards.

2. Supports smart task creation with natural language processing.

3. Supports integration with external tools like Slack (a productivity tools).

Weaknesses

1. Collaborated task updates are not reflected instantly which may cause confusion in

team-based work [30].

2. Does not offer comprehensive dashboards or analytics for tracking project progress

[33].

3. Does not dynamically reorder or prioritize tasks based on evolving schedules and

dependencies [32].

4. It can feel overwhelming for beginners due to complex functionalities.

CHAPTER 2

 29
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.4 TickTick

Figure 2.2.4 TickTick

TickTick [8] is a versatile task management app designed to enhance productivity through a

wide array of features. It allows users to create and organize tasks into lists and projects, with

options to set due dates, priorities, and subtasks. The app integrates seamlessly with Google

Calendar, offering synchronized views of tasks and deadlines, and supports Kanban-style

boards for visual task management. Additional features include a Pomodoro timer for focused

work intervals, habit tracking to monitor personal goals, and cross-platform support across iOS,

Android, Windows, and macOS. While TickTick provides robust functionalities, limitations

include restricted advanced features in the free version and occasional performance issues,

which may be challenging for new users to navigate.

CHAPTER 2

 30
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strengths

1. Supports task categorization and priority levels for structured task management.

2. Offers natural language input for quick task creation.

3. Available across multiple platforms including web, mobile, and desktop.

Weaknesses

1. No detailed status updates beyond completed or incomplete tasks [31].

2. Lacks real-time prioritization based on changing workloads or deadlines [32].

3. Lacks sub-task dependencies.

CHAPTER 2

 31
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.5 Trello

Figure2.2.5 Trello

Trello [9] is a simpler but highly flexible task management tool that relies on Kanban boards

to organize tasks visually. In Trello, each project is represented as a board, and tasks are

organized into cards, which can be moved between columns such as "To Do," "In Progress,"

and "Done" as they progress. Trello's drag-and-drop interface makes it intuitive and easy to

use, especially for individuals and small teams working on less complex projects. It also

supports file attachments, comments, and task sharing, enabling basic collaboration features.

Third-party integrations with apps like Google Drive, Slack, and Dropbox enhance Trello’s

functionality, providing additional tools for users to manage documents and communication

within their projects. While Trello's simplicity makes it accessible, it can also limit its

effectiveness for managing more intricate projects that require task dependencies or advanced

reporting features.

CHAPTER 2

 32
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strengths

1. Offers a built-in Pomodoro timer to enhance focus and productivity.

2. Provides habit tracking features

3. Cross-platform availability with calendar integration.

4. Supports task categorization and smart lists for better organization.

Weaknesses

1. Does not dynamically prioritize task based on urgency or deadlines [32].

2. Does not allow user to create sub-task dependencies.

CHAPTER 2

 33
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Limitations of Previous Studies

2.3.1 Platform Limitation

Apple Reminders is tightly integrated with Apple devices, making it incompatible with non-

Apple platforms like Android or Windows. This exclusivity can be a major drawback for users

who rely on devices outside of the Apple ecosystem. For instance, if a team consists of both

Apple and non-Apple users, collaboration is limited since the app cannot be used across all

devices. This reduces flexibility for teams or individuals who operate in mixed device

environments [31].

2.3.2 Absence of Dynamic Task Reordering

Tasks in Apple Reminders, and Microsoft To-Do are static in terms of order. They are not

automatically adjusted based on factors such as upcoming deadlines, task urgency, or priority

changes. This limitation can make it harder to manage overlapping tasks effectively, as users

need to manually reorder or update tasks instead of relying on automatic adjustments.

Discussions in the Microsoft Community highlight user experiences with the inability to

manually sort tasks in the "My Day" list, reflecting this limitation [32][33].

2.3.3 Lack of Real-Time Sync for Collaboration

Apple Reminders, Microsoft To-Do, and Trello does not offer real-time synchronization for

task collaboration. This means when multiple team members are working together, task updates

and changes do not appear instantly for everyone. As a result, team members may not always

have the most current version of a task list or project status, leading to confusion or

miscommunication. Teams need to use external communication tools (like email or messaging

apps) to stay aligned, adding extra steps and potential friction to the collaborative process [30]

[31].

2.3.4 Limited Integrations

Although Microsoft To-Do integrates well with the Microsoft 365 suite, it lacks support for

other popular platforms like Google Calendar or Slack. This limits flexibility for users who

rely on non-Microsoft tools for project management, making it more difficult to create a

seamless workflow across various software ecosystems. Users with diverse toolsets may find

CHAPTER 2

 34
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Microsoft To-Do limiting in terms of app integrations, reducing its overall utility for managing

both personal and professional tasks across multiple platforms [34].

2.3.5 No Granular Task Progress Tracking

Apple Reminders, Microsoft To-Do, and Todoist lacks advanced features like task progress

tracking, such as completion percentages or detailed task statuses (e.g., "in progress," "review

pending"). This makes it difficult for users to gauge how far along they are on a specific task,

forcing them to rely on vague markers like task completion (done or not done). This lack of

granular tracking is a disadvantage when managing larger projects where task progress

visibility is crucial for ensuring work is on schedule [35].

2.3.6 Limited Intelligent Task Scheduling

Apple Reminders lacks dynamic task prioritization, relying on static priority levels that

require manual adjustments. Microsoft To-Do offers basic task organization but does not

automatically reorder tasks based on urgency or workload changes. Tick Tick and Todoist

provide categorization and sorting options, but they lack real-time prioritization that adapts to

shifting deadlines and dependencies. Trello excels in visual task management but does not

dynamically adjust task priorities based on evolving schedules. Overall, these apps offer useful

features but do not fully address the need for dynamic task prioritization, which ensures tasks

are continuously ranked based on urgency, dependencies, and workload [29][34][36].

2.3.7 Limited Reporting and Visualization

Apple Reminders, Microsoft To-Do, and Trello does not provide advanced reporting tools

or project visualization options like project dashboards or detailed progress reports. For users

who need insight into task timelines, bottlenecks, or overall project status, Trello’s limited

visualization capabilities can make it harder to monitor the flow of work and make data-driven

decisions [30].

CHAPTER 2

 35
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.4 Proposed Solutions

To tackle the challenges of task management and boost project efficiency, we're proposing a

robust new system designed with several key features.

Our first major improvement is dynamic task prioritization. We’ll implement a smart

algorithm that automatically adjusts task priorities based on deadlines, dependencies, and

workloads. This means that as deadlines approach or tasks become more interconnected, the

system will dynamically update task priorities and reorder them to ensure students focus on the

most urgent and important tasks. Additionally, we’ll introduce detailed task statuses, such as

"In Progress," "Awaiting Review," and "Completed," complemented by visual elements like

progress bars and charts. This will provide students with a clearer view of each task’s status

and overall project progress, making it easier to manage overlapping deadlines and identify

where attention is needed.

We understand that internet access isn’t always reliable, so our system will also include offline

capabilities. This feature ensures that students can still access and update their tasks without

needing a constant internet connection, which is especially useful in situations where

connectivity is intermittent.

When it comes to collaboration, our system will enhance communication through real-time

commenting directly within tasks. This will allow students and team members to exchange

feedback, ask questions, and discuss tasks in the context where they’re needed, reducing

reliance on external communication tools and keeping all discussions linked to specific tasks.

We’ll also integrate document management by allowing users to link shared documents

directly within the workspace. This integration will streamline access to project materials and

ensure that everyone has the latest versions of documents, avoiding confusion and

fragmentation.

To make the system more versatile, we’ll ensure cross-platform compatibility, integrating

with popular tools like Google Calendar and user device Calendar. This will accommodate

users who rely on different platforms and enhance flexibility.

For tracking and visualizing projects, we’ll provide granular task progress tracking, showing

detailed completion levels (e.g., 50% or 80% complete). This will offer students a precise view

of their progress. A unified dashboard will aggregate information from all ongoing projects,

CHAPTER 2

 36
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

including deadlines, task statuses, and overall progress, helping students manage their

workload and identify tasks that need immediate attention.

By incorporating these features, we aim to create a user-friendly platform that improves task

management, streamlines collaboration, and enhances project tracking, effectively addressing

the limitations of existing systems and meeting the needs of students and teams.

Features Apple

Reminders

Microsoft

To-Do

Todoist TickTick Trello Proposed

System

Dynamic

Task

Prioritization

✗ ✗ ✗ ✗ ✗ ✓

Collaboration ✓ ✓ ✓ ✓ ✓ ✓

Real-Time

Commenting
✗ ✗ ✓ ✗ ✓ ✓

Document

Management
✗ ✓ ✓ ✓ ✓ ✓

Granular

Task Status
✗ ✗ ✓ ✗ ✗ ✓

Progress

Visualization
✗ ✗ ✓ ✓ ✓ ✓

Dynamically

adjusting to

new tasks

and deadlines

✗ ✗ ✗ ✗ ✗ ✓

Calander

Integration
✗ ✗ ✓ ✓ ✗ ✓

Task

Completion

Detection

✗ ✗ ✗ ✗ ✗ ✓

Personalized

Assistant
✗ ✗ ✗ ✗ ✗ ✓

Table 2.5 Comparison between existing and proposed applications

CHAPTER 3

 37
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Proposed Method/Approach

3.1 System Design Diagram

3.1.1 Block Diagram

Figure 3.1.1 Block Diagram

Open Gemini
Chatbot

Retrieve Date & Time

Compare Existing

Schedule’s Date &Time
(if any)

Create/Edit/Delete
schedule

Sort schedule list form
presents to future

Dynamically reorder the
list and display to user

Update
firebase

View dashboard

Retrieve Overdue Schedules,

Completed Task, Pending Task
(by priority level), Daily

Completed Task

Create/Edit/Delete
to-do

Update
firebase

Retrieve Deadline,

Workloads, Alert Settings,
Priority Levels

Calculate Weighted

Scores

Sort the to-do list by
higher scores Dynamically reorder the list

and display to user
“Progress bar only displays in

task with subtasks”

Retrieve Count

of Subtasks

Calculate

Progress Bar

Trigger
AI Assistant

View Home Screen
“Schedules, To-dos,

Device Calendar”

Retrieve from
firebase

Sync Device Calendar

Display Home
Screen

Transcribed to Text

Update
firebase

Collaborated
in Task

Voice Message

Text Message

Attachment
Notify

Collaborators

CHAPTER 3

 38
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.2 Entity Relationship Diagram

Figure 3.1.2 Entity Relationship Diagram

CHAPTER 3

 39
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.3 Class Diagram

Figure 3.1.3 Class Diagram

CHAPTER 3

 40
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.4 Use Case Diagram

Figure 3.1.4 Use Case Diagram

CHAPTER 3

 41
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.5 Dashboard

Activity Diagram

Figure 3.1.5 Activity Diagram – Dashboard

CHAPTER 3

 42
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Display Dashboard Metrics

Actor User, Firestore (data source)

Pre-conditions 1. User is authenticated and on the Dashboard screen.

2. Firestore is available and contains schedule/task data.

Main Flow 1. The user navigates to the Dashboard.

2. The system fetches data from Firestore.

3. The system performs the following calculations in parallel:

- Calculates the total overdue schedules.

- Calculates the total completed tasks.

- Calculates the total pending tasks.

- Calculates the total pending tasks by priority level (High,

Medium, Low).

4. The system checks if there are records available from the

calculations.

5. If records are available, the system displays the calculated figures

(total overdue schedules, total completed tasks, total pending tasks,

and pending tasks by priority) on the dashboard.

Alternative Flow In step 4, if no records are available, the system returns a value of 0 for all

calculations and displays a "No record" message on the dashboard.

Exception Flow If the system fails to fetch data from Firestore in step 2, it logs an error and

displays an error message on the dashboard, such as "Failed to load data."

Post-conditions 1. The dashboard displays the calculated figures (total overdue

schedules, total completed tasks, total pending tasks, and pending

tasks by priority) if records are available.

2. If no records are found, the dashboard shows a "No record" message

with all values set to 0.

Table 3.1.5 Use Case Description – Dashboard

CHAPTER 3

 43
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.6 Progress Bar

Activity Diagram

Figure 3.1.6 Activity Diagram – Progress Bar

CHAPTER 3

 44
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Show Task Progress Bar (when subtasks exist)

Actor User, System, Firestore

Pre-conditions 1. The user is logged into the system.

2. User is authenticated and can view the task.

3. Task document is readable; if subtasks exist, they are retrievable as a

list.

Main Flow 1. Render Task Card.

2. Check “Subtasks exist?”

- If no → do not render a progress bar (end).

- If yes → continue.

3. Fetch Subtasks (from task doc or subcollection).

4. Count Total Subtasks = subtasks.length.

5. Count Completed = number of items where: completed == true.

6. Compute Ratio:

- If total == 0 → treat as 0.0 (and show empty bar).

- Else ratio = completed / total (clamped to 0..1).

7. Set Progress Value = ratio (0..1).

8. Choose Colour Bucket:

- ratio >= 1.0 → Green 700

- 0.5 <= ratio < 1.0 → Orange 700

- ratio < 0.5 → Red 700

9. Render Progress Bar (value + color).

10. On Change:

- Subscribe to subtask changes (snapshot/stream).

- On any add/update/delete or completed toggle → recompute

from step 3 and re-render.

Alternative Flow AF-1: Zero Completed (but subtasks exist)

• Show a progress bar with value 0% and Red 700.

AF-2: All Completed

• Show a full bar (100%) with Green 700.

AF-3: Intermediate Completion

• Show partial bar with Orange 700 for ratios in [0.5, 1.0).

AF-4: Smooth Visual Update (optional)

CHAPTER 3

 45
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Animate value/colour transitions (~200 ms) when recomputing to

avoid junk.

Exception Flow EF-1: Data Read Failure

• If Firestore read fails, hide the bar and retry indicator (do not block

the card).

EF-2: Malformed Subtask Items

• If any list item is not a map or lacks completed, treat it as not

completed (no crash).

EF-3: Division Safety

• Guard against total == 0 to avoid divide-by-zero (render empty or

hide per rule above).

Post-conditions 1. If no subtasks exist, the task card shows no progress bar.

2. If subtasks exist, the task card shows a progress bar whose value and

colour reflect completed/total subtasks and update in real time when

subtasks change.

Table 3.1.6 Activity Diagram – Progress Bar

CHAPTER 3

 46
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.7 Personalized AI Assistant

Activity Diagram

Figure 3.1.7 Activity Diagram – Personalized AI Assistant

CHAPTER 3

 47
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case AI Assistant for Personalized User Support (Chatbot & Voice Panel)

Actor User, AI Assistant System, Cloud Functions, Firestore/Storage, Google

Speech-to-Text, Gemini LLM, Device Calendar

Pre-conditions 1. User is authenticated and online.

2. AI services are reachable (Cloud Functions, Gemini).

3. Microphone permission granted for voice panel

4. Calendar permission granted for “Plan my Day”.

5. The system can read user data (todos, schedules) from Firestore;

device calendar events available if permitted.

Main Flow A) Entry via Floating Action Button (FAB)

1. User taps or long-presses the FAB.

2. System branches by gesture:

3. Tap → Chatbot screen

4. Long-press → AI voice panel (overlay)

B) Chatbot (tap)

5. System asks for input source: Plan my Day (preset) or Type

Prompt.

B1) Plan my Day (preset)

6. System fetches context (today/zone/prefs), then in parallel loads

todos, existing schedules, and device calendar events.

7. System ranks tasks using Dynamic Weighted Prioritization (0.4

deadline + 0.2 subtask + 0.1 alert + 0.3 priority).

8. System packs tasks into free slots (respect due dates, avoid

conflicts) and builds a preview plan.

9. System shows Preview + “Add schedule” / Cancel.

10. If user confirms Add schedule:

11. System executes the action (Cloud Function), writes schedules to

Firestore, and (if applicable) notifies collaborators.

12. System renders the updated schedule and posts a summary reply in

chat.

13. Flow returns to chat (user may continue).

14. If user cancels, return to chat without changes.

B2) Type Prompt (free text)

15. User enters text.

CHAPTER 3

 48
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

16. System builds prompt + context (selected task/schedule, time,

preferences) and detects intent & entities.

17. [Decision] Quick action?

18. Yes: System asks for confirmation (“Proceed?”). If confirmed,

execute via Cloud Function, update Firestore, render the action

result, and return to chat.

19. No: System calls Gemini for a conversational reply; on success

streams & displays the reply.

C) Voice Panel (long-press)

20. System opens overlay and begins recording.

21. [Decision] Mic permission? If needed, request; if denied, exit panel.

22. On Stop & Send, system uploads audio to Storage; a Cloud

Function is triggered to transcribe (STT).

23. [Decision] Transcript ready?

24. Yes: Use transcript as the prompt; continue as in steps 11–12 (build

context, detect intent, quick action vs conversational).

25. No / Failed: Show Retry transcription or let the user type instead.

26. System displays the reply in the panel (optionally with TTS). User

can continue (record again) or dismiss the panel.

Alternative Flow AF-1: Continue Chat

• After any reply, the user can send another prompt or record again,

loop to the appropriate input step.

AF-2: No free slots in Plan my Day

• System proposes alternatives (different time window, shorter tasks)

and lets the user adjust or cancel.

AF-3: Quick action variants

• Create/update tasks, schedules, notes, or other supported operations;

all require user confirmation before write.

Exception Flow EF-1: Permission denied

• Microphone or calendar permission not granted → show guidance to

enable in settings.

EF-2: Network or service error

• Gemini/Cloud Function timeout or 503 → offer Retry / Fallback /

Cancel.

EF-3: Transcription failure

CHAPTER 3

 49
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• STT error → show inline error with Retry; voice message can still

be typed manually.

EF-4: Insufficient context

• System asks clarifying questions or suggests creating the needed data

(e.g., add task durations) before proceeding.

Post-conditions 1. The user receives a response (conversational or action result).

2. If a quick action or “Add schedule” is confirmed, Firestore is

updated, and the UI reflects the change.

3. Conversation can continue in a multi-turn loop until the user exits.

Table 3.1.7 Use Case Description – Personalized AI Assistant

CHAPTER 3

 50
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.8 Task Collaboration

Activity Diagram

Figure 3.1.8 Activity Diagram – Task Collaboration

CHAPTER 3

 51
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Add Collaborator

Actor User, Collaborator, System

Pre-conditions 1. The user is logged into the system.

2. User has permission to manage collaborators on the task

(owner/admin).

3. Task exists and is selectable.

Main Flow 1. User selects Add Collaborator.

2. System prompts the user to enter the collaborator’s email.

3. System verifies email: format check, user existence, and not already

a collaborator.

4. If invalid/not found/already added, system shows an inline error and

remains on the email entry; on success continue.

5. System shows Collaborator Selection Confirmation (summary

card with email and an Admin toggle/icon).

6. User chooses one of the following on the confirmation card:

- Confirm Collaborator (default role = member).

- Toggle “Admin” to grant/revoke admin before confirming.

- Remove Collaborator.

7. System updates Firestore accordingly (single commit/transaction):

- On confirm: create/merge tasks/{taskId}/collaborators/{uid}

with fields like {role: "member"|"admin", addedBy, addedAt}.

- If admin toggled: set role: "admin" (or “member” if toggled

off).

- On remove: ensure no write occurs (or delete any pending local

draft state).

8. System notifies collaborator (and, if needed, existing admins) and

refreshes the UI list.

9. Flow can repeat from step 2 to add more collaborators.

Alternative Flow AF-1: Assign Admin During Add

1. From the confirmation card, user enables the admin icon/toggle and

confirms.

2. System writes the collaborator with role: "admin", then proceeds to

notify and refresh.

AF-2: Remove Before Confirm

CHAPTER 3

 52
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1. User toggles remove icon on the confirmation card.

2. System discards the pending addition and returns to the collaborator

list (no Firestore change).

AF-3: Quick Role Flip After Confirm (optional UI)

1. From the list row, user taps the admin icon to grant/revoke admin on

an already-added collaborator.

2. System updates role in Firestore and notifies the collaborator of the

role change.

Exception Flow EF-1: Email Errors

• Invalid format, user not found, or already a collaborator → show

specific error and keep focus on the email field.

EF-2: Firestore Update Failure

• Network/permission/write failure → show “Couldn’t update

collaborators. Retry?” with Retry/Cancel. On Retry, re-attempt the

write; on Cancel, show current list.

EF-3: Notification Failure

• If push/send fails, logs; addition/role change remains saved.

Post-conditions 1. The collaborator is either successfully added and notified, assigned

an admin role, or removed.

2. The affected collaborator receives a notification about being added

and/or role assignment; existing admins may also be notified on

removals/role changes.

3. UI shows the updated collaborator list (with admin action state).

Table 3.1.8 Use Case Description – Task Collaboration

CHAPTER 3

 53
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.9 Manage Comment

Activity Diagram

Figure 3.1.9 Activity Diagram – Manage Comments

CHAPTER 3

 54
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Post and Manage Comments on a Collaborated Task

Actor User, System, Firestore

Pre-conditions 1. User is authenticated and authorized for the task.

2. Microphone permission granted (for voice).

3. Device has basic connectivity (for posting; offline read is optional).

4. Cloud Function transcribeTodoVoice deployed and able to call

Google STT

Main Flow 1. User opens collaborated task message section.

2. System shows input methods: Enter Text, Attach Files, Record

Audio.

3. User provides content:

- Text → type in composer.

- Voice → press/hold to record, then stop.

- Attach File → system opens file picker (images/videos/docs);

preview is shown.

4. User taps Send.

5. System validates (non-empty, proper file size/type)

6. System writes a comment to Firestore (type, author, timestamps,

file/audio URLs, etc.) and renders it optimistically.

7. If voice/ media: System uploads path to Firebase Storage and

creates/updates Firestore.

Async STT Pipeline (Cloud) — Always On

8. Storage finalize triggers transcribeTodoVoice.

9. Transcode to WAV 16 kHz mono (ffmpeg).

10. Function calls Google Speech-to-Text v2 (GLOBAL/chirp_2;

fallback model as configured).

11. On success:

- Write transcribed text, language code, confidence to Firestore.

- Update Firestore: voices/{voiceId}.status = "done".

12. System updates the UI showing the new comment in the thread.

13. System identifies all other collaborators on the task.

14. System sends each a notification (push or in-app).

15. On failure:

- Set voices/{voiceId}.status = "error" and log details.

CHAPTER 3

 55
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

- Clients pick up snapshot changes and update the UI: the transcript

button becomes “View transcript”.

Alternative Flow AF-1: Edit Existing Comment Long-press Actions

1. User long-presses or taps an existing comment.

2. System shows an option dialog box:

- Sender + Text → Copy, Edit, Delete

- Sender + Voice/Files → Copy, Delete

- Receiver (any) → Copy, Reply (Quote)

AF-2: View / Hide Transcript (per voice bubble)

1. User taps “View transcript” under a voice message.

2. System expands an inline panel showing transcribed text. The button

changes to “Hide transcript”.

3. User can collapse it again; button toggles back to “View

transcript”.

AF-3: Reply with Quote

• User taps Reply, composer shows quoted preview (of text or voice

label).

• On Send, a new comment is created with quoted message reference.

AF-4: Edit Existing Comment (Sender + Text)

• Inline edit, save sets edited=true, editedAt, rerender, notify.

AF-5: Delete Existing Comment (Sender)

• Confirm → soft delete; update Firestore, rerender.

Exception Flow EF-1: Validation Failure

• Empty input or invalid/oversized file → highlight and stay on

composer.

EF-2: Save Failure

• Firestore write fails.

EF-3: STT Failure

• Comment remains playable, no transcript.

EF-4: Notification Failure

• Log and retry with backoff; comment state is not rolled back.

Post-conditions 1. New/edited/deleted comments persisted and rendered to all

participants.

2. Voice comments are always transcribed (even if no transcode is

needed).

CHAPTER 3

 56
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Transcript text is saved to Firestore and indexed for later search

(together with text comments and extracted URLs).

4. Each voice bubble shows a toggle button to reveal/collapse the

transcript. User preference (expanded/collapsed) affects only local

UI unless you choose to persist it.

5. Collaborators (excluding author) are notified of new/edited/deleted

comments.

Table 3.1.9 Use Case Description – Manage Comments

CHAPTER 3

 57
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.10 Voice/Text/URLs Comment Searching

Activity Diagram

Figure 3.1.10 Activity Diagram – Voice/Text/URLs Comment Searching

CHAPTER 3

 58
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Search Comments (Text / Voice Transcripts / URLs)

Actor User, System, Firestore

Pre-conditions 1. User is authenticated and authorized for the task.

2. Comment content has been indexed for search:

- text comments,

- voice transcripts (from STT),

- extracted URLs (and optional filenames).

3. Network available (or local cache available for offline search).

Main Flow 1. Open Comment Search – User launches the search UI.

2. Enter Query – User types keywords.

3. Normalize & Tokenize Query – System lowercases/normalizes text

(diacritics, script forms), tokenizes (e.g., words/ngrams).

4. Build Search Params – System composes filters/scope (task, type =

All/Text/Voice/URLs, author/date if available), paging, and ranking

strategy.

5. Query Search Index – System queries Firestore index fields (e.g.,

searchText, searchTokens, URL tokens).

6. If results found:

- Render Results List (type badges, snippets with bolded hits).

- Select Result – User taps a result.

- Scroll to Comment – System navigates to the exact message in

the thread.

- Highlight Match – System highlights the matched text.

7. If results not found:

- Display “No Results” – System shows empty state with tips.

- Refine Filters – User adjusts query/filters.

- Search again? – If yes, loop back to Enter Query; if no, exit.

Alternative Flow AF-1: URL Search

• If the query is a URL (or domain/path fragment), results show URL

badges/snippets.

AF-2: Pagination / Load More (optional)

• If results exceed page size, Load More appends additional matches.

Exception Flow EF-1: Offline / Network Error

CHAPTER 3

 59
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• If offline, search falls back to cached index if present; otherwise

show “No connection—try again” with a Retry action.

• If the index query fails, show “Couldn’t search right now. Retry?”

(Retry/Cancel).

Post-conditions 1. The system shows matches (or a clear “No Results”) without

modifying data.

2. When a result is selected, the thread scrolls to the comment and the

matched fragment is highlighted.

Table 3.1.10 Activity Diagram – Voice/Text/URLs Comment Searching

CHAPTER 3

 60
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.11 Notifications

Activity Diagram

Figure 3.1.11 Activity Diagram - Notifications

CHAPTER 3

 61
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Notification System

Actor System, Push/Email Service, User

Pre-conditions 1. A triggering event has occurred (e.g., task deadline, completed

task/event, comments, etc.).

2. The user has enabled notifications in their profile.

3. Notification rules (reminders, thresholds, channels) are configured.

Main Flow 1. An internal trigger fires.

2. System checks which rule(s) apply for this event (e.g. “5-minute

reminder,” “on-comment alert”).

3. System builds the payload: title, body text, metadata (links, IDs).

4. Based on ownership, assignments, collaborators, or global broadcast

rules.

5. If a recipient has disabled notifications, skip them.

6. System hands off each message to the Push/Email Service (or SMS

gateway).

7. For each channel, verify success.

- On success → done.

- On failure → log the error, attempt up to N retries (back to step

6).

Alternative Flow For high-volume events, system groups multiple alerts into one batched

message to reduce noise.

Exception Flow 1. If the notification fails to deliver (e.g., invalid email, system error),

the system logs the failure and attempts redelivery.

2. If a user has disabled notifications, the system does not send the

message.

Post-conditions 1. All enabled recipients receive a notification via their preferred

channel.

2. Delivery attempts (and any failures) are logged for audit.

3. The user’s UI (or lock-screen) shows the new alert.

Table 3.1.11 Use Case Description – Notifications

CHAPTER 3

 62
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.12 Device Calendar Sync

Activity Diagram

Figure 3.1.12 Activity Diagram –Device Calendar Sync

CHAPTER 3

 63
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Synchronize Events with Device Calendar

Actor User, Device Calendar Provider (OS)

Pre-conditions 1. The user is logged into the system.

2. The app has been granted READ_CALENDAR (and optionally

WRITE_CALENDAR) permission at the OS level.

Main Flow 1. User navigates to the in-app Calendar tab (Home Screen).

2. System checks if it already has permission to read the device

calendar.

3. Request Permission (if needed)

- If not granted, system prompts the user: “Allow this app to

access your device calendar?”

- User taps Allow → system proceeds; Deny → go to Step 6.

4. System reads upcoming events from the device’s built-in calendar

provider.

5. In parallel, system queries Firestore for the user’s app‐created

schedules.

6. System merges device events and Firestore schedules, orders them

chronologically/ dynamic-reordering.

7. The UI presents a unified list or calendar view of both sets of entries.

Alternative Flow 1. If the user denies calendar permission, system skips Step 4, fetches

only Firestore schedules (Step 5), merges (just the one source) and

displays them.

2. The UI shows a banner “Enable calendar permission to view device

events” with a button linking to Settings.

Exception Flow EF-1: Permission Permanently Denied

• If the OS reports “Don’t ask again,” system shows a persistent

notice: Calendar access blocked – enable in Settings.”

• System continues to show only Firestore schedules.

EF-2: Read Error

• If fetching from the device calendar fails, log the error, show a toast

“Unable to load device events,” then proceed with Firestore

schedules only.

EF-3: Firestore Unavailable

CHAPTER 3

 64
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• If Firestore read fails, display “Cannot load your schedules; retry?”

with Retry/Cancel.

Post-conditions 1. The user sees a combined view of device-native calendar events and

their app schedules.

2. If permission is missing or an error occurs, at minimum the Firestore

schedules are still displayed.

3. Any errors or permission issues are surfaced with clear UI guidance

for next steps.

Table 3.1.12 Use Case Description – Device Calendar Sync

CHAPTER 3

 65
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.13 Register and User Login

Activity Diagram

Figure 3.1.13 Activity Diagram – Register and User Login

CHAPTER 3

 66
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case User Login and Registration

Actor User

Pre-conditions 1. The user must have an internet condition

2. If logging in, the user must already have an account.

Main Flow 1. The user opens the application and selects “Login”.

2. The system prompts the user to enter their email and password.

3. The user enters their credentials.

4. The system performs user authentication.

- If the credentials are valid, proceed to Step 5.

- If the credentials are invalid, prompt the user to re-enter the

email and password.

5. The system displays the Main Screen.

Alternative Flow 1. Instead of logging in, the user selects “Register New Account”.

2. The system provides a registration form.

3. The user fills in the required details and submits the form.

4. The system creates the account and redirects the user to the main

screen.

Exception Flow 1. If authentication fails multiple times, the system may lock the

account or provide a password recovery option.

2. If registration fails (e.g., email already in use), the system notifies

the user and asks for corrections.

Post-conditions 1. If successful, the user is redirected to the main screen.

2. If unsuccessful, the user remains at the login page with appropriate

error messages.

Table 3.1.13 Use Case Description – Register and User Login

CHAPTER 3

 67
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.14 Home Page

Activity Diagram

Figure 3.1.14 Activity Diagram – Home Page

CHAPTER 3

 68
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case View Daily Schedules & To-Dos

Actor User

Pre-conditions 1. The user is authenticated, and the Home page is loaded.

2. The device has network connectivity.

3. The app may or may not already have calendar-sync permission.

Main Flow 1. The user launches the home page.

2. Check calendar-sync permission.

3. Request permission (if not already granted).

- System prompts: “Allow app to sync with your device

calendar?”

- User grants permission

4. Sync device calendar events.

5. Display calendar table and two tabs: Schedules | To-Dos.

6. User selects a tab for a specific date.

- If Schedules chosen, system fetches Firestore schedules and

newly synced device-calendar events for the selected date.

- If To-Dos chosen, system fetches Firestore to-dos and filters for

items due on the selected date.

7. If To-Dos chosen:

- System fetches Firestore to-dos.

- System filters for items due on the selected date.

Alternative Flow AF1: Permission Already Granted

• Steps 3.1–3.2 skipped; proceed directly to Step 4.

AF2: Permission Denied

• User declines calendar-sync request in Step 3.

• System displays a toast: “Calendar sync disabled; showing app

schedules only.”

• On the Schedules tab, system fetches only Firestore schedules (skip

Step 4).

Exception Flow EF1: Calendar Sync Failure

• If syncing the device calendar errors out, log the failure, show

“Unable to sync calendar; showing app schedules,” then continue to

fetch Firestore schedules.

EF2: Firestore Unavailable

CHAPTER 3

 69
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• If reading schedules or to-dos from Firestore fails, display an error

dialog: “Cannot load data. Retry?” and allow the user to retry or

cancel.

Post-conditions 1. The Home page shows the user’s schedules (including device events

if permitted) or to-dos for the selected date.

2. If no items exist, the corresponding “No Schedule” or “No To-Do”

message is displayed.

Table 3.1.14 Use Case Description – Home Page

CHAPTER 3

 70
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.15 Schedule

Activity Diagram

Figure 3.1.15 Activity Diagram – Manage Schedule

CHAPTER 3

 71
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Manage Schedule

Actor User: wants to create, view, modify or remove personal schedule items.

System: must reliably store and retrieve events, enforce data integrity, and

handle errors gracefully.

Pre-conditions 1. The user is authenticated and has navigated to the Schedule List

screen.

2. The app has network connectivity and access to Firestore.

Main Flow 1. Display Schedule List

- System fetches all schedules from Firestore and displays them in

a scrollable list.

- A prominent “+ Add Schedule” button is visible.

2. Create New Schedule

2.1 User taps “+” button.

2.2 System shows a blank “New Schedule” form.

2.3 User enters required fields (title, location, start/end date-times,

all-day flag, alert, attachments, and whether it repeats).

2.4 If “Is Repeated” is checked, system prompts for recurrence

pattern and series end date.

2.5 System validates entries. If invalid, show error and remain on

form (see AF-1).

2.6 On success, system writes the new schedule (and series

instances, if any) to Firestore.

2.7 System returns to the Schedule List, refreshing to include the

newly created item.

3. View Schedule Details

3.1 From the Schedule List, user taps one schedule entry.

3.2 System opens the Schedule Details screen, showing all fields

(title, location, start/end, alerts, recurrence info, attachments).

3.3 On this screen, two action buttons are available: Edit and Delete.

4. Edit Schedule

4.1 User taps Edit button in the Schedule Details screen.

4.2 System displays a pre-filled edit form.

4.3 User modifies fields and submits.

CHAPTER 3

 72
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 If the schedule is part of a series, system prompts: “Edit this

occurrence only” or “Edit the entire series?”

4.5 System validates inputs (see AF-1) and then updates Firestore

(single instance or whole series).

4.6 System shows “Schedule updated” and returns to the Schedule

Details screen, refreshed.

5. Delete Schedule

5.1 User taps Delete button in the Schedule Details screen.

5.2 System prompts: “Are you sure you want to delete this

schedule?”

5.3 If it’s recurring, system then prompts: “Delete this occurrence

only” or “Delete the entire series?”

5.4 System performs the deletion in Firestore.

5.5 System shows “Schedule deleted” and returns to the Schedule

List, refreshed.

Alternative Flow AF-1: Validation Error (Add/Edit)

• If the user submits a form with missing or invalid fields, system

highlights errors (e.g. “End date must be after start date”) and

remains on the form until corrected.

AF-2: Empty Schedule List

• If the initial fetch in Step 1 returns no schedules, system displays

“No schedules. Tap ‘+ Add Schedule’ to create one.”

AF-3: User Cancels Recurrence Prompt

• If the user cancels when asked about series vs. single instance, the

flow returns to the form without making Firestore changes.

AF-4: User Navigates Back

• At any point on New Schedule, Schedule Details, or Edit Schedule

screens, tapping a back button returns the user to the previous screen

without saving changes.

Exception Flow EF-1: Firestore Read/Write Failure

• On any fetch, save, update, or delete error, system displays an alert

(“Unable to communicate with server.”)

EF-2: Network Unavailable

CHAPTER 3

 73
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• If the device loses connectivity mid-operation, system shows

“Connection lost. Please check your network,” then returns to the

Schedule List or current form.

Post-conditions Add: A new schedule (and any generated series) exists in Firestore and

appears in the Schedule List.

View: No data is modified; details are displayed.

Edit: The schedule (or series) in Firestore reflects the user’s changes.

Delete: The selected schedule instance(s) are removed from Firestore; the

list is refreshed.

Table 3.1.15 Use Case Description – Manage Schedule

CHAPTER 3

 74
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.16 Schedule Dynamic Reordering

Activity Diagram

Figure 3.1.16 Schedule Dynamic Reordering

CHAPTER 3

 75
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Schedule Dynamic Reordering

Actor User, System (invoked when schedules are created/updated or when the user

views their schedule list)

Pre-conditions 1. The user is authenticated and on (or is about to see) the Schedule

List screen.

2. One or more schedule entries exist in Firestore (or are about to be

created/updated).

3. The system clock is available.

Main Flow 1. The system receives a created or updated schedule.

2. The system checks if the schedule’s date is correctly defined.

3. The system retrieves the date and time of the new schedule.

4. The system checks the existing schedule list.

5. The system compares the date and time of the existing schedules

with the new schedule.

6. The system sorts the schedule list, ordering entries from present to

future (present schedules are listed first).

7. The system dynamically reorders the schedule list as needed.

8. The system displays the updated schedule list to the user.

Alternative Flow 1. If Firestore returns zero schedules, the system skips sorting and

displays an empty-state message (“No schedules to show”).

2. Treat any schedule with a null start-date as Present, placing it at the

top of the list.

Exception Flow EF-1: Firestore Read Error

• If fetching schedules fails, show an alert: “Unable to load schedules.

Retry?”

• On Retry → go back to Step 4; on Cancel → abort and leave the

previous list in place.

EF-2: Invalid Date Validation

• If any schedule’s start/end dates are malformed, log the error,

exclude that entry from the list, and continue processing the others.

Post-conditions The user sees their schedules ordered so that all “present” (ongoing or past-

started) events appear first, followed by upcoming events, each subgroup

sorted chronologically.

Table 3.1.16 Use Case Description – Schedule Dynamic Reordering

CHAPTER 3

 76
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.17 To-Do

Activity Diagram

Figure 3.1.17 Activity Diagram – Manage To-Do

CHAPTER 3

 77
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Manage To-Do

Actor User: wants to create, view, modify or remove personal to-do items.

System: must reliably store and retrieve tasks, enforce data integrity, and

handle errors gracefully.

Pre-conditions 1. The user is authenticated and has navigated to the To-Do List screen.

2. The app has a live connection to Firestore.

Main Flow 1. Display Task List

- System fetches all active to-do items from Firestore.

- System displays a scrollable list of tasks (title, due date, priority)

and an Add Task button.

2. Create New Task

2.1 User taps “+” task button

2.2 System shows a blank “New Task” form.

2.3 User enters required fields.

2.4 User may add optional subtasks, attachments/images, category,

and collaborators.

2.5 System validates entries. If invalid, highlight errors and remain

on form (see AF-1).

2.6 On success, system writes the new task to Firestore.

2.7 System returns to the To-Do List, refreshing to include the

newly created item.

3. View Task Details

3.1 From the To-Do List, user taps one task entry.

3.2 System opens the Task Details screen, showing all fields.

3.3 On this screen, two action buttons are available: Edit and

Delete.

4. Edit Task

4.1 User taps Edit in the Task Details screen.

4.2 System displays a pre-filled edit form.

4.3 User modifies any fields, subtasks, attachments, or collaborators

and taps Save.

4.4 System validates inputs (see AF-1).

4.5 On success, system updates the task in Firestore.

CHAPTER 3

 78
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.6 System shows “Task updated” and returns to the refreshed

Task Details screen.

5. Delete Tasks

5.1 User taps Delete in the Task Details screen.

5.2 System prompts: “Are you sure you want to delete this task?”

5.3 If confirmed, system deletes the task from Firestore.

5.4 System shows “Task deleted” and returns to the To-Do List,

refreshed.

Alternative Flow AF-1: Validation Error (Add/Edit)

• If required fields are missing or invalid (e.g., due date in the past),

system highlights the errors and remains on the form until corrected.

AF-2: Empty To-Do List

• If no tasks exist on initial load, system displays “No tasks. Tap ‘+’

task to create one.” and bypasses steps 3–5.

AF-3: Cancel Delete

• At the delete confirmation prompt, if the user taps Cancel, system

aborts deletion and stays on the Task Details screen.

Exception Flow EF-1: Firestore Read/Write Failure

• On any fetch, save, update, or delete error, system displays an alert:

“Unable to communicate with server”

EF-2: Network Lost Mid-Operation

• If connectivity drops during a CRUD operation, system rolls back

partial changes, shows “Network error. Please try again.” and

returns to the last stable screen.

Post-conditions Add: The new task exists in Firestore and appears in the To-Do List.

View: Task details are displayed; no data was modified.

Edit: The selected task’s record in Firestore reflects the user’s updates.

Delete: The selected task is removed from Firestore and no longer appears in

the list.

Table 3.1.17 Use Case Description – Manage To-Do

CHAPTER 3

 79
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.18 Dynamic Weighted Task Prioritization

Activity Diagram

Figure 3.1.18 Activity Diagram – Dynamic Weighted Task Prioritization

CHAPTER 3

 80
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Dynamic Weighted Task Prioritization

Actor User, Firestore, System (Automated Scheduler)

Pre-conditions 1. User is authenticated and can read the tasks.

2. Task documents expose: dueDate, subtasks[], alertScores[],

priorityValue (missing values allowed as defaults applied).

3. Device clock is available.

Main Flow 1. Load task list.

2. Set defaults for missing fields (dueDate=now, alertScores=[0,0],

priorityValue=0.2).

3. Fork → parallel conceptual computations:

- Compute deadline urgency score.

- Compute subtask score.

- Compute alert score.

- Compute priority value.

4. Apply weights: Deadline=0.4, Subtask=0.2, Alert=0.1, Priority=0.3.

5. Compute final score: score = 0.4*deadline + 0.2*subtask +

0.1*alert + 0.3*priority.

6. Attach score to task.

7. If collaborated task: sort by score (descending).

8. If not collaborated task: Bucket by thresholds; ≥0.70 → Urgent,

0.40–<0.70 → Medium, <0.40 → Low (sort within buckets by score

descending order).

9. Render prioritized list.

10. Subscribe for changes (task/subtask/alerts/priority); on change,

recompute from step 2 and re-render.

Alternative Flow AF-1: Empty list

• show empty state, no scoring.

AF-2: Manual refresh

• re-fetch, recompute, re-render.

AF-3: View toggle (All vs Collaborated)

• switch between sort-only vs bucketed layout.

Exception Flow EF-1: Invalid/missing dueDate

• default to now, log, continue.

EF-2: Read failure

CHAPTER 3

 81
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• show cached list (if any) and a retry banner; recompute when data

arrives.

EF-3: Numeric safety

• clamp score to [0..1]; guard against null value.

Post-conditions 1. Each task has a computed priority score in [0..1].

2. The list is sorted by score (descending) or bucketed into

Urgent/Medium/Low (per your diagram).

3. The view updates automatically when inputs change.

Table 3.1.18 Use Case Description – Dynamic Weighted Task Prioritization

CHAPTER 3

 82
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.19 Past Activity – Completion Detection

Activity Diagram

Figure 3.1.19 Activity Diagram – Past Activity

CHAPTER 3

 83
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case Description

Use Case Past Activities Management

Actor User

Pre-conditions 1. The user is logged into the system.

2. The system has previously recorded tasks or events that are

completed or overdue.

Main Flow 1. System evaluates schedules:

1.1 For each schedule with a defined date, system compares

currentTime vs. schedule.deadline + 1 day

1.2 If overdue, system moves that schedule from the Active

Schedule List into the Overdue Schedules screen’s list.

Otherwise it remains active.

2. System evaluates to-dos:

2.1 For each task, system checks

• task.isCompleted == true OR

• all subtasks are completed

2.2 If completed, system moves that task from the Active To-Do

List into the Completed Tasks screen’s list. Otherwise it

remains active.

3. The Schedule List and To-Do List screens now omit any moved

items.

4. User views overdue schedules:

4.1 User navigates to the Overdue Schedules screen.

4.2 System displays all archived schedules there.

4.3 User selects one and chooses either:

Recover → system restores it to the Schedule List and removes

it from Overdue Schedules.

Delete → system prompts “Permanently delete?”; if confirmed,

it deletes from Firestore and the Overdue list.4.4. Screen

refreshes to reflect the change.

4.4 Screen refreshes to reflect the change.

5. User views completed tasks:

5.1 User navigates to the Completed Tasks screen.

5.2 System displays all archived tasks there.

5.3 User selects one and chooses either:

CHAPTER 3

 84
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Recover → system restores it to the To-Do List and removes it

from Completed Tasks.

Delete → system prompts “Permanently delete?”; if confirmed,

it deletes from Firestore and the Completed list.

Alternative Flow If a task or event remains in the past activity list for an extended period of 30

days, the system may automatically delete it.

Exception Flow If a user attempts to recover a past task/event but the related data is missing

or corrupted, the system displays an error message and prevents recovery.

Post-conditions 1. Overdue schedules appear only in the Overdue Schedules screen.

2. Completed tasks appear only in the Completed Tasks screen.

3. Recovering an item returns it to its original active list and removes it

from the archive.

4. Deleting an item removes it permanently from Firestore and the

archive screen.

Table 3.1.18 Use Case Description – Past Activity

CHAPTER 3

 85
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Methodology

Figure 3.2 Prototyping Methodology

The proposed project follows the prototyping methodology, which is widely used in software

development for its iterative and user-centered approach [37][38]. This methodology consists

of six essential phases, allowing for continuous feedback and improvements throughout the

development cycle. The first phase is requirement analysis, where user needs and expectations

are gathered through discussions and research. The next phase is quick design, where an initial

draft of the application is created. This design is not final but serves as a foundation for

discussions with my supervisors, allowing early modifications based on expert feedback [39].

Following design approval, the prototype development phase begins, where the system’s core

functionalities are implemented. Once a working prototype is ready, the evaluation phase is

conducted by my supervisor. The feedback helps identify usability issues and areas for

improvement. Based on the evaluation, the refinement phase is initiated, making necessary

adjustments through multiple iterations [40]. This cycle continues until the prototype meets

expectations in terms of usability, functionality, and efficiency. The final phase is

implementation, where the completed application is tested under various scenarios before

deployment. Regular maintenance ensures long-term usability and efficiency. The prototyping

methodology is ideal for this project as it allows quick modifications, early issue detection, and

ensures that the final system is practical and user-friendly.

CHAPTER 3

 86
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Implementation Challenges and Issues

Throughout the development of this project, which spanned both FYP I and FYP II, several

critical challenges arose that shaped the implementation process. One of the earliest difficulties

involved gaining proficiency in the Flutter framework and Dart programming language.

Substantial time was devoted to studying architectural patterns, state management approaches,

and user interface structuring techniques. This required iterative practice and continuous

refinement of the codebase before stable and functional modules could be produced.

Another significant challenge concerned the integration of Artificial Intelligence (AI) and

speech-to-text algorithms. Considerable effort was invested in configuring Google’s

Generative AI (Gemini) for assistant features and Cloud Speech-to-Text for transcription, both

of which demanded multiple trials and adjustments to align with system requirements.

Additional complications included the possibility of Gemini being overloaded during periods

of high traffic, which occasionally disrupted responses, and the slower transcription speeds of

Google Cloud Speech-to-Text when handling multilingual inputs without explicitly narrowing

the language region for Malaysian speakers.

Cloud service management also presented difficulties. To enable features such as attachments,

storage, and collaboration, subscription to the Firebase Blaze plan was required. Although the

plan provided flexible scaling, usage beyond the no-cost tier. For example, storage above 1 GB

or bandwidth exceeding 10 GB introduced budgetary constraints. Continuous monitoring of

usage across Cloud Functions, Firestore, and Storage was necessary to prevent exceeding limits.

Consequently, attachment storage was optimised, and non-essential email services were

discontinued. Notifications were retained solely within the application rather than delivered

through email, as integrating external mailing services such as SendGrid or Brevo required

billing upgrades that were not feasible within the project’s scope.

Additional challenges arose in implementing reminders and notification scheduling, where

inconsistencies were observed in triggering alerts at the intended times. These issues were

partly attributed to permission handling and background execution restrictions. While

refinements in scheduling logic improved performance, further optimisation remains necessary.

Collaboration features also posed complexity in ensuring real-time synchronisation and

providing an intuitive interface. Basic functionality such as collaborator assignment and file

attachment was implemented in FYP I, while more advanced functions, including detailed

comments, integrated voice transcription, and smart search, were developed during FYP II.

CHAPTER 3

 87
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4 Project Timeline

Figure 3.4.1 FYP 1 Timeline – Gantt Chart

Figure 3.4.2 FYP 2 Timeline – Gantt Chart

CHAPTER 4

 88
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

System Evaluation and Discussion

4.1 Blackbox

4.1.1 Authentication

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Register –

valid

credentials

New email, strong

password (>=8,

letters + digit)

Submit

Register

Account created;

user doc written,

navigates to

Home

Account

successfully

created, Firestore

user’s doc stored,

navigated to

Home.

Pass

Register –

duplicate

email

Email already

existed

Submit

Register

Error “Email

already in use”;

stay on Register

Error shown:

“Email already in

use”.

Pass

Register –

invalid email

format

abc@ Submit

Register

Inline validation

error; no account

created

Inline error,

button disabled

until fixed.

Pass

Register –

weak

password

123456 Submit

Register

Inline “weak

password”; no

account created

Inline “Password

should be at least

6 characters”

(Firebase Auth

default).

Pass

Login - valid Correct email &

password

Submit

Login

Navigates to

Home; FCM

token

stored/updated

Redirected to

Home; FCM

token saved under

user profile.

Pass

Login –

wrong

password

Valid email,

wrong password

Submit

Login

Error “Invalid

credentials”;

remain on Login

Error “The

password is

invalid”.

Pass

Forgot

password –

registered

email

Known email Request

reset

Password reset

email sent;

success toast

Password reset

email sent;

confirmation toast

displayed.

Pass

Forgot

password –

unregistered

email

Unknown email Request

reset

Non-disclosing

message “If this

email exists, a

link was sent”

Generic message

sent (non-

disclosing).

Pass

Session

persistence –

relaunch app

User logged in Kill &

relaunch

app

User remains

logged in (unless

signed out)

User stayed

logged in after

relaunch

(Firebase Auth

persistence

working).

Pass

Sign out –

normal flow

Logged-in user Tap Sign

Out

Session cleared;

back to Login

Session cleared,

returned to Login

screen.

Pass

Table 4.1.1 Test Case - Authentication

CHAPTER 4

 89
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.2 Schedule Management (CRUD, Reordering, Overdue)

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Add schedule

– normal

Valid title; future

start/end

Create Appears in list

with correct times

Saved to schedules

collection,

appeared in list

immediately

(synced real-time).

Pass

Edit schedule

– normal

Existing

schedule

Edit fields Updated values

persist; list

reflects changes

Updated fields

persisted, UI

refreshed instantly.

Pass

Delete

schedule –

normal

Existing

schedule

Delete Removed from

list; no ghost

entry

Entry removed

from Firestore and

UI.

Pass

Reordering –

present before

future

Start = now−1m,

end = now+29m

Create Present schedules

listed first

Ongoing schedule

shown above future

ones.

Pass

Overlap – two

events

[10:00–11:00] &

[10:30–11:30]

Create

both

Both shown;

sorted by start,

then earlier end

Both events

displayed; sorted

by start time.

Pass

Both shown;

sorted by

start, then

earlier end

End < now−24h Wait or

create

past

Auto-moved to

Overdue; not in

active list

Auto-moved into

“Overdue” section.

Pass

Invalid time –

end < start

End before starts Create Validation error;

cannot save

Validation error:

cannot save.

Pass

Time zone

switch

handling

Change device

TZ

Reopen

app

Times reflect

local TZ; no data

corruption

All times

recalculated to

device TZ

correctly.

Pass

Table 4.1.2 Test Case – Schedule Management

4.1.3 To-do Management (CRUD, Subtasks, Archive)

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Create to-do

with subtasks

Title; due date; 3

subtasks

Save To-do saved;

subtasks listed

Stored in todos

collection with

subtasks

subcollection; UI

shows all subtasks.

Pass

Complete via

subtasks –

auto

3 subtasks (all

unchecked)

Mark all

complete

To-do auto

becomes

Completed

Auto-marked as

Completed when

last subtask done.

Pass

Complete via

manual

toggle

No subtasks Toggle

“Done”

To-do archived to

Completed

Task moved to

Completed list.

Pass

Boundary –

exactly 10

subtasks

10 subtasks Save Workload bucket

“≥10” applied; UI

remains

responsive

Accepted; workload

score capped; UI

still smooth.

Pass

CHAPTER 4

 90
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Boundary –

due = now +

1h

Due in 60

minutes

Save Urgency bucket

“≤1 hour” applied

Urgency score

mapped to “≤1

hour”.

Pass

Invalid due

date – past

Due yesterday Save Validation/warnin

g; save blocked or

corrected

Save blocked; error

message shown.

Pass

Edit to-do –

title/priority

Existing to-do Edit &

Save

Changes persist;

lastModified

updated

Title and priority

updated;

lastModified

timestamp changed.

Pass

Delete to-do

– cascade

check

To-do with

comments/

subtasks

Delete Removed; no

orphaned

subcollections

Removed from

Firestore;

subcollections

deleted by cascade.

Pass

Collaborated

Tasks –

views

Existing

collaborated task

list

View &

Action

Only creator and

admin can toggle

“Done”

Only creator/admin

could toggle Done;

normal users

restricted.

Pass

Table 4.1.3 Test Case – Todo Management

4.1.4 Collaboration & Comments (Text, Voice, Files, URLs)

Module/ Test

Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Add

collaborator –

valid

User email

exists

Add

collaborat

or

Collaborator

appears; in-app

notification sent

Collaborator added;

in-app notification

received.

Pass

Post text

comment –

normal

Connected Send

comment

Appears instantly

to all (real-time)

Comment appeared

in real-time across

devices.

Pass

Post URL –

autolink

https://… Send Clickable link;

opens external

browser

Auto hyperlinked;

tap opened

browser.

Pass

Attach file –

within limit

Valid PDF ≤

size cap

Upload Upload succeeds;

thumbnail/filenam

e shown

Upload succeeded

to Firebase Storage;

link stored in

Firestore.

Pass

Record voice

(EN/BM/CN)

Short note (10s)/

Long not (>60s)

Upload Storage object

created

(Transcript stored

in EN/BM/CN);

voice bubble

visible

File uploaded,

transcript auto

generated;

Mandarin returned

in pinyin.

Partial

Unsupported

audio –

handling

e.g., unusual

code

Upload Transcoded or

rejected with

descriptive error

File transcoded to

WAV; if failed,

error recorded in

comment doc.

Pass

Delete own

comment

Own text/voice Delete Entry removed for

all; permissions

enforced

Removed from

Firestore for all

users.

Pass

CHAPTER 4

 91
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Reply message Existing

messages send

by others

Reply Message quoted

correctly and

allow to jumpy to

message

successfully

Quoted message

displayed, tapping

jumps to original

message.

Pass

Table 4.1.4 Test Case – Collaboration and Comment

4.1.5 Dynamic Weighted Task Prioritization (Scoring & Reordering)

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Ranking –

urgent vs

distant

Task A: due

today, High

Task B: due

+14d, Low

Create

both

A ranks above B

A ranks above B

Pass

Boundary –

deadline

buckets

Tasks due at 1h,

24h, 7d, 30d

Create

tasks

Each mapped to

correct urgency

bucket; order

reflects buckets

Each mapped to

correct urgency

bucket; order

reflects buckets

Pass

Boundary –

workload

buckets

Subtasks: 0, 1, 3,

6, 9, 10

Create

tasks

Scores: 0; 1.2

bump for single;

0.4; 0.6; 0.8; 1.0

Scores assigned 0,

1.2, 0.4, 0.6, 0.8,

1.0 as expected.

Pass

Alert

aggressivene

ss mapping

Alerts:

none/5m/30m/1h/

1d/1w

Set &

save

Alert values

mapped; final

score P(t)

consistent

Mapped correctly

(None=0 → 1

week=highest

weight).

Pass

Tie-break

policy

Two tasks same

P(t)
Compare Order by earlier

due date →

higher user

priority → more

subtasks

Earlier due date

listed first; if same,

higher user priority

wins.

Pass

Recompute

on time drift

Task near bucket

boundary

Wait

threshold

passes

List reorders

when bucket

changes; no crash

When due time

crossed boundary,

list auto-reordered.

Pass

Table 4.1.5 Test Case – Dynamic Weighted Task Prioritization

4.1.6 Completion Detection (schedules & to-dos)

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Schedule

overdue

within grace

End passed < 24h Observe Still in active; not

overdue yet

Remained in

active list.

Pass

Schedule

overdue after

grace

End passed = 24h Observe Moves to Overdue

automatically

Moved to

Overdue.

Pass

To-do

incomplete

with pending

subtasks

3 subtasks Complete

2/3

To-do remains

incomplete

Remained

incomplete.

Pass

CHAPTER 4

 92
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To-do auto

complete by

subtasks

3 subtasks Complete

3/3

To-do marked

Completed

Auto-marked

Completed.

Pass

Manual

completion

override

Any subtasks

state

Toggle

“Done”

To-do marked

Completed

regardless

Marked

Completed

regardless of

subtasks.

Pass

Table 4.1.6 Test Case – Completion Detection

4.1.7 Universal Search (Text, Transcripts, Files, URLs)

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Search text

comment

keyword

Known keyword

exists

Search Matching

comments

returned;

highlights; jump-to

works

Correct

comments

highlighted.

Pass

Search voice

transcript

phrase

Phrase only in

transcript

Search Voice thread

returned with

transcript snippet

Transcript

results returned

from Firestore.

Pass

Search by

attachment

name

“report.pdf”

uploaded

Search

“report”

Attachment

message returned

Attachment

message

returned in

results.

Pass

Search by

URL domain

URL contains

“https”

Search URL URL message

returned

Message with

URL returned.

Pass

Case-

insensitive

matching

Mixed case

content

Search

lower/upper

Identical results

(case-insensitive)

Results identical

for lower/upper

case.

Pass

No-match

behaviour

Random string Search “No results” state;

input preserved

UI showed “No

results found”.

Pass

Large result

set –

pagination

>100 matches Scroll results Incremental load;

smooth scrolling;

no freezes

Loaded

incrementally;

smooth

scrolling.

Pass

Table 4.1.7 Test Case – Universal Search

4.1.8 AI Assistant (Consent-Gated Actions)

Module/

Test Name

Input/

Pre-

conditions

Steps Expected

Output

Actual Output Pass/

Fail

Plan my day

– generate

plan only

Tasks &

schedules exist

Tap “Plan my

day”

Returns plan

with time

blocks; no

writes without

consent.

Generated schedule

blocks based on

tasks/schedules; did

not auto-write

without user

confirmation.

Pass

Add to

schedule –

on confirm

Plan generated Tap “Add to

schedule”

Schedules

created; success

toast; Home

Created new events

in schedules; push

notification sent.

Pass

CHAPTER 4

 93
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

shows new

entries.

Reschedule

event/task

Target event

exists

“Reschedule

… to 15:00”

Event/Task

updated to

15:00; notify

collaborators if

applicable.

STT sometimes

couldn’t detect the

speech correctly

and causing the

action incomplete.

Fail

Delete

event/task

Target event

exists

Prompt

deletion with

the title

Event/Tasks

deleted from

Firestore.

Event/Tasks deleted

from Firestore

successfully

Pass

No free

window

today

Calendar fully

busy

Tap “Plan my

day”

Assistant

explains

conflict;

proposes next

slots/day

Assistant explained

conflict; suggested

next available slot.

Pass

List overdue

tasks

Overdue exist Command Correct overdue

list returned

Returned overdue

tasks list correctly.

Pass

Table 4.1.8 Test Case – AI Assistant

4.1.9 Notifications (FCM)

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Event alert –

1 hour before

Alert set 1h prior Wait Notification

delivered exactly

60 min before

Push

Notification

doesn’t receive

at correct time.

Fail

Collaborator

comment

Collaborator adds

comment

Trigger All collaborators

receive in-app

notification.

All collaborators

received in-app

notification.

Pass

Task

completed –

push

Mark task

completed

Trigger Collaborators

notified of

completion in app

In-app

notification sent

to collaborators.

Pass

Background

restrictions

handling

OS limits enabled Wait for

alert

Notification still

delivered; or

limitation

documented

Push

Notification

doesn’t send

Fail

Deep link on

tap

Any received

notification

Tap App opens to

correct

screen/thread

App opened at

correct

task/schedule

screen.

Pass

Table 4.1.9 Test Case – Notifications

4.1.10 Device Calendar Integration

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Permission

granted –

merge events

User grants

calendar access

Enable Device events

merged with

Firestore schedules

Device calendar

events merged

into Home view.

Pass

CHAPTER 4

 94
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Permission

denied –

graceful

User denies

access

Deny

prompt

Only Firestore

schedules shown;

no crash

Only Firestore

schedules

shown; no crash.

Pass

New device

event –

reflection

Create in device

calendar

Refresh

Home

Event appears in

merged view

Reflected in

merged view

after refresh.

Pass

Runtime

revoke –

handling

Granted earlier,

now revoked

Revoke in

settings

App hides device

events; no fatal

error

Device events

hidden; app

continued

normally.

Pass

Table 4.1.10 Test Case – Device Calendar Integration

4.1.11 Settings, Permissions & Profile

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Update

profile –

email/phone

Valid values Save Firestore updated;

UI reflects

changes

Firestore user’s

doc updated;

changes

reflected in UI.

Pass

Notification

channel

behaviour

Channel silent →

audible

Toggle in

settings

App notifications

adopt new channel

behaviour

Audible applied

correctly.

Pass

Microphone

permission

denied

Mic permission

OFF

Attempt

record

Clear prompt;

recording blocked;

no crash

Prompt shown;

recording

disabled.

Pass

Storage

permission

denied

Storage

permission OFF

Attach file Clear prompt;

attach disabled; no

crash

Prompt shown;

file attachment

disabled.

Pass

Table 4.1.11 Test Case – Settings, permission & Profile

4.1.12 Offline & Latency

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Create to-do

while offline

Disable network Add to-do Cached locally; UI

indicates offline;

syncs later

Cached locally;

synced when

online.

Pass

Post

comment

offline –

queue

No network Post text

Queued; posts

when online; no

duplicate

Queued locally;

posted when

online; no

duplicate.

Pass

Table 4.1.12 Test Case – Offline & Latency

4.1.13 UI Micro-interactions & Utilities

Module/

Test Name

Input/

Pre-conditions

Steps Expected Output Actual Output Pass/

Fail

Search result

– jump &

highlight

Have a match in

long thread

Tap search

hit

Scrolls to original

message; row

highlighted

Scrolled to

message;

highlighted in

thread.

Pass

CHAPTER 4

 95
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Long-press

shortcuts –

assistant

Home +,

schedule +, to-

do +

Long-press Assistant

voice/text dialog

appears

Assistant dialog

appeared

(voice/text options).

Pass

Keyboard

focus

reliability

Any input bar Tap input Keyboard opens;

no focus trap or

autohide

Opened correctly;

no focus trap.

Pass

Infinite list –

pagination

Long

conversation

Scroll Next page loads;

scroll position

maintained

New page loaded

smoothly; scroll

position

maintained.

Pass

External link

navigation

Comment with

URL

Tap link or

files

Opens browser;

back returns to

app state

Opened in browser;

back returned to

app state.

Pass

 Table 4.1.13 Test Case – UI Micro-interactions & Utilities

4.1.14 Failed Test Cases Analysis

Test Case: Event alert – 1 hour before

The first issue identified relates to scheduled event notifications, particularly alerts set to trigger

one hour before a task or event. Despite correct configuration, some notifications were either

delayed or not received at the expected time. This failure can be attributed to system-level

restrictions on exact alarm scheduling in modern mobile operating systems, particularly under

Doze mode or battery optimization settings. In addition, missing runtime permissions such as

SCHEDULE_EXACT_ALARM (Android 12+) or incorrect time-zone handling may have

contributed to inconsistencies. To mitigate this, exact alarm APIs such as

setExactAndAllowWhileIdle() should be adopted, and all times should be stored in UTC with

conversion to the device’s time zone at scheduling. Furthermore, fallback mechanisms through

Firebase Cloud Messaging (FCM) can be implemented to ensure timely delivery even when

local alarms are suppressed.

Test Case: Background restrictions handling

The second challenge concerns push notification delivery in restricted background conditions.

In scenarios where the device is in battery saver mode or has imposed background execution

limits, push notifications were observed to fail. This suggests that the notification priority may

not have been set to "high," or that app-level optimizations were blocked by the operating

system’s power-saving features. To address this, notifications must be configured as high

priority within FCM, while notification channels should be created with high importance and

lock-screen visibility enabled. Additionally, the system should be designed to re-register

alarms and push tokens after device reboot or app updates to maintain resilience. Clear user

CHAPTER 4

 96
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

guidance for whitelisting the application from manufacturer-specific background restrictions

could also reduce the likelihood of failed delivery.

Test Case: Reschedule event/task

A further issue was observed in the speech-to-text (STT) component, where the system

occasionally failed to accurately detect speech, leading to incomplete transcription and

preventing users from completing intended actions. This problem is heightened in multilingual

contexts such as Malaysia, where inputs may shift dynamically between English, Bahasa

Malaysia, and Chinese. Although the system currently uses bundled recognizers and fallback

models, misinterpretation remains possible when low-confidence recognition outputs are

accepted or when the input includes rapid code-switching. To improve robustness, explicit

regional language models (e.g., en-MY, ms-MY, cmn-Hans-CN) should be prioritized, and

confidence thresholds should be introduced to trigger retries or prompt users to clarify input.

Test Case: Record voice (EN/BM/CN)

An additional complication within STT transcription was the recurrent occurrence of Chinese

speech being returned as Pinyin rather than Hanzi characters. This discrepancy reduces

readability for native Chinese users and undermines the accuracy of stored transcripts. The

underlying cause lies in the recognition model defaulting to ASCII outputs when Han character

bundles are not strongly enforced, or when the detected confidence level for Chinese script is

low. While the system already includes a “pinyin guard” retry with Han bundles, results remain

inconsistent under noisy conditions or mixed-language inputs. To resolve this, the transcription

pipeline should strictly enforce Han output for Chinese language codes, introduce post-

processing filters to reject Pinyin-like results, and provide user-facing settings to lock

transcription into a specific script when required. Such improvements would ensure more

reliable transcription quality and enhance usability for multilingual teams.

CHAPTER 4

 97
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Client Satisfaction Survey Analysis (10 Respondent)

Section A: About You & Your Work/ Study Habits

Figure 4.2.1 Section A Question 1

Figure 4.2.1 illustrates the distribution of respondents’ roles. Out of ten participants, seven are

students, two are lecturers, and one is an employee. This indicates that the majority of the

respondents are students, although there is some representation from professional and academic

staff, which allows for perspectives beyond a purely student population.

Figure 4.2.2 Section A Question 2

Figure 4.2.2 shows the frequency of using digital tools or applications to manage tasks and

schedules. Four respondents reported often use such tools, two reported always using them,

while the remaining four indicated occasional or sometimes usage. This suggests that while

most participants are accustomed to digital task management, a portion still adopt these tools

less consistently.

CHAPTER 4

 98
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.3 Section A Question 3

Figure 4.2.3 presents the tools most frequently used by respondents. Apple Reminders and

Google Calendar are the most common, each selected by two respondents. The rest reported

varied combinations such as WhatsApp, Apple Calendar, device calendar and other reminder

applications. This demonstrates that respondents often rely on multiple applications to support

their scheduling and task management needs.

Figure 4.2.4 Section A Question 4

Figure 4.2.4 depicts the average number of tasks or activities managed weekly. Half of the

respondents reported managing between 5–10 tasks per week, four managed fewer than five,

and one managed 11–20 tasks. This reflects a generally moderate workload, suggesting that

organization remains important, even when the volume of tasks is not excessively high.

CHAPTER 4

 99
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.5 Section A Question 5

Figure 4.2.5 illustrates how frequently respondents collaborate with others on shared tasks. Six

respondents indicated that they collaborate often, two reported always collaborating, and two

reported sometimes collaborating. This highlights that collaboration is a significant part of most

participants’ task management experience.

Figure 4.2.6 Section A Question 6

Figure 4.2.6 demonstrates the pace at which respondents usually complete their tasks. Eight

respondents described their pace as moderate, meaning they complete tasks on time, while two

respondents reported completing tasks at the last minute. This shows that punctual task

completion is common, though procrastination still exists among some participants.

CHAPTER 4

 100
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.7 Section A Question 7

Figure 4.2.7 four respondents prefer a structured timetable, while three prefer a flexible task

list and three value both equally. This distribution indicates a slight preference for structured

scheduling, yet a substantial portion require flexibility, suggesting that both timetable-style

planning and adaptable task lists should be supported in the application’s design.

Figure 4.2.8 Section A Question 8

Figure 4.2.8 shows respondents’ confidence levels in staying organized with their current

system. Seven respondents rated themselves at level 4 out of 5, two gave the highest rating of

5, and one rated at level 3. This indicates that most respondents feel confident in their current

organizational systems.

CHAPTER 4

 101
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.9 Section A Question 9

Figure 4.2.9 illustrates how stressful respondents find managing tasks and schedules. Four

respondents rated their stress level at 4 (quite stressful), three rated it at 2 (low stress), two

rated it at 3 (moderate), and one rated it at 5 (very stressful). These findings suggest that stress

levels vary among respondents, with some coping effectively while others experience higher

levels of difficulty.

Figure 4.2.10 Section A Question 10

Figure 4.2.10 presents the reported challenges faced when staying productive. The challenges

include difficulty focusing for long periods, managing an overload of tasks under tight

deadlines, proper time management, and maintaining concentration. These responses highlight

that productivity issues are primarily linked to workload pressure and personal discipline.

CHAPTER 4

 102
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Section B: Comparing Experience with StudyMate vs Your Current Application

Figure 4.2.11 Section B Question 1

Figure 4.2.11 illustrates the ease of navigation when using StudyMate compared to

respondents’ usual applications. Seven respondents rated navigation as very easy (5), while

three rated it as easy (4). None selected ratings from 1 to 3. This indicates a uniformly positive

user experience in terms of ease of navigation.

Figure 4.2.12 Section B Question 12

Figure 4.2.12 shows the experience of syncing StudyMate with device calendars compared to

other applications. All ten respondents (100%) reported that syncing in StudyMate worked

more smoothly. This demonstrates a strong consensus on the reliability and effectiveness of

StudyMate’s calendar integration.

CHAPTER 4

 103
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.13 Section B Question 3

Figure 4.2.13 presents how helpful it was to view schedules, tasks, and calendar events in one

place using StudyMate compared to other applications. Half of the respondents rated this

feature as very helpful (5), while the other half rated it as helpful (4). This reflects a consistent

view that integration of multiple functions in a single interface enhances efficiency.

Figure 4.2.14 Section B Question 4

Figure 4.2.14 depicts respondents’ views on the usefulness of the AI assistant for planning,

suggesting tasks, and providing insights compared to their current applications. Seven

respondents rated it as very useful (5), two rated it as useful (4), and one rated it as moderately

useful (3). This indicates strong approval of the AI assistant, with only minimal reservations.

CHAPTER 4

 104
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.15 Section B Question 5

Figure 4.2.15 shows the accuracy and relevance of StudyMate’s task suggestions and auto-

scheduling compared to other applications. Six respondents rated the feature as very accurate

(5), while four rated it as accurate (4). The results highlight a positive reception towards this

functionality, with all respondents finding it at least accurate.

Figure 4.2.16 Section B Question 6

Figure 4.2.16 illustrates the clarity of the StudyMate dashboard in presenting overdue,

completed, incomplete tasks, and progress charts compared to other applications. Nine

respondents (90%) found the dashboard very clear, while one respondent (10%) found it

somewhat clear. This suggests that the dashboard is effective in visualising task progress and

overall productivity.

CHAPTER 4

 105
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.17 Section B Question 7

Figure 4.2.17 demonstrates the usefulness of the collaboration feature, including text, voice,

and attachments, compared to current applications. Six respondents rated it as very useful (5),

and four rated it as useful (4). This reflects widespread satisfaction with the collaboration tools

available in StudyMate.

Figure 4.2.18 Section B Question 8

Figure 4.2.18 presents user feedback on the voice transcription feature compared to similar

features in other applications. Six respondents (60%) stated it exceeded expectations, while

four respondents (40%) found it acceptable. None reported it as needing improvement,

suggesting that the transcription system meets or surpasses expectations.

CHAPTER 4

 106
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.19 Section B Question 9

Figure 4.2.19 shows satisfaction with StudyMate’s notifications compared to current

applications. Five respondents rated satisfaction as 4, three rated it as 5, and two rated it as 3.

Overall, the majority of respondents expressed satisfaction, though a small proportion

indicated room for further refinement.

Figure 4.2.20 Section B Question 10

Figure 4.2.20 highlights open-ended feedback on which StudyMate feature was considered

better than respondents’ current applications. The most frequently cited advantages were the

collaboration feature, which consolidates teamwork into one platform, the AI assistant for

planning and personal organisation, and the dashboard for clear task tracking. Other mentions

included the simplicity of the to-do list design and the usefulness of voice transcription. These

responses reinforce the quantitative findings that StudyMate provides clear advantages in

integration, collaboration, and intelligent assistance.

CHAPTER 4

 107
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Section C: Productivity & Future Needs Compared to Current Applications

Figure 4.2.21 Section C Question 1

Figure 4.2.21 shows whether StudyMate made it easier for respondents to stay on top of their

tasks and activities compared to their current application. All ten respondents (100%) answered

“Yes,” indicating unanimous agreement that StudyMate provides greater support in managing

tasks effectively.

Figure 4.2.22 Section C Question 2

Figure 4.2.22 illustrates the extent to which StudyMate improved overall productivity. Six

respondents (60%) reported moderate improvement, while four (40%) reported significant

improvement. None selected “no improvement” or “slight improvement.” This demonstrates

that StudyMate had a clear positive impact on productivity for all participants.

CHAPTER 4

 108
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.23 Section C Question 3

Figure 4.2.23 depicts the effectiveness of StudyMate’s task prioritisation compared to

respondents’ existing applications. Nine respondents (90%) stated that prioritisation fit their

needs very well, while one respondent (10%) selected “somewhat.” This reflects a high level

of satisfaction with the weighted prioritisation approach integrated into the system.

Figure 4.2.24 Section C Question 4

Figure 4.2.24 presents respondents’ perceptions of how motivating it was to view progress

through completion levels and charts. Six respondents (60%) rated motivation as very high (5),

three (30%) rated it as high (4), and one (10%) provided a moderate rating (3). No participants

rated motivation at low levels. These findings suggest that StudyMate’s visual progress-

tracking tools serve as strong motivators.

CHAPTER 4

 109
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.25 Section C Question 5

Figure 4.2.25 shows whether respondents would recommend StudyMate to colleagues, friends,

or teammates. All ten participants (100%) answered “Yes,” reflecting unanimous endorsement

of the application.

Figure 4.2.26 Section C Question 6

Figure 4.2.26 demonstrates respondents’ likelihood of continuing to use StudyMate after

testing. Six respondents (60%) rated this likelihood at 4, while four (40%) rated it at 5. None

selected values lower than 4. This highlights high retention potential for the application among

its users.

CHAPTER 4

 110
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.27 Section C Question 7

Figure 4.2.27 identifies the type of user respondents believe would benefit most from

StudyMate. Four respondents (40%) chose people working in teams, another four (40%)

selected people who prefer structured planning, and two (20%) selected people with many

deadlines. This suggests that StudyMate is seen as particularly valuable for collaborative and

structured task management scenarios.

Figure 4.2.28 Section C Question 8

Figure 4.2.28 presents suggestions for additional features that would make StudyMate more

useful. Half of the respondents (50%) selected widgets, three respondents (30%) indicated

more AI insights, and one respondent each (10%) suggested dark mode and offline support.

These responses highlight demand for enhanced customisation and expanded AI-driven

functionalities.

CHAPTER 4

 111
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.29 Section C Question 9

Figure 4.2.29 illustrates which feature respondents believe should be prioritised for

improvement. Half of the respondents (50%) selected the personalised AI assistant, while the

other five responses (10% each) were spread across calendar management, task prioritisation,

collaboration, speech-to-text transcription, notifications, and dashboard analytics. This finding

indicates that further development of the AI assistant is the highest priority for users.

Figure 4.2.30 Section C Question 10

Figure 4.2.30 presents open-ended feedback from respondents. Suggestions included

improving the AI assistant’s capabilities, enhancing task maintenance efficiency, and providing

collapsible schedules for days with many activities. These responses confirm that while

StudyMate performs strongly overall, users desire refinements to increase efficiency and

flexibility.

CHAPTER 4

 112
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Results and Benchmark

The evaluation results demonstrate that StudyMate not only meets user expectations but also

outperforms existing applications in several critical areas of task and schedule management.

Respondents indicated that their current tools included Apple Reminders, Google Calendar,

WhatsApp, and similar applications, which often require users to combine multiple platforms

to achieve complete functionality. By contrast, StudyMate consolidates these features into a

single, integrated system.

In terms of usability, navigation and calendar synchronisation were rated superior in StudyMate

compared to existing tools. All respondents confirmed that syncing with device calendars

worked more smoothly, highlighting a key strength in integration that traditional applications

lack. This finding positions StudyMate as more reliable in maintaining consistency between

personal devices and application data.

The inclusion of an AI assistant marks a significant benchmark distinction. While current

applications provide basic scheduling or reminders. StudyMate’s assistant supports planning,

task suggestions, and progress insights. Respondents rated these features more positively than

those available in their current apps, particularly in terms of relevance and accuracy of task

recommendations. This demonstrates the added value of AI-driven functionality compared to

traditional reminder-based systems.

Collaboration was another area where StudyMate surpassed existing benchmarks. Respondents

highlighted the ability to integrate comments, voice messages, and attachments within tasks as

more convenient than relying on external communication platforms such as WhatsApp. The

consolidation of communication and task management within a single interface represents a

key improvement in collaborative productivity.

Dashboard analytics provided a further advantage, with StudyMate offering visualisations of

overdue, completed, and incomplete tasks as well as breakdowns by priority. This level of

progress tracking was rated as clearer and more motivating than what respondents typically

experienced in their current applications, where such integrated overviews are often absent or

fragmented.

From a productivity standpoint, all respondents agreed that StudyMate made it easier to stay

on top of their tasks and activities compared to their current applications. Moderate to

significant improvements in productivity were reported, confirming that StudyMate delivers

CHAPTER 4

 113
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

measurable benefits. The prioritisation algorithm was also rated more effective than the

approaches used by existing tools, suggesting that dynamic weighting based on deadlines,

workload, and priority levels provides a superior method of task ranking.

Finally, the unanimous willingness to recommend StudyMate and the strong likelihood of

continued usage reflect its competitiveness in the wider productivity application space. Users

particularly valued the personalised AI assistant and expressed interest in further enhancements

such as widgets and expanded AI insights. These findings highlight both the present advantages

of StudyMate and the directions for future refinement to maintain its competitive edge.

In summary, benchmarking against current applications confirms that StudyMate provides a

more comprehensive, integrated, and intelligent solution. It exceeds the capabilities of

traditional task and calendar management tools by combining AI-driven features,

collaboration, and analytics into a single platform, thereby addressing gaps that users currently

experience with fragmented application use.

4.4 Objectives Evaluation

The three objectives of this project were successfully achieved by providing an integrated and

intelligent productivity solution. First, task organization and prioritization were enhanced

through the Dynamic Weighted Task Prioritization Algorithm, which dynamically sorted tasks

based on deadlines, workloads, and urgency while offering real-time visualizations such as

progress bars and charts. This ensured that users could allocate their time efficiently and avoid

overload. Second, real-time collaboration was significantly improved with unified messaging

that supported both text and voice, automatic transcription for accessibility, attachment and

URL integration, and a smart search function capable of scanning across all communication

formats. These features minimized fragmentation and centralized group interactions,

promoting transparent and efficient teamwork. Third, the Smart AI Assistant served as a virtual

secretary by providing personalized daily planning, proactive task suggestions, reminders, and

project oversight through dashboards and timeline views. The assistant’s ability to interact

naturally through text or speech further increased usability and convenience. Together, these

features enabled users to maintain clear visibility of their responsibilities, collaborate

effectively, and receive actionable guidance to remain organized and productive. Ultimately,

the objectives collectively ensured that StudyMate surpasses traditional task management tools

by combining intelligent prioritization, seamless collaboration, and AI-driven support.

CHAPTER 4

 114
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.5 Concluding Remark

To sum up, this project has successfully delivered a smart mobile task management application

that addresses the common challenges of disorganized task handling, fragmented collaboration,

and limited personalization found in existing tools. By integrating a dynamic prioritization

algorithm, unified collaboration features, and a smart AI assistant, the system provides a

comprehensive solution that not only improves individual productivity but also strengthens

teamwork efficiency. The evaluation results confirmed that users experienced greater clarity,

motivation, and convenience when managing their schedules and tasks with the application

compared to their current tools. Furthermore, the positive reception and unanimous willingness

to recommend the system highlight its practical value and potential for real-world adoption.

While future improvements such as enhanced AI insights, widget support, and further

customization were suggested, the objectives of the project have been met effectively.

Overall, this project demonstrates that integrating intelligent automation, collaborative

functionality, and user-centered design can significantly enhance task management, ultimately

enabling users to manage their responsibilities more efficiently and with reduced stress. Minor

technical challenges such as occasional Gemini API overload and slower transcription speeds

in multilingual contexts were addressed through retry handling and optimized language

settings, ensuring that these limitations did not compromise the overall performance or user

experience. Looking ahead, the adoption of fallback AI models and the integration of offline

or on-device speech-to-text could further improve system resilience, guaranteeing reliable

assistance even during network congestion or service disruptions.

CHAPTER 5

 115
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Conclusion

This project has successfully delivered a mobile-based task management system, StudyMate,

designed to improve productivity and efficiency for students, educators, and professionals alike.

By addressing the recurring challenges of ineffective task prioritization, fragmented

collaboration, and limited visibility into progress, the system integrates three key innovations

including a Dynamic Weighted Task Prioritization Algorithm, a seamless real-time

collaboration framework, and a Smart AI Assistant for personalized planning and oversight.

Together, these features provide an integrated platform that consolidates scheduling, task

management, collaboration, and intelligent assistance into a single application.

The evaluation through black box testing and client satisfaction surveys confirmed that the

system achieved its objectives. Users reported improved clarity in task organization, smoother

collaboration with centralized communication tools, and greater motivation through progress

tracking dashboards and visual aids. Benchmarking further demonstrated that StudyMate

surpasses widely used applications such as Apple Reminders, Google Calendar, Microsoft To-

Do, Todoist, TickTick, and Trello by offering dynamic prioritization, unified task and schedule

integration, AI-driven recommendations, and advanced collaboration features within one

platform.

Although challenges were encountered during development including Flutter framework

mastery, storage limitations, and notification reliability these were effectively managed, and

the system was successfully completed with scalable integration of Firebase and Google Cloud

services. Feedback from respondents also highlighted potential enhancements, including

widget support, additional AI insights, and further personalization, which provide valuable

direction for future development. Furthermore, expanding cross-platform integration with tools

such as Microsoft Outlook, Slack, and Google Workspace would allow seamless adoption in

broader academic and professional contexts.

In conclusion, StudyMate demonstrates that the integration of intelligent automation,

collaboration, and personalized assistance can significantly enhance productivity and reduce

stress across academic and professional environments. The project has met its stated objectives

and delivered a functional, user-centered, and intelligent task management solution that holds

strong potential for real-world adoption and continued refinement.

 116
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] D. Ariely and K. Wertenbroch, “Procrastination, Deadlines, and Performance: Self-

Control by Precommitment,” Psychological Science, vol. 13, no. 3, pp. 219–224, May

2002, https://doi.org/10.1111/1467-9280.00441.

[2] “Organize reminders on your iPhone or iPad,” Apple Support.

https://support.apple.com/en-

us/119953#:~:text=Time%3A%20Add%20reminders%20to%20the

[3] “Introducing List Sharing and Steps in Microsoft To-Do,”

TECHCOMMUNITY.MICROSOFT.COM.

https://techcommunity.microsoft.com/t5/microsoft-to-do-blog/introducing-list-

sharing-and-steps-in-microsoft-to-do/ba-p/200109

[4] “Features,” Todoist. https://todoist.com/features

[5] S. K. Nayak, S. K. Padhy, and S. P. Panigrahi, “A novel algorithm for dynamic task

scheduling,” Future Generation Computer Systems, vol. 28, no. 5, pp. 709–717, May

2012, doi: https://doi.org/10.1016/j.future.2011.12.001.

[6] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems,”

Real-Time Systems, vol. 10, no. 2, pp. 179–210, Mar. 1996, doi:

https://doi.org/10.1007/bf00360340.

[7] R. W. White, Ahmed Hassan Awadallah, and R. Sim, “Task completion detection: A

study in the context of intelligent systems,” In Proceedings of the 42nd International

ACM SIGIR Conference on Research and Development in Information Retrieval, pp.

405–414, Jul. 2019, doi: https://doi.org/10.1145/3331184.3331187.

[8] Nielsen, J. (2012). Usability 101: Introduction to Usability. Nielsen Norman Group.

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

[9] Interaction Design Foundation (IDF). (2023). Prototyping: Learn Eight Common

Methods and Best Practices. https://www.interaction-

design.org/literature/topics/prototyping

[10] S. Davis and P. Mermelstein, “Comparison of Parametric Representations for

Monosyllabic Word Recognition,” IEEE Trans. Acoustics, Speech, and Signal Processing,

vol. 28, no. 4, pp. 357–366, 1980.

[11] L. Rabiner and R. Schafer, Theory and Applications of Digital Speech Processing,

Pearson, 2010.

 117
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[12] X. Anguera, “Acoustic Feature Extraction for Automatic Speech Recognition,” in

Encyclopedia of Speech and Language Processing, 2010.

[13] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures for streaming end-to-

end speech recognition with RNN-Transducer,” ASRU, 2017.

[14] A. Gulati et al., “Conformer: Convolution-augmented Transformer for speech

recognition,” Interspeech, 2020.

[15] S. Toshniwal et al., “A comparison of techniques for language model integration in

encoder-decoder speech recognition,” SLT, 2018.

[16] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity detection,”

IEEE SPL, 1999.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is All You Need,” Advances in Neural Information

Processing Systems (NIPS), pp. 5998–6008, 2017.

[18] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. Hinton, and J. Dean,

“Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts

Layer,” arXiv preprint arXiv:1701.06538, 2017.

[19] OpenAI, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

[20] Anthropic, “Claude 3 Model Card,” Anthropic Documentation, 2024. [Online].

Available: https://www.anthropic.com

[21] Google DeepMind, “Gemini: A Family of Highly Capable Multimodal Models,”

Google DeepMind Blog, Dec. 2023.

[22] Google, “Cloud Generative AI API Documentation,” Google Cloud, 2024. [Online].

Available: https://cloud.google.com/generative-ai

[23] Google Cloud, “Speech-to-Text v2 Documentation,” Google Cloud, 2024. [Online].

Available: https://cloud.google.com/speech-to-text

[24] M. Jeffress, “speech_to_text: A Flutter Plugin,” pub.dev, 2024. [Online]. Available:

https://pub.dev/packages/speech_to_text

[25] A. Radford et al., “Robust Speech Recognition via Large-Scale Weak Supervision,”

arXiv preprint arXiv:2212.04356, 2022.

[26] A. Kochetov et al., “Vosk Speech Recognition Toolkit,” alphacephei.com, 2020.

[Online]. Available: https://alphacephei.com/vosk

[27] Microsoft, “Azure Speech to Text Documentation,” Microsoft Azure, 2024. [Online].

Available: https://azure.microsoft.com/en-us/products/ai-services/speech-to-text

 118
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[28] Amazon, “Amazon Transcribe Documentation,” AWS, 2024. [Online]. Available:

https://aws.amazon.com/transcribe

[29] TickTick, “TickTick,” ticktick.com. https://ticktick.com/?language=en_US

[30] Trello, “Trello Tour,” Trello.com, 2019. https://trello.com/tour

[31] Apple Inc., “Limits for iCloud Calendar and Reminders,” Apple Support, 2024.

https://support.apple.com/en-us/103188

[32] Microsoft Corporation, “Can’t change order of tasks on ‘My Day’ if they are recurring,”

Microsoft Community, 2023. https://answers.microsoft.com/en-

us/msoffice/forum/all/cant-change-order-of-tasks-on-my-day-if-they-are/0f43b74d-

decd-4e66-a675-c12c5f4d0e54

[33] Microsoft Corporation, “Reordering To-Do does not save across devices,” Microsoft

Community, 2023. https://answers.microsoft.com/en-us/msoffice/forum/all/reordering-

to-do-does-not-save-across-devices/8dc716b1-1a6a-4191-8cc2-eaa95a75248b.

[34] Microsoft Corporation, “Custom order in To-Do not reflected in Outlook task,”

Microsoft Community, 2023. https://answers.microsoft.com/en-

us/msoffice/forum/all/custom-order-in-todo-not-reflected-in-outlook-task/444ecbfd-

0205-4d2b-ad65-180234f1225e

[35] H. Singh, “Todoist vs Apple Reminders: Which to-do app is better for you?”

Hulry.com, 2023. https://hulry.com/todoist-vs-apple-reminders

[36] Microsoft Corporation, “Microsoft To-Do sorting by due date is not working properly,”

Microsoft Community, 2023. https://answers.microsoft.com/en-

us/msoffice/forum/all/microsoft-to-do-sorting-by-due-date-is-not/b4a79bf5-f8eb-

4af0-b8a8-09df605285d6

[37] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 8th ed. New York,

NY, USA: McGraw-Hill Education, 2015. ISBN: 978-0078022128.

[38] I. Sommerville, Software Engineering, 10th ed. Harlow, U.K.: Pearson Education,

2016. ISBN: 978-0133943030.

[39] Nielsen, J. (2012). Usability 101: Introduction to Usability. Nielsen Norman Group.

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

[40] Interaction Design Foundation (IDF). (2023). Prototyping: Learn Eight Common

Methods and Best Practices. https://www.interaction-

design.org/literature/topics/prototyping

APPENDIX

 1
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX A

Poster

APPENDIX

 2
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX B

Operating Manual

B-1.1 Login

Figure B1.1 Login Page

Based on Figure B1.1 above, users can log in to the app by entering their registered email and

password. New users can create an account by clicking the "Sign-up" button, while users who

have forgotten their password can reset it by selecting the "Forgot Password" option.

Afterward, they will receive an email with instructions to set a new password.

APPENDIX

 3
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.2 Sign Up

Figure B1.2 Sign Up Page

As shown in Figure B1.2, new users can create an account by entering their email, phone

number, and password. They are required to confirm their password to ensure accuracy. Once

the details are provided, users can proceed by clicking the "Create Account" button to complete

the registration process. For users who already have an account, they can simply click the

"Login" link to access their existing account.

APPENDIX

 4
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.3 AI Assistant (AI panel)

Figure B1.3 AI Assistant (AI panel)

In Figure B1.3, the voice assistant allows users to quickly add schedules by speaking instead

of typing. To trigger it, press and hold the microphone button at the bottom of the screen. When

the system shows “Listening…”, speak the event details, such as the title, date, and time. The

spoken text will appear on screen for confirmation, followed by a short “Thinking…” stage

where the assistant processes the command. If needed, it may ask a follow-up question to

clarify details like the date or time. Once confirmed, the schedule is automatically created and

displayed in the calendar. This feature provides a fast, hands-free way to capture new events

and is especially useful when multitasking.

APPENDIX

 5
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.4 AI Assistant (Chatbot)

Figure B1.4 AI Assistant (Chatbot)

Figure B1.4 Personal Assistant screen is the central place where users can interact with the AI

assistant for smart task and schedule management. At the start, the assistant asks, “How would

you like to start?” and provides a Plan My Day button as a quick option. Tapping this button

allows the system to automatically review the user’s pending tasks, deadlines, and available

free time, then generate a suggested daily plan with focus blocks.

Once a plan is created, the screen displays a clear breakdown under Plan for Today. Each focus

block shows the allocated time, the task title, its due date, priority level, and the number of

subtasks. Overdue and urgent tasks are scheduled earlier, while lower-priority ones are slotted

later. This gives the user a structured, time-based plan that balances deadlines and priorities.

Users can also add schedules directly from this screen by tapping the Add Schedule button,

making it easy to insert additional commitments alongside the AI’s generated plan.

Beyond the Plan My Day feature, users can interact with the assistant by typing into the

message box at the bottom. By entering free-text queries or instructions (e.g., “Show my

upcoming tasks,” “Suggest when to study for BIIS,” or “Add a reminder for tomorrow”), the

assistant responds with personalized insights, suggestions, or actions.

APPENDIX

 6
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.5 Home

Figure B1.5 Home Page

As shown in Figure B1.5, the home screen features a calendar view for the month of September

2025. The user can switch between different months in the calendar view to navigate through

their schedule. Next, the "Schedules" tab will list all schedules created by the user that are due

for the selected date and will also sync with the user's device calendar if permission is granted.

Meanwhile, the "To-Do" tab will display all to-dos that are due for the selected date. These

provide an organized view of both scheduled events and tasks. Besides, long pressed the "+"

icon may trigger the AI assistant panel or tap to open chatbot.

APPENDIX

 7
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.6 Settings

Figure B1.6 Settings

Based on Figure B1.6 Settings, users can manage their core account preferences and app

integrations. At the top, the account email is displayed to confirm the signed-in identity. This

cannot be changed here since it serves as the unique login identifier. Below it, a switch allows

users to enable or disable synchronization with their device’s calendar. When turned on, the

app is permitted to read calendar events directly from the phone, which then appear alongside

in-app schedules and tasks. This ensures a unified view of both personal and academic or work

events. The screen also provides options to update the password and phone number, allowing

users to maintain account security and keep their contact information current.

The Voice Preference screen lists available voices categorized by language, such as English,

French, or Hindi, each with multiple tonal variants. Users can preview a voice by pressing the

play button and then select it by tapping the voice entry, which will mark it with a check icon.

The currently active voice is displayed in the Settings screen under the Voice Preference option.

By adjusting this setting, users can personalize how the AI assistant and read-aloud features

sound, making the app more comfortable and familiar for daily use.

APPENDIX

 8
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.7 Schedule List

Figure B1.7 Schedule List

As shown in Figure B1.7, the "Schedules" screen displays all the schedules created by the user,

listed in chronological order. The dynamic prioritization algorithm is applied based on the

deadline set for each event. If a schedule is due today, its date will be highlighted in red to

visually indicate urgency. Additionally, the system automatically archives schedules that have

passed their due date, but they can be restored later in the "Dashboard" under the "Overdue

Schedules" section. The user can click on any scheduled event to view more details, and a "+"

button at the bottom allows the user to quickly add a new schedule. Besides, long pressed the

"+" icon may trigger the AI assistant.

APPENDIX

 9
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.7.1 Schedule View

Figure B1.7.1 Schedule Details

As shown in Figure B1.7.1, users can view the details of their schedules by selecting a specific

event. The screen displays all the relevant information, including the event’s location, alert

type, notes, and any associated URL. Additionally, users can view attachments linked to the

event, such as PDFs or images. The user can also edit or delete the event using the

corresponding buttons at the bottom and top of the screen. This provides a comprehensive view

and easy management of each scheduled event.

APPENDIX

 10
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.7.2 Schedule Add/ Edit

Figure B1.7.2 Schedule Add/ Edit

Figures B1.7.2 show the "New Schedule" and "Edit Schedule" screens. The layout for both

screens is nearly identical, with the primary difference being that the "Edit Schedule" screen

fetches and displays the data of an existing event, while the "New Schedule" screen is used to

create a new event.

In both screens, the user can input the title, location, and set the event to be "All-day" if

necessary. The "Repeat" option allows users to set the frequency of the event, while the "Alert"

dropdown allows for setting reminders. Additionally, users can add attachments by clicking on

the "Add Attachment" button, which is available on both screens.

Both screens also allow the user to enter a URL and notes related to the schedule. Once the

required information is filled in, the user can either save or update the event by clicking the

"Done" button. If the event being edited is part of a recurring series, the system will prompt the

user with an option to either edit only this specific schedule or all occurrences in the series.

This gives the user flexibility in managing recurring events.

APPENDIX

 11
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.8 To-Do List

Figure B1.8 To-Do List

As shown in Figure B1.8, the To-Do screen is divided into two main sections “Group” and

“My Tasks”. Each task card displays important details such as the due date, priority level (High,

Medium, or Low), and a progress bar that reflects task completion. Only the task creator and

assigned admins have the ability to edit or mark tasks as complete using the checkmark option.

Regular members are limited to viewing the tasks and cannot make changes or updates. The

progress bar is dynamically updated based on the completion status of subtasks within each

task. When a user marks a subtask as done, the system automatically recalculates the overall

progress percentage and adjusts the bar. For instance, if a task has four subtasks and two are

completed, the progress bar will indicate 50% completion.

The dynamic weighted prioritization algorithm operates in both the “Group” and “My Tasks”

sections. It evaluates deadlines, subtask counts, alert settings, and priority levels to assign

urgency scores. Tasks with higher scores appear under the Urgent tab to ensure timely

attention. In My Tasks, items are further grouped into user-defined categories, making

organization easier. Once a task is marked as done, users are prompted to archive it, moving it

into the Completed Tasks section in the Dashboard, where it remains recoverable. Additionally,

the “+” button at the bottom enables new task creation, while a long press activates the AI

assistant for smart task input.

APPENDIX

 12
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.8.1 To-Do View (Individual)

Figure B1.8.1 To-Do Details (Individual)

Figure B1.8.1 shows the detailed view of a task, where the user can view and edit the task's

attributes. The task includes information such as the title, category, priority level, due date, and

alert settings. Additionally, there is a list of subtasks, with the option to add notes for each

subtask. Users can also see whether there are any attachments associated with the task.

Additionally, there’re options to either "Edit Task" or "Delete Task." If the task is being edited,

the user can modify its details, while the "Delete Task" option allows for the task's removal.

The "Cancel" button allows users to exit the task info window.

This allows users to manage their tasks efficiently, including making edits, viewing details,

and handling subtasks with ease.

APPENDIX

 13
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.8.2 To-Do View (Collaborated)

Figure B1.8.2 To-Do Details (Collaborated)

Figure B1.8.2 Collaborated To-Do Details screen provides a complete view of shared tasks

where multiple users can contribute. At the top, the task title, group, and due date are displayed,

along with its assigned category, priority level, and any alert reminders set. If the task contains

subtasks, the progress bar automatically updates based on the number of subtasks completed,

giving all collaborators a real-time indication of how far the task has advanced. Attachments

related to the task can also be accessed directly through the View Attachments button.

Below, the Comments section functions as a live discussion board for collaborators. Users can

exchange text messages, share external links, or upload attachments, ensuring smooth

communication within the context of the task. They can even transcribe the voice message sent

to text. Every message is timestamped, allowing collaborators to track the sequence of updates

and discussions. A search bar at the top enables quick retrieval of past comments by keywords,

making it easy to revisit important information without scrolling through the entire chat history.

Additional task information is available through the Task Info panel, which lists all

collaborators’ email addresses and the last modified date. This transparency ensures that every

member is aware of who is involved and when the task was last updated.

APPENDIX

 14
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.8.3 To-Do Add/ Edit

Figure B1.8.3 To-Do Add/ Edit

Figure B1.8.3 shows the "New Todo" screen where users can create a new to-do. The screen

allows users to input essential information, including the task title, description, due date, and

time. Users can also categorize the to-do, assign a priority level (e.g., Low, Medium, High),

and set an alert for reminders. The "Subtasks" section enables the user to add subtasks to break

down the main task into smaller steps. Additionally, users can attach files or add collaborators

to the to-do by clicking the respective buttons. Once the necessary details are filled, users can

save the new to-do by clicking "Done."

The "Edit Todo" screen, which is nearly identical to the "New Todo" screen. The key difference

is that this screen is used for editing an existing to-do. In this case, the task's details are pre-

filled with data such as the title, description, due date, and time. The user can edit the category,

priority level, and alert settings. In the "Subtasks" section, users can modify existing subtasks

(such as adding or deleting them) and update any other details of the to-do. The "Add

Attachment" and "Add Collaborator" options remain available for any changes. The creator is

allowed to set any team members to admin to manage the collaborated task. After making the

necessary edits, the user can save the updated to-do by clicking "Done."

APPENDIX

 15
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.9 Dashboard

Figure B1.9 Dashboard

As shown in Figure B1.9, the "Dashboard" screen provides a quick overview of the user's task

and schedule data. At the top of the screen, there are three cards displaying the number of

overdue schedules, completed tasks, and pending tasks. These cards not only show the total

count but are also clickable. Clicking on the "Overdue Schedules" or "Completed Tasks" cards

will navigate the user to the respective list, where they can view, delete, or restore events and

tasks as needed. This feature allows users to manage overdue or completed items directly from

the dashboard.

Below that, the "Daily Completed Tasks" graph presents a visual representation of tasks

completed over the week, with a bar chart showing the number of completed tasks for each day

from April 21 to April 27. Users can switch between different weeks by clicking the back-and-

forth buttons to navigate through past or upcoming weeks, helping them track productivity over

time.

The "Pending Tasks by Priority" pie chart categorizes tasks based on their priority level:

Urgent, Medium, Low, and Collaborated. This visual breakdown helps users easily see how

their tasks are distributed according to priority and allows them to focus on high-priority items

as needed.

APPENDIX

 16
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1.10 Notification

Figure B1.10 Notification

Figure B1.10 Notification provides a centralized view of all alerts generated by the system.

Each notification card clearly indicates whether it is related to a new schedule or a new task,

followed by the title and the scheduled or due time. Beneath the title, a timestamp shows the

exact date and time the notification was issued, allowing users to trace when changes or

reminders were created. Notifications are arranged with the most recent appearing at the top

for quick reference.

In addition to simply listing alerts, this screen also supports interaction. By tapping a

notification card, the user is taken directly to the corresponding task or schedule, where full

details such as descriptions, collaborators, or reminders can be reviewed. This eliminates the

need to search manually and ensures that users can respond quickly to new or updated items.

Serving both as a reminder log and a navigation shortcut, the Notifications screen helps users

stay organized and up to date with minimal effort.

