STUDYMATE: A SMART MOBILE TASK MANAGER FOR PEAK STUDENT
PRODUCTIVITY
By
Mandy Teoh Jiayi

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS)
BUSINESS INFORMATION SYSTEMS
Faculty of Information and Communication Technology
(Kampar Campus)

JUNE 2025



ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr. Yong Tien
Fui, for providing me with invaluable guidance, encouragement, and support throughout the
course of my final year project. His expertise, constructive feedback, and dedication were
fundamental in the successful completion of this project. I am truly grateful for the opportunity

to work under his mentorship, and I have learned a great deal from his insights.

A special thank you to my family for their unwavering love, patience, and support, especially
during the difficult times when I faced stress and challenges. Their constant encouragement,
understanding, and presence by my side were my pillars of strength, and I cannot express
enough how much it means to me. They have always been my source of motivation, and I truly

appreciate everything they have done for me.

Finally, I would like to thank everyone who indirectly supported me, whether through their

advice or being part of my journey.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



COPYRIGHT STATEMENT

© 2025 Mandy Teoh Jiayi. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the
requirements for the degree of Bachelor of Information Systems (Honours) Business
Information Systems at Universiti Tunku Abdul Rahman (UTAR). This Final Year
Project proposal represents the work of the author, except where due
acknowledgment has been made in the text. No part of this Final Year Project
proposal may be reproduced, stored, or transmitted in any form or by any means,
whether electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



ABSTRACT

This project aims to address critical challenges in academic task management through the
development of an innovative task management system tailored specifically for any level of
students who need a personalized assistant with their studies. Many existing productivity tools
fall short in key areas such as task prioritization, real-time collaboration, and progress tracking,
leading to confusion, miscommunication, and increased stress. This system introduces several
advanced features, including a dynamic task prioritization algorithm, real-time collaboration
capabilities, and comprehensive project tracking and visualization tools. The system seeks to
enhance students' organizational efficiency, improve collaboration, and provide clear visibility
into task progress. The project employs a prototyping approach and utilizes modern
technologies to develop a robust platform that addresses the unique needs of students in

managing their academic workloads.

Area of Study: Mobile Application Development, Productivity and Time Management

Keywords: Dynamic Weighted Task Prioritization Algorithm, Earliest Deadline First (EDF),
Task Completion Detection, Mobile Task Management, Student Productivity App

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



TABLE OF CONTENTS

TITLE PAGE i
ACKNOWLEDGEMENTS ii
COPYRIGHT STATEMENT iii
ABSTRACT iv
TABLE OF CONTENTS \%
LIST OF FIGURES vii
LIST OF TABLES ix
LIST OF ABBREVIATIONS X
CHAPTER 1 INTRODUCTION 1-8
1.1 Problem Statement and Motivation 2
1.2 Objectives 3
1.3 Project Scope and Direction 4
1.4 Contributions 5
1.5 Report Organization 8

CHAPTER 2 LITERATURE REVIEW 9-36
2.1 Review of Technologies 9-22
2.1.1 Hardware Platform 9

2.1.2  Firmware/Operating System 9

2.1.3 Database 10

2.1.4 Programming Language 10

2.1.5 Algorithm 11

2.1.6  Summary of the Technologies Review 20

2.2 Existing Systems 23-32
2.2.1 Apple Reminders 23
2.2.2  Microsoft To-Do 25

2.2.3  Todoist 27
2.2.4 TickTick 29

2.2.5 Trello 31

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



2.3 Limitation of Previous Studies 33

2.4 Proposed Solutions 35

2.5 Comparison Between Existing and Proposed Applications 36

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 37-87

3.1 System Design Diagram 37 -84

3.1.1 Block Diagram 37

3.1.2 Entity Relationship Diagram 38

3.1.3  Class Diagram 39

3.1.4 Use Case Diagram 40

3.2 Methodology 85

3.3 Implementation Challenges and Issues 86

3.4 Project Timeline 87

CHAPTER 4 SYSTEM EVALUATION AND DISCUSSION 88-112

4.1 Blackbox 88 -94

4.2  Client Satisfaction Survey Analysis 97-111

4.3 Results and Benchmark 112

4.4 Objectives Evaluation 113

4.5 Concluding Remark 114

CONCLUSION 115

REFERENCES 116 - 118
APPENDIX A

A.1 Poster A-1
APPENDIX B

A.2 Operating Manual A-2

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Figure Number

Figure V.I
Figure 2.2.1
Figure 2.2.2
Figure 2.2.3
Figure 2.2.4
Figure 2.2.5
Figure 3.1.1
Figure 3.1.2
Figure 3.1.3
Figure 3.1.4
Figure 3.1.5
Figure 3.1.6
Figure 3.1.7
Figure 3.1.8
Figure 3.1.9
Figure 3.1.10
Figure 3.1.11
Figure 3.1.12
Figure 3.1.13
Figure 3.1.14
Figure 3.1.15
Figure 3.1.16
Figure 3.1.17
Figure 3.1.18
Figure 3.1.19
Figure 3.2
Figure 3.4.1
Figure 3.4.2

LIST OF FIGURES

Title

Transformer architecture (Figure obtained from [17])
Apple Reminders

Microsoft To-Do

Todoist

TickTick

Trello

Block Diagram

Entity Relationship Diagram

Class Diagram

Use Case Diagram

Activity Diagram — Dashboard

Activity Diagram — Progress Bar

Activity Diagram — Personalized Al Assistant

Activity Diagram — Task Collaboration

Activity Diagram — Manage Comments

Activity Diagram — Voice/Text/URLs Comment Searching
Activity Diagram — Notifications

Activity Diagram — Device Calendar Sync

Activity Diagram — Register and User Login

Activity Diagram — Home Page

Activity Diagram — Manage Schedule

Activity Diagram — Schedule Dynamic Reordering
Activity Diagram — Manage To-Do

Activity Diagram — Dynamic Weighted Task Prioritization
Activity Diagram — Past Activity

Prototyping Methodology

FYP I Timeline — Gantt Chart

FYP 2 Timeline — Gantt Chart

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

16
23
25
27
29
31
37
38
39
40
41
43
46
50
53
57
60
62
65
67
70
74
76
79
82
85
87
87

Vii



Figure Bl.1
Figure B1.2
Figure B1.3
Figure B1.4
Figure B1.5
Figure B1.6
Figure B1.7
Figure B1.7.1
Figure B1.7.2
Figure B1.8
Figure B1.8.1
Figure B1.8.2
Figure B1.8.3
Figure B1.9
Figure B1.10

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Login Page

Sign Up Page

Al Assistant (Al panel)

Al Assistant (Chatbot)
Home Page

Settings

Schedule List

Schedule Details

Schedule Add/ Edit

To-Do List

To-Do Details (Individual)
To-Do View (Collaborated)
To-Do Add/ Edit
Dashboard

Notification

viii



LIST OF TABLES

Table Number Title

Table 3.1.1
Table Il
Table 11.1
Table 11.11
Table I1.111
Table IL.1V
Table 2.1.6(a)
Table 2.1.6(b)
Table 2.4
Table 3.1.4
Table 3.1.5
Table 3.1.6
Table 3.1.7
Table 3.1.8
Table 3.1.9
Table 3.1.10
Table 3.1.11
Table 3.1.12
Table 3.1.13
Table 3.1.14
Table 3.1.15
Table 3.1.16
Table 3.1.17
Table 3.1.18

Specification of laptop

Dynamic Reordering Algorithm Behavioural Logic
Deadline Urgency Score

Subtask Scores

Alert Scores

Priority Scores

Comparison of Cloud Generative AI APIs and Models
Comparison of Speech-to-Text Options

Comparison between existing and proposed applications
Use Case Description — Dashboard

Use Case Description — Progress Bar

Use Case Description — Personalized Al Assistant
Use Case Description — Task Collaboration

Use Case Description — Manage Comments

Use Case Description — Voice/Text/URLs Comment Searching

Use Case Description — Notifications

Use Case Description —Device Calendar Sync

Use Case Description — Register and User Login

Use Case Description — Home Page

Use Case Description — Manage Schedule

Use Case Description — Schedule Dynamic Reordering

Use Case Description — Manage To-Do

Use Case Description — Dynamic Weighted Task Prioritization

Use Case Description — Past Activity

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

11
12
12
13
13
21

21-22
36
42

44-45

47-49

51-52

54-56

58-59
61

63-64
66

68-69

71-73
75

77-78

80-81

83-84



LIST OF ABBREVIATIONS

EDF Earliest Deadline First

7CD Task Completion Detection

CSP Completion of Structured Processes
MoE Mixture-of-Experts

STT Speech-to-Text

ASR Automatic Speech Recognition

STFT Short-Time Fourier Transform
MFCCs Mel-Frequency Cepstral Coefficients
RNN-T Recurrent Neural Network Transducer
VAD Voice Activity Detection

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

CHAPTER 1

Introduction

In today’s fast-paced academic environment, students face a multitude of challenges in
managing their workload effectively. Task management, which encompasses organizing,
prioritizing, and tracking tasks, is crucial for academic success. However, many existing
productivity tools fall short in addressing the unique needs of students, resulting in widespread

issues such as procrastination, disorganization, and inefficient collaboration.

Procrastination, a tendency to delay tasks in favor of more immediately gratifying activities,
significantly impacts students' productivity [1]. This tendency is often exacerbated by the
inability to effectively prioritize tasks, which can lead to confusion and a lack of clear direction.
Current tools, such as Apple Reminders [2] and Microsoft To-Do [3], offer basic functionalities
but fail to address the complexities of task prioritization when multiple tasks share the same
priority level. These limitations result in students overlooking urgent tasks or struggling to

determine which task to tackle first.

Moreover, real-time collaboration is an integral part of academic life, especially for group
projects and collaborative assignments. Despite the importance of effective communication
and document management, many existing tools lack robust collaboration features. For
example, Microsoft To-Do does not support real-time comments on tasks or the integration of
shared document links, leading to fragmented communication and inefficiencies [4]. This
fragmentation forces students to rely on multiple platforms for communication and document

management, complicating teamwork and reducing overall productivity.

Another critical issue is the lack of visibility into task status and project progress. Tools like
Todoist offer basic task categorization but fall short in providing detailed insights into task
completion and project status [3]. Without a clear understanding of where they stand on their
tasks, students may experience heightened stress, missed deadlines, and last-minute rushes.
The absence of advanced tracking and visualization features prevents students from monitoring

their progress accurately and managing their workload effectively.

In light of these challenges, there is a pressing need for a task management system specifically
designed to address these issues. This proposal aims to develop a comprehensive system that
incorporates dynamic task prioritization, seamless real-time collaboration, and advanced

1

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

project tracking to improve students' task management efficiency and collaborative
effectiveness. By addressing the shortcomings of existing tools, this system will provide
students with a more effective solution for managing their academic responsibilities, ultimately

enhancing their organizational skills and reducing stress.

1.1 Problem Statement and Motivation

Managing academic responsibilities effectively is a crucial skill for students, yet existing task
management tools often fall short in addressing their specific needs. The overwhelming nature
of multiple deadlines, projects, and assignments necessitates a structured, intuitive system for
task organization and collaboration. However, current tools present three major limitations that

hinder students’ efficiency and productivity.

Problem Statement #1: Ineffective Task Organization and Prioritization

Effective task organization and prioritization are critical for students to manage their academic
workload efficiently. However, students often face challenges when it comes to distinguishing
the importance of various tasks, especially when multiple assignments are deemed equally
important. This can lead to confusion and a lack of clear direction. Apple Reminders [1] has
the functionality to set tasks as low, medium, and high priority; however, issues occur when
more than one task has the same priority level. The system will not rearrange or reorganize the
tasks based on other applied conditions, such as deadlines. This limitation can result in students

overlooking urgent tasks or struggling to determine which task to tackle first.

Problem Statement #2: Limited Real-Time Collaboration and Document Integration

Collaboration is an essential aspect of student life, particularly for group assignments and
projects. However, many existing tools lack robust collaboration features, making it difficult
for students to stay on the same page. This can result in miscommunication, duplicated efforts,
and missed deadlines. Microsoft To Do [2] lacks the ability to add real-time comments on tasks,
preventing team members from providing instant feedback, discussing details, or asking
questions directly within the task. This limitation forces users to rely on separate
communication channels like WhatsApp and WeChat, leading to fragmented conversations and
misunderstandings. Additionally, users cannot add shared document links directly into the
workspace, requiring them to store and manage task-related documents in separate channels.

This disjointed approach complicates task management and hampers efficient collaboration.
2

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

Problem Statement #3: Lack of visibility into task status and project progress

A significant issue students face is the lack of visibility into task status and project progress.
Without a clear understanding of where they stand on their assignments and projects, students
can easily fall behind or become overwhelmed. This lack of insight can lead to last-minute
rushes, incomplete work, and heightened stress levels. Currently, tools like Todoist [3] allow
for basic task categorization, but they fall short in several critical areas. For example, it does
not offer features to categorize each task with detailed statuses such as "in progress" or to show
granular completion levels like 50% or 80%. This absence of detailed task status tracking
prevents students from monitoring their progress accurately and understanding which tasks

require immediate attention.

1.2 Project Objectives

Objective #1: Enhance Task Organization and Prioritization Using Dynamic Weighted
Task Prioritizing Algorithm

To improve how students manage their tasks, a sophisticated task management system will be
developed that dynamically rearranges and prioritizes tasks based on multiple factors, such as
deadlines, dependencies, and workloads. This multifaceted system will not just categorize tasks
by priority but will also account for overlapping deadlines and task dependencies, ensuring
students tackle the most urgent and critical assignments first. The platform will feature detailed
task statuses (e.g. "in progress" or "awaiting review") and offer intuitive visualizations like
progress bars and charts to keep users informed about the progress and upcoming deadlines.
By providing real-time updates on task status and a clear visual representation of workload,

students can better manage their time, avoid task overload, and reduce stress.

Objective #2: Enhancing Real-Time Collaboration with Unified Messaging and File
Integration with Smart Search

Effective collaboration is vital, especially in group projects and shared academic assignments.
To strengthen teamwork, the system will include real-time commenting directly within tasks,
allowing students and collaborators to exchange feedback, ask questions, and resolve issues
without relying on external platforms. In addition, a comprehensive messaging feature will be
implemented, supporting both text and voice input. Voice recordings will be automatically

transcribed into text for accessibility, ensuring that spoken contributions are searchable and

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

readable by all team members. The system will also provide a powerful search function that
scans across all forms of communication in the comment section including text messages, voice
messages, attached files, and shared URLs. This enables users to quickly locate important
information without manually browsing long discussion threads. Alongside this, shared
document links and attachments will be integrated into the workspace, ensuring that all
resources and discussions remain centralized. By consolidating real-time communication,
transcription, and advanced search capabilities into one platform, the system minimizes

fragmentation, reduces information loss, and promotes efficient, transparent collaboration.

Objective #3: Implementing Smart Al Assistant for Daily Planning and Project Oversight
This objective not only focuses on enhancing visibility into task progress and overall project
status through real-time tracking and visualization but also integrates a Smart Al Assistant to
act as a virtual secretary. The Al assistant leverages user data including tasks, schedules, and
deadlines, etc. to suggest personalized daily plans, highlight urgent priorities, and recommend
optimal time allocations. It will allow users to interact naturally through text or speech,
enabling commands such as “Plan my day” or “Reschedule my meeting”. Next, the project
tracking system will continue to provide granular completion levels (e.g., 50% or 80%
complete), progress dashboards, and timeline views to help users monitor workload and
deadlines. Alongside this, the Al assistant will proactively organize schedules, suggest focus
sessions, and remind users of pending obligations, ensuring that their daily workflow is both
efficient and manageable. By combining visualization tools with an intelligent personal
assistant, users will gain not only awareness of their progress but also actionable guidance to

stay organized and productive.

1.3  Project Scope and Direction

The project aims to develop a specialized mobile-based task management system that addresses
common challenges faced by students, professionals, and teams in managing their daily
workload. This system will provide a tailored solution to these issues by enhancing overall task
management and productivity. The system will offer a dynamic task management framework
that automatically arranges tasks based on urgency, deadlines, and workload, ensuring users
focus on what matters most. It will also include a unified collaboration space with messaging
and file-sharing features, supporting both text and voice input. Voice recordings will be

transcribed into searchable text, and an integrated search function will allow users to find any
4

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

comment, attachment, or URL shared in the workspace. Finally, the system will feature a smart
Al assistant that acts like a personal secretary, helping users plan their day, reschedule tasks,

and receive personalized recommendations through natural interaction.

Target user:
e Individual students who need a structured approach to managing academic workloads.
e Student groups collaborating on academic assignments and projects.
e Professionals and teams who require better organization, communication, and planning

tools.

Since each individual has a unique pace and working style, this system will not impose any
standardize performance metrics. Instead, it will serve as a flexible and adaptable tool to help

users organize their tasks according to their own preferences.

1.4 Contributions

The proposed task management system introduces several innovative features and advanced
technologies aimed at significantly enhancing students’ productivity and collaboration in
handling academic workloads. By addressing key challenges such as missed deadlines,
inefficient teamwork, and disorganized tasks, this platform provides a smart, dynamic, and
user-friendly solution that caters specifically to the needs of students, study groups, and

possibly university lecturer.

Contribution #1: Dynamic Task Prioritization and Scheduling to Prevent Missed
Deadlines, Addressing the First Problem Statement, Ineffective Task Organization and
Prioritization

Our system leverages a sophisticated dynamic weighted task prioritization algorithm that
adjusts task hierarchies based on multifaceted factors such as deadlines urgency, dependencies,
and individual workload which is addressing the first problem statement. Unlike static task
management systems, this adaptive algorithm ensures that students focus on the most urgent
and important task first, preventing last-minute rushes and helping them stay on track [5].
Addressing the challenge of managing and scheduling tasks efficiently, this advance cost-
efficient task prioritization algorithm based on Earliest Deadline First (EDF) principles as

studied by Spuri and Buttazzo [6], ensures that tasks with the nearest dues dates receive the

5

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

highest priority. By dynamically adjusting to new tasks and deadlines, our system reduces
delays and minimizes the risk of missing critical submissions. This approach helps students
manage their workload effectively, prevent last-minute rushes, and meet deadlines with

reduced stress.

Contribution #2: Seamless Collaboration Framework to Enhance Teamwork Efficiency,
Addressing the Second Problem Statement, Limited Real-Time Collaboration and
Document Integration

Another major contribution is the seamless collaboration framework that are specifically
designed for group projects. This is due to group projects often suffer from miscommunication
and inefficient task distribution, which can hinder productivity. To address the problem stated
in the second statement, our system includes a real-time task collaboration feature, allowing
students to communicate, assign responsibilities, and track progress directly within their
workspace. The integration of comment section with chat functionality and document-sharing
features ensures that discussions and resources are centralized, eliminating the need for external

apps and ensuring all team members stay aligned and productive throughout the collaboration.

Additionally, the collaboration feature will be expanded into a unified messaging system that
supports text, voice, file attachments, and shared URLs. Voice recordings will be automatically
transcribed into searchable text, ensuring accessibility and convenience. A universal search
function will allow users to locate any past message, transcription, or file in the comment

section, reducing information loss and enabling faster retrieval of important details.

Contribution #3: Comprehensive Task Tracking and Visualization to Minimized
Disorganization, Addressing the Third Problem Statement, Lack of Visibility into Task
Status and Project Progress

To enhance visibility into task progress and overall project status, our system includes a
comprehensive project tracking and visualization framework. This feature provides granular
completion levels and a unified dashboard for monitoring all ongoing projects and tasks. We
have incorporated visual aids such as dashboards and progress bars, which offer students a
detailed understanding of task interconnections and project timelines. This advanced tracking
system aids in better prioritization and helps students manage their projects with greater

precision.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

Our system also integrates User Device Calendar to streamline task management related to
scheduled events. This feature enables users to schedule tasks and events efficiently, while
automatic updates ensure that deadlines and important academic activities are never missed.
Additionally, our system supports the Completion of Structured Processes (CSP), breaking
down complex assignments into smaller, manageable milestones with clear tracking of

progress until completion [7].

A novel aspect of our system is the integration of Task Completion Detection (TCD) to enhance
task management. This feature automatically tracks and updates task progress, providing
students with timely feedback and insights into their workload. By detecting completed tasks
in real-time, the system ensures that students stay organized and aware of their progress. This
approach helps them maintain efficiency, avoid redundant work, and stay motivated throughout

their academic journey [7].

Contribution #4: Smart Al Assistant for Personalized Daily Planning, Addressing the
First and Third Problem Statement

Finally, the system introduces a Smart Al Assistant that functions as a virtual secretary. These
assistant leverages user data including tasks, subtasks, and schedules to generate personalized
daily plans, suggest focus sessions, and highlight urgent priorities. Users can interact naturally
through text or voice, asking the assistant to schedule meetings, reschedule deadlines, or
recommend optimal study/work blocks. By combining dynamic task awareness with progress
visibility and proactive guidance, the Al assistant transforms the platform from a static task
tracker into a dynamic productivity partner, empowering users to manage their day with

confidence and reduced stress.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

1.5 Report Organization

This report is structured to guide readers through the development of our task management
system for students. Chapter 1 (Introduction) establishes the overall purpose and direction of
the project including background of the study, the problem statement and motivation, project
objectives, scope, target users, and expected contributions. Chapter 2 (Literature Review)
reviews the technologies adopted in this project, highlights the limitations of previous studies,
proposes solutions to overcome them, and compares the proposed system against existing
applications. Chapter 3 (Proposed Method/Approach) describes the methodology employed in
the development of the system, including system design diagrams. It also explains the
prototyping methodology used, discusses implementation challenges and issues encountered
during development, and presents the project timeline. Chapter 4 (System Evaluation and
Discussion) provides the evaluation and testing of the system through methods such as black-
box testing, survey-based client satisfaction analysis, and performance benchmarks. The
chapter also discusses the results obtained, highlights the challenges faced, and evaluates the
extent to which the stated objectives have been achieved. Finally, Chapter 5 (Conclusion)
summarizes the project’s overall achievements, reflects on the success of the objectives, and

discusses future work and potential enhancements to improve the system further.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

CHAPTER 2

Literature Reviews

2.1 Review of Technologies
2.1.1 Hardware Platform

The hardware for this project includes a laptop, serving distinct roles in the development
process. The laptop is the primary device used for writing, running, and testing the software,
providing the necessary computing power to handle the integrated development environment
(IDE), database management, and simulation tools. It allows developers to code, debug, and

implement the features of the task management system.

Description Specifications
Model Matebook D 15 (Boh-WAQ9R)
Processor AMD RYZEN 5
Operating System Windows 10
Graphic NVIDIA GeForce RTX 3070, 8 GB GDDR6
Memory 8GB RAM
Storage 512GB NVME SSD

Table 2.1.1 Specifications of laptop
2.1.2 Firmware/Operating System

The project was developed primarily on Windows 10, which offered stable support for the
Flutter SDK, Android Studio, and Firebase CLI. Visual Studio Code served as the main code
editor, while Android Studio was used exclusively for running mobile emulators. For mobile
testing, Android Studio’s emulator runtime (Ladybug Feature Drop 2024.2.2) is used to
simulate real Android devices, ensuring the system’s features can be tested effectively before
deployment. The development environment thus ensured compatibility with required
frameworks, while also allowing real-time debugging through Android Debug Bridge (ADB)

for both emulated and physical devices.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2.1.3 Database

The project uses Google Firebase Firestore as its primary database. Firestore is a NoSQL cloud
database that provides real-time data synchronization across clients, supporting offline
persistence and scalability. It is well-suited for mobile task management applications as it
allows efficient storage and retrieval of hierarchical data, such as schedules, tasks, subtasks,
collaborators, and notifications. Firestore’s flexible schema enables the dynamic storage of
various data types, which is important for features like prioritization, messaging, and schedule

tracking.

Primary store: Firebase Firestore (NoSQL, document/collection model).
Object store: Firebase Storage (enabled under the paid tier with budget constraints).
Collections: users, notifications, schedules, todos (subcollections: comments, voices,

attachments), categories, completed tasks

In addition to Firestore, Firebase Storage was utilized to manage binary objects such as voice
recordings and file attachments. Since this project operates under a constrained billing plan,
several cost-control measures were implemented, including file size restrictions, format
validation, and lifecycle policies to delete temporary or unused files. Together, Firestore and
Storage provided a balance between structured data management and flexible multimedia
storage. Firebase Authentication was used to manage user accounts securely, while Firebase
Cloud Messaging (FCM) supported the delivery of task reminders, assistant responses, and

collaborative updates.
2.1.4 Programming Language

The client application was developed in Dart using the Flutter framework. Flutter’s widget-
based architecture enabled the design of a consistent and responsive user interface across
Android devices. Its integration with Firebase plugins provided seamless support for
authentication, real-time updates, and notifications. On the backend, Node.js was used within
Firebase Cloud Functions to implement serverless operations such as handling voice
transcription requests and managing interactions with the Google Generative AI API. To ensure
version control and collaborative development practices, all source code was pushed to GitHub.
GitHub served not only as a repository for maintaining different versions of the system but also

as a backup solution for safe storage and synchronization across development environments.

10

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2.1.5 Algorithm

I. Dynamic Reordering Algorithm

This approach introduces a real-time schedule reordering mechanism that organizes all
schedules entries from present to future based on the scheduled start date. The aim is to increase
clarity and usability by ensuring that ongoing and recent events appear, followed by upcoming

ones.

Schedules are categorized and sorted dynamically using the following formula:
If Tstart < Tnow — Present
If Tstare > Tnow — Future

Where:

e T,ow = Current Time

® Tgiare = Schedule’s start time

Behavioural Logic
Condition Category Placement Sorting Criteria
Tstart < Thow Present Appears at the top Ascending startDate
Tstart > Thow Future Appears below present Ascending startDate
startDate == null Present Appears at the very top Treated as currentDate

Table 1.1 Dynamic Reordering Algorithm Behavioural Logic

This dynamic sorting approach improves chronological clarity, ensuring users see their most
relevant schedules first. Besides, it supports real-time interaction, requires no manual refresh,

and adapts to both user changes and time-based transitions naturally [20 -> 8].

11

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

II. Dynamic Weighted Task Prioritization Algorithm

This approach focuses on automatically evaluating and prioritizing tasks using a scoring model
that adapts in real-time based on urgency, workload, task type, and current task status [21 ->

9]. Hence, higher score will be prioritized first.
Each task is assigned a dynamic priority score P calculated as:

P=Wy xUg)+ W, xU)+ (W xUp) + (Ws xUs)
Where:
e W, Weight of Deadline Urgency
e U: Urgency score based on proximity to the deadline (closer deadline = higher score)
e W;: Weight of Estimated Workload
e U;: Number of subtasks or estimated effort (scaled 0—1 based on max workload)
o W,: Weight of Selected Reminder Urgency
e U,: Score based on alert setting (More proactive reminders = higher score)
o W,: Weight of Selected Priority Level

e U,: Score based on High/Medium/Low selection

Time Remaining Until Deadline Uy
Within 1 hour 1.0
Within 1 day 0.8
Within 1 week 0.5
Within 1 month 0.3
Beyond 1 month 0.1

Table 11.I Deadline Urgency Score

Number of Subtasks U,
10 or more 1.0
7-9 0.8
4-6 0.6
2-3 0.4
1 1.2
0 0.0

Table I1.1I Subtasks Scores

12

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

Alert Setting U,
At time of event or None 0.1
5-15 minutes before 0.3
30 minutes — 1 hour before 0.5
1 day before 0.7
1 week before 1.0

Table ILIII Alert Scores

Priority Level U,
High 1.0
Medium 0.5
Low 0.2

Table 11.1V Priority Scores
I1I. Completion Detection

Schedule Completion Detection

Schedule completion is determined by comparing the current time with the schedule’s deadline.
To account for a grace period, the system will consider a schedule as “overdue” if the current
time is greater than one day after the deadline. Hence, the schedule will be dynamically

removed from the “Schedule” list and move to “Overdue Schedule” list.
Formula:
Overdue = Current Time > Schedule Deadline + 1 day

This logic ensures that a task is only marked as overdue after a full day has passed beyond the

original deadline, reducing false positives from minor delays.

Task Completion Detection

Task completion is determined in the following ways:

1. If the task is explicitly marked as completed by the user.

2. [If all associated subtasks are individually marked as completed.

Once task is marked as completed, it will be dynamically removed from the “Task” list and

move to “Completed Task” List.

13

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

IV. Speech-to-Text Algorithm

The Speech-to-Text (STT) algorithm, also known as Automatic Speech Recognition (ASR), is
responsible for converting spoken audio into text. In this project, it is applied to allow users to
record comments and issue voice commands to the Al assistant. The system integrates Google
Cloud Speech-to-Text, which employs advanced deep learning models trained on multilingual

datasets to achieve accurate recognition.
(a) Front-end feature extraction

The first stage of ASR is acoustic feature extraction, which transforms the raw waveform into
compact representations that preserve phonetic information. Commonly, the speech signal x(t)
is segmented into short frames using a window function before applying the Short-Time

Fourier Transform (STFT) [10]. The STFT is expressed as:

X(n,w) = Ex[m] ‘w[n —m]- e /vm
m
Where w[n] is a windowing function such as the Hamming window. From the magnitude
spectrum, Mel filterbanks and Mel-Frequency Cepstral Coefficients (MFCCs) are derived,
which map the spectrum to a perceptual frequency scale approximating human auditory
perception [11], [12]. These features reduce dimensionality while retaining phonetic

distinctions critical for recognition.

In the application, the Google Cloud Speech-to-Text API transcodes uploaded audio into 16
kHz mono WAV using FFmpeg before extracting log-Mel features, ensuring that multilingual
recordings (English, Bahasa Malaysia, and Mandarin Chinese) are standardized for model

input.
(b) Acoustic and Language Modeling

Google Speech-to-Text then processes the extracted features through deep neural networks that
map acoustic patterns to linguistic units. While the internal implementation uses advanced
architectures such as the Recurrent Neural Network Transducer (RNN-T) and Conformer

encoders [13], [14], the principle remains the same:

o The acoustic model captures relationships between sound features and phonemes.

14

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

o The language model incorporates context to predict which word sequence is most

likely.

For example, if the input audio corresponds to “Submit assignment by Friday”, the acoustic
model recognizes the phonetic sequence, while the language model ensures that the output

forms a grammatically correct sentence instead of unrelated words.
(c) Decoding Process

The decoding stage determines the final text output by selecting the word sequence with the

highest probability. This is formulated as:
y = argmaxP (y|x)

where x represents the sequence of acoustic features and y represents a possible word
sequence. In practice, Google’s API employs beam search decoding to evaluate multiple

candidate hypotheses in parallel before choosing the most likely transcription [15].
In this project, the speech-to-text process is integrated into two key features:

1. Voice Comments: When a user records a comment, the audio file is uploaded to the
server and sent to Google Speech-to-Text. The recognized text is then stored in
Firestore alongside the audio file reference, making the comment searchable by both

voice and text.

2. AI Assistant Commands: When the assistant microphone is activated, the audio
stream is transcribed in real time. The recognized text is then passed to the Al assistant
(Gemini 2.5 Flash) as input, enabling users to issue natural voice commands such as

“Plan my day” or “Reschedule meeting to 3 PM.”

The recognition system supports multiple languages, and this project enables recognition in
English, Bahasa Malaysia, and Mandarin Chinese. For Mandarin input, the transcription output
is forced into Han characters instead of Pinyin, ensuring readability and accuracy for native
users. Additionally, the system handles background noise by applying voice activity detection

(VAD), ensuring that only speech segments are processed [16].

15

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

V. Generative Al

Qutput
Probabilities

Add & Norm
Feed
Forward
J
I Add & Norm F\
£0d'S o Multi-Head
Feed Attention
Forward 7 Nx
Nix | Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A==p=—) t
] J (. _J)
Positional ®_@ @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Oulputs
(shifted right)

Figure V.I Transformer architecture

Google’s Gemini 2.5 Flash is a large-scale generative artificial intelligence model built on the
transformer architecture, specifically a decoder-only variant [17]. Transformers are neural
network architectures that excel at processing sequential data, making them ideal for language
and other multimodal tasks [18]. A key component of the Transformer is the self-attention
mechanism, which allows the model to weigh the importance of different parts of the input
sequence when processing each element [17]. The model functions as a multimodal reasoning
engine capable of processing and generating text, audio, and images. In the context of this
project, it is employed as the personal Al assistant that analyses Firestore data (tasks, schedules,

and notifications) and returns structured responses in JSON format.
(a) Self-Attention Mechanism: The Core of Transformer

The self-attention mechanism is crucial for the Transformer architecture, allowing the model
to weigh the importance of different words in the input sequence when processing each word
17]. Tt consists of applies self-attention to capture long-range dependencies between input
tokens. Given a sequence of tokens X = (x4, x,, ..., X,,), each token is projected into a vector
embedding [17]. These embeddings are then processed through multi-head self-attention
layers.

16

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

The self-attention calculation is defined as:

. QK"
Attention(Q,K,V) = softmax \/d_ %
k
Where:
e Q= query; K =key; V = value matrices derived from the input embeddings.
e d, is the dimensionality of the key vectors.

e softmax function normalizes the attention weights across the sequences.

This calculation allows the model to capture long-range dependencies and contextual
relationships within the input sequence. For example, when processing the word "it" in a
sentence, the self-attention mechanism can determine whether "it" refers to a "cat" or a "house"
by looking at the surrounding words and their relationships. In this project, self-attention
enables Gemini to reason over Firestore data holistically. For instance, when the user requests
“Plan my day”, the model simultaneously attends to multiple attributes such as task deadlines,
priority levels, and scheduled events. This ensures that urgent tasks (e.g., “ITPE assignment
due tomorrow”) receive more attention than less critical items (e.g., “Buy groceries”). By
dynamically focusing on relevant inputs, the assistant highlights the most urgent and

contextually appropriate tasks for the user.
(b) Mixture-of-Experts (MoE)

Mixture-of-Experts (MoE) is a technique used to improve the efficiency and capacity of large
models like Gemini 2.5 Flash. Instead of activating all model parameters for every input, MoE
dynamically selects a subset of specialized "experts" (sub-networks) to process each input [18].
This significantly reduces the computational cost during inference while maintaining or even

increasing the model's overall capacity.

Mathematically, for an input vector h:
E
y= g:Wfih)
i=1

Where:
e E: total number of experts

e f,(h): output of expert i

17

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

e g,(h): gating function that assigns a weight to each expert (often sparse, so only top-k

experts are active).

The gating function often uses a softmax or top — k selection mechanism to ensure that only
a few experts are active for each input [18]. This sparsity is what makes MoE models
computationally efficient. By routing inputs to specialized experts, the model can learn a wider
range of patterns and handle more diverse tasks without a proportional increase in
computational resources. In practice, this allows Gemini to efficiently allocate resources

depending on the user’s request.
Example:

o Ifthe user says, “Summarize my overdue tasks”, the task reasoning expert is routed.
o If the user says, “Change meeting time to 3 PM”, the schedule/time reasoning expert

1s activated.

This selective activation ensures fast, low-latency responses while maintaining a broad
knowledge capacity. For the mobile-based assistant, this efficiency is critical in delivering real-

time task suggestions without overloading computational resources.
(c) Attention and Probability Calculation

At each decoding step, Gemini predicts the next token by computing a probability distribution
for the next token in JSON format [17]. The probability of generating token t; given context

tokens tq, ..., tj_q is:
P(tj|t1, ...,tj_l) = softmax(W,h;)

Where:
e h; : hidden state output of the decoder for position j.
e W,: output projection matrix

e softmax function ensures the probabilities sum to 1 across all vocabulary tokens

This ensures that the most likely next token is selected during generation. In this project, this

mechanism drives task suggestions and scheduling decisions. For example, given the context:

18
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

{

"todosOpen":
{ "title": "Study FYP report","dueDate": "2025 — 09 — 01", "priority": "High" },
{ "title": "Buy groceries","dueDate": "2025 — 09 — 20", "priority": "Low" }
]
}

The model computes higher probability for tokens related to “Study FYP report” due to its

earlier deadline and higher priority. Consequently, the assistant suggests:

{
"mode": "suggest",
"suggestions":
{ "taskTitle": "Study FYP report","reason": "Due on 2025 — 09 — 01, high priority." }
]
}

This demonstrates how the attention mechanism and probability distribution directly result in

prioritized, context-aware task recommendations.

19
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2.1.6 Summary of the Technologies Review

In summary, the technologies selected for this project collectively form a robust and well-
integrated platform for developing a mobile-based task management system that supports
prioritization, collaboration, and intelligent daily planning. The hardware platform, comprising
a mid-range laptop and physical Android device, provides adequate computational power and
compatibility for development, emulation, and deployment testing. The use of Windows 10
ensures stable support for the Flutter SDK, Android Studio, and Firebase CLI, enabling smooth

development workflows and reliable debugging across both simulated and real environments.

At the data layer, Firebase Firestore was chosen as the primary database due to its real-time
synchronization, flexible document-based schema, and offline persistence, which are essential
for collaborative task management. Complementing Firestore, Firebase Storage enables the
secure storage of multimedia files such as voice recordings and attachments, while Firebase
Authentication and Cloud Messaging ensure secure user management and effective delivery of
task reminders. Together, these services provide a scalable and cost-efficient cloud backend
that supports both structured and unstructured data under the constraints of a controlled billing

plan.

The programming environment, built on the Dart language and Flutter framework, allows
cross-platform development with a single codebase, reducing both development time and
maintenance effort. Flutter’s widget-based Ul architecture ensures a consistent and responsive
interface across devices, while backend processes are supported by Node.js Cloud Functions,
which integrate seamlessly with Firebase and Google Cloud services. GitHub further enhances
the workflow by serving as the central repository for version control, collaboration, and project

tracking.

A set of specialized algorithms ensures that the system is not only functional but also intelligent
in its behavior. The Dynamic Reordering Algorithm automatically organizes schedules to
prioritize present and upcoming events, improving clarity and reducing cognitive load. The
Dynamic Weighted Task Prioritization Algorithm calculates a composite score for each task
based on urgency, workload, alerts, and user-defined priority, ensuring that the most critical
items are surfaced first. The Completion Detection Algorithm provides automated tracking of
overdue and completed tasks, maintaining accuracy in progress monitoring. Beyond these core
mechanisms, two advanced service-based algorithms extend the system’s functionality. Google

20

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

Speech-to-Text processes voice comments and commands into searchable text, enabling
multimodal collaboration, while Google Generative Al (Gemini 2.5 Flash) analyses Firestore

data to generate context-aware plans, suggestions, and insights, acting as a personal Al assistant

to support daily scheduling and task management.

Provider Model Key Features Integration Suitability for Project
OpenAl GPT-40, | High reasoning ability; | Requires separate Strong model, but adds
GPT-3.5 supports structured API, billing, and complexity and cost
JSON outputs; integration outside | management outside the
multimodal (text, Firebase existing Google Cloud
image, audio) stack
Anthropic | Claude 3 | Emphasis on safety, External API, no Reliable conversational
(Opus, alignment, and long- direct Firebase model, but less suited for
Sonnet, context reasoning; integration Firebase-based task
Haiku) supports structured management system
outputs
Google Gemini Built on Transformer | Native integration | Best fit: provides
2.5 Flash | architecture with with Cloud structured outputs for
Mixture-of-Experts Generative Al API | tasks and schedules,
and sparse attention; and Firebase integrates directly with
optimized for low- Functions; schema- | Firestore, and benefits
latency responses; constrained JSON | from Google’s free usage
multimodal capability | output supported tier

Table 2.1.6(a): Comparison of Cloud Generative AI APIs and Models [19][20][21][22]

Option

Strengths

Limitation

Suitability for Project

Google Cloud
Speech-to-Text

High accuracy,

multilingual (EN, BM,

Requires internet; usage

is billed after free tier;

Best fit: seamless

Firebase integration,

(v2) CN), integrates with latency depends on reliable multilingual
Firebase network support
Flutter On-Device | Works offline, no Accuracy varies by Useful as fallback but

STT

cloud charges, fast

response

device/OS, limited

language coverage

not consistent for

collaboration

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21




CHAPTER 2

Open-source Free to use; supports Large model size, heavy | Impractical for mobile-
models many languages; CPU/GPU, hard to first Firebase app
(Whisper / Whisper is robust in integrate in Flutter

local server) noisy conditions

Other Cloud APIs Competitive accuracy; | Separate integration, Less suited since project
(Microsoft Azure, scalable infrastructure | extra billing setup already uses Google
AWS Transcribe) Cloud

Table 2.1.6(b): Comparison of Speech-to-Text Options [23][24][25][26][27][28]

Overall, the integration of these technologies and algorithms allows the system to extend
beyond conventional task management applications. By combining a stable cloud backend with
intelligent algorithms and modern development practices, the platform achieves a
comprehensive, scalable, and user-centered solution that enhances productivity through
dynamic prioritization, seamless collaboration, and proactive planning support. After
evaluating multiple cloud generative AI APIs, Google Gemini 2.5 Flash was selected due to its
direct Firebase integration, schema-constrained JSON outputs for structured scheduling, and
low-latency performance within a cost-controlled free tier. Similarly, after comparing speech-
to-text approaches, Google Cloud Speech-to-Text v2 was chosen because it provides accurate
multilingual transcription (English, Bahasa Malaysia, Mandarin Chinese). It integrates
seamlessly with Firebase Cloud Functions and Firestore and ensures consistency across devices

unlike the on-device STT or open-source models which could not guarantee.

22

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2.2 Review on Existing System

2.2.1 Apple Reminder

il
+

e0e th

Q

@ 6 8 0completed -

Today Scheduled
Sweep garage

@ a4 1 QOrganize pantry

All Flagged
Plan dinner party menu

o 9 2 Take out the trash

Completed Assigned Today, = Every week on Tuesday

Reminders

e Errands

Book Club

> Event Planning

e Books to read

Movies to see

@ Add List

Figure 2.2.1 Apple Reminders

Apple Reminders [2] is a task management tool built specifically for Apple's ecosystem,
making it accessible to users of iPhones, iPads, Macs, and other Apple devices. Its core
functionalities revolve around task creation, organization, and management, with a key feature
being Siri integration. Siri enables voice-based task creation, allowing users to quickly add
tasks without needing to type. Another prominent feature is iCloud synchronization, which
ensures that all tasks are synced across Apple devices, providing a seamless experience for
users who switch between different devices. Subtasks, due dates, and location-based reminders
are other helpful features that allow users to break down larger tasks, assign deadlines, and
receive reminders when they reach specific locations. The tool also offers collaboration
features, allowing users to share lists with others, which is particularly useful for small group
projects or household task management. However, its exclusive integration with Apple's

ecosystem limits its use for individuals or teams that rely on non-Apple devices.
Strengths

1. Uses iCloud for seamless real-time synchronization across Apple devices with minimal

latency.

23

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2. Simple and intuitive interface, making it user friendly.
3. Works with Siri, Shortcuts, Calendar, and Apple Mail natively.
4. Supports shared lists for basic collaboration among Apple users. There are no extra

collaboration tools like commenting.

Weaknesses

1. Only available on Apple devices [29].

2. Tasks do not automatically adjust based on deadlines or priorities. [29].

3. Tasks updates are not reflected instantly across collaborators which may cause potential
miscommunication [30].

4. No granular task progress tracking [31].

5. Does not automatically reorder tasks based on urgency or workload changes [32].

6. Lacks advanced reporting tools or project visualization tools for project progress

tracking [33].

24
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2
2.2.2 Microsoft To-Do

< Lists S < Work To-Dos

0: My Day 3 Work To-Dos Write update to Microsoft v

Take screenshots for Microsoft To A To Do review

Important Do review

Planned 3 Schedule meeting with editor
My Day - 8 Tomorrowss - &

crop and prep screenshots

Assigned to me
Write update to Microsoft To Do
review

e
h t entry in databa
Tasks My Day - 0of 3 . ©Today - & check product entry in database

> Completed Next Step
Work

= Work To-Dos 3 0: Added to My Day

() Personal Remind me at 11:00 AM
Today

= Personal Priority
Due Today

= Weekend

Repeat
= Someday

Add a Task
+ New List + Created Fri, Jan 8, 2021

Figure 2.2.2 Microsoft To-Do

Microsoft To-Do [3] is part of the Microsoft 365 suite. It is a versatile task management app
that integrates deeply with Outlook. This tool allows users to create and organize tasks into
lists, set due dates and reminders, and break down larger tasks into subtasks. File attachments
to tasks are supported, making it ideal for users who need to manage both personal and
professional projects. With its ability to sync across platforms like Windows, 10S, Android,
and the web. It provides flexibility for users working across different devices. One of its strong
points is the collaboration feature, allowing users to share lists and assign tasks to team
members, thus making teamwork more efficient. Additionally, Microsoft To-Do offers end-to-
end encryption, ensuring that all user data is securely stored, which is a significant advantage

for users handling sensitive information.

25

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

Strengths

1.

Integration of Microsoft 365 enables users to sync tasks with Outlook and other

Microsoft applications.

2. Simple and clean interface with basic task management features.
3. “My Day” feature helps users focus on daily tasks.
Weaknesses

1. Tasks do not automatically prioritize based on deadlines or urgency [29].

2. Changes made to shared tasks are not updated in real-time, which may cause potential
delays [30].

3. Lacks of advanced tracking features for project progress tracking [31].

4. Does not support dynamic task priorities based on the changes of deadlines or
dependencies [32].

5. Does not have detailed dashboards or visualization tools for tasks created [33].

26

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2.2.3 Todoist

O.._, Quick Find

Inbox & Reading List =
Today 8 i .
O Web design & art history - Webflow
Next 7 days 18 Today
@ important 2 O The Weekly Review - Doist Blog
~  Projects + Ternorrow 11
Y & Work o Book recommendations from the

Doist team
~ ® (@ Personal
TN - - - .
) Amsterdam City Guide by Trippin
® ¥ Fitness ~ v v e

- Ty
W& Groceries J

Tips for presenting your designs to

non-designers
® [3 Reading List

() Women Who Made the Moon Landing

AAH Dre
-+ Add Project Possible

rchived projects + Add task

Figure 2.2.3 Todoist

Todoist [4] is widely recognized for its customizability and ability to manage everything from
simple tasks to complex projects. One of its standout features is the Kanban-style boards, which
offer a visual method for managing tasks, helping users see their workflow at a glance. Todoist
supports real-time syncing across devices, ensuring that updates are reflected instantly across
all platforms, making it convenient for users on the go. The platform offers subtasks, labels,
filters, and priority levels, enabling users to organize their tasks in a highly personalized way.
Additionally, Todoist shines in its integration with third-party apps, such as Google Calendar,
Slack, and Trello, enhancing its capabilities for automation and workflow management. The
platform's collaboration features allow for task delegation, which is helpful for team projects

where responsibilities need to be assigned.

27

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

Strengths

1. Excellent visual task management through boards, lists and cards.
2. Supports smart task creation with natural language processing.

3. Supports integration with external tools like Slack (a productivity tools).

Weaknesses

1. Collaborated task updates are not reflected instantly which may cause confusion in
team-based work [30].

2. Does not offer comprehensive dashboards or analytics for tracking project progress
[33].

3. Does not dynamically reorder or prioritize tasks based on evolving schedules and
dependencies [32].

4. Tt can feel overwhelming for beginners due to complex functionalities.

28

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2.2.4 TickTick

] [ ]

- SO May 2020 Day m Month Today

bk

& Inbox 18 19 20 21 22 (23] 24

B Today @ happiness jour  TickTick review
— ® take multivitarr

B Next7 Days —

B Calendar

Lists Tags Custor Waigh in Arrange time for ¢

Personal

Work .

Home ® E——  \Write blog post {
——— or 1 hour from
- 09:00-10:00

B Blog

10:00-1:00
Monthly newsletter —

Blog posts . 10:45-12:15

B eBooks

Faster fat loss L
M= Goals Related — I

—
Nutrition course L
——

© Add List

Figure 2.2.4 TickTick

TickTick [8] is a versatile task management app designed to enhance productivity through a
wide array of features. It allows users to create and organize tasks into lists and projects, with
options to set due dates, priorities, and subtasks. The app integrates seamlessly with Google
Calendar, offering synchronized views of tasks and deadlines, and supports Kanban-style
boards for visual task management. Additional features include a Pomodoro timer for focused
work intervals, habit tracking to monitor personal goals, and cross-platform support across i0S,
Android, Windows, and macOS. While TickTick provides robust functionalities, limitations
include restricted advanced features in the free version and occasional performance issues,

which may be challenging for new users to navigate.

29

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

Strengths

1. Supports task categorization and priority levels for structured task management.

2. Offers natural language input for quick task creation.

3. Available across multiple platforms including web, mobile, and desktop.

Weaknesses

1. No detailed status updates beyond completed or incomplete tasks [31].
2. Lacks real-time prioritization based on changing workloads or deadlines [32].

3. Lacks sub-task dependencies.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30



CHAPTER 2

2.2.5 Trello
To Do Research In Progress Review Completed
ar— — e—
' Check all internal URLs work in Create 5x FB ads Redesign About Us page
blog archive =S
02 R = ©5 (53
I | = = g Gz 2
- & o
. =
= Sharpen copy across homepage Redesign logo
Crecte. e-mail newsletter for blog = ¢ & 7 4 B B ~
S— subscribers L= -
Create offer notification email 3 ~ Offer notification email
5 2 o1 ~ =
a Create infographics for weekly
blog post
Compile video animation Email to lost week's conference e 24 2
alongside blog articles attendees
H 1 D o o 1
- Snapchat Story on upcoming o
post
_— =5 ~ Update iOS app
. . = Update social media content g 4 S5
Lounch podcast )2 [ 7] A ) g
-
; ] —
— Source images for blog post
= Brainstorm & suggest 10x blog =9 A~
Prepare onboarding materials for post ideas - e
new Ul designers 03 ~
Structure editorial calendar s - -
_ b4 Create logo for Medium
p A
Research weekly blog post and Prompt comments on blog posts -
suggest images A
A -
£
nave

Figure2.2.5 Trello

Trello [9] is a simpler but highly flexible task management tool that relies on Kanban boards
to organize tasks visually. In Trello, each project is represented as a board, and tasks are
organized into cards, which can be moved between columns such as "To Do," "In Progress,"
and "Done" as they progress. Trello's drag-and-drop interface makes it intuitive and easy to
use, especially for individuals and small teams working on less complex projects. It also
supports file attachments, comments, and task sharing, enabling basic collaboration features.
Third-party integrations with apps like Google Drive, Slack, and Dropbox enhance Trello’s
functionality, providing additional tools for users to manage documents and communication
within their projects. While Trello's simplicity makes it accessible, it can also limit its
effectiveness for managing more intricate projects that require task dependencies or advanced

reporting features.

31

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

Strengths
1. Offers a built-in Pomodoro timer to enhance focus and productivity.
2. Provides habit tracking features
3. Cross-platform availability with calendar integration.
4

Supports task categorization and smart lists for better organization.

Weaknesses

1. Does not dynamically prioritize task based on urgency or deadlines [32].

2. Does not allow user to create sub-task dependencies.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32



CHAPTER 2

2.3 Limitations of Previous Studies
2.3.1 Platform Limitation

Apple Reminders is tightly integrated with Apple devices, making it incompatible with non-
Apple platforms like Android or Windows. This exclusivity can be a major drawback for users
who rely on devices outside of the Apple ecosystem. For instance, if a team consists of both
Apple and non-Apple users, collaboration is limited since the app cannot be used across all
devices. This reduces flexibility for teams or individuals who operate in mixed device

environments [31].

2.3.2 Absence of Dynamic Task Reordering

Tasks in Apple Reminders, and Microsoft To-Do are static in terms of order. They are not
automatically adjusted based on factors such as upcoming deadlines, task urgency, or priority
changes. This limitation can make it harder to manage overlapping tasks effectively, as users
need to manually reorder or update tasks instead of relying on automatic adjustments.
Discussions in the Microsoft Community highlight user experiences with the inability to

manually sort tasks in the "My Day" list, reflecting this limitation [32][33].

2.3.3 Lack of Real-Time Sync for Collaboration

Apple Reminders, Microsoft To-Do, and Trello does not offer real-time synchronization for
task collaboration. This means when multiple team members are working together, task updates
and changes do not appear instantly for everyone. As a result, team members may not always
have the most current version of a task list or project status, leading to confusion or
miscommunication. Teams need to use external communication tools (like email or messaging
apps) to stay aligned, adding extra steps and potential friction to the collaborative process [30]

[31].

2.3.4 Limited Integrations

Although Microsoft To-Do integrates well with the Microsoft 365 suite, it lacks support for
other popular platforms like Google Calendar or Slack. This limits flexibility for users who
rely on non-Microsoft tools for project management, making it more difficult to create a
seamless workflow across various software ecosystems. Users with diverse toolsets may find

33

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

Microsoft To-Do limiting in terms of app integrations, reducing its overall utility for managing

both personal and professional tasks across multiple platforms [34].

2.3.5 No Granular Task Progress Tracking

Apple Reminders, Microsoft To-Do, and Todoist lacks advanced features like task progress

nmn

tracking, such as completion percentages or detailed task statuses (e.g., "in progress," "review
pending"). This makes it difficult for users to gauge how far along they are on a specific task,
forcing them to rely on vague markers like task completion (done or not done). This lack of
granular tracking is a disadvantage when managing larger projects where task progress

visibility is crucial for ensuring work is on schedule [35].

2.3.6 Limited Intelligent Task Scheduling

Apple Reminders lacks dynamic task prioritization, relying on static priority levels that
require manual adjustments. Microsoft To-Do offers basic task organization but does not
automatically reorder tasks based on urgency or workload changes. Tick Tick and Todoist
provide categorization and sorting options, but they lack real-time prioritization that adapts to
shifting deadlines and dependencies. Trello excels in visual task management but does not
dynamically adjust task priorities based on evolving schedules. Overall, these apps offer useful
features but do not fully address the need for dynamic task prioritization, which ensures tasks

are continuously ranked based on urgency, dependencies, and workload [29][34][36].

2.3.7 Limited Reporting and Visualization

Apple Reminders, Microsoft To-Do, and Trello does not provide advanced reporting tools
or project visualization options like project dashboards or detailed progress reports. For users
who need insight into task timelines, bottlenecks, or overall project status, Trello’s limited
visualization capabilities can make it harder to monitor the flow of work and make data-driven

decisions [30].

34

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

2.4 Proposed Solutions

To tackle the challenges of task management and boost project efficiency, we're proposing a

robust new system designed with several key features.

Our first major improvement is dynamic task prioritization. We’ll implement a smart
algorithm that automatically adjusts task priorities based on deadlines, dependencies, and
workloads. This means that as deadlines approach or tasks become more interconnected, the
system will dynamically update task priorities and reorder them to ensure students focus on the
most urgent and important tasks. Additionally, we’ll introduce detailed task statuses, such as
"In Progress," "Awaiting Review," and "Completed," complemented by visual elements like
progress bars and charts. This will provide students with a clearer view of each task’s status
and overall project progress, making it easier to manage overlapping deadlines and identify

where attention is needed.

We understand that internet access isn’t always reliable, so our system will also include offline
capabilities. This feature ensures that students can still access and update their tasks without
needing a constant internet connection, which is especially useful in situations where

connectivity is intermittent.

When it comes to collaboration, our system will enhance communication through real-time
commenting directly within tasks. This will allow students and team members to exchange
feedback, ask questions, and discuss tasks in the context where they’re needed, reducing
reliance on external communication tools and keeping all discussions linked to specific tasks.
We’ll also integrate document management by allowing users to link shared documents
directly within the workspace. This integration will streamline access to project materials and
ensure that everyone has the latest versions of documents, avoiding confusion and

fragmentation.

To make the system more versatile, we’ll ensure cross-platform compatibility, integrating
with popular tools like Google Calendar and user device Calendar. This will accommodate

users who rely on different platforms and enhance flexibility.

For tracking and visualizing projects, we’ll provide granular task progress tracking, showing
detailed completion levels (e.g., 50% or 80% complete). This will offer students a precise view

of their progress. A unified dashboard will aggregate information from all ongoing projects,

35

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

including deadlines, task statuses, and overall progress, helping students manage their

workload and identify tasks that need immediate attention.

By incorporating these features, we aim to create a user-friendly platform that improves task
management, streamlines collaboration, and enhances project tracking, effectively addressing

the limitations of existing systems and meeting the needs of students and teams.

Features Apple Microsoft Todoist TickTick Trello Proposed
Reminders To-Do System
Dynamic
Task X X X X X v
Prioritization
Collaboration V4 V4 v v v v
Real-Time
) X X v X v v

Commenting
Document

X v v v v v
Management
Granular

X X v X X v
Task Status
Progress
o X X v v v v
Visualization
Dynamically
adjusting to

X X X X X v
new tasks

and deadlines
Calander
Integration
Task
Completion X X X X X v
Detection
Personalized
X X X X X v

Assistant

Table 2.5 Comparison between existing and proposed applications

36

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

CHAPTER 3

Proposed Method/Approach

3.1 System Design Diagram

3.1.1 Block Diagram

7 ~N
( Retrieve Overdue Schedules, \
Completed Task, Pending Task
I
| (by priority level), Daily
. Completed Task |
'.o-‘l"') (‘ci-..“
- . -
o ! LN
’ \
’ I B, I \
/ (D \
[] \ ] \
_______________ o . View dashboard ‘,_._._._._'i_._._._._._._._._.\
/"- ] \_-ﬁ._._._._._._'/_-/ '\
¥ <\ ’ / 0 — <r> R X :
( Cranereomestne ) «— G ‘ N Wo;“k?s;'z::?::’;;“;;ngs
o . ‘ -
! l Update Create/Edit/Delete I | Create/Edit/Delete Update Priority Levels
| — firebase schedule | - to-do flrebase
i Compare Existing . |
hedule’s D Ti !
! Schedu !(Eifsanat)e &Time | Retrieve Count Calculate Weighted
! Y | | of Subtasks SEores
I | :
. Sortschedulelistform  ——= Dynamically reorder the I | ToD0
\ resents to future - list and displ ; I Calculate LisT:
P ist and display to user ’/ . Progress Bar lE:
N — I ==
_________________ | — Sort the to-do list by
7’ N . higher scores
. “ . | Dynamically reorder the list s g
[ o) HH \ . and display to user
I o) | \ “Progress bar only displays in
Retrieve from View Home Screen . ’\ task with subtasks” ./
! firebase “Schedules, To-dos, | N~ e ——— -~
I l Device Calendar” | @ _____________________________
. . N
| | Open Gemini gaa @——-@ \
| (Sync Device Calendar — | Chatbot Trigger { { é’j ) — "I”"'; — ( Transcribed to Text
Display Home Al Assistant ’ @ @ Voice M |
‘ 3 ] | — oice Message .
creen .
. . | Collaborated ~—y =] l |
N, — e — e — e — — e — . inTask v 'S |
Text Message <
| .
! ey —— |
i = — &
. Update Notify |
|_ Attachment firebase  Collaborators /
N -

Figure 3.1.1 Block Diagram

37

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Y b o — — — — — — — —



CHAPTER 3

3.1.2 Entity Relationship Diagram

Notification
PK | notificationlD
FK1 | userlD
Category
notificationType
—H{ PK | categorylD
notificationMessage
categoryName
notificationDate
notificationTime associates
with
receives
Schedule ToDo
PK | schedulelD PK | todolD
creates
FK1| userlD User O<€ FK1 | userlD
creates
schedulelD PK | userlD —i< FK2 | categorylD
scheduleTitle displayName FK3 | notificationID
scheduleDate email |——O€ FK4 | collaberaterlD
collaborate
scheduleTime phoneNum with todoTitle
location gender todoDesc
scheduleReminder birthDate todoDeadline
imageUrls photoUrl todoCategory
documentUrls todoPriorityLevel
createdDate todoReminder
writes
todoSubtasks
documentUrls
Comment createdDate
PK | commentiD has lastModifiedDare
FK1| userlD lastModifiedTime
FK2| todolD po—
content
commentedDate
commentedTime

Figure 3.1.2 Entity Relationship Diagram

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3.1.3

Class Diagram

Notification

+ noftification|D: string
+ type: string
+ content: string

+ notificationDate: string

Schedule

+ receiveNotification(n: Notification): Void
+ scheduleReminder(schedulelD: String, when: DateTime). Boolean
+ receiveComment(c: Comment): Void

+ addedAsCollaborator{todolD: String, userlD: String): Void

+ schedulelD: string

+ title: string

+ location: string

+ isAll-Day: bool

+ startDate: DateTime

+ endDate: DateTime

+ attachments[]: Array

+ alert: string

+ isRepeatedSchedule: bool
+ seriesID: siring

+ isSeriesMaster: bool

+ createdDate: DateTime

+ user|D: string

User

+ userlD: string

+ emailAddress: string
+ phoneNumber: string
+ password: string

+ isAdmin: bool

+ addSchedule(title: String, location: String,
isAll-Day?: Boolean, startdate: DateTime,
endDate: DateTime, attachments: List<String>,
alert: String, isRepeatedSchedule: Boolean,
seriesID: String, isSeriesMaster: Boolean,
userlD: String): String

+ editSchedule(schedulelD: String): Boolean

+ deleteSchedule(schedulelD: String): Boolean

+ viewSchedule(schedulelD: String): Schedule

+ updateFirebase(): Void

+ dynamicReorderSchedules(schedules: List<Schedule>,
currentTime?: DateTime):
List<Schedule>

+ autoDetectOverdueSchedules (schedules: List<Schedule>,

currentTime?: DateTime):
List<Schedule>

+ loginAccount(email: String, password: String): User

+ registerAccount(email: String, phoneNumber: String, password: String): User
+ forgotPassword(email: String): Boolean

+ changePassword(oldPassword: String, newPassword: String): Boolean

+ updateEmail(newEmail: String): Boolean

+ updatePhoneNum(newPhoneNumber: String): Boolean

+ acceptDeviceCalendarSync(): Boolean

+ chatWithAlAssistant(message: String): Siring

+ addCollaborator(todolD: String, colD: String, coEmail: String): Boolean

+ removeCollaborator(todolD: String, colD: String, coEmail: String): Boolean
+ assignAdminRole{colD: String). Boolean

+ markSubtaskCompleteditodolD: String, subTaskID: String): Boclean

+ viewCollaboratedTask(): List<ToDo>

Comment

Al Assistant

- sessionlD: string

+ answerQueries(query: String): String
+ suggestUpdates(context: String): List<String>

+ summarizeActivity(activityLog: List<Activity>): String

+ comment|D: siring

+ content: string

+ type: string

+ attachment[]: string

+ commentedDate: DateTime
+ commentedTime: DateTime
+ tasklD: string

+ userlD: string

+ leaveComment({tedolD: String, content?: String,
attachmentURLs?: List<String>, audioFlle?: Flle,

type: CommentType = TEXT): String
+ addAttachment(commentiD: String, url: String): Boolean
+ voicelnput(audioFile: File): String
+ textinput(text: String): String

+ speechToTextTranscribe(todold: String, commentld: String, audioUrl: String):
String

To-Do

0.
1.1
0. h
— e
0
0.
0.

+ todolD: string

+ tittle: string

+ description: string

+ dueDate: DateTime
+ priarityLevel: int

+ status: string

+ reminder: string

+ subTask[]: string

+ attachments[]: string
+ userlD: string

+ categoryID: string

+ addTask(litle: String, description: String,
dueDate: DateTime, priorityLevel: Int,
reminder: String, subTasks: List<String=>,
attachments: List<String>, userlD: String,
category|D: String): String

+ editTask(todolD: String): Boolean

+ deleteTask(todolD: String): String

+ viewTask(todolD: String): String

+ viewProgressBar(todolD: String): String

+ updateFirebase(): Void

+ isTaskCompleted(todo: ToDo): Boolean

+ completedTaskDetection({todo: List<ToDo>): List<ToDo>

+ caloulatePriorityScares(todos: List<ToDo=,
weightDeadline: double,
weightWorkload: double,
weightReminder: double,

weightPriorityLevel: double):
Map<String, double>

Category

+ categorylD: string

+ categoryName: string

+ addCategory(categoryname: String): String

+ deleteCategory(categarylD: String): String

+ updateFirebase(): Void

Figure 3.1.3 Class Diagram

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39




CHAPTER 3

3.1.4 Use Case Diagram

Task Management System

— T T
. N . egister in Firebase
T '”“‘”deﬁ Authentication ./
—— ——

Completed Task
- \nclude/" ;

Delete Category B
nclude

Include

Evaluate Task
Completion

User
Include

Include ™"~

Manage Collaborator

“Include.

View Qverdue
Tasks

) \nclude7 Schedules .

View Project - M : )
e Include ;

Dashboard nclude . v B
i\ Recover Schedules]

--Include

View Completed Task Tile

o —
-

5

7 cheduled Reminder -
- — Include \‘»i /
- - ------>{Comments Received
- ..--Include- \

eceive Notification

\\‘& Aler1s' /'

“Include — -
- -.ﬂeing Added as 2™

@abolamr/
_

Voice Input
Include
Chat with Al assistant <--..
Include -~ > Text Input
View Calendar Events- - --Include -S> S’g:‘eljﬂz‘gfe ----Include->> é;r:f;a?z';i

Voicelnput/Text
Input/Attachment

Mark Subtask as
Completed

Include

Leave Comment

View Collaborated
Task

Answer Task Related
Queries

Suggest Schedulesor . ——

Tasks Updates

Summarize Activity or
Progress

Update Email
nclude - e Tede .
- Include- -2 Update Phane 5, Include. ->Update Firebase ______———____———_—_‘
i ) --Include-=-=- Number e R
Manags Profile  s==:22.2 . Include >> Authentication
- T Change Password ---Include Firebase
Authentication
View Schedule
7
,7 Add Schedule 1y
Includ
neluee _..Include”” Y
.............. Delete Schedule  » B
Manage Schedule Include > . |
oot clude__ Y S
 neues T Edit Schedule :
Include -A . %
Dynamic Reorder .
N Schedules '
Include
Auto-Detect Overdug . Include %,
Schedules > %
Include \ \
View Task l“‘
Manage To-Do
nclude - . __
S
| -_Include
Include \ N REN Q
. Include -
A X . N
Calculate Priority ™, Include ™ Include
Scores H RN :
Y Include ™, T | Real Time
' B Edit Task Include - Firebase
\r@de M \ ) clude” . :
View Task Progress™ Include, ’ /
Auto-Detect Bar 3 P
\'l Include ’/‘ B N .

Collaborator

Al Assistant

Figure 3.1.4 Use Case Diagram

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40



CHAPTER 3

3.1.5 Dashboard

Activity Diagram

Dashboard

Fetch Data from
Firestore

Calculate Total Calculate Total Calculate Total Calculate Total Pending
Overdue Schedule Completed Task Pending Task Task by Priority Level
(High, Medium, Low)
Accordingly

False True
Has record?

Return Value = 0 and Display Figure in the
Display "No record" Dashboard

Figure 3.1.5 Activity Diagram — Dashboard

41

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Use Case Description

Use Case

Display Dashboard Metrics

Actor

User, Firestore (data source)

Pre-conditions

1. User is authenticated and on the Dashboard screen.

2. Firestore is available and contains schedule/task data.

Main Flow

1. The user navigates to the Dashboard.

2. The system fetches data from Firestore.

3. The system performs the following calculations in parallel:
- Calculates the total overdue schedules.
- Calculates the total completed tasks.
- Calculates the total pending tasks.
- Calculates the total pending tasks by priority level (High,

Medium, Low).

4. The system checks if there are records available from the
calculations.

5. Ifrecords are available, the system displays the calculated figures
(total overdue schedules, total completed tasks, total pending tasks,

and pending tasks by priority) on the dashboard.

Alternative Flow

In step 4, if no records are available, the system returns a value of 0 for all

calculations and displays a "No record" message on the dashboard.

Exception Flow

If the system fails to fetch data from Firestore in step 2, it logs an error and

displays an error message on the dashboard, such as "Failed to load data."

Post-conditions

1. The dashboard displays the calculated figures (total overdue
schedules, total completed tasks, total pending tasks, and pending
tasks by priority) if records are available.

2. Ifno records are found, the dashboard shows a "No record" message

with all values set to 0.

Table 3.1.5 Use Case Description — Dashboard

42

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 3

3.1.6 Progress Bar

Activity Diagram

Render Task Card

subtasks exists?

Yes

Fetch Subtasks

Count Total Subtasks
in the List

Count Total Completed
where completed==true

Yes
total completed == 07

No

Compute Ratio Progress Bar No fill
(completed/total) and Value

Set Progress Value
(0..1)

ratio < 0.5 0.5 <ratio<1.0
colour bucket?

ratio 2 1.0

Set Color: Set Color: Set Color:
Red 700 Orange 700 Green 700

Render Progress Bar
(value+color)

Yes
on change?

No

Figure 3.1.6 Activity Diagram — Progress Bar

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43



CHAPTER 3

Use Case Description

Use Case Show Task Progress Bar (when subtasks exist)
Actor User, System, Firestore
Pre-conditions 1. The user is logged into the system.
2. User is authenticated and can view the task.
3. Task document is readable; if subtasks exist, they are retrievable as a
list.
Main Flow 1. Render Task Card.
2. Check “Subtasks exist?”
- Ifno — do not render a progress bar (end).
- If yes — continue.
3. Fetch Subtasks (from task doc or subcollection).
4. Count Total Subtasks = subtasks.length.
5. Count Completed = number of items where: completed == true.
6. Compute Ratio:
- Iftotal == 0 — treat as 0.0 (and show empty bar).
- Elseratio = completed / total (clamped to 0..1).
7. Set Progress Value = ratio (0..1).
8. Choose Colour Bucket:
- ratio >= 1.0 — Green 700
- 0.5 <=ratio < 1.0 — Orange 700
- ratio <0.5 — Red 700
9. Render Progress Bar (value + color).

10. On Change:

- Subscribe to subtask changes (snapshot/stream).
- On any add/update/delete or completed toggle — recompute

from step 3 and re-render.

Alternative Flow AF-1: Zero Completed (but subtasks exist)

Show a progress bar with value 0% and Red 700.

AF-2: All Completed

Show a full bar (100%) with Green 700.

AF-3: Intermediate Completion

Show partial bar with Orange 700 for ratios in [0.5, 1.0).

AF-4: Smooth Visual Update (optional)

44

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

e Animate value/colour transitions (~200 ms) when recomputing to

avoid junk.

Exception Flow

EF-1: Data Read Failure
e If Firestore read fails, hide the bar and retry indicator (do not block
the card).
EF-2: Malformed Subtask Items
e Ifany list item is not a map or lacks completed, treat it as not
completed (no crash).
EF-3: Division Safety
e (uard against total == 0 to avoid divide-by-zero (render empty or

hide per rule above).

Post-conditions

1. If no subtasks exist, the task card shows no progress bar.
2. [If subtasks exist, the task card shows a progress bar whose value and
colour reflect completed/total subtasks and update in real time when

subtasks change.

Table 3.1.6 Activity Diagram — Progress Bar

45

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 3

3.1.7 Personalized AI Assistant

Activity Diagram

Interact Floating
Action Button

Tap Long-press
gesture?

Open Chatbot Screen

"Plan My Day"

Fetch Context (foday,
iz, prefs)

Load Todos, Existing
Schedules, Read Device
Calendar Events

Rank Tasks (Dynamic Weighted
Prioritization)

(0.4 deadling + 0.2 subtask + 0.1
alert + 0.3 priority)

Pack Tasks inta Free Slots (fif
by duration; respect due
dates; avoid conflicts)

Build Preview Plan

Show Preview +
“Add schedule”

Yes
add schedule?

No

Open Al Panel

(overlay)

Type Prompt
input source?

Begin Recording

(mic on)
Enter Text Prompt not granted
mic permission?
Build Prompt + Context

(selected task/schedule,

Request
time, prefs)

Permission

granted

Stop and Send

Upload Audio to
Storage

CF:

transcribeAssistantVoice

Yes

Use Transcript as
Prompt

Build Prompt +
Context

Detect Intent &
Entities

No
quick action?

Ask Confirmation Conversational Reply

confirm? Call Gemini

(generateContent)
Yes

Execute Quick Action

error/ timeout?

Retry / Fallback /

Stream & Display
Cancel

Reply
Update Firestore

Render Action Result

Yes
continue chat?

Yes No

Figure 3.1.7 Activity Diagram — Personalized Al Assistant

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

(finalize)

No
transcript ready?

Transcription Failed
— Retry

46



CHAPTER 3

Use Case Description

Use Case

Al Assistant for Personalized User Support (Chatbot & Voice Panel)

Actor

User, Al Assistant System, Cloud Functions, Firestore/Storage, Google

Speech-to-Text, Gemini LLM, Device Calendar

Pre-conditions

L.

A

User is authenticated and online.

Al services are reachable (Cloud Functions, Gemini).
Microphone permission granted for voice panel

Calendar permission granted for “Plan my Day”.

The system can read user data (todos, schedules) from Firestore;

device calendar events available if permitted.

Main Flow

A) Entry via Floating Action Button (FAB)

1. User taps or long-presses the FAB.

2. System branches by gesture:

3. Tap — Chatbot screen

4. Long-press — Al voice panel (overlay)

B) Chatbot (tap)

5. System asks for input source: Plan my Day (preset) or Type

Prompt.
B1) Plan my Day (preset)

6. System fetches context (today/zone/prefs), then in parallel loads
todos, existing schedules, and device calendar events.

7. System ranks tasks using Dynamic Weighted Prioritization (0.4
deadline + 0.2 subtask + 0.1 alert + 0.3 priority).

8. System packs tasks into free slots (respect due dates, avoid
conflicts) and builds a preview plan.

9. System shows Preview + “Add schedule” / Cancel.

10. If user confirms Add schedule:

11. System executes the action (Cloud Function), writes schedules to
Firestore, and (if applicable) notifies collaborators.

12. System renders the updated schedule and posts a summary reply in
chat.

13. Flow returns to chat (user may continue).

14. If user cancels, return to chat without changes.

B2) Type Prompt (free text)

15.

User enters text.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47



CHAPTER 3

16.

17.
18.

19.

C) Voice Panel (long-press)
20.
21.
22.

23.
24.

25.
26.

System builds prompt + context (selected task/schedule, time,
preferences) and detects intent & entities.

[Decision] Quick action?

Yes: System asks for confirmation (“Proceed?”). If confirmed,
execute via Cloud Function, update Firestore, render the action
result, and return to chat.

No: System calls Gemini for a conversational reply; on success

streams & displays the reply.

System opens overlay and begins recording.

[Decision] Mic permission? If needed, request; if denied, exit panel.
On Stop & Send, system uploads audio to Storage; a Cloud
Function is triggered to transcribe (STT).

[Decision] Transcript ready?

Yes: Use transcript as the prompt; continue as in steps 11-12 (build
context, detect intent, quick action vs conversational).

No / Failed: Show Retry transcription or let the user type instead.
System displays the reply in the panel (optionally with TTS). User

can continue (record again) or dismiss the panel.

Alternative Flow

AF-1: Continue Chat

AF-2: No free slots in Plan my Day

AF-3: Quick action variants

After any reply, the user can send another prompt or record again,

loop to the appropriate input step.

System proposes alternatives (different time window, shorter tasks)

and lets the user adjust or cancel.

Create/update tasks, schedules, notes, or other supported operations;

all require user confirmation before write.

Exception Flow

EF-1: Permission denied

EF-2: Network or service error

EF-3: Transcription failure

Microphone or calendar permission not granted — show guidance to

enable in settings.

Gemini/Cloud Function timeout or 503 — offer Retry / Fallback /

Cancel.

48

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

EF-4: Insufficient context

STT error — show inline error with Retry; voice message can still

be typed manually.

System asks clarifying questions or suggests creating the needed data

(e.g., add task durations) before proceeding.

Post-conditions

3.

The user receives a response (conversational or action result).
If a quick action or “Add schedule” is confirmed, Firestore is
updated, and the Ul reflects the change.

Conversation can continue in a multi-turn loop until the user exits.

Table 3.1.7 Use Case Description — Personalized Al Assistant

49

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3.1.8 Task Collaboration

Activity Diagram

Add Collaborator

Enter Collaborator's
Email

Verify Email

Invalid Email Address
Valid Email Address

Collaborator Selection
Confirmation

No Yes

Remove Collaborator Confirm Collaborator

No Yes
admin?

Update Firestore Toggle "Admin" Icon

No Yes
add again?
Notify Collaborator

Figure 3.1.8 Activity Diagram — Task Collaboration

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50



CHAPTER 3

Use Case Description

Use Case Add Collaborator
Actor User, Collaborator, System
Pre-conditions 1. The user is logged into the system.
2. User has permission to manage collaborators on the task
(owner/admin).
3. Task exists and is selectable.
Main Flow 1. User selects Add Collaborator.
2. System prompts the user to enter the collaborator’s email.
3. System verifies email: format check, user existence, and not already
a collaborator.
4. If invalid/not found/already added, system shows an inline error and
remains on the email entry; on success continue.
5. System shows Collaborator Selection Confirmation (summary
card with email and an Admin toggle/icon).
6. User chooses one of the following on the confirmation card:
- Confirm Collaborator (default role = member).
- Toggle “Admin” to grant/revoke admin before confirming.
- Remove Collaborator.
7. System updates Firestore accordingly (single commit/transaction):
- On confirm: create/merge tasks/{taskld}/collaborators/{uid}
with fields like {role: "member"|"admin", addedBy, addedAt}.
- If admin toggled: set role: "admin" (or “member” if toggled
off).
- On remove: ensure no write occurs (or delete any pending local
draft state).
8. System notifies collaborator (and, if needed, existing admins) and
refreshes the U list.
9. Flow can repeat from step 2 to add more collaborators.
Alternative Flow AF-1: Assign Admin During Add
1. From the confirmation card, user enables the admin icon/toggle and
confirms.
2. System writes the collaborator with role: "admin", then proceeds to
notify and refresh.
AF-2: Remove Before Confirm

51

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

1. User toggles remove icon on the confirmation card.
2. System discards the pending addition and returns to the collaborator
list (no Firestore change).
AF-3: Quick Role Flip After Confirm (optional UI)
1. From the list row, user taps the admin icon to grant/revoke admin on
an already-added collaborator.
2. System updates role in Firestore and notifies the collaborator of the

role change.

Exception Flow

EF-1: Email Errors
¢ Invalid format, user not found, or already a collaborator — show
specific error and keep focus on the email field.
EF-2: Firestore Update Failure
e Network/permission/write failure — show “Couldn’t update
collaborators. Retry?” with Retry/Cancel. On Retry, re-attempt the
write; on Cancel, show current list.

EF-3: Notification Failure

e Ifpush/send fails, logs; addition/role change remains saved.

Post-conditions

1. The collaborator is either successfully added and notified, assigned
an admin role, or removed.

2. The affected collaborator receives a notification about being added
and/or role assignment; existing admins may also be notified on
removals/role changes.

3. UI shows the updated collaborator list (with admin action state).

Table 3.1.8 Use Case Description — Task Collaboration

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52



CHAPTER 3

3.1.9 Manage Comment

Activity Diagram
Open Collaborated Task
Message Section
Long Press Existing
e Send New Comment
Yes No
Voice/Flles? Sender?
Yes Input Method?
No

Enter Text Message Attach Files Record Audio
Display Sender
Option Dialog
- Copy
- Edit
- Delete

Display Sender
Option Dialog
- Copy
- Delete

DisplayReceiver
Option Dialog
- Copy
- Reply

Capture Comment
Option? Content

Submit Comments

Copy Message to Delete Selected Quote Selected Edit Selected
Clipboard Message Message Message

Text Media/Voice
Text/Media/Voice?

Upload to Firebase
Storage

Retrieve Storage
Path

Media
Voice/Media?

Voice

Cloud Function:
transcribe TodoVoice

Update Firestore

Transcode to WAV 16
Yes No kHz mono (ffmpeg)
Update
Successfully?
Call Google Speech-to-
Render Comments Log Error Text v2 (chirp_2,
GLOBAL)

Notify Collaborators No

Transcript OK?

Yes

@
Figure 3.1.9 Activity Diagram — Manage Comments

53

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Use Case Description

Use Case Post and Manage Comments on a Collaborated Task
Actor User, System, Firestore
Pre-conditions 1. User is authenticated and authorized for the task.

2. Microphone permission granted (for voice).

3. Device has basic connectivity (for posting; offline read is optional).

4. Cloud Function transcribeTodoVoice deployed and able to call
Google STT

Main Flow 1. User opens collaborated task message section.

2. System shows input methods: Enter Text, Attach Files, Record
Audio.

3. User provides content:
- Text — type in composer.
- Voice — press/hold to record, then stop.
- Attach File — system opens file picker (images/videos/docs);

preview is shown.

4. User taps Send.

5. System validates (non-empty, proper file size/type)

6. System writes a comment to Firestore (type, author, timestamps,
file/audio URLSs, etc.) and renders it optimistically.

7. If voice/ media: System uploads path to Firebase Storage and

creates/updates Firestore.

Async STT Pipeline (Cloud) — Always On

8. Storage finalize triggers transcribeTodoVoice.

9. Transcode to WAV 16 kHz mono (ffmpeg).

10. Function calls Google Speech-to-Text v2 (GLOBAL/chirp_2;
fallback model as configured).

11. On success:
- Write transcribed text, language code, confidence to Firestore.
- Update Firestore: voices/{voiceld}.status = "done".

12. System updates the UI showing the new comment in the thread.

13. System identifies all other collaborators on the task.

14. System sends each a notification (push or in-app).

15. On failure:

—_n

- Set voices/{voiceld}.status = "error" and log details.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 3

- Clients pick up snapshot changes and update the UI: the transcript

button becomes “View transcript”.

Alternative Flow

AF-1: Edit Existing Comment Long-press Actions
1. User long-presses or taps an existing comment.
2. System shows an option dialog box:
- Sender + Text — Copy, Edit, Delete
- Sender + Voice/Files — Copy, Delete
- Receiver (any) — Copy, Reply (Quote)
AF-2: View / Hide Transcript (per voice bubble)
1. User taps “View transcript” under a voice message.
2. System expands an inline panel showing transcribed text. The button
changes to “Hide transcript”.
3. User can collapse it again; button toggles back to “View
transcript”.
AF-3: Reply with Quote
e User taps Reply, composer shows quoted preview (of text or voice
label).
e On Send, a new comment is created with quoted message reference.
AF-4: Edit Existing Comment (Sender + Text)
e Inline edit, save sets edited=true, editedAt, rerender, notify.
AF-5: Delete Existing Comment (Sender)

e Confirm — soft delete; update Firestore, rerender.

Exception Flow

EF-1: Validation Failure
e Empty input or invalid/oversized file — highlight and stay on
composer.
EF-2: Save Failure
e Firestore write fails.
EF-3: STT Failure
e Comment remains playable, no transcript.
EF-4: Notification Failure

e Log and retry with backoff; comment state is not rolled back.

Post-conditions

1. New/edited/deleted comments persisted and rendered to all
participants.
2. Voice comments are always transcribed (even if no transcode is

needed).

55

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3. Transcript text is saved to Firestore and indexed for later search
(together with text comments and extracted URLSs).

4. Each voice bubble shows a toggle button to reveal/collapse the
transcript. User preference (expanded/collapsed) affects only local
UI unless you choose to persist it.

5. Collaborators (excluding author) are notified of new/edited/deleted

comments.

Table 3.1.9 Use Case Description — Manage Comments

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56



CHAPTER 3

3.1.10 Voice/Text/URLs Comment Searching

Activity Diagram

Open Comment
Search

Enter Query

Normalize & Tokenize
Query

Build Search Params

Yes
reserach found?
Render Results List Display "No Results"
Select Result Refine Fliters

Yes

in?
Scroll to Comment search again?

No

Highlight Match

Figure 3.1.10 Activity Diagram — Voice/Text/URLs Comment Searching

57

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Use Case Description

Use Case

Search Comments (Text / Voice Transcripts / URLSs)

Actor

User, System, Firestore

Pre-conditions

1. User is authenticated and authorized for the task.
2. Comment content has been indexed for search:

- text comments,

- voice transcripts (from STT),

- extracted URLs (and optional filenames).

3. Network available (or local cache available for offline search).

Main Flow

1. Open Comment Search — User launches the search UL

2. Enter Query — User types keywords.

3. Normalize & Tokenize Query — System lowercases/normalizes text
(diacritics, script forms), tokenizes (e.g., words/ngrams).

4. Build Search Params — System composes filters/scope (task, type =
All/Text/Voice/URLs, author/date if available), paging, and ranking
strategy.

5. Query Search Index — System queries Firestore index fields (e.g.,
searchText, searchTokens, URL tokens).

6. If results found:

- Render Results List (type badges, snippets with bolded hits).
- Select Result — User taps a result.
- Scroll to Comment — System navigates to the exact message in
the thread.
- Highlight Match — System highlights the matched text.
7. If results not found:
- Display “No Results” — System shows empty state with tips.
- Refine Filters — User adjusts query/filters.

- Search again? — If yes, loop back to Enter Query; if no, exit.

Alternative Flow

AF-1: URL Search

If the query is a URL (or domain/path fragment), results show URL
badges/snippets.
AF-2: Pagination / Load More (optional)

If results exceed page size, Load More appends additional matches.

Exception Flow

EF-1: Offline / Network Error

58

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

If offline, search falls back to cached index if present; otherwise
show “No connection—try again” with a Retry action.

If the index query fails, show “Couldn’t search right now. Retry?”
(Retry/Cancel).

Post-conditions

The system shows matches (or a clear “No Results”) without
modifying data.
When a result is selected, the thread scrolls to the comment and the

matched fragment is highlighted.

Table 3.1.10 Activity Diagram — Voice/Text/URLs Comment Searching

59

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3.1.11 Notifications

Activity Diagram

Receive Notification
Event

Evaluate Notification
Rules

Compose Notification
Message

Determine
Recipient(s)

No notifications

enabled?

Yes

Send Notification

Yes delivery

successful?

No

Log Failure & Retry

Figure 3.1.11 Activity Diagram - Notifications

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Use Case Description

Use Case

Notification System

Actor

System, Push/Email Service, User

Pre-conditions

1. A triggering event has occurred (e.g., task deadline, completed
task/event, comments, etc.).
2. The user has enabled notifications in their profile.

3. Notification rules (reminders, thresholds, channels) are configured.

Main Flow

1. An internal trigger fires.
2. System checks which rule(s) apply for this event (e.g. “5-minute

29 ¢

reminder,” “on-comment alert’).

3. System builds the payload: title, body text, metadata (links, IDs).

4. Based on ownership, assignments, collaborators, or global broadcast
rules.

5. Ifarecipient has disabled notifications, skip them.

6. System hands off each message to the Push/Email Service (or SMS
gateway).

7. For each channel, verify success.
- On success — done.

- On failure — log the error, attempt up to N retries (back to step

6).

Alternative Flow

For high-volume events, system groups multiple alerts into one batched

message to reduce noise.

Exception Flow

1. If the notification fails to deliver (e.g., invalid email, system error),
the system logs the failure and attempts redelivery.
2. [If auser has disabled notifications, the system does not send the

message.

Post-conditions

1. All enabled recipients receive a notification via their preferred
channel.
2. Delivery attempts (and any failures) are logged for audit.

3. The user’s UI (or lock-screen) shows the new alert.

Table 3.1.11 Use Case Description — Notifications

61

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 3

3.1.12 Device Calendar Sync

Activity Diagram

Access Calendar
Section

Check Device-
Calendar Permission

No _permission-. YeS

granted?

Fetch Device

Request Permission Calendar Events

Yes T No

grants?

Fetch Device Calendar Fetch Firestore Schedule

Merge & Sort

Display Events &
Schedules

Figure 3.1.12 Activity Diagram —Device Calendar Sync

62

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Use Case Description

Use Case Synchronize Events with Device Calendar
Actor User, Device Calendar Provider (OS)
Pre-conditions 1. The user is logged into the system.

2. The app has been granted READ CALENDAR (and optionally
WRITE_CALENDAR) permission at the OS level.

calendar.

3. Request Permission (if needed)

access your device calendar?”

provider.

schedules.

Main Flow 1. User navigates to the in-app Calendar tab (Home Screen).

2. System checks if it already has permission to read the device

- Ifnot granted, system prompts the user: “Allow this app to

- User taps Allow — system proceeds; Deny — go to Step 6.

4. System reads upcoming events from the device’s built-in calendar

5. Inparallel, system queries Firestore for the user’s app-created

6. System merges device events and Firestore schedules, orders them

chronologically/ dynamic-reordering.

7. The Ul presents a unified list or calendar view of both sets of entries.

displays them.

Alternative Flow 1. If'the user denies calendar permission, system skips Step 4, fetches

only Firestore schedules (Step 5), merges (just the one source) and

2. The Ul shows a banner “Enable calendar permission to view device

events” with a button linking to Settings.

Exception Flow EF-1: Permission Permanently Denied

EF-2: Read Error

schedules only.

EF-3: Firestore Unavailable

If the OS reports “Don’t ask again,” system shows a persistent
notice: Calendar access blocked — enable in Settings.”

System continues to show only Firestore schedules.

If fetching from the device calendar fails, log the error, show a toast

“Unable to load device events,” then proceed with Firestore

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

63



CHAPTER 3

o If Firestore read fails, display “Cannot load your schedules; retry?”

with Retry/Cancel.

Post-conditions

1. The user sees a combined view of device-native calendar events and
their app schedules.

2. If permission is missing or an error occurs, at minimum the Firestore
schedules are still displayed.

3. Any errors or permission issues are surfaced with clear UI guidance

for next steps.

Table 3.1.12 Use Case Description — Device Calendar Sync

64

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 3

3.1.13 Register and User Login

Activity Diagram

Login

New User

Register New

Account Existing user

Enter Email &
Password
User Authentication Invalid Email
Password
Valid Email &
Password

Display Main Screen

Figure 3.1.13 Activity Diagram — Register and User Login

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65



CHAPTER 3

Use Case Description

Use Case User Login and Registration
Actor User
Pre-conditions 1. The user must have an internet condition
2. Iflogging in, the user must already have an account.
Main Flow 1. The user opens the application and selects “Login”.
2. The system prompts the user to enter their email and password.
3. The user enters their credentials.
4. The system performs user authentication.
- If the credentials are valid, proceed to Step 5.
- Ifthe credentials are invalid, prompt the user to re-enter the
email and password.
5. The system displays the Main Screen.
Alternative Flow 1. Instead of logging in, the user selects “Register New Account”.
2. The system provides a registration form.
3. The user fills in the required details and submits the form.
4. The system creates the account and redirects the user to the main
screen.
Exception Flow 1. If authentication fails multiple times, the system may lock the
account or provide a password recovery option.
2. Ifregistration fails (e.g., email already in use), the system notifies
the user and asks for corrections.
Post-conditions 1. If successful, the user is redirected to the main screen.
2. Ifunsuccessful, the user remains at the login page with appropriate

CITror messages.

Table 3.1.13 Use Case Description — Register and User Login

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 3

3.1.14 Home Page

Activity Diagram
®

Launch Home Page

Check Device Calendar
Sync Permission

Asked To-Do tab
Tab?
First-Time User Schedule tab
Grant permission from Access Todos
User to Sync Device Collection in Firestore
Calendar
Permission Denied
Check Any ToDos due
Allow Permission on the Selected Date
Sync Device
Calendar Event
Yes
Display Todos that are
Access Schedules due on the Selected
Collection in Firestore Date
Check Any Schedules
for Selected Date
No Yes
Display "No Display Schedules for
Schedule” Selected Date

Figure 3.1.14 Activity Diagram — Home Page

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Display "No To-Do"



CHAPTER 3

Use Case Description

Use Case

View Daily Schedules & To-Dos

Actor

User

Pre-conditions

1. The user is authenticated, and the Home page is loaded.
2. The device has network connectivity.
3

The app may or may not already have calendar-sync permission.

Main Flow

[

The user launches the home page.
2. Check calendar-sync permission.
3. Request permission (if not already granted).
- System prompts: “Allow app to sync with your device
calendar?”
- User grants permission
4. Sync device calendar events.
5. Display calendar table and two tabs: Schedules | To-Dos.
6. User selects a tab for a specific date.
- If Schedules chosen, system fetches Firestore schedules and
newly synced device-calendar events for the selected date.
- If To-Dos chosen, system fetches Firestore to-dos and filters for
items due on the selected date.
7. 1f To-Dos chosen:
- System fetches Firestore to-dos.

- System filters for items due on the selected date.

Alternative Flow

AF1: Permission Already Granted
e Steps 3.1-3.2 skipped; proceed directly to Step 4.
AF2: Permission Denied
e User declines calendar-sync request in Step 3.
e System displays a toast: “Calendar sync disabled; showing app
schedules only.”
e On the Schedules tab, system fetches only Firestore schedules (skip
Step 4).

Exception Flow

EF1: Calendar Sync Failure
e If syncing the device calendar errors out, log the failure, show
“Unable to sync calendar; showing app schedules,” then continue to
fetch Firestore schedules.

EF2: Firestore Unavailable

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68



CHAPTER 3

e Ifreading schedules or to-dos from Firestore fails, display an error
dialog: “Cannot load data. Retry?” and allow the user to retry or

cancel.

Post-conditions

1. The Home page shows the user’s schedules (including device events
if permitted) or to-dos for the selected date.
2. Ifno items exist, the corresponding “No Schedule” or “No To-Do”

message is displayed.

Table 3.1.14 Use Case Description — Home Page

69

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3.1.15 Schedule

Activity Diagram

User taps "Add
Schedule” button

Show Blank "New
Schedule” form

User enters:

Title, Location,
All-Day? (boolean),
StartDate, EndDate,
Alert Setting,
Attachments,
IsRepeated? (boolean),
URLs, Notes

Invali Valid

d
Valid Input?

No

Show Error Message IsRepeated?

Yes

Automatically add
those event into
future schedule list

Save to Firestore

Display "Schedule
Created”

Manage Schedule

View Schedule

Fetch schedules from

Firestore
No Yes
Any Schedules?

Display "No Display list of

Schedules” schedules

No

Item tapped?

Yes

Display Schedule

Details Screen

Action?

User taps "Edit"
button

Show edit form
(pre-filled)

Submit changes

No
Recurring?

Yes
Prompt “Edit this

oceurrence or entire
series?"

Update Firestore

Display "Schedule
Updated"

User taps "Delete”
button

Recurring?

Prompt: "Delete this
occurrence or entire

Prompt: "Are you sure
you want to delete?"

series?"
Delete? No _pelete all in
series?
Yes

Remove from
Firestore

Display "Schedule
Deleted"

Figure 3.1.15 Activity Diagram — Manage Schedule

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

Remove all events in
seeries from Firestore



CHAPTER 3

Use Case Description

Use Case

Manage Schedule

Actor

User: wants to create, view, modify or remove personal schedule items.
System: must reliably store and retrieve events, enforce data integrity, and

handle errors gracefully.

Pre-conditions

L.

The user is authenticated and has navigated to the Schedule List
screen.

The app has network connectivity and access to Firestore.

Main Flow

Display Schedule List

- System fetches all schedules from Firestore and displays them in
a scrollable list.

- A prominent “+ Add Schedule” button is visible.

Create New Schedule

2.1 User taps “+” button.

2.2 System shows a blank “New Schedule” form.

2.3 User enters required fields (title, location, start/end date-times,
all-day flag, alert, attachments, and whether it repeats).

2.4 If “Is Repeated” is checked, system prompts for recurrence
pattern and series end date.

2.5 System validates entries. If invalid, show error and remain on
form (see AF-1).

2.6 On success, system writes the new schedule (and series
instances, if any) to Firestore.

2.7 System returns to the Schedule List, refreshing to include the
newly created item.

View Schedule Details

3.1 From the Schedule List, user taps one schedule entry.

3.2 System opens the Schedule Details screen, showing all fields
(title, location, start/end, alerts, recurrence info, attachments).

3.3 On this screen, two action buttons are available: Edit and Delete.

Edit Schedule

4.1 User taps Edit button in the Schedule Details screen.

4.2 System displays a pre-filled edit form.

4.3 User modifies fields and submits.

71

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

4.4 If the schedule is part of a series, system prompts: “Edit this
occurrence only” or “Edit the entire series?”

4.5 System validates inputs (see AF-1) and then updates Firestore
(single instance or whole series).

4.6 System shows “Schedule updated” and returns to the Schedule
Details screen, refreshed.

5. Delete Schedule

5.1 User taps Delete button in the Schedule Details screen.

5.2 System prompts: “Are you sure you want to delete this
schedule?”

5.3 If it’s recurring, system then prompts: “Delete this occurrence
only” or “Delete the entire series?”

5.4 System performs the deletion in Firestore.

5.5 System shows “Schedule deleted” and returns to the Schedule
List, refreshed.

Alternative Flow

AF-1: Validation Error (Add/Edit)

e [fthe user submits a form with missing or invalid fields, system
highlights errors (e.g. “End date must be after start date”) and
remains on the form until corrected.

AF-2: Empty Schedule List

e Ifthe initial fetch in Step 1 returns no schedules, system displays

“No schedules. Tap ‘+ Add Schedule’ to create one.”
AF-3: User Cancels Recurrence Prompt

e Ifthe user cancels when asked about series vs. single instance, the

flow returns to the form without making Firestore changes.
AF-4: User Navigates Back

e Atany point on New Schedule, Schedule Details, or Edit Schedule

screens, tapping a back button returns the user to the previous screen

without saving changes.

Exception Flow

EF-1: Firestore Read/Write Failure
e On any fetch, save, update, or delete error, system displays an alert
(“Unable to communicate with server.”)

EF-2: Network Unavailable

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72



CHAPTER 3

e Ifthe device loses connectivity mid-operation, system shows
“Connection lost. Please check your network,” then returns to the

Schedule List or current form.

Post-conditions

Add: A new schedule (and any generated series) exists in Firestore and
appears in the Schedule List.

View: No data is modified; details are displayed.

Edit: The schedule (or series) in Firestore reflects the user’s changes.
Delete: The selected schedule instance(s) are removed from Firestore; the

list is refreshed.

Table 3.1.15 Use Case Description — Manage Schedule

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73



CHAPTER 3

3.1.16 Schedule Dynamic Reordering
Activity Diagram

Schedule Created/
Updated

Check If Schedule Date
is Correctly Defined

No Date/ All-Day Event

Yes

Retreive Schedule
Date & Time

Check Existing
Schedule List

No Existing Schedule

Have Existing
Schedules

Compare Existing
Schedule's Date & Time
with New Schedule

Sort Schedules List from
Presents to Future

Present Schedules will
be listed first

Dynamically Reorder
Schedule

Display Schedules in
the List "no crash"

Figure 3.1.16 Schedule Dynamic Reordering

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Use Case Description

Use Case

Schedule Dynamic Reordering

Actor

User, System (invoked when schedules are created/updated or when the user

views their schedule list)

EF-2

Pre-conditions 1. The user is authenticated and on (or is about to see) the Schedule
List screen.
2. One or more schedule entries exist in Firestore (or are about to be
created/updated).
3. The system clock is available.
Main Flow 1. The system receives a created or updated schedule.
2. The system checks if the schedule’s date is correctly defined.
3. The system retrieves the date and time of the new schedule.
4. The system checks the existing schedule list.
5. The system compares the date and time of the existing schedules
with the new schedule.
6. The system sorts the schedule list, ordering entries from present to
future (present schedules are listed first).
7. The system dynamically reorders the schedule list as needed.
8. The system displays the updated schedule list to the user.
Alternative Flow 1. If Firestore returns zero schedules, the system skips sorting and
displays an empty-state message (“No schedules to show™).
2. Treat any schedule with a null start-date as Present, placing it at the
top of the list.
Exception Flow EF-1: Firestore Read Error

If fetching schedules fails, show an alert: “Unable to load schedules.
Retry?”
On Retry — go back to Step 4; on Cancel — abort and leave the

previous list in place.

: Invalid Date Validation

If any schedule’s start/end dates are malformed, log the error,

exclude that entry from the list, and continue processing the others.

Post-conditions

The user sees their schedules ordered so that all “present” (ongoing or past-

started) events appear first, followed by upcoming events, each subgroup

sorted chronologically.

Table 3.1.16 Use Case Description — Schedule Dynamic Reordering

75

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3.2.17 To-Do

Activity Diagram

Manage To-Do

Action?

User taps "Add"
button in Todo List

Show Blank "New To-
Do" form

User enters:

Title, Description,

Dues Date/Time,
Priority Level,
Reminder Setting,
Subtasks, Attachments,
Category

Invalid Valid
Valid Input?

Show Error Message L s Al

Pick User and
Confirm

Save to Firestore

Display "Task
Created"

View Todo

Fetch To-Do items
from Firestore

No

Yes

Any Tasks?

Display “No Tasks"

No

Collaborator" (optional)

Display list of tasks

Item tapped?

Yes

Display Task Details

Screen

User taps "Edit"
button

Show edit form
(pre-filled)

Update & Submit
changes

Update Firestore

Display "Schedule
Updated"

Figure 3.1.17 Activity Diagram — Manage To-Do

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

User taps "Delete"
button

Prompt: "Are you sure
you want to delete?"

Delete?
Yes

Remove from
Firestore

Display "Schedule
Deleted"

76



CHAPTER 3

Use Case Description

Use Case

Manage To-Do

Actor

User: wants to create, view, modify or remove personal to-do items.
System: must reliably store and retrieve tasks, enforce data integrity, and

handle errors gracefully.

Pre-conditions

snticated and has navigated to the To-Do List screen.

ve connection to Firestore.

Main Flow

1. Display Task List
- System fetches all active to-do items from Firestore.
- System displays a scrollable list of tasks (title, due date, priority)
and an Add Task button.
2. Create New Task
2.1 User taps “+” task button
2.2 System shows a blank “New Task” form.
2.3 User enters required fields.
2.4 User may add optional subtasks, attachments/images, category,
and collaborators.
2.5 System validates entries. If invalid, highlight errors and remain
on form (see AF-1).
2.6 On success, system writes the new task to Firestore.
2.7 System returns to the To-Do List, refreshing to include the
newly created item.
3. View Task Details
3.1 From the To-Do List, user taps one task entry.
3.2 System opens the Task Details screen, showing all fields.
3.3 On this screen, two action buttons are available: Edit and
Delete.
4. Edit Task
4.1 User taps Edit in the Task Details screen.
4.2 System displays a pre-filled edit form.
4.3 User modifies any fields, subtasks, attachments, or collaborators
and taps Save.
4.4 System validates inputs (see AF-1).

4.5 On success, system updates the task in Firestore.

77

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

4.6 System shows “Task updated” and returns to the refreshed
Task Details screen.
5. Delete Tasks
5.1 User taps Delete in the Task Details screen.
5.2 System prompts: “Are you sure you want to delete this task?”
5.3 If confirmed, system deletes the task from Firestore.
5.4 System shows “Task deleted” and returns to the To-Do List,

refreshed.

Alternative Flow

AF-1: Validation Error (Add/Edit)
e Ifrequired fields are missing or invalid (e.g., due date in the past),
system highlights the errors and remains on the form until corrected.
AF-2: Empty To-Do List
e Ifno tasks exist on initial load, system displays “No tasks. Tap ‘+’
task to create one.” and bypasses steps 3-5.
AF-3: Cancel Delete
e At the delete confirmation prompt, if the user taps Cancel, system

aborts deletion and stays on the Task Details screen.

Exception Flow

EF-1: Firestore Read/Write Failure
e On any fetch, save, update, or delete error, system displays an alert:
“Unable to communicate with server”
EF-2: Network Lost Mid-Operation
e If connectivity drops during a CRUD operation, system rolls back
partial changes, shows “Network error. Please try again.” and

returns to the last stable screen.

Post-conditions

Add: The new task exists in Firestore and appears in the To-Do List.

View: Task details are displayed; no data was modified.

Edit: The selected task’s record in Firestore reflects the user’s updates.
Delete: The selected task is removed from Firestore and no longer appears in

the list.

Table 3.1.17 Use Case Description — Manage To-Do

78

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 3

3.1.18 Dynamic Weighted Task Prioritization

Activity Diagram
@

Load Task list

Set Defaults:
[If Missing]

dueDate=now;
alertScores=[0,0];
priorityValue=0.2

Parse dueDate, alertScores,
priorityValue, subtaskScore

Get Deadline Urgency Score: Get alertScores: Get Subtask Score:
[Compute: dueDate — now] Get priorityValue:
Al ime of event = 0.1; subtaskCount = 10 > 1.0
<60 min > deadlineScore = 1.0 5,10,15 minutes before = 0.3; "Low" =0.2; subtaskCount =7 » 0.8
<24 h — deadlineScore = 0.8 30 minutes, 1 hour before = 0.5; "Medium” = 0.5; subtaskCount 2 4 — 0.6
<7 d — deadlineScore = 0.5 1 day before = 0.7, "High" = 1.0; subtaskCount = 2 — 0.4
<30 d — deadlineScore = 0.3 1 week before = 1.0; default = 0.2 subtaskCount =1 — 1.2
else = deadlineScore = 0.1 default = 0.0 subtaskCount = 0 — 0.0
Apply Weight:

weightDeadline = 0.4;
welghtSubtask = 0.2;
weightAlert = 0.1;
weightPriority = 0.3;

Compute FInal Task Priority Scores:
(weightDeadline * deadlineScore) +
(weightSubtask * subtaskScore) +

(weightAlert * alertScore) +
(weightPriority * priorityValue)

Attach Score to Task

Yes No
collaborated task?

Sort Tasks by Score Bucket by Thresholds:
(desc)
score = 0.7 » ‘Urgent tab;
score z 0.4 && < 0.7 — 'Medium'’ tab;
score < 0.40 — ‘Low' tab

Render Prioritized
List

on change?

No

Figure 3.1.18 Activity Diagram — Dynamic Weighted Task Prioritization
79

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Use Case Description

Use Case

Dynamic Weighted Task Prioritization

Actor

User, Firestore, System (Automated Scheduler)

Pre-conditions

1. User is authenticated and can read the tasks.
2. Task documents expose: dueDate, subtasks[], alertScores[],
priorityValue (missing values allowed as defaults applied).

3. Device clock is available.

Main Flow

1. Load task list.

2. Set defaults for missing fields (dueDate=now, alertScores=[0,0],
priorityValue=0.2).

3. Fork — parallel conceptual computations:

- Compute deadline urgency score.
- Compute subtask score.

- Compute alert score.

- Compute priority value.

4. Apply weights: Deadline=0.4, Subtask=0.2, Alert=0.1, Priority=0.3.

5. Compute final score: score = 0.4*deadline + 0.2*subtask +
0.1*alert + 0.3*priority.

6. Attach score to task.

7. If collaborated task: sort by score (descending).

8. Ifnot collaborated task: Bucket by thresholds; >0.70 — Urgent,
0.40-<0.70 — Medium, <0.40 — Low (sort within buckets by score
descending order).

9. Render prioritized list.

10. Subscribe for changes (task/subtask/alerts/priority); on change,

recompute from step 2 and re-render.

Alternative Flow

AF-1: Empty list

e show empty state, no scoring.
AF-2: Manual refresh

o re-fetch, recompute, re-render.
AF-3: View toggle (All vs Collaborated)

e switch between sort-only vs bucketed layout.

Exception Flow

EF-1: Invalid/missing dueDate
e default to now, log, continue.

EF-2: Read failure

80

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

e show cached list (if any) and a retry banner; recompute when data
arrives.
EF-3: Numeric safety

e clamp score to [0..1]; guard against null value.

Post-conditions 1. Each task has a computed priority score in [0..1].
2. The list is sorted by score (descending) or bucketed into
Urgent/Medium/Low (per your diagram).

3. The view updates automatically when inputs change.

Table 3.1.18 Use Case Description — Dynamic Weighted Task Prioritization

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3.1.19 Past Activity — Completion Detection

Activity Diagram
Access Schedule List
& Task List
Check If Schedule Date Check Whether Task
is stated is Marked as Done
No No
Yes Yes
Retrieve Schedule's Remain Listed in the
Date Time To-Do List
Compare the current
time with the schedule
deadline
Schedule Time is Schedule Time has
not due yet passed for a day
Remain Listed in the Listed in Overdue Listed in Completed
Schedule List Schedule List Task List

Recover Event/ Task Delete Past Event/

Task
Listed back in the Delete from the Past
SchedulefTo-Do list Activity List & Firestore

Figure 3.1.19 Activity Diagram — Past Activity

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

82



CHAPTER 3

Use Case Description

Use Case

Past Activities Management

Actor

User

Pre-conditions

1. The user is logged into the system.
2. The system has previously recorded tasks or events that are

completed or overdue.

Main Flow

1. System evaluates schedules:
1.1 For each schedule with a defined date, system compares
currentTime vs. schedule.deadline + 1 day
1.2 If overdue, system moves that schedule from the Active
Schedule List into the Overdue Schedules screen’s list.
Otherwise it remains active.
2. System evaluates to-dos:
2.1 For each task, system checks
o task.isCompleted = true OR

e all subtasks are completed

2.2 If completed, system moves that task from the Active To-Do

List into the Completed Tasks screen’s list. Otherwise it

remains active.

3. The Schedule List and To-Do List screens now omit any moved

items.

4. User views overdue schedules:
4.1 User navigates to the Overdue Schedules screen.
4.2 System displays all archived schedules there.

4.3 User selects one and chooses either:

Recover — system restores it to the Schedule List and removes

it from Overdue Schedules.

Delete — system prompts ‘“Permanently delete?”; if confirmed,

it deletes from Firestore and the Overdue list.4.4. Screen
refreshes to reflect the change.
4.4 Screen refreshes to reflect the change.
5. User views completed tasks:
5.1 User navigates to the Completed Tasks screen.
5.2 System displays all archived tasks there.

5.3 User selects one and chooses either:

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83



CHAPTER 3

Recover — system restores it to the To-Do List and removes it
from Completed Tasks.
Delete — system prompts ‘“Permanently delete?”; if confirmed,

it deletes from Firestore and the Completed list.

Alternative Flow

If a task or event remains in the past activity list for an extended period of 30

days, the system may automatically delete it.

Exception Flow

If a user attempts to recover a past task/event but the related data is missing

or corrupted, the system displays an error message and prevents recovery.

Post-conditions

1.
2.
3.

Overdue schedules appear only in the Overdue Schedules screen.
Completed tasks appear only in the Completed Tasks screen.
Recovering an item returns it to its original active list and removes it
from the archive.

Deleting an item removes it permanently from Firestore and the

archive screen.

Table 3.1.18 Use Case Description — Past Activity

84

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

3.2 Methodology

PROTOTYPING STAGES

Requirements Quick design Prototype User evaluation Refinements Product
gathering development implementation
\ j O altexsoft

Figure 3.2 Prototyping Methodology

The proposed project follows the prototyping methodology, which is widely used in software
development for its iterative and user-centered approach [37][38]. This methodology consists
of six essential phases, allowing for continuous feedback and improvements throughout the
development cycle. The first phase is requirement analysis, where user needs and expectations
are gathered through discussions and research. The next phase is quick design, where an initial
draft of the application is created. This design is not final but serves as a foundation for
discussions with my supervisors, allowing early modifications based on expert feedback [39].
Following design approval, the prototype development phase begins, where the system’s core
functionalities are implemented. Once a working prototype is ready, the evaluation phase is
conducted by my supervisor. The feedback helps identify usability issues and areas for
improvement. Based on the evaluation, the refinement phase is initiated, making necessary
adjustments through multiple iterations [40]. This cycle continues until the prototype meets
expectations in terms of usability, functionality, and efficiency. The final phase is
implementation, where the completed application is tested under various scenarios before
deployment. Regular maintenance ensures long-term usability and efficiency. The prototyping
methodology is ideal for this project as it allows quick modifications, early issue detection, and

ensures that the final system is practical and user-friendly.

85

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

33 Implementation Challenges and Issues

Throughout the development of this project, which spanned both FYP I and FYP II, several
critical challenges arose that shaped the implementation process. One of the earliest difficulties
involved gaining proficiency in the Flutter framework and Dart programming language.
Substantial time was devoted to studying architectural patterns, state management approaches,
and user interface structuring techniques. This required iterative practice and continuous

refinement of the codebase before stable and functional modules could be produced.

Another significant challenge concerned the integration of Artificial Intelligence (AI) and
speech-to-text algorithms. Considerable effort was invested in configuring Google’s
Generative Al (Gemini) for assistant features and Cloud Speech-to-Text for transcription, both
of which demanded multiple trials and adjustments to align with system requirements.
Additional complications included the possibility of Gemini being overloaded during periods
of high traffic, which occasionally disrupted responses, and the slower transcription speeds of
Google Cloud Speech-to-Text when handling multilingual inputs without explicitly narrowing

the language region for Malaysian speakers.

Cloud service management also presented difficulties. To enable features such as attachments,
storage, and collaboration, subscription to the Firebase Blaze plan was required. Although the
plan provided flexible scaling, usage beyond the no-cost tier. For example, storage above 1 GB
or bandwidth exceeding 10 GB introduced budgetary constraints. Continuous monitoring of
usage across Cloud Functions, Firestore, and Storage was necessary to prevent exceeding limits.
Consequently, attachment storage was optimised, and non-essential email services were
discontinued. Notifications were retained solely within the application rather than delivered
through email, as integrating external mailing services such as SendGrid or Brevo required

billing upgrades that were not feasible within the project’s scope.

Additional challenges arose in implementing reminders and notification scheduling, where
inconsistencies were observed in triggering alerts at the intended times. These issues were
partly attributed to permission handling and background execution restrictions. While
refinements in scheduling logic improved performance, further optimisation remains necessary.
Collaboration features also posed complexity in ensuring real-time synchronisation and
providing an intuitive interface. Basic functionality such as collaborator assignment and file
attachment was implemented in FYP I, while more advanced functions, including detailed
comments, integrated voice transcription, and smart search, were developed during FYP 1L

86

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



20

21

22

23

CHAPTER 3

3.4  Project Timeline

ID i Task Name

1 ~ Chapler 1 INFoduction
2 Problem Statement and Mativation
3 Project Objectives
4 Project Scope and Direction
3 Contributions
7 Report Organizations
8 = Chapter 2° Literature Review
9 Review on Existing System
10 Limitations of Previcus Studies
11 Proposed Solution
12 Comparison Between Exisling and Proposed.
13 = Chapter 3: Proposed Method/ Approach
14 System Requirement
15 System Design Diagram
16 Methodalogy
17 Implementation Challenges and Issues
18 ~ Chapter 4 Preliminary Work
19 Protatyping
20 Implement Pratotype
il Test Prototype
22 Debug Prototype
23 Finalize Prototype
24 ~ Chapter 5. Conclusion
25 Summarize the Project
26 Finalize the Project
202506
Task Name
16

~ Review Report Content in FYP1
Chapter 1: Introduction
Chapter 2: Literature Review
Chapter 3: Proposed Method/ Approach
Finalize Content
~ Prepare FYP 2 Report
Enhance Project Objectives and Contribution
Review of Technologies
Add New System Design Diagram
~ System Development
Implement New Features
~ System Evaluation and Discussion
Blackbox Testing
Client Satisfaction Survey Analysis
Results and Benchmark
Objective Evaluation
Concluding Remark
~ Conclusion
Summarize the Project

Finalize the Project

N
B
n
@
=
>

2025-02
03

08 18

%L
=
1

Powered by: enlinagantt.com

2025-04 2025-05

Figure 3.4.1 FYP I Timeline — Gantt Chart

2025-07

2025-08 2025-09

03 10 7 24 3 07

Powered by: onlinegantt.com

Sl

Figure 3.4.2 FYP 2 Timeline — Gantt Chart

87

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

CHAPTER 4

System Evaluation and Discussion

4.1

Blackbox

4.1.1 Authentication

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Module/ Input/ Steps Expected Output | Actual Output Pass/
Test Name Pre-conditions Fail
Register — New email, strong | Submit Account created; | Account Pass
valid password (>=8, Register | user doc written, | successfully
credentials letters + digit) navigates to created, Firestore
Home user’s doc stored,
navigated to
Home.
Register — Email already Submit Error “Email Error shown: Pass
duplicate existed Register | already in use”; “Email already in
email stay on Register use”.
Register — abc@ Submit Inline validation | Inline error, Pass
invalid email Register | error; no account | button disabled
format created until fixed.
Register — 123456 Submit Inline “weak Inline “Password | Pass
weak Register | password”; no should be at least
password account created 6 characters”
(Firebase Auth
default).
Login - valid | Correct email & Submit Navigates to Redirected to Pass
password Login Home; FCM Home; FCM
token token saved under
stored/updated user profile.
Login — Valid email, Submit Error “Invalid Error “The Pass
wrong wrong password Login credentials”; password is
password remain on Login | invalid”.
Forgot Known email Request Password reset Password reset Pass
password — reset email sent; email sent;
registered success toast confirmation toast
email displayed.
Forgot Unknown email Request Non-disclosing Generic message | Pass
password — reset message “If this sent (non-
unregistered email exists, a disclosing).
email link was sent”
Session User logged in Kill & User remains User stayed Pass
persistence — relaunch | logged in (unless | logged in after
relaunch app app signed out) relaunch
(Firebase Auth
persistence
working).
Sign out — Logged-in user Tap Sign | Session cleared; Session cleared, Pass
normal flow Out back to Login returned to Login
screen.
Table 4.1.1 Test Case - Authentication
88



CHAPTER 4

4.1.2 Schedule Management (CRUD, Reordering, Overdue)

Module/ Input/ Steps Expected Output Actual OQutput Pass/
Test Name Pre-conditions Fail

Add schedule | Valid title; future | Create Appears in list Saved to schedules | Pass
—normal start/end with correct times | collection,

appeared in list

immediately

(synced real-time).
Edit schedule | Existing Edit fields | Updated values Updated fields Pass
—normal schedule persist; list persisted, UL

reflects changes refreshed instantly.
Delete Existing Delete Removed from Entry removed Pass
schedule — schedule list; no ghost from Firestore and
normal entry UL
Reordering — | Start = now—1m, | Create Present schedules | Ongoing schedule | Pass
present before | end = now+29m listed first shown above future
future ones.
Overlap —two | [10:00-11:00] & | Create Both shown; Both events Pass
events [10:30-11:30] both sorted by start, displayed; sorted
then earlier end by start time.

Both shown; End <now—24h | Wait or Auto-moved to Auto-moved into Pass
sorted by create Overdue; not in “Overdue” section.
start, then past active list
earlier end
Invalid time — | End before starts | Create Validation error; Validation error: Pass
end < start cannot save cannot save.
Time zone Change device Reopen Times reflect All times Pass
switch TZ app local TZ; no data | recalculated to
handling corruption device TZ

correctly.

Table 4.1.2 Test Case — Schedule Management

4.1.3 To-do Management (CRUD, Subtasks, Archive)

Module/ Input/ Steps Expected Output Actual Output Pass/
Test Name Pre-conditions Fail
Create to-do | Title; due date; 3 | Save To-do saved; Stored in todos Pass
with subtasks | subtasks subtasks listed collection with
subtasks

subcollection; Ul
shows all subtasks.

Complete via | 3 subtasks (all Mark all | To-do auto Auto-marked as Pass
subtasks — unchecked) complete | becomes Completed when
auto Completed last subtask done.
Complete via | No subtasks Toggle To-do archived to | Task moved to Pass
manual “Done” Completed Completed list.
toggle
Boundary — 10 subtasks Save Workload bucket | Accepted; workload | Pass
exactly 10 “>10” applied; Ul | score capped; Ul
subtasks remains still smooth.

responsive

89

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Boundary — | Due in 60 Save Urgency bucket Urgency score Pass
due =now + | minutes “<1 hour” applied | mapped to “<I
1h hour”.
Invalid due Due yesterday Save Validation/warnin | Save blocked; error | Pass
date — past g; save blocked or | message shown.
corrected
Edit to-do— | Existing to-do Edit & Changes persist; Title and priority Pass
title/priority Save lastModified updated;
updated lastModified
timestamp changed.
Delete to-do | To-do with Delete Removed; no Removed from Pass
— cascade comments/ orphaned Firestore;
check subtasks subcollections subcollections
deleted by cascade.
Collaborated | Existing View & Only creator and | Only creator/admin | Pass
Tasks — collaborated task | Action admin can toggle | could toggle Done;
views list “Done” normal users
restricted.
Table 4.1.3 Test Case — Todo Management
4.1.4 Collaboration & Comments (Text, Voice, Files, URLSs)
Module/ Test Input/ Steps Expected Output Actual Output Pass/
Name Pre-conditions Fail
Add User email Add Collaborator Collaborator added; | Pass
collaborator — | exists collaborat | appears; in-app in-app notification
valid or notification sent received.
Post text Connected Send Appears instantly | Comment appeared | Pass
comment — comment | to all (real-time) in real-time across
normal devices.
Post URL — https://... Send Clickable link; Auto hyperlinked; | Pass
autolink opens external tap opened
browser browser.
Attach file — Valid PDF < Upload Upload succeeds; | Upload succeeded | Pass
within limit size cap thumbnail/filenam | to Firebase Storage;
e shown link stored in
Firestore.
Record voice | Short note (10s)/ | Upload Storage object File uploaded, Partial
(EN/BM/CN) | Long not (>60s) created transcript auto
(Transcript stored | generated;
in EN/BM/CN); Mandarin returned
voice bubble in pinyin.
visible
Unsupported e.g., unusual Upload Transcoded or File transcoded to Pass
audio — code rejected with WAV; if failed,
handling descriptive error | error recorded in
comment doc.
Delete own Own text/voice | Delete Entry removed for | Removed from Pass
comment all; permissions Firestore for all
enforced users.
90



CHAPTER 4

Reply message | Existing Reply Message quoted Quoted message Pass
messages send correctly and displayed, tapping
by others allow to jumpy to | jumps to original
message message.
successfully
Table 4.1.4 Test Case — Collaboration and Comment
4.1.5 Dynamic Weighted Task Prioritization (Scoring & Reordering)
Module/ Input/ Steps Expected Output Actual Output Pass/
Test Name Pre-conditions Fail
Ranking — Task A: due Create A ranks above B | A ranks above B Pass
urgent vs today, High both
distant Task B: due
+14d, Low
Boundary — | Tasks due at 1h, Create Each mapped to Each mapped to Pass
deadline 24h, 7d, 30d tasks correct urgency correct urgency
buckets bucket; order bucket; order
reflects buckets reflects buckets
Boundary — Subtasks: 0, 1, 3, | Create Scores: 0; 1.2 Scores assigned 0, Pass
workload 6,9, 10 tasks bump for single; 1.2,04,0.6,0.8,
buckets 0.4;0.6;0.8; 1.0 1.0 as expected.
Alert Alerts: Set & Alert values Mapped correctly Pass
aggressivene | none/Sm/30m/1h/ | save mapped; final (None=0 — 1
$s mapping 1d/1w score P(t) week=highest
consistent weight).
Tie-break Two tasks same Compare | Order by earlier Earlier due date Pass
policy P(t) due date — listed first; if same,
higher user higher user priority
priority — more | wins.
subtasks
Recompute Task near bucket | Wait List reorders When due time Pass
on time drift | boundary threshold | when bucket crossed boundary,
passes changes; no crash | list auto-reordered.
Table 4.1.5 Test Case — Dynamic Weighted Task Prioritization
4.1.6 Completion Detection (schedules & to-dos)
Module/ Input/ Steps Expected Output | Actual Output | Pass/
Test Name Pre-conditions Fail
Schedule End passed <24h | Observe Still in active; not | Remained in Pass
overdue overdue yet active list.
within grace
Schedule End passed =24h | Observe Moves to Overdue | Moved to Pass
overdue after automatically Overdue.
grace
To-do 3 subtasks Complete To-do remains Remained Pass
incomplete 2/3 incomplete incomplete.
with pending
subtasks
91

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

To-do auto 3 subtasks Complete To-do marked Auto-marked Pass
complete by 3/3 Completed Completed.
subtasks
Manual Any subtasks Toggle To-do marked Marked Pass
completion state “Done” Completed Completed
override regardless regardless of
subtasks.
Table 4.1.6 Test Case — Completion Detection
4.1.7 Universal Search (Text, Transcripts, Files, URLSs)
Module/ Input/ Steps Expected Output | Actual Output | Pass/
Test Name Pre-conditions Fail
Search text Known keyword | Search Matching Correct Pass
comment exists comments comments
keyword returned; highlighted.
highlights; jump-to
works
Search voice | Phrase only in Search Voice thread Transcript Pass
transcript transcript returned with results returned
phrase transcript snippet | from Firestore.
Search by “report.pdf” Search Attachment Attachment Pass
attachment uploaded “report” message returned | message
name returned in
results.
Search by URL contains Search URL | URL message Message with Pass
URL domain | “https” returned URL returned.
Case- Mixed case Search Identical results Results identical | Pass
insensitive content lower/upper | (case-insensitive) | for lower/upper
matching case.
No-match Random string Search “No results” state; | Ul showed “No | Pass
behaviour input preserved results found”.
Large result | >100 matches Scroll results | Incremental load; | Loaded Pass
set — smooth scrolling; | incrementally;
pagination no freezes smooth
scrolling.
Table 4.1.7 Test Case — Universal Search
4.1.8 Al Assistant (Consent-Gated Actions)
Module/ Input/ Steps Expected Actual Output Pass/
Test Name Pre- Output Fail
conditions
Plan my day | Tasks & Tap “Plan my | Returns plan Generated schedule | Pass
— generate schedules exist | day” with time blocks based on
plan only blocks; no tasks/schedules; did
writes without not auto-write
consent. without user
confirmation.
Add to Plan generated | Tap “Add to Schedules Created new events | Pass
schedule — schedule” created; success | in schedules; push
on confirm toast; Home notification sent.
92

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR




CHAPTER 4

merge events

Firestore schedules

into Home view.

shows new
entries.
Reschedule | Target event “Reschedule Event/Task STT sometimes Fail
event/task exists ... to 15:00” updated to couldn’t detect the
15:00; notify speech correctly
collaborators if | and causing the
applicable. action incomplete.
Delete Target event Prompt Event/Tasks Event/Tasks deleted | Pass
event/task exists deletion with deleted from from Firestore
the title Firestore. successfully
No free Calendar fully | Tap “Planmy | Assistant Assistant explained | Pass
window busy day” explains conflict; suggested
today conflict; next available slot.
proposes next
slots/day
List overdue | Overdue exist | Command Correct overdue | Returned overdue Pass
tasks list returned tasks list correctly.
Table 4.1.8 Test Case — Al Assistant
4.1.9 Notifications (FCM)
Module/ Input/ Steps Expected Output | Actual Qutput | Pass/
Test Name Pre-conditions Fail
Event alert — | Alert set 1h prior | Wait Notification Push Fail
1 hour before delivered exactly | Notification
60 min before doesn’t receive
at correct time.
Collaborator | Collaborator adds | Trigger All collaborators All collaborators | Pass
comment comment receive in-app received in-app
notification. notification.
Task Mark task Trigger Collaborators In-app Pass
completed — | completed notified of notification sent
push completion in app | to collaborators.
Background | OS limits enabled | Wait for Notification still Push Fail
restrictions alert delivered; or Notification
handling limitation doesn’t send
documented
Deep link on | Any received Tap App opens to App opened at Pass
tap notification correct correct
screen/thread task/schedule
screen.
Table 4.1.9 Test Case — Notifications
4.1.10 Device Calendar Integration
Module/ Input/ Steps Expected Output | Actual Output | Pass/
Test Name Pre-conditions Fail
Permission User grants Enable Device events Device calendar | Pass
granted — calendar access merged with events merged

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93



CHAPTER 4

Permission User denies Deny Only Firestore Only Firestore Pass
denied — access prompt schedules shown; | schedules
graceful no crash shown; no crash.
New device | Create in device | Refresh Event appears in Reflected in Pass
event — calendar Home merged view merged view
reflection after refresh.
Runtime Granted earlier, Revoke in App hides device | Device events Pass
revoke — now revoked settings events; no fatal hidden; app
handling error continued
normally.
Table 4.1.10 Test Case — Device Calendar Integration
4.1.11 Settings, Permissions & Profile
Module/ Input/ Steps Expected Output | Actual Qutput | Pass/
Test Name Pre-conditions Fail
Update Valid values Save Firestore updated; | Firestore user’s | Pass
profile — Ul reflects doc updated;
email/phone changes changes
reflected in UL
Notification | Channel silent — | Toggle in App notifications | Audible applied | Pass
channel audible settings adopt new channel | correctly.
behaviour behaviour
Microphone | Mic permission Attempt Clear prompt; Prompt shown; | Pass
permission OFF record recording blocked; | recording
denied no crash disabled.
Storage Storage Attach file Clear prompt; Prompt shown; | Pass
permission permission OFF attach disabled; no | file attachment
denied crash disabled.
Table 4.1.11 Test Case — Settings, permission & Profile
4.1.12 Offline & Latency
Module/ Input/ Steps Expected Output | Actual Output | Pass/
Test Name Pre-conditions Fail
Create to-do | Disable network | Add to-do Cached locally; UI | Cached locally; | Pass
while offline indicates offline; synced when
syncs later online.
Post No network Post text Queued; posts Queued locally; | Pass
comment when online; no posted when
offline — duplicate online; no
queue duplicate.
Table 4.1.12 Test Case — Offline & Latency
4.1.13 Ul Micro-interactions & Utilities
Module/ Input/ Steps Expected Output Actual Output Pass/
Test Name | Pre-conditions Fail
Search result | Have a match in | Tap search | Scrolls to original | Scrolled to Pass
—jump & long thread hit message; row message;
highlight highlighted highlighted in
thread.
94

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Long-press Home +, Long-press | Assistant Assistant dialog Pass
shortcuts — schedule +, to- voice/text dialog | appeared
assistant do + appears (voice/text options).
Keyboard Any input bar Tap input Keyboard opens; | Opened correctly; Pass
focus no focus trap or no focus trap.
reliability autohide
Infinite list — | Long Scroll Next page loads; | New page loaded Pass
pagination conversation scroll position smoothly; scroll

maintained position

maintained.

External link | Comment with | Tap link or | Opens browser; Opened in browser; | Pass
navigation URL files back returns to back returned to

app state app state.

Table 4.1.13 Test Case — UI Micro-interactions & Utilities

4.1.14 Failed Test Cases Analysis

Test Case: Event alert — 1 hour before

The first issue identified relates to scheduled event notifications, particularly alerts set to trigger
one hour before a task or event. Despite correct configuration, some notifications were either
delayed or not received at the expected time. This failure can be attributed to system-level
restrictions on exact alarm scheduling in modern mobile operating systems, particularly under
Doze mode or battery optimization settings. In addition, missing runtime permissions such as
SCHEDULE EXACT ALARM (Android 12+) or incorrect time-zone handling may have
contributed to inconsistencies. To mitigate this, exact alarm APIs such as
setExactAndAllowWhileldle() should be adopted, and all times should be stored in UTC with
conversion to the device’s time zone at scheduling. Furthermore, fallback mechanisms through
Firebase Cloud Messaging (FCM) can be implemented to ensure timely delivery even when

local alarms are suppressed.

Test Case: Background restrictions handling

The second challenge concerns push notification delivery in restricted background conditions.
In scenarios where the device is in battery saver mode or has imposed background execution
limits, push notifications were observed to fail. This suggests that the notification priority may
not have been set to "high," or that app-level optimizations were blocked by the operating
system’s power-saving features. To address this, notifications must be configured as high
priority within FCM, while notification channels should be created with high importance and
lock-screen visibility enabled. Additionally, the system should be designed to re-register

alarms and push tokens after device reboot or app updates to maintain resilience. Clear user

95

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

guidance for whitelisting the application from manufacturer-specific background restrictions

could also reduce the likelihood of failed delivery.

Test Case: Reschedule event/task

A further issue was observed in the speech-to-text (STT) component, where the system
occasionally failed to accurately detect speech, leading to incomplete transcription and
preventing users from completing intended actions. This problem is heightened in multilingual
contexts such as Malaysia, where inputs may shift dynamically between English, Bahasa
Malaysia, and Chinese. Although the system currently uses bundled recognizers and fallback
models, misinterpretation remains possible when low-confidence recognition outputs are
accepted or when the input includes rapid code-switching. To improve robustness, explicit
regional language models (e.g., en-MY, ms-MY, cmn-Hans-CN) should be prioritized, and

confidence thresholds should be introduced to trigger retries or prompt users to clarify input.

Test Case: Record voice (EN/BM/CN)

An additional complication within STT transcription was the recurrent occurrence of Chinese
speech being returned as Pinyin rather than Hanzi characters. This discrepancy reduces
readability for native Chinese users and undermines the accuracy of stored transcripts. The
underlying cause lies in the recognition model defaulting to ASCII outputs when Han character
bundles are not strongly enforced, or when the detected confidence level for Chinese script is
low. While the system already includes a “pinyin guard” retry with Han bundles, results remain
inconsistent under noisy conditions or mixed-language inputs. To resolve this, the transcription
pipeline should strictly enforce Han output for Chinese language codes, introduce post-
processing filters to reject Pinyin-like results, and provide user-facing settings to lock
transcription into a specific script when required. Such improvements would ensure more

reliable transcription quality and enhance usability for multilingual teams.

96

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

4.2 Client Satisfaction Survey Analysis (10 Respondent)

Section A: About You & Your Work/ Study Habits

What is your role?
10 responses

@ Student
@ Lecturer

@ Manager
@ Employee

Figure 4.2.1 Section A Question 1

Figure 4.2.1 illustrates the distribution of respondents’ roles. Out of ten participants, seven are
students, two are lecturers, and one is an employee. This indicates that the majority of the
respondents are students, although there is some representation from professional and academic

staff, which allows for perspectives beyond a purely student population.

How often do you use digital tools or apps to manage your tasks and schedules?
10 responses

@ Never

@ Occasionally
Sometimes

@ Often

@ Always

Figure 4.2.2 Section A Question 2

Figure 4.2.2 shows the frequency of using digital tools or applications to manage tasks and
schedules. Four respondents reported often use such tools, two reported always using them,
while the remaining four indicated occasional or sometimes usage. This suggests that while
most participants are accustomed to digital task management, a portion still adopt these tools

less consistently.

97

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Which tools do you currently use the most for task or schedule management? (e.g., Google
Calendar, Apple Reminders, WhatsApp, etc.)

10 responses

2 (20%) 2 (20%)
1
1 (10%) 1 (10%) 1 (10%) 1(10%) 1 (10%) 1(10%)
0
Apple Reminders Apple reminder, whatsapp Google Calendar WhatsApp, Apple Calenda...
Apple Reminders, Apple C... Apple reminders Google Calender calendar app...

Figure 4.2.3 Section A Question 3

Figure 4.2.3 presents the tools most frequently used by respondents. Apple Reminders and
Google Calendar are the most common, each selected by two respondents. The rest reported
varied combinations such as WhatsApp, Apple Calendar, device calendar and other reminder
applications. This demonstrates that respondents often rely on multiple applications to support
their scheduling and task management needs.

On average, how many tasks or activities do you manage in a week?
10 responses

® Lessthan 5
® 5-10

11-20
@ More than 20

Figure 4.2.4 Section A Question 4

Figure 4.2.4 depicts the average number of tasks or activities managed weekly. Half of the
respondents reported managing between 5—-10 tasks per week, four managed fewer than five,
and one managed 11-20 tasks. This reflects a generally moderate workload, suggesting that

organization remains important, even when the volume of tasks is not excessively high.

98

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

How often do you collaborate with others on shared tasks?
10 responses

@ Never

@ Sometimes
© Often

@ Always

Figure 4.2.5 Section A Question 5

Figure 4.2.5 illustrates how frequently respondents collaborate with others on shared tasks. Six
respondents indicated that they collaborate often, two reported always collaborating, and two
reported sometimes collaborating. This highlights that collaboration is a significant part of most

participants’ task management experience.

How would you describe your usual pace in completing tasks?
10 responses

@ Very fast (ahead of deadlines)
@ Moderate (on time)

@ Slow (often last minutes)

@ Very Slow (often overdue)

@ Slow (often last minutes

Figure 4.2.6 Section A Question 6

Figure 4.2.6 demonstrates the pace at which respondents usually complete their tasks. Eight
respondents described their pace as moderate, meaning they complete tasks on time, while two
respondents reported completing tasks at the last minute. This shows that punctual task

completion is common, though procrastination still exists among some participants.

99

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Do you usually prefer a structured timetable or a flexible task list?

10 responses

@ Structured timetable
@ Flexible list
) Both equally

Figure 4.2.7 Section A Question 7

Figure 4.2.7 four respondents prefer a structured timetable, while three prefer a flexible task
list and three value both equally. This distribution indicates a slight preference for structured
scheduling, yet a substantial portion require flexibility, suggesting that both timetable-style
planning and adaptable task lists should be supported in the application’s design.

How confident are you in staying organized with your current system?
10 responses

8

7 (70%)

2 (20%)
0 (?%) 0 (?%) 1 (10%)

1 2 3 4 5
Figure 4.2.8 Section A Question 8

Figure 4.2.8 shows respondents’ confidence levels in staying organized with their current
system. Seven respondents rated themselves at level 4 out of 5, two gave the highest rating of
5, and one rated at level 3. This indicates that most respondents feel confident in their current

organizational systems.

100

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

How stressful do you usually find managing tasks and schedules?

10 responses

4
4 (40%)

3 (30%)
2 (20%)

1(10%)
0 (0%)

1 2 3 4 5

Figure 4.2.9 Section A Question 9

Figure 4.2.9 illustrates how stressful respondents find managing tasks and schedules. Four
respondents rated their stress level at 4 (quite stressful), three rated it at 2 (low stress), two
rated it at 3 (moderate), and one rated it at 5 (very stressful). These findings suggest that stress
levels vary among respondents, with some coping effectively while others experience higher
levels of difficulty.

What challenges do you usually face when trying to stay productive? (N/A if no challenge)

10 responses

N/A

Hard to focus for longer period

Managing an overload of tasks under tight deadlines
Many tasks with tight deadlines

Proper time management

Hard to stay focus

Figure 4.2.10 Section A Question 10

Figure 4.2.10 presents the reported challenges faced when staying productive. The challenges
include difficulty focusing for long periods, managing an overload of tasks under tight
deadlines, proper time management, and maintaining concentration. These responses highlight

that productivity issues are primarily linked to workload pressure and personal discipline.

101
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Section B: Comparing Experience with StudyMate vs Your Current Application

Compared to the app you usually use, how easy was it to navigate StudyMate?
10 responses

8

7 (70%)

3 (30%)

0 (?%) 0 ((ll%) 0 ((?%)

1 2 3 4 5

Figure 4.2.11 Section B Question 1

Figure 4.2.11 illustrates the ease of navigation when using StudyMate compared to
respondents’ usual applications. Seven respondents rated navigation as very easy (5), while
three rated it as easy (4). None selected ratings from 1 to 3. This indicates a uniformly positive

user experience in terms of ease of navigation.

Did syncing with your device calendar in StudyMate work more smoothly than in your current app?
10 responses

® vYes
® No

Figure 4.2.12 Section B Question 12

Figure 4.2.12 shows the experience of syncing StudyMate with device calendars compared to
other applications. All ten respondents (100%) reported that syncing in StudyMate worked
more smoothly. This demonstrates a strong consensus on the reliability and effectiveness of

StudyMate’s calendar integration.

102

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

How helpful was it to see schedules, tasks, and calendar events all in one place in StudyMate

compared to your usual app?
10 responses

6

5 (90%) 5 (50%)

0 (0%) 0 (0%) 0 (0%)

1 2 3 4 5
Figure 4.2.13 Section B Question 3

Figure 4.2.13 presents how helpful it was to view schedules, tasks, and calendar events in one
place using StudyMate compared to other applications. Half of the respondents rated this
feature as very helpful (5), while the other half rated it as helpful (4). This reflects a consistent

view that integration of multiple functions in a single interface enhances efficiency.

Did the Al assistant in StudyMate feel more useful for planning, suggesting tasks, or providing

insights compared to your current app?
10 responses

8

7(70%)

2 (20%)
0 (0%) 0 (0%) 1(10%)

1 2 3 4 5

Figure 4.2.14 Section B Question 4

Figure 4.2.14 depicts respondents’ views on the usefulness of the Al assistant for planning,
suggesting tasks, and providing insights compared to their current applications. Seven
respondents rated it as very useful (5), two rated it as useful (4), and one rated it as moderately

useful (3). This indicates strong approval of the Al assistant, with only minimal reservations.

103
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

How accurate or relevant were StudyMate's task suggestions and auto-scheduling compared to your

current app’s features?
10 responses

6
6 (60%)

4 (40%)

0 (?%) 0 (?%) 0 (t?%)

1 2 3 4 5
Figure 4.2.15 Section B Question 5

Figure 4.2.15 shows the accuracy and relevance of StudyMate’s task suggestions and auto-
scheduling compared to other applications. Six respondents rated the feature as very accurate
(5), while four rated it as accurate (4). The results highlight a positive reception towards this

functionality, with all respondents finding it at least accurate.

Did the StudyMate dashboard (overview of overdue, completed, incomplete, and pie chart) give you

a clearer piCTUI'e of your progress than your current app?
10 responses

@ Yes, very clear
® Somewhat clear

a Not clear

Figure 4.2.16 Section B Question 6

Figure 4.2.16 illustrates the clarity of the StudyMate dashboard in presenting overdue,
completed, incomplete tasks, and progress charts compared to other applications. Nine
respondents (90%) found the dashboard very clear, while one respondent (10%) found it
somewhat clear. This suggests that the dashboard is effective in visualising task progress and

overall productivity.

104

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

How useful was the collaboration feature (comments with text, voice, and attachments) in

StudyMate compared to what you use now?
10 responses

6
6 (60%)

4 (40%)

0 (('i)%) 0 ((?%) 0 ((?%)

1 2 3 4 5

Figure 4.2.17 Section B Question 7

Figure 4.2.17 demonstrates the usefulness of the collaboration feature, including text, voice,
and attachments, compared to current applications. Six respondents rated it as very useful (5),
and four rated it as useful (4). This reflects widespread satisfaction with the collaboration tools

available in StudyMate.

Did StudyMate’s voice transcription (speech-to-text) meet your expectations compared to similar

features in other apps?
10 responses

@ Yes, exceeded expectations
@ Yes, acceptable
No, needs improvement

Figure 4.2.18 Section B Question 8

Figure 4.2.18 presents user feedback on the voice transcription feature compared to similar
features in other applications. Six respondents (60%) stated it exceeded expectations, while
four respondents (40%) found it acceptable. None reported it as needing improvement,

suggesting that the transcription system meets or surpasses expectations.

105

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

How satisfied are you with StudyMate’s notifications (reminders, updates, alerts) compared to your

current app?
10 responses

6
5 (50%)
4
3 (30%)
2 2 (20%)
0 (0%) 0 (0%)
0
1 2 3 4 5

Figure 4.2.19 Section B Question 9

Figure 4.2.19 shows satisfaction with StudyMate’s notifications compared to current
applications. Five respondents rated satisfaction as 4, three rated it as 5, and two rated it as 3.
Overall, the majority of respondents expressed satisfaction, though a small proportion

indicated room for further refinement.

Which feature in StudyMate felt better than in your current app, and why?

10 responses

Collaboration feature bcs i can add other user to the tasks
Collaboration, so | don't need to manage my task in separate apps and channels

To do list. The design is simple and clear, making it easy to add, edit and check off tasks. The overall
experience is smooth and convenient.

Al assistance, as | need a personal secretary to plan my day
Al Assistance, however, it would be great to make it accessible from anywhere within the app.

Voice transcription, very useful when someone sending voice message but you not able to listen during
a meeting.

dashboard because it can see all the overdue schedules, completed tasks, and pending tasks

Date

Figure 4.2.20 Section B Question 10

Figure 4.2.20 highlights open-ended feedback on which StudyMate feature was considered
better than respondents’ current applications. The most frequently cited advantages were the
collaboration feature, which consolidates teamwork into one platform, the Al assistant for
planning and personal organisation, and the dashboard for clear task tracking. Other mentions
included the simplicity of the to-do list design and the usefulness of voice transcription. These
responses reinforce the quantitative findings that StudyMate provides clear advantages in

integration, collaboration, and intelligent assistance.

106

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Section C: Productivity & Future Needs Compared to Current Applications

Did StudyMate make it easier for you to stay on top of your tasks and activities compared to your

current app?
10 responses

® Yes
® No

Figure 4.2.21 Section C Question 1

Figure 4.2.21 shows whether StudyMate made it easier for respondents to stay on top of their
tasks and activities compared to their current application. All ten respondents (100%) answered
“Yes,” indicating unanimous agreement that StudyMate provides greater support in managing

tasks effectively.

How much did StudyMate improve your overall productivity compared to your current app?
10 responses

@ No improvement

@ Slight improvement

@ Moderate improvement
@ Significant improvement

Figure 4.2.22 Section C Question 2

Figure 4.2.22 illustrates the extent to which StudyMate improved overall productivity. Six
respondents (60%) reported moderate improvement, while four (40%) reported significant
improvement. None selected “no improvement” or “slight improvement.” This demonstrates

that StudyMate had a clear positive impact on productivity for all participants.

107

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Did StudyMate’s task prioritization (based on deadlines, workload, etc.) fit your needs better than

your current app?
10 responses

@ Yes, very well
@ Somewhat

P .

Figure 4.2.23 Section C Question 3

Figure 4.2.23 depicts the effectiveness of StudyMate’s task prioritisation compared to
respondents’ existing applications. Nine respondents (90%) stated that prioritisation fit their
needs very well, while one respondent (10%) selected “somewhat.” This reflects a high level

of satisfaction with the weighted prioritisation approach integrated into the system.

How motivating was it to see your progress (completion levels, charts, etc.) in StudyMate compared

to your current app?
10 responses

6
6 (60%)

3 (30%)

0 ((?%) 0 ((?%) 1 (10%)

1 2 3 4 5

Figure 4.2.24 Section C Question 4

Figure 4.2.24 presents respondents’ perceptions of how motivating it was to view progress
through completion levels and charts. Six respondents (60%) rated motivation as very high (5),
three (30%) rated it as high (4), and one (10%) provided a moderate rating (3). No participants
rated motivation at low levels. These findings suggest that StudyMate’s visual progress-

tracking tools serve as strong motivators.

108

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Would you recommend this app to colleagues, friends, or teammates?
10 responses

® Yes
® No

Figure 4.2.25 Section C Question 5

Figure 4.2.25 shows whether respondents would recommend StudyMate to colleagues, friends,
or teammates. All ten participants (100%) answered “Yes,” reflecting unanimous endorsement

of the application.

How likely are you to continue using the app after testing?
10 responses

6
6 (60%)

4 (40%)

0 ((l)%) 0 ((il%) 0 ((i%)

1 2 3 4 5

Figure 4.2.26 Section C Question 6

Figure 4.2.26 demonstrates respondents’ likelihood of continuing to use StudyMate after
testing. Six respondents (60%) rated this likelihood at 4, while four (40%) rated it at 5. None
selected values lower than 4. This highlights high retention potential for the application among

its users.

109

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

Which type of user do you think would benefit most from StudyMate?

10 responses

@ People with many deadlines
@ People working in teams
People who prefer structured planning
@ People who want a simple, all-in-one
app

Figure 4.2.27 Section C Question 7

Figure 4.2.27 identifies the type of user respondents believe would benefit most from
StudyMate. Four respondents (40%) chose people working in teams, another four (40%)
selected people who prefer structured planning, and two (20%) selected people with many
deadlines. This suggests that StudyMate is seen as particularly valuable for collaborative and

structured task management scenarios.

What additional features would make this app more useful for you?
10 responses

@ Dark mode

@ Offline support
More Al insights

@ More interactions

@ Widgets

Y

Figure 4.2.28 Section C Question 8

Figure 4.2.28 presents suggestions for additional features that would make StudyMate more
useful. Half of the respondents (50%) selected widgets, three respondents (30%) indicated
more Al insights, and one respondent each (10%) suggested dark mode and offline support.
These responses highlight demand for enhanced customisation and expanded Al-driven

functionalities.

110

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

If you had to choose, which feature should we improve the most?
10 responses

@ Personalized Al assistant (plan your day,
task suggestion, auto scheduling)

@ Calendar & schedule management
Schedules & tasks prioritizations
@ Collaboration (comments, voice,

attachments)
@ Speech-to-text transcription
@ Notifications & reminders
@ Dashboard analytics

Figure 4.2.29 Section C Question 9

Figure 4.2.29 illustrates which feature respondents believe should be prioritised for
improvement. Half of the respondents (50%) selected the personalised Al assistant, while the
other five responses (10% each) were spread across calendar management, task prioritisation,
collaboration, speech-to-text transcription, notifications, and dashboard analytics. This finding

indicates that further development of the Al assistant is the highest priority for users.

Any other feedback or suggestions for making StudyMate better? (N/A if no suggestions)

10 responses

N/A

Personalized Al Assistant still has room for improvement

So far is doing great but need minor improvement on the Al features

Make the app work for you but not the other way round. Improve efficiency of task maintenance.

Can collapse the schedule if too many for one day, and can expand by pressing the date and day.

Figure 4.2.30 Section C Question 10

Figure 4.2.30 presents open-ended feedback from respondents. Suggestions included
improving the Al assistant’s capabilities, enhancing task maintenance efficiency, and providing
collapsible schedules for days with many activities. These responses confirm that while
StudyMate performs strongly overall, users desire refinements to increase efficiency and

flexibility.

111

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

4.3 Results and Benchmark

The evaluation results demonstrate that StudyMate not only meets user expectations but also
outperforms existing applications in several critical areas of task and schedule management.
Respondents indicated that their current tools included Apple Reminders, Google Calendar,
WhatsApp, and similar applications, which often require users to combine multiple platforms
to achieve complete functionality. By contrast, StudyMate consolidates these features into a

single, integrated system.

In terms of usability, navigation and calendar synchronisation were rated superior in StudyMate
compared to existing tools. All respondents confirmed that syncing with device calendars
worked more smoothly, highlighting a key strength in integration that traditional applications
lack. This finding positions StudyMate as more reliable in maintaining consistency between

personal devices and application data.

The inclusion of an Al assistant marks a significant benchmark distinction. While current
applications provide basic scheduling or reminders. StudyMate’s assistant supports planning,
task suggestions, and progress insights. Respondents rated these features more positively than
those available in their current apps, particularly in terms of relevance and accuracy of task
recommendations. This demonstrates the added value of Al-driven functionality compared to

traditional reminder-based systems.

Collaboration was another area where StudyMate surpassed existing benchmarks. Respondents
highlighted the ability to integrate comments, voice messages, and attachments within tasks as
more convenient than relying on external communication platforms such as WhatsApp. The
consolidation of communication and task management within a single interface represents a

key improvement in collaborative productivity.

Dashboard analytics provided a further advantage, with StudyMate offering visualisations of
overdue, completed, and incomplete tasks as well as breakdowns by priority. This level of
progress tracking was rated as clearer and more motivating than what respondents typically
experienced in their current applications, where such integrated overviews are often absent or

fragmented.

From a productivity standpoint, all respondents agreed that StudyMate made it easier to stay
on top of their tasks and activities compared to their current applications. Moderate to
significant improvements in productivity were reported, confirming that StudyMate delivers

112

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

measurable benefits. The prioritisation algorithm was also rated more effective than the
approaches used by existing tools, suggesting that dynamic weighting based on deadlines,

workload, and priority levels provides a superior method of task ranking.

Finally, the unanimous willingness to recommend StudyMate and the strong likelihood of
continued usage reflect its competitiveness in the wider productivity application space. Users
particularly valued the personalised Al assistant and expressed interest in further enhancements
such as widgets and expanded Al insights. These findings highlight both the present advantages

of StudyMate and the directions for future refinement to maintain its competitive edge.

In summary, benchmarking against current applications confirms that StudyMate provides a
more comprehensive, integrated, and intelligent solution. It exceeds the capabilities of
traditional task and calendar management tools by combining Al-driven features,
collaboration, and analytics into a single platform, thereby addressing gaps that users currently

experience with fragmented application use.

4.4 Objectives Evaluation

The three objectives of this project were successfully achieved by providing an integrated and
intelligent productivity solution. First, task organization and prioritization were enhanced
through the Dynamic Weighted Task Prioritization Algorithm, which dynamically sorted tasks
based on deadlines, workloads, and urgency while offering real-time visualizations such as
progress bars and charts. This ensured that users could allocate their time efficiently and avoid
overload. Second, real-time collaboration was significantly improved with unified messaging
that supported both text and voice, automatic transcription for accessibility, attachment and
URL integration, and a smart search function capable of scanning across all communication
formats. These features minimized fragmentation and centralized group interactions,
promoting transparent and efficient teamwork. Third, the Smart AI Assistant served as a virtual
secretary by providing personalized daily planning, proactive task suggestions, reminders, and
project oversight through dashboards and timeline views. The assistant’s ability to interact
naturally through text or speech further increased usability and convenience. Together, these
features enabled users to maintain clear visibility of their responsibilities, collaborate
effectively, and receive actionable guidance to remain organized and productive. Ultimately,
the objectives collectively ensured that StudyMate surpasses traditional task management tools

by combining intelligent prioritization, seamless collaboration, and Al-driven support.
113

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

4.5 Concluding Remark

To sum up, this project has successfully delivered a smart mobile task management application
that addresses the common challenges of disorganized task handling, fragmented collaboration,
and limited personalization found in existing tools. By integrating a dynamic prioritization
algorithm, unified collaboration features, and a smart Al assistant, the system provides a
comprehensive solution that not only improves individual productivity but also strengthens
teamwork efficiency. The evaluation results confirmed that users experienced greater clarity,
motivation, and convenience when managing their schedules and tasks with the application
compared to their current tools. Furthermore, the positive reception and unanimous willingness
to recommend the system highlight its practical value and potential for real-world adoption.
While future improvements such as enhanced Al insights, widget support, and further

customization were suggested, the objectives of the project have been met effectively.

Overall, this project demonstrates that integrating intelligent automation, collaborative
functionality, and user-centered design can significantly enhance task management, ultimately
enabling users to manage their responsibilities more efficiently and with reduced stress. Minor
technical challenges such as occasional Gemini API overload and slower transcription speeds
in multilingual contexts were addressed through retry handling and optimized language
settings, ensuring that these limitations did not compromise the overall performance or user
experience. Looking ahead, the adoption of fallback AI models and the integration of offline
or on-device speech-to-text could further improve system resilience, guaranteeing reliable

assistance even during network congestion or service disruptions.

114

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 5

CHAPTER 5

Conclusion

This project has successfully delivered a mobile-based task management system, StudyMate,
designed to improve productivity and efficiency for students, educators, and professionals alike.
By addressing the recurring challenges of ineffective task prioritization, fragmented
collaboration, and limited visibility into progress, the system integrates three key innovations
including a Dynamic Weighted Task Prioritization Algorithm, a seamless real-time
collaboration framework, and a Smart Al Assistant for personalized planning and oversight.
Together, these features provide an integrated platform that consolidates scheduling, task

management, collaboration, and intelligent assistance into a single application.

The evaluation through black box testing and client satisfaction surveys confirmed that the
system achieved its objectives. Users reported improved clarity in task organization, smoother
collaboration with centralized communication tools, and greater motivation through progress
tracking dashboards and visual aids. Benchmarking further demonstrated that StudyMate
surpasses widely used applications such as Apple Reminders, Google Calendar, Microsoft To-
Do, Todoist, TickTick, and Trello by offering dynamic prioritization, unified task and schedule
integration, Al-driven recommendations, and advanced collaboration features within one

platform.

Although challenges were encountered during development including Flutter framework
mastery, storage limitations, and notification reliability these were effectively managed, and
the system was successfully completed with scalable integration of Firebase and Google Cloud
services. Feedback from respondents also highlighted potential enhancements, including
widget support, additional Al insights, and further personalization, which provide valuable
direction for future development. Furthermore, expanding cross-platform integration with tools
such as Microsoft Outlook, Slack, and Google Workspace would allow seamless adoption in

broader academic and professional contexts.

In conclusion, StudyMate demonstrates that the integration of intelligent automation,
collaboration, and personalized assistance can significantly enhance productivity and reduce
stress across academic and professional environments. The project has met its stated objectives
and delivered a functional, user-centered, and intelligent task management solution that holds

strong potential for real-world adoption and continued refinement.

115

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



REFERENCES

[1]

[2]

[3]

[4]
[3]

[6]

[7]

[8]

[9]

[10]

D. Ariely and K. Wertenbroch, “Procrastination, Deadlines, and Performance: Self-
Control by Precommitment,” Psychological Science, vol. 13, no. 3, pp. 219-224, May
2002, https://doi.org/10.1111/1467-9280.00441.

“Organize reminders on your iPhone or iPad,” Apple Support.
https://support.apple.com/en-

us/119953#:~:text=Time%3 A%20Add%20reminders%20t0%20the

“Introducing List Sharing and Steps in Microsoft To-Do,”
TECHCOMMUNITY. MICROSOFT.COM.
https://techcommunity.microsoft.com/t5/microsoft-to-do-blog/introducing-list-
sharing-and-steps-in-microsoft-to-do/ba-p/200109

“Features,” Todoist. https://todoist.com/features

S. K. Nayak, S. K. Padhy, and S. P. Panigrahi, “A novel algorithm for dynamic task
scheduling,” Future Generation Computer Systems, vol. 28, no. 5, pp. 709-717, May
2012, doi: https://doi.org/10.1016/j.future.2011.12.001.

M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems,”
Real-Time Systems, vol. 10, no. 2, pp. 179-210, Mar. 1996, doi:
https://doi.org/10.1007/bf00360340.

R. W. White, Ahmed Hassan Awadallah, and R. Sim, “Task completion detection: A
study in the context of intelligent systems,” In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
405-414, Jul. 2019, doi: https://doi.org/10.1145/3331184.3331187.

Nielsen, J. (2012). Usability 101: Introduction to Usability. Nielsen Norman Group.
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Interaction Design Foundation (IDF). (2023). Prototyping: Learn Eight Common
Methods and Best Practices. https://www.interaction-
design.org/literature/topics/prototyping

S. Davis and P. Mermelstein, “Comparison of Parametric Representations for

Monosyllabic Word Recognition,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 28, no. 4, pp. 357-366, 1980.

[11]
Pearson, 2010.

L. Rabiner and R. Schafer, Theory and Applications of Digital Speech Processing,

116

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



[12] X. Anguera, “Acoustic Feature Extraction for Automatic Speech Recognition,” in
Encyclopedia of Speech and Language Processing, 2010.

[13] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures for streaming end-to-
end speech recognition with RNN-Transducer,” ASRU, 2017.

[14] A. Gulati et al., “Conformer: Convolution-augmented Transformer for speech
recognition,” Interspeech, 2020.

[15] S. Toshniwal et al., “A comparison of techniques for language model integration in
encoder-decoder speech recognition,” SLT, 2018.

[16] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity detection,”
IEEE SPL, 1999.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is All You Need,” Advances in Neural Information
Processing Systems (NIPS), pp. 5998—6008, 2017.

[18] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. Hinton, and J. Dean,
“Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer,” arXiv preprint arXiv:1701.06538, 2017.

[19] OpenAl “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

[20]  Anthropic, “Claude 3 Model Card,” Anthropic Documentation, 2024. [Online].

Available: https://www.anthropic.com

[21] Google DeepMind, “Gemini: A Family of Highly Capable Multimodal Models,”
Google DeepMind Blog, Dec. 2023.

[22] Google, “Cloud Generative AI API Documentation,” Google Cloud, 2024. [Online].
Available: https://cloud.google.com/generative-ai

[23] Google Cloud, “Speech-to-Text v2 Documentation,” Google Cloud, 2024. [Online].
Available: https://cloud.google.com/speech-to-text

[24] M. Jeffress, “speech to text: A Flutter Plugin,” pub.dev, 2024. [Online]. Available:
https://pub.dev/packages/speech to text

[25] A. Radford et al., “Robust Speech Recognition via Large-Scale Weak Supervision,”
arXiv preprint arXiv:2212.04356, 2022.

[26] A. Kochetov et al., “Vosk Speech Recognition Toolkit,” alphacephei.com, 2020.
[Online]. Available: https://alphacephei.com/vosk

[27] Microsoft, “Azure Speech to Text Documentation,” Microsoft Azure, 2024. [Online].

Available: https://azure.microsoft.com/en-us/products/ai-services/speech-to-text

117

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Amazon, “Amazon Transcribe Documentation,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/transcribe

TickTick, “TickTick,” ticktick.com. https://ticktick.com/?language=en US

Trello, “Trello Tour,” Trello.com, 2019. https://trello.com/tour

Apple Inc., “Limits for iCloud Calendar and Reminders,” Apple Support, 2024.
https://support.apple.com/en-us/103188

Microsoft Corporation, “Can’t change order of tasks on ‘My Day’ if they are recurring,”
Microsoft Community, 2023. https://answers.microsoft.com/en-
us/msoffice/forum/all/cant-change-order-of-tasks-on-my-day-if-they-are/0f43b74d-
decd-4e66-a675-c12c5f4d0e54

Microsoft Corporation, “Reordering To-Do does not save across devices,” Microsoft
Community, 2023. https://answers.microsoft.com/en-us/msoffice/forum/all/reordering-
to-do-does-not-save-across-devices/8dc716b1-1a6a-4191-8cc2-eaa95a75248b.
Microsoft Corporation, “Custom order in To-Do not reflected in Outlook task,”
Microsoft Community, 2023. https://answers.microsoft.com/en-
us/msoffice/forum/all/custom-order-in-todo-not-reflected-in-outlook-task/444ecbfd-
0205-4d2b-ad65-180234f1225¢

H. Singh, “Todoist vs Apple Reminders: Which to-do app is better for you?”
Hulry.com, 2023. https://hulry.com/todoist-vs-apple-reminders

Microsoft Corporation, “Microsoft To-Do sorting by due date is not working properly,”
Microsoft Community, 2023. https://answers.microsoft.com/en-
us/msoffice/forum/all/microsoft-to-do-sorting-by-due-date-is-not/b4a79bf5-f8eb-
4af0-b8a8-09df605285d6

R. S. Pressman, Sofiware Engineering: A Practitioner’s Approach, 8th ed. New York,
NY, USA: McGraw-Hill Education, 2015. ISBN: 978-0078022128.

I. Sommerville, Software Engineering, 10th ed. Harlow, U.K.: Pearson Education,
2016. ISBN: 978-0133943030.

Nielsen, J. (2012). Usability 101: Introduction to Usability. Nielsen Norman Group.
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Interaction Design Foundation (IDF). (2023). Prototyping: Learn Eight Common
Methods and Best Practices. https://www.interaction-

design.org/literature/topics/prototyping

118

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

APPENDIX A

Poster

£ 4

Introduction Xc X
Dynamically Prioritizing schedules & e
tasks and fackle the most important R ¢

and urgent items first.

Enhance Task Organization PrOJECt ODJetheg

and Prioritization Using _ _ Implementing a Dafa-Driven
Dynamic Weighted Task Enhancmg. Real-Time Project Tracking and
Prioritizing Algorithm Collaboration Through Visudlization System

In-Task Commenting and
Document Integration

Methodology

® Dynamic Reordering Algorithm

® Dynamic Weighted Task
Prioritization Algorithm

e Completion Detection

Conclugion

Deliver an effective task management
involves prioritizing, scheduling,
fracking, and delegating fto stay

UT/R Developed by: Mandy Teoh Jiayi ~ organized and boost productivity.
R Supervised by: Mr. Yong Tien Fui

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

APPENDIX B

Operating Manual

B-1.1 Login

Sign in

Email
2 |

Password

&1

Forgot Password?

Login

Don't have an account? Sign up

Figure Bl.1 Login Page

Based on Figure B1.1 above, users can log in to the app by entering their registered email and
password. New users can create an account by clicking the "Sign-up" button, while users who
have forgotten their password can reset it by selecting the "Forgot Password" option.

Afterward, they will receive an email with instructions to set a new password.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.2 Sign Up

Sign up

Confirm Password
8

Create Account

Already have an account? Login

Figure B1.2 Sign Up Page

As shown in Figure B1.2, new users can create an account by entering their email, phone
number, and password. They are required to confirm their password to ensure accuracy. Once
the details are provided, users can proceed by clicking the "Create Account" button to complete
the registration process. For users who already have an account, they can simply click the

"Login" link to access their existing account.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.3 AI Assistant (Al panel)

Al Ready |- Thinking...

JI- Listening...

l I I | I I Create a meeting called emergency
meeting from 3:00 p.m. To 4:00 p.m.
T at 19 of septembar 2025

19 of septembar

What date/time should | use?

Create a meeting called emergency
meeting from 3:00 p.m. To 4:00 p.m.
Tomorrow. at 19 of septembar 2025

Figure B1.3 Al Assistant (Al panel)

In Figure B1.3, the voice assistant allows users to quickly add schedules by speaking instead
of typing. To trigger it, press and hold the microphone button at the bottom of the screen. When
the system shows “Listening...”, speak the event details, such as the title, date, and time. The
spoken text will appear on screen for confirmation, followed by a short “Thinking...” stage
where the assistant processes the command. If needed, it may ask a follow-up question to
clarify details like the date or time. Once confirmed, the schedule is automatically created and
displayed in the calendar. This feature provides a fast, hands-free way to capture new events

and is especially useful when multitasking.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.4 Al Assistant (Chatbot)

5:50 @ % Nl 34%& 5:50 @ % N =l 35%&

< Your Personal Assistant ¢ Your Personal Assistant

Plan for Today

Auto-scheduled your day into lable free
windows.

How would you like to start?

{9 Plan My Day No existing schedules today.
Focus Blocks
+ 21:00 - 23:00 BIIS Individual Asg
Due 2025-09-13
Low priority, overdue, 0 subtasks
+ 17:00-19:00 FYP
Due 2025-09-18
High priority, due today, 4 subtasks
+ 19:00-21:00 Bl A2
Due 2025-09-19
Medium priority, due In 1 day, 3 subtasks
« 23:00-01:00 Write Proposal
Due 2025-09-24
Low priority, due in & days, 0 subtasks

& Add Schedule

| Type a message... ) > | Type a message... | >

Figure Bl.4 Al Assistant (Chatbot)

Figure B1.4 Personal Assistant screen is the central place where users can interact with the Al
assistant for smart task and schedule management. At the start, the assistant asks, “How would
you like to start?”” and provides a Plan My Day button as a quick option. Tapping this button
allows the system to automatically review the user’s pending tasks, deadlines, and available

free time, then generate a suggested daily plan with focus blocks.

Once a plan is created, the screen displays a clear breakdown under Plan for Today. Each focus
block shows the allocated time, the task title, its due date, priority level, and the number of
subtasks. Overdue and urgent tasks are scheduled earlier, while lower-priority ones are slotted
later. This gives the user a structured, time-based plan that balances deadlines and priorities.
Users can also add schedules directly from this screen by tapping the Add Schedule button,

making it easy to insert additional commitments alongside the Al’s generated plan.

Beyond the Plan My Day feature, users can interact with the assistant by typing into the
message box at the bottom. By entering free-text queries or instructions (e.g., “Show my
upcoming tasks,” “Suggest when to study for BIIS,” or “Add a reminder for tomorrow”), the

assistant responds with personalized insights, suggestions, or actions.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.5 Home

535 @ N Rl 34%8

= Home e

< Sep2025 >

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6

7 8 9 10 1 12 13

14 15 16 17 Q 19 20

21 22 23 24 25 26 27

28 29 30

Schedules To-Do

ITPE [T4]
8 12:00 PM

g BUSIPI]

2:00 PM

Figure B1.5 Home Page
As shown in Figure B1.5, the home screen features a calendar view for the month of September
2025. The user can switch between different months in the calendar view to navigate through
their schedule. Next, the "Schedules" tab will list all schedules created by the user that are due
for the selected date and will also sync with the user's device calendar if permission is granted.
Meanwhile, the "To-Do" tab will display all to-dos that are due for the selected date. These
provide an organized view of both scheduled events and tasks. Besides, long pressed the "+"

icon may trigger the Al assistant panel or tap to open chatbot.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.6 Settings

535 @ N =l 33%8 535 @ Nf =l 33%8

¢ Settings G Voice
smallbang@gmail.com » Casey —ENG (x)

Jordan — ENG (default)
Sync Device Calendar 1

Enable to view device calendar 0

events Morgan — ENG (x)

Update P d -
pdate Passwori > » Riley —ENG )
Update Phone Number >
> §am — ENG (default) P
Voice Preference N
Sam > Sam — ENG (x)

Jordan — FRA (default)

Jordan — FRA (x)

Alex — HIN (default)

Riley — HIN (x)

Figure B1.6 Settings

Based on Figure B1.6 Settings, users can manage their core account preferences and app
integrations. At the top, the account email is displayed to confirm the signed-in identity. This
cannot be changed here since it serves as the unique login identifier. Below it, a switch allows
users to enable or disable synchronization with their device’s calendar. When turned on, the
app is permitted to read calendar events directly from the phone, which then appear alongside
in-app schedules and tasks. This ensures a unified view of both personal and academic or work
events. The screen also provides options to update the password and phone number, allowing

users to maintain account security and keep their contact information current.

The Voice Preference screen lists available voices categorized by language, such as English,
French, or Hindi, each with multiple tonal variants. Users can preview a voice by pressing the
play button and then select it by tapping the voice entry, which will mark it with a check icon.
The currently active voice is displayed in the Settings screen under the Voice Preference option.
By adjusting this setting, users can personalize how the Al assistant and read-aloud features

sound, making the app more comfortable and familiar for daily use.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.7 Schedule List

3349 @ 4N

= Schedules A
27
Test 4

All-day event
¢

Test1
6:01 PM
@ NOO1

Test1
6:01 PM
¢ NOOT

Figure B1.7 Schedule List

As shown in Figure B1.7, the "Schedules" screen displays all the schedules created by the user,
listed in chronological order. The dynamic prioritization algorithm is applied based on the
deadline set for each event. If a schedule is due today, its date will be highlighted in red to
visually indicate urgency. Additionally, the system automatically archives schedules that have
passed their due date, but they can be restored later in the "Dashboard" under the "Overdue
Schedules" section. The user can click on any scheduled event to view more details, and a "+"
button at the bottom allows the user to quickly add a new schedule. Besides, long pressed the

"+" icon may trigger the Al assistant.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.7.1 Schedule View

540 @ % N =l 33%8

< /7
ITPE [T4]

Location N002
Alert None

Notes
Test

URL

https://google.com

Attachments
°

Delete

Figure B1.7.1 Schedule Details

As shown in Figure B1.7.1, users can view the details of their schedules by selecting a specific
event. The screen displays all the relevant information, including the event’s location, alert
type, notes, and any associated URL. Additionally, users can view attachments linked to the
event, such as PDFs or images. The user can also edit or delete the event using the
corresponding buttons at the bottom and top of the screen. This provides a comprehensive view

and easy management of each scheduled event.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.7.2 Schedule Add/ Edit

¥350 @ wan 541 @ % N Rl 33%8

& New Schedule

Title

Location

All-day

Repeat
Never

Alert
None

Done

< Edit Schedule
Title
ITPE [T4]

Location

N002

All-day

Repeat
Never

Alert

Done

None >
M Add Attachment

@ Add Attachment

URL
Screenshot_20250918
-173512.jpg

Notes
URL

https://google.com

Notes

Test

Figure B1.7.2 Schedule Add/ Edit

Figures B1.7.2 show the "New Schedule" and "Edit Schedule" screens. The layout for both
screens is nearly identical, with the primary difference being that the "Edit Schedule" screen
fetches and displays the data of an existing event, while the "New Schedule" screen is used to

create a new event.

In both screens, the user can input the title, location, and set the event to be "All-day" if
necessary. The "Repeat" option allows users to set the frequency of the event, while the "Alert"
dropdown allows for setting reminders. Additionally, users can add attachments by clicking on

the "Add Attachment" button, which is available on both screens.

Both screens also allow the user to enter a URL and notes related to the schedule. Once the
required information is filled in, the user can either save or update the event by clicking the
"Done" button. If the event being edited is part of a recurring series, the system will prompt the
user with an option to either edit only this specific schedule or all occurrences in the series.

This gives the user flexibility in managing recurring events.

10

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.8 To-Do List

5:46 @ % N =l 33%&

= To-Do a
Group
Bl A2 Collabo
(@]
Due Thursday, Sep 18, 11:59 ... Due Thur
S ME M s
mplet
My Tasks
Urgent
Assignment v

Figure B1.8 To-Do List

As shown in Figure B1.8, the To-Do screen is divided into two main sections “Group” and
“My Tasks”. Each task card displays important details such as the due date, priority level (High,
Medium, or Low), and a progress bar that reflects task completion. Only the task creator and
assigned admins have the ability to edit or mark tasks as complete using the checkmark option.
Regular members are limited to viewing the tasks and cannot make changes or updates. The
progress bar is dynamically updated based on the completion status of subtasks within each
task. When a user marks a subtask as done, the system automatically recalculates the overall
progress percentage and adjusts the bar. For instance, if a task has four subtasks and two are

completed, the progress bar will indicate 50% completion.

The dynamic weighted prioritization algorithm operates in both the “Group” and “My Tasks”
sections. It evaluates deadlines, subtask counts, alert settings, and priority levels to assign
urgency scores. Tasks with higher scores appear under the Urgent tab to ensure timely
attention. In My Tasks, items are further grouped into user-defined categories, making
organization easier. Once a task is marked as done, users are prompted to archive it, moving it
into the Completed Tasks section in the Dashboard, where it remains recoverable. Additionally,
the “+” button at the bottom enables new task creation, while a long press activates the Al

assistant for smart task input.
11

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.8.1 To-Do View (Individual)

548 @ % Nt Reall 30%4 547 @ % Nl 33%& 5:47 @ % Nl 33%&
< ® ¢ Subtasks ¢ Attachments
FYP Edit Task m B -
@ Report Part 1 i igs e
Delete Task Add a note

O Report Part 2
Cancel

Category - Add a note
i High O Dashboard Presentation
Alert 1 week before
1 hour before Add a note
Subtasks @ 5

View Attachments

1 Photos

Figure B1.8.1 To-Do Details (Individual)

Figure B1.8.1 shows the detailed view of a task, where the user can view and edit the task's
attributes. The task includes information such as the title, category, priority level, due date, and
alert settings. Additionally, there is a list of subtasks, with the option to add notes for each

subtask. Users can also see whether there are any attachments associated with the task.

Additionally, there’re options to either "Edit Task" or "Delete Task." If the task is being edited,
the user can modify its details, while the "Delete Task" option allows for the task's removal.

The "Cancel" button allows users to exit the task info window.

This allows users to manage their tasks efficiently, including making edits, viewing details,

and handling subtasks with ease.

12

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.8.2 To-Do View (Collaborated)

547 @ % Nf Rl 33%8
< ® Q X
Bl A2 )
= hi
Group - Week 11 & 12 2025-08-26
Thursday, 18 Sep 2025 " i
‘ y‘ 'r': L ; P this is the link of the report https://
P B utarict-my.sharepoint.com/:w:/r/perso...
2025-08-26
Category Assignment
Priority Medium Task Inf [ :g;:;:g:bar
ask Inio had
Alert 1 week before
Collaborators: ni hao
Subtasks € > smallbang@gmail.com, 2025-08-26
mandytai1l017@gmail.com,
View Attachments elenuor@gmail.com, =] should we assign task now?
sebastian@gmail.com 2025-08-26
Last Modified: <ic
Comments Q g hiimmandy

This is the link of the report https

Thu, 11 Sep 2025
5:38 PM

2025-08-26

my.sharepoint.com/:w./r/pei
mandyteoh17_1utar_my/Doc
[T%2(

uccr

=] hi everyone
2025-08-26

Sender
Hi Im Mandy

hi

26-08-2025 23:58

‘,"—\'
\Type your message... ) 4 U >

Figure B1.8.2 To-Do Details (Collaborated)

Figure B1.8.2 Collaborated To-Do Details screen provides a complete view of shared tasks
where multiple users can contribute. At the top, the task title, group, and due date are displayed,
along with its assigned category, priority level, and any alert reminders set. If the task contains
subtasks, the progress bar automatically updates based on the number of subtasks completed,
giving all collaborators a real-time indication of how far the task has advanced. Attachments

related to the task can also be accessed directly through the View Attachments button.

Below, the Comments section functions as a live discussion board for collaborators. Users can
exchange text messages, share external links, or upload attachments, ensuring smooth
communication within the context of the task. They can even transcribe the voice message sent
to text. Every message is timestamped, allowing collaborators to track the sequence of updates
and discussions. A search bar at the top enables quick retrieval of past comments by keywords,

making it easy to revisit important information without scrolling through the entire chat history.

Additional task information is available through the Task Info panel, which lists all
collaborators’ email addresses and the last modified date. This transparency ensures that every

member is aware of who is involved and when the task was last updated.

13

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.8.3 To-Do Add/ Edit
S C %40 %0 4 wdn 549 @ % Rl 34%&
€«  New Todo Done < Edit Todo < EditTodo Dot
) ©
Title Tastd

@ Add Attachment

Another test of pricritization
Description

L
[ Dpate Apr 27, 2025 [ pate May 26, 2025 ;ﬁ"

B Shop Plan.docx X
@© Time 3:37 PM ® Time 5:30 PM
- 5
category - m Daily Cash Balance.xIsx x
None v Assignment
Priority A
Low - Medium +& Add Collaborator
Alert Adart )
smallban mail.com
None - None 9@9 8 X
Creator
Subtasks Subtasks mandytai1017@gmail.c
. om e X
0 51 ' * Admin
elenuor@gmail.com
% @g X
[ Add Attachment . Collaborator
o sebastian@gmail.com

Collaborator
+& Add Collaborator

Figure B1.8.3 To-Do Add/ Edit

Figure B1.8.3 shows the "New Todo" screen where users can create a new to-do. The screen
allows users to input essential information, including the task title, description, due date, and
time. Users can also categorize the to-do, assign a priority level (e.g., Low, Medium, High),
and set an alert for reminders. The "Subtasks" section enables the user to add subtasks to break
down the main task into smaller steps. Additionally, users can attach files or add collaborators
to the to-do by clicking the respective buttons. Once the necessary details are filled, users can

save the new to-do by clicking "Done."

The "Edit Todo" screen, which is nearly identical to the "New Todo" screen. The key difference
is that this screen is used for editing an existing to-do. In this case, the task's details are pre-
filled with data such as the title, description, due date, and time. The user can edit the category,
priority level, and alert settings. In the "Subtasks" section, users can modify existing subtasks
(such as adding or deleting them) and update any other details of the to-do. The "Add
Attachment" and "Add Collaborator" options remain available for any changes. The creator is
allowed to set any team members to admin to manage the collaborated task. After making the

necessary edits, the user can save the updated to-do by clicking "Done."

14

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.9 Dashboard

3349 @ 4N

= Dashboard

5 3 6

Overdue Completed Pending
Schedules Tasks Tasks

Daily Completed Tasks

4

< 21 Apr-27Apr >

Pending Tasks by Priority

M

4

@ Urgent (2}
wiedium (2)

@ Low(2)

® Collaborated (3)

Figure B1.9 Dashboard

As shown in Figure B1.9, the "Dashboard" screen provides a quick overview of the user's task
and schedule data. At the top of the screen, there are three cards displaying the number of
overdue schedules, completed tasks, and pending tasks. These cards not only show the total
count but are also clickable. Clicking on the "Overdue Schedules" or "Completed Tasks" cards
will navigate the user to the respective list, where they can view, delete, or restore events and
tasks as needed. This feature allows users to manage overdue or completed items directly from
the dashboard.

Below that, the "Daily Completed Tasks" graph presents a visual representation of tasks
completed over the week, with a bar chart showing the number of completed tasks for each day
from April 21 to April 27. Users can switch between different weeks by clicking the back-and-
forth buttons to navigate through past or upcoming weeks, helping them track productivity over
time.

The "Pending Tasks by Priority" pie chart categorizes tasks based on their priority level:
Urgent, Medium, Low, and Collaborated. This visual breakdown helps users easily see how
their tasks are distributed according to priority and allows them to focus on high-priority items

as needed.

15
Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

B-1.10 Notification

548 @ % N Fvall 34%&

<« Notifications

New schedule: Notification Test N4 at
11:15 AM
Sep 17,01:14

New schedule: Notification Test N3 at
12:15 AM
Sep 17, 00:00

New schedule: Notification Test N2 at
5:10 PM
Sep 16, 16:59

New schedule: Notification Test 3 at
4:20 PM
Sep 12,16:13

New schedule: Notification Test 2 at
8:30 AM
Sep 11, 22:31

New schedule: Notification Test at
7:00 PM
Sep 11,18:55

New todo: Notification Test 1 due at
6:00 PM
Sep 11,18:03

Figure B1.10 Notification

Figure B1.10 Notification provides a centralized view of all alerts generated by the system.
Each notification card clearly indicates whether it is related to a new schedule or a new task,
followed by the title and the scheduled or due time. Beneath the title, a timestamp shows the
exact date and time the notification was issued, allowing users to trace when changes or
reminders were created. Notifications are arranged with the most recent appearing at the top

for quick reference.

In addition to simply listing alerts, this screen also supports interaction. By tapping a
notification card, the user is taken directly to the corresponding task or schedule, where full
details such as descriptions, collaborators, or reminders can be reviewed. This eliminates the
need to search manually and ensures that users can respond quickly to new or updated items.
Serving both as a reminder log and a navigation shortcut, the Notifications screen helps users

stay organized and up to date with minimal effort.

16

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR



