ExploreEasy: Smart and All-In-One Trip Management Application
BY
YAP PEINEE

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION SYSTEMS (HONOURS) BUSINESS INFORMATION
SYSTEMS
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2024 Yap Pei Nee. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the
requirements for the degree of Bachelor of Information Systems (Honours) Business
Information Systems at Universiti Tunku Abdul Rahman (UTAR). This Final Year
Project proposal represents the work of the author, except where due
acknowledgment has been made in the text. No part of this Final Year Project
proposal may be reproduced, stored, or transmitted in any form or by any means,
whether electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to extend my heartfelt gratitude and appreciation to my supervisor, Ts.Yong Tien
Fui, for granting me the invaluable opportunity to work on the EXPLOREEASY: SMART
AND ALL-IN-ONE TRIP MANAGEMENT APPLICATION. His guidance and support have

been invaluable throughout this journey. My heartfelt thanks for his encouragement.

To a very special person in my life, Jocelyn, thank you for your unwavering patience, love, and
support. Your presence and encouragement during challenging times have meant the world to

me.

Finally, I express my deepest gratitude to my parents and family for their endless love, support,
and motivation throughout this journey. Their belief in me has been a constant source of

strength.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR
iii

ABSTRACT

As travellers increasingly seek tailored and efficient experiences, current travel applications
often fail to address diverse requirements and adapt to real-time changes. This research presents
an Al-driven trip planning and recommendation system that employs a Hybrid
Recommendation Algorithm, integrating Collaborative Filtering (CF) and Content-Based
Filtering (CBF) to provide highly customised travel itineraries. Core components include
automated accommodation suggestions, an inflation-aware budget estimation and management
module that applies Jaccard Similarity and Weighted Averaging for accurate budget ranges,
and a cost split feature for fair expense sharing among travellers. The system also provides
real-time budget alerts to enhance financial transparency and control. To improve travel
efficiency, the system incorporates intelligent route optimisation using the Travelling Salesman
Problem (TSP), ensuring time-efficient and logically sequenced itineraries. Additionally, a
similar-place substitution feature leveraging Geographic Filtering and Quality Thresholds
increases flexibility by dynamically suggesting contextually relevant alternatives. Furthermore,
the integration of real-time and extended weather forecasting enables dynamic itinerary
modifications to enhance safety and adaptability. The system’s effectiveness was evaluated
with real travel data, revealing significant improvements in personalisation, flexibility,
financial confidence, and user satisfaction. By combining a hybrid recommendation engine
with innovative features such as weather-aware itinerary adjustments, budget monitoring,
expense splitting, and substitution-based adaptability, this project delivers a more intelligent,

responsive, and user-centric trip planning experience than conventional platforms.

Keywords: Al-driven trip planning, Hybrid recommendation system, Budget tracking alerts,

Route optimisation, Travelling Salesman Problem (TSP)

Area of study: Recommender Systems and Smart Tourism

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE

COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Problem Statement and Motivation
1.1.1 Problem Statement
1.1.2 Motivation
1.2 Objectives
1.3 Project Scope and Direction
1.4 Contributions

1.5 Report Organization

CHAPTER 2 LITERATURE REVIEW
2.1 Algorithm

2.1.1 Collaborative Filtering (CF)
2.1.1.1 Strengths
2.1.1.2 Weaknesses

2.1.2 Content-Based Filtering (CBF)
2.1.2.1 Strengths
2.1.2.2 Weaknesses

2.1.3 Jaccard Similarity
2.1.3.1 Strengths
2.1.3.2 Weaknesses

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

xii-xiii
Xiv

XV

1-8
1-3
1-2
3
4-5
6
7-8
8

9-23
9-13

10
10
10
11
11
11

2.1.4 Weighted Averaging
2.1.4.1 Strengths
2.1.4.2 Weaknesses
2.1.5 2-Opt Heuristic for the Traveling Salesman Problem
2.1.5.1 Strengths
2.1.5.2 Weaknesses
2.2 Existing Travel Management System

2.2.1 Budget and Experience Based Travel Planner

2.2.1.1 Strengths

2.2.1.2 Weaknesses

2.2.1.3 Solution to solve weaknesses
2.2.2 Wanderlog

2.2.2.1 Strengths

2.2.2.2 Weaknesses

2.2.2.3 Solution to solve weaknesses
2.2.3 TripAdvisor

2.2.3.1 Strengths

2.2.3.2 Weakness

2.2.3.3 Solution to solve weaknesses

2.3 Comparision of existing travel management system above and the

proposed system ExploreEasy

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH
3.1 Methodologies and General Work Procedures
3.2 Review of Technologies
3.2.1 Hardware Platform
3.2.2 Operating System
3.2.3 Database
3.2.4 Programming Language
3.2.5 Summary of the Technologies Reviewed

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11-12
12
12
12-13
13
13
14-22
14-16

14
15
15-16
16-19
17
18
19
19-22
20-21
21
22
23

24-103
24-25
25-27

25
26
26
27
27

Vi

3.3 System Design Diagrams
3.3.1 Block Diagram
3.3.2 Use Case Diagram
3.3.3 Activity Diagram
3.3.3.1 — Generate Trip
3.3.3.2 — Automated Accommodation Suggestion
3.3.3.3 — Budget Range Estimation
3.3.3.4 — Get Alternative Places
3.3.3.5 — Hybrid Area Recommendations
3.3.3.6 — Weather Forecast
3.3.3.7 — Route Optimization
3.3.3.8 — Save Trip and Itinerary
3.3.3.9 — Edit Itinerary
3.3.3.10 — Book Accommodations
3.3.3.11 — Alert user when budget nearly exceeds
3.3.3.12 — Split Expenses
3.3.3.13 — Make Payment
3.3.3.14 — Settle Up Expenses
3.3.3.15 — View Group Balances
3.34ERD
3.3.5 Block Diagram
3.4 Implementation Challenges and Issues
3.5 Project Timeline
3.6 Implemented Algorithms and Technologies
3.6.1 Hybrid Area Recommendation
3.6.2 Budget Range Estimation
3.6.3 Route Optimization Algorithm
3.6.4 Automated Accommodation Suggestions

3.6.5 Weather Forecast

CHAPTER 4 System Evaluation and Discussion
4.1 Blackbox Testing
4.1.1 Planning Module

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28-94
28-29
30-32
33-94
33-35
36-40
41-44
45-49
50-54
55-57
58-61
62-64
65-67
68-71
72-74
75-77
78-80
81-83
84-86
87-88
89-94
94
95-96
97-103
97-98
98-99
100
101-102

102-103

104-146

104-127
104-122

Vi

4.1.1.1 Preference Dialog Tests 104

4.1.1.2 Trip title input test 105
4.1.1.3 Area Selection Test 105
4.1.1.4 Area Days Validation 106
4.1.1.5 Date Range Tests 107
4.1.1.6 Budget Input Test 108
4.1.1.7 Traveler Count Test 109
4.1.1.8 Hotel Level Selection Test 110
4.1.1.9 Room Type Matching Test 111
4.1.1.10 Trip Generation Prerequisites 112
4.1.1.11 Plan Style Configuration Test 113
4.1.1.12 Weather API Tests 114
4.1.1.13 Weather -based Filtering Test 114
4.1.1.14 Save trip test 115
4.1.1.15 Map Interaction Tests 116
4.1.1.16 Replace with alternative places test 117
4.1.1.17 TSP Route Optimization Test 118
4.1.1.18 Distance calculations 118
4.1.1.19 Place Matching Tests 119
4.1.1.20 Alternative Suggestions Tests 120
4.1.1.21 Budget Range Estimation Test 120
4.1.1.22 Trip Display & Navigation 121
4.1.1.23 Trip Deletion Test 122
4.1.1.24 Ttinerary Management 122
4.1.2 Budgeting Module 123-125
4.1.2.1 Expense dialog test 123
4.1.2.2 Settlement system 124
4.1.3 Collaborator Module 125
4.1.4 Booking Module 126
4.1.5 Notification Module 127
4.2 Client Satisfaction Survey Analysis 128-141
4.3 Results and Benchmark 142-143
4.4 Objectives Evaluation 144-145

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR
viii

4.5 Concluding Remark

CHAPTER 5 CONCLUSION

REFERENCES

APPENDIX
POSTER

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

146

147-148

149-151

Figure
Number
Figure 3.3.1
Figure 3.3.2
Figure 3.3.3.1
Figure 3.3.3.2
Figure 3.3.3.3
Figure 3.3.3.4
Figure 3.3.3.5
Figure 3.3.3.6
Figure 3.3.3.7
Figure 3.3.3.8
Figure 3.3.3.9
Figure 3.3.3.10
Figure 3.3.3.11
Figure 3.3.3.12
Figure 3.3.3.13
Figure 3.3.3.14
Figure 3.3.3.15
Figure 3.3.4
Figure 3.3.5
Figure 3.5
Figure 4.2.1
Figure 4.2.2
Figure 4.2.3
Figure 4.2.4
Figure 4.2.5

Figure 4.2.6

LIST OF FIGURES

Title

Block Diagram

Use Case Diagram

Activity Diagram — Generate Trip

Activity Diagram — Automated Accommodation Suggestion
Activity Diagram — Budget Range Estimation

Activity Diagram — Get Alternative Places

Activity Diagram — Hybrid Area Recommendations
Activity Diagram — Weather Forecast

Activity Diagram — Route Optimization

Activity Diagram — Save Trip and Itinerary

Activity Diagram — Edit Itinerary

Activity Diagram — Book Accommodations

Activity Diagram — Alert User When Budget Nearly Exceeds
Activity Diagram — Split Expenses

Activity Diagram — Make Payment

Activity Diagram — Settle Up Expenses

Activity Diagram — View Group Balances

Entity Relationship Diagram (ERD)

Class Diagram

Gantt Chart

Age Distribution of Respondents

Gender Distribution of Respondents

Frequency of Respondents’ Travel

Familiarity of Respondents with Travel Planning Apps
Relevance of Recommended Areas to Respondents’ Travel
Interests

Respondents’ Feedback on Weather-Aware Suggestions in

Itinerary Planning

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

28

31

33
36-37
41-42
45-46
50-51
55
58-59
62

65

68

72

75

78

81

84

87
89-92
95
128
128
129
130
130

131

Figure 4.2.7

Figure 4.2.8

Figure 4.2.9
Figure 4.2.10

Figure 4.2.11

Figure 4.2.12

Figure 4.2.13
Figure 4.2.14

Figure 4.2.15

Figure 4.2.16

Figure 4.2.17

Figure 4.2.18

Figure 4.2.19
Figure 4.2.20

Figure 4.2.21

Accuracy of Budget Range Estimation Compared to
Respondents’ Expectations

Respondents’ Feedback on Real-Time Budget Alerts for
Financial Control

Usefulness of Cost Splitting Feature for Group Travel
Accuracy of Automated Accommodation Suggestions Against
Respondents’ Expectations

Respondents’ Feedback on the Helpfulness of the Route
Optimization Feature

Respondents’ Feedback on the Flexibility of Similar-Place
Substitution Feature

Satisfaction with the Quality of Alternate Suggestions
Usefulness of Group Travel Features (Expense Splitting,
Budget Alerts, Shared Trip Planning, Settlement Dashboard)
Comparison of ExploreEasy’s Route Planning Efficiency
Against TripAdvisor

Comparison of ExploreEasy’s Accommodation Suggestions
Against TripAdvisor

Comparison of ExploreEasy’s Budget Management Features
Against Wanderlog

Comparison of ExploreEasy’s Place Recommendations Against
Wanderlog

Overall User Satisfaction with ExploreEasy

Respondents’ Feedback on Unique Features of ExploreEasy
Compared to Other Systems

Suggested Improvements to Enhance ExploreEasy’s

Competitiveness

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

132

132

133
133

134

135

135
136

137

137

138

139

139
140

141

Xi

LIST OF TABLES

Table Number Title Page
Table 2.3 Comparison of features of other existing systems to proposed 23
system
Table 3.2.1 Specifications of laptop 25
Table 3.3.3.1 Use Case Description — Generate Trip 34-35
Table 3.3.3.2 Use Case Description — Automated Accommodation Suggestion 39-40
Table 3.3.3.3 Use Case Description — Budget Range Estimation 43-44
Table 3.3.3.4 Use Case Description — Get Alternative Places 48-49
Table 3.3.3.5 Use Case Description — Hybrid Area Recommendations 53-54
Table 3.3.3.6 Use Case Description — Weather Forecast 56-57
Table 3.3.3.7 Use Case Description — Route Optimization 60-61
Table 3.3.3.8 Use Case Description — Save Trip and Itinerary 63-64
Table 3.3.3.9 Use Case Description — Edit Itinerary 66-67
Table 3.3.3.10 Use Case Description — Book Accommodations 70-71
Table 3.3.3.11 Use Case Description — Alert User When Budget Nearly 73-74
Exceeds

Table 3.3.3.12 Use Case Description — Split Expenses 76-77
Table 3.3.3.13 Use Case Description — Make Payment 79-80
Table 3.3.3.14 Use Case Description — Settle Up Expenses 82-83
Table 3.3.3.15 Use Case Description — View Group Balances 85-86
Table 4.1.1.1 Preference Dialog Tests 104
Table 4.1.1.2 Trip Title Input Test 105
Table 4.1.1.3 Area Selection Test 105
Table 4.1.1.4 Area Days Validation 106
Table 4.1.1.5 Date Range Tests 107
Table 4.1.1.6 Budget Input Test 108
Table 4.1.1.7 Traveler Count Test 109
Table 4.1.1.8 Hotel Level Selection Test 110
Table 4.1.1.9 Room Type Matching Test 111
Table 4.1.1.10 Trip Generation Prerequisites 112

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

xii

Table 4.1.1.11
Table 4.1.1.12
Table 4.1.1.13
Table 4.1.1.14
Table 4.1.1.15
Table 4.1.1.16
Table 4.1.1.17
Table 4.1.1.18
Table 4.1.1.19
Table 4.1.1.20
Table 4.1.1.21
Table 4.1.1.22
Table 4.1.1.23
Table 4.1.1.24
Table 4.1.2.1
Table 4.1.2.2
Table 4.1.3
Table 4.1.4
Table 4.1.5

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plan Style Configuration Test
Weather API Tests
Weather-Based Filtering Test
Save Trip Test

Map Interaction Tests

Replace with Alternative Places Test
TSP Route Optimization Test
Distance Calculations

Place Matching Tests
Alternative Suggestions Tests
Budget Range Estimation Test
Trip Display & Navigation
Trip Deletion Test

Itinerary Management
Expense Dialog Test
Settlement System
Collaborator Module

Booking Module

Notification Module

113
114
114
115
116
117
118
118
119
120
120
121
122
122
123
124
125
126
127

xiii

LIST OF SYMBOLS

J(A,B) Jaccard similarity between sets A and B

> Summation Operator

o Standard deviation

PPN Weighted average PPN estimate

B Bandwidth parameter for budget range (0.05-0.15)
A Ay Longitudes of points i and j (in radians)

A Difference operator

) Latitude value

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiv

API
AccTotal
CBF
CF
CPP
ERD
IoU
NCF
PPN
TSP
WA

LIST OF ABBREVIATIONS

Application Programming Interface
Total Accommodation Cost
Content-Based Filtering
Collaborative Filtering

Cost Per Person

Entity Relationship Diagram
Intersection over Union

Neural Collaborative Filtering
Per-Person-Per-Night

Traveling Salesman Problem

Weighted Average

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XV

CHAPTER 1

Chapter 1

Introduction

In this chapter, we present the problem statement, motivation, research objectives, project

scope and direction, our contributions to the field, and the report organization.

1.1 Problem Statement and Motivation
This chapter provides an overview of the project by presenting the problem statement,

motivations, objectives, scope, contributions, and the overall organization of the report.
1.1.1 Problem Statement

1. Many travellers struggle to plan cost-effective and satisfying trips due to financial
limitations, overwhelming research requirements, and lack of destination familiarity,

leading to suboptimal and stressful travel experiences.

Despite the abundance of travel-related applications already accessible, many travelers
continue to encounter substantial obstacles in properly optimizing their travel experiences. A
primary concern is that users have substantial difficulties in trip planning due to financial
limitations, tedious research, and unfamiliarity with their chosen destinations, resulting in
ineffective travel experiences and frustration in itinerary organization. Organizing a cost-
effective trip frequently proves challenging, necessitating thorough study to evaluate rates for
activities and lodging. In the absence of local expertise or dependable resources to identify
economical choices, travelers must navigate extensive information, resulting in a process that
is both time-consuming and stressful [1]. Budget-conscious tourists face increased challenges
in making educated judgements when uncertain about obtaining optimal value for their
expenditures. This complexity adds a significant amount of stress to the travel experience, as
travelers are concerned that a poor choice could result in unsatisfactory experiences or
unexpected expenditures, ultimately compromising the quality of their trip. As a result,
travelers often encounter difficulties in locating options that align with their budgetary
constraints and individual tastes, resulting in suboptimal selections that detract from the entire
trip experience.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

2. Group travelers frequently face confusion and conflict due to the lack of integrated
tools for budget estimation, accurate shared expense tracking, equitable cost splitting,
and real-time budget monitoring in current travel applications

Travelers often do not know how much to spend in specific areas because they have never
visited those destinations before. Without prior knowledge or reliable reference data, they
struggle to estimate realistic budgets, leading to either overspending or overly restrictive
financial planning. Another significant concern encountered by group travelers is the difficulty
in managing shared expenses accurately [2]. Managing shared expenses during group travel
presents significant challenges, often leading to confusion, miscalculations, and interpersonal
conflicts. Traditional methods, such as manual record-keeping or basic calculator applications,
are prone to errors and lack essential features like real-time collaboration, expense
categorization, and individual contribution summaries. Moreover, the absence of proactive
budget monitoring tools in most travel applications results in unplanned overspending, with
surveys showing that financial mismanagement contributes to conflicts among travel
companions [3]. Therefore, there is a critical need for an integrated, automated budget
management system that supports transparent expense tracking, equitable expense splitting,
and real-time budget alerts to enhance financial coordination and improve the overall travel

experience.

3. Most existing travel applications lack a reliable place-substitution feature, resulting in
rigid itineraries that cannot adapt to unavailable or unsuitable locations, limiting
flexibility, personalisation, and overall user satisfaction.

Most existing travel applications lack flexibility in itinerary planning, as they do not provide
mechanisms for substituting places with contextually similar alternatives. When a
recommended location is unavailable, unsuitable, or less preferred, users are forced to either
remove it entirely or manually search for replacements, which disrupts the flow of their
itinerary [4] .This limitation often leads to rigid travel plans that fail to adapt to users’ evolving
preferences, situational constraints, or quality concerns such as low ratings or overcrowding.
Without an intelligent substitution feature, travellers risk missing out on nearby options that
are geographically feasible and equally relevant to their interests. The absence of such
adaptability reduces personalisation and may result in dissatisfaction when planned activities

do not align with expectations.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.1.2 Motivation

The impetus for creating the ExploreEasy application arises from a comprehensive awareness
of the complex obstacles encountered by contemporary travellers. A primary motivation is to
provide a seamless and pleasurable travel experience for users, particularly for those who lack
of time, finances, or knowledge to manage detailed trip planning. ExploreEasy is conceived as
a solution that streamlines travel for anyone, from the experienced traveler to the infrequent
holidaymaker. ExploreEasy seeks to decrease the stress and uncertainty frequently associated
with travel by incorporating features like expense tracking and cost-effective trip planning.
Additionally, a further boost for creating ExploreEasy is to address the inefficiencies and
fragmentation inherent in existing trip management software. Numerous current applications
provide restricted functionality and demand users to navigate multiple platforms for various
parts of their journey, resulting in an unwieldy and fragmented experience. ExploreEasy aims
to resolve this problem by offering a comprehensive solution that combines vital travel
functionalities, including itinerary management, expense tracking, and booking. This
integrated strategy seeks to streamline travel preparation, decrease user anxiety, and improve
the overall efficacy of trip management, so rendering travel more attainable and pleasurable
for all users. The motivation for this initiative stems from a dedication to inclusivity and
accessibility. The travel industry has historically faced criticism for predominantly serving rich
travellers, hence restricting possibilities for budget-conscious customers.[7]. ExploreEasy aims
to equalise opportunities by providing tools that emphasise affordability while maintaining
quality. This emphasis on inclusivity caters to travellers of diverse backgrounds and abilities,
guaranteeing that all individuals, irrespective of their financial resources or travel experience,

can navigate the world with assurance and simplicity.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.2 Objectives

1. To develop an Al-driven trip planning and recommendation system using a hybrid
recommendation algorithm with integrated real-time and extended weather forecasting
for efficient, adaptive, and personalized travel planning.

The primary objective of this project is to create an Al-driven trip planning and
recommendation system using a hybrid recommendation algorithm aimed at enhancing the
travel planning process through increased efficiency and personalisation. This system will
employ sophisticated Al to assess users' interests and financial limitations, producing
personalised itineraries that include recommended places and lodging. Several essential sub-
objectives have been identified to attain this goal. The project will provide a hybrid Al
recommendation system that integrates Collaborative Filtering (CF) and Content-Based
Filtering (CBF) to deliver highly personalised trip recommendations, even for individuals with
less historical data. The technology will also offer automatic accommodation
recommendations along the designated routes, hence increasing ease and optimising the trip
planning process by minimising the necessity for users to utilize numerous applications.
Additionally, the system will incorporate intelligent route optimisation using the Travelling
Salesman Problem (TSP) approach, ensuring that the recommended itineraries are not only
personalised but also time-efficient and logically sequenced to enhance the overall travel
experience. Furthermore, the integration of real-time and extended weather forecasting into
the itinerary planning module will enable dynamic adjustment of activities based on forecasted
conditions, thereby reducing the risk of outdoor plans being disrupted by adverse weather,

improving safety, enhancing flexibility, and increasing user satisfaction.

2. To implement a comprehensive budget estimation and management module using
Jaccard Similarity and Weighted Averaging for accurate budget guidance and effective
travel expense control.

The primary objective of this component is to design and integrate a budget system that
leverages similarity-based techniques to provide travelers with reliable budget ranges when
planning their trips, while also enabling effective management of expenses during travel. The
estimation system analyzes historical trip data, computing per-person-per-day spending
patterns from past users. Jaccard similarity is used to measure area overlap between trips, while

weighted averaging accounts for traveler count and trip duration differences to ensure that the

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

most relevant comparisons influence the estimate. To further improve accuracy, the system
considers the inflation when generating budget estimation ranges, ensuring that cost predictions
remain realistic and up to date. To enhance robustness, percentile-based outlier trimming is
applied to exclude extreme spending values, and overspend filtering is used to remove trips
where users exceeded their budgets by more than 10%. In cases of common trip profiles, exact
matches in traveler count and day length are prioritized, yielding higher accuracy and narrower
confidence ranges. Deterministic fallback rules (e.g., RM300 per person per day) ensure
usability even with sparse data. In addition to estimation, the budget module supports allocation
of travel budgets across categories such as accommodation, food, transport, and others, while
also providing a cost split feature that allows expenses to be fairly divided among multiple
travelers. Real-time alerts are provided to notify users when spending approaches or exceeds
the allocated budget, enabling stronger financial awareness and control throughout the trip. By
combining predictive budget estimation with proactive monitoring and expense splitting, this

module enhances user confidence, decision-making, and financial discipline during travel.

3. To enhance flexibility in itinerary planning by implementing a reliable similar-place
substitution feature using Geographic filtering and Quality thresholds.

The primary objective of this project is to provide travelers with the ability to dynamically
substitute recommended places with contextually similar alternatives, thereby increasing
personalization, adaptability, and reliability in trip planning. This feature ensures that users
retain full control over their itineraries, while the system guarantees that alternate suggestions
remain geographically relevant, reputable, and aligned with the user’s preferences and
conditions.Several essential sub-objectives have been identified to achieve this goal. The
system incorporates Geographic Filtering using the Haversine formula to ensure suggested
alternatives lie within a 2km radius of the primary location, maintaining feasibility within the
daily route. Quality Thresholds, applied consistently during both dataset seeding and runtime

queries, guarantee that only places with adequate ratings and reviews are offered as substitutes.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.3 Project Scope and Direction

A key component of the proposed system is the budgeting feature, which provides users with
comprehensive tools to manage and monitor their travel expenses. This module will include
cost-splitting functionalities specifically designed for group travelers, allowing multiple users
to collaboratively allocate and track shared costs with transparency and accuracy. Users will
be able to assign expenses for accommodations, activities, meals, and other travel-related
charges among group members, ensuring a fair and organized distribution of financial
responsibilities.

A crucial component of the proposed system is the planning feature, which offers customers
Al-driven tools to efficiently organise and enhance their travel schedules. This feature will
include an advanced trip planning system that employs artificial intelligence to create tailored
itineraries based on user preferences, destination, and budget.

Finally, the elements of the proposed system include an accommodation booking feature. Users
can directly reserve lodgings through the app. By providing an integrated platform for securing
accommodation, the system aims to streamline the planning process and enhance user
convenience. This feature ensures that travelers can efficiently organize their stay within the
same platform used for itinerary management, contributing to a more cohesive and user-

centered travel experience.

1.4 Contributions

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1. Al planning automates routes and suggestions for a faster, all-in-one travel
experience. (Addressing problem#1)

The Al-driven trip planning and recommendation system markedly improves the travel
planning experience by offering consolidated hotel recommendations and budget- oriented
route generation, thereby obviating the necessity for users to depend on several applications.
This holistic approach guarantees that all facets of the journey are addressed together, resulting
in a more fluid and integrated experience. Furthermore, the system conserves users' time by
automating the arrangement of ideal routes, a process that is conventionally laborious and
intricate. By automating and optimising these procedures, the system enhances decision-
making and expedites the whole planning procedure. In conclusion, the system surpasses
existing alternatives in both speed and quality, providing users with a more streamlined,
efficient, and gratifying method for trip planning.

2. Budget tracking is automated for clear, fair, and stress-free expense management
(Addressing problem#2)

The integrated budget module enhances the travel experience by combining budget estimation
and expense management into a single, automated feature. Before a trip, the system provides
travellers with realistic budget ranges tailored to their destination, trip duration, and group size,
helping them plan with confidence. During the trip, it automates expense tracking and
eliminates the need for manual calculations, which are often error-prone and tedious. It offers
users a comprehensive overview of both individual and shared expenses, improving
transparency and promoting equitable financial coordination among group travellers. The
system enables users to add, edit, categorise, and split expenses seamlessly within the
application, while also supporting the upload of receipts for better accountability. Additionally,
real-time budget monitoring with automated alerts notifies users when they are nearing their
spending limits, allowing them to adjust their plans proactively. This holistic approach ensures
that travellers not only start with reliable budget guidance but also maintain ongoing financial

control, resulting in a more streamlined, accurate, and stress-free travel experience.

3. Flexible substitution enhances adaptability and user satisfaction (Addressing
problem#3)

The itinerary module enhances the travel experience by giving users the flexibility to substitute

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

recommended places with suitable alternatives when their first choice is unavailable,
overcrowded, or less appealing. Instead of forcing travellers to manually search for
replacements, the system automatically suggests nearby and high-quality options that fit
seamlessly into their existing route. This ensures that plans remain practical, enjoyable, and
aligned with individual preferences, even when unexpected situations arise. By maintaining
itinerary coherence while still offering choice, the feature empowers travellers with greater
control, reduces the stress of last-minute adjustments, and creates a more personalised and

resilient travel experience.

1.5 Report Organization

The details of this research are organized into the following chapters. Chapter 2 reviews
algorithm used and existing travel planning and recommendation systems, highlighting their
features and limitations. Chapter 3 presents the system design, including UML diagrams, the
methodology adopted, the project timeline, the development tools utilized, discussion of the
implementation issues and challenges encountered, and implemented algorithms and
technologies. Chapter 4 showcases Blackbox testing, Client Satisfaction Survey Analysis,
Results and Benchmark ,Objectives Evaluation and Concluding Remark . Finally, Chapter 5

provides the conclusion, summarizing the project objectives achieved.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Chapter 2

Literature Review

2.1 Algorithm
2.1.1 Collaborative Filtering (CF)

Collaborative Filtering (CF) is a core technique in recommender systems that generates
personalized suggestions by exploiting the collective behaviors and preferences of users. It
operates on the principle that individuals with similar past interactions are likely to share future
interests, typically by analyzing user—item interaction data such as ratings, clicks, or purchases
[5].

2.1.1.1 Strengths

A key strength of CF is that it does not require explicit knowledge of item attributes, making it
broadly applicable across different domains. It is capable of uncovering hidden patterns in user
behavior and providing serendipitous recommendations, often introducing users to items they
might not have actively searched for but are valued by similar peers. This “social proof” aspect
enhances user trust and engagement, while advanced model-based approaches such as matrix
factorization improve scalability and prediction accuracy by addressing sparsity in large
datasets [6], [7]. More recent developments like Neural Collaborative Filtering leverage deep
learning to capture complex non-linear relationships in user—item interactions, further boosting
recommendation quality [8].

2.1.1.2 Weaknesses

Nonetheless, CF faces several limitations. Memory-based methods are computationally
intensive and struggle to scale efficiently in large systems. They also suffer from the cold start
problem, where insufficient data for new users or items prevents reliable recommendations,
and data sparsity, where limited user interactions reduce the effectiveness of similarity
calculations [5], [6]. Even though model-based and neural methods mitigate some of these
challenges, they require significant computational resources and large datasets, making them

less practical for smaller-scale applications [7], [8].

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.2 Content-Based Filtering (CBF)

Content-Based Filtering (CBF) is a recommendation technique that generates suggestions by
analyzing the attributes of items and aligning them with a user’s established preferences, rather
than relying on the behavior of other users. The approach involves constructing a user profile
from the features of previously interacted items—such as genres, keywords, or authors—and
recommending new items that share similar characteristics. This makes CBF particularly
valuable in scenarios where collaborative data is limited, as it can still provide
recommendations without requiring overlapping preferences among multiple users. A common
example is in news recommendation systems, where the topics and keywords of articles a user
has read are leveraged to suggest other articles with related themes [9].

2.1.2.1 Strengths

The strengths of CBF lie in its ability to address the new item cold start problem and its
provision of highly personalized recommendations. Since the system depends on item metadata
rather than user ratings, it can immediately recommend new content once descriptive attributes
are available, regardless of whether other users have interacted with it. This independence from
collective user data allows the system to tailor suggestions closely to an individual’s tastes
while also offering potential privacy advantages, as the recommendations are derived solely
from the user’s own profile [10].

2.1.2.2 Weaknesses

However, CBF also has significant drawbacks. One major limitation is the reduced diversity
of recommendations, as the system tends to repeatedly suggest items similar to those already
consumed, which can create a “filter bubble” and limit opportunities for serendipitous
discovery. Additionally, the accuracy of recommendations is highly dependent on the quality
and richness of item metadata; if the descriptive features are incomplete or poorly structured,
the system’s ability to construct meaningful profiles and generate relevant suggestions is

weakened [10].

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

CHAPTER 2

2.1.3 Jaccard Similarity
Jaccard similarity, also referred to as the Jaccard index or Intersection over Union (IoU), is a
statistical measure used to evaluate the similarity between two sets. It is calculated as the ratio

of the intersection to the union of the sets, expressed mathematically as

|A N B|
|A U B|

J(A,B) =
. The coefficient ranges from 0 to 1, where a value of 1 indicates complete similarity and 0
indicates no overlap [11]. Owing to its simplicity and intuitive interpretation, the Jaccard index
has been widely applied in diverse fields such as gene sequence analysis in bioinformatics,
document comparison in text mining, and object detection in image processing.
2.1.3.1 Strengths
A key strength of the Jaccard similarity measure is its ease of interpretation and suitability for
sparse data environments. Unlike frequency-based metrics, it relies solely on the presence or
absence of elements, making it particularly useful for applications such as analyzing user
preferences through shared items or evaluating common tags across web pages [12]. The
straightforward computation, bounded range, and emphasis on shared elements rather than
dataset size provide a clear and reliable means of assessing set overlap.
2.1.3.2 Weaknesses
Nevertheless, the measure is not without drawbacks. One limitation is its sensitivity to
disparities in set size, which can distort results when comparing significantly imbalanced
datasets. Additionally, it disregards the frequency of elements, treating single occurrences the
same as multiple ones, thereby limiting its effectiveness in contexts where frequency carries
meaningful weight compared to alternatives such as cosine similarity. Another issue is the
“empty set problem,” where the metric becomes undefined if both sets contain no elements
[13]. These challenges highlight the need for careful dataset evaluation before employing the

Jaccard coefficient.

2.1.4 Weighted Averaging
Weighted averaging expands on the basic arithmetic mean by allowing different levels of
importance to be assigned to individual data points. The weighted average of a set of values
{X1, X2, ..., Xn} With associated weights {w1, w, ..., Wn} 1s calculated as:

WA = (X" wixi) / (=™ Wi)

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

CHAPTER 2

2.1.4.1 Strengths

The strength of weighted averaging lies in its ability to normalize contributions, integrate
multiple factors, and maintain proportional influence across components.The denominator
ensures the weights are normalized. This method enables the integration of multiple factors
while maintaining the proportional influence of each component [14].By assigning suitable
weights, each data point contributes according to its significance, resulting in more accurate
and meaningful outcomes—especially when factors such as cost, convenience, or user ratings
vary in importance during trip planning [14].Additionally, down-weighting extreme or less
reliable values minimizes the effect of outliers, producing more robust recommendations and
enhancing the reliability of aggregated outputs [15]. Furthermore, Weighted Averaging is
flexible and applicable across contexts, from expert-based risk evaluation in tourism to multi-
criteria decision-making in travel planning. Beyond tourism, it is widely used in domains such
as finance, engineering, and analytics due to its adaptability [16].

2.1.4.2 Weaknesses

However, assigning weights can introduce subjectivity, as they may be determined through
expert judgment, user feedback, or algorithmic estimation. Poorly justified weights risk
embedding bias into the results, thereby reducing their reliability [17]. Furthermore, even minor
adjustments to weights or input data can significantly alter the aggregated output, leading to
unstable or hard-to-interpret results, particularly in dynamic settings where preferences and

data quality vary over time [15].

2.1.5 2-Opt Heuristic for the Traveling Salesman Problem

The Traveling Salesman Problem (TSP) represents one of the most fundamental combinatorial
optimization problems in computer science, seeking to find the shortest possible route that
visits each city exactly once and returns to the origin city. Due to its NP-hard nature, exact
algorithms become computationally intractable for large instances, necessitating the
development of efficient heuristic approaches. Among these heuristics, the 2-Opt algorithm
stands out as one of the most widely adopted local search techniques for TSP optimization,

offering an excellent balance between solution quality and computational efficiency.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

CHAPTER 2

The 2-Opt heuristic is a classic local-search method for the Euclidean Traveling Salesman
Problem (TSP): starting from any tour, it repeatedly replaces two edges replace
(u, v), (w, z) with (u, w), (v, z) whenever this shortens the tour, and stops at a 2-optimal tour
where no such improving swap exists. Equivalently, a tour T is 2-optimal if for every two edges
appearing in order (w,v),(w,z) on T it holds that d(u,v)+dw,z) <d(u,w)+
d(v, z)(otherwise a 2-opt move improves the tour). Kiinnemann and Manthey formalize the
quantities TSP(X) (length of an optimal tour) and 20PT (X) (length of the worst 2-optimal
tour) for a point set X < [0,1]%, and study the smoothed approximation behavior of 2-Opt when
adversarial instances are perturbed by small Gaussian noise with standard deviation o [18].
2.1.5.1 Strengths

Although 2-Opt has weak worst-case guarantees, the paper explains part of its good empirical
behavior via smoothed analysis: they prove an upper bound of e?(108(1/0))

on the smoothed approximation ratio 20PT (X) /TSP (X). This bound is strictly better than the
O(log n) worst-case guarantee when the perturbation is not vanishingly small (e.g., when
1/0 < (log n)¢ for some constant ccc). A key technical novelty is that, rather than bounding
the global optimum and a local optimum on different instances, they simultaneously bound
both on the same perturbed instance—yielding a more realistic explanation of why modest
measurement noise can eliminate pathological configurations. They also note that the insights
transfer to a one-step perturbation model (bounded densities), underscoring that the
conclusions are not tied to a single noise model [18].

2.1.5.2 Weaknesses

The authors emphasize that 2-Opt’s worst-case behavior remains poor: its approximation ratio
is O(lo g n) with an almost matching lower bound 2(lo gn /lo gl o g n), and even its worst-
case running time can be exponential (already in d = 2). Moreover, the lower-bound gap is
robust to small noise: they show the 2(logn /loglogn) phenomenon persists under
Gaussian perturbations of size ¢ = 0(1/+/n). They further caution that their analysis bounds
the worst local optimum, which need not be the one reached in practice, and that real systems
typically start from constructive heuristics (e.g., nearest-neighbor or insertion); indeed, even
with a nearest-neighbor initialization, 2-Opt can still return a logarithmically worse 2-optimal
tour with constant probability on perturbed inputs. Analyzing the smoothed approximation with
realistic initializations is left as an open problem, so the theory does not fully explain all

empirical successes [18].

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

CHAPTER 2

2.2 Existing Travel Management System

2.2.1 Budget and Experience Based Travel Planner

The "Budget and Experience Based Travel Planner," proposed by Suwarno and Maziya
Azelicha Ayana[19], is an advanced tool intended to assist travellers in organising vacations
that match to their financial limitations while maintaining the quality of their experiences. This
system utilises a combination of sophisticated routing algorithms, collaborative filtering, and
web scraping to suggest itineraries that achieve optimal cost and user experience. This
technology resolves the issue faced by budget-conscious users in identifying the most
economical travel routes by leveraging data aggregated from multiple web sources. The system
extracts data from travel-related websites utilising libraries such as BeautifulSoup and
Selenium, collecting information including location coordinates, ratings, reviews, and
displayed visit durations. This data supports the recommendation engine, which utilises
collaborative filtering to propose locations that correspond with the user’s interests and
financial constraints. The system includes a routing algorithm that optimises the sequence of
visited locations, minimising the overall distance travelled and thereby lowering travel
expenses. Furthermore, the scheduler algorithm guarantees that the travel itinerary is

compatible with the user's budget and time constraints by dynamically modifying it as required.

2.2.1.1 Strengths

The Budget and Experience Based travel Planner excels in delivering tailored and economical
vacation suggestions, especially for those mindful of their expenses. The system employs web
scraping to collect comprehensive data from diverse internet sources, enabling the
customisation of travel plans according to individual preferences, budgetary limitations, and
time restrictions [20]. This data-driven personalisation guarantees that travellers obtain up-to-
date recommendations that correspond with their specific requirements. The system's
incorporation of Collaborative filtering and the Haversine formula enables it to suggest both
the most relevant destinations and the most economical routes connecting them [21]. This
method effectively integrates budgetary factors into travel planning, guaranteeing that users
receive the most economical choices without sacrificing the quality of their experience.
Furthermore, this system incorporates an intelligent budget allocation mechanism that
dynamically distributes the user-defined travel budget across key categories such as
accommodation, food, transportation, and activities. This feature ensures that all recommended

places and itinerary components remain financially feasible, reducing the risk of overspending.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

CHAPTER 2

2.2.1.2 Weaknesses
Nonetheless, despite these advantages, the system has certain obstacles and restrictions. A

significant restriction is the reliance on web scraping to collect data from Google Travel and
Google Maps. This approach has the potential to produce valuable information; however, it is
susceptible to inconsistencies because of modifications to website structures or restrictions on
scanning. This poses the risk of acquiring incomplete or outdated data, thus compromising the
dependability of the suggestions. Additionally, the collaborative filtering technique, despite its
effectiveness, also poses obstacles. It experiences the cold-start problem, wherein new users
with minimal data obtain imprecise recommendations. Moreover, collaborative filtering
depends on extensive datasets to provide significant outcomes, posing a problem when the
sample is limited or incomplete [19]. Another key limitation is the absence of a budget
estimation range, which leaves users uncertain about realistic spending expectations and
increases the likelihood of overspending or underplanning. Similarly, the system lacks
flexibility in selecting alternative choices; once an activity or location is unavailable or
unsuitable, users are forced to manually search for replacements, often disrupting the itinerary
flow. Furthermore, the routing algorithm, while proficient at reducing trip distances, exhibits a
degree of inflexibility. It concentrates on distance at the expense of other critical factors,
including traffic, transportation modes, and user preferences. In real-world scenarios where

conditions can alter dynamically, this simplistic approach may not provide optimal routes.

2.2.1.3 Solution to solve weaknesses
There are various ways to improve the Budget and Experience Based Travel Planner in order

to overcome its constraints. To mitigate dependence on web scraping for data collection, using
APIs as a replacement or supplement would enhance data reliability. APIs from reputable travel
platforms such as Google Places or TripAdvisor would deliver current, organised data on
destinations, reviews, and ratings [22]. This would guarantee the system’s accuracy and avoid
the constraints of online scraping, including outdated information or modifications in website
architecture.

Furthermore, to mitigate the shortcomings of collaborative filtering, a hybrid recommendation
system integrating both collaborative filtering and content-based filtering may be employed
[23]. Content-based filtering utilises destination qualities such as tags, ratings, and reviews to

recommend locations, especially for new users with inadequate history data. This would help

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

CHAPTER 2

reduce the cold-start issue by providing personalised recommendations despite insufficient user
data.

In addition, to address the absence of a budget estimation range, an integrated budget
estimation module can be introduced. By analysing historical spending patterns, destination
costs, and inflation adjustments, the system can provide users with realistic budget ranges
before travelling. This would enable travellers to plan more effectively, avoid overspending,
and improve financial confidence during their trips.

To overcome the lack of flexibility in selecting alternative choices, a similar-place substitution
feature can be implemented. This feature would leverage geographic filtering to suggest
feasible alternatives within a nearby radius and apply quality thresholds such as ratings and
reviews to maintain recommendation standards. This ensures that itineraries remain adaptable
and user-friendly even when original locations are unavailable, unsuitable, or less appealing.
Finally, enhancing the routing algorithm to incorporate real-time variables such as traffic
conditions, modes of transportation, and user preferences would render the system more
flexible. This would provide more effective route planning that prioritises user convenience

and travel satisfaction, rather than merely minimising distance.

2.2.2 Wanderlog

Wanderlog, introduced in 2019, is an all-encompassing holiday planning application that
prioritises user-friendly features. It enables users to plan and track itineraries, investigate
places, and effectively oversee travel expenditures. The Wanderlog Al Trip Planning Feature
tackles the difficulties identified in the problem statement. It streamlines the time-consuming
process of trip planning by producing automated itineraries according to user preferences,
assisting travellers in navigating the challenges of organising a trip, particularly when
unfamiliar with the area they are visiting [24]. The Al offers customised suggestions for
destinations, enabling customers to effectively assess alternatives without in-depth research.
By taking user budgets into account, the Al mitigates apprehensions regarding the discovery
of economical alternatives, enabling travellers to pinpoint affordable activities and lodgings
that align with their financial constraints. Furthermore, the Al's capacity to enhance travel
routes and modify recommendations according to user feedback alleviates the complexity and
frustration frequently linked to trip planning. The Al provides a more efficient, personalised
solution for travellers, directly tackling budget limitations, extensive research requirements,

and unfamiliarity with the specified places. Besides its planning functionalities, Wanderlog

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

CHAPTER 2

tackles the prevalent issue of handling shared spending during group excursions. The
application has an expense tracking feature that allows users to record and categorise all
expenditures, providing transparency during the journey [25]. Furthermore, real-time
collaboration enables all group members to rapidly edit and view shared spending, while the
multi-currency conversion tool facilitates the tracking of costs across many currencies for
foreign travellers. Collectively, these attributes establish Wanderlog as a comprehensive
solution for vacation planning and financial management.

2.2.2.1 Strengths

A notable strength of Wanderlog’s Al trip planner is the incorporation of an Al Travel Assistant
powered by ChatGPT, which markedly improves the trip planning experience [26]. This
chatbot facilitates an interactive planning process, enabling users to provide real-time feedback
and receive prompt modifications to their trip routes and itineraries. This degree of involvement
provides a more tailored and adaptable method, enabling users to customise their plans based
on their preferences, including modifying travel times, changing destinations, or incorporating
certain activities. The AI chatbot guarantees that the itinerary is customised to the user's
requirements and is flexible to accommodate any modifications or new concepts that may
emerge throughout the planning phase. This dynamic feature distinguishes Wanderlog by
enhancing the trip planning process to be more user-centric and adaptive, hence facilitating a
more fulfilling and pleasurable travel experience for users. Moreover, a principal advantage of
the comprehensive expense tracking solution is its cost splitting functionality, which facilitates
seamless division of expenses among group members, thereby obviating manual calculations
and minimising confusion regarding financial obligations. Furthermore, Wanderlog’s real-time
collaboration feature enhances its utility for group travel by allowing all participants to
promptly update and access shared charges. This guarantees that all parties are aware of current
expenses, promoting transparency and reducing any misinterpretations. The multi- currency
conversion option is especially beneficial for international travellers, as it facilitates the
monitoring of expenses in several currencies, negating the necessity for external tools. The
thoughtfully crafted features establish Wanderlog as an effective and intuitive tool for travel

organisation and financial oversight.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

CHAPTER 2

2.2.2.2 Weaknesses

Nonetheless, the Wanderlog Al trip planner possesses notable deficiencies that could
negatively affect the planning experience for travellers. A significant disadvantage is the
absence of automated accommodation recommendations during route planning. The Al
efficiently generates and modifies travel itineraries but does not offer hotel alternatives along
those routes. This limitation requires users to actively search for and incorporate
accommodations themselves, which can be laborious and inconvenient, particularly for
individuals unfamiliar with the destination.

Furthermore, the Al lacks integration of weather forecasting, an essential component of trip
planning, especially for outdoor activities. In the absence of integrated weather forecasts, users
are compelled to depend on external sources to check weather conditions, hence complicating
the planning process. This constraint can be especially exasperating for travellers who must
manually modify their itinerary due to weather fluctuations.

Another weakness is the absence of budget estimation and allocation features. The system does
not provide users with an initial budget range for their destination, nor does it allow allocation
of budgets across categories such as accommodation, food, and transportation. Without these
functions, travellers risk overspending or underestimating costs, reducing their confidence in
financial planning. Additionally, there are no spending alerts to notify users when they
approach or exceed their budget thresholds.

Lastly, Wanderlog does not offer a similar-place substitution feature. When recommended
places are unavailable, overcrowded, or less appealing, users must manually search for
alternatives. This lack of flexibility can result in rigid itineraries that fail to adapt to real-world
conditions, reducing personalisation and overall satisfaction.

These deficiencies highlight opportunities for enhancing the Al trip planner into a more
comprehensive, adaptive, and user-centric system that addresses accommodation, budgeting,

weather-aware planning, and substitution flexibility.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

CHAPTER 2

2.2.2.3 Solution to solve weaknesses

To rectify the absence of automatic hotel recommendations, the Al trip planner can be
improved by incorporating a feature that suggests lodging options along the designated route.
By providing recommendations based on criteria such as budget, location, and amenities, users
would enjoy a more streamlined experience, enabling them to organise their entire trip,
including accommodation, within the same platform.

The lack of weather forecasting integration can be addressed by embedding a weather-aware
feature directly into the trip planning process. By analysing forecasted conditions, the planner
could automatically arrange outdoor activities on suitable days and suggest indoor alternatives
when adverse weather is expected. This would give users greater confidence and minimise
disruptions caused by unexpected conditions.

To overcome the absence of budget allocation and alert functionalities, the system can be
enhanced by allowing users to set budget limits across categories such as accommodation, food,
and transport. Real-time notifications could then alert users when expenses approach or exceed
these limits, helping them maintain financial control and reduce the risk of overspending.

In addition, the lack of a budget estimation feature can be solved by providing users with an
estimated spending range for their destination before travel. This would help travellers plan
more effectively, set realistic expectations, and improve financial confidence.

Finally, the absence of a substitution feature can be addressed by introducing a similar-place
replacement option. When a recommended location is unavailable, overcrowded, or less
appealing, the planner could suggest nearby alternatives of comparable quality, ensuring

itineraries remain flexible, practical, and satisfying for the user.

2.2.3 TripAdvisor

TripAdvisor is a platform that provides several services in the travel industry, mostly focused
on user-generated ratings and suggestions. Users engage on the platform by sharing their
experiences, offering ratings, and commenting on various locations or tourist attractions
globally. Established in February 2000 as a travel search engine, TripAdvisor has evolved into
one of the largest online travel platforms, significantly influencing the travel industry [27].
TripAdvisor's developers have addressed the obstacles encountered by budget-conscious
travellers and those unfamiliar with their destinations by incorporating Al-driven trip planning

via the "Trips" function. This solution assists travellers in navigating the daunting task of

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

CHAPTER 2

planning an economical trip by offering tailored suggestions for accommodations, dining, and
activities [28]. The AI leverages user preferences, budgetary constraints, and historical
behaviour to propose customised choices, thereby considerably minimising the necessity for
exhaustive research. The Al sifts through extensive data, encompassing over 8 million
locations and more than one billion traveler ratings, to deliver the most pertinent and
economical options. Furthermore, users can preserve their selected preferences on a
personalised map, facilitating enhanced visualisation and organisation of their journey. By
automating the recommendation process, the Al assists users in making educated selections,
hence mitigating the risk of poor choices and unforeseen expenses. This tailored method not
only conserves time but also guarantees that travellers adhere to their budget while enhancing
their overall experience. TripAdvisor has incorporated many transportation-related
functionalities to assist consumers in planning their journeys. The platform enables users to
search for flights and vehicle rentals while comparing prices from many booking providers.
TripAdvisor consolidates transit options from several platforms, enabling travellers to view an
extensive array of possibilities [29]. The application evaluates several airlines, fare classes, and
durations, enabling users to discover bargains and make informed choices regarding trips.
Moreover, TripAdvisor features evaluations and recommendations from fellow travellers,
which may occasionally provide insights into economical transit options [29]. Nevertheless,
although the platform provides a thorough summary of available services, it is deficient in
functionalities for controlling group travel expenses and lacks detailed, localised suggestions
for specialised, budget-friendly experiences. Notwithstanding these constraints, the platform's
consolidation of services, together with user-generated content, continues to be a valuable

resource for travellers seeking assistance with many facets of their trip planning.

2.2.3.1 Strengths

TripAdvisor's Al-driven trip planning solution possesses numerous significant advantages in
tackling the difficulties faced by budget-conscious travellers and individuals unfamiliar with
their destinations. The personalised recommendations feature customises choices according on
user preferences, budget, and historical behaviour, facilitating the process for travellers to
discover pertinent possibilities without extensive study. This directly tackles the problem of
excessive information by sifting through extensive data to offer only economical options that
align with the user's requirements. Moreover, the capacity to depict these stored locations on a

personalised map significantly improves the planning process, enabling users to systematically

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

CHAPTER 2

arrange routes and supplies. The capability to exchange and agree on travel itineraries
streamlines group travel, minimising planning difficulties and assuring consensus on essential

decisions.

2.2.3.2 Weakness

Nonetheless, there are specific limitations to the proposed solution. The inability of the
artificial intelligence to incorporate real-time weather predictions in planning trips is a major
limitation. Because of this shortcoming, tourists can inadvertently schedule outdoor activities
on days with unfavorable weather conditions, like excessive rainfall or extreme temperatures,
and thus incur delays and compromise the quality of the trip as a whole. If weather conditions
are not taken into consideration, the artificial intelligence may suggest destinations or travel
plans that are not possible during certain seasons, thereby lowering the reliability and flexibility
of the suggestions.

TripAdvisor's primary deficiency in transportation planning for budget-conscious travellers is
its inadequate support for multimodal transit alternatives. Multimodal transportation denotes
the integration of various transport modalities—such as aircraft, buses, trains, ferries, and ride-
sharing services—to formulate a more economical or comfortable travel itinerary. This
flexibility is essential for budget-conscious consumers, enabling them to discover more
economical routes by utilising many forms of transportation instead of depending exclusively
on a single way, such as direct flights.

Another notable weakness is the absence of budget estimation and allocation features.
TripAdvisor does not provide users with an estimated spending range for destinations, nor does
it allow them to assign budgets across categories such as accommodation, food, and transport.
Without these tools, travellers may overspend, underestimate costs, or struggle to manage their
finances effectively during a trip.

Finally, the system lacks a similar-place substitution feature, meaning users cannot easily
replace unavailable, overcrowded, or less suitable locations with relevant alternatives. This
limitation reduces itinerary flexibility and personalisation, as travellers must manually search

for replacements, often disrupting the overall flow of their plans.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

CHAPTER 2

2.2.3.3 Solution to solve weaknesses

The website can integrate seasonal trends and real-time weather information into the
recommendation system to counter the problem of trip planners failing to account for weather.
By incorporating precise forecasting and climatic information, TripAdvisor can help
consumers make more informed decisions regarding the ideal time to visit particular
destinations or organise specific activities. Allowing tourists to avoid delays caused by bad
weather and making their schedules both productive and enjoyable would also enhance the
entire planning process.

To address TripAdvisor's deficiency in accommodating multimodal transit alternatives, the
platform may include a comparison tool that assesses routes based on transfer frequency and
walking lengths. This system could autonomously propose combinations of transport
modalities customised to customers' preferences, such as utilising trains followed by local
buses or bike-sharing services. By incorporating these alternatives, TripAdvisor would
augment its services for travellers, granting enhanced control and flexibility, hence refining the
planning experience for users in pursuit of effective and convenient travel solutions.

In addition, the absence of budget estimation and allocation features can be resolved by
integrating a budgeting module that provides travellers with estimated spending ranges before
travel and allows them to allocate funds across categories such as accommodation, food, and
transportation. Adding real-time budget alerts would further improve financial control, helping
users avoid overspending and increasing their confidence in managing expenses.

Finally, the lack of a similar-place substitution feature could be overcome by enabling the
system to recommend alternative locations when the original choices are unavailable,
overcrowded, or less appealing. By suggesting nearby and relevant options, TripAdvisor could
ensure itineraries remain flexible, personalised, and practical, reducing the effort required from

users to manually adjust their plans.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

CHAPTER 2

2.3 Comparision of existing travel management system above and the proposed system

ExploreEasy
Features Budget and | Wanderlog TripAdvisor ExploreEasy(The
Experience proposed system)
Based Travel
Planner
Al-Generated Yes Yes Yes Yes
Itineraries
Personalized Yes Yes Yes Yes
Recommendations
Expense Tracking | Yes Yes No Yes
Automatic No No Yes Yes
Accommodation
Suggestions
Weather Prediction | No No No Yes
Integration
Allow Budget | Yes No No Yes
Allocation
Alert User when | No No No Yes
Budget nearly
exceed
Budget Range | No No No Yes
Estimation
Similar-place No No No Yes
substitution feature

Table 2.3 Comparison of feature of other existing system to proposed system

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

CHAPTER 3

Chapter 3
System Methodology/Approach

3.1 Methodologies and General Work Procedures

In this project, the methodology that will be used is Agile Methodology as software
development on mobile devices is a perfect fit for agile. Agile methodologies use an iterative
approach to quickly develop software, breaking down the entire software development
lifecycle into smaller iterations. This reduces overall risk, enables quick adaptation to changes,
eliminates the need for an upfront requirements freeze, and keeps the project on track and
within budget. This methodology can be categorized into 6 phases, which are Concept,

Inception, Development, Testing, Release, and Maintenance.

1. Concept
This phase involves defining the project's objectives and scopes such as the Al- driven trip
planning and recommendation system, budget estimation and management feature and

flexibility on choosing alternative places.

2. Inception

Finding every feature that can be included in this application is crucial during the inception
stage. For example, the primary function, which is the Al-driven trip planning and
recommendation system, should be prioritized. Furthermore, I have chosen Dart as the most

suitable programming language and Flutter framework to complete my project.

3. Development

This phase will be the longest phase as all of the functions are needed to be completed during
this phase, especially the main feature which is the Al-driven trip planning and
recommendation system. For the other additional functions which are budget estimation and
management feature, and flexibility on choosing alternative places will be completed

iteratively after completion of the main feature.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

CHAPTER 3

4. Testing
The testing phase is conducted along with development phase. For example, the Al-driven trip

planning and recommendation system is tested to ensure it matches user preferences.

5. Release
After completing development and testing all features, the application will be ready to release.

Any comments or feedback from user will be collected for further improvement.

6. Maintenance
During the maintenance phase, users will receive a fully developed travel management
application. Users' issues will be fixed during this stage to guarantee that every function is

operating as intended.

3.2 Review of Technologies
3.2.1 Hardware Platform

The hardware involved in this project is computer and android mobile device.

Description Specifications

Model VivoBook ASUSLaptop X513UA M513UA

Processor AMD Ryzen 7 5700U with Radeon Graphics, 1801 Mhz,
8 Core(s), 16 Logical Processor(s)

Operating System Windows 10

Graphic AMD Radeon Graphics

Memory 8.00 GB

Storage 475 GB

Table 3.2.1 Specifications of laptop

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

CHAPTER 3

3.2.2 Operating System

This project is developed and tested on Windows 10, the primary operating system
environment chosen due to its stability, compatibility, and developer support. Windows 10
provides a reliable platform for running essential development tools such as Flutter SDK,
Android Studio, and Firebase integration utilities, all of which are crucial for building and
testing the Al-driven travel management system.

By offering strong hardware driver support and compatibility with a wide range of frameworks,
Windows 10 ensures smooth execution of emulators and debugging tools required for mobile
app development. Its built-in features such as Windows Subsystem for Linux (WSL) and
Hyper-V also allow flexibility for testing and virtualisation when needed. Furthermore,
Windows 10’s integration with cloud services (e.g., OneDrive) and its frequent updates
enhance both security and performance, ensuring that the development environment remains
up-to-date and protected.

In the context of this project, Windows 10 acts as the backbone operating system where all
project activities—from coding and testing to documentation—are carried out. Its widespread
adoption and support ecosystem make it a dependable choice for ensuring smooth project

execution and consistent results.

3.2.3 Database

Firebase is a cloud-based platform by Google that provides a NoSQL database through Cloud
Firestore, enabling real-time data storage and synchronisation. In this project, Firebase is used
as the primary database to manage user profiles, trip details, expenses, budgets, and itineraries.
Its real-time updates allow changes such as expense tracking or trip adjustments to be instantly
reflected across devices, ensuring a smooth and collaborative experience for group travellers.
With built-in support for authentication and scalability, Firebase offers a secure, efficient, and

reliable database solution for the Al-driven travel management system.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

CHAPTER 3

3.2.4 Programming Language

This project primarily uses Dart, the programming language developed by Google, which
serves as the foundation for the Flutter framework. Dart is an object-oriented, client-
optimized language designed for building fast and scalable cross-platform applications. One of
its main strengths is the ability to compile into native machine code, enabling high performance
on both Android and iOS devices, as well as supporting web and desktop platforms. Dart also
offers a clean syntax, asynchronous programming support through Futures and Streams, and
hot-reload functionality when used in Flutter, significantly improving development efficiency.
In the context of this project, Dart is used to implement the frontend and business logic of the
Al-driven travel management system. All user interface components, trip planning workflows,
budget management features, and integration with Firebase services are developed using Dart
through Flutter. Its reactive framework allows for the creation of a modern and user-friendly
interface while maintaining seamless communication with the backend database and APIs. By
adopting Dart, this project benefits from a unified codebase, rapid prototyping, and
performance consistency across platforms, making it an ideal choice for delivering a smooth
and reliable user experience.

3.2.5 Summary of the Technologies Reviewed

In summary, the technologies selected for this project provide a robust and reliable foundation
for developing the Al-driven travel management system. The hardware platform, consisting of
an ASUS VivoBook laptop and an Android mobile device, offers sufficient processing power,
memory, and storage capacity to support development, testing, and deployment. The Windows
10 operating system ensures stability, compatibility, and developer support, enabling seamless
execution of tools such as Flutter SDK, Android Studio, and Firebase integration utilities. For
data management, Firebase serves as the cloud-based database solution, offering real-time
synchronisation, scalability, and secure storage of user, trip, and budget-related information.
Finally, Dart is adopted as the primary programming language, enabling the implementation
of a cross-platform application through the Flutter framework, ensuring efficient development,
performance consistency, and a modern user experience. Collectively, these technologies align
to support the project’s objectives of delivering a smart, adaptive, and user-centric travel

planning system.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

CHAPTER 3

3.3 System Design Diagrams
3.3.1 Block Diagram

!
8]
W

./ \‘
Traveler:

Android App)\
K

¥) : Y
i i

£]

£]
Booking Management

Trip Planning Itinerary Management

Core Servicesx

¥
in

Expense Tracking

EW

Notifications Authentication

=
Real-time Sync

v Firebas}sgﬂ i/

subcollection subcollection / subcollection subcollection

itinerary expenses bookings weather notifications

El ‘

E ‘

‘ places

Figure 3.3.1 Block Diagram

The block diagram presents the system architecture of the Android-based travel management
application, organized into five layers: users, application features, core services, database, and
external APIs. At the top level, travelers are the end-users who directly interact with the
Android app. The app is designed around four core features: Trip Planning, which allows users
to specify destinations, dates, budgets, and preferences; Itinerary Management, which
structures travel schedules and integrates with weather data to guide activity planning; Expense
Tracking, which records transactions, manages group cost splitting, and connects with
notifications to alert users when budgets are exceeded; and Booking Management, which
handles accommodation reservations and uses real-time synchronization to keep all
collaborators updated on booking status. Supporting these features are the Core Services, which
operate in the background: Authentication secures user identity and controls access to shared

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

CHAPTER 3

trip data; Notifications deliver real-time alerts about expenses, bookings, and updates; and
Real-time Sync ensures that booking inventory is updated immediately and expenses made and
paid will be updated for group travelers too.

All data is persistently stored in Firebase Firestore, structured into top-level collections
including users, trips, areas, and places. Within each trip document, specialized subcollections
store related data such as itinerary, expenses, bookings, weather, and notifications. The areas
collection also contains a places subcollection with detailed location attributes such as ratings
and categories. To extend beyond core functionality, the system connects to external APIs. The
Weather API provides forecast data to support itinerary planning, while the Google Places API
enriches trip planning by supplying place details and recommendations. The arrows in the
diagram illustrate data flows: expense tracking connects to notifications to trigger alerts,
booking management connects to real-time sync for updates, and both itinerary management
and trip planning connect to external APIs. Overall, the block diagram demonstrates how user-
facing features, background services, database organization, and external integrations are

coordinated to deliver a secure, collaborative, and intelligent travel management solution.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

CHAPTER 3

3.3.2 Use Case Diagram

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

CHAPTER 3

Travel Management System
| Upaate Profile |)\
e .- Autentication
_.<<include> Firebase
3 Autentication
Login |
View ltinerary
Hybrid Area
Recommendation
Weather
API

" <cinctudes» ¥ Gt altemative places
T cinciuces>
‘camiudens Optimize route
n

Register

(it nerary),
<cincudes> Places API
Update Trip
Details
Notify User if budget
early exceed
.<sm Bu duel). .
— e <cinciuges
“include>> ""Q‘ew Buagm> . \
.

Update data

into Firebase
Real time
Firebase

<<include=>

¢ Update Budge! eancder”
_ Detais _/

tify User if booking
tatus is PENDING

Print Booking
Confirmaion PDF,

Manage
(Accommodation| wsincludes>- -
Booking

View Collaborator
List

Add
¥\ Collaborator,

User
Collaborator

<cinciudess "

<sinclude=>

ssinghide>>

Manage

Add
Expenses
<cinclude>>
Edit
Expenses_/<<include>>~

<anciudes>

<ot
kY Delete
Expenses

~ Notity Userif ™,
(creditor setiied up - <<extend>>-
*_the payment -

o cedtencs>
“Notify User if debtor .~
" made the payment.”

<<inclide>

Make Payment) __incige

View
Expenses Breakdowm H
chart H

i

ude>>

<<in

.
¢ ViewGroup
. Balances

Figure 3.3.2 Use Case diagram

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

CHAPTER 3

This Travel Management System use case diagram illustrates a comprehensive platform that
helps users plan, book, and manage their travel experiences while handling expenses and
budgets.

User Management and Authentication The system begins with basic user functionality where
users can register for accounts, log in, and update their profiles. The authentication process
connects to external services to verify user credentials, ensuring secure access to the platform.
At the core of the system is trip management functionality. Users can create new trips, view
existing ones, and delete trips they no longer need. The system provides intelligent features
like budget range estimation, hybrid area recommendations, and itinerary generation. Users
can view routes that are being optimized automatically, get weather forecasts for their
destinations, and receive automatic accommodation recommendations. The platform also
suggests alternative places and allows users to save trips with their complete itineraries.

The system handles the booking process by allowing users to book accommodations directly
through the platform. It manages booking statuses, sends confirmation notices when bookings
are pending, and provides booking confirmation PDFs. Furthermore, users can view their
booking details.

The platform supports collaborative trip planning where users can work together on trips. The
system manages collaborators by allowing owner to add, view, and remove collaborators from
their trips. Collaborators can accept or decline invitations and view itineraries for trips they're
involved in.

A robust expense management system tracks trip-related costs. Users can add, edit, delete, and
split expenses among travel companions. The system provides expense breakdowns, updates
account balances, and allows users to view group balances and settle expenses. Users receive
notifications when payments are made or when creditors need to be notified about expense
settlements.

The system connects to several external APIs to enhance functionality: a Weather API provides
forecast information, a Google Places API helps with location services and recommendations,
and a Real-time Feedback system keeps users informed about their trip status and updates.
This comprehensive system essentially serves as a one-stop solution for travelers, combining
trip planning, booking management, expense tracking, and collaborative features all in one

platform.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

CHAPTER 3

3.3.3 Activity Diagram
3.3.3.1 — Generate Trip

INPUT PARAMETERS:

- selectedAreas
- startDate, endDate
- budget
- numberOfTravelers
- selecledHotelLevel
- _selectedPlanStyle
- userAreaPicks

Input validation and
prerequisites check

RETURN "Please
select areas first!”

RETURN “Invalid
date or budget!”

startDate == null or endDate == null or budget <= 07

RETURN "No valid
data found!”

Calculate frip duration|
Configure plan style

Load and categorize
places from Firebase

no valid places or
accommodations?

Select hotel based on rating and
capacity

Retrieve weather
forecast

Map areas to days

and group places

Generate daily
itinerary with
optimization

Compute alternative
suggestions

Compile itinerary and
update Ul

Generate weather
alerts if rainy days
detected

Display Output

Figure 3.3.3.1 Activity Diagram — Generate Trip

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

CHAPTER 3

This activity diagram shows the "Generate Trip" process for a travel management system. The
process begins when a user provides input parameters including selected areas, start and end
dates, budget, number of travelers, hotel level preferences, plan style, and area picks. The
system first validates these inputs and checks prerequisites.

The flow then checks if any areas were selected. If no areas are chosen, the system prompts the
user to "Please select areas first" and ends the process. If areas are selected, the system validates
the dates and budget - if any are invalid (null dates or zero budget), it returns an error message.
When all inputs are valid, the system calculates the trip duration and configures the appropriate
plan style.

Next, the system loads and categorizes places from Firebase (likely a database of destinations
and accommodations). If no valid places or accommodations are found, it returns a "No valid
data found" message. However, if data is available, the system proceeds with the trip generation
by selecting hotels based on rating and capacity, retrieving weather forecasts, and mapping
areas to specific days while grouping places logically.

The system then generates a daily itinerary with optimization features, computes alternative
suggestions, and compiles everything into a comprehensive itinerary that updates the user
interface. Finally, it generates weather alerts for any rainy days detected during the trip period.
The output includes detailed daily names and points with route data, selected hotel information
with alternatives, alternative places like restaurants and attractions, trip prices stored in the
database, weather data and alerts, and UI widgets displaying the complete map and itinerary.

Use Case Description

Field Description

Use Case Name | Generate Trip

Actor User (Traveler)

Description System generates a personalized trip itinerary based on user preferences

including destinations, dates, budget, and travel style

Preconditions - User must be logged into the system
- User must have selected at least one travel area
- System must have access to places database (Firebase)

- Weather API must be accessible

Postconditions - Complete trip itinerary is generated and displayed

- Hotel recommendations are provided

- Weather alerts are generated if needed

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

CHAPTER 3

- Trip data is stored in database

- User interface is updated with trip details

Main Flow

1. User provides trip parameters (areas, dates, budget, travelers, hotel level, plan
style)

. System validates input parameters

. System calculates trip duration

. System configures plan style

2
3
4
5. System loads places from database
6. System selects appropriate hotels

7. System retrieves weather forecast

8. System maps areas to daily schedule

9. System generates optimized itinerary

10. System computes alternative suggestions
11. System compiles final itinerary

12. System generates weather alerts

13. System displays complete trip plan

Alternative

Flows

Alt 1: No areas selected - System prompts user to select areas first
Alt 2: Invalid dates/budget - System returns error message

Alt 3: No valid places found - System returns "No valid data found" message

Exceptions

- Database connection failure
- Weather API unavailable
- Invalid input parameters

- No accommodations available for selected criteria

Table 3.3.3.1 Use Case Description — Generate Trip

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

CHAPTER 3

3.3.3.2 — Automated Accommodation Suggestion

receive inputs

vabdate inpats

Set Ermor Messape Cakulate Trp Duration

Fetch Accommodations

Set Efmor Message
|

o

determine Rating Thresnold

Process each hotel

Skip holel

Largs Groug 5+

raveis <= 47

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Db

.

Select 1 asily ro0m
Price.tamiyPrice

Calculate singleRoomsNeeded and
singiePrice

‘Cakulate miked aangEmEnt
iotablrPrice = (lamiyPrice * familyAocees) « (segePrice
ngaioms)

Rank hotefs in descending arder

Set Ermor Message

-c..,....,.}

E—

1

validate Cooninales

Calcuiate Remainig Budget

Display Qupus

Figure 3.3.3.2 Activity Diagram — Automated Accommodation Suggestion
The accommodation selection process begins when the system receives and valiates input
parameters including selected travel areas, travel dates, number of travelers, hotel level
preference, and budget. After validation, the system calculates the trip duration by determining
the number of nights between the start and end dates, ensuring a minimum of one night even

for same-day bookings.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

CHAPTER 3

The system then retrieves hotel data from the database for all selected areas. If no hotels are
found in the specified locations, the process terminates with an appropriate error message.
Otherwise, the system proceeds to evaluate each hotel individually.

For each hotel, the system first checks whether the hotel's rating meets the requirements for the
user's selected hotel level. Hotels that don't meet the minimum rating standards are immediately
skipped. For qualifying hotels, the system will check inventory availability for the user’s
chosen dates. If it is available, the system then enters the smart room selection phase, which is
the core innovation of this process.

The room selection logic varies significantly based on group size. For small groups of 1-2
travelers, the system prioritizes single rooms as they are typically more economical. If a
suitable single room that meets both capacity and price requirements is available, it's selected.
If not, the system falls back to family rooms as an alternative. This approach ensures cost
optimization for smaller groups while maintaining flexibility.

Medium groups of 3-4 travelers follow a different strategy. The system directly looks for family
rooms that can accommodate the entire group. This eliminates the complexity of multiple room
bookings while ensuring everyone stays together. The family room must meet both capacity
requirements and the minimum price standards for the selected hotel level.

Large groups of 5 or more travelers require the most sophisticated processing. The system
calculates multiple room combination scenarios including all family rooms, all single rooms,
and mixed arrangements combining both room types. For each viable combination, it calculates
the total cost and cost per person. The system then selects the most economical option that can
accommodate all travelers while meeting quality standards.

Throughout the room selection process, the system validates that room prices meet the
minimum standards for the selected hotel level. This ensures that budget-conscious selections
don't compromise on quality expectations. Hotels or room arrangements that don't meet these
standards are excluded from consideration.

Once all suitable hotels have been identified and their optimal room arrangements determined,
the system ranks them by hotel rating. To provide variety and prevent predictable selections,
the system randomly chooses from the top-rated options rather than always selecting the
highest-rated hotel.

The final phase involves cost calculation and budget allocation. The system computes the total

accommodation cost based on the selected hotel and room arrangement, then determines how

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

CHAPTER 3

much budget remains for activities and other trip expenses. This information is crucial for the

overall trip planning process.

The process concludes by updating the trip itinerary with the selected hotel as the base location

and providing comprehensive output including hotel details, room arrangement, cost

breakdown, and budget allocation. This ensures that all subsequent trip planning activities can

reference the confirmed accommodation as the starting point for daily itineraries.

Use Case Description

Field

Description

Use Case Name

Automated Accommodation Suggestion

Actor

User (Traveler)

Description

System automatically suggests suitable accommodations based on user
preferences, location, budget, and availability, with options for booking and

alternative recommendations

Preconditions

- User must be logged into the system

- User travel preferences must be set

- Accommodation database must be accessible

- Location and date parameters must be provided

- Budget constraints must be specified

Postconditions

- List of suitable accommodations is generated
- Accommodation details are displayed to user
- Booking options are made available

- Alternative suggestions are provided if needed

- User selection is recorded in the system

Main Flow

1. System collects user accommodation preferences (location, dates, budget, type)
. System validates input parameters
. System searches accommodation database based on criteria
. System filters results by availability and budget

. System ranks accommodations by relevance and rating

2
3
4
5
6. System presents top accommodation suggestions
7. User reviews accommodation options

8. System provides detailed accommodation information
9. System offers booking functionality

10. System records user interaction and preferences

Alternative

Flows

Alt 1: No accommodations found - System suggests relaxing criteria or

alternative locations

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 3

Alt 2: Budget constraints too restrictive - System suggests budget-friendly
alternatives
Alt 3: Dates unavailable - System suggests alternative dates or similar properties

Alt 4: Location not supported - System suggests nearby supported areas

Exceptions

- Accommodation database unavailable
- Invalid location or date parameters

- Network connectivity issues

External booking system failures

- No accommodations match criteria

Table 3.3.3.2 Use Case Description — Automated Accommodation Suggestion

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

CHAPTER 3

3.3.3.3 — Budget Range Estimation

—i set fallback budget

?

{ Extract currentUserAreaDays from user }

selections

receive user inputs
calculate time range

query trips database

NO

set fallback budget

Initialize empty rows array

process each trips

Extract budget from trip data

budget > 07

YES]
Validate createdAt is within last
year

reatedAt valid and
recent?

extract trip data

[Check overspent J

overspent? |
NO|

calculate area similairity using jaccard similarity

baseSim > 0? No'
YES|

Add trip to rows

sufficient trips found?,

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

CHAPTER 3

o

Al A2

YES

{ Filter for exact matches

L

Calcu

late per person per
n|gm

F

ind percentiles

|]
e
|)
|]

filter outliers

[calculate unweighted mean}

Initialize weighted sum

process usedtrips

calculate Day weight

calculate Final weight

|)
|)
|)
|)
|)

update total weight

total weight zero?

[calculale weighted average}

» < ‘

[set budget estimate]

[return budget result]

o

Figure 3.3.3.3 Activity Diagram — Budget Range Estimation

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

CHAPTER 3

The activity diagram illustrates the process of estimating a suitable budget range for a user
based on previous trip data and user inputs. The process begins by extracting the user’s selected
areas and days, then receiving user inputs and calculating the trip’s time range. A query is
executed on the trips database, and if the query fails, the system falls back to a default budget.
If successful, the system initializes an array and processes each trip.

For each trip, the budget is extracted and validated to ensure it is greater than zero. The trip
creation date is then checked to confirm it falls within the past year. If valid, the trip data is
extracted, overspending is verified, and area similarity is calculated using Jaccard similarity.
Trips with a base similarity greater than zero are added into the collection. If insufficient trips
are found, the system again sets a fallback budget. Otherwise, it proceeds with detailed
filtering.

The system filters for exact matches, calculates the per-person-per-night (PPN) values, sorts
them, and determines percentiles. Outliers are removed, and a weighted sum process begins.
Each used trip is processed, calculating traveler weight, day weight, and final weight, which
are then combined into the total weight. Depending on whether the total weight is zero, the
system calculates either an unweighted mean or a weighted average. Finally, the budget
estimate is set and returned to the user as the result.

This workflow ensures that the budget estimation is data-driven, adaptive, and reflective of
recent, relevant trip information, with robust fallback mechanisms in case of insufficient or
invalid data.

Use Case Description

Field Description

Use Case Name | Estimate Budget Range

Actor User (Traveler)

Description The system estimates a realistic budget range for the user’s trip based on

previous trips stored in the database, user selections, and similarity

analysis.

Trigger User selects trip details (area, days, inputs) and requests a budget
estimate.

Preconditions | - User inputs (area, days, travelers) must be available.

- Trips database must be accessible.

- Past trips with valid budget data exist (else fallback applies).

Postconditions | - Budget range estimate is generated.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

CHAPTER 3

- If insufficient data, fallback budget is returned.

- Budget estimate is displayed to the user.

Main Flow

O 00 3 N »n b~ WD

1.

Extract user area, days, and inputs.

. Calculate trip time range.

. Query database for past trips.

. Process each trip (validate budget, date, overspending).
. Calculate area similarity using Jaccard.

. Collect valid trips and filter exact matches.

. Calculate per-person-per-night(PPN) values.

. Remove outliers and apply weighted calculations.

. Estimate and return final budget.

Alternative

Flow

- 3a. Query fails — set fallback budget.
- 5a. No sufficient trips — set fallback budget.
- 8a. Total weight = 0 — calculate unweighted mean instead of

weighted average.

Exceptions

- Trips with budget < 0 are ignored.
- Trips older than 1 year are excluded.

- Overspent trips are discarded.

Table 3.3.3.3 Use Case Description — Budget Range Estimation

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

CHAPTER 3

3.3.3.4 — Get Alternative Places

e ~
. N
<_same as selecled? >
~F e

. -

receivelnputParameters

determinePlaceType

initialize SearchSetlings

-
<~ placeTyp
‘\‘\ “attraction”

{ addDistanceMetadata]

addToAltemnatives

-
e .
< aiready selected? > P.s—P{ skipPlace
[skipHotel } ~ J //)_y o
.

no - restaurant/shop

[checkSameCategory] { calculateDistance]

7 ‘L‘\\
7 o checkWithinRadius
<;: same category? :>

~ -
~
*—nnj—y&;
[skipPlace } [calculateDistance }

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

CHAPTER 3

L) =)
ES

Y

[Filter for exact matches]

Calculate per person per
day

Sort PPD values
Find percentiles

filter outliers

Initialize weighted sum
process usedtrips

calculate PPD
calculate Travieler weight

calculate Day weight
calculate Final weight
update total weight

total weight zera?

calculate unweighted mean calculate weighted average

set budget estimate

retun budget result

Figure 3.3.3.4 Activity Diagram — Get Alternative Places

The get alternative places system provides users with nearby location options when they want
to replace a selected place in their travel itinerary. The process begins when the system receives

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

CHAPTER 3

input parameters including the current location coordinates, place type, selected place name,
and search radius. The system then initializes search settings by determining appropriate radius
limits based on the place type, with all place types using 2.0 km as their default search
boundary.

The core processing splits into two distinct paths based on place type. Hotels follow a
specialized path because they utilize a pre-filtered collection called suitableHotels, which
contains accommodations that have already passed rating, capacity, and budget requirements
during the initial trip generation process. The system filters through this collection, processes
each hotel individually, and extracts coordinates before checking if the candidate hotel has the
same name as the currently selected one. If the names differ, the system calculates the distance
using the Haversine formula and verifies whether the hotel falls within the 2 km search radius.
Qualifying hotels receive distance metadata and get added to the alternatives list. The second
path handles attractions, restaurants, and shops through a unified process that begins with
filtering places by type from the complete places database. This filtering applies type-specific
algorithms to identify relevant candidates from the comprehensive collection of all available
locations. For attractions, the system performs additional category determination to identify
whether the selected place is a museum, temple, park, gallery, or other specific type, ensuring
that alternatives match the same subcategory. Restaurants and shops bypass this category
matching step through default filtering since any restaurant can generally substitute for another
restaurant, and any souvenir shop can replace another gift shop. After type-specific processing,
the system retrieves the chosen places set, which contains all locations already selected in the
current itinerary to prevent duplicate suggestions. The main processing loop then begins, where
each candidate place undergoes coordinate extraction, name normalization, and duplicate
checking against the existing itinerary. For attractions, the system verifies that candidates
belong to the same category as the selected place, while restaurants and shops proceed directly
to distance calculations. The system calculates precise distances using the Haversine formula
and checks whether each candidate falls within the appropriate radius threshold for its type.
Both processing paths converge at the sorting and limiting phase, where the system organizes
all found alternatives by distance in ascending order, placing the closest options first. The
system then limits results to a maximum of six alternatives to prevent user overwhelm while
maintaining quality choices. Finally, the system returns the complete alternatives array through

the single endpoint.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

CHAPTER 3

Use Case Description

Element

Description

Use Case Name

Get Alternative Places

Actor

User

Goal

Find nearby alternative places of the same type to replace a selected

location in travel itinerary

Preconditions

* User has an existing itinerary with selected places
 User wants to replace a specific place
* Places database contains relevant alternatives

 Current location coordinates are available

Input

Parameters

* currentLocation: LatL.ng coordinates
* placeType: String ("hotel", "attraction", "restaurant", "shop")
* selectedPlaceName: String (current place name)

» radius: Double (search radius in km)

Main Flow

1. System receives input parameters

2. System initializes search settings with 2.0km radius for all place
types

3. System determines place type and routing path

4. For Hotels: Filter from pre-filtered suitableHotels collection, check
distance within 2km

5. For Others: Filter places by type from complete database, perform
category determination (attractions only)

6. System retrieves chosen places set to prevent duplicates

7. System processes each candidate with coordinate extraction and
name normalization

8. System performs duplicate checking and category matching
(attractions)

9. System calculates distances using Haversine formula and verifies
radius constraints

10. System sorts results by distance and limits to 6 alternatives

11. System returns complete alternatives array through single endpoint

Alternative

Flows

A1: No alternatives found

- System returns empty array

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

CHAPTER 3

A2: All candidates too far

- System skips places beyond 2km radius, returns available alternatives
A3: All candidates already selected

- System skips duplicates from existing itinerary, returns remaining
alternatives

A4: Wrong attraction category

- System skips attractions not matching selected subcategory

Table 3.3.3.4 Use Case Description — Get Alternative Places

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

CHAPTER 3

3.3.3.5 — Hybrid Area Recommendations

[receive input parameters]

l

initialize variables]

.

I process collaborative filtering

Yes

er == currentUserld

Skip (same user)]

Yes

v
— [Calculate similarity l
lSKip (no preference data) l

process userareas

Skip (below threshold) I

z‘r&s—* HaysPicked > 07

‘ accumulate CF scores |

(Show message"
‘ no selection for
v \ ___that
| update CF scores ‘

¢

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

[Normalize CF Scores

|

Fes{-::-: cieights = 07 g

Calculate Normalized CF ‘ { cfScoresfareal=0]

{ process Content-Based Filtering(CBF)]

l

{ extract area profiles]

l

‘ Calculate rawscore ‘

l

[Nommalize CBF Score

{ Combine hybrid scores]
*Yes{:::::‘ cfWeights > 0? ,i::>—|\ 01

Calculate weighetd hybrid ‘ apply unseen penalty ‘

{

{ clamp hybrid score }
{ Caclulate final score]
[sort areas by score]

l

‘ Compute statistics ‘

l

‘ generate quality distribution ‘

]

[calculate confidence }

[determine personalized level }

|

[Return resuit }

Figure 3.3.3.5 Activity Diagram — Hybrid Area Recommendations

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

This activity diagram shows an intelligent area recommendation system that helps users
discover suitable travel destinations in Penang based on their preferences and behavior patterns.
The process begins by collecting comprehensive input parameters including newUserPrefs
which represents the current user's stated preferences and interests, userAreaPicks containing
the user's selected or preferred areas from previous interactions, userPrefs which holds
historical user preference data and ratings, penangAreas representing all available destinations
in the Penang region, areaProfiles containing scoring profiles for each area based on
characteristics like beach, city, nature, and history where each area has quantified scores for
different attributes, and currentUserld which serves as the identifier for the current user
requesting recommendations.

The system initializes key components including user preference vectors, similarity calculation
algorithms, and hybrid recommendation weights using this input data. First, the system checks
if the user has sufficient historical data stored in userPrefs and userAreaPicks. If the user has a
rich history of interactions and ratings, the system can generate personalized recommendations
based on past behavior patterns and preferences. However, if no substantial historical data
exists for the user, the system falls back to content-based filtering using the user's stated
preferences from newUserPrefs.

For users with sufficient historical data, the system implements collaborative filtering by
calculating similarity scores with other users who have demonstrated similar travel patterns
and preferences. The collaborative filtering calculation begins by creating user-area rating
matrices from userPrefs and userAreaPicks data. The system then identifies users who have
rated similar areas and calculates cosine similarity between the current user and other users
using the formula: Similarity equals the dot product of User A ratings and User B ratings
divided by the product of their magnitudes. After identifying the top K similar users as
neighbors, the system generates recommendations based on areas that were highly rated by
these similar users. The prediction for how much a user might like a specific area is calculated
by taking the weighted sum of similarity scores multiplied by neighbor ratings, divided by the
sum of all similarity scores.

Simultaneously, the system performs content-based filtering analysis by matching user
preferences with area characteristics using the detailed areaProfiles data. The content-based
filtering process starts by extracting the user profile vector from newUserPrefs, converting
stated preferences into a numerical preference vector containing scores for beach preference,

city preference, nature preference, and history preference. Each area in penangAreas has

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

CHAPTER 3

corresponding quantified scores in areaProfiles, creating an area profile vector with beach
score, city score, nature score, and history score. The system then calculates content similarity
between the user profile and each area profile using cosine similarity, which measures how
closely the user's preferences align with what each area offers. Additional weighted scoring is
applied based on the user's stated importance of each characteristic, ensuring that more
important preferences have greater influence on the recommendations.

The system combines both collaborative filtering and content-based filtering recommendations
using a sophisticated hybrid approach. The final score for each area is calculated using a
weighted combination where the collaborative filtering score is multiplied by weight alpha and
the content-based filtering score is multiplied by weight beta, with alpha plus beta equaling
one. The weight distribution is dynamically adjusted based on the user's data availability - users
with rich historical data receive higher alpha weights favoring collaborative filtering, while
new users receive higher beta weights emphasizing content-based filtering. This ensures that
both experienced users with substantial interaction history and new users with limited data
receive relevant and personalized recommendations.After generating the hybrid scores, the
system normalizes all scores to ensure fair comparison and ranks areas by their relevance to
the user's preferences and patterns. The system concludes by formatting the output as a
comprehensive ranked list of recommended areas, complete with confidence scores indicating
the system's certainty in each recommendation.

Use Case Description

Field Description

Use Case Name | Hybrid area recommendation

Actor User (Traveler)

Description System generates personalized travel area recommendations by combining
collaborative filtering, content-based filtering, and user preference analysis to

suggest destinations that match user interests and travel patterns

Preconditions | - User must be registered in the system

- User preferences must be collected (interests, budget, travel style)
- Area database with characteristics must be available

- User similarity algorithms must be initialized

- Recommendation engine must be operational

Postconditions | - Personalized list of recommended areas is generated
- Recommendations include confidence scores and explanations

- Areas are ranked by relevance to user preferences

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

CHAPTER 3

- Additional metadata (costs, best times to visit) is provided

- User interaction data is recorded for future improvements

Main Flow

1. System collects user input parameters (preferences, budget, dates, group size)
2. System initializes recommendation algorithms and user vectors

3. System checks if user has sufficient historical travel data

4. If historical data exists: System performs collaborative filtering by finding
similar user

5. If no historical data: System uses content-based filtering with stated
preferences

6. System calculates area-user compatibility scores

7. System combines collaborative and content-based recommendations using
hybrid weights

8. System applies contextual filters (budget, season, distance)

9. System normalizes and ranks recommendations by relevance

10. System formats output with explanations and metadata

11. System presents ranked list of recommended areas to user

Alternative

Flows

Alt 1: Insufficient user data - System uses popular destinations and content-based
filtering

Alt 2: No areas match criteria - System relaxes constraints and suggests broader
options

Alt 3: User has very specific preferences - System prioritizes content-based over
collaborative filtering

Alt 4: Limited budget constraints - System filters recommendations by cost-

effectiveness

Exceptions

- User preference data incomplete or invalid

- Area database unavailable

- Recommendation algorithms fail to initialize

- Network connectivity issues

- Insufficient computational resources for complex calculations

- User similarity calculation errors

Table 3.3.3.5 Use Case Description — Hybrid Area Recommendations

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

CHAPTER 3

3.3.3.6 — Weather Forecast

37>

Calculate forecast
da
Validate inputs

Use WeatherAPI for
accurate forecast

Consiruct API

request URL

Execute HTTP GET request

Yes-<Tequest failed?>

Set Ermor Message
extract forecast day

find closest hour
read condition text

set real time source

Use Enhanced Historical

Pattern Estimation

Extract month and day from
targetDate

Lookup 30-year
meteorological data for month

Determine monsoon type
Determine season

Generate consistent
random seed

Calculate adjusted rain
probability

Yes

condition = "Light Rain"

condition = "Heavy Rain" or
"Thunderstorms”

[

Showers”

condition = "Scattered)

Dry season

condition = "Sunny" or

"Hazy'

Normal

conditi rtly Cloudy”
or "Mostly Cloudy"

Bachelor of Information Systems (Honours) Business Information Systems

Classify weather

isRainy and not ™
-hasShownRainAlert

Show rain alert

[set nassnownRainAlert =
true

Apply weather-based
attraction filtering

-

R

Set condition result

Set source =
"historical_pattern_enhanced”
Show extended forecast
disclaimer

Figure 3.3.3.6 Activity Diagram — Weather Forecast

Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

CHAPTER 3

The activity diagram illustrates the decision-making process for generating weather forecasts
used in trip planning. The workflow begins with receiving user inputs, calculating the number
of forecast days ahead, and validating the inputs. If the requested forecast date falls within three
days, the system relies on the WeatherAPI for accurate real-time forecasts. It constructs an API
request, executes the HTTP GET request, and, if successful, extracts the forecast for the
relevant day and closest hour, reads the condition text, and sets the source to real-time weather
data. If the API request fails, an error message is set.

For dates beyond three days, the system switches to Enhanced Historical Pattern Estimation. It
extracts the target month and day, consults long-term (30-year) meteorological data, and
determines the relevant monsoon type and season. Using this information, it generates a
consistent random seed to simulate variation and calculates an adjusted probability of rain.
Based on this probability and seasonal context, the system classifies the condition: Heavy
Rain/Thunderstorms, Scattered Showers, or Light Rain if rain is predicted, or otherwise
Sunny/Hazy (dry season) or Partly/Mostly Cloudy (normal conditions). The source is set as
“historical pattern enhanced,” and an extended forecast disclaimer is displayed to manage user
expectations.

Finally, the system classifies the overall weather result. If rainy conditions are detected and a
rain alert has not been shown before, an alert is displayed and flagged to avoid duplication. The
classified weather is then used to apply weather-based attraction filtering, ensuring that
unsuitable outdoor activities are avoided in rainy conditions. The final weather condition result
is then stored and returned to support itinerary planning.

Use Case Description

Field Description

Use Case Weather Forecast

Name

Actor User (Traveler)

Description The system provides weather forecasts for the user’s trip dates. It

integrates real-time WeatherAPI data for short-term forecasts (< 3 days)
and enhanced historical pattern estimation for longer-term forecasts (> 3

days). Results are used to filter attractions and ensure weather-aware trip

planning.
Trigger User requests weather forecast for a planned trip.
Preconditions | - User must specify travel date(s) and location.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

CHAPTER 3

- WeatherAPI service must be accessible (for < 3 days forecast).
- Historical meteorological dataset must be available (for > 3 days

forecast).

Postconditions

- Weather condition is classified (e.g., sunny, rainy, cloudy).
- Rain alert is displayed if applicable.

- Weather-based attraction filtering is applied to itinerary planning.

Main Flow

1. Receive user inputs and validate them.

. Calculate forecast days ahead.

. If <3 days, use WeatherAPI to fetch real-time forecast.

. Extract condition text and set data source.

. If > 3 days, use Enhanced Historical Pattern Estimation.

. Lookup long-term climate data, determine season/monsoon.
. Generate rain probability and classify conditions.

. Show extended forecast disclaimer (for historical-based results).

O 00 3 N »n b~ W DN

. Classify weather and check if rain alert should be displayed.
10. Apply weather-based filtering to attractions.

11. Set and return weather condition result.

Alternative

Flow

- 3a. WeatherAPI request fails — set error message
.- 7a. If adjusted rain probability < 30% — classify as “Light Rain” or
“Partly Cloudy.”

- 9a. If rain alert already shown — skip showing again.

Exceptions

- Invalid user inputs (missing/incorrect date/location).
- API timeout or unresponsive.

- Missing or corrupted historical dataset.

Table 3.3.3.6 Use Case Description — Weather Forecast

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

CHAPTER 3

3.3.3.7 — Route Optimization

®
l

Receive input parameters

{ validate points count]

Yes

[handle small cases] [validate coordinates]

coordinates

4{ setinvalid result] [bm\d distance mahix}
intialize route
variables
handle fixed start

Tixedstart
specified?, No

adjust start index
set default start

perform
twooptoptimization

improvement found?

continue optimization
update best routa

increment

improvements

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

A1

currentlteration <
maxiterations?

¥

terminate optimization|

check early
termination

No improvements?

Continue
Optimization

handle returntostart

return fo start?
add starttoend

keep opiimizedroute

materialize output
route
calculate statistics

Set optimizedresult

return TSP resuit

Figure 3.3.3.7 Activity Diagram — Route Optimization

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

CHAPTER 3

The activity diagram represents the process of generating an optimized travel route using a
Travelling Salesman Problem (TSP)-inspired approach. The workflow begins with receiving
input parameters such as selected attractions and validating the number of points. If the number
of points is two or fewer, the system handles these small cases directly. Otherwise, it proceeds
to validate coordinates. If any coordinates are invalid, the result is set as invalid; if all are valid,
the system builds a distance matrix and initializes route variables.

The algorithm then determines the starting point. If a fixed start is specified, the index is
adjusted accordingly; otherwise, a default start is assigned. Boundaries are set, and a 2-opt
optimization algorithm is performed to iteratively refine the route. Whenever an improvement
is found, the best route is updated, and the improvement counter is incremented. If no
improvement is found, the algorithm continues optimization until early termination conditions
or maximum iterations are reached.

After optimization ends, the system checks whether the route should return to the starting point.
If so, the start is added to the end of the path; if not, the optimized route is kept as is. The
system then materializes the final route, calculates relevant statistics (such as distance or
duration), and sets the optimized result. Finally, the optimized TSP result is returned for use in
itinerary planning.

This process ensures that the user receives an efficient route covering all selected attractions,
while minimizing travel distance or time, and adapting flexibly to different trip configurations.

Use Case Description

Field Description
Use Case | Route Optimization (TSP-style with 2-opt)
Name

Primary Actor | System

Goal Produce an efficient visiting order for selected places that minimizes total

travel distance/time, with optional return to the start (round-trip).

Trigger User selects places (and optionally a fixed start) and taps “Optimize

Route” during trip planning.

Preconditions | 1) At least one place selected. 2) Each place has valid coordinates. 3)

Distance function available (e.g., Haversine).

Postconditions | 1) Optimized route sequence is generated (or a valid small-case/invalid

result is returned). 2) Route statistics (total distance/time) are computed

and stored for the day’s itinerary.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

CHAPTER 3

Main Flow

1) System receives input parameters (places, fixed-start flag, round-trip
flag, iteration limits).

2) Validate number of points and coordinates.

3) If points <2, handle small cases directly (A—B, and optionally B—A).
4) Build distance matrix for all valid points.

5) Initialize route (respect fixed start if provided; otherwise choose default
start).

6) Set optimization boundaries (max iterations/early-stop).

7) Run 2-opt improvements iteratively over the route.

8) When an improvement is found, update best route and counters.

9) Stop when no improvement, early-stop triggers, or max iterations
reached.

10) If round-trip requested, append start node at end; otherwise keep open
path.

11) Materialize final route, compute statistics, and persist result.

Alternative

Flows

Al — Invalid Coordinates: On validation failure, return “invalid result”
with error message and skip optimization.A2 — Fixed Start Not Found: If
provided start ID not in list, fall back to default start and continue.A3 —
Early Termination: If stagnation threshold reached (no improvements

over N passes), terminate early and return best-so-far.

Exceptions

E1 — Empty Selection: No points provided — return empty route with
notice.E2 — Duplicate or Coincident Points: Collapse duplicates before

optimization; if all collapse to <2, use small-case handler.

Table 3.3.3.7 Use Case Description — Route Optimization

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

CHAPTER 3

3.3.3.8 — Save Trip and Itinerary

l

[userld, dates, budget, travelers, places

Extract data

weatner

J

I

Validate data.
Check all required fields exist

I

|

Calculate nights:

nights = (endDate - startDate) in days

|

l

{

Calculate total cost:

totalCost = pricePerNight * nights

|

I

|

Calculate percentage:

percentage = (totalCost / budget) * 100]

I

—

Generate unique fripld
tripld = Firestore.frips.doc().id

I

|

Save trip info;

Save fitle, dates, budget, fravelers

|

I

Store cosis:

{ Save accommodation cost and percentage]

I

[Sort places by day and sequence

)

I

Conceptual loop over places (one by one)]

Use exact match

exact name match found?

Try fuzzy matching

clean names, compare words,
accept i >= 60% similar

Add to itinerary list

place match found after checks?

Log as unmatched

|

Conceptual loop over trip days ->

save date +weather condition

|

l

[

Combine all itinerary + weather ilems J

l

{Execute single baich operation (a\l-ur—noﬂwmg)}

l

Show success message

l

Return tripld

Figure 3.3.3.8 Activity Diagram — Save Trip and Itinerary

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

CHAPTER 3

This system processes trip information by first extracting essential data including user ID,
travel dates, budget, number of travelers, selected places, and weather information. The system
validates this data to ensure all required fields are complete and properly formatted.

The system then performs key calculations including determining the trip duration in days by
calculating the difference between end date and start date, computing the total cost by
multiplying price per night by the number of nights, and calculating what percentage of the
user's budget this represents using the formula (totalCost / budget) x 100.

After generating a unique trip ID using Firestore's document ID system, the system saves the
basic trip information including title, dates, budget, and traveler count. It also stores cost details
by saving accommodation expenses and the calculated budget percentage for tracking
purposes.

The core itinerary generation process involves sorting all selected places by day and sequence
to create a logical flow. The system then processes each place individually through a matching
algorithm that first attempts exact name matching. If no exact match is found, it applies fuzzy
matching by cleaning place names, comparing words, and accepting matches with 60% or
higher similarity scores.

Successfully matched places are added to the itinerary list, while unmatched places are logged
for review. The system then processes each trip day by saving date information along with
corresponding weather conditions. Finally, it combines all itinerary data with weather
information, executes a single batch operation to ensure data consistency, displays a success

message, and returns the unique trip ID for future reference.

Field Description

Use Case Name | Save Trip and Itinerary

Actor User (Traveler)

Description System processes and saves complete trip information, generates detailed
itineraries with place matching, calculates costs, and stores all data with weather

information in a single transaction

Preconditions - User must have completed trip planning
- Trip data (dates, budget, places, weather) must be available
- Firestore database must be accessible

- Place matching algorithms must be operational

Postconditions | - Trip is saved with unique ID
- Complete itinerary is generated and stored

- Cost calculations and budget analysis are completed

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

CHAPTER 3

- Weather data is integrated with daily plans

- Success confirmation is provided to user
Main Flow 1. System extracts trip data (userID, dates, budget, travelers, places, weather)

2. System validates all required fields are complete

3. System calculates trip duration and total costs

4. System calculates budget percentage utilization

5. System generates unique trip 1D

6. System saves basic trip information and cost details

7. System sorts places by day and sequence

8. Place Matching Process: System attempts exact name matching first

9. If no exact match: System applies fuzzy matching with 60% similarity

threshold

10. System adds matched places to itinerary, logs unmatched item

11. System processes daily schedules with weather data

12. System combines all itinerary and weather information

13. System executes batch save operation

14. System displays success message and returns trip ID
Alternative Alt 1: Data validation fails - System prompts for missing information
Flows Alt 2: Place matching fails - System logs unmatched places and continues

Alt 3: Database save fails - System retries operation or reports error

Alt 4: Budget exceeds 100% - System flags budget warning but continues
Exceptions - Missing required trip data

- Invalid date ranges or budget values

- Database connectivity issues

- Place matching algorithm failures

- Batch operation transaction failures

Table 3.3.3.8 Use Case Description — Save Trip and Itinerary

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

CHAPTER 3

3.3.3.9 — Edit Itinerary

Receive replace
request

validate
coordinates

valid?

Show "Invalid
coordinates”
continue
placement
esl

Show "Kept continue
original stop placement

]

Determine place
type and route

reroute for new hotels

optimize all daily routes

Replace
restaurant stop

Replace souvenir
stop

Replace attraction

Xecule place

replacement:

Update route and
pdata

Execute place replacement:

clear Existing Alternatives
Recompute afternatives

Update distance metrics

synchronize Ul state
set success message

retum result

Figure 3.3.3.9 Activity Diagram — Edit Itinerary

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

CHAPTER 3

This system manages itinerary modifications by first validating and preprocessing coordinates.
The process begins by checking if the coordinates list has more than 2 points - if not, it shows
"Invalid coordinates" and stops. For valid coordinate sets, the system detects duplicates using
two methods: name comparison by normalizing strings, and location comparison by calculating
distances with the formula: distance = 6371 x 2 x asin(V(a)) where a = sin?(lat) + cos(latl) x
cos(lat2) x sin*(lon), setting duplicate threshold at 500 meters.

The system presents duplicate detection results to the user and asks for confirmation to proceed.
If the user declines, it shows "Keep original stops" and exits. Upon confirmation, the system
determines the place type and route optimization strategy.

If the place index is 0 (indicating a hotel), the system initiates hotel replacement by rerouting
for the new hotel, updating all daily routes to start from the new location, and optimizing using
nearest neighbor algorithms to calculate total distance as the sum of distances between
consecutive points.

For non-hotel places, the system categorizes them as restaurants (cafe, food) or attractions
(souvenir, shop, tourist sites). Based on the category, it replaces the restaurant stop or attraction
stop accordingly, then replaces the souvenir shop if needed.

After any replacement, the system executes place replacement operations by updating daily
point arrays, modifying place names and symbols, and refreshing formatted place names. It
then clears and recomputes alternative place suggestions by searching within 2km radius for
similar place types and filtering by category matching algorithms.

The system concludes by updating distance and route metrics through calculating total day
distance as the sum of consecutive point distances, synchronizing the UI state by refreshing
map markers and itinerary display, showing success confirmation, and returning "Place
Successfully Replaced" status.

Use Case description

Field Description

Use Case Name | Edit Itinerary

Actor User (Traveler)

Description System allows users to modify their travel itinerary by replacing hotels,
restaurants, or attractions while maintaining route optimization and providing

alternative suggestions

Preconditions - User must have an existing itinerary

- Coordinate data must be available

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

CHAPTER 3

- Place database must be accessible

- Route optimization algorithms must be operational

Postconditions

- Selected place is successfully replaced in itinerary
- Route distances are recalculated and optimized

- Alternative place suggestions are updated

- Ul displays reflect changes

- Success confirmation is provided

Main Flow

1. System validates coordinates list (must have >2 points)

2. System detects duplicates using name comparison and 500m distance threshold
3. System shows duplicate results and requests user confirmation

4. System determines place type and route optimization strategy

5. If Hotel (index=0): System reroutes for new hotel and optimizes all daily
routes

6. If Restaurant: System replaces restaurant stop and updates category

7. If Attraction: System replaces attraction/souvenir shop accordingly

8. System executes place replacement by updating point arrays and place names
9. System clears and recomputes alternative suggestions within 2km radius

10. System updates distance calculations and route metrics

11. System synchronizes Ul state and refreshes displays

12. System shows success confirmation

Alternative

Flows

Alt 1: Invalid coordinates (<2 points) - System shows error and stops

Alt 2: User declines duplicate confirmation - System keeps original stops

Alt 3: No suitable replacements found - System suggests expanding search
criteria

Alt 4: Route optimization fails - System maintains original route structure

Exceptions

- Insufficient coordinate data provided
- Place database unavailable

- Route optimization algorithm failures
- Ul synchronization errors

- Distance calculation computation errors

Table 3.3.3.9 Use Case Description — Edit Itinerary

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

CHAPTER 3

3.3.3.10 — Book Accommodations

?

{ User completes trip generation }

I

[System shows booking prompt

]

| Show loading dialog |

!

| resolve hotel details |

!

create trip first

[Navigate to AccommodationBookingPage]

l

¢_

|
. {

[Review booking details]
[Fill payment form]

show creating dialog]

I

| :

[Click "Confirm Booking”] update

create pending booking without inventory

i N

| Validate date availability |

l J
Update trip accommodation siatus
'0 PENDING
Show "Booking saved as PENDING"
message

17;\4 Payment valid?

{ Show validation errors }

ensure trip exist

| E— Trip ID exists?

Yes

create frip first ‘ ‘ Continue booking

{ Show locking dialog]

l

[create booking with inventory update]

]

‘ Create accommodation expense |

]

‘ Resolve pending booking notification |

]

[Navigate to BookingSuccessPage]

Figure 3.3.3.10 Activity Diagram — Book Accommodations

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 3

This accommodation booking system follows a structured flow that begins after trip generation
completion. The system presents users with a booking prompt bottom sheet offering two
distinct pathways.

Initial Decision Point: Users choose between "Book in app now" for immediate booking or
"Skip for now" for deferred booking.

When users select immediate booking, the system initiates a loading dialog and executes
ensureResolvedHotel() to retrieve comprehensive hotel data from Firebase. This function
systematically attempts hotel photo resolution through placeDocPath lookup, collectionGroup
queries, and fuzzy matching fallback methods. Upon successful data retrieval, the system
navigates to AccommodationBookingPage where users review hotel galleries, dates, room
selections, and pricing.

Users complete payment forms with cardholder information, card details, and billing email,
then proceed to "Confirm Booking". The system validates date availability through
_dateRangeAvailable() and payment information using form validators. If validation fails,
appropriate error messages display and the process halts. For successful validation, the system
checks trip existence and calls saveTripCallback if needed.

The core booking execution involves _createBookingWithInventory() which generates
confirmation codes, creates Firebase booking documents, and triggers
_decreaseHotellnventory() to update room availability through Firestore transactions. The
system automatically generates accommodation expenses via
_upsertAccommodationExpenseFromBooking(), resolves pending notifications, and navigates
to BookingSuccessPage for confirmation display.

Users selecting "Skip for now" trigger trip creation if necessary, followed by
_createPendingBooking() execution which creates PENDING status bookings with essential
data storage. The system updates trip accommodation status to PENDING, emits
booking pending notifications, and navigates to MainScreen with confirmation messaging.
The system handles notifications through emitBookingPendingNotification() for deferred
bookings and _resolvePendingBookingNotification() for confirmed bookings, creating

appropriate notification documents with booking details and action triggers.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

CHAPTER 3

Use Case Description

Field

Description

Use Case Name

Book Accommodation with Firebase Integration

Actor

User (Traveler)

Description

System enables immediate or deferred accommodation booking through
structured flow pathways, using Firebase for data management, inventory control,

expense tracking, and notification handling

Preconditions

- User must have completed trip generation

- Firebase database must be accessible

- Hotel inventory data must be available in Firebase
- Payment validation system must be operational

- Hotel data resolution functions must be available

Postconditions

- Booking is created with CONFIRMED or PENDING status in Firebase

- Hotel inventory is updated through Firestore transactions (confirmed bookings)
- Accommodation expenses are automatically generated and stored

- Notification documents are created and managed appropriately

- Trip status is updated to reflect booking state

Main Flow

1. System displays booking prompt bottom sheet after trip generation

2. Immediate Booking Flow: User selects "Book in app now"

3. System executes ensureResolvedHotel() using placeDocPath, collectionGroup
queries, fuzzy matching

4. Navigate to AccommodationBookingPage for review and payment form
completion

5. System validates availability (_dateRangeAvailable) and payment forms

6. System creates trip via saveTripCallback if needed

7. Execute _createBookingWithInventory() to generate confirmation and update
inventory

8. Run _decreaseHotellnventory() through Firestore transactions

9. Create expenses via _upsertAccommodationExpenseFromBooking(

10. Deferred Booking Flow: User selects "Skip for now"

11. Execute _createPendingBooking() with PENDING status

12. Emit notifications (_emitBookingPendingNotification or
_resolvePendingBookingNotification)

13. Navigate to appropriate confirmation or pending status pages

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

CHAPTER 3

Alternative Alt 1: Hotel resolution fails - System uses fallback data without photos and
Flows continues

Alt 2: Date unavailability - System shows error message and halts booking process
Alt 3: Payment validation failure - System displays validation errors and requests
correction

Alt 4: Inventory update failure - System logs error but continues booking process
Alt 5: Expense creation failure - System generates warning but maintains booking

confirmation

Exceptions - Firebase connectivity issues during data retrieval

- Firestore transaction failures during inventory updates
- Payment validation system unavailable

- Hotel data resolution complete failure

- Notification system failures

- Trip creation callback errors

Table 3.3.3.10 Use Case Description — Book Accommodations

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

CHAPTER 3

3.3.3.11 — Alert user when budget nearly exceeds

Fetch trip data and

budget information

trip exists? Mo
Yes
v
Calculate total spending:Sum of expense amounis [RETURN "frip not found”

A 4

Calculate budget utilization:
Total spent = budget = 100

h

Evaluate budget threshold:]

Check if = 80%

Mo budget==80%7?

Yes

Create budget warning nofification in
database

v

' R
Handle budget adjustment if requesied:
Recalculate budget impact: total spent + new|

budget = 100
W y

¥

Budget waming process results

[]
’U‘

Figure 3.3.3.11 Activity Diagram — Alert user when budget nearly exceeds
This budget monitoring system operates through a straightforward flow designed to help users
manage their travel expenses. The process begins by fetching trip data and budget information
from the database. The system first validates that the trip exists - if no trip is found, it logs "Trip

not found" and terminates the process.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 3

For valid trips, the system calculates total spending by summing all expense amounts recorded
for the trip. It then determines budget utilization using the formula: (Total spent + budget) x
100 to get a percentage. The core logic evaluates whether this budget utilization has reached or
exceeded the 80% threshold.

If spending remains below 80% of the budget, the system logs "Under control" and ends the
monitoring process. However, when budget utilization reaches or exceeds 80%, the system
triggers the warning mechanism by creating a budget warning notification in the database to
alert the user about their approaching budget limit.

The system also includes functionality to handle budget adjustments if users request changes
to their budget. When budget modifications occur, it recalculates the budget impact using the
new budget amount with the same formula: (total spent + new budget) x 100, then processes
the updated budget warning results accordingly.

Use case description

Field Description

Use Case Name | Alert user when budget nearly exceeds

Actor System (Automated), User (Traveler)

Description System automatically monitors trip expenses and generates alerts when spending

approaches 80% of the allocated budget, with support for budget adjustments

Preconditions - Trip must exist in the database
- Budget amount must be set for the trip
- Expense data must be available

- Notification system must be operational

Postconditions | - Budget utilization is calculated and monitored
- Warning notification is created when threshold exceeded
- Budget adjustment impacts are recalculated if needed

- Appropriate logging is performed for tracking

Main Flow . System fetches trip data and budget information from database

. System validates trip existence

. System calculates total spending by summing all expense amounts
. System calculates budget utilization: (Total spent + budget) x 100
. System evaluates if budget utilization > 80%

. If under 80%: System logs "Under control" and terminates

. If > 80%: System creates budget warning notification in database

0 N N n kA WD =

. If budget adjustment requested: System recalculates with new budget

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

CHAPTER 3

9. System processes budget warning results and completes monitoring

Alternative Alt 1: Trip not found - System logs error and returns without processing

Flows Alt 2: Budget under control - System logs status and terminates monitoring
Alt 3: Budget adjustment - System recalculates utilization with new budget
amount

Exceptions - Trip data unavailable or corrupted

- Missing budget information
- Expense calculation errors
- Database connectivity issues

- Notification system failures

Table 3.3.3.11 Use Case Description — Alert user when budget nearly exceeds

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

74

CHAPTER 3

3.3.3.12 — Split Expenses

Validate if splitting is
applicable

isSoloTrip == true? Yes

Force isSplit = false,
splitType = null,
customSplits = null

A

Create simple expense
record
No————

Set splifType = null,
customSplits = null

Creafe expense
record without
splitting

Set up member
collection for group
Trips

Validate cusiom split R
amounts:
Calculate sum of
splits - amount

Create expense data
structure

Create expense
record in dalabase

Calculate balance impact:
Equal split: amount + member count
Custom split: individual amounts

Trigger real-time split impact
visualization
Recalculate net balance:
fotalOwed - totalPaid

Check budget waming:
Calculate budget waming: total
spending + budget limit at 80%

Split expense
creation results
shown in settlement
dashboard

Send notifications to debtor

Figure 3.3.3.12 Activity Diagram — Split Expenses

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

This expense splitting system operates through a validation-driven flow that determines how
costs should be allocated among group members. The process begins by validating if splitting
is applicable to the current expense scenario.

The system first checks if this is a solo trip - if isSoloTrip is true, it forces isSplit to false, sets
splitType and customSplits to null, creates a simple expense record without any splitting
functionality, and terminates the process. For group trips, the system continues to the next
validation step.

The second validation checks the isSplit flag. If splitting is disabled (_isSplit is false), the
system sets splitType and customSplits to null, creates an expense record without splitting
calculations, and stops processing. When splitting is enabled, the system proceeds to the
splitting logic.

For valid splitting scenarios, the system establishes the member collection for group trips and
validates custom split amounts by calculating the sum of individual splits against the total
expense amount to ensure accuracy. The system then creates the expense data structure and
stores the expense record in the database.

The core calculation process determines balance impact using two methods: for equal splits, it
divides the total amount by member count (amount +~ member count), while for custom splits,
it uses individually specified amounts for each member. The system triggers real-time split
impact visualization by recalculating net balances using the formula: totalOwed - totalPaid for
each member.

Finally, the system performs budget monitoring by checking if total spending approaches the
budget warning threshold at 80% utilization (total spending + budget limit), then completes the
split expense creation process with all calculated results.

Use Case Description

Field Description

Use Case Name | Cost Split

Actor User (Group Member), Travel Management System

Description System manages expense splitting among group members with validation logic,

supporting both equal and custom split allocations while monitoring budget

impact

Preconditions - Group trip must be established (if applicable)
- Member collection must be available for group trips

- Expense amount and details must be provided

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

CHAPTER 3

- Split preferences must be configured

- Database must be accessible for expense storage

Postconditions

- Expense record is created with appropriate splitting logic
- Member balances are updated based on split calculations
- Real-time split visualization is triggered

- Budget warning check is performed

- Split impact is calculated and stored

Main Flow

1. System validates if expense splitting is applicable

2. Solo Trip Check: If solo trip, force disable splitting and create simple expense
3. Split Flag Check: If splitting disabled, create expense without split
calculations

4. System sets up member collection for group expense splitting

5. System validates custom split amounts against total expense

6. System creates expense data structure and database record

7. Equal Split: Calculate amount +~ member count for each member

8. Custom Split: Use individually specified amounts per member

9. System triggers real-time balance visualization (totalOwed - totalPaid)

10. System checks budget warning at 80% threshold

11. System completes split expense creation with all results

Alternative

Flows

Alt 1: Solo trip detected - System disables splitting and creates simple expense
Alt 2: Splitting disabled - System creates expense without split calculations
Alt 3: Custom split validation fails - System prompts for correction

Alt 4: Budget warning triggered - System alerts about spending threshold

Exceptions

- Invalid member collection for group trips

- Custom split amounts don't match total expense

- Database connectivity issues during expense creation
- Balance calculation errors

- Budget monitoring system failures

Table 3.3.3.12 Use Case Description — Split Expenses

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

CHAPTER 3

3.3.3.13 —- Make Payment

i

[Initialize image picker and form controllers l

A 4

l Select and validate image]

Mo Image
Selected?

Yes

Calculate image size:
Reduce to 1024x1024, 80% quality

v

I Collect payment note l

v

l Upload receipt to Cloudinary l

A 4

[Create payment receipt record in Firestore l

v

[Generate notification for recipient l

A 4

[Handle Ul feedback with success/error nofifications l

A 4

Trigger real-time dashbeard updates:
Recalculate pending status

A J

[Payment receipt creation results l

-
r

Figure 3.3.3.13 Activity Diagram — Make Payment

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

CHAPTER 3

This payment processing system manages receipt-based payments through a streamlined digital
workflow. The process begins by initializing image picker controllers and form management
components to prepare for receipt capture and data entry.

The system prompts users to select and validate a payment receipt image. If no image is
selected, the system maintains the current state without making changes and terminates the
process. When an image is successfully selected, the system proceeds with payment processing.
The image optimization process calculates and reduces the image size to 1024x1024 pixels
with 80% quality compression to ensure efficient storage and upload performance. Users then
provide payment notes or descriptions to accompany the receipt documentation.

The system uploads the processed receipt image to Cloudinary for cloud storage and creates a
corresponding payment receipt record in Firestore database for data persistence. Upon
successful record creation, the system generates notifications for the payment recipient to
inform them about the transaction.

The system handles user interface feedback by displaying appropriate success or error
notifications based on the processing outcome. Finally, it triggers real-time dashboard updates
by recalculating pending payment status and updating all relevant displays to reflect the new
payment information.

Use Case Description

Field Description

Use Case Name | Make Payment

Actor User (Payer), Payment Recipient

Description System processes payments through receipt image upload, handling image
optimization, cloud storage, database recording, and real-time notification

updates

Preconditions - User must have payment obligation or expense to settle
- Image picker functionality must be available

- Cloudinary cloud storage must be accessible

- Firestore database must be operational

- Notification system must be functional

Postconditions | - Payment receipt is uploaded and stored in Cloudinary

- Payment record is created in Firestore database

- Recipient receives payment notification

- Dashboard displays are updated with new payment status

-Pending payment calculations are refreshed

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

CHAPTER 3

Main Flow

1. System initializes image picker and form controllers

2. User selects and validates payment receipt image

3. If no image selected: System maintains current state and terminates

4. If image selected: System calculates and reduces image to 1024x1024, 80%
quality

5. User provides payment notes and description

6. System uploads optimized receipt to Cloudinary cloud storage

7. System creates payment receipt record in Firestore database

8. System generates notification for payment recipient

9. System handles UI feedback with success/error notifications

10. System triggers real-time dashboard updates and recalculates pending status

Alternative

Flows

Alt 1: No image selected - System maintains current state without processing
Alt 2: Image upload fails - System shows error notification and allows retry

Alt 3: Database creation fails - System logs error and requests user retry

Alt 4: Notification delivery fails - System records payment but alerts about

notification issue

Exceptions

- Image picker initialization failures

- Invalid or corrupted image files

- Cloudinary upload service unavailable
- Firestore database connectivity issues
- Notification system failures

- Network connectivity problems during upload

Table 3.3.3.13 Use Case Description — Make Payment

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

CHAPTER 3

3.3.3.14 — Settle Up Expenses

i

(Resolve displa

y names for UI |

h

r

|' Query existing payment receipts |

b

r

| Calculate receipt ¢

ount and presence

h

r

|' Create settlement

record in database |

b

A

|' Update payment receipt

statuses if receipts exist |

h

r

Handle Ul feedback with success/error notifications

b

A

-

e

Trigger real-time dashboard updates:
Recalculate balance: netBalance = totalOwed - totalPaid

-

Send nofificat

e

ion to debtor

Figure 3.3.3.14 Activity Diagram — Settle Up Expenses

This settlement system manages the final resolution of payment obligations between group

members through a structured database-driven process. The system begins by resolving display

Bachelor of Information Systems (Honours) Business In
Faculty of Information and Communication Technology

formation Systems
(Kampar Campus), UTAR

81

CHAPTER 3

names for user interface presentation to ensure clear identification of all parties involved in the
settlement.

The process queries existing payment receipts from the database to gather comprehensive
information about previous transactions and payment documentation. The system calculates
receipt count and determines the presence of supporting documentation for the settlement
process.

The core settlement operation involves creating a settlement record in the database to formally
document the debt resolution between parties. If payment receipts exist from previous
transactions, the system updates their statuses to reflect the completed settlement, ensuring all
related documentation is properly linked and accounted for.

The system provides user interface feedback through success or error notifications to inform
users about the settlement completion status. Finally, it triggers real-time dashboard updates
by recalculating balances using the formula: netBalance = totalOwed - totalPaid, ensuring all
displays reflect the updated financial status after settlement completion.

Use Case Description

Field Description

Use Case Name | Settle Up Expenses

Actor User (Group Member), Group Participants

Description System finalizes outstanding payment obligations between group members by

creating settlement records, updating receipt statuses, and recalculating balances

Preconditions - Outstanding balances must exist between group members
- User display names must be resolvable
- Database must be accessible for settlement recording

- Payment receipt data must be available (if applicable)

Postconditions | - Settlement record is created in database

- Payment receipt statuses are updated (if receipts exist)
- Net balances are recalculated and updated

- Dashboard displays reflect current settlement status

- Success/error notifications are provided to users

Main Flow 1. System resolves display names for Ul presentation

2. System queries existing payment receipts from database

3. System calculates receipt count and determines receipt presence
4. System creates settlement record in database

5. If receipts exist: System updates payment receipt statuses

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

82

CHAPTER 3

6. System handles Ul feedback with success/error notifications
7. System triggers real-time dashboard updates
8. System recalculates balance: netBalance = totalOwed — totalPaid

9. System completes settlement process with updated results

Alternative Alt 1: No existing receipts - System creates settlement without receipt status
Flows updates
Alt 2: Database creation fails - System shows error notification and allows retry
Alt 3: Receipt status update fails - System logs warning but completes settlement
Alt 4: Balance calculation errors - System alerts about calculation issues
Exceptions - Database connectivity issues during settlement creation
- Display name

resolution failures
- Payment receipt query errors
- Balance calculation computation errors

- Dashboard update synchronization failures

Table 3.3.3.14 Use Case Description — Settle Up Expenses

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83

CHAPTER 3

3.3.3.15 — View Group Balances

l

[Initialize member data }

L 4

{ Check if group trip }

collabroators.isEmpty?

h 4

RETURN no settlement

No

|

Calculate payments and debis from expenses:
Track paid amounts, split debts equally or custom

.)
A4

e “ny

Apply existing settlements:
Adjust balances based on settlement amounis

b A
v

g ™

Calculate net balances:
netBalance = totalOwed - totalPaid

L4

Optimize settlements with greedy algorithm:
settiementAmount = min(debtorAmount, creditorAmount)

h 4

{ Check for pending payment receipts J

L4

{ Generate settlement dashboard data }

wl
]

Figure 3.3.3.15 Activity Diagram — View Group Balances

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

This settlement dashboard system manages group financial balance visualization through a
comprehensive calculation and optimization process. The system begins by initializing
member data and checking if this is a group trip scenario. If the collaborators list is empty,
indicating no group members exist, the system returns "no settlement" and terminates
processing.

For valid group trips with collaborators, the system calculates payments and debts from
recorded expenses by tracking paid amounts and applying either equal split distributions or
custom split arrangements based on the expense configuration. The system then applies
existing settlements by adjusting current balances based on previously recorded settlement
amounts to ensure accurate financial positions.

The core balance calculation determines net balances for each member using the formula:
netBalance = totalOwed - totalPaid, providing a clear picture of who owes money and who
should receive payments. The system optimizes settlement recommendations using a greedy
algorithm that calculates optimal payment amounts with: settlementAmount =
min(debtorAmount, creditorAmount), ensuring efficient debt resolution with minimal
transactions.

The system checks for pending payment receipts to incorporate recent payment submissions
that may affect balance calculations. Finally, it generates comprehensive settlement dashboard
data that presents all financial relationships, recommended settlements, and current balance
status for group review and action.

Use Case Description

Field Description

Use Case Name | View Group Balances

Actor User (Group Member), Group Participants

Description System displays comprehensive group financial dashboard showing member
balances, debt relationships, and optimized settlement recommendations using

algorithmic calculations

Preconditions - Group trip must exist with collaborators
- Expense data must be available

- Settlement history must be accessible

- Member data must be initialized

- Payment receipt data must be queryable

Postconditions | - Complete settlement dashboard is generated and displayed

- Net balances are calculated for all group members

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

85

CHAPTER 3

- Optimized settlement recommendations are provide
- Pending payment receipts are incorporated

- Financial relationships are clearly visualized

Main Flow . System initializes member data for group trip

. System checks for collaborator existence (empty check)

. If no collaborators: Return "no settlement" and terminate

. If collaborators exist: Calculate payments and debts from expenses

. System tracks paid amounts and applies split distributions (equal or custom)
. System applies existing settlements to adjust current balances

. System calculates net balances: netBalance = totalOwed — totalPaid

. System optimizes settlements using greedy algorithm

O 0 39 N n A W N~

. System calculates: settlementAmount = min(debtorAmount, creditorAmount)
10. System checks for pending payment receipts

11. System generates comprehensive settlement dashboard data

Alternative Alt 1: No collaborators found - System returns no settlement status
Flows Alt 2: No expenses recorded - System shows balanced state
Alt 3: All balances settled - System displays zero net balances

Alt 4: Pending receipts affect calculations - System incorporates recent payments

Exceptions - Member data initialization failures

- Expense calculation errors

- Settlement history retrieval issues

- Balance calculation computation errors

- Payment receipt query failures

Table 3.3.3.15 Use Case Description — View Group Balances

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

86

CHAPTER 3

3.3.4 ERD

Restaurants
Accommedations
PK | nlaceld
PK | placeld
name
name
address
address
area
area
categor
gory category
description §
description
coordinates placeld seference -
coordinates
estimated_cost
placeld reference estimated_cost
rating .
rating
user_ratings_total
user_ratings_total
phone "
amenities
website
checkinTime
Itinerary
photoUrls
- checkOutTime
primaryPhotoUrl fineranid
emptyRoomsByDate
area
lastUpdated
e hotelClass
hone
placeName P
roomTypes
sequence
website
isOutdoor
shops
wpla photouris
PK t—,
Rlaceld. blaceld refrene | paceis primaryPhotoUrl
name lastUpdated
address
area
categor
oo — Attractions
ookings
description o o
PK | bookingld
coordinates
. confirmationCode name
estimated_cost
currency address
rating includes
guests area
user_ratings_total
nights category
phone
ricePerNight description
website P o o
totalPrice <oordinates
photoUrls books
status estimated_cost
primaryPhotourt -
hotelinfo rating
lastUpdated
createdal user_ratings_total
ripid phone
FK2| userld website
FK3| placeld po-! photoUris
contains primaryPhotoUrt
Weather lastUpdated
Trips
PK | weatherid
oK | i
el date
title "
fofecasts condition
startDate
FK | tripld
endDate
budget
numberOfTravelers
Expenses
areaDays
PK | expenseld
collaboratorslds
amount
createdAl
category
FK | ownerld
currency
fontains isOthers
ieSpiit
ouns
genera spiitType
customSplits
Users
itineraryltemid
PK | userld pays
createdt
email
—o<FKi | tripld
username
FK2| paidBy
don picks AreaDays
gender PK | areaName
phoneNumber days
Notifications
FK | userld
PK | notificationld
lastUpdated
tripTite
preferences
type
message
receives
status
sends
completedAction
createdat
completedat
FK1| receiverld
FK2| senderld
—o< FK3| tripld

Figure 3.3.4 ERD

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

The Entity Relationship Diagram (ERD) models the data structure of the travel management
system, capturing all key entities and their relationships. The central entity is Trips, which
stores details such as title, duration, budget, number of travelers, and collaborators. Each trip
is linked to Itinerary, which records the daily sequence of places visited, their categories, and
weather integration. The system supports multiple place types, including Restaurants, Shops,
Attractions, and Accommodations, all sharing common attributes such as placeld, name,
address, category, rating, cost, and media references. These entities connect with the itinerary
and bookings, where Bookings manage hotel reservations, confirmation codes, guest details,
and pricing. Weather is associated with trips to provide forecast data for each day, while
Expenses track financial details including category, amount, currency, and cost-splitting. The
Users entity stores traveler profiles and preferences, with links to trips, payments, and area
selections managed through AreaDays. The system also integrates Notifications, enabling
updates and action prompts between senders and receivers within a trip context. Relationships
are established through foreign keys to ensure data integrity, such as trips owning itineraries,
bookings, weather records, and expenses, while places are referenced across itineraries and
bookings. Overall, the ERD supports core functionalities including trip planning, place
matching, budgeting, booking management, weather-aware itineraries, and collaborative

travel planning.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

88

CHAPTER 3

3.3.5 Class Diagram

Travel Management System

- userld:String
- email-String
-userMame: Siring
-travelPreferences: Map<String, Integer=
-profileUrl: String
-phoneMumber: String
-gender: String
-dateOfBirth: Date
-placeld:String
-name:String
-address siring
-area:String
-category:String
-coordinates:Geopoint
-description: String
-rating:Double
-opneningHours:Map=String, Siring=
-photos:List<String=
-tripld: String
-title: Siring
-areaDays: Map<=String, Mumber=
-budget Double
-endDate: Date
-startDate: Date
-numberOfTraviers:Integer
-owner:User
-collaborators: List<User=
-expenseld: String
-trip:Trip
-paidBy-User
-category:String
-createdDate: DateTime
-isSplitBoolean
-splitType: Siring
-particpants-List=User=
-amount Double
-receiptid:String
-amountDouble
-payer-User
-recipeint:User
-receiptimageUrl:String
-uploadDate: DateTime
-verificationStatus: Siring
-note:Siring
-trip-Trip

-settlementld: String

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

89

CHAPTER 3

- trip:Trip
-amountDouble
-payer-User
-settledDate:DateTime
-recipeint:User
-settledBy:User
-status-String

-bookingld: String

- trip:Trip
-accommodation:Accommuodation
-checkinDate: Date
-checkOutDate: Date

- roomType: String
-status: String
-totalPrice: Double
-guests: Integer
-confirmationCode:String
-area: Sfring
-accommodationld: String
-name: String
-roomTypes: Map=5tring, Roominfo=
-availableRoomsByDate:Map=Date RoomAwvailability=
-checkinTime: String
-checkOutTime:String
-rating: Double
-price_level - Integer
-estimatedCost : Double
-location: Locationinfo
-address: Sfring

-areald: String
-itemid:String

-trip-Trip

-place:Flace
-isOutdoor:Boolean
-scheduledDate: Date
-notification|d: String
-type:String

-sender:User
-recipient:User
-message: String
-status-String
-createdDate: DateTime
-relatedTrip “Trip
-actionData:Map=String, Object=
-weatherld:String
-condition:String

-date:Date

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

90

CHAPTER 3

Travel Management System

- register{email. Siring, password: Siring, name: String): void

- updateProfile(name: String, email: String, token: String, wurl: String,
number: String, gender: String, birthDate: Date): void
}

- login(email: String, password: String): Boolean

- authenticate(token: String): Boolean
- acceptinvitation{fripld: String): void

- declinelnvitation(tripld: String): void

- create TripAl{preferences: Map==Sfring, Siring=, fitle: String, budget:
Double, stariDate: Date, endDate: Date, areas: List=String=,
areaDays: Map=5String. Integer=): Trip

- viewTrip(): Map=String, Object=

- deleteTrip{): void

- saveTripAnditinerary(): void

- viewBudget(): Map=5String, Double=

- getExpenses(): List=Expense>

- getCollaborators(): List=Collaborator=

- getBookings(): List=Booking=

- getltinerary(): List=Iineraryltem=

- getWeatherForecast{days:Integer):List=\Weeather=

- editBudget{(amount: Double): void

- viewCollaboratorLisi(): List=Collaborator=

- removeCollaborator(): void

- addCollaborator{userld: String, permissions: Map): void

- addExpense{amount Double, category: String, payerld: String,
owedTo: List=Siring=): void

- viewGroupBalance(): Map=String, Double=

- settleExpense(): void

- splitExpense{users: List=String=): void

- makePayment(imagefile:File note Siring) Boolean

- sendPaymentNotification{paymeniData:PaymeniData).Boolean

sendSettlementMotification(setllementData:settlementData). Boolean

- exportReport{format: String, filter: Map=String, String=): File

- viewExpensesBreakdownChart(): void

- updateBalanceAfterEdit{oldAmount: Double, newAmount: Double):
void

- deleteExpense(): void

- editExpense(amount. Double, category: String, owedTo:
List=Sfring=)- void

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

91

CHAPTER 3

- viewBooking(): Map=Siring, Object=
- confirmBooking(): Boolean

- createBooking(place: Place, date: Date, travelers: Integer): void

- viewltinerary(): List<Itineraryltem=

- updateltineraryDetails(updatedDetails: Map=S5tring, Object=): void

- edititinerary(placeld: String, date: Date, time: Siring, notes: String):
void

- glertUserWhenBudgetNearlyExceed() : void

-automatedAccommodationSuggestion(List=Place=
accommodations, double budget, int travelers) . Map=String,
dynamic=?

- hybridRecommendationSystem(Map==String, double= userPrefs,
Map=String, Map=Siring, double=> otherUserPrefs) : Map<String,
double=

- automatedRouteOptimization(List=LatLng= rawPoints, List=String=
rawMNames) : ({List=LatLng=, List=String=})

- updateBudgetDetailsitripld: String, budgetData: BudgetData):
Boolean

- updateTripDetails(tripld: String, tripData: TripData): Boolean

- setBudget(tripld: Siring, amount: Double): Boolean

- estimateBudgetRange(tripData: TripData): BudgetRange

- updateCollaboratorDetails(collaboraterid: String, details:
CollaboratorData): Boolean

- updateBooking Details(bookingld: String, bookingData:
BookingData): Boolean

- generateBookingConfirmationPDF(bookingld: String):
PDFDocument

- sendBookingPendingNotification{bookingld: String): Boolean

- generateltinerary(tripld: String, preferences: TravelPreferences):
Itinerary

- getAlternativePlaces{currentPlace: Place, criteria; SearchCriteria):
List=Place=

- replacePlace(itineraryltemid: String, newPlace: Flace): Boolean

- inputTravelPreferences(userld: String, preferences:
TravelPreferences). Boolean

Figure 3.3.5 Class Diagram
The class diagram illustrates the fundamental structure and interactions of entities within the

travel management system, following an object-oriented design approach that organizes

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

CHAPTER 3

related attributes and methods into cohesive classes. Each class represents a core entity in the
system and encapsulates business logic relevant to its functional responsibilities. This
architectural model serves as the foundation for data organization, API method
implementations, and Firebase database integration throughout the application.

The User class manages personal information and authentication with essential attributes
including userld, email, userName, displayName, phoneNumber, gender, dateOfBirth, and
user-defined preferences. The class provides comprehensive authentication functionality
through methods such as registerEmail(), loginEmail(), and updateProfile() for account
management. Social collaboration features are implemented through acceptlnvitation() and
related invitation handling methods. Trip interaction capabilities include createTrip(),
updateTripDetails(), and getTrips(), enabling users to manage their travel planning activities
while maintaining proper ownership and collaboration relationships.

The Trip class serves as the primary orchestrator for travel planning operations, containing
critical attributes such as tripld, title, startDate, endDate, budget, numberOfTravelers,
areaDays, and collaboratorlds. This class implements the core automation logic identified
throughout the system analysis. Key intelligent methods include
automated AccommodationSuggestion() which analyzes budget constraints and group size to
recommend suitable lodging options, and hybridRecommendationSystem() that combines
content-based and collaborative filtering algorithms to suggest optimal travel areas. The
automatedRouteOptimization() method implements the 2-opt TSP algorithm for minimizing
travel distances, while = weatherForecastAppliedInltineraryPlanning() integrates
meteorological data into trip recommendations. The alertUserWhenBudgetNearlyExceed()
method provides proactive financial monitoring by notifying users when expenses approach
or exceed budget thresholds.

The Place class models travel destinations with comprehensive attributes including placeld,
name, address, area, category, description, coordinates, estimatedCost, and rating
information. Functional methods such as searchPlace(), viewPlaceDetails(), and
savePlaceToTrip() enable location discovery and trip integration. The Itineraryltem class
represents individual schedule entries, linking places to specific trip contexts through itemld,
tripld, placeld, date, time, and sequence attributes. The isMismatch boolean tracks weather-
related scheduling conflicts, while methods like addltinerary(), updateltineraryDetails(), and
viewltinerary() manage daily scheduling operations and support the complex itinerary

generation workflows.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

CHAPTER 3

The Expense class implements sophisticated financial tracking with attributes including
expenseld, amount, category, currency, payerld, isOthers, isSplit, splitType, and settlement
status indicators. Core financial operations are managed through addExpense(),
editExpense(), and splitExpenses() methods that support the complex expense sharing
algorithms analyzed in previous use cases. The monitorTripDebt() method calculates and
tracks group financial obligations, implementing the settlement optimization logic identified
in the group balance management workflows. Additional financial methods include
makePayment() for transaction processing and settleUp() for debt resolution between group

members.

3.4 Implementation Challenges and Issues

1. WeatherAPI only provides 3-day forecast in free package

The free version of WeatherAPI restricts weather forecasting to just 3 days, which limits the
system’s ability to generate weather-aware trip plans for longer durations. This constraint
reduced the accuracy of suggestions for multi-day itineraries.

2. Cannot use booking platform API to get real-time hotel prices

Major booking platforms restrict APl access to enterprise partners or require substantial
licensing fees, preventing real-time price integration for smaller applications and creating a gap
between user expectations for current pricing and technical feasibility.

3. Google Places APIs not suggesting the most popular places

Google Places API did not consistently return the most well-known or highly rated attractions
in the top results. This affected the quality of recommendations, requiring additional filtering

and manual verification to improve relevance.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

94

CHAPTER 3

3.5 Project Timeline

2025-07 2025-08 2025-09
ID i Task Name H

1 ~ Chapter 1: Introduction _
2 1.1 Problem Statement and Motivation -L)_'—‘

3 1.2 Project Objectives L’E—I

4 1.3 Project Scope and Directions l:’_}_’—‘

5 1.4 Project Contributions
6

7

8

9

o7 13 20 27 03 10 17 24 31 o7 14

1.5 Report Organisation [’-}_;‘D

~ Chapter 2: Literature Review

2 1 Algorithm .L_;‘
2.2 Existing Travel Management System .

10 ¥ Chapter 3: System Methodology/Approach
1 3.1 Methodologies and General Work Proce... : -L_;‘

12 3.2 Review of Technologies .L_;‘
13 3.3 System Design Diagrams

18 3.4 Implementation Challenges and Issues .—|—D.L_;I
19 3.5 Project Timeline

20 3.6 Implemented Algorithms and Technelogies .’I_‘-
17 ~ Chapter 4' System Evaluation and Discussion _
21 4.1 Blackbox Testing e
2 4.2 Client Satisfaction Survey Analysis }—|-’\:
24 4.4 Objectives Evaluation j ’—>|:
23 4.3 Results and Benchmark \7_|—| ’j
25 4.5 Concluding Remark D
26 Chapter 5: Conclusion [:]
Powered by: onlinegantt.com
Figure 3.5 Gantt Chart

This project timeline spans from 14 July 2025 to 10 September 2025 and is structured into five
main chapters, each broken down into specific tasks with defined durations and dependencies.
Work begins with Chapter 1: Introduction (14-25 July), which is allocated 10 working days.
Within this period, Problem Statement and Motivation is addressed first (14—16 July), followed
by Project Objectives (17-18 July), Project Scope and Directions (18-21 July), and Project
Contributions (22-23 July), before concluding with Report Organisation (24-25 July). Each
section flows logically into the next, ensuring that the foundation of the report is firmly
established. Afterward, Chapter 2: Literature Review is scheduled from 28-31 July, focusing
on the Algorithm (28-29 July) and Existing Travel Management System (30-31 July),
providing a strong theoretical background for the system.

The bulk of the work falls under Chapter 3: System Methodology/Approach, planned for 1-18
August. This technical chapter covers Methodologies and General Work Procedures (14
August), Review of Technologies (5-6 August), System Design Diagrams (7-8 August),
Implementation Challenges and Issues (11-12 August), Project Timeline (13—14 August), and
Implemented Algorithms and Technologies (15—18 August). Given its complexity, this chapter
is given the longest duration to document development processes in detail. Following this,

Chapter 4: System Evaluation and Discussion extends from 19 August to 9 September. It begins

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

95

CHAPTER 3

with Blackbox Testing (19—22 August), continues with Client Satisfaction Survey Analysis
(25-27 August), then Results and Benchmark (28 August—1 September), Objectives Evaluation
(2—4 September), and finally the Concluding Remark (5-9 September). These tasks are
arranged sequentially to ensure that system evaluation is systematically carried out and
thoroughly discussed.

Finally, Chapter 5: Conclusion is scheduled for 8—10 September, overlapping slightly with the
final remark of Chapter 4, to summarize the overall findings and complete the report. Overall,
the Gantt chart ensures a structured and time-bound workflow, moving from introductory
groundwork and literature review to detailed methodology, system evaluation, and final
conclusion. The timeline allocates more days to critical technical and evaluation sections while
keeping introductory and concluding chapters concise, reflecting a balanced and realistic

approach to completing the FYP report within the given timeframe.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

96

CHAPTER 3

3.6 Implemented Algorithms and Technologies

3.6.1 Hybrid Area Recommendation

This module ranks candidate areas by first estimating a Collaborative Filtering (CF) score from
similar users’ behaviors, then a Content-Based Filtering (CBF) score from the current user’s
preferences vs. area profiles, and finally combining them with adaptive weights.

(A) Collaborative Filtering

Each wuser u is represented by a preference vector xy, = (py(f))rer ,Where
pu(f)is the user’s score for feature f (e.g., beach, city, history, food). The similarity between

two users u and v is measured using cosine similarity:
Xy * Xy
IEAIniEl

Only neighbors with sim(u, v) = 0.5 are retained. For each area a, let d, ,, be the number of

sim(u, v) =

picked days for neighbor v (0 if not picked). The CF score is computed as:

C, = Z sim(u,v) dyq

sim(u,v)=0.5

W, = Z | sim(u, v)|

sim(u,v)=0.5

The per-area CF score is then:

1 (C“) W, >0
clampyo 10] w,)’ a
(noCF), W, =0

scr(u,a) =

(B) Content-Based Filtering
Each area a has a profile vector w,(f), representing how strongly feature f applies to that area.
Each user u has a preference score p,(f) for the same features (default 5.0 if unknown). The

raw dot product is:

SEE @) =) pu() wa(f)

feF
To ensure comparability, the raw score is normalized to a 0—10 scale using a maximum constant

M=8-8-4:

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

97

CHAPTER 3

raw

Scpr(u, a) _ 10)

Scer(u,a) = clampyg 1) ([

(C) Adaptive Fusion
The system adaptively combines CF and CBF depending on whether CF evidence exists:

S(u,@) {clamp[o,lo](0.7 scr(w,a) + 03 scpr(w,a)), W, >0
u,a) =
clampy 101 (0.5 scr(w, @), W, =0
If similar users exist (Wa>0W_a > 0Wa>0), the system gives 70% weight to CF and 30% to
CBF.

If no similar users exist, it penalizes unseen areas by using only half of the CBF score

3.6.2 Budget Range Estimation
This module predicts a user-specific total trip budget by analyzing historical trips, normalizing
them to a per-person-per-night (PPN) cost, and aggregating them with similarity weights. The
output is a budget estimate accompanied by a confidence band that reflects the uncertainty of
the match.
(A) Context similarity & compatibility filters
The system first filters historical trips to retain only those that are reasonably comparable to
the current user’s planned trip. Compatibility is determined through:
e Area similarity Sarea(u,r) € [0,1]; measured by day-weighted overlap of selected
areas.
o Hotel-level weight w;,:.;(u,7) € [0,1]; only trips with comparable hotel level are
kept; discard if <0.2.
 Nights weight wy;gnes(u, 7) € [0,1]; only trips with a comparable duration; discard if
<0.3.
e Room-type compatibility (must be true to keep the trip).
Additional soft weights:
e Traveller-count weight w;,.,,,(u,r)
« Day-count weight w,, (u,7)

The overall weight for trip 7 is the product:

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

98

CHAPTER 3

Wy = Sarea (u’ T') Wtrav(u’ T') Wday (u' T') Whotel (u' T') Whights (u: T')
(B) Normalize to per-person-per-night (PPN)
To make costs comparable, each trip is normalized into a per-person-per-night value:

budget,
max(1,trav,) max(1,nights,)

PPN, =

(C) Robust outlier trimming
The system removes outliers by trimming to the 10th and 90th percentiles (P;q, Pyg) of all PPN
values:

Pio < PPN, < Py

(D) Weighted averaging
If some trips survive and)., w,. > 0, the weighted PPN is:

m — ZT‘ WT‘ PPNI‘
Xr Wy

Otherwise, fall back to the unweighted mean:

1
PPN = —Z PPN
IR| '

TER

(E) Scale to the user’s total & post-adjustments
Let T be myTravellers, N be myNights.
TotalEstimate = PPN-T - N
Group-size economy. Apply a multiplicative adjustment
TotalEstimate « g(T) - TotalEstimate
where g(T) < lcaptures shared-cost effects.
(F) Range construction (confidence band)

Depending on match strictness, set a band:

{0.05, if exact match on (travellers, days, hotel level)

BudgetRange = 0.15, otherwise
and form the range:

BudgetRange = [(1 — B)TotalEstimate, (1 + B)TotalEstimate]

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

99

CHAPTER 3

3.6.3 Route Optimization Algorithm

The day plan starts at the accommodation (fixed start) and visits each selected place once.
Distances are computed using the Haversine great-circle formula.

(A) Haversine distance

For points i = (¢;, 4;) and j = (¢}, 4;) in radians:

A A
d;j = 2r arcsin \/sinz (7(3) + cos(¢;) cos(¢;) sin? (;>

The system precomputes a full distance matrix D = [d;}]
(B)Objective

Given a visiting order m = (1, ..., mn)with m; = h(the hotel), the objective is to minimize:

n-1
Dist(m) =) dy .,
t=1

(C) Construction and improvement
The algorithm generates an initial route with the hotel fixed at the start. It then applies 2-opt
local search: for edges (i,i + 1) and (j,j + 1)perform a swap if

dijv1 + djje1 > dij+divgjia
and accept improvements until no further reduction in distance is possible.
(D)Result
The output is an optimized sequence of points and names, the minimized travel distance, and
the number of improvements performed. If returnToStart is enabled, the tour is closed by

appending the hotel at the end.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

100

CHAPTER 3

3.6.4 Automated Accommodation Suggestions

This module filters hotels by level (rating range), finds a feasible room arrangement given
travellers and capacities, optimizes by cost-per-person, validates against the trip budget, then
picks a hotel and builds alternatives within 2 km at the same price level.

(A) Level filter (rating range)

Each hotel with rating 73, is accepted only if it falls within the selected level’s range
Tmin = Th = Tmax

(B) Price floor by level (quality guardrails)
Each room type must meet the minimum price requirement associated with the hotel level L
Psingle = Diingle (L), Pramily = Diay (L)
(C) Room Arrangement Feasibility
e Small groups (T < 2): Prefer single room if feasible; otherwise fallback to family.
e Medium groups (3 <T < 4): Require family room.
e Large groups (T > 5): Calculate multiple room options.

T< Csingle: T< Cfamily

(D) Large Group Options
Family-only option:
_
ky = , Costy = kf Pramily
Cfamily
Single-only option:
_
ks = , Costg = k; Dsingle
Csingle

Mixed option (family + single):
T
<[

Cfamily

Trem]

|: Trem =T - kf Ctamily» ks = l
Csingle

Costpixed = kf Pfamily + ks Dsingle

E) Cost per Person and Optimal Selection
The optimal arrangement minimizes the cost per person (CPP):

Cost
CPP = K argmin CPP

(F) Total Accommodation Cost and Budget Validation
The per-night cost is scaled by the number of nights N:
AccTotal = PricePerNight(total) x N

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

101

CHAPTER 3

A hotel is accepted only if it satisfies:
AccTotal < Budget
(G) Alternate Hotel Selection
Finally, alternate hotels are retrieved if they share the same price level and are within 2 km of
the chosen hotel:

d(halt) hsel) < 2km

3.6.5 Weather Forecast
he system returns a daily weather condition string for a given (lat, lon, date). It uses a two-
stage strategy:

1. Short range (< 3 days): call WeatherAPI and select the noon condition.

2. Extended range (> 4 days): generate conditions from seasonal/monsoon patterns

(historical logic) and show a disclaimer.

(A) Day offset and branch selection
Rendered:
daysAhead = (date — today)gays + 1
if daysAhead < 1 = “Date in the past.”
if daysAhead < 3 = use API; else = use seasonal model
(B) Short-range forecast (API, daysAhead < 3)
From WeatherAPI we get hourly conditions for that day. We pick the hour closest to 12:00
(noon).
Rendered:

h* =arg min |h — 12| = Condition = cond(lat,lon,date, h*)
hefo,..,23}

Rain reminder trigger
If the chosen condition indicates precipitation, show a reminder.

Rendered:

if Condition € {Rain, Showers, Thunderstorm, ...} = ShowRainReminder()

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

102

CHAPTER 3

(C) Extended forecast (seasonal model, daysAhead > 4)

When beyond the reliable API window, the system uses month/day seasonal patterns and

monsoon type to generate a plausible daily condition.
Rendered:
m = month(date), d = day(date)
Condition ~ f;eas0na1 (M, d; enhancedLogic = 1)
(monsoon(m), season(m)) « patterns[m]
Extended-range disclaimer
Show once per trip when using the seasonal branch.
Rendered:
if first use in trip = ShowDisclaimer(“out of 3-day range”)
(D) Overall piecewise definition
Rendered:

"{“Date in the past.”}, {daysAhead} <1
Weather(lat,lon,date) = < {cond}(lat, lon,date, h*), 1 < {daysAhead} < 3
fseasonal (mr d)' {daySAhead} =>4

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

103

CHAPTER 4

Chapter 4

System Evaluation and Discussion

4.1 Blackbox Testing
4.1.1 Planning Module
4.1.1.1 Preference Dialog Tests

Test Input Data | Expected Actual Pass/Fail Notes

Scenario Output Output

Valid Select Preferences Preferences Fail Dialog requires

preference “City” and | saved dialog | saved dialog two clicks to

selection “Beach” closes closes close - Flutter
framework
issue.

No Click Warning: Warning: Pass

preferences | “confirm” | “Please select | “Please select

selected without at least 1 |at least 1

selecting preference preference
any before before
continuing!” | continuing!”

Single Select only | Preferences Preferences Fail Dialog requires

preference “Nature” saved dialog | saved dialog two clicks to

selected closes closes close - Flutter
framework
issue.

All Select all 4 | Preferences Preferences Fail Dialog requires

preferences | categories | saved dialog | saved dialog two clicks to

selected closes closes close - Flutter
framework
issue.

Table 4.1.1.1 Preference Dialog Tests

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

104

CHAPTER 4

4.1.1.2 Trip Title Input Test

Test Input Data | Expected Actual Pass/Fail Notes
Scenario Output Output
Valid Trip | “Family Title accepted | Title Pass
title holiday in accepted
Penang”
Empty title “? Generate Generate Pass
itinerary itinerary
button button
disabled disabled
Table 4.1.1.2 Trip Title Input Test
4.1.1.3 Area Selection Test
Test Input Data Expected Actual Pass/Fail | Notes
Scenario Output Output
Valid Select “George | Area added to | Area added to | Pass
selection town” with 2 | selectedAreas | selectedAreas
days
Multiple Select Area added to | Area added to | Pass
Area “Georgetown” 2 | selectedAreas | selectedAreas
selection days and “Batu
Ferringhi” 1 day
Minimum | Select Area added to | Area added to | Pass
days “Georgetown”l | selectedAreas | selectedAreas
selection day
Empty Not select any | Generate Generate Pass
areas areas itinerary itinerary
selection button button
disabled disabled

Table 4.1.1.3 Area Selection Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

105

CHAPTER 4

4.1.1.4 Area Days Validation

Test Input Data | Expected Actual Pass/Fail Notes
Scenario Output Output
Slider Move slider | Slider Slider Pass
minimum to shows 1 shows 1
boundary minimum day,value=1 | day,value=1
position
Slider Move slider | Slider Slider Pass
maximum | to shows 5 shows 5
boundary maximum | day,value=5 | day,value=5
position
Slider Drag slider | Slider Slider Pass
interaction | to middle | responds responds
position smoothly and | smoothly and
shows shows
correct day | correct day
count count
Slider Open days | Slider default | Slider default | Pass
default selection to 1 day to 1 day
value dialog

Bachelor of Information Systems (Honours) Business Information Systems

Table 4.1.1.4 Area Days Validation

Faculty of Information and Communication Technology (Kampar Campus), UTAR

106

CHAPTER 4

4.1.1.5 Date Range Tests

Test Input Data | Expected Actual Pass/Fail Notes
Scenario Output Output
Past Select Should not | Past dates | Pass
selection yesterday to | be possible | is disable

tomorrow (firstDate =

now)

Date range | Select 3 | Error “Date | Error “Date | Pass
mismatch areadays range range

but select 2 | mismatch” | mismatch”

days
Date range | Select 3 | Date range | Date range | Pass
match areadays accepted accepted

and select 3

days
Single day | Start date =| 1 day trip | Date range | Pass
trip end date accepted accepted
Far Select dates | Date range | Date range | Pass
dates in 2026 accepted accepted
Empty date | Do not | Generate Generate Pass
range select any | itinerary itinerary

dates button button

disabled disabled

Table 4.1.1.5 Date Range Tests

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

107

CHAPTER 4

4.1.1.6 Budget Input Test

Test Input Expected Actual Output | Pass/Fail Notes
Scenario Data Output
Valid Budget = | Budget Budget Pass
budget 1000 accepted accepted
amount
Zero Budget =0 | Generate Generate Pass
budget itinerary button | itinerary
disabled button disabled
Negative Budget = - | Error:”Invalid | Error:”Invalid | Pass
budget 500 budget” budget”
Decimal Budget = | Budget Budget Pass
budget 1000.10 accepted accepted
Large Budget = | Budget Budget Pass
budget 99999 accepted accepted
amount
Non- Buget = | Error:”Only Error:”Only Pass
numeric “abc” numeric numeric
budget character is | character is
accepted” accepted”
Minimum | Budget Error Error Pass
budget <80 ”Minimum ”Minimum
budget amount | budget amount
is RM 80~ is RM 80”

Table 4.1.1.6 Budget Input Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

108

CHAPTER 4

4.1.1.7 Traveler Count Test

Test Input Data | Expected Actual Pass/Fail Notes
Scenario Output Output
Valid Travelers = | Count Count Pass
traveler 2 accepted accepted
count
Large Travelers = | Count Count Pass
group 7 accepted accepted
Zero Travelers = | Generate Generate Pass
traveler 0 itinerary itinerary

button button

disabled disabled
Negative Travelers = | Generate Generate Pass
traveler -1 itinerary itinerary

button button

disabled disabled

Bachelor of Information Systems (Honours) Business Information Systems

Table 4.1.1.7 Traveler Count Test

Faculty of Information and Communication Technology (Kampar Campus), UTAR

109

CHAPTER 4

4.1.1.8 Hotel Level Selection Test

Test Input Data Expected Actual Pass/Fail | Notes
Scenario Output Output

Level 1 | selectedHotelLevel Hotels with | Hotels Pass
hotel =1 rating with rating
selection below 3.0 below 3.0

Level 2 | selectedHotelLevel Hotels with | Hotels Pass
hotel =2 rating 3.0- | withrating
selection 34 3.0-34

Level 3 | selectedHotelLevel Hotels with | Hotels Pass
hotel =3 rating 3.5- | withrating
selection 3.9 3.5-3.9

Level 4 | selectedHotelLevel Hotels with | Hotels Pass
hotel =4 rating 4.0- | withrating
selection 4.4 4.0-4.4

Level 5 | selectedHotelLevel Hotels with | Hotels Pass
hotel =5 rating 4.5- | withrating
selection 5.0 4.5-5.0

Table 4.1.1.8 Hotel Level Selection Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

110

CHAPTER 4

4.1.1.9 Room Type Matching Test

Test Input Data Expected Output | Actual Pass/Fail | Notes
Scenario Output
Single Travelers=2, Single room Single Pass
room for | budget adequate selected room
1-2 selected
travelers
Family Travelers=3, Family room Family Pass
room for | budget adequate selected room
>2 selected
travelers
Capacity Travelers =6,family | One single room | Error :”No | Fail Room
validation | room capacity =4 and one family | hotels capacity
room selected found logic error -
matching system
the selected should reject
level or hotels when
budget” family room
capacity (4)
< travelers
6), but
shows
generic 'no
hotels found'
message
instead of
specific
capacity
error.
Price Roomprice > | Should not have | Do not | Pass
validation | budget cap this problem | have this
because minimum | problem
budget is
minimum
roomprice(RM80)

Table 4.1.1.9 Room Type Matching Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

111

CHAPTER 4

4.1.1.10 Trip Generation Prerequisites

Test Input Data Expected Actual Pass/Fail | Notes
Scenario Output Output
Complete All fields filled | Trip Trip Pass
Valid inputs | correctly generation generation
proceeds proceeds
Missing trip | Title is null Generate Generate Pass
title Itinerary Itinerary
button is | button is
disabled disabled
Missing No areas selected Generate Generate Pass
areas Itinerary Itinerary
button is | button is
disabled disabled
Missing startDate or endDate | Generate Generate Pass
dates null Itinerary Itinerary
button is | button is
disabled disabled
Missing Budget = null Error Error Pass
budget ’Minimum ’Minimum
budget budget
amount is RM | amount s
80~ RM 80~

Table 4.1.1.10 Trip Generation Prerequisites

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

112

CHAPTER 4

4.1.1.11 Plan Style Configuration Test

Test Input Data Expected Actual Pass/Fail | Notes
Scenario Output Output
Food-heavy | SelectedPlanStyle = | 1 attractions,4 | 1 Pass
plan foodHeavy meals,1 shop | attractions,4
per day meals,1 shop
per day
Balanced SelectedPlanStyle = | 2 attractions, | 2 attractions, | Pass
plan balanced 2meals,2 2meals,2
shops per day | shops per
day
Attraction- SelectedPlanStyle 4 attractions, | 4 attractions, | Pass
seeking plan | =attractionSeeking 2meals,0 2meals,0
shops per day | shops per
day
Shopping- SelectedPlanStyle = | 1 attractions, | 1 attractions, | Pass
lover plan shoppingLover 2meals,3 2meals,3
shops per day | shops per
day

Table 4.1.1.11 Plan Style Configuration Test

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

113

CHAPTER 4

4.1.1.12 Weather API Tests

Test Input Data Expected Actual Pass/Fail | Notes
Scenario Output Output
Current Date within next 3 | WeatherAPI | WeatherAPI | Pass
weather(1- days data retrieved | data retrieved
3days)
Extended Date beyond 3 days | Historical Historical Pass
forecast(>3 pattern pattern
days) weather weather
generated generated
Weather API | API returns error Return Return Pass
failure unknown unknown
weather weather
Invalid Lat/lon out of range | API error API error | Pass
coordinates handled handled
gracefully gracefully
Table 4.1.1.12 Weather API Tests
4.1.1.13 Weather -based Filtering Test
Test Input Expected Output Actual Output Pass/Fail | Notes
Scenario | Data
Rainy Weather = | Indoor places | Indoor places | Pass
weather | “Heavy prioritized prioritized
filtering | Rain”
Sunny Weather = | All All Pass
weather | “Sunny” places(indoor+outdoor) | places(indoor+outdoor)
filtering included included
Unknown | Weather = | All attractions included | All attractions included | Pass
weather | “unknown
handling
Rain Weather Umbrella reminder Umbrella reminder | Pass
reminder | contains snackbar shown snackbar shown
display rain

Table 4.1.1.13 Weather -based Filtering Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

114

CHAPTER 4

4.1.1.14 Save Trip Test

Test Input Data | Expected Output Actual Pass/Fail | Notes
Scenario Output
Complete | Save All trip | Message: Trip saved to | Message: Pass
trip saved | data present | Firebase successfully Trip saved
to Firebase
successfully
Direct User clicks | A bottom sheet will show up | A bottom | Pass
Booking ‘save trip’ | with the options of ‘book in | sheet will
button app’ or ‘skip for now’ show up
with the
options of
‘book in
app’ or
‘skip for
Passnow’
Missing Some Error message displayed Error Pass
trip data required message
fields null displayed

Table 4.1.1.14 Save Trip Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

115

CHAPTER 4

4.1.1.15 Map Interaction Tests

Test Input Data | Expected Output Actual Output Pass/Fail | Notes
Scenario
Hotel pintap | Tap red | Hotel details sheet | Hotel details sheet | Pass
hotel displayed displayed
marker
Attraction pin | Tap Place details sheet | Place details sheet | Pass
tap numbered | displayed displayed
attraction
Alternative Tap black | Alternative hotel sheet | Alternative hotel | Pass
hotel tap alternative | displayed sheet displayed
marker
Map toggle | Toggle Markers Markers Pass
functionality | "Show appear/disappear appear/disappear
Alternate correctly correctly
Hotels"
Map refresh | Update Map markers update Map markers | Pass
after chanegs | hotel correctly update correctly
selection

Table 4.1.1.15 Map Interaction Tests

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

116

CHAPTER 4

4.1.1.16 Replace with alternative places test

Test Input Expected Output Actual Output Pass/Fail | Notes
Scenario | Data
No User Show dialog 'Replaced | Show dialog 'Replaced | Pass
clashing | click stop #$index on Day | stop #$index on Day
with “use ${day + 1} with|§{day + 1} with
places in | instead” | "$newName".' "$newName".'
itinerary | button
clashing | User Show dialog “This place | Show dialog “This place | Pass
with click has already included in | has already included in
places in | “use your current | your current
itinerary | instead” | itinerary.Do you want to | itinerary.Do you want to

button replace it?” replace it?”
Insist to | User Replace the places with | Replace the places with | Pass
replace if | clicks the clashed places the clashed places
it is | “Use
clashing | anyway”
with
current
itinerary
Do not | User Show “Kept your Show “Kept your | Pass
replace if | clicks original stop” original stop”
it is | “No”
clashing
with
current
itinerary

Table 4.1.1.16 Replace with alternative places test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

117

CHAPTER 4

4.1.1.17 TSP Route Optimization Test

Test Input Expected Actual Output Pass/Fail Notes
Scenario Data Output
Small route Hotel + 1 | Route returned Route [0, 1] Pass
(2 points) stop as-is, no returned,
optimization distance=1.0
Medium Hotel + 4 | Route optimized | Optimized route < | Pass
route (5 stops using 2-opt initial distance
points)
Large route Hotel +9 | Route optimized | Optimized route Fail Algorithm
(10 points) stops with found, optimized
improvements improvement distance but did
logged count not >1 (test not log
failed) improvements
consistently
(possible
logic/tolerance
issue).
0 points No places | Empty route Empty route [] Pass
returned safely returned
Fixed start fixedStart | Hotel remains at | First element =0 Pass
optimization | =0 position 0
Table 4.1.1.17 TSP Route Optimization Test
4.1.1.18 Distance calculations
Test Scenario | Input Data Expected Output Actual Output Pass/Fail | Notes
Same location | pointl =point2 | Distance = 0.0 km Distance = 0.0 km Pass
distance
Known George Town | Distance ~ 11-13 | Distance = 12 km Pass
distance — Batu | km
calculation Ferringhi
Large distance | Penang Distance = 350+ km | Distance ~352 km | Pass
calculation (George Town) | (road
— Kuala | approximation)
Lumpur
Invalid Invalid lat/lng | Error handled | ArgumentError Pass
coordinates values gracefully thrown & caught
gracefully

Table 4.1.1.18 Distance calculations

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

118

CHAPTER 4

4.1.1.19 Place Matching Tests

Test Input Data | Expected Output Actual Pass/Fail | Notes
Scenario Output
Exact "Penang Exact match found | "Penang Pass
name Hill" in | and used Hill"
match database
Fuzzy "Penang Fuzzy match > 60% | No match at | Fail Word-order +
name Hill" vs | — "Penang Hill" 0.6 synonym
match "Bukit (“Bukit”#“Hill”)
Penang" caused rating < 0.6;
needs threshold
adjustment or
synonym handling
No match | Completely | No match (added to | Null Pass
found different unmatched places) | (unmatched)
name
Multiple | Several First/best match | One of the | Pass
similar 60%+ selected similar
names matches in names
database

Table 4.1.1.19 Place Matching Tests

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

119

CHAPTER 4

4.1.1.20 Alternative Suggestions Tests

Test Scenario | Input Data Expected Actual Output Pass/Fail | Notes
Output

Attraction Request Similar 3 nearby museums | Pass
alternatives alternatives for | attractions within | returned; sorted by

museum 2 km distance
Restaurant Request Similar “Local Seafood” Pass
alternatives alternatives for | restaurants

restaurant within radius
Shop Request Similar shops | “Souvenir Central” | Pass
alternatives alternatives for | within radius

souvenir shop
No alternatives | Remote location | Empty Empty list Pass
available with no nearby | alternatives list

places
Duplicate Alternative Duplicate “Pinang Peranakan | Pass
prevention overlaps with | excluded from | Mansion” excluded

selected results

Table 4.1.1.20 Alternative Suggestions Tests
4.1.1.21 Budget Range Estimation Test
Test Scenario | Input Data Expected Output | Actual Output Pass/Fail | Notes
Sufficient 5+ similar trips | Weighted average | Weighted avg | Pass
similar trips in DB budget calculated | between lowest &
highest ppd
Exact match | Same travelers & | Exact matches | 2000 +£10% — 1800— | Pass
preference days available used with 10% | 2200
band

No similar | No trips in DB Fallback budget | Returned 200 Pass
trips calculation used
Outlier Some extreme | Outliers excluded | 5000 excluded; 1500 | Pass
filtering budget values from calculation & 2000 retained
User Compare Cosine similarity | ~0.85 (high | Pass
similarity calc | preference calculated similarity)

vectors

Table 4.1.1.21 Budget Range Estimation Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

120

CHAPTER 4

4.1.1.22 Trip Display & Navigation

message

message

Test Case Input Data Expected Output | Actual Qutput Pass/Fail | Notes
Load My | Valid user ID Display list of | Display list of | Pass
Trips Screen user’s trips (owned | user’s trips (owned
+ collaborated) + collaborated)
Empty Trips | User with no trips | Show “No trips yet. | Show “No trips yet. | Pass
Display Let’s create | Let’s create
one”message with | one”message with
explore icon explore icon
Trip Card | Trip with complete | Show trip card with | Show trip card with | Pass
Display data title, dates, budget, | title, dates, budget,
Trip Owner | User owns trip Display delete | Display delete | Pass
Indicator button on trip card | button on trip card
Collaborator | User is | show trip card | show trip card | Pass
View collaborator without delete | without delete
options options
Trip Tap | Tap on trip card Navigate to | Navigate to | Pass
Navigation TripDetailScreen TripDetailScreen
with correct tripld | with correct tripld
Invalid Trip | Trip with | Show “Error | Show “Error | Pass
Data missing/corrupted | loading trip” or | loading trip” or
data “Invalid trip data” | “Invalid trip data”

Table 4.1.1.22 Trip Display & Navigation

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

121

CHAPTER 4

4.1.1.23 Trip Deletion Test

Test Case Input Data Expected Output Actual Output Pass/Fail | Notes
Delete Tap delete | Show confirmation | Show confirmation | Pass
Confirmation button dialog dialog
Dialog
Cancel Tap “Cancel” | Dialog closes, trip | Dialog closes, trip | Pass
Deletion in dialog remains remains
Confirm Tap “Delete” | Trip deleted, success | Trip deleted, success | Pass
Deletion in dialog snackbar shown snackbar shown
Delete Error | Deletion fails | Show “Error | Show “Error | Pass
Handling deleting trip” | deleting trip”
snackbar snackbar
Delete Non- | Collaborator Delete button not | Delete button not | Pass
Owner tries to delete | visible/accessible visible/accessible
Table 4.1.1.23 Trip Deletion Test
4.1.1.24 Itinerary Management
Test Case Input Data | Expected Output Actual Output Pass/Fail | Notes
Load Valid trip ID | Display itinerary items | Display itinerary items | Pass
Itinerary Tab grouped by date grouped by date
Day Tap on | Switch to selected | Switch to selected | Pass
Selection different day | day's itinerary day's itinerary
Place Card | Itinerary Show place with | Show place with | Pass
Display item image, name, | image, name,
category, weather info | category, weather info
Place Details | Tap on place | Open Place Details | Open Place Details | Pass
card Sheet with place | Sheet with place
information information
Empty Day with no | Show "No places | Show "No places | Pass
Itinerary places planned for this day" | planned for this day"
Weather Valid Display weather | Display weather | Pass
Integration itinerary condition for the day | condition for the day
item
Invalid Place | Corrupted Show "Place Not | Show "Place Not | Pass
Data place data Found" with error icon | Found" with error icon

Table 4.1.1.24 Itinerary Management

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

122

CHAPTER 4

4.1.2 Budgeting Module
4.1.2.1 Expense Dialog Test

Test Case Input Data | Expected Output Actual Output Pass/Fail | Notes
Add Expense | Tap add | Show expense dialog | Show expense dialog | Pass
Dialog expense with all fields with all fields

button
Valid Expense | Amount: Expense saved | Expense saved | Pass
Entry 100, successfully successfully

Category:

Food
Invalid Amount: -50 | Show "Please enter a | Show "Please enter a | Pass
Amount or empty valid amount" error valid amount" error
Split Expense | Toggle split | Show/hide split | Show/hide split | Pass
Toggle option settings based on trip | settings based on trip

type type

Custom Split | Custom split | Show "Custom split | Show "Custom split | Pass
Validation not equal to | amounts must equal | amounts must equal

total total amount” total amount"
Solo Trip Split | Solo trip with | Split option | Split option | Pass

split enabled | disabled/hidden disabled/hidden
Edit Existing | Tap edit on | Populate dialog with | Populate dialog with | Pass
Expense expense existing data existing data
Delete Tap delete | Expense removed, | Expense removed, | Pass
Expense and confirm | success message | success message

shown shown

Budget Expenses Send notification to | Send notification to | Pass
Warning reach 80% of | alert budget exceed alert budget exceed

budget
Budget Adjust Budget updated | Budget updated | Pass
Adjustment budget in | successfully successfully

warning

dialog
No expenses | No expenses | Show no expenses to | Show no expenses to | Pass
breakdown added yet show yet show yet
chart

Table 4.1.2.1 Expense Dialog Test

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

123

CHAPTER 4

4.1.2.2 Settlement system

receipt

dialog with image

dialog with image

Test Case Input Data Expected Output Actual Output Pass/Fail | Notes
Settlement Group trip with | Display individual | Display individual | Pass
Dashboard expenses balances and | balances and
suggested suggested
settlements settlements
Payment User click pay | Receipt uploaded, | Receipt uploaded, | Pass
Receipt button and | pending status | pending status
Upload Upload valid | shown shown
image
Invalid Upload fails Show error message | Show error message | Pass
Receipt for upload failure for upload failure
Upload
Settle Tap "Settle" | Show settlement | Show settlement | Pass
Payment button confirmation dialog | confirmation dialog
Mark as | Confirm Create settlement | Create settlement | Pass
Settled settlement record, update status | record, update status
Pending Receipt Show "Pending" | Show "Pending" | Pass
Status uploaded but not | status instead of | status instead of
Display settled "Pay" button "Pay" button
Solo Trip | Solo trip Settlement Settlement Pass
Settlement dashboard not | dashboard not
displayed displayed
View Receipt | Tap "View" on | Open receipt viewer | Open receipt viewer | Pass

Table 4.1.2.2 Settlement system

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

124

CHAPTER 4

4.1.3 Collaborator Module

label, no remove

button

label, no remove

button

Test Case Input Data Expected Output | Actual Output Pass/Fail | Notes
Add Tap add | Show search | Show search | Pass
Collaborator collaborator dialog with | dialog with
Dialog button username field username field
Search Users Enter valid | Display matching | Display matching | Pass
username users in search | users in search
results results
No Search | Enter non- | Show "No users | Show "No users | Pass
Results existent found" message found" message
username
Send Tap send icon Send notification, | Send notification, | Pass
Collaboration show success | show success
Request message message
Search Timeout | Network timeout | Show "Error | Show "Error | Pass
during search searching users" | searching users"
message message
Remove Owner removes | Show Show Pass
Collaborator collaborator confirmation, confirmation,
remove from trip | remove from trip
Non-Owner Collaborator Remove button not | Remove button not | Pass
Remove tries to remove | visible visible
Attempt others
Display Owner | Trip ownerinlist | Show "Owner" | Show "Owner" | Pass

Table 4.1.3 Collaborator Module

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

125

CHAPTER 4

4.1.4 Booking Module

Test Case Input Data Expected Output | Actual Output Pass/Fail | Notes
Load Trip with booking | Display =~ booking | Display =~ booking | Pass
Booking Tab card with hotel | card with hotel
details details
No Booking | Trip without | Show "No | Show "No | Pass
State accommodation accommodation accommodation
yet" empty state yet" empty state
Pending Booking status: | Show "Complete | Show "Complete | Pass
Booking PENDING booking" button booking" button
Action
Confirmed Booking status: | Show "Download | Show "Download | Pass
Booking CONFIRMED Confirmation" Confirmation"
Action button button
Generate Tap download | Generate and | Generate and | Pass
PDF confirmation display booking | display booking
PDF PDF
Booking Tap "Details" Open booking | Open booking | Pass
details details

Table 4.1.4 Booking Module

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

126

CHAPTER 4

4.1.5 Notification Module

Test Case Input Data Expected Output | Actual Output Pass/Fail | Notes
Load User with | Display Display Pass
notifications notifications notifications in | notifications in
screen sections sections
Load empty | User with no | Show "No | Show "No | Pass
notifications notifications notifications yet" | notifications yet"
message message
Accept Tap "Accept" on | Success message, | Success message, | Pass
collaborator invite user added to trip | user added to trip
invite
Decline Tap "Decline" | Decline message, | Decline message, | Pass
collaborator on invite user not added user not added
invite
View payment | Tap "View | Receipt image | Receipt image | Pass
receipt Receipt" dialog opens dialog opens
Settle payment | Tap "Settle Up" | Payment marked as | Payment marked as | Pass
on payment settled settled
Adjust budget | Tap "Adjust | Budget edit dialog | Budget edit dialog | Pass
warning Budget" opens opens
Review booking | Tap "Review | Booking page | Booking page | Pass
notification booking" opens opens
Refresh Tap refresh | "Booking status | "Booking status | Pass
notifications button refreshed" message | refreshed" message
Handle network | No internet | "Error loading | "Error loading | Pass
error connection notifications" notifications"
message message

Table 4.1.5 Notification Module

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

127

CHAPTER 4

4.2 Client Satisfaction Survey Analysis

What is your age?
(6 %ME18)

® 18-24
® 2534
® 35-44
@ 45+

Figure 4.2.1 Age distribution of respondents
The age distribution of respondents shows that half of the participants (50%) fall within the
18-24 age group, followed by 33.3% in the 25-34 group, and 16.7% are aged 45 and above,
while no respondents were in the 35-44 category. This indicates that the majority of
ExploreEasy’s potential users are young adults, mainly university students and young
professionals, who are more open to using digital solutions for travel planning. Since this group
is often budget conscious and tech-savvy, the system should focus on affordability,

convenience, and mobile-first design to meet their needs effectively.

What is your gender?
(6 %E18)

® Male
® Female

Figure 4.2.2 Gender distribution of respondents
The gender breakdown reveals that 66.7% of the respondents are female, compared to 33.3%
male. This suggests that female travelers may form a larger portion of ExploreEasy’s target
users. Therefore, the design and features of the application should take into account factors that

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR
128

CHAPTER 4

are typically prioritized by female travelers, such as safety, budget transparency, and
accommodation reliability, while still ensuring inclusivity for male users. This highlights the

importance of creating a balanced interface that appeals to both genders.

How often do you usually travel?
(6 %EIR)

@® Once a year
® 2-3times a year
) More than 3 times a year

Figure 4.2.3 Frequency of respondents’ travel

In terms of travel frequency, the results show that 50% of respondents travel once a year, 33.3%
travel two to three times a year, while only 16.7% travel more than three times annually. This
indicates that most users are occasional travelers rather than frequent ones. As a result,
ExploreEasy should aim to provide features that simplify the travel planning process, such as
automated itinerary generation, budget estimation, and weather-aware recommendations.

These features will help occasional travelers save time and effort in planning their limited trips.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

129

CHAPTER 4

How familiar are you with travel planning apps (TripAdvisor, Wanderlog etc.)?
(6 %E18)

@® Never used
@ Occasionally used
© Frequently used

Figure 4.2.4 Familiarity of respondents with travel planning apps
The pie chart shows that majority of 66.7% reported occasional usage, 16.7% had never used
such applications, and only 16.7% were frequent users. This demonstrates that most
respondents have some awareness but are not highly reliant on existing tools. Therefore,
ExploreEasy has the opportunity to position itself as a beginner-friendly yet innovative
platform, combining simplicity of use with unique functions such as budget alerts, smart

accommodation suggestions, and itinerary optimization based on weather conditions.

How relevant were the recommended areas to your travel interests?
(6 £EIE)

5 (83.3%)

0 (0%) 0 (0%) 0 (0%) 1(16.7%)
0 | |
1 2 3

Figure 4.2.5 Relevance of recommended areas to respondents’ travel interests
This chart shows that the majority of respondents (83.3%) rated the recommended areas as

highly relevant to their travel interests, while the remaining 16.7% rated them slightly less

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

130

CHAPTER 4

relevant but still positive. None of the participants gave a low rating. This indicates that the
area recommendation algorithm in ExploreEasy is effective in matching users’ preferences
with suitable destinations, showing strong alignment between the system’s suggestions and

user expectations.

Did ExploreEasy’s weather-aware suggestions (avoiding outdoor activities during rain) beneficial in
itinerary planning to you?
(6 ZEE)

6

6 (100%)

0 (0%) 0 (0%) 0 (0%) 0 (0%)

1 2 3 4 5

Figure 4.2.6 Respondents’ feedback on weather-aware suggestions in itinerary planning
This chart shows that 100% of respondents agreed that the weather-aware suggestions, which
avoid recommending outdoor activities during rain, were beneficial in itinerary planning. The
unanimous positive response highlights the importance and usefulness of integrating real-time

weather data into the planning process.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

131

CHAPTER 4

How accurate was the budget range estimation compared to your expectations?
(6 %£EE)

® Yes
® No
Maybe

Figure 4.2.7 Accuracy of budget range estimation compared to respondents’

expectations

This chart shows that half of the respondents (50%) agreed that the budget range estimation
was accurate, while 33.3% selected “Maybe,” and 16.7% responded “No.” The majority
therefore recognized the usefulness of this feature, but the presence of uncertainty and a small
portion of dissatisfaction indicates that while the system performs well overall, there is still

room for refinement in providing more precise or personalized estimations.

Did the real-time budget alert on budget exceeding help you maintain financial control?
(6 £EE)

® Yes
® No

| didn’t use this feature

Figure 4.2.8 Respondents’ feedback on real-time budget alerts for financial control
This chart shows that 100% of respondents agreed that the real-time budget alert feature helped
them maintain financial control during their trip planning. The strong positive feedback
highlights the effectiveness of this function in preventing overspending and supporting users
in staying within their financial limits. This confirms that budget monitoring is a highly
valuable feature for travelers.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR
132

CHAPTER 4

Did you find the cost splitting feature useful for you when you travel in groups?
(6 £EE)

® Yes
® No
Maybe

Figure 4.2.9 Usefulness of cost splitting feature for group travel

This chart shows that 100% of respondents found the cost splitting feature useful when
traveling in groups. The unanimous positive response emphasizes the importance of this
function in simplifying group travel expense management. By automatically dividing costs
among participants, ExploreEasy reduces potential conflicts and makes financial arrangements

more transparent and convenient.

Did the automated accommodation suggestion match your rating expectations?
(6 £E%E)

4 (66.7%)

2 (33.3%)

0 (?%) 0 (?%) 0 (0%)

1 2 3

Figure 4.2.10 Accuracy of automated accommodation suggestions against respondents’
expectations

This chart shows that 66.7% of respondents rated the automated accommodation suggestion at

level 4, and 33.3% gave it the highest rating of 5. No negative ratings were recorded, which

demonstrates that the majority of users were satisfied with the quality of automated hotel

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

133

CHAPTER 4

recommendations. This confirms the effectiveness of the feature, though continuous

improvement can further enhance confidence and accuracy.

How helpful was the route optimization feature?
(6 &MEE)

4 (66.7%)

2 (33.3%)

0 (0%) 0 (0%) 0 (0%)
0 | |
1 2 3

Figure 4.2.11 Respondents’ feedback on the helpfulness of the route optimization
feature
This chart shows that 66.7% of respondents rated the route optimization feature as very helpful,
while 33.3% rated it as helpful. No respondents provided negative feedback, indicating strong
approval of this feature. This confirms that ExploreEasy’s route planning successfully
minimizes travel distance and time, thereby improving convenience and efficiency in the travel

experience.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

134

CHAPTER 4

Did the similar-place substitution feature make your trip plan more flexible?
(6 £EE)

® Yes
® No
Maybe

Figure 4.2.12 Respondents’ feedback on the flexibility of similar-place substitution

feature

This chart shows that 100% of respondents agreed that the similar-place substitution feature
improved flexibility in their trip plan. The unanimous positive response highlights the

importance of offering alternatives when certain attractions are unavailable or less suitable.
How satisfied were you with the quality of alternate suggestions?
(6 &MEE)

4
4 (66.7%)

2 (33.3%)

0 (?%) 0 (?%) 0 (0%)

1 2 3

Figure 4.2.13 Satisfaction with the quality of alternate suggestions

This chart shows that 66.7% of respondents rated their satisfaction with the quality of alternate
suggestions at level 4, while 33.3% rated it at the highest level of 5. This indicates that users

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

135

CHAPTER 4

are generally very satisfied with the system’s ability to provide meaningful alternative

recommendations, ensuring flexibility and adaptability in their travel plans.

If you travel in groups, which feature did you find useful?

(6 &EE)
Expense splitting 6 (100%)
Budget alerts 5(83.3%)
Shared trip planning 6 (100%)
Settlement Dashboard 6 (100%)

None / Didn't travel in groups

Figure 4.2.14 Usefulness of group travel features (expense splitting, budget alerts,
shared trip planning, settlement dashboard)
This chart shows that all respondents (100%) found the group-related features such as expense
splitting, shared trip planning, and the settlement dashboard useful, while 83.3% also
highlighted the budget alerts as valuable. None of the participants reported that these features
were unnecessary. This reflects that ExploreEasy’s group travel functions are highly effective
in meeting user needs for financial transparency, collaboration, and convenience when

traveling with others.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

136

CHAPTER 4

Compared to TripAdvisor, how do you rate ExploreEasy’s route planning efficiency?
(6 &EE)

5 (83.3%)

0 (0%) 0 (0%) 0 (0%) 1 (16.7%)
0 | |
1 2 3

Figure 4.2.15 Comparison of ExploreEasy’s route planning efficiency against

TripAdvisor

This chart shows that 83.3% of respondents rated ExploreEasy’s route planning efficiency as
4 out of 5, while 16.7% gave it a perfect score of 5. No negative ratings were received, which
suggests that users perceive ExploreEasy as highly efficient, and in some cases superior, when

compared to TripAdvisor’s route planning.

Compared to TripAdvisor, how do you rate ExploreEasy's accommodation suggestions?
(6 £E%E)

2 (33.3%)

1 (16.7%)

0 (0%)

3

Figure 4.2.16 Comparison of ExploreEasy’s accommodation suggestions against

TripAdvisor

This chart shows that 50% of respondents rated ExploreEasy’s accommodation suggestions at

the highest level of 5, 33.3% rated them at level 4, while 16.7% gave a lower score of 2. While

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

137

CHAPTER 4

most users were satisfied with the feature, the presence of some dissatisfaction indicates that
further improvements are needed to ensure consistency in meeting rating expectations. This
chart shows that 50% of respondents rated ExploreEasy’s budget management features at level
5, 16.7% at level 4, while 33.3% rated it relatively low at level 2. This suggests that although
the majority recognized the strength of the system’s budget functions, there is a subset of users
who felt that Wanderlog may have better implementation. This highlights an area where
ExploreEasy can refine its budget management tools to further enhance reliability and

accuracy.

Compared to Wanderlog, how do you rate ExploreEasy’s budget management features?
(6 &EE)

3 3 (50%)

2 (33.3%)

1(16.7%)

0 (0%)

3

Figure 4.2.17 Comparison of ExploreEasy’s budget management features against
Wanderlog
This chart shows that 50% of respondents rated ExploreEasy’s budget management features at
level 5, 16.7% at level 4, while 33.3% rated it relatively low at level 2. This suggests that
although the majority recognized the strength of the system’s budget functions, there is a subset
of users who felt that Wanderlog may have better implementation. This highlights an area
where ExploreEasy can refine its budget management tools to further enhance reliability and

accuracy.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

138

CHAPTER 4

Compared to Wanderlog, how do you rate ExploreEasy’s places recommendation?
(6 &EE)

3

3 (50%) 3 (50%)

0 (?%) 0 (?%) 0 (0%)

1 2 3

Figure 4.2.18 Comparison of ExploreEasy’s place recommendations against Wanderlog
This chart shows that 50% of respondents rated ExploreEasy’s place recommendation feature
as very good (level 5), while the remaining 50% rated it at level 4. None of the respondents
rated it poorly, which confirms that ExploreEasy’s recommendation system is competitive with

Wanderlog and consistently meets user expectations.
Overall, how satisfied are you with ExploreEasy?
(6 &EE)

3 3 (50%)

2 (33.3%)

1 (16.7%)

0 (0%)

3

Figure 4.2.19 Overall user satisfaction with ExploreEasy

This chart shows that half of the respondents (50%) expressed the highest level of satisfaction
with ExploreEasy, 33.3% rated their satisfaction at level 4, while 16.7% gave a lower score of
2. The majority of users (83.3%) therefore indicated positive experiences, though the small

percentage of lower satisfaction suggests there are opportunities to further refine certain

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

139

CHAPTER 4

features, particularly in accommodation and budget management, to achieve even higher

overall approval.

Which features of ExploreEasy did you find most unigue compared to other similar system?
(6 FEIHE)

Budget range estimation is special,other system dont have this feature
Cost split , weather forecast

Area recommending feature

Budget range estimation

Cost Split

Alternative places suggestions

Figure 4.2.20 Respondents’ feedback on unique features of ExploreEasy compared to

other systems

The responses show that participants found several ExploreEasy features unique compared to
other systems such as TripAdvisor or Wanderlog. The most frequently mentioned features
include budget range estimation, cost splitting, area recommendation, weather forecast
integration, and alternative place suggestions. Notably, budget range estimation was
highlighted as a particularly distinctive feature, as respondents noted that competing systems
do not offer this functionality. This indicates that ExploreEasy has successfully introduced

innovative elements that differentiate it from existing travel planning applications.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

140

CHAPTER 4

What improvements would make ExploreEasy more competitive?
(6 #EIF)

Allow user to edit itinerary after saving trip

Accommodations suggested can be more flexible so that user can choose roomtypes
User can select from which places the expense is spend

Haotel room type flexibility

Allow to export expenses report

Accommodation room types option

Figure 4.2.21 Suggested improvements to enhance ExploreEasy’s competitiveness

This chart shows that respondents suggested several enhancements to make ExploreEasy more
competitive in the travel planning market. The most frequently mentioned improvement was
providing flexibility in accommodation selection, such as allowing users to choose room types,
which was highlighted in multiple responses. Other suggestions include enabling users to edit
itineraries even after saving a trip, and giving users control over selecting which places
expenses are recorded from. Additionally, participants recommended adding the ability to
export expense reports, which would improve financial tracking and usability. These
suggestions emphasize the importance of customization, flexibility, and post-trip editing
options, which can significantly increase user satisfaction and make ExploreEasy stand out

further compared to existing competitors.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

141

CHAPTER 4

4.3 Results and Benchmark

The results of the survey provide valuable insights into how ExploreEasy performs compared
to existing travel planning applications such as TripAdvisor and Wanderlog. The
benchmarking analysis focused on several critical aspects: route planning, accommodation
suggestions, budget management, and place recommendations.

Route Planning Efficiency (vs TripAdvisor)

Survey findings show that 83.3% of respondents rated ExploreEasy’s route planning efficiency
at level 4 and 16.7% at level 5 when compared to TripAdvisor. None of the respondents gave
low ratings, which indicates that ExploreEasy performs strongly in this area. This suggests that
the system’s automated route optimization is competitive with, and in some cases superior to,
TripAdvisor’s capabilities, especially by minimizing travel time and distance.
Accommodation Suggestions (vs TripAdyvisor)

In terms of accommodation suggestions, 50% of respondents gave ExploreEasy the highest
rating, 33.3% rated it at level 4, but 16.7% provided a low rating. This indicates that while the
majority of users were satisfied, ExploreEasy’s accommodation recommendation feature is not
yet consistently outperforming TripAdvisor. TripAdvisor remains more established in this
domain, likely due to its wider hotel database and user reviews, which add credibility and
reliability to its suggestions.

Budget Management (vs Wanderlog)

When benchmarked against Wanderlog, ExploreEasy’s budget management received mixed
results. While 50% of respondents rated the feature at the highest level and 16.7% at level 4,
33.3% gave a lower rating of 2. This shows that although many users appreciated
ExploreEasy’s real-time budget alerts and estimation functions, Wanderlog 1s still seen as
stronger in providing advanced and reliable budgeting tools. This highlights an area for further
refinement in ExploreEasy to meet user expectations.

Place Recommendations (vs Wanderlog)

ExploreEasy performed well in place recommendations compared to Wanderlog, with 50% of
respondents rating it at level 4 and the remaining 50% at level 5. No negative ratings were
received, showing that ExploreEasy’s hybrid recommendation system is highly effective in
matching users’ travel interests with relevant destinations. This demonstrates that the system’s
combination of content-based and weather-aware filtering is a strong differentiator.

Unique Features of ExploreEasy

Survey responses also revealed that users found several features of ExploreEasy unique

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

142

CHAPTER 4

compared to other systems, including budget range estimation, cost splitting, weather-aware
suggestions, area recommendations, and alternative place substitutions. These features were
identified as key strengths that differentiate ExploreEasy from competitors.
Suggested Improvements
Participants also highlighted several areas for improvement, including:
e QGreater flexibility in accommodation selection (e.g., ability to choose specific room
types).
o The option to edit itineraries after saving a trip.
o Enhanced expense management, including selecting expense sources and exporting
reports.

e Improved accuracy in budget range estimation to reduce uncertainty.

Overall, ExploreEasy demonstrates strong competitiveness in route planning, place
recommendations, and unique features such as weather-aware suggestions and cost splitting.
However, TripAdvisor still outperforms ExploreEasy in accommodation reliability due to its
extensive database and user reviews, while Wanderlog maintains an advantage in advanced
budget management.

Therefore, ExploreEasy can be considered better suited for users who value convenience,
collaborative planning, and unique automation features, whereas TripAdvisor and
Wanderlog remain stronger in specific traditional areas such as accommodation
credibility and budget robustness. To become more competitive, ExploreEasy should focus
on improving hotel recommendation accuracy, offering greater customization options, and

strengthening its budget management functions.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

143

CHAPTER 4

4.4 Objectives Evaluation

Objective 1: Al-Driven Trip Planning and Hybrid Recommendation with Weather
Forecasting

The first objective was to develop an Al-driven trip planning system that integrates
Collaborative Filtering (CF) and Content-Based Filtering (CBF) to provide personalized
recommendations, with weather forecasting to adapt itineraries. The survey results indicate
that this objective has been successfully met. Respondents rated the relevance of
recommended areas highly, with 83.3% giving the maximum rating, showing strong
alignment between system recommendations and user interests. Additionally, the weather-
aware feature received unanimous approval (100%), as users confirmed that avoiding outdoor
activities during rain improved their planning experience. Furthermore, route optimization
was also rated positively, with 66.7% giving it the highest score. These results confirm that the
hybrid recommendation system, weather integration, and TSP-based optimization improved

efficiency, adaptability, and personalization, thereby meeting user satisfaction.

Objective 2: Budget Estimation and Management with Expense Control
The second objective focused on implementing a comprehensive budget estimation and
management module, incorporating Jaccard Similarity, Weighted Averaging, and real-time
alerts. The survey findings demonstrate that this objective was largely achieved but with some
mixed results. In terms of budget estimation accuracy, 66.7% rated it as accurate and 33.3% as
very accurate in one survey set, but another chart showed a split where 50% responded “Yes,”
33.3% “Maybe,” and 16.7% “No.” This indicates that while many users trusted the budget
estimation, some expressed uncertainty about its precision. On the other hand, budget alerts
received unanimous positive feedback (100%), confirming that real-time monitoring
significantly helped users maintain financial control. The cost splitting feature also achieved
full approval (100%), showing its usefulness in group travel scenarios. When benchmarked
against Wanderlog, ExploreEasy’s budget management received both high (50% gave top
score) and lower ratings (33.3% scored 2), suggesting that while ExploreEasy introduced
unique features like range estimation and alerts, Wanderlog remains stronger in terms of
robustness. Overall, this objective can be considered partially achieved with strong user

satisfaction in cost control but room for improvement in estimation precision.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

144

CHAPTER 4

Objective 3: Flexibility through Similar-Place Substitution

The third objective aimed to provide similar-place substitution to increase flexibility,
supported by geographic filtering and quality thresholds. The survey results confirm that this
objective was fully achieved. All respondents (100%) agreed that the substitution feature
improved flexibility in their trip planning. Furthermore, satisfaction with the quality of
alternate suggestions was very high, with 66.7% rating it at level 4 and 33.3% at level 5. This
indicates that the algorithm for alternative recommendations successfully met expectations by
ensuring substitutes were both relevant and practical within the itinerary. As a result, users
gained confidence that their plans could adapt to unexpected circumstances while still
maintaining quality and enjoyment.

Overall, the evaluation of project objectives against survey results shows that Objectives 1
and 3 were successfully met with high levels of user satisfaction, while Objective 2 was
partially met due to mixed perceptions of budget estimation accuracy despite strong approval
for cost control features. Compared with benchmarking systems, ExploreEasy excels in
personalization, weather-aware planning, and itinerary flexibility, while competitors like
TripAdvisor and Wanderlog remain stronger in accommodation credibility and budget
robustness. To further improve, ExploreEasy should refine its budget estimation model,
increase accommodation selection flexibility (e.g., room type options), and allow itinerary

editing after saving, as suggested by users.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

145

CHAPTER 4

4.5 Concluding Remark

The overall results of the survey and benchmarking analysis demonstrate that ExploreEasy has
achieved most of its intended objectives and provides several innovative features that
differentiate it from existing travel planning applications. The system performed particularly
well in delivering personalized recommendations, weather-aware itinerary planning,
route optimization, cost splitting, and substitution flexibility, all of which received
consistently positive feedback from users. These findings highlight ExploreEasy’s strength in
enhancing convenience, adaptability, and collaboration for travelers.

However, the evaluation also revealed areas requiring further refinement. While users were
generally satisfied with the budget estimation and accommodation suggestions, some
respondents expressed uncertainty about the precision of budget ranges and the reliability of
hotel recommendations compared to established platforms such as Wanderlog and
TripAdvisor. Open-ended feedback also pointed to desired improvements such as greater
flexibility in accommodation selection, the ability to edit itineraries after saving, and
options to export expense reports, which would further enhance competitiveness and user
satisfaction.

In conclusion, ExploreEasy can be considered a promising system that offers unique, user-
centered features not commonly found in competing platforms, while still requiring
incremental improvements in accuracy, flexibility, and financial robustness to reach its full
potential. These results confirm that the system has strong potential to complement and even
surpass existing travel planning applications in certain aspects, while future enhancements will

further establish its position as a comprehensive Al-driven travel management tool.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

146

CHAPTER 5

Chapter 5

Conclusion

This project, ExploreEasy: Smart and All-in-One Trip Management Application, set out to

address the challenges faced by modern travellers in creating cost-effective, flexible, and

personalised travel experiences. The system was designed to consolidate planning, budgeting,

and adaptability into a single intelligent platform.

The objectives established at the beginning of this project were as follows:

1.

To develop an Al-driven trip planning and recommendation system using a hybrid
recommendation algorithm with integrated real-time and extended weather
forecasting for efficient, adaptive, and personalised travel planning.
This objective was successfully met. The hybrid recommendation engine combining
Collaborative Filtering (CF) and Content-Based Filtering (CBF) was implemented to
provide customised suggestions. Route optimisation via the Travelling Salesman
Problem (TSP) and weather-aware itinerary adjustments ensured that travel plans were
both efficient and adaptive to real-time conditions.

To implement a comprehensive budget estimation and management module using
Jaccard Similarity and Weighted Averaging for accurate budget guidance and
effective travel expense control.

This objective was also achieved. The budget module provided reliable cost estimation
by applying similarity-based filtering techniques, inflation adjustments, and percentile
trimming to ensure accuracy. Additionally, features such as category-based allocation,
cost splitting, and real-time budget alerts were incorporated, enabling effective
financial management during trips.

To enhance flexibility in itinerary planning by implementing a reliable similar-
place substitution feature using Geographic Filtering and Quality Thresholds.
This objective was accomplished. The substitution module allowed users to replace
unavailable or unsuitable places with nearby and quality-assured alternatives,

preserving itinerary coherence and improving user satisfaction.

In summary, all project objectives have been fulfilled. The ExploreEasy system successfully

integrates intelligent trip planning, budget management, and flexible itinerary adjustment into

a cohesive platform. User evaluation confirmed improvements in personalisation, adaptability,

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

147

CHAPTER 5

and financial confidence, positioning ExploreEasy as a more advanced and user-centric

solution compared to existing travel management systems.

While ExploreEasy has successfully achieved its objectives, several enhancements could be
pursued in future iterations. First, extending weather forecasting through seasonal trend
analysis and machine learning would enable more accurate planning for long-duration trips.
Second, integration with real-time booking APIs for hotels and transport could allow seamless
reservations, dynamic pricing updates, and cancellation handling directly within the platform.
Third, adding an expense export feature that allows users to generate and download detailed
reports in Excel format would improve transparency, support post-trip financial reviews, and
make it easier to share costs among group travelers. Additionally, enabling offline functionality
with cached maps, itineraries, and expense records would improve usability in low-
connectivity regions, while edge Al could support lightweight recommendations. Finally,
incorporating gamification and collaborative planning features would increase engagement and

make group travel coordination more interactive and enjoyable.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

148

REFERENCES

REFERENCES

[1] C. Andri, M. Hazim Alkawaz, and A. Bibo Sallow, “Adoption of Mobile Augmented
Reality as a Campus Tour Application,” International Journal of Engineering & Technology,
vol. 7, no. 4.11, p. 64, Oct. 2018, doi: https://doi.org/10.14419/ijet.v7i4.11.20689.

[2] Kim, “How to Deal With Shared Finances On a Group Trip — My Global Ways,” My
Global Ways, Aug. 05, 2020. https://myglobalways.com/index.php/2020/08/05/how-to-deal
with-finances-on-a- group-trip/ (accessed Sep. 11, 2024).

[3] U. P. Singh, M. K. P. Singh, M. Sharma, and A. Sharma, "Spending Tracker: A Smart
Approach to Track Daily Expense," Turkish Journal of Computer and Mathematics
Education, vol. 12, no. 6, pp. 5095-5103, 2021. [Online]. Available:
https://doi.org/10.17762/turcomat.v12i6.8759

[4] H.-T. Chang, Y.-M. Chang, and M.-T. Tsai, “ATIPS: Automatic Travel Itinerary Planning
System for Domestic Areas,” Computational Intelligence and Neuroscience, vol. 2016, pp.
1-13, 2016.

[5] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions,” IEEE Transactions on Knowledge
and Data Engineering, vol. 17, no. 6, pp. 734-749, 2005.

[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering
recommendation algorithms,” in Proceedings of the 10th International Conference on World
Wide Web, 2001, pp. 285-295.

[71 Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, vol. 42, no. 8, pp. 30-37, 2009.

[8] X. He et al., “Neural collaborative filtering,” in Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 173-182.

[9] P. Melville, R. J. Mooney, and R. Nagarajan, “Content-boosted collaborative filtering for
improved recommendations,” in Proceedings of the 18th National Conference on Artificial
Intelligence, 2002, pp. 187-192.

[10] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in The
Adaptive Web, P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds. Berlin, Heidelberg: Springer,
2007, pp. 325-341.

[11] A. Brown and B. Lee, "The Jaccard Index: Applications in Data Analysis," J. Appl. Stat.,
vol. 47, no. 3, pp. 512-525, 2020.

[12] D. Chen and F. Wang, "Comparative Study of Similarity Measures for Sparse Data," in
Proc. Int. Conf. Data Mining, pp. 124-138, 2021.

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

149

https://doi.org/10.14419/ijet.v7i4.11.20689
https://myglobalways.com/index.php/2020/08/05/how-to-deal
https://doi.org/10.17762/turcomat.v12i6.8759

REFERENCES

[13] G. Davis and H. Thompson, "The Role of Similarity Metrics in Information Retrieval,"
IEEE Trans. Knowl. Data Eng., vol. 31, no. 8, pp. 1540-1551, 2019.

[14] A. Ganti, “Weighted Average Definition,” Investopedia, Oct. 08, 2024.
https://www.investopedia.com/terms/w/weightedaverage.asp

[15] J. Kirchner, “Data Analysis Toolkit #12: Weighted averages and their uncertainties,”
2006. [Online]. Available: https://seismo.berkeley.edu/~kirchner/Toolkits/Toolkit 12.pdf.

[16] Y. Yu, “Analysis and Study on Intelligent Tourism Route Planning Scheme Based on
Weighted Mining Algorithm,” Scientific Programming, vol. 2022, pp. 1-9, Jul. 2022, doi:
https://doi.org/10.1155/2022/5495822.

[17] A. Toloie-Eshlaghy, M. Homayonfar, M. Aghaziarati, and P. Arbabiun, “A Subjective
Weighting Method Based on Group Decision Making For Ranking and Measuring Criteria
Values,” Australian Journal of Basic and Applied Sciences, vol. 5, no. 12, pp. 2034-2040,
2011, Available: https://www.ajbasweb.com/old/ajbas/2011/December-2011/2034-2040.pdf

[18] M. Kiinnemann and B. Manthey, “On the Smoothed Approximation Ratio of the 2-Opt
Heuristic for the TSP.” [Online]. Available:
https://ris.utwente.nl/ws/portalfiles/portal/5366028/paper _6.pdf

[19] Gokul Krishna M, M. Haseeb, Mohammed Siyad B, P.A Mohamed Zameel, and S
Vyshnav Raj, “Budget and Experience Based Travel Planner Using Collaborative Filtering,’
Budget and Experience Based Travel Planner Using Collaborative Filtering, Jan. 2021, doi:
https://doi.org/10.1109/0dicon50556.2021.9428978.

b

[20] D. Glez-Pena, A. Lourenco, H. Lopez-Fernandez, M. Reboiro-Jato, and F. Fdez-
Riverola, “Web scraping technologies in an API world,” Briefings in Bioinformatics, vol. 15,
no. 5, pp. 788797, Apr. 2013, doi: https://doi.org/10.1093/bib/bbt026.

[21] Abhinav Ajitsaria, “Build a Recommendation Engine With Collaborative Filtering,”
Realpython.com, Jul. 10, 2019.
https://realpython.com/build- recommendation-enginecollaborative-filtering/

[22] Thom Snaphaan, Wim Hardyns, Lieven J.R. Pauwels, and K. Bowers, “Rating places
and crime prevention: Exploring user-generated ratings to assess place management,”
Computers Environment and Urban Systems, vol. 109, pp. 102088— 102088, Apr. 2024, doi:
https://doi.org/10.1016/j.compenvurbsys.2024.102088.

[23] Y. Afoudi, M. Lazaar, and M. Al Achhab, “Hybrid recommendation system combined
content-based filtering and collaborative prediction using artificial neural network,”
Simulation Modelling Practice and Theory, vol. 113, p. 102375, Jul. 2021, doi:
https://doi.org/10.1016/j.simpat.2021.102375.

[24] W. Loh, Leong, U. Tunku, and A. Rahman, “Itinerary Planner for Tourism Mobile
Application with Smart Trip Generation and Social Platform A REPORT SUBMITTED TO,”
2022. Accessed: Jan. 18, 2024. [Online]. Available:

http://eprints.utar.edu.my/4706/1/fyp CS 2022 LWL.pdf

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

150

https://www.investopedia.com/terms/w/weightedaverage.asp
https://seismo.berkeley.edu/~kirchner/Toolkits/Toolkit_12.pdf
https://doi.org/10.1155/2022/5495822
https://www.ajbasweb.com/old/ajbas/2011/December-2011/2034-2040.pdf
https://ris.utwente.nl/ws/portalfiles/portal/5366028/paper_6.pdf
https://doi.org/10.1109/odicon50556.2021.9428978
https://doi.org/10.1093/bib/bbt026
https://realpython.com/build-%20recommendation-enginecollaborative-filtering/
https://doi.org/10.1016/j.compenvurbsys.2024.102088
https://doi.org/10.1016/j.simpat.2021.102375
http://eprints.utar.edu.my/4706/1/fyp_CS_2022_LWL.pdf

REFERENCES

[25] “Wanderlog: travel itinerary, vacation & road trip planner,” Wanderlog.
https://wanderlog.com/

[26] Wanderlog, “Wanderlog Itinerary & Road Trip Planner,” Wanderlog, 2024.
https://wanderlog.com/trip-plan-assistant (accessed Sep. 11, 2024).

[27] C. Alaimo, J. Kallinikos, and E. Valderrama-Venegas, “Platform Evolution: A Study of
TripAdvisor,” scholarspace.manoa.hawaii.edu, Jan. 07, 2020.
http://hdl.handle.net/10125/64414

[28] M. Nilashi, O. Ibrahim, E. Yadegaridehkordi, S. Samad, E. Akbari, and A. Alizadeh,
“Travelers decision making using online review in social network sites: A case on
TripAdvisor,” Journal of Computational Science, vol. 28, pp. 168—179, Sep. 2018, doi:
https://doi.org/10.1016/j.jocs.2018.09.006.

[29] “The Power of Reviews How Tripadvisor Reviews Lead to Bookings and Better Travel
Experiences.” Available: https://www.tripadvisor.com/powerofreviews.pdf

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

151

https://wanderlog.com/
http://hdl.handle.net/10125/64414
https://doi.org/10.1016/j.jocs.2018.09.006

APPENDIX

POSTER

(N
I\
Faculty of Information Communication and Project Developer : Yap Pei Nee
UT)R Technology Supervisor: Ts. Yong Tien Fui
L\ JJ
é) 1\
@ Introduction Why ExploreEasy is
better?

« Travellers struggle with costly, « Al-powered trip planning tailored to
complex, and unfamiliar trip planning budget and weather-.

« Group trips lack fair tools for « Seamless group travel with smart
expenses and budgeting expense tracking.

- Rigid apps without place-substitution + Flexible itineraries with easy place
reduce flexibility and satisfaction substitution.

k\ JJ
'q N N
@ Objectives @ Proposed Method
« Al trip planning with hybrid « ExploreEasy uses hybrid Al
- recommendations and weather recommendations with weather
integration. integration for smarter trip planning.

+ Smart budget management using CF « It ensures accurate budget control
with Jaccard and Weighted through collaborative filtering and
Averaging. expense management.

« Flexible itineraries with reliable place « Flexible place substitution keeps
substitution. itineraries adaptive and user-friendly.

o / /)
4 \‘
Conclusion
« ExploreEasy successfully delivers smarter, adaptive, and personalized trip
planning.
« It improves travel experiences with accurate budget management and seamless
group coordination.
- Flexible and weather-aware itineraries ensure convenience, satisfaction, and
stress-free journeys.
\\ JJ

{
1N
S

J

Bachelor of Information Systems (Honours) Business Information Systems
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-1

