Detecting Online Test Cheating Through User Behavior Monitoring
BY
OOI KHAI SHEN

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Ooi Khai Shen. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku
Abdul Rahman (UTAR). This Final Year Project report represents the work of the
author, except where due acknowledgment has been made in the text. No part of this
Final Year Project report may be reproduced, stored, or transmitted in any form or
by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Ts Dr Mogana a/p Vadiveloo
who have given me a golden opportunity to involve in the Computer Vision study. Besides
that, she has given me a lot of guidance in order to complete this project. When I was facing
problems in this project, the advice from them always assists me in overcoming the problems.

Again, a million thanks to my supervisor and moderator.

Other than that, I must say thanks to my parents and my family for their love, support, and

continuous encouragement throughout the course.

ABSTRACT

The shift to online testing is becoming a significant trend in the modern learning, yet this
transition presents serious challenges to academic integrity and credibility of institutional
qualifications. In a traditional test environment, physical supervision like physical examination
setup in grand hall and attendance is a must, effectively detect cheating, but such monitoring
is not feasible for remote exams, creating opportunities for students to engage in dishonest
behaviour. The proposed system, "EyeGuard," aims to assist and solve this issue by employing
a computer vision-based eye gaze detection system that uses a student webcam to track their
eye movements during an online test. By analysing eye gaze patterns and browser incident to
identify inappropriate activity, such as looking at unauthorized materials during the test and
switching the tab, the system can detect potential cheating in real-time, allowing any suspicious
behaviour to be reported instantly for necessary investigation. The principal objective of this
project is to provide a reliable and effective solution for monitoring online exams that reduces
the reliance on human supervisors, which can be costly and impractical at scale. Through the
automated detection of suspicious behaviour, "EyeGuard" fosters a more confident and fairer
environment for online test, ensuring the integrity of the examination process while offering a

scalable, and low-cost solution for educational institutions.

Area of Study: Computer Vision, Chrome Extension Development

Keywords: Eye Gaze Tracking, Online Test Monitoring, Cheating Detection, Real-Time
Monitoring and Alerting, AWS Integration

TABLE OF CONTENTS

TITLE PAGE

COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1
1.2
1.3
1.4
1.5

Problem Statement and Motivation
Objectives

Project Scope and Direction
Contributions

Report Organization

CHAPTER 2 LITERATURE REVIEW

2.1

2.2

23

24

2.5

2.6
2.7

Introduction

Real-Time Object Detection in Online Exam Proctoring
Facial Landmark Detection

2.3.1 Google MediaPipe Face Mesh

2.3.2 WebGazer

Head Pose Estimation

2.4.1 Tools for Head Posture Estimation
Non-Computer Vision Approaches for Exam Proctoring
2.5.1 Browser and Keystroke Monitoring

2.5.2 Audio Analysis

Discussion on Selected Proctoring Techniques and Tools
Existing Methods for Detecting Online Cheating

2.7.1 ProctorU

2.7.2 Respondus

ii
iii

iv

ix
xii

xiii

—_

AN N Bk~ W

10
11
12
14
16
16
16
17
17
18
19
20

2.7.3 Proctorio
2.8 Critical Analysis of Existing System
2.8.1 ProctorU
2.8.2 Respondus
2.8.3 Proctorio

2.9 Proposed Solution

CHAPTER 3 SYSTEM DESIGN
3.1 System Architecture
3.2 Use Case Diagram
3.2.1 Use Case Descriptions
3.3 Activity Diagram

CHAPTER 4 SYSTEM METHODOLOGY/APPROACH
4.1 Agile Development Methodology
4.2 System Requirement
4.2.1 Hardware Requirements
4.2.2 Software Requirements
4.2.2.1 Development Platform and Tools
4.3 Timeline
4.3.1 Timeline of FYP1
4.3.2 Timeline of FYP2
4.4 Core Algorithms and Detection Logic
4.3.1 The Gaze Boundary Polygon Algorithm
4.3.1.1 Comparison with Object Detection (YOLO)
4.3.2 The Temporal Filtering Algorithm
4.3.3 The Integrity Scoring and Risk Assessment Algorithm

CHAPTER 5 SYSTEM IMPLEMENTATION
5.1 Backend Setup (Flask Server)
5.1.1 Environment File
5.1.2 Dependency Management
5.1.3 Backend Execution

23
25
26
27
29
30

31
31
34
35
41

44
44
47
47
48
48
50
50
51
52
52
53
54
55

56
56
56
57
57

5.2

53

5.4

Frontend Implementation
5.2.1 Loading the Extension for Development
Backend Implementation (Python Flask Server)
5.3.1 User Authentication Module
5.3.2 Session and Event Processing Modules
5.3.3 Analysis and Reporting Module
Frontend Implementation (Chrome Extension)
5.4.1 Developing Core Extension Architecture and Control
5.4.1.1 manifest.json
5.4.1.2 background.js
5.4.2 Developing the Student Authentication Interface
5.4.3 Creating the Pre-Proctoring Guideline Module
5.4.4 Constructing the Main Extension Control Panel
5.4.5 Developing the Sandboxed Gaze Tracking Module
5.4.6 Developing the Post-Session Visualization Report
5.4.7 Implementing Real-time Violation Alerts
5.4.8 Integration with Cloud Services (AWS)
5.4.8.1 Trigger Email Alerts (AWS SES)
5.4.8.2 PDF Report Uploads (AWS S3)

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1
6.2
6.3

6.4

Functional Verification

Technology Justification and Accuracy

Performance and Effectiveness Analysis

6.3.1 Validation of Gaze Violation Logic

6.3.2 Gaze Violation Test Cases Discussion

6.3.3 Analysis of Client-Side and System-Level Resource
Impact

Comparative Analysis against FYP1

6.4.1 Remark on Test Findings

58
58
59
59
60
63
64
64
64
65
66
67
70
70
71
74
76
76
77

79
79
80
80
81
82
85

88
89

CHAPTER 7 CONCLUSION AND RECOMMENDATION
7.1 Conclusion and Novelty

7.2 Recommendations

REFERENCES
APPENDIX
POSTER

90
90
90

92
A-1
A-3

Figure Number

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7

LIST OF FIGURES

Title

Type of Object Detection

Overview of One-Stage Object Detection

Overview of Two-Stage Object Detection
Demonstration of facial landmark detection

Official logo for WebGazer.js

Parameter for HPE (Pitch, Yaw, and Roll) and Their
Corresponding Direction

Landmark-based Head Pose Estimation

The Steps to Train a Landmark-Free Methods for HPE
ProctorU Test-Taker Exam Session Interface

List of Respondus LMS Partners

Lockdown Browser Installation of Respondus
Pre-examination Check of Respondus

Proctorio Allow Limited Configuration to the User
Examination Result of Proctorio

System Architecture of the EyeGuard Proctoring System.
Use Case Diagram

Activity Diagram

Agile Methodology in System Development

Agile Development Lifecycle with Iterative Nature

The “SmartGazeMonitor” Temporal Window Illustration
env. File

requirement.txt File

Running a Backend with Command “python main_app.py”
Files are Loaded to Chrome Extension through Developer
Mode

Mock Student Info that Stored in Backend

Login Module

start_test() Session, Triggered when User Start the Test

Page

11
12
14

59
60
61

Figure 5.8
Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21

Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4

Figure 6.5

end _test session, Triggered when User End the Test

get report Session, Send Final Report Data as JSON to
Frontend

/submit_data() Session, Work as Listener, Receiving JSON
Data from the Frontend

/submit_data, Showing How the System Analyzes Event
and Send to Frontend

manifest.json

background.js

Student Authentication Interface.

Examination Guideline Agreement Module.

Extension Control Panel in Various States (Idle, Ready,
Running).

The Gaze Tracking Calibration Interface in Action.

The Final Proctoring Analysis Report Dashboard

The Alert triggered when User Caught Off-screen Glace
The Alert triggered when User Caught Minimize Screen
The Alert triggered when User Caught Switch Between the
Tab

The Critical Alert triggered when User Multiple Violations
Boto3 as the Coordinator for AWS Services.

Example Critical Violation Email Alert Sent via AWS SES.

upload_report pdf(), to Upload the PDF Report to S3
Bucket

Administrator able to View the Reports Stored inside S3
Bucket

Gaze Pattern when User Focused on the Screen

Gaze Pattern when User Focused Off-screen

Example System Log when User Focused Entirely on the
Screen

Example System Log when User Focused Entirely on the
Screen

Example System Log when User Make a Random Glance

62
62

63

64

65
66
67
68
70

71
72
74
74
75

75

76

71

78

78

83

83

84

84

85

Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.8

Resources Used by the Chrome Before Run the Monitoring
Resources Used by the Chrome After Run the Monitoring
Resources Used by the System before Run the Monitoring
Resources Used by the System After Run the Monitoring

Table Number

Table 2.1
Table 2.2
Table 2.3
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6

Table 4.7
Table 4.8
Table 6.1
Table 6.2
Table 6.3
Table 6.4

LIST OF TABLES

Title

Table 2.1 Advantages and Disadvantages of ProctorU
Advantages and Disadvantages of Respondus
Advantages and Disadvantages of Proctorio

Login to System Use Case Description

Perform gaze calibration description

Start Proctoring Session Use Case Description

End Proctoring Session Use Case Description

View session report use case description

Display on-screen warning use case description
Handle Critical Violation Warning Use Case Description
Development and Testing Environment

End-User Minimum Requirements

Software Components and Tools

Timeline of FYP1

Timeline of FYP2

Comparison of Regression Approach and Classification
Approach

Integrity Scoring for each Event

Integrity Scoring with Corresponding Risk Level
Test Cases for User Onboarding and Setup

Test Cases for Core Proctoring and Cloud Integration
Gaze Violation Logic Test Results

Scenario-Based Effectiveness Testing

Page

27
29
30
35
36
37
38
38
39
40
47
47
48
50
51
53

55
55
79
79
81
89

Al

AR
AWS
CNN
cspP
FYP
HPE
HTML
HTTPS
IDE
JSON
LMS
ML
PDF
S3
SDK
SES
SNS
SOP
Ul
URL
VAD
YOLO

LIST OF ABBREVIATIONS

Artificial Intelligence

Augmented Reality

Amazon Web Services
Convolutional Neural Network
Content Security Policy

Final Year Project

Head Pose Estimation

HyperText Markup Language
HyperText Transfer Protocol Secure
Integrated Development Environment
JavaScript Object Notation
Learning Management System
Machine Learning

Portable Document Format

Simple Storage Service (AWS)
Software Development Kit

Simple Email Service (AWS)
Simple Notification Service (AWS)
Standard Operating Procedure
User Interface

Uniform Resource Locator

Voice Activity Detection

You Only Look Once

CHAPTER 1

CHAPTER 1 INTRODUCTION

This chapter presents the background and motivation for conducting this project,
outlines all the primary objectives and scope, details the key contributions, and provides a

general organization for the project itself.
1.1 Problem Statement and Motivation

The transition from traditional physical exams to online exams is one significant trend
in the future. This is due to online tests offering lots of benefits compared to the traditional
physical test such as convenience and flexibility. In addition, online tests also play significant
roles for the universities to explore the possibility of remote courses which to attract the
students neither locally nor internationally in the future, expanding institutions reach and
opening new learning opportunities in this new era. However, one of the biggest challenges
with online tests is ensuring academic integrity in a remote, unsupervised environment. Under
physical testing conditions like direct supervision in a physical testing hall, monitoring is much
easier and significantly prevents cheating happening. However, in virtual online environment,
students have increased opportunities to engage in dishonest behaviors such as consulting
unauthorized materials or just simply researching the topic online which occurs in blind spots
outside the webcam's view. [1]

These actions then will directly affect the institution’s reputation and the value of the
qualifications and certifications. Current proctoring solutions while helpful often have
limitations. Relying on the basic webcams monitoring or making the exam questions more
complex often fail to effectively detect and prevent cheating behavior because this still requires
significant manual monitoring by human, a solution that is not really scalable or consistently

effective for large numbers of test-takers.

During the online examination, students take exams using their laptops, and this is the
only way that school administrators are able to monitor their behavior, confirming that they are
only looking at the screen and didn’t perform any suspicious activity that may be cheating.
However, direct webcam monitoring is not scalable and effective solution, and school
administrators may overlook some cases of online cheating because human make mistakes is
normal. Lockdown browser may be implemented to prevent online cheating as well, preventing
users access unauthorized materials online during test but cheating still cannot be completely

prevented. This is due to these methods failing to detect critical blind spots that are outside the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

screen like students may refer to the additional resource but are not captured by their webcam.

Without better solutions, these will affect the integrity of online assessments.

Therefore, to solve the problem stated is to develop a system that can automatically and
accurately monitor online exams to detect dishonest behaviors, ensure the exam fairness, and
ensure a confidential testing environment. This system could reduce human reliance and be
scalable. Manpower could be reduced to only monitor the overall process and take action when
alert raised by the system. There are quite a number of applications that have been developed
and published online that serve the same objective, aim to develop a better, and fairer test taking
environment at the same time ensure the test integrity. These applications are listed in

ProctorU, Respondus, and Proctorio. [6][8][9]

However, there are still quite a few limitations with these applications, which shall be
discuss in depth in later chapters. The biggest limitation comes in the case that most
organizations do not really prefer to use third-party proctoring services due to data
confidentiality concerns. Since ProctorU requires access to questions during exams and
responses from students during monitoring, those examination questions and students answer
which are considered as confidential data will be exposed to third party as well. Even though
this can be solved by liability under strict privacy policies but still this will be a risk that the
institutions should consider for. As such, while tests like ProctorU [6] are a great platform to
ensure exam integrity protection, the dependency on third-party data processing makes them

impossible for institutions where in-house management is a concern for tests.

The motivation behind this project is due to the growing need for scalable, real-time
examination monitoring solutions that ensure the integrity of online assessments in this digital
era. Online testing is not only cost-effective but also provides flexibility for both students and
institutions. However, the current solutions face challenges to ensure a fair testing environment.
Many current proctoring solutions are too relying on human supervision. Cheating affects those
honest students' achievements, and institutions trust in the educational system, and may cause
long-term effects for individuals and society. A robust and reliable proctoring system that
integrates with advanced technologies listed in computer vision and Artificial Intelligence (Al)
can significantly enhance the fairness of online examination, reduce or stop cheating, and

support the growing trend of digital learning.
Besides, students taking online exams are often unaware when their actions may be
directly or indirectly bringing negative effect to the institutions and eventually the whole

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

society. This lack of awareness can affect the integrity of the examination process, leading to
unfair situations and affect the institution reputation towards academic assessments, which in

return can affect the educational standards and trust in society.
1.2 Objectives

The primary objective of this project is to develop an system for detecting cheating
during online tests through user behavior monitoring. The system will leverage computer vision
techniques, particularly eye gaze tracking to identify potential cheating behaviors. Key

objectives include:

1. To develop a browser extension-based real-time eye-gaze tracking system

The primary objective is to implement a system that uses computer vision directly within

the user browser to monitor eye movements. The system is designed to track eye gaze

movement for identifying suspicious activity during online examination. This involves:

- A user-specific calibration process where the student works to define their screen
boundaries before the exam begins.

- The gaze tracking is developed in a secure, sandboxed environment to continuously
track gaze coordinates.

- Developing a back-end algorithm that analyzes the stream of gaze data to detect
suspicious off-screen glances, differentiating them from brief, natural eye movements
to minimizing false positives.

2. To monitor and flag suspicious browser-level user interactions

Beyond eye-gaze, the system will actively monitor the user browser environment for
actions that indicate potential cheating. This includes automatically detecting and logging

events such as:

- Switching tabs away from the examination page.

- Changing focus to a different application or window.

- Opening new browser windows during the test session.

3. To implement a real-time alerting system

When a violation or suspicious activity is detected, the system will trigger immediate alerts

through two distinct channels:

- For the Student: An on-screen alert will be displayed directly on the student exam page,
serving as an immediate warning and ask them to keep focus, they are under

monitoring.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

- For the Administrator: An integration with Amazon Web Service (AWS) Simple
Notification Service (SNS) will send an instant notification to the exam administrator,
informing them of the suspicious activity so they can take necessary action.

4. To design and build the system as a client-server architecture with comprehensive
reporting

The system will be architected as a robust client-server application, not a simple website.

This involves:

- Developing a Chrome Extension as the client-side component responsible for capturing
data which are gaze and browser events and displaying UI to user

- Building a Python Flask back-end server to handle session management, process
incoming data, execute the violation detection logic, and trigger alerts.

- Generating a detailed post-exam analysis report that provides administrators with a
comprehensive overview of the session, including an "Integrity Score," a visual

timeline of all flagged events, and a 2D scatter plot of the student's gaze patterns.
1.3 Project Scope and Direction

The direction of proposed project, "EyeGuard," is to create a dependable system that
can help universities manage online tests, whether for midterms or final exams. The reality of
online education is that these exams can involve hundreds, or even thousands, of students at
once. Having enough supervisors to watch everyone in real-time is simply not practical; it
would require a huge amount of manpower, and even then, it's difficult for a person to
effectively monitor dozens of video feeds without missing things, especially it is to monitor

the eye gaze or head posture, trying to look for suspicious activity.

A key challenge to acknowledge is that even a human proctor finds it hard to tell if a
student is actually cheating from a webcam feed alone. It's impossible to see what’s happening
in the physical blind spots without concrete evidence. Instead, its role is to be a system that
monitors and logs suspicious activities. It acts as a tracking layer for human proctors, flagging
potential issues so they can focus their attention on the moments that truly require review. This
approach keeps a human in control of the final decision, which is crucial because test results

can change a student’s life and shouldn't be decided by a machine alone.

To accomplish this, this project is scoped on two of the most direct indicators of a
student's attention: eye-gaze tracking and browser activity. The system chose to focus on eye-
gaze because a student’s eyes will move if they are reading off-screen notes, even if their head

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

stays perfectly still, making it a more reliable clue than head posture. At the same time, the
proposed system track browser events like switching tabs, which can be a clear sign of digital
cheating. The system is built as a Chrome Extension rather than a separate website or desktop
app. The big advantage here is that it can work directly with a university's existing online test

portal, adding a layer of security without forcing them to switch to a whole new system.

In practice, when the system logs a suspicious activity, it sends a real-time warning to
the student's screen and also notifies the administrator via AWS SNS, in the end of the test, a
report generated and shared with the administrator for investigation work if any. To keep the
project scope focused and achievable, complex features like microphone audio monitoring or
physical object detection are not included. This project aims to prove that this lightweight,
browser-based approach is an effective way to detect cheating and provide valuable evidence
for review. It establishes a solid foundation for future work, where these other monitoring

features could be added to create an even more robust proctoring tool.
1.4 Contributions

This system's primary contribution is to build an eye gaze tracking system to ensure
online exam integrity. It is designed to monitor students for suspicious activities in real-time,

providing institutions with the evidence needed to evaluate test sessions effectively.

Besides, the project is also flexible and scalable because it able to observe many
students at the same time and using algorithms that are trusted, it can observe all the activities
that are expected to be cheating without a significant work of test monitoring. This project
enhances the possibility of conducting massive online examinations in large institutions like
universities just like how the traditional physical examination is conducted. Institutions also
offer one new possibility to modify the traditional physical examination to online examination
in the future without compromising the integrity of the test and global acceptance of the
institution's certificates. Furthermore, this project also reveals the new possibility of the future
remote education of the institutions. By developing a solution that addresses the limitations of
current online test monitoring systems, this project will enhance the fairness, confidentiality,

and integrity of online exams.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.5 Report Organization

This report details the project's development across seven chapters. Chapter 1
introduces the project, outlining the problem statement, objectives, and scope. Chapter 2
presents a literature review of existing online proctoring systems and the core computer vision
technologies that inform the project's design. Chapter 3 outlines the system methodology,
detailing the Agile development approach and project timeline. Chapter 4 covers the system
design, presenting the overall architecture and key diagrams that illustrate the system's
workflow. Chapter 5 describes the implementation, including the setup of the frontend and
backend components. Chapter 6 provides a detailed evaluation of the completed system,
featuring functional test cases and performance analysis. Finally, Chapter 7 concludes the
report by summarizing the project achievements and offering recommendations for future

work.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

After the era of Covid-19, it is obvious that the world has come into the digital era from
examples like the digital payment, e-commerce adoption, remote work and online learning and
so on has grown rapidly in the post pandemic world [4] Since then the school should be the
same as well. It is necessary to conduct an online examination which is fairly, transparent and
confidential. While the previous traditional method will work good for the traditional physical
examination with good monitoring and incident control such as prevent unauthorized item
brought into the examination hall and accompany the students to the toilet to monitor their
action and so on, However, all these actions are not feasible for an online examination because
of geographical distance and too much blind spot out of the camera’s screen, thus an automated

proctoring system powered by Al is essentially important nowadays for online test.

Research has already proposed some commercial applications that are used to monitor
the students’ behaviors during the online test, like proctorU, and Proctorio. [6][7] To ensure
that there is a confidential test environment among the students and organizations. Those
applications necessitated the development of robust online proctoring systems to maintain the
integrity of assessments. These systems employ various technologies, including computer
vision, machine learning, and artificial intelligence, to monitor test-takers' behavior and detect

potential cheating. We will be looking into how those previous applications behave later
2.2 Real-Time Object Detection in Online Exam Proctoring

One approach to monitoring user behavior is to treat specific actions within a video
frame. For example, a student's gaze could be classified into discrete classes like gaze left or
gaze center. A leading algorithm for this type of real-time application is YOLO (You Only
Look Once) [5], an object detection system that has evolved through several powerful versions

(YOLOvV1, v2, v3, and so on)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

One and two stage detectors

‘ Object Detection

|
[|

Two-Stage/Proposal ’ l One-Stage/Proposal-Free J
— RCNN — YOLO
—— FastRCNN . ssp

— Faster RCNN

= RFCN

—— Mask RCNN

Figure 2.1: Type of Object Detection

Modern object detection can be divided into 2 types which 1 stage and 2 stage detectors
[3] which One stage will be more efficient but have slightly lower accuracy in this case [2]
while the 2 stages will be achieving higher accuracy because it has an additional step than the
one stage object detection which we will discuss afterward, however, this also led to increase

in computational resources and slower the process

-Classification Qutput Results
{objects classes &
bounding boxes)

Backbone Network
| d (CNN-based or
mages Transformer-based)

Head Backbone Network

Network

Input

Head Network

-Regression—p-

0]

Figure 2.2: Overview of One-Stage Object Detection

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Diagram showing the one stage object detection, the input image will go into the
backbone network where there is the core of the model, to extract the feature from the image
by mapping the capture information at different levels of abstraction like the edges, texture,
object parts and so on. Then, the head network will be performing both the classification and
regression task simultaneously. Classification means to predict the likelihood of the object to
different classes while the regression means to refine the coordinates of the bounding boxes to
enclose the objects. Thus, this shows why the speed of the one stage object detection will be
faster, because of the simplicity of the step. While the cons will be the accuracy won’t be too
high. This approach will be suitable for real-time application where some of the accurate trade-

offs are acceptable for overall performance.

Head Network

Backbone Network
(CNN-based or
Transformer-based)

-Classification-» Output Results
(objects classes &
bounding boxes)

Input
Images

Region Classification
Proposal Localization

~ReQression-—p-

Figure 2.3: Overview of Two-Stage Object Detection

The diagram above shows the two stages object detection, can be seen that the previous
steps are the same as the one stage object detection, which the image go into the backbone
network where there is the core of the model, to extract the feature from the image. Next, the
head network unlike the one stage object detection will be divided into 2 steps. While the first
step is a region proposal, it means to predict the possible object location in the image then go
into the classification localization to classify the objects within those predicted region. Thus,
this model will have higher accuracy but with lower speed than the one stage object detection.
However, in different cases, it will be more suitable to use this model when it comes to the
scenario that object detection is important, even with the tradeoff of speed we have to focus on
the output accuracy. Systems like the R-CNN family (R-CNN, Fast R-CNN, Faster R-CNN)
[26] practice this approach. Their careful analysis yields high accuracy, but the computational

cost makes them largely unsuitable for real-time video processing.

While for the detecting online test cheating through User behavior monitoring will be
having to predict the user behavior in real time, so that alert can be raise to the supervisor or
called as proctor of the examination in real time and action could be taken immediately, and

also alert can be reached to the students to warn their action. Thus, YOLO will be the ideal

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

algorithms for this project. While the which YOLO will be considered under several factors:

[3]

1. Accuracy:

Generally, the newer YOLO version will have higher accuracy in object detection.

However, the newer the version will be increased in computational demands.

. Speed:

Real-time processing is important for this project and thus speed is an important factor
to ensure that the system won’t miss capturing the key frame that is important to be the

evidence showing cheating

. Computational resources:

This project will be carried out using a normal home use laptop but not a commercial
use with greater computational power and thus newer version YOLO not what to
pursue, but an algorithm that just enough and efficient to carry the job will be good

enough for this project.

. Ease of development:

The older version of YOLO also has advantages that have plenty of resources and
tutorial available online. Besides it is relatively well- established while the newer

version might require additional expertise or adjustments needed.

Thus, to conclude that while YOLO to be deploy will be needed to have a balance

between the speed and accuracy of the output, and this will need further study and examine in

the future work. The project will be choosing a YOLO version that aligns to the project

priorities and objectives.

2.3 Facial Landmark Detection

An alternative for gaze tracking is high-precision facial landmark detection approach

instead of object classification like YOLO we mentioned in chapter above. This method is to

leverage specialized deep learning models to map a dense mesh of landmarks, on the face in

real-time. Instead of trying to classify a general direction (Left, Right, Up, Down, and Center),

this method uses the geometric relationship between these landmarks to return a precise gaze

vector. The accuracy believed to be much higher accuracy than a general object detector.[16]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

CHAPTER 2

2.3.1 Google MediaPipe Face Mesh

MediaPipe Face Mesh is a high-fidelity, real-time face and facial landmark detection
solution. It employs machine learning (ML) to map a detailed 3D mesh of human face from
camera input, making it a foundational technology for various applications like augmented
reality (AR) effects and virtual avatars.[10] This is the technology that was successfully used
in the FYP1 proof-of-concept prototype.

The Face Mesh model is a lightweight deep neural network designed for on-device and
real-time performance.[11] It predicts 468 3D landmarks that map to the geometry of a human
face. In addition, these are not just 2D (x, y) coordinates; the model also provides a metric
depth value (z), allowing for a 3D mapping of the face's orientation. This 3D has significant
advantage that it can help differentiate between a change in gaze direction. The high density of
landmarks around the eyes allows for the precise localization of the iris, from which a robust

3D gaze vector can be calculated.

Figure 2.4: Demonstration of facial landmark detection
MediaPipe strength is its delivery of extremely accurate and rich raw data, which can
be processed using libraries like OpenCV [17]. For a proctoring system, this data can be used
to build a highly precise model of a user's attention. However, MediaPipe's main role is to
provide the landmarks; it does not inherently provide a system for mapping these landmarks to
on-screen (X, y) coordinates. A developer would need to build a regression and calibration

system to make the landmark data useful for tracking on the screen.
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
11

CHAPTER 2

2.3.2 WebGazer

WebGazer is an open-source library that represents a more complete, end-to-end

application of the facial landmark approach, built specifically for the web browser.

WebGazer also uses a facial landmark detection model to locate eye features. Its
primary innovation is use of online learning through user interaction with the goal of
democratizing web usability studies. Previously, the research on where users look on a website
was a field that required expensive, specialized hardware eye-trackers that is expensive yet
complicated, limiting this technology to large corporations only. With WebGazer.js, a free
software solution that works with any webcam, makes this powerful analysis tool accessible to

everyone. [14]

‘c WebGazer

Figure 2.5: Official logo for WebGazer.js

The library includes a regression model that is continuously trained and updated with
every user click on the screen. This process serves as a real-time, personalized calibration,
creating a dynamic mapping between the user eye features and their position on the screen.
This allows the model to adapt to real-world situations like shifts in lighting, changes in the

user posture, or even anatomical differences between users. [12]

WebGazer self-training nature makes it suitable for a proctoring application. Instead of
relying on a static model, it creates a personalized tracker for each session, defined by the
calibration process. This capability is important for achieving reliable accuracy in the

uncontrolled environments of online examinations. [18]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
12

CHAPTER 2

WebGazer achieves its high accuracy through two key innovations:
1. 3D Facial Landmark:

This is able to estimate the user head pose, allows it to detect head rotation, solving the

head movement problem in simpler 2D implementations.
2. Adaptive Regression:

The model is able to train in real-time through a user-specific calibration process. By
having the user click on points, WebGazer builds a personalized map between the 3D
eye features and the 2D screen coordinates, making it a highly accurate and

personalized tracking tool.
3. In-Browser Machine Learning:

The entire machine learning model runs directly on the client computer inside the web
browser. This is highly efficient as it avoids sending the heavy webcam video stream
across the internet for analysis, saving significant network bandwidth and reducing the

load on the backend server.
2.4 Head Pose Estimation

Head Pose Estimation (HPE) calculates the 3D orientation of a student head pitch
(up/down), yaw (left/right), and roll (tilt) to approximate where the head is facing without
directly tracking the pupils [21]. This method can be broadly classified into two main

approaches which are landmark-based and landmark-free (appearance-based) methods.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

CHAPTER 2

Figure 2.6 Parameter for HPE (Pitch, Yaw, and Roll) and Their Corresponding Direction

In the landmark-based approach, the system first detects key facial landmarks such as
the corners of the eyes, nose tip, and mouth.[19] These 2D points are then mapped to a standard
3D head model, and algorithms used to estimate the head rotation and translation in 3D space
[21]. This approach is computationally efficient and works well under controlled conditions

with good lightning and simple background, ensure that the mapping is working as intended
[18].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

CHAPTER 2

Figure 2.7 Landmark-based Head Pose Estimation

On the other hand, landmark-free methods skip landmark detection. Instead, employ
deep learning models, such as CNNs, to directly regress the head pose angles from the entire
face image [18]. These methods are generally more robust to challenging environments, such
as complex backgrounds, or extreme lighting conditions, because the model learns features
automatically from data rather than relying on precise landmark positions. However, landmark-
free approaches often require more computationally intensive than traditional landmark-based

methods.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
15

CHAPTER 2

YAW

e * Depth image
| ll i 'ml. * 2D image
‘ g * Video

* Face Detection

Preprocessing « Landmarks detection

* 3D modeling

‘P“C' * Training techniques
Estimation * Training-free techniques

o
R

ROLL

4

Evaluation of . Accuracy
Errors + MSE

Figure 2.8 The Steps to Train a Landmark-Free Methods for HPE
2.4.1 Tools for Head Posture Estimation

Several tools and libraries support the implementation of head pose estimation system.
OpenCV solvePnP function is one of the most widely used methods. It estimates head rotation
and translation by mapping 2D facial landmarks, such as eye corners and nose tips, to a
predefined 3D face model [22]. This approach is computationally efficient and provides real-

time performance, making it suitable for low-resource environments.

MediaPipe Face Mesh is another powerful tool that provides 468 high-fidelity 3D facial
landmarks, including depth information, from a single camera input [20]. These landmarks
allow for accurate head orientation estimation even under moderate variations in lighting or

head positioning.
2.5 Non-Computer Vision Approaches for Exam Proctoring

While computer vision techniques focus on detecting suspicious physical behaviors
through camera input, non-computer vision approaches aim to further secure the digital
environment and audio environment of online exams. These methods include browser and
keystroke monitoring and audio analysis. Non-computer vision has an advantage that the
incident that recorded is somehow with strong evidence proof as they are unlike the computer
vision to detect the behavior which is indirect to the cheating as the main evidence of cheating

which the unauthorized resources are usually placed at the blind spot of camera.

2.5.1 Browser and Keystroke Monitoring

Browser and keystroke monitoring methods analyze a student digital activity rather
than their physical behavior. The primary goal is to detect activities such as tab switching,
window focus changes, or unusual typing patterns that may indicate cheating attempts.
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
16

CHAPTER 2

For browser monitoring, Chrome Extension APIs provides several useful events, such
as chrome.tabs.onActivated to detect when a student switches to another tab, and
chrome.windows.onFocusChanged to detect when the browser window loses focus which
maybe minimizes the window or open another application [4]. These techniques are suitable

for both custom browser extensions and web-based exam platforms [24].

In addition, keystroke dynamics analyzes typing behaviors, including key press
durations, latencies, and inter-key intervals, to detect anomalies in user behavior. For example,

a sudden shift in typing speed may suggest that someone else is typing for the student [23].
2.5.2 Audio Analysis

Audio analysis uses a computer’s microphone input to detect suspicious speech or
background sounds during an exam session. The Web Audio API provides real-time access to
microphone data, while Voice Activity Detection (VAD) algorithms automatically detect when
human speech occurs. To further enhance functionality, the speech could converts into text,

enabling systems to flag suspicious keywords such as “answer” or “help me”

However, privacy and ethical concerns remain a major challenge. Continuous
microphone access may capture sensitive background conversations [6]. Moreover, ambient

noise, or overlapping voices can reduce accuracy and lead to false positive incident [25].
2.6 Discussion on Selected Proctoring Techniques and Tools

Based on the reviewed methods, this project focuses on two main approaches: Eye Gaze
Tracking under computer vision methods and Browser Event Monitoring under non-computer
vision methods. These choices are made after considering the practical constraints and

suitability of each method in the context of an online examination environment.

For Eye Gaze Tracking, the key reason is its ability to detect cheating behavior even
when the student keeps their head still. Head Pose Estimation (HPE) alone would fail in such
scenarios because a student can glance at notes or another screen using only eye movement

without turning their head.

Browser Event Monitoring is included because cheating via digital methods such as
searching for answers online or switching to unauthorized tabs for external reference is one of
the most common and easiest forms of cheating during online examinations. Detecting tab
switching, or loss of browser focus can significantly enhance the system capability to prevent
academic dishonesty with minimal privacy concerns.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
17

CHAPTER 2

On the other hand, keystroke monitor and audio analysis were excluded for practical
reasons. Keystroke dynamics may produce many false positives, as normal variations in typing
speed or style could be mistaken for suspicious behavior, especially when many students are
being monitored simultaneously. Audio analysis also presents challenges: it requires third-
party tools for speech detection, involves privacy and ethical concerns, and struggles with noisy

environments or multiple overlapping voices, leading to frequent misclassification.

By combining Eye Gaze Tracking for physical behavior detection and Browser Event
Monitoring for digital behavior monitoring, this system strikes a balance between accuracy,
simplicity, and practicality, while respecting user privacy and reducing computational

complexity.
2.7 Existing Methods for Detecting Online Cheating

Traditional methods for detecting online cheating have primarily relied on physical in-
person proctoring together with strict rules and regulations during the examination. However,
this is insufficient to address the challenges that may arise during the online examination
because the in-person proctoring method that works well for traditional physical proctoring is
nearly impossible to monitor the whole online examination process and hard to trace the
evidence showing cheating behavior, while it is also expensive to scale.

Besides, students can easily take advantage of cheating beyond the strict rules and
regulations, due to online examination being hard to detect cheating. The traditional approach
is also impractical to practice during the online examination. Therefore, there is a need to have
a more reliable monitoring system towards the student’s behavior during examination. There
are few numbers of previous applications that are built to solve the problem which are
commercialized and target to purchase services by the institutions or organizations, each using
Al and computer vision approach in detecting cheating during examination. This section will
review ProctorU, Respondus Monitor, and Proctorio[6][7][8], focusing on their methods of

behavior monitoring, and strengths and limitations.

In addition, the proposed solution was also drafted to deal with the limitations of these

systems stated later.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
18

CHAPTER 2

2.7.1 ProctorU

ProctorU [6] is an online proctoring service that allows subscribing institutions to
remotely monitor students during online exams. Unlike the fully automated systems, ProctorU
still involves humans in the proctor session because they believe the technology can’t replace
human in the examination, live proctoring to monitor the whole examination to ensure
confidentiality of the examination is important. Therefore, ProctorU combines live proctoring,
Al-based monitoring, and recorded sessions to support the entire examination process.
ProctorU will have their own trained proctor to help the university to handle the whole
examination process, institutions have no need to send supervisor or proctor themselves to
overlook the whole examination process, this reduces the manpower required by the institutions
to monitor a online examination.

Test-takers that have an examination with ProctorU will need to have 8 to 10 minutes
for the setup process before they take the exam. The system will have a strict rule for the test-
taker to follow before and during the test ongoing. Before the test begins, test-takers will need
to make sure that their desk is free from unauthorized belongings like the second monitor,
tablet, mobile phone, reference book, sunglass, earbuds and so on. In addition, test-taker asked
to take the test under an ideal environment which free from other people.

Afterward, test-takers are required to install the Chrome or Firefox extension for
ProctorU based on the browser they are using for examination, close all the program and restart
their computer. They are also not permitted to leave their seats during the test ongoing.
Additionally, students must download an applet file (small downloadable file) to proceed.

During the test, test-takers are required to share their screen, take photos of themselves
and take photos of their ID for verification purposes. The photo will be required to receive
approval from the proctor which the supervisor of the exam, proctor will also be required to
check and ask the test taker to remove unpermitted materials on their surroundings like a second
monitor on the table and review the test taker open application on the PC. Only then is the test
taker able to login into account and take the examination. The test taker screen and webcam
will be recorded all the time during the exam and must follow some rules and regulations during
the test like don’t read the exam question out loudly, this believe is because prevent case that
the students read the question and ask help from the unknown person behind the screen, test-
taker also not required to leave their seat during the examination and not to allowing anyone to

enter the exam area to prevent cheating case from happening.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
19

CHAPTER 2

ProctorU is a well-developed and reliable system that is able to prevent cheating case
happening during the online examination with such many exams environment regulation, ID
verification and live monitoring on the student’s behavior. The system behind the screen also
uses eye gaze tracking, head pose and body movement tracking, and screen and audio
monitoring to further detect the cheating from happening. After the examination ends, the

suspicious activity will also be recorded, and report shared to the institution administrator.

Seszion Sf1dbdae | Proctord X +

NS C' & go.proctoru.com

procto{ ogout @ s instructor ~
Home Schedule Sossions ~ Reports~ Support
Home | All Institutions / Product Specialist School | All Exams /| COM 300 - Marketing - Midtarm Exam
S
Session View Media View LMI Sessions

User Timeline

User Institution
Proci 60 0 1
Student Specialist Schoo minutes Comments Incidents
User ID Time Zone
5442718 US/Central
Live Stream
Phone Status

999-999.9599 Active

Session

Figure 2.9: ProctorU Test-Taker Exam Session Interface

2.7.2 Respondus

Respondus [8] is also an Al-based proctoring tool designed to work alongside lockdown
browser, an innovative method that uses a browser that locks test-takers access to other
unauthorized material within a learning management system (LMS). LMS is like a digital
school or training center. It is a platform to allow creation and organize online courses, deliver
them to public and track the progress. Besides, it allows the users to upload video lessons,
quizzes or assignments. These platforms are normally in paid content, some will be assigned
professional certificates for those that pass the test. Examples of LMS are like the Alibaba
Academy, Canvas and so on.

Respondus enables institutions to remotely proctor online exams without the need for
live proctors. In another word, Respondus is fully utilizing automated AI monitoring and video
recording to detect suspicious behaviors during the exam, ensuring that test-takers follow to

the rules and regulations as well as maintain the integrity of the assessment process. This

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
20

CHAPTER 2

scalable solution is especially suited for large institutions looking for a cost-effective way to
monitor online exams without real-time human intervention. Thus, save cost in terms of
manpower.

Firstly, Students access the exam through their institution’s LMS, where Respondus
Monitor is integrated to the system. The listed LMS that has cooperated with Respondus are as

shown.

Blackboard 2t CANVAS BRIGHTSPACE

BY INSTRUCTURE

_.WY I) schooloay
Thoodle S@l()al (8) schooloc

Figure 2.10: List of Respondus LMS Partners

Before starting the exam, students are required to install and use the Lockdown
Browser. This browser restricts access to other applications, websites, and system functions,

preventing students from looking up answers or using unauthorized resources during the exam.

Respondus
LockDown Browser
OVERVIEW VERSION INSTALL
-~
‘ " v ’ nstal LockDuwn Drowser for
. 15 '\y Respondus University

==

e A~

Thes brief videe explars the Dasic fealures of Vo 01 Vo 1T Samare s ko L) b a1 el
LockDown Dromser and why it's saed st your

i sz Do you meed tre 'Windave: version? By CHCHPg the 12l Now” Buman, yos SoorewisdRe SRt

Figure 2.11: Lockdown Browser Installation of Respondus

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
21

CHAPTER 2

Afterwards, Respondus performs a series of pre-exam checks to ensure that the
student’s computer meets at least the minimum technical requirements for examination,
including a working webcam and microphone. Students are also asked to complete an
environment scan using their webcam to show their surroundings, ensuring there are no

unauthorized materials like books, phones, or other people in the room. All of these are

Webcam Check * ' - x|
XCon

8 LockDown Browser

Webcam Check

Adjust the camera so X

Rekard Five Second Video

Figure 2.12: Pre-examination Check of Respondus

Before beginning the exam, students must verify their identity by showing a valid photo
ID to the webcam. This ensures that the person taking the test is enrolled. Once the setup is
complete, the exam begins. Respondus Monitor continuously records the student’s webcam
and screen activity throughout the test. The system uses Al to monitor the student’s behavior,
analyzing facial movements, eye tracking, head posture, and background noises to detect any
signs of cheating or suspicious activity. The lockdown browser ensures that students cannot

access unauthorized websites, applications, or resources during the test.

Respondus Monitor uses Al to analyze student behavior in real-time, detecting possible
instances of cheating by identifying suspicious patterns, such as face and eyes as well as head
posture and body movements to detect if they are too frequently looking away from the screen,
which potentially show that the test-takers is looking for unauthorized materials. If the students

perform this action, the system flags the behavior as suspicious.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
22

CHAPTER 2

Besides, the system listens to background noises, this is because students may receive
help from someone behind the camera screen which is blind spot. Any unusual noises are
flagged as potential cheating behavior. Since Respondus works with the lockdown browser,
test-takers are unable to navigate away from the exam screen or open new browser tabs. Any
attempt to break out of the browser’s restrictions, such as trying to access external content or

use keyboard shortcuts, is automatically blocked and flagged.

After the exam is completed, Respondus generates a detailed report to the institution’s
administrator. The report includes each suspicious activity detected by the Al during the exam
flagged in the report. This includes behaviors such as looking away from the screen, excessive
movement, or background noise. Each flagged event is recorded with a timestamp and
classified by the type of behavior. The system provides administrators with access to the full
video recording of the exam session, along with any flagged incidents. This allows
administrators to review the footage and make decisions about whether a cheating occurred.
Respondus categorizes flagged behaviors by different levels. For example, minor issues like
brief eye movements may be marked as low risk, while more serious violations, such as
repeated head turns or external conversations, may be marked as high-risk. The system offers
an analysis of student behaviors throughout the exam, helping administrators identify patterns

that may be cheating.
2.7.3 Proctorio

Proctorio [7] is an Al-driven online proctoring service that allows subscribing
institutions to monitor students during online exams without the need for live human proctors
but at the same time it still opens the option for the institutions whether to include human
proctor in the online examination. Unlike traditional proctoring services, Proctorio relies
entirely on machine learning and artificial intelligence to monitor test-takers' behavior
throughout the exam. By removing the need for human proctors, Proctorio offers a scalable
solution that can be integrated directly with learning management systems (LMS). Its goal is
to provide real-time, automated monitoring to ensure the integrity and security of online
assessments. One another good thing with the Proctorio is that it offers limited function free
usage for the public unlike the others proctor platform all using subscription method made by
the institution. This means that small organizations or normal individuals can use the service

up to certain extent.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
23

CHAPTER 2

Browser Resize

Keystrokes

Audio Levels

Figure 2.13: Proctorio Allow Limited Configuration to the User

Head and Eye Movement

Copy & Paste

Proctorio Exam Results

Name

Submission Time

Attempt

es suspicion Level

b

@ - Student, Andreav...

03/02/2020 04:27....

69%

@

Student, Vuk De...

03/02/2020 09:23....

18%

G

Student, Ana De...

(@

03/02/2020 09:18....

16%

0

Student, Alekhya ...

02/27/2020 10:36....

12%

Student, Alekhya ...

02/27/2020 10:31:...

9%

@ - Student, Javan D...

02/28/2020 04:39....

1

3

0

0

5%

Figure 2.14: Examination Result of Proctorio

Students taking an exam through Proctorio undergo a setup process similar to other
online proctoring services. Before the exam, students are required to clear their workspace of
unauthorized materials, including additional monitors, mobile phones, books, and other
unauthorized items. They are also asked to ensure their exam environment is free from

disturbances, meaning no other people should be present in the room.

Proctorio requires students to install a browser extension, typically compatible with
Chrome, to run the proctoring software. Once the extension is installed, the system performs a
series of checks to ensure the student's computer meets all technical requirements, such as
verifying the presence of a webcam, microphone, and stable internet connection. Additionally,
students are not allowed from leaving their seat during the exam, and any attempt to do so may
be flagged by the system as suspicious behavior.

When the exam begins, Proctorio continuously monitors the test-taker using Al
Students are required to share their screen, activate their webcam, and allow access to their
audio feed. The system captures these data streams and monitors them throughout the test. One
key component of Proctorio’s system is facial recognition, which verifies that the individual
taking the exam matches the original student registered for the test. The software also tracks

eye movements, head posture, and body language, flagging behaviors that may indicate

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
24

CHAPTER 2

cheating. Proctorio additionally monitors the student’s screen activity, ensuring that no
unauthorized websites, applications, or other tools are being used during the exam. The system
even monitors audio for sounds that may indicate that there is collaboration with someone else
in the room.

Proctorio automated system also records video and audio for post-exam reviews. All
data collected during the exam, including screen recordings and any flagged incidents, are
compiled into a report that is sent to the institution's administrator once the exam is completed.
This report includes a suspicion score, which indicates the likelihood of cheating based on the
behaviors and anomalies detected during the test. Each flagged behavior is accompanied by
timestamps, and administrators can review the footage to determine whether further action is

needed.
2.8 Critical Analysis of Existing System

As a short conclusion for the previous section, to create a robust and reliable test
monitoring solution requires multiple technology and functionality work together. For
example, the application ProctorU which is believed to be one of the biggest proctoring systems
worldwide, proposes that effective online test monitoring is more than software. The company
is not only a software provider but also provides trained human monitors which are known as
proctors who directly monitor exam sessions in real-time. This enables institutions to leave the
entire exam monitoring task to ProctorU, saving the internal manpower and also ensure the
integrity of the examination.

On the other hand, Respondus introduces innovation through the use of multiple
solutions in the application such as lockdown browser, background audio monitoring, and
identity verification protocols. This further enhances exam security by limiting access to
unauthorized resources and detecting suspicious cheating behavior besides that using eye gaze
and head posture monitoring. Lastly, Proctorio further innovation in having a system that is
fully automated without third party monitoring, the system itself will monitor the whole
examination and create a report afterwards, offering a scalable and cost-effective option.

They all have their pros and cons in the way that the characteristics may bring a
competitive advantage to them but in the same time also bring some disadvantages alongside.
This section will have a critical analysis on these platforms which ProctorU, Respondus,
Examity, and Proctorio [6][7][8][9] then explains how the finding able to integrate into this

project. These findings provide the foundation for proposing a more balanced and effective

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
25

CHAPTER 2

solution through the "Detecting Online Test Cheating Through User Behavior Monitoring"

system.
2.8.1 ProctorU

ProctorU has strength that presents a very reliable online test proctoring system. It is a
well-known largest network of certified remote proctoring and support staff; the nature of the
application is a combination of both live and artificial intelligence indicates that there are layers
of monitoring in place. When ProctorU’s proctor notices cheating, they will make a decision
including informing the institutions and remark the incident too, the system will also generate
a report to the institutions regarding the cheating behavior. Proctor will be there to monitor the
entire examination process and because the existence of humans enables real-time intervention,
the proctors can intercept the examination in the name of the institution when there is a case of
cheating is observed to be ongoing.

However, this kind of business model doesn't really work for every institution. This is
due to the exam content either question or answer are confidential for universities and
companies, they are sensitive stuff. The business model of ProctorU indicate that institutions
are basically handing all those confidential materials over to a third party. This make the
confidential materials hard to handled and controlled confidentially. There might happened
some case like the proctor accidentally leaks questions. Additionally, there is also no guarantee
every proctor will treat their job responsibly. Some might be very strict, while others could
miss obvious cheating even the suspicious case raised by the system, or in the worst case,
proctor maybe offered some benefits by the students. At the end of the day, institutions will
loss lot of control towards the examination when it is outsourced to ProctorU. Even though
ProctorU will have SOP to prevent these cases from happening but there is still risky to do so,
this is one the concern when the institutions choose ProctorU to host their examination.
Additionally, involvement of the proctor that outside the organization also an extra expense for
the institution.

In addition, ProctorU pre-exam setup cause inconvenience for the test- taker. In most
the time, students may not have the full control of their exam environment such as the
arrangement of the desk; the conditions in the room are factors that the students cannot control
of. The strict rules that require them to adhere will cause so many complications and
unnecessary stress to the test takers because the complicated setup is also a waste of time action

for examinees.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
26

CHAPTER 2

Besides, ID card approval process of ProctorU is by manually checked by the
manpower, even though this will be more reliable, but it slows down the process and in the
case that the number of test takers was too many and the number of proctors is limited, the
examination maybe couldn’t be started on time for all the students. Lastly, the subscription-
based system is making ProctorU primarily available to larger institutions that can afford the
subscription price. This creates a disadvantage for smaller institutions and individuals, limiting

the adoption of online examinations and the digitalization in society.

Advantages Disadvantages
- One stop service provider as online - Leakage of confidential data,
examination monitoring outsourcing examination questions and questions in
provider this case
- Combines both live proctoring and AI- | - Complex setup process causes stress and
based monitoring inconvenience for students
- Real-time intervention allows proctors | - High cost due to external party
to step in if suspicious behavior involvement
- Detailed reporting with recorded video | - Manual ID verification can delay the start
and flagged behaviors of exams when proctors have to review
- Provides its own trained proctors IDs for large groups of students.
- Subscription-based of the system be
extra burden for institutions.

Table 2.1 Advantages and Disadvantages of ProctorU
2.8.2 Respondus

Respondus offers a solid online proctoring solution by integrating Al-driven monitoring
with lockdown browser. This combination ensures that the testing environment remains secure
while detecting suspicious behaviors like abnormal eye movements or head gestures.
Respondus Monitor generates detailed reports with video recordings, flagged incidents, and
behavior analysis, allowing administrators to have a comprehensive overview of potential
cheating cases. By categorizing incidents based on different levels, institutions can focus their
efforts on serious violations that are highlighted in reports, making the post-exam review

process more efficient.

However, Respondus Monitor has some limitations. One major weakness is its limited

real-time intervention during proctored exams. In these cases, the system does not alert students

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
27

CHAPTER 2

during the test if they are doing suspicious activities but only flag them for future report
generating for the institutions only, which could allow cheating to continue unnoticed until the
review after the exam. This is lack of transparency for both the student and proctor. Instead,
the system could be further improved by addressing this issue by incorporating a more dynamic
system that alerts students when they engage in suspicious behavior, providing them with a
chance to correct their actions during the exam. Also, in the case it is a false positive, the
students also have a chance to sound out and clarify their innocence. Allowing real-time
notification in automated proctoring would make the system more transparent for both parties
and help prevent cheating in real time, and in the same time prevent false positive as the test is
important that it will affect the future of the students, students have a right to protect themselves

when it is really a false positive case.

In addition, it relies heavily on Al for detecting suspicious behavior, which may result
in false positives as mentioned, where normal student actions, such as adjusting their seating
or glancing away from the screen but not trying to cheat, may be flagged as suspicious. This
not only increases stress for students but also adds more work for administrators who must
review these incidents. A solution that only relies on the Al on an online test monitoring work
is not really an ideal approach, because Al is not 100% perfect, the involvement of human
proctor is still important to have. Additionally, the system does not offer real-time human
intervention, meaning any potential cheating is only flagged after the exam is over. This could

allow cheating to go undetected during the examination.

Another issue is the system's rigid exam environment requirements. Students in shared
environments like coffee shops or shared rooms with others may face unnecessary stress if they
cannot comply with strict rules that the room can only have one person with simple setup,
resulting in false flags. Moreover, Respondus system is highly dependent on its integration
with specific LMS platforms, like Canvas, Blackboard, Moodle and so on those LMS that only
specify in their official website as their partners. This can limit its flexibility and may restrict
its usability for some institutions. Although integration into LMS may be a good choice and

bring convenience but it also limits the scalability of the system.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
28

CHAPTER 2

Advantages Disadvantages
- Integrated with lockdown browser - Over-reliance on Al
- Comprehensive reports with video| - No real-time human intervention
recordings and behavior analysis - Complex setup process causes stress and

inconvenience for students

- The system’s dependence on integration with
specific LMS platforms

- Lack of real-time alerts in proctored exams
means proctor may not be aware of
suspicious behavior until after the exam.

- Transparency issues, as the system does not

provide students with real-time alerts

Table 2.2 Advantages and Disadvantages of Respondus
2.8.3 Proctorio

One another online test proctoring system, Proctorio is an Al-enabled proctoring system
that does not require actual people to manage and monitor the process, thus it is cost-efficient
and can work at a large scale. This flexibility that can be adjusted depending on the specifics
of the exam makes Proctorio a perfect solution for large scale institutions since it majors in Al
monitoring hence cutting down on human resource input and costs. However, Proctorio has an
extra benefit that the public can use their services with restrictions as a free subscriber. This is
good since other proctor platforms do not have these services, most of the services of online
monitoring application are subscription based that can only be accessed by institutions that

subscribed to their services only.

However, Proctorio has limitations. Because the system is fully dependent on artificial
intelligence, the system notifies the cheating case after the examination if it detects any
suspicious behavior during the exam, and hence cheating can actually go unnoticed during the
live exam session. Then, in the end of the examination the supervisor finds it hard to trace back
the cheating case, increasing the workload to aliasing with the students on this case. Another
disadvantage is that Al-based identifies many normal behavioral patterns of students such as a
student changing their seat position or looking away from the screen but not trying to cheat as
malicious, thus it has high false positive results. This is due to Al not being 100% accurate.
Moreover, the constant capturing of the video and audio alongside the screen activity is a major

concern of privacy, especially to the students, especially when in their own space. Proctorio
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

CHAPTER 2

also has a problem in which minor forms of cheating and misbehavior are strictly monitored,

and accidental movements and sounds are considered violations and thus cause stress to

students.
Advantages Disadvantages
- Cost-effective and scalable, making it a - Noreal-time intervention, allowing
suitable solution for large institutions cheating to go undetected during the live
with many students. exam and only flagged post-exam.
- Customizable exam settings, allowing - Fully automated AI monitoring caused
institutions to configure parameters and over-reliance on Al

decide which actions should be flagged
as suspicious.
- Limited function access for the free

users

Table 2.3 Advantages and Disadvantages of Proctorio

2.9 Proposed Solution

The analysis of these commercial systems highlights a clear gap in the current market.
Existing solutions often force a choice between high-cost, human-proctored services that can
introduce data confidentiality risks, and fully automated systems that may lack real-time
feedback and institutional control. This suggests the need for a more balanced approach.

Therefore, an ideal solution should be low-cost, flexible enough to integrate with
existing testing platforms of the institutions and designed to keep sensitive exam data under
the institution's control. Furthermore, such a system would benefit from incorporating real-time
alerts to both suspicious students that caught violent actions and inform administrators,
addressing the transparency limitations of systems that rely only on post-exam reports.

In conclusion, this project proposes a solution that combines real-time monitoring and
alert to provide immediate feedback. These core functionalities, together with other features
detailed in the following chapters, are designed to create a effective eye-gaze tracking system

that successfully meets the objectives of this project

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
30

CHAPTER 3

CHAPTER 3 SYSTEM DESIGN

This chapter details the high-level design of the "EyeGuard" proctoring system,
presenting its technical blueprint through a series of standardized diagrams. The following
sections will present the system's three-tier architecture, detail the functional requirements
using a Use Case Diagram and descriptions, and illustrate the system lifecycle with an Activity

Diagram.
3.1 System Architecture

Figure below is the system architecture for the "EyeGuard" proctoring system. The
architecture is divided into several layers, designed using a three-tier client-server model that
integrates with cloud services. This design effectively separates the user-facing components,
the client from the backend, the server, which is a standard practice for building maintainable

applications.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
31

CHAPTER 3

G "EyeGuard” Chrome Extension

Client Tier

Application Tier (Backend)

Cloud Services Tier

. Gare Tracking Background User Interface
o Laptop Webcam Engine (Sandbox) B Coordinator Nl {Control Panel)
- —
Page Ul Manager
API Communication (HTTPS)
API Communication (HTTPS)
Flask Backend Server
APl & Session .| Real-Time Analysis N Reporting &
Management i Engine "l Motification Service
i
i
i
i
___________________________ i
s) AWS Cloud |
h 4

Report Storage

s s e e s 88 88 8888 8 E 8 &l

Motification Service

Figure 3.1: System Architecture of the EyeGuard Proctoring System.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Beginning with the topmost tier, the Client Tier represents all the components that run
directly within the student web browser. This tier is encapsulated within the "EyeGuard"
Chrome Extension. The extension is a collection of specialized components working together.
The User Interface (Control Panel) works to allow the student to log in and interact with the
proctoring session. Commands from the user are sent to the Background Coordinator, which
acts as the central hub of the extension, manages the overall state of the session and acts as a
listener for browser activities, such as tab switching. To perform the eye-tracking, the system
relies on the Gaze Tracking Engine, which runs in a secure sandbox to safely access the laptop
webcam and predict the user gaze coordinates. Finally, the Page Ul Manager is responsible for
all visual elements that are displayed on the student screen, such as the calibration dots and the
real-time violation alerts when there are suspicious activities like gaze look outside the screen

boundary or new tab open caught.

Communication between the client and the server happens over the Internet. As shown
in the diagram, all data is exchanged via API Communication (HTTPS) channel. This ensures
that all data, including gaze coordinates and student information, is protected during

transmission.

For the purposes of development, the backend server is run locally on the same laptop.
However, the architecture is designed to be ready for a production environment, as the client

communicates with the server via standard HTTPS protocols.

Moving on to the middle tier, the Application Tier (Backend) is the central brain of the
system. It is a Python Flask Server that waits for and responds to requests from the client. Inside
the server, the API & Session Management module handling incoming requests and keeping
track of active proctoring session. The data is then passed to the Real-Time Analysis Engine,
which contains the custom algorithm designed. This is where the core logic of analyzing user
behavior for suspicious patterns occurs. If a violation is confirmed, the analysis engine passes
the result to the Reporting & Notification Service, which is responsible for generating and

triggering alerts.

Lastly, the Cloud Services Tier handles tasks that require high reliability and scalability.
Our backend communicates with Amazon Web Services (AWS) for these functions. The
Notification Service uses AWS SES (Simple Email Service) to programmatically send email

alerts to the administrator when a critical violation is detected. The Report Storage uses AWS

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
33

CHAPTER 3

S3 (Simple Storage Service) to securely archive for the final HTML reports generated at the

end of each session.

This three-tier architecture provides significant advantages for “EyeGuard” system. A
key benefit is the complete separation of the backend logic from the user machine. This means
that a single, dedicated machine can support a large number of users. All the intensive data
analysis is performed on the server, ensuring that the student's computer only needs enough

power to run the lightweight Chrome Extension.

3.2 Use Case Diagram

"EyeGuard” Proctoring System

View Examination
Guidelines

=<includes:=

Login to System

Send Email Critical Alert

Display On-Screen
Critical Alert

H
=<inclide==
)

. View Email Critical Alert
<<|nclu2:|e =

Perform Gaze Calibration \
=<indludss=

=<includes=

Start Proctoring Session Handle Critical Violation

View Session Report

X

Administrator

Test-taker(Stugent) o
=<include==

=<<include=> zzexlend== Login to Console

=<include==

i ' on- exiend=>
Display On-Screen L TrEEn Monitor User Behavior

Warning

<<include=>

End Proctoring Session }----------------% Generate Final Report

Figure 3.2: Use Case Diagram

Figure above is the use case diagram that shows the tasks that users can perform on the
application and how the system acts. The use case descriptions for the tasks are discussed in

the following.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
34

CHAPTER 3

3.2.1 Use Case Descriptions

Use Case ID UC-01 | Use Case Name Login to System
Primary Actor Student
Brief Description This use case allows the student to authenticate with the system using
their credentials. Successful login is a must for all other proctoring
functions.
Trigger The student attempts an action that requires authentication which
“Calibrate Gaze" for the first time in a session.
Precondition The system requires the student to be authenticated to proceed.
Scenario Name Step Action
Main Flow 1 The system checks if the page is a valid page to run the
system or not
2 The system shows the guidelines to assist the students get
familiar with the system.
3 The system automatically opens the login window after
students confirm the guideline.
4 The student enters their Student ID and Password.
5 The student clicks the "Login" button.
6 The system sends the credentials to the backend /login
endpoint for verification.
7 The system validates the credentials and returns a
successful message with the student's profile information.
8 The system stores the student information, and the login
window closes automatically, allowing the student to
proceed.
Sub-Flow A 7a.l At step 7, if the backend determines the credentials are
Invalid Credentials incorrect, it returns an error message.
7a.2 The system displays an "Invalid credentials" message to
the student on the login page.
7a.3 The system returns to step 2 for the student to try again.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

CHAPTER 3

Page for Calibration

Sub-Flow B - | la.l At step 1, if the system detects the current tab is a browser
Invalid Page for system page like chrome://extensions and first page of
Calibration chrome.
la.2 The system displays the error message: "Cannot run on
browser system pages." and use case terminate
la.3 The student requires to try again in a valid page
Table 3.1: Login to System Use Case Description
Use Case ID UC-02 | Use Case Name Perform Gaze Calibration
Primary Actor Student
Brief Description The student follows an interactive process to train the eye-tracking
model, personalizing it to their environment to ensure monitoring
accuracy.
Trigger The student clicks the "Calibrate Gaze" button in the extension
control panel
Precondition The student must be successfully logged into the system.
Scenario Name Step Action
Main Flow 1 The system verifies that the current browser tab is a valid
webpage.
2 The system checks if the browser has permission to open
the camera or not
3 The system injects the calibration Ul overlay onto the
webpage
4 The system displays a sequence of dots on the screen.
5 The student looks at and clicks each dot as instructed.
6 The system trains the WebGazer model with each click
7 The system removes the calibration of UI upon successful
completion
8 The system internal state is updated to 'ready’ state.
Sub-Flow B: Invalid | 1a.1 At step 2, if the system detects the current tab is a browser

system page like chrome://extensions and first page of

chrome.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

CHAPTER 3

la.2 The system displays the error message: "Cannot run on
browser system pages." and use case terminate
1a.3 The student requires to try again in a valid page
Sub-Flow B: | 2b.1 At step 2, if the system detects it does not have camera
Camera Permission permission.
Not Granted 2b.2 The system (via the browser) prompts the student to grant
camera access.
2b.3 If the student grants permission, the main flow continues
from step 4.
2b.4 If the student denies permission, the system displays an
error message "Camera access is required for calibration."
and the use case terminates.
Table 3.2: Perform gaze calibration description
Use Case ID UC-03 | Use Case Name Start Proctoring Session
Primary Actor Student
Brief Description Allow the student to begin the monitored exam session after all
prerequisites are met. This action triggers the system to start actively
monitoring the student.
Trigger The student clicks the "Start Proctoring" button in the extension
control panel.
Precondition The system's internal state must be 'ready’, indicating the student is

logged in and calibration is complete.

Scenario Name Step Action
Main Flow 1 The student clicks the "Start Proctoring" button.
2 The system sends a start_test request to the backend server.
3 The system receives a unique session_id from the backend.
4 The system changes its internal state to 'running' state and
begins monitoring events.
5 The system UI updates to show the session is in progress.

Table 3.3: Start Proctoring Session Use Case Description

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

CHAPTER 3

Use Case ID UC-04 | Use Case Name End Proctoring Session

Primary Actor Test-taker (Student)

Brief Description Allows the student to formally stop the monitoring session, which
triggers the finalization and generation of the session report.

Trigger The student clicks the "End Proctoring” button in the extension
control panel.

Precondition A proctoring session must be active and in the 'running' state

Scenario Name Step Action

Main Flow 1 The student clicks the "End Proctoring" button.
2 The system sends an end _test request to the backend server
3 The system executes the Generate Final Report use case
4 The system internal state is updated to 'ended' state.
5 The student has done with his/her examination

Table 3.4: End Proctoring Session Use Case Description

Use Case ID UC-05 | Use Case Name View Session Report

Primary Actor Administrator

Brief Description Allows the administrator to access and review the detailed analysis of
a completed proctoring session by logging into the designated AWS
S3 bucket where reports are stored.

Trigger The administrator accesses the AWS Management Console login
portal to begin the process of viewing a report.

Precondition The administrator has been provided with AWS IAM credentials. The

End Proctoring Session use case must have successfully uploaded the

report to the S3 bucket.

Scenario Name

Step | Action

Main Flow

1 The administrator performs the login to AWS Console use
case
2 The administrator navigates to the S3 (Simple Storage

Service) dashboard.

3 The administrator locates and opens the specific S3 bucket

designated for EyeGuard reports, which eproctor-reports

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

CHAPTER 3

4 The administrator browses the bucket and locates the report
file for the desired session_id

5 The administrator opens the file to review the integrity score,
event timeline, and gaze plot.

6 The administrator may conduct post exam investigation

towards students who are caught suspicious

Table 3.5: View session report use case description

Use Case ID UC-06 | Use Case Name Display On-Screen Warning

Primary Actor System

Brief Description When the system detects a minor violation, it displays a real-time
warning to the student. This is an “extend” of the Monitor User

Behavior use case.

Trigger The Monitor User Behavior use case detects violation or suspecious
behavior of student during test.
Precondition A proctoring session is active. Status is “running”
Scenario Name Step Action
Main Flow 1 The system analysis engine identifies a violation or
suspecious behavior of student during test and the API
response includes an alert message.

2 The system displays a pop-up on the student screen, saying
that what the actions they done is violent letting them to
stay focus on the test

3 The system logs the event and will be display in the report

Table 3.6: Display on-screen warning use case description

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 3

Use Case ID UC-07 | Use Case Name Handle Critical Violation
Primary Actor System
Brief Description When the system detects a major violation, it executes a two-part alert
to notify both the student and the administrator. This is an “extend”
of the Monitor User Behavior use case.
Trigger The Monitor User Behavior use case detects a critical violation event
which the students receive alert more than 3 times.
Precondition A proctoring session is active. Status is “running”
Scenario Name Step Action
Main Flow 1 The system confirms a critical violation
2 The system display on-screen critical alert
3 The system displays a pop-up on the student's screen,
saying that their actions are violent, further investigation
will be conducted to them.
4 The system sends email critical alerts to administrator
5 The system logs the event and will be displayed in the

report

Table 3.7: Handle Critical Violation Warning Use Case Description

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

CHAPTER 3

3.3 Activity Diagram

End User (Test taker) Client (Chrome Extension) Backend (Flask Server) AWS Administrator

[Snowng Gudeine
Ciick uton “Cabbrate Gazer
Checxs Iocal 1orage for user cregentiats

AWS Login Portal

smaraom | J| o ot

Sents “Sucoess
responze

Sands “Ermor’
response

‘Access nol yt graniesd Access granted
+

‘ Pemitine camara ccsss %--‘M for e camerg

Procesds wilh ull caiibration process
Upiates system state 10 ‘Ready’

3400 A1 1equestand cHRraed ana o st st Receives dats and reate new session 1D

Upates system state to ‘Runaing

I

Send warning slert

I

‘ Usloads report to $3 }—4-{ ‘Stores report in 83 Bucket |

[ES— IL } IS }(;

Cllck “Eng Proctonng

Figure 3.3: Activity Diagram

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
41

CHAPTER 3

The activity diagram in Figure 3.3 provides a comprehensive, end-to-end illustration of
the entire EyeGuard proctoring lifecycle, from initial student setup to final administrator
review. The diagram utilizes swimlanes to clearly delineate the responsibilities and interactions
between the Test-taker (Student), the Client (Chrome Extension), the Backend (Flask Server),

integrated AWS cloud services, and the Administrator.

The entire workflow is initiated by the Student attempting to prepare for the exam by
clicking the "Calibrate Gaze" button. At this point, the Client (Chrome Extension), which
manages all browser-side logic, first show the guideline to the user to guide them using the
system, then checks its local storage to determine if the user is already authenticated upon
confirmation. If the user is not logged in, the Client displays a login window. The student
interaction starts with providing their credentials. The Client sends these credentials to the
Backend (Flask Server) for validation. If the credentials be invalid, the Backend returns an
error, and the Client prompts the student to try again, creating a loop until a successful login
occurs. Once authenticated, or if the student was already logged in before, the flow proceeds
to the calibration phase, which is handled entirely by the Client as well. This involves verifying
the webpage is valid, checking for and requesting camera access from the Student, and guiding
the user through the interactive calibration process of clicking dots on the screen. The outcome
of this phase is the Client's internal state being updated to 'Ready’, indicate that the system is
prepared to begin monitoring.

The monitoring starts when the Student clicks "Start Proctoring." This action prompts
the Client to send an API request to the Backend, which to creates a unique session ID for the
session. The Client's user interface updates to a 'Running' state, signaling to the student that
monitoring is now active. This initiates the core monitoring of the system, the Client
continuously captures and sends a stream of gaze and browser event data to the Backend for
real-time analysis.

The Backend is responsible for all violation detection and handling logic. As it receives
data, it first determines if any activity is a violation. If no violation is found, the monitoring
simply just continues. If a suspicious activity is detected, decision is made regarding its
severity. For minor violations, the Backend sends a standard warning message back to the
Client, which is then displayed to the Student as a warning on-screen pop-up. For critical
violations, the backend simultaneously sends a critical alert message to the Client for display

to the Student, saying that they will be investigated after the test, while also making an API

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
42

CHAPTER 3

call to the AWS swimlane. This call triggers the Amazon SES (Simple Email Service) to send
a detailed notification email directly to the Administrator with registered email.

The session concludes when the Student clicks the "End Proctoring" button. The Client
sends a final API request to the Backend, which then generates the final report files in both
HTML and PDF formats. In the final interaction with the cloud, the Backend uploads these
reports to the AWS swimlane, where they are securely stored in the designated S3 bucket. The
administrator who prompted by an email alert, then takes action that entirely outside the
EyeGuard system, as they log into the external AWS Console to locate and review the session

report, to take necessary action.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
43

CHAPTER 4

CHAPTER 4 SYSTEM METHODOLOGY/APPROACH

This chapter details the methodology, technical requirements, and core algorithms that
guided the development of the "EyeGuard" system. The following sections will explain the
rationale for adopting an Agile development process, specify the hardware and software
requirements for the project, present the detailed project timeline, and provide a technical

breakdown of the key detection and scoring algorithms.
4.1 Agile Development Methodology

For this project, the agile methodology was chosen as the main development process
instead of more traditional methods like Waterfall. The Waterfall approach is very rigid and
requires each step to be finished before the next can start, which is suitable for large, complex
systems where the requirements are already perfectly clear. For a Final Year Project like this,
which is smaller and involves a lot of experimentation, a waterfall approach would likely create

unnecessary delays and make it hard to adapt when things change.

Agile encourages flexibility and fast iteration, which was very useful for this “Detecting
Online Test Cheating Through User Behaviour Monitoring” project. The nature of this project
involves designing and implementing Al models, such as the real-time eye-gaze tracking
system, which requires a lot of trial and error to get working correctly. Agile allows for this
kind of work by letting you build a small part of the model, try it out, see how it works, and if
it is not good enough, repeat the cycle with a different strategy without needing a heavy project

plan from the start.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
44

CHAPTER 4

Agile
methodology

@ Design

Deploy @

(3) Develop

Test @

+»Qasana

Figure 4.1: Agile Methodology in System Development

In Agile, development is divided into series of sprints and as referred from the diagram,
listed in planning (requirement analysis), designing, development, testing, deployment and
review. Each sprint produces at least a partial prototype, allowing the work to be able to
evaluate again if required and further development. [9][13] The development process looked

something like this:

1. Initial Sprints:

The first few sprints were focused on building the project's foundation. This meant setting
up the basic Flask server on the backend and creating the core Chrome Extension
framework with its popup and background scripts. The goal was simply to get the client
and server connect and communicate with each other.

2. Mid-Project Sprints:

Once the foundation was stable, the next few sprints tackled the most important feature of

eye-tracking. WebGazer is implementing to secure sandbox environment and set up the on-

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
45

CHAPTER 4

screen calibration interface. By the end of these sprints, system could successfully track a
user gaze.

3. Later Sprints:

With gaze data being collected, the next sprints focused on the backend logic. This is where
the the gaze analyzes and violation algorithms, “SmartGazeMonitor” was developed to
analyze the data and intelligently filter out false positives. After that, dual-channel real-
time alerting system built, integrating the on-screen alert for students and the AWS SNS
notifications for administrators.

4. Final Sprints:

The last sprints brought everything together by creating the final reporting features,
including the automatic generation of HTML and PDF reports and their storage in AWS

S3. Also, others feature like the login module and guideline module are built upon these.

Launch

Figure 4.2: Agile Development Lifecycle with Iterative Nature

This incremental approach also made the project very responsive to change. For
instance, during testing, we might find that the gaze-tracking algorithm is producing too many
false alerts. Because of the Agile process, it was easy to dedicate the next sprint to refining the
module parameters and improving its logic, using the foundation we had already built. In short,
the agile methodology was a great fit for this project, as it enabled quick prototyping and

experimentation.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
46

CHAPTER 4

4.2 System Requirement

This section details the necessary hardware and software specifications required for the

development, testing, and operation of the “EyeGuard” system.

4.2.1 Hardware Requirements
The project was developed and tested on a single machine that served as both the client
and the server. The specifications for this development environment are listed below, followed

by the minimum requirements for an end-user.

Component Specification

Model Lenovo IdeaPad 5

Processor 12th Gen Intel(R) Core (TM) i7-1255U @
1.70Ghz

Memory (RAM) 16.0 GB

Graphics NVIDIA GeForce MX550

Storage 474 GB SSD

Note This machine served as both the client
(running the Chrome Extension) and the
server (running the Flask backend) for the
project. Communication between the two
components was handled locally via HTTPS.

Table 4.1 Development and Testing Environment

Component Minimum Specification Purpose

Computer A standard laptop or desktop | To run the Chrome browser

and the exam interface.

Webcam A functional, integrated or Essential for capturing the
external webcam video feed for gaze tracking.
Internet A stable connection For reliable communication

with the backend server

Table 4.2 End-User Minimum Requirements

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
47

CHAPTER 4

4.2.2 Software Requirements

The following software components and tools were used to build and test the

“EyeGuard” system.

Category Component / Tool Purpose
Operating System Windows 11 Home | The primary OS for development and
(64-bit) testing.
Development Tools | Visual Studio Code | The primary code editor for all project files.
Google Chrome For developing, debugging, and running the
extension.
Git & GitHub For version control and source code
management.
Backend Python The programming language for the server.
Flask The web framework for creating the APL
Boto3 AWS SDK for Python, used for S3 and SES
integration.
Frontend JavaScript The programming language for the Chrome
Extension.
WebGazer.js Core library for real-time gaze tracking.
Chart.js Library used for data visualization in the

final report.

Cloud Services Amazon S3 For secure storage of generated session
reports.
Amazon SES For sending automated critical violation

email alerts.

Table 4.3 Software Components and Tools
4.2.2.1 Development Platform and Tools

4.2.2.1.1 Visual Studio Code

Visual Studio Code is a lightweight but powerful source code editor developed by
Microsoft. It supports a wide array of programming languages, including Python and
JavaScript, through its extensive library of extensions. It was used as the primary integrated
development environment (IDE) for writing, managing, and debugging all frontend and

backend code for the EyeGuard system.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
48

CHAPTER 4

4.2.2.1.2 Google Chrome & Extensions API

Google Chrome serves as the runtime environment for the client-side of the EyeGuard
system. The project is built as a Chrome Extension using the Manifest V3 platform. This
framework provides the necessary Application Programming Interfaces (APIs) to inject scripts
into web pages, run persistent background processes, and monitor browser-level events like tab

switching and window focus changes, which are essential for proctoring.

4.2.2.1.3 Python & Flask

Python is a high-level, interpreted programming language chosen for the backend due
to its simplicity and powerful data processing libraries. Flask, a lightweight and flexible web
framework for Python, was used to build the RESTful API for the EyeGuard system. This API
is responsible for handling all communication from the client, processing proctoring data, and

managing user sessions.

4.2.2.1.4 WebGazer.js

WebGazer.js is an open-source JavaScript library that enables real-time eye tracking
directly in the browser without needing specialized hardware. It is the core component for the
system's primary cheating detection feature. In this project, it is run within a secure sandbox to
access the user's webcam and train a personalized regression model that predicts the user's gaze

location on the screen.

4.2.2.1.5 Amazon Web Services (AWS) & Boto3

Amazon Web Services is a comprehensive cloud computing platform. To interact with
its services programmatically, the backend uses Boto3, the official AWS SDK (Software
Development Kit) for Python. Boto3 was used to integrate two key AWS services: Amazon S3
for the secure and scalable storage of final session reports, and Amazon SES (Simple Email

Service) for sending automated critical violation email alerts to administrators.

4.2.2.1.6 Chart.js

Chart.js is a popular open-source JavaScript library for creating responsive and
animated charts. It was used in the report.html frontend to create the 2D scatter plot that visually
represents the student's gaze data, providing administrators with an intuitive way to analyze

where the student was looking during the session.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
49

CHAPTER 4

4.2 Timeline

4.2.1 Timeline of FYP1

Week Duration (week) Task

1 1 Requirement Gathering

2 1 Project feasibility testing

3 7 Develop prototype of system
9 3 Report writing

10 1 Poster creation

11 2 Report finalization

13 1 Presentation preparation

Table 4.4 Timeline of FYP1
As a recap that this "Detecting Online Test Cheating Through User Behaviour
Monitoring" project is practicing Agile approach, which indicates that flexibility and iterative
development is emphasized. Thus, planning and implementation will change from time to time
throughout the project timeline with frequent updates or modifications. The timeline showing

is according to major phases, with the respective task and duration.

The main goal of FYP1 is to develop an initial prototype and serve as foundation for
this whole project. First phase is starting with requirement collection, where all the materials
like the dataset for eye gaze tracking model and algorithms are collected and verified. The
dataset will then be labelled so that it able to be trained with YOLO then, which the eye
positions are labelled with bounding work for training the model. Also, the feasibility analysis
is carried out to make sure the dataset, algorithms, and methodologies for YOLO model

training are suitable for the model training for eye gaze tracking.

Moving forward after the dataset is prepared with labelling, model training begins with
using Google Colab as tool due to the limited computing power of laptop without a powerful
GPU, thus Google Colab is used to provide more computing power. The model selection then
conducted due to different versions of YOLOv4, YOLOvVS5, YOLOvI1 and so on each having
different performance in the way that the newest model does not indicate that it is the best and
thus testing and verification is required to find out which performs best in terms of accuracy

and speed for the real time eye gaze detection.

Also, the prototype will contain a simple alerting system in which the system will notify
when there is suspicious behaviour, such as when a student has unusual eye gaze. This is

important to serve as foundation for the alerting system that is going to be developed in FYP2.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
50

CHAPTER 4

4.2.2 Timeline of FYP2

Week

Progress

10

11

12

13

Project Preparation
& Environment

Setup

Develop Client-Side

Gaze Calibration

Build Basic Backend
API Endpoints

Integrate Client with
Backend (Session

Start/End)

Develop Backend
Violation Logic

(SmartGazeMonitor)

Implement Real-
time Alerting
System

Integrate AWS &
Reporting Feature

End-to-End System
Testing &
Debugging

Final Report Writing

& Presentation

As shown in the timeline in Table 4.5, the 13-week schedule for FYP 2 is structured to
build the “EyeGuard” system. The process begins in Week 1 with Project Preparation &
Environment Setup, which includes configuring the Flask backend and the Chrome Extension
framework, ensuring they are able to communicate with each other. Following this, a two-week

period (Weeks 2-3) is allocated to developing the core client-side feature which the Gaze

Table 4.5 Timeline of FYP2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

CHAPTER 4

Calibration UI, in Week 4, is to start the construction of the basic backend API endpoints.
Moving on in Week 5 is to focus on connecting the client and backend for gaze point receiving.
A significant two-week block (Weeks 6-7) is dedicated to developing the backend analyze and
violation logic which the ‘“SmartGazeMonitor” algorithm. This is followed by the
implementation of the real-time alerting system in Week 8. The final development push occurs
over Weeks 9 and 10, where the AWS cloud services (S3 and SES) are integrated and the final
reporting feature with Chart.js visualization is built. Week 11 is reserved for comprehensive
end-to-end system testing and debugging. The project concludes with the final two weeks (12-

13) dedicated to writing the final report and preparing for the presentation.
4.3 Core Algorithms and Detection Logic

The effectiveness of the EyeGuard system is derived not from a single technology, the
WebGazer, but also from a collection of interconnected algorithms designed to intelligently
interpret raw user data, the gaze point. This section details the key custom algorithms that form
the analytical engine for the violation eye gaze of the backend server, the “SmartGazeMonitor”
Temporal Filter, and the Integrity Scoring model. Together, these algorithms transform the

system from a simple monitor into a proctoring tool that prioritizes accuracy and fairness.
4.3.1 The Gaze Boundary Polygon Algorithm

The Gaze Boundary Polygon algorithm creates from the screen calibration process and
produce a personalized and accurate "safe zone" for on-screen gazing by using the calibration
function built into WebGazer. Its purpose is to define the precise boundaries of the user's screen
for the duration of the monitoring session.

The process works in three distinct steps:

1. Client-Side Calibration (Data Collection):

The process begins when the user is prompted to look at and click a series of dots on
their screen from the chrome extension. For each click, the system record the screen
position function. This action trains WebGazer's internal regression model, creating a
personalized map between the user's specific eye features and the (X, y) coordinates of
their screen.

2. Data Transfer to Backend:

Once calibration is complete and the proctoring session begins, this list of collected

gaze coordinates is sent to the backend server.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
52

CHAPTER 4

3. Backend Polygon Creation:

The backend algorithm receives the array of gaze coordinates. It then works to find the
minimum and maximum values for both the x-axis and the y-axis. These four values
which min_x, max_x, min_y, max_y are used to define the corners of a rectangle. This

rectangle is then stored for that specific session.

This algorithm is important for the system accuracy. By using the data from the user
own calibration, it creates a boundary that specific screen size. All subsequent gaze data is then

checked against this custom boundary.
4.3.1.1 Comparison with Object Detection (YOLO)

This method is fundamentally different from proctoring approaches that might use an

object detection model like YOLO. The table below outlines the key distinctions:

Feature EyeGuard's Regression | Alternative Classification Approach
Approach (YOLO)

Task Type Localization & Regression. It | Classification. It classifies the
calculates the precise (X, y) student's eye orientation into
coordinates of the gaze and categories like "looking left,"
checks if the point is inside a "center," or "looking up".
defined area.

Output A continuous stream of precise | A discrete class label and a
(x, y) gaze coordinates. confidence score for that prediction.

Precision High. It can detect precise Medium. It cannot distinguish
points (X, y) coordinates for between looking at the edge of the
fine-tuned analysis. screen versus looking at the point

beyond the screen.

Personalization High. The boundary is custom | Low. A pre-trained model is generic
defined for every user and and does not adapt to user setups.
session, adapting to their
specific screen size and
posture.

Table 4.6: Comparison of Regression Approach and Classification Approach

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

CHAPTER 4

4.3.2 The Temporal Filtering Algorithm

This algorithm is designed to against the false positives, adding a layer of analysis to
the raw gaze data.

This is due to raw gaze data is actually "noisy" data. Innocent actions like blinking or
quick eye glance can cause the gaze point to briefly fall outside the boundary. Thus, the eye
gaze analyze and violation algorithm, “SmartGazeMonitor” solves this by using a temporal
filter. It maintains a sliding window of the last 2 seconds of gaze data in a fixed-size queue. A
violation is only confirmed if a high density of "outside" gaze points accumulates within that
short time frame, which is around 2 seconds, with 7 points captured. This logic effectively
ignores isolated, outlier data points which are believed to be only natural glances while
correctly identifying patterns of off-screen gazing that are suspicious for cheating. Without this
temporal filter, the system would be functionally unusable, as it would generate an lots of false

positives alerts triggered by innocent behavior.

C0CD00COGO0OO0O0DODOOOOGODOOGOGOOO

Figure 4.3: The “SmartGazeMonitor” Temporal Window Illustration

It is important to acknowledge that this filtering mechanism introduces a trade-off. By
increasing the threshold for what constitutes a violation, the system may increase the risk of
false negatives, where genuine cheating attempt might not be flagged. However, this is a
calculated decision that aligns with the core objective of the project: to reduce the
administrator's workload by providing high-confidence alerts. An unfiltered system that
constantly flags innocent actions would overwhelm administrators with meaningless data to
review and cause significant frustration for students. Therefore, the “SmartGazeMonitor”
algorithm as discussed is designed to find a crucial balance. It prioritizes the drastic reduction
of false positives, accepting a minimal risk of false negatives in return. This approach ensures
that when an alert is generated, it represents a sustained, credible event worthy of review,
thereby respecting the time of the administrator and the integrity of the student's experience. In

the meantime, ensure the examination integrity as well.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
54

CHAPTER 4

4.3.3 The Integrity Scoring and Risk Assessment Algorithm

This algorithm combines all confirmed violations into a single, easy-to-understand

metric, providing administrators with a high-level summary of the session's integrity.

Each proctoring session begins with an Integrity Score of 100. When the

“SmartGazeMonitor” algorithms or the browser event algorithm confirms a violation, a

predefined number of points are deducted. The penalty varies by the severity of the action:

Violation Event Penalty

tab_switch 15 points
new_tab_opened 15 points
window_blur 10 points
Confirmed Gaze Violation 10 points
proctoring_tab closed 25 points

Table 4.7: Integrity Scoring for each Event

At the end of the session, the final Integrity Score is mapped to a qualitative Risk Level

to guide the administrator's review process, to have a direct assessment on how the session

overall severity be like.

Integrity Score Risk Level
90 - 100 MINIMAL
75 -89 LOW

60 - 74 MODERATE
40 - 59 HIGH

0-39 CRITICAL

Table 4.8: Integrity Scoring with Corresponding Risk Level

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

CHAPTER 5

CHAPTER 5 SYSTEM IMPLEMENTATION

This chapter provides a detailed technical walkthrough of the "EyeGuard" system
implementation, demonstrating how the architectural designs from the previous chapter were
translated into a functional application. The following sections will detail the construction of

both the Python Flask backend, the frontend Chrome Extension, as well as the AWS integration
5.1 Backend Setup (Flask Server)

The entire E-Proctor Advanced system is supported by a robust backend server,
developed using the Flask micro-framework, functioning as the central nervous system for the
application. Its primary responsibilities include handling incoming data from the frontend,
processing user authentication, managing sessions in real-time, analyzing the collected data
upon session completion as well as connecting SES and S3 services with desire functions. The

setup of this backend is detailed as below.

5.1.1 Environment File

The AWS configuration is managed through a .env file, separating configuration from
code is a crucial practice for enhancing security and maintainability. This is particularly
important when dealing with sensitive information such as API keys and credentials. This file
stores key-value pairs that are loaded into the application's environment at runtime, ensuring

that confidential data is not exposed directly in source code.

& .env X aF

File Edit View

aws_access_key_1oSEGGGD
Aws_secRET_access_kev-(IINEGGGGD

AWS_REGION=ap-southeast-2
S3_BUCKET_NAME=eproctor-reports
SES_SENDER_EMAIL=ksoo0il231@gmail.com
ADMIN_EMAIL=ksooil23l@lutar.my

Figure 5.1: env. File

Remark: The access key and secret key which are mostly confidential are erased

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
56

CHAPTER 5

5.1.2 Dependency Management

A Python project often relies on a set of external libraries to function as intended.
Managing these dependencies is essential for ensuring that the application can be reliably
deployed without errors. All external Python library dependencies are explicitly defined in a
requirements.txt file. This includes Flask for the core web framework, boto3 as the official
AWS SDK for Python, and WeasyPrint for PDF generation. This practice facilitates seamless
project setup for developers, which can be installed efficiently using the command pip install -

r requirements.txt

B requirements.ixt X +
File Edit View HH~ =~ B I & 4
Flask==2.2.2

Flask-Cors==3.8.18

numpy==1.23.5
boto3==1.26.52

python-doteny==0.21.0
WeasyPrint==57.2)

Figure 5.2: requirement.txt File

5.1.3 Backend Execution

The application is started by running the main_app.py script with command python
main_app.py. The server then begins listening for incoming HTTP requests on the local host
at port 5000, making it ready to communicate with the frontend Chrome extension

PS C:\Users\ksooi\Document\UTAR\Bachelor of CS\FYP\ProctoringSystem\backend_app> python maln_app.py
E-Proctor Backend Server Starting...

AWS S3 Bucket: eproctor-reports

Admin Email: ksooil23i1@lutar.my

Reports Directo \Users\ksooi\Document\UTAR\Bachelor of CS\FYP\ProctoringSystem\backend_ app\reports

Serving Flask app 'ma

Debug mode: on

Running on all addresses (©.0.0.8)
Running on http://127.0.8.1:5000
Running on http://192.168.0.13:500
Press CTRL+C to quit
* Restarting with stat

Figure 5.3: Running a Backend with Command “python main_app.py”

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
57

CHAPTER 5

5.2 Frontend Implementation
The frontend of the E-Proctor Advanced system is a Google Chrome extension, which
serves as the user-facing client. It is responsible for capturing user gaze, and browser activities,

monitoring the browser environment, and communicating with the backend server.
5.2.1 Loading the Extension for Development

During the development phase, the extension was loaded into the browser in an
'unpacked' state. This is achieved by enabling 'Developer mode' on Chrome extension
management page (chrome://extensions), selecting the designated folder and confirming the
action. This allows for immediate testing of code modifications where any changes made to

the files can be applied simply by reloading the extension.

@ Extensions

& -

B g @
© © ©
al —— o — n

Figure 5.4: Files are Loaded to Chrome Extension through Developer Mode

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
58

CHAPTER 5

5.3 Backend Implementation (Python Flask Server)
5.3.1 User Authentication Module

The system starts with the student authentication process, managed by the /login
endpoint. The primary purpose of this module is to simulate a real-world login and create a
unique user identity for each proctoring session. This allows the system to correctly associate
all collected gaze coordinates, tab switches, and other events with a specific student.

The current implementation is a mock login, where credentials are validated against a
pre-defined dictionary within the server code (main_app.py). This approach was chosen to
simplify the development process, allowing the project to focus on the core functionalities
rather than on complex user management systems. Upon successful validation, the server sends
a success token and students were permitted to proceed.

main_app.py X o contentjs ginjs <> log ge.html {} ma
C: > Users > ksooi > Document > UTAR > Ba or of CS > FYP > ProctoringSystem > backend_app > main_app.py > ...
s3_client = boto3.client('s3°,
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION

)

ses_client = boto3.client('ses’,
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION

)

?

STUDENTS_DB
"seeli”:

{

password": "pass123", "name": "Alice Wong", "year": "Year 3", "exam": "Data Structures

[
1
"see2": {"password": "pass456", "name": "Bob Tan", "year": "Year 2", "exam": "Programming Fundam
[
1

"see3": {"password": "pass789", "name": "Charlie Lim", "year": "Year 4", "exam": "Software Engin

ensure_reports_directory():
if os.path.exists(REPORTS_DIR):
os.makedirs (REPORTS_DIR)

send_critical_alert_email(session_id, student_info, violation_count):
"""Send simple email notification for critical vielations - no live report"""
SES_SENDER ADMIN_EMAIL:
print("Email configuration missing")
return

t ry:
suhiect = f"Critical Vinlation Alert - Session {session idl:R1}"

Ln 50, Col 2 (364 selected) Spaces:4 UTF-8 CRLF {} Python &3 FinishSetup 3124 @ @

Figure 5.5: Mock Student Info that Stored in Backend

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
59

CHAPTER 5

main_app.py X content.css J5 content]s ¢ og N {} man

oi > Document > UTAR > Bachelor of CS > FYP > ProctoringSystem > backend_app > main_app.p login
add_unique_event(session, current_time, event_type, details= , severity="medium'):

"type': event_type,
"details': details
"severity': severity
}
session['events'].append(event)
return
return

@app.route('/login', methods=["POST"'])
login():
data = request.get_json()
student_id = data.get('student_id")
password = data.get('password')

if student_id STUDENTS_DB STUDENTS_DB[student_id]['password’] == password:
student_info = STUDENTS_DB[student_id].copy()
student_info['student_id'] = student_id
return- jsonify({'success': , 'student': student_info})
else:
return- jsonify({ 'success": , 'message': 'Invalid credentials'}ﬂ

@app.route('/start_test', methods=['POST'])
start_test():
session_id = str(uuid.uuid4())
data = request.get_json()
calibration_box = data.get('calibrationBox', {'left': @, 'top"': @, 'right': 1920, 'bottom': 1@8@
calibration_points = data.get('calibrationPoints’, [])

Figure 5.6: Login Module
5.3.2 Session and Event Processing Modules

The backend is handled by the session and event modules, which work to manage the
entire system lifecycle from initiation to final reporting. The process begins when a student
clicks the "Start Proctoring" button in the extension, triggering a call to the /start_test endpoint.
This action creates a new, isolated data container for the session, with a unique session ID,
which is then returned to the client, the chrome extension. Upon this, the /submit_data endpoint
functions as a real-time data logger, continuously receiving stream of JSON data from the
extension that includes event like gaze coordinates and browser activities which are violent.
This data collection phase will be continued until the student clicks "End Proctoring," which
system status will be change again from “running” to “ended” and sends a final request to the

/end_test endpoint.

The /end test triggers the analysis and thanks to the WebGazer, the computationally
heavy machine learning for gaze prediction is performed in the browser by WebGazer, so the
backend only receives lightweight coordinate data rather than processing raw video streams.

Upon session completion, the analysis algorithm processes the raw data, together with all

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
60

CHAPTER 5

flagged browser events, and formulate a cumulative Risk Score. Once this analysis is complete,
the final structured report is generated with relative student information, this will then stored

in the S3 bucket that we will discuss later.

main_app.py X

student_info})

Inval

str(uuid.uuida())
.get_json()
data.get(’
data.get(

student_info = data.g

student_info.get
tudent_info.get ("
print({len(calibrat

boundary_polygon = [

alibration_points)
ibration_points)

Figure 5.7: start_test() Session, Triggered when User Start the Test

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
61

CHAPTER 5

main_app.py X €} mar
C: > Users > ksooi > Document > UTAR > Bachelor of CS » FYP > Proctoringsy » backend app > @ main app.py > @ end_test
submit_data():
response = {'status’: 'data received'}
if alert message:
response[‘alert’] - alert message

return jsonify(response)

pp.route(’/end_test’, methods=['POST"])
end_test():
session_id - request.get_json().get(’session id')
session = SESSIONS.get(session_id)
if session:
return jsonify({‘error': 'Session not found'}), 484

session[‘end -
session['session_id'] = session_id

print(f"\n--- Test Completed: Session {session_id} ---")

print(f"student: {session['student_info'].get('name’, 'Unknown' ion[s *].get(' stud
print(f"Duration: - {int((session[‘end_time'] --session[‘start_ti d_time']
print(f"Final Im Score: {session["integrity

print(f"Total Violations: {session[‘warning_count']}

report_data - generate_report_data_for_s3(session)

saved_path - save_report_to_file(session_id, report data)

print(f"\n: TEST DED - - REPORT - DAT.

print(f"session 1D: {session_id}

print(f“Local Backup: {saved_path}")
print(f"Extension will generate: PDF- from: report.html®)
print("-" * 8)

return: jsonify({
‘status’: - "Test ended",
*session id”: session_id,
*report_data’: report_data

»

@app.route(' /upload_report_pdf', methods=['POST"])
upload_report_pdf():
"""Generate PDF from HTML content sent by extensio
print("=== PDF UPLOAD REQUEST RE)

e

print(f"Content-Type: {request.content_type}")

main_app.py X {} mani

€: > Users > ksooi > Document > UTAR > Bachelor of CS > FYP » ProctoringSystem > backend_app > % main_app.py > & get_report
upload_report pdf():

pdf_bytes = weasyprint.HTHL(string=html_content, base_url-request.url_root).write_pdf()

print(f*PDF generated successfully, size: {len(pdf bytes)} bytes")

pdf_filename = f"reports/{session_id}/final_repo
pdf_url - upload_to_s3(pdf bytes, pdf filename,

if pdf_url:

print(f"PDF uploaded to S3: {pdf url}")
return jsonify({

‘success’

“pdf_u

return jsonify({'error': 'Fa
except Exception as e:
print(f"Error during processing:
import traceback
traceback.print_exc()
return jsonify

@app.route(' /get_report/<session id>*, methods=[
get_report(session_id):
session = SESSIONS.get(session_id)

if session:
return jsonify({'error': ‘Report not found'}), 484

~aturn jsonify({
‘report_summary®: session.get(‘report’, {}),
ta': session.get('gaze_data', [])[-1008:],
: session.get(events’, [1),
session.get('calibration_box', {}),
ration_points': session.get(calibration_points’, []),
‘boundary gon® : ‘session.get(' boundary_polygon®, [1),
session.get('start time’, @

rver Starting...")
| BUCKET}")
N_EMATL}")

print("=" * 5@)
app.run(debug=True, host="0.6.6.8", port=5808)

line.html|

nknown *

- session[‘start_time’])%68)}s")

> get_report

Ln 553, Col 7 (657 selected)

Aa| b ¥ 20of2

Spaces:4 UTF-8 CRLF

{) Python

Figure 5.9: get_report Session, Send Final Report Data as JSON to Frontend

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3 Finish Setup

CHAPTER 5

pp > % main_app.py > © submit_data

id': session_id}), 20@

if add_unique_event e, event_type, data.get('details', {}), ‘high*):

if event 1

session['f

print(
print(

print(si D)

print(s t_id', ‘Unknown')}")
print(:

print(

print(ssion_id}/* aft

Figure 5.10: submit_data() Session, Work as Listener, Receiving JSON Data from the

Frontend

5.3.3 Analysis and Reporting Module

The Analysis and Reporting Module in this system is implemented using two-stage
process to get real-time alert using AWS notification possible. Instead of waiting until the test
is over, the system performs real-time analysis with each event, and then a final report

generated upon completion.

The first stage occurs within the /submit_data endpoint. This function acts as a live
analysis engine. Each time it receives a browser activity such as a tab_switch, indicate user has
switch their browser tab, it immediately calculates the impact on the student's integrity score
and updates the total warning_count. This real-time processing allows the system able react
towards critical violations, such as by flagging the session and triggering an email alert via

AWS SES after a certain threshold of warnings is passed, which is 3 in this system.

The second stage is handled by the generate report data for s3() function, which is
called by the /end_test endpoint when the student finishes their exam. The purpose of this is to
format all the live-calculated data into a final, structured report. It takes the final

integrity score, determines a "Risk Level", and packages all the data including the summary,

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
63

CHAPTER 5

the full gaze history, and event logs into the JSON format to the report.html page for report
generation.

& submit_data

current_time, event_type, data.get(

event_type, @) + 1

h*: 10, "pr

print(
print(
print(
print(
print(
print(

Figure 5.11: /submit_data, Showing How the System Analyzes Event and Send to Frontend

5.4 Frontend Implementation (Chrome Extension)
5.4.1 Developing Core Extension Architecture and Control

5.4.1.1 manifest.json

The manifest.json file is the blueprint of the Chrome Extension. It is a mandatory, file
name sensitive, strictly formatted configuration file that serves like the table of contents, letting
the Chrome browser know the structure of the file, defining everything such as the name and
version. The file paths and names are case-sensitive and must precisely match the local file

structure, as any dismatch will prevent the extension from loading or functioning correctly.

A key rule set by the manifest is keeping things secure. This is due to Chrome practice
strict Content Security Policy (CSP), an extension is treated as a self-contained package.[15]
This policy is strict in the way that all resources must be local. This is a security measure set
to prevent remote code execution vulnerabilities, where an extension might fetch and run

malicious scripts from external server.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
64

CHAPTER 5

The manifest enforces this by defining key properties like the background service
worker (background.js) and the popup window (popup.html), which must be local files.
Furthermore, the web_accessible resources key is used to declare local resources are permitted

to be accessed by web pages.

U ET conte Is content,js gin,js ge.h {} manifestjson X J5 guid

C: > Users > ksooi > Document > UTAR > Bachelor of CS > FYP > ProctoringSystem > frontend_extension > {} manifestjson > ...
{
"manifest_version": 3,
"name": "E-Proctor Advanced”,
"version": "2.8@",
"description™: "Advanced proctoring extension with intelligent gaze tracking and AWS integration
"permissions™: [
"storage”,
"tabs",
"activeTab",
"scripting”,
windows™
1 2
"host_permissions":
"http
"http
"<all_urls>"
1 2
"action": {
"default_popup"”: "popup.html”,
"default_title": "E-Proctor Control",
"default_icon":
"48": "icons/icon-48.png"

: 2
"background": {

"service_worker": "background.js"
: 3

"web_accessible_resources™: [

In53,Col 2 Spaces:4 UTF-8 CRLF {} JSON &3 FinishSetup @
Figure 5.12: manifest.json

5.4.1.2 background.js

This script is the central nervous system of the extension, it is the communication hub
with the backend server. The architectural design mandated by Google Chrome for extensions.
As mentioned, it is registered in the manifest.json as a service worker. This allowing it to run
persistently in the background. This persistence is critical if the communication logic were
placed in other file like popup file, the proctoring would stop until the user closed the popup

window. This robust design prevents such issue and is essential for the reliability of system.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
65

CHAPTER 5

IS popup.js : tm : s z tm sandbox js J5 background.js

C: > Users > ksooi > Document > UTAR > Bachelor of CS > FYP > ProctoringSystem > frontend_extension > JS background,s > & endProctorir
previousActiveTabId = ;
lastEventTime = {};

setState(newState, errorInfo =) {
state = newState;
await chrome.storage.local.set({ proctoringState: newState });
try
await chrome.runtime.sendMessage({ type: 'STATE_UPDATE', state: newState, error: errorInfo }
} catch (e) { }
console.log(State changed to: newState});

apicall(endpoint, options = {}) {

response = await fetch(${API_URL}${endpoint} , {

headers: { 'Content-Type': 'application/json' },

...options
};
if (!response.ok) throw Error(API Error: ${response.statusText});
return await response.json();

} catch (error) {

console.error(API call to ${endpoint} failed: , error);
throw error;

startCalibration() {

Ln 130, Col 33 Spaces:4 UTF-8 CRLF {} JavaScript =~ &3 FinishSetup @

Figure 5.13: background.js

5.4.2 Developing the Student Authentication Interface

Before any monitoring can begin, the system must verify the student's identity. This is
handled by a dedicated authentication interface. When the student first initiates the proctoring
process, a new window is launched displaying a secure login form. This interface is to capture
the student ID and password. An API call then send these credentials to the backend's /login
endpoint. The interface provides immediate feedback to the user, displaying a "Logging in..."
status and showing an error message if the backend returns an authentication failure. Upon
successful validation, the script notifies the background service, and the window closes

automatically.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
66

CHAPTER 5

' E-Proctor Login = o X - o X

B * B) @ Eor

» 3 All Bookmarks

PT & DeepSeek ¥ Claude 4 Gemini [J UTAR [O 1

‘s EyeGuard

STATUS: IDLE

001 KHAI SHEN (Logout)

1. Calibrate Gaze

® E-Proctor Login

Opening login window. : to UTAR WBLE
Campus
dent Survey to be conducted within 28 Aug 2025 - 30 Sep 2025.
ulty's specific survey period, please refer to your faculty schedule. Calendar -
« September 2025 >

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6

8 9 10 11 12 13

7
14 JgY 16 17 18 @

21 22 23 24 25 26 27

28 29 30
Online Users =
” FOR DATA SCIENCE (last 5 minutes)
UCCD3113 DISTRIBUTED & 001 KHAI SHEN
COMPUTER SYSTEMS & LOW KIAN YUI @,

Figure 5.14: Student Authentication Interface.

5.4.3 Creating the Pre-Proctoring Guideline Module

To ensure academic integrity and properly inform the user, a mandatory guideline
module is presented before successful login. This module functions to display a series of
examination rules and flows that the student must acknowledge. The interface uses a progress
bar to show the student's progression through the steps. Once all guidelines have been agreed

to, the module sends a completion message to the background service worker and closes.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
67

CHAPTER 5

= Examination Guidelines

Guideline 1

BEFORE BEGIN -
SETUP CHECKLIST

Qum. well-lit

aoruau p-vmnlml

-

@ s 4 9

7 EyeGuard

Step 1 of 4 Previous m

[*| Examination Guidelines

Guideline 2

STEP 1- GAZE CALIBRATION

omE £

Keep your

I.ngl n in ﬂm lb:::l'l::l‘l::t cilcknehdeu M”“‘“
~r
2] & 2 %
@ 9 S @

7 EyeGuard

Step 2 of 4 Previous m

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 5

=] Examination Guidelines

Guideline 3

STEP 2: DURING THE EXAM

o1] o2 | 03§ o4

s)) Look ¢|ueuy at > RL"‘:"") u":: .y'n':‘
o & @ v
@ ¢l 9)

 EyeGuard

Step 3 of 4 Previous m

=/ Examination Guidelines

Guideline 4

STEP 3 - END TEST

vl You are now
Proctoring" in)) good t6g0

) g‘“‘ Cogguafs!
2] @

‘J EyeGuard

Step 4 of 4 Previous | Confirm & Continue

Figure 5.15: Examination Guideline Agreement Module.

5.4.4 Constructing the Main Extension Control Panel

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
69

CHAPTER 5

The interface features the status of the system, display with different color-coded for
immediate recognition which grey for idle, blue for ready, green for running and red for ended.
The control buttons ("Calibrate," "Start," "End") are logically enabled or disabled to guide the
user through the correct sequence. For instance, the "Start Proctoring" button remains disabled
until calibration is successfully completed. This UI design prevents user error and provides

clear guidelines throughout the examination process.

» EyeGuard + EyeGuard

STATUS: READY

1. Calibrate Gaze 1. Calibrate Gaze

2. Start Proctoring

+ EyeGuard + EyeGuard

STATUS: ENDED

1. Calibrate Gaze

3. End Proctoring

Figure 5.16: Extension Control Panel in Various States (Idle, Ready, Running).
5.4.5 Developing the Sandboxed Gaze Tracking Module

The core eye-tracking functionality is powered by the WebGazer library, an open-
source tracker that uses machine learning to predict gaze location from a webcam feed. To
implement this securely, all WebGazer operations are confined within a sandboxed

environment.

The sandbox contains all the commands for the WebGazer instance. It handles

initializing the library, configuring the prediction model for calibrating and managing the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
70

CHAPTER 5

webcam feed. During calibration, it receives messages containing the coordinates of the user
clicks, which it uses to train the WebGazer model. Once monitoring begins, it continuously

gets the latest gaze prediction and sends this data back to the background service.

@ Gaze Calibration
Important: Look directly at each dot and click i

dot 2 times for better accuracy.

Point 1 of 9 - Click 0/2

Figure 5.17: The Gaze Tracking Calibration Interface in Action.

5.4.6 Developing the Post-Session Visualization Report

This final module of the frontend is dedicated to presenting the results of a completed
proctoring session to an administrator or moderator. Its purpose is to transform the data logged
by the backend into a clear dashboard-like report.

When the report.html page is loaded, its corresponding script, report.js, immediately
takes control. The script extracts the unique session_id and receiving the comprehensive JSON
object containing the full session data populates the dashboard.

Key metrics from the report summary object, such as the final integrity score and total
warning count, are injected into their respective summary cards. The student’s gaze pattern is
achieved using Chart.js, a powerful open-source charting library. The report script processes
the large array of gaze data coordinates and renders them as a 2D scatter plot. Finally, the
script gets all the events array to construct a chronological timeline, logging every flagged
incident with a timestamp and description.

This combination of statistical summaries, graphical plots, and detailed logs provides

the examiner with a comprehensive overview of the particular test session.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
71

CHAPTER 5

Il Proctoring Analysis
Report

Session: e9875fbc-ca79-43bb-918e-2a8a329063a5 | Date: 9/20/2025, 4:50:16
AM

Student Information

Student ID:
S001

Name:

Alice Wong

Year of Study:
Year 3

Examination:

Data Structures Final

100

Integrity Score

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 5

TEST DURATION

Om 10s

GAZE ACCURACY

N/A

WARNINGS ISSUED

0

TAB SWITCHES

0

SUSPICIOUS EVENTS

0
RISK LEVEL
MINIMAL
2D Gaze Plot (X vs. Y)
» »® X
x x x
x *® x

Event Timeline

No events were flagged during this session.

[E] Recommendation

Clean session. No significant issues detected.

Figure 5.18: The Final Proctoring Analysis Report Dashboard

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
73

CHAPTER 5

5.4.7 Implementing Real-time Violation Alerts

To maintain the integrity of the examination environment, the system provides
immediate feedback to the student when a potential violation is detected. This is handled by a
real-time alert module. The implementation of this feature is a collaborative effort between the
backend and the frontend. When the backend's determines a warning like a tab switch or a
confirmed gaze violation, it includes an alert message in its JSON response to the frontend.

The background service receives this response and immediately relays a alert message
on the exam page. This modal displays the specific warning message to the student like

“Warning: Tab Switch detected. Please remain focused.” and closed upon confirmation.

1 Proctoring Alert

Confirmed: Gaze outside screen boundary. Please look at your

screen.

| Understand

Figure 5.19: The Alert triggered when User Caught Off-screen Glace

1. Proctoring Alert

Warning 2: Window Blur detected. Please remain focused.

| Understand

Figure 5.20: The Alert triggered when User Caught Minimize Screen

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
74

CHAPTER 5

1 Proctoring Alert

Warning 3: Tab Switch detected. Please remain focused.

| Understand

Figure 5.21: The Alert triggered when User Caught Switch Between the Tab

| Proctoring Alert

Critical: Multiple violations detected. Session flagged for

review.

| Understand

Figure 5.22: The Critical Alert triggered when User Multiple Violations

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
75

CHAPTER 5

5.4.8 Integration with Cloud Services (AWS)

A key feature of the E-Proctor Advanced system is its integration with Amazon Web
Services (AWS) for robust notifications and report storage. The frontend extension does not

communicate with AWS directly. Instead, it acts as the trigger for the backend server

main_app.py

s (REPO

1_alert_email(s

Figure 5.23: Boto3 as the Coordinator for AWS Services.

5.4.8.1 Trigger Email Alerts (AWS SES)

The system is designed to notify administrators of critical violations automatically.
When the real-time analysis in the backend's /submit_data endpoint determines that a student
has accumulated a critical number of warnings, the system will then uses the AWS SDK for
Python (Boto3) to connect to Amazon Simple Email Service (SES) and send a pre-formatted

HTML email to a designated administrator.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
76

CHAPTER 5

<« B2 O ® B 0 & m D i of 6,060 >
Critical Violation Alert - Session 67d8cc70 (Edemal inbox x a n
/l' ksooi1231@gmail.com via amazenses.com

Critical Proctoring Violation Detected
Session ID: 67d8cc70-d16d-454f-ac8f-b7c550f2d3da
Student ID: S001
Student Name: Alice Wong
Exam: Data Structures Final

Violation Count: 4

Time: 2025-09-20 05:22:49

Admin Access Instructions:

To view the complete report after test completion

1. Access AWS S3 Console: hitps://s3 console aws amazon.com
2. Navigate to bucket: eproctor-reports

3. Look for folder: reports/67dBcc70-d16d-454f-ac8f-b7c55012d3dal
4. Download the HTML or PDF report when available

Note: Complete report will be generated after test ends. Current session is flagged for manual review.

Figure 5.24: Example Critical Violation Email Alert Sent via AWS SES.

5.4.8.2 PDF Report Uploads (AWS S3)

For permanent archival, final reports will be stored in Amazon S3 (Simple Storage
Service), a highly durable cloud object storage service. The process is initiated from the

frontend but executed by the backend to ensure security.

The implementation begins on the report.html page, as has been mentioned in previous
module, to generated a report with chart.js library. The backend server will then take over. It
receives HTML content, uses the WeasyPrint library to convert it into a PDF document, and
then uses the AWS SDK (Boto3) to upload this PDF file to the designated S3 bucket. The file
is stored under a folder structure named after the session ID for easy organization (e.g.,
reports/session-id-123/final_report.pdf). This then allows the proctoring session report to be

accessed by authorized administrators in S3 bucket only

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
77

CHAPTER 5

main_apppy @

am
end_test():
n nity(4

ession_id,
report_data

@app-route('/
upload s

print({request.content_type}")
print(th: {request.content length}")

raw_data = request.get_data()
print(1 [len(raw_data
print(review: {raw_data[:208])

ita = request.get_json()

if data

Jsonify({
5 e:

print(
print(n(html_content) if html_content

html_content:
missing = [1

if session_id: missing.append(

if missing.append(’htm
print(f Mi missing}")

nissing

Ln 538, Col 1 { CRLF _(} Python | & Finish Setup

or-reports > reports/ a 6

© rrwonss > suckers

Amazon 53 < repom! 15 Copy 53 URI
General purpose buckets

Divectory buckets Objects Properties

Obiecs 15 @ (Bawmw) (& : 5

Access Grants

entory [% to get a list of all obje

s in your bucket. For others ta access your abiects, you'l need to explicitly grant them permissions. Lear more [

hccess Points

Access Points [Directory Buckets) Name a | Type @ | Last modified v | Size v | Storage class v

Obiect Lambda Access Point:

Multi-Region Access Point Folder
Batch Operations 7. dbo-4b56.54b5
= Aab Folder
Access Analyzer for 55
Folder -
iblic Access settings for
nt Folder -
* Storage Lens
Folder -
Dashbaards
e Folder -
Folder
Festure spotlight
Falder
Folder

Marketplace for 53

Figure 5.26: Administrator able to View the Reports Stored inside S3 Bucket

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
78

CHAPTER 6

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

This chapter presents a comprehensive evaluation of the completed "EyeGuard"
system, detailing the methodology and results of the tests conducted to validate its functionality
and performance. The following sections will outline the testing setup, present the results of
functional verification through a series of structured test cases, analyze the system's
effectiveness and resource impact, and provide a comparative analysis against the initial
prototype. The chapter concludes by discussing the project's challenges and evaluating its

success against the original objectives.
6.1 Functional Verification

These test cases are to confirm the operational of the system. The following test cases
document the successful execution of the system primary user flows and backend processes,

with all tests achieving a "PASS" status.

Test Case | Description Test Data Result
TC-01 Guideline A new user The system correctly redirects to the
showing attempts guideline.html page, which must be
calibration confimed before proceeding
TC-02 User A first-time login | The login-page.html window appears
Authentication user clicks for the first time login and
"Calibrate". successfully authenticates with valid
credentials.
TC-03 Gaze Calibration | User clicks all 9 The calibration Ul is removed, and
on-screen points the extension's internal state updates
twice. to "Ready".

Table 6.1: Test Cases for User Onboarding and Setup

Test Case | Description Test Data Result
TC-04 Session User clicks "Start | A session is correctly initiated with
Lifecycle Proctoring" and the backend, and upon ending, the
later "End session is terminated and the report
Proctoring". generation process is triggered.
TC-05 Browser User switches tabs | A "tab _switch" event is logged, an
Violation during an active on-screen alert is displayed, and the
Detection session. Integrity Score is correctly reduced

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
79

CHAPTER 6

by 15 points as well as minimize
action
TC-06 Critical Email Users trigger more | An alert is sent to the administrator
Alert than 3 violations. | email address via AWS SES.
TC-07 Report A proctoring A PDF report are generated and
Generation & session is ended. successfully uploaded to the correct
Storage folder within the AWS S3 bucket.

Table 6.2: Test Cases for Core Proctoring and Cloud Integration
6.2 Technology Justification and Accuracy

As mentioned in literature review, the reliability of EyeGuard is fundamentally based
on the robustness of its core gaze-tracking technology. This section validates the selection of
WebGazer and further down the accuracy.

WebGazer is not only a landmark detector, it is a in-browser eye-tracking solution. Its
primary innovation is an integrated adaptive regression model that is trained in real-time
through user interactions. This self-calibrating nature allows it to create a personalized
mathematical map of a user facial features to their screen coordinates, making it highly adaptive
to real-world variables.

Research has demonstrated that the model used in this project can achieve an average
on-screen error of approximately 130 pixels without specialized hardware.[12] This level of
accuracy is highly effective for the specific goals of a proctoring system. This is due to when
a student looks from their laptop monitor to a note on a nearby wall, their gaze might shift by
over 1,000 pixels. In this context, a prediction error of 130 pixels is negligible and does not
impact on the system's ability to correctly identify a significant off-screen gaze event.
Furthermore, this precision is complemented by the model robustness because WebGazer maps
the student face in 3D, it able to detect for natural head movements, ensuring the tracking
remains stable during the online examination.

This validated performance confirms that the choice of WebGazer provides a strong
technological base for the project.

6.3 Performance and Effectiveness Analysis

This section moves beyond functional checks to analyze how well the system performs,

focusing on the intelligence of its custom algorithms and its efficiency in a real-world scenario.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
80

CHAPTER 6

6.3.1 Validation of Gaze Violation Logic

To validate the core proctoring logic, a direct functional test of the gaze analyzes and
violation algorithms, “SmartGazeMonitor” was conducted. The test was designed to confirm
that the system correctly distinguishes between various gazing behaviors by monitoring the
backend server log for alerts. During the test, the frontend extension continuously submitted

gaze data to the backend at a rate of five times per second (5 Hz).
The test involved four distinct 10-second scenarios:

1. On-Screen Focus:

The user focused entirely on the screen to establish a baseline and test for false
positives.

2. Sustained Off-Screen Gaze:

The user stared at a fixed point off-screen to confirm a violation would be triggered and
to measure the detection time.

3. Natural Off-Screen Glance:

The user performed a single, brief glance away from the screen, which under 1 second
and immediately returned their focus to the screen. This tests the system's ability to
ignore natural, non-suspicious movements.

4. "Shifty Eyes" Test:

The user repeatedly alternated between looking on-screen and glancing off-screen. This
tests the temporal filter's logic, the gaze analyzes and violation algorithms, to see if multiple

glances in quick succession, which maybe an action of user cheating would trigger an alert or

not.
The results, summarized in Table 6.3, definitively validate the algorithm's
effectiveness.
Test Scenario | Duration | Expected Outcome | Actual Result Status
On-Screen 10s No alerts should be | No alerts were generated. | Pass
Focus triggered. The log showed normal
data submission.
Sustained Off- | 10s An alert should be | An alert was consistently Pass
Screen Gaze triggered. triggered after 2.5 seconds
of off-screen gazing.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
81

CHAPTER 6

Natural Off- 10s No alert should be | The brief glance was Pass
Screen Glance triggered. correctly ignored by the
temporal filter. No alert

was generated.

"Shifty Eyes" 10s An alert should be | An alert was triggered after | Pass
Test triggered. the 3rd off-screen glance, | somehow

correctly identifying a

suspicious pattern

Table 6.3: Gaze Violation Logic Test Results

6.3.2 Gaze Violation Test Cases Discussion

The results summarized in Table 6.1 provide a clear validation of the gaze analyzes and
violation algorithms algorithms effectiveness and nuanced design. The "On-Screen Focus"
scenario confirms that the system remains stable and does not generate false positives during
normal user interaction. In the "Sustained Off-Screen Gaze" test, the system reliably triggered
an alert after approximately 2 seconds. This delay is a due to the temporal filter, which requires
a consistent pattern of off-screen data before confirming a violation to prevent false positive
and ensure high confidentiality. Critically, the "Natural Off-Screen Glance" test was correctly
ignored by the algorithm. This demonstrates the system able to differentiate between a innocent
movement and a genuinely suspicious action. Finally, the "Shifty Eyes" test confirmed the
system successfully flagging a pattern of repeated intentionally glances after few times failure,
the algorithm proved it can detect not only long stares off-glances but also more subtle cheating
behaviors.

However, the difficulty in detecting subtle "shifty eyes" patterns is not a system flaw
but a algorithms design trade-off. Capturing every brief off-screen glance would require setting
the system's sensitivity extremely high, which would greatly increase false positives flagging
students for normal, harmless movements as a violent one. To avoid this, the system is tuned
to minimizing false positives, even if it means occasionally missing very subtle suspicious
behaviors. This approach ensures fairer monitoring by prioritizing accuracy. This also ensures
that innocent students are not unfairly flagged for cheating, which would cause unnecessary

trouble and frustration.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
82

CHAPTER 6

ducation Foun

R UNIVERSITI TUNKUABDU RA
Wholly owned by i

‘Myewru- =

| 3 INFORMATION SKILLS

‘ PROGRAMME (LIBRARY)
INTERNET ENGLISH

} LEARNING RESOURCES
UALJ2013 INTRODUCTION

‘ TO JAPANESE
B UCCA2596 / UCCB2596 /

| uccozsse / UCCC2596 /

| UCCE2506 / UCCN2506 /

| UCCT2596 INDUSTRIAL

| TRAINING (Pre-registration for

| Oct 2025 trimester)

| B UCCA3596 / UCCB3596 /
UCCC3596 / UCCD3596 /

| UCCE3506 / UCCN3596 /

| UCCT3596 PROJECT 11

| & UCCD3074 DEEP LEARNING

‘ FOR DATA SCIENCE

| & UCCD3113 DISTRIBUTED

| COMPUTER SYSTEMS

UTAR Student Survey.

UTAR Student Survey to be conducted within 28 Aug 2025 - 30 Sep 2025,
On your faculty's specific survey period, please refer to your faculty schedule.

Calendar =
- September 2025 »

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

10 11 13

14 - 16 17 18 --

2122 23 24 25 26 27
28 29 30

Online Users. =]
(last 5 minutes)

@ OO1 KHAI SHEN

@ CHIN JUNXI

vlB

«

“R

My courses

INFORMATION SKILLS
PROGRAMME (LIBRARY)
INTERNET ENGLISH
LEARNING RESOURCES
UALJ2013 INTRODUCTION
TO JAPANESE
! UCCA2596 / UCCB2596 /
UCCD2596 / UCCC2596 /
UCCE2506 / UCCN2506 /
UCCT2596 INDUSTRIAL
TRAINING (Pre-reglistration for
Oct 2025 trimester)
UCCA3596 / UCCB3596 /
UCCC3596 / UCCD3596 /
UCCE3506 / UCCN3596 /
UCCT3596 PROJECT II
UCCD3074 DEEP LEARNING
FOR DATA SCIENCE
UCCD3113 DISTRIBUTED
COMPUTER SYSTEMS

UTAR Student Survey to be conducted within 28 Aug 2025 - 30 Sep 2025.
On your faculty's specific survey period, please refer to your faculty schedule.

-« September 2025 »

Sun Mon Tue Wed Thu Eri Sat
1 2 3 4 5 &6
7 9 10 11 12 13

14 - 16 17 18 -
2122 23 24 25 26 27
28 29 30

Online Users =

(last 5 minutes)
@ 001 KHAI SHEN
W CHIN JUNXI

vlB

Figure 6.2: Gaze Pattern when User Focused Off-screen

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83

CHAPTER 6

2

/submit_data HTTP/1.
/submit data HTTR/1.
/submit_data HTTP/1.
/submit data HTTR/1.
/submit_data HTTP/1.
/submit data HTTR/1.
/submit_data HTTP/1.
fsubmit data HTTPR/1.
/submit_data HTTP/1.
fsubmit data HTTPR/1.
/submit_data HTTP/1.
/submit data HTTP/1.
/submit_data HTTP/1.
fsubmit data HTTP/1.
/submit_data HTTP/1.
fsubmit data HTTP/1.
/submit data HTTP/1.
fsubmit data HTTP/1.
/submit data HTTP/1.

=
o

o
]

EE.J"

e o
= D o
== - -

L O e I I o I I e % I % I % I ¥
»
L T T ¥ T T I T O o T o O T T T T I

M M M M M M M M M M M M M M M M@ M@ M
B = = =~ = = = = = = = = = = = = = =
[y
))

S2S33 3
b5 DG
(A

=
L
gy

[

o 2

L .

-) -
] L] bed]] bd bed] bed bd bed bd b b] B

2

.2
.8
.2
.8
.2
.8
.8
.8
.8
.8
.8
.2
.8
.2
.8
.2
.8
.2
7.8

2000000000000 00000003

L

127.8.8.1 - - [28/Sep/2825% 15:24:12] "POST /submit data HTTP/1.
MAIVE ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825 15:24:12] "POST /submit data HTTR/1.:
MAIVE_ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825% 15:24:12] "POST /submit data HTTP/1.:
MAIVE ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825 15:24:13] "POST /submit data HTTR/1.:
MAIVE_ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825 15:24:13] "POST fsubmit data HTTPR/1.:
MAIVE ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825 15:24:13] "POST /submit data HTTR/1.:
MAIVE_ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825 15:24:13] "POST fsubmit data HTTPR/1.:
MAIVE ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825 15:24:13] "POST /submit data HTTR/1.:
MAIVE_ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825% 15:24:14] "POST /submit data HTTP/1.:
MAIVE ALERT: Gaze detected outside boundary.
127.8.8.1 - - [28/Sep/2825 15:24:14] "POST /submit data HTTR/1.:
MAIVE_ALERT: Gaze detected outside boundary.

Figure 6.4: Example System Log when User Focused Entirely on the Screen

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
84

CHAPTER 6

127.8.8.1 - - [20/Sep/2025 15:41:33] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:u41:33] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:u41:3U4] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:u41:34] "POST /submit_data HTTP/1.
127.0.0.1 - - [20/Sep/2025 15:u41:34] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:u41:3U] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:u41:34] "POST /submit_data HTTP/1.
127.0.0.1 - - [20/Sep/2025 15:u41:35] "POST /submit_data HTTP/1.
127.0.0.1 - - [20/Sep/2025 15:41:35] "POST /submit_data HTTP/1.
127.8.8.1 - - [20/Sep/2025 15:U41:35] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:u41:35] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:41:35] "POST /submit_data HTTP/1.
NAIVE_ALERT: Gaze detected outside boundary.
127.0.0.1 - - [20/Sep/2025 15:u41:36] "POST /submit_data HTTP/1.

Figure 6.5: Example System Log when User Make a Random Glance
6.3.3 Analysis of Client-Side and System-Level Resource Impact

An analysis of the system's resource impact was conducted to confirm its efficiency

during a live session. The evaluation was performed on two levels:

1. Browser-level impact of the Chrome Extension

2. System-level impact of the local Python backend server.

The Chrome Task Manager results show the extension is efficient, consuming ~22 MB
of memory when idle and ~148 MB during monitoring. The most significant finding comes
from the Windows Task Manager, which reveals that the backend python.exe process

consumed only less than 1.1% of the total CPU during the test.

This is due to WebGazer performing high computational power machine learning for
gaze tracking directly in the browser which is called as in-browser machine learning, the
backend server is never required to process a heavy video stream. Instead, the local backend
only handles lightweight data in a JSON array, the final (x, y) gaze coordinates sent from the
extension. This client-side processing approach shows the system high efficiency, proving that

it is not computationally demanding on the server and is a scalable solution for monitoring.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
85

CHAPTER 6

® Task Manages - Google Cheome

O Bbssedensions @ Bowser) Alltasks Q sesr
Task

@ Erous

»

»

@ Tabi UTAR WBLE KAMPAR CAMPUS

Extension: E-Proctar Advanced

Utiity: Storage Service

Spar

Uity Audia Service

» » ¥ ¥

Utity: Video Capture

Figure 6.6: Resources Used by the Chrome Before Run the Monitoring

O Tabs & extensions & Browser 8 Al tasks Q Semrct

Tab UTAR WHLE KAMPAR CAMPUS.

Utibty: Network Service

Spare Renderay

»

@

-]

M Utiity: Videa Capture
»

»

M Usibty: Stors:

»

Memory footgrint CPU ¥

141,200
s72 388K
24764
ek

2216k

9852K
13268K
8 108K

126,160k

Memory lootprint CPU ¥

147 05K

706,760€
17500
43068
13888k
240666
13356
9pask

108K

Figure 6.7: Resources Used by the Chrome After Run the Monitoring

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Hetwork

0

Network

o

0

a5k

Process 10

52276
92220
80804

68656

20004
36396
68020

13412

Process 1D

86

CHAPTER 6

Task Manager

Figure 6.8: Resources Used by the System before Run the Monitoring

= Processes
| P Processes
MName
Performance
Apps (9)
L A
D App history > B8 Adobe Acrobat (2)
o Startup apps > G' Google Chrome (16)
> Q Messenger
B Users
> @ Microsoft Edge (17)
= Details > [Microsoft Word (3)
> P Task Manager
{E Services
> ¥ Visual Studio Code (16)
7 g Windows Explorer
v M Windows Terminal Host
B Command Prompt - python...
ool

Task Manager

= Processes
| P Processes
MName
Performance
Apps (9)
7 A
D App history > A Adobe Acrobat (2)
G Startup apps > G Google Chrome (16)
> Q Messenger
S Users
> & Microsoft Edge (18)
= Details > u Microsoft Word (3)
» P Task Manager
{3 Services

> 3 Visual Studio Code (16)
> e Windows Explorer
v ™ Windows Terminal Host

B Command Prompt - python...

Figure 6.9: Resources Used by the System After Run the Monitoring

Bachelor of Computer Science (Honours)

Status

Status

%

%

A

L

18%
CPU

0%
2.2%
0%
4.4%
0%
1.1%
0%
0%

0%

“
L

20%
CPU

0%
10.0%
0%
0%
0%
5.5%
0%
0%

1.1%

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Type a name, publisher, or PID to

79%

Memory

145ME
806.7 MB

0.3 MB
569.0 MB
128.7 MB
159.4 MB
746.7 MB
141.7MB

68.4 MB

3%
Disk

0MB/s
0.1 MB/s
0MB/s
0.1 MB/s
0MB/s
0 MB/s
0MB/s
0 MB/s

0MB/s

0%
Metwork

0 Mbps
0.1 Mbps
0 Mbps
0 Mbps
0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

Type a name, publisher, or PID to

83%

Memory

145ME
1,310.8 MB
0.3 ME
583.0 MB
129.2 MB
161.4 MB
746.9 MB
142.8 MB

63.4 MB

2%
Disk

0 MB/s
0.1 MB/s
0 MB/s
0.1 MB/s
0 MB/s
0 MB/s
0 MB/s
0 MB/s
0 MB/s

0%
Metwork

0 Mbps
0.1 Mbps
0 Mbps
0.1 Mbps
0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

87

CHAPTER 6

6.4 Comparative Analysis against FYP1

This project evaluation includes a direct comparison with the FYPI prototype to
highlight the significant advancements in technology. The evolution from FYP1 to FYP2 was
driven by the need to create a more accurate, robust system, as well as addressing key

limitations discovered in the initial prototype.

The FYPI1 prototype required a manual calibration process that was imprecise. In
contrast, the FYP2 system leverages WebGazer built-in calibration and regression engine. This
is a critical advancement because it doesn't just record points; it uses them to train a
personalized mathematical model that maps the user unique eye features to their screen

coordinates.

Also, the FYP1 prototype uses 2D vector logic that will be sensitive to the head
movement and causing errors. A slight tilt of head could ruin the system. The FYP2 system
uses WebGazer 3D-aware model to solve this problem. This makes the tracking significantly
more stable and reliable in a real-world setting where minor user movements are expected

during the test.

These technological improvements result in a demonstrably more effective system

when tested against common cheating activities.

Scenario Description FYPI1 FYP2 System | Finding
Prototype (WebGazer)
(MediaPipe) | Outcome
Outcome
Quick User briefly False Correctly FYP2 intelligent filtering
Glance glances at the Positive. Ignored. algorithms, a violation
corner of the analyze algorithm creates
screen for <1 a fairer and less intrusive
second. user experience.
Reading User head Reliable Reliable Both projects leveraging
Notes on a | remains still Detection. Detection. calibrated screen
Wall while their eyes boundary for detecting
move to read a off-screen activity

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
88

CHAPTER 6

note taped next

to the monitor.

as leaning far
back or shifting
their entire chair

to the side.

Natural The user tilts Ineffective. Effective. FYP2 3D-aware model is

Head their head significantly more robust

Movement: | slightly while against common, natural
reading a head movements, making
question on- it far more reliable and
screen. fair for real-world

proctoring.

Large The user makes a | Ineffective. Somehow Both systems are limited

Positional | large, obvious Ineffective. | when faced with large.

Change movement, such This reveals a

fundamental constraint of
webcam-based gaze
tracking that relies on an
initial, static calibration.
The FYP2 “EyeGuard”
project is somehow better
in this case because it
leverages 3D-aware
model for eye gaze

monitoring

6.4.1 Remark on Test Findings

Table 6.4: Scenario-Based Effectiveness Testing

It is important to note that the limitation identified in the second scenario, in which

large positional changes are considered an acceptable trade-off for this system. In a formal

examination setting, students are typically instructed by rules to remain seated and still in front

of their webcam for the duration of the test. Significant movements, such as shifting chairs, are

also considered suspicious behavior that maybe a cheating behavior. Therefore, the EyeGuard

system is designed to be highly effective under the most common and expected condition where

a user who remains relatively on their seat.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

89

CHAPTER 7

CHAPTER 7 CONCLUSION

7.1 Conclusion and Novelty

The project has successfully achieved its development goals by incorporating a
comprehensive set of features into the proposed "EyeGuard" system, aimed at ensuring
academic integrity during online examinations. These features are designed to provide a robust

and automated approach to proctoring and are shown below:

1. Real-Time Gaze Tracking:

The system uses the student's webcam to monitor their eye gaze in real-time. This
feature is designed to detect when a student gazes away from the screen for a sustained
period, which may indicate suspicious behavior.

2. Browser Environment Monitoring:

To provide an additional layer of security, the system actively monitors the user
browser for actions such as switching tabs, opening new windows, or changing focus
to another application during the exam.

3. Dual-Channel Real-Time Alerting System:

When a violation is detected, the system provides immediate feedback through two
channels: an on-screen warning is displayed to the student, and a critical alert
notification is sent via email to the administrator.

4. Comprehensive Analysis Report:

At the end of each session, the system generates a detailed report for administrative
review. This report includes a final "Integrity Score," a chronological timeline of all

flagged events, and a 2D visual plot of the student's gaze patterns.

7.2 Recommendations

Several recommendations could further enhance the functionality, accuracy, and
practical usability of the EyeGuard system. To improve its core detection capabilities, the
current eye gaze monitoring could be expanded by incorporating audio analysis to detect
suspicious sounds, such as third-party voices in the room. This could be also enhanced with
head pose tracking to robustly handle large user movements and by implementing automated
evidence capture function, a feature that would take screenshots or short video clips of
violations to provide administrators with evidence proof. From an administrative perspective,
the system's practicality would be greatly improved by developing a dedicated administrator
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
90

CHAPTER 7

dashboard for managing sessions and reports. This would be further strengthened by replacing
the current mock login system with a secure connection to institutional databases for
authentication and login. Finally, to improve the user experience, a 'temporary leave' function
could be implemented, allowing students to request short, logged breaks for emergencies like
a toilet break. By implementing these suggestions, the EyeGuard system could evolve into an

even more robust, intuitive, and efficient solution for ensuring academic integrity in online test.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
91

REFERENCES

REFERENCES

[1]

[6]

F. Muna, A. Waheeda, F. Shaheeda, and A. Shina, "Challenges in implementing
online assessments at Maldivian higher education institutions: Lessons from the
COVID-19 pandemic," Environment and Social Psychology, vol. 9, no. 3, Jan.
2024. [Online]. Available: https://doi.org/10.54517/esp.v9i3.1907. [Accessed:
April 2, 2025].

J. Kang, S. Tariq, H. Oh, and S. S. Woo, "A survey of deep learning-based object
detection methods and datasets for overhead imagery," IEEE Access, vol. 10, pp.
20118-20134, 2022. [Online]. Available:
https://doi.org/10.1109/access.2022.3149052. [Accessed: Mar 23, 2025].

R. Kundu, "YOLO: Real-time object detection explained," V7labs, Jan. 17, 2023.
[Online]. Available: https://www.v7labs.com/blog/yolo-object-detection.
[Accessed: May 2, 2025].

A. Baijal, A. Cannarsi, F. Hoppe, W. Chang, S. Davis, and R. Sipahimalani, "e-
Conomy SEA 2021, Bain, Nov. 10, 2021. [Online]. Available:
https://www.bain.com/insights/e-conomy-sea-2021/. [Accessed: Mar 25, 2025].

K. Rohit, "YOLO algorithm for object detection explained [+examples]," V7labs,
2024. [Online]. Available: https://www.v7labs.com/blog/yolo-object-
detection#:~:text=Using%20a%20more%20complex%?20architecture. [Accessed:
Apr 12, 2025].

"Remote exam proctoring," Meazure Learning, Jun. 7, 2024. [Online]. Available:
https://www.meazurelearning.com/exam-proctoring/remote-exam-proctoring.

[Accessed: May 1, 2025].

"A comprehensive learning integrity platform - Proctorio," Proctorio. [Online].

Available: https://proctorio.com/. [Accessed: April 21, 2025].

Respondus, "LockDown Browser - Respondus,” 2019. [Online]. Available:
https://web.respondus.com/he/lockdownbrowser/. [Accessed: Mar 12, 2025].

Atlassian, "Agile best practices and tutorials," Atlassian, 2019. [Online]. Available:
https://www.atlassian.com/agile. [Accessed: May 1, 2025].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Google for Developers, “Face landmark detection guide | Google Al Edge,” Nov.
4, 2024. [Online]. Available:
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker

[Accessed: Sep 12, 2025].

Y. Kartynnik, A. Ablavatski, I. Grishchenko, and M. Grundmann, “Real-time Facial
Surface Geometry from Monocular Video on Mobile GPUs,” arXiv preprint
arXiv:1907.06724, Jul. 2019. [Online]. Available:
https://arxiv.org/abs/1907.06724 [Accessed: Sep 19, 2025].

A. Papoutsaki, N. Daskalova, P. Sangkloy, J. Huang, J. Laskey, and J. Hays,
“WebGazer: Scalable Webcam Eye Tracking Using User Interactions,” [Online].
Available: https://cs.brown.edu/people/apapouts/papers/ijcai2016webgazer.pdf
[Accessed: Sep 18, 2025].

S. Gray, “Agile Software Development Life Cycle,” Medium, Aug. 18, 2020.
[Online]. Available: https://serenagray2451.medium.com/agile-software-

development-life-cycle-b3ed0f0f7212 [Accessed: Sep 20, 2025].

A. Papoutsaki, J. Tompkin, X. Koo, A. Gokaslan, I. De Smet, and J. Huang,
“WebGazer.js: Democratizing Webcam Eye Tracking on the Browser,” WebGazer
Project. [Online]. Available: https://webgazer.cs.brown.edu/ [Accessed: Sep 19,
2025].

J. Medley, “Content Security Policy,” Chrome for Developers, 2017. [Online].
Available: https://developer.chrome.com/docs/privacy-security/csp [Accessed:

Sep 18, 2025].

R. Neupane, “Facial Landmark Detection - Riwaj Neupane - Medium,” Medium,
Jan. 14, 2024. [Online]. Available: https://medium.com/@RiwajNeupane/facial-
landmark-detection-a6b3e29eac5b [Accessed: Sep 19, 2025].

I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction
to OpenCV,” in Proc. 35th Int. Conv. MIPRO, May 2012, pp. 1725-1730. [Online].
Available: https://ieeexplore.ieee.org/document/6240859 [Accessed: Sep 20,
2025].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

REFERENCES

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. F. Abate, C. Bisogni, A. Castiglione, and M. Nappi, “Head pose estimation: An
extensive survey on recent techniques and applications,” Pattern Recognition, vol.
127, p. 108591, Jul. 2022. doi: https://doi.org/10.1016/j.patcog.2022.108591
[Accessed: Sep 20, 2025].

V. Agarwal, “Real-Time Head Pose Estimation in Python,” Medium, Jul. 25, 2020.
[Online]. Available: https://medium.com/data-science/real-time-head-pose-
estimation-in-python-e52db1bc606a [Accessed: Sep 20, 2025].

A. Asperti and D. Filippini, “Deep Learning for Head Pose Estimation: A Survey,”
SN Computer Science, vol. 4, mno. 4, Apr. 2023. doi:
https://doi.org/10.1007/s42979-023-01796- [Accessed: Sep 21, 2025].

A. Al-Rahayfeh and M. Faezipour, “Eye Tracking and Head Movement Detection:
A State-of-Art Survey,” IEEE J. Transl. Eng. Health Med., vol. 1, pp. 2100212
2100212, 2013. doi: https://doi.org/10.1109/jtehm.2013.2289879 [Accessed: Sep
21, 2025].

A. Haq, “What Is SOLVEPNP and How Does it Work? - Abdul Haq - Medium,”
Medium, Sep. 24, 2024. [Online]. Available:
https://medium.com/@abdulhaq.ah/what-is-solvepnp-and-how-does-it-work-
d9ac70823724 [Accessed: Sep 22, 2025].

E. Kochegurova, E. Kochegurova, and R. Zateev, “Hidden Monitoring Based on
Keystroke Dynamics in Online Examination System,” Automatic Control and
Computer Sciences, vol. 48, no. 6, pp. 385-398, 2022. doi:
https://doi.org/10.1134/S0361768822060044 [Accessed: Sep 20, 2025].
“chrome.windows,” Chrome for Developers, 2025. [Online]. Available:
https://developer.chrome.com/docs/extensions/reference/api/windows [Accessed:
Sep 20, 2025].

D. G. Balash, D. Kim, D. Shaibekova, R. A. Fainchtein, M. Sherr, and A. J. Aviv,
“Examining the Examiners: Students’ Privacy and Security Perceptions of Online
Proctoring Services,” arXiv preprint, arXiv:2106.05917, 2021. [Online]. Available:
https://arxiv.org/abs/2106.05917 [Accessed: Sep 22, 2025].

S. Desai, “Comprehensive Survey on Object Detection Taxonomy and Paradigms,”
Medium, Sep. 24, 2024. [Online]. Available:
https://medium.com/@shasvatdesai/comprehensive-survey-on-object-detection-

taxonomy-and-paradigms-e83482690eal

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

94

REFERENCES

[Accessed: Sep 22, 2025].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

95

APPENDIX
APPENDIX A

Guideline

BEFORE BEGIN -
SETUP CHECKLIST

01] 02] 03 § o4

. . Position
Quiet, well-lit

Close Enable
yourself unnecessary camera
room
correctly programs

- e X

@Iéf EyeGuard

STEP 1 - GAZE CALIBRATION

1 £ £ 23

Login in first Look directly at Click each dot 2 LS
attempt each red dot

head as still
times

2] 00, 2 Jy

é@ EyeGuard

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-1

APPENDIX

STEP 2: DURING THE EXAM

1 £ £ £

Stay focused Look directly at e b DAL
tabs or open camera feed
on the screen each red dot
new windows clear

é‘é EyeGuard

STEP 3 - END TEST

Click "End
; n You are now
Proctoring" in
good to go

the extension

éé} EyeGuard

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-2

APPENDIX

APPENDIX B

Poster

DETECTING ONLINE TEST
CHEATING THROUGH USER
BEHAVIOR MONITORING

@>:

EYE GAZE BROWSER ACTIVITY

B e L]

TR e e cetecten Temmrn Segoef h

INTRODUCTION OBJECTIVES
Online exams face serious academic integrity @ Implement dual-channel alerting (student
challenges wamings + administrator notifications)

! Traditional supervision methods are not feasible @ Monitor suspicious browser activities (tab
for remote testing switching, window changes)

‘ Current solutions have limitations: high costs, privacy @ Develop real-time eye-gaze tracking system using
concemns, lack of real-time alerts Chrome Extension

‘ The systemprovides automated monitoring @ Generate comprehensive session reports with
using eye-gaze tracking and browser event integrity scoring
detection

SYSTEM ARCHITECTURE
& METHODOLOGY

Q@ IE= == +/ Chrome Extension frontend with WebGazer.js for eye tracking
\/ Python Flask backend for data analysis and session management
\/ AWS integration for email alerts (SES) and report storage (S3)

+/ Custom algorithms for violation detection and false positive

———— — S Sl B IS~ <59 reduchon
s CONCLUSIONS
. ‘ﬁ \/ The addresses limitations of existing proctoring systems
v/ Provides cost-effective, scalable solution maintaining institutional
THREE-TIER ARCHITECTURE data control

\/ Demonstrates successful integration of computer vision and web

G Chrome Extension client technologies

(. Python Flask server +/ Reduces reliance on human supervision while ensuring fair

monitoring

dWS AWS cloud services integration

FINAL REPORT REAL-TIME ALERT

RESULTS

3gana afp Vadivelc By Ooi Khai Sher

71 TUNXU ABDUL RAHMAN 22ACH87662

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

