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ABSTRACT

This project presents the design, development, fabrication and evaluation of an
automated waste sorting system integrating computer vision, robotic actuation
and electronic control. The primary objective was to automate the classification
and segregation of recyclable waste to improve accuracy and efficiency
compared to manual sorting. The methodology involved fabricating a conveyor
belt system, designing a slider mechanism to extend the Delta X robotic arm’s
reach and equipping the robot with a vacuum gripper for pick-and-place
operations. A YOLOvV8 deep learning model, trained on a custom dataset of
waste images, was integrated with the ByteTrack algorithm to provide real-time
object detection and tracking. An ESP32 microcontroller and a Python-based
GUI coordinated the conveyor, slider, robot arm and vision subsystems for
seamless operation. Experimental testing demonstrated high detection
accuracies of 100% for aluminium, 96% for plastics and 94% for paper. Pick-
and-place success rates were 92% for aluminium, 98% for paper and 48% for
plastics, the latter being affected by transparency, irregular surfaces and
limitations of the IR sensor. The overall throughput achieved was 8 - 15 items
per minute, with reliable continuous operation over 20 minutes, though
positional drift of the robot arm and slider was observed due to the lack of
feedback mechanisms. These results indicate that the prototype successfully met
its objectives, demonstrating the feasibility of low-cost Al-enabled robotic

sorting.

Keywords: waste sorting; YOLOV8; machine vision; robotic arm; automation;

object detection

Subject Area: Robotics
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

In Malaysia, daily municipal solid waste generation has increased rapidly from
25,000 tonnes in 2013 to approximately 39,000 tonnes in 2024. The rapid rise
in waste production is driven primarily by population growth, lifestyle changes
and rapid urbanization (International Trade Administration, 2024). The import
of waste, which weight to over 68,000 tonnes in 2022, has only worsened this
situation (World Bank. org, 2022). This leads to clogged drains, urban flooding
and escalating greenhouse gas emissions from anaerobic decomposition in
overflowing landfills (Chuah et al., 2023).

Plastic, paper and aluminium, materials that people use almost every
day, contribute 21.9 %, 15.3 % and 6 % of total municipal waste respectively
(Zainal, 2024). Although these wastes are highly recyclable, Zainal (2024)
reported that Malaysia’s national recycling rate stood at just 35.38 % in 2023,
with only 24 % of plastic waste produced in 2019 being recycled. The remainder
is sent to landfills or mismanaged disposal sites. Figure 1.1 shows the landfill at
Teluk Mengkudu, Perak. International Trade Administration (2024) warns that
if waste generation continues at this alarming rate, Malaysia will exhaust its
landfill capacity by 2050.

v g OB

Figure 1.1: Landfill at Teluk Mengkudu, Perak

To mitigate the issue, the government has introduced measures such as
the RMO0.20 plastic bag in 2017, the “Roadmap Towards Zero Single Use



Plastics 2018-2030” and widespread public awareness campaigns. However,
mixed collection systems and reliance on manual segregation at Materials
Recovery Facilities mean that waste often arrives commingled. Manual sorting
is slow, inefficient, prone to contamination and exposes workers to physical and
health risks (Dodampegama et al., 2024). Hence, implementation of automated
waste sorting system that combine machine vision for waste identification with
robot arms for waste separation can improve throughput, reduce contamination

and enhance worker safety.

1.2 Importance of the Study

Waste sorting is the critical link between waste collection and remanufacturing.
If collected waste is not accurately separated, downstream processes suffer from
contamination, degraded material quality and increased remanufacturing costs.
Figure 1.2 shows the waste-sorting process performed by human labor. In
Malaysia, poor waste sorting capabilities result in significant quantities of
valuable recyclables being lost to landfills. By integrating machine vision
technologies with robotic arms, the identification and separation of waste
materials such as plastics, paper and aluminium can be automated. This
automation not only improves sorting accuracy and consistency but also reduces
reliance on manual labour, minimizing workers’ exposure to unhygienic and

hazardous environments while lowering operational manpower costs.

Figure 1.2: Manual Waste Sorting Process

1.3 Problem Statement
In Malaysia, the current waste sorting process at Materials Recovery Facilities

depends almost entirely on manual labour, resulting in low efficiencies and



inconsistent separation of recyclables. Workers in the recycling sector earn an
average of MYR 38,081 per year (approximately MYR 18 per hour), despite
performing physically demanding and hazardous tasks in cramped, unsanitary
conditions. On average, human pickers can sort only 20 - 40 waste per minute
and sorting accuracy declines rapidly as fatigue sets in, necessitating time
consuming validation and re-sorting process. Moreover, prolonged manual
handling without adequate training or protective equipment exposes workers to
elevated risks of musculoskeletal injuries and cuts from sharp or contaminated
materials.

Implementation of machine-vision and robotic systems can automate
the waste sorting process. Advanced waste sorting solutions are already
available in other countries. For instance, AMP Robotics has offered Al-
powered waste sortation services, which increase sorting efficiency and reduce
human involvement. However, high purchase fees, taxes, delivery fees and
maintenance fees remain barriers. Furthermore, these imported systems are
often optimized for waste compositions in Europe or North America, making
them less effective at processing Malaysia’s unique mix of plastics, paper and
aluminium. Hence, an automated sorting system that integrates machine vision
with a robotic arm on a conveyor system that designed locally can tackle such

issues, effectively reduce the system implementation costs.

1.4 Aim and Objectives
This project aims to design and manufacture an automated waste sorting system
that capable of identifying and segregating different types of wastes on a
conveyor belt. The types of waste are plastic (Plastic Bottle), paper (Beverage
Carton) and aluminium (Aluminium Can). The following objectives are to be
completed to achieve the aim:
I To develop a robotic system equipped with computer vision for
accurate detection and classification of various waste types.
ii. To automate the sorting process in order to ensure consistent
and accurate waste segregation.
iii. To evaluate the system’s performance by measuring sorting

accuracy, processing speed and reliability.



15 Scope and Limitation of the Study

This project’s scope encompasses the design and manufacture of an automated
waste sorting system for recycling facilities in Malaysia. Deep learning models
will be trained to identify and classify plastics, paper and aluminium waste
based on visual features such as size, shape and colour. An object tracking
algorithm will then track and assign a specific ID to each identified waste. A
conveyor belt will transport waste and its speed will be adjusted dynamically
according to the number of wastes in the working range to maximize picking
efficiency. A linear slider will extend the robot arm’s horizontal reach across
the full width of the conveyor, ensuring complete coverage and increased
picking speed. Finally, a sensor that installed on the gripper will confirm
successful grasp of each piece of waste.

There are a few of limitation for the project. First, the deep learning
algorithm is trained on a dataset limited to three materials, which are plastic,
paper and aluminium can. This may restrict its ability to generalize to other
common waste types such as glass or rubber. Second, this study employs a
small-scale neural network architecture for rapid prototyping. Thus, scaling up
to a production grade model will require substantially more computational
resources and may incur longer inference times, potentially affecting real time
performance. Third, the current prototype has been designed on a small scale,
suitable for demonstration purposes. This limited scale may not effectively
handle large volumes of waste or operate efficiently in industrial settings where

higher throughput is required.

1.6 Contribution of the Study

This study contributes to the advancement of low-cost automated waste sorting
by integrating deep-learning based computer vision with robotic and mechanical
actuation into a functional prototype. It demonstrates the feasibility of using
YOLOv8 combined with the ByteTrack tracking algorithm for real-time
detection and classification of common waste types, achieving high levels of
accuracy in distinguishing aluminium, plastic and paper. The development of a
conveyor, slider and robot arm system using commercially available
components, highlights a practical and scalable approach suitable for small-

scale waste management applications. Furthermore, the project provides



experimental data and analysis on the challenges of handling irregular and
transparent waste items, contributing to the broader understanding of limitations
in current automated sorting technologies. Overall, the findings of this study
serve as a reference for future research in developing sustainable, affordable and

intelligent waste sorting solutions.

1.7 Outline of the Report

This report is organized into five main chapters. Chapter 1 introduces the
background, problem statement, objectives, scope, contributions and overall
structure of the project. Chapter 2 presents a literature review on related topics,
including robotic arms, gripper types, motors, object detection models and
object tracking algorithms. Chapter 3 explains the methodology and work plan,
covering system overview, fabrication of the conveyor and slider, development
of the machine vision system, integration of hardware and electronics and
coding workflow. Chapter 4 discusses the results and findings, including the
performance of the fabricated parts, evaluation of machine vision, system
testing and comparative analysis with related works. Finally, Chapter 5 provides

conclusions, challenges encountered and recommendations for future work.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents a comprehensive review of existing technologies and
research relevant to the development of an automated plastic waste sorting
system. Various types of robotic arms, including Delta, SCARA, Cartesian and
Articulated arms, equipped gripper with different gripping mechanisms, are
studied and compared to determine the most suitable component for the system.
Additionally, different types of motors are evaluated for driving both the
conveyor belt and the slider system.

On the software side, this chapter examines machine vision, focusing
on deep learning models such as YOLO, SSD and RCNN for real time waste
identification and object tracking algorithms such as including KCF, SORT,
Deep SORT and ByteTrack for identified waste tracking. The goal of this
literature review is to provide the justification for the design choices made in
this project.

2.2 Robot
Robots are programmable, actuated mechanisms with varying degrees of
autonomy that perform tasks in response to internal commands and external
stimuli. According to the international standard 1SO 8373, an industrial robot is
defined as “a programmed actuated mechanism with a degree of autonomy to
perform locomotion, manipulation or positioning” (ISO, 2021). These systems
typically exhibit multiple degrees of freedom, allowing precise, repeatable
motions that surpass human endurance and accuracy.

In this project, a robot arm equipped with gripper is mounted above a

conveyor to automate the pick and place routine of wastes.

2.21 Robot Arm Type
In industrial automation, several types of robotic arms are available, each with
its own unique mechanical structure, range of motion and application suitability.

Among the most widely used types are Delta, SCARA, Cartesian and



Articulated robot arms (Techman Robot, 2023). For lightweight waste sorting
applications, where high speed and precision are essential but heavy payload
capacity is not, a careful comparison of these arm types is necessary to
determine the most effective solution.

Delta robot arms, also known as parallel robots, are specially designed
for high speed pick and place tasks. They feature three lightweight arms
connected to a common base, with actuators mounted at the top. This design
allows for minimal moving mass and extremely fast acceleration and
deceleration. As a result, Delta robots, such as the Delta X1 from DeltaX
Robotics, can achieve max speed of 700 mm/s, with typical payload capacity of
up to 0.5 kg, which is more than sufficient for lightweight materials such as
plastic bottles (DeltaX Robot, 2020). Due to their high-speed capabilities, Delta
robots are commonly used in food packaging, pharmaceutical sorting and other
industries that demand rapid material handling (Robots Done Right, 2025).
Their workspace is typically dome-shaped, which can be limiting in range, but
can be overcome with the integration of a linear slider, as proposed in this

project. Figure 2.1 shows the picture of Delta X1 from DeltaX Robotics.

Figure 2.1: Picture of Delta Robot (DeltaX Robot, 2020).

Selective Compliance Articulated Robot Arm (SCARA) are another
fast and accurate option used in industrial applications. They operate mainly in
the X-Y plane with limited vertical movement, making them ideal for pick-and-
place tasks (Standard Bots, 2025). As shown in Figure 2.2, SCARA robots
typically have four degrees of freedom (DOF): three rotational movements and
one vertical movement. (Flexi Bowl, 2014). However, their range of motion is

more constrained compared to Delta robots and their speed is generally slightly



lower due to their heavier mechanical arms (Robots Done Right, 2022). While
suitable for moderately fast sorting tasks, SCARA robots may not meet the
highest speed requirements of waste sorting operations where materials are

rapidly moving on a conveyor.

i

Figure 2.2: Picture of SCARA Robot

Cartesian robots, also known as gantry robots, use three linear actuators
aligned with the X, Y and Z axes to provide precise motion in a rectangular
workspace as shown in Figure 2.3. These systems can handle very large
payloads and are relatively easy to program due to their orthogonal structure
(Standard Bots, 2025). They are excellent for tasks that require heavy lifting or
large working areas. However, Cartesian robots are generally slower than Delta
and SCARA robots and their large moving masses make them less suitable for

rapid pick-and-place operations with lightweight objects.

Figure 2.3: Picture of Cartesian Robot



Articulated robots, which resemble a human arm with multiple rotary
joints (typically 57 degrees of freedom), offer the most flexible movement.
They are widely used in complex tasks such as welding, painting and part
manipulation that require versatile orientation (Balluff, n.d.). While these robots
can handle high payloads and have broad reach, they are typically slower in
operation due to their heavier joints and require more complex programming
and safety measures. For high-speed, lightweight sorting tasks like those
involved in this project, articulated arms are generally overengineered and less
cost-effective compared to Delta or SCARA robot arm. Figure 2.4 shows an
example of an articulated robot.

Figure 2.4: Picture of Articulated Robot

To determine the most suitable robot arm type for this lightweight
waste sorting system, a scoring matrix is used based on four key criteria, which
are speed, precision, payload suitability and ease of integration. Each arm type
is rated on a scale from 1 (poor) to 5 (excellent). Table 2.1 shows the scoring

matrix for selection of robot arm.
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Table 2.1: Scoring Matrix for Selection of Robot Arm

Criteria Delta SCARA Cartesian Articulated
Speed 5 4 3 3
Precision 4 5 4 3
Suitability
for
lightweight ° 4 3 3
tasks
S_lmpI|CIt_y & 4 3 3 1
integration
Total Score 18 16 13 10

Based on the scoring matrix, the Delta robot arm achieves the highest
total score and is therefore selected for this project. Its lightweight construction
and exceptional speed make it the most suitable choice for accurately sorting
moving plastic waste items on a conveyor system. Furthermore, the addition of
a linear slider allows the Delta arm to overcome its workspace limitations,
enabling it to handle a wider area without compromising speed. This
configuration ensures high efficiency in picking, sorting and placing lightweight

recyclable materials such as plastic, paper and aluminium waste.

2.2.2  Gripper Types
Grippers serve as the end effector of a robotic arm, allowing robot to hold, grasp,
manipulate, or transport objects (Dorna Robotics, 2023). In automated waste
sorting system, where throughput and versatility are paramount, the choice of
gripper technology directly influences both the speed of pick-and-place
operations and the ability to handle items of varying shape, size and surface
properties. Consequently, selecting an appropriate gripper, whether based on
suction, mechanical fingers, adhesion, or electroadhesion, is critical to
achieving reliable, efficient sorting performance.

Vacuum grippers lift objects by creating negative pressure against the

object’s surface. It comprises a vacuum source such as an electric vacuum pump
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or a venturi system that connects to a gripping interface equipped with vacuum
suction cups (Granta, 2023). They are widely used for picking and placing,
palletizing and depalletizing and loading and unloading (Standard Bot, 2025).
Vacuum suction cups can be made of flexible materials so they partly conform
to curved or uneven surfaces giving them good performance on rounded bottles
and cans. However, porous materials like loose paper can leak air and are harder
to pick by suction. Overall, vacuum grippers excel at rapid handling of smooth
or partially irregular waste, combining high speed with broad applicability.

Figure 2.5 displays a vacuum gripper gripping a paper box with a flat surface.

-

g

l

Figure 2.5: Picture of Vacuum Grippers

Mechanical grippers typically use fingers or jaws to grip objects. These
grippers can be very fast and reliable. For example, two-finger grippers, such as
the example shown in Figure 2.6, are known to operate in high-speed assembly
lines (Dorna Robotics, 2023). Such grippers can achieve rapid open/close cycles
when handling repeatable, well-defined objects. Multi-finger grippers can
conform around irregular shapes. For instance, underactuated finger grippers in
bin-picking tasks adjust their fingers to grasp assorted parts (Dorna Robotics,
2023). This adaptability lets them handle items of varying geometry. However,
mechanical grippers must often align fingers around the object, which can slow
the cycle compared to a single suction action. Mechanical claws may also risk
dropping deformable items like thin paper or plastic bag that slip from their grip.
In summary, mechanical grippers offer fast cycles and moderate adaptability to

irregular waste.
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Figure 2.6: Picture of Mechanical Grippers

Adhesive grippers, as shown in Figure 2.7, use sticky or gecko-inspired
pads to attach to objects. They can attach to flat or rough surfaces without
leaving residue. Since the adhesive relies on shear force instead of normal force
or friction, it can handle fragile items gently without applying too much pressure
(Stanford University, 2015). This allows exceptionally good handling of
irregular or flexible objects. On the downside, adhesives typically require full
contact and time to engage or disengage, making their cycle slower. Moreover,
adhesive surfaces can lose their effectiveness when dirty or dusty, which is
almost certain to occur in a waste handling environment. Overall, adhesive
grippers would have moderate picking speed but high adaptability to diverse

object shapes

=

Figure 2.7: Picture of Adhesive Grippers

Electrostatic grippers, as illustrated in Figure 2.8, apply a high-voltage
field to attract and hold objects via electroadhesion (Ackerman, 2014). They can
rapidly attach or release by switching voltage on/off, enabling quick cycles that
are comparable to other high-speed grippers. Electrostatic grippers excel at
lightweight, flat objects but they struggle with bulky 3D items or conductive

metals. Moreover, curved bottles or crumpled items offer less contact area,
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leading to reduce in electrostatic gripping force. In summary, electrostatic
grippers offer a fast pick rate but limited suitability for 3D irregular shapes.

Figure 2.8: Picture of Electrostatic Grippers

To identify the most suitable gripper for this waste sorting system, a
scoring matrix was developed using two critical criteria, which are picking
speed and the ability to handle irregularly shaped objects. Each gripper type was
evaluated on a scale from 1 (poor) to 5 (excellent). Table 2.2 shows the scoring

matrix for selection of gripper.

Table 2.2: Scoring Matrix for Selection of Gripper

Criteria Vacuum Mechanical Adhesive Electrostatic
Picking
Speed 5 4 3 4
Irregular
Object 4 3 5 2
Handling
Total Score 9 7 8 6

Vacuum grippers achieve the highest combined performance,
reflecting both high cycle rate and broad object compatibility. Other types each
have critical drawbacks. For instance, mechanical claws are fast but less
adaptable, adhesives gripper grasp many shapes but cycle more slowly and
electrostatic gripper grips thin, flat materials only. Thus, a vacuum gripper is

the best choice for gripper of the waste sorting system.
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2.3 Motor

Motors serve as the driving force of a conveyor system and slider of this waste
sorting system. Selecting the right motors for both the conveyor belt and the
slider is critical to ensure the automated sorting system meets its performance
and reliability targets. For the conveyor, a motor must deliver high rotational
speed, sufficient torque to move loaded belts and sustained operation without
overheating. For the slider, priorities shift toward precise, repeatable motion,
adequate holding torque and moderate travel speed. Three different type of
motor, including 775 DC motor, JGB37-545 Gear Motor and NEMA 23 stepper
motor will be discussed and evaluated to determine the most suitable motor for
both conveyor belt and the slider.

775 DC motor, as shown in Figure 2.9, is a high-performance brushed
electric motor renowned for its compact yet powerful design. The motor is
optimized for mid to high power applications delivering no-load speeds of
approximately 4,100 RPM at 12 V and up to 8,400 RPM at 24 V and stall torque
is rated near 0.79 Nm (SM Tech, 2019). Widely used in robotic and hobbyist
applications, 775 DC motor offers an excellent speed to size ratio but lacks
precise position control, requiring additional encoders or feedback for accurate

synchronization with sorting task.

»

Figure 2.9: Picture of 775 DC Motor

JGB37-545 Gear Motor, as shown in Figure 2.10, is a compact gear
motor that combines a 12 V brushed DC motor with an integrated gearbox. It
provides a wide range of gear reduction ratios, typically yielding speeds
between 6 RPM and 1,000 RPM depending on the version, with torque values
up to above 35 kgcm at lower speeds. This makes it highly adaptable for
medium-load conveyor systems that require steady, continuous operation.

JGB37-545 offers significantly higher torque output, improved durability and
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smoother performance, making it a practical option for real conveyor
applications where both strength and reliability are needed.

Figure 2.10: Picture of JGB37-545 Gear Motor

NEMA 23 stepper motor, as shown in Figure 2.11, provides 1.8° step
resolution and a holding torque of approximately 0.6 Nm, delivering precise,
repeatable movements without feedback sensors, which is critical for the slider.
While its maximum unloaded speed is relatively modest, the use of micro
stepping drivers can tailor torque-speed curves to match application needs,
ensuring smooth operation under load. NEMA 23’s robust construction and
constant holding torque make it an excellent choice for positional accuracy.
However, its higher cost and the need for more complex drive electronics add

to system complexity and increase power demands.

Figure 2.11: Picture of NEMA 23 Stepper Motor

To determine the most suitable motor for the conveyor system and
slider, two scoring matrices are developed using two different set of criteria. For
the conveyor system, the criteria are speed, torque and continuous duty
capability; for the slider, the criteria are positional control, holding torque and

travel speed. Each motor was scored from 1 (poor) to 5 (excellent). Table 2.3
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and table 2.4 show the scoring matrix for selection of motor for conveyor system
and slider.

Table 2.3: Scoring Matrix for Selection of Motor for Conveyor System

JGB37-545 NEMA 23

Criteria 775 DC Motor Gear Motor Stepper Motor

Speed 5 4 3
Torque 4 5 4
Continuous
Duty 3 5 4
Capability
Total Score 12 14 11

The JGB37-545 gear motor scored the highest overall for torque and
continuous-duty capability while maintaining a decent rotational speed,
resulting in a total score of 14. This reflects its suitability for the conveyor of
the waste sorting system. Consequently, the JGB37-545 gear motor is
recommended for the conveyor, balancing steady torque output, sufficient speed

and reliable continuous operation.

Table 2.4: Scoring Matrix for Selection of Motor for Slider

JGB37-545 NEMA 23

Criteria 775 DC Motor Gear Motor Stepper Motor

Positional
Control 2 2 S
Holding 4 4 4
Torque
Travel Speed 5 4 3

Total Score 11 10 12
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NEMA 23 stepper motor achieved top marks in precision control and
high holding torque and moderate speed, resulting in total score of 12, which is
well above the threshold for reliable, repeatable slider movement. Thus, NEMA
23 stepper motor is recommended for the slider, offering the high accuracy and

holding power for consistent pick-and-place operations.

2.4 Object Detection Model

In industrial automation, different object detection model categories offer
diverse trade-offs between accuracy, speed and resource requirements. These
include single stage and two stage detectors, each with specific strengths and
weaknesses, influencing their suitability for various applications. Single stage
detectors, such as YOLO and SSD, process the entire image in a single pass.
These models are known for their speed and efficiency, making them suitable
for real-time applications where quick processing is crucial. They typically
achieve a lower accuracy compared to two stage detectors (SharkYun, 2024).
On the other hand, two stage detectors like R-CNN employ a separate region-
proposal step to boost precision at the expense of increased computational
overhead. Selecting the optimal model for conveyor-belt waste sorting thus
requires evaluating detection accuracy, speed, hardware cost and ease of
implementation.

You-Only-Look-Once (YOLO) is a real-time object detection model
widely used across various applications due to its high speed and accuracy.
YOLO processes an entire image in a single forward pass of a deep
convolutional network, partitioning it into an SxS grid where each cell predicts
B bounding boxes along with confidence scores and class probabilities. The
confidence score reflects both the probability that an object exists within the box
and the predicted intersection over union (loU) with ground truth. During
training, each object is assigned to the bounding box predictor with the highest
loU, encouraging specialization among predictors for different sizes or aspect
ratios. At inference time, non-maximum suppression (NMS) prunes overlapping
boxes by retaining only the highest-confidence detection per object, reducing
false positives and ensuring crisp localization (Joseph et al., 2016). Figure 2.12
summarizes the core steps of how YOLO turns a single image into object

detections in real time.
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Final detections

Class probability map

Figure 2.12: Mechanism of YOLO

YOLO is commonly applied in industrial automation for tasks like
robotic pick-and-place, quality inspection and waste sorting. It is lightweight,
easy to deploy on embedded systems and capable of detecting multiple objects
per frame. YOLO still has some drawbacks, including reduced accuracy in
detecting small or overlapping objects and reliance on predefined anchor boxes.
However, in the newer version, like YOLOv8, many of these issues have been
addressed through improvements such as anchor-free detection, better backbone
architecture and refined training strategies (docs.ultralytics.com, n.d.).

Single Shot Detector (SSD) is a single stage object detection algorithm
that performs object localization and classification in a single forward pass of
the neural network, making it significantly faster than two-stage detectors like
R-CNN. SSD divides the input image into a grid and generates default bounding
boxes of different aspect ratios and scales at each grid location. During inference,
SSD predicts both the presence of objects and their class scores for each
bounding box. This architecture enables real-time detection with relatively high
accuracy (Liu et al., 2016). One of its main advantages is its ability to balance
speed and accuracy, especially on medium to large objects. However, it has
limitations in detecting small objects, as it relies on lower resolution feature
maps for some detections. SSD also depends on predefined anchor boxes, which
can reduce flexibility in complex scenarios. Despite these limitations, SSD
remains a popular choice for real time applications where inference speed is
critical

Regions with Convolutional Neural Network features (R-CNN) is a
pioneering two stage detection framework that significantly improved detection

accuracy compared to earlier methods. The R-CNN architecture first generates
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region proposals using an algorithm like selective search, which identifies
candidate regions in the image that may contain objects. These proposals are
then passed through a convolutional neural network to extract features, which
are subsequently classified using a set of Support Vector Machine (SVM)
classifiers and bounding boxes are refined using linear regressors. R-CNN is
known for its high accuracy and was among the first models to effectively apply
deep learning to object detection. It is particularly useful in medical imaging,
autonomous driving and surveillance applications where detection precision is
crucial. However, R-CNN has notable drawbacks, including slow inference time,
high computational cost and complex training, as it requires multiple separate
training steps for the CNN, SVMs and bounding box regressors. These
limitations led to the development of more efficient successors like Fast R-CNN
and Faster R-CNN. Despite this, R-CNN remains foundational in the evolution
of object detection models

To determine the most suitable object detection model for this system,
a scoring matrix is used based on two key criteria, which are accuracy, speed,
Hardware cost and ease of integration. Each object detection model is rated on
a scale from 1 (poor) to 5 (excellent). Table 2.5 shows the scoring matrix for

selection of object detection model.

Table 2.5: Scoring Matrix for Selection of Object Detection Model

Criteria YOLOVS SSD R-CNN
Accuracy 3 4 5
Speed 4 4 2
Hardware
Cost 4 5 2
Ease o_f 5 9 3
Integration

Total Score 16 15 12
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Based on the scoring matrix, YOLOVS8 achieves the highest total score
by achieving an optimal balance across all evaluation criteria. While R-CNN
leads in accuracy, its slower inference speed, higher hardware demands and
more complex integration requirements make it less suited for a real time waste
sorting application. SSD offers strong speed and low hardware cost but falls
short in integration ease and marginally in detection accuracy. In contrast,
YOLOV8 delivers moderate accuracy with real-time performance, requires only
moderate computing resources and integrates seamlessly into existing robotic
and vision frameworks. This combination of speed, affordability and low
implementation overhead makes YOLOvV8 the most practical choice for the

waste sorting system.

2.5 Object Tracking Algorithms

Object tracking in a waste sorting system involves linking YOLOvVS8 detections
across frames to maintain consistent object identities for robotic pick-up.
Several classical and modern trackers can will be discussed in this part,
including KCF, SORT, Deep SORT and ByteTrack.

Kernelized Correlation Filter (KCF) is a single object tracker that uses
fast Fourier-domain correlation to predict motion. KCF is extremely fast and it
can be implemented in a few lines of code. It generally attains high localization
accuracy under stable conditions, but it struggles with abrupt appearance
changes or occlusions and does not handle scale variation well (KALRA, 2023).
Since it tracks one object per model, KCF must be re-initialized for each new
waste item. This complicates multi-object scenarios. In practice, KCF can be
attached to YOLO bounding boxes as initial regions of interest, but coordinating
many KCF trackers in parallel adds complexity. Overall, KCF’s tracking
accuracy is only moderate for a complex scene, but its speed is excellent. It has
low computational cost and mature implementations. However, it has virtually
no re-identification capability. This means that if a waste item is occluded or
leaves and re-enters the scene, KCF will generally lose it.

Simple Online and Realtime Tracking (SORT) is a multi-object
tracking framework that builds on YOLO-like detections by applying a Kalman
filter for motion prediction and the Hungarian algorithm for bounding box

association. (Sanyam, 2022). SORT is deliberately minimalistic, as it uses only
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the box coordinates and a constant velocity motion model. This makes SORT
extremely fast and lightweight. Due to SORT relies entirely on Kalman-filter
predictions and loU-based matching, SORT produces few false positives but
suffers frequent ID switches if objects intersect or occlude. Integration with
YOLOVS is straightforward, the tracker simply takes each frame’s detections
and outputs persistent track IDs. The computational cost is negligible and SORT
scales to many objects in real time. Its main weakness is that it does not handle
re-identification. This means that when a waste item is fully occluded or briefly
missed, SORT may drop it as a track.

Deep SORT extends SORT by adding a learned appearance model for
data association. In practice, Deep SORT extracts a deep “re-ID” feature vector
from each detection crop and uses both motion and appearance similarity in the
association. This substantially improves ID consistency, as Deep SORT can
correctly re-link an object after it reappears and it handles partial occlusion
better than pure SORT (Sanyam, 2022). Its tracking accuracy is higher in
crowded or complex scenes. However, the extra CNN feature extraction makes
Deep SORT heavier. It requires a GPU or powerful CPU and it runs slower than
SORT. Deep SORT remains real-time on modern hardware, but its throughput
is limited by the embedding network. In terms of computational cost, Deep
SORT is significantly higher than SORT because of the neural network. On the
positive side, Deep SORT is a mature, well-tested method and offers robustness
to occlusion and re-appearance that KCF and SORT lack.

ByteTrack is a recent multi-object tracker that improves on SORT by
using both high-confidence and low-confidence detections in its association
strategy. Instead of discarding low-confidence detections, as SORT does,
ByteTrack assigns them as candidates when loU matching fails, greatly
reducing ID switches and track fragmentation. This makes ByteTrack especially
strong in real-world waste sorting, where occlusion, overlapping items and
partial visibility are common. ByteTrack is lightweight, runs in real time and
integrates seamlessly with YOLOv8. Compared to Deep SORT, it achieves
similar or better tracking accuracy while avoiding the computational overhead
of an additional embedding network. (Zhang et al., 2021)

To determine the most suitable object tracking algorithms for this

system, a scoring matrix is used based on five key criteria, which are accuracy,
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speed, ease of integration, computational cost and scalability. Each algorithm is

rated on a scale from 1 (poor) to 5 (excellent). Table 2.6 shows the scoring

matrix for selection of object tracking model.

Table 2.6: Scoring Matrix for Selection of Object Tracking Algorithms

DEEP

Criteria KCF SORT SORT ByteTrack
Tracking 3 4 5 5
Accuracy

Speed 5 5 3 5

Ease o_f 3 5 4 5

Integration
Computational 5 5 5 4
Cost
Reswtan_ce to 9 3 4 4
Occlusion
Scalability 4 5 3 5
Total Score 22 27 21 28

Based on the evaluation, ByteTrack emerges as the most suitable

tracking algorithm for this application. Although Deep SORT offers the highest

accuracy, its greater computational demands and slightly slower speed make it

less ideal for a high-throughput, resource constrained environment. KCF excels

in speed and scalability but falls behind in both tracking precision and resistance

to occlusion. By contrast, ByteTrack achieves the best balance of accuracy, real-

time speed, low computational cost and robustness against occlusion. Its

seamless integration with YOLOv8 makes it ideal for maintaining consistent

object identities on a moving conveyor, ensuring reliable robotic pick up in

multi object waste sorting scenarios.
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2.6 Summary

The literature review for this automated waste sorting system provides insights
across mechanical, actuation and machine vision to identify the most effective
components. Delta robot is recommended as the optimal choice due to their
exceptional cycle times and compact work envelopes. Among end effectors,
vacuum grippers provide the best balance of gentle handling and high
throughput for lightweight recyclables, outperforming mechanical claws,
adhesives and electrostatic solutions in versatility and cycle speed. For motor of
conveyor, the JGB37-545 gear motor was selected for the conveyor because of
its reliable torque output, continuous duty capability and suitability for medium-
load applications., while the NEMA 23 stepper motor offers the precision and
holding torque required for the slider’s lateral traverse.

For the machine vision, YOLOvV8 stands out as the most practical
object detection model, delivering real time inference with strong mean average
precision suitable for the varied shapes and sizes of plastics, paper and
aluminium. To maintain object identities across fast moving frames, the
ByteTrack was chosen, as it combines real-time performance with high
robustness to occlusion and identity switching. Its seamless integration with
YOLOVS8 ensures stable tracking performance under realistic waste sorting
conditions.

In conclusion, these components, including Delta robot, vacuum
gripper, JGB37-545 gear motor, NEMA 23 stepper, YOLOvV8 and ByteTrack,
form a high efficiency solution for automated waste sorting system that

maximizes throughput, accuracy and system reliability.



24

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter presents the methodology carried out for the development of the
automated waste sorting system, covering the design, fabrication and integration
phases. A systematic approach was followed to ensure that each subsystem,
including mechanical, electrical and machine vision, was developed in a
structured and coordinated manner. A work plan, including a Gantt chart and
defined milestones, is presented to illustrate how the project was managed and

executed within the allocated 14-week duration.

3.2 System Overview

The automated waste sorting system is designed to integrate mechanical,
electrical and machine vision for real-time waste detection and sorting. The
workflow begins with the conveyor belt, which continuously transports waste
items under the overhead camera. The camera captures real-time video footage
and streams it to a laptop, where the YOLOV8 model processes each frame to
identify and classify waste objects.

Once identified, the system calculates the coordinates of each waste
item on the conveyor. Then, the waste coordinates are transmitted to the Delta
X robot, which is mounted on a slider mechanism to extend its working range
across the full conveyor width. The robot executes pick-and-place operations
based on the received coordinates, controlled via Python programming and G-
code instructions. The slider and conveyor subsystems are controlled separately
using an ESP32 microcontroller. The conveyor speed dynamically adjusts
according to the waste load in order to ensure efficient sorting.

During pickup, a digital infrared (IR) sensor attached to the vacuum
gripper detects physical contact between the gripper and the waste item. If
contact is confirmed, the system signals the gripper to lift the item and place it
into the assigned dropping area. This feedback mechanism reduces failed
pickups and ensures reliable handling of waste items with varying heights.
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A Graphical User Interface (GUI) provides an interactive platform for
system monitoring and control. The GUI displays real-time camera footage,
allows the user to start, stop or exit the system and enables assignment of
different waste categories to designated dropping areas. The GUI also records
the number of picked items.

Overall, the system integrates machine vision (YOLOvV8 with
ByteTrack), robotic actuation (Delta X robot with vacuum gripper), mechanical
actuation (conveyor belt and slider), sensing (IR sensor) and electronic control
(ESP32 microcontroller) into a fully functional automated waste sorting
machine. Figure 3.1 shows Schematic Diagram of Waste Sorting Machine.
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Figure 3.1: Schematic Diagram of Waste Sorting Machine

Fabrication of the Conveyor System

The conveyor system is designed with a working surface of 0.3m x 1m width,
suitable for handling continuous stream of various waste materials. The
conceptual design and fabrication process of conveyor system will be discussed

in this section.



26

3.3.1 Conceptual Design of Conveyor System
For this conveyor system, the drive mechanism utilizes a JGB37-545 DC gear
motor (200 RPM) connected to the head roller via a pulley system with a 1:5
speed reduction ratio. The motor is controlled by a BTS7960 motor driver,
which is interfaced with an ESP32 microcontroller. This setup allows for
adjustable control of motor speed and direction, ensuring synchronization of the
conveyor movement with other subsystems. Power is supplied by a 12V, 10A
switched mode power supply (SMPS).

The conveyor frame is constructed using aluminium profile extrusions
(2020 and 2040 types), providing high rigidity, modularity and ease of assembly.
A belt tightening mechanism is incorporated to maintain proper tension,
reducing slippage and ensuring reliable operation. The motor bracket is
designed to allow for custom fitting. To validate the design, static simulation
was conducted to verify that the frame stiffness and bracket strength were
sufficient to withstand the expected motor torque. The detailed simulation
parameters and results are provided in the Appendix A.

The rollers are fabricated from PVC pipes mounted over aluminium
cylindrical shafts, while the conveyor deck surface is formed from three layers
of plastic corrugated board, offering a lightweight yet durable surface for

smooth material transport.

Table 3.1: Electrical Components of Conveyor System

Component Name Quantity Picture

Motor JGB37-545 1
gear motor
Motor BTS7960

Controller Motor Driver
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Microprocessor ESP32 1
Switched
Power Supply | Mode Power 1
Supply

3.3.2  Fabrication of Conveyor Belt

The fabrication of the conveyor system was carried out using machines available
at the UTAR workshop, such as the turning machine and drilling machine. The
conveyor system was fabricated using aluminium profiles (2040 and 2020) as
the main frame structure. The profiles were first measured and marked to the
desired lengths and cut using a horizontal bandsaw. After cutting, bolt holes
were drilled at the appropriate locations to mount the pillow bearings.

The rollers were manufactured by preparing aluminium shafts through
turning process to achieve the required diameter and smooth surface finish.
These shafts were then press-fitted into PVC pipes to form lightweight rollers.
The conveyor surface was made from corrugated plastic boards, which were
measured and cut to the required dimensions using a saw. The motor bracket,
designed specifically to fit the selected gear motor, was fabricated using 3D
printing. After all mechanical parts were fabricated, the components were
assembled using T-nuts, bolts, L-brackets and washers to form a conveyor belt.

A sprocket with 80 teeth was mounted on the head roller, while a
smaller sprocket with 16 teeth was mounted on the gear motor shaft. Both
sprockets were linked using a GT2 timing belt, providing a reliable 1:5 reduction
ratio for smooth torque transfer and speed control of the conveyor. The
completed assembly resulted in a fully functional conveyor belt as shown in

Figure 3.2.
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Figure 3.2: Picture of Conveyor Belt

3.4 Fabrication of the Slider
The slider subsystem provides 240 mm of lateral mobility for the robot arm,
allowing it to traverse the full width of the conveyor. The conceptual design and

fabrication of slider will be discussed in this section.

3.4.1  Conceptual Design of Slider

The slider was designed using two SUS304 stainless steel shafts with a diameter
of 10 mm, providing sufficient rigidity and wear resistance for repeated sliding
motion. The shafts were supported by four SK10 linear shaft holders, which
were mounted onto the frame of the existing Delta X robotic arm.

Linear motion was achieved using SC10UU linear ball bearings
installed on the shafts. The Delta X robotic arm was directly mounted onto these
linear bearings, enabling smooth horizontal travel along the slider’s span. This
design minimized backlash while maintaining a compact profile.

For actuation, the system employed a NEMA 23 stepper motor coupled
with a GT2 timing belt and pulley system, with an idler sprocket installed at the
opposite end of the slider to maintain belt tension. The timing belt was fixed to
the moving plate that carried the robotic arm, ensuring synchronized and
repeatable motion along the slider’s 240 mm travel range. The motor is
controlled by a TMC2209 motor driver, which is interfaced with an ESP32
microcontroller. Power is supplied by a 12V, 10A switched mode power supply
(SMPS).
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A static simulation was conducted to evaluate the deflection of the
shafts under the expected load of the robotic arm. The maximum deflection was
required to be within 1 mm to ensure precise pick-and-place performance. The
simulation results confirmed that the shafts met this requirement. The detailed

parameters and result are documented in Appendix B.

Table 3.2: Electrical Components of Slider

Component Name Quantity Picture

NEMA 23
Motor Stepper Motor 1

Motor TMC2209 1
Controller Motor Driver
Microprocessor ESP32 1
Switched
Power Supply | Mode Power 1
Supply

3.4.2  Fabrication of Slider

The fabrication of the slider was mainly an assembly process involving pre-
purchased mechanical components. First, four SK10 linear shaft supports were
bolted onto the main machine frame to provide rigid support points. Next, two
SUS304 steel shafts, which are 10 mm in diameter and 500 mm in length, each
equipped with SC10UU linear bearings, were mounted into the SK10 supports.

The Delta X robotic arm was then directly installed onto on a moving plate and
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the plate was mounted onto the SC10UU bearings, enabling smooth linear
motion along the shafts.

For actuation, a NEMA 23 stepper motor was installed at one end of
the frame and an idler sprocket at the opposite end. A timing belt was fixed to
the moving plate and looped through the motor pulley and idler sprocket to
provide synchronized, backlash-free motion. Proper belt tensioning was ensured
during assembly to minimize slippage and maintain positional accuracy. The

completed assembly resulted in a fully functional slider as shown in Figure 3.3.

Figure 3.3: Picture of Slider

35 Machine Vision

This section describes the design and implementation of the machine vision
subsystem, which enables real-time detection, classification and tracking of
waste items on the conveyor. YOLOVS, deep learning model used in the project,
provides high-accuracy, millisecond-scale inference, while ByteTrack, an
object tracking algorithm maintains object identities across frames, ensuring

reliable pick-and-place coordination

3.5.1 Dataset Collection

The deep learning model employed in this project is YOLOVS8. The initial step
involved collecting a comprehensive dataset for training purposes. This dataset
was sourced from various environments, including the actual scenes at the

plastic sorting facility and online platforms such as Roboflow. The dataset



31

encompassed different types of waste materials, including plastic, paper and
aluminium. All images in the dataset maintain a resolution of 640 x 360 pixels.

Table 3.1 presents the types of waste materials along with the estimated number

of labels.
Table 3.3: Waste Material Types in Dataset Images
Class Waste Material Type Estimated Number of Labels
Plastic bottle
00 (Plastic) 100
01 Beverage Carton 100
(Paper)
02 Aluminium Can 100

(Aluminium)

Following the collection, image annotation was conducted. Each waste
item in the dataset was annotated according to its type using the Computer
Vision Annotation Tool (CVAT) platform, which offers a suite of tools and
algorithms for annotating images. Post-annotation, the dataset was exported in
the YOLO format, wherein each image is accompanied by a text file detailing
the detected objects' classes and coordinates. Subsequently, the dataset was split
into training, validation and testing subsets in accordance with the YOLO
format to facilitate deep learning model training.

3.5.2  Vision Training
Upon completion of the annotation process, the YOLOvV8 deep learning model
was trained using the annotated dataset. The training process incorporated
libraries such as OpenCV, which provided a real-time optimized computer
vision library and Ultralytics YOLO, the latest advancement in the YOLO series
known for its enhanced performance and efficiency. To augment the diversity
of the training dataset, data augmentation techniques like flipping and scaling
were applied.

During training, the model's performance was evaluated based on
precision, recall and mean average precision (mAP) metrics. These metrics were

computed by comparing the training results with the validation dataset,
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providing insights into the model's accuracy in identifying and detecting various
types of waste materials.

Hyperparameter tuning was performed during training, adjusting
parameters such as epochs, batch size and learning rate to enhance the model's
performance. At the conclusion of the training process, two versions of the deep
learning model were selected, which were the first with the highest mean
average precision, indicating optimal accuracy in object detection and the
second from the final training epoch. Both models underwent real-time

application testing to determine the most suitable model for deployment.

3.5.3  Object Tracking Algorithm

While the YOLOv8 model was proficient in object detection, it may
occasionally missed detections or lose track of objects across frames,
particularly when objects were in motion on the conveyor. To mitigate this, the
ByteTrack algorithm was integrated to enhance multi-object tracking
performance.

ByteTrack built on the principles of SORT by combining high-
confidence and low-confidence detections during data association. Unlike
SORT, which discards low-confidence detections, ByteTrack used them as
secondary candidates when matching tracks. This strategy significantly reduced
ID switches and track fragmentation, which were common in real-world waste
sorting scenarios where partial occlusion or overlapping items occur.

Similar to SORT, ByteTrack employed a Kalman Filter to predict
object positions between frames, while the Hungarian algorithm was used to
assign new detections to existing tracks efficiently. By leveraging both motion
prediction and confidence-based association, ByteTrack maintained robust and
consistent tracking of waste items on the conveyor.

To ensure reliable memory management, tracks were cleared if an
object left the frame and remained undetected beyond a predefined time window,
thus optimizing computational resources. This approach allowed the vision
system to maintain stable object identities for the robotic arm, ensuring precise

pick-and-place coordination.
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3.6 System Assembly and Integration

The final stage of the methodology involved assembling all subsystems
including mechanical, electrical and software, into a fully functional automated
waste sorting machine. This ensured that the conveyor, slider, robotic arm,

sensors and vision system worked seamlessly together.

3.6.1 Assembly of Mechanical Components

The conveyor belt was rigidly fixed to the frame of the Delta X robot arm, as
shown in Figure 3.4, to ensure a stable relative position between the transport
system and the robotic workspace. This alignment was critical for accurate

coordination between object detection and robotic pick-and-place operations.

Figure 3.4: Assembly of Conveyor Belt and Frame of Delta X Robot Arm

The camera was securely mounted onto the robot arm frame using a
custom 3D-printed bracket, ensuring precise positioning and minimizing
vibration during operation. Similarly, the IR sensor near the suction nozzle, as
shown in Figure 3.5, was fixed in place using a 3D-printed holder, which
provided reliable stability and ensured consistent contact detection with waste

items.
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Figure 3.5: Picture of IR Sensor

The dropping boxes, as shown in Figure 3.6, were positioned adjacent
to the conveyor system to receive sorted waste items, with their placement

optimized for efficient reach of the robotic arm and slider system.

Figure 3.6: Picture of Dropping Boxes

3.6.2  Wiring and Electronics Setup

All electrical components were first tested individually to verify their
functionality before integration. After successful testing, the motor drivers and
ESP32 microcontroller were mounted onto the robot arm frame using custom
3D-printed holders, ensuring secure placement and accessibility for wiring.
Figure 3.7 shows the physical placement of the power supply, motor controller

and microcontroller (ESP32).
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Figure 3.7: Placement of Power Supply, Motor Controller and ESP32

The wiring process was carried out using jumper wires with heat-shrink
tubing applied at connections to improve insulation and durability. Special
attention was given to the routing of cables for moving components, such as the

slider and robotic arm, to prevent entanglement or obstruction during operation.

3.6.3  System Coding and Control Flow

The control system was developed incrementally, with functions implemented
and tested individually to ensure stability and correctness before full integration.
Initially, the system was tested on a stationary conveyor, where YOLOV8 was
used to detect waste items and the Delta X robot arm performed basic pick-and-
place operations without considering conveyor motion. Once the stationary tests
were successful, the moving conveyor was introduced, and the vision system
tracked objects on the belt, sending corresponding coordinates to the robotic
arm for dynamic pick-and-place tasks.

To accommodate waste items of different heights, variable Z-axis
picking was implemented, allowing the arm to adjust its vertical position during
grasping, with feedback from the IR sensor confirming successful contact with
the items. A graphical user interface (GUI) was also integrated to enable real-
time monitoring and control, including start/stop operations, waste category
assignment to designated drop boxes and live camera feed visualization. Figure
3.8 shows the Graphical User Interface (GUI) implemented for the automated

waste sorting system.
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Figure 3.8: Graphical User Interface

The final integrated code coordinated the conveyor via the ESP32, the
slider and the Delta X robot arm, synchronizing inputs from the vision system
and IR sensor. This modular development approach ensured that each
subsystem was individually verified before being incorporated into the complete
automated waste sorting workflow. The full source code is provided in

Appendix C.

3.7 Work Plan

3.71 Gantt Chart

A Gantt chart will be utilized to plan and manage the project's timeline over a
14-week period. This visual tool will outline key tasks, their durations and
dependencies, ensuring efficient coordination and timely completion. The
primary tasks include the fabrication of the conveyor and slider systems,
machine vision model training, system integration, testing and evaluation, report
writing, presentation preparation and system improvement. Figure 3.9 and 3.10
show the Gantt Chart for FYP1 and FYP2
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Figure 3.9: Gantt Chart for FYP 1
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Gantt Chart for FYP 2

Milestones and Deliverables

The project was carried out in a structured manner, with progress tracked in two-

week intervals to ensure timely completion of tasks.

In the early phase (Week 2), the conveyor system was upgraded by

integrating a new motor and verifying its functionality. At the same time, the

3D model of the slider was refined and procurement of necessary materials

began. A dataset collection process was also initiated to support the training of

the YOLOV8 machine vision model.
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By Week 4, the conveyor system was fully fabricated and tested.
Integration of the conveyor with the robotic arm (without the slider) was
successfully completed and initial control code was developed and tested. The
materials required for the slider were also purchased during this stage.

At Week 6, all mechanical subsystems, including the conveyor, slider
and robotic arm frame, were completed. Individual control codes for each
subsystem were written and verified to ensure functionality before integration.

The mid-phase milestone (Week 8) focused on integrating all
components into a single system. Functional testing was performed and
additional features such as IR switch were incorporated to enhance reliability.
At this stage, preparation of the final report and project poster was also started.

By Week 10, the ESP32 microcontroller was wired to the machine and
full integration of all subsystems was achieved. Testing and evaluation of the
code and functionality were carried out, confirming that the mechanism for
waste identification performed satisfactorily. Documentation tasks, including
the report, slides and poster, were also actively developed.

In the final stages (Week 12), full testing and evaluation of the
complete system were conducted. Minor code upgrades were implemented to
improve performance and administrative tasks such as preparing the
reimbursement form were completed. Work on the final report and presentation
slides continued to progress toward completion.

Overall, the systematic achievement of milestones ensured that the
project proceeded according to schedule. Each phase delivered tangible
outcomes, including mechanical fabrication, subsystem integration, vision
model development and system-level testing, which collectively contributed to

the final functional prototype of the automated waste sorting machine.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the results obtained from the development, testing and
evaluation of the automated waste sorting system. The findings are organized
according to the performance of individual subsystems, including the conveyor
belt, slider mechanism, robotic arm with vacuum gripper and the machine vision
system. System-level integration results, covering coordination between the
mechanical, electrical and vision components, are also discussed.

In addition to reporting quantitative performance parameters such as
conveyor speed, slider travel range, robotic arm accuracy and detection
precision of the vision model, qualitative observations are included to assess the
reliability and practicality of the system. The results are further compared with
findings from related studies and similar projects to highlight improvements and
limitations.

Finally, this chapter provides a discussion of the system’s overall
performance, emphasizing key challenges encountered, trade-offs made during

development and potential areas for improvement.

4.2 Performance of Fabricated Parts
4.2.1  Conveyor Belt Performance
The fabricated conveyor belt provided a working area of 960 mm x 300 mm,
which was sufficient to transport multiple waste items simultaneously. To
evaluate its performance, two main aspects, which are conveyor speed and load
capacity, were tested

The conveyor normally runs in high speed mode. The low speed mode
was automatically triggered by the controller when a higher number of waste
items were detected on the belt, allowing more time for the vision system and
robotic arm to complete pick and place operations. For speed testing, the time
taken for the belt to move a waste item across a 700 mm travel distance was
recorded under high speed and low speed mode. In high speed mode, the

conveyor required 13.4 seconds to travel 700 mm, corresponding to an average
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speed of 52 mm/s. In low speed mode, the travel time increased to 24.1 seconds,
giving an average speed of 29 mm/s.”

For load capacity testing, incremental weights of 200 g were gradually
placed on the belt. Slippage was first observed at a load of approximately 5.2
kg. This capacity is considered acceptable, as the system is designed primarily
to handle lightweight recyclable waste such as plastic bottles, paper and

aluminium cans, which typically weigh less than 500 g each.

4.2.2  Slider Mechanism Performance

The slider mechanism was implemented to extend the effective working range
of the Delta X robotic arm, allowing it to access a wider area of the conveyor.
The slider provided an additional 120 mm travel distance in both the left and
right directions (total of 240 mm), effectively increasing the robot’s pick and
place coverage.

Performance testing was carried out by measuring the time required for
the slider to move across its full 120 mm span. The travel time was recorded as
1.41 seconds, demonstrating a fast and responsive motion suitable for real-time
waste sorting operations.

To evaluate repeatability, the slider was commanded to perform
continuous left - right - left movements for 100 consecutive cycles. After
completion, the measured positional deviation was found to be within 2 mm of
the original reference point. This error margin is considered acceptable for the
application, as the robotic arm can tolerate slight positional variation without
significant impact on picking accuracy.

Overall, the slider mechanism exhibited reliable, smooth and
repeatable operation, ensuring effective horizontal extension of the robotic

arm’s workspace with minimal loss in positional accuracy.

4.2.3  Delta X Robot Arm Performance

The Delta X robotic arm served as the primary mechanism for waste pick-and-
place tasks. Its horizontal working range was measured to be approximately 240
mm in both the X and Y directions, which was sufficient to cover the conveyor

width when combined with the slider’s extended motion.
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A gripping performance test was carried out to evaluate the
effectiveness of the vacuum gripper on different waste materials. The test
procedure started with commanding the robot to pick up a waste item, then move
it repeatedly to the left and right in five cycles, simulating potential disturbances
during operation. The objective was to determine whether the gripper could
maintain its hold on the item under dynamic conditions.

The results of the test are summarized in Table 4.1, categorizing
materials into those that passed, meaning they remained securely gripped and
those that failed, meaning they slipped or detached during the motion. Failures
were mainly observed with plastics and aluminium cans. For plastics,
deformation occurred when the gripper applied suction, since thin or flexible
surfaces tend to bend, reducing the sealing area and causing air leakage.
Additionally, many plastic items had uneven or curved surfaces, which made it
difficult for the gripper to achieve full contact. Aluminium cans faced a similar
issue. Their cylindrical shape and tendency to roll reduced stability during
lateral shaking, making them more prone to slipping. In contrast, paper-based
materials typically presented flat and porous surfaces, enabling more reliable
suction and resulting in a higher success rate.

Table 4.1: Gripping Performance Test of Vacuum Gripper

Material Passed Failed

Plastic

Aluminium




42

Paper

Another gripping performance test was carried out to evaluate the
effectiveness of the vacuum gripper on waste materials of different heights. It is
important to note that the machine vision system did not have the capability to
determine the height of waste items. To address this, an IR sensor was equipped
on the vacuum gripper to detect when the gripper made contact with an item.
This sensor provided real-time feedback to the system, ensuring that the gripper
could adjust its vertical position accurately. During testing, this setup proved
effective, allowing the system to successfully pick both thick and thin

aluminium cans, as shown in Figure 4.1.

Figure 4.1: Picture of Thin and Thick Aluminium Cans
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4.3 Performance of Machine Vision

The machine vision subsystem was implemented using the YOLOV8 deep
learning model trained on a custom dataset of plastic bottles, aluminium cans
and paper. The performance was evaluated using both training metrics and
confusion matrix analysis to assess accuracy, robustness and generalization

capability.
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Figure 4.2: Training and Validation Loss Curve

Figure 4.2 shows the training and validation loss curves across 100
epochs. Both the training and validation box loss, as well as the class loss,
decreased steadily over time, indicating stable learning and good convergence
of the YOLOV8 model. By the end of the training at epoch 100, all losses were
reduced to well below 0.5, demonstrating that the model achieved a strong fit to
the dataset without signs of underfitting or overfitting.

This convergence implies that the model is capable of accurately
localizing waste items (low box loss) and correctly classifying them into their
respective categories (low class loss). As a result, the trained model is reliable
for real-time waste detection tasks, providing consistent bounding box precision

and high classification accuracy across different types of waste.
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1.0 1

0.9

0.8

0.7

score

0.6

0.5

—— Precision
Recall

— mMAP@O0.5

0.4 1 — mMAP@0.5:0.95

T T T T T T
0 20 40 60 80 100
Epoch

Figure 4.3: Evaluation Metrics Curve

Figure 4.3 shows the evaluation metrics of the YOLOv8 model across
100 epochs, including precision, recall, mMAP@50 and mAP@50-95. Precision
reached approximately 0.98, indicating that the model produced very few false
positives. This means that the model rarely misclassifying background or other
materials as waste. Recall improved to 0.97, showing that nearly all waste items
present in the dataset were correctly detected. The mMAP@50 value achieved
around 0.95, reflecting strong detection accuracy when using a 50% IloU
threshold, while the stricter mAP@50-95 reached 0.91, confirming that the
model maintained reliable detection performance across a wide range of loU
thresholds.

These results demonstrate that the trained YOLOvV8 model not only
achieved high detection accuracy but also generalized well across different

waste types, sizes and shapes.
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Figure 4.4: Normalized Confusion Matrix

The normalized confusion matrix for the trained model, as shown in
Figure 4.4, highlights the classification performance across the three waste
categories. The model achieved perfect classification for plastics and aluminium,
with 100% accuracy and only negligible confusion with the background. In
contrast, paper items were slightly more challenging, with 96% correctly
classified but some instances being misclassified as background. This
misclassification is likely due to the similarities in colour and texture between
paper and the conveyor background, especially under varying lighting
conditions. Overall, the results confirm that the YOLOvV8 model is highly
reliable in distinguishing between plastics, aluminium and paper, with only
minor limitations for paper detection. With further dataset augmentation,
particularly under different lighting and background scenarios, the model’s
robustness for paper classification could be further improved.

In real time conveyor testing, the machine vision subsystem achieved
an average processing speed of approximately 6 frames per second (FPS) on the
laptop. This performance was measured while running the YOLOV8 detection
model with a confidence threshold of 0.35 and an loU threshold of 0.6,

balancing detection accuracy with computational efficiency. The achieved FPS
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was sufficient for the conveyor’s operating speed, ensuring that no waste items
passed through undetected.

Overall, the real-time performance confirmed that the vision subsystem
satisfied the project’s requirements for high accuracy, low-latency inference and
reliable multi-object tracking. While the FPS achieved was modest compared to
GPU-based implementations reported in the literature, it proved sufficient for
the intended application, demonstrating the system’s practicality and scalability

under resource-constrained conditions.

4.4 System Testing and Evaluation

The final prototype was tested to evaluate its functionality, accuracy and
reliability under both controlled and mixed-waste scenarios. The evaluation
focused on three main aspects, which are sorting accuracy, picking speed and
long-term reliability.

4.4.1  Sorting Accuracy

Sorting accuracy was assessed through two test setups, including single-item
tests, which examined the detection and pick-and-place performance for each
waste category and mixed-waste tests, which evaluated the system’s
effectiveness under more realistic operating conditions. Two key performance
measures were considered, including YOLO detection accuracy and pick-and-
place success rate. Detection accuracy was determined by manually observing
the real-time GUI feed, such as shown in Figure 4.5 and verifying whether the
labels assigned by the model were correct, expressed as the ratio of correctly
labelled items to the total number of items observed. The pick-and-place success
rate was calculated as the ratio of successful pickups and placements to the total
number of pickup attempts.
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Figure 4.5: Real-time GUI Feed with Assigned Label

In the single-item tests, each category was tested over 10 repetitions
using 5 items per trial. For aluminium cans, the YOLO detection accuracy
reached 100%, while the pick-and-place success rate was 92%. Failures
occurred mainly due to the cylindrical cans rolling during pickup. For plastic
bottles, the detection accuracy was 96%, but the pick-and-place success rate
dropped to 48 percent. This performance indicates that the machine vision is
model able to identify items correctly but the pick-and-place operation has low
success rate. This was largely due to the IR sensor’s inability to detect contact
with transparent materials, which reduced pickup reliability. In contrast, paper
achieved a detection accuracy of 94% and a pick-and-place success rate of 98%.
Although occasional misclassifications occurred under bright lighting
conditions, the flat surface of paper allowed for consistently stable gripping.

In the mixed-waste tests, a set of 5 plastics, 5 aluminium cans and 5
paper items was placed together and one class is ignored at a time as there are
only two dropping areas. This testing process was repeated 5 times. The
detection accuracy achieved was 100% for aluminium, 98.6% for plastic and
98.6% for paper. For pick-and-place performance, aluminium achieved a
success rate of around 93.3%, while paper remained the most reliable with over
97.3% success. Plastics, however, continued to pose challenges, with a success
rate of 46.6% due to transparency, shape irregularities and sensor detection

failures. These results indicate that while the vision system was consistently
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accurate across all waste categories, the physical handling of plastics remains a

limiting factor in overall system performance.

4.4.2  Picking Speed

The average processing speed of the system was evaluated by measuring the
time taken from waste detection to successful pickup. This was calculated by
dividing the total number of successfully picked items by the total elapsed time
and then averaging the results across multiple trials.

The system achieved a throughput of 8 - 15 items per minute,
depending largely on the distribution and position of waste on the conveyor.
Items located closer to the centreline were picked more quickly, as the slider
required less horizontal travel, whereas items near the edges took longer due to
the additional motion required. Similarly, item height influenced processing
speed. Taller items required less downward travel of the robotic arm, resulting
in faster pickups, while shorter items necessitated greater vertical movement,

slightly reducing efficiency.

4.4.3 Reliability Testing

A continuous operation test was conducted over a duration of 20 minutes, during
which the conveyor, slider, robotic arm and vision system operated without
major faults. Minor failures were observed in the pickup of plastic items, but
the system recovered without interruption.

However, a significant issue identified was the gradual loss of
positional accuracy in both the robotic arm and the slider. Since the system lacks
a feedback mechanism, it relies solely on the precision control of the stepper
motors. Over extended operation, particularly after 15 - 20 minutes of
continuous movement, the coordinates began to drift. This misalignment may
have been caused by accumulated step errors or occasional collisions with
obstacles, resulting in the robot no longer knowing its exact position. This
limitation highlights the need for additional position feedback mechanisms,
such as encoders or limit switches, to ensure long-term accuracy and reliable

operation.
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4.5 Discussion of Findings

The experimental results of the developed waste sorting system were evaluated
against both the project objectives and findings from related studies. The
discussion focuses on detection accuracy, pick-and-place success rates,
throughput and challenges in handling specific waste types.

In single-item tests, the YOLOV8 detection accuracy achieved was 100%
for aluminium, 96% for plastic and 94% for paper. The corresponding pick-and-
place success rates were 92% for aluminium, 48% for plastic and 98% for paper.
These results demonstrate that while the detection system performs at a high
level, the physical execution of gripping and sorting plastics is a major limitation.

A comparable study, PLC-Controlled Intelligent Conveyor System with
Al-Enhanced Vision for Efficient Waste Sorting (Almtireen et al., 2025), also
applied YOLOvV8 and reported classification accuracies above 95% across
plastics, paper and metals. Our system’s detection accuracy is consistent with
this work. However, the pick-and-place success rate for plastics is notably lower,
highlighting that reliable handling of irregular or transparent items is still an
unresolved issue.

The system processed between 8 - 15 items per minute depending on
waste distribution and positioning on the conveyor. This throughput is lower
than that reported in commercial optical sorting systems, which often achieve
tens or even hundreds of items per minute by using high-speed conveyors,
multiple lanes and industrial-grade actuators. Research systems also tend to
simplify operating conditions to boost throughput. While our system prioritised
affordability and modularity, its speed limitation reflects the trade-off between
academic prototyping and industrial-scale equipment.

The most significant challenge observed was the handling of plastic
items, especially transparent bottles and those with irregular surfaces. Detection
occasionally misclassified plastics under bright lighting as aluminium and more
critically, the IR sensor failed to register contact due to the transparency of the

material. This resulted in a pick-and-place success rate of only 48% for plastics.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This project successfully developed an automated waste sorting system that
integrates machine vision, robotic actuation and electronic control into a
functional prototype. The first objective, to develop a robotic system equipped
with computer vision for accurate detection and classification of various waste
types, was achieved through the successful integration of a YOLOv8-based
machine vision model with the Delta X robotic arm and a supporting conveyor
- slider mechanism. The vision system achieved detection accuracies of up to
100% for aluminium, 96% for plastics and 94% for paper.

The second objective, to automate the sorting process to ensure
consistent and accurate waste segregation, was fulfilled by combining vision-
based classification with robotic actuation and electronic control. The Delta X
robotic arm with vacuum gripper successfully performed pick-and-place
operations, achieving 92% success for aluminium and 98% for paper. Although
plastics posed challenges due to irregular shapes and transparency, the system
nonetheless demonstrated consistent automation of the sorting process under
controlled conditions.

The third objective, to evaluate the system’s performance in terms of
sorting accuracy, processing speed and reliability, was met through systematic
testing. The prototype achieved an overall throughput of 8 - 15 items per minute,
depending on waste distribution and position and remained operational over a
continuous 20-minute test without major faults. While throughput remains
modest compared to industrial systems, the results confirm that the prototype is
reliable for small-scale applications.

In summary, this project has successfully demonstrated the feasibility
of integrating deep-learning based vision with robotic automation for waste
sorting. The system achieved its intended aims and provided valuable insights
into the challenges of handling plastics and ensuring long-term positional
accuracy. Despite the limitations, the work establishes a strong foundation for
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future improvements and represents a step toward scalable, intelligent waste

management solutions.

5.2 Recommendations for future work

To further enhance the performance and reliability of the automated waste
sorting system, several improvements are recommended for future development.
In terms of end - effector design, adopting a more advanced gripper, such as a
vacuum system powered by a stronger motor or a hybrid gripper that combines
suction and mechanical grasping, would improve the handling of irregularly
shaped or smooth-surfaced materials. The IR sensor currently used for
confirming successful pickups could be replaced with an ultrasonic sensor or a
force sensor, which would offer more reliable detection across different material
types, including transparent plastics.

For mechanical safety and positional accuracy, installing limit switches
on all moving parts, including the conveyor, slider and robotic arm, would not
only prevent over-travel but also mitigate long-term positional drift by
providing consistent reference points, thereby reducing the need for frequent
recalibration.

Other than that, the machine vision model could be expanded to include
additional waste categories such as glass, rubber and other recyclables, thereby
increasing the versatility and practicality of the system in real - world
applications. To support this, the dataset should be expanded with a larger
number of training images for each class, ensuring balanced representation and
improving the model’s ability to generalize under varied lighting, texture and

orientation conditions.
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APPENDICES
Appendix A: Static Simulation of Motor Bracket
This appendix documents the static simulation performed on the 3D-printed
motor bracket used to mount the JGB37-545 gear motor on the conveyor frame.

The motor bracket was fabricated using PETG. Table A.1 tabulates the material
properties used in the simulation.

Table A.1: Material Properties Used in Simulation

Property Value
Young’s modulus 0.8 GPa
Poisson’s ratio 0.38
Density 350 kgm
Yield strength 150 MPa
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Figure A.1: Displacement Distribution of the Motor Bracket



56

von Mises (N/m*2)
1.153e+06

._ 1.038e+08

- 9.225e+05

_ 8.072e+05
-~ 5819e+05
= 5.766e+05

4.613e+05

. 3460e+05

2.307e+05
1.154e+05
1.377e+02

P Vield strength: 1.500e +07

Figure A.2:VVon Mises Stress Distribution of the Motor Bracket

Figures A.1 and A.2 show the displacement and von Mises stress
distribution of the motor bracket. It can be observed that the maximum
displacement and von Mises stress are 0.0695 mm and 1.153 MPa. The
maximum von Mises stress is much lower than the assumed yield strength (150
MPa). This indicates that the motor bracket is structurally adequate to withstand
the applied motor loads with large safety margin. Furthermore, the maximum

deflection (0.0695 mm) is also negligible.
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Appendix B: Static Simulation of Slider Shaft

This appendix presents the static simulation analysis of the stainless steel shafts,
which are 10 mm in diameter and 500 mm in length, used in the slider
mechanism. The shafts support the Delta X robotic arm via three SC10UU linear
bearings and their stiffness is critical to ensuring precise pick-and-place
performance. The maximum allowable shaft deflection was set at 1 mm, based

on accuracy requirements for robotic positioning.

Slider Shaft A

Figure A.3: Slider Shafts with Different Loading Scenarios

There are two different slider shafts with two different loading
scenarios as shown in Figure A.3. For slider shaft A, which only have a single
SC10UU load, the load condition corresponds to one SC10UU bearing
supporting approximately one-third of the Delta X robotic arm’s weight (4 kg /
3 = 1.33 kg). The load was applied across a 35 mm contact range positioned at
the midpoint of the 500 mm shaft, where maximum deflection is expected.
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Figure A.4: Displacement Distribution of the Slider Shaft A

P Vield swength: 2.068e <08

Figure A.5:VVon Mises Stress Distribution of the Slider Shaft A

Figures A.4 and A.5 show the displacement and von Mises stress
distribution of the slider shaft A. It can be observed that the maximum
displacement and von Mises stress are 0.091 mm and 8.273 MPa. The maximum
von Mises stress is significantly lower than the assumed vyield strength of
SUS304 stainless steel (200 MPa), providing a large safety margin. Moreover,
the maximum deflection of 0.091 mm is well below the allowable deflection

limit of 1 mm.

For Slider Shaft B, the shaft is supported by two SC10UU bearings
separated by 130 mm. Each bearing carries approximately one-third of the Delta
X robotic arm’s weight (1.33 kg each) distributed over a 35 mm contact range.
The load was applied across a 200 mm contact range positioned at the midpoint

of the 500 mm shaft, where maximum deflection is expected.
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Figure A.6: Displacement Distribution of the Slider Shaft B
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Figure A.7:VVon Mises Stress Distribution of the Slider Shaft B

Figures A.6 and A.7 show the displacement and von Mises stress
distribution of the slider shaft B. It can be observed that the maximum
displacement and von Mises stress are 0.136 mm and 14.92 MPa. The maximum
von Mises stress is significantly lower than the assumed yield strength of
SUS304 stainless steel, providing a large safety margin. Moreover, the
maximum deflection of 0.136 mm is well below the allowable deflection limit

of 1 mm.



60

Appendix C: Full Code

This appendix contains the source code used for the automated waste sorting
system. The system consists of two main components. The first component is
C++ code, which controls the motor systems and receives feedback from the IR
sensor using the ESP32. The second component is Python code, which manages
the machine vision system, including YOLOV8 object detection, robot arm
control for pick-and-place coordination and the graphical user interface (GUI).

C++ Code (PlatformlO / ESP32):

#include <Arduino.h>

stepsPerRevolution = 6500;
stepperEnabled =
maxDelay = 200;
minDelay 80;

rampSteps = 1000;

setup() {
Serial.begin(115200);

ledcAttachPin( >, 90);
ledcSetup(@, 20000, 8);

pinMode(

pinMode (



pinMode ( );
pinMode( )
digitallWrite( );

Serial.println("System Ready");

stepMotor( delayTime) {
digitalWrite( , );
delayMicroseconds(delayTime);
digitalWrite( , );
delayMicroseconds(delayTime);

moveStepperRamp ( dir, steps) {
digitalWrite( 9 Ve
digitalWrite( , dir);

actualRamp = rampSteps;
if (rampSteps > steps / 2) actualRamp = steps / 2;

for ( i=0; i< steps; i++) {
currentDelay;

if (i < actualRamp) {
currentDelay = maxDelay - ((maxDelay - minDelay) * i /
actualRamp);

}

else if (i >= steps - actualRamp) {
rampDownIndex = i - (steps - actualRamp);
currentDelay = minDelay + ((maxDelay - minDelay) *
rampDownIndex / actualRamp);

}

else {
currentDelay = minDelay;

}

stepMotor(currentDelay);

¥
digitallWrite( );
¥

Lloop() {

if (Serial.available()) {




cmd = Serial.read();

if (emd == 'R") {
ledcWrite(@, 255);

¥

else if (cmd == 'L")
ledcWrite(o, 127);

¥
else if (cmd == 'S")
ledcWrite(0, 0);

}
else if (cmd == '"1") {
moveStepperRamp ( , SstepsPerRevolution);
}
else if (cmd == '3") {
moveStepperRamp ( , stepsPerRevolution);
}
}

ir_state = digitalRead(
if (ir_state == ) {
Serial.println("TOUCHED");
} else {
Serial.println("NOT_TOUCHED");

}

delay(590);

Python Code (Machine Vision, Pick-and-Place & GUI):

import threading

import tkinter as tk

from tkinter import ttk, messagebox
from PIL import Image, ImageTk
import cv2

import serial

import time

from queue import Queue

from ultralytics import YOLO
import numpy as np
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robot = serial.Serial("COM10", 115200, timeout=1)
time.sleep(2)

esp = serial.Serial("COM12", 115200, timeout=1)
time.sleep(2)

send_gcode(cmd) :

robot.write((cmd + "\n").encode())

while robot.in_waiting:
print(robot.readline().decode().strip())

last ir state = "NOT_TOUCHED"
read_ir():
last _ir state
while esp.in_waiting > ©:
msg = esp.readline().decode(errors="ignore").strip()
if msg ["TOUCHED", "NOT_TOUCHED"]:
last_ir_state = msg
return last _ir state

conveyor_start():
esp.write(b'R")

conveyor_low():
esp.write(b'L")

conveyor_stop():
esp.write(b'S")

model = YOLO("runs/detect/train3/weights/newbest2.pt")
class_names = model.names

cap = cv2.VideoCapture(0)

cap.set(3, 649)

cap.set(4, 489)
cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, ©.25)
cap.set(cv2.CAP_PROP_EXPOSURE, -3)
cap.set(cv2.CAP_PROP_GAIN, ©)

M _affine = np.array([[©.0000, ©.5889, -141.7406],
[0.6870, -0.0059, -401.4029]],
dtype=np.float32)




webcam_to_robot(x, y):
M_affine
pt = np.array([x, y, 1], dtype=np.float32)
X, Y = M affine @ pt
return int(-X), int(-Y)

Z_SAFE = -280

Z PICK = -300

IDLE_X, IDLE_Y, IDLE Z = @, 0, -264
WORKSPACE_LIMIT = 120

WASTE_SPEED = 10

T PICK = 2.8

DROP_LOCATIONS = {
"left": (150, @, -290),
"right": (-150, @, -290)

shared = {

"mapping": {"plastic": "Left", "aluminium": "Right", "paper":
"Ignore"},

"counters": {"plastic": @, "aluminium": @, "paper": 0},

"frame": ,

"program_running":

"calibrating":

lock = threading.Lock()

detection_memory = {}
target queue = Queue()
robot_busy =
conveyor_fast =

send_gcode("G28")

vision task():
detection_memory, waste_count, robot_ busy
while shared["program running"]:




ret, frame = cap.read()
if ret:
break

if shared["calibrating"]:

time.sleep(0.2)
continue

now = time.time()

conveyor fast = (@ if len(detection memory) >= 2 else 1)

if shared["run"]:
if conveyor fast ==
conveyor_low()
else:
conveyor_start()

else:
conveyor_stop()

results = model.track(
frame,
conf=0.35,
iou=0.6,
agnostic_nms=
persist= R
tracker="bytetrack.yaml",
verbose=

if results results[0].boxes
len(results[0@].boxes) > 0:
for box in results[@].boxes:
x1, y1, x2, y2 =
box.xyxy[@].cpu().numpy().astype(int)
cls_id = int(box.cls[@].cpu().numpy())
cls name = class names[cls id]
conf = float(box.conf[@].cpu().numpy()) if
else 0.0
cv2.rectangle(frame, (x1, yl), (x2, y2), (@, 255,
label = f"{cls_name} {conf "
cv2.putText(frame, label, (x1, yl - 8),




cv2.FONT_HERSHEY_SIMPLEX, 0.6, (O,
255, 0), 2)

with lock:
shared[ "frame"] = frame.copy()

robot_busy results results[@].boxes

for box in results[@].boxes:
x1, yl1, x2, y2 =
box.xyxy[@].cpu().numpy().astype(int)
cx, cy = (x1 + x2) // 2, (y1 +y2) // 2
cls_id = int(box.cls[@].cpu().numpy())
cls name = class names[cls_id].lower()
track_id = int(box.id.cpu().numpy()) if box.id
else
if track_id
continue

if track_id detection_memory:
detection_memory[track_id] = {"first_seen":
now, "last seen": now,

cy), "cls": cls_name}
else:
detection_memory[track id]["last seen"] = now
detection_memory[track_id]["pos"] (cx, cy)

detection_memory[track id]["cls"] cls name

for obj_id, data in list(detection_memory.items()):
if now - data["first seen"] >= 1.0:
cx, cy = data["pos"]
rx, ry = webcam_to robot(cx, cy)

ry _pred = ry - (WASTE_SPEED * (T_PICK / 2 if
conveyor_fast == @ else T_PICK))

if abs(rx) <= WORKSPACE_LIMIT

abs(ry_pred) <= WORKSPACE_LIMIT:

target_queue.put({"id": obj_id, "rx": rx,
"ry": ry_pred, "cls": data["cls"]})

print(f"[LOCKED] Target {data['cls']
ID={obj_id} at ({rx},{ry_pred})")

detection_memory.pop(obj id,

break

if now - data["last seen"] > 2:




detection_memory.pop(obj id,

robot_ task():
robot_busy
while shared["program running"]:
if shared["calibrating"]:

time.sleep(0.2)
continue
try:
target = target_queue.get(timeout=0.2)

except:
continue

robot _busy =
rx, ry, cls name = target["rx"], target["ry"],
target["cls"]

with lock:
mapping = shared["mapping"].copy()
counters = shared["counters"]

mapped = mapping.get(cls_name, "Ignore").lower()
if mapped == "ignore":
print(f"[ROBOT] Ignoring {cls name}")
robot_busy =
time.sleep(0.5)
continue

drop _key = "left" if mapped == "left" else "right"
drop_x, drop_y, drop_z = DROP_LOCATIONS.get(drop_key, (-
120, 120, -270))

print(f"[INFO] Picking {cls_name} at X={rx}, Y={ryl}")
send_gcode(f"GO1 X{rx} Y{ry} Z{Z_SAFE}")
send_gcode("M3")

z, y, touched = Z PICK, ry,
while z > -350:
z -=5
send_gcode(f"GoO1 Y{y} Z{z-15}")
y -= (3 if conveyor_ fast == 0 else 6)
time.sleep(0.1)
print(read ir())




if read ir() == "TOUCHED":
touched =
print("[IR] Object touched!")
send_gcode(f"GO1 Z{Z SAFE}")
break
print(read _ir(),"
if touched:
send_gcode("M5")
print(f"[INFO] Missed {cls_name.upper()}")
send_gcode(f"GO1 X{IDLE_X} Y{IDLE_Y} Z{IDLE_Z}")
else:
time.sleep(0.2)
esp.write(b'1l' if mapped == "left" else b'3")
send_gcode(f"GO1 X{drop_x} Y{drop_y} Z{drop_z}")
time.sleep(1.5)
send_gcode("M5")
print(f"[INFO] Dropped {cls name.upper()}")
esp.write(b'3' if mapped == "left" else b'1l")
send_gcode(f"GO1 X{IDLE_X} Y{IDLE_Y} Z{IDLE_Z}")
with lock:
counters[cls name] = counters.get(cls name, 0) +

time.sleep(1.5)
robot_busy =

run_calibration():

with lock:
shared[ "calibrating"] =
shared["run"] =

conveyor_stop()

print (" [CALIBRATION] System paused. Starting calibration...™)

M_affine

robot_coords = [
(‘12@, @), (@) @)) (1291 @)J
(-120, -120), (@, -120), (120, -120),
(-120, -240), (0, -240), (120, -240)




cam_points = []

real points =
current_index =
calibration_started =

mouse callback(event, x, y, flags, param):
current_index, calibration_started
if calibration_started event == cv2.EVENT_LBUTTONDOWN
current_index < len(robot coords):
cam_points.append([x, y])
real_points.append(robot_coords[current_index])
print(f"[0K] Captured: Camera=({x}, {y}) o
Robot={robot_coords[current_index]}")
current_index += 1

cap

cap.set(3, 649)

cap.set(4, 480)
cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, ©.25)
cap.set(cv2.CAP_PROP_EXPOSURE, -3)
cap.set(cv2.CAP_PROP_GAIN, 9)

cap_calib = cap

cv2.namedWindow("Calibration™)
cv2.setMouseCallback("Calibration™, mouse_callback)

print("[CALIBRATION] Starting...")
send_gcode("G28")
send_gcode("GO1 X0 YO Z-368")

while
ret, frame = cap_calib.read()
if ret:
break

for i, (cx, cy) in enumerate(cam_points):
cv2.circle(frame, (int(cx), int(cy)), 5, (0, @, 255),

cv2.putText(frame, str(i+l), (cx+5, cy-5),
cv2.FONT_HERSHEY SIMPLEX, 0.6, (©,255,0),

msg = (f"[{current_index+1}/9] Click for
robot_coords[current_index]}"
if calibration_started current_index <
len(robot coords)




else "Press U to start calibration" if
calibration_started

else "Done")
cv2.putText(frame, msg, (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)

cv2.imshow("Calibration", frame)
key = cv2.waitKey(1) & OxFF

if key == ord("u"):
send_gcode("G28")
calibration_started =

print("[CALIBRATION] Started. Click the 9 points in
order.")

if key == ord("q") (calibration_started
current_index >= len(robot coords)):
break

cv2.destroyAllWindows ()

if len(cam_points) >= 3:
cam_points_np = np.array(cam_points, dtype=np.float32)

real points_np = np.array(real_points, dtype=np.float32)

M new, _ = cv2.estimateAffine2D(cam_points_np,
real points_np)
if M _new
M affine = M new
print("\n[RESULT] Updated Affine Matrix:")
print(M_affine)
else:
print("[ERROR] Calibration failed.")

send_gcode("G28")

with lock:

shared[ "calibrating"] =
print (" [CALIBRATION] Done. System resumed.™)
send_gcode("G28")

gui_thread():

root = tk.Tk()

root.title("Waste Sorting Control™)
root.geometry("980x560")




frame_top = ttk.Frame(root, padding=8)
frame_top.grid(row=0, column=0, sticky="nw"

on_start():
with lock:

shared["run"] =
print("[GUI] Start pressed")

on_stop():

with lock:
shared["run"] =
send_gcode("G28")
conveyor_stop()

print("[GUI] Stop pressed")

on_reset():
with lock:
for k in shared["counters"]:
shared[ "counters"][k] = ©
update counters()
print("[GUI] Counters reset")

on_exit():
if messagebox.askokcancel ("Exit", "Stop system and

return

with lock:
shared["program_running"] =
shared["run"] =

root.quit()

root.destroy()

ttk.Button(frame_top, text="Start",
command=on_start).grid(row=0, column=0, padx=6, pady=6)
ttk.Button(frame_top, text="Stop",
command=on_stop).grid(row=0, column=1, padx=6, pady=6)
ttk.Button(frame_top, text="Reset Counters",
command=on_reset).grid(row=0, column=2, padx=6, pady=6)
ttk.Button(frame_top, text="Exit",
command=on_exit).grid(row=0, column=3, padx=6, pady=6)
ttk.Button(frame_top, text="Calibrate",
command=run_calibration).grid(row=0, column=4, padx=6, pady=6)

frame_map = ttk.LabelFrame(root, text="Class - Drop Area",
padding=8)
frame_map.grid(row=1, column=0, sticky="nw", padx=8, pady=6)




options = ["Left", "Right", "Ignore"]

mapping_vars = {}
make callback(cls):
cb(v):
with lock:
shared[ "mapping"][cls] = v
print(f"[GUI] mapping {cls} -> {v}")
return cb

row_idx = @
for cls in shared["mapping"].keys():
1bl = ttk.Label(frame _map, text=cls.capitalize())
1bl.grid(row=row_idx, column=0, sticky="w", padx=6,
pady=4)
var = tk.StringVar(value=shared["mapping"”][cls])
mapping vars[cls] = var
cb = ttk.OptionMenu(frame_map, var, var.get(), *options,
command=make_callback(cls))
cb.grid(row=row_idx, column=1, sticky="w", padx=6,
pady=4)
row_idx += 1

frame_right = ttk.Frame(root, padding=8)
frame_right.grid(row=0, column=1, rowspan=3, sticky="nsew"

video_label = ttk.Label(frame_right)
video label.grid(row=0, column=0, padx=6, pady=6)

counter_frame = ttk.LabelFrame(frame_right, text="Picked
counters", padding=8)

counter_frame.grid(row=1, column=0, sticky="nsew", padx=6,
pady=6)

counter_labels = {}
for i, cls in enumerate(shared["counters"].keys()):
1bl = ttk.Label(counter_frame, text=f"{cls.capitalize()
0")

lbl.grid(row=i, column=0, sticky="w", padx=4, pady=2)
counter_labels[cls] = 1bl

update_counters():
with lock:
counters = shared["counters"].copy()
for k, 1bl in counter_labels.items():
1bl.config(text=Ff"{k.capitalize()}:
counters.get(k,0)}")
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update_video():
with lock:
frame = shared["frame"].copy() if shared["frame"]
else
if frame
try:
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im = Image.fromarray(rgb).resize((640, 480))
imgtk = ImageTk.PhotoImage(image=im)
video_label.imgtk = imgtk
video_label.config(image=imgtk)
except Exception as e:
print("[GUI VIDEO ERR]", e)
update counters()
root.after (30, update_video)

update_video()
root.protocol ("WM_DELETE_WINDOW", on_exit)
root.mainloop()

threading.Thread(target=vision_task, daemon=
threading.Thread(target=robot_task, daemon=
threading.Thread(target=gui_thread, daemon=

.start()
.start()
.start()

while shared["program_running"]:
time.sleep(0.5)
finally:
print(“Closing...")
cap.release()
cv2.destroyAllWindows ()
conveyor_stop()
send_gcode("G28")
send_gcode("M5")
robot.close()
esp.close()
print(“"Closed.")




