

AUTOMATION OF PLASTIC WASTE SORTING

THROUGH ROBOTIC TECHNOLOGY

CHONG YOONG KIAT

UNIVERSITI TUNKU ABDUL RAHMAN

AUTOMATION OF PLASTIC WASTE SORTING

THROUGH ROBOTIC TECHNOLOGY

CHONG YOONG KIAT

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechanical

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name Chong Yoong Kiat

ID No. : 21UEB04922

Date : 22th September 2025

ii

COPYRIGHT STATEMENT

© 2025, CHONG YOONG KIAT. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Bachelor of Mechanical Engineering with

Honours at Universiti Tunku Abdul Rahman (UTAR). This final year project

report represents the work of the author, except where due acknowledgement

has been made in the text. No part of this final year project report may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the prior

written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Liang Meng Suan, my

supervisor, for his invaluable advice, continuous guidance and encouragement

throughout the course of this project. His patience and constructive feedback

have been instrumental in ensuring the successful completion of this work.

 My sincere appreciation also goes to Dr. Ting Chen Hunt, my co-

supervisor, for his generous support and assistance. In particular, I am grateful

to him for lending the Delta X robot, which served as a critical component of

this project. His technical insights and suggestions greatly contributed to the

development of the system.

 I would also like to extend my thanks to the Lee Kong Chian Faculty

of Engineering and Science (LKC FES), Universiti Tunku Abdul Rahman, for

providing access to laboratory facilities. The opportunity to use a dedicated lab

room for setting up and testing the prototype allowed me to carry out the

fabrication and experimentation effectively.

 Finally, I would like to acknowledge my family and friends for their

constant encouragement, understanding and moral support during the entire

duration of this project.

iv

ABSTRACT

This project presents the design, development, fabrication and evaluation of an

automated waste sorting system integrating computer vision, robotic actuation

and electronic control. The primary objective was to automate the classification

and segregation of recyclable waste to improve accuracy and efficiency

compared to manual sorting. The methodology involved fabricating a conveyor

belt system, designing a slider mechanism to extend the Delta X robotic arm’s

reach and equipping the robot with a vacuum gripper for pick-and-place

operations. A YOLOv8 deep learning model, trained on a custom dataset of

waste images, was integrated with the ByteTrack algorithm to provide real-time

object detection and tracking. An ESP32 microcontroller and a Python-based

GUI coordinated the conveyor, slider, robot arm and vision subsystems for

seamless operation. Experimental testing demonstrated high detection

accuracies of 100% for aluminium, 96% for plastics and 94% for paper. Pick-

and-place success rates were 92% for aluminium, 98% for paper and 48% for

plastics, the latter being affected by transparency, irregular surfaces and

limitations of the IR sensor. The overall throughput achieved was 8 - 15 items

per minute, with reliable continuous operation over 20 minutes, though

positional drift of the robot arm and slider was observed due to the lack of

feedback mechanisms. These results indicate that the prototype successfully met

its objectives, demonstrating the feasibility of low-cost AI-enabled robotic

sorting.

Keywords: waste sorting; YOLOv8; machine vision; robotic arm; automation;

object detection

Subject Area: Robotics

v

TABLE OF CONTENTS

DECLARATION i

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xi

LIST OF APPENDICES xii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 4

1.6 Contribution of the Study 4

1.7 Outline of the Report 5

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Robot 6

2.2.1 Robot Arm Type 6

2.2.2 Gripper Types 10

2.3 Motor 14

2.4 Object Detection Model 17

2.5 Object Tracking Algorithms 20

2.6 Summary 23

3 METHODOLOGY AND WORK PLAN 24

3.1 Introduction 24

vi

3.2 System Overview 24

3.3 Fabrication of the Conveyor System 25

3.3.1 Conceptual Design of Conveyor System 26

3.3.2 Fabrication of Conveyor Belt 27

3.4 Fabrication of the Slider 28

3.4.1 Conceptual Design of Slider 28

3.4.2 Fabrication of Slider 29

3.5 Machine Vision 30

3.5.1 Dataset Collection 30

3.5.2 Vision Training 31

3.5.3 Object Tracking Algorithm 32

3.6 System Assembly and Integration 33

3.6.1 Assembly of Mechanical Components 33

3.6.2 Wiring and Electronics Setup 34

3.6.3 System Coding and Control Flow 35

3.7 Work Plan 36

3.7.1 Gantt Chart 36

3.7.2 Milestones and Deliverables 37

4 RESULTS AND DISCUSSION 39

4.1 Introduction 39

4.2 Performance of Fabricated Parts 39

4.2.1 Conveyor Belt Performance 39

4.2.2 Slider Mechanism Performance 40

4.2.3 Delta X Robot Arm Performance 40

4.3 Performance of Machine Vision 43

4.4 System Testing and Evaluation 46

4.4.1 Sorting Accuracy 46

4.4.2 Picking Speed 48

4.4.3 Reliability Testing 48

4.5 Discussion of Findings 49

5 CONCLUSIONS AND RECOMMENDATIONS 50

5.1 Conclusions 50

5.2 Recommendations for future work 51

REFERENCES 52

vii

APPENDICES 55

viii

LIST OF TABLES

Table 2.1: Scoring Matrix for Selection of Robot Arm 10

Table 2.2: Scoring Matrix for Selection of Gripper 13

Table 2.3: Scoring Matrix for Selection of Motor for Conveyor

System 16

Table 2.4: Scoring Matrix for Selection of Motor for Slider 16

Table 2.5: Scoring Matrix for Selection of Object Detection Model 19

Table 2.6: Scoring Matrix for Selection of Object Tracking

Algorithms 22

Table 3.1: Electrical Components of Conveyor System 26

Table 3.2: Electrical Components of Slider 29

Table 3.3: Waste Material Types in Dataset Images 31

Table 4.1: Gripping Performance Test of Vacuum Gripper 41

Table A.1: Material Properties Used in Simulation 55

ix

LIST OF FIGURES

Figure 1.1: Landfill at Teluk Mengkudu, Perak 1

Figure 1.2: Manual Waste Sorting Process 2

Figure 2.1: Picture of Delta Robot (DeltaX Robot, 2020). 7

Figure 2.2: Picture of SCARA Robot 8

Figure 2.3: Picture of Cartesian Robot 8

Figure 2.4: Picture of Articulated Robot 9

Figure 2.5: Picture of Vacuum Grippers 11

Figure 2.6: Picture of Mechanical Grippers 12

Figure 2.7: Picture of Adhesive Grippers 12

Figure 2.8: Picture of Electrostatic Grippers 13

Figure 2.9: Picture of 775 DC Motor 14

Figure 2.10: Picture of JGB37-545 Gear Motor 15

Figure 2.11: Picture of NEMA 23 Stepper Motor 15

Figure 2.12: Mechanism of YOLO 18

Figure 3.1: Schematic Diagram of Waste Sorting Machine 25

Figure 3.2: Picture of Conveyor Belt 28

Figure 3.3: Picture of Slider 30

Figure 3.4: Assembly of Conveyor Belt and Frame of Delta X Robot

Arm 33

Figure 3.5: Picture of IR Sensor 34

Figure 3.6: Picture of Dropping Boxes 34

Figure 3.7: Placement of Power Supply, Motor Controller and ESP32

 35

Figure 3.8: Graphical User Interface 36

Figure 3.9: Gantt Chart for FYP 1 37

x

Figure 3.10: Gantt Chart for FYP 2 37

Figure 4.1: Picture of Thin and Thick Aluminium Cans 42

Figure 4.2: Training and Validation Loss Curve 43

Figure 4.3: Evaluation Metrics Curve 44

Figure 4.4: Normalized Confusion Matrix 45

Figure 4.5: Real-time GUI Feed with Assigned Label 47

Figure A.1: Displacement Distribution of the Motor Bracket 55

Figure A.2: Von Mises Stress Distribution of the Motor Bracket 56

Figure A.3: Slider Shafts with Different Loading Scenarios 57

Figure A.4: Displacement Distribution of the Slider Shaft A 58

Figure A.5: Von Mises Stress Distribution of the Slider Shaft A 58

Figure A.6: Displacement Distribution of the Slider Shaft B 59

Figure A.7: Von Mises Stress Distribution of the Slider Shaft B 59

xi

LIST OF SYMBOLS / ABBREVIATIONS

CNN Convolutional Neural Network

CVAT Computer Vision Annotation Tool

DOF Degrees Of Freedom

FYP Final Year Project

IoU Intersection Over Union

KCF Kernelized Correlation Filter

mAP Mean Average Precision

NMS Non-Maximum Suppression

R-CNN Region-based Convolutional Neural Network

SCARA Selective Compliance Assembly Robot Arm

SORT Simple Online and Realtime Tracking

SSD Single-Shot Detector

SMPS Switched Mode Power Supply

SVM Support Vector Machine

YOLO You-Only-Look-Once

xii

LIST OF APPENDICES

Appendix A: Static Simulation of Motor Bracket 55

Appendix B: Static Simulation of Slider Shaft 57

Appendix C: Full Code 60

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In Malaysia, daily municipal solid waste generation has increased rapidly from

25,000 tonnes in 2013 to approximately 39,000 tonnes in 2024. The rapid rise

in waste production is driven primarily by population growth, lifestyle changes

and rapid urbanization (International Trade Administration, 2024). The import

of waste, which weight to over 68,000 tonnes in 2022, has only worsened this

situation (World Bank. org, 2022). This leads to clogged drains, urban flooding

and escalating greenhouse gas emissions from anaerobic decomposition in

overflowing landfills (Chuah et al., 2023).

 Plastic, paper and aluminium, materials that people use almost every

day, contribute 21.9 %, 15.3 % and 6 % of total municipal waste respectively

(Zainal, 2024). Although these wastes are highly recyclable, Zainal (2024)

reported that Malaysia’s national recycling rate stood at just 35.38 % in 2023,

with only 24 % of plastic waste produced in 2019 being recycled. The remainder

is sent to landfills or mismanaged disposal sites. Figure 1.1 shows the landfill at

Teluk Mengkudu, Perak. International Trade Administration (2024) warns that

if waste generation continues at this alarming rate, Malaysia will exhaust its

landfill capacity by 2050.

Figure 1.1: Landfill at Teluk Mengkudu, Perak

 To mitigate the issue, the government has introduced measures such as

the RM0.20 plastic bag in 2017, the “Roadmap Towards Zero Single Use

2

Plastics 2018–2030” and widespread public awareness campaigns. However,

mixed collection systems and reliance on manual segregation at Materials

Recovery Facilities mean that waste often arrives commingled. Manual sorting

is slow, inefficient, prone to contamination and exposes workers to physical and

health risks (Dodampegama et al., 2024). Hence, implementation of automated

waste sorting system that combine machine vision for waste identification with

robot arms for waste separation can improve throughput, reduce contamination

and enhance worker safety.

1.2 Importance of the Study

Waste sorting is the critical link between waste collection and remanufacturing.

If collected waste is not accurately separated, downstream processes suffer from

contamination, degraded material quality and increased remanufacturing costs.

Figure 1.2 shows the waste-sorting process performed by human labor. In

Malaysia, poor waste sorting capabilities result in significant quantities of

valuable recyclables being lost to landfills. By integrating machine vision

technologies with robotic arms, the identification and separation of waste

materials such as plastics, paper and aluminium can be automated. This

automation not only improves sorting accuracy and consistency but also reduces

reliance on manual labour, minimizing workers’ exposure to unhygienic and

hazardous environments while lowering operational manpower costs.

Figure 1.2: Manual Waste Sorting Process

1.3 Problem Statement

In Malaysia, the current waste sorting process at Materials Recovery Facilities

depends almost entirely on manual labour, resulting in low efficiencies and

3

inconsistent separation of recyclables. Workers in the recycling sector earn an

average of MYR 38,081 per year (approximately MYR 18 per hour), despite

performing physically demanding and hazardous tasks in cramped, unsanitary

conditions. On average, human pickers can sort only 20 - 40 waste per minute

and sorting accuracy declines rapidly as fatigue sets in, necessitating time

consuming validation and re-sorting process. Moreover, prolonged manual

handling without adequate training or protective equipment exposes workers to

elevated risks of musculoskeletal injuries and cuts from sharp or contaminated

materials.

 Implementation of machine-vision and robotic systems can automate

the waste sorting process. Advanced waste sorting solutions are already

available in other countries. For instance, AMP Robotics has offered AI-

powered waste sortation services, which increase sorting efficiency and reduce

human involvement. However, high purchase fees, taxes, delivery fees and

maintenance fees remain barriers. Furthermore, these imported systems are

often optimized for waste compositions in Europe or North America, making

them less effective at processing Malaysia’s unique mix of plastics, paper and

aluminium. Hence, an automated sorting system that integrates machine vision

with a robotic arm on a conveyor system that designed locally can tackle such

issues, effectively reduce the system implementation costs.

1.4 Aim and Objectives

This project aims to design and manufacture an automated waste sorting system

that capable of identifying and segregating different types of wastes on a

conveyor belt. The types of waste are plastic (Plastic Bottle), paper (Beverage

Carton) and aluminium (Aluminium Can). The following objectives are to be

completed to achieve the aim:

i. To develop a robotic system equipped with computer vision for

accurate detection and classification of various waste types.

ii. To automate the sorting process in order to ensure consistent

and accurate waste segregation.

iii. To evaluate the system’s performance by measuring sorting

accuracy, processing speed and reliability.

4

1.5 Scope and Limitation of the Study

This project’s scope encompasses the design and manufacture of an automated

waste sorting system for recycling facilities in Malaysia. Deep learning models

will be trained to identify and classify plastics, paper and aluminium waste

based on visual features such as size, shape and colour. An object tracking

algorithm will then track and assign a specific ID to each identified waste. A

conveyor belt will transport waste and its speed will be adjusted dynamically

according to the number of wastes in the working range to maximize picking

efficiency. A linear slider will extend the robot arm’s horizontal reach across

the full width of the conveyor, ensuring complete coverage and increased

picking speed. Finally, a sensor that installed on the gripper will confirm

successful grasp of each piece of waste.

 There are a few of limitation for the project. First, the deep learning

algorithm is trained on a dataset limited to three materials, which are plastic,

paper and aluminium can. This may restrict its ability to generalize to other

common waste types such as glass or rubber. Second, this study employs a

small-scale neural network architecture for rapid prototyping. Thus, scaling up

to a production grade model will require substantially more computational

resources and may incur longer inference times, potentially affecting real time

performance. Third, the current prototype has been designed on a small scale,

suitable for demonstration purposes. This limited scale may not effectively

handle large volumes of waste or operate efficiently in industrial settings where

higher throughput is required.

1.6 Contribution of the Study

This study contributes to the advancement of low-cost automated waste sorting

by integrating deep-learning based computer vision with robotic and mechanical

actuation into a functional prototype. It demonstrates the feasibility of using

YOLOv8 combined with the ByteTrack tracking algorithm for real-time

detection and classification of common waste types, achieving high levels of

accuracy in distinguishing aluminium, plastic and paper. The development of a

conveyor, slider and robot arm system using commercially available

components, highlights a practical and scalable approach suitable for small-

scale waste management applications. Furthermore, the project provides

5

experimental data and analysis on the challenges of handling irregular and

transparent waste items, contributing to the broader understanding of limitations

in current automated sorting technologies. Overall, the findings of this study

serve as a reference for future research in developing sustainable, affordable and

intelligent waste sorting solutions.

1.7 Outline of the Report

This report is organized into five main chapters. Chapter 1 introduces the

background, problem statement, objectives, scope, contributions and overall

structure of the project. Chapter 2 presents a literature review on related topics,

including robotic arms, gripper types, motors, object detection models and

object tracking algorithms. Chapter 3 explains the methodology and work plan,

covering system overview, fabrication of the conveyor and slider, development

of the machine vision system, integration of hardware and electronics and

coding workflow. Chapter 4 discusses the results and findings, including the

performance of the fabricated parts, evaluation of machine vision, system

testing and comparative analysis with related works. Finally, Chapter 5 provides

conclusions, challenges encountered and recommendations for future work.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter presents a comprehensive review of existing technologies and

research relevant to the development of an automated plastic waste sorting

system. Various types of robotic arms, including Delta, SCARA, Cartesian and

Articulated arms, equipped gripper with different gripping mechanisms, are

studied and compared to determine the most suitable component for the system.

Additionally, different types of motors are evaluated for driving both the

conveyor belt and the slider system.

 On the software side, this chapter examines machine vision, focusing

on deep learning models such as YOLO, SSD and RCNN for real time waste

identification and object tracking algorithms such as including KCF, SORT,

Deep SORT and ByteTrack for identified waste tracking. The goal of this

literature review is to provide the justification for the design choices made in

this project.

2.2 Robot

Robots are programmable, actuated mechanisms with varying degrees of

autonomy that perform tasks in response to internal commands and external

stimuli. According to the international standard ISO 8373, an industrial robot is

defined as “a programmed actuated mechanism with a degree of autonomy to

perform locomotion, manipulation or positioning” (ISO, 2021). These systems

typically exhibit multiple degrees of freedom, allowing precise, repeatable

motions that surpass human endurance and accuracy.

 In this project, a robot arm equipped with gripper is mounted above a

conveyor to automate the pick and place routine of wastes.

2.2.1 Robot Arm Type

In industrial automation, several types of robotic arms are available, each with

its own unique mechanical structure, range of motion and application suitability.

Among the most widely used types are Delta, SCARA, Cartesian and

7

Articulated robot arms (Techman Robot, 2023). For lightweight waste sorting

applications, where high speed and precision are essential but heavy payload

capacity is not, a careful comparison of these arm types is necessary to

determine the most effective solution.

 Delta robot arms, also known as parallel robots, are specially designed

for high speed pick and place tasks. They feature three lightweight arms

connected to a common base, with actuators mounted at the top. This design

allows for minimal moving mass and extremely fast acceleration and

deceleration. As a result, Delta robots, such as the Delta X1 from DeltaX

Robotics, can achieve max speed of 700 mm/s, with typical payload capacity of

up to 0.5 kg, which is more than sufficient for lightweight materials such as

plastic bottles (DeltaX Robot, 2020). Due to their high-speed capabilities, Delta

robots are commonly used in food packaging, pharmaceutical sorting and other

industries that demand rapid material handling (Robots Done Right, 2025).

Their workspace is typically dome-shaped, which can be limiting in range, but

can be overcome with the integration of a linear slider, as proposed in this

project. Figure 2.1 shows the picture of Delta X1 from DeltaX Robotics.

Figure 2.1: Picture of Delta Robot (DeltaX Robot, 2020).

 Selective Compliance Articulated Robot Arm (SCARA) are another

fast and accurate option used in industrial applications. They operate mainly in

the X-Y plane with limited vertical movement, making them ideal for pick-and-

place tasks (Standard Bots, 2025). As shown in Figure 2.2, SCARA robots

typically have four degrees of freedom (DOF): three rotational movements and

one vertical movement. (Flexi Bowl, 2014). However, their range of motion is

more constrained compared to Delta robots and their speed is generally slightly

8

lower due to their heavier mechanical arms (Robots Done Right, 2022). While

suitable for moderately fast sorting tasks, SCARA robots may not meet the

highest speed requirements of waste sorting operations where materials are

rapidly moving on a conveyor.

Figure 2.2: Picture of SCARA Robot

 Cartesian robots, also known as gantry robots, use three linear actuators

aligned with the X, Y and Z axes to provide precise motion in a rectangular

workspace as shown in Figure 2.3. These systems can handle very large

payloads and are relatively easy to program due to their orthogonal structure

(Standard Bots, 2025). They are excellent for tasks that require heavy lifting or

large working areas. However, Cartesian robots are generally slower than Delta

and SCARA robots and their large moving masses make them less suitable for

rapid pick-and-place operations with lightweight objects.

Figure 2.3: Picture of Cartesian Robot

9

 Articulated robots, which resemble a human arm with multiple rotary

joints (typically 5–7 degrees of freedom), offer the most flexible movement.

They are widely used in complex tasks such as welding, painting and part

manipulation that require versatile orientation (Balluff, n.d.). While these robots

can handle high payloads and have broad reach, they are typically slower in

operation due to their heavier joints and require more complex programming

and safety measures. For high-speed, lightweight sorting tasks like those

involved in this project, articulated arms are generally overengineered and less

cost-effective compared to Delta or SCARA robot arm. Figure 2.4 shows an

example of an articulated robot.

Figure 2.4: Picture of Articulated Robot

 To determine the most suitable robot arm type for this lightweight

waste sorting system, a scoring matrix is used based on four key criteria, which

are speed, precision, payload suitability and ease of integration. Each arm type

is rated on a scale from 1 (poor) to 5 (excellent). Table 2.1 shows the scoring

matrix for selection of robot arm.

10

Table 2.1: Scoring Matrix for Selection of Robot Arm

Criteria Delta SCARA Cartesian Articulated

Speed 5 4 3 3

Precision 4 5 4 3

Suitability

for

lightweight

tasks

5 4 3 3

Simplicity &

integration
4 3 3 1

Total Score 18 16 13 10

 Based on the scoring matrix, the Delta robot arm achieves the highest

total score and is therefore selected for this project. Its lightweight construction

and exceptional speed make it the most suitable choice for accurately sorting

moving plastic waste items on a conveyor system. Furthermore, the addition of

a linear slider allows the Delta arm to overcome its workspace limitations,

enabling it to handle a wider area without compromising speed. This

configuration ensures high efficiency in picking, sorting and placing lightweight

recyclable materials such as plastic, paper and aluminium waste.

2.2.2 Gripper Types

Grippers serve as the end effector of a robotic arm, allowing robot to hold, grasp,

manipulate, or transport objects (Dorna Robotics, 2023). In automated waste

sorting system, where throughput and versatility are paramount, the choice of

gripper technology directly influences both the speed of pick-and-place

operations and the ability to handle items of varying shape, size and surface

properties. Consequently, selecting an appropriate gripper, whether based on

suction, mechanical fingers, adhesion, or electroadhesion, is critical to

achieving reliable, efficient sorting performance.

 Vacuum grippers lift objects by creating negative pressure against the

object’s surface. It comprises a vacuum source such as an electric vacuum pump

11

or a venturi system that connects to a gripping interface equipped with vacuum

suction cups (Granta, 2023). They are widely used for picking and placing,

palletizing and depalletizing and loading and unloading (Standard Bot, 2025).

Vacuum suction cups can be made of flexible materials so they partly conform

to curved or uneven surfaces giving them good performance on rounded bottles

and cans. However, porous materials like loose paper can leak air and are harder

to pick by suction. Overall, vacuum grippers excel at rapid handling of smooth

or partially irregular waste, combining high speed with broad applicability.

Figure 2.5 displays a vacuum gripper gripping a paper box with a flat surface.

Figure 2.5: Picture of Vacuum Grippers

 Mechanical grippers typically use fingers or jaws to grip objects. These

grippers can be very fast and reliable. For example, two-finger grippers, such as

the example shown in Figure 2.6, are known to operate in high-speed assembly

lines (Dorna Robotics, 2023). Such grippers can achieve rapid open/close cycles

when handling repeatable, well-defined objects. Multi-finger grippers can

conform around irregular shapes. For instance, underactuated finger grippers in

bin-picking tasks adjust their fingers to grasp assorted parts (Dorna Robotics,

2023). This adaptability lets them handle items of varying geometry. However,

mechanical grippers must often align fingers around the object, which can slow

the cycle compared to a single suction action. Mechanical claws may also risk

dropping deformable items like thin paper or plastic bag that slip from their grip.

In summary, mechanical grippers offer fast cycles and moderate adaptability to

irregular waste.

12

Figure 2.6: Picture of Mechanical Grippers

 Adhesive grippers, as shown in Figure 2.7, use sticky or gecko-inspired

pads to attach to objects. They can attach to flat or rough surfaces without

leaving residue. Since the adhesive relies on shear force instead of normal force

or friction, it can handle fragile items gently without applying too much pressure

(Stanford University, 2015). This allows exceptionally good handling of

irregular or flexible objects. On the downside, adhesives typically require full

contact and time to engage or disengage, making their cycle slower. Moreover,

adhesive surfaces can lose their effectiveness when dirty or dusty, which is

almost certain to occur in a waste handling environment. Overall, adhesive

grippers would have moderate picking speed but high adaptability to diverse

object shapes

Figure 2.7: Picture of Adhesive Grippers

 Electrostatic grippers, as illustrated in Figure 2.8, apply a high-voltage

field to attract and hold objects via electroadhesion (Ackerman, 2014). They can

rapidly attach or release by switching voltage on/off, enabling quick cycles that

are comparable to other high-speed grippers. Electrostatic grippers excel at

lightweight, flat objects but they struggle with bulky 3D items or conductive

metals. Moreover, curved bottles or crumpled items offer less contact area,

13

leading to reduce in electrostatic gripping force. In summary, electrostatic

grippers offer a fast pick rate but limited suitability for 3D irregular shapes.

Figure 2.8: Picture of Electrostatic Grippers

 To identify the most suitable gripper for this waste sorting system, a

scoring matrix was developed using two critical criteria, which are picking

speed and the ability to handle irregularly shaped objects. Each gripper type was

evaluated on a scale from 1 (poor) to 5 (excellent). Table 2.2 shows the scoring

matrix for selection of gripper.

Table 2.2: Scoring Matrix for Selection of Gripper

Criteria Vacuum Mechanical Adhesive Electrostatic

 Picking

Speed
5 4 3 4

Irregular

Object

Handling

4 3 5 2

Total Score 9 7 8 6

 Vacuum grippers achieve the highest combined performance,

reflecting both high cycle rate and broad object compatibility. Other types each

have critical drawbacks. For instance, mechanical claws are fast but less

adaptable, adhesives gripper grasp many shapes but cycle more slowly and

electrostatic gripper grips thin, flat materials only. Thus, a vacuum gripper is

the best choice for gripper of the waste sorting system.

14

2.3 Motor

Motors serve as the driving force of a conveyor system and slider of this waste

sorting system. Selecting the right motors for both the conveyor belt and the

slider is critical to ensure the automated sorting system meets its performance

and reliability targets. For the conveyor, a motor must deliver high rotational

speed, sufficient torque to move loaded belts and sustained operation without

overheating. For the slider, priorities shift toward precise, repeatable motion,

adequate holding torque and moderate travel speed. Three different type of

motor, including 775 DC motor, JGB37-545 Gear Motor and NEMA 23 stepper

motor will be discussed and evaluated to determine the most suitable motor for

both conveyor belt and the slider.

 775 DC motor, as shown in Figure 2.9, is a high-performance brushed

electric motor renowned for its compact yet powerful design. The motor is

optimized for mid to high power applications delivering no-load speeds of

approximately 4,100 RPM at 12 V and up to 8,400 RPM at 24 V and stall torque

is rated near 0.79 Nm (SM Tech, 2019). Widely used in robotic and hobbyist

applications, 775 DC motor offers an excellent speed to size ratio but lacks

precise position control, requiring additional encoders or feedback for accurate

synchronization with sorting task.

Figure 2.9: Picture of 775 DC Motor

 JGB37-545 Gear Motor, as shown in Figure 2.10, is a compact gear

motor that combines a 12 V brushed DC motor with an integrated gearbox. It

provides a wide range of gear reduction ratios, typically yielding speeds

between 6 RPM and 1,000 RPM depending on the version, with torque values

up to above 35 kgcm at lower speeds. This makes it highly adaptable for

medium-load conveyor systems that require steady, continuous operation.

JGB37-545 offers significantly higher torque output, improved durability and

15

smoother performance, making it a practical option for real conveyor

applications where both strength and reliability are needed.

Figure 2.10: Picture of JGB37-545 Gear Motor

 NEMA 23 stepper motor, as shown in Figure 2.11, provides 1.8° step

resolution and a holding torque of approximately 0.6 Nm, delivering precise,

repeatable movements without feedback sensors, which is critical for the slider.

While its maximum unloaded speed is relatively modest, the use of micro

stepping drivers can tailor torque-speed curves to match application needs,

ensuring smooth operation under load. NEMA 23’s robust construction and

constant holding torque make it an excellent choice for positional accuracy.

However, its higher cost and the need for more complex drive electronics add

to system complexity and increase power demands.

Figure 2.11: Picture of NEMA 23 Stepper Motor

 To determine the most suitable motor for the conveyor system and

slider, two scoring matrices are developed using two different set of criteria. For

the conveyor system, the criteria are speed, torque and continuous duty

capability; for the slider, the criteria are positional control, holding torque and

travel speed. Each motor was scored from 1 (poor) to 5 (excellent). Table 2.3

16

and table 2.4 show the scoring matrix for selection of motor for conveyor system

and slider.

Table 2.3: Scoring Matrix for Selection of Motor for Conveyor System

Criteria 775 DC Motor
JGB37-545

Gear Motor

NEMA 23

Stepper Motor

Speed 5 4 3

Torque 4 5 4

Continuous

Duty

Capability

3 5 4

Total Score 12 14 11

 The JGB37-545 gear motor scored the highest overall for torque and

continuous-duty capability while maintaining a decent rotational speed,

resulting in a total score of 14. This reflects its suitability for the conveyor of

the waste sorting system. Consequently, the JGB37-545 gear motor is

recommended for the conveyor, balancing steady torque output, sufficient speed

and reliable continuous operation.

Table 2.4: Scoring Matrix for Selection of Motor for Slider

Criteria 775 DC Motor
JGB37-545

Gear Motor

NEMA 23

Stepper Motor

Positional

Control
2 2 5

Holding

Torque
4 4 4

Travel Speed 5 4 3

Total Score 11 10 12

17

 NEMA 23 stepper motor achieved top marks in precision control and

high holding torque and moderate speed, resulting in total score of 12, which is

well above the threshold for reliable, repeatable slider movement. Thus, NEMA

23 stepper motor is recommended for the slider, offering the high accuracy and

holding power for consistent pick-and-place operations.

2.4 Object Detection Model

In industrial automation, different object detection model categories offer

diverse trade-offs between accuracy, speed and resource requirements. These

include single stage and two stage detectors, each with specific strengths and

weaknesses, influencing their suitability for various applications. Single stage

detectors, such as YOLO and SSD, process the entire image in a single pass.

These models are known for their speed and efficiency, making them suitable

for real-time applications where quick processing is crucial. They typically

achieve a lower accuracy compared to two stage detectors (SharkYun, 2024).

On the other hand, two stage detectors like R-CNN employ a separate region-

proposal step to boost precision at the expense of increased computational

overhead. Selecting the optimal model for conveyor-belt waste sorting thus

requires evaluating detection accuracy, speed, hardware cost and ease of

implementation.

 You-Only-Look-Once (YOLO) is a real-time object detection model

widely used across various applications due to its high speed and accuracy.

YOLO processes an entire image in a single forward pass of a deep

convolutional network, partitioning it into an S×S grid where each cell predicts

B bounding boxes along with confidence scores and class probabilities. The

confidence score reflects both the probability that an object exists within the box

and the predicted intersection over union (IoU) with ground truth. During

training, each object is assigned to the bounding box predictor with the highest

IoU, encouraging specialization among predictors for different sizes or aspect

ratios. At inference time, non-maximum suppression (NMS) prunes overlapping

boxes by retaining only the highest‐confidence detection per object, reducing

false positives and ensuring crisp localization (Joseph et al., 2016). Figure 2.12

summarizes the core steps of how YOLO turns a single image into object

detections in real time.

18

Figure 2.12: Mechanism of YOLO

 YOLO is commonly applied in industrial automation for tasks like

robotic pick-and-place, quality inspection and waste sorting. It is lightweight,

easy to deploy on embedded systems and capable of detecting multiple objects

per frame. YOLO still has some drawbacks, including reduced accuracy in

detecting small or overlapping objects and reliance on predefined anchor boxes.

However, in the newer version, like YOLOv8, many of these issues have been

addressed through improvements such as anchor-free detection, better backbone

architecture and refined training strategies (docs.ultralytics.com, n.d.).

 Single Shot Detector (SSD) is a single stage object detection algorithm

that performs object localization and classification in a single forward pass of

the neural network, making it significantly faster than two-stage detectors like

R-CNN. SSD divides the input image into a grid and generates default bounding

boxes of different aspect ratios and scales at each grid location. During inference,

SSD predicts both the presence of objects and their class scores for each

bounding box. This architecture enables real-time detection with relatively high

accuracy (Liu et al., 2016). One of its main advantages is its ability to balance

speed and accuracy, especially on medium to large objects. However, it has

limitations in detecting small objects, as it relies on lower resolution feature

maps for some detections. SSD also depends on predefined anchor boxes, which

can reduce flexibility in complex scenarios. Despite these limitations, SSD

remains a popular choice for real time applications where inference speed is

critical

 Regions with Convolutional Neural Network features (R-CNN) is a

pioneering two stage detection framework that significantly improved detection

accuracy compared to earlier methods. The R-CNN architecture first generates

19

region proposals using an algorithm like selective search, which identifies

candidate regions in the image that may contain objects. These proposals are

then passed through a convolutional neural network to extract features, which

are subsequently classified using a set of Support Vector Machine (SVM)

classifiers and bounding boxes are refined using linear regressors. R-CNN is

known for its high accuracy and was among the first models to effectively apply

deep learning to object detection. It is particularly useful in medical imaging,

autonomous driving and surveillance applications where detection precision is

crucial. However, R-CNN has notable drawbacks, including slow inference time,

high computational cost and complex training, as it requires multiple separate

training steps for the CNN, SVMs and bounding box regressors. These

limitations led to the development of more efficient successors like Fast R-CNN

and Faster R-CNN. Despite this, R-CNN remains foundational in the evolution

of object detection models

 To determine the most suitable object detection model for this system,

a scoring matrix is used based on two key criteria, which are accuracy, speed,

Hardware cost and ease of integration. Each object detection model is rated on

a scale from 1 (poor) to 5 (excellent). Table 2.5 shows the scoring matrix for

selection of object detection model.

Table 2.5: Scoring Matrix for Selection of Object Detection Model

Criteria YOLOv8 SSD R-CNN

 Accuracy 3 4 5

Speed 4 4 2

Hardware

Cost
4 5 2

Ease of

Integration
5 2 3

Total Score 16 15 12

20

 Based on the scoring matrix, YOLOv8 achieves the highest total score

by achieving an optimal balance across all evaluation criteria. While R-CNN

leads in accuracy, its slower inference speed, higher hardware demands and

more complex integration requirements make it less suited for a real time waste

sorting application. SSD offers strong speed and low hardware cost but falls

short in integration ease and marginally in detection accuracy. In contrast,

YOLOv8 delivers moderate accuracy with real-time performance, requires only

moderate computing resources and integrates seamlessly into existing robotic

and vision frameworks. This combination of speed, affordability and low

implementation overhead makes YOLOv8 the most practical choice for the

waste sorting system.

2.5 Object Tracking Algorithms

Object tracking in a waste sorting system involves linking YOLOv8 detections

across frames to maintain consistent object identities for robotic pick-up.

Several classical and modern trackers can will be discussed in this part,

including KCF, SORT, Deep SORT and ByteTrack.

 Kernelized Correlation Filter (KCF) is a single object tracker that uses

fast Fourier-domain correlation to predict motion. KCF is extremely fast and it

can be implemented in a few lines of code. It generally attains high localization

accuracy under stable conditions, but it struggles with abrupt appearance

changes or occlusions and does not handle scale variation well (KALRA, 2023).

Since it tracks one object per model, KCF must be re-initialized for each new

waste item. This complicates multi-object scenarios. In practice, KCF can be

attached to YOLO bounding boxes as initial regions of interest, but coordinating

many KCF trackers in parallel adds complexity. Overall, KCF’s tracking

accuracy is only moderate for a complex scene, but its speed is excellent. It has

low computational cost and mature implementations. However, it has virtually

no re-identification capability. This means that if a waste item is occluded or

leaves and re-enters the scene, KCF will generally lose it.

 Simple Online and Realtime Tracking (SORT) is a multi-object

tracking framework that builds on YOLO-like detections by applying a Kalman

filter for motion prediction and the Hungarian algorithm for bounding box

association. (Sanyam, 2022). SORT is deliberately minimalistic, as it uses only

21

the box coordinates and a constant velocity motion model. This makes SORT

extremely fast and lightweight. Due to SORT relies entirely on Kalman-filter

predictions and IoU-based matching, SORT produces few false positives but

suffers frequent ID switches if objects intersect or occlude. Integration with

YOLOv8 is straightforward, the tracker simply takes each frame’s detections

and outputs persistent track IDs. The computational cost is negligible and SORT

scales to many objects in real time. Its main weakness is that it does not handle

re-identification. This means that when a waste item is fully occluded or briefly

missed, SORT may drop it as a track.

 Deep SORT extends SORT by adding a learned appearance model for

data association. In practice, Deep SORT extracts a deep “re-ID” feature vector

from each detection crop and uses both motion and appearance similarity in the

association. This substantially improves ID consistency, as Deep SORT can

correctly re-link an object after it reappears and it handles partial occlusion

better than pure SORT (Sanyam, 2022). Its tracking accuracy is higher in

crowded or complex scenes. However, the extra CNN feature extraction makes

Deep SORT heavier. It requires a GPU or powerful CPU and it runs slower than

SORT. Deep SORT remains real-time on modern hardware, but its throughput

is limited by the embedding network. In terms of computational cost, Deep

SORT is significantly higher than SORT because of the neural network. On the

positive side, Deep SORT is a mature, well-tested method and offers robustness

to occlusion and re-appearance that KCF and SORT lack.

 ByteTrack is a recent multi-object tracker that improves on SORT by

using both high-confidence and low-confidence detections in its association

strategy. Instead of discarding low-confidence detections, as SORT does,

ByteTrack assigns them as candidates when IoU matching fails, greatly

reducing ID switches and track fragmentation. This makes ByteTrack especially

strong in real-world waste sorting, where occlusion, overlapping items and

partial visibility are common. ByteTrack is lightweight, runs in real time and

integrates seamlessly with YOLOv8. Compared to Deep SORT, it achieves

similar or better tracking accuracy while avoiding the computational overhead

of an additional embedding network. (Zhang et al., 2021)

 To determine the most suitable object tracking algorithms for this

system, a scoring matrix is used based on five key criteria, which are accuracy,

22

speed, ease of integration, computational cost and scalability. Each algorithm is

rated on a scale from 1 (poor) to 5 (excellent). Table 2.6 shows the scoring

matrix for selection of object tracking model.

Table 2.6: Scoring Matrix for Selection of Object Tracking Algorithms

Criteria KCF SORT
DEEP

SORT
ByteTrack

Tracking

Accuracy
3 4 5 5

Speed 5 5 3 5

Ease of

Integration
3 5 4 5

Computational

Cost
5 5 2 4

Resistance to

Occlusion
2 3 4 4

Scalability 4 5 3 5

Total Score 22 27 21 28

 Based on the evaluation, ByteTrack emerges as the most suitable

tracking algorithm for this application. Although Deep SORT offers the highest

accuracy, its greater computational demands and slightly slower speed make it

less ideal for a high-throughput, resource constrained environment. KCF excels

in speed and scalability but falls behind in both tracking precision and resistance

to occlusion. By contrast, ByteTrack achieves the best balance of accuracy, real-

time speed, low computational cost and robustness against occlusion. Its

seamless integration with YOLOv8 makes it ideal for maintaining consistent

object identities on a moving conveyor, ensuring reliable robotic pick up in

multi object waste sorting scenarios.

23

2.6 Summary

The literature review for this automated waste sorting system provides insights

across mechanical, actuation and machine vision to identify the most effective

components. Delta robot is recommended as the optimal choice due to their

exceptional cycle times and compact work envelopes. Among end effectors,

vacuum grippers provide the best balance of gentle handling and high

throughput for lightweight recyclables, outperforming mechanical claws,

adhesives and electrostatic solutions in versatility and cycle speed. For motor of

conveyor, the JGB37-545 gear motor was selected for the conveyor because of

its reliable torque output, continuous duty capability and suitability for medium-

load applications., while the NEMA 23 stepper motor offers the precision and

holding torque required for the slider’s lateral traverse.

 For the machine vision, YOLOv8 stands out as the most practical

object detection model, delivering real time inference with strong mean average

precision suitable for the varied shapes and sizes of plastics, paper and

aluminium. To maintain object identities across fast moving frames, the

ByteTrack was chosen, as it combines real-time performance with high

robustness to occlusion and identity switching. Its seamless integration with

YOLOv8 ensures stable tracking performance under realistic waste sorting

conditions.

 In conclusion, these components, including Delta robot, vacuum

gripper, JGB37-545 gear motor, NEMA 23 stepper, YOLOv8 and ByteTrack,

form a high efficiency solution for automated waste sorting system that

maximizes throughput, accuracy and system reliability.

24

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter presents the methodology carried out for the development of the

automated waste sorting system, covering the design, fabrication and integration

phases. A systematic approach was followed to ensure that each subsystem,

including mechanical, electrical and machine vision, was developed in a

structured and coordinated manner. A work plan, including a Gantt chart and

defined milestones, is presented to illustrate how the project was managed and

executed within the allocated 14-week duration.

3.2 System Overview

The automated waste sorting system is designed to integrate mechanical,

electrical and machine vision for real-time waste detection and sorting. The

workflow begins with the conveyor belt, which continuously transports waste

items under the overhead camera. The camera captures real-time video footage

and streams it to a laptop, where the YOLOv8 model processes each frame to

identify and classify waste objects.

 Once identified, the system calculates the coordinates of each waste

item on the conveyor. Then, the waste coordinates are transmitted to the Delta

X robot, which is mounted on a slider mechanism to extend its working range

across the full conveyor width. The robot executes pick-and-place operations

based on the received coordinates, controlled via Python programming and G-

code instructions. The slider and conveyor subsystems are controlled separately

using an ESP32 microcontroller. The conveyor speed dynamically adjusts

according to the waste load in order to ensure efficient sorting.

 During pickup, a digital infrared (IR) sensor attached to the vacuum

gripper detects physical contact between the gripper and the waste item. If

contact is confirmed, the system signals the gripper to lift the item and place it

into the assigned dropping area. This feedback mechanism reduces failed

pickups and ensures reliable handling of waste items with varying heights.

25

 A Graphical User Interface (GUI) provides an interactive platform for

system monitoring and control. The GUI displays real-time camera footage,

allows the user to start, stop or exit the system and enables assignment of

different waste categories to designated dropping areas. The GUI also records

the number of picked items.

 Overall, the system integrates machine vision (YOLOv8 with

ByteTrack), robotic actuation (Delta X robot with vacuum gripper), mechanical

actuation (conveyor belt and slider), sensing (IR sensor) and electronic control

(ESP32 microcontroller) into a fully functional automated waste sorting

machine. Figure 3.1 shows Schematic Diagram of Waste Sorting Machine.

Figure 3.1: Schematic Diagram of Waste Sorting Machine

3.3 Fabrication of the Conveyor System

The conveyor system is designed with a working surface of 0.3m × 1m width,

suitable for handling continuous stream of various waste materials. The

conceptual design and fabrication process of conveyor system will be discussed

in this section.

26

3.3.1 Conceptual Design of Conveyor System

For this conveyor system, the drive mechanism utilizes a JGB37-545 DC gear

motor (200 RPM) connected to the head roller via a pulley system with a 1:5

speed reduction ratio. The motor is controlled by a BTS7960 motor driver,

which is interfaced with an ESP32 microcontroller. This setup allows for

adjustable control of motor speed and direction, ensuring synchronization of the

conveyor movement with other subsystems. Power is supplied by a 12V, 10A

switched mode power supply (SMPS).

 The conveyor frame is constructed using aluminium profile extrusions

(2020 and 2040 types), providing high rigidity, modularity and ease of assembly.

A belt tightening mechanism is incorporated to maintain proper tension,

reducing slippage and ensuring reliable operation. The motor bracket is

designed to allow for custom fitting. To validate the design, static simulation

was conducted to verify that the frame stiffness and bracket strength were

sufficient to withstand the expected motor torque. The detailed simulation

parameters and results are provided in the Appendix A.

 The rollers are fabricated from PVC pipes mounted over aluminium

cylindrical shafts, while the conveyor deck surface is formed from three layers

of plastic corrugated board, offering a lightweight yet durable surface for

smooth material transport.

Table 3.1: Electrical Components of Conveyor System

Component Name Quantity Picture

Motor
JGB37-545

gear motor
1

Motor

Controller

BTS7960

Motor Driver
1

27

Microprocessor ESP32 1

Power Supply

Switched

Mode Power

Supply

1

3.3.2 Fabrication of Conveyor Belt

The fabrication of the conveyor system was carried out using machines available

at the UTAR workshop, such as the turning machine and drilling machine. The

conveyor system was fabricated using aluminium profiles (2040 and 2020) as

the main frame structure. The profiles were first measured and marked to the

desired lengths and cut using a horizontal bandsaw. After cutting, bolt holes

were drilled at the appropriate locations to mount the pillow bearings.

 The rollers were manufactured by preparing aluminium shafts through

turning process to achieve the required diameter and smooth surface finish.

These shafts were then press-fitted into PVC pipes to form lightweight rollers.

The conveyor surface was made from corrugated plastic boards, which were

measured and cut to the required dimensions using a saw. The motor bracket,

designed specifically to fit the selected gear motor, was fabricated using 3D

printing. After all mechanical parts were fabricated, the components were

assembled using T-nuts, bolts, L-brackets and washers to form a conveyor belt.

 A sprocket with 80 teeth was mounted on the head roller, while a

smaller sprocket with 16 teeth was mounted on the gear motor shaft. Both

sprockets were linked using a GT2 timing belt, providing a reliable 1:5 reduction

ratio for smooth torque transfer and speed control of the conveyor. The

completed assembly resulted in a fully functional conveyor belt as shown in

Figure 3.2.

28

Figure 3.2: Picture of Conveyor Belt

3.4 Fabrication of the Slider

The slider subsystem provides 240 mm of lateral mobility for the robot arm,

allowing it to traverse the full width of the conveyor. The conceptual design and

fabrication of slider will be discussed in this section.

3.4.1 Conceptual Design of Slider

The slider was designed using two SUS304 stainless steel shafts with a diameter

of 10 mm, providing sufficient rigidity and wear resistance for repeated sliding

motion. The shafts were supported by four SK10 linear shaft holders, which

were mounted onto the frame of the existing Delta X robotic arm.

 Linear motion was achieved using SC10UU linear ball bearings

installed on the shafts. The Delta X robotic arm was directly mounted onto these

linear bearings, enabling smooth horizontal travel along the slider’s span. This

design minimized backlash while maintaining a compact profile.

 For actuation, the system employed a NEMA 23 stepper motor coupled

with a GT2 timing belt and pulley system, with an idler sprocket installed at the

opposite end of the slider to maintain belt tension. The timing belt was fixed to

the moving plate that carried the robotic arm, ensuring synchronized and

repeatable motion along the slider’s 240 mm travel range. The motor is

controlled by a TMC2209 motor driver, which is interfaced with an ESP32

microcontroller. Power is supplied by a 12V, 10A switched mode power supply

(SMPS).

29

 A static simulation was conducted to evaluate the deflection of the

shafts under the expected load of the robotic arm. The maximum deflection was

required to be within 1 mm to ensure precise pick-and-place performance. The

simulation results confirmed that the shafts met this requirement. The detailed

parameters and result are documented in Appendix B.

Table 3.2: Electrical Components of Slider

Component Name Quantity Picture

Motor
NEMA 23

Stepper Motor
1

Motor

Controller

TMC2209

Motor Driver
1

Microprocessor ESP32 1

Power Supply

Switched

Mode Power

Supply

1

3.4.2 Fabrication of Slider

The fabrication of the slider was mainly an assembly process involving pre-

purchased mechanical components. First, four SK10 linear shaft supports were

bolted onto the main machine frame to provide rigid support points. Next, two

SUS304 steel shafts, which are 10 mm in diameter and 500 mm in length, each

equipped with SC10UU linear bearings, were mounted into the SK10 supports.

The Delta X robotic arm was then directly installed onto on a moving plate and

30

the plate was mounted onto the SC10UU bearings, enabling smooth linear

motion along the shafts.

 For actuation, a NEMA 23 stepper motor was installed at one end of

the frame and an idler sprocket at the opposite end. A timing belt was fixed to

the moving plate and looped through the motor pulley and idler sprocket to

provide synchronized, backlash-free motion. Proper belt tensioning was ensured

during assembly to minimize slippage and maintain positional accuracy. The

completed assembly resulted in a fully functional slider as shown in Figure 3.3.

Figure 3.3: Picture of Slider

3.5 Machine Vision

This section describes the design and implementation of the machine vision

subsystem, which enables real-time detection, classification and tracking of

waste items on the conveyor. YOLOv8, deep learning model used in the project,

provides high-accuracy, millisecond-scale inference, while ByteTrack, an

object tracking algorithm maintains object identities across frames, ensuring

reliable pick-and-place coordination

3.5.1 Dataset Collection

The deep learning model employed in this project is YOLOv8. The initial step

involved collecting a comprehensive dataset for training purposes. This dataset

was sourced from various environments, including the actual scenes at the

plastic sorting facility and online platforms such as Roboflow. The dataset

31

encompassed different types of waste materials, including plastic, paper and

aluminium. All images in the dataset maintain a resolution of 640 × 360 pixels.

Table 3.1 presents the types of waste materials along with the estimated number

of labels.

Table 3.3: Waste Material Types in Dataset Images

Class Waste Material Type Estimated Number of Labels

00
Plastic bottle

(Plastic)
100

01
Beverage Carton

(Paper)
100

02
Aluminium Can

(Aluminium)
100

 Following the collection, image annotation was conducted. Each waste

item in the dataset was annotated according to its type using the Computer

Vision Annotation Tool (CVAT) platform, which offers a suite of tools and

algorithms for annotating images. Post-annotation, the dataset was exported in

the YOLO format, wherein each image is accompanied by a text file detailing

the detected objects' classes and coordinates. Subsequently, the dataset was split

into training, validation and testing subsets in accordance with the YOLO

format to facilitate deep learning model training.

3.5.2 Vision Training

Upon completion of the annotation process, the YOLOv8 deep learning model

was trained using the annotated dataset. The training process incorporated

libraries such as OpenCV, which provided a real-time optimized computer

vision library and Ultralytics YOLO, the latest advancement in the YOLO series

known for its enhanced performance and efficiency. To augment the diversity

of the training dataset, data augmentation techniques like flipping and scaling

were applied.

 During training, the model's performance was evaluated based on

precision, recall and mean average precision (mAP) metrics. These metrics were

computed by comparing the training results with the validation dataset,

32

providing insights into the model's accuracy in identifying and detecting various

types of waste materials.

 Hyperparameter tuning was performed during training, adjusting

parameters such as epochs, batch size and learning rate to enhance the model's

performance. At the conclusion of the training process, two versions of the deep

learning model were selected, which were the first with the highest mean

average precision, indicating optimal accuracy in object detection and the

second from the final training epoch. Both models underwent real-time

application testing to determine the most suitable model for deployment.

3.5.3 Object Tracking Algorithm

While the YOLOv8 model was proficient in object detection, it may

occasionally missed detections or lose track of objects across frames,

particularly when objects were in motion on the conveyor. To mitigate this, the

ByteTrack algorithm was integrated to enhance multi-object tracking

performance.

 ByteTrack built on the principles of SORT by combining high-

confidence and low-confidence detections during data association. Unlike

SORT, which discards low-confidence detections, ByteTrack used them as

secondary candidates when matching tracks. This strategy significantly reduced

ID switches and track fragmentation, which were common in real-world waste

sorting scenarios where partial occlusion or overlapping items occur.

 Similar to SORT, ByteTrack employed a Kalman Filter to predict

object positions between frames, while the Hungarian algorithm was used to

assign new detections to existing tracks efficiently. By leveraging both motion

prediction and confidence-based association, ByteTrack maintained robust and

consistent tracking of waste items on the conveyor.

 To ensure reliable memory management, tracks were cleared if an

object left the frame and remained undetected beyond a predefined time window,

thus optimizing computational resources. This approach allowed the vision

system to maintain stable object identities for the robotic arm, ensuring precise

pick-and-place coordination.

33

3.6 System Assembly and Integration

The final stage of the methodology involved assembling all subsystems

including mechanical, electrical and software, into a fully functional automated

waste sorting machine. This ensured that the conveyor, slider, robotic arm,

sensors and vision system worked seamlessly together.

3.6.1 Assembly of Mechanical Components

The conveyor belt was rigidly fixed to the frame of the Delta X robot arm, as

shown in Figure 3.4, to ensure a stable relative position between the transport

system and the robotic workspace. This alignment was critical for accurate

coordination between object detection and robotic pick-and-place operations.

Figure 3.4: Assembly of Conveyor Belt and Frame of Delta X Robot Arm

 The camera was securely mounted onto the robot arm frame using a

custom 3D-printed bracket, ensuring precise positioning and minimizing

vibration during operation. Similarly, the IR sensor near the suction nozzle, as

shown in Figure 3.5, was fixed in place using a 3D-printed holder, which

provided reliable stability and ensured consistent contact detection with waste

items.

34

Figure 3.5: Picture of IR Sensor

 The dropping boxes, as shown in Figure 3.6, were positioned adjacent

to the conveyor system to receive sorted waste items, with their placement

optimized for efficient reach of the robotic arm and slider system.

Figure 3.6: Picture of Dropping Boxes

3.6.2 Wiring and Electronics Setup

All electrical components were first tested individually to verify their

functionality before integration. After successful testing, the motor drivers and

ESP32 microcontroller were mounted onto the robot arm frame using custom

3D-printed holders, ensuring secure placement and accessibility for wiring.

Figure 3.7 shows the physical placement of the power supply, motor controller

and microcontroller (ESP32).

35

Figure 3.7: Placement of Power Supply, Motor Controller and ESP32

 The wiring process was carried out using jumper wires with heat-shrink

tubing applied at connections to improve insulation and durability. Special

attention was given to the routing of cables for moving components, such as the

slider and robotic arm, to prevent entanglement or obstruction during operation.

3.6.3 System Coding and Control Flow

The control system was developed incrementally, with functions implemented

and tested individually to ensure stability and correctness before full integration.

Initially, the system was tested on a stationary conveyor, where YOLOv8 was

used to detect waste items and the Delta X robot arm performed basic pick-and-

place operations without considering conveyor motion. Once the stationary tests

were successful, the moving conveyor was introduced, and the vision system

tracked objects on the belt, sending corresponding coordinates to the robotic

arm for dynamic pick-and-place tasks.

 To accommodate waste items of different heights, variable Z-axis

picking was implemented, allowing the arm to adjust its vertical position during

grasping, with feedback from the IR sensor confirming successful contact with

the items. A graphical user interface (GUI) was also integrated to enable real-

time monitoring and control, including start/stop operations, waste category

assignment to designated drop boxes and live camera feed visualization. Figure

3.8 shows the Graphical User Interface (GUI) implemented for the automated

waste sorting system.

36

Figure 3.8: Graphical User Interface

 The final integrated code coordinated the conveyor via the ESP32, the

slider and the Delta X robot arm, synchronizing inputs from the vision system

and IR sensor. This modular development approach ensured that each

subsystem was individually verified before being incorporated into the complete

automated waste sorting workflow. The full source code is provided in

Appendix C.

3.7 Work Plan

3.7.1 Gantt Chart

A Gantt chart will be utilized to plan and manage the project's timeline over a

14-week period. This visual tool will outline key tasks, their durations and

dependencies, ensuring efficient coordination and timely completion. The

primary tasks include the fabrication of the conveyor and slider systems,

machine vision model training, system integration, testing and evaluation, report

writing, presentation preparation and system improvement. Figure 3.9 and 3.10

show the Gantt Chart for FYP1 and FYP2

37

Figure 3.9: Gantt Chart for FYP 1

Figure 3.10: Gantt Chart for FYP 2

3.7.2 Milestones and Deliverables

The project was carried out in a structured manner, with progress tracked in two-

week intervals to ensure timely completion of tasks.

 In the early phase (Week 2), the conveyor system was upgraded by

integrating a new motor and verifying its functionality. At the same time, the

3D model of the slider was refined and procurement of necessary materials

began. A dataset collection process was also initiated to support the training of

the YOLOv8 machine vision model.

38

 By Week 4, the conveyor system was fully fabricated and tested.

Integration of the conveyor with the robotic arm (without the slider) was

successfully completed and initial control code was developed and tested. The

materials required for the slider were also purchased during this stage.

 At Week 6, all mechanical subsystems, including the conveyor, slider

and robotic arm frame, were completed. Individual control codes for each

subsystem were written and verified to ensure functionality before integration.

 The mid-phase milestone (Week 8) focused on integrating all

components into a single system. Functional testing was performed and

additional features such as IR switch were incorporated to enhance reliability.

At this stage, preparation of the final report and project poster was also started.

 By Week 10, the ESP32 microcontroller was wired to the machine and

full integration of all subsystems was achieved. Testing and evaluation of the

code and functionality were carried out, confirming that the mechanism for

waste identification performed satisfactorily. Documentation tasks, including

the report, slides and poster, were also actively developed.

 In the final stages (Week 12), full testing and evaluation of the

complete system were conducted. Minor code upgrades were implemented to

improve performance and administrative tasks such as preparing the

reimbursement form were completed. Work on the final report and presentation

slides continued to progress toward completion.

 Overall, the systematic achievement of milestones ensured that the

project proceeded according to schedule. Each phase delivered tangible

outcomes, including mechanical fabrication, subsystem integration, vision

model development and system-level testing, which collectively contributed to

the final functional prototype of the automated waste sorting machine.

39

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the results obtained from the development, testing and

evaluation of the automated waste sorting system. The findings are organized

according to the performance of individual subsystems, including the conveyor

belt, slider mechanism, robotic arm with vacuum gripper and the machine vision

system. System-level integration results, covering coordination between the

mechanical, electrical and vision components, are also discussed.

 In addition to reporting quantitative performance parameters such as

conveyor speed, slider travel range, robotic arm accuracy and detection

precision of the vision model, qualitative observations are included to assess the

reliability and practicality of the system. The results are further compared with

findings from related studies and similar projects to highlight improvements and

limitations.

 Finally, this chapter provides a discussion of the system’s overall

performance, emphasizing key challenges encountered, trade-offs made during

development and potential areas for improvement.

4.2 Performance of Fabricated Parts

4.2.1 Conveyor Belt Performance

The fabricated conveyor belt provided a working area of 960 mm × 300 mm,

which was sufficient to transport multiple waste items simultaneously. To

evaluate its performance, two main aspects, which are conveyor speed and load

capacity, were tested

 The conveyor normally runs in high speed mode. The low speed mode

was automatically triggered by the controller when a higher number of waste

items were detected on the belt, allowing more time for the vision system and

robotic arm to complete pick and place operations. For speed testing, the time

taken for the belt to move a waste item across a 700 mm travel distance was

recorded under high speed and low speed mode. In high speed mode, the

conveyor required 13.4 seconds to travel 700 mm, corresponding to an average

40

speed of 52 mm/s. In low speed mode, the travel time increased to 24.1 seconds,

giving an average speed of 29 mm/s.”

 For load capacity testing, incremental weights of 200 g were gradually

placed on the belt. Slippage was first observed at a load of approximately 5.2

kg. This capacity is considered acceptable, as the system is designed primarily

to handle lightweight recyclable waste such as plastic bottles, paper and

aluminium cans, which typically weigh less than 500 g each.

4.2.2 Slider Mechanism Performance

The slider mechanism was implemented to extend the effective working range

of the Delta X robotic arm, allowing it to access a wider area of the conveyor.

The slider provided an additional 120 mm travel distance in both the left and

right directions (total of 240 mm), effectively increasing the robot’s pick and

place coverage.

 Performance testing was carried out by measuring the time required for

the slider to move across its full 120 mm span. The travel time was recorded as

1.41 seconds, demonstrating a fast and responsive motion suitable for real-time

waste sorting operations.

 To evaluate repeatability, the slider was commanded to perform

continuous left - right - left movements for 100 consecutive cycles. After

completion, the measured positional deviation was found to be within 2 mm of

the original reference point. This error margin is considered acceptable for the

application, as the robotic arm can tolerate slight positional variation without

significant impact on picking accuracy.

 Overall, the slider mechanism exhibited reliable, smooth and

repeatable operation, ensuring effective horizontal extension of the robotic

arm’s workspace with minimal loss in positional accuracy.

4.2.3 Delta X Robot Arm Performance

The Delta X robotic arm served as the primary mechanism for waste pick-and-

place tasks. Its horizontal working range was measured to be approximately 240

mm in both the X and Y directions, which was sufficient to cover the conveyor

width when combined with the slider’s extended motion.

41

 A gripping performance test was carried out to evaluate the

effectiveness of the vacuum gripper on different waste materials. The test

procedure started with commanding the robot to pick up a waste item, then move

it repeatedly to the left and right in five cycles, simulating potential disturbances

during operation. The objective was to determine whether the gripper could

maintain its hold on the item under dynamic conditions.

 The results of the test are summarized in Table 4.1, categorizing

materials into those that passed, meaning they remained securely gripped and

those that failed, meaning they slipped or detached during the motion. Failures

were mainly observed with plastics and aluminium cans. For plastics,

deformation occurred when the gripper applied suction, since thin or flexible

surfaces tend to bend, reducing the sealing area and causing air leakage.

Additionally, many plastic items had uneven or curved surfaces, which made it

difficult for the gripper to achieve full contact. Aluminium cans faced a similar

issue. Their cylindrical shape and tendency to roll reduced stability during

lateral shaking, making them more prone to slipping. In contrast, paper-based

materials typically presented flat and porous surfaces, enabling more reliable

suction and resulting in a higher success rate.

Table 4.1: Gripping Performance Test of Vacuum Gripper

Material Passed Failed

Plastic

Aluminium

42

Paper

 Another gripping performance test was carried out to evaluate the

effectiveness of the vacuum gripper on waste materials of different heights. It is

important to note that the machine vision system did not have the capability to

determine the height of waste items. To address this, an IR sensor was equipped

on the vacuum gripper to detect when the gripper made contact with an item.

This sensor provided real-time feedback to the system, ensuring that the gripper

could adjust its vertical position accurately. During testing, this setup proved

effective, allowing the system to successfully pick both thick and thin

aluminium cans, as shown in Figure 4.1.

Figure 4.1: Picture of Thin and Thick Aluminium Cans

43

4.3 Performance of Machine Vision

The machine vision subsystem was implemented using the YOLOv8 deep

learning model trained on a custom dataset of plastic bottles, aluminium cans

and paper. The performance was evaluated using both training metrics and

confusion matrix analysis to assess accuracy, robustness and generalization

capability.

Figure 4.2: Training and Validation Loss Curve

 Figure 4.2 shows the training and validation loss curves across 100

epochs. Both the training and validation box loss, as well as the class loss,

decreased steadily over time, indicating stable learning and good convergence

of the YOLOv8 model. By the end of the training at epoch 100, all losses were

reduced to well below 0.5, demonstrating that the model achieved a strong fit to

the dataset without signs of underfitting or overfitting.

 This convergence implies that the model is capable of accurately

localizing waste items (low box loss) and correctly classifying them into their

respective categories (low class loss). As a result, the trained model is reliable

for real-time waste detection tasks, providing consistent bounding box precision

and high classification accuracy across different types of waste.

44

Figure 4.3: Evaluation Metrics Curve

 Figure 4.3 shows the evaluation metrics of the YOLOv8 model across

100 epochs, including precision, recall, mAP@50 and mAP@50–95. Precision

reached approximately 0.98, indicating that the model produced very few false

positives. This means that the model rarely misclassifying background or other

materials as waste. Recall improved to 0.97, showing that nearly all waste items

present in the dataset were correctly detected. The mAP@50 value achieved

around 0.95, reflecting strong detection accuracy when using a 50% IoU

threshold, while the stricter mAP@50–95 reached 0.91, confirming that the

model maintained reliable detection performance across a wide range of IoU

thresholds.

 These results demonstrate that the trained YOLOv8 model not only

achieved high detection accuracy but also generalized well across different

waste types, sizes and shapes.

45

Figure 4.4: Normalized Confusion Matrix

 The normalized confusion matrix for the trained model, as shown in

Figure 4.4, highlights the classification performance across the three waste

categories. The model achieved perfect classification for plastics and aluminium,

with 100% accuracy and only negligible confusion with the background. In

contrast, paper items were slightly more challenging, with 96% correctly

classified but some instances being misclassified as background. This

misclassification is likely due to the similarities in colour and texture between

paper and the conveyor background, especially under varying lighting

conditions. Overall, the results confirm that the YOLOv8 model is highly

reliable in distinguishing between plastics, aluminium and paper, with only

minor limitations for paper detection. With further dataset augmentation,

particularly under different lighting and background scenarios, the model’s

robustness for paper classification could be further improved.

 In real time conveyor testing, the machine vision subsystem achieved

an average processing speed of approximately 6 frames per second (FPS) on the

laptop. This performance was measured while running the YOLOv8 detection

model with a confidence threshold of 0.35 and an IoU threshold of 0.6,

balancing detection accuracy with computational efficiency. The achieved FPS

46

was sufficient for the conveyor’s operating speed, ensuring that no waste items

passed through undetected.

 Overall, the real-time performance confirmed that the vision subsystem

satisfied the project’s requirements for high accuracy, low-latency inference and

reliable multi-object tracking. While the FPS achieved was modest compared to

GPU-based implementations reported in the literature, it proved sufficient for

the intended application, demonstrating the system’s practicality and scalability

under resource-constrained conditions.

4.4 System Testing and Evaluation

The final prototype was tested to evaluate its functionality, accuracy and

reliability under both controlled and mixed-waste scenarios. The evaluation

focused on three main aspects, which are sorting accuracy, picking speed and

long-term reliability.

4.4.1 Sorting Accuracy

Sorting accuracy was assessed through two test setups, including single-item

tests, which examined the detection and pick-and-place performance for each

waste category and mixed-waste tests, which evaluated the system’s

effectiveness under more realistic operating conditions. Two key performance

measures were considered, including YOLO detection accuracy and pick-and-

place success rate. Detection accuracy was determined by manually observing

the real-time GUI feed, such as shown in Figure 4.5 and verifying whether the

labels assigned by the model were correct, expressed as the ratio of correctly

labelled items to the total number of items observed. The pick-and-place success

rate was calculated as the ratio of successful pickups and placements to the total

number of pickup attempts.

47

Figure 4.5: Real-time GUI Feed with Assigned Label

 In the single-item tests, each category was tested over 10 repetitions

using 5 items per trial. For aluminium cans, the YOLO detection accuracy

reached 100%, while the pick-and-place success rate was 92%. Failures

occurred mainly due to the cylindrical cans rolling during pickup. For plastic

bottles, the detection accuracy was 96%, but the pick-and-place success rate

dropped to 48 percent. This performance indicates that the machine vision is

model able to identify items correctly but the pick-and-place operation has low

success rate. This was largely due to the IR sensor’s inability to detect contact

with transparent materials, which reduced pickup reliability. In contrast, paper

achieved a detection accuracy of 94% and a pick-and-place success rate of 98%.

Although occasional misclassifications occurred under bright lighting

conditions, the flat surface of paper allowed for consistently stable gripping.

 In the mixed-waste tests, a set of 5 plastics, 5 aluminium cans and 5

paper items was placed together and one class is ignored at a time as there are

only two dropping areas. This testing process was repeated 5 times. The

detection accuracy achieved was 100% for aluminium, 98.6% for plastic and

98.6% for paper. For pick-and-place performance, aluminium achieved a

success rate of around 93.3%, while paper remained the most reliable with over

97.3% success. Plastics, however, continued to pose challenges, with a success

rate of 46.6% due to transparency, shape irregularities and sensor detection

failures. These results indicate that while the vision system was consistently

48

accurate across all waste categories, the physical handling of plastics remains a

limiting factor in overall system performance.

4.4.2 Picking Speed

The average processing speed of the system was evaluated by measuring the

time taken from waste detection to successful pickup. This was calculated by

dividing the total number of successfully picked items by the total elapsed time

and then averaging the results across multiple trials.

 The system achieved a throughput of 8 - 15 items per minute,

depending largely on the distribution and position of waste on the conveyor.

Items located closer to the centreline were picked more quickly, as the slider

required less horizontal travel, whereas items near the edges took longer due to

the additional motion required. Similarly, item height influenced processing

speed. Taller items required less downward travel of the robotic arm, resulting

in faster pickups, while shorter items necessitated greater vertical movement,

slightly reducing efficiency.

4.4.3 Reliability Testing

A continuous operation test was conducted over a duration of 20 minutes, during

which the conveyor, slider, robotic arm and vision system operated without

major faults. Minor failures were observed in the pickup of plastic items, but

the system recovered without interruption.

 However, a significant issue identified was the gradual loss of

positional accuracy in both the robotic arm and the slider. Since the system lacks

a feedback mechanism, it relies solely on the precision control of the stepper

motors. Over extended operation, particularly after 15 - 20 minutes of

continuous movement, the coordinates began to drift. This misalignment may

have been caused by accumulated step errors or occasional collisions with

obstacles, resulting in the robot no longer knowing its exact position. This

limitation highlights the need for additional position feedback mechanisms,

such as encoders or limit switches, to ensure long-term accuracy and reliable

operation.

49

4.5 Discussion of Findings

The experimental results of the developed waste sorting system were evaluated

against both the project objectives and findings from related studies. The

discussion focuses on detection accuracy, pick-and-place success rates,

throughput and challenges in handling specific waste types.

 In single-item tests, the YOLOv8 detection accuracy achieved was 100%

for aluminium, 96% for plastic and 94% for paper. The corresponding pick-and-

place success rates were 92% for aluminium, 48% for plastic and 98% for paper.

These results demonstrate that while the detection system performs at a high

level, the physical execution of gripping and sorting plastics is a major limitation.

 A comparable study, PLC-Controlled Intelligent Conveyor System with

AI-Enhanced Vision for Efficient Waste Sorting (Almtireen et al., 2025), also

applied YOLOv8 and reported classification accuracies above 95% across

plastics, paper and metals. Our system’s detection accuracy is consistent with

this work. However, the pick-and-place success rate for plastics is notably lower,

highlighting that reliable handling of irregular or transparent items is still an

unresolved issue.

 The system processed between 8 - 15 items per minute depending on

waste distribution and positioning on the conveyor. This throughput is lower

than that reported in commercial optical sorting systems, which often achieve

tens or even hundreds of items per minute by using high-speed conveyors,

multiple lanes and industrial-grade actuators. Research systems also tend to

simplify operating conditions to boost throughput. While our system prioritised

affordability and modularity, its speed limitation reflects the trade-off between

academic prototyping and industrial-scale equipment.

 The most significant challenge observed was the handling of plastic

items, especially transparent bottles and those with irregular surfaces. Detection

occasionally misclassified plastics under bright lighting as aluminium and more

critically, the IR sensor failed to register contact due to the transparency of the

material. This resulted in a pick-and-place success rate of only 48% for plastics.

50

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This project successfully developed an automated waste sorting system that

integrates machine vision, robotic actuation and electronic control into a

functional prototype. The first objective, to develop a robotic system equipped

with computer vision for accurate detection and classification of various waste

types, was achieved through the successful integration of a YOLOv8-based

machine vision model with the Delta X robotic arm and a supporting conveyor

- slider mechanism. The vision system achieved detection accuracies of up to

100% for aluminium, 96% for plastics and 94% for paper.

 The second objective, to automate the sorting process to ensure

consistent and accurate waste segregation, was fulfilled by combining vision-

based classification with robotic actuation and electronic control. The Delta X

robotic arm with vacuum gripper successfully performed pick-and-place

operations, achieving 92% success for aluminium and 98% for paper. Although

plastics posed challenges due to irregular shapes and transparency, the system

nonetheless demonstrated consistent automation of the sorting process under

controlled conditions.

 The third objective, to evaluate the system’s performance in terms of

sorting accuracy, processing speed and reliability, was met through systematic

testing. The prototype achieved an overall throughput of 8 - 15 items per minute,

depending on waste distribution and position and remained operational over a

continuous 20-minute test without major faults. While throughput remains

modest compared to industrial systems, the results confirm that the prototype is

reliable for small-scale applications.

 In summary, this project has successfully demonstrated the feasibility

of integrating deep-learning based vision with robotic automation for waste

sorting. The system achieved its intended aims and provided valuable insights

into the challenges of handling plastics and ensuring long-term positional

accuracy. Despite the limitations, the work establishes a strong foundation for

51

future improvements and represents a step toward scalable, intelligent waste

management solutions.

5.2 Recommendations for future work

To further enhance the performance and reliability of the automated waste

sorting system, several improvements are recommended for future development.

In terms of end - effector design, adopting a more advanced gripper, such as a

vacuum system powered by a stronger motor or a hybrid gripper that combines

suction and mechanical grasping, would improve the handling of irregularly

shaped or smooth-surfaced materials. The IR sensor currently used for

confirming successful pickups could be replaced with an ultrasonic sensor or a

force sensor, which would offer more reliable detection across different material

types, including transparent plastics.

 For mechanical safety and positional accuracy, installing limit switches

on all moving parts, including the conveyor, slider and robotic arm, would not

only prevent over-travel but also mitigate long-term positional drift by

providing consistent reference points, thereby reducing the need for frequent

recalibration.

 Other than that, the machine vision model could be expanded to include

additional waste categories such as glass, rubber and other recyclables, thereby

increasing the versatility and practicality of the system in real - world

applications. To support this, the dataset should be expanded with a larger

number of training images for each class, ensuring balanced representation and

improving the model’s ability to generalize under varied lighting, texture and

orientation conditions.

52

REFERENCES

Ackerman, E. (2014). Electrostatics: Good for Robot Grippers and Lots More.

[online] Available at: https://spectrum.ieee.org/electrostatic-robot-grippers

(Accessed: 29 April 2025).

Almtireen, N., Reddy, V., Sutton, M., Nedvidek, A., Karn, C., Ryalat, M.,

Elmoaqet, H. and Rawashdeh, N. (2025). PLC-Controlled Intelligent Conveyor

System with AI-Enhanced Vision for Efficient Waste Sorting. Applied Sciences,

[online] 15(3), p.1550. doi:https://doi.org/10.3390/app15031550.

Balluff (n.d.). The 5 most common types of fixed industrial robots | Balluff.

[online] Available at: https://www.balluff.com/en-us/blog/the-5-most-

common-types-of-fixed-industrial-robots (Accessed: 29 April 2025).

Chuah, S. et al (2023). ASSESSING RESIDENTS’ INTENTION TOWARDS

MUNICIPAL SOLID WASTE SOURCE SEPARATION: A CASE STUDY

OF MALAYSIA. PLANNING MALAYSIA, 21. Available at:

https://doi.org/10.21837/pm.v21i25.1245.

DeltaX Robot. (2020). Delta X 1 - Delta X Robot. [online] Available at:

https://docs.deltaxrobot.com/reference/specifications/sp_x1 (Accessed: 29

April 2025).

Dorna Robotics. (2023). Types Of Robot Grippers And Their Applications.

[online]. Available at: https://dorna.ai/blog/types-of-grippers-for-robots/

(Accessed: 29 April 2025).

ERI Economic Research Institute (2025). Recycling and Reclamation Worker.

[online] Erieri.com. Available at: http://erieri.com/salary/job/recycling-and-

reclamation-worker/malaysia (Accessed: 29 April 2025).

Esmael Oumer, Melke, A., Wondwosen Teklesilasie and Dejene, G. (2024).

Prevalence of work-related injuries and associated factors among municipal

solid waste collectors in Hawassa City, Sidama, Ethiopia 2023. Scientific

Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-78973-4.

Flexi Bowl. (2014). SCARA Robot | Flexibowl. [online] Available at:

https://www.flexibowl.com/scara-robot.html (Accessed: 1 May 2025).

Ganes Kesari (2024). Turning Trash Into Treasure: How AI Is Revolutionizing

Waste Sorting. Forbes. [online]. Available at:

https://www.forbes.com/sites/ganeskesari/2024/05/31/turning-trash-into-

treasure-how-ai-is-revolutionizing-waste-sorting/ (Accessed: 29 April 2025).

Granta (2023). What is a Vacuum Gripper? | Granta Automation | Granta

Automation. [online] Available at: https://www.granta-

automation.co.uk/news/what-is-a-vacuum-gripper/ (Accessed: 29 April 2025).

https://spectrum.ieee.org/electrostatic-robot-grippers
https://www.balluff.com/en-us/blog/the-5-most-common-types-of-fixed-industrial-robots
https://www.balluff.com/en-us/blog/the-5-most-common-types-of-fixed-industrial-robots
https://docs.deltaxrobot.com/reference/specifications/sp_x1
https://dorna.ai/blog/types-of-grippers-for-robots/
http://erieri.com/salary/job/recycling-and-reclamation-worker/malaysia
http://erieri.com/salary/job/recycling-and-reclamation-worker/malaysia
https://www.flexibowl.com/scara-robot.html
https://www.forbes.com/sites/ganeskesari/2024/05/31/turning-trash-into-treasure-how-ai-is-revolutionizing-waste-sorting/
https://www.forbes.com/sites/ganeskesari/2024/05/31/turning-trash-into-treasure-how-ai-is-revolutionizing-waste-sorting/
https://www.granta-automation.co.uk/news/what-is-a-vacuum-gripper/
https://www.granta-automation.co.uk/news/what-is-a-vacuum-gripper/

53

International Organization for Standardization (2021) Robotics — Vocabulary.

ISO 8373. Available at: https://bsol-bsigroup-com (Accessed: 30 April 2025).

International Trade Administration (2024). Malaysia Waste Management.

[online]. Available at: https://www.trade.gov/market-intelligence/malaysia-

waste-management (Accessed: 27 April 2025).

Joseph, R., Divvala Santosh, Ross, G. and Ali, F. (2016). You Only Look Once:

Unified, Real-Time Object Detection. arXiv (Cornell University). Available at:

https://doi.org/10.48550/arxiv.1506.02640.

KALRA, K. (2023). OBJECT TRACKING. [online]. Available at:

https://medium.com/@khwabkalra1/object-tracking-2fe4127e58bf (Accessed:

29 April 2025).

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y. and Berg,

A.C. (2016). SSD: Single Shot MultiBox Detector. Computer Vision – ECCV

2016, 9905, pp.21–37. Available at: https://doi.org/10.1007/978-3-319-46448-

0_2.

Potrimba, P. (2023). What is R-CNN? [online] Roboflow Blog. Available at:

https://blog.roboflow.com/what-is-r-cnn/ (Accessed: 29 April 2025).

Robots Done Right. (2022). SCARA Robots vs Delta Robots. [online] Available

at: https://robotsdoneright.com/Articles/scara-robots-vs-delta-

robots.html?srsltid=AfmBOoqbGEUMvPlcYOfPqlVyg5JuCU7V8iJ_Ig4ORja

Y1ANcfmLWwHDQ (Accessed: 29 April 2025).

Robots Done Right. (2025). What is a Delta Robot? [online] Available at:

https://robotsdoneright.com/Articles/what-is-a-delta-

robot.html?srsltid=AfmBOooIJ9c8Ssc4Snw5TqH5uOk3dUY4XjfrL9kLu0p3v

43liA_g8Oeo (Accessed: 1 May 2025).

Sanyam (2022). Understanding Multiple Object Tracking using DeepSORT.

[online] Available at: https://learnopencv.com/understanding-multiple-object-

tracking-using-deepsort/#Simple-Online-Realtime-Tracking-(SORT)

(Accessed: 3 May 2025)

Shanuka Dodampegama, Hou, L., Asadi, E., Zhang, K. and Sujeeva Setunge

(2024). Revolutionizing construction and demolition waste sorting: Insights

from artificial intelligence and robotic applications. Resources, Conservation

and Recycling, 202, pp.107375–107375. Available at:

https://doi.org/10.1016/j.resconrec.2023.107375.

SM Tech (2019). All about 775 Motor- Full specification in detail. [online].

Available at: https://somanytech.com/what-is-775-motor (Accessed: 29 April

2025).

Standard Bot. (2025). What do robot grippers do? - Standard Bots. [online]

Available at: https://standardbots.com/blog/what-do-robot-grippers-do

(Accessed: 29 April 2025).

https://www.trade.gov/market-intelligence/malaysia-waste-management
https://www.trade.gov/market-intelligence/malaysia-waste-management
https://medium.com/@khwabkalra1/object-tracking-2fe4127e58bf
https://blog.roboflow.com/what-is-r-cnn/
https://robotsdoneright.com/Articles/scara-robots-vs-delta-robots.html?srsltid=AfmBOoqbGEUMvPlcYOfPqlVyg5JuCU7V8iJ_Ig4ORjaY1ANcfmLWwHDQ
https://robotsdoneright.com/Articles/scara-robots-vs-delta-robots.html?srsltid=AfmBOoqbGEUMvPlcYOfPqlVyg5JuCU7V8iJ_Ig4ORjaY1ANcfmLWwHDQ
https://robotsdoneright.com/Articles/scara-robots-vs-delta-robots.html?srsltid=AfmBOoqbGEUMvPlcYOfPqlVyg5JuCU7V8iJ_Ig4ORjaY1ANcfmLWwHDQ
https://learnopencv.com/understanding-multiple-object-tracking-using-deepsort/#Simple-Online-Realtime-Tracking-(SORT)
https://learnopencv.com/understanding-multiple-object-tracking-using-deepsort/#Simple-Online-Realtime-Tracking-(SORT)
https://standardbots.com/blog/what-do-robot-grippers-do

54

Standard Bots. (2025). What is a Cartesian robot? A newbie-friendly guide -

Standard Bots. [online] Available at: https://standardbots.com/blog/what-is-a-

cartesian-robot-a-newbie-friendly-

guide?srsltid=AfmBOooJ1opLu2BxSQBf5f4i2Q6A0U9i4fZGgZZ1nrv6X-

qF30sfF17Y (Accessed: 29 April 2025)

Standard Bots. (2025). What is a SCARA robot? A brief introduction - Standard

Bots. [online] Available at: https://standardbots.com/blog/what-is-a-scara-

robot-a-brief-introduction?srsltid=AfmBOoqbk1NX3B812Ko-

M99GZ3wsDx8cAh0wMOnfCj43YYg0IaoesV8G [Accessed 10 May 2025]

(Accessed: 29 April 2025).

Stanford University. (2015). Gripper device using shear-controlled dry

adhesive film | Explore Technologies. [online] Available at:

https://techfinder.stanford.edu/technology/gripper-device-using-shear-

controlled-dry-adhesive-film (Accessed: 29 April 2025).

Techman Robot. (2023). Types of Robotic Arms. [online] Available at:

https://www.tm-robot.com/en/robotic-arms/ (Accessed: 27 April 2025).

Worldbank.org. (2022). Malaysia Waste, parings and scrap, of other plastics,

ne imports by country | 2022 | Data. [online] Available at:

https://wits.worldbank.org/trade/comtrade/en/country/MYS/year/2022/tradeflo

w/Imports/partner/ALL/product/391590? (Accessed: 26 April 2025).

Zainal, F. (2024). 39,000 tonnes of solid waste daily. [online] The Star.

Available at: https://www.thestar.com.my/news/nation/2024/01/02/39000-

tonnes-of-solid-waste-daily (Accessed: 26 April 2025).

Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W. and Wang, X.

(2021). ByteTrack: Multi-Object Tracking by Associating Every Detection

Box. arXiv (Cornell University). doi:

https://doi.org/10.48550/arxiv.2110.06864.

https://techfinder.stanford.edu/technology/gripper-device-using-shear-controlled-dry-adhesive-film
https://techfinder.stanford.edu/technology/gripper-device-using-shear-controlled-dry-adhesive-film
https://www.tm-robot.com/en/robotic-arms/
https://www.thestar.com.my/news/nation/2024/01/02/39000-tonnes-of-solid-waste-daily
https://www.thestar.com.my/news/nation/2024/01/02/39000-tonnes-of-solid-waste-daily

55

APPENDICES

Appendix A: Static Simulation of Motor Bracket

This appendix documents the static simulation performed on the 3D-printed

motor bracket used to mount the JGB37-545 gear motor on the conveyor frame.

The motor bracket was fabricated using PETG. Table A.1 tabulates the material

properties used in the simulation.

Table A.1: Material Properties Used in Simulation

Property Value

Young’s modulus 0.8 GPa

Poisson’s ratio 0.38

Density 350 kgm-3

Yield strength 150 MPa

Figure A.1: Displacement Distribution of the Motor Bracket

56

Figure A.2: Von Mises Stress Distribution of the Motor Bracket

 Figures A.1 and A.2 show the displacement and von Mises stress

distribution of the motor bracket. It can be observed that the maximum

displacement and von Mises stress are 0.0695 mm and 1.153 MPa. The

maximum von Mises stress is much lower than the assumed yield strength (150

MPa). This indicates that the motor bracket is structurally adequate to withstand

the applied motor loads with large safety margin. Furthermore, the maximum

deflection (0.0695 mm) is also negligible.

57

Appendix B: Static Simulation of Slider Shaft

This appendix presents the static simulation analysis of the stainless steel shafts,

which are 10 mm in diameter and 500 mm in length, used in the slider

mechanism. The shafts support the Delta X robotic arm via three SC10UU linear

bearings and their stiffness is critical to ensuring precise pick-and-place

performance. The maximum allowable shaft deflection was set at 1 mm, based

on accuracy requirements for robotic positioning.

Figure A.3: Slider Shafts with Different Loading Scenarios

 There are two different slider shafts with two different loading

scenarios as shown in Figure A.3. For slider shaft A, which only have a single

SC10UU load, the load condition corresponds to one SC10UU bearing

supporting approximately one-third of the Delta X robotic arm’s weight (4 kg /

3 ≈ 1.33 kg). The load was applied across a 35 mm contact range positioned at

the midpoint of the 500 mm shaft, where maximum deflection is expected.

Slider Shaft A

Slider Shaft B

58

Figure A.4: Displacement Distribution of the Slider Shaft A

Figure A.5: Von Mises Stress Distribution of the Slider Shaft A

 Figures A.4 and A.5 show the displacement and von Mises stress

distribution of the slider shaft A. It can be observed that the maximum

displacement and von Mises stress are 0.091 mm and 8.273 MPa. The maximum

von Mises stress is significantly lower than the assumed yield strength of

SUS304 stainless steel (200 MPa), providing a large safety margin. Moreover,

the maximum deflection of 0.091 mm is well below the allowable deflection

limit of 1 mm.

 For Slider Shaft B, the shaft is supported by two SC10UU bearings

separated by 130 mm. Each bearing carries approximately one-third of the Delta

X robotic arm’s weight (1.33 kg each) distributed over a 35 mm contact range.

The load was applied across a 200 mm contact range positioned at the midpoint

of the 500 mm shaft, where maximum deflection is expected.

59

Figure A.6: Displacement Distribution of the Slider Shaft B

Figure A.7: Von Mises Stress Distribution of the Slider Shaft B

 Figures A.6 and A.7 show the displacement and von Mises stress

distribution of the slider shaft B. It can be observed that the maximum

displacement and von Mises stress are 0.136 mm and 14.92 MPa. The maximum

von Mises stress is significantly lower than the assumed yield strength of

SUS304 stainless steel, providing a large safety margin. Moreover, the

maximum deflection of 0.136 mm is well below the allowable deflection limit

of 1 mm.

60

Appendix C: Full Code

This appendix contains the source code used for the automated waste sorting

system. The system consists of two main components. The first component is

C++ code, which controls the motor systems and receives feedback from the IR

sensor using the ESP32. The second component is Python code, which manages

the machine vision system, including YOLOv8 object detection, robot arm

control for pick-and-place coordination and the graphical user interface (GUI).

C++ Code (PlatformIO / ESP32):

#include <Arduino.h>

// === Conveyor Motor (BTS7960) ===

#define MOTOR_PWM 25 // RPWM to GPIO25

#define IR_PIN 35 // IR sensor pin (digital, HIGH = no

object, LOW = object)

// === Stepper Motor (TMC2209 via STEP/DIR/EN) ===

#define STEP_PIN 27

#define DIR_PIN 26

#define EN_PIN 14

// === Stepper Constants ===

const int stepsPerRevolution = 6500; // Adjust based on your

mechanical setup

bool stepperEnabled = false;

// Ramp parameters (tune for smoothness)

int maxDelay = 200; // slowest step (microseconds)

int minDelay = 80; // fastest step (microseconds)

int rampSteps = 1000; // steps for acceleration/deceleration

void setup() {

 Serial.begin(115200);

 // Conveyor setup

 ledcAttachPin(MOTOR_PWM, 0);

 ledcSetup(0, 20000, 8); // 20kHz, 8-bit PWM

 // IR setup

 pinMode(IR_PIN, INPUT);

 // Stepper setup

 pinMode(STEP_PIN, OUTPUT);

61

 pinMode(DIR_PIN, OUTPUT);

 pinMode(EN_PIN, OUTPUT);

 digitalWrite(EN_PIN, HIGH); // disable stepper at start

 Serial.println("System Ready");

}

// Function to move stepper one pulse

void stepMotor(int delayTime) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(delayTime);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(delayTime);

}

// Function to move stepper with acceleration ramp

void moveStepperRamp(int dir, int steps) {

 digitalWrite(EN_PIN, LOW); // enable driver

 digitalWrite(DIR_PIN, dir); // set direction

 int actualRamp = rampSteps;

 if (rampSteps > steps / 2) actualRamp = steps / 2;

 for (int i = 0; i < steps; i++) {

 int currentDelay;

 if (i < actualRamp) { // Acceleration

 currentDelay = maxDelay - ((maxDelay - minDelay) * i /

actualRamp);

 }

 else if (i >= steps - actualRamp) { // Deceleration

 int rampDownIndex = i - (steps - actualRamp);

 currentDelay = minDelay + ((maxDelay - minDelay) *

rampDownIndex / actualRamp);

 }

 else { // Constant speed

 currentDelay = minDelay;

 }

 stepMotor(currentDelay);

 }

 digitalWrite(EN_PIN, HIGH);

}

void loop() {

 // === Conveyor Serial Control ===

 if (Serial.available()) {

62

 char cmd = Serial.read();

 if (cmd == 'R') { // Full speed

 ledcWrite(0, 255);

 }

 else if (cmd == 'L') { // Half speed

 ledcWrite(0, 127);

 }

 else if (cmd == 'S') { // Stop

 ledcWrite(0, 0);

 }

 else if (cmd == '1') { // Move left

 moveStepperRamp(LOW, stepsPerRevolution);

 }

 else if (cmd == '3') { // Move right

 moveStepperRamp(HIGH, stepsPerRevolution);

 }

 }

 // === IR Sensor Feedback ===

 int ir_state = digitalRead(IR_PIN);

 if (ir_state == LOW) {

 Serial.println("TOUCHED");

 } else {

 Serial.println("NOT_TOUCHED");

 }

 delay(50);

}

Python Code (Machine Vision, Pick-and-Place & GUI):

import threading

import tkinter as tk

from tkinter import ttk, messagebox

from PIL import Image, ImageTk

import cv2

import serial

import time

from queue import Queue

from ultralytics import YOLO

import numpy as np

63

=== Setup Delta X robot serial ===

robot = serial.Serial("COM10", 115200, timeout=1)

time.sleep(2)

=== Setup ESP32 serial ===

esp = serial.Serial("COM12", 115200, timeout=1)

time.sleep(2)

def send_gcode(cmd):

 robot.write((cmd + '\n').encode())

 while robot.in_waiting:

 print(robot.readline().decode().strip())

=== Reads IR state from ESP32 ===

last_ir_state = "NOT_TOUCHED"

def read_ir():

 global last_ir_state

 while esp.in_waiting > 0:

 msg = esp.readline().decode(errors="ignore").strip()

 if msg in ["TOUCHED", "NOT_TOUCHED"]:

 last_ir_state = msg

 return last_ir_state

def conveyor_start():

 esp.write(b'R')

def conveyor_low():

 esp.write(b'L')

def conveyor_stop():

 esp.write(b'S')

=== YOLO model with tracking ===

model = YOLO("runs/detect/train3/weights/newbest2.pt")

class_names = model.names

=== Webcam ===

cap = cv2.VideoCapture(0)

cap.set(3, 640)

cap.set(4, 480)

cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, 0.25)

cap.set(cv2.CAP_PROP_EXPOSURE, -3)

cap.set(cv2.CAP_PROP_GAIN, 0)

=== Calibration matrix (initial identity) ===

M_affine = np.array([[0.0000, 0.5889, -141.7406],

 [0.6870, -0.0059, -401.4029]],

dtype=np.float32)

64

=== Calibration ===

def webcam_to_robot(x, y):

 global M_affine

 pt = np.array([x, y, 1], dtype=np.float32)

 X, Y = M_affine @ pt

 return int(-X), int(-Y) # keep your sign convention

=== Constants ===

Z_SAFE = -280

Z_PICK = -300

IDLE_X, IDLE_Y, IDLE_Z = 0, 0, -264

WORKSPACE_LIMIT = 120

WASTE_SPEED = 10

T_PICK = 2.8

DROP_LOCATIONS = {

 "left": (150, 0, -290),

 "right": (-150, 0, -290)

}

=== Shared state ===

shared = {

 "run": False,

 "mapping": {"plastic": "Left", "aluminium": "Right", "paper":

"Ignore"},

 "counters": {"plastic": 0, "aluminium": 0, "paper": 0},

 "frame": None,

 "program_running": True,

 "calibrating": False

}

lock = threading.Lock()

Detection memory + queue + flags

detection_memory = {}

target_queue = Queue()

robot_busy = False

conveyor_fast = 1

Home

send_gcode("G28")

=== Vision task ===

def vision_task():

 global detection_memory, waste_count, robot_busy

 while shared["program_running"]:

65

 ret, frame = cap.read()

 if not ret:

 break

 if shared["calibrating"]: # skip vision when

calibrating

 time.sleep(0.2)

 continue

 now = time.time()

 conveyor_fast = (0 if len(detection_memory) >= 2 else 1)

#change the number to vary the threshold value

 # Conveyor control

 if shared["run"]:

 if conveyor_fast == 0:

 conveyor_low()

 else:

 conveyor_start()

 else:

 conveyor_stop()

 # Run YOLO tracking

 results = model.track(

 frame,

 conf=0.35,

 iou=0.6,

 agnostic_nms=True,

 persist=True,

 tracker="bytetrack.yaml",

 verbose=False

)

 # Draw detections

 if results and results[0].boxes is not None and

len(results[0].boxes) > 0:

 for box in results[0].boxes:

 x1, y1, x2, y2 =

box.xyxy[0].cpu().numpy().astype(int)

 cls_id = int(box.cls[0].cpu().numpy())

 cls_name = class_names[cls_id]

 conf = float(box.conf[0].cpu().numpy()) if

box.conf is not None else 0.0

 cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255,

0), 2)

 label = f"{cls_name} {conf:.2f}"

 cv2.putText(frame, label, (x1, y1 - 8),

66

 cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,

255, 0), 2)

 # Update frame for GUI

 with lock:

 shared["frame"] = frame.copy()

 if not robot_busy and results and results[0].boxes is not

None:

 for box in results[0].boxes:

 x1, y1, x2, y2 =

box.xyxy[0].cpu().numpy().astype(int)

 cx, cy = (x1 + x2) // 2, (y1 + y2) // 2

 cls_id = int(box.cls[0].cpu().numpy())

 cls_name = class_names[cls_id].lower()

 track_id = int(box.id.cpu().numpy()) if box.id is

not None else None

 if track_id is None:

 continue

 if track_id not in detection_memory:

 detection_memory[track_id] = {"first_seen":

now, "last_seen": now,

 "pos": (cx,

cy), "cls": cls_name}

 else:

 detection_memory[track_id]["last_seen"] = now

 detection_memory[track_id]["pos"] = (cx, cy)

 detection_memory[track_id]["cls"] = cls_name

 for obj_id, data in list(detection_memory.items()):

 if now - data["first_seen"] >= 1.0:

 cx, cy = data["pos"]

 rx, ry = webcam_to_robot(cx, cy)

 ry_pred = ry - (WASTE_SPEED * (T_PICK / 2 if

conveyor_fast == 0 else T_PICK))

 if abs(rx) <= WORKSPACE_LIMIT and

abs(ry_pred) <= WORKSPACE_LIMIT:

 target_queue.put({"id": obj_id, "rx": rx,

"ry": ry_pred, "cls": data["cls"]})

 print(f"[LOCKED] Target {data['cls']}

ID={obj_id} at ({rx},{ry_pred})")

 detection_memory.pop(obj_id, None)

 break

 if now - data["last_seen"] > 2:

67

 detection_memory.pop(obj_id, None)

=== Robot task ===

def robot_task():

 global robot_busy

 while shared["program_running"]:

 if shared["calibrating"]: # ✅ skip vision when

calibrating

 time.sleep(0.2)

 continue

 try:

 target = target_queue.get(timeout=0.2) # ✅ blocking

queue

 except:

 continue

 robot_busy = True

 rx, ry, cls_name = target["rx"], target["ry"],

target["cls"]

 with lock:

 mapping = shared["mapping"].copy()

 counters = shared["counters"]

 mapped = mapping.get(cls_name, "Ignore").lower()

 if mapped == "ignore":

 print(f"[ROBOT] Ignoring {cls_name}")

 robot_busy = False

 time.sleep(0.5)

 continue

 drop_key = "left" if mapped == "left" else "right"

 drop_x, drop_y, drop_z = DROP_LOCATIONS.get(drop_key, (-

120, 120, -270))

 print(f"[INFO] Picking {cls_name} at X={rx}, Y={ry}")

 send_gcode(f"G01 X{rx} Y{ry} Z{Z_SAFE}")

 send_gcode("M3")

 # Approach with IR

 z, y, touched = Z_PICK, ry, False

 while z > -350:

 z -= 5

 send_gcode(f"G01 Y{y} Z{z-15}")

 y -= (3 if conveyor_fast == 0 else 6)

 time.sleep(0.1)

 print(read_ir())

68

 if read_ir() == "TOUCHED":

 touched = True

 print("[IR] Object touched!")

 send_gcode(f"G01 Z{Z_SAFE}")

 break

 print(read_ir(),"...................")

 if not touched:

 send_gcode("M5")

 print(f"[INFO] Missed {cls_name.upper()}")

 send_gcode(f"G01 X{IDLE_X} Y{IDLE_Y} Z{IDLE_Z}")

 else:

 time.sleep(0.2)

 esp.write(b'1' if mapped == "left" else b'3')

 send_gcode(f"G01 X{drop_x} Y{drop_y} Z{drop_z}")

 time.sleep(1.5)

 send_gcode("M5")

 print(f"[INFO] Dropped {cls_name.upper()}")

 esp.write(b'3' if mapped == "left" else b'1')

 send_gcode(f"G01 X{IDLE_X} Y{IDLE_Y} Z{IDLE_Z}")

 with lock:

 counters[cls_name] = counters.get(cls_name, 0) +

1

 time.sleep(1.5)

 robot_busy = False

=== GUI thread ===

def run_calibration():

 # Pause main tasks

 with lock:

 shared["calibrating"] = True

 shared["run"] = False

 conveyor_stop()

 print("[CALIBRATION] System paused. Starting calibration...")

 global M_affine

 # Preset real robot coords

 robot_coords = [

 (-120, 0), (0, 0), (120, 0),

 (-120, -120), (0, -120), (120, -120),

 (-120, -240), (0, -240), (120, -240)

]

69

 cam_points = []

 real_points = []

 current_index = 0

 calibration_started = False

 def mouse_callback(event, x, y, flags, param):

 nonlocal current_index, calibration_started

 if calibration_started and event == cv2.EVENT_LBUTTONDOWN

and current_index < len(robot_coords):

 cam_points.append([x, y])

 real_points.append(robot_coords[current_index])

 print(f"[OK] Captured: Camera=({x}, {y}) ↔

Robot={robot_coords[current_index]}")

 current_index += 1

 # Open new calibration window

 # ✅ reuse the existing camera

 global cap

 cap.set(3, 640)

 cap.set(4, 480)

 cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, 0.25)

 cap.set(cv2.CAP_PROP_EXPOSURE, -3)

 cap.set(cv2.CAP_PROP_GAIN, 0)

 cap_calib = cap

 cv2.namedWindow("Calibration")

 cv2.setMouseCallback("Calibration", mouse_callback)

 print("[CALIBRATION] Starting...")

 send_gcode("G28")

 send_gcode("G01 X0 Y0 Z-368")

 while True:

 ret, frame = cap_calib.read()

 if not ret:

 break

 for i, (cx, cy) in enumerate(cam_points):

 cv2.circle(frame, (int(cx), int(cy)), 5, (0, 0, 255),

-1)

 cv2.putText(frame, str(i+1), (cx+5, cy-5),

 cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255,0),

2)

 msg = (f"[{current_index+1}/9] Click for

{robot_coords[current_index]}"

 if calibration_started and current_index <

len(robot_coords)

70

 else "Press U to start calibration" if not

calibration_started

 else "Done")

 cv2.putText(frame, msg, (10, 30),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)

 cv2.imshow("Calibration", frame)

 key = cv2.waitKey(1) & 0xFF

 if key == ord("u"):

 send_gcode("G28")

 calibration_started = True

 print("[CALIBRATION] Started. Click the 9 points in

order.")

 if key == ord("q") or (calibration_started and

current_index >= len(robot_coords)):

 break

 cv2.destroyAllWindows()

 if len(cam_points) >= 3:

 cam_points_np = np.array(cam_points, dtype=np.float32)

 real_points_np = np.array(real_points, dtype=np.float32)

 M_new, _ = cv2.estimateAffine2D(cam_points_np,

real_points_np)

 if M_new is not None:

 M_affine = M_new

 print("\n[RESULT] Updated Affine Matrix:")

 print(M_affine)

 else:

 print("[ERROR] Calibration failed.")

 send_gcode("G28")

 with lock:

 shared["calibrating"] = False

 print("[CALIBRATION] Done. System resumed.")

 send_gcode("G28")

def gui_thread():

 root = tk.Tk()

 root.title("Waste Sorting Control")

 root.geometry("980x560")

 # Top buttons

71

 frame_top = ttk.Frame(root, padding=8)

 frame_top.grid(row=0, column=0, sticky="nw")

 def on_start():

 with lock:

 shared["run"] = True

 print("[GUI] Start pressed")

 def on_stop():

 with lock:

 shared["run"] = False

 send_gcode("G28")

 conveyor_stop()

 print("[GUI] Stop pressed")

 def on_reset():

 with lock:

 for k in shared["counters"]:

 shared["counters"][k] = 0

 update_counters()

 print("[GUI] Counters reset")

 def on_exit():

 if not messagebox.askokcancel("Exit", "Stop system and

exit?"):

 return

 with lock:

 shared["program_running"] = False

 shared["run"] = False

 root.quit()

 root.destroy()

 ttk.Button(frame_top, text="Start",

command=on_start).grid(row=0, column=0, padx=6, pady=6)

 ttk.Button(frame_top, text="Stop",

command=on_stop).grid(row=0, column=1, padx=6, pady=6)

 ttk.Button(frame_top, text="Reset Counters",

command=on_reset).grid(row=0, column=2, padx=6, pady=6)

 ttk.Button(frame_top, text="Exit",

command=on_exit).grid(row=0, column=3, padx=6, pady=6)

 ttk.Button(frame_top, text="Calibrate",

command=run_calibration).grid(row=0, column=4, padx=6, pady=6)

 # Mapping controls (class -> drop area)

 frame_map = ttk.LabelFrame(root, text="Class → Drop Area",

padding=8)

 frame_map.grid(row=1, column=0, sticky="nw", padx=8, pady=6)

72

 options = ["Left", "Right", "Ignore"]

 mapping_vars = {}

 def make_callback(cls):

 def cb(v):

 with lock:

 shared["mapping"][cls] = v

 print(f"[GUI] mapping {cls} -> {v}")

 return cb

 row_idx = 0

 for cls in shared["mapping"].keys():

 lbl = ttk.Label(frame_map, text=cls.capitalize())

 lbl.grid(row=row_idx, column=0, sticky="w", padx=6,

pady=4)

 var = tk.StringVar(value=shared["mapping"][cls])

 mapping_vars[cls] = var

 cb = ttk.OptionMenu(frame_map, var, var.get(), *options,

command=make_callback(cls))

 cb.grid(row=row_idx, column=1, sticky="w", padx=6,

pady=4)

 row_idx += 1

 # Right side: video and counters

 frame_right = ttk.Frame(root, padding=8)

 frame_right.grid(row=0, column=1, rowspan=3, sticky="nsew")

 video_label = ttk.Label(frame_right)

 video_label.grid(row=0, column=0, padx=6, pady=6)

 counter_frame = ttk.LabelFrame(frame_right, text="Picked

counters", padding=8)

 counter_frame.grid(row=1, column=0, sticky="nsew", padx=6,

pady=6)

 counter_labels = {}

 for i, cls in enumerate(shared["counters"].keys()):

 lbl = ttk.Label(counter_frame, text=f"{cls.capitalize()}:

0")

 lbl.grid(row=i, column=0, sticky="w", padx=4, pady=2)

 counter_labels[cls] = lbl

 def update_counters():

 with lock:

 counters = shared["counters"].copy()

 for k, lbl in counter_labels.items():

 lbl.config(text=f"{k.capitalize()}:

{counters.get(k,0)}")

73

 def update_video():

 with lock:

 frame = shared["frame"].copy() if shared["frame"] is

not None else None

 if frame is not None:

 try:

 rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 im = Image.fromarray(rgb).resize((640, 480))

 imgtk = ImageTk.PhotoImage(image=im)

 video_label.imgtk = imgtk

 video_label.config(image=imgtk)

 except Exception as e:

 print("[GUI VIDEO ERR]", e)

 update_counters()

 root.after(30, update_video)

 update_video()

 root.protocol("WM_DELETE_WINDOW", on_exit)

 root.mainloop()

Start threads

t1 = threading.Thread(target=vision_task, daemon=True)

t2 = threading.Thread(target=robot_task, daemon=True)

t3 = threading.Thread(target=gui_thread, daemon=True)

t1.start()

t2.start()

t3.start()

try:

 while shared["program_running"]:

 time.sleep(0.5)

finally:

 print("Closing...")

 cap.release()

 cv2.destroyAllWindows()

 conveyor_stop()

 send_gcode("G28")

 send_gcode("M5")

 robot.close()

 esp.close()

 print("Closed.")

