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ABSTRACT 

 

 

This project presents the design, development, fabrication and evaluation of an 

automated waste sorting system integrating computer vision, robotic actuation 

and electronic control. The primary objective was to automate the classification 

and segregation of recyclable waste to improve accuracy and efficiency 

compared to manual sorting. The methodology involved fabricating a conveyor 

belt system, designing a slider mechanism to extend the Delta X robotic arm’s 

reach and equipping the robot with a vacuum gripper for pick-and-place 

operations. A YOLOv8 deep learning model, trained on a custom dataset of 

waste images, was integrated with the ByteTrack algorithm to provide real-time 

object detection and tracking. An ESP32 microcontroller and a Python-based 

GUI coordinated the conveyor, slider, robot arm and vision subsystems for 

seamless operation. Experimental testing demonstrated high detection 

accuracies of 100% for aluminium, 96% for plastics and 94% for paper. Pick-

and-place success rates were 92% for aluminium, 98% for paper and 48% for 

plastics, the latter being affected by transparency, irregular surfaces and 

limitations of the IR sensor. The overall throughput achieved was 8 - 15 items 

per minute, with reliable continuous operation over 20 minutes, though 

positional drift of the robot arm and slider was observed due to the lack of 

feedback mechanisms. These results indicate that the prototype successfully met 

its objectives, demonstrating the feasibility of low-cost AI-enabled robotic 

sorting.  

 

 

Keywords: waste sorting; YOLOv8; machine vision; robotic arm; automation; 

object detection 

 

Subject Area:  Robotics 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In Malaysia, daily municipal solid waste generation has increased rapidly from 

25,000 tonnes in 2013 to approximately 39,000 tonnes in 2024. The rapid rise 

in waste production is driven primarily by population growth, lifestyle changes 

and rapid urbanization (International Trade Administration, 2024). The import 

of waste, which weight to over 68,000 tonnes in 2022, has only worsened this 

situation (World Bank. org, 2022). This leads to clogged drains, urban flooding 

and escalating greenhouse gas emissions from anaerobic decomposition in 

overflowing landfills (Chuah et al., 2023). 

 Plastic, paper and aluminium, materials that people use almost every 

day, contribute 21.9 %, 15.3 % and 6 % of total municipal waste respectively 

(Zainal, 2024). Although these wastes are highly recyclable, Zainal (2024) 

reported that Malaysia’s national recycling rate stood at just 35.38 % in 2023, 

with only 24 % of plastic waste produced in 2019 being recycled. The remainder 

is sent to landfills or mismanaged disposal sites. Figure 1.1 shows the landfill at 

Teluk Mengkudu, Perak. International Trade Administration (2024) warns that 

if waste generation continues at this alarming rate, Malaysia will exhaust its 

landfill capacity by 2050.  

 

 

Figure 1.1: Landfill at Teluk Mengkudu, Perak 

 

 To mitigate the issue, the government has introduced measures such as 

the RM0.20 plastic bag in 2017, the “Roadmap Towards Zero Single Use 
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Plastics 2018–2030” and widespread public awareness campaigns. However, 

mixed collection systems and reliance on manual segregation at Materials 

Recovery Facilities mean that waste often arrives commingled. Manual sorting 

is slow, inefficient, prone to contamination and exposes workers to physical and 

health risks (Dodampegama et al., 2024). Hence, implementation of automated 

waste sorting system that combine machine vision for waste identification with 

robot arms for waste separation can improve throughput, reduce contamination 

and enhance worker safety. 

 

1.2 Importance of the Study 

Waste sorting is the critical link between waste collection and remanufacturing. 

If collected waste is not accurately separated, downstream processes suffer from 

contamination, degraded material quality and increased remanufacturing costs. 

Figure 1.2 shows the waste-sorting process performed by human labor. In 

Malaysia, poor waste sorting capabilities result in significant quantities of 

valuable recyclables being lost to landfills. By integrating machine vision 

technologies with robotic arms, the identification and separation of waste 

materials such as plastics, paper and aluminium can be automated. This 

automation not only improves sorting accuracy and consistency but also reduces 

reliance on manual labour, minimizing workers’ exposure to unhygienic and 

hazardous environments while lowering operational manpower costs. 

 

 

Figure 1.2: Manual Waste Sorting Process 

 

1.3 Problem Statement 

In Malaysia, the current waste sorting process at Materials Recovery Facilities 

depends almost entirely on manual labour, resulting in low efficiencies and 
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inconsistent separation of recyclables. Workers in the recycling sector earn an 

average of MYR 38,081 per year (approximately MYR 18 per hour), despite 

performing physically demanding and hazardous tasks in cramped, unsanitary 

conditions. On average, human pickers can sort only 20 - 40 waste per minute 

and sorting accuracy declines rapidly as fatigue sets in, necessitating time 

consuming validation and re-sorting process. Moreover, prolonged manual 

handling without adequate training or protective equipment exposes workers to 

elevated risks of musculoskeletal injuries and cuts from sharp or contaminated 

materials. 

 Implementation of machine-vision and robotic systems can automate 

the waste sorting process. Advanced waste sorting solutions are already 

available in other countries. For instance, AMP Robotics has offered AI-

powered waste sortation services, which increase sorting efficiency and reduce 

human involvement. However, high purchase fees, taxes, delivery fees and 

maintenance fees remain barriers. Furthermore, these imported systems are 

often optimized for waste compositions in Europe or North America, making 

them less effective at processing Malaysia’s unique mix of plastics, paper and 

aluminium. Hence, an automated sorting system that integrates machine vision 

with a robotic arm on a conveyor system that designed locally can tackle such 

issues, effectively reduce the system implementation costs. 

 

1.4 Aim and Objectives 

This project aims to design and manufacture an automated waste sorting system 

that capable of identifying and segregating different types of wastes on a 

conveyor belt. The types of waste are plastic (Plastic Bottle), paper (Beverage 

Carton) and aluminium (Aluminium Can). The following objectives are to be 

completed to achieve the aim: 

i. To develop a robotic system equipped with computer vision for 

accurate detection and classification of various waste types. 

ii. To automate the sorting process in order to ensure consistent 

and accurate waste segregation. 

iii. To evaluate the system’s performance by measuring sorting 

accuracy, processing speed and reliability. 
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1.5 Scope and Limitation of the Study 

This project’s scope encompasses the design and manufacture of an automated 

waste sorting system for recycling facilities in Malaysia. Deep learning models 

will be trained to identify and classify plastics, paper and aluminium waste 

based on visual features such as size, shape and colour. An object tracking 

algorithm will then track and assign a specific ID to each identified waste. A 

conveyor belt will transport waste and its speed will be adjusted dynamically 

according to the number of wastes in the working range to maximize picking 

efficiency.  A linear slider will extend the robot arm’s horizontal reach across 

the full width of the conveyor, ensuring complete coverage and increased 

picking speed. Finally, a sensor that installed on the gripper will confirm 

successful grasp of each piece of waste. 

 There are a few of limitation for the project. First, the deep learning 

algorithm is trained on a dataset limited to three materials, which are plastic, 

paper and aluminium can. This may restrict its ability to generalize to other 

common waste types such as glass or rubber. Second, this study employs a 

small-scale neural network architecture for rapid prototyping. Thus, scaling up 

to a production grade model will require substantially more computational 

resources and may incur longer inference times, potentially affecting real time 

performance. Third, the current prototype has been designed on a small scale, 

suitable for demonstration purposes. This limited scale may not effectively 

handle large volumes of waste or operate efficiently in industrial settings where 

higher throughput is required. 

 

1.6 Contribution of the Study 

This study contributes to the advancement of low-cost automated waste sorting 

by integrating deep-learning based computer vision with robotic and mechanical 

actuation into a functional prototype. It demonstrates the feasibility of using 

YOLOv8 combined with the ByteTrack tracking algorithm for real-time 

detection and classification of common waste types, achieving high levels of 

accuracy in distinguishing aluminium, plastic and paper. The development of a 

conveyor, slider and robot arm system using commercially available 

components, highlights a practical and scalable approach suitable for small-

scale waste management applications. Furthermore, the project provides 
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experimental data and analysis on the challenges of handling irregular and 

transparent waste items, contributing to the broader understanding of limitations 

in current automated sorting technologies. Overall, the findings of this study 

serve as a reference for future research in developing sustainable, affordable and 

intelligent waste sorting solutions. 

 

1.7 Outline of the Report 

This report is organized into five main chapters. Chapter 1 introduces the 

background, problem statement, objectives, scope, contributions and overall 

structure of the project. Chapter 2 presents a literature review on related topics, 

including robotic arms, gripper types, motors, object detection models and 

object tracking algorithms. Chapter 3 explains the methodology and work plan, 

covering system overview, fabrication of the conveyor and slider, development 

of the machine vision system, integration of hardware and electronics and 

coding workflow. Chapter 4 discusses the results and findings, including the 

performance of the fabricated parts, evaluation of machine vision, system 

testing and comparative analysis with related works. Finally, Chapter 5 provides 

conclusions, challenges encountered and recommendations for future work. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter presents a comprehensive review of existing technologies and 

research relevant to the development of an automated plastic waste sorting 

system. Various types of robotic arms, including Delta, SCARA, Cartesian and 

Articulated arms, equipped gripper with different gripping mechanisms, are 

studied and compared to determine the most suitable component for the system. 

Additionally, different types of motors are evaluated for driving both the 

conveyor belt and the slider system.  

 On the software side, this chapter examines machine vision, focusing 

on deep learning models such as YOLO, SSD and RCNN for real time waste 

identification and object tracking algorithms such as including KCF, SORT, 

Deep SORT and ByteTrack for identified waste tracking. The goal of this 

literature review is to provide the justification for the design choices made in 

this project. 

 

2.2 Robot 

Robots are programmable, actuated mechanisms with varying degrees of 

autonomy that perform tasks in response to internal commands and external 

stimuli. According to the international standard ISO 8373, an industrial robot is 

defined as “a programmed actuated mechanism with a degree of autonomy to 

perform locomotion, manipulation or positioning” (ISO, 2021). These systems 

typically exhibit multiple degrees of freedom, allowing precise, repeatable 

motions that surpass human endurance and accuracy. 

 In this project, a robot arm equipped with gripper is mounted above a 

conveyor to automate the pick and place routine of wastes.  

 

2.2.1 Robot Arm Type 

In industrial automation, several types of robotic arms are available, each with 

its own unique mechanical structure, range of motion and application suitability. 

Among the most widely used types are Delta, SCARA, Cartesian and 
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Articulated robot arms (Techman Robot, 2023). For lightweight waste sorting 

applications, where high speed and precision are essential but heavy payload 

capacity is not, a careful comparison of these arm types is necessary to 

determine the most effective solution. 

 Delta robot arms, also known as parallel robots, are specially designed 

for high speed pick and place tasks. They feature three lightweight arms 

connected to a common base, with actuators mounted at the top. This design 

allows for minimal moving mass and extremely fast acceleration and 

deceleration. As a result, Delta robots, such as the Delta X1 from DeltaX 

Robotics, can achieve max speed of 700 mm/s, with typical payload capacity of 

up to 0.5 kg, which is more than sufficient for lightweight materials such as 

plastic bottles (DeltaX Robot, 2020). Due to their high-speed capabilities, Delta 

robots are commonly used in food packaging, pharmaceutical sorting and other 

industries that demand rapid material handling (Robots Done Right, 2025). 

Their workspace is typically dome-shaped, which can be limiting in range, but 

can be overcome with the integration of a linear slider, as proposed in this 

project. Figure 2.1 shows the picture of Delta X1 from DeltaX Robotics. 

 

 

Figure 2.1: Picture of Delta Robot (DeltaX Robot, 2020). 

 

 Selective Compliance Articulated Robot Arm (SCARA) are another 

fast and accurate option used in industrial applications. They operate mainly in 

the X-Y plane with limited vertical movement, making them ideal for pick-and-

place tasks (Standard Bots, 2025). As shown in Figure 2.2, SCARA robots 

typically have four degrees of freedom (DOF): three rotational movements and 

one vertical movement. (Flexi Bowl, 2014). However, their range of motion is 

more constrained compared to Delta robots and their speed is generally slightly 
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lower due to their heavier mechanical arms (Robots Done Right, 2022). While 

suitable for moderately fast sorting tasks, SCARA robots may not meet the 

highest speed requirements of waste sorting operations where materials are 

rapidly moving on a conveyor.  

 

 

Figure 2.2: Picture of SCARA Robot 

 

 Cartesian robots, also known as gantry robots, use three linear actuators 

aligned with the X, Y and Z axes to provide precise motion in a rectangular 

workspace as shown in Figure 2.3. These systems can handle very large 

payloads and are relatively easy to program due to their orthogonal structure 

(Standard Bots, 2025). They are excellent for tasks that require heavy lifting or 

large working areas. However, Cartesian robots are generally slower than Delta 

and SCARA robots and their large moving masses make them less suitable for 

rapid pick-and-place operations with lightweight objects.  

 

 

Figure 2.3: Picture of Cartesian Robot 
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 Articulated robots, which resemble a human arm with multiple rotary 

joints (typically 5–7 degrees of freedom), offer the most flexible movement. 

They are widely used in complex tasks such as welding, painting and part 

manipulation that require versatile orientation (Balluff, n.d.). While these robots 

can handle high payloads and have broad reach, they are typically slower in 

operation due to their heavier joints and require more complex programming 

and safety measures. For high-speed, lightweight sorting tasks like those 

involved in this project, articulated arms are generally overengineered and less 

cost-effective compared to Delta or SCARA robot arm. Figure 2.4 shows an 

example of an articulated robot. 

 

 

 

Figure 2.4: Picture of Articulated Robot 

 

 To determine the most suitable robot arm type for this lightweight 

waste sorting system, a scoring matrix is used based on four key criteria, which 

are speed, precision, payload suitability and ease of integration. Each arm type 

is rated on a scale from 1 (poor) to 5 (excellent). Table 2.1 shows the scoring 

matrix for selection of robot arm. 
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Table 2.1: Scoring Matrix for Selection of Robot Arm 

Criteria Delta SCARA Cartesian Articulated 

Speed 5 4 3 3 

Precision 4 5 4 3 

Suitability 

for 

lightweight 

tasks 

5 4 3 3 

Simplicity & 

integration 
4 3 3 1 

Total Score 18 16 13 10 

 

 Based on the scoring matrix, the Delta robot arm achieves the highest 

total score and is therefore selected for this project. Its lightweight construction 

and exceptional speed make it the most suitable choice for accurately sorting 

moving plastic waste items on a conveyor system. Furthermore, the addition of 

a linear slider allows the Delta arm to overcome its workspace limitations, 

enabling it to handle a wider area without compromising speed. This 

configuration ensures high efficiency in picking, sorting and placing lightweight 

recyclable materials such as plastic, paper and aluminium waste. 

 

2.2.2 Gripper Types 

Grippers serve as the end effector of a robotic arm, allowing robot to hold, grasp, 

manipulate, or transport objects (Dorna Robotics, 2023). In automated waste 

sorting system, where throughput and versatility are paramount, the choice of 

gripper technology directly influences both the speed of pick-and-place 

operations and the ability to handle items of varying shape, size and surface 

properties. Consequently, selecting an appropriate gripper, whether based on 

suction, mechanical fingers, adhesion, or electroadhesion, is critical to 

achieving reliable, efficient sorting performance. 

 Vacuum grippers lift objects by creating negative pressure against the 

object’s surface. It comprises a vacuum source such as an electric vacuum pump 
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or a venturi system that connects to a gripping interface equipped with vacuum 

suction cups (Granta, 2023). They are widely used for picking and placing, 

palletizing and depalletizing and loading and unloading (Standard Bot, 2025). 

Vacuum suction cups can be made of flexible materials so they partly conform 

to curved or uneven surfaces giving them good performance on rounded bottles 

and cans. However, porous materials like loose paper can leak air and are harder 

to pick by suction. Overall, vacuum grippers excel at rapid handling of smooth 

or partially irregular waste, combining high speed with broad applicability. 

Figure 2.5 displays a vacuum gripper gripping a paper box with a flat surface. 

 

 

Figure 2.5: Picture of Vacuum Grippers 

 

 Mechanical grippers typically use fingers or jaws to grip objects. These 

grippers can be very fast and reliable. For example, two-finger grippers, such as 

the example shown in Figure 2.6, are known to operate in high-speed assembly 

lines (Dorna Robotics, 2023). Such grippers can achieve rapid open/close cycles 

when handling repeatable, well-defined objects. Multi-finger grippers can 

conform around irregular shapes. For instance, underactuated finger grippers in 

bin-picking tasks adjust their fingers to grasp assorted parts (Dorna Robotics, 

2023). This adaptability lets them handle items of varying geometry. However, 

mechanical grippers must often align fingers around the object, which can slow 

the cycle compared to a single suction action. Mechanical claws may also risk 

dropping deformable items like thin paper or plastic bag that slip from their grip. 

In summary, mechanical grippers offer fast cycles and moderate adaptability to 

irregular waste. 
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Figure 2.6: Picture of Mechanical Grippers 

 

 Adhesive grippers, as shown in Figure 2.7, use sticky or gecko-inspired 

pads to attach to objects. They can attach to flat or rough surfaces without 

leaving residue. Since the adhesive relies on shear force instead of normal force 

or friction, it can handle fragile items gently without applying too much pressure 

(Stanford University, 2015). This allows exceptionally good handling of 

irregular or flexible objects. On the downside, adhesives typically require full 

contact and time to engage or disengage, making their cycle slower. Moreover, 

adhesive surfaces can lose their effectiveness when dirty or dusty, which is 

almost certain to occur in a waste handling environment. Overall, adhesive 

grippers would have moderate picking speed but high adaptability to diverse 

object shapes  

 

 

Figure 2.7: Picture of Adhesive Grippers 

 

 Electrostatic grippers, as illustrated in Figure 2.8, apply a high-voltage 

field to attract and hold objects via electroadhesion (Ackerman, 2014). They can 

rapidly attach or release by switching voltage on/off, enabling quick cycles that 

are comparable to other high-speed grippers. Electrostatic grippers excel at 

lightweight, flat objects but they struggle with bulky 3D items or conductive 

metals. Moreover, curved bottles or crumpled items offer less contact area, 
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leading to reduce in electrostatic gripping force. In summary, electrostatic 

grippers offer a fast pick rate but limited suitability for 3D irregular shapes.  

 

 

Figure 2.8: Picture of Electrostatic Grippers 

 

 To identify the most suitable gripper for this waste sorting system, a 

scoring matrix was developed using two critical criteria, which are picking 

speed and the ability to handle irregularly shaped objects. Each gripper type was 

evaluated on a scale from 1 (poor) to 5 (excellent). Table 2.2 shows the scoring 

matrix for selection of gripper. 

 

Table 2.2: Scoring Matrix for Selection of Gripper 

Criteria Vacuum Mechanical Adhesive Electrostatic 

 Picking 

Speed 
5 4 3 4 

Irregular 

Object 

Handling 

4 3 5 2 

Total Score 9 7 8 6 

 

 Vacuum grippers achieve the highest combined performance, 

reflecting both high cycle rate and broad object compatibility. Other types each 

have critical drawbacks. For instance, mechanical claws are fast but less 

adaptable, adhesives gripper grasp many shapes but cycle more slowly and 

electrostatic gripper grips thin, flat materials only. Thus, a vacuum gripper is 

the best choice for gripper of the waste sorting system. 

 



14 

2.3 Motor 

Motors serve as the driving force of a conveyor system and slider of this waste 

sorting system. Selecting the right motors for both the conveyor belt and the 

slider is critical to ensure the automated sorting system meets its performance 

and reliability targets. For the conveyor, a motor must deliver high rotational 

speed, sufficient torque to move loaded belts and sustained operation without 

overheating. For the slider, priorities shift toward precise, repeatable motion, 

adequate holding torque and moderate travel speed. Three different type of 

motor, including 775 DC motor, JGB37-545 Gear Motor and NEMA 23 stepper 

motor will be discussed and evaluated to determine the most suitable motor for 

both conveyor belt and the slider. 

 775 DC motor, as shown in Figure 2.9, is a high-performance brushed 

electric motor renowned for its compact yet powerful design. The motor is 

optimized for mid to high power applications delivering no-load speeds of 

approximately 4,100 RPM at 12 V and up to 8,400 RPM at 24 V and stall torque 

is rated near 0.79 Nm (SM Tech, 2019). Widely used in robotic and hobbyist 

applications, 775 DC motor offers an excellent speed to size ratio but lacks 

precise position control, requiring additional encoders or feedback for accurate 

synchronization with sorting task. 

 

 

Figure 2.9:  Picture of 775 DC Motor 

 

 JGB37-545 Gear Motor, as shown in Figure 2.10, is a compact gear 

motor that combines a 12 V brushed DC motor with an integrated gearbox. It 

provides a wide range of gear reduction ratios, typically yielding speeds 

between 6 RPM and 1,000 RPM depending on the version, with torque values 

up to above 35 kgcm at lower speeds. This makes it highly adaptable for 

medium-load conveyor systems that require steady, continuous operation. 

JGB37-545 offers significantly higher torque output, improved durability and 
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smoother performance, making it a practical option for real conveyor 

applications where both strength and reliability are needed. 

 

 

Figure 2.10: Picture of JGB37-545 Gear Motor 

 

 NEMA 23 stepper motor, as shown in Figure 2.11, provides 1.8° step 

resolution and a holding torque of approximately 0.6 Nm, delivering precise, 

repeatable movements without feedback sensors, which is critical for the slider. 

While its maximum unloaded speed is relatively modest, the use of micro 

stepping drivers can tailor torque-speed curves to match application needs, 

ensuring smooth operation under load.  NEMA 23’s robust construction and 

constant holding torque make it an excellent choice for positional accuracy. 

However, its higher cost and the need for more complex drive electronics add 

to system complexity and increase power demands. 

 

 

Figure 2.11: Picture of NEMA 23 Stepper Motor 

 

 To determine the most suitable motor for the conveyor system and 

slider, two scoring matrices are developed using two different set of criteria. For 

the conveyor system, the criteria are speed, torque and continuous duty 

capability; for the slider, the criteria are positional control, holding torque and 

travel speed. Each motor was scored from 1 (poor) to 5 (excellent). Table 2.3 
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and table 2.4 show the scoring matrix for selection of motor for conveyor system 

and slider. 

 

Table 2.3: Scoring Matrix for Selection of Motor for Conveyor System 

Criteria 775 DC Motor 
JGB37-545 

Gear Motor 

NEMA 23 

Stepper Motor 

Speed 5 4 3 

Torque 4 5 4 

Continuous 

Duty 

Capability 

3 5 4 

Total Score 12 14 11 

 

 The JGB37-545 gear motor scored the highest overall for torque and 

continuous-duty capability while maintaining a decent rotational speed, 

resulting in a total score of 14. This reflects its suitability for the conveyor of 

the waste sorting system. Consequently, the JGB37-545 gear motor is 

recommended for the conveyor, balancing steady torque output, sufficient speed 

and reliable continuous operation. 

 

Table 2.4: Scoring Matrix for Selection of Motor for Slider 

Criteria 775 DC Motor 
JGB37-545 

Gear Motor 

NEMA 23 

Stepper Motor 

Positional 

Control 
2 2 5 

Holding 

Torque 
4 4 4 

Travel Speed 5 4 3 

Total Score 11 10 12 

 



17 

 NEMA 23 stepper motor achieved top marks in precision control and 

high holding torque and moderate speed, resulting in total score of 12, which is 

well above the threshold for reliable, repeatable slider movement. Thus, NEMA 

23 stepper motor is recommended for the slider, offering the high accuracy and 

holding power for consistent pick-and-place operations. 

 

2.4 Object Detection Model 

In industrial automation, different object detection model categories offer 

diverse trade-offs between accuracy, speed and resource requirements. These 

include single stage and two stage detectors, each with specific strengths and 

weaknesses, influencing their suitability for various applications. Single stage 

detectors, such as YOLO and SSD, process the entire image in a single pass. 

These models are known for their speed and efficiency, making them suitable 

for real-time applications where quick processing is crucial. They typically 

achieve a lower accuracy compared to two stage detectors (SharkYun, 2024). 

On the other hand, two stage detectors like R-CNN employ a separate region-

proposal step to boost precision at the expense of increased computational 

overhead. Selecting the optimal model for conveyor-belt waste sorting thus 

requires evaluating detection accuracy, speed, hardware cost and ease of 

implementation. 

 You-Only-Look-Once (YOLO) is a real-time object detection model 

widely used across various applications due to its high speed and accuracy. 

YOLO processes an entire image in a single forward pass of a deep 

convolutional network, partitioning it into an S×S grid where each cell predicts 

B bounding boxes along with confidence scores and class probabilities. The 

confidence score reflects both the probability that an object exists within the box 

and the predicted intersection over union (IoU) with ground truth. During 

training, each object is assigned to the bounding box predictor with the highest 

IoU, encouraging specialization among predictors for different sizes or aspect 

ratios. At inference time, non-maximum suppression (NMS) prunes overlapping 

boxes by retaining only the highest‐confidence detection per object, reducing 

false positives and ensuring crisp localization (Joseph et al., 2016). Figure 2.12 

summarizes the core steps of how YOLO turns a single image into object 

detections in real time. 
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Figure 2.12: Mechanism of YOLO 

 

 YOLO is commonly applied in industrial automation for tasks like 

robotic pick-and-place, quality inspection and waste sorting. It is lightweight, 

easy to deploy on embedded systems and capable of detecting multiple objects 

per frame. YOLO still has some drawbacks, including reduced accuracy in 

detecting small or overlapping objects and reliance on predefined anchor boxes. 

However, in the newer version, like YOLOv8, many of these issues have been 

addressed through improvements such as anchor-free detection, better backbone 

architecture and refined training strategies (docs.ultralytics.com, n.d.). 

 Single Shot Detector (SSD) is a single stage object detection algorithm 

that performs object localization and classification in a single forward pass of 

the neural network, making it significantly faster than two-stage detectors like 

R-CNN. SSD divides the input image into a grid and generates default bounding 

boxes of different aspect ratios and scales at each grid location. During inference, 

SSD predicts both the presence of objects and their class scores for each 

bounding box. This architecture enables real-time detection with relatively high 

accuracy (Liu et al., 2016). One of its main advantages is its ability to balance 

speed and accuracy, especially on medium to large objects. However, it has 

limitations in detecting small objects, as it relies on lower resolution feature 

maps for some detections. SSD also depends on predefined anchor boxes, which 

can reduce flexibility in complex scenarios. Despite these limitations, SSD 

remains a popular choice for real time applications where inference speed is 

critical 

 Regions with Convolutional Neural Network features (R-CNN) is a 

pioneering two stage detection framework that significantly improved detection 

accuracy compared to earlier methods. The R-CNN architecture first generates 
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region proposals using an algorithm like selective search, which identifies 

candidate regions in the image that may contain objects. These proposals are 

then passed through a convolutional neural network to extract features, which 

are subsequently classified using a set of Support Vector Machine (SVM) 

classifiers and bounding boxes are refined using linear regressors. R-CNN is 

known for its high accuracy and was among the first models to effectively apply 

deep learning to object detection. It is particularly useful in medical imaging, 

autonomous driving and surveillance applications where detection precision is 

crucial. However, R-CNN has notable drawbacks, including slow inference time, 

high computational cost and complex training, as it requires multiple separate 

training steps for the CNN, SVMs and bounding box regressors. These 

limitations led to the development of more efficient successors like Fast R-CNN 

and Faster R-CNN. Despite this, R-CNN remains foundational in the evolution 

of object detection models 

 To determine the most suitable object detection model for this system, 

a scoring matrix is used based on two key criteria, which are accuracy, speed, 

Hardware cost and ease of integration. Each object detection model is rated on 

a scale from 1 (poor) to 5 (excellent). Table 2.5 shows the scoring matrix for 

selection of object detection model. 

 

Table 2.5: Scoring Matrix for Selection of Object Detection Model 

Criteria YOLOv8 SSD R-CNN 

 Accuracy 3 4 5 

Speed 4 4 2 

Hardware 

Cost 
4 5 2 

Ease of 

Integration 
5 2 3 

Total Score 16 15 12 
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 Based on the scoring matrix, YOLOv8 achieves the highest total score 

by achieving an optimal balance across all evaluation criteria. While R-CNN 

leads in accuracy, its slower inference speed, higher hardware demands and 

more complex integration requirements make it less suited for a real time waste 

sorting application. SSD offers strong speed and low hardware cost but falls 

short in integration ease and marginally in detection accuracy. In contrast, 

YOLOv8 delivers moderate accuracy with real-time performance, requires only 

moderate computing resources and integrates seamlessly into existing robotic 

and vision frameworks. This combination of speed, affordability and low 

implementation overhead makes YOLOv8 the most practical choice for the 

waste sorting system. 

  

2.5 Object Tracking Algorithms 

Object tracking in a waste sorting system involves linking YOLOv8 detections 

across frames to maintain consistent object identities for robotic pick-up. 

Several classical and modern trackers can will be discussed in this part, 

including KCF, SORT, Deep SORT and ByteTrack. 

 Kernelized Correlation Filter (KCF) is a single object tracker that uses 

fast Fourier-domain correlation to predict motion. KCF is extremely fast and it 

can be implemented in a few lines of code. It generally attains high localization 

accuracy under stable conditions, but it struggles with abrupt appearance 

changes or occlusions and does not handle scale variation well (KALRA, 2023). 

Since it tracks one object per model, KCF must be re-initialized for each new 

waste item. This complicates multi-object scenarios. In practice, KCF can be 

attached to YOLO bounding boxes as initial regions of interest, but coordinating 

many KCF trackers in parallel adds complexity. Overall, KCF’s tracking 

accuracy is only moderate for a complex scene, but its speed is excellent. It has 

low computational cost and mature implementations. However, it has virtually 

no re-identification capability. This means that if a waste item is occluded or 

leaves and re-enters the scene, KCF will generally lose it. 

 Simple Online and Realtime Tracking (SORT) is a multi-object 

tracking framework that builds on YOLO-like detections by applying a Kalman 

filter for motion prediction and the Hungarian algorithm for bounding box 

association. (Sanyam, 2022).  SORT is deliberately minimalistic, as it uses only 
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the box coordinates and a constant velocity motion model. This makes SORT 

extremely fast and lightweight. Due to SORT relies entirely on Kalman-filter 

predictions and IoU-based matching, SORT produces few false positives but 

suffers frequent ID switches if objects intersect or occlude. Integration with 

YOLOv8 is straightforward, the tracker simply takes each frame’s detections 

and outputs persistent track IDs. The computational cost is negligible and SORT 

scales to many objects in real time. Its main weakness is that it does not handle 

re-identification. This means that when a waste item is fully occluded or briefly 

missed, SORT may drop it as a track. 

 Deep SORT extends SORT by adding a learned appearance model for 

data association. In practice, Deep SORT extracts a deep “re-ID” feature vector 

from each detection crop and uses both motion and appearance similarity in the 

association. This substantially improves ID consistency, as Deep SORT can 

correctly re-link an object after it reappears and it handles partial occlusion 

better than pure SORT (Sanyam, 2022). Its tracking accuracy is higher in 

crowded or complex scenes. However, the extra CNN feature extraction makes 

Deep SORT heavier. It requires a GPU or powerful CPU and it runs slower than 

SORT. Deep SORT remains real-time on modern hardware, but its throughput 

is limited by the embedding network. In terms of computational cost, Deep 

SORT is significantly higher than SORT because of the neural network. On the 

positive side, Deep SORT is a mature, well-tested method and offers robustness 

to occlusion and re-appearance that KCF and SORT lack. 

 ByteTrack is a recent multi-object tracker that improves on SORT by 

using both high-confidence and low-confidence detections in its association 

strategy. Instead of discarding low-confidence detections, as SORT does, 

ByteTrack assigns them as candidates when IoU matching fails, greatly 

reducing ID switches and track fragmentation. This makes ByteTrack especially 

strong in real-world waste sorting, where occlusion, overlapping items and 

partial visibility are common. ByteTrack is lightweight, runs in real time and 

integrates seamlessly with YOLOv8. Compared to Deep SORT, it achieves 

similar or better tracking accuracy while avoiding the computational overhead 

of an additional embedding network. (Zhang et al., 2021) 

 To determine the most suitable object tracking algorithms for this 

system, a scoring matrix is used based on five key criteria, which are accuracy, 
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speed, ease of integration, computational cost and scalability. Each algorithm is 

rated on a scale from 1 (poor) to 5 (excellent). Table 2.6 shows the scoring 

matrix for selection of object tracking model. 

 

Table 2.6: Scoring Matrix for Selection of Object Tracking Algorithms 

Criteria KCF SORT 
DEEP 

SORT 
ByteTrack 

Tracking 

Accuracy 
3 4 5 5 

Speed 5 5 3 5 

Ease of 

Integration 
3 5 4 5 

Computational 

Cost 
5 5 2 4 

Resistance to 

Occlusion 
2 3 4 4 

Scalability 4 5 3 5 

Total Score 22 27 21 28 

 

 Based on the evaluation, ByteTrack emerges as the most suitable 

tracking algorithm for this application. Although Deep SORT offers the highest 

accuracy, its greater computational demands and slightly slower speed make it 

less ideal for a high-throughput, resource constrained environment. KCF excels 

in speed and scalability but falls behind in both tracking precision and resistance 

to occlusion. By contrast, ByteTrack achieves the best balance of accuracy, real-

time speed, low computational cost and robustness against occlusion. Its 

seamless integration with YOLOv8 makes it ideal for maintaining consistent 

object identities on a moving conveyor, ensuring reliable robotic pick up in 

multi object waste sorting scenarios. 
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2.6 Summary 

The literature review for this automated waste sorting system provides insights 

across mechanical, actuation and machine vision to identify the most effective 

components. Delta robot is recommended as the optimal choice due to their 

exceptional cycle times and compact work envelopes. Among end effectors, 

vacuum grippers provide the best balance of gentle handling and high 

throughput for lightweight recyclables, outperforming mechanical claws, 

adhesives and electrostatic solutions in versatility and cycle speed. For motor of 

conveyor, the JGB37-545 gear motor was selected for the conveyor because of 

its reliable torque output, continuous duty capability and suitability for medium-

load applications., while the NEMA 23 stepper motor offers the precision and 

holding torque required for the slider’s lateral traverse. 

 For the machine vision, YOLOv8 stands out as the most practical 

object detection model, delivering real time inference with strong mean average 

precision suitable for the varied shapes and sizes of plastics, paper and 

aluminium. To maintain object identities across fast moving frames, the 

ByteTrack was chosen, as it combines real-time performance with high 

robustness to occlusion and identity switching. Its seamless integration with 

YOLOv8 ensures stable tracking performance under realistic waste sorting 

conditions.  

 In conclusion, these components, including Delta robot, vacuum 

gripper, JGB37-545 gear motor, NEMA 23 stepper, YOLOv8 and ByteTrack, 

form a high efficiency solution for automated waste sorting system that 

maximizes throughput, accuracy and system reliability.
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter presents the methodology carried out for the development of the 

automated waste sorting system, covering the design, fabrication and integration 

phases. A systematic approach was followed to ensure that each subsystem, 

including mechanical, electrical and machine vision, was developed in a 

structured and coordinated manner. A work plan, including a Gantt chart and 

defined milestones, is presented to illustrate how the project was managed and 

executed within the allocated 14-week duration. 

 

3.2 System Overview  

The automated waste sorting system is designed to integrate mechanical, 

electrical and machine vision for real-time waste detection and sorting. The 

workflow begins with the conveyor belt, which continuously transports waste 

items under the overhead camera. The camera captures real-time video footage 

and streams it to a laptop, where the YOLOv8 model processes each frame to 

identify and classify waste objects. 

 Once identified, the system calculates the coordinates of each waste 

item on the conveyor. Then, the waste coordinates are transmitted to the Delta 

X robot, which is mounted on a slider mechanism to extend its working range 

across the full conveyor width. The robot executes pick-and-place operations 

based on the received coordinates, controlled via Python programming and G-

code instructions. The slider and conveyor subsystems are controlled separately 

using an ESP32 microcontroller. The conveyor speed dynamically adjusts 

according to the waste load in order to ensure efficient sorting. 

 During pickup, a digital infrared (IR) sensor attached to the vacuum 

gripper detects physical contact between the gripper and the waste item. If 

contact is confirmed, the system signals the gripper to lift the item and place it 

into the assigned dropping area. This feedback mechanism reduces failed 

pickups and ensures reliable handling of waste items with varying heights. 
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 A Graphical User Interface (GUI) provides an interactive platform for 

system monitoring and control. The GUI displays real-time camera footage, 

allows the user to start, stop or exit the system and enables assignment of 

different waste categories to designated dropping areas. The GUI also records 

the number of picked items. 

 Overall, the system integrates machine vision (YOLOv8 with 

ByteTrack), robotic actuation (Delta X robot with vacuum gripper), mechanical 

actuation (conveyor belt and slider), sensing (IR sensor) and electronic control 

(ESP32 microcontroller) into a fully functional automated waste sorting 

machine. Figure 3.1 shows Schematic Diagram of Waste Sorting Machine. 

 

 

Figure 3.1: Schematic Diagram of Waste Sorting Machine 

 

3.3 Fabrication of the Conveyor System 

The conveyor system is designed with a working surface of 0.3m × 1m width, 

suitable for handling continuous stream of various waste materials. The 

conceptual design and fabrication process of conveyor system will be discussed 

in this section. 
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3.3.1 Conceptual Design of Conveyor System 

For this conveyor system, the drive mechanism utilizes a JGB37-545 DC gear 

motor (200 RPM) connected to the head roller via a pulley system with a 1:5 

speed reduction ratio. The motor is controlled by a BTS7960 motor driver, 

which is interfaced with an ESP32 microcontroller. This setup allows for 

adjustable control of motor speed and direction, ensuring synchronization of the 

conveyor movement with other subsystems. Power is supplied by a 12V, 10A 

switched mode power supply (SMPS).  

 The conveyor frame is constructed using aluminium profile extrusions 

(2020 and 2040 types), providing high rigidity, modularity and ease of assembly. 

A belt tightening mechanism is incorporated to maintain proper tension, 

reducing slippage and ensuring reliable operation. The motor bracket is 

designed to allow for custom fitting. To validate the design, static simulation 

was conducted to verify that the frame stiffness and bracket strength were 

sufficient to withstand the expected motor torque. The detailed simulation 

parameters and results are provided in the Appendix A. 

 The rollers are fabricated from PVC pipes mounted over aluminium 

cylindrical shafts, while the conveyor deck surface is formed from three layers 

of plastic corrugated board, offering a lightweight yet durable surface for 

smooth material transport.  

 

Table 3.1: Electrical Components of Conveyor System 

Component Name Quantity Picture 

Motor 
JGB37-545 

gear motor 
1 

 

 
 

Motor 

Controller 

BTS7960 

Motor Driver 
1 
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Microprocessor ESP32 1 

 

 
 

Power Supply 

Switched 

Mode Power 

Supply 

1 

 

 
 

 

3.3.2 Fabrication of Conveyor Belt 

The fabrication of the conveyor system was carried out using machines available 

at the UTAR workshop, such as the turning machine and drilling machine. The 

conveyor system was fabricated using aluminium profiles (2040 and 2020) as 

the main frame structure. The profiles were first measured and marked to the 

desired lengths and cut using a horizontal bandsaw. After cutting, bolt holes 

were drilled at the appropriate locations to mount the pillow bearings. 

 The rollers were manufactured by preparing aluminium shafts through 

turning process to achieve the required diameter and smooth surface finish. 

These shafts were then press-fitted into PVC pipes to form lightweight rollers. 

The conveyor surface was made from corrugated plastic boards, which were 

measured and cut to the required dimensions using a saw. The motor bracket, 

designed specifically to fit the selected gear motor, was fabricated using 3D 

printing. After all mechanical parts were fabricated, the components were 

assembled using T-nuts, bolts, L-brackets and washers to form a conveyor belt. 

 A sprocket with 80 teeth was mounted on the head roller, while a 

smaller sprocket with 16 teeth was mounted on the gear motor shaft. Both 

sprockets were linked using a GT2 timing belt, providing a reliable 1:5 reduction 

ratio for smooth torque transfer and speed control of the conveyor. The 

completed assembly resulted in a fully functional conveyor belt as shown in 

Figure 3.2. 
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Figure 3.2: Picture of Conveyor Belt 

 

3.4 Fabrication of the Slider 

The slider subsystem provides 240 mm of lateral mobility for the robot arm, 

allowing it to traverse the full width of the conveyor. The conceptual design and 

fabrication of slider will be discussed in this section. 

 

3.4.1 Conceptual Design of Slider 

The slider was designed using two SUS304 stainless steel shafts with a diameter 

of 10 mm, providing sufficient rigidity and wear resistance for repeated sliding 

motion. The shafts were supported by four SK10 linear shaft holders, which 

were mounted onto the frame of the existing Delta X robotic arm. 

 Linear motion was achieved using SC10UU linear ball bearings 

installed on the shafts. The Delta X robotic arm was directly mounted onto these 

linear bearings, enabling smooth horizontal travel along the slider’s span. This 

design minimized backlash while maintaining a compact profile. 

 For actuation, the system employed a NEMA 23 stepper motor coupled 

with a GT2 timing belt and pulley system, with an idler sprocket installed at the 

opposite end of the slider to maintain belt tension. The timing belt was fixed to 

the moving plate that carried the robotic arm, ensuring synchronized and 

repeatable motion along the slider’s 240 mm travel range. The motor is 

controlled by a TMC2209 motor driver, which is interfaced with an ESP32 

microcontroller. Power is supplied by a 12V, 10A switched mode power supply 

(SMPS).  
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 A static simulation was conducted to evaluate the deflection of the 

shafts under the expected load of the robotic arm. The maximum deflection was 

required to be within 1 mm to ensure precise pick-and-place performance. The 

simulation results confirmed that the shafts met this requirement. The detailed 

parameters and result are documented in Appendix B. 

 

Table 3.2: Electrical Components of Slider 

Component Name Quantity Picture 

Motor 
NEMA 23 

Stepper Motor 
1 

 

 
 

Motor 

Controller 

TMC2209 

Motor Driver 
1 

 

 
 

Microprocessor ESP32 1 

 

 
 

Power Supply 

Switched 

Mode Power 

Supply 

1 

 

 
 

 

3.4.2 Fabrication of Slider 

The fabrication of the slider was mainly an assembly process involving pre-

purchased mechanical components. First, four SK10 linear shaft supports were 

bolted onto the main machine frame to provide rigid support points. Next, two 

SUS304 steel shafts, which are 10 mm in diameter and 500 mm in length, each 

equipped with SC10UU linear bearings, were mounted into the SK10 supports. 

The Delta X robotic arm was then directly installed onto on a moving plate and 
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the plate was mounted onto the SC10UU bearings, enabling smooth linear 

motion along the shafts. 

 For actuation, a NEMA 23 stepper motor was installed at one end of 

the frame and an idler sprocket at the opposite end. A timing belt was fixed to 

the moving plate and looped through the motor pulley and idler sprocket to 

provide synchronized, backlash-free motion. Proper belt tensioning was ensured 

during assembly to minimize slippage and maintain positional accuracy. The 

completed assembly resulted in a fully functional slider as shown in Figure 3.3. 

 

 

Figure 3.3:  Picture of Slider 

 

3.5 Machine Vision 

This section describes the design and implementation of the machine vision 

subsystem, which enables real-time detection, classification and tracking of 

waste items on the conveyor. YOLOv8, deep learning model used in the project, 

provides high-accuracy, millisecond-scale inference, while ByteTrack, an 

object tracking algorithm maintains object identities across frames, ensuring 

reliable pick-and-place coordination 

 

3.5.1 Dataset Collection 

The deep learning model employed in this project is YOLOv8. The initial step 

involved collecting a comprehensive dataset for training purposes. This dataset 

was sourced from various environments, including the actual scenes at the 

plastic sorting facility and online platforms such as Roboflow. The dataset 
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encompassed different types of waste materials, including plastic, paper and 

aluminium. All images in the dataset maintain a resolution of 640 × 360 pixels. 

Table 3.1 presents the types of waste materials along with the estimated number 

of labels. 

 

Table 3.3: Waste Material Types in Dataset Images 

Class Waste Material Type Estimated Number of Labels 

00 
Plastic bottle  

(Plastic) 
100 

01 
Beverage Carton  

(Paper) 
100 

02 
Aluminium Can  

(Aluminium) 
100 

 

 Following the collection, image annotation was conducted. Each waste 

item in the dataset was annotated according to its type using the Computer 

Vision Annotation Tool (CVAT) platform, which offers a suite of tools and 

algorithms for annotating images. Post-annotation, the dataset was exported in 

the YOLO format, wherein each image is accompanied by a text file detailing 

the detected objects' classes and coordinates. Subsequently, the dataset was split 

into training, validation and testing subsets in accordance with the YOLO 

format to facilitate deep learning model training. 

 

3.5.2 Vision Training 

Upon completion of the annotation process, the YOLOv8 deep learning model 

was trained using the annotated dataset. The training process incorporated 

libraries such as OpenCV, which provided a real-time optimized computer 

vision library and Ultralytics YOLO, the latest advancement in the YOLO series 

known for its enhanced performance and efficiency. To augment the diversity 

of the training dataset, data augmentation techniques like flipping and scaling 

were applied. 

 During training, the model's performance was evaluated based on 

precision, recall and mean average precision (mAP) metrics. These metrics were 

computed by comparing the training results with the validation dataset, 
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providing insights into the model's accuracy in identifying and detecting various 

types of waste materials. 

 Hyperparameter tuning was performed during training, adjusting 

parameters such as epochs, batch size and learning rate to enhance the model's 

performance. At the conclusion of the training process, two versions of the deep 

learning model were selected, which were the first with the highest mean 

average precision, indicating optimal accuracy in object detection and the 

second from the final training epoch. Both models underwent real-time 

application testing to determine the most suitable model for deployment. 

 

3.5.3 Object Tracking Algorithm 

While the YOLOv8 model was proficient in object detection, it may 

occasionally missed detections or lose track of objects across frames, 

particularly when objects were in motion on the conveyor. To mitigate this, the 

ByteTrack algorithm was integrated to enhance multi-object tracking 

performance. 

 ByteTrack built on the principles of SORT by combining high-

confidence and low-confidence detections during data association. Unlike 

SORT, which discards low-confidence detections, ByteTrack used them as 

secondary candidates when matching tracks. This strategy significantly reduced 

ID switches and track fragmentation, which were common in real-world waste 

sorting scenarios where partial occlusion or overlapping items occur. 

 Similar to SORT, ByteTrack employed a Kalman Filter to predict 

object positions between frames, while the Hungarian algorithm was used to 

assign new detections to existing tracks efficiently. By leveraging both motion 

prediction and confidence-based association, ByteTrack maintained robust and 

consistent tracking of waste items on the conveyor. 

 To ensure reliable memory management, tracks were cleared if an 

object left the frame and remained undetected beyond a predefined time window, 

thus optimizing computational resources. This approach allowed the vision 

system to maintain stable object identities for the robotic arm, ensuring precise 

pick-and-place coordination. 
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3.6 System Assembly and Integration 

The final stage of the methodology involved assembling all subsystems 

including mechanical, electrical and software, into a fully functional automated 

waste sorting machine. This ensured that the conveyor, slider, robotic arm, 

sensors and vision system worked seamlessly together. 

 

3.6.1 Assembly of Mechanical Components 

The conveyor belt was rigidly fixed to the frame of the Delta X robot arm, as 

shown in Figure 3.4, to ensure a stable relative position between the transport 

system and the robotic workspace. This alignment was critical for accurate 

coordination between object detection and robotic pick-and-place operations. 

 

 

Figure 3.4: Assembly of Conveyor Belt and Frame of Delta X Robot Arm 

 

 The camera was securely mounted onto the robot arm frame using a 

custom 3D-printed bracket, ensuring precise positioning and minimizing 

vibration during operation. Similarly, the IR sensor near the suction nozzle, as 

shown in Figure 3.5, was fixed in place using a 3D-printed holder, which 

provided reliable stability and ensured consistent contact detection with waste 

items. 
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Figure 3.5: Picture of IR Sensor 

 

 The dropping boxes, as shown in Figure 3.6, were positioned adjacent 

to the conveyor system to receive sorted waste items, with their placement 

optimized for efficient reach of the robotic arm and slider system. 

 

 

Figure 3.6: Picture of Dropping Boxes 

 

3.6.2 Wiring and Electronics Setup 

All electrical components were first tested individually to verify their 

functionality before integration. After successful testing, the motor drivers and 

ESP32 microcontroller were mounted onto the robot arm frame using custom 

3D-printed holders, ensuring secure placement and accessibility for wiring. 

Figure 3.7 shows the physical placement of the power supply, motor controller 

and microcontroller (ESP32). 
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Figure 3.7: Placement of Power Supply, Motor Controller and ESP32 

 

 The wiring process was carried out using jumper wires with heat-shrink 

tubing applied at connections to improve insulation and durability. Special 

attention was given to the routing of cables for moving components, such as the 

slider and robotic arm, to prevent entanglement or obstruction during operation.  

 

3.6.3 System Coding and Control Flow 

The control system was developed incrementally, with functions implemented 

and tested individually to ensure stability and correctness before full integration. 

Initially, the system was tested on a stationary conveyor, where YOLOv8 was 

used to detect waste items and the Delta X robot arm performed basic pick-and-

place operations without considering conveyor motion. Once the stationary tests 

were successful, the moving conveyor was introduced, and the vision system 

tracked objects on the belt, sending corresponding coordinates to the robotic 

arm for dynamic pick-and-place tasks.  

 To accommodate waste items of different heights, variable Z-axis 

picking was implemented, allowing the arm to adjust its vertical position during 

grasping, with feedback from the IR sensor confirming successful contact with 

the items. A graphical user interface (GUI) was also integrated to enable real-

time monitoring and control, including start/stop operations, waste category 

assignment to designated drop boxes and live camera feed visualization. Figure 

3.8 shows the Graphical User Interface (GUI) implemented for the automated 

waste sorting system. 
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Figure 3.8: Graphical User Interface 

 

 The final integrated code coordinated the conveyor via the ESP32, the 

slider and the Delta X robot arm, synchronizing inputs from the vision system 

and IR sensor. This modular development approach ensured that each 

subsystem was individually verified before being incorporated into the complete 

automated waste sorting workflow. The full source code is provided in 

Appendix C. 

 

3.7 Work Plan 

3.7.1 Gantt Chart 

A Gantt chart will be utilized to plan and manage the project's timeline over a 

14-week period. This visual tool will outline key tasks, their durations and 

dependencies, ensuring efficient coordination and timely completion. The 

primary tasks include the fabrication of the conveyor and slider systems, 

machine vision model training, system integration, testing and evaluation, report 

writing, presentation preparation and system improvement. Figure 3.9 and 3.10 

show the Gantt Chart for FYP1 and FYP2 
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Figure 3.9: Gantt Chart for FYP 1 

 

 

Figure 3.10: Gantt Chart for FYP 2 

 

 

 

3.7.2 Milestones and Deliverables 

The project was carried out in a structured manner, with progress tracked in two-

week intervals to ensure timely completion of tasks. 

 In the early phase (Week 2), the conveyor system was upgraded by 

integrating a new motor and verifying its functionality. At the same time, the 

3D model of the slider was refined and procurement of necessary materials 

began. A dataset collection process was also initiated to support the training of 

the YOLOv8 machine vision model. 
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 By Week 4, the conveyor system was fully fabricated and tested. 

Integration of the conveyor with the robotic arm (without the slider) was 

successfully completed and initial control code was developed and tested. The 

materials required for the slider were also purchased during this stage. 

 At Week 6, all mechanical subsystems, including the conveyor, slider 

and robotic arm frame, were completed. Individual control codes for each 

subsystem were written and verified to ensure functionality before integration. 

 The mid-phase milestone (Week 8) focused on integrating all 

components into a single system. Functional testing was performed and 

additional features such as IR switch were incorporated to enhance reliability. 

At this stage, preparation of the final report and project poster was also started. 

 By Week 10, the ESP32 microcontroller was wired to the machine and 

full integration of all subsystems was achieved. Testing and evaluation of the 

code and functionality were carried out, confirming that the mechanism for 

waste identification performed satisfactorily. Documentation tasks, including 

the report, slides and poster, were also actively developed. 

 In the final stages (Week 12), full testing and evaluation of the 

complete system were conducted. Minor code upgrades were implemented to 

improve performance and administrative tasks such as preparing the 

reimbursement form were completed. Work on the final report and presentation 

slides continued to progress toward completion. 

 Overall, the systematic achievement of milestones ensured that the 

project proceeded according to schedule. Each phase delivered tangible 

outcomes, including mechanical fabrication, subsystem integration, vision 

model development and system-level testing, which collectively contributed to 

the final functional prototype of the automated waste sorting machine.   
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter presents the results obtained from the development, testing and 

evaluation of the automated waste sorting system. The findings are organized 

according to the performance of individual subsystems, including the conveyor 

belt, slider mechanism, robotic arm with vacuum gripper and the machine vision 

system. System-level integration results, covering coordination between the 

mechanical, electrical and vision components, are also discussed. 

 In addition to reporting quantitative performance parameters such as 

conveyor speed, slider travel range, robotic arm accuracy and detection 

precision of the vision model, qualitative observations are included to assess the 

reliability and practicality of the system. The results are further compared with 

findings from related studies and similar projects to highlight improvements and 

limitations. 

 Finally, this chapter provides a discussion of the system’s overall 

performance, emphasizing key challenges encountered, trade-offs made during 

development and potential areas for improvement. 

 

4.2 Performance of Fabricated Parts 

4.2.1 Conveyor Belt Performance 

The fabricated conveyor belt provided a working area of 960 mm × 300 mm, 

which was sufficient to transport multiple waste items simultaneously. To 

evaluate its performance, two main aspects, which are conveyor speed and load 

capacity, were tested 

 The conveyor normally runs in high speed mode. The low speed mode 

was automatically triggered by the controller when a higher number of waste 

items were detected on the belt, allowing more time for the vision system and 

robotic arm to complete pick and place operations. For speed testing, the time 

taken for the belt to move a waste item across a 700 mm travel distance was 

recorded under high speed and low speed mode. In high speed mode, the 

conveyor required 13.4 seconds to travel 700 mm, corresponding to an average 
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speed of 52 mm/s. In low speed mode, the travel time increased to 24.1 seconds, 

giving an average speed of 29 mm/s.” 

 For load capacity testing, incremental weights of 200 g were gradually 

placed on the belt. Slippage was first observed at a load of approximately 5.2 

kg. This capacity is considered acceptable, as the system is designed primarily 

to handle lightweight recyclable waste such as plastic bottles, paper and 

aluminium cans, which typically weigh less than 500 g each. 

 

4.2.2 Slider Mechanism Performance 

The slider mechanism was implemented to extend the effective working range 

of the Delta X robotic arm, allowing it to access a wider area of the conveyor. 

The slider provided an additional 120 mm travel distance in both the left and 

right directions (total of 240 mm), effectively increasing the robot’s pick and 

place coverage. 

 Performance testing was carried out by measuring the time required for 

the slider to move across its full 120 mm span. The travel time was recorded as 

1.41 seconds, demonstrating a fast and responsive motion suitable for real-time 

waste sorting operations. 

 To evaluate repeatability, the slider was commanded to perform 

continuous left - right - left movements for 100 consecutive cycles. After 

completion, the measured positional deviation was found to be within 2 mm of 

the original reference point. This error margin is considered acceptable for the 

application, as the robotic arm can tolerate slight positional variation without 

significant impact on picking accuracy. 

 Overall, the slider mechanism exhibited reliable, smooth and 

repeatable operation, ensuring effective horizontal extension of the robotic 

arm’s workspace with minimal loss in positional accuracy. 

 

4.2.3 Delta X Robot Arm Performance  

The Delta X robotic arm served as the primary mechanism for waste pick-and-

place tasks. Its horizontal working range was measured to be approximately 240 

mm in both the X and Y directions, which was sufficient to cover the conveyor 

width when combined with the slider’s extended motion. 
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 A gripping performance test was carried out to evaluate the 

effectiveness of the vacuum gripper on different waste materials. The test 

procedure started with commanding the robot to pick up a waste item, then move 

it repeatedly to the left and right in five cycles, simulating potential disturbances 

during operation. The objective was to determine whether the gripper could 

maintain its hold on the item under dynamic conditions. 

 The results of the test are summarized in Table 4.1, categorizing 

materials into those that passed, meaning they remained securely gripped and 

those that failed, meaning they slipped or detached during the motion. Failures 

were mainly observed with plastics and aluminium cans. For plastics, 

deformation occurred when the gripper applied suction, since thin or flexible 

surfaces tend to bend, reducing the sealing area and causing air leakage. 

Additionally, many plastic items had uneven or curved surfaces, which made it 

difficult for the gripper to achieve full contact. Aluminium cans faced a similar 

issue. Their cylindrical shape and tendency to roll reduced stability during 

lateral shaking, making them more prone to slipping. In contrast, paper-based 

materials typically presented flat and porous surfaces, enabling more reliable 

suction and resulting in a higher success rate. 

 

Table 4.1: Gripping Performance Test of Vacuum Gripper 

Material Passed Failed 

Plastic 
 

 

  

Aluminium 
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Paper 

 

 

 

 

 

 

  

 Another gripping performance test was carried out to evaluate the 

effectiveness of the vacuum gripper on waste materials of different heights. It is 

important to note that the machine vision system did not have the capability to 

determine the height of waste items. To address this, an IR sensor was equipped 

on the vacuum gripper to detect when the gripper made contact with an item. 

This sensor provided real-time feedback to the system, ensuring that the gripper 

could adjust its vertical position accurately. During testing, this setup proved 

effective, allowing the system to successfully pick both thick and thin 

aluminium cans, as shown in Figure 4.1. 

 

 

Figure 4.1: Picture of Thin and Thick Aluminium Cans 
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4.3 Performance of Machine Vision 

The machine vision subsystem was implemented using the YOLOv8 deep 

learning model trained on a custom dataset of plastic bottles, aluminium cans 

and paper. The performance was evaluated using both training metrics and 

confusion matrix analysis to assess accuracy, robustness and generalization 

capability. 

 

 

Figure 4.2: Training and Validation Loss Curve 

 

 Figure 4.2 shows the training and validation loss curves across 100 

epochs. Both the training and validation box loss, as well as the class loss, 

decreased steadily over time, indicating stable learning and good convergence 

of the YOLOv8 model. By the end of the training at epoch 100, all losses were 

reduced to well below 0.5, demonstrating that the model achieved a strong fit to 

the dataset without signs of underfitting or overfitting. 

 This convergence implies that the model is capable of accurately 

localizing waste items (low box loss) and correctly classifying them into their 

respective categories (low class loss). As a result, the trained model is reliable 

for real-time waste detection tasks, providing consistent bounding box precision 

and high classification accuracy across different types of waste. 
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Figure 4.3: Evaluation Metrics Curve 

  

 Figure 4.3 shows the evaluation metrics of the YOLOv8 model across 

100 epochs, including precision, recall, mAP@50 and mAP@50–95. Precision 

reached approximately 0.98, indicating that the model produced very few false 

positives. This means that the model rarely misclassifying background or other 

materials as waste. Recall improved to 0.97, showing that nearly all waste items 

present in the dataset were correctly detected. The mAP@50 value achieved 

around 0.95, reflecting strong detection accuracy when using a 50% IoU 

threshold, while the stricter mAP@50–95 reached 0.91, confirming that the 

model maintained reliable detection performance across a wide range of IoU 

thresholds. 

 These results demonstrate that the trained YOLOv8 model not only 

achieved high detection accuracy but also generalized well across different 

waste types, sizes and shapes.  

 



45 

 

Figure 4.4: Normalized Confusion Matrix 

 

 The normalized confusion matrix for the trained model, as shown in 

Figure 4.4, highlights the classification performance across the three waste 

categories. The model achieved perfect classification for plastics and aluminium, 

with 100% accuracy and only negligible confusion with the background. In 

contrast, paper items were slightly more challenging, with 96% correctly 

classified but some instances being misclassified as background. This 

misclassification is likely due to the similarities in colour and texture between 

paper and the conveyor background, especially under varying lighting 

conditions. Overall, the results confirm that the YOLOv8 model is highly 

reliable in distinguishing between plastics, aluminium and paper, with only 

minor limitations for paper detection. With further dataset augmentation, 

particularly under different lighting and background scenarios, the model’s 

robustness for paper classification could be further improved. 

 In real time conveyor testing, the machine vision subsystem achieved 

an average processing speed of approximately 6 frames per second (FPS) on the 

laptop. This performance was measured while running the YOLOv8 detection 

model with a confidence threshold of 0.35 and an IoU threshold of 0.6, 

balancing detection accuracy with computational efficiency. The achieved FPS 
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was sufficient for the conveyor’s operating speed, ensuring that no waste items 

passed through undetected. 

 Overall, the real-time performance confirmed that the vision subsystem 

satisfied the project’s requirements for high accuracy, low-latency inference and 

reliable multi-object tracking. While the FPS achieved was modest compared to 

GPU-based implementations reported in the literature, it proved sufficient for 

the intended application, demonstrating the system’s practicality and scalability 

under resource-constrained conditions. 

 

4.4 System Testing and Evaluation 

The final prototype was tested to evaluate its functionality, accuracy and 

reliability under both controlled and mixed-waste scenarios. The evaluation 

focused on three main aspects, which are sorting accuracy, picking speed and 

long-term reliability.  

 

4.4.1 Sorting Accuracy 

Sorting accuracy was assessed through two test setups, including single-item 

tests, which examined the detection and pick-and-place performance for each 

waste category and mixed-waste tests, which evaluated the system’s 

effectiveness under more realistic operating conditions. Two key performance 

measures were considered, including YOLO detection accuracy and pick-and-

place success rate. Detection accuracy was determined by manually observing 

the real-time GUI feed, such as shown in Figure 4.5 and verifying whether the 

labels assigned by the model were correct, expressed as the ratio of correctly 

labelled items to the total number of items observed. The pick-and-place success 

rate was calculated as the ratio of successful pickups and placements to the total 

number of pickup attempts. 
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Figure 4.5: Real-time GUI Feed with Assigned Label 

 

 In the single-item tests, each category was tested over 10 repetitions 

using 5 items per trial. For aluminium cans, the YOLO detection accuracy 

reached 100%, while the pick-and-place success rate was 92%. Failures 

occurred mainly due to the cylindrical cans rolling during pickup. For plastic 

bottles, the detection accuracy was 96%, but the pick-and-place success rate 

dropped to 48 percent. This performance indicates that the machine vision is 

model able to identify items correctly but the pick-and-place operation has low 

success rate. This was largely due to the IR sensor’s inability to detect contact 

with transparent materials, which reduced pickup reliability. In contrast, paper 

achieved a detection accuracy of 94% and a pick-and-place success rate of 98%. 

Although occasional misclassifications occurred under bright lighting 

conditions, the flat surface of paper allowed for consistently stable gripping. 

 In the mixed-waste tests, a set of 5 plastics, 5 aluminium cans and 5 

paper items was placed together and one class is ignored at a time as there are 

only two dropping areas. This testing process was repeated 5 times. The 

detection accuracy achieved was 100% for aluminium, 98.6% for plastic and 

98.6% for paper. For pick-and-place performance, aluminium achieved a 

success rate of around 93.3%, while paper remained the most reliable with over 

97.3% success. Plastics, however, continued to pose challenges, with a success 

rate of 46.6% due to transparency, shape irregularities and sensor detection 

failures. These results indicate that while the vision system was consistently 
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accurate across all waste categories, the physical handling of plastics remains a 

limiting factor in overall system performance.  

 

4.4.2 Picking Speed 

The average processing speed of the system was evaluated by measuring the 

time taken from waste detection to successful pickup. This was calculated by 

dividing the total number of successfully picked items by the total elapsed time 

and then averaging the results across multiple trials.  

 The system achieved a throughput of 8 - 15 items per minute, 

depending largely on the distribution and position of waste on the conveyor. 

Items located closer to the centreline were picked more quickly, as the slider 

required less horizontal travel, whereas items near the edges took longer due to 

the additional motion required. Similarly, item height influenced processing 

speed. Taller items required less downward travel of the robotic arm, resulting 

in faster pickups, while shorter items necessitated greater vertical movement, 

slightly reducing efficiency. 

 

4.4.3 Reliability Testing  

A continuous operation test was conducted over a duration of 20 minutes, during 

which the conveyor, slider, robotic arm and vision system operated without 

major faults. Minor failures were observed in the pickup of plastic items, but 

the system recovered without interruption.  

 However, a significant issue identified was the gradual loss of 

positional accuracy in both the robotic arm and the slider. Since the system lacks 

a feedback mechanism, it relies solely on the precision control of the stepper 

motors. Over extended operation, particularly after 15 - 20 minutes of 

continuous movement, the coordinates began to drift. This misalignment may 

have been caused by accumulated step errors or occasional collisions with 

obstacles, resulting in the robot no longer knowing its exact position. This 

limitation highlights the need for additional position feedback mechanisms, 

such as encoders or limit switches, to ensure long-term accuracy and reliable 

operation. 
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4.5 Discussion of Findings 

The experimental results of the developed waste sorting system were evaluated 

against both the project objectives and findings from related studies. The 

discussion focuses on detection accuracy, pick-and-place success rates, 

throughput and challenges in handling specific waste types.  

 In single-item tests, the YOLOv8 detection accuracy achieved was 100% 

for aluminium, 96% for plastic and 94% for paper. The corresponding pick-and-

place success rates were 92% for aluminium, 48% for plastic and 98% for paper. 

These results demonstrate that while the detection system performs at a high 

level, the physical execution of gripping and sorting plastics is a major limitation. 

 A comparable study, PLC-Controlled Intelligent Conveyor System with 

AI-Enhanced Vision for Efficient Waste Sorting (Almtireen et al., 2025), also 

applied YOLOv8 and reported classification accuracies above 95% across 

plastics, paper and metals. Our system’s detection accuracy is consistent with 

this work. However, the pick-and-place success rate for plastics is notably lower, 

highlighting that reliable handling of irregular or transparent items is still an 

unresolved issue. 

 The system processed between 8 - 15 items per minute depending on 

waste distribution and positioning on the conveyor. This throughput is lower 

than that reported in commercial optical sorting systems, which often achieve 

tens or even hundreds of items per minute by using high-speed conveyors, 

multiple lanes and industrial-grade actuators. Research systems also tend to 

simplify operating conditions to boost throughput. While our system prioritised 

affordability and modularity, its speed limitation reflects the trade-off between 

academic prototyping and industrial-scale equipment. 

 The most significant challenge observed was the handling of plastic 

items, especially transparent bottles and those with irregular surfaces. Detection 

occasionally misclassified plastics under bright lighting as aluminium and more 

critically, the IR sensor failed to register contact due to the transparency of the 

material. This resulted in a pick-and-place success rate of only 48% for plastics. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project successfully developed an automated waste sorting system that 

integrates machine vision, robotic actuation and electronic control into a 

functional prototype. The first objective, to develop a robotic system equipped 

with computer vision for accurate detection and classification of various waste 

types, was achieved through the successful integration of a YOLOv8-based 

machine vision model with the Delta X robotic arm and a supporting conveyor 

- slider mechanism. The vision system achieved detection accuracies of up to 

100% for aluminium, 96% for plastics and 94% for paper. 

 The second objective, to automate the sorting process to ensure 

consistent and accurate waste segregation, was fulfilled by combining vision-

based classification with robotic actuation and electronic control. The Delta X 

robotic arm with vacuum gripper successfully performed pick-and-place 

operations, achieving 92% success for aluminium and 98% for paper. Although 

plastics posed challenges due to irregular shapes and transparency, the system 

nonetheless demonstrated consistent automation of the sorting process under 

controlled conditions. 

 The third objective, to evaluate the system’s performance in terms of 

sorting accuracy, processing speed and reliability, was met through systematic 

testing. The prototype achieved an overall throughput of 8 - 15 items per minute, 

depending on waste distribution and position and remained operational over a 

continuous 20-minute test without major faults. While throughput remains 

modest compared to industrial systems, the results confirm that the prototype is 

reliable for small-scale applications. 

 In summary, this project has successfully demonstrated the feasibility 

of integrating deep-learning based vision with robotic automation for waste 

sorting. The system achieved its intended aims and provided valuable insights 

into the challenges of handling plastics and ensuring long-term positional 

accuracy. Despite the limitations, the work establishes a strong foundation for 
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future improvements and represents a step toward scalable, intelligent waste 

management solutions. 

 

5.2 Recommendations for future work 

To further enhance the performance and reliability of the automated waste 

sorting system, several improvements are recommended for future development. 

In terms of end - effector design, adopting a more advanced gripper, such as a 

vacuum system powered by a stronger motor or a hybrid gripper that combines 

suction and mechanical grasping, would improve the handling of irregularly 

shaped or smooth-surfaced materials. The IR sensor currently used for 

confirming successful pickups could be replaced with an ultrasonic sensor or a 

force sensor, which would offer more reliable detection across different material 

types, including transparent plastics. 

 For mechanical safety and positional accuracy, installing limit switches 

on all moving parts, including the conveyor, slider and robotic arm, would not 

only prevent over-travel but also mitigate long-term positional drift by 

providing consistent reference points, thereby reducing the need for frequent 

recalibration. 

 Other than that, the machine vision model could be expanded to include 

additional waste categories such as glass, rubber and other recyclables, thereby 

increasing the versatility and practicality of the system in real - world 

applications. To support this, the dataset should be expanded with a larger 

number of training images for each class, ensuring balanced representation and 

improving the model’s ability to generalize under varied lighting, texture and 

orientation conditions. 
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APPENDICES 

 

Appendix A: Static Simulation of Motor Bracket 

 

This appendix documents the static simulation performed on the 3D-printed 

motor bracket used to mount the JGB37-545 gear motor on the conveyor frame. 

The motor bracket was fabricated using PETG. Table A.1 tabulates the material 

properties used in the simulation. 

 

Table A.1: Material Properties Used in Simulation 

Property Value 

Young’s modulus 0.8 GPa 

Poisson’s ratio 0.38 

Density 350 kgm-3 

Yield strength 150 MPa 

 

 

Figure A.1: Displacement Distribution of the Motor Bracket 
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Figure A.2: Von Mises Stress Distribution of the Motor Bracket 

 

 Figures A.1 and A.2 show the displacement and von Mises stress 

distribution of the motor bracket. It can be observed that the maximum 

displacement and von Mises stress are 0.0695 mm and 1.153 MPa. The 

maximum von Mises stress is much lower than the assumed yield strength (150 

MPa). This indicates that the motor bracket is structurally adequate to withstand 

the applied motor loads with large safety margin. Furthermore, the maximum 

deflection (0.0695 mm) is also negligible. 
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Appendix B: Static Simulation of Slider Shaft 

 

This appendix presents the static simulation analysis of the stainless steel shafts, 

which are 10 mm in diameter and 500 mm in length, used in the slider 

mechanism. The shafts support the Delta X robotic arm via three SC10UU linear 

bearings and their stiffness is critical to ensuring precise pick-and-place 

performance. The maximum allowable shaft deflection was set at 1 mm, based 

on accuracy requirements for robotic positioning. 

 

Figure A.3: Slider Shafts with Different Loading Scenarios 

 

 There are two different slider shafts with two different loading 

scenarios as shown in Figure A.3. For slider shaft A, which only have a single 

SC10UU load, the load condition corresponds to one SC10UU bearing 

supporting approximately one-third of the Delta X robotic arm’s weight (4 kg / 

3 ≈ 1.33 kg). The load was applied across a 35 mm contact range positioned at 

the midpoint of the 500 mm shaft, where maximum deflection is expected. 

 

Slider Shaft A 

Slider Shaft B 
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Figure A.4: Displacement Distribution of the Slider Shaft A 

 

Figure A.5: Von Mises Stress Distribution of the Slider Shaft A 

 

 Figures A.4 and A.5 show the displacement and von Mises stress 

distribution of the slider shaft A. It can be observed that the maximum 

displacement and von Mises stress are 0.091 mm and 8.273 MPa. The maximum 

von Mises stress is significantly lower than the assumed yield strength of 

SUS304 stainless steel (200 MPa), providing a large safety margin. Moreover, 

the maximum deflection of 0.091 mm is well below the allowable deflection 

limit of 1 mm.  

 For Slider Shaft B, the shaft is supported by two SC10UU bearings 

separated by 130 mm. Each bearing carries approximately one-third of the Delta 

X robotic arm’s weight (1.33 kg each) distributed over a 35 mm contact range. 

The load was applied across a 200 mm contact range positioned at the midpoint 

of the 500 mm shaft, where maximum deflection is expected.  
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Figure A.6: Displacement Distribution of the Slider Shaft B 

 

 

Figure A.7: Von Mises Stress Distribution of the Slider Shaft B 

 

 Figures A.6 and A.7 show the displacement and von Mises stress 

distribution of the slider shaft B. It can be observed that the maximum 

displacement and von Mises stress are 0.136 mm and 14.92 MPa. The maximum 

von Mises stress is significantly lower than the assumed yield strength of 

SUS304 stainless steel, providing a large safety margin. Moreover, the 

maximum deflection of 0.136 mm is well below the allowable deflection limit 

of 1 mm.  
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Appendix C: Full Code 

 

This appendix contains the source code used for the automated waste sorting 

system. The system consists of two main components. The first component is 

C++ code, which controls the motor systems and receives feedback from the IR 

sensor using the ESP32. The second component is Python code, which manages 

the machine vision system, including YOLOv8 object detection, robot arm 

control for pick-and-place coordination and the graphical user interface (GUI). 

 

C++ Code (PlatformIO / ESP32): 

#include <Arduino.h> 

 

// === Conveyor Motor (BTS7960) === 

#define MOTOR_PWM 25   // RPWM to GPIO25 

#define IR_PIN 35      // IR sensor pin (digital, HIGH = no 

object, LOW = object) 

 

// === Stepper Motor (TMC2209 via STEP/DIR/EN) === 

#define STEP_PIN 27 

#define DIR_PIN 26 

#define EN_PIN 14 

 

// === Stepper Constants === 

const int stepsPerRevolution = 6500; // Adjust based on your 

mechanical setup 

bool stepperEnabled = false; 

 

// Ramp parameters (tune for smoothness) 

int maxDelay = 200;   // slowest step (microseconds) 

int minDelay = 80;   // fastest step (microseconds) 

int rampSteps = 1000;  // steps for acceleration/deceleration 

 

void setup() { 

  Serial.begin(115200); 

 

  // Conveyor setup 

  ledcAttachPin(MOTOR_PWM, 0); 

  ledcSetup(0, 20000, 8); // 20kHz, 8-bit PWM 

 

  // IR setup 

  pinMode(IR_PIN, INPUT); 

 

  // Stepper setup 

  pinMode(STEP_PIN, OUTPUT); 
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  pinMode(DIR_PIN, OUTPUT); 

  pinMode(EN_PIN, OUTPUT); 

  digitalWrite(EN_PIN, HIGH); // disable stepper at start 

 

  Serial.println("System Ready"); 

} 

 

// Function to move stepper one pulse 

void stepMotor(int delayTime) { 

  digitalWrite(STEP_PIN, HIGH); 

  delayMicroseconds(delayTime); 

  digitalWrite(STEP_PIN, LOW); 

  delayMicroseconds(delayTime); 

} 

 

// Function to move stepper with acceleration ramp 

void moveStepperRamp(int dir, int steps) { 

  digitalWrite(EN_PIN, LOW);   // enable driver 

  digitalWrite(DIR_PIN, dir);  // set direction 

 

  int actualRamp = rampSteps; 

  if (rampSteps > steps / 2) actualRamp = steps / 2; 

 

  for (int i = 0; i < steps; i++) { 

    int currentDelay; 

 

    if (i < actualRamp) { // Acceleration 

      currentDelay = maxDelay - ((maxDelay - minDelay) * i / 

actualRamp); 

    }  

    else if (i >= steps - actualRamp) { // Deceleration 

      int rampDownIndex = i - (steps - actualRamp); 

      currentDelay = minDelay + ((maxDelay - minDelay) * 

rampDownIndex / actualRamp); 

    }  

    else { // Constant speed 

      currentDelay = minDelay; 

    } 

     

    stepMotor(currentDelay); 

  } 

  digitalWrite(EN_PIN, HIGH);  

} 

 

void loop() { 

  // === Conveyor Serial Control === 

  if (Serial.available()) { 
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    char cmd = Serial.read(); 

 

    if (cmd == 'R') { // Full speed 

      ledcWrite(0, 255); 

    }  

    else if (cmd == 'L') { // Half speed 

      ledcWrite(0, 127); 

    } 

    else if (cmd == 'S') { // Stop 

      ledcWrite(0, 0); 

    } 

    else if (cmd == '1') { // Move left 

      moveStepperRamp(LOW, stepsPerRevolution); 

    } 

    else if (cmd == '3') { // Move right 

      moveStepperRamp(HIGH, stepsPerRevolution); 

    } 

  } 

 

  // === IR Sensor Feedback === 

  int ir_state = digitalRead(IR_PIN); 

  if (ir_state == LOW) {  

    Serial.println("TOUCHED"); 

  } else { 

    Serial.println("NOT_TOUCHED"); 

  } 

 

  delay(50); 

} 

 

 

 

 

 

Python Code (Machine Vision, Pick-and-Place & GUI):  

import threading 

import tkinter as tk 

from tkinter import ttk, messagebox 

from PIL import Image, ImageTk 

import cv2 

import serial 

import time 

from queue import Queue     

from ultralytics import YOLO 

import numpy as np 
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# === Setup Delta X robot serial === 

robot = serial.Serial("COM10", 115200, timeout=1) 

time.sleep(2) 

 

# === Setup ESP32 serial === 

esp = serial.Serial("COM12", 115200, timeout=1) 

time.sleep(2) 

 

def send_gcode(cmd): 

    robot.write((cmd + '\n').encode()) 

    while robot.in_waiting: 

        print(robot.readline().decode().strip()) 

 

# === Reads IR state from ESP32 === 

last_ir_state = "NOT_TOUCHED" 

def read_ir(): 

    global last_ir_state 

    while esp.in_waiting > 0: 

        msg = esp.readline().decode(errors="ignore").strip() 

        if msg in ["TOUCHED", "NOT_TOUCHED"]: 

            last_ir_state = msg 

    return last_ir_state 

 

def conveyor_start(): 

    esp.write(b'R') 

 

def conveyor_low(): 

    esp.write(b'L') 

 

def conveyor_stop(): 

    esp.write(b'S') 

 

# === YOLO model with tracking === 

model = YOLO("runs/detect/train3/weights/newbest2.pt") 

class_names = model.names 

 

# === Webcam === 

cap = cv2.VideoCapture(0) 

cap.set(3, 640) 

cap.set(4, 480) 

cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, 0.25) 

cap.set(cv2.CAP_PROP_EXPOSURE, -3) 

cap.set(cv2.CAP_PROP_GAIN, 0) 

 

# === Calibration matrix (initial identity) === 

M_affine = np.array([[0.0000, 0.5889, -141.7406], 

                     [0.6870, -0.0059, -401.4029]], 

dtype=np.float32) 
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# === Calibration === 

def webcam_to_robot(x, y): 

    global M_affine 

    pt = np.array([x, y, 1], dtype=np.float32) 

    X, Y = M_affine @ pt 

    return int(-X), int(-Y)   # keep your sign convention 

 

# === Constants === 

Z_SAFE = -280 

Z_PICK = -300 

IDLE_X, IDLE_Y, IDLE_Z = 0, 0, -264 

WORKSPACE_LIMIT = 120 

WASTE_SPEED = 10 

T_PICK = 2.8 

 

DROP_LOCATIONS = { 

    "left":   (150, 0, -290), 

    "right": (-150, 0, -290) 

} 

 

# === Shared state === 

shared = { 

    "run": False, 

    "mapping": {"plastic": "Left", "aluminium": "Right", "paper": 

"Ignore"}, 

    "counters": {"plastic": 0, "aluminium": 0, "paper": 0}, 

    "frame": None, 

    "program_running": True, 

    "calibrating": False    

} 

 

lock = threading.Lock() 

 

# Detection memory + queue + flags 

detection_memory = {} 

target_queue = Queue()    

robot_busy = False 

conveyor_fast = 1 

 

# Home 

send_gcode("G28") 

 

# === Vision task === 

def vision_task(): 

    global detection_memory, waste_count, robot_busy 

    while shared["program_running"]: 
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        ret, frame = cap.read() 

        if not ret: 

            break 

 

        if shared["calibrating"]:   #  skip vision when 

calibrating 

            time.sleep(0.2) 

            continue 

 

        now = time.time() 

  

        conveyor_fast = (0 if len(detection_memory) >= 2 else 1) 

#change the number to vary the threshold value 

 

        # Conveyor control 

        if shared["run"]: 

            if conveyor_fast == 0: 

                conveyor_low() 

            else: 

                conveyor_start() 

        else: 

            conveyor_stop() 

 

        # Run YOLO tracking 

        results = model.track( 

            frame, 

            conf=0.35, 

            iou=0.6, 

            agnostic_nms=True, 

            persist=True, 

            tracker="bytetrack.yaml", 

            verbose=False 

        ) 

 

        # Draw detections 

        if results and results[0].boxes is not None and 

len(results[0].boxes) > 0: 

            for box in results[0].boxes: 

                x1, y1, x2, y2 = 

box.xyxy[0].cpu().numpy().astype(int) 

                cls_id = int(box.cls[0].cpu().numpy()) 

                cls_name = class_names[cls_id] 

                conf = float(box.conf[0].cpu().numpy()) if 

box.conf is not None else 0.0 

                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 

0), 2) 

                label = f"{cls_name} {conf:.2f}" 

                cv2.putText(frame, label, (x1, y1 - 8), 
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                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 

255, 0), 2) 

 

        # Update frame for GUI 

        with lock: 

            shared["frame"] = frame.copy() 

 

        if not robot_busy and results and results[0].boxes is not 

None: 

            for box in results[0].boxes: 

                x1, y1, x2, y2 = 

box.xyxy[0].cpu().numpy().astype(int) 

                cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 

                cls_id = int(box.cls[0].cpu().numpy()) 

                cls_name = class_names[cls_id].lower() 

                track_id = int(box.id.cpu().numpy()) if box.id is 

not None else None 

                if track_id is None: 

                    continue 

 

                if track_id not in detection_memory: 

                    detection_memory[track_id] = {"first_seen": 

now, "last_seen": now, 

                                                  "pos": (cx, 

cy), "cls": cls_name} 

                else: 

                    detection_memory[track_id]["last_seen"] = now 

                    detection_memory[track_id]["pos"] = (cx, cy) 

                    detection_memory[track_id]["cls"] = cls_name 

 

            for obj_id, data in list(detection_memory.items()): 

                if now - data["first_seen"] >= 1.0: 

                    cx, cy = data["pos"] 

                    rx, ry = webcam_to_robot(cx, cy) 

 

                    ry_pred = ry - (WASTE_SPEED * (T_PICK / 2 if 

conveyor_fast == 0 else T_PICK)) 

 

                    if abs(rx) <= WORKSPACE_LIMIT and 

abs(ry_pred) <= WORKSPACE_LIMIT: 

                        target_queue.put({"id": obj_id, "rx": rx, 

"ry": ry_pred, "cls": data["cls"]}) 

                        print(f"[LOCKED] Target {data['cls']} 

ID={obj_id} at ({rx},{ry_pred})") 

                        detection_memory.pop(obj_id, None) 

                        break 

 

                if now - data["last_seen"] > 2: 
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                    detection_memory.pop(obj_id, None) 

 

# === Robot task === 

def robot_task(): 

    global robot_busy 

    while shared["program_running"]: 

        if shared["calibrating"]:   # ✅ skip vision when 

calibrating 

            time.sleep(0.2) 

            continue 

        try: 

            target = target_queue.get(timeout=0.2)  # ✅ blocking 

queue 

        except: 

            continue 

 

        robot_busy = True 

        rx, ry, cls_name = target["rx"], target["ry"], 

target["cls"] 

 

        with lock: 

            mapping = shared["mapping"].copy() 

            counters = shared["counters"] 

 

        mapped = mapping.get(cls_name, "Ignore").lower() 

        if mapped == "ignore": 

            print(f"[ROBOT] Ignoring {cls_name}") 

            robot_busy = False 

            time.sleep(0.5) 

            continue 

 

        drop_key = "left" if mapped == "left" else "right" 

        drop_x, drop_y, drop_z = DROP_LOCATIONS.get(drop_key, (-

120, 120, -270)) 

 

        print(f"[INFO] Picking {cls_name} at X={rx}, Y={ry}") 

        send_gcode(f"G01 X{rx} Y{ry} Z{Z_SAFE}") 

        send_gcode("M3") 

 

        # Approach with IR 

        z, y, touched = Z_PICK, ry, False 

        while z > -350: 

            z -= 5 

            send_gcode(f"G01 Y{y} Z{z-15}") 

            y -= (3 if conveyor_fast == 0 else 6) 

            time.sleep(0.1) 

            print(read_ir()) 
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            if read_ir() == "TOUCHED": 

                touched = True 

                print("[IR] Object touched!") 

                send_gcode(f"G01 Z{Z_SAFE}") 

                break 

        print(read_ir(),"...................") 

        if not touched: 

            send_gcode("M5") 

            print(f"[INFO] Missed {cls_name.upper()}") 

            send_gcode(f"G01 X{IDLE_X} Y{IDLE_Y} Z{IDLE_Z}") 

        else: 

            time.sleep(0.2) 

            esp.write(b'1' if mapped == "left" else b'3') 

            send_gcode(f"G01 X{drop_x} Y{drop_y} Z{drop_z}") 

            time.sleep(1.5) 

            send_gcode("M5") 

            print(f"[INFO] Dropped {cls_name.upper()}") 

            esp.write(b'3' if mapped == "left" else b'1') 

            send_gcode(f"G01 X{IDLE_X} Y{IDLE_Y} Z{IDLE_Z}") 

            with lock: 

                counters[cls_name] = counters.get(cls_name, 0) + 

1 

 

        time.sleep(1.5) 

        robot_busy = False 

 

# === GUI thread === 

def run_calibration(): 

     

    # Pause main tasks 

    with lock: 

        shared["calibrating"] = True 

        shared["run"] = False 

     

    conveyor_stop() 

 

    print("[CALIBRATION] System paused. Starting calibration...") 

 

    global M_affine 

 

    # Preset real robot coords 

    robot_coords = [ 

        (-120,   0), (0,   0), (120,   0), 

        (-120, -120), (0, -120), (120, -120), 

        (-120, -240), (0, -240), (120, -240) 

    ] 
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    cam_points = [] 

    real_points = [] 

    current_index = 0 

    calibration_started = False 

 

    def mouse_callback(event, x, y, flags, param): 

        nonlocal current_index, calibration_started 

        if calibration_started and event == cv2.EVENT_LBUTTONDOWN 

and current_index < len(robot_coords): 

            cam_points.append([x, y]) 

            real_points.append(robot_coords[current_index]) 

            print(f"[OK] Captured: Camera=({x}, {y}) ↔ 

Robot={robot_coords[current_index]}") 

            current_index += 1 

 

    # Open new calibration window 

    # ✅ reuse the existing camera 

    global cap 

    cap.set(3, 640) 

    cap.set(4, 480) 

    cap.set(cv2.CAP_PROP_AUTO_EXPOSURE, 0.25) 

    cap.set(cv2.CAP_PROP_EXPOSURE, -3) 

    cap.set(cv2.CAP_PROP_GAIN, 0) 

    cap_calib = cap 

 

    cv2.namedWindow("Calibration") 

    cv2.setMouseCallback("Calibration", mouse_callback) 

 

    print("[CALIBRATION] Starting...") 

    send_gcode("G28") 

    send_gcode("G01 X0 Y0 Z-368") 

 

    while True: 

        ret, frame = cap_calib.read() 

        if not ret: 

            break 

 

        for i, (cx, cy) in enumerate(cam_points): 

            cv2.circle(frame, (int(cx), int(cy)), 5, (0, 0, 255), 

-1) 

            cv2.putText(frame, str(i+1), (cx+5, cy-5), 

                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255,0), 

2) 

 

        msg = (f"[{current_index+1}/9] Click for 

{robot_coords[current_index]}" 

               if calibration_started and current_index < 

len(robot_coords) 
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               else "Press U to start calibration" if not 

calibration_started 

               else "Done") 

        cv2.putText(frame, msg, (10, 30), 

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2) 

 

        cv2.imshow("Calibration", frame) 

        key = cv2.waitKey(1) & 0xFF 

 

        if key == ord("u"): 

            send_gcode("G28") 

            calibration_started = True 

            print("[CALIBRATION] Started. Click the 9 points in 

order.") 

 

        if key == ord("q") or (calibration_started and 

current_index >= len(robot_coords)): 

            break 

 

     

    cv2.destroyAllWindows() 

 

    if len(cam_points) >= 3: 

        cam_points_np = np.array(cam_points, dtype=np.float32) 

        real_points_np = np.array(real_points, dtype=np.float32) 

 

        M_new, _ = cv2.estimateAffine2D(cam_points_np, 

real_points_np) 

        if M_new is not None: 

            M_affine = M_new 

            print("\n[RESULT] Updated Affine Matrix:") 

            print(M_affine) 

        else: 

            print("[ERROR] Calibration failed.") 

         

        send_gcode("G28")     

 

    with lock: 

        shared["calibrating"] = False 

    print("[CALIBRATION] Done. System resumed.") 

    send_gcode("G28")  

 

def gui_thread(): 

    root = tk.Tk() 

    root.title("Waste Sorting Control") 

    root.geometry("980x560") 

 

    # Top buttons 
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    frame_top = ttk.Frame(root, padding=8) 

    frame_top.grid(row=0, column=0, sticky="nw") 

 

    def on_start(): 

        with lock: 

            shared["run"] = True 

        print("[GUI] Start pressed") 

 

    def on_stop(): 

        with lock: 

            shared["run"] = False 

            send_gcode("G28") 

            conveyor_stop() 

        print("[GUI] Stop pressed") 

 

    def on_reset(): 

        with lock: 

            for k in shared["counters"]: 

                shared["counters"][k] = 0 

        update_counters() 

        print("[GUI] Counters reset") 

 

    def on_exit(): 

        if not messagebox.askokcancel("Exit", "Stop system and 

exit?"): 

            return 

        with lock: 

            shared["program_running"] = False 

            shared["run"] = False 

        root.quit() 

        root.destroy() 

 

    ttk.Button(frame_top, text="Start", 

command=on_start).grid(row=0, column=0, padx=6, pady=6) 

    ttk.Button(frame_top, text="Stop", 

command=on_stop).grid(row=0, column=1, padx=6, pady=6) 

    ttk.Button(frame_top, text="Reset Counters", 

command=on_reset).grid(row=0, column=2, padx=6, pady=6) 

    ttk.Button(frame_top, text="Exit", 

command=on_exit).grid(row=0, column=3, padx=6, pady=6) 

    ttk.Button(frame_top, text="Calibrate", 

command=run_calibration).grid(row=0, column=4, padx=6, pady=6) 

 

    # Mapping controls (class -> drop area) 

    frame_map = ttk.LabelFrame(root, text="Class → Drop Area", 

padding=8) 

    frame_map.grid(row=1, column=0, sticky="nw", padx=8, pady=6) 
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    options = ["Left", "Right", "Ignore"] 

 

    mapping_vars = {} 

    def make_callback(cls): 

        def cb(v): 

            with lock: 

                shared["mapping"][cls] = v 

            print(f"[GUI] mapping {cls} -> {v}") 

        return cb 

 

    row_idx = 0 

    for cls in shared["mapping"].keys(): 

        lbl = ttk.Label(frame_map, text=cls.capitalize()) 

        lbl.grid(row=row_idx, column=0, sticky="w", padx=6, 

pady=4) 

        var = tk.StringVar(value=shared["mapping"][cls]) 

        mapping_vars[cls] = var 

        cb = ttk.OptionMenu(frame_map, var, var.get(), *options, 

command=make_callback(cls)) 

        cb.grid(row=row_idx, column=1, sticky="w", padx=6, 

pady=4) 

        row_idx += 1 

 

    # Right side: video and counters 

    frame_right = ttk.Frame(root, padding=8) 

    frame_right.grid(row=0, column=1, rowspan=3, sticky="nsew") 

 

    video_label = ttk.Label(frame_right) 

    video_label.grid(row=0, column=0, padx=6, pady=6) 

 

    counter_frame = ttk.LabelFrame(frame_right, text="Picked 

counters", padding=8) 

    counter_frame.grid(row=1, column=0, sticky="nsew", padx=6, 

pady=6) 

 

    counter_labels = {} 

    for i, cls in enumerate(shared["counters"].keys()): 

        lbl = ttk.Label(counter_frame, text=f"{cls.capitalize()}: 

0") 

        lbl.grid(row=i, column=0, sticky="w", padx=4, pady=2) 

        counter_labels[cls] = lbl 

 

    def update_counters(): 

        with lock: 

            counters = shared["counters"].copy() 

        for k, lbl in counter_labels.items(): 

            lbl.config(text=f"{k.capitalize()}: 

{counters.get(k,0)}") 
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    def update_video(): 

        with lock: 

            frame = shared["frame"].copy() if shared["frame"] is 

not None else None 

        if frame is not None: 

            try: 

                rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

                im = Image.fromarray(rgb).resize((640, 480)) 

                imgtk = ImageTk.PhotoImage(image=im) 

                video_label.imgtk = imgtk 

                video_label.config(image=imgtk) 

            except Exception as e: 

                print("[GUI VIDEO ERR]", e) 

        update_counters() 

        root.after(30, update_video) 

 

    update_video() 

    root.protocol("WM_DELETE_WINDOW", on_exit) 

    root.mainloop() 

 

# Start threads 

t1 = threading.Thread(target=vision_task, daemon=True) 

t2 = threading.Thread(target=robot_task, daemon=True) 

t3 = threading.Thread(target=gui_thread, daemon=True) 

 

t1.start() 

t2.start() 

t3.start() 

 

try: 

    while shared["program_running"]: 

        time.sleep(0.5) 

finally: 

    print("Closing...") 

    cap.release() 

    cv2.destroyAllWindows() 

    conveyor_stop() 

    send_gcode("G28") 

    send_gcode("M5") 

    robot.close() 

    esp.close() 

    print("Closed.") 


