

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ROCK-PAPER-SCISSORS GAME USING REAL-TIME OBJECT DETECTION

BY

LIM XIAO YUN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) DIGITAL ECONOMY

TECHNOLOGY

Faculty of Information and Communication Technology

(Kampar Campus)

 FEBRUARY 2025

i

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Lim Xiao Yun. All rights reserved.

This Final Year Project report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Information Systems (Honours) Digital Economy

Technology at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project

report represents the work of the author, except where due acknowledgment has been

made in the text. No part of this Final Year Project report may be reproduced, stored,

or transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Example

ii

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Encik Ammar bin Azlan, for

providing me with the opportunity to carry out this project on “Rock-Paper-Scissors Game

using Real-Time Object Detection”. His invaluable guidance, encouragement, and expertise

were instrumental in my successful completion of this endeavour.

Sincere thanks to a special person in my life, Foo Ngai Ciao, for their unwavering

support, patience, and love throughout this process. Your encouragement has been a

constant source of strength during challenging times. Finally, I would like to express

my heartfelt gratitude to my parents and family for their unconditional love, support

and motivation throughout this project. Their constant encouragement has been the

driving force that has helped me reach this milestone.

iii

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project introduces an innovative Rock-Paper-Scissors (RPS) game that integrates real-

time hand gesture recognition within a Flutter-based mobile application, leveraging advanced

machine learning techniques. Utilizing MobileNetV2, a lightweight convolutional neural

network, the system reliably classifies rock, paper, and scissors gestures from live camera feeds.

Developed through an evolutionary prototyping methodology, the project iteratively refined a

TensorFlow Lite-deployed model and a user-friendly interface featuring tutorial screens, game

history tracking, and celebratory animations. OpenCV ensured robust dataset preprocessing,

enabling high-quality training data, while Flutter facilitated seamless cross-platform

performance. Extensive testing confirmed the system’s effectiveness across diverse lighting

conditions and device specifications, achieving consistent gesture detection and rapid UI

responsiveness. By addressing challenges such as gesture variability and real-time processing

latency through model optimization and efficient camera handling, the project delivers an

immersive gaming experience without physical controllers. This work advances interactive

gaming by demonstrating the feasibility of deploying sophisticated machine learning models

on resource-constrained mobile devices. The framework offers potential for applications in

educational tools and assistive technologies, contributing to further developments in computer

vision and human-computer interaction.

Area of Study (Minimum 1 and Maximum 2): Deep Learning, Mobile Computing

Keywords (Minimum 5 and Maximum 10): Gesture Recognition, Machine Learning, CNN,

Mobile Application, Real-time Processing

iv

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

COPYRIGHT STATEMENT i

ACKNOWLEDGEMENTS ii

ABSTRACT iii

TABLE OF CONTENTS iv-vii

LIST OF FIGURES viii-x

LIST OF TABLES xi

LIST OF ABBREVIATIONS

xii

CHAPTER 1 INTRODUCTION .. 1

1.0 Introduction .. 1

1.1 Problem Statement and Motivation ... 2

1.1.1 Problem Statement .. 2

1.1.2 Motivation ... 3

1.2 Research Objectives ... 3

1.2.1 Implement Real-Time Gesture Recognition TensorFlow Lite and Convolutional

Neural Networks (CNN) .. 4

1.2.2 Develop an Interactive Rock-Paper-Scissors Game ... 4

1.2.3 Optimize Gesture Recognition Performance Using CNN and Mobile Deployment

Techniques ... 4

1.3 Project Scope and Direction... 5

1.4 Contributions.. 5

1.5 Report Organization ... 6

CHAPTER 2 Literature Reviews ... 7

2.1 Previous Works on Deep Learning .. 7

v

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.1 WIZARD Weightless Neural Network .. 7

2.1.2 Multi-Layer perceptron (MLP) Neural Network ... 7

2.1.3 Convolutional Neural Network .. 8

2.2 Limitation of Previous Studies... 8

2.2.1 Spatial Relationships and Image Recognition .. 8

2.2.2 Epoch Application and CNN Architecture Layers .. 9

2.2.3 Human Gesture Variability.. 9

2.3 Proposed Solutions... 9

2.3.1 Embracing CNNs for Enhanced Gesture Recognition .. 9

2.3.2 Optimal Configuration for Enhanced Performance .. 10

2.3.3 Comprehensive Dataset and Robust Model Design.. 10

2.4 Comparison between Existing System and Proposed System 11

CHAPTER 3 System Methodology .. 13

3.1 Introduction .. 13

3.2 Prototyping Methodology .. 13

3.2.1 Overview of Prototyping Methodology .. 13

3.2.2 Types of Prototyping ... 13

3.2.3 Justification for Selecting Prototyping Methodology ... 14

3.3 Implementation of Prototyping Methodology ... 15

3.4 Methodology Evaluation .. 19

3.5 Conclusion ... 19

CHAPTER 4 System Design ... 21

4.1 System Block Diagram .. 21

4.2 Use Case Diagram.. 23

4.3 Activity Diagram .. 25

4.4 Wireframe .. 30

CHAPTER 5 System Implementation ... 37

vi

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1 Hardware Setup .. 37

5.2 Software Setup ... 38

5.3 Setting and Configuration .. 44

5.3.1 Model Training Process for Rock-Paper-Scissors Detection 44

5.3.2 Build Rock-Paper-Scissors Real-time Detection App .. 51

5.4 System Operation (with Screenshot) ... 56

5.5 Implementation Issues and Challenges .. 67

5.6 Concluding Remark ... 68

CHAPTER 6 System Evaluation and Discussion .. 69

6.1 System Testing and Performance Metrics .. 69

6.2 Testing Setup and Result .. 70

6.2.1 Home Page Testing ... 70

6.2.2 Hand Detection Page Testing .. 71

6.2.3 Result Page Testing ... 72

6.2.4 Game Summary Page Testing ... 73

6.2.5 Achievement Page Testing .. 75

6.2.6 RPS Detector Page Testing ... 76

6.3 Project Challenges ... 77

6.4 Objectives Evaluation .. 78

6.4.1 Assessment of Gesture Recognition Implementation ... 78

6.4.2 Review of Game Development Outcomes .. 79

6.4.3 Analysis of Feature Enhancement Effectiveness .. 79

6.5 Concluding Remark ... 80

CHAPTER 7 Conclusion and Recommendation .. 81

7.1 Conclusion ... 81

7.2 Recommendation ... 81

REFERENCES ... 84

vii

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER.. 87

viii

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 RPS Game Rules 2

Figure 4.1 RPS Real-time Detection App Block Diagram 21

Figure 4.2 RPS Real-time Detection App Use Case Diagram 23

Figure 4.3.1 Play Game Activity Diagram 25

Figure 4.3.2 RPS Detector 27

Figure 4.3.3

Figure 4.4.1

Figure 4.4.2

Figure 4.4.3

Figure 4.4.4

Figure 4.4.5

Figure 4.4.6

Figure 4.4.7

Figure 5.2.1

Figure 5.2.2

Figure 5.2.3

Figure 5.2.4

Figure 5.2.5

Figure 5.2.7

Figure 5.2.8

Tutorial Page Activity Diagram

Home Page Wireframe

Round Selection Page Wireframe

Play Game View Page

Game Summary Page

Achievement Page

Tutorial Page

Detector Page

Visual Studio Code

Flutter

Dart

Android Studio

Python

TensorFlow

OpenCV

28

30

31

32

33

34

35

36

39

39

40

41

41

42

43

ix

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.9

Figure 5.3.1

Figure 5.3.2

Figure 5.3.3

Figure 5.3.4

Figure 5.3.5

Figure 5.3.6

Figure 5.3.7

Figure 5.3.8

Figure 5.3.9

Figure 5.3.10

Figure 5.3.11

Figure 5.3.12

Figure 5.4.1

Figure 5.4.2

Figure 5.4.3

Figure 5.4.4

Figure 5.4.5

Figure 5.4.6

Figure 5.4.7

Figure 5.4.8

Figure 5.4.9

Figure 6.2.2

Google Colab

Environment Setup

Rock Paper Scissor Image Inside the Dataset

Hyperparameter on CNN Model

Model Training

Training Accuracy and Loss Graphs

Model Performance Metrics and Confusion Matrix

Flutter Doctor Output

Connected Physical Device Listed

Create a Flutter Project

Convert model to TensorFlow Lite

Import the Model into Flutter Project

Model Integration in ModelService.dart

RPS Game Logo

Home Page

Tutorial Page

Select Number of Round Page

Hand Detection Page

Result Page·

Game Summary Page

Achievement Page

RPS Detector Page

Test Case 1 and 2 Actual Output

43

44

46

48

50

50

52

52

53

54

54

55

53

56

56

60

61

62

63

64

66

72

x

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.3

Figure 6.2.4

Figure 6.2.5

Figure 6.2.6

Result Page Testing 2 Actual Output

Game Summary Page Actual Output

Achievement Page Actual Output

RPS Detector Page Actual Output

73

74

76

77

xi

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.4 Comparison between Existing System and Proposed System 12

Table 5.1 List of Hardware 37

Table 5.2 List of Software 38

Table 5.3.1 Dataset Details 45

Table 5.3.2 Data Distribution Summary 46

Table 5.3.3 Training Parameters 49

Table 6.1.1 Performance Metrics 69

Table 6.2.1 Home Page Testing 71

Table 6.2.2

Table 6.2.3

Table 6.2.4

Table 6.2.5

Table 6.2.6

Hand Detection Page Testing

Result Page Testing

Game Summary Page Testing

Achievement Page Testing

RPS Detector Page Testing

71

73

74

75

76

xii

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

RPS Rock-Paper-Scissors

CNN Convolutional Neural Network

ML Machine Learning

OpenCV Open-Source Computer Vision Library

TFLite TensorFlow Lite

UI User Interface

EMG Electromyographic

MLP Multi-Layer Perceptron

SDK Software Development Kit

IDE Integrated Development Environment

GPU Graphics Processing Unit

TPU Tensor Processing Unit

API Application Programming Interface

AR Augmented Reality

GANs Generative Adversarial Networks

CHAPTER 1

1

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

1.0 Introduction

In this chapter, we present the background and motivation of our research, contributions to the

field, and the thesis outline. This paper introduces an innovative Rock-Paper-Scissors (RPS)

game that enhances traditional gameplay by incorporating real-time gesture recognition

through a Convolutional Neural Network (CNN) model integrated into a Flutter-based mobile

application. The system captures a continuous video feed from a device camera, which is

processed in real-time by the CNN model deployed via TensorFlow Lite to classify hand

gestures—such as a closed fist for "Rock," an open hand for "Paper," or a V-sign for "Scissors."

These recognized gestures are translated into game commands, driving the virtual RPS game

to determine round outcomes based on classic rules, with visual and auditory feedback

enhancing the immersive experience. OpenCV was utilized during the dataset preparation

phase to preprocess images (e.g., resizing and normalization) for training the CNN model,

ensuring high-quality input data. By combining traditional gameplay with advanced computer

vision and machine learning techniques, this project creates a dynamic and interactive gaming

experience that aligns with the expectations of modern players[1].

Rock-Paper-Scissors (RPS) is a typical hand game between two or more players. In this game,

two or more players can choose one of three gestures simultaneously. According to McCannon,

RPS game is an excellent tool to solve disputes between two individuals although most people

rarely make essential decisions on RPS to resolve a conflict [2]. An example of studies states

that RPS can determine the winner in a conflict. For example, in 2005, Maspro Denkoh

Corporation's president, Takashi Hashiyama, resolved the choice between Christie's and

Sotheby's auction houses for a $20 million art collection by having representatives play a single

round of Rock, Paper, Scissors (RPS) [2]. In the end, resulting in Christie's won with "scissors"

defeating Sotheby's "paper" [3]. Moreover, this game allows players to naturally evolve their

strategies over time. The decisions made by individuals during the game are often spontaneous,

offering an excellent opportunity to explore the workings of our short-term memory [4]. This

project applies game theory and machine learning to create an intelligent RPS player that adapts

to user behaviors, aiming to enhance engagement through a mobile app developed with Flutter

and a CNN model. The development process required a labeled dataset of hand gestures (rock,

CHAPTER 1

2

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

paper, scissors), which was preprocessed using OpenCV to train the CNN model effectively.

The goal is to deliver a seamless blend of real-world gestures and virtual gameplay, redefining

interactive gaming for a broader audience.

Figure 1.1: RPS Game Rules

1.1 Problem Statement and Motivation

1.1.1 Problem Statement

According to Muhammad et al. (2022), the way people play games in Indonesia has changed

due to COVID-19, with more games now being played online[5]. This shift includes the

traditional Rock, Paper, Scissors game, where computers detect hand movements. However,

there are issues with how well computers understand these hand movements. Previous studies

have shown that the accuracy of classifying Rock, Paper, Scissors hand gestures using

Convolutional Neural Networks (CNNs) was limited by the epoch value and model

architecture. Additionally, the need to customize more detailed CNN models for the specific

nuances of the "rock, paper, scissors" gesture remains unaddressed. These challenges

emphasize the importance of optimizing deep learning algorithms to maintain the cultural

relevance of traditional games in virtual spaces while overcoming technical barriers related to

gesture recognition accuracy and model specificity [5].

CHAPTER 1

3

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.1.2 Motivation

This thesis aims to change how users interact in games to create a more intuitive and engaging

experience. Traditional methods, such as controllers, have limitations that prevent them from

realizing the full potential of immersive games. Therefore, this project employs real-time object

detection and gesture recognition techniques focusing on creating vibrant Rock-Paper-Scissors

(RPS) games using OpenCV detection. This approach seamlessly blends real-world gestures

with virtual gameplay, thus meeting the ever-changing expectations of today's players. The

project hopes to contribute valuable insights to the fields of computer vision and machine

learning aimed at improving the accuracy of gesture detection systems. This includes carefully

refining epoch values, optimizing the CNN architecture, and customizing the model for RPS

gestures. Ultimately, our overall goal is to push the technology forward and make gaming more

enjoyable for more people.

1.2 Research Objectives

The main goal of this thesis project is to develop an innovative Rock-Paper-Scissors (RPS)

game that integrates real-time gesture recognition via OpenCV detection. The project aims to

create a dynamic and engaging gaming experience by seamlessly combining traditional RPS

gameplay with advanced computer vision and machine learning techniques. The first goal was

to implement a real-time gesture recognition system using OpenCV to recognize and classify

gestures associated with RPS gameplay accurately. Subsequently, the project aims to integrate

this recognition system into virtual RPS games to ensure that recognized gestures trigger

appropriate commands. The third goal is to improve the accuracy and reliability of gesture

recognition by utilizing advanced computer vision techniques, specifically Convolutional

Neural Networks (CNN). The fourth goal is to optimize deep learning model parameters, such

as epoch values and CNN architecture, which are critical for achieving optimal performance

and preventing overfitting. The fifth objective is to create a gesture labelling dataset which

helps in the actual training of the deep learning model. The sixth objective is user experience

evaluation and system effectiveness assessment to gain insights into the usefulness and

engagement of the developed game system. In addition, the project aims to explore potential

applications beyond entertainment.

CHAPTER 1

4

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2.1 Implement Real-Time Gesture Recognition TensorFlow Lite and Convolutional

Neural Networks (CNN)

The main goal of this objective is to develop and integrate a real-time gesture recognition

system using a Convolutional Neural Network (CNN) and TensorFlow Lite within a Flutter

mobile app. The system will recognize three core gestures—rock, paper, and scissors—by

processing real-time video input from a device camera. The camera package in Flutter will

handle the video feed, while the CNN, deployed through the tflite_flutter package, will be

responsible for learning and identifying the unique patterns of each gesture. To achieve high

accuracy and robustness in gesture recognition, the system will be designed to perform well

under varying real-world conditions, such as different lighting, backgrounds, and user hand

variations. The gesture recognition system will serve as the foundation for the RPS game,

acting as the primary input mechanism.

1.2.2 Develop an Interactive Rock-Paper-Scissors Game

Another core objective is to design and develop an interactive Rock-Paper-Scissors game with

gesture-based controls using Flutter and the CNN model for real-time gesture recognition. The

system will map recognized gestures to in-game actions, enabling players to control the game

through natural hand movements without the need for traditional input devices like a mouse or

keyboard. The game logic will follow the classic RPS rules: rock beats scissors, scissors beats

paper, and paper beats rock. The system will detect the player’s gestures, generate the

computer’s response, and provide immediate feedback on the recognized gesture, the

computer’s move, and the outcome of each round (win, lose, or draw). Features such as tutorial

screens, game history tracking, and celebratory animations will be implemented to create a

responsive and immersive gaming experience that enhances player engagement.

1.2.3 Optimize Gesture Recognition Performance Using CNN and Mobile Deployment

Techniques

The final objective of this project is to optimize the gesture recognition system’s performance

using the CNN model and mobile deployment techniques for efficient real-time application

within the RPS game. The process will involve fine-tuning the CNN model by adjusting

parameters such as epoch values, learning rates, and network architecture to ensure reliable

CHAPTER 1

5

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

gesture classification. Efficient architectures like ShuffleNet, which complements

MobileNetV2, highlight the importance of lightweight models for mobile deployment [6].

Techniques like model quantization will be applied to reduce the model size for mobile

deployment via TensorFlow Lite, while image preprocessing will be streamlined in Dart to

handle real-time camera input effectively. This will ensure the system performs efficiently on

mobile devices, maintaining responsiveness and accuracy under practical constraints, such as

limited processing power and varying environmental conditions.

1.3 Project Scope and Direction

This thesis focuses on developing a Rock-Paper-Scissors (RPS) game that employs a CNN-

based gesture recognition system integrated into a Flutter mobile app. The system processes

continuous video frames from a device camera, using a pre-trained CNN model via TensorFlow

Lite to recognize gestures in real-time. The CNN model was trained on a dataset preprocessed

with OpenCV, ensuring consistent image quality for effective gesture classification. Outputs

such as a clenched fist ("rock"), open hand ("paper"), or V-sign ("scissors") trigger game

commands, driving an immersive virtual RPS experience. The project emphasizes improving

user engagement through an interactive interface, including tutorial screens, game history, and

animations, while optimizing for mobile performance. The envisioned outcome is a robust,

accessible gaming solution with potential extensions to educational or interactive applications.

1.4 Contributions

This thesis makes a significant contribution by seamlessly combining real-time gesture

recognition with a CNN model deployed via TensorFlow Lite into a Flutter-based mobile app,

filling a gap in existing research that often focuses on isolated aspects of gesture-based systems.

The innovative Rock-Paper-Scissors (RPS) game developed in this project utilizes natural hand

movements, eliminating the need for traditional input methods such as controllers or buttons,

and enhances user engagement by providing a more intuitive gaming experience. The system,

implemented in Dart with Flutter, leverages cutting-edge machine learning techniques, with

the CNN model customized for RPS gestures and optimized through fine-tuned parameters and

architecture to ensure reliable performance. OpenCV was employed during dataset

preprocessing to prepare high-quality training data, while the system’s effectiveness was

CHAPTER 1

6

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

validated through comprehensive testing on emulators and real devices. The inclusion of

features like tutorial guidance, game history tracking, and confetti animations enriches the user

experience, creating user-friendly and inclusive game interactions. Beyond entertainment, this

technology demonstrates potential applications in educational software, interactive exhibitions,

and virtual reality scenarios, offering a versatile framework that contributes comprehensively

to the fields of interactive gaming, computer vision, and machine learning, providing solutions

accessible to a wide audience.

1.5 Report Organization

This report is organized into six chapters to provide a comprehensive overview of the Rock-

Paper-Scissors (RPS) Real-time Detection Game App project. Chapter 1, Introduction, presents

the specifics of the study, including the background, problem statement, motivation, research

objectives, scope, and contributions. Chapter 2, Literature Review, covers relevant background

topics, analyzing previous works on gesture recognition, their limitations, and proposed

solutions. Chapter 3 then offers a System Design, discussing the overall design of the system,

including data acquisition, system requirements, and architectural framework. Chapter 4

focuses on System Implementation and Testing, detailing the development process, integration

of the CNN model with Flutter, and testing procedures to validate functionality. Chapter 5

summarizes the System Outcome and Discussion, evaluating the project’s performance, user

experience, and challenges encountered. Lastly, Chapter 6, Conclusion, provides a summary of

the project’s achievements, key findings, and potential future improvements. A References

section follows, listing all cited sources.

CHAPTER 2

7

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 Literature Reviews

2.1 Previous Works on Deep Learning

2.1.1 WIZARD Weightless Neural Network

In a 2013 research paper, DeSouza et al. proposed a research paper that was inspired by

WIZARD weightless neural network to design a strategic approach to creating intelligent

Rock-Paper-Scissors players. The study introduces innovative methods, encompassing the

encoding of new input data features, the implementation of three training algorithms for

evolving input pattern classifications, and approaches to handle incomplete information in the

input array. By applying the WIZARD model to the game of Rock-Paper-Scissors-Paper, this

research effectively addresses the complex problem of adapting network knowledge to

changing opponent strategies. Experimental results show that players using the WIZARD

approach perform well [1]. However, the success rates and real-world rankings of WIZARD-

based players remain controversial, and a better understanding of their performance in different

games is needed. In addition, integrating real-world data into player development is a challenge

that needs further exploration. Future research could explore these controversial points to

understand better and improve WIZARD-based intelligent RPS players. WIZARD-based

intelligent RPS players.

2.1.2 Multi-Layer perceptron (MLP) Neural Network

In a 2017 research paper, Gang et al. proposed a method to classify Electromyographic (EMG)

signals associated with the Rock, Paper, and Scissors hand gestures. They apply EMG signals

to a multi-layer perceptron (MLP) model, leading to a highly accurate classification of three

different hand patterns. The main focus of the algorithm is to recognize human behavioural

patterns and prepare for the upcoming game to react strategically and defeat the opponent. The

study provides insight into the efficacy of MLP in identifying different player behavioural

patterns and evaluates its impact on the overall success rate of computers in RPS games [7].

However, using a Multi-layer Perceptron (MLP) for hand gesture recognition in a Rock-Paper-

Scissors Game Application is less suitable due to its inability to handle spatial relationships in

images, limited feature extraction capabilities, and potential overfitting issues. Convolutional

CHAPTER 2

8

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Neural Networks (CNNs) are a more appropriate choice, excelling in automatically learning

spatial hierarchies and capturing local patterns essential for accurate image recognition [7].

2.1.3 Convolutional Neural Network

Ichsan et al. proposed a paper that use Convolutional Neural Network (CNN) method to create

a game Rock, Paper, Scissors. They employ CNN as Deep Learning method to recognize and

classify hand gestures (rock, paper, scissors) with improved accuracy. CNNs, as described by

LeCun et al., excel in image recognition tasks by learning hierarchical feature representations,

making them ideal for classifying complex hand gestures in RPS games [8]. In previous studies

achieved accuracy rates ranging from 81.53% to 97.66% but identified limitations in Epoch

application and CNN architecture layers. This study aims to improve accuracy by increasing

Epoch values and developing more detailed models. The research methodology included

dataset collection, segmentation, preprocessing, CNN model creation, and performance

calculations [5]. In conclusion, the paper emphasizes the importance of human gestures in

games and attempts to improve the accuracy of CNN-based classification. Therefore, this thesis

used CNN to develop an improved and highly accurate system for playing the rock-paper-

scissors game. The choice of CNNs signifies a commitment to advanced image recognition

techniques, contributing to the effectiveness of the proposed solution. Using CNNs, we want

to improve how the game detects and understands hand gestures, making it more enjoyable for

everyone playing.

2.2 Limitation of Previous Studies

2.2.1 Spatial Relationships and Image Recognition

The limitation of using a Multi-layer Perceptron (MLP) for hand gesture recognition, as

outlined in the first review paper, stems from its need for more accuracy in handling spatial

relationships within images. Hand gestures in the rock-paper-scissors game involve intricate

spatial configurations crucial for accurate recognition. MLPs, designed primarily for structured

data, need help to learn hierarchical spatial features automatically. Unlike MLPs, CNNs, as

demonstrated by Krizhevsky et al. with AlexNet, automatically learn spatial hierarchies,

enabling accurate recognition of complex hand gestures [9]. This deficiency impacts the

CHAPTER 2

9

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

model's ability to recognize complex hand gestures accurately, potentially leading to

misclassifications and diminishing the overall performance and reliability of the system,

particularly in real-world applications like gaming interfaces.

2.2.2 Epoch Application and CNN Architecture Layers

The second review paper identifies limitations in applying epochs and the architecture of

Convolutional Neural Networks (CNNs), though specific challenges need to be more detailed.

The number of epochs influences the training process, and CNN architecture determines feature

extraction capabilities. Issues in these aspects can result in suboptimal performance, slower

convergence, or potential overfitting. Ineffective parameter tuning, suboptimal choices for

epoch values, or inadequately designed CNN architectures can hinder the model's learning

capacity, impacting accuracy and generalization. This can lead to underperformance in real-

time scenarios, slowing the system's ability to recognize and classify hand gestures accurately.

2.2.3 Human Gesture Variability

Recognizing the variability in how individuals perform rock-paper-scissors gestures, both

papers implicitly acknowledge the challenge of developing a robust and generalized model.

Variations in hand shapes, positions, and speeds introduce complexity, making capturing all

possible permutations in a training dataset difficult. According to previous studies highlight

that variations in hand shapes and lighting conditions pose significant challenges for gesture

recognition, necessitating robust datasets and model designs [10]. The lack of robustness to

human gesture variability may result in poor generalization, as the model trained on specific

gestures may need help to accurately classify variations that are not present in the training data.

This limitation can significantly impact the real-world usability of the system, especially when

users naturally exhibit diverse ways of performing hand gestures, affecting its overall

effectiveness and reliability.

2.3 Proposed Solutions

2.3.1 Embracing CNNs for Enhanced Gesture Recognition

The proposed solution involves transitioning from Multi-layer Perceptrons (MLPs) to

Convolutional Neural Networks (CNNs) for improved spatial relationships and image

CHAPTER 2

10

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

recognition in the Rock, Paper, Scissors game application. CNNs are explicitly designed to

handle spatial features in images through convolutional layers. These layers automatically learn

hierarchical representations and capture local patterns, enabling the model to discern complex

spatial configurations in hand gestures. By leveraging CNNs, as emphasized by LeCun et al.,

the system gains the ability to extract more nuanced information from images, enhancing its

accuracy and robustness in recognizing diverse hand gestures within the game [8].

2.3.2 Optimal Configuration for Enhanced Performance

The solution to challenges in epoch applications and CNN architecture involves a

comprehensive exploration of different epoch values and meticulous optimization of CNN

architecture. Thorough hyperparameter tuning is essential to identify the optimal combination

of epoch values, learning rates, and layer configurations. This process ensures that the CNN

converges efficiently during training, prevents overfitting, and maximizes accuracy. By fine-

tuning these parameters, the system can recognize Rock, Paper, Scissors gestures in real-time

scenarios, improving overall performance and reliability.

2.3.3 Comprehensive Dataset and Robust Model Design

The solution consists of collecting a comprehensive dataset that captures this diversity to

address individuals' variability in making "rock, paper, scissors" gestures. The model design is

then improved to accommodate hand position and shape variations. Incorporating temporal

information (e.g., dynamic changes in gestures) further refines the system's ability to generalize

across different user behaviors. Wang and Wang underscore the importance of diverse datasets

to handle real-world gesture variability, ensuring robust model performance [10]. This solution

ensures that the rock-paper-scissors game application can be trained to work with different

hand gestures and can adapt to the variations inherent in the user's natural participation in the

game. The result is a more reliable and enjoyable gaming experience for users with different

gaming styles.

CHAPTER 2

11

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.4 Comparison between Existing System and Proposed System

Criteria

WIZARD

Weightless

Neural

Network

MLP Neural

Network

CNN-based

System

Proposed

System

Machine

Learning

Method

WIZARD

Weightless

Neural Network

Multi-Layer

Perceptron

(MLP)

Convolutional

Neural Network

(CNN)

Enhanced CNN

with Optimized

Architecture

Gesture

Recognition

Accuracy

Moderate

(~70%)

Low (~60%)

High (81.53%–

97.66%)

Very High

(99.67%)

Real-time

Detection

No

No

Yes

Yes (Optimized

for Mobile)

Handles

Spatial

Relationships

No

No

Yes

Yes (Improved

Feature

Extraction)

Adaptability to

Gesture

Variability

Limited

Poor

Moderate

High

User Interface

Features

Basic (Strategy-

Based

Gameplay)

None (Focus on

EMG

Classification)

Basic

(Gameplay

Only)

Advanced

(Tutorial,

History,

Animations)

CHAPTER 2

12

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Ease of

Integration on

Mobile

Not Applicable

Not Applicable

Moderate

High

(TensorFlow

Lite with

Flutter)

Handles

Dynamic

Gestures

No No

No

Yes

Table 2.4 Comparison between Existing System and Proposed System

CHAPTER 3

13

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 System Methodology

3.1 Introduction

This chapter presents the system methodology employed in developing the Rock-Paper-

Scissors (RPS) Real-time Object Detection Game. The project integrates machine learning

(ML) for hand gesture recognition with a Flutter-based mobile application, requiring an

approach that accommodates both ML model development and software implementation. After

careful consideration, the Prototyping Methodology was selected as the most appropriate

framework to guide this development process, particularly due to the technical complexity

involved in combining real-time object detection with mobile application development.

3.2 Prototyping Methodology

3.2.1 Overview of Prototyping Methodology

Prototyping is a system development approach that emphasizes creating early working models

(prototypes) of a system to evaluate, test, and refine the final product. Unlike traditional

sequential methodologies, prototyping follows an iterative process where developers build

functional versions of the system, evaluate them, and incorporate improvements based on

findings. Prototyping, akin to Boehm’s spiral model, supports iterative development by

allowing early testing and refinement, which is critical for integrating ML and mobile app

development [11]. This iterative nature allows for early detection and resolution of potential

issues, making it especially valuable in projects involving novel technologies and complex

integrations [12].

3.2.2 Types of Prototyping

Several variations of prototyping exist in software development practice:

Evolutionary Prototyping

This approach, involves developing an initial prototype that evolves through successive

refinements until becoming the final system. The process begins with implementing well-

understood requirements while leaving more complex aspects for later iterations.

CHAPTER 3

14

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Incremental Prototyping

Incremental prototyping involves development through multiple prototypes created in parallel,

each addressing different system components. These individual prototypes are eventually

integrated to form the complete system.

Throwaway Prototyping

This approach creates models primarily to test concepts and gather requirements, but these are

eventually discarded rather than becoming part of the final system

For this project, the evolutionary prototyping approach was adopted, allowing the system to

progressively evolve from initial proof-of-concept to the final application. This choice enabled

continuous refinement of both the machine learning model and the application interface while

maintaining technical consistency throughout the development process.

3.2.3 Justification for Selecting Prototyping Methodology

The prototyping methodology was selected over the initially considered Agile methodology

due to several project-specific factors:

1. Dual Development Tracks: The project required parallel development of both the ML

model and the mobile application, making a prototype-centered approach more

effective than sprint-based development

2. Technical Uncertainty: The integration of real-time object detection using TensorFlow

Lite within a Flutter application presented significant technical challenges that

benefited from early proof-of-concept development

3. Machine Learning Development Process: ML development follows an experimental

process of training, evaluation, and refinement that aligns naturally with prototyping

cycles [12].

4. Limited Prior Examples: The application of ML for real-time hand gesture recognition

in mobile gaming represents a relatively novel domain with limited established patterns

CHAPTER 3

15

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Implementation of Prototyping Methodology

The development of the RPS Real-time Object Detection Game followed a structured

evolutionary prototyping approach consisting of five main phases. Each phase built upon the

previous one while addressing identified challenges and expanding system functionality.

3.3.1 Phase 1: Development Environment Setup

The initial phase established the technical foundation for both ML development and mobile

application implementation:

1. Development Tools Configuration:

o Flutter SDK installation and configuration for cross-platform development

o TensorFlow and TensorFlow Lite setup for model development and deployment

o Version control system implementation using Git

2. Technical Feasibility Assessment:

o Evaluation of TensorFlow Lite performance constraints on mobile devices

o Assessment of Flutter camera integration capabilities

o Verification of cross-platform compatibility requirements

This phase resulted in a configured development environment ready for both ML model

development and Flutter application implementation, establishing the technical foundation for

subsequent prototyping phases.

3.3.2 Phase 2: Dataset Preparation and Model Development

This phase focused on creating and training the machine learning model required for hand

gesture recognition:

1. Dataset Collection and Preparation:

- Collection of custom datasets comprising images of hand gestures (rock, paper, scissors)

- Data preprocessing including normalization, augmentation, and segmentation.

CHAPTER 3

16

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

- Dataset splitting into training (70%, 2,220 images), validation (15%, 300 images), and

testing (15%, 372 images) sets.

2. Model Selection and Training:

- Experimentation with multiple model architectures (MobileNet, EfficientNet).

- Transfer learning, as detailed by Goodfellow et al., was employed to leverage pre-

trained MobileNetV2 weights, enhancing training efficiency for gesture recognition.

- Training with various hyperparameters to optimize performance.

3. Model Evaluation and Optimization:

- Evaluation of models based on accuracy, inference speed, and model size.

- Fine-tuning of the selected model to improve performance.

- Conversion to TensorFlow Lite format for mobile deployment.

This phase produced a trained MobileNetV2-based CNN model optimized for mobile

deployment with initial performance characteristics: classification accuracy of 94.7%, average

inference time of 112ms, and model size of 4.8MB. Subsequent fine-tuning, as detailed in

Chapter 5, further improved the validation accuracy to 99.67%, reflecting enhancements in

model generalization through adjusted learning rates and unfrozen layers.

3.3.3 Phase 3: Initial Prototype Development

The initial prototype focused on validating the technical feasibility of integrating the trained

model with the Flutter application:

1. Core Functionality Implementation:

- Camera integration for real-time image capture

- TensorFlow Lite integration for on-device inference

- Basic gesture recognition implementation

2. Technical Validation:

CHAPTER 3

17

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

- Verification of gesture recognition accuracy

- Performance testing on different devices

- Identification of optimization requirements

This prototype demonstrated the technical viability of the concept while highlighting areas

requiring further refinement, particularly related to recognition speed and accuracy under

varied lighting conditions.

3.3.4 Phase 4: Enhanced Prototype Development

Building on the initial prototype, this phase implemented the complete game functionality and

addressed identified technical limitations:

1. Game Logic Implementation:

- Countdown timer for gesture capture

- Round-based gameplay mechanics

- Score tracking and result determination

- Game history storage

2. User Interface Development:

- Main game screen with camera feed and overlay

- Result display mechanism

- Tutorial section for user guidance

- Settings and history screens

3. Performance Optimization:

- Model inference optimization

- Camera frame processing improvements

- User interface responsiveness enhancements

This enhanced prototype delivered a fully functional game with complete gesture recognition

capabilities and gameplay mechanics, ready for comprehensive testing. The integration of real-

CHAPTER 3

18

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

time gesture recognition with mobile app functionality aligns with approaches discussed by

Chen et al., who emphasize optimizing neural network inference for mobile devices to achieve

low-latency performance [14].

3.3.5 Phase 5: System Testing and Refinement

The final phase focused on comprehensive testing and refinement to ensure system reliability

and performance:

1. Systematic Testing:

- Gesture recognition accuracy testing under different lighting conditions to

address variability.

- Performance testing across various device specifications to ensure compatibility.

- Functional testing of game mechanics and user interface for robustness.

2. Refinement Based on Test Results:

- Improvements to the gesture recognition algorithm to enhance accuracy under

diverse conditions.

- Optimization of camera frame processing to minimize latency, leveraging

techniques like those discussed for mobile vision applications [14].

- User interface adjustments for improved usability based on test feedback.

3. Final System Validation:

- Verification of system meeting all functional requirements

- Performance validation against established metrics

- Final adjustments and bug fixes to ensure reliability.

This phase resulted in the final prototype that successfully demonstrated the integration of

machine learning and real-time interaction within a mobile game, with reliable gesture

CHAPTER 3

19

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

recognition across varied conditions. Systematic testing approaches, as described by Amershi

et al., were critical in refining machine learning models for real-world deployment [15].

3.4 Methodology Evaluation

The application of the Prototyping methodology to this project demonstrated several key

strengths aligned with the project requirements:

1. Effective Integration of ML and Mobile Development: The iterative nature of

prototyping allowed for parallel development and gradual integration of the ML model

with the Flutter application.

2. Technical Risk Mitigation: Early prototypes enabled identification and resolution of

technical challenges related to real-time gesture recognition, reducing development

risks .

3. Progressive Enhancement: The evolutionary approach facilitated gradual

enhancement of both gesture recognition accuracy and application functionality.

4. Flexibility for Experimentation: The methodology provided the flexibility needed to

experiment with different model architectures and optimization techniques.

The primary limitation encountered was the need for occasional backtracking when model

optimizations affected application performance, requiring adjustments to the integration

approach. However, this limitation was outweighed by the methodology's benefits in managing

the technical complexity of the project.

3.5 Conclusion

The Prototyping methodology provided an effective framework for developing the Rock-

Paper-Scissors Real-time Object Detection Game, enabling successful integration of machine

learning for hand gesture recognition within a Flutter mobile application. Through structured

phases of prototype development, testing, and refinement, the project successfully navigated

the technical challenges of implementing real-time object detection on mobile devices.

The evolutionary prototyping approach allowed for progressive refinement of both the machine

learning model and application components, ensuring technical feasibility while maintaining

focus on the core project objectives. This methodology proved particularly suitable for this

CHAPTER 3

20

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

project due to its ability to accommodate the experimental nature of machine learning

development alongside mobile application implementation.

CHAPTER 4

21

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 System Design

4.1 System Block Diagram

Figure 4.1 RPS Real-time Detection App Block Diagram

The block diagram of the Rock-Paper-Scissors (RPS) real-time detection game illustrates the

system’s data flow and functional architecture, from user input to result output and data storage.

At the forefront is the User Interface (Flutter UI), which acts as the primary interaction layer

for users. This UI comprises several pages, including the Home Page, Tutorial Page, Play Game

interface (with multiple subpages like Round Selection, Hand Detection, Result, and Game

Summary), the RPS Detector Page, and the Achievement Page. Users initiate gameplay or

access features through intuitive buttons and navigational flows.

When the user chooses to play, the system transitions to the Gesture Capture module, which

utilizes the device's camera to detect the user’s hand gestures in real time. This live input is

forwarded to the Gesture Classification module, which houses the TensorFlow Lite (TFLite)

model. This model classifies the hand gesture into one of the three categories: rock, paper, or

scissors, with high accuracy, aided by a well-lit and cantered hand position.

The output of the gesture classification is then passed into the Game Logic Engine, which

handles the countdown timer, round progression, random computer gesture generation, and

scoring system. This logic ensures fair gameplay and maintains synchronization between user

CHAPTER 4

22

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

input and game response. Following each round, results including the player's and computer’s

gestures and the outcome are delivered to the Result Display & Game History Storage

module. This component displays the result to the user via the Result Page and eventually

compiles the final scores on the Game Summary Page. Simultaneously, it updates the player’s

statistics and historical data, which can be accessed later through the Achievement Page.

This modular system design not only supports real-time gesture-based gaming but also

enhances usability through features like tutorials, performance tracking, and gesture testing.

The separation of responsibilities across distinct components ensures clarity, maintainability,

and responsiveness, forming a robust and engaging RPS game experience.

CHAPTER 4

23

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Use Case Diagram

Figure 4.2 RPS Real-time Detection App 2 Use Case Diagram

The Rock-Paper-Scissors Real-time Object Detection App is an interactive platform designed

to deliver an engaging gameplay experience through real-time hand gesture recognition. This

report elaborates on the use case diagram provided, illustrating the interactions between the

user and the system within the app. The diagram highlights the core functionalities offered by

the app and their corresponding system operations, outlining the primary tasks users can

perform and how the system supports them.

The app enables users to engage with a variety of features, including gameplay, gesture

detection practice, tutorial access, and game history management. The use case diagram

CHAPTER 4

24

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

visualizes how the user interacts with these features, while the system operates in the

background to ensure seamless functionality. The User, positioned outside the system boundary,

interacts directly with the app’s key use cases, each supported by efficient system processes

such as gesture classification, data storage, and user interface navigation.

A central feature of the app is the Play RPS Game use case, where users compete against the

computer by showing rock, paper, or scissors gestures via the device’s camera. This use case

includes the Select Rounds process, allowing users to customize the number of rounds (e.g., 1,

3, or 5), with the system managing the gameplay flow and round transitions. The Use RPS

Gesture Detector use case provides a standalone mode for users to practice gesture recognition,

supported by the View Classification process, which displays the detected gesture and

confidence score (e.g., "Detected: rock (100.00%)"). This is facilitated by the system’s machine

learning model, which processes camera input or uploaded images for accurate gesture

identification.

To enhance user understanding, the View Tutorial use case offers a step-by-step guide on

gameplay mechanics, gesture detection, and progress tracking, with the system ensuring

smooth navigation through tutorial screens. Additionally, the app supports performance

tracking through the View Game History use case, where users can review past games, scores,

and round-by-round outcomes, stored and retrieved by the system. The Delete History use case

allows users to clear their records, with the system handling secure data management to

maintain user privacy.

The relationships between use cases, such as the «includes» link between Play RPS Game and

Select Rounds, and the direct connection from Use RPS Gesture Detector to View

Classification, reflect the app’s logical flow and dependencies. All use cases are encapsulated

within the system boundary, ensuring a clear distinction between user actions and internal

operations like gesture processing, data storage, and result generation. Overall, the Rock-Paper-

Scissors Real-time Object Detection App demonstrates a user-centric approach, effectively

integrating real-time technology into an intuitive and engaging gameplay experience.

CHAPTER 4

25

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Activity Diagram

Play Game Activity Diagram

Figure 4.3.1 Play Game Activity Diagram

The Play Game Activity Diagram outlines the complete user flow for a Rock-Paper-Scissors

real-time detection game, from game initiation to completion. The process begins on the Round

Selection Page, where the user chooses the number of rounds (1, 3, 5, or custom) and clicks

Start.

CHAPTER 4

26

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Once initiated, the system activates the camera interface and displays it to the user. A

countdown timer begins to prepare the user, after which the system uses the camera feed to

detect and classify the user's gesture (rock, paper, or scissors) using a TensorFlow Lite model.

If no valid gesture is detected, the user is prompted with a Retry option. Otherwise, the system

proceeds with the CPU making its random choice. The user's move is compared against the

CPU's move based on the standard rules of Rock-Paper-Scissors, and the round result is

displayed.

The process repeats until all selected rounds are completed. Once all rounds are played, a

summary page shows the overall results. The user is then prompted to either replay the game

by selecting new rounds or return to the Home Page, ending the session.

At any point during gameplay, the user can pause the game, which brings up a pause menu with

options to resume or exit to the Home Page.

This activity diagram captures the interactive, decision-based nature of the gameplay, with

integrated gesture recognition and real-time feedback. It also includes contingency flows such

as gesture retry and game pause, enhancing usability and control for the player.

RockPaperScissors Detector (RPS Detector)

CHAPTER 4

27

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.2 RPS Detector

The RPS Detector Activity Diagram outlines the operational flow of the standalone gesture

detection feature within the Rock-Paper-Scissors Real-time Object Detection App, enabling

users to practice and test hand gesture recognition outside of gameplay. The diagram details

the sequential steps of user interaction and system processing, emphasizing the app’s support

for an interactive and flexible user experience.

The process initiates with the user accessing the Show RPS Detector Page, selected from the

Home Page. The system then presents a decision point, User selects input type?, where the user

chooses between Take Photo using the device’s camera or Pick from Gallery to upload an

existing image. Depending on the selection, the system activates the camera for real-time

capture or opens the gallery for image selection, ensuring a user-friendly input process.

Once an image is obtained, the system proceeds to the Detect Gesture from Image step, where

the image is processed using the app’s machine learning model to classify the hand gesture as

rock, paper, or scissors, along with a confidence score (e.g., "Detected: rock (100.00%)"). The

CHAPTER 4

28

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

result is then displayed to the user in the Show Detected Gesture step, providing clear feedback

on the gesture recognition outcome.

The activity diagram effectively captures the comprehensive workflow of the RPS Detector

feature, highlighting the app’s user-centric design and its focus on providing a practical tool

for gesture recognition practice. The system’s operations—such as image processing, gesture

classification, and result display—operate seamlessly in the background, ensuring an engaging

and efficient user experience.

Tutorial Page Activity Diagram

Figure 4.3.3 Tutorial Page Activity Diagram

The Tutorial Activity Diagram illustrates the educational workflow within the Rock-Paper-

Scissors Real-time Object Detection App, designed to onboard users and enhance their

CHAPTER 4

29

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

understanding of the gesture recognition system and gameplay mechanics. The diagram details

the sequential steps of user interaction and system guidance, highlighting the app’s

commitment to user education and flexibility.

The process begins with an initial decision point, First Time? which determines the user’s

onboarding path. If "Yes," indicating a first-time user, the system automatically initiates the

Tutorial; if "No," experienced users can opt to Skip Tutorial and proceed directly to the Home

Page. This ensures a tailored experience for both new and returning users. For those entering

the tutorial, the system presents a structured sequence of instructional steps.

The tutorial comprises four key screens: Step 1: Welcome, which introduces the game concept

and camera-based gesture detection; Step 2: How to Play, providing gameplay rules and

mechanics; Step 3: Show Move with Hand, demonstrating proper hand positions for rock, paper,

and scissors with visual examples; and Step 4: Track Progress, offering tips on monitoring

performance and navigating the app. Users progress through these screens by selecting "Next,"

with the option to Skip at any point, allowing them to bypass remaining content and return to

the Home Page.

Upon completing the tutorial or selecting "Skip," the system navigates the user to the Go Home

Page step, concluding the activity. The diagram effectively captures the tutorial’s user-centric

design, ensuring new users are equipped with the knowledge to engage with the app, while

respecting experienced users’ preference to bypass instruction. The system’s operations—such

as screen navigation and content delivery—run smoothly in the background, fostering an

intuitive and supportive learning experience.

CHAPTER 4

30

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Wireframe

Home Page

Figure 4.4.1 Home Page Wireframe

The Home Page wireframe serves as the app’s entry point, offering users a clean and intuitive

interface to navigate its core features. At the top, the app’s title, "Rock Paper Scissors," is

displayed, followed by a circular placeholder for a graphic, intended to depict diverse hand

gestures to reflect the game’s theme. Below this, four buttons are vertically aligned: "Play

Game," "RPS Detector," "History," and "Tutorial." Each button is clearly labelled, enabling

users to access gameplay, gesture detection practice, game history, or instructional content

with ease. The minimalist design ensures that users of all experience levels can quickly

understand and interact with the app’s primary functionalities.

CHAPTER 4

31

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Round Selection Page

Figure 4.4.2 Round Selection Page Wireframe

The Round Selection Page wireframe facilitates customization of the gameplay experience by

allowing users to choose the number of rounds. The title "Select Number of Rounds" is

displayed at the top, followed by a prompt, "How many rounds would you like to play?" Below

this, three selectable options are presented as rectangular buttons: "1 Round," "3 Rounds," and

"5 Rounds." A back arrow on the top left allows users to return to the Home Page. At the bottom,

a "Start Game" button initiates the game once a selection is made. The layout is straightforward,

ensuring users can easily tailor their gaming session while maintaining a smooth transition to

the gameplay phase.

CHAPTER 4

32

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Play Game View Page

Figure 4.4.3 Play Game View Page

The Play Game View Page wireframe represents the core gameplay interface where users

compete against the computer using hand gestures. The top displays the current round (e.g.,

"Round 1 of 1") alongside a pause button (timer icon) and scores ("Player: 0, Computer: 0"). A

central rectangular area labelled "Camera Preview" shows the live camera feed, with a circular

countdown timer indicating the time to prepare a gesture. Below this, a "Get Ready..." message

prompts the user to position their hand. A back arrow on the top left allows users to exit to the

previous screen. The design prioritizes real-time interaction, providing clear visual cues to keep

users engaged during gameplay.

CHAPTER 4

33

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Game Summary Page

Figure 4.4.4 Game Summary Page

The Game Summary Page wireframe provides a comprehensive overview of the gameplay

session’s outcome. The title "Game Summary" is displayed at the top, with a back arrow and a

replay icon for navigation. A central box announces the result (e.g., "You Win!") with the final

score (e.g., "2-1"). Below this, a table lists each round’s moves, with columns for "Round,"

"You," and "Computer," using icons to represent gestures (e.g., scissors for the player, paper

for the computer). Two buttons at the bottom, "Play Again" and "Home," allow users to restart

the game or return to the Home Page. The layout ensures users can review their performance

and make informed choices for continued engagement.

CHAPTER 4

34

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Achievement Page

Figure 4.4.5 Achievement Page

The Achievement Page wireframe enables users to track their progress and performance history.

Titled "Achievement," the page features a back arrow and a trash icon (for clearing history) at

the top. The "Statistics" section displays key metrics: "Total Game" (e.g., 9), "Win Rate" (e.g.,

55.6%), "Player Wins" (e.g., 5), and "Computer Wins" (e.g., 3). Below this, a "Game History"

list shows past games (e.g., "Game 9, May 06, 2025 - 17:46, WIN"), with expandable details

for each game, including round-by-round breakdowns (e.g., "Round 1: ✂ vs 🖐, WIN"). A

"View Summary" button provides further details. The design supports user motivation by

offering a clear, organized view of their gaming journey.

CHAPTER 4

35

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Tutorial Page

Figure 4.4.6 Tutorial Page

The Tutorial Page wireframe guides users through the app’s mechanics, particularly for first-

time users. A back arrow and "Skip" option are positioned at the top, allowing users to exit

early. A central square placeholder represents instructional content (e.g., text or visuals), with

horizontal lines below it indicating text descriptions for each step. Navigation dots at the

bottom (e.g., one filled, three empty) show progress through the tutorial’s four steps: Welcome,

How to Play, Show Move with Hand, and Track Progress. The layout ensures users can easily

follow the onboarding process while having the flexibility to skip if desired.

CHAPTER 4

36

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

RPS Detector Page

Figure 4.4.7 Detector Page

The RPS Detector Page wireframe supports standalone gesture detection practice. Titled "RPS

Detector," the page includes a back arrow for navigation. A central rectangular area labelled

"Upload Your Image" serves as a placeholder for the camera feed or uploaded image. Below

this, two buttons, "Take Photo" and "Pick from Gallery," allow users to capture or upload an

image for gesture detection. The minimalist design focuses on usability, enabling users to test

and refine their gestures with clear input options, ensuring an effective practice experience.

CHAPTER 5

37

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 System Implementation

5.1 Hardware Setup

Description Specifications

Model HP Laptop 15s

Processor Intel Core i5- 1135G7

Operating System Windows 11

Graphic NVIDIA GeForce GT 930MX 2GB DDR3

Memory 4GB DDR4 RAM

Storage 1TB SATA HDD

Description Specifications

Model Huawei MAR-LX2

Processor Hisilicon Kirin 710

Operating System Android 9.0 (EMUI 9)

Memory 6GB

Storage 128GB

Camera Triple camera – 24MP + 8MP + 2MP

Front camera – 32MP

 Table 5.1 List of Hardware

CHAPTER 5

38

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Software Setup

Software Description

Visual Studio Code

(VS Code)

A source-code editor developed by Microsoft, supporting

debugging, embedded Git control, and extensions for Flutter/Dart

development.

Flutter An open-source UI software development kit created by Google for

building natively compiled applications for mobile, web, and

desktop from a single codebase.

Dart A client-optimized programming language for apps on multiple

platforms, used as the language for Flutter.

Android Studio An official IDE for Android app development, providing tools for

building, testing, and emulating Android apps.

Python A high-level programming language used for scripting, data

processing, and machine learning tasks.

TensorFlow

An open-source machine learning framework developed by Google

for building and training ML models.

OpenCV (cv2)

A library of programming functions for real-time computer vision

tasks, such as image processing.

Google Colab

A cloud-based Jupyter Notebook environment with free GPU

support for machine learning tasks.

Table 5.2: Software List

CHAPTER 5

39

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Visual Studio Code (VS Code)

Figure 5.2.1 Visual Studio Code

Visual Studio Code, developed by Microsoft, is a highly customizable source-code editor that

supports a wide range of programming languages and tools. It offers features like an intelligent

code editor with auto-completion, debugging support, and a rich ecosystem of extensions,

making it a popular choice for Flutter and Dart development. VS Code also provides an

integrated terminal for running commands and supports version control integration for

managing projects [16]. In the RPS Detector project, VS Code is the primary IDE used for

writing and managing the Flutter and Dart codebase. It facilitates coding with the help of Flutter

and Dart extensions, which provide features like code snippets, syntax highlighting, and hot

reload for rapid development. VS Code is also used to debug the app, ensuring that issues in

navigation, game logic, or model integration are identified and resolved before testing on the

emulator.

Flutter

Figure 5.2.2 Flutter

Flutter is an open-source UI software development kit created by Google, designed for building

natively compiled applications for mobile, web, and desktop from a single codebase. It

provides a rich set of pre-designed widgets, tools for animations, and seamless integration with

native device features like cameras and storage. Flutter supports a fast development cycle with

its hot reload feature, allowing developers to see changes in real-time, and it ensures consistent

CHAPTER 5

40

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

performance across platforms [17]. In the RPS Detector project, Flutter serves as the primary

framework for developing the entire application. It is used to create the user interface, including

screens like the Home Screen, Game Play Screen, Round Selection Screen, and Tutorial Screen.

Flutter also handles the game logic, such as determining the winner of each round, and

integrates with the device camera to capture hand gestures for real-time detection. Additionally,

it enables the use of animations, such as confetti effects, to enhance the user experience when

a player wins a game.

Dart

Figure 5.2.3 Dart

Dart is a client-optimized programming language developed by Google, specifically designed

for building apps on multiple platforms. It is the primary language used by Flutter and is known

for its simplicity, support for asynchronous programming, and ability to create responsive user

interfaces. Dart allows developers to write both the UI and the backend logic of an app in a

single language, streamlining the development process.

In this project, Dart is used to write the complete codebase of the RPS Detector app. It handles

the logic for game mechanics, such as comparing the player’s gesture with the computer’s

move to determine the winner in the Game Play Screen. Dart also manages state across screens

using the provider package, integrates with the TensorFlow Lite model for gesture detection,

and saves game history using shared_preferences. Its asynchronous features ensure smooth

camera operations and model inference without freezing the app.

CHAPTER 5

41

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Android Studio

Figure 5.2.4 Android Studio

Android Studio is the official integrated development environment (IDE) for Android

application development, provided by Google. It offers a comprehensive set of tools for coding,

designing, testing, and debugging Android apps. Android Studio includes features like an

intelligent code editor, a visual layout editor, a powerful emulator for testing apps on virtual

devices, and performance profiling tools. It also supports a Gradle-based build system, making

it easier to manage dependencies and build configurations for Android projects.

In the RPS Detector project, Android Studio is used primarily to set up and run the Android

Emulator for testing the app. It ensures that the app’s user interface, navigation flow, and

camera functionality work seamlessly across different Android devices and screen sizes.

Android Studio also helps in debugging the app, observing its performance, and ensuring that

features like gesture detection and game animations function correctly before deployment.

Additionally, it manages the Android SDK required by Flutter for building the app.

Python

Figure 5.2.5 Python

Python is a versatile, high-level programming language widely used for scripting, data

processing, and machine learning tasks. It is known for its readability, extensive library support,

and ease of use, making it a popular choice for data science and AI projects. Python supports

CHAPTER 5

42

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

libraries like TensorFlow, OpenCV, and NumPy, which are essential for tasks such as image

processing and model training.

In the RPS Detector project, Python is used to develop the machine learning model for gesture

detection. It handles the preprocessing of the rock, paper, and scissors image dataset, including

resizing and normalizing images for model training. Python scripts also train the TensorFlow

model to classify gestures and convert the trained model into a TensorFlow Lite format for

mobile use. This ensures that the app can detect hand gestures accurately in real-time.

TensorFlow

Figure 5.2.7 TensorFlow

TensorFlow is an open-source machine learning framework developed by Google, designed for

building and training machine learning models. It provides a flexible API for creating neural

networks, including convolutional neural networks (CNNs), and supports training on large

datasets with GPU acceleration. TensorFlow also includes tools for evaluating model

performance and optimizing models for deployment.

In this project, TensorFlow is used to create and train a CNN model for detecting rock, paper,

and scissors gestures. The model is trained on a dataset of hand gesture images, achieving an

accuracy of 92% as per the test report. TensorFlow processes the images, learns to classify

gestures, and saves the trained model, which is later converted into a TensorFlow Lite format

for integration into the Flutter app.

CHAPTER 5

43

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

OpenCV (cv2)

Figure 5.2.8 OpenCV

OpenCV, also known as cv2 in Python, is a powerful library of programming functions for real-

time computer vision tasks. It provides tools for image and video processing, such as resizing,

color conversion, and normalization, making it essential for preparing data for machine

learning models. OpenCV is widely used in applications involving image recognition and

object detection.

In this project, OpenCV is used in Python to preprocess the rock, paper, and scissors gesture

images. It resizes the images to 224x224, the input size required by the TensorFlow model, and

normalizes the pixel values to ensure consistency. OpenCV helps prepare a clean and

standardized dataset, which is critical for training an accurate gesture detection model.

Google Colab

Figure 5.2.9 Colab

Google Colab is a cloud-based Jupyter Notebook environment provided by Google, allowing

users to write and execute Python code directly in the browser without any local setup. It

supports popular machine learning libraries like TensorFlow and OpenCV and provides free

access to GPU and TPU acceleration, making it ideal for resource-intensive tasks. Colab also

CHAPTER 5

44

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

integrates with Google Drive for easy storage and sharing of datasets and code [18]. In the RPS

Detector project, Google Colab is optionally used as a platform for training the TensorFlow

model, especially if local hardware lacks sufficient computational power. It leverages GPU

acceleration to speed up the training of the CNN model on the gesture dataset. Colab also

simplifies data management by allowing the dataset to be stored on Google Drive, ensuring

easy access and collaboration during model development.

5.3 Setting and Configuration

5.3.1 Model Training Process for Rock-Paper-Scissors Detection

This section outlines the step-by-step process of developing and training a model to detect

Rock-Paper-Scissors (RPS) hand gestures using a convolutional neural network (CNN). The

process includes setting up the environment, preparing the dataset, designing the model

architecture, training the model, and evaluating its performance to ensure effective gesture

recognition for real-time applications.

a) Environment Setup

Figure 5.3.1 Environment Setup

The training environment was established using Google Colab, a cloud-based platform that

provides GPU acceleration to support efficient computation for machine learning tasks. A new

Colab notebook was created, and the runtime was reset to ensure a clean environment free from

conflicts or residual data. Essential libraries were installed to facilitate model development:

CHAPTER 5

45

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TensorFlow (version 2.12.0), a robust ML framework described by Abadi et al., was selected

for its compatibility with the tflite_flutter package (version ^0.11.0), which is used for mobile

deployment [19]; matplotlib enabled plotting of performance graphs; seaborn enhanced

visualization of the confusion matrix; and scikit-learn provided tools for evaluating

performance metrics. This setup created a solid foundation for developing, training, and

analysing the RPS detection model.

b) Data Collection and Preprocessing

To facilitate effective model training, validation, and testing, the dataset was divided into three

distinct subsets: training, validation, and testing. The training set is utilized to train the model,

the validation set aids in fine-tuning hyperparameters, and the testing set is reserved for

assessing the model's performance on unseen data. The dataset was sourced from Kaggle,

initially comprising 840 images per class (rock, paper, scissors) for training (2,520 total), along

with separate test and validation sets. To enhance validation robustness, a custom validation

set was created by relocating 100 images per class (300 images total) from the training set to a

new directory named validation_new. This adjustment reduced the training set to 740 images

per class (2,220 total). The test set remained unchanged with 124 images per class (372 total).

The original validation set was deemed insufficient due to its limited size and variability,

prompting the creation of the new validation set to better represent real-world gesture variations.

OpenCV, as detailed by Bradski and Kaehler, was used to resize images to 224x224 pixels and

normalize pixel values, ensuring high-quality training data [20]. This balanced distribution

ensures equal representation of each gesture, minimizing bias and enhancing accuracy in real-

time recognition.

Dataset Rock Paper Scissors Total

Train 740 740 740 2220

Test 124 124 124 372

Validation 100 100 100 300

Total 2892

Table 5.3.1 Dataset Details

CHAPTER 5

46

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Set Images Percentage (%)

Train set 2220 76.76

Test set 372 12.86

Validation set 300 10.38

Total 2892 100

Table 5.3.2 Data Distribution Summary

The training set constitutes the majority of the dataset (76.76%) to ensure sufficient data for

model learning, while the validation set (12.86%) supports hyperparameter tuning, and the test

set (10.37%) provides a robust evaluation on unseen data. The slight overlap in percentages

(due to the custom validation set creation) reflects the adjusted distribution, with the total

number of images summing to 2,892.

Figure 5.3.2 Rock Paper Scissor Image Inside the Dataset

Preprocessing and Augmentation

Image preprocessing standardized all images to a resolution of 224x224 pixels to align with

the input requirements of the MobileNetV2 architecture. A batch size of 32 was adopted for

efficient processing, and a "categorical" class mode was used for multi-class classification. To

enhance model robustness, the training data underwent augmentation, incorporating rotations

(up to 20 degrees), width and height shifts (within a 0.2 range), shear (0.2 range), zoom (0.2

CHAPTER 5

47

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

range), horizontal flips, and brightness adjustments (between 0.8 and 1.2). The validation and

test data were rescaled without augmentation to maintain consistency. Pixel values were scaled

to the range [0, 2] by dividing by 127.5 and then shifted to [-1, 1] by subtracting 1.0, ensuring

compatibility with the preprocessing pipeline implemented in the Flutter application. This

comprehensive approach to data collection and preprocessing, supported by the balanced and

diverse dataset, provides a solid foundation for training the CNN model, enabling effective

gesture recognition across varied real-world conditions.

c) CNN Model Architecture

 Figure 5.3.3 Hyperparameter on CNN Model

The RPS detection model was built using MobileNetV2, a lightweight convolutional neural

network (CNN) pre-trained on ImageNet, as the base architecture. This model processes input

CHAPTER 5

48

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

images of 224x224x3 dimensions (height, width, and RGB channels). A custom classification

head was added, consisting of a GlobalAveragePooling2D layer to reduce spatial dimensions,

followed by a Dense layer with 128 units and ReLU activation for feature extraction. A Dropout

layer with a 0.5 rate was included to prevent overfitting, and a final Dense layer with 3 units

and softmax activation was implemented to classify the gestures into "rock," "paper," or

"scissors." Initially, all layers of MobileNetV2 were frozen to leverage pre-trained weights,

with fine-tuning later applied to unfreeze layers beyond the 100th layer to improve model

performance on the specific dataset.

d) Model Training

Figure 5.3.4 Model Training

CHAPTER 5

49

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Parameter Value

Number of Epochs 20 (initial) + 10 (fine-tuning)

Batch Size 32

Learning Rate 0.001 (initial), 0.0001 (fine-tuning)

Optimizer Adam

Loss Function Categorical Crossentropy

Dropout Rate 0.5

Table 5.3.3 Training Parameters

The training process was divided into two distinct phases to optimize model performance. The

initial training phase spanned 20 epochs, utilizing a batch size of 32, the Adam optimizer with

a learning rate of 0.001, categorical crossentropy as the loss function, and a dropout rate of 0.5.

During this phase, training accuracy increased from 65% to 93%, and validation accuracy

reached 92%. The fine-tuning phase involved 10 additional epochs, where layers beyond the

100th layer of MobileNetV2 were unfrozen to allow adaptation to the specific dataset. The

learning rate was reduced to 0.0001 to ensure stable convergence. This phase further improved

training accuracy to 94.5% and validation accuracy to 99.67%, with training loss decreasing

from 0.8 to 0.12 and validation loss from 0.75 to 0.0237. The significant improvement in

validation accuracy was due to the unfreezing of deeper layers, allowing the model to better

capture gesture-specific features, and additional data augmentation to handle edge cases. These

trends were visualized through graphs plotted over the total 30 epochs, with a marker at epoch

20 indicating the transition to fine-tuning.

CHAPTER 5

50

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

e) Model Evaluation and Results

Figure 5.3.5 Training Accuracy and Loss Graphs

The model's performance was assessed using the validation set of 300 images, achieving a

validation accuracy of 99.67% and a loss of 0.0237, indicating excellent generalization to

unseen data. A confusion matrix was generated, revealing 100 correct classifications for

"paper," 100 for "rock," and 99 for "scissors," with a single misclassification of "scissors" as

"paper," likely due to visual similarities under certain lighting conditions. The classification

report provided detailed metrics:

Figure 5.3.6 Model Performance Metrics and Confusion Matrix

CHAPTER 5

51

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The model’s performance was evaluated on the 300-image validation set, achieving a validation

accuracy of 99.67% and a loss of 0.0237, demonstrating strong generalization to unseen data.

A confusion matrix showed 100 correct classifications for "paper," 100 for "rock," and 99 for

"scissors," with one "scissors" misclassified as "paper," likely due to visual similarities. The

classification report provided the following metrics:

• Paper: Precision 1.00, Recall 0.99

• Rock: Precision 0.99, Recall 1.00

• Scissors: Precision 1.00, Recall 0.99

• Overall Accuracy: 99.67%

These results confirm the model’s high reliability across all gesture classes, making it well-

suited for real-time gesture recognition in a Flutter application.

Conclusion

The fine-tuned MobileNetV2-based RPS model achieved a validation accuracy of 99.67%,

showcasing its effectiveness in classifying "rock," "paper," and "scissors" gestures. The fine-

tuning process improved accuracy by 1.5%, successfully adapting the pre-trained model to the

specific dataset. The model’s lightweight architecture and high accuracy make it ideal for

integration into a Flutter application, where it will be converted to TensorFlow Lite format for

efficient real-time gesture detection on mobile devices. The single misclassification highlights

a minor area for improvement, which could be addressed in future work by incorporating a

dedicated test set and additional data augmentation to handle edge cases, further enhancing

performance for practical use.

5.3.2 Build Rock-Paper-Scissors Real-time Detection App

a) Install Flutter and Dart

CHAPTER 5

52

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.7 Flutter Doctor Output

The development environment for the RPS real-time detection app was initialized by installing

Flutter and Dart, the core tools for cross-platform app development. Flutter serves as the

framework for creating the application's user interface and logic, while Dart acts as the

programming language to implement the app's functionality. The installation was verified using

the flutter doctor command, ensuring all dependencies and tools were correctly configured for

development.

b) Configuration of Android Studio

 Figure 5.3.8 Connected Physical Device Listed

Android Studio was configured to provide the Android SDK, facilitating testing of the app on

a physical device, the Huawei MAR-LX2. This device was selected over an emulator to ensure

accurate evaluation of real-time gesture detection using the camera, reflecting real-world

lighting and hardware conditions. The physical device was connected and listed within Android

Studio, enabling seamless testing and debugging.

CHAPTER 5

53

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

c) Create a Flutter Project

Figure 5.3.9 Create a Flutter Project

A new Flutter project named rps_detector was created by executing the command flutter create

rps_detector in the terminal. This step established the project structure, including the necessary

files and directories for developing the app's interface and logic.

CHAPTER 5

54

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

d) Convert model to TensorFlow Lite

Figure 5.3.10 Convert model to TensorFlow Lite

The previously trained CNN model was converted to the TensorFlow Lite format (model.tflite)

to enable deployment on mobile devices. This process was performed in Google Colab, where

the model was optimized and saved alongside a labels.txt file containing the class labels

("paper," "rock," "scissors") corresponding to the model's output indices.

e) Import the Model into Flutter Project

Figure 5.3.11 Import the Model into Flutter Project

The converted model.tflite and labels.txt files were imported into the Flutter project by creating

an assets folder at the project root (rps_detector/assets/) and copying the files into it. The

pubspec.yaml file was updated to include these assets under the flutter: assets section, ensuring

the app could access the model and labels during runtime.

CHAPTER 5

55

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

f) Model Integration in ModelService.dart

Figure 5.3.12 Model Integration in ModelService.dart

The ModelService class was implemented in the model_service.dart file to integrate the

TensorFlow Lite model into the app. The class loaded the model using

Interpreter.fromAsset('model.tflite') and read the labels from labels.txt. The classifyImage

method was developed to preprocess captured images—resizing them to 224x224 pixels and

normalizing values to the [-1, 1] range—before running inference with a 70% confidence

threshold. The integration was tested on the physical Huawei MAR-LX2 device by launching

the app and capturing real hand gestures via the camera, verifying the model's functionality in

a real-time context.

CHAPTER 5

56

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operation (with Screenshot)

Application Icon and Name

Figure 5.4.1 RPS Game Logo

The application icon and name for the Rock-Paper-Scissors (RPS) game are shown in Figure

5.4.1 as the RPS Game Logo. The icon has a simple design with symbols for rock, paper, and

scissors, showing what the game is about in a clear and fun way. The name "RPS Game" is

short and easy to understand, telling users that this is a game about playing Rock-Paper-

Scissors. Together, the icon and name make it easy for users to recognize the app and

understand its purpose, encouraging them to try it out.

Home Page

 Figure 5.4.2 Home Page

CHAPTER 5

57

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Home Page serves as the central hub of the application, providing players with a clear

and intuitive interface to access the game's core functionalities. Upon launching the app,

users are greeted with a visually appealing design featuring a graphic of diverse hands

forming rock, paper, and scissors gestures, symbolizing the game's theme of inclusivity and

competition. Below this graphic, a welcoming message, "Rock Paper Scissors: Choose an

Option to Start!", encourages players to engage with the app.

The page offers four primary options, each represented by a button:

• Play Game: Initiates the gameplay experience, directing the player to the round

selection process.

• RPS Detector: Allows users to test the hand gesture detection feature independently,

ideal for practice or experimentation.

• Tutorial: Guides new players through the game mechanics and rules, ensuring they

understand how to play.

• Achievement: Displays the player's game history, statistics, and performance metrics,

fostering a sense of progression and motivation.

Players interact with this page by selecting one of the buttons, which seamlessly transitions

them to the corresponding section of the app. The Home Page's simplicity ensures that users

of all experience levels can navigate the application effortlessly, making it an effective entry

point for both novice and returning players.

CHAPTER 5

58

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Tutorial Page

Figure 5.4.3 Tutorial Page

The Tutorial Page is designed to onboard players, particularly those unfamiliar with the game

or its camera-based mechanics, by providing a step-by-step guide to the gameplay experience.

This page is presented as a series of informational screens, each focusing on a key aspect of

the game, ensuring that players are well-prepared before they begin.

The tutorial consists of four distinct steps:

1. Welcome to the RPS Game: This screen introduces the concept of playing Rock-

Paper-Scissors using hand gestures detected by the device's camera. It informs players

that they will compete against a computer opponent and can track their wins throughout

the game.

2. Show Your Move: Players are instructed to use the camera to capture their hand

gestures, with an emphasis on ensuring the gesture is clear, well-lit, and properly

centered for accurate detection. Visual examples of rock, paper, and scissors gestures

accompany the instructions.

CHAPTER 5

59

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Play Your Way: This step explains the flexibility of the game, allowing players to either

play multiple rounds against the computer or test their gestures using the RPS Detector

mode. It also highlights the option to pause and exit during gameplay.

4. Track Your Progress: The final screen encourages players to monitor their

performance through the Achievement section, where they can view game history,

replay past games, or clear their records if desired.

Players can navigate through the tutorial by tapping the "Next" button on each screen, with the

final screen offering a "Get Started" button to begin the game. Additionally, a "Skip" option is

available at the top-right corner, allowing experienced users to bypass the tutorial and return to

the Home Page. This page ensures that players are equipped with the knowledge needed to

engage with the game effectively, enhancing their overall experience

CHAPTER 5

60

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Play Game: Select Number of Round Page

Figure 5.4.4 Select Number of Round Page

Before starting the game, players are directed to the Select Number of Rounds Page, where

they can customize the duration of their gameplay session. This page is crucial for providing

players with control over their gaming experience, allowing them to choose a session length

that suits their preference.

The interface presents four options for the number of rounds: 1, 3, 5, or a custom number. Each

option is displayed as a selectable tile, with a checkmark indicating the currently chosen option.

By default, the 1-round option is selected, but players can tap on any other option to change

their selection. The custom option, while visible, appears to be a placeholder for future

implementation, as the current design does not include a mechanism to input a specific number.

Once the desired number of rounds is selected, players tap the "Start Game" button to proceed.

This action transitions them to the Hand Detection Page, where the actual gameplay begins.

The Select Number of Rounds Page ensures that players can tailor the game to their preferred

intensity, whether they want a quick single-round match or a longer, more competitive session.

CHAPTER 5

61

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Play Game: Hand Detection Page

Figure 5.4.5 Hand Detection Page

The Hand Detection Page is the heart of the gameplay experience, where players engage in

real-time competition against the computer using hand gestures. This page leverages the

device's camera and object detection technology to create an interactive and dynamic gaming

environment.

Upon entering this page, players see a live camera feed displayed prominently in the center of

the screen, showing their hand as they position it in front of the camera. Above the feed, a

header displays the current round number (e.g., "Round 1 of 1") and the scores for both the

player and the computer, initially set to 0. A countdown timer, represented as a circular progress

indicator, prompts the player to prepare their gesture within a short time window.

Below the camera feed, icons for rock, paper, and scissors are shown, serving as a visual

reminder of the possible gestures. The system uses a machine learning model to analyze the

camera feed and detect the player's gesture, classifying it as rock, paper, or scissors.

Simultaneously, the computer randomly selects its move, ensuring a fair competition.

A pause button, located at the top-right corner, allows players to temporarily halt the game.

Upon tapping this button, a dialog appears with two options: "Resume" to continue the game,

or "Exit" to abandon the current session and return to the Home Page, with a warning that

progress will not be saved. This feature provides players with flexibility, allowing them to take

breaks or exit if needed without losing the ability to resume their game.

CHAPTER 5

62

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Once the player's gesture is detected and the computer's move is determined, the system

transitions to the Result Page to display the outcome of the round. The Hand Detection Page's

real-time interaction and intuitive design make it the most engaging part of the game,

immersing players in a seamless competitive experience.

Play Game: Result Page

Figure 5.4.6 Result Page

The Result Page provides immediate feedback to players after each round, displaying the

outcome of their competition against the computer. This page is critical for maintaining player

engagement, as it informs them of their performance and prepares them for the next round or

the end of the game.

The interface shows the current round number and the updated scores for both the player and

the computer. Below the scores, the player's detected gesture and the computer's chosen move

are displayed side by side, each accompanied by the corresponding emoji (rock, paper, or

scissors). A prominent message, styled as a colored button, indicates the result of the round:

"You Win!" in green if the player wins, "Tie!" in yellow if the round is a draw, or "Computer

CHAPTER 5

63

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Wins!" in red if the computer wins. For example, if the player shows rock and the computer

shows scissors, the player wins, as rock beats scissors.

At the bottom of the screen, a message reads "Processing to next round shortly...," indicating

that the app will automatically transition to the next round after a brief delay. If the current

round is the final one, the system instead navigates to the Game Summary Page. The Result

Page ensures that players receive clear and immediate feedback, maintaining the game's

momentum and excitement.

Play Game: Game Summary Page

Figure 5.4.7 Game Summary Page

The Game Summary Page concludes the gameplay session by providing a comprehensive

overview of the player's performance across all rounds. This page is designed to celebrate the

player's achievements, reflect on their gameplay, and encourage further engagement with the

app.

The page begins with a bold headline announcing the overall result: "You Win!" if the player

has more wins, "It's a Tie!" if the scores are equal, or "Computer Wins!" if the computer has

more wins. Confetti animations enhance the celebratory feel, particularly when the player wins.

Below the headline, the total scores for the player and computer are displayed, along with the

date, time, and total number of rounds played.

CHAPTER 5

64

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A detailed breakdown of each round follows, showing the player's and computer's moves for

every round, along with the outcome (win, tie, or loss). For instance, a round where the player

chose paper and the computer chose rock would be marked as a win for the player. This

summary allows players to review their performance and understand the flow of the game.

At the bottom of the page, two buttons offer players the option to either "Play Again," which

restarts the game by returning to the Select Number of Rounds Page, or "Back to Home," which

navigates back to the Home Page. The Game Summary Page provides closure to the gameplay

session while motivating players to continue engaging with the app through additional matches.

Achievement Page

Figure 5.4.8 Achievement Page

The Achievement Page is a dedicated section for players to monitor their progress and

performance over time, fostering a sense of accomplishment and encouraging continued play.

CHAPTER 5

65

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This page is accessible from the Home Page and serves as a historical record of the player's

gaming journey.

The page is divided into two main sections: statistics and game history. The statistics section

displays key metrics, including the total number of games played, the player's win rate

(calculated as the percentage of games won), the number of player wins, and the number of

computers wins. A circular progress indicator visually represents the win rate, providing a quick

and intuitive overview of the player's success.

Below the statistics, the game history lists all past games in chronological order, with each

entry showing the date, time, total rounds, and result (win, tie, or loss). Tapping on a game

expands the entry to reveal a round-by-round breakdown, similar to the Game Summary Page,

allowing players to review their moves and outcomes in detail. A "View Summary" button

within each expanded entry provides a more detailed view, potentially navigating to a dedicated

summary screen.

A "Clear All History" button at the top-right corner allows players to reset their game history.

Tapping this button opens a confirmation dialog warning that the action cannot be undone, with

options to "Cancel" or "Clear All." If the player confirms, all game records are deleted, and the

page updates to reflect the cleared state. The Achievement Page empowers players to reflect

on their performance, set goals, and maintain engagement with the game over time.

-

CHAPTER 5

66

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

RPS Detector Page

Figure 5.4.9 RPS Detector Page

The RPS Detector Page offers a standalone feature for players to test and refine their hand

gesture recognition skills outside of the competitive gameplay context. This page is particularly

useful for players who want to practice their gestures or experiment with the detection

technology.

The interface displays a camera feed or an uploaded image in the center of the screen,

depending on the player's input method. Two buttons, "Take Photo" and "Pick from Gallery,"

allow players to capture a new image using the device's camera or select an existing photo from

their gallery, respectively. Once an image is captured or selected, the system processes it using

the same machine learning model employed in the gameplay, identifying the gesture as rock,

paper, or scissors.

The detection result is displayed below the image, showing the identified gesture and the

confidence level of the detection like "Detected: rock (100.00%)". This confidence score

provides players with feedback on the clarity and accuracy of their gesture, helping them adjust

their hand positioning for better recognition in the actual game.

The RPS Detector Page serves as a valuable tool for players to familiarize themselves with the

gesture detection system, troubleshoot any recognition issues, and build confidence before

engaging in competitive play. Its simplicity and focus on practice make it an essential

component of the app for both new and experienced users.

CHAPTER 5

67

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Implementation Issues and Challenges

Gesture Recognition Model Accuracy and Data Quality

One of the primary challenges was achieving high accuracy in gesture recognition using the

TensorFlow Lite model. The convolutional neural network (CNN) required a diverse and well-

labeled dataset of rock, paper, and scissors gestures to achieve the reported 92% accuracy.

Collecting or sourcing such a dataset (e.g., via Kaggle) was time-consuming, and initial

datasets often included inconsistencies, such as variations in lighting, background noise, or

hand orientations. Preprocessing the images using OpenCV to resize them to 224x224 and

normalize pixel values to [-1, 1] was complex, as improper normalization led to reduced model

performance. Additionally, converting the TensorFlow model to TensorFlow Lite format

introduced optimization challenges, as quantization occasionally impacted accuracy, requiring

multiple iterations to balance model size and performance for mobile deployment.

Real-time Camera Integration and Performance

Integrating the device camera for real-time gesture detection posed significant implementation

hurdles. The camera package in Flutter required careful initialization of the CameraController

in the GamePlayScreen, and managing camera permissions using permission_handler was

error-prone, especially on older Android versions. The camera feed needed to capture frames

continuously for inference, but this process was resource-intensive, leading to lag or crashes

on the Android Emulator if the frame rate was not optimized. Simulating camera input in the

emulator was also challenging, as it required a virtual camera or webcam, which sometimes

resulted in inconsistent frame quality. On real devices, varying camera hardware specifications

affected detection performance, necessitating adjustments to image preprocessing and

inference logic in the ModelService class to ensure compatibility.

Model Integration with Flutter

Integrating the TensorFlow Lite model into the Flutter app using the tflite_flutter package was

a complex process. Loading the model in the ModelService class required careful handling of

CHAPTER 5

68

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

file paths via path_provider, and errors in asset declaration in pubspec.yaml (e.g., missing

model.tflite or labels.txt) caused runtime failures. Preprocessing images in Dart for inference—

resizing to 224x224 and normalizing to [-1, 1]—mirrored the Python preprocessing pipeline,

but discrepancies in implementation led to incorrect predictions. The inference process also

needed optimization, as initial versions were too slow for real-time detection, requiring

adjustments to the confidence threshold (70%) and input processing to achieve acceptable

performance on mobile devices.

Dependency Management and Compatibility

Managing dependencies in the Flutter project was another challenge, as the app relied on

multiple packages (e.g., camera, tflite_flutter, provider). Version conflicts between packages

occasionally arose, such as between camera and permission_handler, requiring careful

selection of compatible versions in pubspec.yaml. The tflite_flutter package also required a

minimum Android SDK of 21, necessitating updates to the build.gradle file, which initially

caused build failures due to Gradle version mismatches. Ensuring all dependencies worked

seamlessly with Flutter’s latest version (as of May 2025) demanded frequent updates and

testing, particularly after running flutter pub get.

5.6 Concluding Remark

The implementation of the Rock-Paper-Scissors real-time object detection game demonstrates

a successful integration of hardware and software components, leveraging a robust setup

comprising an HP Laptop 15s and Huawei MAR-LX2 device, alongside key tools such as

Visual Studio Code, Flutter, Dart, Android Studio, Python, TensorFlow, OpenCV, and Google

Colab. The development process effectively utilized a MobileNetV2-based convolutional

neural network, achieving a 92% validation accuracy for gesture detection after meticulous

training and fine-tuning. Despite challenges in model accuracy, real-time camera integration,

model deployment, and dependency management, these were systematically addressed through

data preprocessing, optimization of camera performance, and careful configuration of the

Flutter environment. This chapter highlights the feasibility of deploying advanced machine

learning models on mobile platforms, providing a foundation for future enhancements in

gesture recognition accuracy and app performance.

CHAPTER 6

69

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 System Evaluation and Discussion

6.1 System Testing and Performance Metrics

This section evaluates the overall functionality and performance of the Rock-Paper-Scissors

(RPS) real-time detection game app. The system testing process employs functional testing to

ensure that all core features, including the Home Page, Hand Detection Page, Result Page,

Game Summary Page, Achievement Page, and RPS Detector, operate as intended. The testing

verifies that users can navigate between screens, detect gestures accurately in real-time, receive

immediate feedback, save game history, and view performance statistics. Performance metrics

are used to measure the app’s gesture recognition accuracy, response time, and resource

efficiency, providing insights into its robustness and identifying areas for enhancement.

Metric Description Measurement Method

Gesture Recognition

Accuracy

Compares detected gestures

(rock, paper, scissors)

against performed gestures

using TensorFlow Lite

confidence scores.

Compared detected gestures

with actual gestures using

confidence scores from the

TensorFlow Lite model.

Response Time

Measures the duration from

gesture input to feedback

display.

Timed using device logs and

stopwatch for UI navigation

(e.g., screen transitions) and

gesture detection (e.g., from

gesture capture to result

display).

Resource Efficiency

Monitors CPU and memory

usage during gameplay.

Evaluated system resource

usage to confirm the app

runs smoothly without lag.

Table 6.1.1 Performance Metrics

CHAPTER 6

70

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Testing Setup and Result

The testing regimen was conducted on a Huawei MAR-LX2 mobile device, utilizing the

developed Flutter application integrated with a TensorFlow Lite-converted MobileNetV2

model. The device’s camera facilitated real-time gesture detection, while the gallery option

supported offline image analysis. The testing process encompassed a series of controlled

experiments to evaluate each functional component, with results meticulously recorded to

validate the system’s performance.

6.2.1 Home Page Testing

The Home Page is the user’s first point of contact with the application and serves as the central

navigation hub. It allows users to quickly access different sections of the app including the

gameplay, RPS Detector, Tutorial, and Achievement pages. This test validates whether all

buttons on the Home Page are functional and direct the user to their respective destinations

promptly and correctly.

No Test Case Input Expected

Output

Actual

Output

Response

Time

Remark

1 Navigate to

Home Page

Launch the app Display

Home Page

with logo and

options

Displayed

as expected

1 second PASS

2 Click Play

Game button

Tap "Play

Game" button

Redirect to

Round

Selection

Page

Redirected

as expected

1 second PASS

3 Click RPS

Detector

Tap "RPS

Detector"

button

Redirect to

RPS Detector

Page

Redirected

as expected

1 second PASS

4 Click Tutorial

button

Tap "Tutorial"

button

Display

tutorial slides

Displayed

as expected

1 second PASS

CHAPTER 6

71

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5 Click

Achievement

Tap

"Achievement"

button

Redirect to

Achievement

Page

Redirected

as expected

1 second PASS

Table 6.2.1 Home Page Testing

6.2.2 Hand Detection Page Testing

The Hand Detection Page is pivotal for real-time gameplay, facilitating gesture recognition and

interaction. This testing phase evaluated the accuracy of gesture detection, the functionality of

the countdown timer, and the efficacy of the pause feature. The objective was to ensure that the

system accurately interprets user inputs and maintains gameplay continuity under controlled

conditions.

No Test Case Input Expected

Output

Actual

Output

Response

Time

Remark

1 Perform

"rock"

gesture

Show "rock"

gesture

Detect "rock"

(≥70%

confidence)

Detected

"rock"

(100%)

1 second PASS

2 Multiple

gestures

Show "paper"

then "scissors"

Detect both

with high

confidence

Paper

(100%),

Scissors

(99.02%)

1 second PASS

3 Pause during

round

Tap pause

button

Display pause

dialog

Displayed

as expected

1 second PASS

4 Resume game Tap "Resume" Resume

gameplay

with

countdown

Functioned

as expected

1 second PASS

5 Exit to home Tap "Exit" Return to

Home Page,

discard

progress

Redirected

as expected

1 second PASS

Table 6.2.2 Hand Detection Page Testing

CHAPTER 6

72

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Here is the actual output of test case 1 and 2 to test the “rock”, “paper”, “scissors” gestures

detection:

Figure 6.2.2 Test Case 1 and 2 Actual Output

6.2.3 Result Page Testing

The Result Page provides immediate feedback at the end of each round, informing the user

whether they have won, lost, or tied against the computer. This section tests the clarity and

correctness of the results displayed and the smooth transition to the next round of gameplay.

No Test Case Input Expected

Output

Actual

Output

Response

Time

Remark

1 Result: Win Player: rock,

Computer:

scissors

Display "You

Win!" with

confetti

Displayed

as expected

1 second PASS

2 Result: Tie Player: rock,

Computer:

rock

Display

"Tie!"

Displayed

as expected

1 second PASS

3 Result: Lose Player: rock,

Computer:

paper

Display

"Computer

Wins!"

Displayed

as expected

1 second PASS

CHAPTER 6

73

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4 Next round Wait after

result

Transition to

next round

Transitioned

smoothly

1 second PASS

Table 6.2.3 Result Page Testing

Figure 6.2.3 Result Page Testing 2 Actual Output

6.2.4 Game Summary Page Testing

The Game Summary Page accurately reflected game outcomes and facilitated smooth

navigation, with all tests completing within one second. The inclusion of round-by-round

details enhances user understanding.

No Test Case Input Expected

Output

Actual

Output

Response

Time

Remark

1 View win

summary

Finish a 3-

round game

(win 2–1)

Display win

message and

details

Displayed

as expected

1 second PASS

CHAPTER 6

74

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2 View tie

summary

Finish a 1-

round game (tie

1–1)

Display tie

message and

details

Displayed

as expected

1 second PASS

3 View loses

summary

Finish a 3-

round game

(lose 0–2)

Display loss

message and

details

Displayed

as expected

1 second PASS

4 Replay game Tap "Play

Again" on

summary

Return to

Round

Selection

Page

Returned as

expected

1 second PASS

5 Back to home Tap "Back to

Home" on

summary

Return to

Home Page

Returned as

expected

1 second PASS

Table 6.2.4 Game Summary Page Testing

Figure 6.2.4 Game Summary Page Actual Output

CHAPTER 6

75

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.5 Achievement Page Testing

The Achievement Page leverages persistent data storage to track and display game history and

statistics. This testing phase evaluated the reliability of data retrieval and the functionality of

history management features, ensuring long-term user engagement.

No Test Case Input Expected

Output

Actual

Output

Response

Time

Remark

1 View

statistics

Open

Achievement

Page

Show game

stats

9 games,

55.6% win

rate

1 second PASS

2 View history Scroll history Show games

with

dates/outcomes

Displayed 4

games

1 second PASS

3 Clear

history

Tap "Clear All

History"

Show

confirmation

dialog

Displayed

confirmation

1 second PASS

4 Confirm

clear

Tap "Clear

All"

Reset statistics

and history

All data

cleared

1 second PASS

5 View

summary

Tap "View

Summary"

Redirect to

Game

Summary Page

Redirected

correctly

1 second PASS

Table 6.2.5 Achievement Page Testing

CHAPTER 6

76

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.5 Achievement Page Actual Output

6.2.6 RPS Detector Page Testing

The RPS Detector page provides a standalone gesture detection tool and tests its ability to

analyze camera or gallery images. This phase verified the accuracy of the gesture classification

and the availability of input options.

No Test Case Input Expected

Output

Actual

Output

Response

Time

Remark

1 Detect from

camera

Take photo of

"rock" gesture

Detect "rock"

(high

confidence)

100%

confidence

1 second PASS

2 Detect from

gallery

Pick "paper"

photo

Detect "paper"

(high

confidence

98.98%

confidence

1 second PASS

3 Detect

scissors

Take photo of

"scissors"

Detect

"scissors"

98.62%

confidence

1 second PASS

CHAPTER 6

77

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(high

confidence)

Table 6.2.6 RPS Detector Page Testing

Figures 6.2.6 RPS Detector Page Actual Output

6.3 Project Challenges

a) Gesture Recognition Accuracy

One of the main technical difficulties was achieving high gesture recognition accuracy using

the MobileNetV2 model converted to TensorFlow Lite. Although the model was trained with a

reasonably diverse dataset, real-world variability such as different hand sizes, skin tones,

backgrounds, and lighting conditions often affected the model’s ability to consistently and

confidently classify gestures as rock, paper, or scissors. Jain et al. note that real-world

variability in lighting and hand orientations can degrade gesture recognition accuracy,

necessitating robust preprocessing and model tuning [21]. Ensuring reliable performance under

these varying conditions required careful adjustments to the image preprocessing steps,

including cropping, resizing, and normalizing the input from the device’s camera.

b) Real-Time Performance

CHAPTER 6

78

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Another major challenge was ensuring real-time performance on the Huawei MAR-LX2

mobile device. The app had to analyse camera input and provide immediate feedback without

noticeable delay. Jain et al. emphasize that real-time gesture recognition requires optimized

inference to minimize latency, particularly on mobile devices [21]. To achieve this, it was

necessary to optimize the TensorFlow Lite inference process, reduce the resolution of the video

feed when appropriate, and minimize latency from the moment a gesture was shown to the

moment the result appeared on screen. This required a fine balance between maintaining model

accuracy and keeping the detection fast enough to support the interactive nature of the game.

Any lag could negatively impact the user experience and compromise the real-time feel of the

gameplay.

c) UI Responsiveness

Maintaining UI responsiveness throughout the app was equally important. The user interface

needed to remain fluid and responsive even during intensive tasks such as gesture detection,

countdown animations, and result displays. This was achieved by using asynchronous

programming techniques in Flutter and managing processing tasks on separate threads to

prevent the main UI from freezing. Smooth transitions between screens, instant feedback based

on gesture results, and responsive controls were all essential elements to ensure users remained

engaged and satisfied with the gameplay. Overall, combining machine learning, real-time video

processing, and a responsive UI into a single mobile application presented a series of technical

and design challenges that required thoughtful problem-solving and optimization at each step.

6.4 Objectives Evaluation

6.4.1 Assessment of Gesture Recognition Implementation

This objective aimed to develop a real-time gesture recognition system that accurately

identifies rock, paper, and scissors gestures using a CNN model alongside OpenCV for image

processing. The evaluation of this objective is based on how effectively the CNN model was

trained and integrated into the mobile application using TensorFlow Lite. The system

successfully recognized the core hand gestures through real-time video input, achieving

consistent accuracy after optimizing the CNN architecture and fine-tuning parameters such as

CHAPTER 6

79

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

learning rate, training epochs, and data preprocessing techniques. OpenCV efficiently handled

the live camera feed and image manipulation tasks such as cropping, resizing, and color

conversion. Despite challenges with varied lighting conditions and hand orientations, the final

model demonstrated good generalization across different users and backgrounds. The

successful deployment on a mobile device confirms that the real-time detection goal was met,

enabling the game to rely on accurate gesture inputs for gameplay.

6.4.2 Review of Game Development Outcomes

The second objective focused on integrating gesture recognition with an interactive Rock-

Paper-Scissors game. The evaluation involves verifying the complete game cycle, from

recognizing user gestures to executing game logic and displaying results. The app was

successfully developed using Flutter, allowing seamless integration of visual components with

gesture-based input. Users were able to play multiple rounds of the game with visual feedback

showing both the recognized gesture and the computer’s randomly generated response. The

game followed standard RPS rules and offered immediate results and score tracking,

contributing to an engaging user experience. Animations and visual cues such as countdown

timers and result highlights further enhanced interactivity. The system allowed users to play

without needing buttons or keyboards, thus meeting the objective of creating a touchless and

immersive gameplay experience controlled entirely by hand gestures.

6.4.3 Analysis of Feature Enhancement Effectiveness

This objective aimed to improve the RPS game by adding persistent data storage and

performance tracking, allowing players to save and review their game history. The analysis

evaluates the accuracy, reliability, and impact of these enhancements. The Achievement Page

was implemented with shared_preferences to store game outcomes, timestamps, and statistics,

as integrated into the app’s backend. Testing involved 5 game sessions (3 rounds each), with

data saved and retrieved after app restarts, achieving 100% accuracy in data consistency. The

page correctly displays win rates and total games played, with load times under 0.5 seconds,

indicating no performance issues. This feature enhances player engagement by enabling

progress tracking across sessions. The objective was fully realized, delivering a reliable and

seamless addition to the game’s functionality.

CHAPTER 6

80

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.5 Concluding Remark

The project’s success is measured by the effective combination of real-time gesture recognition,

an interactive game interface, and enhanced features. The gesture recognition system, with its

99.67% accuracy and real-time performance, provides a strong technical base, while the

interactive RPS game offers a responsive and engaging experience through its well-designed

screens and controls. The addition of persistent data storage and performance tracking further

enriches the game, supporting long-term player engagement via accurate history and statistics.

Technical evaluations—model accuracy, game responsiveness, and data storage reliability—

confirm the objectives’ attainment, with metrics such as real-time detection latency and load

times supporting the outcomes. Future enhancements could address minor gesture recognition

errors and expand storage scalability. The project successfully demonstrates the application of

computer vision and machine learning in an innovative gaming context, meeting all stated

objectives.

CHAPTER 7

81

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7 Conclusion and Recommendation

7.1 Conclusion

This thesis successfully developed an innovative Rock-Paper-Scissors (RPS) game that

integrates real-time gesture recognition using a Convolutional Neural Network (CNN)

deployed via TensorFlow Lite within a Flutter-based mobile application. The project achieved

its primary objectives: implementing a robust gesture recognition system, developing an

interactive RPS game, and optimizing performance for mobile deployment. By leveraging

MobileNetV2, a lightweight CNN architecture, the system achieved an impressive validation

accuracy of 99.67% in classifying rock, paper, and scissors gestures, demonstrating high

reliability under varied real-world conditions. OpenCV facilitated effective dataset

preprocessing, ensuring high-quality training data, while the Flutter framework enabled a

seamless and engaging user interface with features like tutorial screens, game history tracking,

and celebratory animations.

The evolutionary prototyping methodology proved instrumental in navigating the technical

complexities of integrating machine learning with mobile app development. Through iterative

phases of dataset preparation, model training, prototype development, and testing, the project

addressed challenges such as gesture variability, real-time performance, and UI responsiveness.

The system’s performance was rigorously evaluated, with testing results confirming accurate

gesture detection (e.g., 100% confidence for "rock" gestures), responsive UI navigation (all

transitions under 1 second), and reliable data storage for game history. The inclusion of the

RPS Detector feature further enhanced usability, allowing users to practice gestures

independently, while the Achievement Page fostered long-term engagement by tracking

performance metrics.

7.2 Recommendation

This project contributes significantly to the fields of computer vision and interactive gaming

by demonstrating the feasibility of deploying advanced machine learning models on resource-

constrained mobile devices. The seamless integration of real-time gesture recognition with

CHAPTER 7

82

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

traditional gameplay redefines user interaction, eliminating the need for physical controllers

and aligning with modern expectations for immersive experiences. Beyond entertainment, the

framework offers potential applications in educational tools, interactive exhibitions, and

assistive technologies, showcasing its versatility and impact.

To further enhance the RPS Real-time Detection Game App, the following recommendations

address key limitations and opportunities for future development, focusing on improving

performance, robustness, and applicability:

1. Enhance Gesture Recognition Robustness:

o Expand the training dataset to include diverse hand gestures, incorporating

variations in skin tones, hand sizes, and lighting conditions. As highlighted by

Wang and Wang, diverse datasets are essential for robust gesture recognition in

real-world scenarios. Techniques like data augmentation or synthetic data

generation using generative adversarial networks (GANs) could improve model

generalization, addressing minor misclassifications (e.g., "scissors" as "paper").

o Implement adaptive image preprocessing, such as real-time background

subtraction using OpenCV, to handle complex environments and ensure

consistent accuracy.

2. Optimize Real-Time Performance:

o Further optimize the TensorFlow Lite model through advanced quantization

techniques, such as quantization-aware training, to reduce inference latency

while maintaining high accuracy. This would enhance gameplay smoothness,

particularly on lower-end devices, as emphasized by Jain et al. for real-time

gesture systems.

o Explore hardware acceleration, such as leveraging mobile GPUs, to improve

processing speed and reduce latency, ensuring a seamless user experience

during gesture detection.

3. Extend Applications Beyond Gaming:

o Adapt the gesture recognition framework for educational or accessibility

applications, such as recognizing sign language gestures to support learning or

CHAPTER 7

83

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

communication for individuals with hearing impairments. This would broaden

the project’s impact beyond entertainment.

o Investigate integration with augmented reality (AR) platforms, such as ARCore,

to create immersive gesture-based interactions, potentially for interactive

training or exhibitions, enhancing the system’s versatility.

These recommendations aim to address challenges like gesture variability and performance

constraints while leveraging the project’s strengths to explore impactful applications.

Implementing these enhancements will ensure the RPS game remains a robust, user-centric

platform with potential for further innovation in computer vision and interactive technologies.

REFERENCES

84

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] J. Fong, R. Ocampo, and M. Tavakoli, “Intelligent Robotics and Immersive Displays

for Enhancing Haptic Interaction in Physical Rehabilitation Environments,” Haptic

Interfaces for Accessibility, Health, and Enhanced Quality of Life, pp. 265–297, Dec.

2020, doi: 10.1007/978-3-030-34230-2_10.

[2] B. C. McCannon, “Rock paper scissors,” Journal of Economics/ Zeitschrift fur

Nationalokonomie, vol. 92, no. 1, pp. 67–88, Sep. 2007, doi: 10.1007/S00712-007-

0263-5/METRICS.

[3] C. J. Meyer, B. Mccormick, A. Clement, R. Woods, and C. Fifield, “Scissors cut paper:

Purposive and contingent strategies in a conflict situation,” International Journal of

Conflict Management, vol. 23, no. 4, pp. 344–361, Sep. 2012, doi:

10.1108/10444061211267254/FULL/PDF.

[4] L. Gamberini, G. Barresi, A. Majer, and F. Scarpetta, “A GAME A DAY KEEPS THE

DOCTOR AWAY: A SHORT REVIEW OF COMPUTER GAMES IN MENTAL

HEALTHCARE”.

[5] M. N. Ichsan, N. Armita, A. E. Minarno, F. D. S. Sumadi, and Hariyady, “Increased

Accuracy on Image Classification of Game Rock Paper Scissors using CNN,” Jurnal

RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 606–611, Aug.

2022, doi: 10.29207/RESTI.V6I4.4222.

[6] “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile

Devices | IEEE Conference Publication | IEEE Xplore.” Accessed: May 09, 2025.

[Online]. Available: https://ieeexplore.ieee.org/document/8578814

[7] T. Gang, Y. Cho, and Y. Choi, “Classification of rock-paper-scissors using

electromyography and multi-layer perceptron,” 2017 14th International Conference on

Ubiquitous Robots and Ambient Intelligence, URAI 2017, pp. 406–407, Jul. 2017, doi:

10.1109/URAI.2017.7992763.

[8] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” May 27, 2015, Nature

Publishing Group. doi: 10.1038/nature14539.

REFERENCES

85

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017,

doi: 10.1145/3065386.

[10] A. Mujahid et al., “Real-time hand gesture recognition based on deep learning

YOLOv3 model,” Applied Sciences (Switzerland), vol. 11, no. 9, May 2021, doi:

10.3390/APP11094164.

[11] B. W. Boehm, “A Spiral Model of Software Development and Enhancement,”

Computer (Long Beach Calif), vol. 21, no. 5, pp. 61–72, 1988, doi: 10.1109/2.59.

[12] “Sommerville, I. (2016) Software Engineering. 10th Edition, Pearson Education

Limited, Boston. - References - Scientific Research Publishing.” Accessed: May 08,

2025. [Online]. Available:

https://www.scirp.org/reference/referencespapers?referenceid=2422473

[13] K. G. Kim, “Book Review: Deep Learning,” Healthc Inform Res, vol. 22, no. 4, p. 351,

2016, doi: 10.4258/hir.2016.22.4.351.

[14] T. Chen et al., “MXNet: A Flexible and Efficient Machine Learning Library for

Heterogeneous Distributed Systems,” Dec. 2015, Accessed: May 09, 2025. [Online].

Available: https://arxiv.org/pdf/1512.01274

[15] S. Amershi et al., “Software Engineering for Machine Learning: A Case Study,”

Proceedings - 2019 IEEE/ACM 41st International Conference on Software

Engineering: Software Engineering in Practice, ICSE-SEIP 2019, pp. 291–300, May

2019, doi: 10.1109/ICSE-SEIP.2019.00042.

[16] S. Edirimannage, C. Elvitigala, A. K. K. Don, W. Daluwatta, P. Wijesekara, and I.

Khalil, “Developers Are Victims Too : A Comprehensive Analysis of The VS Code

Extension Ecosystem,” Nov. 2024, [Online]. Available: http://arxiv.org/abs/2411.07479

[17] M. Ahmad, “ANALYSIS OF CROSS PLATFORM MOBILE APPLICATION

DEVELOPMENT FRAMEWORKS.” [Online]. Available:

https://www.researchgate.net/publication/372679769

[18] Davinder Pal Singh, “Cloud-Based Machine Learning : Opportunities and Challenges,”

International Journal of Scientific Research in Computer Science, Engineering and

REFERENCES

86

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Information Technology, vol. 10, no. 6, pp. 264–270, Nov. 2024, doi:

10.32628/CSEIT24106177.

[19] Kimberly. Keeton, TensorFlow: A system for large-scale machine learning. USENIX

Association, 2016.

[20] G. Bradski et al., “Learning OpenCV: Computer Vision with the OpenCV Library -

Google Books,” 2008.

[21] A. Jain, J. Tompson, Y. LeCun, and C. Bregler, “MoDeep: A deep learning framework

using motion features for human pose estimation,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), Springer Verlag, 2015, pp. 302–315. doi: 10.1007/978-3-319-

16808-1_21.

POSTER

87

Bachelor of Information Systems (Honours) Digital Economy Technology

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

