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ABSTRACT 

This project introduces an innovative Rock-Paper-Scissors (RPS) game that integrates real-

time hand gesture recognition within a Flutter-based mobile application, leveraging advanced 

machine learning techniques. Utilizing MobileNetV2, a lightweight convolutional neural 

network, the system reliably classifies rock, paper, and scissors gestures from live camera feeds. 

Developed through an evolutionary prototyping methodology, the project iteratively refined a 

TensorFlow Lite-deployed model and a user-friendly interface featuring tutorial screens, game 

history tracking, and celebratory animations. OpenCV ensured robust dataset preprocessing, 

enabling high-quality training data, while Flutter facilitated seamless cross-platform 

performance. Extensive testing confirmed the system’s effectiveness across diverse lighting 

conditions and device specifications, achieving consistent gesture detection and rapid UI 

responsiveness. By addressing challenges such as gesture variability and real-time processing 

latency through model optimization and efficient camera handling, the project delivers an 

immersive gaming experience without physical controllers. This work advances interactive 

gaming by demonstrating the feasibility of deploying sophisticated machine learning models 

on resource-constrained mobile devices. The framework offers potential for applications in 

educational tools and assistive technologies, contributing to further developments in computer 

vision and human-computer interaction. 

 

Area of Study (Minimum 1 and Maximum 2): Deep Learning, Mobile Computing 

 

Keywords (Minimum 5 and Maximum 10): Gesture Recognition, Machine Learning, CNN, 

Mobile Application, Real-time Processing  
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CHAPTER 1 INTRODUCTION 

1.0 Introduction 

In this chapter, we present the background and motivation of our research, contributions to the 

field, and the thesis outline. This paper introduces an innovative Rock-Paper-Scissors (RPS) 

game that enhances traditional gameplay by incorporating real-time gesture recognition 

through a Convolutional Neural Network (CNN) model integrated into a Flutter-based mobile 

application. The system captures a continuous video feed from a device camera, which is 

processed in real-time by the CNN model deployed via TensorFlow Lite to classify hand 

gestures—such as a closed fist for "Rock," an open hand for "Paper," or a V-sign for "Scissors." 

These recognized gestures are translated into game commands, driving the virtual RPS game 

to determine round outcomes based on classic rules, with visual and auditory feedback 

enhancing the immersive experience. OpenCV was utilized during the dataset preparation 

phase to preprocess images (e.g., resizing and normalization) for training the CNN model, 

ensuring high-quality input data. By combining traditional gameplay with advanced computer 

vision and machine learning techniques, this project creates a dynamic and interactive gaming 

experience that aligns with the expectations of modern players[1]. 

 

Rock-Paper-Scissors (RPS) is a typical hand game between two or more players. In this game, 

two or more players can choose one of three gestures simultaneously. According to McCannon, 

RPS game is an excellent tool to solve disputes between two individuals although most people 

rarely make essential decisions on RPS to resolve a conflict [2]. An example of studies states 

that RPS can determine the winner in a conflict. For example, in 2005, Maspro Denkoh 

Corporation's president, Takashi Hashiyama, resolved the choice between Christie's and 

Sotheby's auction houses for a $20 million art collection by having representatives play a single 

round of Rock, Paper, Scissors (RPS) [2]. In the end, resulting in Christie's won with "scissors" 

defeating Sotheby's "paper" [3]. Moreover, this game allows players to naturally evolve their 

strategies over time. The decisions made by individuals during the game are often spontaneous, 

offering an excellent opportunity to explore the workings of our short-term memory [4]. This 

project applies game theory and machine learning to create an intelligent RPS player that adapts 

to user behaviors, aiming to enhance engagement through a mobile app developed with Flutter 

and a CNN model. The development process required a labeled dataset of hand gestures (rock, 
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paper, scissors), which was preprocessed using OpenCV to train the CNN model effectively. 

The goal is to deliver a seamless blend of real-world gestures and virtual gameplay, redefining 

interactive gaming for a broader audience. 

 

Figure 1.1: RPS Game Rules 

 

1.1 Problem Statement and Motivation 

1.1.1 Problem Statement 

According to Muhammad et al. (2022), the way people play games in Indonesia has changed 

due to COVID-19, with more games now being played online[5]. This shift includes the 

traditional Rock, Paper, Scissors game, where computers detect hand movements. However, 

there are issues with how well computers understand these hand movements. Previous studies 

have shown that the accuracy of classifying Rock, Paper, Scissors hand gestures using 

Convolutional Neural Networks (CNNs) was limited by the epoch value and model 

architecture. Additionally, the need to customize more detailed CNN models for the specific 

nuances of the "rock, paper, scissors" gesture remains unaddressed. These challenges 

emphasize the importance of optimizing deep learning algorithms to maintain the cultural 

relevance of traditional games in virtual spaces while overcoming technical barriers related to 

gesture recognition accuracy and model specificity [5]. 
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1.1.2 Motivation 

This thesis aims to change how users interact in games to create a more intuitive and engaging 

experience. Traditional methods, such as controllers, have limitations that prevent them from 

realizing the full potential of immersive games. Therefore, this project employs real-time object 

detection and gesture recognition techniques focusing on creating vibrant Rock-Paper-Scissors 

(RPS) games using OpenCV detection. This approach seamlessly blends real-world gestures 

with virtual gameplay, thus meeting the ever-changing expectations of today's players. The 

project hopes to contribute valuable insights to the fields of computer vision and machine 

learning aimed at improving the accuracy of gesture detection systems. This includes carefully 

refining epoch values, optimizing the CNN architecture, and customizing the model for RPS 

gestures. Ultimately, our overall goal is to push the technology forward and make gaming more 

enjoyable for more people. 

 

1.2 Research Objectives 

The main goal of this thesis project is to develop an innovative Rock-Paper-Scissors (RPS) 

game that integrates real-time gesture recognition via OpenCV detection. The project aims to 

create a dynamic and engaging gaming experience by seamlessly combining traditional RPS 

gameplay with advanced computer vision and machine learning techniques. The first goal was 

to implement a real-time gesture recognition system using OpenCV to recognize and classify 

gestures associated with RPS gameplay accurately. Subsequently, the project aims to integrate 

this recognition system into virtual RPS games to ensure that recognized gestures trigger 

appropriate commands. The third goal is to improve the accuracy and reliability of gesture 

recognition by utilizing advanced computer vision techniques, specifically Convolutional 

Neural Networks (CNN). The fourth goal is to optimize deep learning model parameters, such 

as epoch values and CNN architecture, which are critical for achieving optimal performance 

and preventing overfitting. The fifth objective is to create a gesture labelling dataset which 

helps in the actual training of the deep learning model. The sixth objective is user experience 

evaluation and system effectiveness assessment to gain insights into the usefulness and 

engagement of the developed game system. In addition, the project aims to explore potential 

applications beyond entertainment. 
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1.2.1 Implement Real-Time Gesture Recognition TensorFlow Lite and Convolutional 

Neural Networks (CNN) 

The main goal of this objective is to develop and integrate a real-time gesture recognition 

system using a Convolutional Neural Network (CNN) and TensorFlow Lite within a Flutter 

mobile app. The system will recognize three core gestures—rock, paper, and scissors—by 

processing real-time video input from a device camera. The camera package in Flutter will 

handle the video feed, while the CNN, deployed through the tflite_flutter package, will be 

responsible for learning and identifying the unique patterns of each gesture. To achieve high 

accuracy and robustness in gesture recognition, the system will be designed to perform well 

under varying real-world conditions, such as different lighting, backgrounds, and user hand 

variations. The gesture recognition system will serve as the foundation for the RPS game, 

acting as the primary input mechanism. 

 

1.2.2 Develop an Interactive Rock-Paper-Scissors Game 

Another core objective is to design and develop an interactive Rock-Paper-Scissors game with 

gesture-based controls using Flutter and the CNN model for real-time gesture recognition. The 

system will map recognized gestures to in-game actions, enabling players to control the game 

through natural hand movements without the need for traditional input devices like a mouse or 

keyboard. The game logic will follow the classic RPS rules: rock beats scissors, scissors beats 

paper, and paper beats rock. The system will detect the player’s gestures, generate the 

computer’s response, and provide immediate feedback on the recognized gesture, the 

computer’s move, and the outcome of each round (win, lose, or draw). Features such as tutorial 

screens, game history tracking, and celebratory animations will be implemented to create a 

responsive and immersive gaming experience that enhances player engagement. 

 

1.2.3 Optimize Gesture Recognition Performance Using CNN and Mobile Deployment 

Techniques 

The final objective of this project is to optimize the gesture recognition system’s performance 

using the CNN model and mobile deployment techniques for efficient real-time application 

within the RPS game. The process will involve fine-tuning the CNN model by adjusting 

parameters such as epoch values, learning rates, and network architecture to ensure reliable 
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gesture classification. Efficient architectures like ShuffleNet, which complements 

MobileNetV2, highlight the importance of lightweight models for mobile deployment [6]. 

Techniques like model quantization will be applied to reduce the model size for mobile 

deployment via TensorFlow Lite, while image preprocessing will be streamlined in Dart to 

handle real-time camera input effectively. This will ensure the system performs efficiently on 

mobile devices, maintaining responsiveness and accuracy under practical constraints, such as 

limited processing power and varying environmental conditions. 

 

1.3 Project Scope and Direction  

This thesis focuses on developing a Rock-Paper-Scissors (RPS) game that employs a CNN-

based gesture recognition system integrated into a Flutter mobile app. The system processes 

continuous video frames from a device camera, using a pre-trained CNN model via TensorFlow 

Lite to recognize gestures in real-time. The CNN model was trained on a dataset preprocessed 

with OpenCV, ensuring consistent image quality for effective gesture classification. Outputs 

such as a clenched fist ("rock"), open hand ("paper"), or V-sign ("scissors") trigger game 

commands, driving an immersive virtual RPS experience. The project emphasizes improving 

user engagement through an interactive interface, including tutorial screens, game history, and 

animations, while optimizing for mobile performance. The envisioned outcome is a robust, 

accessible gaming solution with potential extensions to educational or interactive applications. 

 

1.4 Contributions 

This thesis makes a significant contribution by seamlessly combining real-time gesture 

recognition with a CNN model deployed via TensorFlow Lite into a Flutter-based mobile app, 

filling a gap in existing research that often focuses on isolated aspects of gesture-based systems. 

The innovative Rock-Paper-Scissors (RPS) game developed in this project utilizes natural hand 

movements, eliminating the need for traditional input methods such as controllers or buttons, 

and enhances user engagement by providing a more intuitive gaming experience. The system, 

implemented in Dart with Flutter, leverages cutting-edge machine learning techniques, with 

the CNN model customized for RPS gestures and optimized through fine-tuned parameters and 

architecture to ensure reliable performance. OpenCV was employed during dataset 

preprocessing to prepare high-quality training data, while the system’s effectiveness was 
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validated through comprehensive testing on emulators and real devices. The inclusion of 

features like tutorial guidance, game history tracking, and confetti animations enriches the user 

experience, creating user-friendly and inclusive game interactions. Beyond entertainment, this 

technology demonstrates potential applications in educational software, interactive exhibitions, 

and virtual reality scenarios, offering a versatile framework that contributes comprehensively 

to the fields of interactive gaming, computer vision, and machine learning, providing solutions 

accessible to a wide audience. 

 

1.5 Report Organization 

This report is organized into six chapters to provide a comprehensive overview of the Rock-

Paper-Scissors (RPS) Real-time Detection Game App project. Chapter 1, Introduction, presents 

the specifics of the study, including the background, problem statement, motivation, research 

objectives, scope, and contributions. Chapter 2, Literature Review, covers relevant background 

topics, analyzing previous works on gesture recognition, their limitations, and proposed 

solutions. Chapter 3 then offers a System Design, discussing the overall design of the system, 

including data acquisition, system requirements, and architectural framework. Chapter 4 

focuses on System Implementation and Testing, detailing the development process, integration 

of the CNN model with Flutter, and testing procedures to validate functionality. Chapter 5 

summarizes the System Outcome and Discussion, evaluating the project’s performance, user 

experience, and challenges encountered. Lastly, Chapter 6, Conclusion, provides a summary of 

the project’s achievements, key findings, and potential future improvements. A References 

section follows, listing all cited sources. 
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CHAPTER 2 Literature Reviews 

2.1  Previous Works on Deep Learning  

2.1.1  WIZARD Weightless Neural Network  

In a 2013 research paper, DeSouza et al. proposed a research paper that was inspired by 

WIZARD weightless neural network to design a strategic approach to creating intelligent 

Rock-Paper-Scissors players. The study introduces innovative methods, encompassing the 

encoding of new input data features, the implementation of three training algorithms for 

evolving input pattern classifications, and approaches to handle incomplete information in the 

input array. By applying the WIZARD model to the game of Rock-Paper-Scissors-Paper, this 

research effectively addresses the complex problem of adapting network knowledge to 

changing opponent strategies. Experimental results show that players using the WIZARD 

approach perform well [1]. However, the success rates and real-world rankings of WIZARD-

based players remain controversial, and a better understanding of their performance in different 

games is needed. In addition, integrating real-world data into player development is a challenge 

that needs further exploration. Future research could explore these controversial points to 

understand better and improve WIZARD-based intelligent RPS players. WIZARD-based 

intelligent RPS players. 

 

2.1.2  Multi-Layer perceptron (MLP) Neural Network 

In a 2017 research paper, Gang et al. proposed a method to classify Electromyographic (EMG) 

signals associated with the Rock, Paper, and Scissors hand gestures. They apply EMG signals 

to a multi-layer perceptron (MLP) model, leading to a highly accurate classification of three 

different hand patterns. The main focus of the algorithm is to recognize human behavioural 

patterns and prepare for the upcoming game to react strategically and defeat the opponent. The 

study provides insight into the efficacy of MLP in identifying different player behavioural 

patterns and evaluates its impact on the overall success rate of computers in RPS games [7]. 

However, using a Multi-layer Perceptron (MLP) for hand gesture recognition in a Rock-Paper-

Scissors Game Application is less suitable due to its inability to handle spatial relationships in 

images, limited feature extraction capabilities, and potential overfitting issues. Convolutional 
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Neural Networks (CNNs) are a more appropriate choice, excelling in automatically learning 

spatial hierarchies and capturing local patterns essential for accurate image recognition [7]. 

 

2.1.3  Convolutional Neural Network 

Ichsan et al. proposed a paper that use Convolutional Neural Network (CNN) method to create 

a game Rock, Paper, Scissors. They employ CNN as Deep Learning method to recognize and 

classify hand gestures (rock, paper, scissors) with improved accuracy. CNNs, as described by 

LeCun et al., excel in image recognition tasks by learning hierarchical feature representations, 

making them ideal for classifying complex hand gestures in RPS games [8]. In previous studies 

achieved accuracy rates ranging from 81.53% to 97.66% but identified limitations in Epoch 

application and CNN architecture layers. This study aims to improve accuracy by increasing 

Epoch values and developing more detailed models. The research methodology included 

dataset collection, segmentation, preprocessing, CNN model creation, and performance 

calculations [5]. In conclusion, the paper emphasizes the importance of human gestures in 

games and attempts to improve the accuracy of CNN-based classification. Therefore, this thesis 

used CNN to develop an improved and highly accurate system for playing the rock-paper-

scissors game. The choice of CNNs signifies a commitment to advanced image recognition 

techniques, contributing to the effectiveness of the proposed solution. Using CNNs, we want 

to improve how the game detects and understands hand gestures, making it more enjoyable for 

everyone playing. 

 

2.2  Limitation of Previous Studies  

2.2.1 Spatial Relationships and Image Recognition 

The limitation of using a Multi-layer Perceptron (MLP) for hand gesture recognition, as 

outlined in the first review paper, stems from its need for more accuracy in handling spatial 

relationships within images. Hand gestures in the rock-paper-scissors game involve intricate 

spatial configurations crucial for accurate recognition. MLPs, designed primarily for structured 

data, need help to learn hierarchical spatial features automatically. Unlike MLPs, CNNs, as 

demonstrated by Krizhevsky et al. with AlexNet, automatically learn spatial hierarchies, 

enabling accurate recognition of complex hand gestures [9]. This deficiency impacts the 
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model's ability to recognize complex hand gestures accurately, potentially leading to 

misclassifications and diminishing the overall performance and reliability of the system, 

particularly in real-world applications like gaming interfaces. 

2.2.2 Epoch Application and CNN Architecture Layers 

The second review paper identifies limitations in applying epochs and the architecture of 

Convolutional Neural Networks (CNNs), though specific challenges need to be more detailed. 

The number of epochs influences the training process, and CNN architecture determines feature 

extraction capabilities. Issues in these aspects can result in suboptimal performance, slower 

convergence, or potential overfitting. Ineffective parameter tuning, suboptimal choices for 

epoch values, or inadequately designed CNN architectures can hinder the model's learning 

capacity, impacting accuracy and generalization. This can lead to underperformance in real-

time scenarios, slowing the system's ability to recognize and classify hand gestures accurately. 

 

2.2.3 Human Gesture Variability 

Recognizing the variability in how individuals perform rock-paper-scissors gestures, both 

papers implicitly acknowledge the challenge of developing a robust and generalized model. 

Variations in hand shapes, positions, and speeds introduce complexity, making capturing all 

possible permutations in a training dataset difficult. According to previous studies highlight 

that variations in hand shapes and lighting conditions pose significant challenges for gesture 

recognition, necessitating robust datasets and model designs [10]. The lack of robustness to 

human gesture variability may result in poor generalization, as the model trained on specific 

gestures may need help to accurately classify variations that are not present in the training data. 

This limitation can significantly impact the real-world usability of the system, especially when 

users naturally exhibit diverse ways of performing hand gestures, affecting its overall 

effectiveness and reliability. 

 

2.3  Proposed Solutions  

2.3.1 Embracing CNNs for Enhanced Gesture Recognition 

The proposed solution involves transitioning from Multi-layer Perceptrons (MLPs) to 

Convolutional Neural Networks (CNNs) for improved spatial relationships and image 
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recognition in the Rock, Paper, Scissors game application. CNNs are explicitly designed to 

handle spatial features in images through convolutional layers. These layers automatically learn 

hierarchical representations and capture local patterns, enabling the model to discern complex 

spatial configurations in hand gestures. By leveraging CNNs, as emphasized by LeCun et al., 

the system gains the ability to extract more nuanced information from images, enhancing its 

accuracy and robustness in recognizing diverse hand gestures within the game [8]. 

 

2.3.2 Optimal Configuration for Enhanced Performance  

The solution to challenges in epoch applications and CNN architecture involves a 

comprehensive exploration of different epoch values and meticulous optimization of CNN 

architecture. Thorough hyperparameter tuning is essential to identify the optimal combination 

of epoch values, learning rates, and layer configurations. This process ensures that the CNN 

converges efficiently during training, prevents overfitting, and maximizes accuracy. By fine-

tuning these parameters, the system can recognize Rock, Paper, Scissors gestures in real-time 

scenarios, improving overall performance and reliability. 

 

2.3.3 Comprehensive Dataset and Robust Model Design 

The solution consists of collecting a comprehensive dataset that captures this diversity to 

address individuals' variability in making "rock, paper, scissors" gestures. The model design is 

then improved to accommodate hand position and shape variations. Incorporating temporal 

information (e.g., dynamic changes in gestures) further refines the system's ability to generalize 

across different user behaviors. Wang and Wang underscore the importance of diverse datasets 

to handle real-world gesture variability, ensuring robust model performance [10]. This solution 

ensures that the rock-paper-scissors game application can be trained to work with different 

hand gestures and can adapt to the variations inherent in the user's natural participation in the 

game. The result is a more reliable and enjoyable gaming experience for users with different 

gaming styles.   



CHAPTER 2 

11 

Bachelor of Information Systems (Honours) Digital Economy Technology 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

2.4 Comparison between Existing System and Proposed System 

 

Criteria 

 

WIZARD 

Weightless 

Neural 

Network 

 

MLP Neural 

Network 

 

CNN-based 

System 

 

Proposed 

System 

 

Machine 

Learning 

Method 

 

WIZARD 

Weightless 

Neural Network 

 

Multi-Layer 

Perceptron 

(MLP) 

 

Convolutional 

Neural Network 

(CNN) 

 

Enhanced CNN 

with Optimized 

Architecture 

 

Gesture 

Recognition 

Accuracy 

 

Moderate 

(~70%) 

 

Low (~60%) 

 

High (81.53%–

97.66%) 

 

Very High 

(99.67%) 

 

Real-time 

Detection 

 

No 

 

No 

 

Yes 

 

Yes (Optimized 

for Mobile) 

 

Handles 

Spatial 

Relationships 

 

No 

 

No 

 

Yes 

 

Yes (Improved 

Feature 

Extraction) 

 

Adaptability to 

Gesture 

Variability 

 

Limited 

 

Poor 

 

Moderate 

 

High 

 

User Interface 

Features 

 

Basic (Strategy-

Based 

Gameplay) 

 

None (Focus on 

EMG 

Classification) 

 

Basic 

(Gameplay 

Only) 

 

Advanced 

(Tutorial, 

History, 

Animations) 
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Ease of 

Integration on 

Mobile 

 

Not Applicable 

 

Not Applicable 

 

Moderate 

 

High 

(TensorFlow 

Lite with 

Flutter) 

 

Handles 

Dynamic 

Gestures 

 

No No 

 

No 

 

Yes 

 

Table 2.4 Comparison between Existing System and Proposed System 
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CHAPTER 3 System Methodology 

3.1 Introduction  

This chapter presents the system methodology employed in developing the Rock-Paper-

Scissors (RPS) Real-time Object Detection Game. The project integrates machine learning 

(ML) for hand gesture recognition with a Flutter-based mobile application, requiring an 

approach that accommodates both ML model development and software implementation. After 

careful consideration, the Prototyping Methodology was selected as the most appropriate 

framework to guide this development process, particularly due to the technical complexity 

involved in combining real-time object detection with mobile application development. 

 

3.2 Prototyping Methodology 

3.2.1 Overview of Prototyping Methodology 

Prototyping is a system development approach that emphasizes creating early working models 

(prototypes) of a system to evaluate, test, and refine the final product. Unlike traditional 

sequential methodologies, prototyping follows an iterative process where developers build 

functional versions of the system, evaluate them, and incorporate improvements based on 

findings. Prototyping, akin to Boehm’s spiral model, supports iterative development by 

allowing early testing and refinement, which is critical for integrating ML and mobile app 

development [11]. This iterative nature allows for early detection and resolution of potential 

issues, making it especially valuable in projects involving novel technologies and complex 

integrations [12]. 

 

3.2.2 Types of Prototyping 

Several variations of prototyping exist in software development practice: 

Evolutionary Prototyping  

This approach, involves developing an initial prototype that evolves through successive 

refinements until becoming the final system. The process begins with implementing well-

understood requirements while leaving more complex aspects for later iterations. 
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Incremental Prototyping  

Incremental prototyping involves development through multiple prototypes created in parallel, 

each addressing different system components. These individual prototypes are eventually 

integrated to form the complete system. 

Throwaway Prototyping  

This approach creates models primarily to test concepts and gather requirements, but these are 

eventually discarded rather than becoming part of the final system  

For this project, the evolutionary prototyping approach was adopted, allowing the system to 

progressively evolve from initial proof-of-concept to the final application. This choice enabled 

continuous refinement of both the machine learning model and the application interface while 

maintaining technical consistency throughout the development process. 

 

3.2.3 Justification for Selecting Prototyping Methodology 

The prototyping methodology was selected over the initially considered Agile methodology 

due to several project-specific factors: 

1. Dual Development Tracks: The project required parallel development of both the ML 

model and the mobile application, making a prototype-centered approach more 

effective than sprint-based development  

2. Technical Uncertainty: The integration of real-time object detection using TensorFlow 

Lite within a Flutter application presented significant technical challenges that 

benefited from early proof-of-concept development  

3. Machine Learning Development Process: ML development follows an experimental 

process of training, evaluation, and refinement that aligns naturally with prototyping 

cycles [12]. 

4. Limited Prior Examples: The application of ML for real-time hand gesture recognition 

in mobile gaming represents a relatively novel domain with limited established patterns  
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3.3 Implementation of Prototyping Methodology 

The development of the RPS Real-time Object Detection Game followed a structured 

evolutionary prototyping approach consisting of five main phases. Each phase built upon the 

previous one while addressing identified challenges and expanding system functionality. 

 

3.3.1 Phase 1: Development Environment Setup 

The initial phase established the technical foundation for both ML development and mobile 

application implementation: 

1. Development Tools Configuration:  

o Flutter SDK installation and configuration for cross-platform development 

o TensorFlow and TensorFlow Lite setup for model development and deployment 

o Version control system implementation using Git 

2. Technical Feasibility Assessment:  

o Evaluation of TensorFlow Lite performance constraints on mobile devices 

o Assessment of Flutter camera integration capabilities 

o Verification of cross-platform compatibility requirements 

This phase resulted in a configured development environment ready for both ML model 

development and Flutter application implementation, establishing the technical foundation for 

subsequent prototyping phases. 

 

3.3.2 Phase 2: Dataset Preparation and Model Development 

This phase focused on creating and training the machine learning model required for hand 

gesture recognition: 

1. Dataset Collection and Preparation:  

- Collection of custom datasets comprising images of hand gestures (rock, paper, scissors) 

- Data preprocessing including normalization, augmentation, and segmentation. 
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- Dataset splitting into training (70%, 2,220 images), validation (15%, 300 images), and 

testing (15%, 372 images) sets. 

2. Model Selection and Training:  

- Experimentation with multiple model architectures (MobileNet, EfficientNet). 

- Transfer learning, as detailed by Goodfellow et al., was employed to leverage pre-

trained MobileNetV2 weights, enhancing training efficiency for gesture recognition.  

- Training with various hyperparameters to optimize performance. 

 

3. Model Evaluation and Optimization:  

- Evaluation of models based on accuracy, inference speed, and model size. 

- Fine-tuning of the selected model to improve performance. 

- Conversion to TensorFlow Lite format for mobile deployment. 

 

This phase produced a trained MobileNetV2-based CNN model optimized for mobile 

deployment with initial performance characteristics: classification accuracy of 94.7%, average 

inference time of 112ms, and model size of 4.8MB. Subsequent fine-tuning, as detailed in 

Chapter 5, further improved the validation accuracy to 99.67%, reflecting enhancements in 

model generalization through adjusted learning rates and unfrozen layers. 

 

3.3.3 Phase 3: Initial Prototype Development 

The initial prototype focused on validating the technical feasibility of integrating the trained 

model with the Flutter application: 

1. Core Functionality Implementation:  

- Camera integration for real-time image capture 

- TensorFlow Lite integration for on-device inference 

- Basic gesture recognition implementation 

2. Technical Validation:  
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- Verification of gesture recognition accuracy 

- Performance testing on different devices 

- Identification of optimization requirements 

This prototype demonstrated the technical viability of the concept while highlighting areas 

requiring further refinement, particularly related to recognition speed and accuracy under 

varied lighting conditions. 

3.3.4 Phase 4: Enhanced Prototype Development 

Building on the initial prototype, this phase implemented the complete game functionality and 

addressed identified technical limitations: 

1. Game Logic Implementation:  

- Countdown timer for gesture capture 

- Round-based gameplay mechanics 

- Score tracking and result determination 

- Game history storage 

2. User Interface Development:  

- Main game screen with camera feed and overlay 

- Result display mechanism 

- Tutorial section for user guidance 

- Settings and history screens 

3. Performance Optimization:  

- Model inference optimization 

- Camera frame processing improvements 

- User interface responsiveness enhancements 

This enhanced prototype delivered a fully functional game with complete gesture recognition 

capabilities and gameplay mechanics, ready for comprehensive testing. The integration of real-
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time gesture recognition with mobile app functionality aligns with approaches discussed by 

Chen et al., who emphasize optimizing neural network inference for mobile devices to achieve 

low-latency performance [14]. 

 

3.3.5 Phase 5: System Testing and Refinement 

The final phase focused on comprehensive testing and refinement to ensure system reliability 

and performance: 

1. Systematic Testing:  

- Gesture recognition accuracy testing under different lighting conditions to 

address variability. 

- Performance testing across various device specifications to ensure compatibility. 

- Functional testing of game mechanics and user interface for robustness. 

2. Refinement Based on Test Results:  

- Improvements to the gesture recognition algorithm to enhance accuracy under 

diverse conditions. 

- Optimization of camera frame processing to minimize latency, leveraging 

techniques like those discussed for mobile vision applications [14]. 

- User interface adjustments for improved usability based on test feedback. 

3. Final System Validation:  

- Verification of system meeting all functional requirements 

- Performance validation against established metrics 

- Final adjustments and bug fixes to ensure reliability. 

 

This phase resulted in the final prototype that successfully demonstrated the integration of 

machine learning and real-time interaction within a mobile game, with reliable gesture 
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recognition across varied conditions. Systematic testing approaches, as described by Amershi 

et al., were critical in refining machine learning models for real-world deployment [15]. 

3.4 Methodology Evaluation 

The application of the Prototyping methodology to this project demonstrated several key 

strengths aligned with the project requirements: 

1. Effective Integration of ML and Mobile Development: The iterative nature of 

prototyping allowed for parallel development and gradual integration of the ML model 

with the Flutter application. 

2. Technical Risk Mitigation: Early prototypes enabled identification and resolution of 

technical challenges related to real-time gesture recognition, reducing development 

risks . 

3. Progressive Enhancement: The evolutionary approach facilitated gradual 

enhancement of both gesture recognition accuracy and application functionality. 

4. Flexibility for Experimentation: The methodology provided the flexibility needed to 

experiment with different model architectures and optimization techniques. 

The primary limitation encountered was the need for occasional backtracking when model 

optimizations affected application performance, requiring adjustments to the integration 

approach. However, this limitation was outweighed by the methodology's benefits in managing 

the technical complexity of the project. 

3.5 Conclusion 

The Prototyping methodology provided an effective framework for developing the Rock-

Paper-Scissors Real-time Object Detection Game, enabling successful integration of machine 

learning for hand gesture recognition within a Flutter mobile application. Through structured 

phases of prototype development, testing, and refinement, the project successfully navigated 

the technical challenges of implementing real-time object detection on mobile devices. 

The evolutionary prototyping approach allowed for progressive refinement of both the machine 

learning model and application components, ensuring technical feasibility while maintaining 

focus on the core project objectives. This methodology proved particularly suitable for this 
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project due to its ability to accommodate the experimental nature of machine learning 

development alongside mobile application implementation.
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CHAPTER 4 System Design 

4.1 System Block Diagram 

 

Figure 4.1 RPS Real-time Detection App Block Diagram 

The block diagram of the Rock-Paper-Scissors (RPS) real-time detection game illustrates the 

system’s data flow and functional architecture, from user input to result output and data storage. 

At the forefront is the User Interface (Flutter UI), which acts as the primary interaction layer 

for users. This UI comprises several pages, including the Home Page, Tutorial Page, Play Game 

interface (with multiple subpages like Round Selection, Hand Detection, Result, and Game 

Summary), the RPS Detector Page, and the Achievement Page. Users initiate gameplay or 

access features through intuitive buttons and navigational flows. 

When the user chooses to play, the system transitions to the Gesture Capture module, which 

utilizes the device's camera to detect the user’s hand gestures in real time. This live input is 

forwarded to the Gesture Classification module, which houses the TensorFlow Lite (TFLite) 

model. This model classifies the hand gesture into one of the three categories: rock, paper, or 

scissors, with high accuracy, aided by a well-lit and cantered hand position. 

The output of the gesture classification is then passed into the Game Logic Engine, which 

handles the countdown timer, round progression, random computer gesture generation, and 

scoring system. This logic ensures fair gameplay and maintains synchronization between user 
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input and game response. Following each round, results including the player's and computer’s 

gestures and the outcome are delivered to the Result Display & Game History Storage 

module. This component displays the result to the user via the Result Page and eventually 

compiles the final scores on the Game Summary Page. Simultaneously, it updates the player’s 

statistics and historical data, which can be accessed later through the Achievement Page. 

This modular system design not only supports real-time gesture-based gaming but also 

enhances usability through features like tutorials, performance tracking, and gesture testing. 

The separation of responsibilities across distinct components ensures clarity, maintainability, 

and responsiveness, forming a robust and engaging RPS game experience. 
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4.2 Use Case Diagram 

 

Figure 4.2 RPS Real-time Detection App 2 Use Case Diagram 

The Rock-Paper-Scissors Real-time Object Detection App is an interactive platform designed 

to deliver an engaging gameplay experience through real-time hand gesture recognition. This 

report elaborates on the use case diagram provided, illustrating the interactions between the 

user and the system within the app. The diagram highlights the core functionalities offered by 

the app and their corresponding system operations, outlining the primary tasks users can 

perform and how the system supports them. 

The app enables users to engage with a variety of features, including gameplay, gesture 

detection practice, tutorial access, and game history management. The use case diagram 
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visualizes how the user interacts with these features, while the system operates in the 

background to ensure seamless functionality. The User, positioned outside the system boundary, 

interacts directly with the app’s key use cases, each supported by efficient system processes 

such as gesture classification, data storage, and user interface navigation. 

A central feature of the app is the Play RPS Game use case, where users compete against the 

computer by showing rock, paper, or scissors gestures via the device’s camera. This use case 

includes the Select Rounds process, allowing users to customize the number of rounds (e.g., 1, 

3, or 5), with the system managing the gameplay flow and round transitions. The Use RPS 

Gesture Detector use case provides a standalone mode for users to practice gesture recognition, 

supported by the View Classification process, which displays the detected gesture and 

confidence score (e.g., "Detected: rock (100.00%)"). This is facilitated by the system’s machine 

learning model, which processes camera input or uploaded images for accurate gesture 

identification. 

To enhance user understanding, the View Tutorial use case offers a step-by-step guide on 

gameplay mechanics, gesture detection, and progress tracking, with the system ensuring 

smooth navigation through tutorial screens. Additionally, the app supports performance 

tracking through the View Game History use case, where users can review past games, scores, 

and round-by-round outcomes, stored and retrieved by the system. The Delete History use case 

allows users to clear their records, with the system handling secure data management to 

maintain user privacy. 

The relationships between use cases, such as the «includes» link between Play RPS Game and 

Select Rounds, and the direct connection from Use RPS Gesture Detector to View 

Classification, reflect the app’s logical flow and dependencies. All use cases are encapsulated 

within the system boundary, ensuring a clear distinction between user actions and internal 

operations like gesture processing, data storage, and result generation. Overall, the Rock-Paper-

Scissors Real-time Object Detection App demonstrates a user-centric approach, effectively 

integrating real-time technology into an intuitive and engaging gameplay experience. 
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4.3 Activity Diagram 

Play Game Activity Diagram 

 

Figure 4.3.1 Play Game Activity Diagram 

The Play Game Activity Diagram outlines the complete user flow for a Rock-Paper-Scissors 

real-time detection game, from game initiation to completion. The process begins on the Round 

Selection Page, where the user chooses the number of rounds (1, 3, 5, or custom) and clicks 

Start. 
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Once initiated, the system activates the camera interface and displays it to the user. A 

countdown timer begins to prepare the user, after which the system uses the camera feed to 

detect and classify the user's gesture (rock, paper, or scissors) using a TensorFlow Lite model.  

If no valid gesture is detected, the user is prompted with a Retry option. Otherwise, the system 

proceeds with the CPU making its random choice. The user's move is compared against the 

CPU's move based on the standard rules of Rock-Paper-Scissors, and the round result is 

displayed.  

The process repeats until all selected rounds are completed. Once all rounds are played, a 

summary page shows the overall results. The user is then prompted to either replay the game 

by selecting new rounds or return to the Home Page, ending the session.  

At any point during gameplay, the user can pause the game, which brings up a pause menu with 

options to resume or exit to the Home Page. 

This activity diagram captures the interactive, decision-based nature of the gameplay, with 

integrated gesture recognition and real-time feedback. It also includes contingency flows such 

as gesture retry and game pause, enhancing usability and control for the player. 

 

RockPaperScissors Detector (RPS Detector) 
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Figure 4.3.2 RPS Detector 

The RPS Detector Activity Diagram outlines the operational flow of the standalone gesture 

detection feature within the Rock-Paper-Scissors Real-time Object Detection App, enabling 

users to practice and test hand gesture recognition outside of gameplay. The diagram details 

the sequential steps of user interaction and system processing, emphasizing the app’s support 

for an interactive and flexible user experience. 

The process initiates with the user accessing the Show RPS Detector Page, selected from the 

Home Page. The system then presents a decision point, User selects input type?, where the user 

chooses between Take Photo using the device’s camera or Pick from Gallery to upload an 

existing image. Depending on the selection, the system activates the camera for real-time 

capture or opens the gallery for image selection, ensuring a user-friendly input process. 

Once an image is obtained, the system proceeds to the Detect Gesture from Image step, where 

the image is processed using the app’s machine learning model to classify the hand gesture as 

rock, paper, or scissors, along with a confidence score (e.g., "Detected: rock (100.00%)"). The 
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result is then displayed to the user in the Show Detected Gesture step, providing clear feedback 

on the gesture recognition outcome. 

The activity diagram effectively captures the comprehensive workflow of the RPS Detector 

feature, highlighting the app’s user-centric design and its focus on providing a practical tool 

for gesture recognition practice. The system’s operations—such as image processing, gesture 

classification, and result display—operate seamlessly in the background, ensuring an engaging 

and efficient user experience. 

 

Tutorial Page Activity Diagram 

 

Figure 4.3.3 Tutorial Page Activity Diagram 

The Tutorial Activity Diagram illustrates the educational workflow within the Rock-Paper-

Scissors Real-time Object Detection App, designed to onboard users and enhance their 
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understanding of the gesture recognition system and gameplay mechanics. The diagram details 

the sequential steps of user interaction and system guidance, highlighting the app’s 

commitment to user education and flexibility. 

The process begins with an initial decision point, First Time? which determines the user’s 

onboarding path. If "Yes," indicating a first-time user, the system automatically initiates the 

Tutorial; if "No," experienced users can opt to Skip Tutorial and proceed directly to the Home 

Page. This ensures a tailored experience for both new and returning users. For those entering 

the tutorial, the system presents a structured sequence of instructional steps. 

The tutorial comprises four key screens: Step 1: Welcome, which introduces the game concept 

and camera-based gesture detection; Step 2: How to Play, providing gameplay rules and 

mechanics; Step 3: Show Move with Hand, demonstrating proper hand positions for rock, paper, 

and scissors with visual examples; and Step 4: Track Progress, offering tips on monitoring 

performance and navigating the app. Users progress through these screens by selecting "Next," 

with the option to Skip at any point, allowing them to bypass remaining content and return to 

the Home Page. 

Upon completing the tutorial or selecting "Skip," the system navigates the user to the Go Home 

Page step, concluding the activity. The diagram effectively captures the tutorial’s user-centric 

design, ensuring new users are equipped with the knowledge to engage with the app, while 

respecting experienced users’ preference to bypass instruction. The system’s operations—such 

as screen navigation and content delivery—run smoothly in the background, fostering an 

intuitive and supportive learning experience. 
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4.4 Wireframe 

Home Page 

 

Figure 4.4.1 Home Page Wireframe 

The Home Page wireframe serves as the app’s entry point, offering users a clean and intuitive 

interface to navigate its core features. At the top, the app’s title, "Rock Paper Scissors," is 

displayed, followed by a circular placeholder for a graphic, intended to depict diverse hand 

gestures to reflect the game’s theme. Below this, four buttons are vertically aligned: "Play 

Game," "RPS Detector," "History," and "Tutorial." Each button is clearly labelled, enabling 

users to access gameplay, gesture detection practice, game history, or instructional content 

with ease. The minimalist design ensures that users of all experience levels can quickly 

understand and interact with the app’s primary functionalities. 
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Round Selection Page 

 

Figure 4.4.2 Round Selection Page Wireframe 

The Round Selection Page wireframe facilitates customization of the gameplay experience by 

allowing users to choose the number of rounds. The title "Select Number of Rounds" is 

displayed at the top, followed by a prompt, "How many rounds would you like to play?" Below 

this, three selectable options are presented as rectangular buttons: "1 Round," "3 Rounds," and 

"5 Rounds." A back arrow on the top left allows users to return to the Home Page. At the bottom, 

a "Start Game" button initiates the game once a selection is made. The layout is straightforward, 

ensuring users can easily tailor their gaming session while maintaining a smooth transition to 

the gameplay phase. 
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Play Game View Page 

  

Figure 4.4.3 Play Game View Page 

The Play Game View Page wireframe represents the core gameplay interface where users 

compete against the computer using hand gestures. The top displays the current round (e.g., 

"Round 1 of 1") alongside a pause button (timer icon) and scores ("Player: 0, Computer: 0"). A 

central rectangular area labelled "Camera Preview" shows the live camera feed, with a circular 

countdown timer indicating the time to prepare a gesture. Below this, a "Get Ready..." message 

prompts the user to position their hand. A back arrow on the top left allows users to exit to the 

previous screen. The design prioritizes real-time interaction, providing clear visual cues to keep 

users engaged during gameplay. 
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Game Summary Page 

 

Figure 4.4.4 Game Summary Page 

The Game Summary Page wireframe provides a comprehensive overview of the gameplay 

session’s outcome. The title "Game Summary" is displayed at the top, with a back arrow and a 

replay icon for navigation. A central box announces the result (e.g., "You Win!") with the final 

score (e.g., "2-1"). Below this, a table lists each round’s moves, with columns for "Round," 

"You," and "Computer," using icons to represent gestures (e.g., scissors for the player, paper 

for the computer). Two buttons at the bottom, "Play Again" and "Home," allow users to restart 

the game or return to the Home Page. The layout ensures users can review their performance 

and make informed choices for continued engagement. 
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Achievement Page 

 

Figure 4.4.5 Achievement Page 

The Achievement Page wireframe enables users to track their progress and performance history. 

Titled "Achievement," the page features a back arrow and a trash icon (for clearing history) at 

the top. The "Statistics" section displays key metrics: "Total Game" (e.g., 9), "Win Rate" (e.g., 

55.6%), "Player Wins" (e.g., 5), and "Computer Wins" (e.g., 3). Below this, a "Game History" 

list shows past games (e.g., "Game 9, May 06, 2025 - 17:46, WIN"), with expandable details 

for each game, including round-by-round breakdowns (e.g., "Round 1: ✂ vs 🖐, WIN"). A 

"View Summary" button provides further details. The design supports user motivation by 

offering a clear, organized view of their gaming journey. 
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Tutorial Page 

 

Figure 4.4.6 Tutorial Page 

The Tutorial Page wireframe guides users through the app’s mechanics, particularly for first-

time users. A back arrow and "Skip" option are positioned at the top, allowing users to exit 

early. A central square placeholder represents instructional content (e.g., text or visuals), with 

horizontal lines below it indicating text descriptions for each step. Navigation dots at the 

bottom (e.g., one filled, three empty) show progress through the tutorial’s four steps: Welcome, 

How to Play, Show Move with Hand, and Track Progress. The layout ensures users can easily 

follow the onboarding process while having the flexibility to skip if desired. 
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RPS Detector Page 

 

Figure 4.4.7 Detector Page 

The RPS Detector Page wireframe supports standalone gesture detection practice. Titled "RPS 

Detector," the page includes a back arrow for navigation. A central rectangular area labelled 

"Upload Your Image" serves as a placeholder for the camera feed or uploaded image. Below 

this, two buttons, "Take Photo" and "Pick from Gallery," allow users to capture or upload an 

image for gesture detection. The minimalist design focuses on usability, enabling users to test 

and refine their gestures with clear input options, ensuring an effective practice experience.
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CHAPTER 5 System Implementation 

 

5.1 Hardware Setup 

Description Specifications 

Model HP Laptop 15s 

Processor Intel Core i5- 1135G7 

Operating System Windows 11 

Graphic NVIDIA GeForce GT 930MX 2GB DDR3 

Memory 4GB DDR4 RAM 

Storage 1TB SATA HDD 

 

Description Specifications 

Model Huawei MAR-LX2 

Processor Hisilicon Kirin 710 

Operating System Android 9.0 (EMUI 9) 

Memory 6GB 

Storage 128GB 

Camera Triple camera – 24MP + 8MP + 2MP 

Front camera – 32MP 

 Table 5.1 List of Hardware 
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5.2 Software Setup 

Software Description 

Visual Studio Code 

(VS Code) 

A source-code editor developed by Microsoft, supporting 

debugging, embedded Git control, and extensions for Flutter/Dart 

development. 

Flutter An open-source UI software development kit created by Google for 

building natively compiled applications for mobile, web, and 

desktop from a single codebase. 

Dart A client-optimized programming language for apps on multiple 

platforms, used as the language for Flutter. 

Android Studio An official IDE for Android app development, providing tools for 

building, testing, and emulating Android apps. 

Python A high-level programming language used for scripting, data 

processing, and machine learning tasks. 

TensorFlow 

 

An open-source machine learning framework developed by Google 

for building and training ML models. 

OpenCV (cv2) 

 

A library of programming functions for real-time computer vision 

tasks, such as image processing. 

Google Colab 

 

A cloud-based Jupyter Notebook environment with free GPU 

support for machine learning tasks. 

Table 5.2: Software List 
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Visual Studio Code (VS Code) 

 

Figure 5.2.1 Visual Studio Code 

Visual Studio Code, developed by Microsoft, is a highly customizable source-code editor that 

supports a wide range of programming languages and tools. It offers features like an intelligent 

code editor with auto-completion, debugging support, and a rich ecosystem of extensions, 

making it a popular choice for Flutter and Dart development. VS Code also provides an 

integrated terminal for running commands and supports version control integration for 

managing projects [16]. In the RPS Detector project, VS Code is the primary IDE used for 

writing and managing the Flutter and Dart codebase. It facilitates coding with the help of Flutter 

and Dart extensions, which provide features like code snippets, syntax highlighting, and hot 

reload for rapid development. VS Code is also used to debug the app, ensuring that issues in 

navigation, game logic, or model integration are identified and resolved before testing on the 

emulator. 

 

Flutter 

 

Figure 5.2.2 Flutter 

Flutter is an open-source UI software development kit created by Google, designed for building 

natively compiled applications for mobile, web, and desktop from a single codebase. It 

provides a rich set of pre-designed widgets, tools for animations, and seamless integration with 

native device features like cameras and storage. Flutter supports a fast development cycle with 

its hot reload feature, allowing developers to see changes in real-time, and it ensures consistent 
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performance across platforms [17]. In the RPS Detector project, Flutter serves as the primary 

framework for developing the entire application. It is used to create the user interface, including 

screens like the Home Screen, Game Play Screen, Round Selection Screen, and Tutorial Screen. 

Flutter also handles the game logic, such as determining the winner of each round, and 

integrates with the device camera to capture hand gestures for real-time detection. Additionally, 

it enables the use of animations, such as confetti effects, to enhance the user experience when 

a player wins a game. 

 

Dart 

 

Figure 5.2.3 Dart 

Dart is a client-optimized programming language developed by Google, specifically designed 

for building apps on multiple platforms. It is the primary language used by Flutter and is known 

for its simplicity, support for asynchronous programming, and ability to create responsive user 

interfaces. Dart allows developers to write both the UI and the backend logic of an app in a 

single language, streamlining the development process. 

In this project, Dart is used to write the complete codebase of the RPS Detector app. It handles 

the logic for game mechanics, such as comparing the player’s gesture with the computer’s 

move to determine the winner in the Game Play Screen. Dart also manages state across screens 

using the provider package, integrates with the TensorFlow Lite model for gesture detection, 

and saves game history using shared_preferences. Its asynchronous features ensure smooth 

camera operations and model inference without freezing the app. 

 

 

 



CHAPTER 5 

41 

Bachelor of Information Systems (Honours) Digital Economy Technology 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

Android Studio  

 

Figure 5.2.4 Android Studio 

Android Studio is the official integrated development environment (IDE) for Android 

application development, provided by Google. It offers a comprehensive set of tools for coding, 

designing, testing, and debugging Android apps. Android Studio includes features like an 

intelligent code editor, a visual layout editor, a powerful emulator for testing apps on virtual 

devices, and performance profiling tools. It also supports a Gradle-based build system, making 

it easier to manage dependencies and build configurations for Android projects. 

In the RPS Detector project, Android Studio is used primarily to set up and run the Android 

Emulator for testing the app. It ensures that the app’s user interface, navigation flow, and 

camera functionality work seamlessly across different Android devices and screen sizes. 

Android Studio also helps in debugging the app, observing its performance, and ensuring that 

features like gesture detection and game animations function correctly before deployment. 

Additionally, it manages the Android SDK required by Flutter for building the app. 

 

Python 

 

Figure 5.2.5 Python 

Python is a versatile, high-level programming language widely used for scripting, data 

processing, and machine learning tasks. It is known for its readability, extensive library support, 

and ease of use, making it a popular choice for data science and AI projects. Python supports 
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libraries like TensorFlow, OpenCV, and NumPy, which are essential for tasks such as image 

processing and model training. 

In the RPS Detector project, Python is used to develop the machine learning model for gesture 

detection. It handles the preprocessing of the rock, paper, and scissors image dataset, including 

resizing and normalizing images for model training. Python scripts also train the TensorFlow 

model to classify gestures and convert the trained model into a TensorFlow Lite format for 

mobile use. This ensures that the app can detect hand gestures accurately in real-time. 

 

TensorFlow 

 

Figure 5.2.7 TensorFlow 

TensorFlow is an open-source machine learning framework developed by Google, designed for 

building and training machine learning models. It provides a flexible API for creating neural 

networks, including convolutional neural networks (CNNs), and supports training on large 

datasets with GPU acceleration. TensorFlow also includes tools for evaluating model 

performance and optimizing models for deployment. 

In this project, TensorFlow is used to create and train a CNN model for detecting rock, paper, 

and scissors gestures. The model is trained on a dataset of hand gesture images, achieving an 

accuracy of 92% as per the test report. TensorFlow processes the images, learns to classify 

gestures, and saves the trained model, which is later converted into a TensorFlow Lite format 

for integration into the Flutter app. 
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OpenCV (cv2) 

 

Figure 5.2.8 OpenCV 

OpenCV, also known as cv2 in Python, is a powerful library of programming functions for real-

time computer vision tasks. It provides tools for image and video processing, such as resizing, 

color conversion, and normalization, making it essential for preparing data for machine 

learning models. OpenCV is widely used in applications involving image recognition and 

object detection. 

In this project, OpenCV is used in Python to preprocess the rock, paper, and scissors gesture 

images. It resizes the images to 224x224, the input size required by the TensorFlow model, and 

normalizes the pixel values to ensure consistency. OpenCV helps prepare a clean and 

standardized dataset, which is critical for training an accurate gesture detection model. 

 

Google Colab  

 

Figure 5.2.9 Colab 

Google Colab is a cloud-based Jupyter Notebook environment provided by Google, allowing 

users to write and execute Python code directly in the browser without any local setup. It 

supports popular machine learning libraries like TensorFlow and OpenCV and provides free 

access to GPU and TPU acceleration, making it ideal for resource-intensive tasks. Colab also 
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integrates with Google Drive for easy storage and sharing of datasets and code [18]. In the RPS 

Detector project, Google Colab is optionally used as a platform for training the TensorFlow 

model, especially if local hardware lacks sufficient computational power. It leverages GPU 

acceleration to speed up the training of the CNN model on the gesture dataset. Colab also 

simplifies data management by allowing the dataset to be stored on Google Drive, ensuring 

easy access and collaboration during model development. 

 

5.3 Setting and Configuration 

5.3.1 Model Training Process for Rock-Paper-Scissors Detection 

This section outlines the step-by-step process of developing and training a model to detect 

Rock-Paper-Scissors (RPS) hand gestures using a convolutional neural network (CNN). The 

process includes setting up the environment, preparing the dataset, designing the model 

architecture, training the model, and evaluating its performance to ensure effective gesture 

recognition for real-time applications. 

 

a) Environment Setup 

 

Figure 5.3.1 Environment Setup 

The training environment was established using Google Colab, a cloud-based platform that 

provides GPU acceleration to support efficient computation for machine learning tasks. A new 

Colab notebook was created, and the runtime was reset to ensure a clean environment free from 

conflicts or residual data. Essential libraries were installed to facilitate model development: 
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TensorFlow (version 2.12.0), a robust ML framework described by Abadi et al., was selected 

for its compatibility with the tflite_flutter package (version ^0.11.0), which is used for mobile 

deployment [19]; matplotlib enabled plotting of performance graphs; seaborn enhanced 

visualization of the confusion matrix; and scikit-learn provided tools for evaluating 

performance metrics. This setup created a solid foundation for developing, training, and 

analysing the RPS detection model. 

 

b) Data Collection and Preprocessing 

To facilitate effective model training, validation, and testing, the dataset was divided into three 

distinct subsets: training, validation, and testing. The training set is utilized to train the model, 

the validation set aids in fine-tuning hyperparameters, and the testing set is reserved for 

assessing the model's performance on unseen data. The dataset was sourced from Kaggle, 

initially comprising 840 images per class (rock, paper, scissors) for training (2,520 total), along 

with separate test and validation sets. To enhance validation robustness, a custom validation 

set was created by relocating 100 images per class (300 images total) from the training set to a 

new directory named validation_new. This adjustment reduced the training set to 740 images 

per class (2,220 total). The test set remained unchanged with 124 images per class (372 total). 

The original validation set was deemed insufficient due to its limited size and variability, 

prompting the creation of the new validation set to better represent real-world gesture variations. 

OpenCV, as detailed by Bradski and Kaehler, was used to resize images to 224x224 pixels and 

normalize pixel values, ensuring high-quality training data [20]. This balanced distribution 

ensures equal representation of each gesture, minimizing bias and enhancing accuracy in real-

time recognition. 

 

Dataset Rock Paper Scissors Total 

Train 740 740 740 2220 

Test 124 124 124 372 

Validation 100 100 100 300 

Total    2892 

Table 5.3.1 Dataset Details 
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Set Images Percentage (%) 

Train set 2220 76.76 

Test set 372 12.86 

Validation set 300 10.38 

Total 2892 100 

 

Table 5.3.2 Data Distribution Summary 

The training set constitutes the majority of the dataset (76.76%) to ensure sufficient data for 

model learning, while the validation set (12.86%) supports hyperparameter tuning, and the test 

set (10.37%) provides a robust evaluation on unseen data. The slight overlap in percentages 

(due to the custom validation set creation) reflects the adjusted distribution, with the total 

number of images summing to 2,892. 

 

Figure 5.3.2 Rock Paper Scissor Image Inside the Dataset 

 

Preprocessing and Augmentation 

Image preprocessing standardized all images to a resolution of 224x224 pixels to align with 

the input requirements of the MobileNetV2 architecture. A batch size of 32 was adopted for 

efficient processing, and a "categorical" class mode was used for multi-class classification. To 

enhance model robustness, the training data underwent augmentation, incorporating rotations 

(up to 20 degrees), width and height shifts (within a 0.2 range), shear (0.2 range), zoom (0.2 
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range), horizontal flips, and brightness adjustments (between 0.8 and 1.2). The validation and 

test data were rescaled without augmentation to maintain consistency. Pixel values were scaled 

to the range [0, 2] by dividing by 127.5 and then shifted to [-1, 1] by subtracting 1.0, ensuring 

compatibility with the preprocessing pipeline implemented in the Flutter application. This 

comprehensive approach to data collection and preprocessing, supported by the balanced and 

diverse dataset, provides a solid foundation for training the CNN model, enabling effective 

gesture recognition across varied real-world conditions. 

 

c)  CNN Model Architecture 

 

 Figure 5.3.3 Hyperparameter on CNN Model 

The RPS detection model was built using MobileNetV2, a lightweight convolutional neural 

network (CNN) pre-trained on ImageNet, as the base architecture. This model processes input 
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images of 224x224x3 dimensions (height, width, and RGB channels). A custom classification 

head was added, consisting of a GlobalAveragePooling2D layer to reduce spatial dimensions, 

followed by a Dense layer with 128 units and ReLU activation for feature extraction. A Dropout 

layer with a 0.5 rate was included to prevent overfitting, and a final Dense layer with 3 units 

and softmax activation was implemented to classify the gestures into "rock," "paper," or 

"scissors." Initially, all layers of MobileNetV2 were frozen to leverage pre-trained weights, 

with fine-tuning later applied to unfreeze layers beyond the 100th layer to improve model 

performance on the specific dataset. 

 

d)  Model Training  

 

 

Figure 5.3.4 Model Training 
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Parameter Value 

Number of Epochs 20 (initial) + 10 (fine-tuning) 

Batch Size 32 

Learning Rate 0.001 (initial), 0.0001 (fine-tuning) 

Optimizer Adam 

Loss Function Categorical Crossentropy 

Dropout Rate 0.5 

 

Table 5.3.3 Training Parameters 

The training process was divided into two distinct phases to optimize model performance. The 

initial training phase spanned 20 epochs, utilizing a batch size of 32, the Adam optimizer with 

a learning rate of 0.001, categorical crossentropy as the loss function, and a dropout rate of 0.5. 

During this phase, training accuracy increased from 65% to 93%, and validation accuracy 

reached 92%. The fine-tuning phase involved 10 additional epochs, where layers beyond the 

100th layer of MobileNetV2 were unfrozen to allow adaptation to the specific dataset. The 

learning rate was reduced to 0.0001 to ensure stable convergence. This phase further improved 

training accuracy to 94.5% and validation accuracy to 99.67%, with training loss decreasing 

from 0.8 to 0.12 and validation loss from 0.75 to 0.0237. The significant improvement in 

validation accuracy was due to the unfreezing of deeper layers, allowing the model to better 

capture gesture-specific features, and additional data augmentation to handle edge cases. These 

trends were visualized through graphs plotted over the total 30 epochs, with a marker at epoch 

20 indicating the transition to fine-tuning. 
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e)  Model Evaluation and Results 

 

 

Figure 5.3.5 Training Accuracy and Loss Graphs 

The model's performance was assessed using the validation set of 300 images, achieving a 

validation accuracy of 99.67% and a loss of 0.0237, indicating excellent generalization to 

unseen data. A confusion matrix was generated, revealing 100 correct classifications for 

"paper," 100 for "rock," and 99 for "scissors," with a single misclassification of "scissors" as 

"paper," likely due to visual similarities under certain lighting conditions. The classification 

report provided detailed metrics: 

 

  

Figure 5.3.6 Model Performance Metrics and Confusion Matrix 
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The model’s performance was evaluated on the 300-image validation set, achieving a validation 

accuracy of 99.67% and a loss of 0.0237, demonstrating strong generalization to unseen data. 

A confusion matrix showed 100 correct classifications for "paper," 100 for "rock," and 99 for 

"scissors," with one "scissors" misclassified as "paper," likely due to visual similarities. The 

classification report provided the following metrics: 

• Paper: Precision 1.00, Recall 0.99 

• Rock: Precision 0.99, Recall 1.00 

• Scissors: Precision 1.00, Recall 0.99 

• Overall Accuracy: 99.67% 

These results confirm the model’s high reliability across all gesture classes, making it well-

suited for real-time gesture recognition in a Flutter application. 

 

Conclusion 

The fine-tuned MobileNetV2-based RPS model achieved a validation accuracy of 99.67%, 

showcasing its effectiveness in classifying "rock," "paper," and "scissors" gestures. The fine-

tuning process improved accuracy by 1.5%, successfully adapting the pre-trained model to the 

specific dataset. The model’s lightweight architecture and high accuracy make it ideal for 

integration into a Flutter application, where it will be converted to TensorFlow Lite format for 

efficient real-time gesture detection on mobile devices. The single misclassification highlights 

a minor area for improvement, which could be addressed in future work by incorporating a 

dedicated test set and additional data augmentation to handle edge cases, further enhancing 

performance for practical use. 

 

5.3.2 Build Rock-Paper-Scissors Real-time Detection App 

a)  Install Flutter and Dart 
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Figure 5.3.7 Flutter Doctor Output 

The development environment for the RPS real-time detection app was initialized by installing 

Flutter and Dart, the core tools for cross-platform app development. Flutter serves as the 

framework for creating the application's user interface and logic, while Dart acts as the 

programming language to implement the app's functionality. The installation was verified using 

the flutter doctor command, ensuring all dependencies and tools were correctly configured for 

development. 

 

b) Configuration of Android Studio 

 

 

 Figure 5.3.8 Connected Physical Device Listed 

Android Studio was configured to provide the Android SDK, facilitating testing of the app on 

a physical device, the Huawei MAR-LX2. This device was selected over an emulator to ensure 

accurate evaluation of real-time gesture detection using the camera, reflecting real-world 

lighting and hardware conditions. The physical device was connected and listed within Android 

Studio, enabling seamless testing and debugging. 

 



CHAPTER 5 

53 

Bachelor of Information Systems (Honours) Digital Economy Technology 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

 

 

 

 

 

c) Create a Flutter Project 

 

 

Figure 5.3.9 Create a Flutter Project 

A new Flutter project named rps_detector was created by executing the command flutter create 

rps_detector in the terminal. This step established the project structure, including the necessary 

files and directories for developing the app's interface and logic. 
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d)  Convert model to TensorFlow Lite 

 

 

Figure 5.3.10 Convert model to TensorFlow Lite 

The previously trained CNN model was converted to the TensorFlow Lite format (model.tflite) 

to enable deployment on mobile devices. This process was performed in Google Colab, where 

the model was optimized and saved alongside a labels.txt file containing the class labels 

("paper," "rock," "scissors") corresponding to the model's output indices. 

 

e) Import the Model into Flutter Project 

 

  

Figure 5.3.11 Import the Model into Flutter Project 

The converted model.tflite and labels.txt files were imported into the Flutter project by creating 

an assets folder at the project root (rps_detector/assets/) and copying the files into it. The 

pubspec.yaml file was updated to include these assets under the flutter: assets section, ensuring 

the app could access the model and labels during runtime. 
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f)  Model Integration in ModelService.dart 

 

Figure 5.3.12 Model Integration in ModelService.dart 

The ModelService class was implemented in the model_service.dart file to integrate the 

TensorFlow Lite model into the app. The class loaded the model using 

Interpreter.fromAsset('model.tflite') and read the labels from labels.txt. The classifyImage 

method was developed to preprocess captured images—resizing them to 224x224 pixels and 

normalizing values to the [-1, 1] range—before running inference with a 70% confidence 

threshold. The integration was tested on the physical Huawei MAR-LX2 device by launching 

the app and capturing real hand gestures via the camera, verifying the model's functionality in 

a real-time context. 
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5.4 System Operation (with Screenshot) 

Application Icon and Name 

 

Figure 5.4.1 RPS Game Logo 

The application icon and name for the Rock-Paper-Scissors (RPS) game are shown in Figure 

5.4.1 as the RPS Game Logo. The icon has a simple design with symbols for rock, paper, and 

scissors, showing what the game is about in a clear and fun way. The name "RPS Game" is 

short and easy to understand, telling users that this is a game about playing Rock-Paper-

Scissors. Together, the icon and name make it easy for users to recognize the app and 

understand its purpose, encouraging them to try it out. 

 

Home Page 

 

 Figure 5.4.2 Home Page 
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The Home Page serves as the central hub of the application, providing players with a clear 

and intuitive interface to access the game's core functionalities. Upon launching the app, 

users are greeted with a visually appealing design featuring a graphic of diverse hands 

forming rock, paper, and scissors gestures, symbolizing the game's theme of inclusivity and 

competition. Below this graphic, a welcoming message, "Rock Paper Scissors: Choose an 

Option to Start!", encourages players to engage with the app. 

The page offers four primary options, each represented by a button: 

• Play Game: Initiates the gameplay experience, directing the player to the round 

selection process. 

• RPS Detector: Allows users to test the hand gesture detection feature independently, 

ideal for practice or experimentation. 

• Tutorial: Guides new players through the game mechanics and rules, ensuring they 

understand how to play. 

• Achievement: Displays the player's game history, statistics, and performance metrics, 

fostering a sense of progression and motivation. 

Players interact with this page by selecting one of the buttons, which seamlessly transitions 

them to the corresponding section of the app. The Home Page's simplicity ensures that users 

of all experience levels can navigate the application effortlessly, making it an effective entry 

point for both novice and returning players. 
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Tutorial Page 

 

 

Figure 5.4.3 Tutorial Page 

 

The Tutorial Page is designed to onboard players, particularly those unfamiliar with the game 

or its camera-based mechanics, by providing a step-by-step guide to the gameplay experience. 

This page is presented as a series of informational screens, each focusing on a key aspect of 

the game, ensuring that players are well-prepared before they begin. 

The tutorial consists of four distinct steps: 

1. Welcome to the RPS Game: This screen introduces the concept of playing Rock-

Paper-Scissors using hand gestures detected by the device's camera. It informs players 

that they will compete against a computer opponent and can track their wins throughout 

the game. 

2. Show Your Move: Players are instructed to use the camera to capture their hand 

gestures, with an emphasis on ensuring the gesture is clear, well-lit, and properly 

centered for accurate detection. Visual examples of rock, paper, and scissors gestures 

accompany the instructions. 
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3. Play Your Way: This step explains the flexibility of the game, allowing players to either 

play multiple rounds against the computer or test their gestures using the RPS Detector 

mode. It also highlights the option to pause and exit during gameplay. 

4. Track Your Progress: The final screen encourages players to monitor their 

performance through the Achievement section, where they can view game history, 

replay past games, or clear their records if desired. 

Players can navigate through the tutorial by tapping the "Next" button on each screen, with the 

final screen offering a "Get Started" button to begin the game. Additionally, a "Skip" option is 

available at the top-right corner, allowing experienced users to bypass the tutorial and return to 

the Home Page. This page ensures that players are equipped with the knowledge needed to 

engage with the game effectively, enhancing their overall experience 
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Play Game: Select Number of Round Page 

 

Figure 5.4.4 Select Number of Round Page 

Before starting the game, players are directed to the Select Number of Rounds Page, where 

they can customize the duration of their gameplay session. This page is crucial for providing 

players with control over their gaming experience, allowing them to choose a session length 

that suits their preference. 

The interface presents four options for the number of rounds: 1, 3, 5, or a custom number. Each 

option is displayed as a selectable tile, with a checkmark indicating the currently chosen option. 

By default, the 1-round option is selected, but players can tap on any other option to change 

their selection. The custom option, while visible, appears to be a placeholder for future 

implementation, as the current design does not include a mechanism to input a specific number. 

Once the desired number of rounds is selected, players tap the "Start Game" button to proceed. 

This action transitions them to the Hand Detection Page, where the actual gameplay begins. 

The Select Number of Rounds Page ensures that players can tailor the game to their preferred 

intensity, whether they want a quick single-round match or a longer, more competitive session. 
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Play Game: Hand Detection Page 

 

  

Figure 5.4.5 Hand Detection Page 

The Hand Detection Page is the heart of the gameplay experience, where players engage in 

real-time competition against the computer using hand gestures. This page leverages the 

device's camera and object detection technology to create an interactive and dynamic gaming 

environment. 

Upon entering this page, players see a live camera feed displayed prominently in the center of 

the screen, showing their hand as they position it in front of the camera. Above the feed, a 

header displays the current round number (e.g., "Round 1 of 1") and the scores for both the 

player and the computer, initially set to 0. A countdown timer, represented as a circular progress 

indicator, prompts the player to prepare their gesture within a short time window. 

Below the camera feed, icons for rock, paper, and scissors are shown, serving as a visual 

reminder of the possible gestures. The system uses a machine learning model to analyze the 

camera feed and detect the player's gesture, classifying it as rock, paper, or scissors. 

Simultaneously, the computer randomly selects its move, ensuring a fair competition. 

A pause button, located at the top-right corner, allows players to temporarily halt the game. 

Upon tapping this button, a dialog appears with two options: "Resume" to continue the game, 

or "Exit" to abandon the current session and return to the Home Page, with a warning that 

progress will not be saved. This feature provides players with flexibility, allowing them to take 

breaks or exit if needed without losing the ability to resume their game. 
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Once the player's gesture is detected and the computer's move is determined, the system 

transitions to the Result Page to display the outcome of the round. The Hand Detection Page's 

real-time interaction and intuitive design make it the most engaging part of the game, 

immersing players in a seamless competitive experience. 

 

Play Game: Result Page 

   

Figure 5.4.6 Result Page 

 

The Result Page provides immediate feedback to players after each round, displaying the 

outcome of their competition against the computer. This page is critical for maintaining player 

engagement, as it informs them of their performance and prepares them for the next round or 

the end of the game. 

The interface shows the current round number and the updated scores for both the player and 

the computer. Below the scores, the player's detected gesture and the computer's chosen move 

are displayed side by side, each accompanied by the corresponding emoji (rock, paper, or 

scissors). A prominent message, styled as a colored button, indicates the result of the round: 

"You Win!" in green if the player wins, "Tie!" in yellow if the round is a draw, or "Computer 
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Wins!" in red if the computer wins. For example, if the player shows rock and the computer 

shows scissors, the player wins, as rock beats scissors. 

At the bottom of the screen, a message reads "Processing to next round shortly...," indicating 

that the app will automatically transition to the next round after a brief delay. If the current 

round is the final one, the system instead navigates to the Game Summary Page. The Result 

Page ensures that players receive clear and immediate feedback, maintaining the game's 

momentum and excitement. 

 

Play Game: Game Summary Page 

   

Figure 5.4.7 Game Summary Page 

The Game Summary Page concludes the gameplay session by providing a comprehensive 

overview of the player's performance across all rounds. This page is designed to celebrate the 

player's achievements, reflect on their gameplay, and encourage further engagement with the 

app. 

The page begins with a bold headline announcing the overall result: "You Win!" if the player 

has more wins, "It's a Tie!" if the scores are equal, or "Computer Wins!" if the computer has 

more wins. Confetti animations enhance the celebratory feel, particularly when the player wins. 

Below the headline, the total scores for the player and computer are displayed, along with the 

date, time, and total number of rounds played. 
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A detailed breakdown of each round follows, showing the player's and computer's moves for 

every round, along with the outcome (win, tie, or loss). For instance, a round where the player 

chose paper and the computer chose rock would be marked as a win for the player. This 

summary allows players to review their performance and understand the flow of the game. 

At the bottom of the page, two buttons offer players the option to either "Play Again," which 

restarts the game by returning to the Select Number of Rounds Page, or "Back to Home," which 

navigates back to the Home Page. The Game Summary Page provides closure to the gameplay 

session while motivating players to continue engaging with the app through additional matches. 

 

Achievement Page 

   

Figure 5.4.8 Achievement Page 

 

The Achievement Page is a dedicated section for players to monitor their progress and 

performance over time, fostering a sense of accomplishment and encouraging continued play. 
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This page is accessible from the Home Page and serves as a historical record of the player's 

gaming journey. 

The page is divided into two main sections: statistics and game history. The statistics section 

displays key metrics, including the total number of games played, the player's win rate 

(calculated as the percentage of games won), the number of player wins, and the number of 

computers wins. A circular progress indicator visually represents the win rate, providing a quick 

and intuitive overview of the player's success. 

Below the statistics, the game history lists all past games in chronological order, with each 

entry showing the date, time, total rounds, and result (win, tie, or loss). Tapping on a game 

expands the entry to reveal a round-by-round breakdown, similar to the Game Summary Page, 

allowing players to review their moves and outcomes in detail. A "View Summary" button 

within each expanded entry provides a more detailed view, potentially navigating to a dedicated 

summary screen. 

A "Clear All History" button at the top-right corner allows players to reset their game history. 

Tapping this button opens a confirmation dialog warning that the action cannot be undone, with 

options to "Cancel" or "Clear All." If the player confirms, all game records are deleted, and the 

page updates to reflect the cleared state. The Achievement Page empowers players to reflect 

on their performance, set goals, and maintain engagement with the game over time. 

 

 

 

 

 

 

 

 

 

- 
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RPS Detector Page 

    

Figure 5.4.9 RPS Detector Page 

The RPS Detector Page offers a standalone feature for players to test and refine their hand 

gesture recognition skills outside of the competitive gameplay context. This page is particularly 

useful for players who want to practice their gestures or experiment with the detection 

technology. 

The interface displays a camera feed or an uploaded image in the center of the screen, 

depending on the player's input method. Two buttons, "Take Photo" and "Pick from Gallery," 

allow players to capture a new image using the device's camera or select an existing photo from 

their gallery, respectively. Once an image is captured or selected, the system processes it using 

the same machine learning model employed in the gameplay, identifying the gesture as rock, 

paper, or scissors. 

The detection result is displayed below the image, showing the identified gesture and the 

confidence level of the detection like "Detected: rock (100.00%)". This confidence score 

provides players with feedback on the clarity and accuracy of their gesture, helping them adjust 

their hand positioning for better recognition in the actual game. 

The RPS Detector Page serves as a valuable tool for players to familiarize themselves with the 

gesture detection system, troubleshoot any recognition issues, and build confidence before 

engaging in competitive play. Its simplicity and focus on practice make it an essential 

component of the app for both new and experienced users. 
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5.5 Implementation Issues and Challenges 

Gesture Recognition Model Accuracy and Data Quality 

One of the primary challenges was achieving high accuracy in gesture recognition using the 

TensorFlow Lite model. The convolutional neural network (CNN) required a diverse and well-

labeled dataset of rock, paper, and scissors gestures to achieve the reported 92% accuracy. 

Collecting or sourcing such a dataset (e.g., via Kaggle) was time-consuming, and initial 

datasets often included inconsistencies, such as variations in lighting, background noise, or 

hand orientations. Preprocessing the images using OpenCV to resize them to 224x224 and 

normalize pixel values to [-1, 1] was complex, as improper normalization led to reduced model 

performance. Additionally, converting the TensorFlow model to TensorFlow Lite format 

introduced optimization challenges, as quantization occasionally impacted accuracy, requiring 

multiple iterations to balance model size and performance for mobile deployment. 

 

Real-time Camera Integration and Performance 

Integrating the device camera for real-time gesture detection posed significant implementation 

hurdles. The camera package in Flutter required careful initialization of the CameraController 

in the GamePlayScreen, and managing camera permissions using permission_handler was 

error-prone, especially on older Android versions. The camera feed needed to capture frames 

continuously for inference, but this process was resource-intensive, leading to lag or crashes 

on the Android Emulator if the frame rate was not optimized. Simulating camera input in the 

emulator was also challenging, as it required a virtual camera or webcam, which sometimes 

resulted in inconsistent frame quality. On real devices, varying camera hardware specifications 

affected detection performance, necessitating adjustments to image preprocessing and 

inference logic in the ModelService class to ensure compatibility. 

 

Model Integration with Flutter 

Integrating the TensorFlow Lite model into the Flutter app using the tflite_flutter package was 

a complex process. Loading the model in the ModelService class required careful handling of 
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file paths via path_provider, and errors in asset declaration in pubspec.yaml (e.g., missing 

model.tflite or labels.txt) caused runtime failures. Preprocessing images in Dart for inference—

resizing to 224x224 and normalizing to [-1, 1]—mirrored the Python preprocessing pipeline, 

but discrepancies in implementation led to incorrect predictions. The inference process also 

needed optimization, as initial versions were too slow for real-time detection, requiring 

adjustments to the confidence threshold (70%) and input processing to achieve acceptable 

performance on mobile devices. 

 

Dependency Management and Compatibility 

Managing dependencies in the Flutter project was another challenge, as the app relied on 

multiple packages (e.g., camera, tflite_flutter, provider). Version conflicts between packages 

occasionally arose, such as between camera and permission_handler, requiring careful 

selection of compatible versions in pubspec.yaml. The tflite_flutter package also required a 

minimum Android SDK of 21, necessitating updates to the build.gradle file, which initially 

caused build failures due to Gradle version mismatches. Ensuring all dependencies worked 

seamlessly with Flutter’s latest version (as of May 2025) demanded frequent updates and 

testing, particularly after running flutter pub get. 

 

5.6 Concluding Remark 

The implementation of the Rock-Paper-Scissors real-time object detection game demonstrates 

a successful integration of hardware and software components, leveraging a robust setup 

comprising an HP Laptop 15s and Huawei MAR-LX2 device, alongside key tools such as 

Visual Studio Code, Flutter, Dart, Android Studio, Python, TensorFlow, OpenCV, and Google 

Colab. The development process effectively utilized a MobileNetV2-based convolutional 

neural network, achieving a 92% validation accuracy for gesture detection after meticulous 

training and fine-tuning. Despite challenges in model accuracy, real-time camera integration, 

model deployment, and dependency management, these were systematically addressed through 

data preprocessing, optimization of camera performance, and careful configuration of the 

Flutter environment. This chapter highlights the feasibility of deploying advanced machine 

learning models on mobile platforms, providing a foundation for future enhancements in 

gesture recognition accuracy and app performance.
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CHAPTER 6 System Evaluation and Discussion 

6.1 System Testing and Performance Metrics 

This section evaluates the overall functionality and performance of the Rock-Paper-Scissors 

(RPS) real-time detection game app. The system testing process employs functional testing to 

ensure that all core features, including the Home Page, Hand Detection Page, Result Page, 

Game Summary Page, Achievement Page, and RPS Detector, operate as intended. The testing 

verifies that users can navigate between screens, detect gestures accurately in real-time, receive 

immediate feedback, save game history, and view performance statistics. Performance metrics 

are used to measure the app’s gesture recognition accuracy, response time, and resource 

efficiency, providing insights into its robustness and identifying areas for enhancement. 

 

Metric Description Measurement Method 

Gesture Recognition 

Accuracy 

Compares detected gestures 

(rock, paper, scissors) 

against performed gestures 

using TensorFlow Lite 

confidence scores. 

Compared detected gestures 

with actual gestures using 

confidence scores from the 

TensorFlow Lite model. 

Response Time 

 

Measures the duration from 

gesture input to feedback 

display. 

 

Timed using device logs and 

stopwatch for UI navigation 

(e.g., screen transitions) and 

gesture detection (e.g., from 

gesture capture to result 

display). 

Resource Efficiency 

 

Monitors CPU and memory 

usage during gameplay. 

Evaluated system resource 

usage to confirm the app 

runs smoothly without lag. 

Table 6.1.1 Performance Metrics 
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6.2 Testing Setup and Result 

The testing regimen was conducted on a Huawei MAR-LX2 mobile device, utilizing the 

developed Flutter application integrated with a TensorFlow Lite-converted MobileNetV2 

model. The device’s camera facilitated real-time gesture detection, while the gallery option 

supported offline image analysis. The testing process encompassed a series of controlled 

experiments to evaluate each functional component, with results meticulously recorded to 

validate the system’s performance. 

 

6.2.1 Home Page Testing 

The Home Page is the user’s first point of contact with the application and serves as the central 

navigation hub. It allows users to quickly access different sections of the app including the 

gameplay, RPS Detector, Tutorial, and Achievement pages. This test validates whether all 

buttons on the Home Page are functional and direct the user to their respective destinations 

promptly and correctly. 

No  Test Case Input Expected 

Output 

Actual 

Output 

Response 

Time 

Remark 

 

1 Navigate to 

Home Page 

Launch the app Display 

Home Page 

with logo and 

options 

Displayed 

as expected 

1 second PASS 

2 Click Play 

Game button 

Tap "Play 

Game" button 

Redirect to 

Round 

Selection 

Page 

Redirected 

as expected 

1 second PASS 

3 Click RPS 

Detector 

Tap "RPS 

Detector" 

button 

Redirect to 

RPS Detector 

Page 

Redirected 

as expected 

1 second PASS 

4 Click Tutorial 

button 

Tap "Tutorial" 

button 

Display 

tutorial slides 

Displayed 

as expected 

1 second PASS 
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5 Click 

Achievement 

Tap 

"Achievement" 

button 

Redirect to 

Achievement 

Page 

Redirected 

as expected 

1 second PASS 

Table 6.2.1 Home Page Testing 

 

6.2.2 Hand Detection Page Testing 

The Hand Detection Page is pivotal for real-time gameplay, facilitating gesture recognition and 

interaction. This testing phase evaluated the accuracy of gesture detection, the functionality of 

the countdown timer, and the efficacy of the pause feature. The objective was to ensure that the 

system accurately interprets user inputs and maintains gameplay continuity under controlled 

conditions. 

No  Test Case Input Expected 

Output 

Actual 

Output 

Response 

Time 

Remark 

 

1 Perform 

"rock" 

gesture 

Show "rock" 

gesture 

Detect "rock" 

(≥70% 

confidence) 

Detected 

"rock" 

(100%) 

1 second PASS 

2 Multiple 

gestures 

Show "paper" 

then "scissors" 

Detect both 

with high 

confidence 

Paper 

(100%), 

Scissors 

(99.02%) 

1 second PASS 

3 Pause during 

round 

Tap pause 

button 

Display pause 

dialog 

Displayed 

as expected 

1 second PASS 

4 Resume game Tap "Resume" Resume 

gameplay 

with 

countdown 

Functioned 

as expected 

1 second PASS 

5 Exit to home Tap "Exit" Return to 

Home Page, 

discard 

progress 

Redirected 

as expected 

1 second PASS 

Table 6.2.2 Hand Detection Page Testing 
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Here is the actual output of test case 1 and 2 to test the “rock”, “paper”, “scissors” gestures 

detection: 

 

 

 

Figure 6.2.2 Test Case 1 and 2 Actual Output  

 

6.2.3 Result Page Testing 

The Result Page provides immediate feedback at the end of each round, informing the user 

whether they have won, lost, or tied against the computer. This section tests the clarity and 

correctness of the results displayed and the smooth transition to the next round of gameplay. 

No  Test Case Input Expected 

Output 

Actual 

Output 

Response 

Time 

Remark 

 

1 Result: Win Player: rock, 

Computer: 

scissors 

Display "You 

Win!" with 

confetti 

Displayed 

as expected 

1 second PASS 

2 Result: Tie Player: rock, 

Computer: 

rock 

Display 

"Tie!" 

Displayed 

as expected 

1 second PASS 

3 Result: Lose Player: rock, 

Computer: 

paper 

Display 

"Computer 

Wins!" 

Displayed 

as expected 

1 second PASS 
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4 Next round Wait after 

result 

Transition to 

next round 

Transitioned 

smoothly 

1 second PASS 

Table 6.2.3 Result Page Testing 

 

 

Figure 6.2.3 Result Page Testing 2 Actual Output  

 

6.2.4 Game Summary Page Testing 

The Game Summary Page accurately reflected game outcomes and facilitated smooth 

navigation, with all tests completing within one second. The inclusion of round-by-round 

details enhances user understanding. 

 

No  Test Case Input Expected 

Output 

Actual 

Output 

Response 

Time 

Remark 

 

1 View win 

summary 

Finish a 3-

round game 

(win 2–1) 

Display win 

message and 

details 

Displayed 

as expected 

1 second PASS 
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2 View tie 

summary 

Finish a 1-

round game (tie 

1–1) 

Display tie 

message and 

details 

Displayed 

as expected 

1 second PASS 

3 View loses 

summary 

Finish a 3-

round game 

(lose 0–2) 

Display loss 

message and 

details 

Displayed 

as expected 

1 second PASS 

4 Replay game Tap "Play 

Again" on 

summary 

 

Return to 

Round 

Selection 

Page 

Returned as 

expected 

1 second PASS 

5 Back to home Tap "Back to 

Home" on 

summary 

Return to 

Home Page 

Returned as 

expected 

1 second PASS 

Table 6.2.4 Game Summary Page Testing 

 

 

Figure 6.2.4 Game Summary Page Actual Output 
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6.2.5 Achievement Page Testing 

The Achievement Page leverages persistent data storage to track and display game history and 

statistics. This testing phase evaluated the reliability of data retrieval and the functionality of 

history management features, ensuring long-term user engagement. 

 

No  Test Case Input Expected 

Output 

Actual 

Output 

Response 

Time 

Remark 

 

1 View 

statistics 

Open 

Achievement 

Page 

Show game 

stats 

9 games, 

55.6% win 

rate 

1 second PASS 

2 View history Scroll history Show games 

with 

dates/outcomes 

Displayed 4 

games 

1 second PASS 

3 Clear 

history 

Tap "Clear All 

History" 

Show 

confirmation 

dialog 

Displayed 

confirmation 

1 second PASS 

4 Confirm 

clear 

Tap "Clear 

All" 

Reset statistics 

and history 

All data 

cleared 

1 second PASS 

5 View 

summary 

Tap "View 

Summary" 

Redirect to 

Game 

Summary Page 

Redirected 

correctly 

1 second PASS 

Table 6.2.5 Achievement Page Testing 
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Figure 6.2.5 Achievement Page Actual Output 

 

6.2.6 RPS Detector Page Testing 

The RPS Detector page provides a standalone gesture detection tool and tests its ability to 

analyze camera or gallery images. This phase verified the accuracy of the gesture classification 

and the availability of input options. 

 

No  Test Case Input Expected 

Output 

Actual 

Output 

Response 

Time 

Remark 

 

1 Detect from 

camera 

Take photo of 

"rock" gesture 

Detect "rock" 

(high 

confidence) 

100% 

confidence 

1 second PASS 

2 Detect from 

gallery 

Pick "paper" 

photo 

Detect "paper" 

(high 

confidence 

98.98% 

confidence 

1 second PASS 

3 Detect 

scissors 

Take photo of 

"scissors" 

Detect 

"scissors" 

98.62% 

confidence 

1 second PASS 
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(high 

confidence) 

Table 6.2.6 RPS Detector Page Testing 

 

 

Figures 6.2.6 RPS Detector Page Actual Output 

 

6.3 Project Challenges 

a) Gesture Recognition Accuracy 

One of the main technical difficulties was achieving high gesture recognition accuracy using 

the MobileNetV2 model converted to TensorFlow Lite. Although the model was trained with a 

reasonably diverse dataset, real-world variability such as different hand sizes, skin tones, 

backgrounds, and lighting conditions often affected the model’s ability to consistently and 

confidently classify gestures as rock, paper, or scissors. Jain et al. note that real-world 

variability in lighting and hand orientations can degrade gesture recognition accuracy, 

necessitating robust preprocessing and model tuning [21]. Ensuring reliable performance under 

these varying conditions required careful adjustments to the image preprocessing steps, 

including cropping, resizing, and normalizing the input from the device’s camera.  

 

b) Real-Time Performance 
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Another major challenge was ensuring real-time performance on the Huawei MAR-LX2 

mobile device. The app had to analyse camera input and provide immediate feedback without 

noticeable delay. Jain et al. emphasize that real-time gesture recognition requires optimized 

inference to minimize latency, particularly on mobile devices [21]. To achieve this, it was 

necessary to optimize the TensorFlow Lite inference process, reduce the resolution of the video 

feed when appropriate, and minimize latency from the moment a gesture was shown to the 

moment the result appeared on screen. This required a fine balance between maintaining model 

accuracy and keeping the detection fast enough to support the interactive nature of the game. 

Any lag could negatively impact the user experience and compromise the real-time feel of the 

gameplay. 

 

c) UI Responsiveness 

Maintaining UI responsiveness throughout the app was equally important. The user interface 

needed to remain fluid and responsive even during intensive tasks such as gesture detection, 

countdown animations, and result displays. This was achieved by using asynchronous 

programming techniques in Flutter and managing processing tasks on separate threads to 

prevent the main UI from freezing. Smooth transitions between screens, instant feedback based 

on gesture results, and responsive controls were all essential elements to ensure users remained 

engaged and satisfied with the gameplay. Overall, combining machine learning, real-time video 

processing, and a responsive UI into a single mobile application presented a series of technical 

and design challenges that required thoughtful problem-solving and optimization at each step. 

 

6.4 Objectives Evaluation 

6.4.1 Assessment of Gesture Recognition Implementation 

This objective aimed to develop a real-time gesture recognition system that accurately 

identifies rock, paper, and scissors gestures using a CNN model alongside OpenCV for image 

processing. The evaluation of this objective is based on how effectively the CNN model was 

trained and integrated into the mobile application using TensorFlow Lite. The system 

successfully recognized the core hand gestures through real-time video input, achieving 

consistent accuracy after optimizing the CNN architecture and fine-tuning parameters such as 
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learning rate, training epochs, and data preprocessing techniques. OpenCV efficiently handled 

the live camera feed and image manipulation tasks such as cropping, resizing, and color 

conversion. Despite challenges with varied lighting conditions and hand orientations, the final 

model demonstrated good generalization across different users and backgrounds. The 

successful deployment on a mobile device confirms that the real-time detection goal was met, 

enabling the game to rely on accurate gesture inputs for gameplay. 

 

6.4.2 Review of Game Development Outcomes 

The second objective focused on integrating gesture recognition with an interactive Rock-

Paper-Scissors game. The evaluation involves verifying the complete game cycle, from 

recognizing user gestures to executing game logic and displaying results. The app was 

successfully developed using Flutter, allowing seamless integration of visual components with 

gesture-based input. Users were able to play multiple rounds of the game with visual feedback 

showing both the recognized gesture and the computer’s randomly generated response. The 

game followed standard RPS rules and offered immediate results and score tracking, 

contributing to an engaging user experience. Animations and visual cues such as countdown 

timers and result highlights further enhanced interactivity. The system allowed users to play 

without needing buttons or keyboards, thus meeting the objective of creating a touchless and 

immersive gameplay experience controlled entirely by hand gestures. 

 

6.4.3 Analysis of Feature Enhancement Effectiveness 

This objective aimed to improve the RPS game by adding persistent data storage and 

performance tracking, allowing players to save and review their game history. The analysis 

evaluates the accuracy, reliability, and impact of these enhancements. The Achievement Page 

was implemented with shared_preferences to store game outcomes, timestamps, and statistics, 

as integrated into the app’s backend. Testing involved 5 game sessions (3 rounds each), with 

data saved and retrieved after app restarts, achieving 100% accuracy in data consistency. The 

page correctly displays win rates and total games played, with load times under 0.5 seconds, 

indicating no performance issues. This feature enhances player engagement by enabling 

progress tracking across sessions. The objective was fully realized, delivering a reliable and 

seamless addition to the game’s functionality. 
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6.5 Concluding Remark 

The project’s success is measured by the effective combination of real-time gesture recognition, 

an interactive game interface, and enhanced features. The gesture recognition system, with its 

99.67% accuracy and real-time performance, provides a strong technical base, while the 

interactive RPS game offers a responsive and engaging experience through its well-designed 

screens and controls. The addition of persistent data storage and performance tracking further 

enriches the game, supporting long-term player engagement via accurate history and statistics. 

Technical evaluations—model accuracy, game responsiveness, and data storage reliability—

confirm the objectives’ attainment, with metrics such as real-time detection latency and load 

times supporting the outcomes. Future enhancements could address minor gesture recognition 

errors and expand storage scalability. The project successfully demonstrates the application of 

computer vision and machine learning in an innovative gaming context, meeting all stated 

objectives.
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CHAPTER 7 Conclusion and Recommendation 

7.1 Conclusion 

This thesis successfully developed an innovative Rock-Paper-Scissors (RPS) game that 

integrates real-time gesture recognition using a Convolutional Neural Network (CNN) 

deployed via TensorFlow Lite within a Flutter-based mobile application. The project achieved 

its primary objectives: implementing a robust gesture recognition system, developing an 

interactive RPS game, and optimizing performance for mobile deployment. By leveraging 

MobileNetV2, a lightweight CNN architecture, the system achieved an impressive validation 

accuracy of 99.67% in classifying rock, paper, and scissors gestures, demonstrating high 

reliability under varied real-world conditions. OpenCV facilitated effective dataset 

preprocessing, ensuring high-quality training data, while the Flutter framework enabled a 

seamless and engaging user interface with features like tutorial screens, game history tracking, 

and celebratory animations. 

 

The evolutionary prototyping methodology proved instrumental in navigating the technical 

complexities of integrating machine learning with mobile app development. Through iterative 

phases of dataset preparation, model training, prototype development, and testing, the project 

addressed challenges such as gesture variability, real-time performance, and UI responsiveness. 

The system’s performance was rigorously evaluated, with testing results confirming accurate 

gesture detection (e.g., 100% confidence for "rock" gestures), responsive UI navigation (all 

transitions under 1 second), and reliable data storage for game history. The inclusion of the 

RPS Detector feature further enhanced usability, allowing users to practice gestures 

independently, while the Achievement Page fostered long-term engagement by tracking 

performance metrics. 

 

7.2 Recommendation 

This project contributes significantly to the fields of computer vision and interactive gaming 

by demonstrating the feasibility of deploying advanced machine learning models on resource-

constrained mobile devices. The seamless integration of real-time gesture recognition with 
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traditional gameplay redefines user interaction, eliminating the need for physical controllers 

and aligning with modern expectations for immersive experiences. Beyond entertainment, the 

framework offers potential applications in educational tools, interactive exhibitions, and 

assistive technologies, showcasing its versatility and impact.  

To further enhance the RPS Real-time Detection Game App, the following recommendations 

address key limitations and opportunities for future development, focusing on improving 

performance, robustness, and applicability: 

1. Enhance Gesture Recognition Robustness: 

o Expand the training dataset to include diverse hand gestures, incorporating 

variations in skin tones, hand sizes, and lighting conditions. As highlighted by 

Wang and Wang, diverse datasets are essential for robust gesture recognition in 

real-world scenarios. Techniques like data augmentation or synthetic data 

generation using generative adversarial networks (GANs) could improve model 

generalization, addressing minor misclassifications (e.g., "scissors" as "paper"). 

o Implement adaptive image preprocessing, such as real-time background 

subtraction using OpenCV, to handle complex environments and ensure 

consistent accuracy. 

2. Optimize Real-Time Performance: 

o Further optimize the TensorFlow Lite model through advanced quantization 

techniques, such as quantization-aware training, to reduce inference latency 

while maintaining high accuracy. This would enhance gameplay smoothness, 

particularly on lower-end devices, as emphasized by Jain et al. for real-time 

gesture systems. 

o Explore hardware acceleration, such as leveraging mobile GPUs, to improve 

processing speed and reduce latency, ensuring a seamless user experience 

during gesture detection. 

3. Extend Applications Beyond Gaming: 

o Adapt the gesture recognition framework for educational or accessibility 

applications, such as recognizing sign language gestures to support learning or 



CHAPTER 7 

83 

Bachelor of Information Systems (Honours) Digital Economy Technology 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

communication for individuals with hearing impairments. This would broaden 

the project’s impact beyond entertainment. 

o Investigate integration with augmented reality (AR) platforms, such as ARCore, 

to create immersive gesture-based interactions, potentially for interactive 

training or exhibitions, enhancing the system’s versatility. 

These recommendations aim to address challenges like gesture variability and performance 

constraints while leveraging the project’s strengths to explore impactful applications. 

Implementing these enhancements will ensure the RPS game remains a robust, user-centric 

platform with potential for further innovation in computer vision and interactive technologies.
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