Carpooling Application for UTAR Kampar Student
BY

Tan Jian Hua

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

Jun 2025

COPYRIGHT STATEMENT

© 2025 Tan Jian Hua. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku
Abdul Rahman (UTAR). This Final Year Project report represents the work of the
author, except where due acknowledgment has been made in the text. No part of this
Final Year Project report may be reproduced, stored, or transmitted in any form or
by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Dr. Ng Hui Fuang and my
moderator, Mr. Tan Chiang Kang who have given me a golden opportunity to involve in the
web-based application field study. Besides that, they have given me a lot of guidance in order
to complete this project. When I was facing problems in this project, the advice from them
always assists me in overcoming the problems. Again, a million thanks to my supervisor and

moderator.

Other than that, I would like to thank my project teammate, Tay Kai Sheng who has provided
a lot of assistance to me when completing this project. Although both of us are having different
project and task scope, he is still willing to support me when I faced difficulties in developing

this project.

ABSTRACT

This project lies within the field of web-based application development, specifically targeting
intelligent carpooling systems for university communities. It focuses on the design and
implementation of a carpooling platform tailored for UTAR Kampar students, addressing the
lack of a centralized, reliable, and affordable car-sharing solution. The primary objective is to
provide a cost-effective alternative to commercial ride-hailing services like Grab by facilitating
a student-exclusive platform to offer and request rides based on real-time and recurring
schedules. Key features include user registration, ride listings, bookings, and ride management,
with Google Maps API integration for geolocation and route assistance. Dialogflow is
employed to deliver an Al-powered chatbot that helps users search for available rides through
natural language interaction. A key novelty introduced in the second phase is timetable-based
ride creation and search, which allows students to auto-generate recurring ride offers based on
their weekly class schedules. This feature significantly reduces manual input, increases
consistency in ride availability, and streamlines the carpooling experience by aligning with
students' academic timetables. The project followed the Agile methodology throughout the
Software Development Life Cycle (SDLC), incorporating iterative development, continuous
feedback, and incremental improvements. The implemented prototype has been tested to enable
smooth interaction between drivers and passengers, improve time efficiency in finding suitable
rides, and foster a stronger community-based transportation culture. Conclusively, this system
has shown promising results in reducing transportation friction among students and introduces
a novel approach by integrating academic timetables with carpool scheduling—a unique

feature not commonly found in existing ride-sharing platforms.

Area of Study (Minimum 1 and Maximum 2): Web application development

Keywords (Minimum 5 and Maximum 10): Carpooling, Web Application, Transportation, Al
Chatbot, Management, Optical Character Recognition, Timetable

TABLE OF CONTENTS

TITLE PAGE

COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Problem Statement and Motivation
1.2 Objectives
1.3 Project Scope and Direction
1.4 Contributions
1.5 Report Organization
CHAPTER 2 LITERATURE REVIEW
2.1 Review of technologies
2.1.1 Backend framework
2.1.2 Database system
2.1.3 Frontend libraries
2.1.4 Al chatbot
2.1.5 Maps and location services
2.1.6 Optical character recognition
2.1.7 Summary of the technologies review
2.2 Review of existing systems
2.2.1 WeRide
2.2.2 Grab Advance Booking
2.2.3 BlaBlaCar

2.2.4 Summary of the existing systems

ii
iii

iv

viii

ix

xi

O 0 9 O O & »n B~ W N =

[\ I e e e e
— 0 O W W N = O

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

3.1
3.2
3.3
3.4
3.5

DEVELOPMENT-BASED PROJECT)
Development Methodology
System Architecture
System Design Pattern
Use Case Diagram

Activity Diagram

CHAPTER 4 SYSTEM DESIGN

4.1
4.2
4.3

44

System Block Diagram

Deployment Diagram

System Components Specifications

4.3.1 Frontend

4.3.2 Backend

4.3.3 Database

4.3.4 External APIs

System Components Interaction Operations
4.4.1 Ride posting — Basic form input
4.4.2 Paddle OCR API

4.4.3 Ride posting — Timetable-based
4.4.4 Ride searching — Input fields
4.4.5 Ride searching — Timetable-based
4.4.6 Ride searching — Al chatbot

4.4.7 Ride Booking

4.4.8 Ride Management

23

23
24
25
26
29

35
35
36
38
38
39
39
41
42
42
45
47
49
51
53
54
56

Vi

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

5.1

52

53

5.4

5.5
5.6

BASED PROJECT)

Hardware Setup

5.1.1 Local Development Environment
5.1.2 Deployment Environment

Software Setup

5.2.1 Operating System and Local Development
5.2.2 Backend Framework and Runtime
5.2.3 Frontend Technologies

5.2.4 Database

5.2.5 Cloud/ Hosting

5.2.6 External APIs

5.2.7 Version Control

Setting and Configuration

5.3.1 Backend and Database Configuration
5.3.2 External APIs Configuration

5.3.3 Cloud and Hosting Configuration
System Operation

5.4.1 System Startup and Initialization
5.4.2 User Roles

5.4.3 Normal Operation Workflow
Implementation Issues and Challenges

Concluding Remark

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1

6.2

System Testing and Performance Metrics
6.1.1 Functional Testing

6.1.2 Usability Testing

6.1.3 Performance Testing

6.1.4 Reliability and Security Testing
6.1.5 Summary of Testing Metrics
Testing Setup and Result

59

59
59
59
60
60
61
63
64
64
65
66
67
67
68
69
70
70
71
73
89
90

92

92
92
93
93
94
94
95

Vii

6.3

6.4
6.5

CHAPTER 7 CONCLUSION AND RECOMMENDATION

7.1
7.2

6.2.1 Testing Environment Setup

6.2.2 Functional Testing Results

6.2.3 Usability Testing Results (SUS)

6.2.4 Performance Testing Results

6.2.5 Reliability and Security Testing Results
Project Challenges

6.3.1 Address Validation

6.3.1 Chatbot Natural Language Understanding
6.3.1 Timetable-based Ride Creation

6.3.1 Booking Conflict

6.3.1 UI Customization and Learning Curve
Objectives Evaluation

Concluding Remark

Conclusion

Recommendation

REFERENCES
APPENDIX

POSTER

95
96
97
98
98
99
99
99
100
100
100
101
102

103
103
104

106
109
124

viii

Figure Number

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

LIST OF FIGURES

Title

Carpool Rides Offer in RedNote

WeRide App Logo

WeRide Request and Offer Form

WeRide Search Interface

Grab App Logo

Grab Advance Booking Function

BlaBlaCar Logo

Agile Development Cycle

System Architecture Diagram

MVC Diagram

Use Case Diagram

Ride Searching Activity Diagram

Chatbot Ride Recommendation Activity Diagram
Timetable-based Ride Activity Diagram

Ride Posting Activity Diagram

Timetable-based Ride Creation Activity Diagram
Ride Booking Activity Diagram

System Flowchart

System Block Diagram

Deployment Diagram

ERD Diagram

Ride Posting — basic form input Sequence Diagram
Paddle OCR API Sequence Diagram

Ride Posting — timetable-based Sequence Diagram
Ride Searching — input fields Sequence Diagram
Ride Searching — timetable-based Sequence Diagram
Ride Searching — Al chatbot Sequence Diagram
Ride Booking Sequence Diagram

Ride Management Sequence Diagram

Page

14
14
15
17
17
19
24
25
26
29
30
30
31
32
33
34
34
36
38
41
44
46
49
50
52
54
56
58

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33

Project Initialization in Quick App

Backend and Database Configuration in Local

MySQL Configuration

Backend and Database Configuration in Deployment

DialogFlow Training Phrases
DialogFlow Actions and Parameters
DialogFlow Webhook

FastAPI Configuration

Docker Requirement

Docker File to Run

System Startup in Local environment
System Startup in Production environment
Registration Form

Login Form

Ride Form — One Time Ride

Ride Form — Recurring Ride
Timetable Before Cropping

Cropped Timetable

Visualized detected text on image
Visualized detected text and bounding box
Example of classroom code mapping
Example of rides will be created
Upload Timetable Form

Additional Information Form

Ride Offer

Ride Card Details

No Ride Available

Ride Finder Chatbot

Chatbot Response Link

Ride Not Found

Difficulties Interpreting Input

Use My Timetable Button

Timetable-based Search Form

61
67
68
68
68
68

69
69
70
71
71
73
74
74
75
76
76
77
77
78
78
79
80
81
81
82
82
83
83
84
84
85

Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 5.39
Figure 5.40

Ride Booking in Details Page
Manage Incoming Booking
Manage Outgoing Booking
Button to Chat on WhatsApp
Example of pre-filled message
Dashboard’s section

Dashboard Page

86
86
86
87
87
88
88

Xi

Table Number

Table 2.1
Table 2.2
Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5

LIST OF TABLES

Title

Comparison of OCR Services

Comparison of previous work and proposed solutions
Specifications of laptop

Testing Metrics

Functional Testing Results

SUS Evaluation Results

Performance Testing Results

Reliability and Security Testing Results

Page

11
21
49
94
96
97
98
98

Xii

LIST OF SYMBOLS

seconds
percentage
bigger than

Smaller than

Xiii

Al
AJAX
API
CDN
CRUD
CSS
ERD
ETA
HTML
HTTP
D
IDE
JSON
MvC
NLU
OCR
ORM
PHP
SDLC
SUS
SOL
UTAR
Ul

LIST OF ABBREVIATIONS

Artificial Intelligent

Asynchronous JavaScript and XML
Application Programming Interface
Content Delivery Network

Create, Read, Update, Delete operations
Cascading Style Sheets

Entity Relationship Diagram
Estimated Time Arrival

Hypertext Markup Language
Hypertext Transfer Protocol
Identification

Integrated Development Environment
JavaScript Object Notation

Model View Controller

Natural Language Understanding
Optical Character Recognition
Object-Relational Mapper
Hypertext Preprocessor

Software Development Life Cycle
System Usability Scale

Structured Query Language
University Tunku Abdul Rahman

User Interface

Xiv

Chapter 1
Introduction

In this chapter, it provides an overview of the project by presenting the motivation and
problems that led to the development of the system. It explains the scope and objectives of the
project, followed by the potential impact and contributions that may bring to the target users.

Moreover, it includes a brief explanation of the organization of the report.

1.1 Problem Statement and Motivation

Currently, UTAR Kampar students who are looking for carpooling rely on social media
platforms such as RedNote and WhatsApp to find and communicate with the potential drivers
or riders. Typically, students will post their academic timetables or a specific ride request and
wait for others to reach them. While this approach may work for sometimes only, it is often
inefficient and unorganized [1]. Drivers may be overwhelmed with multiple messages from
different riders, making it difficult to manage their rides. On the other hand, riders may not
always find a suitable driver due to timing mismatches or lack of clear information, especially

during off-peak hours like midnight or early morning.

Kampar& E#;%

Hihi~ B BRI #RE 7T — LIV EE &

A i8) 75 T Bk 7 3 IR B iE) B Atk B (8] #R T LA SRIUR BT —
PSS {ES)

ERMERBRER/BA

“MEIATE— =

-RE (FEIRE RIBTIE BRI 1/\BY)

-12am-7amfJ &

U EtER—&+RMEl &

WMRE/N\EUTARLIRR, #EiESH I EERME
37"

AABS

<=7t Proton Saga

ERE B ELE

@ 1EZTNG(PreferixA)/Cash(EFARE AKX HIARE
%e)

o] LAWhatsAppH (zero one seven five one six five zero
five three)

HEZE #E&Fkampar # 2R HIX #kampar#iX #

A

Qo {63 ()79
Figure 1.1 Carpool ride offer in RedNote

Moreover, paid transportation services like Grab are commonly used but often come with high
charges [2] and are not always available when needed, especially during low-demand hours.
Public transport such as buses also operates on fixed schedules, which does not cater to sudden

changes like unexpected class cancellations.

The motivation behind this project comes from real observations on social media, where there
are many students actively seeking carpooling opportunities by posting their schedules or
urgent ride requests. These posts often receive multiple comments, showing clear demand and

interest from the student community.

1.2 Objectives

The primary objective of this project is to develop a dedicated web-based carpooling platform
for UTAR Kampar students to simplify the process of finding and offering shared rides. By

centralizing carpool requests and offers into a single system, the platform aims to reduce

reliance on informal channels such as social media and provide a more organized, efficient,

and user-friendly solution tailored to the student community.
Key goals of the project include:

o Facilitating easy ride creation and booking through an intuitive interface, allowing

users to post ride offers, request rides, and manage their bookings with minimal effort.

e Encouraging pre-planned ride arrangements by using schedule-based listings
instead of real-time matching, supporting students who plan their travel in advance

based on class schedules.

e Introducing timetable-based ride creation and searching, a novel feature that allows
students to automatically generate recurring rides and search for rides based on their
weekly academic timetable, significantly reducing manual input and improving

consistency.

o Integrating an Al-powered chatbot using Dialogflow to help users find suitable rides

quickly through natural language input (e.g., departure, destination, date).

o Ensuring simplicity and usability for both drivers and riders, without the complexity
of administrative functions, payments, or real-time GPS tracking, which are outside the

current scope and may be considered in future mobile-based versions.

e Focusing the system on the UTAR Kampar campus while allowing for potential

future expansion to nearby areas based on demand.

Through these objectives, the project seeks to enhance the overall carpooling experience by
reducing communication gaps, improving the visibility of available rides, and providing a

structured, convenient platform tailored to student needs.

1.3 Project Scope and Direction

This project aims to deliver a functional web-based carpooling platform specifically designed
for UTAR Kampar students. The system provides a dedicated and organized environment
where students can offer or request car rides, with a focus on planning rides based on

academic schedules.

By the end of the project, a working prototype will be developed, allowing users to:

o Register and log in to the system

e Post ride offers and request rides

e Book available rides

e View and manage their carpooling activities

A key enhancement introduced in this phase is the timetable-based ride creation and
search feature, which enables students to auto-generate recurring rides according to their
weekly class schedules. This allows for more consistent ride availability and reduces the need

for manual entry.

The system is developed using PHP Laravel for the backend, MySQL as the database, and
BladewindUI with Tailwind CSS for the frontend interface. It also integrates the Google
Maps API to support address autocomplete and location handling, and Dialogflow to power

a chatbot that helps users search for rides through natural language queries.

The scope of the project is focused on essential ride-sharing functionalities for academic use
and excludes features such as real-time GPS tracking, payment handling, and administrative
tools, which may be considered in future mobile-based or expanded versions. The current
system is scoped exclusively for the UTAR Kampar student community, but future directions
may include expanding service coverage to nearby areas and adding features like ride

statistics, email reminders, and driver/rider performance insights.

14 Contributions

This project provides a practical and impactful solution for UTAR Kampar students by
addressing a common transportation challenge: the lack of affordable and reliable commuting
options to and from campus [3]. With the rising cost of ride-hailing services like Grab and
limited on-campus parking, many students struggle to find convenient transportation. By
offering a dedicated web-based carpooling platform, this project helps students save time,

reduce travel expenses, and simplify ride arrangements within a trusted academic community.

Beyond personal convenience, the platform also promotes broader environmental and social
benefits [4]. By encouraging shared rides, it contributes to reduced traffic congestion and lower
carbon emissions in the campus area. It also opens opportunities for students to earn a small

side income by offering rides, fostering a mutually beneficial ecosystem among peers.

One of the key contributions of this project is the timetable-based ride creation and search
feature, which allows students to generate and find recurring rides based on their academic
schedules. This automation improves ride availability, minimizes manual effort, and aligns
carpooling more closely with students’ daily routines—making it a unique feature not typically

found in general-purpose ride-sharing platforms.

Compared to informal carpool arrangements via social media or messaging apps, this platform
centralizes all ride-sharing activities into a structured, easy-to-use system. It provides clear
listings, a booking interface, ride management tools, and Al-driven ride search via chatbot, all
tailored specifically to student needs. As the system matures, it has the potential to become a
daily tool for the UTAR community and could be expanded to nearby regions or adapted for

other institutions facing similar transportation issues.

1.5 Report Organization

This report is organized into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature Review,
Chapter 3 System Methodology, Chapter 4 System Design, Chapter 5 System Implementation,
Chapter 6 System Evaluation and Discussion, and Chapter 7 Conclusion. Chapter 1 introduces
the project background, problem statement, objectives, scope, and contributions. Chapter 2
reviews related works, existing systems, and technologies that inform the development of the
proposed solution. Chapter 3 presents the methodology adopted, including the development
approach, tools, and techniques. Chapter 4 discusses the system design, covering architecture,
database design, and user interface planning. Chapter 5 describes the system implementation,
detailing the development process and integration of core features. Chapter 6 evaluates the
system through testing, performance analysis, and objective assessment, while also
highlighting challenges encountered. Finally, Chapter 7 concludes the project by summarizing
the findings, presenting recommendations for future improvement, and reflecting on the overall

outcomes.

Chapter 2

Literature Review

2.1 Review of Technologies
2.1.1 Backend Framework

Laravel is a widely adopted open-source PHP framework designed for building robust and
maintainable web applications [5]. It follows the Model-View-Controller (MVC)
architectural pattern, which promotes clear separation of concerns, making code more
organized and easier to manage. Laravel was selected as the backend framework for this project

due to its comprehensive feature set, developer-friendly syntax, and strong community support.

Laravel offers built-in support for common tasks such as routing, authentication, form
validation, database migrations, and session management, which significantly reduces the
amount of boilerplate code required during development. These features proved especially
useful in implementing core functionalities of the carpooling platform, such as user
registration and authentication, ride creation, booking management, and timetable-based

recurring ride logic.

The use of Eloquent ORM (Object-Relational Mapping) in Laravel allowed for seamless
interaction with the MySQL database, enabling intuitive database operations through
expressive PHP syntax. This made it easier to design and manage database relationships

between entities such as users, rides, bookings, and ride schedules.

Furthermore, Laravel’s Artisan command-line interface was used for generating boilerplate
code, running migrations, and seeding the database with dummy data for testing purposes. This

streamlined the development workflow and accelerated the implementation of features.

Laravel’s middleware system also played an important role in securing routes and ensuring
that only authenticated users could access sensitive features such as ride posting and booking.
In addition, Laravel’s validation engine was used extensively to ensure that user inputs, such

as ride details and timetable entries, were consistent and error-free.

In this project, Laravel was chosen over other backend frameworks such as Node.js with
Express.js or Python with Django due to its strong support for web-centric development,

especially when working with relational databases and monolithic server-side applications [6].

6

Laravel’s built-in tools such as Artisan CLI, Blade templating engine, Eloquent ORM, and
middleware streamline the development of complex features like user authentication, ride
listings, and timetable-based recurring ride logic — all of which are core to this carpooling

system.

Overall, Laravel provided a solid foundation for developing a scalable and maintainable
backend system, capable of handling the business logic and data management required for a

student-focused carpooling platform.

2.1.2 Database System

MySQL is one of the most widely used open-source relational database management systems
(RDBMS) and is a common choice for web-based applications. It is known for its reliability,
performance, scalability, and compatibility with a wide range of programming languages and
frameworks, including PHP and Laravel. In this project, MySQL was selected as the database
system due to its strong support for structured data, ease of integration with Laravel’s Eloquent

ORM, and efficient handling of relational data models.

Laravel’s Eloquent ORM abstracts database interactions into intuitive PHP syntax, allowing
developers to define and manage relationships between tables such as users, rides, bookings,
and timetable-based recurring ride patterns. This simplifies the process of querying, inserting,
and updating data, thereby increasing developer productivity and reducing the risk of SQL-

related errors.

MySQL also provides robust support for ACID (Atomicity, Consistency, Isolation,
Durability) properties, ensuring data integrity throughout ride creation, booking transactions,
and user account operations. Its indexing and query optimization capabilities help improve the
performance of complex search features, such as filtering rides by departure time, destination,

and timetable alignment.

In the context of this carpooling platform, MySQL was used to store and manage all core data
entities, including user profiles, ride offers, ride bookings, and recurring rides derived from
academic timetables. These tables were connected through foreign keys, with proper indexing

to support fast retrieval, especially for timetable-based ride search functions.

Compared to other database systems such as PostgreSQL or NoSQL alternatives like

MongoDB, MySQL was chosen due to its maturity, simpler learning curve, and extensive

7

documentation [7]. While PostgreSQL offers more advanced features like full-text search and
complex data types, these were not essential for the current scope of the project. Likewise,
NoSQL systems were not considered necessary due to the structured and relational nature of

the system’s data.

2.1.3 Front-end Libraries

The front-end of this carpooling platform is developed using Tailwind CSS, a utility-first CSS
framework, and BladewindUI, a Laravel-specific Ul component library [8]. These
technologies were chosen to enhance user experience, speed up Ul development, and maintain

design consistency across the web application.

Tailwind CSS offers a highly customizable, low-level utility-based approach to styling,
enabling developers to design interfaces directly within the HTML structure. Unlike traditional
CSS frameworks such as Bootstrap, which rely heavily on predefined components and class
names, Tailwind allows for more flexibility and modular control over styling. This was
particularly useful for building a modern, responsive interface tailored to the needs of UTAR
students, such as ride listing pages, booking forms, and timetable-based ride management

ViEwWS.

In addition, Tailwind's responsiveness and mobile-first design philosophy ensure that the
application is usable on various devices, which is crucial for students accessing the platform

via laptops or smartphones.

BladewindUI complements Tailwind by providing ready-to-use Laravel Blade components
that follow Tailwind's utility-first design approach. It simplifies the implementation of forms,
alerts, modals, and other UI components, reducing the need to write repetitive HTML. This
helped accelerate front-end development while maintaining a clean and consistent look across

the application.

The combination of Tailwind CSS and BladewindUI was chosen over alternatives like
Bootstrap, Material UI, or custom CSS because of their seamless integration with Laravel,
lightweight nature, and developer efficiency. While Bootstrap offers faster prototyping, it
imposes more rigid styles and often requires additional overrides, which can complicate
customization. Tailwind, on the other hand, promotes a more maintainable and scalable design

system suited for evolving projects.

2.1.4 Al Chatbot

As part of enhancing user experience and accessibility, an Al-powered chatbot was integrated
into the carpooling platform using Google Dialogflow, a Natural Language Understanding
(NLU) platform developed by Google [9]. Dialogflow enables applications to interpret user
input in natural language and respond intelligently through conversational interfaces. In the
context of this project, the chatbot assists users in searching for available rides by accepting

inputs such as departure location, destination, and preferred date or time.

Dialogflow was chosen for its ease of integration with web applications, support for multiple
languages, and its ability to deploy across various platforms (e.g., web, mobile, social media).
Its intent-based architecture and built-in machine learning capabilities allow developers to
define user intents (e.g., “Find a ride to Ipoh tomorrow”) and entity extraction (e.g., recognizing

locations and dates), which are critical for enabling intelligent, contextual ride search.

In recent years, the use of conversational interfaces in web-based systems has grown
significantly due to their ability to improve user engagement and reduce friction in data input.
Studies such as “Chatbot Integration in Few Patterns” highlight the role of chatbots in
enhancing usability, automating responses, and simplifying user navigation in information
systems. In particular, chatbots in educational or campus systems have been used to streamline
services such as class schedules, FAQs, and transport arrangements, making them a suitable fit

for the UTAR student community [10].

Dialogflow’s webhook support also allows the chatbot to interact directly with the Laravel
backend, enabling dynamic responses based on real-time data such as available rides, matched
destinations, or filtered search results. This contributes to a more seamless and interactive user

experience compared to traditional keyword-based search forms.

Compared to other chatbot frameworks like Microsoft Bot Framework, Rasa, or IBM
Watson, Dialogflow was selected for its low learning curve, integration with Google Cloud
services, and the availability of pre-built agents that accelerate development. While Rasa offers
more customization and on-premises control, it requires significantly more setup and training

data, which is beyond the scope of this academic project.

2.1.5 Maps and Location Services

Location-based services are essential in modern transportation and carpooling systems,
providing users with accurate address input, route visualization, and spatial decision-making
capabilities. This project integrates Google Maps API to handle various location-related
functionalities, including address autocomplete, geolocation, estimated distance/time

calculations, and interactive map displays [11].

Google Maps Platform offers a comprehensive suite of APIs—such as Places API, Directions
API, and Geocoding API—that are crucial for building map-intensive web applications. In this

project:

e Google Places API is used to suggest valid locations during ride creation to avoid typos

or ambiguous entries.

e Directions API calculates and visualizes optimal routes between pickup and

destination points.

e Geocoding API helps convert between human-readable addresses and geographic

coordinates, improving the reliability of stored ride data.

e Maps JavaScript API embeds interactive maps on the ride listing and ride detail pages,

providing a familiar and intuitive interface for users.

Interactive maps significantly improve user satisfaction in transportation applications,
particularly when users are involved in planning their own routes. The use of Google Maps
ensures consistency, accuracy, and trustworthiness in navigation, which are all critical for a

student-based carpooling system where trust and clarity are vital.

Compared to open-source alternatives such as OpenStreetMap (OSM) or Leaflet, Google
Maps was chosen for its superior data quality, global coverage, and integration with other
Google services (e.g., Dialogflow and Firebase, if needed). While OSM offers better cost
efficiency and privacy control, it lacks the ease-of-use and completeness required for rapid

development in an academic setting.

Map APIs play a core role in route optimization and estimated fare calculation. Although this
project does not implement real-time GPS tracking or live ETA updates, the pre-scheduled

nature of rides still benefits significantly from reliable mapping features.

10

2.1.6 Optical Character Recognition

Optical Character Recognition (OCR) is a technology that enables the conversion of scanned
or photographed documents into machine-readable text. In the context of this project, OCR is
used to extract structured information from students' timetables, allowing for automated ride

creation based on academic schedules.

Among available OCR tools, PaddleOCR—developed by Baidu as part of the PaddlePaddle
deep learning framework—was selected due to its balance between accuracy, speed, and
support for multiple languages and document layouts [12]. It provides ready-to-use
pipelines for detection, recognition, and layout analysis, making it suitable for structured

documents like university timetables.
Key Justifications for Choosing PaddleOCR:

e Accuracy on Tabular Data: PaddleOCR’s layout analysis and support for multi-line

and columnar text make it well-suited for parsing timetables with complex structures.

e Speed & Lightweight Deployment: Unlike larger models such as Tesseract with
layout plugins or heavy cloud-based solutions, PaddleOCR provides efficient inference,

especially when containerized using Docker.

o Customizability: It allows for easy fine-tuning and integration with post-processing
logic for domain-specific tasks like identifying classroom codes, lecture durations, or

recurrence patterns.

In this project, PaddleOCR plays a key role in enabling students to upload timetable
screenshots, which are then parsed to extract subjects, locations, times, and days. These parsed
values are converted into ride requests or ride offers with recurring patterns, reducing manual

data entry.
Alternative Considerations:

Table 2.1 Comparison of OCR services

Technology Strengths Weaknesses

Tesseract OCR Well-documented, open source q
ata

Poor with tables and layout-sensitive

11

Technology Strengths Weaknesses

High accuracy, scalable
OCR less control

Google Cloud Vision Paid service, requires internet access,

PaddleOCR
source, fast deployment

Accurate, customizable, open-|[Requires Python/Docker knowledge for

Thus, PaddleOCR is aligned with the system’s goal of offering a low-cost, student-friendly

solution without relying on expensive third-party services or inaccurate text extraction.

2.1.7 Summary of The Technologies Review

This project integrates a variety of technologies, each selected based on a combination of
technical suitability, development efficiency, and relevance in current academic and industry
practices. For the backend framework, Laravel (PHP) was chosen due to its elegant MVC
architecture, built-in features for routing, authentication, and security, as well as strong
community support and documentation. Compared to alternatives such as Node.js with Express
or Django (Python), Laravel provides faster scaffolding for web applications, making it
particularly well-suited for academic and small-to-medium scale systems like this carpooling

platform.

The database system employed is MySQL, a widely used relational database management
system. MySQL supports structured data, enforces data integrity, and works seamlessly with
Laravel's Eloquent ORM. While alternatives like PostgreSQL offer advanced features,
MySQL’s performance, simplicity, and widespread hosting support made it a practical choice

for this project.

On the frontend, Tailwind CSS was adopted as the primary styling framework due to its utility-
first approach that promotes consistency and flexibility without relying on rigid, predefined
components like Bootstrap. This was paired with BladewindUI, a component library designed
specifically for Laravel Blade. BladewindUI simplifies interface development by offering
reusable Ul components, which reduced development time and improved the visual quality of

the system.

12

For the AI chatbot, Dialogflow was integrated to allow users to search for rides using natural
language queries. Dialogflow stands out for its ease of integration, built-in NLP capabilities,
and compatibility with webhook services, making it suitable for implementing a conversational
interface in this academic setting. Other frameworks like Rasa or IBM Watson were considered

but were more complex or resource-intensive for the project's scale.

The system also uses the Google Maps Platform to enhance location-based functionalities.
APIs such as Autocomplete, Distance Matrix, and Directions provide accurate geolocation,
estimated travel time, and map-based interaction. Google Maps was favored over alternatives
like HERE Maps and OpenStreetMap due to its accuracy, extensive documentation, and feature

richness.

An additional enhancement involves the use of PaddleOCR to extract structured data from
student timetables. PaddleOCR offers high accuracy in recognizing both printed and tabular
text, which is vital for parsing academic schedule formats. It was preferred over traditional
tools like Tesseract OCR due to its multilingual support and better performance on complex

layouts.

To manage the OCR system efficiently, Docker was utilized to containerize the PaddleOCR
microservice. This allows the model to be hosted separately and accessed through FastAPI,
reducing the need to reload the model for every request and improving response times.
Compared to using virtual environments or local scripts, Docker ensures consistent deployment

and easier maintenance.

In conclusion, the selected technologies form a robust stack that addresses the functional,
usability, and performance requirements of the system. Each component was carefully chosen
through comparative evaluation to balance development complexity, scalability, and user
experience. This ensures that the final product is both technically sound and academically

justifiable.

2.2 Review of Existing Systems
2.2.1 WeRide

WeRide [13] is a free carpooling platform, which aims for users in Malaysia and Singapore. It
mainly serves as a digital meeting place for drivers and passengers who are interested in sharing

a ride, especially for daily commutes and long-distance travel. The platform’s mission is to

13

reduce the number of single-occupancy vehicles on the road, thereby lowering traffic
congestion, cutting travel costs, and promoting environmental sustainability through
carpooling. It operates on a user-driven model where individuals can publish their own travel
plans, either offering or requesting rides, and directly communicate with each other to

coordinate the trip.

Figure 2.1 WeRide app logo

The platform supports both one-time and recurring trips, offering flexibility for users with
different commuting patterns. It encourages users to create profiles that include basic details
such as names, profile pictures, and links to their Facebook accounts to help increase trust
among participants. Ride-related communication is facilitated via WhatsApp, making it easy

for users to negotiate timing, pick-up points, and cost-sharing arrangements.

Non-recurring Ride c Non-recurring Ride c

28-8-2024 m 28-8-2024 B

[-] T lionat ©
, & Price (Option $
Male / Female Driver i : &
ves) o} A
Male / Female Driver i

Li]
Yes o3
No (=]

Request Carpool

Li]

Figure 2.2 WeRide request and offer form

Additionally, WeRide provides extra features such as access to traffic cameras across major

highways in Malaysia, which helps users better plan their journeys by checking real-time road

14

conditions. This extra layer of functionality gives WeRide an edge in terms of situational

awareness and convenience for long-distance commuters.

&4
o
Carpool Request Latest

........

Hh Global
(o] A © M &

1002, Jalan Ladang Sekolah, Kampung Ladang
© Sekolah, 20000 Kuala Terengganu, Terengganu,
Malaysia

Q Kuala Lumpur, Malaysia

Ng Minli

Q] © M &

© 83, Jalan Sanggul 7, Bandar Puteri, Port Klang,
Selangor, Malaysia

(Q Sunway GEO Avenue, Jalan Lagoon Selatan, Bandar
Sunway, Subang Jaya, Selangor, Malaysia

"\ Nur Amalina
=L ©226PM &

© Kinrara Mas Block A, Kampung Muhibbah, Puchong,
Selangor, Malaysia

Klinik HealthQuarters Desa Petaling, Jalan 2/125,
Q Taman Desa Petaling, Kuala Lumpur, Federal Territory
of Kuala Lumpur, Malaysia

Daash Vijay
Bwm [M &

A ;
{ 4 C 2

Figure 2.3 WeRide search interface

Despite these features, WeRide does not operate as a traditional ride-hailing service like Grab
or Uber. It does not involve live driver availability matching, built-in payment systems, or real-
time ride tracking. Instead, it places responsibility on users to initiate contact and organize their
own rides, making it more of a self-service community platform than a full-fledged

transportation service.

WeRide offers several notable strengths that make it a useful carpooling platform for users
across Malaysia and Singapore. One of its key advantages is its wide geographical coverage,
which allows for cross-border carpooling opportunities, something that enhances its appeal to
users traveling long distances. Additionally, the platform provides user autonomy, enabling
users to make their own decisions when arranging rides, which promotes flexibility and aligns
with individual preferences [14]. WeRide also incorporates additional features such as
integration with traffic cameras, offering real-time traffic images to help users plan their
routes more efficiently. To enhance trust and safety, the platform uses user verification
methods by linking Facebook profiles and WhatsApp messaging, which adds a layer of

identity assurance during ride coordination.

Despite its strengths, WeRide has several limitations that affect its effectiveness—especially

in a student context. One major drawback is its lack of structured scheduling features; the

15

platform does not support functionalities that align with fixed academic schedules, making it
less suitable for students with regular class timetables. Moreover, as the user base grows,
WeRide lacks robust ride management tools, making it difficult for users, especially drivers,
to efficiently handle multiple ride’s offers or requests. Lastly, the platform does not incorporate
Al-driven assistance, which could help users find optimal ride matches or streamline
communication. This absence of intelligent matching or management may reduce the

platform’s convenience as the volume of users increases.

While WeRide serves a broad audience across Malaysia and Singapore, the proposed UTAR
Carpooling Web Application is designed specifically to address the unique needs of UTAR
Kampar students. One of the key differentiators is the integration of academic schedules,
allowing users to post and search for rides based on their class timetables, leading to more
convenient and relevant ride matches. The system also features an AI-powered chatbot using
Dialogflow, which streamlines the process of finding and booking rides, thereby improving
overall user experience. In addition, the platform includes dedicated ride management tools
that enable users to effectively monitor their ride activities, such as viewing visual statistics for
upcoming trips, booked rides, and estimated profits for drivers. Most importantly, the
application is tailored for a specific community, fostering a more trusted environment where

users share similar daily routines and transportation goals.

In summary, while WeRide offers a broad and flexible carpooling experience, the UTAR
Carpooling Web Application is a more targeted solution, providing students with specialized

features that enhance convenience, efficiency, and user satisfaction within an academic setting.

2.2.2 Grab Advance Booking

Grab [15] is one of Southeast Asia’s leading ride-hailing platforms, offering a wide range of
services from on-demand transport to food delivery and digital payments. Among its many
transport-related features, the Advance Booking option stands out as a practical solution for
users who need to plan their journeys ahead of time [16]. This feature allows passengers to
schedule a ride for at least one hour to up to seven days in advance, ensuring peace of mind for

time-sensitive trips such as airport transfers, early morning commutes, or urgent meetings.

16

Graov

Figure 2.4 Grab app logo

The process is simple and intuitive. Users select their pick-up and drop-off locations, set the
desired date and time, and confirm the booking through the app. A few hours before the
scheduled time, Grab assigns the driver to the trip and notifies the passenger once the ride has
been successfully matched. This ensures a higher degree of certainty in securing transport
during peak hours or off-peak periods where driver availability may be limited, such as late at

night or early in the morning.

& Transport

Wherever you're going, let's get
you there!

© Whereto? Now v
'
«- = Ad Booki
o vance booKINg
|
) «= Planahead, stress free
Rides for your evgfy need = Book from 1 hour 15 mins to 90 days in advance
Advance = Car Plus On-time pickup assurance
Booking <l % ° Your driver will arrive on time, or early
Extended wait time
6 seater car — Rent by the =) L .
hcur Nps ust in .m‘;)m wam\ 0 15 minutes after
Saver Car Airportpickup \ Cancel for free up to 1 hour before
% .- t tes of your ride, you'll be

hargec

i the full fare for the trip.

Figure 2.5 Grab advance booking feature

Advance Booking rides are subject to a priority allocation fee, which is added to the fare to
compensate for the driver's commitment to accept the scheduled job. The service is currently
available in selected cities and for specific ride types such as GrabCar, with availability

depending on local driver supply and demand.

This feature particularly appeals to users who value predictability and time management, as it

minimizes the uncertainty often associated with real-time ride-hailing. By offering a planned

17

alternative to last-minute bookings, Grab caters to a segment of the market that requires a more

structured travel experience.

One of the key strengths of Grab’s Advance Booking feature is its convenience and flexibility
[17]. By allowing users to schedule rides ahead of time, it helps them avoid the stress of last-
minute bookings—especially during high-demand periods or odd hours like midnight or
early mornings, when driver availability may be low. This is particularly useful for passengers

with fixed schedules, such as airport drop-offs or early lectures.

Another strength lies in its automation and reliability. The platform automatically matches
riders with available drivers ahead of time, reducing the need for manual searching or constant
communication. Grab’s large network of drivers also increases the chances of a successful

match, even in more remote areas.

In terms of user experience, the interface is streamlined and easy to use, offering quick
scheduling within the familiar Grab app. Integration with Grab’s real-time GPS tracking, in-

app communication, and fare estimation adds value to the overall experience.

Despite its advantages, Grab’s Advance Booking feature has several limitations. Firstly, it is
only available in selected cities and for specific ride types, which limits accessibility for

some users. In university towns or less populated areas, this feature may not be fully supported.

Secondly, cost is a major drawback. Grab applies an additional priority allocation fee,
making scheduled rides more expensive than regular ones. For budget-conscious users such as

university students, this can be a significant deterrent.

Another limitation is that riders are not guaranteed a match, even if they book in advance.
The system only begins to assign a driver shortly before the scheduled ride, and there is a
chance that no driver is found on time, especially during low-demand hours or in less-served

areas.

Additionally, Grab is a commercial service with a focus on broader public transportation
needs rather than community-driven or student-specific carpooling. It lacks the sense of
community, affordability, and student-based customization that some users, especially

students, might prefer.

Compared to Grab’s Advance Booking feature, your proposed platform offers a student-

centric, community-based carpooling system tailored specifically to the daily commuting

18

needs of university students. While Grab is designed for a broad user base with commercial
pricing and operates on an on-demand model, our platform focuses on pre-scheduled,

affordable, and consistent ride sharing among peers.

One major distinction is the inclusion of recurring rides on your platform. This feature allows
users—both drivers and riders—to set up routine trips (e.g., daily rides to and from campus),
eliminating the need to repeatedly search or post for new rides each day. This is especially
useful in a university context, where schedules tend to be consistent week-to-week. In contrast,
Grab does not support recurring advance bookings, requiring users to manually schedule each

ride individually, which can be inconvenient for regular commuters.

Additionally, our platform supports user-determined fare pricing, which is typically lower
and more flexible than Grab’s commercial rates that include surge pricing and priority
allocation fees. It also fosters a sense of community and trust, as students are more likely to

interact and coordinate with fellow university members rather than with unknown drivers.

Our proposed solution also provides better ride management tools, helping drivers handle
multiple ride requests more efficiently through a dedicated platform, something that is

challenging when done manually via social media or through Grab’s one-on-one system.

Overall, while Grab offers a professional, city-wide ride-hailing service, our proposed system
delivers a more relevant, cost-effective, and personalized experience for students who need

reliable, recurring transportation to and from campus.

2.2.3 BlaBlaCar

BlaBlaCar

Figure 2.6 BlaBlaCar Logo

BlaBlaCar is one of the world’s largest long-distance carpooling platforms, connecting drivers
with empty seats to passengers looking to travel the same route [18]. Founded in France in

2006, the platform focuses on matching drivers and riders for intercity travel rather than short

19

urban commutes. BlaBlaCar operates by allowing drivers to post their planned trips along with
departure time, destination, and available seats. Interested passengers can then search, view
trip details, and book a ride directly through the app or website. The system also emphasizes
community trust, offering verified profiles, ratings, and identity verification features to ensure
a safe and reliable experience [19]. By facilitating cost-sharing between drivers and passengers,

BlaBlaCar promotes affordable and environmentally sustainable travel options.

One of BlaBlaCar’s major strengths is its focus on building trust within the community. The
platform incorporates strong user verification processes, including phone number verification,
government ID checks, and mandatory profile pictures, creating a sense of security for both
drivers and riders [18]. In addition, the rating and review system allows users to share feedback
about their experiences, which further encourages positive behavior. Another strength is the
simplicity and clarity of trip postings: drivers provide detailed trip information upfront, making
it easier for riders to find and book suitable options. The platform also handles payment
transactions, ensuring transparency and reducing the chances of disputes. Furthermore,
BlaBlaCar’s emphasis on cost-sharing instead of profit-seeking aligns with legal requirements
in many regions, helping it maintain operations without needing to comply with regulations

meant for commercial taxi services.

Despite its strengths, BlaBlaCar does face some weaknesses. One key limitation is that it
primarily focuses on long-distance, scheduled trips rather than real-time or last-minute rides
[19]. This restricts its flexibility compared to on-demand ride-hailing services like Uber or
Grab. Another weakness is that ride availability is highly dependent on user activity; in less
populated areas or during off-peak times, finding a suitable ride can be challenging. Moreover,
while BlaBlaCar has implemented various trust mechanisms, it still relies heavily on the
honesty and behavior of its users, meaning that occasional safety or reliability issues may
occur. Finally, since payments and bookings are handled online, users without access to digital

payment methods may find the platform less convenient to use.

When comparing BlaBlaCar with the proposed community-based car-sharing platform, several
similarities and differences emerge. Like BlaBlaCar, the proposed system focuses on
connecting drivers and riders through pre-planned trip listings. Both platforms emphasize the
importance of providing clear trip details upfront to allow users to make informed booking

decisions.

20

However, there are key differences. While BlaBlaCar targets primarily long-distance intercity
travel, the proposed platform is designed for shorter, more local trips — specifically focusing
on university students commuting between their homes and the campus. Moreover, the
proposed solution introduces real-time dynamic searching, ride matching through Al
chatbot, and integration with Google Maps APIs to optimize routes, offering a more tech-
driven and flexible system compared to BlaBlaCar’s relatively manual matching process.
Additionally, while BlaBlaCar is already optimized for mobile and desktop use, the current
proposed solution is initially built focusing on desktop access first, with mobile responsiveness

as a future enhancement.

Overall, the proposed system adopts some of the best practices from BlaBlaCar while tailoring
its approach to suit the needs of a localized, student-focused audience with more Al integration

and route optimization features.

2.2.4 Summary of The Existing Systems

Table 2.2: Comparison of previous work and proposed solution

Solutions/ WeRide Grab Advance BlaBlaCar Proposed System

Key Features and Booking

Differences

Target Audience Malaysian and General Public General Public UTAR Kampar
Singaporean Students

Geographical Malaysia and Nationwide Nationwide Kampar

Coverage Singapore

Platform Type Mobile app Mobile app Web and Mobile | Web application

app
Scheduling Type Single and Single ride Single ride Single and
recurring rides recurring rides

Al Integration - Smart Matching - Chatbot

Ride Matching Manual search Auto-matching Manual search | Manual search and

Method chatbot

Ride Management Available - Available Available

Tools

Communication WhatsApp In-app Phone Number WhatsApp

Method

21

Verification/
Security

Linking Facebook
and WhatsApp

Required verified
driver

Government ID
check and phone
number
verification

Cost Flexibility

Negotiable

Set by system

Set by driver only
in acceptable
range

Set by driver

Extra Features

Traffic cams

Estimated fare

Payment
transactions

Academic
timetable schedule

22

Chapter 3
System Methodology

This chapter outlines the methodological approach adopted for developing the Community-
Based Car-Pooling Platform. It presents the selected software development methodology and
its justification, along with project planning activities, tools, and technologies used throughout
the lifecycle. The methodology includes the design of the system architecture, integration of
components such as the Al chatbot, OCR module, and Google Maps services, as well as
strategies for data management, API integration, and version control. By following a structured
and iterative process, the development ensures the platform meets its functional requirements
while delivering a reliable, efficient, and user-friendly experience tailored for university

students seeking affordable and convenient car-pooling solutions.
3.1 Development Methodology

The development of the car-pooling system followed the Agile methodology, chosen for its
adaptability, iterative progress, and focus on continuous improvement based on feedback. The
project was divided into multiple sprints, each lasting approximately two weeks, with specific
deliverables defined at the start of each sprint. Initial sprints concentrated on building the
system’s core backend using PHP Laravel, establishing the database schema in MySQL, and
setting up essential user authentication functions. Subsequent sprints focused on frontend
development using Laravel Blade with BladewindUI and Tailwind CSS to create a responsive
and user-friendly interface. Integration tasks were carried out iteratively, such as connecting
the Al chatbot developed in Dialogflow, embedding Google Maps API for location and route
handling, and implementing OCR capabilities for timetable extraction. Each sprint concluded
with testing and review sessions, allowing for adjustments to features, workflows, and user
interface elements based on findings. Version control was maintained through GitHub to ensure
smooth collaboration and tracking of changes, while Ngrok was used for temporary hosting to
facilitate online testing of API endpoints and chatbot interactions. This iterative approach
ensured that functional components of the system were delivered incrementally, with regular

opportunities for refinement, ultimately leading to a robust and scalable car-pooling platform.

23

Agile Model of Project Management ¢

Finding bugs & Errors,
Feedback, Ensure Quality

User feedback ,
maintenance

Iteration , demo
Improvement

Requirement
Analysis

REQUIREMENT

Designing Documenting
and Prototyping

Figure 3.1 Agile Development Cycle

3.2 System Architecture

The system architecture for the proposed car-pooling platform follows a three-tier structure
consisting of the presentation layer (web browser), application layer (server), and data layer

(database).

The presentation layer is developed using Laravel Blade templates integrated with
BladewindUI and Tailwind CSS, providing a responsive and user-friendly interface for both

drivers and riders.

The application layer is built with PHP Laravel, which manages the core business logic,
including ride creation, booking, trip matching, and communication features. This layer also
integrates with external services such as Dialogflow for the Al chatbot and Google Maps API
for location-based functionalities. In addition, it connects to a custom-developed PaddleOCR
API, specifically designed to extract UTAR student timetable classes. This API is implemented
in Python, where the PaddleOCR model is preloaded to perform text detection on uploaded
timetables. The detected text is then processed to identify and categorize class information. The
service is hosted using FastAPI, enabling Laravel to send timetable images and receive

structured class data for timetable-based ride matching.

24

The data layer is managed by MySQL, which stores user profiles, ride listings, booking
records, chat interactions, and system logs. The architecture ensures modularity and scalability,
allowing each component to be updated or replaced without impacting other parts of the
system. The design also incorporates secure API communication, version control through

GitHub, and temporary online hosting via Ngrok for testing purposes during development.

Front-End

| vser | ows O
Browser bladewind tailwindcss

Al Chatbot

L 4

Dialogflow

Back-End
Maps & Locations

W Google Maps API
S

Timetable Extraction

Serv

P
LD 7 32
7PER 4 & o g FastAP
PaddleOCR python
\

Database m

My

Figure 3.2 System Architecture Diagram

3.3 Software Design Pattern

This system follows the MVC (Model-View-Controller) architectural pattern provided by
Laravel. MVC separates the application into three interconnected components, enabling

modular development and easier maintenance.

Model: Represents data and business logic. For example, models such as User, Ride, and

Booking interact with the MySQL database using Laravel’s Eloquent ORM.

View: The Ul of the application created using Blade templates and BladewindUI components.

It displays data received from the controller.

25

Controller: Acts as the intermediary between model and view. It processes user requests,

retrieves data using models, and returns the appropriate views.

User Input

A I Y

=] [

MySQL Database Blade Files

Figure 3.3 MVC Diagram

3.4 Use Case Diagram

The Carpooling Web Application is designed to allow users (both drivers and riders) to
register, log in, search for available rides, create ride listings, book rides, and manage ride

bookings. The following are the key use cases derived from the diagram:

Actors

o User (Driver/Rider): A single actor representing both roles, as a user can act as a driver

offering rides or as a rider searching for rides.
Use Cases
1. Register Account

o Description: Allows a new user to create an account in the system by providing

the required personal details.

o Actor: User (Driver/Rider).

26

o Precondition: User must not already have an account.

o Outcome: Account is created and stored in the system database.

2. Login Account

o Description: Allows a registered user to log into the system by providing valid

credentials.

o Actor: User (Driver/Rider).

o Precondition: User must have an existing account.

o Outcome: User gains access to their dashboard and available system features.

3. Search Rides

o Description: Enables users to find available rides based on certain criteria.

o Actor: User (Driver/Rider).

o Variations:

4. Create Ride

Address, Ride Type, Date, and Time-Based Search (include): Users
can search using specific filters such as origin, destination, ride type,
and date/time.

Al Chatbot Search (extend): Users can interact with an integrated Al

chatbot to search for rides in a conversational manner.

Timetable-Based Search (extend): Users can view rides matched

against submitted timetable.

o Description: Allows a driver to list a new ride offer in the system.

o Actor: User (Driver).

o Variations:

5. Book Ride

Ride Request / Offer (include): The ride creation process includes

specifying whether the listing is a ride offer or a ride request.

Recurring Rides (extend): Allows creation of rides that repeat on

specific days or intervals.

Timetable-Based Creation (extend): Drivers can create rides

automatically by submitting a timetable.

27

o

o

Description: Allows a rider to confirm and reserve a seat for a ride listed in the

system.
Actor: User (Rider).
Precondition: Ride must be available with sufficient seats.

Outcome: Booking is recorded in the system.

6. Manage Rides / Booking

o

Description: Enables users to update, cancel, or review rides they have created

or booked.
Actor: User (Driver/Rider).

Outcome: Changes are saved to the database and reflected in ride availability.

28

Car Pooling Web Application

Reqgister
Account

Address, ride type,
A date and time based
search

Login
Account

<zinclude:>=

o Swedend=> {4 Chatbot search

Search Rides

Timetable based
search

N

Ride request / offer

User Create Ride Je-—----""~----

(driver f rideg)

Recurring rides

Timetable based
creation

EBook Ride

Manage Rides f
Booking

Figure 3.4 Use Case Diagram

3.5 Activity Diagram

Ride Searching — Input Fields

The user visits the platform and enters search criteria (like departure, destination, date). The

system queries the ride listings and shows matches. No login is required for this.

29

User System

—_—

Enter ride search
criteria

»| Cueries Database

— 7

Display matching
rides

S
r.'.
(\
-

Figure 3.5 Ride searching activity diagram

Ride Searching — AI Chatbot

The chatbot lets users enter natural language queries. Dialogflow extracts the required

parameters and sends them to the system backend. Matching rides are shown in a link.

User DialogFlow System

Input ride request via Interpret daia (dep, o Queries ride
chatbot des, date) - database

b

Return matching rides
link

Figure 3.6 Chatbot ride recommendation activity diagram

Ride Searching — Timetable-based

This activity diagram represents the process of searching for rides using a UTAR timetable
with the help of PaddleOCR. The process begins when the user uploads their UTAR timetable
to the system. The system first validates the uploaded image for correct format and size,

ensuring it meets the processing requirements. Once validated, the image is sent to PaddleOCR,

30

which extracts textual information from the timetable. The system then filters and classifies the
detected text to identify relevant details such as class times, locations, and days. These details
are grouped into class schedules, from which the system determines potential rides that match
the user’s timetable. The identified possible rides are stored, and finally, the system displays a
filtered list of rides to the user based on the stored results, allowing them to select or explore

available car-pooling options.

User System Paddle OCR
W —

h 4

Validate image and
Uﬁ;nadt "tj;lmﬂ size, then forward to : Extr;ct tteagllfrum
[metable } Paddle OCR metable
N

—_—

Filter and classify
detected text

S —

A

. J
—

Group text into
classes

S —

h 4

Store possible rides

. J
—

Display filtered rides
based on stored
possible rides

S

S
r.]
l)
A -

Figure 3.7 Timetable-based ride searching activity diagram

Ride Posting — Basic Input Form

Only logged-in users can post rides. After login, the user fills out a form. The system validates

the input (e.g., via Google Maps API) and stores it. The user is redirected to their ride listings.

31

User System

Fill ride posting form » Validate input

Save to database

. —
} Redirect to ride list
.

°

Figure 3.8 Ride posting activity diagram

Ride Posting— Timetable-based

The activity diagram illustrates the process of creating recurring rides from a UTAR timetable
using the PaddleOCR text recognition system. The process begins when the user uploads an
image of their UTAR timetable to the system. The system first validates the image format and
size to ensure it meets the required specifications. Once validated, the timetable is forwarded
to PaddleOCR, which extracts all the text from the image. The extracted text is then filtered to
remove irrelevant details and classified into meaningful categories, such as class names,
locations, and times. These classified elements are grouped into individual classes, forming the
basis for ride creation. The system then displays the grouped ride details to the user for review,
allowing them to provide any remaining input such as date and time, meeting point, or seat
availability. Upon submission, the system automatically generates recurring ride entries based

on the provided and extracted information, streamlining the car-pooling arrangement process.

32

User

System

FPaddle OCR

W

—
Validate image and

Upload UTAR
fimetable

Fill in remaining input [

h 4

.| Extract text from

size, then forward to
Paddle OCR

_

Filter and classify <

" timetable

detected text
_

h 4
Ty

Group text into
classes

—

h 4
0y

Display rides fo be

and submit N

created

- Y

* Create recurring rides

Figure 3.9 Timetable-based ride creation activity diagram

Ride Booking

Once logged in, the user can view ride details and book. If the user is the ride’s creator or the

ride is already accepted, they cannot book. Otherwise, the booking is marked as pending.

33

User System

Browse / Search nide

N - .| Display details and
View ride details page » book button

Click "Book™ button |

Booking stored as

pending

Figure 3.10 Ride booking activity diagram

3.6 System Flowchart

The system flowchart illustrates how users interact with the system from the landing page

onward. It includes decision points such as login status and accessibility of user actions (search,

book, post ride).

START

Lands on Homepage

¥ h 4

. . Full access to ride
legiiriiogﬁls (ride posting, searching,
¥) and booking

Display login / @
register options

Figure 3.11 System Flowchart

34

Chapter 4
System Design

4.1 System Block Diagram

The system block diagram illustrates the main components of the carpooling web application
and their interactions. At the top level, the User Interface is implemented using Laravel Blade
templates styled with Tailwind CSS and BladewindUI, allowing users to interact with the
system through a browser. User requests are processed by the Application Logic layer, built
with PHP Laravel following the MVC architecture. This layer contains the controllers and
service classes responsible for handling inputs, coordinating processes, and managing data

flow.

The application communicates with two main forms of storage: a MySQL Database and
Session Storage. The database stores persistent records such as user profiles, ride listings, and
booking details. In contrast, session storage is used to temporarily hold conversational data
from the Dialogflow chatbot, ensuring that chat context is maintained during a user session but
not stored permanently. Moreover, session storage also used to temporarily hold the

PaddleOCR API results for the timetable-based ride searching operation.

The Application Logic layer also integrates with several External APIs. The Google Maps API
is used for location-based functionalities such as retrieving place details and generating routes.
The Dialogflow API powers the Al chatbot, which provides conversational assistance to users
and stores session context temporarily without committing data to the main database. The
PaddleOCR API handles text recognition tasks, with its results passed back to the application

in real time without database storage.

This structure ensures a clear separation of concerns: the user interface manages presentation,
the application logic orchestrates processes, the database handles persistent storage, and

external APIs deliver specialized services.

35

Google Maps Al
—» (Places, Routes, Distance
L . Matrix)
HTTPS request Application Logic
User Interface i call external APls
(Browser, Bladewind [Ul aclions » (?gﬁnﬁ?:f;}
Ul + Taildwind CS5) _Sarvices
PaddleOCR Service
query / update | 5l (FastAPI + Docker)
(rides, bookings) - Timetable parsing
- Exfract clazses / time
- Dialogflow APl
|
DB read fwnte" ¥ (chatbot NLU)
MySQL DB Session Storage
(users, rides, bookings) - Dialogflow chat session context
- PaddleOCR results

Figure 4.1 System Block Diagram
4.2 Deployment Diagram
The deployment diagram illustrates how the carpooling web application is hosted and how
its components interact in the production environment.
1. User Access (Browser)
o End-users interact with the system via a web browser.

o The browser sends requests through the internet to the Laravel Cloud hosting

service, which runs the production version of the carpooling web application.
2. Laravel Cloud (Web Application Hosting)

o The Laravel-based application is deployed on Laravel Cloud, which handles
incoming HTTP/HTTPS requests.

o The web application contains all the logic for ride creation, booking, chatbot

integration, and user management.

o This environment ensures scalability and reliability for multiple concurrent

users.
3. Database Server (Azure Database for MySQL)

o The application connects to Azure Database for MySQL, which stores
persistent data such as user profiles, ride offers/requests, bookings, and chatbot

logs.

36

o This ensures data durability and centralized access for both the web application

and APIs.
4. OCR API (Azure Container Instance)

o The timetable-based ride creation feature relies on an OCR service deployed as

a Dockerized FastAPI application inside an Azure Container Instance.
o Users upload their timetable screenshots through the Laravel web application.

o The request is forwarded to the OCR API, which processes the image, extracts

timetable data, and returns structured results to the Laravel system.
5. Communication Flow
o The browser communicates only with Laravel Cloud.

o Laravel Cloud acts as the central hub, communicating with both the MySQL
database and the OCR API container.

o The OCR API communicates back with Laravel Cloud via REST API

responses.
6. Security & Deployment Considerations
o HTTPS is enforced between the browser and Laravel Cloud.

o The database and container instance are secured with private credentials and

access control, ensuring only the application can connect.

o This architecture separates web application logic from specialized OCR

processing, promoting modularity and scalability.

37

Website Cloud Hosting

% Laravel

End Uszer
(Web Browser)

Database Hosting APl Hosting

Azure MySQOL Database Azure Container Instance
(OCR AP

Figure 4.2 Deployment Diagram

4.3 System Components Specifications
4.3.1 Frontend

The frontend is designed to provide a seamless and interactive experience for users while
maintaining consistency across the application’s interface. Laravel Blade handles most of the

rendering, while JavaScript is used for dynamic elements and real-time interactions.
Key Components:
e Laravel Blade — Server-side template engine for rendering views and layouts.
e Tailwind CSS — Utility-first CSS framework for responsive and consistent styling.

e BladewindUI — Pre-built Laravel-compatible UI components to accelerate

development.
o JavaScript (AJAX & Chatbot)

o Handles AJAX calls for actions such as form submissions without full page

reloads.
o Powers chatbot interaction:
= Calls AI chatbot API.
= Updates messages in real-time.

= Stores chat history in session storage for persistence during the session.

38

4.3.2

4.3.3

Backend

Framework & Architecture: Developed using PHP Laravel following the Model-
View-Controller (MVC) pattern. Laravel’s built-in routing, controllers, and
middleware (including authentication) are used to manage request handling, enforce
access control, and streamline the application workflow.

Business Logic: Handles most of the core operations triggered by user actions. This
includes user authentication, form validation, ride creation, ride display, ride
filtering, and ride updates. All data-related operations follow Laravel’s validation
rules to ensure data integrity.

API Integration: All third-party API calls (e.g., Google Maps API, PaddleOCR API)
are initiated and processed in the backend, except for Dialogflow API, which is called
directly from the frontend JavaScript for real-time chatbot interaction.

Security Measures: User passwords are encrypted before storage in the database to
maintain confidentiality. No other encryption is implemented for general data
exchange.

File Handling: Supports file uploads where applicable, processing them securely

through Laravel’s file handling mechanisms.

Database

Database Technology:

MySQL 8.0.30 is used as the relational database management system, offering reliable

data storage, transactional integrity, and compatibility with Laravel's Eloquent ORM.

Key Tables:

users — Stores user credentials and profile details.

rides — Contains core ride information, linked to the ride creator and optionally to

recurring or timetable rides.
recurring_rides — Stores repeating ride patterns for automated ride creation.

timetable_rides — Stores predefined ride schedules for easy reference.

39

o offers — Records offers made for specific rides.

e bookings — Tracks ride bookings, including sender and receiver details.
Table Relationships:

e rides.user_id — users.id (Ride creator)

e rides.recurring_id — recurring_rides.id (Optional recurring ride link)

e rides.timetable id — timetable rides.id (Optional timetable link)

o offers.ride_id — rides.id (Offer belongs to a ride)

e bookings.ride_id — rides.id (Booking for a specific ride)

e bookings.sender_id / receiver_id — users.id (Users involved in the booking)
Indexes & Constraints:

e Primary keys on all tables.

o Foreign key constraints enforced through Laravel migrations.

o Relational integrity maintained by Eloquent ORM.
Hosting & Backup:

e Development: Local MySQL instance.

e Deployment: Hosted on Azure Database for MySQL Flexible Server.

e Automated daily backups handled by Azure to ensure data reliability.

40

.ﬂ s carpoolweb offers

2 id - bigint unsigned

ride_id - bigint unsigned Ao carpoolweb bookings

= vehicle_number : varchar(255) # id : bigint unsigned

g vehicle_model - varchar(255) # ride_id - bigint unsigned

@ created_at : timestamp - # sender_id : bigint unsigned p
v carpoolweb rides # receiver_id - bigint unsigned »

% status : enum{'pending’,'accepted’,'declined’,'expired’)

@ updated_at : timestamp o .
@ id : bigint unsigned
| 2N
\ m created_at : timestamp

user_id - bigint unsigned
recurring_id : bigint unsigned o updated_at : timestamp

carpoolweb recurring_rides
id - bigint unsigned 8- [4 timetable_id - bigint unsigned
B igint unsigne |
g 9 PP p [| o ride_type - enum(request’ 'offer’)
% recurrence_pattern : enum('daily’,'weekly’) / - departure_address - varchar(255)

« recurrence_days : json |
| @ departure_id : varchar{255)
[& destination_address : varchar(255)

v [

@ start_date - daie
m end_date : date / T
. [i destination_id : varchar(255)
m created at : timestamp | promm—— p———
/ eparture_date - date \
m updated_at - timestamp | 2. - n o carpoolveb users
| @ departure_time - time] 2 id - bigint unsigned
.'I € (2L (I [EESEIgEr= il Sw preference_id : bigint unsignad
v web timetable_rides | | # distance : decimal(10.2) & name - varchar(255)
carpoolweb timetable_rides | |
d : bi d h -/ 1 duration - it @ email : varchar(255)
@ id : bigint unsigne v
tart i t di # price - decimal(10.2) i email_verified_at : timestamp
@ start_date : date | |_at:
d_d te - dat) description : varchar(255) T — e ———]
end_date : date d v
a} _t ot et o status : enum({'active’, booked','expired’) contact_number - varchar(255)
[creaied_a imestam . - -
- = m created_at : timestamp
@ updated_at : timestamp dated at - timest @ remember_token - varchar(100})
@ updatec_at - imestamp @ created_at : timestamp
m updated_at : timestamp

Figure 4.3 ERD diagram

4.3.4 External APIs

Google Maps API
Purpose: Provides location-based services to enhance the carpooling experience.

o Functions Used:
Map Display — Embeds interactive maps in the application interface.

@)

o Route Display — Shows driving routes between departure and destination points.
o Place ID Retrieval — Obtains unique identifiers for selected locations.
o Distance & Duration Calculation — Retrieves travel distance and estimated time

between two addresses.
o Address Autocomplete — Suggests addresses dynamically as users’ type.

Integration: API keys are stored securely in Laravel’s .env file, and calls are made from

both frontend (JavaScript) and backend (PHP) where appropriate.

Data Handling: Responses are processed in real-time without being stored permanently.

41

Dialogflow API

Purpose: Acts as the natural language processing (NLP) engine for the chatbot feature.
e Functions Used:

o Extracts departure location, destination location, and travel date from user

messages.
o Passes extracted data to Laravel backend for ride-matching operations.
o Integration: Invoked directly from the frontend JavaScript code.

e Data Handling: Responses are processed immediately and stored only in browser

session storage for chat history.
PaddleOCR API

e Purpose: Automates extraction of timetable data from uploaded images to support

timetable-based ride searching.
o Development Environment: Self-hosted locally via Docker container.

e Deployment Environment: Hosted on Azure Container Instances running FastAPI with

a preloaded PaddleOCR model for faster inference.

o Data Handling: API responses are temporarily stored in session only for timetable ride

searching.
Ngrok

e Purpose: Used exclusively during development to expose the local environment to the

internet for API testing and integration.

e Scope: Temporary and not part of production deployment.

4.4 System Components Interaction Operations
4.4.1 Ride Posting — Basic Form Input

This process enables users to post either one-time or recurring rides through a structured form.
The frontend leverages reusable Laravel Blade components for location inputs, enriched by

Google Maps services for address autocompletion, distance calculation, and estimated travel

42

time. Data submission is handled asynchronously via AJAX, ensuring a smooth user

experience.
Interaction Flow:
1. User Input

o One-Time Ride: User enters departure and destination addresses, date, time,
number of passengers, price, description, and ride type (request/offer). If the

ride is an offer, vehicle number and vehicle model are also required.

o Recurring Ride: User enters departure and destination addresses, time, number
of passengers, price, recurrence pattern (daily/weekly), recurrence days (if

weekly), start and end dates, description, and ride type (request/offer).
2. Frontend Processing

o Address fields use a custom Blade component integrated with Google Maps

Places Autocomplete.

o Once both addresses are selected, Google Maps Distance Matrix Service

calculates travel distance and duration.
o Distance and duration are stored in hidden form fields for backend use.
o Simple HTML-based validation is applied before submission.
3. Form Submission

o Data is sent via AJAX request to the appropriate Laravel route, mapped to the

corresponding controller method.
4. Backend Processing
o Laravel validates all form data.

o Determines ride type (one-time or recurring) and ride category (request or
offer).

o Creates records in the appropriate database tables (rides, offers,

recurring_rides).

5. Post-Save Response

43

o Onsuccess: Backend responds with a success message, which is displayed using

SweetAlert2, followed by a redirect to the ride list page.

o On validation errors: Returns error messages for each invalid field, which are

displayed in line with red borders and messages.

o On system errors: SweetAlert2 displays a relevant error notification.

User
Browser
Google Maps API Laravel Backend Database
i (Frontend) gie Map
i i i i
| i i i
Fill ride form ! ! ! :
]]]
Autocomplete call ‘i i i
Ll] i
o Placeresuls | i ; ;
]]]
]]]
]]]
i i i
Distance/Duration request ' ! !
Distance/Duration i i
Bty L i i
]]]
]]]
' i i
AJAX Submit Form o H
v Validate Input
i i
]]
]]
]]
]]
] T]
]]
]]
i i
i Validation OK i
[. [
i i
]]
]]
]]
]]
i L i
]]
]]
i i
! h Create ride data !
i i
]]
i i
! L1 Saveride record
i i 'L‘
]]
i i
alt i i
H H DB sucess
e Mg Hosueess]
i
[Success Path] I SuccessResponse D(i
_ Swest Alert Success | ! . !
i i i
Redirect fo ride list i i i
I e L eeeeemmeemmeemememnmmee e mmemmm—emmmen i
L ! i
[Error Patn] . Incase of error: retum validation / system emor =
Show inline error message H H
I, i 7 i
]]]
L L]]]
[i]]]
i i

Figure 4.4 Ride posting — basic form input Sequence Diagram

44

4.4.2 Paddle OCR API

This self-developed PaddleOCR API is designed to automatically extract structured class
schedule data from a submitted timetable image. Its purpose is to simplify the ride creation and

searching process in the carpooling platform by eliminating the need for manual entry.
Interaction Flow:
1. User Upload
o User submits an image of their timetable through the Laravel application.
o Laravel validates and prepares the image file.
2. Laravel — PaddleOCR API (Request)

e Laravel sends an HTTP POST request with the timetable image to the PaddleOCR
API endpoint.

3. PaddleOCR API Processing

The API validates the uploaded file (e.g., size/format).
e Crops the timetable region using OpenCV (cv2).

e Uses the pre-loaded PaddleOCR model (loaded once when container started) to

recognize texts from the cropped image.
o Classifies recognized texts into:
o Day
o Start Time / End Time
o Classroom Code
o Aligns times by comparing box centers with timetable headers (column matching).
e Maps classroom codes to correct day and time slot.
4. PaddleOCR API — Laravel (Response)
e API sends back the extracted timetable in JSON format, containing for each class:

o Day

45

o Start Time
o End Time
o Location (classroom code).
5. Laravel post-processing
e Laravel receives the JSON response.
e Converts each class entry into a ride entity (with recurring ride pattern logic).
e Stores rides in the database.
6. Completion

o User receives confirmation in the Laravel app (e.g., rides created successfully from

timetable).

User
Laravel Paddle OCR API
Backend {Docker)

Upload Image _ |

HTTP POST (image) _q
"L

Preload OCR model

Validate & Crop image

] 1]

OCR exiract text

Classify day/time/location

Generate JSON response

I_

t]]

JSON R
ez 2 esponsE |

Convert JSON
fo rides

I._

Dizplay Rides

.___________________.l

46

Figure 4.5 Paddle OCR API sequence diagram

4.4.3 Ride Posting — Timetable-based

In the timetable-based ride posting feature, the user uploads a timetable image to automatically
generate potential recurring rides based on their class schedule. The image is processed by a
self-developed PaddleOCR API (built with Python and FastAPI, with a custom-trained model
for UTAR student timetables), which extracts the class details such as day, start time, end time,
and location. The Laravel backend processes this extracted data to generate ride suggestions,

following a set of rules:
e Create rides 30 minutes before a class starts and right after a class ends.
o Skip rides where the gap between two classes is less than or equal to 1 hour.

After reviewing the suggested rides, the user completes the remaining form fields, including
home address (with Google Maps autocomplete), price, number of passengers, and vehicle
details if offering a ride. Upon submission, the Laravel backend calculates distances and
durations using the Google Maps DistanceMatrix API, validates all inputs, and stores the

recurring rides in the database.
Interaction Flow:
1. Upload Timetable
o The user uploads their timetable image via AJAX.
o Laravel validates the file and sends it to the PaddleOCR API.
o PaddleOCR returns JSON containing extracted class details.

o Laravel processes the JSON and generates suggested rides based on the

timetable rules.

o Laravel returns the ride suggestions and displays the remaining input form to

the user.
2. Complete Ride Details

o The user fills in remaining fields (home address, start/end date, number of

passengers, price, vehicle details, and description).

47

o Google Maps Autocomplete assists in entering the home address.
3. Submit Form
o The completed form is submitted via AJAX to the Laravel backend.

o Laravel validates inputs, calculates distance and duration via Google Maps

DistanceMatrix API, and stores the rides in the database.
4. Feedback to User
o On success — SweetAlert2 success message — redirect to ride list.

o On validation or system error — display inline messages or SweetAlert2 error.

48

User

]---- 1

% Browser Laravel PaddleOCR Google Maps
Database
(Frontend) Backend API API
1 i i i i
Upload timetable | ' H |
= H H i
H H i
H H i
AJAX Upload | i
» : !
H i
H i
H i
H i
H i
H i
h Validate file | |
[i i
H |
H i
Send to PaddleQCR_ ¢ !
L i
]]
]]
]]
]]
H i
H i
\ Process image H
i and exfract classes i
]]
Suggested Rides [], RetumJSON i
+ i
i
e Fom |
!
]
]
]
|
i
i

dmmmed e ———

i
'
'
'
'
]
]
i
'
Autocomplete call | N
Place results i
]
Fill remaining form | [€----------------- R E R St
Ll i i I
AJAX Submit [: i
" ; |
' |
' |
])
]]
]]
]]
] i
Validate input ; |
M ; |
' |
' |
Distance / Durafion request o :
. g
]
Distance / Duration
[Er-mmmmmmmm oo [
' T
' |
' |
])
Create recurring i i
. rides data ! '
' |
' |
i Save ride record i o
] [=
])
]]
DB success
I —— TR - S ——— l
; | |
ait | Success response | i | |
Sweethlerd L ' ! '
]]]]
[Success Path] ,G____S!‘PPF?E _____ ' 1 | |
U]]]
—————————————————— B R e T LR ' | |
: Validation B : | |
1 alidafion ' | |
[Error Path] Inline message System emor i i i
eror i msiemenanannnnn ! ! !
(S T ! | |
T]]]]
L]]] i i
| 1 1 1 i i

Figure 4.6 Ride Posting — Timetable-based Sequence Diagram

4.4.4 Ride Searching — Input fields

This feature allows users to search for rides based on specific criteria, including departure
address, destination address, date, and ride type (offer/request). The departure and destination

address fields use the same reusable Google Maps autocomplete Blade component used in the

49

ride posting forms, ensuring consistent Ul and geocoding functionality. No distance or duration

calculation is performed during the search stage.
Interaction Flow

1. User Input — The user enters the departure address, destination address, date, and ride

type.

2. AJAX Form Submission — When the search form is submitted, JavaScript sends the
input values via AJAX to the backend without reloading the page.

3. Routing — Laravel routes the AJAX request to the appropriate controller method based

on the route definition.

4. Backend Filtering — The controller uses Laravel Eloquent queries to filter rides

according to the input criteria. Recurring rides are grouped and labeled as such.
5. Sorting — Results are sorted by date, ensuring the soonest rides appear first.
6. Response Data — The backend returns the filtered results in JSON format.

7. Dynamic Rendering — JavaScript processes the returned JSON and updates the rides
list dynamically in the DOM.

8. No Match Case — If no rides match the filters, the frontend displays the message "There

are no rides available” with a button for the user to create a new ride.

User

Browser Laravel

(frontend) Backend Database

Fill search form

AJAX request

¥

Cluery rides

¥

Filtered data
..:':' ___________________

Rendered Blade

Display resulis H
Rt e
i i
i i
i i
i i

Figure 4.7 Ride Searching — Input fields Sequence Diagram

50

4.4.5 Ride Searching — Timetable-based

This feature allows users to search for available rides based on their personal timetable by
leveraging the PaddleOCR API class extraction system. Instead of manually entering trip
details, users can upload their timetable image, and the system automatically identifies

potential rides that match their class schedule.
Interaction Flow

1. File Upload:
e The user initiates the search by clicking a button to reveal the file upload input,
then uploads their timetable image via AJAX.

2. Backend Processing (Extraction):

o Laravel validates the uploaded file, then sends it to the self-hosted PaddleOCR API

for timetable class extraction.

e PaddleOCR returns a JSON containing class details (day, start time, end time,

location).

o Laravel applies the timetable ride extraction logic (same rules as timetable-based

ride posting) to generate possible ride data from these classes.
o The generated ride data is stored in the session for temporary use.
3. Redirection to Search Results:

o If extraction succeeds, the backend responds to AJAX with a redirect route that

includes a GET parameter (user_timetable=true).
e The frontend redirects the user to this route.
4. Matching Against Database:

o The controller detects the user timetable=true parameter and retrieves the stored

rides from the session.

o Laravel uses Eloquent queries to match these session rides against existing rides in

the database based on class time and location.

51

e Matching results are grouped (recurring rides grouped together) and sorted by date
before being displayed.

5. Failure Handling:

e If OCR extraction fails, the user is notified via SweetAlert2 and remains on the

upload page.

e Ifno matching rides are found, the search results page shows “No rides available”

with an option to create a new ride.

User

Database

Browser Laravel PaddieQCR
{(Frontend) Backend APl

i
Click
Timelable
Search

|_______

Show
upload form

Submit
timetable

AJAK POST

i Validate file

send of PaddleQCR

hJ

Frocess image
and extract classes

Return JSON
¢g‘ _____________________
Exfract ride from JSOMN
o Store rides in session
Return
redirect route
{ _________________

T
i
—

Hitp GET request

Refrieve rides
from session

Queries rides
i

i
Filtered data

. Rendered blade
Display results | [€----------------

-1

52

Figure 4.8 Ride searching timetable-based Sequence Diagram

4.4.6 Ride Searching — Al Chatbot

This feature allows users to search for rides by conversing in natural language through a chatbot
interface, which interprets the user’s message, extracts key ride details, and returns matching

ride information directly within the chat.
Interaction Flow

1. User clicks the chatbot icon/button to open the chat interface.
User enters a query containing departure, destination, and date.
JavaScript sends the query via AJAX to a Laravel route.

Laravel retrieves a Dialogflow access token and sends the query to Dialogflow.

A

Dialogflow processes the query, extracts departure, destination, and date, and returns
them to Laravel.

6. Laravel searches the database for rides matching the extracted data.

7. Laravel returns the first matching result to JavaScript via AJAX.

8. JavaScript updates the chat interface to show the ride result.

9. Ifrequired parameters are missing, the chatbot prompts the user for them.

10. If no matching ride exists, the chatbot displays “No rides found.”

53

4.4.7

L

User

Display result

Figure 4.9 Ride searching — Al chatbot sequence diagram

Ride Booking

Browser Laravel DialogFlow
Databasze
(frontend) Backend APl
: i i i i
]]]]
i i i i
click chaticon ™ ! ' '
open chatbox i i i
""""""" L i i i
[i i i
M i i i
Type message,_| N ' '
Ll i i
AJAX send | i i
T Get access foken _ © i
Ll '
]
]
o Token] | ;
i i
i i
Send query H
L i
]
Entities: i
depidestidate !
.. dopdeslise | | ;
Ouerglr rides o ;
: g
i
i
P Matchingrides H
JSON result H

In the Ride Booking operation, a user selects a ride from the ride list and initiates booking from

the ride details page via AJAX. Laravel validates the booking data (ride ID or recurring ride

ID, and receiver ID), stores it in the bookings table, and updates the ride status to “pending.”

The system then returns a SweetAlert2 success message, or an error message if validation fails.

Interaction Flow:

1. User Action

2. Frontend Processing

The user navigates to the ride details page from the ride list.

The user clicks the "Book Ride" button to reserve the ride.

The booking request is sent via AJAX without reloading the page.

The request includes the ride id (or recurring_id) and the receiver id (driver’s user

ID), which are passed in the background and not entered manually by the user.

54

Backend Processing — Laravel

o Laravel validates the request, ensuring that at least one of ride id or recurring_id

exists and is valid.
o Ifvalidation passes:
o The booking is stored in the bookings table.
o The ride’s status is updated to "pending".
o Ifvalidation fails, Laravel prepares an error message.
Database Interaction
o Insert booking data into the bookings table.
o Update ride status in the rides table.
Response Handling
o Ifsuccessful:
o Laravel sends a success response back to AJAX.
o SweetAlert2 shows a confirmation message to the user.
e Ifunsuccessful:
o Laravel sends an error response back to AJAX.

o SweetAlert2 displays the error to the user.

55

User

Browser Laravel
Databasze
(frontend) Backend
4 | | i
Click : : :
"Book Ride" _] ! !
" i i
i i
Sweet Alert i i
Confirmation ! !
______________ L] i i
i i i
Confirm ' ' i
- i i i
booking > Send i i
Booking Request '
> !
!
Validate i
ks booking i
data '
i
i
i
L i
i i
alt | Insert into |
] bookings table !
[Valid Booking] w

DB success
[=mmm - - === m o m - - |
i
i
Update ride !
status fo "pending” _ *

DB success
R Rl |
show Success response :
SweetAlert2 {___________P _______ !
- i
| Buccess | | |
L i i

—————————————————— I e I A

[Invalid Booking] M M i
show {___EE’E’I_"E?E‘E'E?____ |
Sweethlert? L :
error i i
______________ i i
i i
T i i
i i i
T i i i

Figure 4.10 Ride booking sequence diagram

4.4.8 Ride Management

The Ride Management operation allows users to manage their rides and bookings from the
dashboard, which contains three sections: Manage Rides, Incoming Bookings, and Outgoing
Bookings. In Manage Rides, users can view, edit, or delete their rides. In Incoming Bookings,
users can accept or reject booking requests, changing the booking status to either accepted or

rejected. In Outgoing Bookings, users can cancel their own booking requests.

56

Interaction Flow

1. The user navigates to the Dashboard page, which contains three tabs: Manage Rides,

Incoming Bookings, and Outgoing Bookings.

2. When the user clicks Manage Rides, they can choose to view, edit, or delete an existing

ride.

o Ifdeleting, the action is sent via AJAX to the Laravel controller, which validates
the request, deletes the ride from the database, and cascades the removal of any

related data.

o Upon successful deletion, the system returns a success response to the browser,

which displays a SweetAlert2 notification.
3. In Incoming Bookings, the user can accept or reject booking requests.

o The choice is sent via AJAX to the Laravel controller, which updates the

booking status in the database to accepted or rejected.
o The updated status is returned to the browser and displayed using SweetAlert2.
4. In Outgoing Bookings, the user can cancel a booking request.

o The cancellation request is sent via AJAX to the Laravel controller, which

updates or deletes the booking record in the database.

o A confirmation is returned to the browser, and the user is notified via

SweetAlert2.

57

User

-+

T
i
i
‘

Figure 4.11 Ride management Sequence Diagram

i Browser Laravel
Database
(frontend) Backend

4 i | i

H H H

frame i i i

Click ! ! !

H =]]]

Manage Ride View/EditiDelete | H H

[g] ride M i i

L AJAX request H

Query / Update i

. Resut

""""""""""" "E’q}éét‘,ﬁ,ﬁg‘rﬁ{""{.‘:Hﬁ.@??.u?_s?::: :

i

. Jeodoack____| . ;

L i i

]]]

i i i

]]]

i i i

. . i i i

[Incoming Booking] Accept / Reject i i i

booking] 1 '

> AJAX request !

Update Status !

Result ﬂ

Sweet Alert2 {———ﬁi{%}f—@—s?yg—s?——— i

feedback 1

HE - - o T :

L] i i

i i i
.................................... D

. . 1]]

[Outgoing Booking] Accept / Reject | : |

booking i i i

- AJAX request !

Deleie / Update

. Resut

Sweet Alert? {——ﬁ{g—rF?PPP-SF--- i

i

. feedback | :

i

i

!

58

Chapter 5

System Implementation

5.1 Hardware Setup

5.1.1 Local Development Environment

The system was developed and tested locally on a laptop machine. The specifications of laptop

were shown in Table 5.1.

Table 5.1 Specifications of laptop

Description Specifications

Model HP Victus 16

Processor AMD Ryzen 5-8645HS
Operating System Windows 11

Graphic NVIDIA GeForce RTX 4050
Memory 16GB DDR4 RAM

Storage 512GB SSD

e Development Stack:

o Laravel framework set up through Laragon as a local web server environment.

o Docker was used locally to containerize and test services, particularly for
ensuring consistency in environment setup before deployment.

e Testing Tools:

o Ngrok was employed to expose the local server to the internet during
development, allowing for online testing of APIs and external integrations (such
as Dialogflow chatbot and Google Maps API).

This setup ensured a smooth and isolated environment for iterative development, debugging,

and testing.
5.1.2 Deployment Environment

For deployment, both the web application and supporting services were hosted on cloud

infrastructure:

59

e Laravel Cloud:
The main web application was hosted on Laravel Cloud, ensuring scalability, security,
and continuous deployment support.
e Azure database hosting:
The data within the website was stored and hosted in Azure, deployed via Azure
Database.
o MySQL flexible servers:
= Instance type: Burstable, Blms
= vCores: 1
= Memory: 2 GiB
= Storage: 20 GB
= Disk IOPS: 360
This deployment configuration ensured cost efficiency while providing sufficient resources to

handle data request.

5.2 Software Setup
5.2.1 Operating System and Local Development

This layer provides the foundation for the project’s development environment. It includes the
operating system, local server management tools, and integrated development environments

(IDEs) used to build and test the system before deployment.
1. Operating System — Windows 11

The project development is carried out on Windows 11, which provides a stable and
user-friendly environment compatible with required tools such as Laravel, MySQL,

Docker, and Python.
2. Local Development Environment — Laragon

Laragon is used as the primary local development environment. It simplifies the setup
of Laravel projects by providing pre-configured services such as Apache, PHP, and
MySQL. Laragon allows rapid project initialization (via Quick App) and efficient

management of multiple local applications.

o Download link: https://laragon.org/download

60

https://laragon.org/download

Laragon

www
Blank Quick app
WordPress Tools
Laravel PHP
Apache
MySOL
Nodejs

Symfony

Configuration...

How to manage "Quick app”

@ Clone L4

Python
Start All

Preferences...

Exit

Figure 5.1 Project Initialization via Quick App
3. Python Runtime for OCR Service (v3.10)

In addition to PHP, Python is used to develop the OCR service (FastAPI + PaddleOCR).
This service runs separately from the Laravel application but is integrated via API calls.
Python ensures compatibility with machine learning and OCR libraries required for

timetable extraction.

o Download link: https://www.python.org/downloads/

4. Integrated Development Environments (IDEs)
Two IDEs are primarily used for development:

o PhpStorm: Used for Laravel and PHP development, providing advanced code

navigation, debugging, and project structure management.

= Download link:

https://www.jetbrains.com/phpstorm/download/?section=windows

o PyCharm: Used for Python development, particularly for implementing and
testing the FastAPI service with PaddleOCR.

= Download link:

https://www.jetbrains.com/pycharm/download/?section=windows

5.2.2 Backend Frameworks and Runtime
This layer defines the frameworks, languages, and runtime environments that

power the server-side logic of the system. It includes both the PHP-based Laravel

61

https://www.python.org/downloads/
https://www.jetbrains.com/phpstorm/download/?section=windows
https://www.jetbrains.com/pycharm/download/?section=windows

framework for the core web application and FastAPI (Python) for Al-related

services.
o Laravel (v11.45.1)
o Acts as the primary backend framework for the system.

o Provides MVC (Model-View-Controller) architecture, simplifying code

organization and maintainability.

o Offers built-in support for routing, middleware, validation, authentication, and

session handling.

o Used as the foundation for building ride listing, booking, and user interaction

functionalities.
e PHP Runtime (v8.2.27)
o Serves as the execution environment for the Laravel framework.

o Integrated within Laragon for local development and compatible with cloud

deployment environments.
e Composer (v2.8.4)
o Dependency management tool for PHP and Laravel.

o Used to install and manage packages such as Laravel Ul, authentication

libraries, and external integrations.

o Installation command:
= php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
= php composer-setup.php
= php -r "unlink('composer-setup.php');"
* sudo mv composer.phar /ust/local/bin/composer
e Artisan Command-Line Tool

o Provides an interface for executing common Laravel tasks.

o Extensively used for:

= Database migrations (php artisan migrate)

62

5.2.3

= Model and controller generation (php artisan make:model, php artisan

make:controller)

= Factory and seeder creation (php artisan make:factory, php artisan
db:seed)

= Running local servers and cache management (php artisan serve, php

artisan cache:clear).

Frontend Technologies
Laravel Blade Templates
e Version: Bundled with Laravel 11

o Purpose/Usage: Provides server-side templating engine for structuring frontend

views and rendering dynamic content directly from Laravel controllers.
Tailwind CSS
e Version: Latest stable (via CDN)

o Purpose/Usage: Utility-first CSS framework used to rapidly design responsive and

consistent Ul components with minimal custom CSS.
e Code to include in layout file:
o <script src="https://cdn.tailwindcss.com"></script>
e Add these in /resources/css/app.css
o (wtaildwind base;
o (@tailwind components;
o (wtaildwind utilities;
BladewindUI Components
e Version: Latest stable release

e Purpose/Usage: Pre-built Tailwind-based Ul component library integrated into
Blade templates to accelerate frontend development with clean and reusable

elements.

63

o Installation command: composer require mkocansey/bladewind

e Code to include in layout file:

o <link href="{{ asset('vendor/bladewind/css/animate.min.css') } }"
rel="stylesheet" />

o <link href="{{ asset('vendor/bladewind/css/bladewind-ui.min.css') } }"
rel="stylesheet" />
o <script src="{{ asset('vendor/bladewind/js/helpers.js') } } "></script>

o <script src="//unpkg.com/alpinejs" defer></script>

5.2.4 Database

Database System: MySQL

Version: §8.0.30

Local Management Tool: phpMyAdmin (via Laragon environment)

Schema & Data Management: Laravel migrations, seeders, and factories for
schema evolution and dummy data generation

Deployment Database: Azure MySQL Flexible Server for production hosting
Code for Database Migration may refer to my GitHub repository
(/database/migrations): https://github.com/JamesOtter/carpool-web OR

appendix

5.2.5 Cloud / Hosting

e Laravel Cloud

Used for hosting the production version of the Laravel application.

Link: https://cloud.laravel.com/

e Ngrok

Import from GitHub repository
Create an application
Create an environment

Click on deploy

64

https://github.com/JamesOtter/carpool-web
https://cloud.laravel.com/

Utilized for temporary hosting during testing phases. It exposes the local Laravel server
to the internet via a public URL, which is useful for testing APIs and chatbot

integrations before production deployment.

o Download link: https://ngrok.com/docs/getting-started/

o Installation command:
= ngrok config add-authtoken <your auth token>

e Azure MySQL Flexible Server

Cloud database hosting solution used in production. Provides managed MySQL service
with scalability, high availability, and security features, ensuring the application’s

database is reliable in production.

Link: https://portal.azure.com/#browse/Microsoft. DBforMySQL%2FflexibleServers

» Using Quick Create flexible server

= Setup administrator login and password

5.2.6 External APIs
1. Google Maps API
o Purpose: To provide location intelligence features such as address
autocompletion, route planning, and distance calculation.

e Steps to setup:
o Create a Google Cloud Project: https://cloud.google.com/
o Enable these APIs (Maps JavaScript API, Places API, Directions API,

Geocoding API)

o Generate an API key
o Code in layout file: <script
src="https://maps.googleapis.com/maps/api/js?’key=YOUR API KEY &li

braries=places"></script>
2. Dialogflow API

o Description: A conversational Al platform by Google for building chatbots and

virtual assistants.

o Purpose: To enhance user interaction by allowing natural language queries to find

or book rides.

65

https://ngrok.com/docs/getting-started/
https://portal.azure.com/#browse/Microsoft.DBforMySQL%2FflexibleServers
https://cloud.google.com/

o Usage: Integrated into the Laravel-based frontend as a chatbot, helping users search

for rides and providing a direct link to ride details.

e Link: https://dialogflow.cloud.google.com

e Steps to setup:
o Create a Dialogflow Agent
o Setup a google cloud project
o Generate Service Account Credentials (JSON Key File)

o Store the JSON Key in Laravel Project (/storage/app/dialogflow/)

3. PaddleOCR (PP-OCRYv5)

e Description: An open-source Optical Character Recognition (OCR) library
developed by Baidu. In this project, PP-OCRVS is used for extracting structured
text data from uploaded timetables. To ensure efficiency, the model is preloaded
inside a Dockerized FastAPI service, which acts as a middleware between the
Laravel application and the OCR model.

e Deployment:

o Local development: PaddleOCR runs inside a Docker container with FastAPI
for easy testing and model reuse.

o Production: The Dockerized FastAPI service will be hosted on Azure
Container Instances, allowing scalable and containerized deployment.

e Docker download link (Window version): https://www.docker.com/

e Paddle OCR installation command (to test locally):
= pip install paddleocr
= pip install paddlepaddle

5.2.7 Version Control and Collaboration
1. Git

e Description/Purpose: A distributed version control system used to track changes

in source code, manage project history, and support collaborative development.

66

https://dialogflow.cloud.google.com/
https://www.docker.com/

o Usage: Used throughout the project lifecycle to commit, branch, and merge code

changes. Helps maintain clear versioning and rollback capabilities.
2. GitHub

e Description/Purpose: A cloud-based platform for hosting Git repositories with

collaboration, pull request, and code review features.

e Usage: The project repository is hosted on GitHub to enable team collaboration,

centralized code storage, and integration with deployment pipelines.

e My project repository link: https://github.com/JamesOtter/carpool-web

5.3 Setting and Configuration
5.3.1 Backend and Database Configuration
¢ Environment variables (.env in Laravel) for database and API keys [in Local].

o Make sure the variables are such as below figure.

Figure 5.2 Backend and database configurations in local

e Config file in Laravel [in Local].

o /config/database make sure it is mysql

67

https://github.com/JamesOtter/carpool-web

Figure 5.3 MySQL configuration

e In Laravel Cloud [production]:

o Navigate to settings > Custom environment variables, then add these variables

Figure 5.4 Backend and database configuration in deployment

5.3.2 External API Configuration
1. Dialogflow agent integration
o Create Intent from Intents Tab

o In Training phrases add phrases such as figure below.

99 Can | book a trip leaving Kampar and going to KL Sentral on Feb 25th?

Eh

99 Is there any car going from Starbucks to McDonald's on Feb 20?
39 Ride from Sunway to KL tomorrow at 10 AM

9% Find a ride from Kampar to Kuala Lumpur on March 5th

99 Find me a car from [Departure] to [Destination] on [Date]

99 Ride from Chicago to Miami on April 10th

99 | need aride from Los Angeles to San Francisco

39 s there any ride available to San Francisco?

33 Find me a ride from New York to Boston on March 5th

Figure 5.5 DialogFlow training phrases

o In Action and parameters add such as figure below.

2] 2] L] (2]

N i . .
Sdeparture_locat Define prompt
departure_locatic @sys.any i . r | ‘ - ’

. tination_loc Define prompt
destination_locat @sysany [] -

N 8 B

Define prompt
departure_date @sys.date-time Sdeparture_date | ‘) P

68

Figure 5.6 DialogFlow actions and parameters
o Go to Fulfilment tab to enable webhook and configure your URL to access

this APL
Webhook ENABLED @)

Your web service will receive a POST request from Dialogflow in the form of the response to a user query matched by intents with
webhook enabled. Be sure that your web service meets all the webhook requirements specific to the API version enabled in this agent

URL* hitps:/ N - i/ chathotl

Figure 5.7 DialogFlow webhook

2. Paddle OCR FastAPI endpoint configuration
o In “app.py” use the following code. Thus, the API can be accessed through

/ocr-timetable

Figure 5.8 FastAPI configuration

5.3.3 Cloud and Hosting Configuration
1. Docker configuration

o Create a requirement.txts to include package to be downloaded

Figure 5.9 Docker requirements

o Create a Docker file to run the python code and host the FastAPI server.

69

FROM python:3.10-slim

RUN
libgll-mesa
libglib2.0-0 \

libgompl \

clean

COPY requirements.txt .

RUN install --no-cache-dir -r requirements.txt

Figure 5.10 Docker file to run
o Command to run docker (in Local):

= docker build -t timetable-ocr

2. Azure Container Instance

o Command to publish local image to Docker hub
= docker tag <name>/timetable-ocr
= docker push <name>/timetable-ocr

o Create Azure Container Instance in azure portal
= Image source: Other registry
= Image: <name>/timetable-ocr
= OS type: Linux
= Size: 4 vepu, 4 GiB memory

5.4 System Operation
5.4.1 System Startup and Initialization
e Local Environment

1. Select “start all” to start Laragon

70

Laragon
www
Cuick app

Tools

PHP
Apache
MySQL

Neode,js

Python
Start All

Preferences...

Exit

Figure 5.11 System start-up in local environment

2. Go to project level CMD and start local host

o php artisan serve
3. Insame level, open another CMD to tunnel local host to public by using Ngok

o ngrok http 8000
4. Command to start Docker

o docker run -p 8010:8010 -v

"C:/laragon/www/CarpoolWeb/storage/app/public:/app/storage" timetable-ocr

e Production Environment

1. Deploy website in Laravel Cloud

Connect Nightwatch & Deploy Visit

Figure 5.12 System start-up in production environment

2. Start Azure Database in azure portal

3. Start Azure Container Instance in azure portal

5.4.2 User Roles
1. General User
e Every registered account in the system is a User.
e A User can act as either:
o Driver — posts ride offers with trip details.

o Rider — posts ride requests or books available ride offers.

71

e This flexibility allows users to switch roles depending on their need (e.g., one day they

drive, another day they ride).

2. Driver Role (when offering rides)

e A Driver is a user who creates an offered ride.

e Required inputs typically include:
o Starting point & destination (via Google Maps API)
o Date & time of departure
o Available seats
o Vehicle number and model
o Suggested fare

e Drivers can:
o Post and manage their rides in the Dashboard
o Accept bookings from Riders
o Communicate with Riders (e.g., WhatsApp link)

3. Rider Role (when requesting rides)

e A Rider is a user who creates a ride request.

e Required inputs may include:
o Pickup location & destination
o Preferred time
o Number of seats needed

e Riders can:
o Post and manage their ride requests in the Dashboard
o Book available rides posted by Drivers

o Cancel or update bookings

4. Dual Role (User as Rider & Driver)
e A user can switch roles dynamically depending on the context.
o Example:
o In the morning, a user may act as a Driver when driving to campus.
o In the evening, the same user may act as a Rider when booking a ride home.
o This flexibility makes the system community-driven instead of a strict platform with

separated roles.

72

5.4.3 Normal Operation Workflow

1. User Registration and Login
The registration process begins when a new user accesses the registration page and
provides their details, including name, email, contact number, password, and password
confirmation. Once the information is submitted, the system validates the inputs to
ensure that the required fields are not empty, the email is in a valid format, and the
password matches the confirmation field. If any validation fails, the system
immediately returns an error message to guide the user in correcting the input. Upon
successful validation, the user’s information is securely stored in the system database,

and the account becomes active for login.

Register Account

Figure 5.13 Registration form

For login, the user is required to provide only their registered email and password. The
system validates these credentials against the stored records in the database using
Laravel’s built-in authentication mechanism. If the credentials are incorrect, the system
displays an error message prompting the user to retry. Once authenticated successfully,
the user is granted access to the system’s dashboard and can proceed to use the available
features such as ride creation, ride search, and booking. This workflow ensures a secure
and user-friendly authentication process that forms the foundation for accessing the

system.

73

Login Account

Figure 5.14 Login form

2. Ride Posting — Basic form
Once registered and logged in, users can proceed to post a ride within the system. The
ride posting feature supports both ride offers (drivers offering seats in their vehicle)
and ride requests (passengers seeking a ride). During this process, the user is required
to provide key ride details including the departure address, destination address, date
and time of travel, ride type, number of passengers, and the proposed price. To
ensure accuracy, the system enforces the use of the Google Maps Autocomplete API,
which validates addresses and prevents invalid or ambiguous entries. Additionally, the
system restricts users from selecting past dates or times to maintain the integrity of

future ride scheduling.

[.CarPool] ome ides (®) Timetable Ride [@ PostRide | L

Create Ride Form

Departure Destination

Make recurring ride

Select a date Select a time Ride type Number of passenger Base Price

Description

Figure 5.15 Ride Form — One time ride

74

| @ Timetable Ride | | () PostRide | L

Create Ride Form

Departure Destination

@D Make recurring ride

Select a time Ride type Number of passenger Base Price

Recurrence pattern Recurrence days Start date End date

B -

Figure 5.16 Ride Form — Recurring rides

After submission, the ride is stored in the database and becomes immediately available
in the ride listings for other users to view, though a page refresh may be required to
reflect the newly added ride. The system accommodates both single rides (one-time
trips) and recurring rides, where users can define repeated journeys over a specific
period. This recurring ride functionality reduces the need for drivers or passengers to

repeatedly create identical listings for regular trips such as daily commutes.

Paddle OCR API
The normal operation flow of the PaddleOCR API begins when a timetable image is
submitted from the Laravel application via an HTTP POST request. Once received, the
image is processed through the FastAPI service running inside a Docker container. The
system first applies OpenCV (cv2) techniques to crop the timetable region from the
uploaded image, ensuring only the relevant portion is passed for text recognition.
The OpenCV techniques consists of:
Convert image to grayscale to simplify further processing
b. Apply binary inverse thresholding: bright pixels become black and darker pixels
become white, making text / line pop as white shapes on dark backgrounds.
c. Detect external contours (the outer boundaries of connected white regions) in
the thresholded image.
d. Select the largest contour by area, assuming it corresponds to the timetable grid.
e. Compute a bounding rectangle around the largest contour.

f. Crop the original image to that rectangle, isolating the main region of interest.

75

For an example, figure 5.17 show an image of timetable with excess space. In figure

5.18 show the image of timetable after cropping.
My Lneraue

Mr. TAN JIAN HUA (21ACB04722) Sg. Long KB building floor plan

Kampar campus map
The class timetable is subject to change without prior notice

06:00 07:00 03:00 09:00 10:00

07:00 08:00 09:00 10:00 11:00

NOD3 N0O1 N112B (Lab)
UCCD3113(M UALJ2013(T) | UCCD3074(P)(1)
Mon @) (8) Physical
Physical Physical 1-14
114 1-14
LDK2
. UCCD30T4(LY(1)
e Physical
1-14
LDK2 LDK1 LDK2
UCCD307T4(L) UCCD3N3(L)(1) | UALJ2013(LY3)
Wed (W] Physical Physical
Physical 114 114
1-14
Thu
LDK1
UCCD3113(L)
Fri)
Physical
1-14
Sat
Sun

Figure 5.17 Timetable before cropping

08:00 09:00 10:00 00 02:00 04:00 05:00
09:00 10:00 11:00 03:00 05:00 06:00
N003 NOO1 N112B (Lab)
UCCD3113(T) UALJ2013(T)| UCCD3074(F)(1)
Mon (4) (8) Physical
Physical Physical 1-14
114 114
LDK2
. UCCD3074(L)(1)
Physical
1-14
LDK2 LDK1 LDK2
UCCD30T4(L) UCCD3113(L)(1) UALJ2013(L)(3)
Wed (1) Physical Physical
Physical 1-14 1-14
1-14
Thu
LDK1
UCCD313(L)
Fri ™)
Physical
1-14
Sat
Sun

Figure 5.18 Cropped timetable

The cropped timetable is then processed using PaddleOCR, which extracts the text

content along with the corresponding bounding box coordinates.

76

.
[Mon ‘ | Physical
i A4
|
'UCCD3074WL(1)

Tue

lLokz| Lokt LDK2
Uccosor4(). uccpanay) [TATIEOIRENE)
() Physical
1-14

=

Figure 5.19 Visualized detected text on image

g W B 0000 00 o]
BT o] [0 os:00 o7 | SE

N112B (Lab)
[ALIZ013 (1) |PCCD3074(P) (1)

®) Eaea]
Tue

N k2

ST () [0

(1) Physical| hysicall

hysical 1-14 1-14

14

lccn3Tts @]
i-14

Sun|

Figure 5.20 Visualized detected text and bounding box

The recognized text is subsequently classified into specific categories, including day,
time, and classroom codes. To structure the information accurately, the system maps
each extracted classroom code to the appropriate day and time column, referencing the

time header that contains the start and end times for each slot.

77

- o
114
LDK2
= UCCD3074(L)(1)
Physical
1114/ |
UCCD3074(L)
Wed (1)
1-14
e T

Figure 5.21 Example of classroom code mapping

After mapping, the data is organized into a structured JSON output, where each entry
contains details of a class with its associated day, start time, end time, and location
(derived from the classroom code). This JSON response is returned on-the-fly to the
Laravel application and is directly integrated into the carpooling ride controller,
enabling the extracted timetable information to be seamlessly converted into ride
creation data. The Laravel backend processes this extracted data to generate ride

suggestions, following a set of rules:
e Create rides 30 minutes before a class starts and right after a class ends.

o Skip rides where the gap between two classes is less than or equal to 1 hour.

Given an example in figure 5.22, red boxes indicate the rides will be created.

06:00 07:00 08:00 09:00 10:00

07:00 08:00 09:00 10:00 11:00

NOO1 N112B (Lab)
UALJ2013(T) | UCCD3074(P)(1)
(8) Physical

Physical 1-14
1-14

UCCD3074(L)(1)
Physical
1-14

LDK2 LDK1 LDK2
UCCD3074(L) UCCD3113(L)(1) UALJ2013(L)(3)
Wed) Physical Physical
Physical 1-14 1-14

1-14

LDK1
UCCD3113(L)
Fri (1)
Physical

1-14

Figure 5.22 Example of rides will be created

78

4. Ride Posting — Timetable based
In the timetable-based ride posting workflow, the process begins when a user uploads

an image of their academic timetable into the system.

Rides Create

Create Ride Form

Step 1
Upload your timetable Step 1: Upload your timetable

Step 2
Fill in details

@ WhatsApp image 2025-06-12 at 54614 PMipeg

Done

&3
Figure 5.23 Upload timetable form

The uploaded timetable is first processed by the PaddleOCR engine, which extracts the
textual information such as class times, subjects, and classroom locations. This
extracted text is then passed to a Python-based processing module, where the data is
further analysed to identify class schedules and determine corresponding departure
times and destinations. Once the extraction process is complete, the system
automatically generates a set of suggested rides that align with the user’s timetable.
These suggested rides are then displayed back to the user, where the timetable-derived
details such as class times and campus locations are fixed and cannot be modified.
However, the user is required to provide additional information such as their home

address, ride start date and end date, as well as the ride price and number of passengers.

79

Rides Create

Create Ride Form

o Step 1

Uploaded timetabl
‘ ploaded timetable Home Address

Step 2
Fill in details

Start Date

Ds .
one Block N Faculty of Information and

Communication Technology (FICT)
End Date

Monday
Number of passenger

4

Base Price

FROM
Vehicl by
e e Block N Faculty of Information and

Communication Technology (FICT) 2]

Vehicle Model ®

Figure 5.24 Additional information form

Upon confirmation, the rides are created strictly based on the system’s suggestions,
ensuring consistency with the timetable data. All newly created timetable-based rides
are automatically set as recurring, meaning the system schedules them across the
selected date range. The rides become visible to the user immediately after the process,

though a page reload is required to display them in the interface.

Ride Searching — Basic input

In the ride searching workflow, users begin by entering their desired departure and
destination addresses, selecting a date of travel, and specifying the ride type (request
or offer). The system utilizes Google Maps Autocomplete to assist users in quickly
and accurately entering valid addresses, reducing the chances of input errors. Once the
necessary information is provided, the user is required to submit the search form to
proceed. Upon submission, the system processes the query and displays a list of

matching rides, if available.

80

-

Home Rides Dashboard (@ Timetable Ride | | (3 Post Ride (1)
— o)
Timetable

Departure

UTAR Jalan Universiti, Bandar Barat, Kampar, Perak, Malaysia

Destination

Hakka Yin Cafe, Jalan Ampang, Kampar, Perak, Malaysia

° -@-0

t date: Tut 15, 2025 Base Price: RM 2.00 & 2 Seat RIDE OFFER ©
e, Jul 2 25

Departure

UTAR, Jalan Universiti, Bandar Barat, Kampar, Perak, Malaysia

Destination

KFC Kampar, Jalan Idris, Kampung Masjid, Kampar, Perak, Malaysia

at, Jul 19, 2025 01:11 AM @) Base Price: RM 2.(

©-@-0

Figure 5.25 Ride filter

Each ride result includes essential details such as the departure point, destination,
travel date, price, available seats, ride type, and whether it is a recurring ride. The
system automatically sorts the search results by the date nearest to occur, ensuring

users can easily identify the most relevant options.

Departure
UTAR, Jalan Universiti, Bandar Barat, Kampar, Perak, Malaysia

@ Destination
Hakka Yin Cafe, Jalan Ampang, Kampar, Perak, Malaysia

@ Start date: Tue, Jul 15, 2025 Base Price: RM 2.00 &g 2 Seats RIDE OFFER
End date: Tue, Jul 29, 2025
Time: 02:22 AM RECURRING

Departure
UTAR, Jalan Universiti, Bandar Barat, Kampar, Perak, Malaysia

@ Destination
KFC Kampar, Jalan Idris, Kampung Masjid, Kampar, Perak, Malaysia

(® sat, Jul 19,2025 01:11 AM Base Price: RM 2.00 &8 2 Seats e

Figure 5.26 Ride card details
If no rides match the search criteria, the system displays a clear “No rides available”

message to inform the user.

81

.CarPool Home Rides Dashboard

Ipoh, Perak, Malaysia

» gl

Post Ride Now

There are no rides available

POST RIDE

BI

Figure 5.27 No rides available

Any updates to search results or new searches are only reflected after a page reload,

providing a straightforward and consistent experience.

Ride Searching — Chatbot
In the chatbot-based ride searching process, the system integrates with Dialogflow to
enable users to search for rides using natural language input. Users interact with the

chatbot by directly typing their departure location, destination, and date in

Ride finder bot ©)

{ Hello! How can | assist you?

conversational form.

i

sye
syen
yen
enl °

|
? ‘@ ﬁ Fr‘nn!p K
Figure 5.28 Ride finder chat bot

82

Unlike the standard search form, the chatbot accepts only text input without voice or
other input modes. Once the user submits their query, the chatbot communicates with
the backend system to process the information. If a relevant ride is found in the
database, the chatbot responds by providing a clickable link within the chat box that
redirects the user to the ride detail page for booking. No ride information, such as route

or price, is displayed in the chat itself; the link serves as the gateway for the user to

Ride finder bot ©)

! Hello! How can | assist you?

view all ride details.

find me a ride from utar to kfc on 26 e
aug

Here is a ride for you:
http://3afa’4edc086.ngrok-
free.app/rides/15

ERERE ST TN #y)

[ﬁype a message... l B
=TT

- -

Figure 5.29 Chat bot response link

If the search returns no matches, the chatbot replies with a message stating that no rides

are available.

Ride finder bot

aug

) Here is a ride for you:
| http://3afa74e4c086.ngrok-
free.app/rides/15

find me a ride from utar to kfc on 28 9
aug

Sorry, no rides found for your
o request.

L

ye

v
n
n ['Type a message... l
(B]
= ——

= -

Figure 5.30 Rides not found

83

In cases where the system encounters difficulties interpreting the user’s input (for
example, an unrecognized date format or incomplete location data), the chatbot prompts

the user to re-enter the specific fields required for processing.

Ride finder bot

find me a ride from utar to kfc on 28
aug

o

Sorry, no rides found for your
request.

i want to go there on 28 aug e

| need the departure location,
destination, and date to find a ride.
c Can you provide these details?

sye

v
yen | |
fen

anl

Figure 5.31 Difficulties interpreting input

Additionally, the chatbot is designed to maintain conversation state across page reloads,
ensuring that the user’s search session is not lost while navigating the website. This
approach creates a seamless experience where the chatbot acts as a conversational entry

point for accessing ride details and bookings.

Ride Searching — Timetable based
When a user wishes to search for rides using their timetable, they begin by pressing the

“Use My Timetable” option on the platform.

| (*) Timetable Ride | | () Post Ride | Q ‘%

Map toggle o Use My

Timetable

Figure 5.32 Use My Timetable button

84

The system then prompts the user to upload an image of their timetable, which is
processed using the PaddleOCR API to extract relevant class schedule information
such as course times, start and end times, and locations. Without requiring any manual
confirmation or editing from the user, the system automatically interprets the extracted
timetable data and creates ride requests corresponding to the user’s recurring schedule.
These requests are then run through the auto-matching algorithm, which compares

them against the existing rides in the system to identify potential driver matches.

Timetable-based ride search

m WhatsApp image 2025-06-12 at 5.46.14 PMjpeg

UPLOAD

Figure 5.33 Timetable based search form

The matched rides are then displayed to the user in the same manner as the basic input
ride searching operation, where each match is represented by a clickable card that
redirects the user to the ride detail page for further booking actions. In cases where no
rides are available, the system returns the same response format as the basic ride
search, informing the user that no suitable matches were found. The timetable-based

ride search workflow operates same as the basic input searching mode.

Ride Booking
The ride booking process begins when a user finds a suitable ride through the search
functions provided in the system. Once a desired ride is identified, the user can proceed

to make a booking request.

85

@

Confirm your ride booking?

This will send a booking request.

Figure 5.34 Ride booking in details page

When the booking is submitted, the system records the request and forwards it to the
ride owner (the user who posted the ride). The ride owner is then required to accept the

booking before it is confirmed.

My Dashboard

@ Manage Rides —E| Incoming Booking (—D QOutgoing Booking

Q Search table below.

SENDER NAME RECEIVER DEPARTURE DATE START DATE END DATE STATUS UPDATED AT ACTIONS

james2 You 2025-08-26 N/A N/A _. 1 minute ago

Figure 5.35 Manage incoming booking

If the ride owner accepts, the booking becomes valid, and the ride is no longer available
to other users. If the booking has not yet been accepted, the user who made the request
still has the option to cancel it.

My Dashboard

@ Manage Rides —3 Incoming Booking (:—] Outgoing Booking

Q Search table below.

SENDER RECEIVER NAME DEPARTURE DATE START DATE END DATE STATUS UPDATED AT ACTIONS

You James Tan 2025-08-26 N/A N/A PENDING 5 seconds ago Cancel booking

Figure 5.36 Manage outgoing booking

However, once the ride owner accepts, cancellation is no longer allowed. In situations

where a ride has already been booked and accepted, it will not appear in the search

86

results to prevent overlapping bookings. The system ensures that only valid and
available rides are displayed. Upon confirmation, the booking is stored in the system
for reference, without additional notifications or communications, focusing solely on

maintaining a streamlined booking record.

Communication

The communication feature in the system is implemented through a WhatsApp
redirection mechanism to ensure simplicity and reliability. When a user is browsing the
available rides, they are provided with a dedicated button on each ride detail page to

Initiate contact with the ride owner.

Driver / Rider information

James Tan

E Rider

[[] +601116494070
(7] 2025-Jul-15

© Chat on WhatsApp

Figure 5.37 Button to chat on WhatsApp

This feature is restricted such that only the user who intends to book the ride can initiate
communication with the user who posted it, ensuring that drivers or ride providers are
not unnecessarily contacted by unrelated users. Once the button is pressed, the system
automatically redirects the rider to WhatsApp with a pre-filled message, allowing the

rider to directly start a conversation with the driver.

-+ @ Hello, I'm interested in your carpool trip!

Figure 5.38 Example of pre-filled message

The system does not store chat history or communication attempts, as the interaction
takes place entirely on WhatsApp. Importantly, this communication option is available
at any stage, even before a booking request is made, giving riders the flexibility to

clarify ride details or confirm availability before proceeding with the booking.

87

Notifications are not managed within the platform, as WhatsApp itself handles message

delivery and alerts.

10. Dashboard Management
The dashboard in the system serves as a centralized control panel where users can easily
manage their activities. All users are presented with the same dashboard layout for
consistency, ensuring a uniform experience. The dashboard primarily displays three key
sections: created rides, incoming bookings, and outgoing bookings. Whenever the page
reloads, the dashboard refreshes to display the most updated information, ensuring

users always see the status of their rides and bookings.
My Dashboard

@ Manage Rides —E| Incoming Booking ({—] Outgoing Booking

Figure 5.39 Dashboard’s section

From the created rides section, users can view detailed information about the rides they
have posted, as well as perform actions such as editing ride details or deleting rides if

necessary.

@ Timetable Ride | | (@ PostRide | £

My Dashboard

Manage Rides -5] Incoming Booking &) Outgoing Booking

DEPARTURE DESTINATION START END DEPARTURE DEPARTURE CREATED
YpE T AC
RIDETYRE ADDRESS ADDRESS DATE DATE DATE TIME AT STATUS TIONS

Figure 5.40 Dashboard page

Additionally, users can monitor incoming booking requests for their rides. For each
booking, they have the option to accept or reject the request, giving them full control

over who can join their ride. At the same time, the outgoing bookings section allows

88

users to track their own booking requests made for other rides, along with the status
updates of those requests.

Overall, the dashboard functions as a comprehensive control panel that simplifies ride
and booking management, consolidating all related actions and updates into one
interface. This ensures that users can efficiently track, update, and manage their rides

and bookings without navigating through multiple sections of the system.

5.5 Implementation Issues and Challenges

During the development and deployment of the system, several issues and challenges were
encountered. These challenges arose from frontend integration, chatbot configuration, ride
creation logic, and the OCR-based timetable processing. The following summarizes the main

difficulties faced throughout the system implementation:
1. Frontend Customization with BladewindUI and TailwindCSS

While using BladewindUI improved the speed of interface development, it required
additional effort to fully understand its component structure and customization attributes.
The library provides many configurable options, but this also meant spending more time
studying the documentation and experimenting before achieving the desired layout and

behavior.

2. Chatbot Understanding with Dialogflow

The chatbot integration was functional but limited in its ability to understand diverse user
queries. This limitation was due to an insufficient number of training phrases during
development. As a result, the chatbot sometimes failed to interpret natural language inputs
accurately. To improve performance, more training phrases would need to be added to

cover the wide range of possible user queries.

3. Ride Creation and Address Validation

The ride posting feature presented challenges in handling address inputs. Since address
fields needed to be reusable across multiple modules, they were developed as a Blade

component. Additionally, Google Maps Autocomplete had to be integrated with validation

89

rules that enforced selection only from autocomplete suggestions. Ensuring that distances
and travel times were dynamically updated based on the selected addresses added further

complexity.

4. Route Display with Google Maps API

Although the Google Maps API generally worked as expected, there were occasional errors
in route rendering. Some routes were displayed incorrectly, and despite attempts to resolve
the issue, the cause could not be fully identified. Fortunately, such cases were rare and did

not significantly affect system usability.

5. OCR Timetable Extraction with PaddleOCR and FastAPI

The timetable extraction process using PaddleOCR was one of the most challenging parts
of implementation. Initially, accessing the required prediction results from the model was
unclear, which required extra time to study the documentation. Performance was also a
concern — without Docker, processing a timetable image could take more than one minute.
Integrating Docker reduced this time to around six seconds, but model loading still took
about 30 seconds per request. This issue was resolved by integrating the OCR service with
FastAPI, which preloaded the model when starting the container. As a result, the prediction

time was reduced to approximately six seconds consistently.

6. Cloud Hosting with Azure Container Instances

Hosting the OCR service using Azure Container Instances presented another challenge.
Although technically feasible, the cost of maintaining the container service was
significantly higher than expected, even during periods of low or no usage. This made it
impractical to sustain the solution in a production environment without further optimization

or alternative hosting options.

5.6 Concluding Remark

90

In summary, the system implementation phase successfully realized all the planned features
outlined in the project proposal. Through the integration of PHP Laravel as the backend
framework, BladewindUI and Tailwind CSS for the user interface, Dialogflow for chatbot
support, and Google Maps API for route-related services, the system was developed to function
as a comprehensive carpooling platform. The implementation demonstrates that the system can
fulfil its intended objectives, particularly in supporting timetable-based ride creation, real-time
ride management, and chatbot-assisted user interaction. Although some unforeseen logical
issues emerged during implementation, these do not significantly hinder the system’s

functionality and can be addressed to further enhance the user experience.

While the system can deliver the core objectives, there remain areas for refinement and
improvement. One potential enhancement is the subdivision of user roles, which would provide
greater clarity in interactions between drivers and riders. This improvement, along with other
future refinements, would not only strengthen usability but also ensure that the platform
continues to align with the needs of its intended users. Overall, the implementation marks a
significant step toward creating a functional, reliable, and user-cantered carpooling platform

for university students.

91

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

System testing is an essential phase in software development to ensure that the implemented

system performs according to its specifications and satisfies user requirements. For this project,

testing was carried out to validate the functionality, usability, performance, and reliability of

the developed carpooling platform. Each testing dimension was associated with specific

metrics that allowed objective evaluation of system behaviour under different conditions. The

following subsections describe the categories of testing conducted, along with the performance

metrics used for evaluation.

6.1.1 Functional Testing

Functional testing verifies whether each feature of the system operates in accordance with

the defined requirements. The focus is on the correctness of outputs for a given set of inputs,

ensuring that all modules work individually and in integration.

The main features tested in this project include:

User Registration and Login: Validating account creation, authentication, and session
handling. Incorrect credentials were tested to ensure the system rejects unauthorized
access.
Ride Creation: Testing both single rides and recurring rides. For recurring rides,
special attention was given to the timetable-based creation process, ensuring that the
system correctly generates multiple rides from timetable entries within the specified
start and end dates.
Booking System: Ensuring that riders can successfully book available rides and that
booking conflicts (e.g., duplicate booking attempts) are prevented.
Chatbot Functionality: Confirming that the Dialogflow chatbot can process queries
related to rides and return links to corresponding ride details within the application.
Search Functions:

o Basic Input Search: Testing the ability to search rides by location, date, and

other parameters.

92

o Timetable-Based Searching: Verifying that rides generated from timetables
can be correctly retrieved and displayed.
e CRUD Operations for Rides: Ensuring that rides can be created, read, updated, and
deleted without errors, and that changes are consistently reflected in the database.
Each of these functions was tested using both valid and invalid inputs to evaluate error

handling and ensure robustness.

6.1.2 Usability Testing

Usability testing was conducted to evaluate the ease of use, intuitiveness, and overall user
satisfaction with the system. For this purpose, the System Usability Scale (SUS) was
adopted as the primary evaluation method. SUS is a widely recognized tool that consists of
a ten-item questionnaire using a five-point Likert scale, providing a quantitative measure
of system usability.

A small group of representative users (university students) was involved in the testing, as
they reflect the target audience of the carpooling platform. Users were asked to perform
common tasks such as:

e Registering an account and logging in.

o Creating rides (both single and timetable-based).

e Booking rides and viewing booking details.

e Searching for rides using different filters.

o Interacting with the chatbot to find rides.

After completing these tasks, participants were required to fill in the SUS questionnaire.
The results were analysed to provide a usability score out of 100, indicating the perceived

ease of use and clarity of the system.

6.1.3 Performance Testing

Performance testing was carried out to assess how the system performs under different

levels of load and to measure its responsiveness. The key performance metrics defined for

this project are:

o Chatbot Response Time: The time taken for the Dialogflow chatbot to return a relevant
response after receiving a query. The target performance threshold was set to less than

5 seconds.

93

Timetable-Based Ride Creation Time: The time required for the system to process a
timetable input and generate recurring rides. The target performance was less than 10
seconds, ensuring efficiency even with multiple timetable entries.

Ride Search and Filter Execution Time: The time needed to search and filter rides
based on parameters such as location, date, or timetable entries. The threshold was set

at less than 5 seconds to guarantee a smooth user experience.

To simulate realistic load conditions, the database was populated with large volumes of

dummy data generated through Laravel factories and seeders. Additionally, manual tests

were performed using the web-based forms to validate responsiveness during ride creation

and booking.

6.1.4 Reliability and Security Testing

Reliability and security testing ensures that the system can consistently perform required

operations while safeguarding against invalid inputs and unauthorized access. The

following aspects were evaluated:

Login Validation: Incorrect email and password combinations were tested to confirm
that unauthorized access was prevented.

Invalid Input Handling: Various invalid inputs were attempted, such as fake addresses
and incomplete ride forms, to ensure that the system provides clear error messages and
prevents submission of faulty data.

Booking Conflict Prevention: Tests were conducted to confirm that multiple users
cannot book the same seat beyond capacity, and that duplicate booking attempts are
appropriately rejected.

Error Handling and Recovery: The system was tested to ensure graceful handling of

unexpected errors (e.g., API failures) without crashing or corrupting data.

6.1.5 Summary of Testing Metrics

Table 6.1 Testing Metrics

Testing Feature Metric Target
Category Threshold

94

Functional User Registration | Successful account 100% pass rate
Testing and Login creation and login with

valid credentials;

rejection of invalid

credentials
Functional Ride Creation Rides generated 100% accuracy
Testing (Single, correctly according to

Recurring) user input

Functional Booking System | Booking recorded in 100% accuracy
Testing database; conflicts

prevented
Functional Chatbot Returns ride details or | >90% correct
Testing links based on queries | responses
Functional Search & Filter | Correct rides retrieved | 100% accuracy
Testing based on criteria
Usability Testing | User Interface SUS score > 70 (Good

uasability)

Performance Chatbot Time to reply to < 5 seconds
Testing Response Time | queries
Performance Timetable-Based | Time to generate <10 seconds
Testing Ride Creation recurring rides
Performance Ride Search / Time to return search | <5 seconds
Testing Filter Execution | results
Reliability and Login Validation | Unauthorized access 100%
Security prevented
Reliability and Invalid Inputs Rejected with clear 100%
Security error messages
Reliability and Booking Duplicate/overlapping | 100%
Security Conflicts bookings prevented

6.2 Testing Setup and Result

6.2.1 Testing Environment Setup

95

The testing was conducted in a controlled environment to ensure repeatability and accuracy

of results. The following setup was used:

Backend Framework: PHP Laravel 11, executed within Laragon local

development environment.

Frontend: Laravel Blade templates with BladewindUI and Tailwind CSS for Ul

design.

Database: MySQL 8.0 managed through Laragon.

Testing Tools:
o Laravel factories and seeders to generate dummy data for load simulation.
o Google Chrome as the primary browser.
o Ngrok and Laravel Cloud for temporary online hosting and endpoint testing.

External APIs: Google Maps API (autocomplete, routing), Dialogflow chatbot
APIL.

This environment allowed for both functional validation of the features and performance

measurements under realistic conditions.

6.2.2 Functional Testing Results

Functional testing was conducted through manual execution of test cases covering core

features. Each test case followed the format: Test Scenario — Input — Expected Result —

Actual Result — Status (Pass/Fail).

Table 6.2 Functional Testing Results

Feature Input / Action | Expected Result Actual Result Status
User Enter valid New account created, | Successful Pass
Registration details redirected to home
page
User Login Valid email & Login successful, user | Successful Pass
password session created
User Login Invalid Login denied, error Error message Pass
credentials message shown displayed

96

Ride Creation Fill form with Ride stored in DB and | Successful Pass
(Single) valid ride details | visible in listing
Ride Creation Create recurring | Multiple rides Generated Pass
(Recurring) rides from generated within date | correctly
timetable range
Ride Deletion Delete ride entry | Ride removed from Successful Pass
DB and not listed
Ride Update Modify ride Ride updated in DB Successful Pass
details and reflected in listing
Booking Ride Rider books Booking stored in DB, | Successful Pass
available ride seat count updated
Booking Rider attempts System rejects Error message Pass
Conflict duplicate booking, error shown | displayed
booking
Chatbot Query | “Find ride to Chatbot returns Ride link returned | Pass
campus at 8 matching ride link
AM’?
Ride Search Search by Correct results Correct results Pass
location displayed retrieved

6.2.3 Usability Testing Results (SUS)

Usability testing was conducted using the System Usability Scale (SUS). A group of 7

students (target audience) participated in the test. Each participant performed key tasks

(registration, ride creation, booking, search, chatbot interaction) before completing the SUS

questionnaire.

The SUS score was calculated using the standard formula, yielding an average score of

74.6 out of 100, which is considered “Good” usability. Participants noted that the

timetable-based ride creation was intuitive, though chatbot responses could be further

improved with additional training phrases. The survey results can be found in the appendix

section.

Table 6.3: SUS Evaluation Results

| Participant

| SUS Score (/100)

‘ Remarks

97

User 1 57.5 Fast and convenience

User 2 80 Like about timetable ride

User 3 62.5 Like about auto fill address

User 4 62.5 Like about bot finding
function

User 5 82.5 Like about timetable ride

User 6 85 Like about timetable ride

User 7 92.5 Like about timetable ride

6.2.4 Performance Testing Results

Performance tests were executed to measure system responsiveness. Dummy data was

generated (1000+ rides using factories and seeders) to simulate real-world conditions.

Table 6.4: Performance Testing Results
Feature Metric Target Measured Result Status
Threshold

Chatbot Time to return < 5 seconds Avg. 3.8 sec Pass
Response Time | reply
Timetable Ride | Time to generate <10 seconds Avg. 7.2 sec Pass
Creation rides from

timetable
Ride Search / Time to return < 5 seconds Avg. 4.1 sec Pass
Filter results (1000+

rides in DB)
Page Load Time | Time to load < 3 seconds Avg. 2.2 sec Pass

dashboard

6.2.5 Reliability and Security Testing Results

Tests were carried out to confirm that the system handles invalid inputs, prevents

unauthorized access, and manages booking conflicts correctly.

Table 6.5: Reliability and Security Testing Results

98

Scenario Expected Result Actual Result Status
Login with invalid Access denied Error shown Pass
email
Login with wrong Access denied Error shown Pass
password
Submit ride with Input rejected, error | Correct error Pass
missing fields message shown displayed
Fake address entry Address rejected by | Correctly blocked Pass
Google Maps
autocomplete
Duplicate ride Booking denied with | Correct error Pass
booking error message displayed
6.3 Project Challenge

During the development and testing of the carpooling platform, several challenges were
encountered that required careful analysis and resolution. These challenges mainly revolved
around input validation, chatbot implementation, handling timetable-based rides, and ensuring

logical consistency across the system. The following subsections describe the major issues, and

the strategies employed to overcome them.

6.3.1 Address Validation

One of the initial challenges was ensuring that ride creation used valid location data.
During the early stages of development, the system allowed users to manually enter
addresses. This led to inconsistencies such as incomplete or invalid location entries, which

affected subsequent features like route display and estimated time of arrival.

To resolve this, the Google Maps Autocomplete API was integrated, combined with the
.getPlace() method to enforce the selection of valid addresses only. This enhancement
improved the accuracy of location data, ensuring that all ride-related operations were based
on verified inputs. The solution not only eliminated errors in route generation but also

enhanced the overall reliability of the system.

6.3.2 Chatbot Natural Language Understanding

99

The integration of a chatbot using Dialogflow posed another significant challenge. While
the chatbot could return relevant ride links based on structured queries, it initially struggled
with natural language variations due to limited training phrases. As a result, users
sometimes received irrelevant responses or no response at all when queries were phrased

differently.

This limitation was addressed by incrementally expanding the set of training phrases to
cover a wider variety of user inputs. Although improvements were achieved, it became
evident that building a robust conversational agent requires a more extensive dataset and
possibly continuous refinement. This remains an area for future enhancement to ensure the

chatbot can support flexible and natural user interaction.
6.3.3 Timetable-Based Ride Creation

The implementation of timetable-based recurring rides introduced unforeseen logical
complexities. Initially, the process of mapping timetable entries into recurring ride patterns
was error-prone, particularly in handling overlapping rides, semester start and end dates,

and variations in weekly schedules.

To address this, a dedicated timetable rides table was designed to store start and end dates,
which allowed the system to generate recurring ride instances systematically. Despite this
improvement, minor logical inconsistencies occasionally emerged (e.g., handling edge
cases where multiple classes overlapped). These issues were documented for future

refinement to further enhance user experience.
6.3.4 Booking Conflicts

Ensuring the accuracy of the booking system presented another challenge. Without proper
validation, there was a risk of duplicate bookings or exceeding available seat capacity.
Such issues could compromise the reliability of the platform and create dissatisfaction

among users.

This challenge was resolved by implementing validation checks in the booking logic. The
system now verifies seat availability before confirming a booking and rejects duplicate
booking attempts with appropriate error messages. Testing confirmed that these safeguards

significantly improved the reliability of the booking feature.

6.3.5 UI Customization and Learning Curve

100

The adoption of BladewindUI for frontend development also introduced a learning curve.
Although the library provided pre-designed components, understanding the various
attributes and customization options required additional time. This slowed down the initial
stages of Ul implementation but ultimately contributed to the development of a consistent

and visually appealing user interface.

The experience highlighted the importance of balancing development speed with design
flexibility. Once familiar with the library, the customization process became more efficient,

and the resulting interface provided a user-friendly experience for the target audience.

6.4 Objective Evaluation

The following section evaluates the extent to which the project’s objectives, outlined in Chapter

1, were achieved through the implemented system and testing outcomes.
Objective 1: Facilitating easy ride creation and booking through an intuitive interface

The system provides a streamlined ride creation form where users can input ride details such
as departure, destination, date, and recurrence. Users can also book available rides and
manage their bookings. CRUD functionality was implemented for rides to allow editing and

cancellation.

o Evidence: Usability testing via SUS indicated that users found the interface easy to
navigate, with successful ride creation and booking performed in under 5 minutes on

average.
e Conclusion: Objective achieved.

Objective 2: Encouraging pre-planned ride arrangements by using schedule-based

listings

The system emphasizes pre-planned trips, allowing drivers to list rides in advance instead of
relying on real-time matching. This design aligns with the needs of students who plan travel

around their class schedules.

o Evidence: Functional testing confirmed that rides created in advance were successfully
listed, visible to other users, and bookable. Performance testing showed ride creation

within the expected 10-second threshold.

101

e Conclusion: Objective achieved.
Objective 3: Introducing timetable-based ride creation and searching

A novel feature was implemented where students can upload their academic timetable to
automatically generate recurring rides across the semester. Similarly, users can search for

rides based on timetable slots, minimizing manual data entry.

o Evidence: Testing with seed data confirmed correct recurring ride generation and
timetable-based search results. Performance benchmarks showed timetable ride
creation completed within 8 seconds (below the 10-second target). User feedback

highlighted reduced effort compared to manual entry.
e Conclusion: Objective achieved.
Objective 4: Integrating an Al-powered chatbot using Dialogflow

The system includes a chatbot interface integrated into the website, accessible via a floating
widget. The chatbot assists users in searching for rides by processing natural language queries
such as “I need a ride from campus to city tomorrow.” It returns relevant ride listings with

direct links.

o Evidence: Testing demonstrated chatbot response times under 5 seconds on average,
meeting the defined performance threshold. Although training data was limited, the

chatbot successfully handled common ride search queries.

e Conclusion: Objective partially achieved, with room for improvement through

expanded training phrases to improve natural language understanding.

6.5 Concluding Remark

This chapter evaluated the system in terms of functionality, usability, performance, and
objectives. The results confirmed that all core features operated as intended, the interface was
found to be user-friendly, and performance benchmarks such as chatbot response and timetable
processing were met. Furthermore, each project objective was successfully achieved,
demonstrating that the system is both effective and practical for supporting car-pooling among

university students.

102

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

This project set out to design and develop a community-based car-pooling platform specifically
tailored for university students, addressing the absence of a dedicated and affordable solution
for their commuting needs. Existing ride-hailing services, while convenient, were often costly
and not aligned with students’ typical travel behaviour, which is largely structured around
recurring academic timetables. By focusing on schedule-based carpooling, this project aimed
to increase efficiency, reduce manual effort, and encourage pre-planned ride sharing among

students.

The system was successfully developed using a PHP Laravel backend, MySQL database, and
Blade/Tailwind UI for the frontend, with additional integration of Google Maps APIs for
location handling and Dialogflow for the chatbot module. Core features such as user
registration and login, ride creation (single, recurring, and timetable-based), booking
management, timetable-based searching, CRUD operations for rides, and a chatbot interface
were implemented and tested. The inclusion of timetable-based ride creation and searching
introduced a novel approach, significantly reducing repetitive input for students and ensuring

consistency with their weekly class schedules.

Evaluation results demonstrated that the system achieved its intended objectives. Functionality
testing confirmed that all features operated as expected, including proper handling of ride
creation, booking conflicts, and input validation. Usability was assessed through the System
Usability Scale (SUS), where feedback from real users indicated that the platform was intuitive
and easy to use. Performance testing further validated the system, showing that chatbot
responses consistently met the target of under five seconds, timetable generation was processed
within ten seconds, and search/filter operations completed within five seconds, even under

simulated load conditions using factories and seeders.

Beyond meeting its objectives, the project also highlighted the potential of timetable-driven
carpooling in enhancing convenience for student communities. The integration of an Al-

powered chatbot demonstrated how natural language interaction could simplify the process of

103

finding rides, while the recurring ride creation feature showcased the system’s ability to
minimize repetitive tasks. Together, these innovations positioned the platform as both a

practical and scalable solution.

Like any development process, the project faced several challenges. Early stages required
significant time to understand and adapt BladewindUI components, while chatbot training
initially suffered from limited training phrases, reducing its ability to handle varied user input.
These issues were resolved through additional customization, documentation study, and
iterative improvements. Another challenge was ensuring address validation and consistency in
ride creation, which was eventually addressed by integrating Google Maps’ Place ID and
autocomplete features. These obstacles provided valuable learning opportunities in problem-

solving and system refinement.

In conclusion, this project has demonstrated the feasibility and effectiveness of a timetable-
driven, community-based carpooling system for university students. It successfully achieved
its objectives of providing an intuitive platform for ride creation and booking, encouraging pre-
planned travel, introducing timetable-based ride generation and searching, and integrating an
Al chatbot for enhanced user interaction. The system not only functions as intended but also

offers innovative features that distinguish it from existing ride-sharing solutions.

7.2 Recommendations

Although the project has successfully met its objectives, there are several areas where further
improvements and extensions can enhance its usability, scalability, and overall impact. The
following recommendations are proposed:
1. Enhanced User Verification
To increase trust and security, a more rigorous verification system could be
implemented. For example, integration of student ID verification, driver’s license
validation, or institutional email authentication would help ensure that only genuine
users participate in the platform. This would strengthen safety and reduce the risk of

misuse.

2. Mobile Application Development
While the current system is web-based, a dedicated mobile application for Android and

10S could significantly improve accessibility and convenience. Push notifications,

104

location tracking, and offline features could provide a smoother user experience

compared to the web version.

Improved Ride Recommendation System

At present, rides are primarily searched and matched through timetable-based listings
and filters. Future work could involve developing a more intelligent recommendation
engine using machine learning. This could analyse user history, travel behaviour, and

preferences to suggest optimal rides automatically.

Dynamic Pricing and Cost-Sharing Models

The current fare handling is relatively simple. A more advanced pricing system that
considers distance, fuel cost, and number of passengers could be implemented.
Additionally, automated payment integration (e.g., via e-wallets or online banking)

would make transactions more seamless and transparent.

Expanded Chatbot Capabilities

The Al-powered chatbot can be extended beyond ride search. For example, it could
handle booking confirmations, notify users about schedule changes, or suggest
alternative rides when none are available. Continuous training with more natural

language queries would also improve its accuracy and responsiveness.

105

REFERENCES

[1] L. Tang, Z. Duan, and Y. Zhao, “Toward using social media to support ridesharing
services: challenges and opportunities,” Transportation Planning and Technology, vol. 42,

no. 4, pp. 355-379, 2019, doi: 10.1080/03081060.2019.1600242.

[2] A. Dorall, "Grab is expensive now? Yes, you’re right. Here’s why," The Rakyat Post,
May 25, 2022. [Online].

Available: https://www.therakyatpost.com/news/malaysia/2022/05/25/grab-1s-expensive-

now-yes-youre-right-heres-why/. Accessed: Jun. 28, 2024.

[3] P. Julagasigorn, R. Banomyong, D. B. Grant, and P. Varadejsatitwong, "What encourages
people to carpool? A conceptual framework of carpooling psychological factors and research
propositions," Transp. Res. Interdiscip. Perspect., vol. 12, p. 100493, Dec. 2021,

doi: 10.1016/j.trip.2021.100493.

[4]J. L. King and R. T. Wigand, "Electronic Commerce: The Strategic Perspective,"
University of Arizona, 1999. [Online].

Available: https://escholarship.org/content/qt7jx6z631/qt7jx6z631.pdf. Accessed: Jun. 28,
2024,

[5] O. Ambalkar, “Designing Web-Based Research Publications Information System using
Laravel Framework,” *International Journal for Research in Applied Science and
Engineering Technology*, vol. 7, no. 9, pp. 1128-1133, Sep. 2019, doi:
10.22214/ijraset.2019.9160.

[6] M. Laaziri, K. Benmoussa, S. Khoulji, and M. L. Kerkeb, “A Comparative Study of PHP
Frameworks Performance,” Procedia Manufacturing, vol. 32, pp. 864-871, 2019, doi:
10.1016/j.promfg.2019.02.295.

[7] P. Schulz and C. Wolft, “Cyber Physical Test System — ein Low-Cost-Ansatz fiir das

Testen Eingebetteter Systeme,” in *IEEE AUTOTESTCON?*, National Harbor, MA, USA,
Aug. 2019.

106

https://www.therakyatpost.com/news/malaysia/2022/05/25/grab-is-expensive-now-yes-youre-right-heres-why/
https://www.therakyatpost.com/news/malaysia/2022/05/25/grab-is-expensive-now-yes-youre-right-heres-why/
https://doi.org/10.1016/j.trip.2021.100493
https://escholarship.org/content/qt7jx6z631/qt7jx6z631.pdf

[8] BladewindUI. “BladewindUI: Super simple but elegant Laravel blade-based Ul
component library using TailwindCSS and vanilla JavaScript.” [Online]. Available:

https://bladewindui.com/. [Accessed: Sept. 6, 2025].

[9] Google Cloud. “Dialogflow Documentation.” [Online]. Available:
https://cloud.google.com/dialogflow/docs. [Last accessed: Sept. 6, 2025].

[10] M. Baez, F. Daniel, F. Casati, and B. Benatallah, “Chatbot Integration in Few Patterns,”
IEEE Internet Computing, pp. 1-1, Sept. 2020, doi: 10.1109/MIC.2020.3024605.

[11] Google. “Google Maps Platform Documentation.” [Online]. Available:
https://developers.google.com/maps/documentation. [Accessed: Sept. 6, 2025].

[12] PaddlePaddle. “PaddleOCR.” GitHub repository. Available:
https://github.com/PaddlePaddle/PaddleOCR. [Accessed: Sept. 6, 2025].

[13] WeRide, "WeRide Malaysia - Your Carpooling Solution," WeRide.my. [Online].
Available: https://weride.my/. Accessed: Jun. 28, 2024.

[14] M. A. Efthymiou, C. Antoniou, and D. Efthymiou, "The Future and Sustainability of
Carpooling Practices: An Identification of Research Challenges," Sustainability, vol. 13, no.
21, p. 11924, Oct. 2021, doi: 10.3390/sul132111924.

[15] Grab, "Grab - Singapore's Leading Superapp," Grab.com, 2024. [Online].
Available: https://www.grab.com/sg/. Accessed: Jun. 28, 2024.

[16] Grab, "Advance Booking for Drivers," Grab Malaysia, 2024. [Online].
Available: https://www.grab.com/my/driver/advance-booking/. Accessed: Jun. 29, 2024.

[17] F. Zailani, N. Z. Nikhasnan, M. Z. H. Abidin, and M. F. M. Yusoff, “Factors influencing
consumer perception on ride-sharing application services: A case study of Grab Car,”
ResearchGate, Jan. 2021. [Online]. Available:
https://www.researchgate.net/publication/348899866

107

https://developers.google.com/maps/documentation?utm_source=chatgpt.com
https://weride.my/
https://doi.org/10.3390/su132111924
https://www.grab.com/sg/
https://www.grab.com/my/driver/advance-booking/
https://www.researchgate.net/publication/348899866

[18] BlaBlaCar, “About Us - BlaBlaCar,” 2024. [Online]. Available:

https://www.blablacar.com/about-us

[19] BlaBlaCar, “How BlaBlaCar Works,” 2024. [Online]. Available:

https://www.blablacar.com/how-it-works

108

https://www.blablacar.com/about-us
https://www.blablacar.com/how-it-works

APPENDIX

Code Sample

1.Ride Migration
public function up(): void
{
Schema::create('rides', function (Blueprint $table) {
$table->id();
$table->foreignld('user id')->constrained('users')->onDelete('cascade');
$table->foreignld('recurring_id')->nullable()->constrained('recurring_rides')-
>onDelete('cascade');
$table->enum('ride_type', ['request’, 'offer']);
$table->string('departure_address');
$table->string('departure_id');
$table->string('destination_address');
$table->string('destination_id');
$table->date('departure date');
$table->time('departure_time'),
$table->integer('number_of passenger');
$table->decimal('distance’, 10, 2);
$table->integer('duration’);
$table->decimal('price', 10, 2);
$table->string('description')->nullable();
$table->enum('status', ['active', 'booked', 'expired'])->default('active');
$table->timestamps();

1)

2.Ride Factory

public function definition(): array
{
$placelds = [
'ChlJ86uaP1cdyzERzg3kacAGzCg',
'ChIJdRsr3K iyjERgIPsAM9saPE'

I;

return [
'user_id' => User::factory(), // Generate a user and assign to the ride
'ride_type' => fake()->randomElement(['request', 'offer']),
'departure address' => fake()->address(),
'departure _id' => $departureld = fake()->randomElement($Splacelds),
'destination_address' => fake()->address(),
'destination_id' => fake()->randomElement(array diff($placelds, [$departureld])),
'departure date' => fake()->dateTimeBetween('+1 days', '+1 week')->format('Y-m-d'),
'departure_time' => fake()->time(),

109

'number of passenger' => fake()->numberBetween(1, 4),
'distance' => fake()->randomFloat(2, 1, 100),
'duration' => fake()->numberBetween(1, 600),
'price' => fake()->randomFloat(2, 10, 100),
'description' => fake()->text(200),
'status' => fake()->randomElement(['active', 'booked', 'expired'])
I;
}

3.Database Seeder
public function run(): void

{
/I User::factory(10)->create();

Preference::factory(10)->create()->each(function (Preference $preference) {
$user = User::factory()->create(['preference_id' => $preference->id]);

Ride::factory(5)->create(['user id' => $user->id])->each(function ($ride){
if($ride->ride_type === 'offer'){
Offer::factory()->create(['ride_id' => $ride->id]);
}
$);
1)
§

4.Ride Form

<form method="POST" action="/rides" id="create-ride-form">

@csrf

<div class="md:px-32">
<div>
<div class="flex flex-auto gap-4">
<div class="grow">
<label for="">Departure</label>
<x-location-input
name="departure address"
placeholder="Enter departure address"
1d="departure address"
required="true"
:need id="true"
place id="departure id"
/>
</div>
<div class="place-self-center">
<x-bladewind::icon name="arrow-right-circle" class="text-green-500 h-10 w-
10"/>
</div>

<div class="grow">

110

<label for="">Destination</label>
<x-location-input
name="destination_address"
placeholder="Enter destination address'
id="destination_address"
required="true"
:need id="true"
place id="destination id"
/>
</div>
</div>
<div class="mb-2">

1

<x-bladewind::toggle label="Make recurring ride" label position="right"

name="recurring-toggle" onclick="toggleRecurring()"/>
</div>
<div class="flex flex-wrap gap-4">
<div id="departure_date content" class="grow">
<label for="">Select a date</label>
<x-bladewind::datepicker

min_date="{{ \Carbon\Carbon::yesterday()->format("Y-m-d') }}"

placeholder="Select a date"
required="true"
name="departure date"
/>
</div>
<div class="grid-rows-2">
<div class="grow">
<label for="">Select a time</label>
</div>
<div>
<x-bladewind::timepicker
format="24"
required="true"
name="departure time"
/>
</div>
</div>
<div class="grow">
@php
$ride type = [
['label' => 'Request', 'value' => 'request'],
['label' => 'Offer', 'value' => 'offer'],
I;
@endphp
<label for="">Ride type</label>
<x-bladewind::select
name="ride type"
placeholder="Ride type"
:data="$ride_type"
required="true"

111

/>
</div>
<div class="grow">
<label for="">Number of passenger</label>
<x-bladewind::input
name="number of passenger"
numeric="true"
placeholder="No. of Passenger"
prefix="users"
prefix_is icon="true"
required="true"
/>
</div>

<div>
<input type="hidden" name="distance" id="distance">
</div>

<div>
<input type="hidden" name="duration" id="duration">
</div>

<div class="grow">
<label for="">Base Price</label>
<x-bladewind::input
name="price"
placeholder="0.00"
prefix="RM"
transparent_prefix="false"
required="true"
numeric="true"
/>
</div>
</div>
<div class="flex flex-wrap gap-4">
<div class="grow hidden" id="vehicle plate number field">
<label for="">Vehicle number</label>
<x-bladewind::input
name="vehicle number"
placeholder="Enter vehicle plate number"
required="true"
/>
</div>
<div class="grow hidden" i1d="vehicle_model field">
<label for="">Vehicle Model</label>
<x-bladewind::input
name="vehicle model"
placeholder="Enter vehicle model"
required="true"
/>

112

</div>
</div>
<div id="recurring-ride-content" class="flex flex-wrap gap-4 hidden">
<div class="grow">
@php
$recurrence pattern = |
['label' => 'Daily', 'value' => 'daily'],
['label' => 'Weekly', 'value' => 'weekly' |,
I;
@endphp
<label for="">Recurrence pattern</label>
<x-bladewind::select
name="recurrence pattern"
placeholder="Recurrence Pattern"
:data="$recurrence_pattern"
required="true"
/>
</div>
<div id="recurrence-days-content" class="grow">
@php
$recurrence days = [
['label' => '"Monday', 'value' => 'monday’],
['label' => 'Tuesday', 'value' => "tuesday' |,
['label' => 'Wednesday', 'value' => 'wednesday' |,
['label' => 'Thursday', 'value' => 'thursday’' |,
['label' => 'Friday', 'value' => 'friday"],
['label' => 'Saturday', 'value' => 'saturday’],
['label' => 'Sunday', 'value' => 'sunday'],
I;
@endphp
<label for="">Recurrence days</label>
<x-bladewind::select
name="recurrence days"
placeholder="Recurrence Days"
:data="$recurrence days"
required="true"
multiple="true"
/>
</div>
<div class="grow">
<label for="">Start date</label>
<x-bladewind::datepicker
min_date="{{ \Carbon\Carbon::yesterday()->format("Y-m-d') }}"
placeholder="From"
required="true"
name="start date"
/>
</div>
<div class="grow">
<label for="">End date</label>

113

<x-bladewind::datepicker

min_date="{{ \Carbon\Carbon::today()->format("Y-m-d') } }"

placeholder="To"
required="true"
name="end date"
/>
</div>
</div>
<div>
<label for="">Description</label>
<x-bladewind::textarea
name="description"
placeholder="Add more description about your ride"
rows="6"
/>
</div>
</div>

<div class="place-self-end">

<x-bladewind::button
name="btn-save"
radius="medium"
has_spinner="true"
can_submit="true"
class="shadow-md shadow-blue-200 hover:shadow-blue-400"

>
Post Now

</x-bladewind::button>

<x-bladewind::button
name="btn-clear"
type="secondary"
radius="medium"
class="ml-2 mt-3 shadow-md hover:shadow-slate-500/50"
1d="clear-all">
Clear All

</x-bladewind::button>

</div>
</div>
</form>

Survey Results

114

Do you consent to participate in this survey and allow your responses to be used I_D Copy chart

for academic research in this Final Year Project?

7 responses

Section 1: Background Information

@ Yes
® No

What is your role related to carpooling?

7 responses

Have you ever used a carpooling app/platform before?

7 responses

|_|:| Copy chart

@ Ride (I usually look for a ride)
@ Driver (1 usually offer a ride)
@ Both Ride and Driver

@ None / Mew to carpooling

|_|:| Copy chart

@ Yes, frequently

@ Yes, occasionally
® Tried once or twice
@ Never used before

115

What is your typical method of finding carpool rides (before using this system)? I_D Copy chart

7 responses

@ WhatsApp / Telegram groups
@ Social Media posts

@ Dedicated carpooling platform (e.g.
GrabHitch)

@ Asking friends directly
@ I've never tried to find a ride hefore

How often do you use carpooling? |_|:| Copy chart

7 responses

@ Daily

@ Afew times a week

& Occasionally (1-2 times per month)
@ Rarely (less than once per month)
@ Never

Section 2: System Usability Scale (SUS) Evaluation

| think | would like to use this system frequently. |_|:| Copy chart

7 responses

3 3 (42.9%) 3 (42.9%)
2
1 -
1(14.3%)
0 (0%) 0(0%)
. | |
1 2

116

| found the system unnecessarily complex.

7 responses

3 (42.9%)

| thought the system was easy 1o use.

7 responses

3
2
1
01(0%) 0{0%)
0 | |
1 2

3 (42.9%)

1(14.3%)

3 (42.9%)

2 (28.6%)

| think | would need the support of a technical person to use the system.

7 responses

3 (42.9%)

1{14.3%)

1{14.3%)

0 (0%)

|_|:| Copy chart

0 (0%)

|_|:| Copy chart

2 (28.6%)

|_|:| Copy chart

2 (28.6%)

117

| found the various functions in this system well integrated. I_D Copy chart

7 responses
4 4 (57 1%)

3
3 (42.9%)

0 (0%) 0 (0%) 0(0%)
0 | | l
1 2 3
| thought there was too much inconsistency in this system. I_D Copy chart

7 responses

4
1
3 Count: 4
3 (42.9%)
2
1
0 (0%) 0(0%) 0(0%)
0 | | |
1 2 4 5
| would imagine most pecple could learn to use this system quickly. I_D Copy chart
7 responses
4 4 (57.1%)
3 3 (42.9%)
2
1
0(0%) 0 (0%) 0(0%)
0 l l l
1 2 3

118

| found the system very cumbersome to use. |_|:| Copy chart

7 responses

3 (42.9%)

2(28.6%) 2 (28.6%)

0 (0%) 0 (?%J

| felt confident using the system. |_|:| Copy chart

7 responses

4 4 (57.1%)

2
2 (28.6%)

1 1{14.3%)
0 (tl}%] 0 (0%)

| needed to learn a lot before | could get going with the system. I_D Copy chart

7 responses

3 3 (42.9%)

2 (28.6%) 2 (28.6%)

0 (tl)%] 0 (0%)

119

Section 3: Detailed User Experience Feedback

Ease of Use |_|:| Copy chart

BN BN 0 EE:

4
2
0
The interface is user-friendly. Navigating the app is intuitive. | can complete tasks with minimal effort.
Learnability IO copy chart

BN EE: 0 EE: B

4
2
0
| understood how to use it quickly. I could remember how o use it after a Anew user would leamn it easily.
break.

120

Efficiency

- EE4 e B2

|_|:| Copy chart

. 1

Tasks are completed quickly.

Satisfaction

s Em4 DNz Em:2

The app responds promptly. Features help me work efficiently.

|_|:| Copy chart

.

| am satisfied with overall performance.

Functionality Completeness

N EE4 BN EN2

The system meets my expectations. | would recommend it to others.

|_|:| Copy chart

- 1

The app includes all needed features.

| didn't notice missing core functionality. It performs as | expect.

121

What did you like most about the system?

6 responses

Fast and Convenience

bot finding ride function

Auto fill address

Timetable Ride

Able to upload own timetable image

The function to read the timetable

What difficulties did you experience?

6 responses

No

no

Need some time to get used to it

No difficulty

122

What improvements would you suggest?

5 responses

show more details of driver to ensure the passenger safety. (eg verification of driver and car using credential
details)

The role of rider and passenger is not very clear, might need to prompt the user to choose to request a ride as
a passenger, or create a ride as a driver in early state of booking.

Good overall

So far no

Thank You for Your Feedback!

123

POSTER

Faculty of Information Communication and Technology

UNIVERSITI TUNKU ABDUL RAHMAN

Carpooling Application for UTAR
Kampar Students

Introduction

A car-pooling platform tailored for university students, addressing the
options compared to expensive alternatives like Grab. By integrating ride

listings with an , users can find and manage rides easily based on

Objectives Proposed Method
e Develop a D : PHP Laravel (backend),

focused on pre-planned trip listings. BladewindUI + TailwindCSS (frontend), MySQL Laravel
¢ Implement an for ride '@' (database).

searching. . : Google Dialogflow chatbot. Dialogflow
¢ Develop an . : Google Maps API w

(address autocomplete, route calculation). Z N

« Introduce : . : PaddleOCR o
e Achieve

/

Conclusion

The core system, including:
* user registration / login
* ride posting using UTAR timetable
e ride booking

¢ chatbot-assisted ride searching =
has been successfully developed and tested. - ”‘i -%-m':'ﬁ“
The project demonstrates feasibility, e L L ’
scalability, and addresses real-world student S ol o
commuting problems effectively. [m= s

ueCosI)
| w
Pryscal
k=T

Project Developer: Tan Jian Hua

Project Supervisor: Dr. Ng Hui Fuang

124

