
i

Carpooling Application for UTAR Kampar Student

BY

Tan Jian Hua

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

Jun 2025

ii

COPYRIGHT STATEMENT

© 2025 Tan Jian Hua. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Example

iii

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Dr. Ng Hui Fuang and my

moderator, Mr. Tan Chiang Kang who have given me a golden opportunity to involve in the

web-based application field study. Besides that, they have given me a lot of guidance in order

to complete this project. When I was facing problems in this project, the advice from them

always assists me in overcoming the problems. Again, a million thanks to my supervisor and

moderator.

Other than that, I would like to thank my project teammate, Tay Kai Sheng who has provided

a lot of assistance to me when completing this project. Although both of us are having different

project and task scope, he is still willing to support me when I faced difficulties in developing

this project.

iv

ABSTRACT

This project lies within the field of web-based application development, specifically targeting

intelligent carpooling systems for university communities. It focuses on the design and

implementation of a carpooling platform tailored for UTAR Kampar students, addressing the

lack of a centralized, reliable, and affordable car-sharing solution. The primary objective is to

provide a cost-effective alternative to commercial ride-hailing services like Grab by facilitating

a student-exclusive platform to offer and request rides based on real-time and recurring

schedules. Key features include user registration, ride listings, bookings, and ride management,

with Google Maps API integration for geolocation and route assistance. Dialogflow is

employed to deliver an AI-powered chatbot that helps users search for available rides through

natural language interaction. A key novelty introduced in the second phase is timetable-based

ride creation and search, which allows students to auto-generate recurring ride offers based on

their weekly class schedules. This feature significantly reduces manual input, increases

consistency in ride availability, and streamlines the carpooling experience by aligning with

students' academic timetables. The project followed the Agile methodology throughout the

Software Development Life Cycle (SDLC), incorporating iterative development, continuous

feedback, and incremental improvements. The implemented prototype has been tested to enable

smooth interaction between drivers and passengers, improve time efficiency in finding suitable

rides, and foster a stronger community-based transportation culture. Conclusively, this system

has shown promising results in reducing transportation friction among students and introduces

a novel approach by integrating academic timetables with carpool scheduling—a unique

feature not commonly found in existing ride-sharing platforms.

Area of Study (Minimum 1 and Maximum 2): Web application development

Keywords (Minimum 5 and Maximum 10): Carpooling, Web Application, Transportation, AI

Chatbot, Management, Optical Character Recognition, Timetable

v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 3

1.4 Contributions 4

1.5 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Review of technologies 6

 2.1.1 Backend framework 6

 2.1.2 Database system 7

 2.1.3 Frontend libraries 8

 2.1.4 AI chatbot 9

 2.1.5 Maps and location services 10

 2.1.6 Optical character recognition 11

 2.1.7 Summary of the technologies review 12

2.2 Review of existing systems 13

 2.2.1 WeRide 13

 2.2.2 Grab Advance Booking 16

 2.2.3 BlaBlaCar 19

 2.2.4 Summary of the existing systems 21

vi

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

23

3.1 Development Methodology 23

3.2 System Architecture 24

3.3 System Design Pattern 25

3.4 Use Case Diagram 26

3.5 Activity Diagram 29

CHAPTER 4 SYSTEM DESIGN 35

 4.1 System Block Diagram 35

 4.2 Deployment Diagram 36

 4.3 System Components Specifications 38

 4.3.1 Frontend 38

 4.3.2 Backend 39

 4.3.3 Database 39

 4.3.4 External APIs 41

 4.4 System Components Interaction Operations 42

 4.4.1 Ride posting – Basic form input 42

 4.4.2 Paddle OCR API 45

 4.4.3 Ride posting – Timetable-based 47

 4.4.4 Ride searching – Input fields 49

 4.4.5 Ride searching – Timetable-based 51

 4.4.6 Ride searching – AI chatbot 53

 4.4.7 Ride Booking 54

 4.4.8 Ride Management 56

vii

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

59

 5.1 Hardware Setup 59

 5.1.1 Local Development Environment 59

 5.1.2 Deployment Environment 59

5.2 Software Setup 60

 5.2.1 Operating System and Local Development 60

 5.2.2 Backend Framework and Runtime 61

 5.2.3 Frontend Technologies 63

 5.2.4 Database 64

 5.2.5 Cloud / Hosting 64

 5.2.6 External APIs 65

 5.2.7 Version Control 66

5.3 Setting and Configuration 67

 5.3.1 Backend and Database Configuration 67

 5.3.2 External APIs Configuration 68

 5.3.3 Cloud and Hosting Configuration 69

5.4 System Operation 70

 5.4.1 System Startup and Initialization 70

 5.4.2 User Roles 71

 5.4.3 Normal Operation Workflow 73

5.5 Implementation Issues and Challenges 89

5.6 Concluding Remark 90

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 92

6.1 System Testing and Performance Metrics

92

 6.1.1 Functional Testing 92

 6.1.2 Usability Testing 93

 6.1.3 Performance Testing 93

 6.1.4 Reliability and Security Testing 94

 6.1.5 Summary of Testing Metrics 94

6.2 Testing Setup and Result 95

viii

 6.2.1 Testing Environment Setup 95

 6.2.2 Functional Testing Results 96

 6.2.3 Usability Testing Results (SUS) 97

 6.2.4 Performance Testing Results 98

 6.2.5 Reliability and Security Testing Results 98

6.3 Project Challenges 99

 6.3.1 Address Validation 99

 6.3.1 Chatbot Natural Language Understanding 99

 6.3.1 Timetable-based Ride Creation 100

 6.3.1 Booking Conflict 100

 6.3.1 UI Customization and Learning Curve 100

6.4 Objectives Evaluation 101

6.5 Concluding Remark 102

CHAPTER 7 CONCLUSION AND RECOMMENDATION 103

7.1 Conclusion 103

7.2 Recommendation 104

REFERENCES 106

 APPENDIX 109

 POSTER 124

ix

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 Carpool Rides Offer in RedNote 2

Figure 2.1 WeRide App Logo 14

Figure 2.2 WeRide Request and Offer Form 14

Figure 2.3 WeRide Search Interface 15

Figure 2.4 Grab App Logo 17

Figure 2.5 Grab Advance Booking Function 17

Figure 2.6 BlaBlaCar Logo 19

Figure 3.1 Agile Development Cycle 24

Figure 3.2 System Architecture Diagram 25

Figure 3.3 MVC Diagram 26

Figure 3.4 Use Case Diagram 29

Figure 3.5 Ride Searching Activity Diagram 30

Figure 3.6 Chatbot Ride Recommendation Activity Diagram 30

Figure 3.7 Timetable-based Ride Activity Diagram 31

Figure 3.8 Ride Posting Activity Diagram 32

Figure 3.9 Timetable-based Ride Creation Activity Diagram 33

Figure 3.10 Ride Booking Activity Diagram 34

Figure 3.11 System Flowchart 34

Figure 4.1 System Block Diagram 36

Figure 4.2 Deployment Diagram 38

Figure 4.3 ERD Diagram 41

Figure 4.4 Ride Posting – basic form input Sequence Diagram 44

Figure 4.5 Paddle OCR API Sequence Diagram 46

Figure 4.6 Ride Posting – timetable-based Sequence Diagram 49

Figure 4.7 Ride Searching – input fields Sequence Diagram 50

Figure 4.8 Ride Searching – timetable-based Sequence Diagram 52

Figure 4.9 Ride Searching – AI chatbot Sequence Diagram 54

Figure 4.10 Ride Booking Sequence Diagram 56

Figure 4.11 Ride Management Sequence Diagram 58

x

Figure 5.1 Project Initialization in Quick App 61

Figure 5.2 Backend and Database Configuration in Local 67

Figure 5.3 MySQL Configuration 68

Figure 5.4 Backend and Database Configuration in Deployment 68

Figure 5.5 DialogFlow Training Phrases 68

Figure 5.6 DialogFlow Actions and Parameters 68

Figure 5.7 DialogFlow Webhook 9

Figure 5.8 FastAPI Configuration 69

Figure 5.9 Docker Requirement 69

Figure 5.10 Docker File to Run 70

Figure 5.11 System Startup in Local environment 71

Figure 5.12 System Startup in Production environment 71

Figure 5.13 Registration Form 73

Figure 5.14 Login Form 74

Figure 5.15 Ride Form – One Time Ride 74

Figure 5.16 Ride Form – Recurring Ride 75

Figure 5.17 Timetable Before Cropping 76

Figure 5.18 Cropped Timetable 76

Figure 5.19 Visualized detected text on image 77

Figure 5.20 Visualized detected text and bounding box 77

Figure 5.21 Example of classroom code mapping 78

Figure 5.22 Example of rides will be created 78

Figure 5.23 Upload Timetable Form 79

Figure 5.24 Additional Information Form 80

Figure 5.25 Ride Offer 81

Figure 5.26 Ride Card Details 81

Figure 5.27 No Ride Available 82

Figure 5.28 Ride Finder Chatbot 82

Figure 5.29 Chatbot Response Link 83

Figure 5.30 Ride Not Found 83

Figure 5.31 Difficulties Interpreting Input 84

Figure 5.32 Use My Timetable Button 84

Figure 5.33 Timetable-based Search Form 85

xi

Figure 5.34 Ride Booking in Details Page 86

Figure 5.35 Manage Incoming Booking 86

Figure 5.36 Manage Outgoing Booking 86

Figure 5.37 Button to Chat on WhatsApp 87

Figure 5.38 Example of pre-filled message 87

Figure 5.39 Dashboard’s section 88

Figure 5.40 Dashboard Page 88

xii

LIST OF TABLES

Table Number Title Page

Table 2.1 Comparison of OCR Services 11

Table 2.2 Comparison of previous work and proposed solutions 21

Table 5.1 Specifications of laptop 49

Table 6.1 Testing Metrics 94

Table 6.2 Functional Testing Results 96

Table 6.3 SUS Evaluation Results 97

Table 6.4 Performance Testing Results 98

Table 6.5 Reliability and Security Testing Results 98

xiii

LIST OF SYMBOLS

s seconds

% percentage

> bigger than

< Smaller than

xiv

LIST OF ABBREVIATIONS

AI Artificial Intelligent

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CDN Content Delivery Network

CRUD Create, Read, Update, Delete operations

CSS Cascading Style Sheets

ERD Entity Relationship Diagram

ETA Estimated Time Arrival

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ID Identification

IDE Integrated Development Environment

JSON JavaScript Object Notation

MVC Model View Controller

NLU Natural Language Understanding

OCR Optical Character Recognition

ORM Object-Relational Mapper

PHP Hypertext Preprocessor

SDLC Software Development Life Cycle

SUS System Usability Scale

SQL Structured Query Language

UTAR University Tunku Abdul Rahman

UI User Interface

1

Chapter 1

Introduction

In this chapter, it provides an overview of the project by presenting the motivation and

problems that led to the development of the system. It explains the scope and objectives of the

project, followed by the potential impact and contributions that may bring to the target users.

Moreover, it includes a brief explanation of the organization of the report.

1.1 Problem Statement and Motivation

Currently, UTAR Kampar students who are looking for carpooling rely on social media

platforms such as RedNote and WhatsApp to find and communicate with the potential drivers

or riders. Typically, students will post their academic timetables or a specific ride request and

wait for others to reach them. While this approach may work for sometimes only, it is often

inefficient and unorganized [1]. Drivers may be overwhelmed with multiple messages from

different riders, making it difficult to manage their rides. On the other hand, riders may not

always find a suitable driver due to timing mismatches or lack of clear information, especially

during off-peak hours like midnight or early morning.

2

Figure 1.1 Carpool ride offer in RedNote

Moreover, paid transportation services like Grab are commonly used but often come with high

charges [2] and are not always available when needed, especially during low-demand hours.

Public transport such as buses also operates on fixed schedules, which does not cater to sudden

changes like unexpected class cancellations.

The motivation behind this project comes from real observations on social media, where there

are many students actively seeking carpooling opportunities by posting their schedules or

urgent ride requests. These posts often receive multiple comments, showing clear demand and

interest from the student community.

1.2 Objectives

The primary objective of this project is to develop a dedicated web-based carpooling platform

for UTAR Kampar students to simplify the process of finding and offering shared rides. By

centralizing carpool requests and offers into a single system, the platform aims to reduce

3

reliance on informal channels such as social media and provide a more organized, efficient,

and user-friendly solution tailored to the student community.

Key goals of the project include:

• Facilitating easy ride creation and booking through an intuitive interface, allowing

users to post ride offers, request rides, and manage their bookings with minimal effort.

• Encouraging pre-planned ride arrangements by using schedule-based listings

instead of real-time matching, supporting students who plan their travel in advance

based on class schedules.

• Introducing timetable-based ride creation and searching, a novel feature that allows

students to automatically generate recurring rides and search for rides based on their

weekly academic timetable, significantly reducing manual input and improving

consistency.

• Integrating an AI-powered chatbot using Dialogflow to help users find suitable rides

quickly through natural language input (e.g., departure, destination, date).

• Ensuring simplicity and usability for both drivers and riders, without the complexity

of administrative functions, payments, or real-time GPS tracking, which are outside the

current scope and may be considered in future mobile-based versions.

• Focusing the system on the UTAR Kampar campus while allowing for potential

future expansion to nearby areas based on demand.

Through these objectives, the project seeks to enhance the overall carpooling experience by

reducing communication gaps, improving the visibility of available rides, and providing a

structured, convenient platform tailored to student needs.

1.3 Project Scope and Direction

This project aims to deliver a functional web-based carpooling platform specifically designed

for UTAR Kampar students. The system provides a dedicated and organized environment

where students can offer or request car rides, with a focus on planning rides based on

academic schedules.

By the end of the project, a working prototype will be developed, allowing users to:

4

• Register and log in to the system

• Post ride offers and request rides

• Book available rides

• View and manage their carpooling activities

A key enhancement introduced in this phase is the timetable-based ride creation and

search feature, which enables students to auto-generate recurring rides according to their

weekly class schedules. This allows for more consistent ride availability and reduces the need

for manual entry.

The system is developed using PHP Laravel for the backend, MySQL as the database, and

BladewindUI with Tailwind CSS for the frontend interface. It also integrates the Google

Maps API to support address autocomplete and location handling, and Dialogflow to power

a chatbot that helps users search for rides through natural language queries.

The scope of the project is focused on essential ride-sharing functionalities for academic use

and excludes features such as real-time GPS tracking, payment handling, and administrative

tools, which may be considered in future mobile-based or expanded versions. The current

system is scoped exclusively for the UTAR Kampar student community, but future directions

may include expanding service coverage to nearby areas and adding features like ride

statistics, email reminders, and driver/rider performance insights.

1.4 Contributions

This project provides a practical and impactful solution for UTAR Kampar students by

addressing a common transportation challenge: the lack of affordable and reliable commuting

options to and from campus [3]. With the rising cost of ride-hailing services like Grab and

limited on-campus parking, many students struggle to find convenient transportation. By

offering a dedicated web-based carpooling platform, this project helps students save time,

reduce travel expenses, and simplify ride arrangements within a trusted academic community.

Beyond personal convenience, the platform also promotes broader environmental and social

benefits [4]. By encouraging shared rides, it contributes to reduced traffic congestion and lower

carbon emissions in the campus area. It also opens opportunities for students to earn a small

side income by offering rides, fostering a mutually beneficial ecosystem among peers.

5

One of the key contributions of this project is the timetable-based ride creation and search

feature, which allows students to generate and find recurring rides based on their academic

schedules. This automation improves ride availability, minimizes manual effort, and aligns

carpooling more closely with students’ daily routines—making it a unique feature not typically

found in general-purpose ride-sharing platforms.

Compared to informal carpool arrangements via social media or messaging apps, this platform

centralizes all ride-sharing activities into a structured, easy-to-use system. It provides clear

listings, a booking interface, ride management tools, and AI-driven ride search via chatbot, all

tailored specifically to student needs. As the system matures, it has the potential to become a

daily tool for the UTAR community and could be expanded to nearby regions or adapted for

other institutions facing similar transportation issues.

1.5 Report Organization

This report is organized into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature Review,

Chapter 3 System Methodology, Chapter 4 System Design, Chapter 5 System Implementation,

Chapter 6 System Evaluation and Discussion, and Chapter 7 Conclusion. Chapter 1 introduces

the project background, problem statement, objectives, scope, and contributions. Chapter 2

reviews related works, existing systems, and technologies that inform the development of the

proposed solution. Chapter 3 presents the methodology adopted, including the development

approach, tools, and techniques. Chapter 4 discusses the system design, covering architecture,

database design, and user interface planning. Chapter 5 describes the system implementation,

detailing the development process and integration of core features. Chapter 6 evaluates the

system through testing, performance analysis, and objective assessment, while also

highlighting challenges encountered. Finally, Chapter 7 concludes the project by summarizing

the findings, presenting recommendations for future improvement, and reflecting on the overall

outcomes.

6

Chapter 2

Literature Review

2.1 Review of Technologies

2.1.1 Backend Framework

Laravel is a widely adopted open-source PHP framework designed for building robust and

maintainable web applications [5]. It follows the Model-View-Controller (MVC)

architectural pattern, which promotes clear separation of concerns, making code more

organized and easier to manage. Laravel was selected as the backend framework for this project

due to its comprehensive feature set, developer-friendly syntax, and strong community support.

Laravel offers built-in support for common tasks such as routing, authentication, form

validation, database migrations, and session management, which significantly reduces the

amount of boilerplate code required during development. These features proved especially

useful in implementing core functionalities of the carpooling platform, such as user

registration and authentication, ride creation, booking management, and timetable-based

recurring ride logic.

The use of Eloquent ORM (Object-Relational Mapping) in Laravel allowed for seamless

interaction with the MySQL database, enabling intuitive database operations through

expressive PHP syntax. This made it easier to design and manage database relationships

between entities such as users, rides, bookings, and ride schedules.

Furthermore, Laravel’s Artisan command-line interface was used for generating boilerplate

code, running migrations, and seeding the database with dummy data for testing purposes. This

streamlined the development workflow and accelerated the implementation of features.

Laravel’s middleware system also played an important role in securing routes and ensuring

that only authenticated users could access sensitive features such as ride posting and booking.

In addition, Laravel’s validation engine was used extensively to ensure that user inputs, such

as ride details and timetable entries, were consistent and error-free.

In this project, Laravel was chosen over other backend frameworks such as Node.js with

Express.js or Python with Django due to its strong support for web-centric development,

especially when working with relational databases and monolithic server-side applications [6].

7

Laravel’s built-in tools such as Artisan CLI, Blade templating engine, Eloquent ORM, and

middleware streamline the development of complex features like user authentication, ride

listings, and timetable-based recurring ride logic — all of which are core to this carpooling

system.

Overall, Laravel provided a solid foundation for developing a scalable and maintainable

backend system, capable of handling the business logic and data management required for a

student-focused carpooling platform.

2.1.2 Database System

MySQL is one of the most widely used open-source relational database management systems

(RDBMS) and is a common choice for web-based applications. It is known for its reliability,

performance, scalability, and compatibility with a wide range of programming languages and

frameworks, including PHP and Laravel. In this project, MySQL was selected as the database

system due to its strong support for structured data, ease of integration with Laravel’s Eloquent

ORM, and efficient handling of relational data models.

Laravel’s Eloquent ORM abstracts database interactions into intuitive PHP syntax, allowing

developers to define and manage relationships between tables such as users, rides, bookings,

and timetable-based recurring ride patterns. This simplifies the process of querying, inserting,

and updating data, thereby increasing developer productivity and reducing the risk of SQL-

related errors.

MySQL also provides robust support for ACID (Atomicity, Consistency, Isolation,

Durability) properties, ensuring data integrity throughout ride creation, booking transactions,

and user account operations. Its indexing and query optimization capabilities help improve the

performance of complex search features, such as filtering rides by departure time, destination,

and timetable alignment.

In the context of this carpooling platform, MySQL was used to store and manage all core data

entities, including user profiles, ride offers, ride bookings, and recurring rides derived from

academic timetables. These tables were connected through foreign keys, with proper indexing

to support fast retrieval, especially for timetable-based ride search functions.

Compared to other database systems such as PostgreSQL or NoSQL alternatives like

MongoDB, MySQL was chosen due to its maturity, simpler learning curve, and extensive

8

documentation [7]. While PostgreSQL offers more advanced features like full-text search and

complex data types, these were not essential for the current scope of the project. Likewise,

NoSQL systems were not considered necessary due to the structured and relational nature of

the system’s data.

2.1.3 Front-end Libraries

The front-end of this carpooling platform is developed using Tailwind CSS, a utility-first CSS

framework, and BladewindUI, a Laravel-specific UI component library [8]. These

technologies were chosen to enhance user experience, speed up UI development, and maintain

design consistency across the web application.

Tailwind CSS offers a highly customizable, low-level utility-based approach to styling,

enabling developers to design interfaces directly within the HTML structure. Unlike traditional

CSS frameworks such as Bootstrap, which rely heavily on predefined components and class

names, Tailwind allows for more flexibility and modular control over styling. This was

particularly useful for building a modern, responsive interface tailored to the needs of UTAR

students, such as ride listing pages, booking forms, and timetable-based ride management

views.

In addition, Tailwind's responsiveness and mobile-first design philosophy ensure that the

application is usable on various devices, which is crucial for students accessing the platform

via laptops or smartphones.

BladewindUI complements Tailwind by providing ready-to-use Laravel Blade components

that follow Tailwind's utility-first design approach. It simplifies the implementation of forms,

alerts, modals, and other UI components, reducing the need to write repetitive HTML. This

helped accelerate front-end development while maintaining a clean and consistent look across

the application.

The combination of Tailwind CSS and BladewindUI was chosen over alternatives like

Bootstrap, Material UI, or custom CSS because of their seamless integration with Laravel,

lightweight nature, and developer efficiency. While Bootstrap offers faster prototyping, it

imposes more rigid styles and often requires additional overrides, which can complicate

customization. Tailwind, on the other hand, promotes a more maintainable and scalable design

system suited for evolving projects.

9

2.1.4 AI Chatbot

As part of enhancing user experience and accessibility, an AI-powered chatbot was integrated

into the carpooling platform using Google Dialogflow, a Natural Language Understanding

(NLU) platform developed by Google [9]. Dialogflow enables applications to interpret user

input in natural language and respond intelligently through conversational interfaces. In the

context of this project, the chatbot assists users in searching for available rides by accepting

inputs such as departure location, destination, and preferred date or time.

Dialogflow was chosen for its ease of integration with web applications, support for multiple

languages, and its ability to deploy across various platforms (e.g., web, mobile, social media).

Its intent-based architecture and built-in machine learning capabilities allow developers to

define user intents (e.g., “Find a ride to Ipoh tomorrow”) and entity extraction (e.g., recognizing

locations and dates), which are critical for enabling intelligent, contextual ride search.

In recent years, the use of conversational interfaces in web-based systems has grown

significantly due to their ability to improve user engagement and reduce friction in data input.

Studies such as “Chatbot Integration in Few Patterns” highlight the role of chatbots in

enhancing usability, automating responses, and simplifying user navigation in information

systems. In particular, chatbots in educational or campus systems have been used to streamline

services such as class schedules, FAQs, and transport arrangements, making them a suitable fit

for the UTAR student community [10].

Dialogflow’s webhook support also allows the chatbot to interact directly with the Laravel

backend, enabling dynamic responses based on real-time data such as available rides, matched

destinations, or filtered search results. This contributes to a more seamless and interactive user

experience compared to traditional keyword-based search forms.

Compared to other chatbot frameworks like Microsoft Bot Framework, Rasa, or IBM

Watson, Dialogflow was selected for its low learning curve, integration with Google Cloud

services, and the availability of pre-built agents that accelerate development. While Rasa offers

more customization and on-premises control, it requires significantly more setup and training

data, which is beyond the scope of this academic project.

10

2.1.5 Maps and Location Services

Location-based services are essential in modern transportation and carpooling systems,

providing users with accurate address input, route visualization, and spatial decision-making

capabilities. This project integrates Google Maps API to handle various location-related

functionalities, including address autocomplete, geolocation, estimated distance/time

calculations, and interactive map displays [11].

Google Maps Platform offers a comprehensive suite of APIs—such as Places API, Directions

API, and Geocoding API—that are crucial for building map-intensive web applications. In this

project:

• Google Places API is used to suggest valid locations during ride creation to avoid typos

or ambiguous entries.

• Directions API calculates and visualizes optimal routes between pickup and

destination points.

• Geocoding API helps convert between human-readable addresses and geographic

coordinates, improving the reliability of stored ride data.

• Maps JavaScript API embeds interactive maps on the ride listing and ride detail pages,

providing a familiar and intuitive interface for users.

Interactive maps significantly improve user satisfaction in transportation applications,

particularly when users are involved in planning their own routes. The use of Google Maps

ensures consistency, accuracy, and trustworthiness in navigation, which are all critical for a

student-based carpooling system where trust and clarity are vital.

Compared to open-source alternatives such as OpenStreetMap (OSM) or Leaflet, Google

Maps was chosen for its superior data quality, global coverage, and integration with other

Google services (e.g., Dialogflow and Firebase, if needed). While OSM offers better cost

efficiency and privacy control, it lacks the ease-of-use and completeness required for rapid

development in an academic setting.

Map APIs play a core role in route optimization and estimated fare calculation. Although this

project does not implement real-time GPS tracking or live ETA updates, the pre-scheduled

nature of rides still benefits significantly from reliable mapping features.

11

2.1.6 Optical Character Recognition

Optical Character Recognition (OCR) is a technology that enables the conversion of scanned

or photographed documents into machine-readable text. In the context of this project, OCR is

used to extract structured information from students' timetables, allowing for automated ride

creation based on academic schedules.

Among available OCR tools, PaddleOCR—developed by Baidu as part of the PaddlePaddle

deep learning framework—was selected due to its balance between accuracy, speed, and

support for multiple languages and document layouts [12]. It provides ready-to-use

pipelines for detection, recognition, and layout analysis, making it suitable for structured

documents like university timetables.

Key Justifications for Choosing PaddleOCR:

• Accuracy on Tabular Data: PaddleOCR’s layout analysis and support for multi-line

and columnar text make it well-suited for parsing timetables with complex structures.

• Speed & Lightweight Deployment: Unlike larger models such as Tesseract with

layout plugins or heavy cloud-based solutions, PaddleOCR provides efficient inference,

especially when containerized using Docker.

• Customizability: It allows for easy fine-tuning and integration with post-processing

logic for domain-specific tasks like identifying classroom codes, lecture durations, or

recurrence patterns.

In this project, PaddleOCR plays a key role in enabling students to upload timetable

screenshots, which are then parsed to extract subjects, locations, times, and days. These parsed

values are converted into ride requests or ride offers with recurring patterns, reducing manual

data entry.

Alternative Considerations:

Table 2.1 Comparison of OCR services

Technology Strengths Weaknesses

Tesseract OCR Well-documented, open source
Poor with tables and layout-sensitive

data

12

Technology Strengths Weaknesses

Google Cloud Vision

OCR
High accuracy, scalable

Paid service, requires internet access,

less control

PaddleOCR
Accurate, customizable, open-

source, fast

Requires Python/Docker knowledge for

deployment

Thus, PaddleOCR is aligned with the system’s goal of offering a low-cost, student-friendly

solution without relying on expensive third-party services or inaccurate text extraction.

2.1.7 Summary of The Technologies Review

This project integrates a variety of technologies, each selected based on a combination of

technical suitability, development efficiency, and relevance in current academic and industry

practices. For the backend framework, Laravel (PHP) was chosen due to its elegant MVC

architecture, built-in features for routing, authentication, and security, as well as strong

community support and documentation. Compared to alternatives such as Node.js with Express

or Django (Python), Laravel provides faster scaffolding for web applications, making it

particularly well-suited for academic and small-to-medium scale systems like this carpooling

platform.

The database system employed is MySQL, a widely used relational database management

system. MySQL supports structured data, enforces data integrity, and works seamlessly with

Laravel's Eloquent ORM. While alternatives like PostgreSQL offer advanced features,

MySQL’s performance, simplicity, and widespread hosting support made it a practical choice

for this project.

On the frontend, Tailwind CSS was adopted as the primary styling framework due to its utility-

first approach that promotes consistency and flexibility without relying on rigid, predefined

components like Bootstrap. This was paired with BladewindUI, a component library designed

specifically for Laravel Blade. BladewindUI simplifies interface development by offering

reusable UI components, which reduced development time and improved the visual quality of

the system.

13

For the AI chatbot, Dialogflow was integrated to allow users to search for rides using natural

language queries. Dialogflow stands out for its ease of integration, built-in NLP capabilities,

and compatibility with webhook services, making it suitable for implementing a conversational

interface in this academic setting. Other frameworks like Rasa or IBM Watson were considered

but were more complex or resource-intensive for the project's scale.

The system also uses the Google Maps Platform to enhance location-based functionalities.

APIs such as Autocomplete, Distance Matrix, and Directions provide accurate geolocation,

estimated travel time, and map-based interaction. Google Maps was favored over alternatives

like HERE Maps and OpenStreetMap due to its accuracy, extensive documentation, and feature

richness.

An additional enhancement involves the use of PaddleOCR to extract structured data from

student timetables. PaddleOCR offers high accuracy in recognizing both printed and tabular

text, which is vital for parsing academic schedule formats. It was preferred over traditional

tools like Tesseract OCR due to its multilingual support and better performance on complex

layouts.

To manage the OCR system efficiently, Docker was utilized to containerize the PaddleOCR

microservice. This allows the model to be hosted separately and accessed through FastAPI,

reducing the need to reload the model for every request and improving response times.

Compared to using virtual environments or local scripts, Docker ensures consistent deployment

and easier maintenance.

In conclusion, the selected technologies form a robust stack that addresses the functional,

usability, and performance requirements of the system. Each component was carefully chosen

through comparative evaluation to balance development complexity, scalability, and user

experience. This ensures that the final product is both technically sound and academically

justifiable.

2.2 Review of Existing Systems

2.2.1 WeRide

WeRide [13] is a free carpooling platform, which aims for users in Malaysia and Singapore. It

mainly serves as a digital meeting place for drivers and passengers who are interested in sharing

a ride, especially for daily commutes and long-distance travel. The platform’s mission is to

14

reduce the number of single-occupancy vehicles on the road, thereby lowering traffic

congestion, cutting travel costs, and promoting environmental sustainability through

carpooling. It operates on a user-driven model where individuals can publish their own travel

plans, either offering or requesting rides, and directly communicate with each other to

coordinate the trip.

Figure 2.1 WeRide app logo

The platform supports both one-time and recurring trips, offering flexibility for users with

different commuting patterns. It encourages users to create profiles that include basic details

such as names, profile pictures, and links to their Facebook accounts to help increase trust

among participants. Ride-related communication is facilitated via WhatsApp, making it easy

for users to negotiate timing, pick-up points, and cost-sharing arrangements.

Figure 2.2 WeRide request and offer form

Additionally, WeRide provides extra features such as access to traffic cameras across major

highways in Malaysia, which helps users better plan their journeys by checking real-time road

15

conditions. This extra layer of functionality gives WeRide an edge in terms of situational

awareness and convenience for long-distance commuters.

Figure 2.3 WeRide search interface

Despite these features, WeRide does not operate as a traditional ride-hailing service like Grab

or Uber. It does not involve live driver availability matching, built-in payment systems, or real-

time ride tracking. Instead, it places responsibility on users to initiate contact and organize their

own rides, making it more of a self-service community platform than a full-fledged

transportation service.

WeRide offers several notable strengths that make it a useful carpooling platform for users

across Malaysia and Singapore. One of its key advantages is its wide geographical coverage,

which allows for cross-border carpooling opportunities, something that enhances its appeal to

users traveling long distances. Additionally, the platform provides user autonomy, enabling

users to make their own decisions when arranging rides, which promotes flexibility and aligns

with individual preferences [14]. WeRide also incorporates additional features such as

integration with traffic cameras, offering real-time traffic images to help users plan their

routes more efficiently. To enhance trust and safety, the platform uses user verification

methods by linking Facebook profiles and WhatsApp messaging, which adds a layer of

identity assurance during ride coordination.

Despite its strengths, WeRide has several limitations that affect its effectiveness—especially

in a student context. One major drawback is its lack of structured scheduling features; the

16

platform does not support functionalities that align with fixed academic schedules, making it

less suitable for students with regular class timetables. Moreover, as the user base grows,

WeRide lacks robust ride management tools, making it difficult for users, especially drivers,

to efficiently handle multiple ride’s offers or requests. Lastly, the platform does not incorporate

AI-driven assistance, which could help users find optimal ride matches or streamline

communication. This absence of intelligent matching or management may reduce the

platform’s convenience as the volume of users increases.

While WeRide serves a broad audience across Malaysia and Singapore, the proposed UTAR

Carpooling Web Application is designed specifically to address the unique needs of UTAR

Kampar students. One of the key differentiators is the integration of academic schedules,

allowing users to post and search for rides based on their class timetables, leading to more

convenient and relevant ride matches. The system also features an AI-powered chatbot using

Dialogflow, which streamlines the process of finding and booking rides, thereby improving

overall user experience. In addition, the platform includes dedicated ride management tools

that enable users to effectively monitor their ride activities, such as viewing visual statistics for

upcoming trips, booked rides, and estimated profits for drivers. Most importantly, the

application is tailored for a specific community, fostering a more trusted environment where

users share similar daily routines and transportation goals.

In summary, while WeRide offers a broad and flexible carpooling experience, the UTAR

Carpooling Web Application is a more targeted solution, providing students with specialized

features that enhance convenience, efficiency, and user satisfaction within an academic setting.

2.2.2 Grab Advance Booking

Grab [15] is one of Southeast Asia’s leading ride-hailing platforms, offering a wide range of

services from on-demand transport to food delivery and digital payments. Among its many

transport-related features, the Advance Booking option stands out as a practical solution for

users who need to plan their journeys ahead of time [16]. This feature allows passengers to

schedule a ride for at least one hour to up to seven days in advance, ensuring peace of mind for

time-sensitive trips such as airport transfers, early morning commutes, or urgent meetings.

17

Figure 2.4 Grab app logo

The process is simple and intuitive. Users select their pick-up and drop-off locations, set the

desired date and time, and confirm the booking through the app. A few hours before the

scheduled time, Grab assigns the driver to the trip and notifies the passenger once the ride has

been successfully matched. This ensures a higher degree of certainty in securing transport

during peak hours or off-peak periods where driver availability may be limited, such as late at

night or early in the morning.

Figure 2.5 Grab advance booking feature

Advance Booking rides are subject to a priority allocation fee, which is added to the fare to

compensate for the driver's commitment to accept the scheduled job. The service is currently

available in selected cities and for specific ride types such as GrabCar, with availability

depending on local driver supply and demand.

This feature particularly appeals to users who value predictability and time management, as it

minimizes the uncertainty often associated with real-time ride-hailing. By offering a planned

18

alternative to last-minute bookings, Grab caters to a segment of the market that requires a more

structured travel experience.

One of the key strengths of Grab’s Advance Booking feature is its convenience and flexibility

[17]. By allowing users to schedule rides ahead of time, it helps them avoid the stress of last-

minute bookings—especially during high-demand periods or odd hours like midnight or

early mornings, when driver availability may be low. This is particularly useful for passengers

with fixed schedules, such as airport drop-offs or early lectures.

Another strength lies in its automation and reliability. The platform automatically matches

riders with available drivers ahead of time, reducing the need for manual searching or constant

communication. Grab’s large network of drivers also increases the chances of a successful

match, even in more remote areas.

In terms of user experience, the interface is streamlined and easy to use, offering quick

scheduling within the familiar Grab app. Integration with Grab’s real-time GPS tracking, in-

app communication, and fare estimation adds value to the overall experience.

Despite its advantages, Grab’s Advance Booking feature has several limitations. Firstly, it is

only available in selected cities and for specific ride types, which limits accessibility for

some users. In university towns or less populated areas, this feature may not be fully supported.

Secondly, cost is a major drawback. Grab applies an additional priority allocation fee,

making scheduled rides more expensive than regular ones. For budget-conscious users such as

university students, this can be a significant deterrent.

Another limitation is that riders are not guaranteed a match, even if they book in advance.

The system only begins to assign a driver shortly before the scheduled ride, and there is a

chance that no driver is found on time, especially during low-demand hours or in less-served

areas.

Additionally, Grab is a commercial service with a focus on broader public transportation

needs rather than community-driven or student-specific carpooling. It lacks the sense of

community, affordability, and student-based customization that some users, especially

students, might prefer.

Compared to Grab’s Advance Booking feature, your proposed platform offers a student-

centric, community-based carpooling system tailored specifically to the daily commuting

19

needs of university students. While Grab is designed for a broad user base with commercial

pricing and operates on an on-demand model, our platform focuses on pre-scheduled,

affordable, and consistent ride sharing among peers.

One major distinction is the inclusion of recurring rides on your platform. This feature allows

users—both drivers and riders—to set up routine trips (e.g., daily rides to and from campus),

eliminating the need to repeatedly search or post for new rides each day. This is especially

useful in a university context, where schedules tend to be consistent week-to-week. In contrast,

Grab does not support recurring advance bookings, requiring users to manually schedule each

ride individually, which can be inconvenient for regular commuters.

Additionally, our platform supports user-determined fare pricing, which is typically lower

and more flexible than Grab’s commercial rates that include surge pricing and priority

allocation fees. It also fosters a sense of community and trust, as students are more likely to

interact and coordinate with fellow university members rather than with unknown drivers.

Our proposed solution also provides better ride management tools, helping drivers handle

multiple ride requests more efficiently through a dedicated platform, something that is

challenging when done manually via social media or through Grab’s one-on-one system.

Overall, while Grab offers a professional, city-wide ride-hailing service, our proposed system

delivers a more relevant, cost-effective, and personalized experience for students who need

reliable, recurring transportation to and from campus.

2.2.3 BlaBlaCar

Figure 2.6 BlaBlaCar Logo

BlaBlaCar is one of the world’s largest long-distance carpooling platforms, connecting drivers

with empty seats to passengers looking to travel the same route [18]. Founded in France in

2006, the platform focuses on matching drivers and riders for intercity travel rather than short

20

urban commutes. BlaBlaCar operates by allowing drivers to post their planned trips along with

departure time, destination, and available seats. Interested passengers can then search, view

trip details, and book a ride directly through the app or website. The system also emphasizes

community trust, offering verified profiles, ratings, and identity verification features to ensure

a safe and reliable experience [19]. By facilitating cost-sharing between drivers and passengers,

BlaBlaCar promotes affordable and environmentally sustainable travel options.

One of BlaBlaCar’s major strengths is its focus on building trust within the community. The

platform incorporates strong user verification processes, including phone number verification,

government ID checks, and mandatory profile pictures, creating a sense of security for both

drivers and riders [18]. In addition, the rating and review system allows users to share feedback

about their experiences, which further encourages positive behavior. Another strength is the

simplicity and clarity of trip postings: drivers provide detailed trip information upfront, making

it easier for riders to find and book suitable options. The platform also handles payment

transactions, ensuring transparency and reducing the chances of disputes. Furthermore,

BlaBlaCar’s emphasis on cost-sharing instead of profit-seeking aligns with legal requirements

in many regions, helping it maintain operations without needing to comply with regulations

meant for commercial taxi services.

Despite its strengths, BlaBlaCar does face some weaknesses. One key limitation is that it

primarily focuses on long-distance, scheduled trips rather than real-time or last-minute rides

[19]. This restricts its flexibility compared to on-demand ride-hailing services like Uber or

Grab. Another weakness is that ride availability is highly dependent on user activity; in less

populated areas or during off-peak times, finding a suitable ride can be challenging. Moreover,

while BlaBlaCar has implemented various trust mechanisms, it still relies heavily on the

honesty and behavior of its users, meaning that occasional safety or reliability issues may

occur. Finally, since payments and bookings are handled online, users without access to digital

payment methods may find the platform less convenient to use.

When comparing BlaBlaCar with the proposed community-based car-sharing platform, several

similarities and differences emerge. Like BlaBlaCar, the proposed system focuses on

connecting drivers and riders through pre-planned trip listings. Both platforms emphasize the

importance of providing clear trip details upfront to allow users to make informed booking

decisions.

21

However, there are key differences. While BlaBlaCar targets primarily long-distance intercity

travel, the proposed platform is designed for shorter, more local trips — specifically focusing

on university students commuting between their homes and the campus. Moreover, the

proposed solution introduces real-time dynamic searching, ride matching through AI

chatbot, and integration with Google Maps APIs to optimize routes, offering a more tech-

driven and flexible system compared to BlaBlaCar’s relatively manual matching process.

Additionally, while BlaBlaCar is already optimized for mobile and desktop use, the current

proposed solution is initially built focusing on desktop access first, with mobile responsiveness

as a future enhancement.

Overall, the proposed system adopts some of the best practices from BlaBlaCar while tailoring

its approach to suit the needs of a localized, student-focused audience with more AI integration

and route optimization features.

2.2.4 Summary of The Existing Systems

Table 2.2: Comparison of previous work and proposed solution

Solutions/

Key Features and

Differences

WeRide Grab Advance

Booking

BlaBlaCar Proposed System

Target Audience Malaysian and

Singaporean

General Public General Public UTAR Kampar

Students

Geographical

Coverage

Malaysia and

Singapore

Nationwide Nationwide Kampar

Platform Type Mobile app Mobile app Web and Mobile

app

Web application

Scheduling Type Single and

recurring rides

Single ride Single ride Single and

recurring rides

AI Integration - Smart Matching - Chatbot

Ride Matching

Method

Manual search Auto-matching Manual search Manual search and

chatbot

Ride Management

Tools

Available - Available Available

Communication

Method

WhatsApp In-app Phone Number WhatsApp

22

Verification/

Security

Linking Facebook

and WhatsApp

Required verified

driver

Government ID

check and phone

number

verification

-

Cost Flexibility Negotiable Set by system Set by driver only

in acceptable

range

Set by driver

Extra Features Traffic cams Estimated fare Payment

transactions

Academic

timetable schedule

23

Chapter 3

System Methodology

This chapter outlines the methodological approach adopted for developing the Community-

Based Car-Pooling Platform. It presents the selected software development methodology and

its justification, along with project planning activities, tools, and technologies used throughout

the lifecycle. The methodology includes the design of the system architecture, integration of

components such as the AI chatbot, OCR module, and Google Maps services, as well as

strategies for data management, API integration, and version control. By following a structured

and iterative process, the development ensures the platform meets its functional requirements

while delivering a reliable, efficient, and user-friendly experience tailored for university

students seeking affordable and convenient car-pooling solutions.

3.1 Development Methodology

The development of the car-pooling system followed the Agile methodology, chosen for its

adaptability, iterative progress, and focus on continuous improvement based on feedback. The

project was divided into multiple sprints, each lasting approximately two weeks, with specific

deliverables defined at the start of each sprint. Initial sprints concentrated on building the

system’s core backend using PHP Laravel, establishing the database schema in MySQL, and

setting up essential user authentication functions. Subsequent sprints focused on frontend

development using Laravel Blade with BladewindUI and Tailwind CSS to create a responsive

and user-friendly interface. Integration tasks were carried out iteratively, such as connecting

the AI chatbot developed in Dialogflow, embedding Google Maps API for location and route

handling, and implementing OCR capabilities for timetable extraction. Each sprint concluded

with testing and review sessions, allowing for adjustments to features, workflows, and user

interface elements based on findings. Version control was maintained through GitHub to ensure

smooth collaboration and tracking of changes, while Ngrok was used for temporary hosting to

facilitate online testing of API endpoints and chatbot interactions. This iterative approach

ensured that functional components of the system were delivered incrementally, with regular

opportunities for refinement, ultimately leading to a robust and scalable car-pooling platform.

24

Figure 3.1 Agile Development Cycle

3.2 System Architecture

The system architecture for the proposed car-pooling platform follows a three-tier structure

consisting of the presentation layer (web browser), application layer (server), and data layer

(database).

The presentation layer is developed using Laravel Blade templates integrated with

BladewindUI and Tailwind CSS, providing a responsive and user-friendly interface for both

drivers and riders.

The application layer is built with PHP Laravel, which manages the core business logic,

including ride creation, booking, trip matching, and communication features. This layer also

integrates with external services such as Dialogflow for the AI chatbot and Google Maps API

for location-based functionalities. In addition, it connects to a custom-developed PaddleOCR

API, specifically designed to extract UTAR student timetable classes. This API is implemented

in Python, where the PaddleOCR model is preloaded to perform text detection on uploaded

timetables. The detected text is then processed to identify and categorize class information. The

service is hosted using FastAPI, enabling Laravel to send timetable images and receive

structured class data for timetable-based ride matching.

25

The data layer is managed by MySQL, which stores user profiles, ride listings, booking

records, chat interactions, and system logs. The architecture ensures modularity and scalability,

allowing each component to be updated or replaced without impacting other parts of the

system. The design also incorporates secure API communication, version control through

GitHub, and temporary online hosting via Ngrok for testing purposes during development.

Figure 3.2 System Architecture Diagram

3.3 Software Design Pattern

This system follows the MVC (Model-View-Controller) architectural pattern provided by

Laravel. MVC separates the application into three interconnected components, enabling

modular development and easier maintenance.

Model: Represents data and business logic. For example, models such as User, Ride, and

Booking interact with the MySQL database using Laravel’s Eloquent ORM.

View: The UI of the application created using Blade templates and BladewindUI components.

It displays data received from the controller.

26

Controller: Acts as the intermediary between model and view. It processes user requests,

retrieves data using models, and returns the appropriate views.

Figure 3.3 MVC Diagram

3.4 Use Case Diagram

The Carpooling Web Application is designed to allow users (both drivers and riders) to

register, log in, search for available rides, create ride listings, book rides, and manage ride

bookings. The following are the key use cases derived from the diagram:

Actors

• User (Driver/Rider): A single actor representing both roles, as a user can act as a driver

offering rides or as a rider searching for rides.

Use Cases

1. Register Account

o Description: Allows a new user to create an account in the system by providing

the required personal details.

o Actor: User (Driver/Rider).

27

o Precondition: User must not already have an account.

o Outcome: Account is created and stored in the system database.

2. Login Account

o Description: Allows a registered user to log into the system by providing valid

credentials.

o Actor: User (Driver/Rider).

o Precondition: User must have an existing account.

o Outcome: User gains access to their dashboard and available system features.

3. Search Rides

o Description: Enables users to find available rides based on certain criteria.

o Actor: User (Driver/Rider).

o Variations:

▪ Address, Ride Type, Date, and Time-Based Search (include): Users

can search using specific filters such as origin, destination, ride type,

and date/time.

▪ AI Chatbot Search (extend): Users can interact with an integrated AI

chatbot to search for rides in a conversational manner.

▪ Timetable-Based Search (extend): Users can view rides matched

against submitted timetable.

4. Create Ride

o Description: Allows a driver to list a new ride offer in the system.

o Actor: User (Driver).

o Variations:

▪ Ride Request / Offer (include): The ride creation process includes

specifying whether the listing is a ride offer or a ride request.

▪ Recurring Rides (extend): Allows creation of rides that repeat on

specific days or intervals.

▪ Timetable-Based Creation (extend): Drivers can create rides

automatically by submitting a timetable.

5. Book Ride

28

o Description: Allows a rider to confirm and reserve a seat for a ride listed in the

system.

o Actor: User (Rider).

o Precondition: Ride must be available with sufficient seats.

o Outcome: Booking is recorded in the system.

6. Manage Rides / Booking

o Description: Enables users to update, cancel, or review rides they have created

or booked.

o Actor: User (Driver/Rider).

o Outcome: Changes are saved to the database and reflected in ride availability.

29

Figure 3.4 Use Case Diagram

3.5 Activity Diagram

Ride Searching – Input Fields

The user visits the platform and enters search criteria (like departure, destination, date). The

system queries the ride listings and shows matches. No login is required for this.

30

Figure 3.5 Ride searching activity diagram

Ride Searching – AI Chatbot

The chatbot lets users enter natural language queries. Dialogflow extracts the required

parameters and sends them to the system backend. Matching rides are shown in a link.

Figure 3.6 Chatbot ride recommendation activity diagram

Ride Searching – Timetable-based

This activity diagram represents the process of searching for rides using a UTAR timetable

with the help of PaddleOCR. The process begins when the user uploads their UTAR timetable

to the system. The system first validates the uploaded image for correct format and size,

ensuring it meets the processing requirements. Once validated, the image is sent to PaddleOCR,

31

which extracts textual information from the timetable. The system then filters and classifies the

detected text to identify relevant details such as class times, locations, and days. These details

are grouped into class schedules, from which the system determines potential rides that match

the user’s timetable. The identified possible rides are stored, and finally, the system displays a

filtered list of rides to the user based on the stored results, allowing them to select or explore

available car-pooling options.

Figure 3.7 Timetable-based ride searching activity diagram

Ride Posting – Basic Input Form

Only logged-in users can post rides. After login, the user fills out a form. The system validates

the input (e.g., via Google Maps API) and stores it. The user is redirected to their ride listings.

32

Figure 3.8 Ride posting activity diagram

Ride Posting– Timetable-based

The activity diagram illustrates the process of creating recurring rides from a UTAR timetable

using the PaddleOCR text recognition system. The process begins when the user uploads an

image of their UTAR timetable to the system. The system first validates the image format and

size to ensure it meets the required specifications. Once validated, the timetable is forwarded

to PaddleOCR, which extracts all the text from the image. The extracted text is then filtered to

remove irrelevant details and classified into meaningful categories, such as class names,

locations, and times. These classified elements are grouped into individual classes, forming the

basis for ride creation. The system then displays the grouped ride details to the user for review,

allowing them to provide any remaining input such as date and time, meeting point, or seat

availability. Upon submission, the system automatically generates recurring ride entries based

on the provided and extracted information, streamlining the car-pooling arrangement process.

33

Figure 3.9 Timetable-based ride creation activity diagram

Ride Booking

Once logged in, the user can view ride details and book. If the user is the ride’s creator or the

ride is already accepted, they cannot book. Otherwise, the booking is marked as pending.

34

Figure 3.10 Ride booking activity diagram

3.6 System Flowchart

The system flowchart illustrates how users interact with the system from the landing page

onward. It includes decision points such as login status and accessibility of user actions (search,

book, post ride).

Figure 3.11 System Flowchart

35

Chapter 4

System Design

4.1 System Block Diagram

The system block diagram illustrates the main components of the carpooling web application

and their interactions. At the top level, the User Interface is implemented using Laravel Blade

templates styled with Tailwind CSS and BladewindUI, allowing users to interact with the

system through a browser. User requests are processed by the Application Logic layer, built

with PHP Laravel following the MVC architecture. This layer contains the controllers and

service classes responsible for handling inputs, coordinating processes, and managing data

flow.

The application communicates with two main forms of storage: a MySQL Database and

Session Storage. The database stores persistent records such as user profiles, ride listings, and

booking details. In contrast, session storage is used to temporarily hold conversational data

from the Dialogflow chatbot, ensuring that chat context is maintained during a user session but

not stored permanently. Moreover, session storage also used to temporarily hold the

PaddleOCR API results for the timetable-based ride searching operation.

The Application Logic layer also integrates with several External APIs. The Google Maps API

is used for location-based functionalities such as retrieving place details and generating routes.

The Dialogflow API powers the AI chatbot, which provides conversational assistance to users

and stores session context temporarily without committing data to the main database. The

PaddleOCR API handles text recognition tasks, with its results passed back to the application

in real time without database storage.

This structure ensures a clear separation of concerns: the user interface manages presentation,

the application logic orchestrates processes, the database handles persistent storage, and

external APIs deliver specialized services.

36

Figure 4.1 System Block Diagram

4.2 Deployment Diagram

The deployment diagram illustrates how the carpooling web application is hosted and how

its components interact in the production environment.

1. User Access (Browser)

o End-users interact with the system via a web browser.

o The browser sends requests through the internet to the Laravel Cloud hosting

service, which runs the production version of the carpooling web application.

2. Laravel Cloud (Web Application Hosting)

o The Laravel-based application is deployed on Laravel Cloud, which handles

incoming HTTP/HTTPS requests.

o The web application contains all the logic for ride creation, booking, chatbot

integration, and user management.

o This environment ensures scalability and reliability for multiple concurrent

users.

3. Database Server (Azure Database for MySQL)

o The application connects to Azure Database for MySQL, which stores

persistent data such as user profiles, ride offers/requests, bookings, and chatbot

logs.

37

o This ensures data durability and centralized access for both the web application

and APIs.

4. OCR API (Azure Container Instance)

o The timetable-based ride creation feature relies on an OCR service deployed as

a Dockerized FastAPI application inside an Azure Container Instance.

o Users upload their timetable screenshots through the Laravel web application.

o The request is forwarded to the OCR API, which processes the image, extracts

timetable data, and returns structured results to the Laravel system.

5. Communication Flow

o The browser communicates only with Laravel Cloud.

o Laravel Cloud acts as the central hub, communicating with both the MySQL

database and the OCR API container.

o The OCR API communicates back with Laravel Cloud via REST API

responses.

6. Security & Deployment Considerations

o HTTPS is enforced between the browser and Laravel Cloud.

o The database and container instance are secured with private credentials and

access control, ensuring only the application can connect.

o This architecture separates web application logic from specialized OCR

processing, promoting modularity and scalability.

38

Figure 4.2 Deployment Diagram

4.3 System Components Specifications

4.3.1 Frontend

The frontend is designed to provide a seamless and interactive experience for users while

maintaining consistency across the application’s interface. Laravel Blade handles most of the

rendering, while JavaScript is used for dynamic elements and real-time interactions.

Key Components:

• Laravel Blade – Server-side template engine for rendering views and layouts.

• Tailwind CSS – Utility-first CSS framework for responsive and consistent styling.

• BladewindUI – Pre-built Laravel-compatible UI components to accelerate

development.

• JavaScript (AJAX & Chatbot)

o Handles AJAX calls for actions such as form submissions without full page

reloads.

o Powers chatbot interaction:

▪ Calls AI chatbot API.

▪ Updates messages in real-time.

▪ Stores chat history in session storage for persistence during the session.

39

4.3.2 Backend

• Framework & Architecture: Developed using PHP Laravel following the Model-

View-Controller (MVC) pattern. Laravel’s built-in routing, controllers, and

middleware (including authentication) are used to manage request handling, enforce

access control, and streamline the application workflow.

• Business Logic: Handles most of the core operations triggered by user actions. This

includes user authentication, form validation, ride creation, ride display, ride

filtering, and ride updates. All data-related operations follow Laravel’s validation

rules to ensure data integrity.

• API Integration: All third-party API calls (e.g., Google Maps API, PaddleOCR API)

are initiated and processed in the backend, except for Dialogflow API, which is called

directly from the frontend JavaScript for real-time chatbot interaction.

• Security Measures: User passwords are encrypted before storage in the database to

maintain confidentiality. No other encryption is implemented for general data

exchange.

• File Handling: Supports file uploads where applicable, processing them securely

through Laravel’s file handling mechanisms.

4.3.3 Database

Database Technology:

• MySQL 8.0.30 is used as the relational database management system, offering reliable

data storage, transactional integrity, and compatibility with Laravel's Eloquent ORM.

Key Tables:

• users – Stores user credentials and profile details.

• rides – Contains core ride information, linked to the ride creator and optionally to

recurring or timetable rides.

• recurring_rides – Stores repeating ride patterns for automated ride creation.

• timetable_rides – Stores predefined ride schedules for easy reference.

40

• offers – Records offers made for specific rides.

• bookings – Tracks ride bookings, including sender and receiver details.

Table Relationships:

• rides.user_id → users.id (Ride creator)

• rides.recurring_id → recurring_rides.id (Optional recurring ride link)

• rides.timetable_id → timetable_rides.id (Optional timetable link)

• offers.ride_id → rides.id (Offer belongs to a ride)

• bookings.ride_id → rides.id (Booking for a specific ride)

• bookings.sender_id / receiver_id → users.id (Users involved in the booking)

Indexes & Constraints:

• Primary keys on all tables.

• Foreign key constraints enforced through Laravel migrations.

• Relational integrity maintained by Eloquent ORM.

Hosting & Backup:

• Development: Local MySQL instance.

• Deployment: Hosted on Azure Database for MySQL Flexible Server.

• Automated daily backups handled by Azure to ensure data reliability.

41

Figure 4.3 ERD diagram

4.3.4 External APIs

Google Maps API

• Purpose: Provides location-based services to enhance the carpooling experience.

• Functions Used:

o Map Display – Embeds interactive maps in the application interface.

o Route Display – Shows driving routes between departure and destination points.

o Place ID Retrieval – Obtains unique identifiers for selected locations.

o Distance & Duration Calculation – Retrieves travel distance and estimated time

between two addresses.

o Address Autocomplete – Suggests addresses dynamically as users’ type.

• Integration: API keys are stored securely in Laravel’s .env file, and calls are made from

both frontend (JavaScript) and backend (PHP) where appropriate.

• Data Handling: Responses are processed in real-time without being stored permanently.

42

Dialogflow API

• Purpose: Acts as the natural language processing (NLP) engine for the chatbot feature.

• Functions Used:

o Extracts departure location, destination location, and travel date from user

messages.

o Passes extracted data to Laravel backend for ride-matching operations.

• Integration: Invoked directly from the frontend JavaScript code.

• Data Handling: Responses are processed immediately and stored only in browser

session storage for chat history.

PaddleOCR API

• Purpose: Automates extraction of timetable data from uploaded images to support

timetable-based ride searching.

• Development Environment: Self-hosted locally via Docker container.

• Deployment Environment: Hosted on Azure Container Instances running FastAPI with

a preloaded PaddleOCR model for faster inference.

• Data Handling: API responses are temporarily stored in session only for timetable ride

searching.

Ngrok

• Purpose: Used exclusively during development to expose the local environment to the

internet for API testing and integration.

• Scope: Temporary and not part of production deployment.

4.4 System Components Interaction Operations

4.4.1 Ride Posting – Basic Form Input

This process enables users to post either one-time or recurring rides through a structured form.

The frontend leverages reusable Laravel Blade components for location inputs, enriched by

Google Maps services for address autocompletion, distance calculation, and estimated travel

43

time. Data submission is handled asynchronously via AJAX, ensuring a smooth user

experience.

Interaction Flow:

1. User Input

o One-Time Ride: User enters departure and destination addresses, date, time,

number of passengers, price, description, and ride type (request/offer). If the

ride is an offer, vehicle number and vehicle model are also required.

o Recurring Ride: User enters departure and destination addresses, time, number

of passengers, price, recurrence pattern (daily/weekly), recurrence days (if

weekly), start and end dates, description, and ride type (request/offer).

2. Frontend Processing

o Address fields use a custom Blade component integrated with Google Maps

Places Autocomplete.

o Once both addresses are selected, Google Maps Distance Matrix Service

calculates travel distance and duration.

o Distance and duration are stored in hidden form fields for backend use.

o Simple HTML-based validation is applied before submission.

3. Form Submission

o Data is sent via AJAX request to the appropriate Laravel route, mapped to the

corresponding controller method.

4. Backend Processing

o Laravel validates all form data.

o Determines ride type (one-time or recurring) and ride category (request or

offer).

o Creates records in the appropriate database tables (rides, offers,

recurring_rides).

5. Post-Save Response

44

o On success: Backend responds with a success message, which is displayed using

SweetAlert2, followed by a redirect to the ride list page.

o On validation errors: Returns error messages for each invalid field, which are

displayed in line with red borders and messages.

o On system errors: SweetAlert2 displays a relevant error notification.

Figure 4.4 Ride posting – basic form input Sequence Diagram

45

4.4.2 Paddle OCR API

This self-developed PaddleOCR API is designed to automatically extract structured class

schedule data from a submitted timetable image. Its purpose is to simplify the ride creation and

searching process in the carpooling platform by eliminating the need for manual entry.

Interaction Flow:

1. User Upload

• User submits an image of their timetable through the Laravel application.

• Laravel validates and prepares the image file.

2. Laravel → PaddleOCR API (Request)

• Laravel sends an HTTP POST request with the timetable image to the PaddleOCR

API endpoint.

3. PaddleOCR API Processing

• The API validates the uploaded file (e.g., size/format).

• Crops the timetable region using OpenCV (cv2).

• Uses the pre-loaded PaddleOCR model (loaded once when container started) to

recognize texts from the cropped image.

• Classifies recognized texts into:

o Day

o Start Time / End Time

o Classroom Code

• Aligns times by comparing box centers with timetable headers (column matching).

• Maps classroom codes to correct day and time slot.

4. PaddleOCR API → Laravel (Response)

• API sends back the extracted timetable in JSON format, containing for each class:

o Day

46

o Start Time

o End Time

o Location (classroom code).

5. Laravel post-processing

• Laravel receives the JSON response.

• Converts each class entry into a ride entity (with recurring ride pattern logic).

• Stores rides in the database.

6. Completion

• User receives confirmation in the Laravel app (e.g., rides created successfully from

timetable).

47

Figure 4.5 Paddle OCR API sequence diagram

4.4.3 Ride Posting – Timetable-based

In the timetable-based ride posting feature, the user uploads a timetable image to automatically

generate potential recurring rides based on their class schedule. The image is processed by a

self-developed PaddleOCR API (built with Python and FastAPI, with a custom-trained model

for UTAR student timetables), which extracts the class details such as day, start time, end time,

and location. The Laravel backend processes this extracted data to generate ride suggestions,

following a set of rules:

• Create rides 30 minutes before a class starts and right after a class ends.

• Skip rides where the gap between two classes is less than or equal to 1 hour.

After reviewing the suggested rides, the user completes the remaining form fields, including

home address (with Google Maps autocomplete), price, number of passengers, and vehicle

details if offering a ride. Upon submission, the Laravel backend calculates distances and

durations using the Google Maps DistanceMatrix API, validates all inputs, and stores the

recurring rides in the database.

Interaction Flow:

1. Upload Timetable

o The user uploads their timetable image via AJAX.

o Laravel validates the file and sends it to the PaddleOCR API.

o PaddleOCR returns JSON containing extracted class details.

o Laravel processes the JSON and generates suggested rides based on the

timetable rules.

o Laravel returns the ride suggestions and displays the remaining input form to

the user.

2. Complete Ride Details

o The user fills in remaining fields (home address, start/end date, number of

passengers, price, vehicle details, and description).

48

o Google Maps Autocomplete assists in entering the home address.

3. Submit Form

o The completed form is submitted via AJAX to the Laravel backend.

o Laravel validates inputs, calculates distance and duration via Google Maps

DistanceMatrix API, and stores the rides in the database.

4. Feedback to User

o On success → SweetAlert2 success message → redirect to ride list.

o On validation or system error → display inline messages or SweetAlert2 error.

49

Figure 4.6 Ride Posting – Timetable-based Sequence Diagram

4.4.4 Ride Searching – Input fields

This feature allows users to search for rides based on specific criteria, including departure

address, destination address, date, and ride type (offer/request). The departure and destination

address fields use the same reusable Google Maps autocomplete Blade component used in the

50

ride posting forms, ensuring consistent UI and geocoding functionality. No distance or duration

calculation is performed during the search stage.

Interaction Flow

1. User Input – The user enters the departure address, destination address, date, and ride

type.

2. AJAX Form Submission – When the search form is submitted, JavaScript sends the

input values via AJAX to the backend without reloading the page.

3. Routing – Laravel routes the AJAX request to the appropriate controller method based

on the route definition.

4. Backend Filtering – The controller uses Laravel Eloquent queries to filter rides

according to the input criteria. Recurring rides are grouped and labeled as such.

5. Sorting – Results are sorted by date, ensuring the soonest rides appear first.

6. Response Data – The backend returns the filtered results in JSON format.

7. Dynamic Rendering – JavaScript processes the returned JSON and updates the rides

list dynamically in the DOM.

8. No Match Case – If no rides match the filters, the frontend displays the message "There

are no rides available" with a button for the user to create a new ride.

Figure 4.7 Ride Searching – Input fields Sequence Diagram

51

4.4.5 Ride Searching – Timetable-based

This feature allows users to search for available rides based on their personal timetable by

leveraging the PaddleOCR API class extraction system. Instead of manually entering trip

details, users can upload their timetable image, and the system automatically identifies

potential rides that match their class schedule.

Interaction Flow

1. File Upload:

• The user initiates the search by clicking a button to reveal the file upload input,

then uploads their timetable image via AJAX.

2. Backend Processing (Extraction):

• Laravel validates the uploaded file, then sends it to the self-hosted PaddleOCR API

for timetable class extraction.

• PaddleOCR returns a JSON containing class details (day, start time, end time,

location).

• Laravel applies the timetable ride extraction logic (same rules as timetable-based

ride posting) to generate possible ride data from these classes.

• The generated ride data is stored in the session for temporary use.

3. Redirection to Search Results:

• If extraction succeeds, the backend responds to AJAX with a redirect route that

includes a GET parameter (user_timetable=true).

• The frontend redirects the user to this route.

4. Matching Against Database:

• The controller detects the user_timetable=true parameter and retrieves the stored

rides from the session.

• Laravel uses Eloquent queries to match these session rides against existing rides in

the database based on class time and location.

52

• Matching results are grouped (recurring rides grouped together) and sorted by date

before being displayed.

5. Failure Handling:

• If OCR extraction fails, the user is notified via SweetAlert2 and remains on the

upload page.

• If no matching rides are found, the search results page shows “No rides available”

with an option to create a new ride.

53

Figure 4.8 Ride searching timetable-based Sequence Diagram

4.4.6 Ride Searching – AI Chatbot

This feature allows users to search for rides by conversing in natural language through a chatbot

interface, which interprets the user’s message, extracts key ride details, and returns matching

ride information directly within the chat.

Interaction Flow

1. User clicks the chatbot icon/button to open the chat interface.

2. User enters a query containing departure, destination, and date.

3. JavaScript sends the query via AJAX to a Laravel route.

4. Laravel retrieves a Dialogflow access token and sends the query to Dialogflow.

5. Dialogflow processes the query, extracts departure, destination, and date, and returns

them to Laravel.

6. Laravel searches the database for rides matching the extracted data.

7. Laravel returns the first matching result to JavaScript via AJAX.

8. JavaScript updates the chat interface to show the ride result.

9. If required parameters are missing, the chatbot prompts the user for them.

10. If no matching ride exists, the chatbot displays “No rides found.”

54

Figure 4.9 Ride searching – AI chatbot sequence diagram

4.4.7 Ride Booking

In the Ride Booking operation, a user selects a ride from the ride list and initiates booking from

the ride details page via AJAX. Laravel validates the booking data (ride ID or recurring ride

ID, and receiver ID), stores it in the bookings table, and updates the ride status to “pending.”

The system then returns a SweetAlert2 success message, or an error message if validation fails.

Interaction Flow:

1. User Action

• The user navigates to the ride details page from the ride list.

• The user clicks the "Book Ride" button to reserve the ride.

2. Frontend Processing

• The booking request is sent via AJAX without reloading the page.

• The request includes the ride_id (or recurring_id) and the receiver_id (driver’s user

ID), which are passed in the background and not entered manually by the user.

55

3. Backend Processing – Laravel

• Laravel validates the request, ensuring that at least one of ride_id or recurring_id

exists and is valid.

• If validation passes:

o The booking is stored in the bookings table.

o The ride’s status is updated to "pending".

• If validation fails, Laravel prepares an error message.

4. Database Interaction

• Insert booking data into the bookings table.

• Update ride status in the rides table.

5. Response Handling

• If successful:

o Laravel sends a success response back to AJAX.

o SweetAlert2 shows a confirmation message to the user.

• If unsuccessful:

o Laravel sends an error response back to AJAX.

o SweetAlert2 displays the error to the user.

56

Figure 4.10 Ride booking sequence diagram

4.4.8 Ride Management

The Ride Management operation allows users to manage their rides and bookings from the

dashboard, which contains three sections: Manage Rides, Incoming Bookings, and Outgoing

Bookings. In Manage Rides, users can view, edit, or delete their rides. In Incoming Bookings,

users can accept or reject booking requests, changing the booking status to either accepted or

rejected. In Outgoing Bookings, users can cancel their own booking requests.

57

Interaction Flow

1. The user navigates to the Dashboard page, which contains three tabs: Manage Rides,

Incoming Bookings, and Outgoing Bookings.

2. When the user clicks Manage Rides, they can choose to view, edit, or delete an existing

ride.

o If deleting, the action is sent via AJAX to the Laravel controller, which validates

the request, deletes the ride from the database, and cascades the removal of any

related data.

o Upon successful deletion, the system returns a success response to the browser,

which displays a SweetAlert2 notification.

3. In Incoming Bookings, the user can accept or reject booking requests.

o The choice is sent via AJAX to the Laravel controller, which updates the

booking status in the database to accepted or rejected.

o The updated status is returned to the browser and displayed using SweetAlert2.

4. In Outgoing Bookings, the user can cancel a booking request.

o The cancellation request is sent via AJAX to the Laravel controller, which

updates or deletes the booking record in the database.

o A confirmation is returned to the browser, and the user is notified via

SweetAlert2.

58

Figure 4.11 Ride management Sequence Diagram

59

Chapter 5

System Implementation

5.1 Hardware Setup

5.1.1 Local Development Environment

The system was developed and tested locally on a laptop machine. The specifications of laptop

were shown in Table 5.1.

Table 5.1 Specifications of laptop

Description Specifications

Model HP Victus 16

Processor AMD Ryzen 5-8645HS

Operating System Windows 11

Graphic NVIDIA GeForce RTX 4050

Memory 16GB DDR4 RAM

Storage 512GB SSD

• Development Stack:

o Laravel framework set up through Laragon as a local web server environment.

o Docker was used locally to containerize and test services, particularly for

ensuring consistency in environment setup before deployment.

• Testing Tools:

o Ngrok was employed to expose the local server to the internet during

development, allowing for online testing of APIs and external integrations (such

as Dialogflow chatbot and Google Maps API).

This setup ensured a smooth and isolated environment for iterative development, debugging,

and testing.

5.1.2 Deployment Environment

For deployment, both the web application and supporting services were hosted on cloud

infrastructure:

60

• Laravel Cloud:

The main web application was hosted on Laravel Cloud, ensuring scalability, security,

and continuous deployment support.

• Azure database hosting:

The data within the website was stored and hosted in Azure, deployed via Azure

Database.

o MySQL flexible servers:

▪ Instance type: Burstable, B1ms

▪ vCores: 1

▪ Memory: 2 GiB

▪ Storage: 20 GB

▪ Disk IOPS: 360

This deployment configuration ensured cost efficiency while providing sufficient resources to

handle data request.

5.2 Software Setup

5.2.1 Operating System and Local Development

This layer provides the foundation for the project’s development environment. It includes the

operating system, local server management tools, and integrated development environments

(IDEs) used to build and test the system before deployment.

1. Operating System – Windows 11

The project development is carried out on Windows 11, which provides a stable and

user-friendly environment compatible with required tools such as Laravel, MySQL,

Docker, and Python.

2. Local Development Environment – Laragon

Laragon is used as the primary local development environment. It simplifies the setup

of Laravel projects by providing pre-configured services such as Apache, PHP, and

MySQL. Laragon allows rapid project initialization (via Quick App) and efficient

management of multiple local applications.

o Download link: https://laragon.org/download

https://laragon.org/download

61

Figure 5.1 Project Initialization via Quick App

3. Python Runtime for OCR Service (v3.10)

In addition to PHP, Python is used to develop the OCR service (FastAPI + PaddleOCR).

This service runs separately from the Laravel application but is integrated via API calls.

Python ensures compatibility with machine learning and OCR libraries required for

timetable extraction.

o Download link: https://www.python.org/downloads/

4. Integrated Development Environments (IDEs)

Two IDEs are primarily used for development:

o PhpStorm: Used for Laravel and PHP development, providing advanced code

navigation, debugging, and project structure management.

▪ Download link:

https://www.jetbrains.com/phpstorm/download/?section=windows

o PyCharm: Used for Python development, particularly for implementing and

testing the FastAPI service with PaddleOCR.

▪ Download link:

https://www.jetbrains.com/pycharm/download/?section=windows

5.2.2 Backend Frameworks and Runtime

This layer defines the frameworks, languages, and runtime environments that

power the server-side logic of the system. It includes both the PHP-based Laravel

https://www.python.org/downloads/
https://www.jetbrains.com/phpstorm/download/?section=windows
https://www.jetbrains.com/pycharm/download/?section=windows

62

framework for the core web application and FastAPI (Python) for AI-related

services.

• Laravel (v11.45.1)

o Acts as the primary backend framework for the system.

o Provides MVC (Model-View-Controller) architecture, simplifying code

organization and maintainability.

o Offers built-in support for routing, middleware, validation, authentication, and

session handling.

o Used as the foundation for building ride listing, booking, and user interaction

functionalities.

• PHP Runtime (v8.2.27)

o Serves as the execution environment for the Laravel framework.

o Integrated within Laragon for local development and compatible with cloud

deployment environments.

• Composer (v2.8.4)

o Dependency management tool for PHP and Laravel.

o Used to install and manage packages such as Laravel UI, authentication

libraries, and external integrations.

o Installation command:

▪ php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"

▪ php composer-setup.php

▪ php -r "unlink('composer-setup.php');"

▪ sudo mv composer.phar /usr/local/bin/composer

• Artisan Command-Line Tool

o Provides an interface for executing common Laravel tasks.

o Extensively used for:

▪ Database migrations (php artisan migrate)

63

▪ Model and controller generation (php artisan make:model, php artisan

make:controller)

▪ Factory and seeder creation (php artisan make:factory, php artisan

db:seed)

▪ Running local servers and cache management (php artisan serve, php

artisan cache:clear).

5.2.3 Frontend Technologies

1. Laravel Blade Templates

• Version: Bundled with Laravel 11

• Purpose/Usage: Provides server-side templating engine for structuring frontend

views and rendering dynamic content directly from Laravel controllers.

2. Tailwind CSS

• Version: Latest stable (via CDN)

• Purpose/Usage: Utility-first CSS framework used to rapidly design responsive and

consistent UI components with minimal custom CSS.

• Code to include in layout file:

o <script src="https://cdn.tailwindcss.com"></script>

• Add these in /resources/css/app.css

o @taildwind base;

o @tailwind components;

o @taildwind utilities;

3. BladewindUI Components

• Version: Latest stable release

• Purpose/Usage: Pre-built Tailwind-based UI component library integrated into

Blade templates to accelerate frontend development with clean and reusable

elements.

64

• Installation command: composer require mkocansey/bladewind

• Code to include in layout file:

o <link href="{{ asset('vendor/bladewind/css/animate.min.css') }}"

rel="stylesheet" />

o <link href="{{ asset('vendor/bladewind/css/bladewind-ui.min.css') }}"

rel="stylesheet" />

o <script src="{{ asset('vendor/bladewind/js/helpers.js') }}"></script>

o <script src="//unpkg.com/alpinejs" defer></script>

5.2.4 Database

• Database System: MySQL

• Version: 8.0.30

• Local Management Tool: phpMyAdmin (via Laragon environment)

• Schema & Data Management: Laravel migrations, seeders, and factories for

schema evolution and dummy data generation

• Deployment Database: Azure MySQL Flexible Server for production hosting

• Code for Database Migration may refer to my GitHub repository

(/database/migrations): https://github.com/JamesOtter/carpool-web OR

appendix

5.2.5 Cloud / Hosting

• Laravel Cloud

Used for hosting the production version of the Laravel application.

Link: https://cloud.laravel.com/

▪ Import from GitHub repository

▪ Create an application

▪ Create an environment

▪ Click on deploy

• Ngrok

https://github.com/JamesOtter/carpool-web
https://cloud.laravel.com/

65

Utilized for temporary hosting during testing phases. It exposes the local Laravel server

to the internet via a public URL, which is useful for testing APIs and chatbot

integrations before production deployment.

o Download link: https://ngrok.com/docs/getting-started/

o Installation command:

▪ ngrok config add-authtoken <your_auth_token>

• Azure MySQL Flexible Server

Cloud database hosting solution used in production. Provides managed MySQL service

with scalability, high availability, and security features, ensuring the application’s

database is reliable in production.

Link: https://portal.azure.com/#browse/Microsoft.DBforMySQL%2FflexibleServers

▪ Using Quick Create flexible server

▪ Setup administrator login and password

5.2.6 External APIs

1. Google Maps API

• Purpose: To provide location intelligence features such as address

autocompletion, route planning, and distance calculation.

• Steps to setup:

o Create a Google Cloud Project: https://cloud.google.com/

o Enable these APIs (Maps JavaScript API, Places API, Directions API,

Geocoding API)

o Generate an API key

o Code in layout file: <script

src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&li

braries=places"></script>

2. Dialogflow API

• Description: A conversational AI platform by Google for building chatbots and

virtual assistants.

• Purpose: To enhance user interaction by allowing natural language queries to find

or book rides.

https://ngrok.com/docs/getting-started/
https://portal.azure.com/#browse/Microsoft.DBforMySQL%2FflexibleServers
https://cloud.google.com/

66

• Usage: Integrated into the Laravel-based frontend as a chatbot, helping users search

for rides and providing a direct link to ride details.

• Link: https://dialogflow.cloud.google.com

• Steps to setup:

o Create a Dialogflow Agent

o Set up a google cloud project

o Generate Service Account Credentials (JSON Key File)

o Store the JSON Key in Laravel Project (/storage/app/dialogflow/)

3. PaddleOCR (PP-OCRv5)

• Description: An open-source Optical Character Recognition (OCR) library

developed by Baidu. In this project, PP-OCRv5 is used for extracting structured

text data from uploaded timetables. To ensure efficiency, the model is preloaded

inside a Dockerized FastAPI service, which acts as a middleware between the

Laravel application and the OCR model.

• Deployment:

o Local development: PaddleOCR runs inside a Docker container with FastAPI

for easy testing and model reuse.

o Production: The Dockerized FastAPI service will be hosted on Azure

Container Instances, allowing scalable and containerized deployment.

• Docker download link (Window version): https://www.docker.com/

• Paddle OCR installation command (to test locally):

▪ pip install paddleocr

▪ pip install paddlepaddle

5.2.7 Version Control and Collaboration

1. Git

• Description/Purpose: A distributed version control system used to track changes

in source code, manage project history, and support collaborative development.

https://dialogflow.cloud.google.com/
https://www.docker.com/

67

• Usage: Used throughout the project lifecycle to commit, branch, and merge code

changes. Helps maintain clear versioning and rollback capabilities.

2. GitHub

• Description/Purpose: A cloud-based platform for hosting Git repositories with

collaboration, pull request, and code review features.

• Usage: The project repository is hosted on GitHub to enable team collaboration,

centralized code storage, and integration with deployment pipelines.

• My project repository link: https://github.com/JamesOtter/carpool-web

5.3 Setting and Configuration

5.3.1 Backend and Database Configuration

• Environment variables (.env in Laravel) for database and API keys [in Local].

o Make sure the variables are such as below figure.

Figure 5.2 Backend and database configurations in local

• Config file in Laravel [in Local].

o /config/database make sure it is mysql

https://github.com/JamesOtter/carpool-web

68

Figure 5.3 MySQL configuration

• In Laravel Cloud [production]:

o Navigate to settings > Custom environment variables, then add these variables

Figure 5.4 Backend and database configuration in deployment

5.3.2 External API Configuration

1. Dialogflow agent integration

o Create Intent from Intents Tab

o In Training phrases add phrases such as figure below.

Figure 5.5 DialogFlow training phrases

o In Action and parameters add such as figure below.

69

Figure 5.6 DialogFlow actions and parameters

o Go to Fulfilment tab to enable webhook and configure your URL to access

this API.

Figure 5.7 DialogFlow webhook

2. Paddle OCR FastAPI endpoint configuration

o In “app.py” use the following code. Thus, the API can be accessed through

/ocr-timetable

Figure 5.8 FastAPI configuration

5.3.3 Cloud and Hosting Configuration

1. Docker configuration

o Create a requirement.txts to include package to be downloaded

Figure 5.9 Docker requirements

o Create a Docker file to run the python code and host the FastAPI server.

70

Figure 5.10 Docker file to run

o Command to run docker (in Local):

▪ docker build -t timetable-ocr

2. Azure Container Instance

o Command to publish local image to Docker hub

▪ docker tag <name>/timetable-ocr

▪ docker push <name>/timetable-ocr

o Create Azure Container Instance in azure portal

▪ Image source: Other registry

▪ Image: <name>/timetable-ocr

▪ OS type: Linux

▪ Size: 4 vcpu, 4 GiB memory

5.4 System Operation

5.4.1 System Startup and Initialization

• Local Environment

1. Select “start all” to start Laragon

71

Figure 5.11 System start-up in local environment

2. Go to project level CMD and start local host

o php artisan serve

3. In same level, open another CMD to tunnel local host to public by using Ngok

o ngrok http 8000

4. Command to start Docker

o docker run -p 8010:8010 -v

"C:/laragon/www/CarpoolWeb/storage/app/public:/app/storage" timetable-ocr

• Production Environment

1. Deploy website in Laravel Cloud

Figure 5.12 System start-up in production environment

2. Start Azure Database in azure portal

3. Start Azure Container Instance in azure portal

5.4.2 User Roles

1. General User

• Every registered account in the system is a User.

• A User can act as either:

o Driver – posts ride offers with trip details.

o Rider – posts ride requests or books available ride offers.

72

• This flexibility allows users to switch roles depending on their need (e.g., one day they

drive, another day they ride).

2. Driver Role (when offering rides)

• A Driver is a user who creates an offered ride.

• Required inputs typically include:

o Starting point & destination (via Google Maps API)

o Date & time of departure

o Available seats

o Vehicle number and model

o Suggested fare

• Drivers can:

o Post and manage their rides in the Dashboard

o Accept bookings from Riders

o Communicate with Riders (e.g., WhatsApp link)

3. Rider Role (when requesting rides)

• A Rider is a user who creates a ride request.

• Required inputs may include:

o Pickup location & destination

o Preferred time

o Number of seats needed

• Riders can:

o Post and manage their ride requests in the Dashboard

o Book available rides posted by Drivers

o Cancel or update bookings

4. Dual Role (User as Rider & Driver)

• A user can switch roles dynamically depending on the context.

• Example:

o In the morning, a user may act as a Driver when driving to campus.

o In the evening, the same user may act as a Rider when booking a ride home.

• This flexibility makes the system community-driven instead of a strict platform with

separated roles.

73

5.4.3 Normal Operation Workflow

1. User Registration and Login

The registration process begins when a new user accesses the registration page and

provides their details, including name, email, contact number, password, and password

confirmation. Once the information is submitted, the system validates the inputs to

ensure that the required fields are not empty, the email is in a valid format, and the

password matches the confirmation field. If any validation fails, the system

immediately returns an error message to guide the user in correcting the input. Upon

successful validation, the user’s information is securely stored in the system database,

and the account becomes active for login.

Figure 5.13 Registration form

For login, the user is required to provide only their registered email and password. The

system validates these credentials against the stored records in the database using

Laravel’s built-in authentication mechanism. If the credentials are incorrect, the system

displays an error message prompting the user to retry. Once authenticated successfully,

the user is granted access to the system’s dashboard and can proceed to use the available

features such as ride creation, ride search, and booking. This workflow ensures a secure

and user-friendly authentication process that forms the foundation for accessing the

system.

74

Figure 5.14 Login form

2. Ride Posting – Basic form

Once registered and logged in, users can proceed to post a ride within the system. The

ride posting feature supports both ride offers (drivers offering seats in their vehicle)

and ride requests (passengers seeking a ride). During this process, the user is required

to provide key ride details including the departure address, destination address, date

and time of travel, ride type, number of passengers, and the proposed price. To

ensure accuracy, the system enforces the use of the Google Maps Autocomplete API,

which validates addresses and prevents invalid or ambiguous entries. Additionally, the

system restricts users from selecting past dates or times to maintain the integrity of

future ride scheduling.

Figure 5.15 Ride Form – One time ride

75

Figure 5.16 Ride Form – Recurring rides

After submission, the ride is stored in the database and becomes immediately available

in the ride listings for other users to view, though a page refresh may be required to

reflect the newly added ride. The system accommodates both single rides (one-time

trips) and recurring rides, where users can define repeated journeys over a specific

period. This recurring ride functionality reduces the need for drivers or passengers to

repeatedly create identical listings for regular trips such as daily commutes.

3. Paddle OCR API

The normal operation flow of the PaddleOCR API begins when a timetable image is

submitted from the Laravel application via an HTTP POST request. Once received, the

image is processed through the FastAPI service running inside a Docker container. The

system first applies OpenCV (cv2) techniques to crop the timetable region from the

uploaded image, ensuring only the relevant portion is passed for text recognition.

The OpenCV techniques consists of:

a. Convert image to grayscale to simplify further processing

b. Apply binary inverse thresholding: bright pixels become black and darker pixels

become white, making text / line pop as white shapes on dark backgrounds.

c. Detect external contours (the outer boundaries of connected white regions) in

the thresholded image.

d. Select the largest contour by area, assuming it corresponds to the timetable grid.

e. Compute a bounding rectangle around the largest contour.

f. Crop the original image to that rectangle, isolating the main region of interest.

76

For an example, figure 5.17 show an image of timetable with excess space. In figure

5.18 show the image of timetable after cropping.

Figure 5.17 Timetable before cropping

Figure 5.18 Cropped timetable

The cropped timetable is then processed using PaddleOCR, which extracts the text

content along with the corresponding bounding box coordinates.

77

Figure 5.19 Visualized detected text on image

Figure 5.20 Visualized detected text and bounding box

The recognized text is subsequently classified into specific categories, including day,

time, and classroom codes. To structure the information accurately, the system maps

each extracted classroom code to the appropriate day and time column, referencing the

time header that contains the start and end times for each slot.

78

Figure 5.21 Example of classroom code mapping

After mapping, the data is organized into a structured JSON output, where each entry

contains details of a class with its associated day, start time, end time, and location

(derived from the classroom code). This JSON response is returned on-the-fly to the

Laravel application and is directly integrated into the carpooling ride controller,

enabling the extracted timetable information to be seamlessly converted into ride

creation data. The Laravel backend processes this extracted data to generate ride

suggestions, following a set of rules:

• Create rides 30 minutes before a class starts and right after a class ends.

• Skip rides where the gap between two classes is less than or equal to 1 hour.

Given an example in figure 5.22, red boxes indicate the rides will be created.

Figure 5.22 Example of rides will be created

79

4. Ride Posting – Timetable based

In the timetable-based ride posting workflow, the process begins when a user uploads

an image of their academic timetable into the system.

Figure 5.23 Upload timetable form

The uploaded timetable is first processed by the PaddleOCR engine, which extracts the

textual information such as class times, subjects, and classroom locations. This

extracted text is then passed to a Python-based processing module, where the data is

further analysed to identify class schedules and determine corresponding departure

times and destinations. Once the extraction process is complete, the system

automatically generates a set of suggested rides that align with the user’s timetable.

These suggested rides are then displayed back to the user, where the timetable-derived

details such as class times and campus locations are fixed and cannot be modified.

However, the user is required to provide additional information such as their home

address, ride start date and end date, as well as the ride price and number of passengers.

80

Figure 5.24 Additional information form

Upon confirmation, the rides are created strictly based on the system’s suggestions,

ensuring consistency with the timetable data. All newly created timetable-based rides

are automatically set as recurring, meaning the system schedules them across the

selected date range. The rides become visible to the user immediately after the process,

though a page reload is required to display them in the interface.

5. Ride Searching – Basic input

In the ride searching workflow, users begin by entering their desired departure and

destination addresses, selecting a date of travel, and specifying the ride type (request

or offer). The system utilizes Google Maps Autocomplete to assist users in quickly

and accurately entering valid addresses, reducing the chances of input errors. Once the

necessary information is provided, the user is required to submit the search form to

proceed. Upon submission, the system processes the query and displays a list of

matching rides, if available.

81

Figure 5.25 Ride filter

Each ride result includes essential details such as the departure point, destination,

travel date, price, available seats, ride type, and whether it is a recurring ride. The

system automatically sorts the search results by the date nearest to occur, ensuring

users can easily identify the most relevant options.

Figure 5.26 Ride card details

If no rides match the search criteria, the system displays a clear “No rides available”

message to inform the user.

82

Figure 5.27 No rides available

Any updates to search results or new searches are only reflected after a page reload,

providing a straightforward and consistent experience.

6. Ride Searching – Chatbot

In the chatbot-based ride searching process, the system integrates with Dialogflow to

enable users to search for rides using natural language input. Users interact with the

chatbot by directly typing their departure location, destination, and date in

conversational form.

Figure 5.28 Ride finder chat bot

83

Unlike the standard search form, the chatbot accepts only text input without voice or

other input modes. Once the user submits their query, the chatbot communicates with

the backend system to process the information. If a relevant ride is found in the

database, the chatbot responds by providing a clickable link within the chat box that

redirects the user to the ride detail page for booking. No ride information, such as route

or price, is displayed in the chat itself; the link serves as the gateway for the user to

view all ride details.

Figure 5.29 Chat bot response link

If the search returns no matches, the chatbot replies with a message stating that no rides

are available.

Figure 5.30 Rides not found

84

In cases where the system encounters difficulties interpreting the user’s input (for

example, an unrecognized date format or incomplete location data), the chatbot prompts

the user to re-enter the specific fields required for processing.

Figure 5.31 Difficulties interpreting input

Additionally, the chatbot is designed to maintain conversation state across page reloads,

ensuring that the user’s search session is not lost while navigating the website. This

approach creates a seamless experience where the chatbot acts as a conversational entry

point for accessing ride details and bookings.

7. Ride Searching – Timetable based

When a user wishes to search for rides using their timetable, they begin by pressing the

“Use My Timetable” option on the platform.

Figure 5.32 Use My Timetable button

85

The system then prompts the user to upload an image of their timetable, which is

processed using the PaddleOCR API to extract relevant class schedule information

such as course times, start and end times, and locations. Without requiring any manual

confirmation or editing from the user, the system automatically interprets the extracted

timetable data and creates ride requests corresponding to the user’s recurring schedule.

These requests are then run through the auto-matching algorithm, which compares

them against the existing rides in the system to identify potential driver matches.

Figure 5.33 Timetable based search form

The matched rides are then displayed to the user in the same manner as the basic input

ride searching operation, where each match is represented by a clickable card that

redirects the user to the ride detail page for further booking actions. In cases where no

rides are available, the system returns the same response format as the basic ride

search, informing the user that no suitable matches were found. The timetable-based

ride search workflow operates same as the basic input searching mode.

8. Ride Booking

The ride booking process begins when a user finds a suitable ride through the search

functions provided in the system. Once a desired ride is identified, the user can proceed

to make a booking request.

86

Figure 5.34 Ride booking in details page

When the booking is submitted, the system records the request and forwards it to the

ride owner (the user who posted the ride). The ride owner is then required to accept the

booking before it is confirmed.

Figure 5.35 Manage incoming booking

If the ride owner accepts, the booking becomes valid, and the ride is no longer available

to other users. If the booking has not yet been accepted, the user who made the request

still has the option to cancel it.

Figure 5.36 Manage outgoing booking

However, once the ride owner accepts, cancellation is no longer allowed. In situations

where a ride has already been booked and accepted, it will not appear in the search

87

results to prevent overlapping bookings. The system ensures that only valid and

available rides are displayed. Upon confirmation, the booking is stored in the system

for reference, without additional notifications or communications, focusing solely on

maintaining a streamlined booking record.

9. Communication

The communication feature in the system is implemented through a WhatsApp

redirection mechanism to ensure simplicity and reliability. When a user is browsing the

available rides, they are provided with a dedicated button on each ride detail page to

initiate contact with the ride owner.

Figure 5.37 Button to chat on WhatsApp

This feature is restricted such that only the user who intends to book the ride can initiate

communication with the user who posted it, ensuring that drivers or ride providers are

not unnecessarily contacted by unrelated users. Once the button is pressed, the system

automatically redirects the rider to WhatsApp with a pre-filled message, allowing the

rider to directly start a conversation with the driver.

Figure 5.38 Example of pre-filled message

The system does not store chat history or communication attempts, as the interaction

takes place entirely on WhatsApp. Importantly, this communication option is available

at any stage, even before a booking request is made, giving riders the flexibility to

clarify ride details or confirm availability before proceeding with the booking.

88

Notifications are not managed within the platform, as WhatsApp itself handles message

delivery and alerts.

10. Dashboard Management

The dashboard in the system serves as a centralized control panel where users can easily

manage their activities. All users are presented with the same dashboard layout for

consistency, ensuring a uniform experience. The dashboard primarily displays three key

sections: created rides, incoming bookings, and outgoing bookings. Whenever the page

reloads, the dashboard refreshes to display the most updated information, ensuring

users always see the status of their rides and bookings.

Figure 5.39 Dashboard’s section

From the created rides section, users can view detailed information about the rides they

have posted, as well as perform actions such as editing ride details or deleting rides if

necessary.

Figure 5.40 Dashboard page

Additionally, users can monitor incoming booking requests for their rides. For each

booking, they have the option to accept or reject the request, giving them full control

over who can join their ride. At the same time, the outgoing bookings section allows

89

users to track their own booking requests made for other rides, along with the status

updates of those requests.

Overall, the dashboard functions as a comprehensive control panel that simplifies ride

and booking management, consolidating all related actions and updates into one

interface. This ensures that users can efficiently track, update, and manage their rides

and bookings without navigating through multiple sections of the system.

5.5 Implementation Issues and Challenges

During the development and deployment of the system, several issues and challenges were

encountered. These challenges arose from frontend integration, chatbot configuration, ride

creation logic, and the OCR-based timetable processing. The following summarizes the main

difficulties faced throughout the system implementation:

1. Frontend Customization with BladewindUI and TailwindCSS

While using BladewindUI improved the speed of interface development, it required

additional effort to fully understand its component structure and customization attributes.

The library provides many configurable options, but this also meant spending more time

studying the documentation and experimenting before achieving the desired layout and

behavior.

2. Chatbot Understanding with Dialogflow

The chatbot integration was functional but limited in its ability to understand diverse user

queries. This limitation was due to an insufficient number of training phrases during

development. As a result, the chatbot sometimes failed to interpret natural language inputs

accurately. To improve performance, more training phrases would need to be added to

cover the wide range of possible user queries.

3. Ride Creation and Address Validation

The ride posting feature presented challenges in handling address inputs. Since address

fields needed to be reusable across multiple modules, they were developed as a Blade

component. Additionally, Google Maps Autocomplete had to be integrated with validation

90

rules that enforced selection only from autocomplete suggestions. Ensuring that distances

and travel times were dynamically updated based on the selected addresses added further

complexity.

4. Route Display with Google Maps API

Although the Google Maps API generally worked as expected, there were occasional errors

in route rendering. Some routes were displayed incorrectly, and despite attempts to resolve

the issue, the cause could not be fully identified. Fortunately, such cases were rare and did

not significantly affect system usability.

5. OCR Timetable Extraction with PaddleOCR and FastAPI

The timetable extraction process using PaddleOCR was one of the most challenging parts

of implementation. Initially, accessing the required prediction results from the model was

unclear, which required extra time to study the documentation. Performance was also a

concern — without Docker, processing a timetable image could take more than one minute.

Integrating Docker reduced this time to around six seconds, but model loading still took

about 30 seconds per request. This issue was resolved by integrating the OCR service with

FastAPI, which preloaded the model when starting the container. As a result, the prediction

time was reduced to approximately six seconds consistently.

6. Cloud Hosting with Azure Container Instances

Hosting the OCR service using Azure Container Instances presented another challenge.

Although technically feasible, the cost of maintaining the container service was

significantly higher than expected, even during periods of low or no usage. This made it

impractical to sustain the solution in a production environment without further optimization

or alternative hosting options.

5.6 Concluding Remark

91

In summary, the system implementation phase successfully realized all the planned features

outlined in the project proposal. Through the integration of PHP Laravel as the backend

framework, BladewindUI and Tailwind CSS for the user interface, Dialogflow for chatbot

support, and Google Maps API for route-related services, the system was developed to function

as a comprehensive carpooling platform. The implementation demonstrates that the system can

fulfil its intended objectives, particularly in supporting timetable-based ride creation, real-time

ride management, and chatbot-assisted user interaction. Although some unforeseen logical

issues emerged during implementation, these do not significantly hinder the system’s

functionality and can be addressed to further enhance the user experience.

While the system can deliver the core objectives, there remain areas for refinement and

improvement. One potential enhancement is the subdivision of user roles, which would provide

greater clarity in interactions between drivers and riders. This improvement, along with other

future refinements, would not only strengthen usability but also ensure that the platform

continues to align with the needs of its intended users. Overall, the implementation marks a

significant step toward creating a functional, reliable, and user-cantered carpooling platform

for university students.

92

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

System testing is an essential phase in software development to ensure that the implemented

system performs according to its specifications and satisfies user requirements. For this project,

testing was carried out to validate the functionality, usability, performance, and reliability of

the developed carpooling platform. Each testing dimension was associated with specific

metrics that allowed objective evaluation of system behaviour under different conditions. The

following subsections describe the categories of testing conducted, along with the performance

metrics used for evaluation.

6.1.1 Functional Testing

Functional testing verifies whether each feature of the system operates in accordance with

the defined requirements. The focus is on the correctness of outputs for a given set of inputs,

ensuring that all modules work individually and in integration.

The main features tested in this project include:

• User Registration and Login: Validating account creation, authentication, and session

handling. Incorrect credentials were tested to ensure the system rejects unauthorized

access.

• Ride Creation: Testing both single rides and recurring rides. For recurring rides,

special attention was given to the timetable-based creation process, ensuring that the

system correctly generates multiple rides from timetable entries within the specified

start and end dates.

• Booking System: Ensuring that riders can successfully book available rides and that

booking conflicts (e.g., duplicate booking attempts) are prevented.

• Chatbot Functionality: Confirming that the Dialogflow chatbot can process queries

related to rides and return links to corresponding ride details within the application.

• Search Functions:

o Basic Input Search: Testing the ability to search rides by location, date, and

other parameters.

93

o Timetable-Based Searching: Verifying that rides generated from timetables

can be correctly retrieved and displayed.

• CRUD Operations for Rides: Ensuring that rides can be created, read, updated, and

deleted without errors, and that changes are consistently reflected in the database.

Each of these functions was tested using both valid and invalid inputs to evaluate error

handling and ensure robustness.

6.1.2 Usability Testing

Usability testing was conducted to evaluate the ease of use, intuitiveness, and overall user

satisfaction with the system. For this purpose, the System Usability Scale (SUS) was

adopted as the primary evaluation method. SUS is a widely recognized tool that consists of

a ten-item questionnaire using a five-point Likert scale, providing a quantitative measure

of system usability.

A small group of representative users (university students) was involved in the testing, as

they reflect the target audience of the carpooling platform. Users were asked to perform

common tasks such as:

• Registering an account and logging in.

• Creating rides (both single and timetable-based).

• Booking rides and viewing booking details.

• Searching for rides using different filters.

• Interacting with the chatbot to find rides.

After completing these tasks, participants were required to fill in the SUS questionnaire.

The results were analysed to provide a usability score out of 100, indicating the perceived

ease of use and clarity of the system.

6.1.3 Performance Testing

Performance testing was carried out to assess how the system performs under different

levels of load and to measure its responsiveness. The key performance metrics defined for

this project are:

• Chatbot Response Time: The time taken for the Dialogflow chatbot to return a relevant

response after receiving a query. The target performance threshold was set to less than

5 seconds.

94

• Timetable-Based Ride Creation Time: The time required for the system to process a

timetable input and generate recurring rides. The target performance was less than 10

seconds, ensuring efficiency even with multiple timetable entries.

• Ride Search and Filter Execution Time: The time needed to search and filter rides

based on parameters such as location, date, or timetable entries. The threshold was set

at less than 5 seconds to guarantee a smooth user experience.

To simulate realistic load conditions, the database was populated with large volumes of

dummy data generated through Laravel factories and seeders. Additionally, manual tests

were performed using the web-based forms to validate responsiveness during ride creation

and booking.

6.1.4 Reliability and Security Testing

Reliability and security testing ensures that the system can consistently perform required

operations while safeguarding against invalid inputs and unauthorized access. The

following aspects were evaluated:

• Login Validation: Incorrect email and password combinations were tested to confirm

that unauthorized access was prevented.

• Invalid Input Handling: Various invalid inputs were attempted, such as fake addresses

and incomplete ride forms, to ensure that the system provides clear error messages and

prevents submission of faulty data.

• Booking Conflict Prevention: Tests were conducted to confirm that multiple users

cannot book the same seat beyond capacity, and that duplicate booking attempts are

appropriately rejected.

• Error Handling and Recovery: The system was tested to ensure graceful handling of

unexpected errors (e.g., API failures) without crashing or corrupting data.

6.1.5 Summary of Testing Metrics

Table 6.1 Testing Metrics

Testing

Category

Feature Metric Target

Threshold

95

Functional

Testing

User Registration

and Login

Successful account

creation and login with

valid credentials;

rejection of invalid

credentials

100% pass rate

Functional

Testing

Ride Creation

(Single,

Recurring)

Rides generated

correctly according to

user input

100% accuracy

Functional

Testing

Booking System Booking recorded in

database; conflicts

prevented

100% accuracy

Functional

Testing

Chatbot Returns ride details or

links based on queries

>90% correct

responses

Functional

Testing

Search & Filter Correct rides retrieved

based on criteria

100% accuracy

Usability Testing User Interface SUS score > 70 (Good

uasability)

Performance

Testing

Chatbot

Response Time

Time to reply to

queries

< 5 seconds

Performance

Testing

Timetable-Based

Ride Creation

Time to generate

recurring rides

< 10 seconds

Performance

Testing

Ride Search /

Filter Execution

Time to return search

results

< 5 seconds

Reliability and

Security

Login Validation Unauthorized access

prevented

100%

Reliability and

Security

Invalid Inputs Rejected with clear

error messages

100%

Reliability and

Security

Booking

Conflicts

Duplicate/overlapping

bookings prevented

100%

6.2 Testing Setup and Result

6.2.1 Testing Environment Setup

96

The testing was conducted in a controlled environment to ensure repeatability and accuracy

of results. The following setup was used:

• Backend Framework: PHP Laravel 11, executed within Laragon local

development environment.

• Frontend: Laravel Blade templates with BladewindUI and Tailwind CSS for UI

design.

• Database: MySQL 8.0 managed through Laragon.

• Testing Tools:

o Laravel factories and seeders to generate dummy data for load simulation.

o Google Chrome as the primary browser.

o Ngrok and Laravel Cloud for temporary online hosting and endpoint testing.

• External APIs: Google Maps API (autocomplete, routing), Dialogflow chatbot

API.

This environment allowed for both functional validation of the features and performance

measurements under realistic conditions.

6.2.2 Functional Testing Results

Functional testing was conducted through manual execution of test cases covering core

features. Each test case followed the format: Test Scenario → Input → Expected Result →

Actual Result → Status (Pass/Fail).

Table 6.2 Functional Testing Results

Feature

Input / Action Expected Result Actual Result Status

User

Registration

Enter valid

details

New account created,

redirected to home

page

Successful Pass

User Login Valid email &

password

Login successful, user

session created

Successful Pass

User Login Invalid

credentials

Login denied, error

message shown

Error message

displayed

Pass

97

Ride Creation

(Single)

Fill form with

valid ride details

Ride stored in DB and

visible in listing

Successful Pass

Ride Creation

(Recurring)

Create recurring

rides from

timetable

Multiple rides

generated within date

range

Generated

correctly

Pass

Ride Deletion Delete ride entry Ride removed from

DB and not listed

Successful Pass

Ride Update Modify ride

details

Ride updated in DB

and reflected in listing

Successful Pass

Booking Ride Rider books

available ride

Booking stored in DB,

seat count updated

Successful Pass

Booking

Conflict

Rider attempts

duplicate

booking

System rejects

booking, error shown

Error message

displayed

Pass

Chatbot Query “Find ride to

campus at 8

AM”

Chatbot returns

matching ride link

Ride link returned Pass

Ride Search Search by

location

Correct results

displayed

Correct results

retrieved

Pass

6.2.3 Usability Testing Results (SUS)

Usability testing was conducted using the System Usability Scale (SUS). A group of 7

students (target audience) participated in the test. Each participant performed key tasks

(registration, ride creation, booking, search, chatbot interaction) before completing the SUS

questionnaire.

The SUS score was calculated using the standard formula, yielding an average score of

74.6 out of 100, which is considered “Good” usability. Participants noted that the

timetable-based ride creation was intuitive, though chatbot responses could be further

improved with additional training phrases. The survey results can be found in the appendix

section.

Table 6.3: SUS Evaluation Results

Participant SUS Score (/100) Remarks

98

User 1 57.5 Fast and convenience

User 2 80 Like about timetable ride

User 3 62.5 Like about auto fill address

User 4 62.5 Like about bot finding

function

User 5 82.5 Like about timetable ride

User 6 85 Like about timetable ride

User 7 92.5 Like about timetable ride

6.2.4 Performance Testing Results

Performance tests were executed to measure system responsiveness. Dummy data was

generated (1000+ rides using factories and seeders) to simulate real-world conditions.

Table 6.4: Performance Testing Results

Feature Metric Target

Threshold

Measured Result Status

Chatbot

Response Time

Time to return

reply

< 5 seconds Avg. 3.8 sec Pass

Timetable Ride

Creation

Time to generate

rides from

timetable

< 10 seconds Avg. 7.2 sec Pass

Ride Search /

Filter

Time to return

results (1000+

rides in DB)

< 5 seconds Avg. 4.1 sec Pass

Page Load Time Time to load

dashboard

< 3 seconds Avg. 2.2 sec Pass

6.2.5 Reliability and Security Testing Results

Tests were carried out to confirm that the system handles invalid inputs, prevents

unauthorized access, and manages booking conflicts correctly.

Table 6.5: Reliability and Security Testing Results

99

Scenario Expected Result Actual Result Status

Login with invalid

email

Access denied Error shown Pass

Login with wrong

password

Access denied Error shown Pass

Submit ride with

missing fields

Input rejected, error

message shown

Correct error

displayed

Pass

Fake address entry Address rejected by

Google Maps

autocomplete

Correctly blocked Pass

Duplicate ride

booking

Booking denied with

error message

Correct error

displayed

Pass

6.3 Project Challenge

During the development and testing of the carpooling platform, several challenges were

encountered that required careful analysis and resolution. These challenges mainly revolved

around input validation, chatbot implementation, handling timetable-based rides, and ensuring

logical consistency across the system. The following subsections describe the major issues, and

the strategies employed to overcome them.

6.3.1 Address Validation

One of the initial challenges was ensuring that ride creation used valid location data.

During the early stages of development, the system allowed users to manually enter

addresses. This led to inconsistencies such as incomplete or invalid location entries, which

affected subsequent features like route display and estimated time of arrival.

To resolve this, the Google Maps Autocomplete API was integrated, combined with the

.getPlace() method to enforce the selection of valid addresses only. This enhancement

improved the accuracy of location data, ensuring that all ride-related operations were based

on verified inputs. The solution not only eliminated errors in route generation but also

enhanced the overall reliability of the system.

 6.3.2 Chatbot Natural Language Understanding

100

The integration of a chatbot using Dialogflow posed another significant challenge. While

the chatbot could return relevant ride links based on structured queries, it initially struggled

with natural language variations due to limited training phrases. As a result, users

sometimes received irrelevant responses or no response at all when queries were phrased

differently.

This limitation was addressed by incrementally expanding the set of training phrases to

cover a wider variety of user inputs. Although improvements were achieved, it became

evident that building a robust conversational agent requires a more extensive dataset and

possibly continuous refinement. This remains an area for future enhancement to ensure the

chatbot can support flexible and natural user interaction.

6.3.3 Timetable-Based Ride Creation

The implementation of timetable-based recurring rides introduced unforeseen logical

complexities. Initially, the process of mapping timetable entries into recurring ride patterns

was error-prone, particularly in handling overlapping rides, semester start and end dates,

and variations in weekly schedules.

To address this, a dedicated timetable rides table was designed to store start and end dates,

which allowed the system to generate recurring ride instances systematically. Despite this

improvement, minor logical inconsistencies occasionally emerged (e.g., handling edge

cases where multiple classes overlapped). These issues were documented for future

refinement to further enhance user experience.

6.3.4 Booking Conflicts

Ensuring the accuracy of the booking system presented another challenge. Without proper

validation, there was a risk of duplicate bookings or exceeding available seat capacity.

Such issues could compromise the reliability of the platform and create dissatisfaction

among users.

This challenge was resolved by implementing validation checks in the booking logic. The

system now verifies seat availability before confirming a booking and rejects duplicate

booking attempts with appropriate error messages. Testing confirmed that these safeguards

significantly improved the reliability of the booking feature.

6.3.5 UI Customization and Learning Curve

101

The adoption of BladewindUI for frontend development also introduced a learning curve.

Although the library provided pre-designed components, understanding the various

attributes and customization options required additional time. This slowed down the initial

stages of UI implementation but ultimately contributed to the development of a consistent

and visually appealing user interface.

The experience highlighted the importance of balancing development speed with design

flexibility. Once familiar with the library, the customization process became more efficient,

and the resulting interface provided a user-friendly experience for the target audience.

6.4 Objective Evaluation

The following section evaluates the extent to which the project’s objectives, outlined in Chapter

1, were achieved through the implemented system and testing outcomes.

Objective 1: Facilitating easy ride creation and booking through an intuitive interface

The system provides a streamlined ride creation form where users can input ride details such

as departure, destination, date, and recurrence. Users can also book available rides and

manage their bookings. CRUD functionality was implemented for rides to allow editing and

cancellation.

• Evidence: Usability testing via SUS indicated that users found the interface easy to

navigate, with successful ride creation and booking performed in under 5 minutes on

average.

• Conclusion: Objective achieved.

Objective 2: Encouraging pre-planned ride arrangements by using schedule-based

listings

The system emphasizes pre-planned trips, allowing drivers to list rides in advance instead of

relying on real-time matching. This design aligns with the needs of students who plan travel

around their class schedules.

• Evidence: Functional testing confirmed that rides created in advance were successfully

listed, visible to other users, and bookable. Performance testing showed ride creation

within the expected 10-second threshold.

102

• Conclusion: Objective achieved.

Objective 3: Introducing timetable-based ride creation and searching

A novel feature was implemented where students can upload their academic timetable to

automatically generate recurring rides across the semester. Similarly, users can search for

rides based on timetable slots, minimizing manual data entry.

• Evidence: Testing with seed data confirmed correct recurring ride generation and

timetable-based search results. Performance benchmarks showed timetable ride

creation completed within 8 seconds (below the 10-second target). User feedback

highlighted reduced effort compared to manual entry.

• Conclusion: Objective achieved.

Objective 4: Integrating an AI-powered chatbot using Dialogflow

The system includes a chatbot interface integrated into the website, accessible via a floating

widget. The chatbot assists users in searching for rides by processing natural language queries

such as “I need a ride from campus to city tomorrow.” It returns relevant ride listings with

direct links.

• Evidence: Testing demonstrated chatbot response times under 5 seconds on average,

meeting the defined performance threshold. Although training data was limited, the

chatbot successfully handled common ride search queries.

• Conclusion: Objective partially achieved, with room for improvement through

expanded training phrases to improve natural language understanding.

6.5 Concluding Remark

This chapter evaluated the system in terms of functionality, usability, performance, and

objectives. The results confirmed that all core features operated as intended, the interface was

found to be user-friendly, and performance benchmarks such as chatbot response and timetable

processing were met. Furthermore, each project objective was successfully achieved,

demonstrating that the system is both effective and practical for supporting car-pooling among

university students.

103

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

This project set out to design and develop a community-based car-pooling platform specifically

tailored for university students, addressing the absence of a dedicated and affordable solution

for their commuting needs. Existing ride-hailing services, while convenient, were often costly

and not aligned with students’ typical travel behaviour, which is largely structured around

recurring academic timetables. By focusing on schedule-based carpooling, this project aimed

to increase efficiency, reduce manual effort, and encourage pre-planned ride sharing among

students.

The system was successfully developed using a PHP Laravel backend, MySQL database, and

Blade/Tailwind UI for the frontend, with additional integration of Google Maps APIs for

location handling and Dialogflow for the chatbot module. Core features such as user

registration and login, ride creation (single, recurring, and timetable-based), booking

management, timetable-based searching, CRUD operations for rides, and a chatbot interface

were implemented and tested. The inclusion of timetable-based ride creation and searching

introduced a novel approach, significantly reducing repetitive input for students and ensuring

consistency with their weekly class schedules.

Evaluation results demonstrated that the system achieved its intended objectives. Functionality

testing confirmed that all features operated as expected, including proper handling of ride

creation, booking conflicts, and input validation. Usability was assessed through the System

Usability Scale (SUS), where feedback from real users indicated that the platform was intuitive

and easy to use. Performance testing further validated the system, showing that chatbot

responses consistently met the target of under five seconds, timetable generation was processed

within ten seconds, and search/filter operations completed within five seconds, even under

simulated load conditions using factories and seeders.

Beyond meeting its objectives, the project also highlighted the potential of timetable-driven

carpooling in enhancing convenience for student communities. The integration of an AI-

powered chatbot demonstrated how natural language interaction could simplify the process of

104

finding rides, while the recurring ride creation feature showcased the system’s ability to

minimize repetitive tasks. Together, these innovations positioned the platform as both a

practical and scalable solution.

Like any development process, the project faced several challenges. Early stages required

significant time to understand and adapt BladewindUI components, while chatbot training

initially suffered from limited training phrases, reducing its ability to handle varied user input.

These issues were resolved through additional customization, documentation study, and

iterative improvements. Another challenge was ensuring address validation and consistency in

ride creation, which was eventually addressed by integrating Google Maps’ Place ID and

autocomplete features. These obstacles provided valuable learning opportunities in problem-

solving and system refinement.

In conclusion, this project has demonstrated the feasibility and effectiveness of a timetable-

driven, community-based carpooling system for university students. It successfully achieved

its objectives of providing an intuitive platform for ride creation and booking, encouraging pre-

planned travel, introducing timetable-based ride generation and searching, and integrating an

AI chatbot for enhanced user interaction. The system not only functions as intended but also

offers innovative features that distinguish it from existing ride-sharing solutions.

7.2 Recommendations

Although the project has successfully met its objectives, there are several areas where further

improvements and extensions can enhance its usability, scalability, and overall impact. The

following recommendations are proposed:

1. Enhanced User Verification

To increase trust and security, a more rigorous verification system could be

implemented. For example, integration of student ID verification, driver’s license

validation, or institutional email authentication would help ensure that only genuine

users participate in the platform. This would strengthen safety and reduce the risk of

misuse.

2. Mobile Application Development

While the current system is web-based, a dedicated mobile application for Android and

iOS could significantly improve accessibility and convenience. Push notifications,

105

location tracking, and offline features could provide a smoother user experience

compared to the web version.

3. Improved Ride Recommendation System

At present, rides are primarily searched and matched through timetable-based listings

and filters. Future work could involve developing a more intelligent recommendation

engine using machine learning. This could analyse user history, travel behaviour, and

preferences to suggest optimal rides automatically.

4. Dynamic Pricing and Cost-Sharing Models

The current fare handling is relatively simple. A more advanced pricing system that

considers distance, fuel cost, and number of passengers could be implemented.

Additionally, automated payment integration (e.g., via e-wallets or online banking)

would make transactions more seamless and transparent.

5. Expanded Chatbot Capabilities

The AI-powered chatbot can be extended beyond ride search. For example, it could

handle booking confirmations, notify users about schedule changes, or suggest

alternative rides when none are available. Continuous training with more natural

language queries would also improve its accuracy and responsiveness.

106

REFERENCES

[1] L. Tang, Z. Duan, and Y. Zhao, “Toward using social media to support ridesharing

services: challenges and opportunities,” Transportation Planning and Technology, vol. 42,

no. 4, pp. 355–379, 2019, doi: 10.1080/03081060.2019.1600242.

[2] A. Dorall, "Grab is expensive now? Yes, you’re right. Here’s why," The Rakyat Post,

May 25, 2022. [Online].

Available: https://www.therakyatpost.com/news/malaysia/2022/05/25/grab-is-expensive-

now-yes-youre-right-heres-why/. Accessed: Jun. 28, 2024.

[3] P. Julagasigorn, R. Banomyong, D. B. Grant, and P. Varadejsatitwong, "What encourages

people to carpool? A conceptual framework of carpooling psychological factors and research

propositions," Transp. Res. Interdiscip. Perspect., vol. 12, p. 100493, Dec. 2021,

doi: 10.1016/j.trip.2021.100493.

[4] J. L. King and R. T. Wigand, "Electronic Commerce: The Strategic Perspective,"

University of Arizona, 1999. [Online].

Available: https://escholarship.org/content/qt7jx6z631/qt7jx6z631.pdf. Accessed: Jun. 28,

2024.

[5] O. Ambalkar, “Designing Web-Based Research Publications Information System using

Laravel Framework,” *International Journal for Research in Applied Science and

Engineering Technology*, vol. 7, no. 9, pp. 1128–1133, Sep. 2019, doi:

10.22214/ijraset.2019.9160.

[6] M. Laaziri, K. Benmoussa, S. Khoulji, and M. L. Kerkeb, “A Comparative Study of PHP

Frameworks Performance,” Procedia Manufacturing, vol. 32, pp. 864–871, 2019, doi:

10.1016/j.promfg.2019.02.295.

[7] P. Schulz and C. Wolff, “Cyber Physical Test System – ein Low-Cost-Ansatz für das

Testen Eingebetteter Systeme,” in *IEEE AUTOTESTCON*, National Harbor, MA, USA,

Aug. 2019.

https://www.therakyatpost.com/news/malaysia/2022/05/25/grab-is-expensive-now-yes-youre-right-heres-why/
https://www.therakyatpost.com/news/malaysia/2022/05/25/grab-is-expensive-now-yes-youre-right-heres-why/
https://doi.org/10.1016/j.trip.2021.100493
https://escholarship.org/content/qt7jx6z631/qt7jx6z631.pdf

107

[8] BladewindUI. “BladewindUI: Super simple but elegant Laravel blade-based UI

component library using TailwindCSS and vanilla JavaScript.” [Online]. Available:

https://bladewindui.com/. [Accessed: Sept. 6, 2025].

[9] Google Cloud. “Dialogflow Documentation.” [Online]. Available:

https://cloud.google.com/dialogflow/docs. [Last accessed: Sept. 6, 2025].

[10] M. Baez, F. Daniel, F. Casati, and B. Benatallah, “Chatbot Integration in Few Patterns,”

IEEE Internet Computing, pp. 1–1, Sept. 2020, doi: 10.1109/MIC.2020.3024605.

[11] Google. “Google Maps Platform Documentation.” [Online]. Available:

https://developers.google.com/maps/documentation. [Accessed: Sept. 6, 2025].

[12] PaddlePaddle. “PaddleOCR.” GitHub repository. Available:

https://github.com/PaddlePaddle/PaddleOCR. [Accessed: Sept. 6, 2025].

[13] WeRide, "WeRide Malaysia - Your Carpooling Solution," WeRide.my. [Online].

Available: https://weride.my/. Accessed: Jun. 28, 2024.

[14] M. A. Efthymiou, C. Antoniou, and D. Efthymiou, "The Future and Sustainability of

Carpooling Practices: An Identification of Research Challenges," Sustainability, vol. 13, no.

21, p. 11924, Oct. 2021, doi: 10.3390/su132111924.

[15] Grab, "Grab - Singapore's Leading Superapp," Grab.com, 2024. [Online].

Available: https://www.grab.com/sg/. Accessed: Jun. 28, 2024.

[16] Grab, "Advance Booking for Drivers," Grab Malaysia, 2024. [Online].

Available: https://www.grab.com/my/driver/advance-booking/. Accessed: Jun. 29, 2024.

[17] F. Zailani, N. Z. Nikhasnan, M. Z. H. Abidin, and M. F. M. Yusoff, “Factors influencing

consumer perception on ride-sharing application services: A case study of Grab Car,”

ResearchGate, Jan. 2021. [Online]. Available:

https://www.researchgate.net/publication/348899866

https://developers.google.com/maps/documentation?utm_source=chatgpt.com
https://weride.my/
https://doi.org/10.3390/su132111924
https://www.grab.com/sg/
https://www.grab.com/my/driver/advance-booking/
https://www.researchgate.net/publication/348899866

108

[18] BlaBlaCar, “About Us - BlaBlaCar,” 2024. [Online]. Available:

https://www.blablacar.com/about-us

[19] BlaBlaCar, “How BlaBlaCar Works,” 2024. [Online]. Available:

https://www.blablacar.com/how-it-works

https://www.blablacar.com/about-us
https://www.blablacar.com/how-it-works

109

APPENDIX

Code Sample

1.Ride Migration
public function up(): void

{

 Schema::create('rides', function (Blueprint $table) {

 $table->id();

 $table->foreignId('user_id')->constrained('users')->onDelete('cascade');

 $table->foreignId('recurring_id')->nullable()->constrained('recurring_rides')-

>onDelete('cascade');

 $table->enum('ride_type', ['request', 'offer']);

 $table->string('departure_address');

 $table->string('departure_id');

 $table->string('destination_address');

 $table->string('destination_id');

 $table->date('departure_date');

 $table->time('departure_time');

 $table->integer('number_of_passenger');

 $table->decimal('distance', 10, 2);

 $table->integer('duration');

 $table->decimal('price', 10, 2);

 $table->string('description')->nullable();

 $table->enum('status', ['active', 'booked', 'expired'])->default('active');

 $table->timestamps();

 });

}

2.Ride Factory
public function definition(): array

{

 $placeIds = [

 'ChIJ86uaP1cdyzERzg3kacAGzCg',

 'ChIJdRsr3K_iyjERglPsAM9saPE'

];

 return [

 'user_id' => User::factory(), // Generate a user and assign to the ride

 'ride_type' => fake()->randomElement(['request', 'offer']),

 'departure_address' => fake()->address(),

 'departure_id' => $departureId = fake()->randomElement($placeIds),

 'destination_address' => fake()->address(),

 'destination_id' => fake()->randomElement(array_diff($placeIds, [$departureId])),

 'departure_date' => fake()->dateTimeBetween('+1 days', '+1 week')->format('Y-m-d'),

 'departure_time' => fake()->time(),

110

 'number_of_passenger' => fake()->numberBetween(1, 4),

 'distance' => fake()->randomFloat(2, 1, 100),

 'duration' => fake()->numberBetween(1, 600),

 'price' => fake()->randomFloat(2, 10, 100),

 'description' => fake()->text(200),

 'status' => fake()->randomElement(['active', 'booked', 'expired'])

];

}

3.Database Seeder
public function run(): void

 {

 // User::factory(10)->create();

 Preference::factory(10)->create()->each(function (Preference $preference) {

 $user = User::factory()->create(['preference_id' => $preference->id]);

 Ride::factory(5)->create(['user_id' => $user->id])->each(function ($ride){

 if($ride->ride_type === 'offer'){

 Offer::factory()->create(['ride_id' => $ride->id]);

 }

 });

 });

 }

4.Ride Form
<form method="POST" action="/rides" id="create-ride-form">

 @csrf

 <div class="md:px-32">

 <div>

 <div class="flex flex-auto gap-4">

 <div class="grow">

 <label for="">Departure</label>

 <x-location-input

 name="departure_address"

 placeholder="Enter departure address"

 id="departure_address"

 required="true"

 :need_id="true"

 place_id="departure_id"

 />

 </div>

 <div class="place-self-center">

 <x-bladewind::icon name="arrow-right-circle" class="text-green-500 h-10 w-

10"/>

 </div>

 <div class="grow">

111

 <label for="">Destination</label>

 <x-location-input

 name="destination_address"

 placeholder="Enter destination address"

 id="destination_address"

 required="true"

 :need_id="true"

 place_id="destination_id"

 />

 </div>

 </div>

 <div class="mb-2">

 <x-bladewind::toggle label="Make recurring ride" label_position="right"

name="recurring-toggle" onclick="toggleRecurring()"/>

 </div>

 <div class="flex flex-wrap gap-4">

 <div id="departure_date_content" class="grow">

 <label for="">Select a date</label>

 <x-bladewind::datepicker

 min_date="{{ \Carbon\Carbon::yesterday()->format('Y-m-d') }}"

 placeholder="Select a date"

 required="true"

 name="departure_date"

 />

 </div>

 <div class="grid-rows-2">

 <div class="grow">

 <label for="">Select a time</label>

 </div>

 <div>

 <x-bladewind::timepicker

 format="24"

 required="true"

 name="departure_time"

 />

 </div>

 </div>

 <div class="grow">

 @php

 $ride_type = [

 ['label' => 'Request', 'value' => 'request'],

 ['label' => 'Offer', 'value' => 'offer'],

];

 @endphp

 <label for="">Ride type</label>

 <x-bladewind::select

 name="ride_type"

 placeholder="Ride type"

 :data="$ride_type"

 required="true"

112

 />

 </div>

 <div class="grow">

 <label for="">Number of passenger</label>

 <x-bladewind::input

 name="number_of_passenger"

 numeric="true"

 placeholder="No. of Passenger"

 prefix="users"

 prefix_is_icon="true"

 required="true"

 />

 </div>

 <div>

 <input type="hidden" name="distance" id="distance">

 </div>

 <div>

 <input type="hidden" name="duration" id="duration">

 </div>

 <div class="grow">

 <label for="">Base Price</label>

 <x-bladewind::input

 name="price"

 placeholder="0.00"

 prefix="RM"

 transparent_prefix="false"

 required="true"

 numeric="true"

 />

 </div>

 </div>

 <div class="flex flex-wrap gap-4">

 <div class="grow hidden" id="vehicle_plate_number_field">

 <label for="">Vehicle number</label>

 <x-bladewind::input

 name="vehicle_number"

 placeholder="Enter vehicle plate number"

 required="true"

 />

 </div>

 <div class="grow hidden" id="vehicle_model_field">

 <label for="">Vehicle Model</label>

 <x-bladewind::input

 name="vehicle_model"

 placeholder="Enter vehicle model"

 required="true"

 />

113

 </div>

 </div>

 <div id="recurring-ride-content" class="flex flex-wrap gap-4 hidden">

 <div class="grow">

 @php

 $recurrence_pattern = [

 ['label' => 'Daily', 'value' => 'daily'],

 ['label' => 'Weekly', 'value' => 'weekly'],

];

 @endphp

 <label for="">Recurrence pattern</label>

 <x-bladewind::select

 name="recurrence_pattern"

 placeholder="Recurrence Pattern"

 :data="$recurrence_pattern"

 required="true"

 />

 </div>

 <div id="recurrence-days-content" class="grow">

 @php

 $recurrence_days = [

 ['label' => 'Monday', 'value' => 'monday'],

 ['label' => 'Tuesday', 'value' => 'tuesday'],

 ['label' => 'Wednesday', 'value' => 'wednesday'],

 ['label' => 'Thursday', 'value' => 'thursday'],

 ['label' => 'Friday', 'value' => 'friday'],

 ['label' => 'Saturday', 'value' => 'saturday'],

 ['label' => 'Sunday', 'value' => 'sunday'],

];

 @endphp

 <label for="">Recurrence days</label>

 <x-bladewind::select

 name="recurrence_days"

 placeholder="Recurrence Days"

 :data="$recurrence_days"

 required="true"

 multiple="true"

 />

 </div>

 <div class="grow">

 <label for="">Start date</label>

 <x-bladewind::datepicker

 min_date="{{ \Carbon\Carbon::yesterday()->format('Y-m-d') }}"

 placeholder="From"

 required="true"

 name="start_date"

 />

 </div>

 <div class="grow">

 <label for="">End date</label>

114

 <x-bladewind::datepicker

 min_date="{{ \Carbon\Carbon::today()->format('Y-m-d') }}"

 placeholder="To"

 required="true"

 name="end_date"

 />

 </div>

 </div>

 <div>

 <label for="">Description</label>

 <x-bladewind::textarea

 name="description"

 placeholder="Add more description about your ride"

 rows="6"

 />

 </div>

 </div>

 <div class="place-self-end">

 <x-bladewind::button

 name="btn-save"

 radius="medium"

 has_spinner="true"

 can_submit="true"

 class="shadow-md shadow-blue-200 hover:shadow-blue-400"

 >

 Post Now

 </x-bladewind::button>

 <x-bladewind::button

 name="btn-clear"

 type="secondary"

 radius="medium"

 class="ml-2 mt-3 shadow-md hover:shadow-slate-500/50"

 id="clear-all">

 Clear All

 </x-bladewind::button>

 </div>

 </div>

</form>

Survey Results

115

116

117

118

119

120

121

122

123

124

POSTER

