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ABSTRACT 

 

Traditional Automatic Number Plate Recognition (ANPR) systems, which focus solely on 

license plate numbers detection and recognition are vulnerable to fraud. This project presents 

the design and implementation of TagT, an advanced ANPR framework that enhances security 

through multi-attribute car recognition. TagT integrates three key components: a YOLO11n 

model for high-speed car detection, a ResNet18 model with cosine similarity for intelligent 

frame optimization and the Gemini model for robust recognition of a car's license plate number, 

brand and colour. An extensive preliminary investigation justifies the selection of these models 

over numerous alternatives. The final, implemented system features a native iOS application 

and a Python back-end. A comprehensive evaluation was conducted to validate the prototype's 

performance, focusing on two key areas: Efficiency and Accuracy. The evaluation of the 

architecture's efficiency demonstrated a 92.4% reduction in frames sent for analysis, which 

resulted in a 91.9% decrease in API costs and an 87.6% decrease in API latency compared 

to a baseline approach. Furthermore, the system's real-world accuracy was validated across 160 

demanding tests in varied conditions, achieving an average Overall Success Rate of 83.75% 

and a near-perfect Car Brand Accuracy of 98.13%. Overall, TagT provides a versatile, cost-

effective and scalable solution that successfully addresses the limitations of traditional ANPR, 

enhancing public safety and car management. 

 

Area of Study - IoT Solution, Computer Vision 

 

Keywords - Automatic Number Plate Recognition (ANPR), YOLO, Gemini, License Plate  

Number Recognition, Car Brand Recognition, Car Colour Recognition 
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CHAPTER 1 INTRODUCTION 

This chapter provides the foundational context for the TagT project. It begins by defining the 

core problem of license plate fraud and the motivation for developing an advanced ANPR 

system. Following this, the chapter outlines the formal project objectives, the scope and 

direction of the work, and the key contributions of the project. Finally, it presents the 

organization of the subsequent chapters in this report. 

 

1.1 Problem Statement 

The rising incidence of license plate fraud poses a serious threat to public safety and operational 

security. Cars with fake or swapped license plates, often termed "ghost cars," are frequently 

linked to criminal activities such as theft and car cloning, as they allow perpetrators to evade 

detection by standard law enforcement. While traditional ANPR systems can only read license 

plate numbers, they lack the sophistication to detect this type of fraud since they cannot verify 

if a license plate legitimately belongs to the car it is attached to. 

 

Furthermore, the rigidity of traditional, hardware-based ANPR systems presents a significant 

issue. These systems are often deployed as fixed, specialized units that are difficult and 

expensive to modify and upgrade. This inflexibility prevents them from incorporating 

advanced recognition features, such as car brand and colour identification, which are necessary 

to address modern security demands. This limitation creates a critical gap in the market for a 

flexible, software-based solution that can provide comprehensive vehicle identification. 
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1.2  Motivation 

The primary motivation for this project is to address the growing threat of license plate fraud. 

A prominent real-world example in Malaysia involves the use of swapped license plates to 

illegally access subsidized RON95 petrol. Traditional ANPR systems are ineffective against 

such schemes. The development of TagT is driven by the urgent need to create an ANPR 

solution that can cross-reference multiple car attributes, which are license plate number, car 

brand and colour, to authenticate a car's identity, significantly strengthening public safety and 

regulatory enforcement. 

 

A second motivation is to overcome the limitations of fixed, hardware-based ANPR systems. 

By developing a flexible, software-based solution that can run on a mobile device, this project 

aims to create a more accessible, scalable and easily updatable system. This would enable 

advanced security features, such as verifying authorized cars in a kindergarten environment, 

without the need for expensive and proprietary hardware. 

 

1.3 Project Objectives 

The primary objective of the TagT project is to overcome the limitations of traditional ANPR 

systems, particularly their vulnerability to license plate fraud and the inflexibility of hardware-

based architectures. The project aims to develop an advanced, software-based solution that 

enhances security by accurately recognizing multiple car attributes, which are the license plate 

number, car brand and colour. 

 

Moreover, the project is defined by critical performance objectives. The system must achieve 

real-time processing capabilities, operating with minimal latency. Concurrently, it must be 

cost-effective, incorporating an optimization strategy to minimize the operational expenses 

associated with advanced AI model usage, thereby ensuring the solution is financially 

sustainable. 

 

Ultimately, the final objective is to deliver a robust and user-friendly prototype that validates 

the proposed solution. This involves demonstrating reliable performance across a range of 

varied, real-world environmental conditions and integrating IoT principles to ensure seamless 

connectivity, culminating in a functional proof-of-concept application. 
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1.4  Project Scope and Direction  

The scope of the TagT project encompasses the complete design, development, implementation 

and evaluation of an advanced, software-based Automatic Number Plate Recognition (ANPR) 

system. The main deliverable is a functional proof-of-concept prototype that demonstrates the 

viability of a hybrid, car multi-attribute recognition architecture. The project is strictly defined 

as a software-based solution, intentionally avoiding proprietary hardware to ensure flexibility 

and cost-effectiveness. The technical scope is centred on the creation of a client-server system. 

This includes: 

• A native iOS front-end application 

Developed in Swift, this mobile application will serve as the primary user interface. Its 

scope includes managing the device's camera, capturing a real-time video feed, transmitting 

data to the server and displaying the final, parsed results in a clear and intuitive manner. 

• A Python-based back-end server 

This server will house the core AI logic. Its scope includes creating a web API to 

communicate with the client, processing incoming images and executing the multi-stage 

analysis pipeline. 

 

The core direction of the project follows an evidence-based, comparative methodology. To 

ensure the final system is both optimal and justified, the project scope includes a 

comprehensive preliminary investigation into a wide range of state-of-the-art AI models. This 

investigation will systematically test and evaluate: 

• Multiple object detection frameworks, including several YOLO variants, to select the most 

efficient and accurate car detector. 

• A traditional modular pipeline approach, testing specialized models for license plate 

detection, Optical Character Recognition (OCR) license plate number recognition, car 

brand recognition, and car colour analysis. 

• Several advanced, large-scale multimodal AI models including Gemini, Grok and atc, as a 

unified solution for car attribute recognition. 

• Frame optimization techniques, such as using a ResNet18 model for feature extraction and 

similarity analysis, to reduce redundancy and minimize API costs. 
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The findings from this rigorous investigation will directly inform the final architectural design. 

The project will culminate in the delivery of a fully documented, functional prototype that has 

been validated against a series of real-world performance benchmarks. 

 

1.5  Contributions  

What makes this project's contribution particularly valuable is that it provides a comprehensive 

and transparent blueprint for the process of engineering a modern and high-performance 

computer vision system. The contribution is not just the final product, but the rigorous and 

data-driven methodology used to create and validate it. This report meticulously documents 

this journey, offering several key contributions to the field. 

 

First, this work presents a detailed case study on the limitations of a traditional, modular ANPR 

pipeline. By quantitatively demonstrating the critical failure points of specialized models, 

particularly in Optical Character Recognition (OCR) reading and scalable car brands 

recognition, this report provides clear and empirical evidence for why a new architectural 

approach is necessary. This serves as a valuable lesson for developers, highlighting the hidden 

complexities and fragility of building a recognition system from multiple, disparate 

components. 

 

Next, the project contributes a thorough, head-to-head comparative analysis of advanced AI 

models for a specific, real-world task. By testing these models under identical conditions and 

measuring their performance across multiple metrics, including accuracy, speed, cost and 

robustness to varying input resolutions, this work provides rare and valuable data that can 

inform the decisions of other developers and researchers when selecting a foundational model 

for their own applications. 

 

Finally, the most significant contribution is a replicable and validated framework for an 

efficient hybrid ANPR architecture. The project proves that by using lightweight local models 

like YOLO and ResNet18 as an intelligent pre-filtering and optimization layer, it is possible to 

harness the power of a Gemini model in a way that is both financially sustainable and fast 

enough for real-time applications. The finding that this approach can reduce the volume of data 

sent for analysis by over 90%, with corresponding reductions in cost and latency, is a critical 
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contribution. It establishes a practical and effective design pattern for building the next 

generation of intelligent, real-time visual analysis systems. 

 

1.6  Report Organizations  

This report is organized into seven chapters, each structured to logically present the design 

methodology, implementation and evaluation of the TagT system. 

• Chapter 1 provides the foundational context for the project, defining the problem statement 

and motivation and outlining the formal project objectives, scope and contributions. 

• Chapter 2 presents a comprehensive literature review of relevant research, covering topics 

such as license plate fraud, the challenges of traditional ANPR systems and existing 

methodologies for vehicle, brand, and color recognition. 

• Chapter 3 details the final system methodology and high-level design. It presents the key 

visual models of the finalized system, including the use case diagram, the system 

architecture diagram and the activity diagram that illustrates the operational workflow. 

• Chapter 4 describes the extensive preliminary investigation and evidence-based design 

process that led to the final architecture. It details the comparative testing of various 

technologies, including a modular pipeline approach and a unified AI model approach and 

presents the experimental results that justify the selection of the final system components. 

• Chapter 5 outlines the full implementation of the TagT system. It covers the hardware and 

software setups for both the front-end and back-end, details the specific system 

configurations, demonstrates the real-world operation of the final application with 

screenshots and discusses the challenges overcome during development. 

• Chapter 6 presents a comprehensive evaluation of the implemented prototype. It details the 

performance metrics used and presents the results from two key tests: an architectural 

efficiency evaluation and a real-world accuracy assessment across various environmental 

conditions. 

• Chapter 7 concludes the report by summarizing the project's key findings and outcomes. It 

also provides recommendations for potential future work and enhancements to the TagT 

system.   
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CHAPTER 2 LITERATURE REVIEW 

In this chapter, we provide a thorough review of license plate fraud cases, current Automatic 

Number Plate Recognition (ANPR) systems and their challenges, car colour recognition, car 

brand recognition, object detection and real-time tracking, and image retrieval and similarity 

measurement. This review serves three main purposes: first, to understand the issues faced by 

only recognizing license plate numbers; second, to gain insights into the current ANPR systems 

and their challenges; and third, to explore methodologies for car colour recognition, car brand 

recognition, object detection and real-time tracking, and image retrieval and similarity 

measurement. 

 

2.1 License Plate Fraud 

License plate fraud, including cloning and swapping, presents significant challenges to car 

surveillance and makes multi-attribute recognition systems essential. FMT (Free Malaysia 

Today) Reporters [1] have reported instances of license plate swapping in Malaysia to exploit 

fuel subsidies, noting that a majority of detected cases resulted in legal penalties. Samuel [5] 

highlighted a case in United Kingdom where a cloned plate led to a misattributed fine, 

illustrating that a significant number of traffic fines are linked to cloning errors. McLogan [6] 

documented an increase in fake plates in New York where drivers bought vanity plates online 

and it is almost identical to real ones, help drivers avoid tolls and traffic rules. GB News [7] 

reported that a high percentage of Ultra Low Emission Zone (ULEZ) fines in London were 

related to plate scams, further emphasizing the prevalence of fraud. These real-world cases 

emphasize the need for TagT’s comprehensive approach, which integrates license plate 

numbers, car brands and colours recognition to effectively detect fraudulent activities. 
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2.2 Automatic Number Plate Recognition (ANPR) and Its Challenges 

Automatic Number Plate Recognition (ANPR) systems are important for car identification and 

it supports applications when in toll collection, parking management, and law enforcement. 

Aalsalem, Khan and Dhabbah [2] proposed an Automated Car Parking Monitoring and 

Management System (CPMMS) for Jazan University, employing ANPR cameras to capture 

license plate numbers at entrance/exit gates and parking lots. The system integrates a database 

to store vehicle and owner information, complemented by a mobile application that assists 

users in locating parked vehicles and reporting parking violations, such as vehicle damage or 

blockages, shown in Figure 2.2.1 [2]. 

 
Figure 2.2.1 System Design by Aalsalem, Khan and Dhabbah [2] 

 

Mustafa and Karabatak [3] conducted a systematic review of Automatic Number Plate 

Recognition (ANPR) systems, outlining key challenges impacting ANPR systems’ accuracy 

and performance. These challenges are categorized into external and internal factors. External 

factors include plate variations such as plate size, plate position, plate colour, font style and so 

on, while environmental variations such as lighting conditions and surrounding effects, and 

camera mounting variations such as camera inclination and plate distance from camera. Internal 

factors encompass algorithmic limitations and hardware constraints such as camera shutter 

speed causing motion blur, resolution affecting image quality, focus length, view angle, and 

system RAM and processor specifications, as shown in Figure 2.2.2 [3]. 
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Figure 2.2.2 Challenges in ALPR System [3] 

 

Marisekar et al. [4] developed a smart parking fare collection system by integrating ANPR with 

TensorFlow OCR to automate vehicle identification and billing. Their system has reduced 

billing time from 3 to 5 minutes in manual systems within 5 to 15 seconds, enhancing 

operational efficiency. They reported effective plate recognition across various conditions, 

with preprocessing techniques mitigating image blurring caused by adverse weather, such as 

heavy rain [4].  

 

Kim, Kang, Kim and Yang [12] introduced an AI camera for on-device ANPR. They employed 

R-Net which is YOLOv2-based, V-Net which is ResNet blocks, and C-Net which is 18 

convolutional layers, as shown in Figure 2.23. They have tested their system on 30,051 Korean 

plate images and achieved a 95% overall accuracy, with 99.89% license plate detection 

accuracy, 98.16% total recognition accuracy, and 93% character recognition accuracy [12].  

 
Figure 2.2.3 Methodology from Kim, Kang, Kim and Yang [12] 
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These studies demonstrate ANPR systems have potential to achieve high accuracies and yet 

environmental and regional factors still remain significant obstacles. 

 

2.3 Car Colour Recognition 

Car colour recognition is an essential complementary method for car identification, especially 

in scenarios where license plates are obscured, fraudulent, or missing. This section reviews 

three studies that developed different approaches to car colour recognition, detailing their 

methodologies and outcomes. Each study employs different techniques, ranging from colour 

space conversions and histogram analysis to deep learning-based feature extraction, to achieve 

reliable recognition in various environmental conditions. 

 

Tong et al. [20] proposed a real-time vehicle colour recognition algorithm that combines RGB 

to HSV colour space conversion with sector-based histogram analysis and it is designed for 

embedded devices. The methodology involves capturing road videos using an IP camera, 

followed by background estimation to segment moving vehicles crossing a user-defined trip 

line [20]. A binary vehicle image T1 is generated via thresholding, and pixel values are 

extracted to compute the maximum (Max(R,G,B)) and minimum (Min(R,G,B)) in RGB colour 

space. An image T2 is derived using the formula T2 = Max(R,G,B) - Min(R,G,B), then 

segmented with an empirical threshold M1 = 128 to create a binary image T3 [20]. The pixel 

area ratio R = T1/T2 is calculated, and vehicles are classified into chromatic which has red, 

orange, yellow, green, cyan, blue, purple or achromatic which has black, white, grey categories 

using a threshold M2 = 0.3. For chromatic colours, the Hue (H) channel histogram in HSV 

space determines the colour based on the highest peak, while achromatic colours are identified 

by analysing histograms across five 72-degree sectors within a circular region centred on the 

vehicle’s mass, with the majority vote determining the colour. They tested on 200 videos 

containing 795 vehicles, the algorithm achieved a 94.08% accuracy, correctly identifying 748 

vehicles with 47 errors [20]. 

 

Agarwal, Shinde, Mohite and Jadhav [9] incorporated colour classification into a vehicle 

characteristic recognition framework using the YOLOv3 object detection model. The 

methodology uses YOLOv3 to detect vehicles in images and identify the bonnet area to select 

it as a prominent region for colour extraction [9]. A trained YOLOv3 model draws a bounding 

box around the bonnet and crops this region then extracts dominant colours by averaging the 
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RGB values from these colours. The averaged RGB value is compared to a database containing 

28,907 sets of RGB values and corresponding colour names to determine the closest colour 

match [9]. They also used image enhancement techniques, such as brightening, sharpening, 

and smoothing to improve the performance for dark or nighttime images. The model was 

manually tested on thousands of images and has achieved nearly 95% accuracy as shown in 

Figure 2.3.1 [9]. 

 
Figure 2.3.1 Agarwal, Shinde, Mohite and Jadhav [9] 

 

Ghanem and Holliman [21] highlighted the impact of colour space on vehicle re-identification 

using a Siamese network with SSD Mobilenet V2, trained on the PRIMAVERA dataset of 

636,246 side-view images of 13,963 vehicles captured in both daytime and nighttime 

conditions. RGB images were converted into multiple colour spaces such as RGB, HSV, YUV, 

LUV, nRGB, c1c2c3, 12-bit RGB, and n-bit grayscale [21]. The SSD Mobilenet V2 used 

435,153 daytime and 27,315 nighttime images to train and used 76,203 daytime and 4,982 

nighttime images for validation. On the outcome, YUV achieved the highest validation 

accuracy of 95.25% ± 0.41%, followed by 4-bit grayscale at 94.97% ± 0.42% and RGB at 

94.65% ± 0.44% for mixed daytime and nighttime data as shown in Figure 2.3.2 [21]. 

 
Figure 2.3.2 Result from Ghanem and Holliman [21] 

 

These studies show that vehicle colour recognition systems achieve accuracies around 95% 

with deep learning models and optimized colour spaces. However, challenges such as 

reflections, shadows, and low lighting, necessitating further advancements in preprocessing 

and feature extraction techniques. 
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2.4 Car Brand Recognition 

Car brand recognition relies on unique visual features to enhance Automatic Number Plate 

Recognition (ANPR) in car identification systems. This section reviews three studies that 

developed methods for car brand recognition, providing an overview of their project, 

methodologies, and results. 

 

Hu et al. [19] has developed an end-to-end real-time vehicle brand recognition system for 

surveillance videos, introducing the Visual Car Recognition (VCR) dataset to address 

challenges like intra-class variations and environmental noise. The methodology uses a 

Deformable Part Model (DPM) detector to identify cars in video frames, followed by Spatially 

Coherent Discriminative Pattern Learning (SCDPL) with Multiple Instance Learning (MIL) 

and Histogram of Oriented Gradients (HOG) features to learn discriminative patterns such as 

logos, grille shapes, and window corners with spatial coherence constraints [19]. When they 

tested 37,195 frontal-view images across 30 brands on the VCR dataset, the system achieved a 

94.66% average per-class accuracy as shown in Figure 2.4.1. Their system also outperformed 

Local-constraint Linear Coding with Spatial Pyramid Matching (LLC+SPM), which is 85.75% 

accuracy, Convolutional Neural Networks (CNN), which is 70.62% accuracy, and Bag of 

Features (BoF), which is 58.15% accuracy as shown in Figure 2.4.1 [19]. 

 

 
Figure 2.4.1 Result from Hu et al. [19] 

 

Anuwa, Ramli and Zulkifli [10] aimed to develop a fast and accurate car logo recognition 

model for staff vehicles at Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA). They 

compared YOLOv8x and Microsoft Azure Custom Vision and recommended larger datasets 

and re-filtering could improve performance. They captured rear-view car images and pre-

processed them by resizing, rotating, smoothing with Gaussian blur, and labelling logos with 
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bounding boxes [10]. YOLOv8x uses a single-stage neural network for quick logo detection, 

while Azure Custom Vision fine-tunes a pre-trained neural network for better accuracy. On the 

outcome, Azure Custom Vision is slightly better than YOLOv8x. In short, YOLOv8s is faster, 

ideal for real-time use, but struggled for small logos, where Azure Custom Vision is slower but 

more accurate and easier to use [10]. 

 

Agarwal, Shinde, Mohite and Jadhav [9] developed a vehicle recognition system using traffic 

camera images to identify car makes and logos, but they also face challenges with poor lighting 

and custom logos. They used YOLOv3 to detect vehicles and logos and used ResNet152v2 to 

classify car makes. On a dataset of 10,000 logo images, the system achieved 98%-99% 

accuracy for vehicle detection, 97%-99% for car logo detection, and 93% for car make 

classification as shown in Figure 2.3.1 [9]. 

 

These studies demonstrate the potential of deep learning models for vehicle brand and logo 

identification, achieving high accuracies in controlled conditions, although challenges still 

remain with small, non-standard, or obscured logos. 

 

2.5 Object Detection and Tracking 

Object detection and tracking are essential for real-time surveillance, allowing vehicle 

monitoring and detection of traffic violations. This section reviews four studies that used deep 

learning and computer vision techniques, presenting an overview of their projects, 

methodologies, and results. 

 

A, R, Malini and Archana [16] aimed to enhance object detection for visually impaired persons 

(VIP) using live video and assisting them in identifying objects but there are challenges such 

as low-resolution images and cost constraints. They used YOLOv3 algorithm to detect objects 

in video frames by dividing images into grids and predicting bounding boxes and class 

probabilities in a single pass. They tested on the Microsoft COCO dataset with 500 images, the 

system achieved 94% accuracy and processed faster than methods like Single Shot Detector 

(SSD) and Faster R-CNN, proving its potential for assistive technologies [16]. 

 

Rahman, Ami and Ullah [14] aimed to develop a real-time system to detect wrong-way vehicles 

in Bangladesh to reduce accidents and traffic congestion by using traffic camera footage. They 
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used YOLOv3 to detect vehicles and create bounding boxes, followed by centroid tracking to 

monitor vehicles in a specific area. The direction was determined by comparing centroid 

heights across frames, which able to accurately identify the wrong-way vehicles [14]. Their 

project has tested on three 1280×720-pixel videos from Chittagong city, Bangladesh and the 

system achieved nearly 100% accuracy by correctly identifying all wrong-way vehicles. 

However, the system has minor errors due to the overlapping vehicles [14]. 

 

Islam and Horio [15] focused on developing a real-time system for face recognition, tracking, 

and counting people in Dubai mall videos. They also calculated their time within the frame in 

order to enhance security in public spaces. They used OpenCV to recognize faces by matching 

them to a stored database, then applied centroid tracking by assigning unique IDs and tracked 

individuals by calculating the distance between bounding box centres across frames, 

maintaining the same ID if the distance is small, as shown in Figure 2.5.1. The system also 

calculated time spent by each ID’s presence. They have tested their system using shopping mall 

videos and the system successfully tracked people using centroid distances, although some IDs 

switched due to overlaps. Hence, the results have shown the potential for vehicle tracking [15]. 

 

 
Figure 2.5.1 Methodology of Islam and Horio [15] 

 

These studies show high accuracies in using YOLO for object detection and to track the object 

by using centroid tracking, but issues like occlusions and processing speed need further 

improvement for broader applications. 
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2.6 Image Retrieval and Similarity Measurement 

Image retrieval and similarity measurement systems are essential by using similarity 

measurement to eliminate redundant frames and match query images against extensive 

databases, thereby achieving time and cost effectiveness. This section examines two studies, 

providing summaries of their projects, methodologies, and results. 

 

Ozbek and Tekgoz [18] developed an image retrieval system for clothing and that could also 

be adapted to frame similarity verification. They used U2-Net to preprocess over 100,000 

clothing images by removing backgrounds and categorizing them into upper body, lower body, 

and full body. After that, the authors applied ResNet-50 to extract embedding data for image 

comparison, while the Segment Anything Model (SAM) segmented user-uploaded query 

images, and K-Nearest Neighbours (K-NN) identified the five most similar images using 

Euclidean distance. On the outcome, the system achieved 92% accuracy on Euclidean 

similarity metric when tested on 100 products with 400 images, outperforming Cosine 

similarity metric is 80% accuracy and Manhattan similarity metric is 73% accuracy, as shown 

in Figure 2.6.1 [18]. 

 

 
Figure 2.6.1 Result from Ozbek and Tekgoz [18] 

 

Rani and Yuhandri [17] proposed a system to measure logo similarity for trademark 

verification in order to assist Indonesia’s Ministry of Law and Human Rights in evaluating 

logo patent applications. They used the Content-Based Image Retrieval (CBIR) method to 

search a database of 210 logos and apply ResNet-18 to extract image features after data 

augmentation. The system was trained on 147 images, which is 70% from the database and 

validation on 63 images, which is 30% from the database with parameters of epoch=20, 

learning rate=0.00001, and mini-batch=5 to avoid overfitting [17]. After that, they have tested 

on four logos which are Sukamilktea, Exgen, Bete and Piniclean. The system achieved 93.65% 

accuracy after 84 iterations, with similarity scores of 82.80% from Sukamilktea, 100% from 
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Exgen, 96.36% from Bete, and 89.5% from Piniclean, as shown in Figure 2.6.2. Through the 

result, it shows the effectiveness for vehicle logo verification [17]. 

 

 
Figure 2.6.2 Result from Rani and Yuhandri [17] 
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CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 

This chapter details the high-level methodology and design of the TagT system. It serves as the 

architectural blueprint for the project, presenting a series of visual models that define the 

system's structure, user interactions and operational workflow. This chapter includes the 

system architecture diagram, the use case diagram with its description and the activity diagram. 

 

3.1  Overview of the System 

The proposed TagT system is designed to provide real-time identification of car attributes, 

including license plate number, car brand and car colour. For front-end, the system analyses a 

live video stream from a mobile device. For back-end, the system leverages a combination of 

object detection and a generative vision model to deliver fast and accurate results. By using a 

smartphone camera, the system offers a portable and cost-effective solution for automated car 

recognition. 

 

The system architecture consists of three main components: a mobile front-end user interface, 

a back-end server and two integrated deep learning models. The user initiates the process by 

pointing their mobile camera at a car. The front-end application captures the video frames and 

transmits them to the back-end server for analysis. 

 

The back-end first processes each frame using a YOLO11n-seg model to detect and segment 

any vehicles present. To optimize performance and ensure accuracy, the system incorporates a 

two-step quality filtering process. It first verifies that the detected car's area is significant 

enough and then checks that the image is not overly blurry by measuring its Laplacian variance 

against a set threshold. Frames that pass these checks are then sent to the Gemini model. This 

advanced vision model analyses the segmented car image to extract its license plate number, 

car brand and car colour. The processed information, along with performance metrics such as 

processing times and API costs, is then sent back to the front-end interface. 

 

The mobile application displays these predicted outputs in real-time, allowing the user to 

instantly view the car's details. This streamlined, non-invasive approach provides a scalable 

and accessible tool for intelligent vehicle identification, suitable for various real-world 

applications. 
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3.2  System Architecture Diagram 

This section presents the system architecture of the TagT system. The architecture outlines how 

the hardware and software components interact to detect and recognize car attributes, including 

the license plate number, car brand and car colour. 

 
Figure 3.2.1 TagT System Architecture 

 

As illustrated in the Figure 3.2.1, the system is composed of three primary components: 

• A user 

• A mobile phone serving as the front-end user interface 

• A server with the deployed models 

 

The process begins when the user initiates the system by pressing a start button on the mobile 

application. The phone's camera is activated and captures a continuous video stream of a car. 

This input video frame is then sent in real-time to the server for processing. The server is the 

core of the system and performs several critical steps: 

1. Car Detection and Segmentation 

The incoming video frame is first processed by a YOLO11n-seg model. This model is 

responsible for detecting the presence of a car within the frame. 
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2. Quality Filtering 

This step ensures the detected car occupies a sufficient area of the frame and is not 

excessively blurry. If the frames fail one of these requirements, they will not proceed to the 

next step.  

3. Attribute Recognition 

Once the frame passes the quality filters, the segmented image of the car is sent to the 

Gemini model. Gemini analyzes the image to extract specific details, which are the license 

plate number, car brand and colour. 

4. Data Transmission 

Once the car details are generated, the server sends this information back to the front-end 

user interface. 

 

The mobile application front-end user interface is developed using Xcode. It can receive and 

display the real-time predicted car details for the user. The information presented on the 

interface includes: 

• License Plate Number 

• Car Brand 

• Car Colour 

• Total Processing Time 

• Gemini Processing Time 

• Gemini API Cost 

This architecture allows the user to access detailed vehicle information instantly through the 

mobile interface. By leveraging a mobile app for video capture and a powerful server for 

processing, the system provides a scalable and cost-effective solution for real-time automatic 

number-plate recognition (ANPR). 
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3.3 Activity Diagram  

The section presents the activity diagram of the TagT system as shown in Figure 3.3.1. This 

diagram illustrates the sequential flow of operations carried out by the system, from the 

moment the user presses a button to open the camera. The system initiates by capturing a video 

frame, which is then sent to the server for processing. 

 

 
Figure 3.3.1 TagT System Activity Diagram 
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On the server side, a series of checks are performed to ensure the quality and relevance of the 

image. First, the system calculates the total processing time and verifies if the detected car area 

is greater than 15% of the total frame. If this condition is not met, the system continues to 

capture new video frames. If the condition is met, a subsequent check is performed to determine 

if the image's blur value is higher than a threshold of 120. Images that are too blurry are 

discarded, and the system proceeds to capture new frames. 

 

Frames that pass both the area and blur checks are then passed to the Gemini API for detailed 

analysis. The system calculates the processing time and API cost associated with the Gemini 

analysis. It then retrieves the car details from the Gemini response. A crucial step follows where 

the system checks if the newly identified car details are the same as the previous one. If the 

details are the same, it indicates that the same car is still in the frame, and the system sends the 

Gemini processing time and API cost to the user interface. 

 

However, if the car details are new, the system sends the car details, along with the Gemini 

processing time, Gemini API cost, and the total processing time to the front-end user interface. 

Finally, these details are displayed to the user, and the process concludes. This entire workflow 

ensures that only high-quality, relevant images are processed, and redundant information is not 

repeatedly sent, optimizing both performance and cost. 
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3.4 Use Case Diagram 

This section presents the use case diagram for the TagT system, which illustrates the 

interactions between the user and the system's key functionalities. The diagram models a real-

world application, such as at a petrol station, where the system is used to verify vehicle identity 

to prevent the misuse of subsidized fuel like RON95. Figure 3.4.1 below shows the use case 

diagram.  

 

 
Figure 3.4.1 TagT System Use Case Diagram 
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Figure 3.4.1 presents the use case diagram, which models the interaction between the User and 

the TagT system. The user, typically a petrol station attendant, interacts with the system 

through a mobile application. The system is designed around key use cases that represent the 

functionalities the user can perform to achieve their goals. 

• Scan Vehicle and Retrieve Attributes 

This is the foundational use case where the user initiates the process by pointing their 

mobile device's camera at a vehicle. The system captures the video feed in real-time, sends 

frames to a back-end server and processes them using YOLO11n-seg for detection and 

Gemini model for attribute recognition. The system then returns the detected license plate 

number, car brand and car colour to the user's interface. 

 

• Verify Plate-Vehicle Match 

The central goal of the user is to verify if the physical license plate on a vehicle legitimately 

belongs to it. This use case allows the user to confirm that the car's brand and colour, as 

identified by the system, are consistent with the license plate number. The outcome of this 

verification dictates the subsequent actions. 

 

• Log Mismatched Vehicle Data 

This use case represents a critical security function. If the verification process reveals a 

discrepancy. For example, the license plate is registered to a Proton but is attached to a 

Honda. Then the system provides the user with an option to log the incident. This creates a 

permanent record of the mismatched data, including the captured image and detected 

attributes, for future review or action. 

 

• Generate "Approved" Status 

This use case represents the successful outcome of the verification process. If the system 

confirms that the license plate number and the vehicle's attributes are a correct match, it 

will display a clear visual confirmation, such as an "Approved" status. This signal informs 

the user that the vehicle is legitimate and they can proceed with the real-world action of 

allowing the driver to pump RON95 fuel. 
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• View Scan History 

The user can access a comprehensive log of all past scans performed by the system. This 

history would include details of each vehicle and the timestamp of the scan, which has 

provided a valuable tool for auditing and record-keeping. 

 

• Monitor System Performance 

The system allows the user to view operational metrics for each scan. This includes data 

such as the total processing time, the Gemini API processing time and the API cost. This 

functionality is essential for administrative oversight, ensuring the system remains efficient 

and cost-effective. 

 

The diagram also illustrates the logical flow and dependencies between use cases using UML 

relationships. The <<include>> relationship between "Verify Plate-Vehicle Match" and "Scan 

Vehicle and Retrieve Attributes" signifies that a vehicle scan is a mandatory prerequisite for 

any verification attempt. Furthermore, the <<extend>> relationships show that both "Log 

Mismatched Vehicle Data" and "Generate 'Approved' Status" are optional outcomes that extend 

the "Verify Plate-Vehicle Match" use case. These actions are conditional and mutually 

exclusive; the system will only trigger one based on the result of the verification. 
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CHAPTER 4 SYSTEM DESIGN 

This chapter details the evidence-based design process that led to the final architecture of the 

TagT system. It begins with a comprehensive investigation into various technologies, 

presenting the experimental results that justify the selection of each final system component. 

Following this, the chapter specifies the chosen components and details how they interact. 

 

4.1 Preliminary Investigation and Component Selection 

Before finalizing the system architecture, a detailed investigation was conducted to evaluate 

multiple technologies for each required task. The goal of this preliminary work was to identify 

the most accurate, efficient and robust components for the system.  

Two primary design philosophies were explored: 

1. A traditional modular pipeline using single-task models. 

2. A modern and unified approach using an advanced AI model. 

 

4.1.1 Evaluation of Single Task Model Approach 

4.1.1.1 License Plate Detection 

Ten models from Roboflow were tested in both ideal and challenging scenarios such as 

nighttime, raining days, foggy days and different angle, in order to accurately get the results 

respectively. The results, shown in Figure 4.1.1.1.1, revealed a range of outcomes across the 

models, highlighting their strengths and limitations. For example, the “anpr-w2b2/model/384” 

model achieved 90.00% accuracy in ideal conditions but dropped significantly to 74.00% in 

various conditions, indicating its sensitivity to environmental factors. Moreover, the “yolov7-

license-plate-detection/model/3” model achieved 84.00% accuracy in ideal conditions and 

82.00% in various conditions, showing more consistency but still falling short of optimal 

performance for real-time applications. 

 

In contrast, the “license-plate-detection-merged-projects/model/3” model excelled with 

90.00% accuracy in ideal conditions and an impressive 94.00% in various conditions, 

positioning itself as one of the top performers. Another strong competitor was the “car-plate-

detection-sctyn/model/3” model, achieved 92.00% accuracy in ideal conditions and 96.00% 



CHAPTER 4 
 

25 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

accuracy in various conditions, showcasing its ability across various scenarios. In short, after 

testing all ten models, the best model for license plate detection was determined to be “car-

plate-detection-sctyn/model/3”, due to its superior accuracy and reliability across both ideal 

and various conditions.  

 

 
Figure 4.1.1.1.1 Results from License Plate Detection Models 

 

4.1.1.2 License Plate Number Recognition 

Optical Character Recognition (OCR) is used to covert images of text into a machine-readable 

text format. After selecting the license plate detection model, the next step is to test OCR 

models for reading the license plate number. There are two OCR models - EasyOCR and 

TesseractOCR being used to evaluate. Their performance was measured through key metrics 

such as reading accuracy, precision, recall, and F1-score by using a dataset of license plate 

images.  

 

The results of EasyOCR revealed significant limitations in its ability to accurately read license 

plate numbers as shown in Figure 4.1.1.2.1. These results suggest that EasyOCR struggled in 

reading license plate characters from license plate model detection screenshots, possible due to 

factors such as varying image quality, font styles, or environmental conditions, leading to a 

high number of false positives and unreliable text extraction. On the other hand, TesseractOCR 

performed even worse in the license plate reading task.  

 

In conclusion, the performance of EasyOCR and TesseractOCR in reading license plate 

numbers showed significant shortcomings as neither achieving the level of accuracy or 
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reliability for practical deployment. These results highlight the need for more advanced OCR 

techniques or enhanced preprocessing methods to improved text reading accuracy. 

  

 
Figure 4.1.1.2.1 Inaccurate reading from easyOCR 

 

4.1.1.3 Car Brand Detection and Recognition 

Following the evaluation of the license plate detection and license plate number reading 

models, the next step shifted to testing Roboflow models for car brand detection and 

recognition, which solely focus on a specific set of car brands which are Honda, Mazda, 

Perodua, Proton and Toyota. A total of six models were evaluated and their performance was 

measured based on accuracy and the range of brands they could recognize. The results, as 

shown in Figure 4.1.1.3.1, showed both their potential and their limitations in addressing the 

project's requirements for reliable car brand recognition. 

 

The evaluation results highlighted a wide range of performance among the tested models. The 

“car-models-ves3u/1” model achieved the lowest accuracy at 54.00%, while the 

“carbrand5001/model/1” model achieved a moderate 70.00% accuracy. The “walao/4” and 

“walao/5” models performed better, with accuracies of 82.00% and 86.67% respectively. Those 

models were all capable of recognizing the selected brands. Meanwhile, the “car-logo-

cyxpe/model/10” and “car-logo-detection-2-2xc2d/1” models were the top performers as both 

achieving a perfect 100.00% accuracy. However, “car-logo-cyxpe/model/10” could only 

recognize four of the five targeted brands, excluding Mazda, and “car-logo-detection-2-

2xc2d/1” faced technical issues such as the “Request Entity Too Large” error for URLs. This 

exposed a significant limitation in their flexible for real-world applications. 
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In short, the testing of Roboflow models for car brand detection and recognition provided 

valuable insights into their strengths and constraints. Although there were models that achieved 

100% accuracy in car brand recognition, they were not capable in real-world situations as they 

cannot recognize the other car brands such as Audi, BMW, Mitsubishi and the others. Thus, in 

order to achieve the project's goal of reliable and inclusive car brand detection in dynamic 

environments, expanding the brand recognition capabilities of the top-performing models or 

by improving the accuracy of models with broader coverage is needed. 

 

 
Figure 4.1.1.3.1 Results from Car Brand Recognition Models 

  

4.1.1.4 Car Detection 

Before initiating testing for the car colour recognition model, we focused on testing YOLO 

models for car detection first. Five YOLO models, ranging from YOLOv8n to YOLO12n were 

evaluated and their performance was measured based on accuracy and processing time in both 

ideal and challenging conditions, such as nighttime, raining days, foggy days and side view of 

the car. The results, as presented in Figure 4.1.1.4.1, provided a comprehensive view of each 

model's capabilities, emphasizing their strengths and trade-offs in meeting the project's 

requirements for real-time car detection. 

 

The results show that all YOLO models performed well in terms of accuracy, with varying 

degrees of efficiency in processing time. The YOLOv8n model achieves a 94.00% accuracy in 

ideal conditions, taking 5.22 seconds, but its accuracy drops to 84.00% in various conditions, 

with a slightly reduced processing time of 4.76 seconds. Similarly, YOLOv9t and YOLOv10n 

both recorded a higher accuracy of 98.00% in ideal conditions and 84.00% in challenging 

conditions. Although they have same accuracy in ideal and challenging conditions, YOLOv10n 

is faster than YOLOv9t. In addition, the YOLO11n model shows a balanced performance as it 

achieves 98.00% accuracy in ideal conditions within 4.45 seconds and 88.00% in various 
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conditions within 4.00 seconds, making it one of the faster models. The top performer in terms 

of accuracy is YOLO12n, achieves a perfect 100.00% accuracy in ideal conditions within 5.94 

seconds, but its accuracy in various conditions is only 84.00% with a 4.81 second processing 

time. 

 

Overall, the testing of YOLO models for car detection demonstrated their strong potential for 

accurate car detection and YOLO11n was selected as the most suitable model on car detection. 

 

 
Figure 4.1.1.4.1 Results from Yolo Models on Car Detection 

 

4.1.1.5 Car Colour Recognition 

Once the best model for car detection was identified, we can integrate YOLO11n to detect and 

capture images of cars which were then used to test models for car colour recognition. There 

were three different methods to recognize car colour which are using the ResNet18 model, an 

HSV-based method, and K-means clustering. The performance of each method was assessed 

based on accuracy and the results presented in Figure 4.1.1.5.1. 

 

The evaluation results highlighted a significant difference in performance among the tested 

methods. The ResNet18 model achieved the highest accuracy at 81.82%, demonstrating its 

ability to distinguish car colours compared to the other approaches. In contrast, the HSV-based 

method achieved accuracy of 65.91% and K-means clustering achieved accuracy of 56.82%, 

indicating that they struggled with consistency, likely due to its reliance on colour space 

transformations or its limitations in accurately grouping colours in a way that aligns with 

human perception. 

 

To conclude, the testing of methods for car colour recognition emphasized the potential of the 

ResNet18 model as the most reliable approach. However, to meet the project’s objective, 

ResNet18 model needs to be optimized for better performance. 
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Figure 4.1.1.5.1 Results from Car Colour Recognition Methods 

 

The results from this modular approach revealed a critical insight; while some individual 

components performed well, the pipeline as a whole was fragile. Key weaknesses in OCR and 

the inflexibility of the brand recognition models made this approach unsuitable for achieving 

the project's goals. 

 

4.1.2 Evaluation of Advanced AI Models  

As we can see some attribute recognition models did not perform well and struggled to achieve 

high accuracy, advanced AI models such as Gemini, Grok, ChatGPT, and Qwen are used to 

test car attribute recognition. The evaluation focused on their ability to recognize license plate 

numbers, car brands and colours, with performance assessed based on frames resolution, total 

frames per second, processing time, and cost usage. The results, show from Figure 4.1.2.1 to 

Figure 4.1.2.6, provide valuable insights into their effectiveness for real-time car attribute 

recognition. 

 

First, ChatGPT and Qwen were removed from evaluation due to their consistently unreliable 

outputs, even after adjusting the input prompts. The correct car details being tested was 

“Honda” as car brand; “White” as car colour; “PNN1678” as license plate number. However, 

ChatGPT was tested at 1280x720 pixels with 20 frames and identified “Honda” and “White” 

correctly but gave inconsistent plate readings like “WGB 6188” and “PWN 1678”. Qwen was 

getting worse as it tested at 640x480 pixels with 25 frames and predicted varying brands which 

are “Honda”, “Nissan”, and “Ford”, colours which are “Red”, “Black”, and “Blue”, and plates 

which are “V345ABC”, “T678DEF”, and “K456GHI”, making both unsuitable for the project. 

 

With ChatGPT and Qwen excluded, the testing focused on Gemini and Grok. At first, Gemini 

and Grok were tested with a video in the first one second at a resolution of 640x480 pixels and 

20 frames per second (FPS). Gemini identified the car brand as “Honda”, colour as “White”, 
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and the plate as “PAN1678”, with a processing time of 3.78 seconds and a cost of $0.000329; 

while Grok, under the same conditions, also recognized “Honda” and “White” and the plate 

reading as “PNP1678”, taking 9.33 seconds and at a cost of $0.001065. Due to both models 

could not recognize the plate number correctly, increasing the frame rate to 25 FPS at the same 

resolution is needed. Then, both models have correctly identified the plate as “PNN1678” 

alongside “Honda” and “White”, with Gemini at 3.45 seconds and $0.000410, and Grok at 9.50 

seconds and $0.001328.  

 

Next, increase the resolution to 1280x720 pixels while maintaining 25 FPS, Gemini retained 

accurate results at 6.51 seconds and $0.000873, while Grok could not achieve accurate result. 

From the Figure 4.1.2.2, show that Grok could not achieve accurate result when the frames 

resolution is higher than 640x480 pixels. Nevertheless, Gemini still retained accurate results 

even though the resolution is 1280x720 pixels with 5 FPS, by using 2.45 seconds and 

$0.000199. Moreover, Gemini can achieve accurate result when the resolution is 320x240 

pixels and 5 FPS, by using 1.76 seconds and $0.000049, as show in Figure 4.1.2.1. This 

effectively reduces the time used and cost effective. 

 

 
Figure 4.1.2.1 Results from Gemini 

 
Figure 4.1.2.2 Results from Grok 

  

As using Gemini and Grok require API cost, the way to reduce numbers of frames before 

sending to Gemini and Grok is needed. Hence, YOLO was initially integrated to address this 

issue. According to Figure 4.1.2.3 and Figure 4.1.2.4, 16 frames at 640x480 pixels resolution 

were sent to Gemini and Grok and both of them have accurately identified “Honda”, “White”, 

and “PNN1678”. Gemini took 3.68 seconds and used $0.000268, while Grok took 6.83 seconds 

and used $0.000879. The results show a reduction in frames processed and costs compared to 
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the results without using YOLO models. Alternatively, Grok could not correctly recognize the 

plate number once the resolution has decreased. However, Gemini still achieved correct 

recognition when the resolution has been decreased to 320x240 pixels and only 5 frames were 

being sent to Gemini, by using 2.28 seconds and a cost of $0.000052.  

 

 
Figure 4.1.2.3 Results from Gemini and YOLO 

 
Figure 4.1.2.4 Results from Grok and YOLO 

  

To further reduce processing time and costs, ResNet18 was integrated and aimed to minimize 

number of frames before performing attribute recognition. ResNet18 used cosine similarity 

with a threshold of 0.95 to evaluate the results. Based on Figure 4.1.2.5, Gemini has achieved 

good result when the resolution was at 320x240 pixels and 4 frames were being sent to Gemini, 

by using 1.92 seconds and at a cost of $0.000049. While Grok could not accurately recognize 

the plate number even though the cosine similarity threshold has changed to 0.97, as shown in 

Figure 4.1.2.6.  

 

 In short, Gemini showed better consistency and efficiency with YOLO and ResNet18, 

offering the best balance of accuracy, speed, cost, and robustness across different conditions. 
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Figure 4.1.2.5 Results from Gemini, YOLO and Resnet18 

 
Figure 4.1.2.6 Results from Grok, YOLO and Resnet18 
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4.1.3 Final Design Decision 

The extensive preliminary work demonstrated that a traditional, multi-model pipeline was not 

viable due to critical weaknesses in areas like OCR and the inflexibility of specialized car brand 

recognition models. Instead, a hybrid architecture was determined to be the optimal solution. 

This final design leverages the YOLO11n model for fast and efficient car detection and the 

Gemini model for accurate and robust multi-attribute recognition. 

 

Furthermore, the preliminary investigation revealed a critical trade-off between input 

resolution, cost and recognition reliability. While a lower resolution of 320x240 offered the 

fastest processing times and lowest costs in Gemini, its accuracy was inconsistent across tests. 

However, a resolution of 640x480 was found to provide a more robust and reliable input for 

the Gemini model, consistently yielding correct results. 

 

Therefore, the final system design incorporates not only the selected models but also a key 

configuration directive: all images before sending to the Gemini API are to be standardized to 

a 640x480 resolution. This approach combines the strengths of both technologies and 

configures them in a way that prioritizes accuracy and reliability, creating a system that is both 

effective and efficient. 
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4.2 System Block Diagram 

Based on the findings from the preliminary investigation, a hybrid client-server architecture 

was designed. This section presents the system block diagram, which provides a high-level 

overview of the final system's structure and the flow of data between its major components. 

The system is designed to capture and process real-time video frames from a mobile device to 

accurately identify a car's license plate number, car brand and colour. It consists of three 

primary components: a user, a mobile device application and a back-end server. Each 

component within the components are performing a specific role within the data capture and 

analysis pipeline. Figure 4.2.1 below illustrates the system block diagram of the TagT system. 

 

 
Figure 4.2.1 TagT System Block Diagram 

 

Based on Figure 4.2.1, the process begins with the User, who initiates a scan by sending a "User 

Command" to the Mobile Device (iOS App). Within the app, the Camera Controller captures 

a high-resolution image from the video feed. This image is then handled by the Network Client, 

which prepares and transmits the image data to the Back-End Server via an HTTP POST 

Request. 

 

The Back-End Server, built with Python and Flask, receives the request at its Web API endpoint. 

The "Raw Image Data" is passed directly to the YOLO Model. YOLO model is responsible to 

perform car detection and segment out the car from the full image, producing a "Segmented 

Car Image" that isolates the car from its background. 

 

This segmented image is then forwarded to the Image Processing module. At this stage, quality 

checks such as filtering for blurriness and ensuring the car's area is sufficient are performed on 

the smaller, cropped image for maximum efficiency. The image is also resized to a standard 
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resolution, resulting in a "Filtered and Resize Image". This final, optimized image will be send 

to the Gemini Model. The advanced vision model is responsible to analyse the image to 

recognize and extract the required attributes: license plate number, car brand and colour. 

 

Once the analysis is complete, the back-end server compiles the extracted attributes, along with 

performance metrics like API cost and processing time into a structured format. This data is 

sent back to the Mobile Device's Network Client as an HTTP Response containing a JSON 

payload. Finally, the User Interface on the mobile app parses this data and updates the screen 

to "Display Results" to the user in real-time. 

This client-server architecture enables the system to leverage a lightweight mobile front-end 

for user interaction and data capture, while offloading all computationally intensive AI 

processing to a more powerful back-end. This design provides a scalable and efficient solution 

for real-time car identification. 
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4.2.1 Breakdown of System Block Diagram 

To better understand how each component functions within the system, the key modules from 

the system block diagram are summarized below: 

• User 

The User is the primary actor who interacts with the system. They initiate the car 

identification process by issuing a command through the mobile application and view the 

final results on the device's screen. 

 

• Mobile Device (iOS App) 

The mobile device serves as the front-end user interface for the TagT system. It is 

responsible to let user interacts with it and capture the real-time image data. It contains 

three core software components: 

o User Interface 

The User Interface is built with Apple's SwiftUI framework, the UI provides the 

real-time camera preview, control buttons for starting and stopping the analysis, and 

a clear display for the final results, including the vehicle's attributes and 

performance metrics. 

o Camera Controller 

The Camera Controller uses the native AVFoundation framework to manage the 

device's camera. It is responsible for configuring the video capture session and 

providing the high-resolution image frame that is used for analysis. 

o Network Client 

The Network Client handles all communication with the back-end server. It takes 

the image frame captured by the camera, packages it into an HTTP POST request 

and transmits it to the server. It also receives the JSON response from the server 

and passes the data to the User Interface for display. 
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• Web API 

The Web API is built with Python and the Flask framework, serves as the entry point for 

the back-end server. It listens for incoming HTTP requests from the mobile client, validates 

that an image file is present and passes the raw image data into the processing pipeline. At 

the end of the pipeline, it formats the final results into a JSON object and sends it back to 

the client as the HTTP response. 

 

• YOLO Model 

Upon receiving the raw image data from the Web API, the YOLO11n-seg model is the first 

processing stage. Its primary function is to perform efficient object detection on the entire 

image to locate any cars. Once a car is identified, the model generates a segmentation mask 

to precisely crop the car from its background, ensuring that subsequent processing stages 

only focus on the relevant object. 

 

• Image Processing Module 

This module receives the segmented car image from the YOLO model and is responsible 

for quality control and standardization. It performs two key filtering checks: it calculates 

the image's Laplacian variance to discard blurry images and verifies that the car's area is 

above a minimum percentage threshold. If the image passes these checks, it is resized to a 

standard resolution of 640x480 pixels using OpenCV. This ensures that the input for the 

final recognition model is consistent, which improves both performance and accuracy. 

 

• Gemini Model 

The filtered and resized image is finally passed to the Gemini 1.5 Flash model for attribute 

recognition. This multimodal generative AI model analyses the visual content of the image 

based on a specific text prompt. Its task is to identify and extract the car's key attributes: 

license plate number, car brand and colour. The structured data extracted by this model 

constitutes the final output of the analysis pipeline. 
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4.3 System Components Specifications 

This section provides a detailed breakdown of the hardware and software components used in 

the final implementation of the TagT system. 

 

4.3.1 Hardware Components 

To implement the system, two main hardware components are required: 

• Mobile Device 

An iPhone is used as the front-end client. It runs the mobile application, uses its camera to 

capture the live video feed and displays the final analysis results and system performance 

metrics to the user. 

 

• Back-end Server 

A personal computer is used to host the back-end system. The machine runs the Python 

API and performs all the heavy processing tasks, including car detection, image quality 

checks and car attribute recognition using the deployed AI models. It receives images from 

the mobile app and sends back a JSON response with the results. 

 

4.3.2 Software Components 

The software architecture consists of a front-end application and a back-end server that 

communicate over a network. The key software components are as follows: 

 

• SwiftUI (Front-end User Interface) 

The mobile application is built as a native iOS app using Apple's SwiftUI framework. It 

provides the complete user interface, which includes the live camera view, start and stop 

controls, and the display that shows the detected car details, scan history and processing 

statistics. 

 

• AVFoundation (Camera Control) 

Within the iOS application, the AVFoundation framework is used to access and control the 

device's camera. It manages the live video capture session and provides the image frames 

that are sent to the back-end server for analysis. 
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• Python with Flask (Back-end API) 

The back-end is a web API created using Python and the Flask framework. It provides a 

simple endpoint that receives image files from the front-end app via HTTP requests. Flask 

handles the network communication, routes the data to the processing script and returns the 

final results. 

 

• YOLO11n-seg (Car Detection) 

The YOLO11n-seg model is used on the server to perform initial car detection and 

segmentation. When the back-end receives an image, this model identifies if a car is present 

and creates a segmentation mask to isolate the car from its background, ensuring only the 

relevant part of the image is analyzed further. 

 

• Google Gemini 1.5 Flash (Car Recognition) 

The segmented image of the car is then sent to the Gemini 1.5 Flash model. This generative 

vision model analyzes the image and based on a specific prompt, it extracts the car's 

attributes: license plate number, car brand and colour. 

 

• OpenCV and NumPy (Image Processing) 

These Python libraries are used for various image manipulation tasks on the back-end. 

OpenCV is used to decode the image, rotate it correctly and calculate its blurriness through 

Laplacian variance for quality filtering. NumPy is used for efficient numerical operations 

on the image data arrays. 
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CHAPTER 5 SYSTEM IMPLEMENTATION 

5.1 Hardware Setup  

The implementation and operation of the TagT system rely on two primary hardware 

components: a back-end server for development and processing, and a mobile client device for 

real-time operation. This section details the specifications of the hardware used for this project. 

 

5.1.1 Back-End Development Server 

The back-end server is the machine where the Python-based API was developed, tested and 

run. It is responsible for handling all computationally intensive tasks, including running the 

YOLO and Gemini models for car analysis. The specifications for the development server are 

provided in Table 5.1.1.1. 

 

Description Specifications 

Model Lenovo IdeaPad 5 Pro 16ARH7 

Processor AMD Ryzen 7 6800HS 

Operating System Windows 11 

Graphic NVDIA GeForce RTX 

Memory 16GB RAM 

Storage 474GB 

Table 5.1.1.1 Specifications of the Back-End Development Server 
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5.1.2 Front-End Client Device 

The front-end client is the mobile device used for the real-world deployment and operation of 

the TagT system. It is responsible for running the native iOS application, capturing the live 

video feed via its camera and displaying the final analysis results to the user. The specifications 

for the mobile device are provided in Table 5.1.2.1. 

 

Components Specifications 

Model iPhone 12 Pro 

Operating System iOS 18.6.2 

System Chip A14 Bionic Chip 

Storage 128GB 

RAM 6GB 

Table 5.1.2.1 Specifications of the Front-End Client Device 

 

5.2 Software Setup  

This section describes the software environments, libraries and frameworks used to implement 

the TagT system. The implementation is divided into two main components: a native iOS front-

end for user interaction and video capture and a Python-based back-end for car detection and 

recognition. 

 

5.2.1 Back-End Environment Setup 

The back-end was implemented as a real-time processing service written in Python. It runs on 

a local server and is responsible for receiving an image from the mobile device, performing all 

AI-driven analysis and returning the structured results.  

 

Key software components used in the back-end environment include:  

• Flask for creating the web API connect to the front-end. 

• Ultralytics (YOLO) for load and run the yolo11n-seg.pt model for car detection and 

segmentation. 

• google-generativeai (Gemini) for interacting with the Gemini 1.5 Flash API for car attribute 

recognition. 
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• OpenCV for image filtering operations.  

• NumPy for image resizing operations. 

 

The back-end workflow begins when the Flask API receives an image. This image is 

immediately passed to the YOLO model to detect and segment a car. The resulting cropped 

image is then processed by OpenCV to check its quality and resize it to a standard resolution. 

Finally, the prepared image is sent via the Google client library to the Gemini model for 

analysis. The extracted details are formatted into a JSON object by Flask and returned to the 

front-end. This server-side architecture offloads all heavy computation, allowing the mobile 

client to remain lightweight and responsive.  

 

5.2.2 Front-End Environment Setup 

The front-end is a native iOS application developed in Swift using Apple's Xcode IDE. The 

application provides the user interface, manages the device's camera, and handles all 

communication with the back-end server. 

 

Core software frameworks used in the front-end environment include: 

• SwiftUI for building the user interface, including the live camera view, control buttons and 

results display. 

• AVFoundation for accessing and managing the device camera for capturing high-resolution 

video frames. 

• Foundation for handling all network communication. 

 

When the user initiates a scan via the SwiftUI interface, the AVFoundation framework captures 

the current video frame. This image is then sent to the back-end server using a URLSession 

HTTP request. The application waits for the server to respond with a JSON payload, which it 

then decodes into a Swift data structure. This data is used to update the SwiftUI views in real-

time, displaying the identified license plate number, car brand and colour to the user. This 

native application design ensures a smooth user experience and efficient use of the device's 

hardware. 
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5.3 Setting and Configuration 

This section describes the specific settings and configuration parameters required for the 

successful operation of the TagT system. These settings control the behaviour of the image 

processing pipeline, the AI models and the communication between the front-end client and 

the back-end server. 

 

5.3.1 Back-End Server Configuration 

The Python-based back-end server is configured through a set of constants defined directly in 

the main application script. Upon execution, the server logs its complete initialization sequence 

to the console. This log, shown in Figure 5.3.1.1, confirms that all key configurations are loaded 

and AI models are ready before the server begins listening for requests. 

 

 
Figure 5.3.1.1 TagT Server Initialization 

 

As illustrated in the log, the startup process displays the critical operational parameters that 

have been configured. It then confirms the successful loading of the local YOLO model and 

the initialization of the Gemini API.  

 

Key configured parameters are as follows: 

• MIN_CAR_AREA_PERCENT = 15 

A vehicle must occupy at least 15% of the total image area. 

• BLUR_THRESHOLD = 120.0 

The Laplacian variance of the cropped image must be above this value. 
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• TARGET_CROP_RESOLUTION = (640, 480) 

Sets the standard image size to 640x480 pixels. 

• Gemini Model Prompt 

A specific, structured text prompt is configured to instruct the Gemini model on how to 

format its response, ensuring the output can be reliably parsed. 

 

5.3.2 Front-End and Network Configuration 

The front-end iOS application requires configuration to connect to the back-end server and to 

access the device's hardware. 

• Network Connectivity Configuration 

A key requirement is establishing a stable network connection between the front-end 

application and the back-end server. The main user interface, shown in Figure 5.3.2.1, 

provides a real-time status indicator to confirm this connection. 

 
Figure 5.3.2.1 Main Page User Interface with Details 

The "Online" status, along with the measured network latency, visually confirms that the 

front-end has successfully connected to the server's configured baseURL. During 

development, this was achieved by utilizing ngrok, a reverse proxy service that creates a 

secure, publicly accessible URL for the local server, which was then configured within the 

application's networking layer. 
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• Hardware Access Configuration 

The second essential configuration involves hardware access, which is managed by the iOS 

operating system. When the "Start" button is pressed for the first time, the application must 

request permission from the user to access the device's camera, as depicted in the system 

dialog shown in Figure 5.3.2.2. 

 

 
Figure 5.3.2.2 Camera Access 

This is a mandatory setup step required by iOS. The user must grant this permission for 

capturing video frames for analysis. Once permission is granted, it is saved by the operating 

system for all future sessions. 
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5.4 System Operation 

This section demonstrates the operational workflow of the TagT system from the user's 

perspective. The process is illustrated with screenshots of the native iOS application, 

showcasing the user interface at each key stage of a typical analysis cycle, from starting the 

camera to viewing the final results.  

 

Step 1: Application Launch and System Standby 

The system's operation begins when the user launches the application. The main user interface 

is displayed, as shown in Figure 5.4.1. In this standby state, the application confirms its 

connection status to the back-end server as it shows "Online" on the top right hand side. The 

"Recent Detections" and "Session Stats" panels are initially empty.  

 
Figure 5.4.1 Main Page User Interface 
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Step 2: Activating the Live Camera Feed 

The user presses the "Start" button to begin the live detection session. The interface transitions 

to a full-screen, real-time video feed from the device's camera as shown in Figure 5.4.2. In this 

mode, the application begins to automatically and continuously stream frames to the back-end 

server for analysis in the background. The user's only task is to keep the target car in the frame.  

 

 
Figure 5.4.2 Camera Open Interface 

 

Step 3: Autonomous Frame Filtering and Analysis 

The back-end server autonomously evaluates each incoming frame against the pre-configured 

quality thresholds for blurriness and car area. Most frames are instantly discarded. When a 

high-quality frame that meets the criteria is identified, the system automatically initiates the 

full analysis pipeline. During this brief processing period, the front-end provides feedback to 

the user by displaying an "Analysing Car..." indicator as shown in Figure 5.4.3.  

 

 
Figure 5.4.3 Car is Analysing 
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Step 4: Displaying a Successful Detection 

Once the back-end completes its analysis, which includes segmenting the car as shown in 

Figure 5.4.4, the results are sent back to the application. The system then updates the UI in two 

ways: 

1. A temporary Results Overlay appears with the identified attributes and performance metrics 

as shown in Figure 5.4.5. 

2. The main user interface is updated in the background with a new entry in "Recent 

Detections" and revised "Session Stats" as shown in Figure 5.4.6. 

The system is designed to intelligently handle continuous video. If the same car remains in 

view, new overlays will not appear in order to prevent redundant notifications. A new result is 

only shown when a different car is detected.  

 

 
Figure 5.4.4 Segmented Car 

 

 
Figure 5.4.5 Results Display 
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Figure 5.4.6 Car Details stored in Recent Detections 

 

Step 5: Reviewing Scan Details 

At any time, the user can press "Stop" to return to the main menu. From there, they can review 

the session's findings by tapping on an entry in the "Recent Detections" list. This opens a 

dedicated detail view as shown in Figure 5.4.7, which presents all recorded information for that 

scan, including a larger thumbnail and a comprehensive list of performance metrics. 
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Figure 5.4.7 Car Details User Interface 

 

This automatic operational flow provides a seamless "point-and-shoot" user experience, 

delivering powerful real-time car analysis without requiring any manual triggering from the 

user. 
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5.5 Implement Issues and Challenges 

During the development and integration of the TagT system, several technical challenges were 

encountered. Each issue required a strategic solution, from re-architecting the core logic to 

implementing specific tools, to ensure the final system was fast, accurate and reliable. The key 

challenges are detailed below. 

 

• Failure of Traditional OCR for License Plate Recognition 

The initial system design depended on a modular pipeline using Optical Character 

Recognition (OCR) to read license plates. However, both EasyOCR and TesseractOCR 

models failed to deliver reliable or accurate results from the detected plate images. This 

poor performance was a critical failure point, making the entire modular approach unviable. 

This challenge was overcome by fundamentally re-architecting the system to use the 

Gemini model, whose powerful multimodal capabilities could perform recognition without 

a separate, fragile OCR step. 

 

• Inflexible and Unscalable Brand Recognition 

The second weakness in the modular approach was the car brand recognition models. While 

some pre-trained models from Roboflow were accurate for a small, specific set of brands, 

they were unable to recognize any car outside their limited training data. This lack of 

scalability made them unsuitable for a real-world application. The pivot to the Gemini 

model also solved this issue as its vast training data provided the ability to recognize a 

much wider and more diverse range of car brands. 

 

• High Latency and API Costs from Continuous Video Analysis 

The third challenges of the chosen client-server architecture was the potential for high 

latency and significant operational costs associated with making API calls to Gemini for 

every video frame. Continuously streaming video for analysis was not feasible. This was 

addressed by implementing a hybrid architecture. A fast, locally-run YOLO11n-seg model 

was integrated on the back-end to act as an intelligent pre-filter, analysing frames to detect 

and segment a car before any data was sent to the cloud. This ensured that an API call was 

only made for a single, high-quality image of a confirmed car, dramatically reducing both 

cost and processing time. 
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• Client-Server Network Connectivity in a Development Environment 

The last challenges was establishing a network connection between the physical iPhone 

client and the Python server running on a local development machine. Standard local 

networking does not allow external devices to connect directly. This was resolved by using 

ngrok, a reverse proxy service. Ngrok generated a secure, public URL that tunneled traffic 

directly to the local Flask server, creating a stable and reliable communication channel that 

was essential for rapid front-end development and testing. 

 

5.6 Concluding Remark 

This chapter detailed the full implementation of the TagT system. It outlined the hardware and 

software foundations, specified the critical configuration parameters that govern the system's 

behaviour and provided a step-by-step walkthrough of its real-world operation. The key 

challenges encountered during development and their solutions were also discussed. The 

outcome of this implementation phase is a robust, functional prototype of the ANPR 

application, which now forms the basis for the comprehensive system evaluation and 

performance analysis presented in Chapter 6.  
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CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 

This chapter presents a comprehensive evaluation of the fully implemented TagT system. The 

primary objective is to quantitatively measure the performance of the final prototype, focusing 

on two key areas: the efficiency of its hybrid architecture and its recognition accuracy across a 

variety of real-world scenarios. The chapter details the performance metrics, testing setups, and 

final results, followed by a discussion of the project's challenges and an evaluation of how the 

final system met its initial objectives. 

 

6.1 System Testing and Performance Metrics 

To systematically evaluate the performance of the implemented TagT system, a set of specific 

performance metrics were defined. These metrics are divided into two categories to align with 

the two distinct evaluations performed in this chapter: Efficiency Metrics to assess the 

performance of the system's architecture, and Accuracy Metrics to assess the quality of its 

recognition results in real-world conditions. 

 

6.1.1  Efficiency Metrics 

These metrics were used in the Section 6.2.1 Architectural Efficiency Evaluation to compare 

the performance of the implemented hybrid architecture against a baseline approach. 

 

• Gemini API Time 

It is measured in seconds and a specific duration of the API call to the Gemini model. This 

metric was chosen over total processing time to isolate and compare the performance of the 

most time-intensive step in both architectures. 

 

• API Cost 

It is measured in USD and the direct monetary cost reported by the Gemini API for a single 

analysis, calculated based on the number of input and output tokens. 

 

 

 
 



CHAPTER 6 
 

54 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

6.1.2  Accuracy Metrics 

These granular metrics were used in the Section 6.2.3 Real-World Performance Evaluation to 

measure the success of the attribute recognition stage. For this evaluation, it is assumed that 

the YOLO model has successfully detected a car, as its high performance was validated in 

Chapter 4. 

 

• Overall Success Rate 

This is the primary top-level metric. A detection attempt is classified as a "Success" only 

if all three attributes: License Plate Number, Car Brand and Colour are correctly identified 

in a single analysis. This measures the end-to-end reliability of the recognition pipeline. 

 

• Attribute-Specific Accuracy 

To provide a more detailed breakdown of performance, the accuracy for each individual 

attribute was also calculated across all test cases within a scenario. This helps to identify 

which part of the recognition task is most challenging. 

o Car Brand Accuracy 

The percentage of tests where the car's brand was correctly identified. 

o Car Colour Accuracy 

The percentage of tests where the car's colour was correctly identified. 

o License Plate Accuracy 

The percentage of tests where the license plate number was correctly identified. 
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6.2 Testing Setup and Results 

The evaluation was divided into two distinct tests. The first test was designed to validate the 

efficiency of the system's architecture, while the second was designed to assess its accuracy 

and robustness in real-world conditions. 

 

6.2.1 Architectural Efficiency Evaluation – Testing Setup 

This evaluation was designed to quantitatively justify the final hybrid architecture by 

measuring its efficiency gains in processing time and API cost against a baseline, "brute-force" 

approach. 

 

This test was conducted using a dataset of nine pre-recorded videos that represent a range of 

typical driving and environmental conditions. Each video was processed using two distinct 

methodologies: 

1. Baseline Method (Screenshot and send frames to Gemini) 

For this method, video frames were sampled at a high rate which is 25 FPS and sent 

sequentially to the Gemini API for analysis without any pre-filtering or resizing. This 

represents a simple but computationally expensive approach. 

 

2. Implemented Hybrid Method (Screenshot will be optimized by YOLO and ResNet 

before send to Gemini) 

For this method, the same videos were processed by the final TagT system. The back-end 

uses a local YOLO11n-seg model to detect cars and a ResNet18 model with cosine 

similarity to filter out duplicate or near-identical frames. This intelligent pre-filtering 

pipeline selects only a small number of unique, relevant frames to be resized and sent to 

the Gemini API for analysis. 

 

For each of the nine videos, two key performance metrics were measured for both 

methodologies:  

1. The Gemini API Time 

Time taken for the Gemini API call to complete. 

2. The Total API Cost  

Cost calculated from token usage while calling Gemini API. 
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6.2.2 Architectural Efficiency Evaluation - Results  

The evaluation was conducted by processing a dataset of nine videos using both the 

Implemented Hybrid Method and the Baseline Method. The number of frames selected by each 

method for submission to the Gemini API was recorded and is presented in Table 6.2.2.1. 
 

 
Table 6.2.2.1 Results of Number of Frames send to Gemini 

 

The data in Table 6.2.2.1 reveals the efficacy of the Hybrid Method's intelligent pre-filtering 

pipeline. By utilizing YOLO for object detection and ResNet18 for similarity analysis, the 

Hybrid Method submitted a total of only 174 frames across all nine videos. In contrast, the 

Baseline Method, which sending frames at a high frequency, submitted 2296 frames. This 

represents a 92.4% reduction in the number of frames requiring analysis by the Gemini API. 

 

Furthermore, this substantial reduction in submitted data has a direct and significant impact on 

both API processing time and cost, as visually represented in the comparative charts Figure 

6.2.2.1. 
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Figure 6.2.2.1 Charts of Comparison between Hybrid Method and Baseline Method 

 

As shown in Figure 6.2.2.1, the Hybrid architecture yielded substantial performance gains: 

• Gemini API Time 

The total time spent waiting for the Gemini API to process all requests was 34.26 

seconds for the Hybrid Method, compared to 275.53 seconds for the Baseline Method. This 

constitutes a 87.57% reduction in processing latency, confirming that submitting fewer, 

smaller frames is significantly faster. 

 

• API Cost 

The total operational cost for the Hybrid Method was $0.003631, while the Baseline 

Method was $0.044687. This represents a 91.87% reduction in API costs, directly 

attributable to the lower token count resulting from the reduced number of submitted frames. 
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To conclude, the architectural evaluation provides unequivocal, quantitative evidence that the 

implemented Hybrid Method is vastly superior to a baseline approach. By intelligently pre-

filtering frames to reduce data volume by over 90%, the system achieves dramatic reductions 

in both processing time – 87.57% and operational cost – 91.87%. This confirms that the chosen 

architecture is a highly effective and optimized solution for a scalable, real-world application. 

 

6.2.3 Real-World Performance Evaluation – Testing Setup 

This evaluation was designed to assess the accuracy and robustness of the final, fully 

implemented TagT system across a range of real-world operational conditions. 

 

This evaluation was conducted in the field using the final iOS application running on an iPhone 

12 Pro. The system's performance was tested in real-time across eight distinct scenarios, which 

combined different environmental conditions: Daytime, Night-time, Rainy Day, Car Park Light 

and car viewing angles: Front and Side, as detailed in Table 6.2.3.1. 

 

 
Table 6.2.3.1 Eight Distinct Scenarios 

 

To ensure a robust and reliable assessment of accuracy, a total of 20 detection attempts were 

made for each of the eight scenarios, resulting in 160 tests overall. For each attempt, a detection 

was marked as a "Success" only if the system correctly identified all three car attributes: 

License Plate Number, Car Brand and Colour. The final accuracy for each scenario was then 

calculated as the percentage of successful detections. 
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The diversity of the testing scenarios is illustrated in Figures 6.2.3.1 and Figure 6.2.3.2. These 

figures present a representative sample of the real-world detections, highlighting the system's 

performance across various vehicles and challenging conditions. 

 

 
Figure 6.2.3.1 Day Time and Night Time Scenarios 

 

 
Figure 6.2.3.2 Rainy Day and Car Park Light Scenarios 
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6.2.4 Real-World Performance Evaluation – Results  

The overall performance of the TagT system across the eight real-world scenarios is 

summarized in Table 6.2.4.1. This table presents both the Overall Success Rate and the 

granular, Attribute-Specific Accuracy for each test case. A more detailed qualitative analysis 

for each environmental condition follows. 

 

Condition 
Viewing 

Angle 

Overall 

Success 

Rate 

License 

Plate 

Accuracy 

Car 

Brand 

Accuracy 

Car 

Colour 

Accuracy 

Daytime 

Front 
90% 

(18/20) 

95% 

(19/20) 

100% 

(20/20) 

95% 

(19/20) 

Side 
85% 

(17/20) 

95% 

(18/20) 

100% 

(20/20) 

100% 

(20/20) 

Night-time 

Front 
80% 

(16/20) 

95% 

(19/20) 

95% 

(19/20) 

90% 

(18/20) 

Side 
80% 

(16/20) 

85% 

(17/20) 

100% 

(20/20) 

95% 

(19/20) 

Rainy Day 

Front 
90% 

(18/20) 

100% 

(20/20) 

95% 

(19/20) 

95% 

(19/20) 

Side 
85% 

(17/20) 

85% 

(17/20) 

100% 

(20/20) 

100% 

(20/20) 

Car Park Light 

Front 
85% 

(17/20) 

90% 

(18/20) 

100% 

(20/20) 

95% 

(19/20) 

Side 
75% 

(15/20) 

85% 

(17/20) 

95% 

(19/20) 

95% 

(19/20) 

Average - 83.75% 91.25% 98.13% 95.63% 

Table 6.2.4.1 Results of Eight Distinct Scenarios 

 

The evaluation results, summarized in Table 6.2.4.1, provide a quantitative validation of the 

TagT system's performance. The system achieved a strong average Overall Success Rate of 

83.75% across all 160 test cases. The attribute-specific data reveals that the system's core visual 
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recognition is exceptionally robust, while license plate reading remains the most significant 

challenge. 

 

1. Performance in Optimal Conditions (Daytime and Car Park) 

In well-lit environments such as daytime and car park lighting, the system demonstrated 

excellent performance. The Car Brand Accuracy was consistently near-perfect, averaging 

98.75% across these four scenarios. This indicates the Gemini model's powerful ability to 

recognize car brands from various angles. Besides, the Car Colour Accuracy was also very 

high, averaging 96.25%. The Overall Success Rate in these conditions averaged 83.75%, 

with failures almost exclusively linked to the License Plate Accuracy which is averaging 

91.25%. This confirms that under good lighting, the system is highly reliable however its 

performance is primarily limited by the inherent challenges of reading license plate number 

from varied perspectives. Figure 6.2.4.1 has shown some images to represent sample of 

detections in well-lit conditions. 
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Figure 6.2.4.1 Representative Sample of Detections in Well-Lit Conditions 

 

2. Performance in Challenging Conditions (Night-time and Rainy Day)  

The system's robustness was further evaluated under more adverse conditions, where it 

continued to demonstrate impressive performance. The Car Brand Accuracy remained 

remarkably high, averaging 97.5% across these four challenging scenarios, showcasing the 

Gemini model's powerful resilience to poor lighting and environmental interference. 

Similarly, the Car Colour Accuracy was strong, averaging 95%. The License Plate 

Accuracy remained high at an average of 91.25%, confirming that the system can 

effectively handle challenges like low light and rain. The Overall Success Rate in these 

challenging conditions averaged 83.75%, which is identical to the performance in optimal 

conditions. This surprising and powerful result indicates that while individual attributes can 

be slightly affected by adverse conditions, the system maintains an extremely high level of 

operational reliability. Figure 6.2.4.2 has shown some images to represent sample of 

detections in challenging conditions. 
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Figure 6.2.4.2 Representative Sample of Detections in Challenging Conditions 
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The data from the comprehensive real-world evaluation leads to two clear and significant 

conclusions regarding the performance of the TagT system. 

 

1. Core Visual Recognition is Extremely Robust 

The system's ability to identify a car's brand and colour is its most powerful and reliable 

feature. The average Car Brand Accuracy of 98.13% is near-perfect, demonstrating the 

Gemini model's exceptional capability to recognize car brands from various angles and in 

diverse lighting conditions. Similarly, the Car Colour Accuracy of 95.63% is very high, 

showing only minor sensitivity to challenging lighting. This validates the choice of the 

Gemini model for its powerful, holistic visual analysis capabilities, which are highly 

resilient to environmental changes. 

 

2. Attribute Recognition Accuracy as the Primary Performance Driver 

The Overall Success Rate, which requires all three attributes to be correct, serves as the 

strictest measure of end-to-end performance. The system achieved a strong average of 

83.75% in this metric. This overall rate is primarily influenced by the performance of the 

two most challenging recognition tasks, which are License Plate Accuracy and Color 

Accuracy. While both accuracy percentages are high, failures in either of these categories 

contributed to the final success rate. The data indicates that License Plate Recognition is 

highly accurate, however, it is the most sensitive to environmental factors like viewing 

angle, lighting and physical obstructions. Therefore, it represents the most significant 

opportunity for future improvement. 

 

In conclusion, the TagT system has been successfully validated as a highly effective proof-of-

concept. It achieves its goal of multi-attribute car recognition with a high degree of success, 

achieving an average Overall Success Rate of 83.75% across 160 demanding real-world tests. 

The granular performance data not only proves the system's current capabilities but also 

provides a clear and data-driven path forward for future refinements. 

 

 

 

 

 



CHAPTER 6 
 

65 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

6.3 Project Challenges 

Throughout the development and evaluation of the TagT system, several key challenges were 

encountered that influenced the final design and highlighted important considerations for real-

world deployment. Overcoming these challenges through iterative design and testing was 

crucial to achieving the project's objectives. 

 

One of the primary challenges was the inherent unreliability of a traditional, multi-model 

ANPR pipeline. The initial design, which relied on separate models for object detection, OCR 

and each car attribute recognition, has been proved to be unfeasible. The OCR models for 

license plate reading performed very poorly and the specialized car brand recognition models 

lacked the scalability for real-world use. This fundamental design flaw was addressed by re-

architecting the entire system using a Gemini model. This pivot completely bypassed the need 

for a fragile OCR step and provided the necessary flexibility for recognizing a wide variety of 

car brands. 

 

A second major challenge was mitigating the high latency and operational costs associated with 

a cloud-based AI model. Sending a continuous video stream directly to the Gemini API was 

not a viable solution. This was overcome by designing a hybrid architecture. A lightweight 

YOLO11n-seg model was implemented on the back-end to act as an intelligent pre-filter. This 

module analyses frames locally to detect and segment cars first, ensuring that an API call is 

only made for a single, high-quality image of a confirmed target. This design dramatically 

reduced both API costs and overall processing time. 

 

Finally, the system's performance was significantly impacted by environmental factors such as 

lighting and viewing angle. In low-light, night-time conditions, the colour of streetlights often 

caused inaccurate car colour classifications. Similarly, sharp viewing angles could distort 

license plate characters, leading to recognition errors. While no system can eliminate all 

environmental variability, this was mitigated by configuring the system to prioritize reliability 

by using a 640x480 resolution and by acknowledging in the final evaluation that the system 

performs optimally in frontal-view scenarios, which aligns with its primary intended use cases. 

The solutions and design choices applied in response to these challenges resulted in a more 

robust, efficient and cost-effective system. 
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6.4 Objectives Evaluation 

This section reviews the outcomes of the TagT project in relation to the primary objectives 

established in Chapter 1. The comprehensive evaluation confirms that the project was 

successful in achieving its goals of enhancing ANPR security, designing an efficient and cost-

effective architecture, and delivering a robust, user-friendly prototype. The final implemented 

system effectively addresses the technical, security and operational requirements outlined at 

the project's outset. 

 

The core technical objective of enhancing ANPR security through multi-attribute recognition 

was fully achieved. The system successfully integrates a YOLO model for detection with a 

Gemini model for recognition, a combination proven to be highly effective. The Real-World 

Performance Evaluation demonstrated the system's ability to accurately identify not just a car's 

license plate number, but also its brand and colour with high fidelity, achieving an average 

Brand Accuracy of 98.13% and Colour Accuracy of 95.63%. By providing this multi-faceted 

data, the system directly fulfils its primary security goal of creating a tool to combat fraudulent 

activities like plate-swapping, which rely on the anonymity of single-point identification. 

 

Furthermore, the project successfully delivered an architecture that is both efficient for real-

time processing and cost-effective. The Architectural Efficiency Evaluation provided 

quantitative proof of this, showing that the implemented hybrid design is significantly faster 

and cheaper than a baseline approach, achieving a 87.57% reduction in API processing time 

and a 91.87% reduction in API costs. This result confirms that the system meets its objective 

of being a financially sustainable solution suitable for dynamic, real-world operational 

environments. 

 

Finally, a robust and user-friendly prototype was successfully delivered and validated. The 

system's reliability was proven across eight varied and challenging environmental conditions, 

where it maintained a strong average Overall Success Rate of 83.75%. The final iOS 

application provides a seamless, intuitive and fully automatic user experience, as demonstrated 

in Chapter 5. This fulfils the crucial objective of creating a practical, proof-of-concept system 

that is both reliable in its performance and simple in its operation, successfully validating the 

project's goals. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 

In conclusion, the TagT project represents a significant and successful advancement in the field 

of Automatic Number Plate Recognition. It directly addresses the critical vulnerabilities of 

traditional ANPR systems which are their susceptibility to license plate fraud and the 

inflexibility of hardware-based solutions, by delivering a modern, software-based and car 

multi-attribute recognition framework. The project's success is founded on a rigorous, 

evidence-based methodology that systematically evaluated a wide range of technologies before 

arriving at an optimal hybrid architecture. 

 

The final system architecture, which integrates YOLO11n for high-speed vehicle detection, 

ResNet18 with cosine similarity for intelligent frame optimization and the Gemini model for 

robust attribute recognition, has been proven to be both highly effective and remarkably 

efficient. The comprehensive evaluation in Chapter 6 provided quantitative proof of the 

design's superiority. The architectural efficiency tests demonstrated that by intelligently pre-

filtering frames, the system achieved a 92.4% reduction in data sent for analysis, leading to a 

87.57% decrease in API processing time and a 91.87% decrease in operational costs compared 

to a baseline approach. 

 

Furthermore, the real-world performance evaluation confirmed the prototype's robustness and 

accuracy. The system achieved a strong average Overall Success Rate of 83.75% across 160 

demanding tests in varied environmental conditions. The near-perfect Car Brand Accuracy - 

98.13% validates the choice of a large-scale AI model, while the granular data highlights that 

the most significant remaining challenge is license plate reading from extreme angles. The final 

deliverable is a functional and intuitive iOS application where successfully meets all project 

objectives, establishing TagT as a powerful and validated proof-of-concept. By providing a 

replicable framework for building an efficient hybrid AI system, this project makes a 

meaningful contribution to the development of next-generation intelligent security solutions. 
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7.2 Recommendation 

While the current TagT system successfully meets its core objectives as a robust proof-of-

concept, several key enhancements could be explored to further improve its versatility, 

performance and applicability for global deployment. 

 

One of the most significant areas for future work is the expansion and validation of the system 

with international license plates. The current prototype was validated primarily using 

Malaysian-style license plates. To evolve the system into a truly versatile and globally 

applicable solution, the next logical step would be to rigorously evaluate its performance 

against a diverse, multi-national dataset of license plates from regions such as Europe, North 

America and other parts of Asia. This would test the true extent of the Gemini model's 

capabilities in handling a wide variety of plate formats, fonts, character sets and syntaxes. Such 

an expansion would not only validate the system's scalability but also provide valuable insights 

into any regional biases in the model, guiding further refinements for a commercial-grade, 

international product. 

 

Another powerful area for future enhancement lies in optimizing the system for on-device, 

offline deployment. The current client-server architecture, while highly effective, is 

fundamentally dependent on a stable internet connection, which limits its use in remote or low-

connectivity areas. Future development could focus on exploring the feasibility of converting 

the current recognition pipeline into a lightweight version that can run directly on a mobile 

device's neural engine. This would involve researching and testing smaller, highly optimized 

models that could perform the recognition task locally. While this would likely introduce a 

trade-off in accuracy compared to the larger, cloud-based Gemini model, it would enable full 

offline functionality, eliminate network latency and remove all operational API costs. This 

would transform the TagT system into a completely self-contained tool, significantly 

increasing its portability and making it accessible for a much broader range of security and 

management applications.  
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