

TagT: A Versatile ANPR Solution for Diverse Applications

BY

TAN JO FANG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

ii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Tan Jo Fang. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

iii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to all those who have supported and guided me

throughout the course of this project.

First and foremost, I wish to extend my profound thanks to my former supervisor, Ts. Dr. Ooi

Boon Yaik, for his invaluable guidance, patient mentorship and insightful feedback. His

expertise in Computer Science and constant encouragement were instrumental in shaping the

direction of my research and navigating the challenges along the way. His mentorship was

crucial in guiding this project towards a successful publication at the 2025 IEEE 11th

International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA).

Next, I would like to express my sincere thanks to my current supervisor, Ts. Tan Teik Boon

for his continued support and constructive advice. His perspective was especially valuable

during the critical stages of the project and helped me to strengthen the overall quality of this

work.

Furthermore, I would like to extend my appreciation to my family and friends for their

unwavering encouragement, patience and emotional support throughout this journey. Their

belief in me has been a constant source of strength and motivation, especially during

challenging times.

To all who have contributed to the success of this project, directly or indirectly—thank you

very much.

iv
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Traditional Automatic Number Plate Recognition (ANPR) systems, which focus solely on

license plate numbers detection and recognition are vulnerable to fraud. This project presents

the design and implementation of TagT, an advanced ANPR framework that enhances security

through multi-attribute car recognition. TagT integrates three key components: a YOLO11n

model for high-speed car detection, a ResNet18 model with cosine similarity for intelligent

frame optimization and the Gemini model for robust recognition of a car's license plate number,

brand and colour. An extensive preliminary investigation justifies the selection of these models

over numerous alternatives. The final, implemented system features a native iOS application

and a Python back-end. A comprehensive evaluation was conducted to validate the prototype's

performance, focusing on two key areas: Efficiency and Accuracy. The evaluation of the

architecture's efficiency demonstrated a 92.4% reduction in frames sent for analysis, which

resulted in a 91.9% decrease in API costs and an 87.6% decrease in API latency compared

to a baseline approach. Furthermore, the system's real-world accuracy was validated across 160

demanding tests in varied conditions, achieving an average Overall Success Rate of 83.75%

and a near-perfect Car Brand Accuracy of 98.13%. Overall, TagT provides a versatile, cost-

effective and scalable solution that successfully addresses the limitations of traditional ANPR,

enhancing public safety and car management.

Area of Study - IoT Solution, Computer Vision

Keywords - Automatic Number Plate Recognition (ANPR), YOLO, Gemini, License Plate

Number Recognition, Car Brand Recognition, Car Colour Recognition

v
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 1

1.2 Motivation 2

1.3 Project Objectives 2

1.4 Project Scope and Direction 3

1.5 Contributions

1.6 Report Organizations

4

5

CHAPTER 2 LITERATURE REVIEW 6

2.1 License Plate Fraud 6

2.2 Automatic Number Plate Recognition (ANPR) and Its Challenges 7

2.3 Car Colour Recognition 9

2.4 Car Brand Recognition 11

2.5 Object Detection and Tracking

2.6 Image Retrieval and Similarity Measurement

12

14

vi
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 16

3.1 Overview of the System 16

3.2 System Architecture Diagram 17

 3.3 Activity Diagram

 3.4 Use Case Diagram

19

21

CHAPTER 4 SYSTEM DESIGN 24

4.1 Preliminary Investigation and Component Selection 24

4.1.1 Evaluation of Single Task Model Approach 24

 4.1.1.1 License Plate Detection

 4.1.1.2 License Plate Number Recognition

 4.1.1.3 Car Brand Detection and Recognition

 4.1.1.4 Car Detection

 4.1.1.5 Car Colour Recognition

 4.1.2 Evaluation of Advanced AI Models

 4.1.3 Final Design Decision

24

25

26

27

28

29

33

4.2 System Block Diagram

 4.2.1 Breakdown of System Block Diagram

4.3 System Components Specifications

 4.3.1 Hardware Components

 4.3.2 Software Components

34

36

38

38

38

vii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 SYSTEM IMPLEMENTATION 40

5.1 Hardware Setup

 5.1.1 Back-End Development Server

40

40

 5.1.2 Front-End Client Device

5.2 Software Setup

 5.2.1 Back-End Environment Setup

 5.2.2 Front-End Environment Setup

5.3 Setting and Configuration

 5.3.1 Back-End Server Configuration

 5.3.2 Front-End and Network Configuration

5.4 System Operation

5.5 Implement Issues and Challenges

5.6 Concluding Remark

41

41

41

42

43

43

44

46

51

52

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 53

6.1 System Testing and Performance Metrics

 6.1.1 Efficiency Metrics

 6.1.2 Accuracy Metrics

6.2 Testing Setup and Results

 6.2.1 Architectural Efficiency Evaluation – Testing Setup

 6.2.2 Architectural Efficiency Evaluation – Results

 6.2.3 Real-World Performance Evaluation– Testing Setup

 6.2.4 Real-World Performance Evaluation – Results

6.3 Project Challenges

53

53

54

55

55

56

58

60

65

viii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Objectives Evaluation

CHAPTER 7 CONCLUSION AND RECOMMENDATION

7.1 Conclusion

7.2 Recommendation

REFERENCES

APPENDIX A

 A.1 Poster

66

67

67

68

69

A-1

A-1

ix
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.2.1 System Design by Aalsalem, Khan and Dhabbah [2] 7

Figure 2.2.2 Challenges in ALPR System [3] 8

Figure 2.2.3 Methodology from Kim, Kang, Kim and Yang [12] 8

Figure 2.3.1 Result from Agarwal, Shinde, Mohite and Jadhav [9] 10

Figure 2.3.2 Result from Ghanem and Holliman [21] 10

Figure 2.4.1 Result from Hu et al. [19] 11

Figure 2.5.1 Methodology of Islam and Horio [15] 13

Figure 2.6.1 Result from Ozbek and Tekgoz [18] 14

Figure 2.6.2 Result from Rani and Yuhandri [17] 15

Figure 3.2.1 TagT System Architecture 17

Figure 3.3.1 TagT System Activity Diagram 19

Figure 3.4.1 TagT System Use Case Diagram 21

Figure 4.1.1.1.1 Results from License Plate Detection Models 25

Figure 4.1.1.2.1 Inaccurate reading from easyOCR 26

Figure 4.1.1.3.1 Results from Car Brand Recognition Models 27

Figure 4.1.1.4.1 Results from Yolo Models on Car Detection 28

Figure 4.1.1.5.1 Results from Car Colour Recognition Methods 29

Figure 4.1.2.1 Results from Gemini 30

Figure 4.1.2.2 Results from Grok 30

Figure 4.1.2.3 Results from Gemini and YOLO 31

Figure 4.1.2.4 Results from Grok and YOLO 31

Figure 4.1.2.5 Results from Gemini, YOLO and Resnet18 32

Figure 4.1.2.6 Results from Grok, YOLO and Resnet18 32

Figure 4.2.1 TagT System Block Diagram 34

Figure 5.3.1.1 TagT Server Initialization 43

Figure 5.3.2.1 Main Page User Interface with Details 44

Figure 5.3.2.2 Camera Access 45

Figure 5.4.1 Main Page User Interface 46

x
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.2 Camera Open Interface 47

Figure 5.4.3 Car is Analysing 47

Figure 5.4.4 Segmented Car 48

Figure 5.4.5 Results Display 48

Figure 5.4.6 Car Details stored in Recent Detections 49

Figure 5.4.7 Car Details User Interface 50

Figure 6.2.2.1 Charts of Comparison between Hybrid Method and

Baseline Method

57

Figure 6.2.3.1 Day Time and Night Time Scenarios 59

Figure 6.2.3.2 Rainy Day and Car Park Light Scenarios 59

Figure 6.2.4.1 Representative Sample of Detections in Well-Lit

Conditions

62

Figure 6.2.4.2 Representative Sample of Detections in Challenging

Conditions

63

xi
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 5.1.1.1 Specifications of the Back-End Development Server 40

Table 5.1.2.1 Specifications of the Front-End Client Device 41

Table 6.2.2.1 Results of Number of Frames send to Gemini 56

Table 6.2.3.1 Eight Distinct Scenarios 58

Table 6.2.4.1 Results of Eight Distinct Scenarios 60

xii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

ANPR Automatic Number Plate Recognition

IoT Internet of Things

AI Artificial Intelligence

YOLO You Only Look Once

OCR Optical Character Recognition

CNN Convolutional Neural Networks

RON95 Research Octane Number 95

API Application Programming Interface

HSV Hue, Saturation, and Value

YOLO You Only Look Once

ResNet Residual Network

FMT Free Malaysia Today

ULEZ Ultra Low Emission Zone

CPMMS Car Parking Monitoring and Management System

RAM Random Access Memory

ALPR Automatic License Plate Recognition

V-Net Volumetric Network

C-Net Convolutional Network

R-Net Recurrent Network

RGB Red, Green, Blue

SSD Single Shot Detector

VCR Visual Car Recognition

DPM

SCDPL

Deformable Part Model

Spatially Coherent Discriminative Pattern Learning

MIL Multiple Instance Learning

HOG Histogram of Oriented Gradients

LLC+SPM Local-constraint Linear Coding with Spatial Pyramid Matching

BoF Bag of Features

UMPSA

VIP

Universiti Malaysia Pahang Al-Sultan Abdullah

Visually Impaired Persons

xiii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

OpenCV Open-Source Computer Vision Library

SAM Segment Anything Model

CBIR Content-Based Image Retrieval

RAD Rapid Application Development

CHAPTER 1

1
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

This chapter provides the foundational context for the TagT project. It begins by defining the

core problem of license plate fraud and the motivation for developing an advanced ANPR

system. Following this, the chapter outlines the formal project objectives, the scope and

direction of the work, and the key contributions of the project. Finally, it presents the

organization of the subsequent chapters in this report.

1.1 Problem Statement

The rising incidence of license plate fraud poses a serious threat to public safety and operational

security. Cars with fake or swapped license plates, often termed "ghost cars," are frequently

linked to criminal activities such as theft and car cloning, as they allow perpetrators to evade

detection by standard law enforcement. While traditional ANPR systems can only read license

plate numbers, they lack the sophistication to detect this type of fraud since they cannot verify

if a license plate legitimately belongs to the car it is attached to.

Furthermore, the rigidity of traditional, hardware-based ANPR systems presents a significant

issue. These systems are often deployed as fixed, specialized units that are difficult and

expensive to modify and upgrade. This inflexibility prevents them from incorporating

advanced recognition features, such as car brand and colour identification, which are necessary

to address modern security demands. This limitation creates a critical gap in the market for a

flexible, software-based solution that can provide comprehensive vehicle identification.

CHAPTER 1

2
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Motivation

The primary motivation for this project is to address the growing threat of license plate fraud.

A prominent real-world example in Malaysia involves the use of swapped license plates to

illegally access subsidized RON95 petrol. Traditional ANPR systems are ineffective against

such schemes. The development of TagT is driven by the urgent need to create an ANPR

solution that can cross-reference multiple car attributes, which are license plate number, car

brand and colour, to authenticate a car's identity, significantly strengthening public safety and

regulatory enforcement.

A second motivation is to overcome the limitations of fixed, hardware-based ANPR systems.

By developing a flexible, software-based solution that can run on a mobile device, this project

aims to create a more accessible, scalable and easily updatable system. This would enable

advanced security features, such as verifying authorized cars in a kindergarten environment,

without the need for expensive and proprietary hardware.

1.3 Project Objectives

The primary objective of the TagT project is to overcome the limitations of traditional ANPR

systems, particularly their vulnerability to license plate fraud and the inflexibility of hardware-

based architectures. The project aims to develop an advanced, software-based solution that

enhances security by accurately recognizing multiple car attributes, which are the license plate

number, car brand and colour.

Moreover, the project is defined by critical performance objectives. The system must achieve

real-time processing capabilities, operating with minimal latency. Concurrently, it must be

cost-effective, incorporating an optimization strategy to minimize the operational expenses

associated with advanced AI model usage, thereby ensuring the solution is financially

sustainable.

Ultimately, the final objective is to deliver a robust and user-friendly prototype that validates

the proposed solution. This involves demonstrating reliable performance across a range of

varied, real-world environmental conditions and integrating IoT principles to ensure seamless

connectivity, culminating in a functional proof-of-concept application.

CHAPTER 1

3
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Project Scope and Direction

The scope of the TagT project encompasses the complete design, development, implementation

and evaluation of an advanced, software-based Automatic Number Plate Recognition (ANPR)

system. The main deliverable is a functional proof-of-concept prototype that demonstrates the

viability of a hybrid, car multi-attribute recognition architecture. The project is strictly defined

as a software-based solution, intentionally avoiding proprietary hardware to ensure flexibility

and cost-effectiveness. The technical scope is centred on the creation of a client-server system.

This includes:

• A native iOS front-end application

Developed in Swift, this mobile application will serve as the primary user interface. Its

scope includes managing the device's camera, capturing a real-time video feed, transmitting

data to the server and displaying the final, parsed results in a clear and intuitive manner.

• A Python-based back-end server

This server will house the core AI logic. Its scope includes creating a web API to

communicate with the client, processing incoming images and executing the multi-stage

analysis pipeline.

The core direction of the project follows an evidence-based, comparative methodology. To

ensure the final system is both optimal and justified, the project scope includes a

comprehensive preliminary investigation into a wide range of state-of-the-art AI models. This

investigation will systematically test and evaluate:

• Multiple object detection frameworks, including several YOLO variants, to select the most

efficient and accurate car detector.

• A traditional modular pipeline approach, testing specialized models for license plate

detection, Optical Character Recognition (OCR) license plate number recognition, car

brand recognition, and car colour analysis.

• Several advanced, large-scale multimodal AI models including Gemini, Grok and atc, as a

unified solution for car attribute recognition.

• Frame optimization techniques, such as using a ResNet18 model for feature extraction and

similarity analysis, to reduce redundancy and minimize API costs.

CHAPTER 1

4
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The findings from this rigorous investigation will directly inform the final architectural design.

The project will culminate in the delivery of a fully documented, functional prototype that has

been validated against a series of real-world performance benchmarks.

1.5 Contributions

What makes this project's contribution particularly valuable is that it provides a comprehensive

and transparent blueprint for the process of engineering a modern and high-performance

computer vision system. The contribution is not just the final product, but the rigorous and

data-driven methodology used to create and validate it. This report meticulously documents

this journey, offering several key contributions to the field.

First, this work presents a detailed case study on the limitations of a traditional, modular ANPR

pipeline. By quantitatively demonstrating the critical failure points of specialized models,

particularly in Optical Character Recognition (OCR) reading and scalable car brands

recognition, this report provides clear and empirical evidence for why a new architectural

approach is necessary. This serves as a valuable lesson for developers, highlighting the hidden

complexities and fragility of building a recognition system from multiple, disparate

components.

Next, the project contributes a thorough, head-to-head comparative analysis of advanced AI

models for a specific, real-world task. By testing these models under identical conditions and

measuring their performance across multiple metrics, including accuracy, speed, cost and

robustness to varying input resolutions, this work provides rare and valuable data that can

inform the decisions of other developers and researchers when selecting a foundational model

for their own applications.

Finally, the most significant contribution is a replicable and validated framework for an

efficient hybrid ANPR architecture. The project proves that by using lightweight local models

like YOLO and ResNet18 as an intelligent pre-filtering and optimization layer, it is possible to

harness the power of a Gemini model in a way that is both financially sustainable and fast

enough for real-time applications. The finding that this approach can reduce the volume of data

sent for analysis by over 90%, with corresponding reductions in cost and latency, is a critical

CHAPTER 1

5
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

contribution. It establishes a practical and effective design pattern for building the next

generation of intelligent, real-time visual analysis systems.

1.6 Report Organizations

This report is organized into seven chapters, each structured to logically present the design

methodology, implementation and evaluation of the TagT system.

• Chapter 1 provides the foundational context for the project, defining the problem statement

and motivation and outlining the formal project objectives, scope and contributions.

• Chapter 2 presents a comprehensive literature review of relevant research, covering topics

such as license plate fraud, the challenges of traditional ANPR systems and existing

methodologies for vehicle, brand, and color recognition.

• Chapter 3 details the final system methodology and high-level design. It presents the key

visual models of the finalized system, including the use case diagram, the system

architecture diagram and the activity diagram that illustrates the operational workflow.

• Chapter 4 describes the extensive preliminary investigation and evidence-based design

process that led to the final architecture. It details the comparative testing of various

technologies, including a modular pipeline approach and a unified AI model approach and

presents the experimental results that justify the selection of the final system components.

• Chapter 5 outlines the full implementation of the TagT system. It covers the hardware and

software setups for both the front-end and back-end, details the specific system

configurations, demonstrates the real-world operation of the final application with

screenshots and discusses the challenges overcome during development.

• Chapter 6 presents a comprehensive evaluation of the implemented prototype. It details the

performance metrics used and presents the results from two key tests: an architectural

efficiency evaluation and a real-world accuracy assessment across various environmental

conditions.

• Chapter 7 concludes the report by summarizing the project's key findings and outcomes. It

also provides recommendations for potential future work and enhancements to the TagT

system.

CHAPTER 2

6
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

In this chapter, we provide a thorough review of license plate fraud cases, current Automatic

Number Plate Recognition (ANPR) systems and their challenges, car colour recognition, car

brand recognition, object detection and real-time tracking, and image retrieval and similarity

measurement. This review serves three main purposes: first, to understand the issues faced by

only recognizing license plate numbers; second, to gain insights into the current ANPR systems

and their challenges; and third, to explore methodologies for car colour recognition, car brand

recognition, object detection and real-time tracking, and image retrieval and similarity

measurement.

2.1 License Plate Fraud

License plate fraud, including cloning and swapping, presents significant challenges to car

surveillance and makes multi-attribute recognition systems essential. FMT (Free Malaysia

Today) Reporters [1] have reported instances of license plate swapping in Malaysia to exploit

fuel subsidies, noting that a majority of detected cases resulted in legal penalties. Samuel [5]

highlighted a case in United Kingdom where a cloned plate led to a misattributed fine,

illustrating that a significant number of traffic fines are linked to cloning errors. McLogan [6]

documented an increase in fake plates in New York where drivers bought vanity plates online

and it is almost identical to real ones, help drivers avoid tolls and traffic rules. GB News [7]

reported that a high percentage of Ultra Low Emission Zone (ULEZ) fines in London were

related to plate scams, further emphasizing the prevalence of fraud. These real-world cases

emphasize the need for TagT’s comprehensive approach, which integrates license plate

numbers, car brands and colours recognition to effectively detect fraudulent activities.

CHAPTER 2

7
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Automatic Number Plate Recognition (ANPR) and Its Challenges

Automatic Number Plate Recognition (ANPR) systems are important for car identification and

it supports applications when in toll collection, parking management, and law enforcement.

Aalsalem, Khan and Dhabbah [2] proposed an Automated Car Parking Monitoring and

Management System (CPMMS) for Jazan University, employing ANPR cameras to capture

license plate numbers at entrance/exit gates and parking lots. The system integrates a database

to store vehicle and owner information, complemented by a mobile application that assists

users in locating parked vehicles and reporting parking violations, such as vehicle damage or

blockages, shown in Figure 2.2.1 [2].

Figure 2.2.1 System Design by Aalsalem, Khan and Dhabbah [2]

Mustafa and Karabatak [3] conducted a systematic review of Automatic Number Plate

Recognition (ANPR) systems, outlining key challenges impacting ANPR systems’ accuracy

and performance. These challenges are categorized into external and internal factors. External

factors include plate variations such as plate size, plate position, plate colour, font style and so

on, while environmental variations such as lighting conditions and surrounding effects, and

camera mounting variations such as camera inclination and plate distance from camera. Internal

factors encompass algorithmic limitations and hardware constraints such as camera shutter

speed causing motion blur, resolution affecting image quality, focus length, view angle, and

system RAM and processor specifications, as shown in Figure 2.2.2 [3].

CHAPTER 2

8
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.2 Challenges in ALPR System [3]

Marisekar et al. [4] developed a smart parking fare collection system by integrating ANPR with

TensorFlow OCR to automate vehicle identification and billing. Their system has reduced

billing time from 3 to 5 minutes in manual systems within 5 to 15 seconds, enhancing

operational efficiency. They reported effective plate recognition across various conditions,

with preprocessing techniques mitigating image blurring caused by adverse weather, such as

heavy rain [4].

Kim, Kang, Kim and Yang [12] introduced an AI camera for on-device ANPR. They employed

R-Net which is YOLOv2-based, V-Net which is ResNet blocks, and C-Net which is 18

convolutional layers, as shown in Figure 2.23. They have tested their system on 30,051 Korean

plate images and achieved a 95% overall accuracy, with 99.89% license plate detection

accuracy, 98.16% total recognition accuracy, and 93% character recognition accuracy [12].

Figure 2.2.3 Methodology from Kim, Kang, Kim and Yang [12]

CHAPTER 2

9
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

These studies demonstrate ANPR systems have potential to achieve high accuracies and yet

environmental and regional factors still remain significant obstacles.

2.3 Car Colour Recognition

Car colour recognition is an essential complementary method for car identification, especially

in scenarios where license plates are obscured, fraudulent, or missing. This section reviews

three studies that developed different approaches to car colour recognition, detailing their

methodologies and outcomes. Each study employs different techniques, ranging from colour

space conversions and histogram analysis to deep learning-based feature extraction, to achieve

reliable recognition in various environmental conditions.

Tong et al. [20] proposed a real-time vehicle colour recognition algorithm that combines RGB

to HSV colour space conversion with sector-based histogram analysis and it is designed for

embedded devices. The methodology involves capturing road videos using an IP camera,

followed by background estimation to segment moving vehicles crossing a user-defined trip

line [20]. A binary vehicle image T1 is generated via thresholding, and pixel values are

extracted to compute the maximum (Max(R,G,B)) and minimum (Min(R,G,B)) in RGB colour

space. An image T2 is derived using the formula T2 = Max(R,G,B) - Min(R,G,B), then

segmented with an empirical threshold M1 = 128 to create a binary image T3 [20]. The pixel

area ratio R = T1/T2 is calculated, and vehicles are classified into chromatic which has red,

orange, yellow, green, cyan, blue, purple or achromatic which has black, white, grey categories

using a threshold M2 = 0.3. For chromatic colours, the Hue (H) channel histogram in HSV

space determines the colour based on the highest peak, while achromatic colours are identified

by analysing histograms across five 72-degree sectors within a circular region centred on the

vehicle’s mass, with the majority vote determining the colour. They tested on 200 videos

containing 795 vehicles, the algorithm achieved a 94.08% accuracy, correctly identifying 748

vehicles with 47 errors [20].

Agarwal, Shinde, Mohite and Jadhav [9] incorporated colour classification into a vehicle

characteristic recognition framework using the YOLOv3 object detection model. The

methodology uses YOLOv3 to detect vehicles in images and identify the bonnet area to select

it as a prominent region for colour extraction [9]. A trained YOLOv3 model draws a bounding

box around the bonnet and crops this region then extracts dominant colours by averaging the

CHAPTER 2

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

RGB values from these colours. The averaged RGB value is compared to a database containing

28,907 sets of RGB values and corresponding colour names to determine the closest colour

match [9]. They also used image enhancement techniques, such as brightening, sharpening,

and smoothing to improve the performance for dark or nighttime images. The model was

manually tested on thousands of images and has achieved nearly 95% accuracy as shown in

Figure 2.3.1 [9].

Figure 2.3.1 Agarwal, Shinde, Mohite and Jadhav [9]

Ghanem and Holliman [21] highlighted the impact of colour space on vehicle re-identification

using a Siamese network with SSD Mobilenet V2, trained on the PRIMAVERA dataset of

636,246 side-view images of 13,963 vehicles captured in both daytime and nighttime

conditions. RGB images were converted into multiple colour spaces such as RGB, HSV, YUV,

LUV, nRGB, c1c2c3, 12-bit RGB, and n-bit grayscale [21]. The SSD Mobilenet V2 used

435,153 daytime and 27,315 nighttime images to train and used 76,203 daytime and 4,982

nighttime images for validation. On the outcome, YUV achieved the highest validation

accuracy of 95.25% ± 0.41%, followed by 4-bit grayscale at 94.97% ± 0.42% and RGB at

94.65% ± 0.44% for mixed daytime and nighttime data as shown in Figure 2.3.2 [21].

Figure 2.3.2 Result from Ghanem and Holliman [21]

These studies show that vehicle colour recognition systems achieve accuracies around 95%

with deep learning models and optimized colour spaces. However, challenges such as

reflections, shadows, and low lighting, necessitating further advancements in preprocessing

and feature extraction techniques.

CHAPTER 2

11
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.4 Car Brand Recognition

Car brand recognition relies on unique visual features to enhance Automatic Number Plate

Recognition (ANPR) in car identification systems. This section reviews three studies that

developed methods for car brand recognition, providing an overview of their project,

methodologies, and results.

Hu et al. [19] has developed an end-to-end real-time vehicle brand recognition system for

surveillance videos, introducing the Visual Car Recognition (VCR) dataset to address

challenges like intra-class variations and environmental noise. The methodology uses a

Deformable Part Model (DPM) detector to identify cars in video frames, followed by Spatially

Coherent Discriminative Pattern Learning (SCDPL) with Multiple Instance Learning (MIL)

and Histogram of Oriented Gradients (HOG) features to learn discriminative patterns such as

logos, grille shapes, and window corners with spatial coherence constraints [19]. When they

tested 37,195 frontal-view images across 30 brands on the VCR dataset, the system achieved a

94.66% average per-class accuracy as shown in Figure 2.4.1. Their system also outperformed

Local-constraint Linear Coding with Spatial Pyramid Matching (LLC+SPM), which is 85.75%

accuracy, Convolutional Neural Networks (CNN), which is 70.62% accuracy, and Bag of

Features (BoF), which is 58.15% accuracy as shown in Figure 2.4.1 [19].

Figure 2.4.1 Result from Hu et al. [19]

Anuwa, Ramli and Zulkifli [10] aimed to develop a fast and accurate car logo recognition

model for staff vehicles at Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA). They

compared YOLOv8x and Microsoft Azure Custom Vision and recommended larger datasets

and re-filtering could improve performance. They captured rear-view car images and pre-

processed them by resizing, rotating, smoothing with Gaussian blur, and labelling logos with

CHAPTER 2

12
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

bounding boxes [10]. YOLOv8x uses a single-stage neural network for quick logo detection,

while Azure Custom Vision fine-tunes a pre-trained neural network for better accuracy. On the

outcome, Azure Custom Vision is slightly better than YOLOv8x. In short, YOLOv8s is faster,

ideal for real-time use, but struggled for small logos, where Azure Custom Vision is slower but

more accurate and easier to use [10].

Agarwal, Shinde, Mohite and Jadhav [9] developed a vehicle recognition system using traffic

camera images to identify car makes and logos, but they also face challenges with poor lighting

and custom logos. They used YOLOv3 to detect vehicles and logos and used ResNet152v2 to

classify car makes. On a dataset of 10,000 logo images, the system achieved 98%-99%

accuracy for vehicle detection, 97%-99% for car logo detection, and 93% for car make

classification as shown in Figure 2.3.1 [9].

These studies demonstrate the potential of deep learning models for vehicle brand and logo

identification, achieving high accuracies in controlled conditions, although challenges still

remain with small, non-standard, or obscured logos.

2.5 Object Detection and Tracking

Object detection and tracking are essential for real-time surveillance, allowing vehicle

monitoring and detection of traffic violations. This section reviews four studies that used deep

learning and computer vision techniques, presenting an overview of their projects,

methodologies, and results.

A, R, Malini and Archana [16] aimed to enhance object detection for visually impaired persons

(VIP) using live video and assisting them in identifying objects but there are challenges such

as low-resolution images and cost constraints. They used YOLOv3 algorithm to detect objects

in video frames by dividing images into grids and predicting bounding boxes and class

probabilities in a single pass. They tested on the Microsoft COCO dataset with 500 images, the

system achieved 94% accuracy and processed faster than methods like Single Shot Detector

(SSD) and Faster R-CNN, proving its potential for assistive technologies [16].

Rahman, Ami and Ullah [14] aimed to develop a real-time system to detect wrong-way vehicles

in Bangladesh to reduce accidents and traffic congestion by using traffic camera footage. They

CHAPTER 2

13
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

used YOLOv3 to detect vehicles and create bounding boxes, followed by centroid tracking to

monitor vehicles in a specific area. The direction was determined by comparing centroid

heights across frames, which able to accurately identify the wrong-way vehicles [14]. Their

project has tested on three 1280×720-pixel videos from Chittagong city, Bangladesh and the

system achieved nearly 100% accuracy by correctly identifying all wrong-way vehicles.

However, the system has minor errors due to the overlapping vehicles [14].

Islam and Horio [15] focused on developing a real-time system for face recognition, tracking,

and counting people in Dubai mall videos. They also calculated their time within the frame in

order to enhance security in public spaces. They used OpenCV to recognize faces by matching

them to a stored database, then applied centroid tracking by assigning unique IDs and tracked

individuals by calculating the distance between bounding box centres across frames,

maintaining the same ID if the distance is small, as shown in Figure 2.5.1. The system also

calculated time spent by each ID’s presence. They have tested their system using shopping mall

videos and the system successfully tracked people using centroid distances, although some IDs

switched due to overlaps. Hence, the results have shown the potential for vehicle tracking [15].

Figure 2.5.1 Methodology of Islam and Horio [15]

These studies show high accuracies in using YOLO for object detection and to track the object

by using centroid tracking, but issues like occlusions and processing speed need further

improvement for broader applications.

CHAPTER 2

14
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.6 Image Retrieval and Similarity Measurement

Image retrieval and similarity measurement systems are essential by using similarity

measurement to eliminate redundant frames and match query images against extensive

databases, thereby achieving time and cost effectiveness. This section examines two studies,

providing summaries of their projects, methodologies, and results.

Ozbek and Tekgoz [18] developed an image retrieval system for clothing and that could also

be adapted to frame similarity verification. They used U2-Net to preprocess over 100,000

clothing images by removing backgrounds and categorizing them into upper body, lower body,

and full body. After that, the authors applied ResNet-50 to extract embedding data for image

comparison, while the Segment Anything Model (SAM) segmented user-uploaded query

images, and K-Nearest Neighbours (K-NN) identified the five most similar images using

Euclidean distance. On the outcome, the system achieved 92% accuracy on Euclidean

similarity metric when tested on 100 products with 400 images, outperforming Cosine

similarity metric is 80% accuracy and Manhattan similarity metric is 73% accuracy, as shown

in Figure 2.6.1 [18].

Figure 2.6.1 Result from Ozbek and Tekgoz [18]

Rani and Yuhandri [17] proposed a system to measure logo similarity for trademark

verification in order to assist Indonesia’s Ministry of Law and Human Rights in evaluating

logo patent applications. They used the Content-Based Image Retrieval (CBIR) method to

search a database of 210 logos and apply ResNet-18 to extract image features after data

augmentation. The system was trained on 147 images, which is 70% from the database and

validation on 63 images, which is 30% from the database with parameters of epoch=20,

learning rate=0.00001, and mini-batch=5 to avoid overfitting [17]. After that, they have tested

on four logos which are Sukamilktea, Exgen, Bete and Piniclean. The system achieved 93.65%

accuracy after 84 iterations, with similarity scores of 82.80% from Sukamilktea, 100% from

CHAPTER 2

15
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Exgen, 96.36% from Bete, and 89.5% from Piniclean, as shown in Figure 2.6.2. Through the

result, it shows the effectiveness for vehicle logo verification [17].

Figure 2.6.2 Result from Rani and Yuhandri [17]

CHAPTER 3

16
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH

This chapter details the high-level methodology and design of the TagT system. It serves as the

architectural blueprint for the project, presenting a series of visual models that define the

system's structure, user interactions and operational workflow. This chapter includes the

system architecture diagram, the use case diagram with its description and the activity diagram.

3.1 Overview of the System

The proposed TagT system is designed to provide real-time identification of car attributes,

including license plate number, car brand and car colour. For front-end, the system analyses a

live video stream from a mobile device. For back-end, the system leverages a combination of

object detection and a generative vision model to deliver fast and accurate results. By using a

smartphone camera, the system offers a portable and cost-effective solution for automated car

recognition.

The system architecture consists of three main components: a mobile front-end user interface,

a back-end server and two integrated deep learning models. The user initiates the process by

pointing their mobile camera at a car. The front-end application captures the video frames and

transmits them to the back-end server for analysis.

The back-end first processes each frame using a YOLO11n-seg model to detect and segment

any vehicles present. To optimize performance and ensure accuracy, the system incorporates a

two-step quality filtering process. It first verifies that the detected car's area is significant

enough and then checks that the image is not overly blurry by measuring its Laplacian variance

against a set threshold. Frames that pass these checks are then sent to the Gemini model. This

advanced vision model analyses the segmented car image to extract its license plate number,

car brand and car colour. The processed information, along with performance metrics such as

processing times and API costs, is then sent back to the front-end interface.

The mobile application displays these predicted outputs in real-time, allowing the user to

instantly view the car's details. This streamlined, non-invasive approach provides a scalable

and accessible tool for intelligent vehicle identification, suitable for various real-world

applications.

CHAPTER 3

17
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 System Architecture Diagram

This section presents the system architecture of the TagT system. The architecture outlines how

the hardware and software components interact to detect and recognize car attributes, including

the license plate number, car brand and car colour.

Figure 3.2.1 TagT System Architecture

As illustrated in the Figure 3.2.1, the system is composed of three primary components:

• A user

• A mobile phone serving as the front-end user interface

• A server with the deployed models

The process begins when the user initiates the system by pressing a start button on the mobile

application. The phone's camera is activated and captures a continuous video stream of a car.

This input video frame is then sent in real-time to the server for processing. The server is the

core of the system and performs several critical steps:

1. Car Detection and Segmentation

The incoming video frame is first processed by a YOLO11n-seg model. This model is

responsible for detecting the presence of a car within the frame.

CHAPTER 3

18
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Quality Filtering

This step ensures the detected car occupies a sufficient area of the frame and is not

excessively blurry. If the frames fail one of these requirements, they will not proceed to the

next step.

3. Attribute Recognition

Once the frame passes the quality filters, the segmented image of the car is sent to the

Gemini model. Gemini analyzes the image to extract specific details, which are the license

plate number, car brand and colour.

4. Data Transmission

Once the car details are generated, the server sends this information back to the front-end

user interface.

The mobile application front-end user interface is developed using Xcode. It can receive and

display the real-time predicted car details for the user. The information presented on the

interface includes:

• License Plate Number

• Car Brand

• Car Colour

• Total Processing Time

• Gemini Processing Time

• Gemini API Cost

This architecture allows the user to access detailed vehicle information instantly through the

mobile interface. By leveraging a mobile app for video capture and a powerful server for

processing, the system provides a scalable and cost-effective solution for real-time automatic

number-plate recognition (ANPR).

CHAPTER 3

19
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Activity Diagram

The section presents the activity diagram of the TagT system as shown in Figure 3.3.1. This

diagram illustrates the sequential flow of operations carried out by the system, from the

moment the user presses a button to open the camera. The system initiates by capturing a video

frame, which is then sent to the server for processing.

Figure 3.3.1 TagT System Activity Diagram

CHAPTER 3

20
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

On the server side, a series of checks are performed to ensure the quality and relevance of the

image. First, the system calculates the total processing time and verifies if the detected car area

is greater than 15% of the total frame. If this condition is not met, the system continues to

capture new video frames. If the condition is met, a subsequent check is performed to determine

if the image's blur value is higher than a threshold of 120. Images that are too blurry are

discarded, and the system proceeds to capture new frames.

Frames that pass both the area and blur checks are then passed to the Gemini API for detailed

analysis. The system calculates the processing time and API cost associated with the Gemini

analysis. It then retrieves the car details from the Gemini response. A crucial step follows where

the system checks if the newly identified car details are the same as the previous one. If the

details are the same, it indicates that the same car is still in the frame, and the system sends the

Gemini processing time and API cost to the user interface.

However, if the car details are new, the system sends the car details, along with the Gemini

processing time, Gemini API cost, and the total processing time to the front-end user interface.

Finally, these details are displayed to the user, and the process concludes. This entire workflow

ensures that only high-quality, relevant images are processed, and redundant information is not

repeatedly sent, optimizing both performance and cost.

CHAPTER 3

21
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4 Use Case Diagram

This section presents the use case diagram for the TagT system, which illustrates the

interactions between the user and the system's key functionalities. The diagram models a real-

world application, such as at a petrol station, where the system is used to verify vehicle identity

to prevent the misuse of subsidized fuel like RON95. Figure 3.4.1 below shows the use case

diagram.

Figure 3.4.1 TagT System Use Case Diagram

CHAPTER 3

22
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.4.1 presents the use case diagram, which models the interaction between the User and

the TagT system. The user, typically a petrol station attendant, interacts with the system

through a mobile application. The system is designed around key use cases that represent the

functionalities the user can perform to achieve their goals.

• Scan Vehicle and Retrieve Attributes

This is the foundational use case where the user initiates the process by pointing their

mobile device's camera at a vehicle. The system captures the video feed in real-time, sends

frames to a back-end server and processes them using YOLO11n-seg for detection and

Gemini model for attribute recognition. The system then returns the detected license plate

number, car brand and car colour to the user's interface.

• Verify Plate-Vehicle Match

The central goal of the user is to verify if the physical license plate on a vehicle legitimately

belongs to it. This use case allows the user to confirm that the car's brand and colour, as

identified by the system, are consistent with the license plate number. The outcome of this

verification dictates the subsequent actions.

• Log Mismatched Vehicle Data

This use case represents a critical security function. If the verification process reveals a

discrepancy. For example, the license plate is registered to a Proton but is attached to a

Honda. Then the system provides the user with an option to log the incident. This creates a

permanent record of the mismatched data, including the captured image and detected

attributes, for future review or action.

• Generate "Approved" Status

This use case represents the successful outcome of the verification process. If the system

confirms that the license plate number and the vehicle's attributes are a correct match, it

will display a clear visual confirmation, such as an "Approved" status. This signal informs

the user that the vehicle is legitimate and they can proceed with the real-world action of

allowing the driver to pump RON95 fuel.

CHAPTER 3

23
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• View Scan History

The user can access a comprehensive log of all past scans performed by the system. This

history would include details of each vehicle and the timestamp of the scan, which has

provided a valuable tool for auditing and record-keeping.

• Monitor System Performance

The system allows the user to view operational metrics for each scan. This includes data

such as the total processing time, the Gemini API processing time and the API cost. This

functionality is essential for administrative oversight, ensuring the system remains efficient

and cost-effective.

The diagram also illustrates the logical flow and dependencies between use cases using UML

relationships. The <<include>> relationship between "Verify Plate-Vehicle Match" and "Scan

Vehicle and Retrieve Attributes" signifies that a vehicle scan is a mandatory prerequisite for

any verification attempt. Furthermore, the <<extend>> relationships show that both "Log

Mismatched Vehicle Data" and "Generate 'Approved' Status" are optional outcomes that extend

the "Verify Plate-Vehicle Match" use case. These actions are conditional and mutually

exclusive; the system will only trigger one based on the result of the verification.

CHAPTER 4

24
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM DESIGN

This chapter details the evidence-based design process that led to the final architecture of the

TagT system. It begins with a comprehensive investigation into various technologies,

presenting the experimental results that justify the selection of each final system component.

Following this, the chapter specifies the chosen components and details how they interact.

4.1 Preliminary Investigation and Component Selection

Before finalizing the system architecture, a detailed investigation was conducted to evaluate

multiple technologies for each required task. The goal of this preliminary work was to identify

the most accurate, efficient and robust components for the system.

Two primary design philosophies were explored:

1. A traditional modular pipeline using single-task models.

2. A modern and unified approach using an advanced AI model.

4.1.1 Evaluation of Single Task Model Approach

4.1.1.1 License Plate Detection

Ten models from Roboflow were tested in both ideal and challenging scenarios such as

nighttime, raining days, foggy days and different angle, in order to accurately get the results

respectively. The results, shown in Figure 4.1.1.1.1, revealed a range of outcomes across the

models, highlighting their strengths and limitations. For example, the “anpr-w2b2/model/384”

model achieved 90.00% accuracy in ideal conditions but dropped significantly to 74.00% in

various conditions, indicating its sensitivity to environmental factors. Moreover, the “yolov7-

license-plate-detection/model/3” model achieved 84.00% accuracy in ideal conditions and

82.00% in various conditions, showing more consistency but still falling short of optimal

performance for real-time applications.

In contrast, the “license-plate-detection-merged-projects/model/3” model excelled with

90.00% accuracy in ideal conditions and an impressive 94.00% in various conditions,

positioning itself as one of the top performers. Another strong competitor was the “car-plate-

detection-sctyn/model/3” model, achieved 92.00% accuracy in ideal conditions and 96.00%

CHAPTER 4

25
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

accuracy in various conditions, showcasing its ability across various scenarios. In short, after

testing all ten models, the best model for license plate detection was determined to be “car-

plate-detection-sctyn/model/3”, due to its superior accuracy and reliability across both ideal

and various conditions.

Figure 4.1.1.1.1 Results from License Plate Detection Models

4.1.1.2 License Plate Number Recognition

Optical Character Recognition (OCR) is used to covert images of text into a machine-readable

text format. After selecting the license plate detection model, the next step is to test OCR

models for reading the license plate number. There are two OCR models - EasyOCR and

TesseractOCR being used to evaluate. Their performance was measured through key metrics

such as reading accuracy, precision, recall, and F1-score by using a dataset of license plate

images.

The results of EasyOCR revealed significant limitations in its ability to accurately read license

plate numbers as shown in Figure 4.1.1.2.1. These results suggest that EasyOCR struggled in

reading license plate characters from license plate model detection screenshots, possible due to

factors such as varying image quality, font styles, or environmental conditions, leading to a

high number of false positives and unreliable text extraction. On the other hand, TesseractOCR

performed even worse in the license plate reading task.

In conclusion, the performance of EasyOCR and TesseractOCR in reading license plate

numbers showed significant shortcomings as neither achieving the level of accuracy or

CHAPTER 4

26
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

reliability for practical deployment. These results highlight the need for more advanced OCR

techniques or enhanced preprocessing methods to improved text reading accuracy.

Figure 4.1.1.2.1 Inaccurate reading from easyOCR

4.1.1.3 Car Brand Detection and Recognition

Following the evaluation of the license plate detection and license plate number reading

models, the next step shifted to testing Roboflow models for car brand detection and

recognition, which solely focus on a specific set of car brands which are Honda, Mazda,

Perodua, Proton and Toyota. A total of six models were evaluated and their performance was

measured based on accuracy and the range of brands they could recognize. The results, as

shown in Figure 4.1.1.3.1, showed both their potential and their limitations in addressing the

project's requirements for reliable car brand recognition.

The evaluation results highlighted a wide range of performance among the tested models. The

“car-models-ves3u/1” model achieved the lowest accuracy at 54.00%, while the

“carbrand5001/model/1” model achieved a moderate 70.00% accuracy. The “walao/4” and

“walao/5” models performed better, with accuracies of 82.00% and 86.67% respectively. Those

models were all capable of recognizing the selected brands. Meanwhile, the “car-logo-

cyxpe/model/10” and “car-logo-detection-2-2xc2d/1” models were the top performers as both

achieving a perfect 100.00% accuracy. However, “car-logo-cyxpe/model/10” could only

recognize four of the five targeted brands, excluding Mazda, and “car-logo-detection-2-

2xc2d/1” faced technical issues such as the “Request Entity Too Large” error for URLs. This

exposed a significant limitation in their flexible for real-world applications.

CHAPTER 4

27
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

In short, the testing of Roboflow models for car brand detection and recognition provided

valuable insights into their strengths and constraints. Although there were models that achieved

100% accuracy in car brand recognition, they were not capable in real-world situations as they

cannot recognize the other car brands such as Audi, BMW, Mitsubishi and the others. Thus, in

order to achieve the project's goal of reliable and inclusive car brand detection in dynamic

environments, expanding the brand recognition capabilities of the top-performing models or

by improving the accuracy of models with broader coverage is needed.

Figure 4.1.1.3.1 Results from Car Brand Recognition Models

4.1.1.4 Car Detection

Before initiating testing for the car colour recognition model, we focused on testing YOLO

models for car detection first. Five YOLO models, ranging from YOLOv8n to YOLO12n were

evaluated and their performance was measured based on accuracy and processing time in both

ideal and challenging conditions, such as nighttime, raining days, foggy days and side view of

the car. The results, as presented in Figure 4.1.1.4.1, provided a comprehensive view of each

model's capabilities, emphasizing their strengths and trade-offs in meeting the project's

requirements for real-time car detection.

The results show that all YOLO models performed well in terms of accuracy, with varying

degrees of efficiency in processing time. The YOLOv8n model achieves a 94.00% accuracy in

ideal conditions, taking 5.22 seconds, but its accuracy drops to 84.00% in various conditions,

with a slightly reduced processing time of 4.76 seconds. Similarly, YOLOv9t and YOLOv10n

both recorded a higher accuracy of 98.00% in ideal conditions and 84.00% in challenging

conditions. Although they have same accuracy in ideal and challenging conditions, YOLOv10n

is faster than YOLOv9t. In addition, the YOLO11n model shows a balanced performance as it

achieves 98.00% accuracy in ideal conditions within 4.45 seconds and 88.00% in various

CHAPTER 4

28
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

conditions within 4.00 seconds, making it one of the faster models. The top performer in terms

of accuracy is YOLO12n, achieves a perfect 100.00% accuracy in ideal conditions within 5.94

seconds, but its accuracy in various conditions is only 84.00% with a 4.81 second processing

time.

Overall, the testing of YOLO models for car detection demonstrated their strong potential for

accurate car detection and YOLO11n was selected as the most suitable model on car detection.

Figure 4.1.1.4.1 Results from Yolo Models on Car Detection

4.1.1.5 Car Colour Recognition

Once the best model for car detection was identified, we can integrate YOLO11n to detect and

capture images of cars which were then used to test models for car colour recognition. There

were three different methods to recognize car colour which are using the ResNet18 model, an

HSV-based method, and K-means clustering. The performance of each method was assessed

based on accuracy and the results presented in Figure 4.1.1.5.1.

The evaluation results highlighted a significant difference in performance among the tested

methods. The ResNet18 model achieved the highest accuracy at 81.82%, demonstrating its

ability to distinguish car colours compared to the other approaches. In contrast, the HSV-based

method achieved accuracy of 65.91% and K-means clustering achieved accuracy of 56.82%,

indicating that they struggled with consistency, likely due to its reliance on colour space

transformations or its limitations in accurately grouping colours in a way that aligns with

human perception.

To conclude, the testing of methods for car colour recognition emphasized the potential of the

ResNet18 model as the most reliable approach. However, to meet the project’s objective,

ResNet18 model needs to be optimized for better performance.

CHAPTER 4

29
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.1.5.1 Results from Car Colour Recognition Methods

The results from this modular approach revealed a critical insight; while some individual

components performed well, the pipeline as a whole was fragile. Key weaknesses in OCR and

the inflexibility of the brand recognition models made this approach unsuitable for achieving

the project's goals.

4.1.2 Evaluation of Advanced AI Models

As we can see some attribute recognition models did not perform well and struggled to achieve

high accuracy, advanced AI models such as Gemini, Grok, ChatGPT, and Qwen are used to

test car attribute recognition. The evaluation focused on their ability to recognize license plate

numbers, car brands and colours, with performance assessed based on frames resolution, total

frames per second, processing time, and cost usage. The results, show from Figure 4.1.2.1 to

Figure 4.1.2.6, provide valuable insights into their effectiveness for real-time car attribute

recognition.

First, ChatGPT and Qwen were removed from evaluation due to their consistently unreliable

outputs, even after adjusting the input prompts. The correct car details being tested was

“Honda” as car brand; “White” as car colour; “PNN1678” as license plate number. However,

ChatGPT was tested at 1280x720 pixels with 20 frames and identified “Honda” and “White”

correctly but gave inconsistent plate readings like “WGB 6188” and “PWN 1678”. Qwen was

getting worse as it tested at 640x480 pixels with 25 frames and predicted varying brands which

are “Honda”, “Nissan”, and “Ford”, colours which are “Red”, “Black”, and “Blue”, and plates

which are “V345ABC”, “T678DEF”, and “K456GHI”, making both unsuitable for the project.

With ChatGPT and Qwen excluded, the testing focused on Gemini and Grok. At first, Gemini

and Grok were tested with a video in the first one second at a resolution of 640x480 pixels and

20 frames per second (FPS). Gemini identified the car brand as “Honda”, colour as “White”,

CHAPTER 4

30
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

and the plate as “PAN1678”, with a processing time of 3.78 seconds and a cost of $0.000329;

while Grok, under the same conditions, also recognized “Honda” and “White” and the plate

reading as “PNP1678”, taking 9.33 seconds and at a cost of $0.001065. Due to both models

could not recognize the plate number correctly, increasing the frame rate to 25 FPS at the same

resolution is needed. Then, both models have correctly identified the plate as “PNN1678”

alongside “Honda” and “White”, with Gemini at 3.45 seconds and $0.000410, and Grok at 9.50

seconds and $0.001328.

Next, increase the resolution to 1280x720 pixels while maintaining 25 FPS, Gemini retained

accurate results at 6.51 seconds and $0.000873, while Grok could not achieve accurate result.

From the Figure 4.1.2.2, show that Grok could not achieve accurate result when the frames

resolution is higher than 640x480 pixels. Nevertheless, Gemini still retained accurate results

even though the resolution is 1280x720 pixels with 5 FPS, by using 2.45 seconds and

$0.000199. Moreover, Gemini can achieve accurate result when the resolution is 320x240

pixels and 5 FPS, by using 1.76 seconds and $0.000049, as show in Figure 4.1.2.1. This

effectively reduces the time used and cost effective.

Figure 4.1.2.1 Results from Gemini

Figure 4.1.2.2 Results from Grok

As using Gemini and Grok require API cost, the way to reduce numbers of frames before

sending to Gemini and Grok is needed. Hence, YOLO was initially integrated to address this

issue. According to Figure 4.1.2.3 and Figure 4.1.2.4, 16 frames at 640x480 pixels resolution

were sent to Gemini and Grok and both of them have accurately identified “Honda”, “White”,

and “PNN1678”. Gemini took 3.68 seconds and used $0.000268, while Grok took 6.83 seconds

and used $0.000879. The results show a reduction in frames processed and costs compared to

CHAPTER 4

31
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

the results without using YOLO models. Alternatively, Grok could not correctly recognize the

plate number once the resolution has decreased. However, Gemini still achieved correct

recognition when the resolution has been decreased to 320x240 pixels and only 5 frames were

being sent to Gemini, by using 2.28 seconds and a cost of $0.000052.

Figure 4.1.2.3 Results from Gemini and YOLO

Figure 4.1.2.4 Results from Grok and YOLO

To further reduce processing time and costs, ResNet18 was integrated and aimed to minimize

number of frames before performing attribute recognition. ResNet18 used cosine similarity

with a threshold of 0.95 to evaluate the results. Based on Figure 4.1.2.5, Gemini has achieved

good result when the resolution was at 320x240 pixels and 4 frames were being sent to Gemini,

by using 1.92 seconds and at a cost of $0.000049. While Grok could not accurately recognize

the plate number even though the cosine similarity threshold has changed to 0.97, as shown in

Figure 4.1.2.6.

 In short, Gemini showed better consistency and efficiency with YOLO and ResNet18,

offering the best balance of accuracy, speed, cost, and robustness across different conditions.

CHAPTER 4

32
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.2.5 Results from Gemini, YOLO and Resnet18

Figure 4.1.2.6 Results from Grok, YOLO and Resnet18

CHAPTER 4

33
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.3 Final Design Decision

The extensive preliminary work demonstrated that a traditional, multi-model pipeline was not

viable due to critical weaknesses in areas like OCR and the inflexibility of specialized car brand

recognition models. Instead, a hybrid architecture was determined to be the optimal solution.

This final design leverages the YOLO11n model for fast and efficient car detection and the

Gemini model for accurate and robust multi-attribute recognition.

Furthermore, the preliminary investigation revealed a critical trade-off between input

resolution, cost and recognition reliability. While a lower resolution of 320x240 offered the

fastest processing times and lowest costs in Gemini, its accuracy was inconsistent across tests.

However, a resolution of 640x480 was found to provide a more robust and reliable input for

the Gemini model, consistently yielding correct results.

Therefore, the final system design incorporates not only the selected models but also a key

configuration directive: all images before sending to the Gemini API are to be standardized to

a 640x480 resolution. This approach combines the strengths of both technologies and

configures them in a way that prioritizes accuracy and reliability, creating a system that is both

effective and efficient.

CHAPTER 4

34
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Block Diagram

Based on the findings from the preliminary investigation, a hybrid client-server architecture

was designed. This section presents the system block diagram, which provides a high-level

overview of the final system's structure and the flow of data between its major components.

The system is designed to capture and process real-time video frames from a mobile device to

accurately identify a car's license plate number, car brand and colour. It consists of three

primary components: a user, a mobile device application and a back-end server. Each

component within the components are performing a specific role within the data capture and

analysis pipeline. Figure 4.2.1 below illustrates the system block diagram of the TagT system.

Figure 4.2.1 TagT System Block Diagram

Based on Figure 4.2.1, the process begins with the User, who initiates a scan by sending a "User

Command" to the Mobile Device (iOS App). Within the app, the Camera Controller captures

a high-resolution image from the video feed. This image is then handled by the Network Client,

which prepares and transmits the image data to the Back-End Server via an HTTP POST

Request.

The Back-End Server, built with Python and Flask, receives the request at its Web API endpoint.

The "Raw Image Data" is passed directly to the YOLO Model. YOLO model is responsible to

perform car detection and segment out the car from the full image, producing a "Segmented

Car Image" that isolates the car from its background.

This segmented image is then forwarded to the Image Processing module. At this stage, quality

checks such as filtering for blurriness and ensuring the car's area is sufficient are performed on

the smaller, cropped image for maximum efficiency. The image is also resized to a standard

CHAPTER 4

35
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

resolution, resulting in a "Filtered and Resize Image". This final, optimized image will be send

to the Gemini Model. The advanced vision model is responsible to analyse the image to

recognize and extract the required attributes: license plate number, car brand and colour.

Once the analysis is complete, the back-end server compiles the extracted attributes, along with

performance metrics like API cost and processing time into a structured format. This data is

sent back to the Mobile Device's Network Client as an HTTP Response containing a JSON

payload. Finally, the User Interface on the mobile app parses this data and updates the screen

to "Display Results" to the user in real-time.

This client-server architecture enables the system to leverage a lightweight mobile front-end

for user interaction and data capture, while offloading all computationally intensive AI

processing to a more powerful back-end. This design provides a scalable and efficient solution

for real-time car identification.

CHAPTER 4

36
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.1 Breakdown of System Block Diagram

To better understand how each component functions within the system, the key modules from

the system block diagram are summarized below:

• User

The User is the primary actor who interacts with the system. They initiate the car

identification process by issuing a command through the mobile application and view the

final results on the device's screen.

• Mobile Device (iOS App)

The mobile device serves as the front-end user interface for the TagT system. It is

responsible to let user interacts with it and capture the real-time image data. It contains

three core software components:

o User Interface

The User Interface is built with Apple's SwiftUI framework, the UI provides the

real-time camera preview, control buttons for starting and stopping the analysis, and

a clear display for the final results, including the vehicle's attributes and

performance metrics.

o Camera Controller

The Camera Controller uses the native AVFoundation framework to manage the

device's camera. It is responsible for configuring the video capture session and

providing the high-resolution image frame that is used for analysis.

o Network Client

The Network Client handles all communication with the back-end server. It takes

the image frame captured by the camera, packages it into an HTTP POST request

and transmits it to the server. It also receives the JSON response from the server

and passes the data to the User Interface for display.

CHAPTER 4

37
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Web API

The Web API is built with Python and the Flask framework, serves as the entry point for

the back-end server. It listens for incoming HTTP requests from the mobile client, validates

that an image file is present and passes the raw image data into the processing pipeline. At

the end of the pipeline, it formats the final results into a JSON object and sends it back to

the client as the HTTP response.

• YOLO Model

Upon receiving the raw image data from the Web API, the YOLO11n-seg model is the first

processing stage. Its primary function is to perform efficient object detection on the entire

image to locate any cars. Once a car is identified, the model generates a segmentation mask

to precisely crop the car from its background, ensuring that subsequent processing stages

only focus on the relevant object.

• Image Processing Module

This module receives the segmented car image from the YOLO model and is responsible

for quality control and standardization. It performs two key filtering checks: it calculates

the image's Laplacian variance to discard blurry images and verifies that the car's area is

above a minimum percentage threshold. If the image passes these checks, it is resized to a

standard resolution of 640x480 pixels using OpenCV. This ensures that the input for the

final recognition model is consistent, which improves both performance and accuracy.

• Gemini Model

The filtered and resized image is finally passed to the Gemini 1.5 Flash model for attribute

recognition. This multimodal generative AI model analyses the visual content of the image

based on a specific text prompt. Its task is to identify and extract the car's key attributes:

license plate number, car brand and colour. The structured data extracted by this model

constitutes the final output of the analysis pipeline.

CHAPTER 4

38
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 System Components Specifications

This section provides a detailed breakdown of the hardware and software components used in

the final implementation of the TagT system.

4.3.1 Hardware Components

To implement the system, two main hardware components are required:

• Mobile Device

An iPhone is used as the front-end client. It runs the mobile application, uses its camera to

capture the live video feed and displays the final analysis results and system performance

metrics to the user.

• Back-end Server

A personal computer is used to host the back-end system. The machine runs the Python

API and performs all the heavy processing tasks, including car detection, image quality

checks and car attribute recognition using the deployed AI models. It receives images from

the mobile app and sends back a JSON response with the results.

4.3.2 Software Components

The software architecture consists of a front-end application and a back-end server that

communicate over a network. The key software components are as follows:

• SwiftUI (Front-end User Interface)

The mobile application is built as a native iOS app using Apple's SwiftUI framework. It

provides the complete user interface, which includes the live camera view, start and stop

controls, and the display that shows the detected car details, scan history and processing

statistics.

• AVFoundation (Camera Control)

Within the iOS application, the AVFoundation framework is used to access and control the

device's camera. It manages the live video capture session and provides the image frames

that are sent to the back-end server for analysis.

CHAPTER 4

39
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Python with Flask (Back-end API)

The back-end is a web API created using Python and the Flask framework. It provides a

simple endpoint that receives image files from the front-end app via HTTP requests. Flask

handles the network communication, routes the data to the processing script and returns the

final results.

• YOLO11n-seg (Car Detection)

The YOLO11n-seg model is used on the server to perform initial car detection and

segmentation. When the back-end receives an image, this model identifies if a car is present

and creates a segmentation mask to isolate the car from its background, ensuring only the

relevant part of the image is analyzed further.

• Google Gemini 1.5 Flash (Car Recognition)

The segmented image of the car is then sent to the Gemini 1.5 Flash model. This generative

vision model analyzes the image and based on a specific prompt, it extracts the car's

attributes: license plate number, car brand and colour.

• OpenCV and NumPy (Image Processing)

These Python libraries are used for various image manipulation tasks on the back-end.

OpenCV is used to decode the image, rotate it correctly and calculate its blurriness through

Laplacian variance for quality filtering. NumPy is used for efficient numerical operations

on the image data arrays.

CHAPTER 5

40
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1 Hardware Setup

The implementation and operation of the TagT system rely on two primary hardware

components: a back-end server for development and processing, and a mobile client device for

real-time operation. This section details the specifications of the hardware used for this project.

5.1.1 Back-End Development Server

The back-end server is the machine where the Python-based API was developed, tested and

run. It is responsible for handling all computationally intensive tasks, including running the

YOLO and Gemini models for car analysis. The specifications for the development server are

provided in Table 5.1.1.1.

Description Specifications

Model Lenovo IdeaPad 5 Pro 16ARH7

Processor AMD Ryzen 7 6800HS

Operating System Windows 11

Graphic NVDIA GeForce RTX

Memory 16GB RAM

Storage 474GB

Table 5.1.1.1 Specifications of the Back-End Development Server

CHAPTER 5

41
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1.2 Front-End Client Device

The front-end client is the mobile device used for the real-world deployment and operation of

the TagT system. It is responsible for running the native iOS application, capturing the live

video feed via its camera and displaying the final analysis results to the user. The specifications

for the mobile device are provided in Table 5.1.2.1.

Components Specifications

Model iPhone 12 Pro

Operating System iOS 18.6.2

System Chip A14 Bionic Chip

Storage 128GB

RAM 6GB

Table 5.1.2.1 Specifications of the Front-End Client Device

5.2 Software Setup

This section describes the software environments, libraries and frameworks used to implement

the TagT system. The implementation is divided into two main components: a native iOS front-

end for user interaction and video capture and a Python-based back-end for car detection and

recognition.

5.2.1 Back-End Environment Setup

The back-end was implemented as a real-time processing service written in Python. It runs on

a local server and is responsible for receiving an image from the mobile device, performing all

AI-driven analysis and returning the structured results.

Key software components used in the back-end environment include:

• Flask for creating the web API connect to the front-end.

• Ultralytics (YOLO) for load and run the yolo11n-seg.pt model for car detection and

segmentation.

• google-generativeai (Gemini) for interacting with the Gemini 1.5 Flash API for car attribute

recognition.

CHAPTER 5

42
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• OpenCV for image filtering operations.

• NumPy for image resizing operations.

The back-end workflow begins when the Flask API receives an image. This image is

immediately passed to the YOLO model to detect and segment a car. The resulting cropped

image is then processed by OpenCV to check its quality and resize it to a standard resolution.

Finally, the prepared image is sent via the Google client library to the Gemini model for

analysis. The extracted details are formatted into a JSON object by Flask and returned to the

front-end. This server-side architecture offloads all heavy computation, allowing the mobile

client to remain lightweight and responsive.

5.2.2 Front-End Environment Setup

The front-end is a native iOS application developed in Swift using Apple's Xcode IDE. The

application provides the user interface, manages the device's camera, and handles all

communication with the back-end server.

Core software frameworks used in the front-end environment include:

• SwiftUI for building the user interface, including the live camera view, control buttons and

results display.

• AVFoundation for accessing and managing the device camera for capturing high-resolution

video frames.

• Foundation for handling all network communication.

When the user initiates a scan via the SwiftUI interface, the AVFoundation framework captures

the current video frame. This image is then sent to the back-end server using a URLSession

HTTP request. The application waits for the server to respond with a JSON payload, which it

then decodes into a Swift data structure. This data is used to update the SwiftUI views in real-

time, displaying the identified license plate number, car brand and colour to the user. This

native application design ensures a smooth user experience and efficient use of the device's

hardware.

CHAPTER 5

43
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Setting and Configuration

This section describes the specific settings and configuration parameters required for the

successful operation of the TagT system. These settings control the behaviour of the image

processing pipeline, the AI models and the communication between the front-end client and

the back-end server.

5.3.1 Back-End Server Configuration

The Python-based back-end server is configured through a set of constants defined directly in

the main application script. Upon execution, the server logs its complete initialization sequence

to the console. This log, shown in Figure 5.3.1.1, confirms that all key configurations are loaded

and AI models are ready before the server begins listening for requests.

Figure 5.3.1.1 TagT Server Initialization

As illustrated in the log, the startup process displays the critical operational parameters that

have been configured. It then confirms the successful loading of the local YOLO model and

the initialization of the Gemini API.

Key configured parameters are as follows:

• MIN_CAR_AREA_PERCENT = 15

A vehicle must occupy at least 15% of the total image area.

• BLUR_THRESHOLD = 120.0

The Laplacian variance of the cropped image must be above this value.

CHAPTER 5

44
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• TARGET_CROP_RESOLUTION = (640, 480)

Sets the standard image size to 640x480 pixels.

• Gemini Model Prompt

A specific, structured text prompt is configured to instruct the Gemini model on how to

format its response, ensuring the output can be reliably parsed.

5.3.2 Front-End and Network Configuration

The front-end iOS application requires configuration to connect to the back-end server and to

access the device's hardware.

• Network Connectivity Configuration

A key requirement is establishing a stable network connection between the front-end

application and the back-end server. The main user interface, shown in Figure 5.3.2.1,

provides a real-time status indicator to confirm this connection.

Figure 5.3.2.1 Main Page User Interface with Details

The "Online" status, along with the measured network latency, visually confirms that the

front-end has successfully connected to the server's configured baseURL. During

development, this was achieved by utilizing ngrok, a reverse proxy service that creates a

secure, publicly accessible URL for the local server, which was then configured within the

application's networking layer.

CHAPTER 5

45
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Hardware Access Configuration

The second essential configuration involves hardware access, which is managed by the iOS

operating system. When the "Start" button is pressed for the first time, the application must

request permission from the user to access the device's camera, as depicted in the system

dialog shown in Figure 5.3.2.2.

Figure 5.3.2.2 Camera Access

This is a mandatory setup step required by iOS. The user must grant this permission for

capturing video frames for analysis. Once permission is granted, it is saved by the operating

system for all future sessions.

CHAPTER 5

46
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operation

This section demonstrates the operational workflow of the TagT system from the user's

perspective. The process is illustrated with screenshots of the native iOS application,

showcasing the user interface at each key stage of a typical analysis cycle, from starting the

camera to viewing the final results.

Step 1: Application Launch and System Standby

The system's operation begins when the user launches the application. The main user interface

is displayed, as shown in Figure 5.4.1. In this standby state, the application confirms its

connection status to the back-end server as it shows "Online" on the top right hand side. The

"Recent Detections" and "Session Stats" panels are initially empty.

Figure 5.4.1 Main Page User Interface

CHAPTER 5

47
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Step 2: Activating the Live Camera Feed

The user presses the "Start" button to begin the live detection session. The interface transitions

to a full-screen, real-time video feed from the device's camera as shown in Figure 5.4.2. In this

mode, the application begins to automatically and continuously stream frames to the back-end

server for analysis in the background. The user's only task is to keep the target car in the frame.

Figure 5.4.2 Camera Open Interface

Step 3: Autonomous Frame Filtering and Analysis

The back-end server autonomously evaluates each incoming frame against the pre-configured

quality thresholds for blurriness and car area. Most frames are instantly discarded. When a

high-quality frame that meets the criteria is identified, the system automatically initiates the

full analysis pipeline. During this brief processing period, the front-end provides feedback to

the user by displaying an "Analysing Car..." indicator as shown in Figure 5.4.3.

Figure 5.4.3 Car is Analysing

CHAPTER 5

48
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Step 4: Displaying a Successful Detection

Once the back-end completes its analysis, which includes segmenting the car as shown in

Figure 5.4.4, the results are sent back to the application. The system then updates the UI in two

ways:

1. A temporary Results Overlay appears with the identified attributes and performance metrics

as shown in Figure 5.4.5.

2. The main user interface is updated in the background with a new entry in "Recent

Detections" and revised "Session Stats" as shown in Figure 5.4.6.

The system is designed to intelligently handle continuous video. If the same car remains in

view, new overlays will not appear in order to prevent redundant notifications. A new result is

only shown when a different car is detected.

Figure 5.4.4 Segmented Car

Figure 5.4.5 Results Display

CHAPTER 5

49
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.6 Car Details stored in Recent Detections

Step 5: Reviewing Scan Details

At any time, the user can press "Stop" to return to the main menu. From there, they can review

the session's findings by tapping on an entry in the "Recent Detections" list. This opens a

dedicated detail view as shown in Figure 5.4.7, which presents all recorded information for that

scan, including a larger thumbnail and a comprehensive list of performance metrics.

CHAPTER 5

50
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.7 Car Details User Interface

This automatic operational flow provides a seamless "point-and-shoot" user experience,

delivering powerful real-time car analysis without requiring any manual triggering from the

user.

CHAPTER 5

51
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Implement Issues and Challenges

During the development and integration of the TagT system, several technical challenges were

encountered. Each issue required a strategic solution, from re-architecting the core logic to

implementing specific tools, to ensure the final system was fast, accurate and reliable. The key

challenges are detailed below.

• Failure of Traditional OCR for License Plate Recognition

The initial system design depended on a modular pipeline using Optical Character

Recognition (OCR) to read license plates. However, both EasyOCR and TesseractOCR

models failed to deliver reliable or accurate results from the detected plate images. This

poor performance was a critical failure point, making the entire modular approach unviable.

This challenge was overcome by fundamentally re-architecting the system to use the

Gemini model, whose powerful multimodal capabilities could perform recognition without

a separate, fragile OCR step.

• Inflexible and Unscalable Brand Recognition

The second weakness in the modular approach was the car brand recognition models. While

some pre-trained models from Roboflow were accurate for a small, specific set of brands,

they were unable to recognize any car outside their limited training data. This lack of

scalability made them unsuitable for a real-world application. The pivot to the Gemini

model also solved this issue as its vast training data provided the ability to recognize a

much wider and more diverse range of car brands.

• High Latency and API Costs from Continuous Video Analysis

The third challenges of the chosen client-server architecture was the potential for high

latency and significant operational costs associated with making API calls to Gemini for

every video frame. Continuously streaming video for analysis was not feasible. This was

addressed by implementing a hybrid architecture. A fast, locally-run YOLO11n-seg model

was integrated on the back-end to act as an intelligent pre-filter, analysing frames to detect

and segment a car before any data was sent to the cloud. This ensured that an API call was

only made for a single, high-quality image of a confirmed car, dramatically reducing both

cost and processing time.

CHAPTER 5

52
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Client-Server Network Connectivity in a Development Environment

The last challenges was establishing a network connection between the physical iPhone

client and the Python server running on a local development machine. Standard local

networking does not allow external devices to connect directly. This was resolved by using

ngrok, a reverse proxy service. Ngrok generated a secure, public URL that tunneled traffic

directly to the local Flask server, creating a stable and reliable communication channel that

was essential for rapid front-end development and testing.

5.6 Concluding Remark

This chapter detailed the full implementation of the TagT system. It outlined the hardware and

software foundations, specified the critical configuration parameters that govern the system's

behaviour and provided a step-by-step walkthrough of its real-world operation. The key

challenges encountered during development and their solutions were also discussed. The

outcome of this implementation phase is a robust, functional prototype of the ANPR

application, which now forms the basis for the comprehensive system evaluation and

performance analysis presented in Chapter 6.

CHAPTER 6

53
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

This chapter presents a comprehensive evaluation of the fully implemented TagT system. The

primary objective is to quantitatively measure the performance of the final prototype, focusing

on two key areas: the efficiency of its hybrid architecture and its recognition accuracy across a

variety of real-world scenarios. The chapter details the performance metrics, testing setups, and

final results, followed by a discussion of the project's challenges and an evaluation of how the

final system met its initial objectives.

6.1 System Testing and Performance Metrics

To systematically evaluate the performance of the implemented TagT system, a set of specific

performance metrics were defined. These metrics are divided into two categories to align with

the two distinct evaluations performed in this chapter: Efficiency Metrics to assess the

performance of the system's architecture, and Accuracy Metrics to assess the quality of its

recognition results in real-world conditions.

6.1.1 Efficiency Metrics

These metrics were used in the Section 6.2.1 Architectural Efficiency Evaluation to compare

the performance of the implemented hybrid architecture against a baseline approach.

• Gemini API Time

It is measured in seconds and a specific duration of the API call to the Gemini model. This

metric was chosen over total processing time to isolate and compare the performance of the

most time-intensive step in both architectures.

• API Cost

It is measured in USD and the direct monetary cost reported by the Gemini API for a single

analysis, calculated based on the number of input and output tokens.

CHAPTER 6

54
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.2 Accuracy Metrics

These granular metrics were used in the Section 6.2.3 Real-World Performance Evaluation to

measure the success of the attribute recognition stage. For this evaluation, it is assumed that

the YOLO model has successfully detected a car, as its high performance was validated in

Chapter 4.

• Overall Success Rate

This is the primary top-level metric. A detection attempt is classified as a "Success" only

if all three attributes: License Plate Number, Car Brand and Colour are correctly identified

in a single analysis. This measures the end-to-end reliability of the recognition pipeline.

• Attribute-Specific Accuracy

To provide a more detailed breakdown of performance, the accuracy for each individual

attribute was also calculated across all test cases within a scenario. This helps to identify

which part of the recognition task is most challenging.

o Car Brand Accuracy

The percentage of tests where the car's brand was correctly identified.

o Car Colour Accuracy

The percentage of tests where the car's colour was correctly identified.

o License Plate Accuracy

The percentage of tests where the license plate number was correctly identified.

CHAPTER 6

55
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Testing Setup and Results

The evaluation was divided into two distinct tests. The first test was designed to validate the

efficiency of the system's architecture, while the second was designed to assess its accuracy

and robustness in real-world conditions.

6.2.1 Architectural Efficiency Evaluation – Testing Setup

This evaluation was designed to quantitatively justify the final hybrid architecture by

measuring its efficiency gains in processing time and API cost against a baseline, "brute-force"

approach.

This test was conducted using a dataset of nine pre-recorded videos that represent a range of

typical driving and environmental conditions. Each video was processed using two distinct

methodologies:

1. Baseline Method (Screenshot and send frames to Gemini)

For this method, video frames were sampled at a high rate which is 25 FPS and sent

sequentially to the Gemini API for analysis without any pre-filtering or resizing. This

represents a simple but computationally expensive approach.

2. Implemented Hybrid Method (Screenshot will be optimized by YOLO and ResNet

before send to Gemini)

For this method, the same videos were processed by the final TagT system. The back-end

uses a local YOLO11n-seg model to detect cars and a ResNet18 model with cosine

similarity to filter out duplicate or near-identical frames. This intelligent pre-filtering

pipeline selects only a small number of unique, relevant frames to be resized and sent to

the Gemini API for analysis.

For each of the nine videos, two key performance metrics were measured for both

methodologies:

1. The Gemini API Time

Time taken for the Gemini API call to complete.

2. The Total API Cost

Cost calculated from token usage while calling Gemini API.

CHAPTER 6

56
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2 Architectural Efficiency Evaluation - Results

The evaluation was conducted by processing a dataset of nine videos using both the

Implemented Hybrid Method and the Baseline Method. The number of frames selected by each

method for submission to the Gemini API was recorded and is presented in Table 6.2.2.1.

Table 6.2.2.1 Results of Number of Frames send to Gemini

The data in Table 6.2.2.1 reveals the efficacy of the Hybrid Method's intelligent pre-filtering

pipeline. By utilizing YOLO for object detection and ResNet18 for similarity analysis, the

Hybrid Method submitted a total of only 174 frames across all nine videos. In contrast, the

Baseline Method, which sending frames at a high frequency, submitted 2296 frames. This

represents a 92.4% reduction in the number of frames requiring analysis by the Gemini API.

Furthermore, this substantial reduction in submitted data has a direct and significant impact on

both API processing time and cost, as visually represented in the comparative charts Figure

6.2.2.1.

CHAPTER 6

57
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1 Charts of Comparison between Hybrid Method and Baseline Method

As shown in Figure 6.2.2.1, the Hybrid architecture yielded substantial performance gains:

• Gemini API Time

The total time spent waiting for the Gemini API to process all requests was 34.26

seconds for the Hybrid Method, compared to 275.53 seconds for the Baseline Method. This

constitutes a 87.57% reduction in processing latency, confirming that submitting fewer,

smaller frames is significantly faster.

• API Cost

The total operational cost for the Hybrid Method was $0.003631, while the Baseline

Method was $0.044687. This represents a 91.87% reduction in API costs, directly

attributable to the lower token count resulting from the reduced number of submitted frames.

CHAPTER 6

58
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

To conclude, the architectural evaluation provides unequivocal, quantitative evidence that the

implemented Hybrid Method is vastly superior to a baseline approach. By intelligently pre-

filtering frames to reduce data volume by over 90%, the system achieves dramatic reductions

in both processing time – 87.57% and operational cost – 91.87%. This confirms that the chosen

architecture is a highly effective and optimized solution for a scalable, real-world application.

6.2.3 Real-World Performance Evaluation – Testing Setup

This evaluation was designed to assess the accuracy and robustness of the final, fully

implemented TagT system across a range of real-world operational conditions.

This evaluation was conducted in the field using the final iOS application running on an iPhone

12 Pro. The system's performance was tested in real-time across eight distinct scenarios, which

combined different environmental conditions: Daytime, Night-time, Rainy Day, Car Park Light

and car viewing angles: Front and Side, as detailed in Table 6.2.3.1.

Table 6.2.3.1 Eight Distinct Scenarios

To ensure a robust and reliable assessment of accuracy, a total of 20 detection attempts were

made for each of the eight scenarios, resulting in 160 tests overall. For each attempt, a detection

was marked as a "Success" only if the system correctly identified all three car attributes:

License Plate Number, Car Brand and Colour. The final accuracy for each scenario was then

calculated as the percentage of successful detections.

CHAPTER 6

59
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The diversity of the testing scenarios is illustrated in Figures 6.2.3.1 and Figure 6.2.3.2. These

figures present a representative sample of the real-world detections, highlighting the system's

performance across various vehicles and challenging conditions.

Figure 6.2.3.1 Day Time and Night Time Scenarios

Figure 6.2.3.2 Rainy Day and Car Park Light Scenarios

CHAPTER 6

60
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.4 Real-World Performance Evaluation – Results

The overall performance of the TagT system across the eight real-world scenarios is

summarized in Table 6.2.4.1. This table presents both the Overall Success Rate and the

granular, Attribute-Specific Accuracy for each test case. A more detailed qualitative analysis

for each environmental condition follows.

Condition
Viewing

Angle

Overall

Success

Rate

License

Plate

Accuracy

Car

Brand

Accuracy

Car

Colour

Accuracy

Daytime

Front
90%

(18/20)

95%

(19/20)

100%

(20/20)

95%

(19/20)

Side
85%

(17/20)

95%

(18/20)

100%

(20/20)

100%

(20/20)

Night-time

Front
80%

(16/20)

95%

(19/20)

95%

(19/20)

90%

(18/20)

Side
80%

(16/20)

85%

(17/20)

100%

(20/20)

95%

(19/20)

Rainy Day

Front
90%

(18/20)

100%

(20/20)

95%

(19/20)

95%

(19/20)

Side
85%

(17/20)

85%

(17/20)

100%

(20/20)

100%

(20/20)

Car Park Light

Front
85%

(17/20)

90%

(18/20)

100%

(20/20)

95%

(19/20)

Side
75%

(15/20)

85%

(17/20)

95%

(19/20)

95%

(19/20)

Average - 83.75% 91.25% 98.13% 95.63%

Table 6.2.4.1 Results of Eight Distinct Scenarios

The evaluation results, summarized in Table 6.2.4.1, provide a quantitative validation of the

TagT system's performance. The system achieved a strong average Overall Success Rate of

83.75% across all 160 test cases. The attribute-specific data reveals that the system's core visual

CHAPTER 6

61
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

recognition is exceptionally robust, while license plate reading remains the most significant

challenge.

1. Performance in Optimal Conditions (Daytime and Car Park)

In well-lit environments such as daytime and car park lighting, the system demonstrated

excellent performance. The Car Brand Accuracy was consistently near-perfect, averaging

98.75% across these four scenarios. This indicates the Gemini model's powerful ability to

recognize car brands from various angles. Besides, the Car Colour Accuracy was also very

high, averaging 96.25%. The Overall Success Rate in these conditions averaged 83.75%,

with failures almost exclusively linked to the License Plate Accuracy which is averaging

91.25%. This confirms that under good lighting, the system is highly reliable however its

performance is primarily limited by the inherent challenges of reading license plate number

from varied perspectives. Figure 6.2.4.1 has shown some images to represent sample of

detections in well-lit conditions.

CHAPTER 6

62
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.4.1 Representative Sample of Detections in Well-Lit Conditions

2. Performance in Challenging Conditions (Night-time and Rainy Day)

The system's robustness was further evaluated under more adverse conditions, where it

continued to demonstrate impressive performance. The Car Brand Accuracy remained

remarkably high, averaging 97.5% across these four challenging scenarios, showcasing the

Gemini model's powerful resilience to poor lighting and environmental interference.

Similarly, the Car Colour Accuracy was strong, averaging 95%. The License Plate

Accuracy remained high at an average of 91.25%, confirming that the system can

effectively handle challenges like low light and rain. The Overall Success Rate in these

challenging conditions averaged 83.75%, which is identical to the performance in optimal

conditions. This surprising and powerful result indicates that while individual attributes can

be slightly affected by adverse conditions, the system maintains an extremely high level of

operational reliability. Figure 6.2.4.2 has shown some images to represent sample of

detections in challenging conditions.

CHAPTER 6

63
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.4.2 Representative Sample of Detections in Challenging Conditions

CHAPTER 6

64
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The data from the comprehensive real-world evaluation leads to two clear and significant

conclusions regarding the performance of the TagT system.

1. Core Visual Recognition is Extremely Robust

The system's ability to identify a car's brand and colour is its most powerful and reliable

feature. The average Car Brand Accuracy of 98.13% is near-perfect, demonstrating the

Gemini model's exceptional capability to recognize car brands from various angles and in

diverse lighting conditions. Similarly, the Car Colour Accuracy of 95.63% is very high,

showing only minor sensitivity to challenging lighting. This validates the choice of the

Gemini model for its powerful, holistic visual analysis capabilities, which are highly

resilient to environmental changes.

2. Attribute Recognition Accuracy as the Primary Performance Driver

The Overall Success Rate, which requires all three attributes to be correct, serves as the

strictest measure of end-to-end performance. The system achieved a strong average of

83.75% in this metric. This overall rate is primarily influenced by the performance of the

two most challenging recognition tasks, which are License Plate Accuracy and Color

Accuracy. While both accuracy percentages are high, failures in either of these categories

contributed to the final success rate. The data indicates that License Plate Recognition is

highly accurate, however, it is the most sensitive to environmental factors like viewing

angle, lighting and physical obstructions. Therefore, it represents the most significant

opportunity for future improvement.

In conclusion, the TagT system has been successfully validated as a highly effective proof-of-

concept. It achieves its goal of multi-attribute car recognition with a high degree of success,

achieving an average Overall Success Rate of 83.75% across 160 demanding real-world tests.

The granular performance data not only proves the system's current capabilities but also

provides a clear and data-driven path forward for future refinements.

CHAPTER 6

65
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Project Challenges

Throughout the development and evaluation of the TagT system, several key challenges were

encountered that influenced the final design and highlighted important considerations for real-

world deployment. Overcoming these challenges through iterative design and testing was

crucial to achieving the project's objectives.

One of the primary challenges was the inherent unreliability of a traditional, multi-model

ANPR pipeline. The initial design, which relied on separate models for object detection, OCR

and each car attribute recognition, has been proved to be unfeasible. The OCR models for

license plate reading performed very poorly and the specialized car brand recognition models

lacked the scalability for real-world use. This fundamental design flaw was addressed by re-

architecting the entire system using a Gemini model. This pivot completely bypassed the need

for a fragile OCR step and provided the necessary flexibility for recognizing a wide variety of

car brands.

A second major challenge was mitigating the high latency and operational costs associated with

a cloud-based AI model. Sending a continuous video stream directly to the Gemini API was

not a viable solution. This was overcome by designing a hybrid architecture. A lightweight

YOLO11n-seg model was implemented on the back-end to act as an intelligent pre-filter. This

module analyses frames locally to detect and segment cars first, ensuring that an API call is

only made for a single, high-quality image of a confirmed target. This design dramatically

reduced both API costs and overall processing time.

Finally, the system's performance was significantly impacted by environmental factors such as

lighting and viewing angle. In low-light, night-time conditions, the colour of streetlights often

caused inaccurate car colour classifications. Similarly, sharp viewing angles could distort

license plate characters, leading to recognition errors. While no system can eliminate all

environmental variability, this was mitigated by configuring the system to prioritize reliability

by using a 640x480 resolution and by acknowledging in the final evaluation that the system

performs optimally in frontal-view scenarios, which aligns with its primary intended use cases.

The solutions and design choices applied in response to these challenges resulted in a more

robust, efficient and cost-effective system.

CHAPTER 6

66
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Objectives Evaluation

This section reviews the outcomes of the TagT project in relation to the primary objectives

established in Chapter 1. The comprehensive evaluation confirms that the project was

successful in achieving its goals of enhancing ANPR security, designing an efficient and cost-

effective architecture, and delivering a robust, user-friendly prototype. The final implemented

system effectively addresses the technical, security and operational requirements outlined at

the project's outset.

The core technical objective of enhancing ANPR security through multi-attribute recognition

was fully achieved. The system successfully integrates a YOLO model for detection with a

Gemini model for recognition, a combination proven to be highly effective. The Real-World

Performance Evaluation demonstrated the system's ability to accurately identify not just a car's

license plate number, but also its brand and colour with high fidelity, achieving an average

Brand Accuracy of 98.13% and Colour Accuracy of 95.63%. By providing this multi-faceted

data, the system directly fulfils its primary security goal of creating a tool to combat fraudulent

activities like plate-swapping, which rely on the anonymity of single-point identification.

Furthermore, the project successfully delivered an architecture that is both efficient for real-

time processing and cost-effective. The Architectural Efficiency Evaluation provided

quantitative proof of this, showing that the implemented hybrid design is significantly faster

and cheaper than a baseline approach, achieving a 87.57% reduction in API processing time

and a 91.87% reduction in API costs. This result confirms that the system meets its objective

of being a financially sustainable solution suitable for dynamic, real-world operational

environments.

Finally, a robust and user-friendly prototype was successfully delivered and validated. The

system's reliability was proven across eight varied and challenging environmental conditions,

where it maintained a strong average Overall Success Rate of 83.75%. The final iOS

application provides a seamless, intuitive and fully automatic user experience, as demonstrated

in Chapter 5. This fulfils the crucial objective of creating a practical, proof-of-concept system

that is both reliable in its performance and simple in its operation, successfully validating the

project's goals.

CHAPTER 7

67
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7 CONCLUSION AND RECOMMENDATION

7.1 Conclusion

In conclusion, the TagT project represents a significant and successful advancement in the field

of Automatic Number Plate Recognition. It directly addresses the critical vulnerabilities of

traditional ANPR systems which are their susceptibility to license plate fraud and the

inflexibility of hardware-based solutions, by delivering a modern, software-based and car

multi-attribute recognition framework. The project's success is founded on a rigorous,

evidence-based methodology that systematically evaluated a wide range of technologies before

arriving at an optimal hybrid architecture.

The final system architecture, which integrates YOLO11n for high-speed vehicle detection,

ResNet18 with cosine similarity for intelligent frame optimization and the Gemini model for

robust attribute recognition, has been proven to be both highly effective and remarkably

efficient. The comprehensive evaluation in Chapter 6 provided quantitative proof of the

design's superiority. The architectural efficiency tests demonstrated that by intelligently pre-

filtering frames, the system achieved a 92.4% reduction in data sent for analysis, leading to a

87.57% decrease in API processing time and a 91.87% decrease in operational costs compared

to a baseline approach.

Furthermore, the real-world performance evaluation confirmed the prototype's robustness and

accuracy. The system achieved a strong average Overall Success Rate of 83.75% across 160

demanding tests in varied environmental conditions. The near-perfect Car Brand Accuracy -

98.13% validates the choice of a large-scale AI model, while the granular data highlights that

the most significant remaining challenge is license plate reading from extreme angles. The final

deliverable is a functional and intuitive iOS application where successfully meets all project

objectives, establishing TagT as a powerful and validated proof-of-concept. By providing a

replicable framework for building an efficient hybrid AI system, this project makes a

meaningful contribution to the development of next-generation intelligent security solutions.

CHAPTER 7

68
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.2 Recommendation

While the current TagT system successfully meets its core objectives as a robust proof-of-

concept, several key enhancements could be explored to further improve its versatility,

performance and applicability for global deployment.

One of the most significant areas for future work is the expansion and validation of the system

with international license plates. The current prototype was validated primarily using

Malaysian-style license plates. To evolve the system into a truly versatile and globally

applicable solution, the next logical step would be to rigorously evaluate its performance

against a diverse, multi-national dataset of license plates from regions such as Europe, North

America and other parts of Asia. This would test the true extent of the Gemini model's

capabilities in handling a wide variety of plate formats, fonts, character sets and syntaxes. Such

an expansion would not only validate the system's scalability but also provide valuable insights

into any regional biases in the model, guiding further refinements for a commercial-grade,

international product.

Another powerful area for future enhancement lies in optimizing the system for on-device,

offline deployment. The current client-server architecture, while highly effective, is

fundamentally dependent on a stable internet connection, which limits its use in remote or low-

connectivity areas. Future development could focus on exploring the feasibility of converting

the current recognition pipeline into a lightweight version that can run directly on a mobile

device's neural engine. This would involve researching and testing smaller, highly optimized

models that could perform the recognition task locally. While this would likely introduce a

trade-off in accuracy compared to the larger, cloud-based Gemini model, it would enable full

offline functionality, eliminate network latency and remove all operational API costs. This

would transform the TagT system into a completely self-contained tool, significantly

increasing its portability and making it accessible for a much broader range of security and

management applications.

REFERENCES

69
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] FMT Reporters, “Foreigners who switch plates to buy petrol face jail, fine,” Free Malaysia Today |

FMT, Nov. 2024. https://www.freemalaysiatoday.com/category/nation/2024/11/01/foreigners-who-

switch-plates-to-buy-petrol-face-jail-fine/ (accessed Apr. 12, 2025).

[2] M. Y. Aalsalem, W. Z. Khan, and K. M. Dhabbah, “An automated vehicle parking monitoring and

management system using ANPR cameras,” IEEE Xplore, Jul. 01, 2015.

https://ieeexplore.ieee.org/abstract/document/7224887

[3] T. Mustafa and M. Karabatak, “Challenges in Automatic License Plate Recognition System

Review,” IEEE Xplore, May 01, 2023. https://ieeexplore.ieee.org/document/10131688

[4] B Marisekar, T Abishek, M Dheeraj, R Adharsh, R. A. Raja, and A. U. Kaushik, “Smart Parking

Fare Collection and Management System using ANPR Technology,” pp. 1699–1706, Sep. 2024, doi:

https://doi.org/10.1109/icosec61587.2024.10722233.

[5] Samuel, “Kent driver found number plate was cloned after crash 280 miles away,” Mar. 14, 2025.

Available: https://www.bbc.com/news/articles/cgj5w7wpg95o

[6] J. McLogan, “Fake New York license plates now have the complete attention of law

enforcement,” Cbsnews.com, Feb. 13, 2025. https://www.cbsnews.com/newyork/news/new-york-state-

fake-license-plates/

[7] “Number plate scams on the rise as thousands of drivers risk unfair Ulez fines,” www.gbnews.com.

https://www.gbnews.com/lifestyle/cars/number-plate-scams-unfair-ulez-fines (accessed Jul. 15, 2024).

[8] P. Kanimozhi, S. Harshini, T. A. Kumar, and M. J. Mary, “Enhancing smart city security: IoT-

driven ANPR technology for identifying smuggling vehicles,” IET conference proceedings., vol. 2024,

no. 37, pp. 366–371, Mar. 2025, doi: https://doi.org/10.1049/icp.2025.0940.

[9] A. Agarwal, S. Shinde, S. Mohite, and S. Jadhav, “Vehicle Characteristic Recognition by

Appearance: Computer Vision Methods for Vehicle Make, Colour, and License Plate

Classification,” 2022 IEEE Pune Section International Conference (PuneCon), pp. 1–6, Dec. 2022, doi:

https://doi.org/10.1109/punecon55413.2022.10014731.

REFERENCES

70
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[10] Muhammad, Nor Azuana Ramli, and Mohd, “Car Logo Recognition using YOLOv8 and Microsoft

Azure Custom Vision,” pp. 477–481, Oct. 2023, doi:

https://doi.org/10.1109/icdabi60145.2023.10629291.

[11] T. Mustafa and M. Karabatak, “Real Time Car Model and Plate Detection System by Using Deep

Learning Architectures,” IEEE Access, vol. 12, pp. 107616–107630, 2024, doi:

https://doi.org/10.1109/access.2024.3430857.

[12] T. Kim, C.-H. Kang, Y. Kim, and S. Yang, “AI Camera: Real-time License Plate Number

Recognition on Device,” 2022 IEEE International Conference on Consumer Electronics (ICCE), Jan.

2022, doi: https://doi.org/10.1109/icce53296.2022.9730306.

[13] Pankaj Mukhija, Pawan Kumar Dahiya, and Priyanka, “Challenges in Automatic License Plate

Recognition System: An Indian Scenario,” Jul. 2021, doi:

https://doi.org/10.1109/ccict53244.2021.00055.

[14] Z. Rahman, A. M. Ami, and M. A. Ullah, “A Real-Time Wrong-Way Vehicle Detection Based on

YOLO and Centroid Tracking,” IEEE Xplore, Jun. 01, 2020.

https://ieeexplore.ieee.org/document/9230463 (accessed Apr. 06, 2023).

[15] Md. Rahatul Islam and K. Horio, “Real Time-Based Face Recognition, Tracking, Counting, and

Calculation of Spent Time of Person Using OpenCV and Centroid Tracker Algorithms,” Jun. 2023, doi:

https://doi.org/10.1109/iccci59363.2023.10210102.

[16] A. Anish, S. R, A. Hema Malini, and T Archana, “Enhancing Surveillance Systems with YOLO

Algorithm for Real-Time Object Detection and Tracking,” Dec. 2023, doi:

https://doi.org/10.1109/icacrs58579.2023.10404710.

[17] L. N. Rani and Yuhandri Yuhandri, “Similarity Measurement on Logo Image Using CBIR (Content

Base Image Retrieval) and CNN ResNet-18 Architecture,” Feb. 2023, doi:

https://doi.org/10.1109/iccosite57641.2023.10127711.

[18] Muhammed Murat Özbek and Hilal Tekgöz, “Image Retrieval with Segment Anything and CNN

Techniques,” 2021 6th International Conference on Computer Science and Engineering (UBMK), pp.

131–136, Sep. 2023, doi: https://doi.org/10.1109/ubmk59864.2023.10286583.

REFERENCES

71
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[19] C. Hu, X. Bai, L. Qi, X. Wang, G. Xue, and L. Mei, “Learning Discriminative Pattern for Real-

Time Car Brand Recognition,” vol. 16, no. 6, pp. 3170–3181, Jun. 2015, doi:

https://doi.org/10.1109/tits.2015.2441051.

[20] Z. Tong, Y. Wang, Y. Xue, Z. Zeng, Y. Ding, and Y. Ning, “Vehicle Colour Recognition Algorithm

Based on Colour Space and Sector Features and Related Laws and Regulations,” 2022 2nd

International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 765–

768, Jan. 2022, doi: https://doi.org/10.1109/iccece54139.2022.9712816.

[21] S. Ghanem and J. H. Holliman, “Impact of Colour Space and Colour Resolution on Vehicle

Recognition Models,” Journal of Imaging, vol. 10, no. 7, p. 155, Jun. 2024, doi:

https://doi.org/10.3390/jimaging10070155.

APPENDIX

A-1
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Poster

