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ABSTRACT 

 

This project presents an integrated smart system that enhances indoor plant care by combining 

real-time object detection with automated environmental monitoring and control. At its core, 

the system leverages the YOLOv10 deep learning model, renowned for its high accuracy in 

real-time object detection, to identify and classify various indoor plant species from continuous 

video feeds captured by a webcam. This facilitates real-time visual monitoring and enables a 

responsive, automated plant care process. 

 

To extend functionality, the project incorporates a self-sustaining air purification system that 

utilizes natural plants as biofilters. Recognized plants are analysed for their suitability in air 

purification, with the system adjusting care accordingly. The integration of environmental and 

moisture sensors allows for dynamic adjustments in watering schedules to maintain optimal 

plant health. 

 

A key component of the system is the use of Node-RED as a middleware platform to facilitate 

communication between the plant recognition module and an Arduino-based automated 

watering system. Detected plants are mapped to corresponding moisture sensors, and each plant 

receives water based on its specific moisture requirements. This precise matching ensures 

resource efficiency and tailored care, reducing human intervention while promoting sustainable 

indoor plant management. 

 

Area of Study: Internet of Things, Computer Vision 

 

Keywords: Data Collection in IoT, Monitoring Application, User-friendly Application, IoT 

Security, Smart Irrigation, YOLOv10, Real-Time Plant Detection, Node-RED Integration, 

Arduino-Based Automation, Environmental Sensors. 
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CHAPTER 1 

Introduction 

As society continues to evolve and cost of living increases, there is a growing concern on the 

importance of maintaining indoor air quality. With the increased use of air conditioning and 

recycled air, the air we breath end up being recycled repeatedly. This has contributed to what 

is commonly referred to as modern "sick" buildings, where the very systems designed to 

provide comfort but inevitably contributed to the decrease in air quality [1]. 

 

These buildings, which contributes to roughly 30% of global energy due to the extensive use 

of indoor furniture and facilities, can trap harmful pollutants and negatively impact our 

health[1]. One promising approach is the integration of computer vision technology with plant-

based systems for indoor air purification [4]. The advancements in computer vision for plant 

monitoring offer significant potential for improving the efficiency and effectiveness of plant-

based air filtration systems. By leveraging computer vision, it is possible to monitor plant 

health in real time, ensuring that plants are optimally maintained to perform their natural air-

purifying ability. 

 

Ensuring the health of these biofilter plants is crucial for the continuous  air purification in 

indoor spaces. A computer vision system plays an role in maintaining these plants by providing 

real-time monitoring and analysis of their health. By capturing real-time images of the plants, 

the system can detect early signs of stress, disease, or lack of growth, reducing the need for 

manual plant care and preventing the risk of human errors. The system can analyse various 

visual signs, such as leaf colour, shape, and texture, to assess plant health and make data-driven 

decisions [5]. This adaptability ensures that the plants receive the necessary care, allowing for 

timely interventions and adjustments to their environment. By integrating with real-time data, 

the computer vision system enhances the overall effectiveness of the green air purification 

system, ensuring that the plants remain in peak condition and continue to contribute to a 

healthier indoor environment. 
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1.1    Problem Statement and Motivation 

Indoor plants are known to acts as natural air purifiers, as they clear the pollutants in the air by 

absorbing the impurities in the environment and releasing oxygen. [1] However, the ability of 

these air purifying plants is influenced on proper watering and care, and traditional methods 

for the caring of these plants have its few disadvantages. 

 

Traditional methods of  plant care, such as manually scheduled monitoring of the plants. This 

inconsistent monitoring can be a challenge and may cause uneven watering distribution of 

water and care among plants, especially when they are different plants involved. Overwatering 

can cause the root to rot, while underwatering can cause plants to wither and die. With a 

consistent, scheduled monitoring solution, the efficiency of automated systems is improved, 

which can prevent wastage of water and unhealthy plants. and make it difficult for the plant to 

effectively clean the air. These issues affect both the plant's aesthetic appeal and its ability to 

purify the air. Therefore, there is a rising curiosity in incorporating modern technologies like 

computer vision (CV) to improve plant care systems [4]. 

 

This project explores the integration of a computer vision-based approach with a self-watering 

system specifically designed for indoor plants that serve as green air purifiers. The system 

proposed aims to improve to consistency and efficiency of watering schedules by utilizing real-

time image processing to monitor plant health indicators like leaf color, growth patterns, and 

overall vitality [5]. The use of computer vision combined with IoT sensors allows for a more 

flexible and accurate method for taking care of plants, ensuring each plant receives the right 

amount of water tailored to its specific needs and environmental conditions [6]. 

 

The purpose of integrating computer vision system with a dashboard monitoring system is to 

provide real time data of plant health visually. As urban living spaces continue to shrink and 

the demand for low-maintenance, high-efficiency plant care systems increase, integrating 

computer vision into these systems offers a promising solution for innovation [7]. By 

advancing self-watering systems with computer vision capabilities, this project aims to 
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improve the effectiveness of indoor plants as air purifiers, ultimately leading to healthier indoor 

environments [8]. 

 

1.2    Research Objectives 

This project proposes the deployment of advanced computer vision technology to enhance the 

self-watering system for indoor plants. The goal is to ensure precise and adaptive watering 

based on real-time plant and environmental data. The key objectives are: 

1. To design and train a Plant Recognition for Watering Automation. There is a camera 

system capable of identifying different plant types and recommending customized 

watering levels based on real-time soil moisture data. Integrate an automated self-

watering mechanism to maintain optimal plant health. 

2. To develop a functional prototype of a smart air purifier housed on a three-level trolley, 

integrating plant compartments, a self-watering mechanism, and an IoT sensor system 

for real-time environmental data collection. 

3. To Incorporate IoT sensors to monitor soil moisture levels in the plant compartments 

and measure the Air Quality Index (AQI) in the surrounding environment. Stream this 

data to a centralized dashboard for real-time monitoring. 

 

During the process of image detection, a camera system will be developed to identify different 

air-purifying plant species with trained datasets. The camera system will continuously capture 

real-time video feed and pictures. By integrating this system with an automated self-watering 

mechanism, the prototype will ensure that each plant receives the appropriate amount of water 

tailored to its specific needs. Traditional manual watering methods often fail to deliver 

consistent and optimal care. Hence, the first objective aims to utilize computer vision 

technology to reduce the risk of over or under-watering and to streamline the process of plant 

care and monitoring. The visual results of the computer vision will continuously monitor plants 

and capture crucial data,  improving plant health and reducing the need for manual intervention. 

The collected data will be comprehensively visualized and monitored through Grafana, 

allowing for real-time adjustments and improved management of the plant compartments. 
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Continuing the process, the end result will be that the plants and their moisture levels are 

constantly monitored using a computer vision (CV) model and IoT sensors to ensure optimal 

air quality from the purifying plants. Each plant should consistently maintain moisture within 

a predefined threshold, suitable for its species and environmental conditions. The CV system, 

in conjunction with real-time sensor data, will assess the health of the plants based on visual 

indicators such as leaf colour, texture, and overall appearance. For instance, signs of water 

stress, such as wilting or discoloration, will be detected early, allowing for immediate 

corrective actions. The integration of this monitoring system ensures that the self-watering 

mechanism adjusts accordingly to maintain both plant health and optimal air quality. 

 

1.3    Project Scope and Direction 

In this project, the research and development will centre around the implementation and 

exploration of various computer vision algorithms and models. The primary objective is to 

develop a plant recognition model that can accurately identify and monitor plant health. The 

project will investigate different computer vision approaches, evaluating their effectiveness in 

recognizing plant species and assessing plant health. 

 

The focus will be on optimizing the model's accuracy and reliability, with an emphasis on real-

time processing to enable timely monitoring and potential integration with automated systems, 

such as a self-watering mechanism. This exploration will not only aim to achieve high precision 

in plant recognition but also explore how these models can be enhanced or customized for 

specific applications, such as indoor plant care and air quality improvement. 

 

At the conclusion of the project, a prototype system will be delivered, comprising both software 

and hardware components. The hardware will include a camera system for plant identification 

and monitoring, while the software will include the plant recognition model, along with tools 

for analysing plant health. This prototype will serve as a foundational system designed to 

recognize plants, offering potential applications in smart gardening and automated plant care 

systems.  
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1.4    Contributions 

The aim of this project is to showcase the practicality and effectiveness of integrating computer 

vision and IoT technologies to enhance self-watering systems for indoor air-purifying plants. 

Firstly, the project successfully demonstrates the computer vision system for plant recognition. 

This sets the foundation for future progress in automating plant care with computer vision and 

machine learning. By the end of the project, a solution will be provided, including hardware 

and software elements. The hardware will have cameras to take high-quality images of plants, 

with the software having a computer vision algorithm for identifying plant types. This project 

aims to create a prototype system showcasing the capabilities of computer vision technology 

in plant care and monitoring, leading the path for further developments in the field. 

 

 1.5    Report Organization 

This report focuses on developing a computer vision algorithm for a plant recognition system 

to enhance a self-watering mechanism for indoor air purifying plants. Chapter 1 introduces the 

problem statement and highlights the research objectives, project scope, and contributions. It 

sets the stage for the project by explaining the significance of integrating computer vision with 

automated plant care systems and the anticipated impact of this technology. Chapter 2 reviews 

existing computer vision algorithms pertinent to plant recognition. This chapter explores 

various approaches and techniques used in the field. Chapter 3 presents the proposed 

methodology for implementing the computer vision system. This chapter focuses on the design 

and structure of the system, including the hardware configuration, software requirements, and 

the procedure for integrating computer vision algorithms with collected datasets. Chapter 4 

focuses on the preliminary work done during the project, including initial experiments, setup 

procedures, and challenges encountered. It discusses about the challenges and issues during the 

development process and the strategies employed to address these issues. Chapter 5 concludes 

the report based on the project's progress and evaluating its overall success. It reflects on the 

achievements, assesses the effectiveness of the system, and offers recommendations for future 

enhancements. It also discusses potential directions for further research and development to 

advance the technology and its applications. 
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CHAPTER 2 

Literature Review 

2.1    Previous works on Computer Vision  

2.1.1 Performance of YOLOv5 for Plant Detection in Agricultural Fields 

Research in object detection using computer vision by [9], which evaluated effectiveness of 

the YOLOv5 model in identifying the cotton plants within corn fields at various growth stages. 

The research focused on assessing the accuracy of YOLOv5, under different environmental 

conditions and plant growth stages, which are crucial for agricultural sectors. The study showed 

that YOLOv5 could effectively idenfity cotton plants in corn fields across three distinct growth 

stages, even under varying lighting and occlusion conditions. The algorithm showed high 

detection accuracy and speed, which are essential for real-time detections where timely 

decision-making is needed. The researchers highlighted that YOLOv5's capability to quickly 

process and analyse images in complex backgrounds made it particularly suitable for 

agricultural scenarios where multiple plant types co-exist. 

 

Figure 2.1 YOLOv5 for Plant Detection in Agricultural Fields 

 

2.1.2 Improved YOLOv5-Based Vegetable Disease Detection 

[10] The improved method of this research focused on improving YOLOv5’s accuracy in real-

time detection and classification of different vegetable diseases. They trained the standard 

YOLOv5 model to better generalize to the distinct features of vegetable leaves, like colours, 

shapes, and textures, that could affect the accuracy of detection. The improved YOLOv5 model 

included several innovative adjustments, such as fine-tuning the network layers and integrating 

a new attention mechanism to enhance feature extraction in complex backgrounds.. The study 
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demonstrated that these modifications significantly boosted detection accuracy and reduced 

false positives, particularly in cases with overlapping leaves or where diseases manifested 

subtly. Additionally, the improved model achieved faster processing speeds, which was critical 

for real-time agricultural applications where quick and accurate responses are necessary. 

 

Figure 2.2 Tomato Leaf Classification 

 

 

2.2  Current available computer vision algorithms 

2.2.1 Computer Vision Algorithm (YOLOv5)  

In this section, we explore the YOLOv5 computer vision algorithm for the plant recognition 

and watering automation system. YOLOv5 is widely recognized for its real-time object 

detection capabilities, offering a compelling balance between speed and accuracy [11]. This 

makes it particularly suitable for applications where fast response times are critical, which 

requires immediate decision-making to adjust watering schedules based on plant identification. 

[12] 

 

The YOLOv5 model uses convolutional neural networks (CNNs) to rapidly process visual data 

captured by the camera system, allowing fast and accurate identification of plant species. Its 

lightweight architecture and optimized performance allow for fast inference, ensuring that the 

system can operate efficiently in real-time without significant latency. This ability to maintain 
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high detection speed while providing reliable accuracy makes YOLOv5 a potential choice for 

our project. Figure 2.3 illustrates the general architecture of the YOLOv5 model. [12], [13] 

 

Figure 2.3 General architecture of the YOLOv5 

 

YOLOv5's flexible architecture, with variants (s, m, l, x) tailored to different requirements for 

detection speed and accuracy, makes it ideal for applications that require balancing model 

complexity with inference speed on limited hardware. the YOLOv5s version was selected due 

to its lower computational demands and ability to run on devices with limited processing power 

while achieving high accuracy for plant species recognition [15]. This makes YOLOv5s 

potentially well-suited for our automated watering system, which requires real-time plant 

detection to adapt watering schedules dynamically. Table 2.1 below shows the different model 

of YOLOv5 variants. [11] 

Table 2.1 YOLOv5 variants 

Model 
size 

(pixels) 

mAPval 

50-95 

mAPval 

50 

Speed 
CPU b1 

(ms) 

Speed 
V100 b1 

(ms) 

Speed 
V100 

b32 

(ms) 

params 
(M) 

FLOPs 
@640 (B) 
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YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5 

YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5 

YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0 

YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1 

YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7 

YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6 

YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8 

YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0 

YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4 

 

 

2.2.2 Computer Vision Algorithm (YOLOv8) 

This section explores the architecture of the YOLOv8 computer vision algorithm, focusing on 

why it was selected for our plant recognition and watering automation system over its 

predecessors. YOLOv8, introduced by Glenn Jocher in 2023 [16], is the most recent 

development in the YOLO (You Only Look Once) lineup, building upon the achievements of 

YOLOv5 and its previous models, it has improved significantly in terms  of speed, accuracy, 

and versatility for live object detection [17]. Figure 2.4 shows comparison of different model 

versions of YOLO.  

 

Figure 2.4 Comparison of YOLO models 
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YOLOv8 features various architectural enhancements that distinguish it from YOLOv5. The 

model includes an improved backbone network that helps achieve improved feature extraction 

and more accurate object detection [12]. This progress decreases the number of calculations 

needed and training time while still achieving excellent results, allowing for quicker 

predictions. Additionally, YOLOv8 uses innovative anchor-free detection heads to improve 

localization accuracy and decrease false positives by getting rid of predefined anchor boxes. 

This leads to enhanced identification of objects in different sizes and forms, making YOLOv8 

highly efficient in a variety of challenging settings. The flexible design of YOLOv8 also makes 

it easy to adapt to different scenarios and deployment environments [19]. Figure 2.5 below is 

the architecture of YOLOv8. 

 
Figure 2.5 Architecture of the YOLOv8 Model 

 

YOLOv8 too comes with a variety of variants (n, s, m, l, x) tailored to different requirements 

for detection speed and accuracy, makes it ideal for applications that require balancing model 

complexity with inference speed on various hardware setups. The YOLOv8n version was 

selected due to its lower computational demands and ability to run efficiently on devices with 

limited processing power while still achieving high accuracy for plant species recognition. 

This makes YOLOv8n best suited for our automated watering system, which relies on real-

time plant detection to dynamically adjust watering schedules. Table 2.2 below shows the 

different model variants of YOLOv8. [16] 



 
 

23 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Model 
size 

(pixels) 

mAPval 

50-95 

Speed 
CPU ONNX 

(ms) 

Speed 
A100 

TensorRT 

(ms) 

params 
(M) 

FLOPs 
(B) 

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7 

YOLOv8s 640 44.9 128.4 1.20 11.2 28.6 

YOLOv8m 640 50.2 234.7 1.83 25.9 78.9 

YOLOv8l 
640 52.9 375.2 2.39 43.7 165.2 

YOLOv8x 640 53.9 479.1 3.53 68.2 257.8 

Table 2.2 YOLOv8 variants 

 

 

2.3 Comparison Table 

Based on the literature review on two different types of computer vision models, a comparison 

table is structured to outline the main points for each model considered in the plant recognition 

and watering automation system. 

Table 2.3: Comparison Table of Reviewed Computer Vision Models 

Feature YOLOv5 YOLOv8 

Release Date June 2020 January 2023 

Architecture 
CSPDarknet53 with 

PANet 

Improved backbone with 

enhanced PANet 

Anchor Boxes 
Uses predefined anchor 

boxes 
Anchor-free detection 

Speed and Efficiency 
Fast, but less optimized 

for real-time 

Faster with reduced 

computations 

Model Size Moderate to large 
Smaller and more 

lightweight 

Accuracy 
High, but struggles with 

small objects 

Improved accuracy, 

especially for small 

objects 

False Positives 
Higher due to anchor 

boxes 

Lower due to anchor-free 

approach 
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Real-time Applications 
Suitable, but less efficient 

than YOLOv8 

Highly optimized for real-

time use 

 

 

2.4  Limitation of Reviewed Algorithms 

YOLOv5 faces several limitations despite its advancements in object detection. One of its 

primary challenges is limited robustness in diverse environments. While YOLOv5 performs 

well under normal conditions, it struggles with generalizing on unseen data, or complex 

backgrounds. This lack of flexibility impacts the model’s effectiveness in real-world 

applications where environmental conditions are less controlled. Additionally, YOLOv5's 

computational resource requirements, though optimized, it is still a large model as compared 

YOLOv8. This can be an issue for deployment on resource constraint devices. Additionally, 

YOLOv5 may struggle with detecting smaller and more specific object, which can be crucial 

in applications requiring precise object detection, like detailed medical images or complex 

backgrounds. The exchange between accuracy and speed often means that YOLOv5 might not 

capture fine details effectively. Finally, YOLOv5’s performance can fluctuate depending on 

the specific object detection task. While it performs well in general object detection, specialized 

tasks may require extra fine-tuning and additional training, potentially making it less versatile 

and more resource intensive. 

 

YOLOv8 introduces several advancements over its predecessors but also brings new 

challenges. Its increased complexity and advanced architecture lead to higher computational 

and memory overhead during both training and inference but it is still smaller than and faster 

than YOLOv5 in terms of training time and datasets [11]. Additionally, YOLOv8’s enhanced 

capabilities increase its susceptibility to overfitting, especially when trained on limited datasets. 

Overfitting can decrease or reduce the model's capability to generalize to new data which was 

what happened in our training and deployment of YOLOv5 model, which is crucial for real-

world scenarios. In our experience, using the same datasets, YOLOv8 performs better than 

YOLOv5 with lesser training time and generalizes better on unseen data with higher confidence 

level. Lastly, integrating YOLOv8 into existing systems can be complex. The model's 

advanced features may require significant adjustments and optimizations during deployment, 

posing challenges for users who need a more straightforward and easily integrable solution. 
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Chapter 3 

System Methodology 

3.1  System Design Diagram  

The objective of this project is to create a specialized computer vision system for monitoring 

indoor plants with advanced technology. The system will use advanced computer vision 

techniques to accurately identify and assess the health of indoor plants. By integrating 

computer vision into indoor plant care, the system aims to automate the monitoring of plant 

care, resulting in better plant health and improved care. Figure 3.1 below is the proposed system 

diagram our proposed method. 

 

Figure 3.1 System diagram 

To achieve this, a wide collection of images of plants will be gathered. This dataset will contain 

of various air purifying plant species, covering different scenarios, angles, and environmental 

settings to ensure the model’s accuracy. The gathering of data will require capturing detailed 

images of the plants with varying lighting and angles to fully depict their visual attributes. The 

gathered datasets will be used to train a computer vision model, using advanced models like 

YOLOv5 or YOLOv8, which are known for their effectiveness in identifying objects. 

 

Preparing the images to improve quality and consistency and labelling the data to provide plant 

species information will be necessary for training the model. The training will require making 

changes and fine tuning the model by adding more preprocessing steps to improve the accuracy 

of the model and the ability to generalize on new data. Once training is complete, the model 
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will be tested to evaluate its performance in real-world settings, ensuring its ability to 

accurately detect the plant species. 

 

After successful testing, the model will be deployed into an environment where it will be 

integrated with a Python-based script. This script will facilitate real-time operation by 

processing live camera feeds to monitor plant conditions continuously. The Python script will 

interface with the computer vision model to analyse images, detect plant species. The 

deployment phase will include setting up the model on a suitable computing platform, ensuring 

compatibility with the existing hardware and software infrastructure. The Python script will 

manage the model's execution, handling tasks such as image capture, data processing, and 

result visualization. The custom model that will be deployed will be based on the custom 

datasets and weights trained, instead of the pre-trained weights.  

  

 
Figure 3.2 Custom YOLOv8 architecture 

 

 

 

 

 

 



 
 

27 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

3.1.2 Use Case Diagram and Description 

 

Figure 3.3 Use Case Diagram 

 

The use case diagram illustrates the interaction between the system's primary actors: User, 

Raspberry Pi, Laptop, Arduino and the main functions of the automated plant monitoring and 

watering system. 

Description: 

• User: The user can initiate system monitoring, configure plant type settings, and 

observe system status via a user interface (Node-RED Dashboard or terminal output). 

• Raspberry Pi: Acts as the middleware, receiving plant detection results from the laptop 

via MQTT, processing sensor data, and forwarding commands to the Arduino. It also 

runs Node-RED for managing logic flows. 
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• Laptop: Runs the YOLOv10-based detection script, captures the video feed streamed 

from the Raspberry Pi camera, performs inference, and publishes the results to the 

MQTT broker. 

• Arduino: Receives watering commands and interfaces with moisture sensors and the 

water pump. Based on soil conditions and plant type, it executes the watering process 

accordingly. 

Each use case represents a functional requirement of the system. For instance: 

• Capture and Analyse Video Feed involves real-time processing using YOLOv10. 

• Send Detection Result to MQTT Broker handles communication to the Raspberry Pi. 

• Trigger Watering Based on Conditions uses decision-making logic on Node-RED to 

determine when and how much to water the plant. 
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Chapter 4 

System Design 

 

4.1 System Block Diagram 

This project implemented a hybrid computer vision–IoT-based system to automate the 

monitoring and care of indoor plants. The core component was a custom-trained YOLOv10 

object detection model, executed on a local laptop, which classified indoor air-purifying plants 

in real time using a video stream captured from a Raspberry Pi Camera. Upon detection, the 

system published the identified plant types via MQTT protocol to a Node-RED server hosted 

on the Raspberry Pi, which acted as the communication bridge between the computer vision 

pipeline and an Arduino-based automated watering system controlled by four moisture sensors 

and water pumps. This integrated setup allowed dynamic, species-specific irrigation control 

based on both real-time visual classification and environmental moisture feedback. Figure 4.1 

below is the final system architecture diagram. 

 
Figure 4.1 System Design 
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4.2 System Components Specifications 

Component Specification 

YOLOv10 
Real-time object detection model 

(PyTorch-based) 

Camera 
Raspberry Pi Camera v2, 8MP, 1080p 

video 

Laptop 
Runs Python script for detection; uses 

OpenCV, Flask 

Raspberry Pi 4 Model B Hosts Node-RED and MQTT broker 

Node-RED 
Visual programming tool to control logic 

flow 

MQTT 
Lightweight protocol for IoT 

communication 

Arduino Leonardo Microcontroller for sensor/pump control 

Moisture Sensors Analog sensors to read soil moisture 

Water Pumps 3V–6V DC pumps, controlled via relays 

 

 

4.3  System Components Interaction Operations 

 

Operation Involved Components Description 

Capture & Detect Camera, Laptop, YOLOv10 
Camera sends video to 

YOLOv10 for classification 

Publish Detection Laptop, MQTT Broker 

YOLOv10 sends result (e.g., { 

"plant": "Aloe Vera" }) via 

MQTT 

Receive & Process Node-RED, Raspberry Pi 
Node-RED receives MQTT 

data and maps plant to pump 

Check Moisture Arduino, Sensors 
Arduino checks moisture level 

from mapped sensor 

Watering Action Arduino, Relay, Pump 
If needed, pump is triggered 

for a specific duration 

Dashboard Update Node-RED UI 
System displays sensor data 

and action logs in real-time 

 

System Components and Flow: 

1. Raspberry Pi with Pi Camera 

o Captured live video of indoor plants. 

o Streamed video to a connected laptop via Wi-Fi using a lightweight streaming 

protocol (e.g., MJPEG or GStreamer). 

2. Laptop (Model Inference Host) 
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o Handled video preprocessing and real-time inference using the YOLOv10 

model. 

o Published detection results (plant type and confidence score) via MQTT to the 

Raspberry Pi. 

3. Raspberry Pi with Node-RED 

o Hosted a Node-RED server acting as MQTT subscriber and control 

intermediary. 

o Detected plant types are published via MQTT protocol to a Node-RED 

instance running on the Raspberry Pi, which acts as an intermediary 

controller between the AI model and the actuator system. 

o Routed the information to the Arduino based on predefined species-to-sensor 

mappings. 

4. Arduino Leonardo (ATMega32u4) with Moisture Sensors and Relay-Controlled 

Watering Module 

o Received commands from Node-RED through serial communication. 

o Measured moisture levels for four individual plants. 

o Activated water pumps only when the detected plant's assigned soil sensor 

reported values below its moisture threshold. 

 

 

Initially, object detection models such as YOLOv5 and YOLOv8 were explored due to their 

strong performance in similar tasks. However, to improve both detection speed and accuracy, 

the project eventually shifted to YOLOv10, the latest version in the YOLO series. YOLOv10 

offers improved efficiency, particularly in handling high frame rates and small object features, 

which made it an ideal choice for real-time video processing. 

 

Once the computer vision pipeline was finalized, it was integrated into an automated plant 

watering system using Node-RED as the central orchestration platform. Hosted on a 

Raspberry Pi 4 Model B, Node-RED manages both data flow and command execution 

between the detection system and hardware actuators, including Arduino Leonardo, moisture 

sensors, and water pumps. 
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Figure 4.2 Flask Video Stream Code 

 

Following successful testing, the model was integrated into a Python-based script and deployed 

on a laptop. This script handles the core computer vision tasks such as capturing frames from 

the live video feed, performing inference with the YOLOv10 model, and determining the 

detected plant species. The live video stream is captured using a Raspberry Pi Camera 

Module, which streams the feed to the laptop via a local network connection. The laptop then 

processes this input and identifies the plant species in real time. 

 

The detection model runs on a laptop, which acts as the model inference host. A live video 

feed is captured using the Raspberry Pi Camera Module V2, which streams video over Wi-

Fi using a lightweight protocol such as MJPEG. The Python script on the laptop handles frame 

capturing, preprocessing, and real-time inference using the YOLOv10 model. Once a plant is 

detected, the identified species (e.g., " Moisture Sensor 1": "Snake Plant") published as an 

MQTT message to the Raspberry Pi. 

 

Figure 4.3 Published MQTT message 

 

On the Raspberry Pi, Node-RED acts as an MQTT subscriber, receiving detection results and 

initiating a logic sequence. Each plant species is mapped to a specific soil moisture sensor. 



 
 

33 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Upon receiving a detection result, Node-RED forwards a command to the Arduino Leonardo 

via USB serial communication. The Arduino reads the corresponding sensor's moisture level, 

compares it against a predefined threshold, and activates the water pump if watering is 

required. 

 

Figure 4.4 Detection Results 

 

An additional enhancement to the system is the integration of a real-time dashboard, built 

using Node-RED’s Dashboard module.  

 

Figure 4.5 Dashboard Visualization 

This dashboard serves multiple functions: 

• Displays live updates of soil moisture levels from each sensor. 

• Shows logs of detected moisture and watering actions taken. 

• Visualizes MQTT messages and system health metrics (e.g., online/offline devices, 

data timestamps). 
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This interface enables users to monitor the system remotely through a web browser and 

provides clear transparency into system decisions and environmental conditions. 

 

 

Figure 4.6 System Node Flow 

 

 

To enable visualization on UI Chart and Gauge nodes in Node-RED, a Function Node is 

used to process raw moisture data received from Arduino (e.g., "Moisture 3: 43%"). This 

node parses the string, extracts the plant number and moisture value, and assigns the correct 

msg.topic for each plant. This is crucial because both the Chart and Gauge nodes rely on 

consistent topics and numeric payloads for correct plotting. 
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Chapter 5 

System Implementation 

5.1 Hardware Setup 

The hardware that will be involved in this project are laptop for development and testing of 

programs and webcam. The laptop will also be the main device that runs the CV algorithm. 

Table 5.1 Specifications of laptop 

Description Specifications 

Model HP Pavilion Gaming Laptop 

Processor Intel Core i5-9300H / i7-9750H or equivalent 

GPU NVIDIA GeForce GTX 1650 / GTX 1050 or equivalent 

RAM 8GB / 16GB DDR4 

Storage 256GB / 512GB SSD 

Operating 

System 

Windows 10 / Windows 11 

Display 15.6" Full HD (1920 x 1080) Anti-Glare IPS Display 

Connectivity Wi-Fi 5 (802.11ac), Bluetooth 4.2 

Ports 1 x USB Type-C, 3 x USB Type-A, 1 x HDMI, 1 x Ethernet, 1 x Audio 

Combo Jack 
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Raspberry Pi 4 Model B 

 
• Function: Acts as the edge computing device responsible for streaming live video from 

the camera and handling automation commands via Node-RED and MQTT. 

• Processor: Quad-core ARM Cortex-A72 @ 1.5GHz 

• RAM: 4GB LPDDR4 (expandable up to 8GB) 

• Connectivity: Dual-band 2.4GHz and 5GHz Wi-Fi, Bluetooth 5.0, Gigabit Ethernet 

• Ports: 2 × USB 3.0, 2 × USB 2.0, 2 × micro-HDMI, GPIO Header 

• Operating System: Raspberry Pi OS (Debian 12 Bookworm, 64-bit) 

 

 

Raspberry Pi Camera Module V2 

 

• Function: Captures continuous image feed of the plants for real-time analysis. 

• Resolution: 8 Megapixels 

• Frame Rate: Up to 1080p at 30fps 

• Interface: CSI (Camera Serial Interface) 
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Components of Computer Vision and Automation System 

Table 5.2 Components of Computer Vision and Automation System 

Components Descriptions 

Raspberry Pi 4 Model 

B 

Figure 5.1 Raspberry Pi 4 Model B 

 
Acts as the core edge computing device. It runs a local 

Flask server for video feed streaming and hosts the Node-

RED server for controlling and visualizing the self-

watering system. It also handles MQTT communications. 

Raspberry Pi Camera 

Module V2 

Figure 5.2 Raspberry Pi Camera Module V2 

 
Captures real-time images of plants and streams them for 

computer vision analysis. This module uses an 8MP Sony 

IMX219 sensor, ideal for high-definition detection tasks. 

Raspberry Pi 15W 

USB-C Power Supply 

Figure 5.3 Raspberry Pi Power Supply 

 
Provides stable 5V/3A power to the Raspberry Pi 4, 

ensuring consistent performance for real-time image 

processing, sensor data handling, and overall system 

stability. 

Laptop (Host 

Computer) 

My laptop runs the YOLOv10 object detection model to 

classify plant species and determine watering needs. The 

computer receives live feed via Flask and returns water 

requirement results to the Raspberry Pi. 



 
 

38 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

Arduino Leonardo 

(ATmega32U4) 

Figure 5.4 Arduino Leonardo 

 
Connected via USB serial to the Raspberry Pi. It reads 

moisture data from four soil moisture sensors and triggers 

the watering system. It acts as the actuator control unit. 

Soil Moisture Sensors 

(x4) 
 

Figure 5.5 Soil Moisture Sensors 

 

Placed in different plant pots, these analog sensors read 

real-time soil moisture levels and transmit data to the 

Arduino for decision-making 

4-Way Water Valve 

with Pump 

Figure 5.6 Water Valve 

 
 

Controlled by the Arduino. Dispenses water only to the 

plants that require it, based on sensor input and visual 

classification output. 

USB Serial Cable Figure 5.7 USB Serial Cable 
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Connects the Arduino Leonardo to the Raspberry Pi for 

continuous data transfer of sensor readings and execution 

of watering commands. 

Node-RED Dashboard Figure 5.8 Node-RED Dashboard 

 
 

 

 

5.2 Software Setup 

Software such as Thonny, Visual Studio Code (VS Code), Roboflow, YOLOv10, Google 

Collab, Node-RED, and Grafana will be used to implement the proposed smart plant care and 

watering system. Each software tool contributes to specific stages of the development lifecycle, 

from programming and model training to automation and visualization. The details are as 

follows: 

 

Thonny 

• A beginner-friendly Python IDE that will be used on the Raspberry Pi 4 to handle 

the live streaming of the Pi camera feed. 

• Reason for Use: 

o Its lightweight nature and minimal configuration requirements make it ideal 

for running real-time scripts directly on the Raspberry Pi. 

• Features: 

o Simple Interface: Straightforward and intuitive, making it suitable for 

embedded or resource-limited environments. 
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o Integrated Debugger: Useful for debugging streaming scripts and sensor-

based triggers. 

o Virtual Environment Support: Enables clean Python environment 

management for modular script execution. 

 

Visual Studio Code (VS Code) 

• A powerful and extensible code editor from Microsoft that will be used on the laptop 

to run the computer vision model using YOLOv10. 

• Reason for Use: 

o VS Code offers robust support for Python, integrated terminal, and 

resource management tools, making it well-suited for handling the heavier 

computational tasks involved in running and testing the trained model. 

• Features: 

o Rich Extension Support: Enhances development with tools like Python 

linting, Docker, and Jupyter Notebooks. 

o Built-in Version Control: Integrates Git for project tracking and collaborative 

development. 

o Cross-platform Compatibility: Runs smoothly across Windows, macOS, and 

Linux, ensuring development flexibility. 

 

Roboflow 

• A web-based platform used for managing and annotating computer vision datasets. 

• Features: 

o Annotation & Augmentation: Provides tools for labeling plant images and 

enhancing dataset diversity. 

o Dataset Versioning: Supports tracking of different dataset iterations and their 

respective training performances. 

o Seamless Exports: Easily exports datasets in YOLOv10-compatible formats. 

 

YOLOv10 

• The most recent iteration of the YOLO (You Only Look Once) real-time object 

detection model. 

• Features: 
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o Enhanced Accuracy & Speed: Delivers high-performance object detection 

ideal for identifying plant types and stress indicators. 

o Resource-Efficient: Supports deployment on edge devices like Raspberry Pi 

and high-end machines alike. 

o Modular Architecture: Easier to integrate with various detection and 

automation workflows. 

 

Google Colab 

• A cloud-hosted Jupyter Notebook platform primarily used for training the YOLOv10 

model. 

• Features: 

o Free GPU/TPU Access: Accelerates training, especially for deep learning 

models. 

o Drive Integration: Simplifies dataset management and result storage in the 

cloud. 

 

Node-RED 

• A flow-based development tool installed on the Raspberry Pi to visually orchestrate the 

automation logic. 

• Features: 

o Visual Programming: Allows creating automation flows using a simple drag-

and-drop interface. 

o IoT Integration Ready: Supports protocols such as MQTT, HTTP, and 

WebSocket for seamless IoT device communication. 

o Logic and Control Flows: Automates watering decisions based on moisture 

readings and detection results. 

 

Node-RED Dashboard 2.0 

• A dashboard extension for Node-RED used to visualize and monitor real-time sensor 

data, such as soil moisture levels. 

• Features: 

o Real-Time Data Visualization: Displays live updates from soil moisture 

sensors through gauges, charts, and indicators. 
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o Customizable Widgets: Allows the creation of tailored dashboards to monitor 

different aspects of the smart plant care system. 

o Mobile-Friendly Interface: Accessible via web browsers on desktops, tablets, 

and smartphones, providing flexibility in system monitoring. 

o Lightweight and Responsive: Optimized for smooth performance even on 

low-power devices like Raspberry Pi. 

 

5.2.1 Python Environment 

Platform: Installed on Laptop (VS Code) 

Purpose: Library requirements to hadnle real-time plant detection using a YOLOv10 model 

and processing detection results to the IoT control system. 

 

Table 5.3 Libraries Requirements 

Library Version Description 

Ultralytics 8.3+ > Provides the implementation of YOLOv10 

used for real-time object detection and 

inference. Enables loading of the best.pt 

model, frame-by-frame detection, and 

output parsing. 

opencv-python 4.11.0.86 Used to capture video frames from the 

webcam or camera stream, draw bounding 

boxes, and preprocess images for model 

input. 

torch 2.6.0+cu126 Core deep learning framework powering 

the YOLOv10 model. Used for loading the 

model, running inference, and accessing 

GPU acceleration (CUDA). 

torchvision 0.21.0+cu126 Provides utilities for image 

transformations, pretrained models, and 

handling vision-related tasks (used 

internally by YOLO/Ultralytics). 

torchaudio 2.6.0+cu126 Not directly used in my project but often 

bundled with PyTorch installs; can be 

safely ignored if unused. 

numpy 2.1.1 Essential for array operations and image 

frame manipulation during OpenCV and 

PyTorch operations. 
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requests (standard lib) Typically used for making HTTP requests; 

may be used to send logs or image data to 

remote servers or REST APIs (optional in 

your system). 

paho.mqtt.client Latest (2.1.0) Enables the system to publish detection 

results via the MQTT protocol to the 

Raspberry Pi running Node-RED. 

json (standard lib) Used to format detection results (e.g., { 

"plant": "Aloe Vera" }) before sending 

them via MQTT. 

time (standard lib) Used for timestamping events, introducing 

delays (e.g., sleep()), and time-based 

operations. 

pandas (required for 

dashboard/logging) 

While not in the main detection loop, 

pandas can help structure sensor logs, 

detection results, or generate summary 

reports. 

serial (pyserial) (on Arduino 

communication 

side) 

Used for serial communication with the 

Arduino via USB (e.g., sending watering 

commands or receiving moisture data). 

socket (optional) May be used for low-level network 

communication, such as streaming the 

camera feed or interacting with IoT 

modules over TCP/UDP. 

RPi.GPIO (on Raspberry Pi 

only) 

Used to interface with GPIO pins when 

the Python code is running on the 

Raspberry Pi (e.g., manual pump activation 

via script). Not used in the detection laptop. 

 

Table 5.4 Library Summary Contributions by Category 

Function Libraries Involved 

Real-time Detection ultralytics, torch, torchvision, opencv-python, numpy 

MQTT Communication paho.mqtt.client, json 

Camera Streaming & 

Frame Capture 

opencv-python, numpy, time 

Hardware/IoT 

Integration 

serial, RPi.GPIO, socket 

Data 

Handling/Visualization 

pandas, requests, time 
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5.2.2 Raspberry Pi OS Configuration 

The system uses Raspberry Pi OS based on Debian 12 (Bookworm) due to its modern 

software support, enhanced security, and compatibility with the latest Python and AI libraries. 

Bookworm enables seamless integration with critical packages such as paho-mqtt, serial, and 

GPIO libraries, which are essential for moisture sensor reading, relay control, and MQTT-

based communication. Additionally, the OS ensures reliable performance when running Node-

RED and supports future upgrades to more advanced AI models or IoT functionalities. 

 

5.3 Setting and Configuration 

The development of the updated computer vision (CV) algorithm for plant detection using 

YOLOv10 began with refining the testing environment to handle the increased complexity of 

a larger number of plant classes. Due to the higher computational demands of YOLOv10 

compared to previous models, a high-performance laptop was once again chosen over the 

Raspberry Pi. The laptop's enhanced GPU acceleration and memory were critical in managing 

the more intensive training and inference tasks associated with a 10-class detection system. 

 

For real-time video feeds, flask code streams the video feed through pi camera. The software 

setup included installing Python 3.10.11, along with updated versions of key libraries such as 

torch for deep learning (PyTorch framework), OpenCV-python for image handling, NumPy 

for numerical computation, and Ultralytics for seamless YOLOv10 integration. 

 

The development environment was configured using Visual Studio Code (VS Code), 

benefiting from its robust extension ecosystem, integrated terminal, and virtual environment 

management. CUDA 12.6 was utilized for GPU acceleration, significantly boosting the 

training and inference speeds. 

 

The project began by collecting and curating an extensive dataset featuring 10 different types 

of indoor plants, considerably expanding from the previous 3 classes. Training used a 

combination of pre-trained YOLOv10 weights from the Ultralytics repository, which were 

fine-tuned on the custom plant dataset. The resulting model checkpoint (best.pt) was optimized 

for high-precision, real-time detection tasks. Table 5.5 summarizes the new dataset. 
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Attribute Details 

Number of Images 3090 

Image Dimensions 640 x 640 pixels 

Color Mode RGB 

Image Size ~200 KB per image 

Number of Classes 10 

Plant Classes Aloe Vera, Areca Palm, Chinese Evergreen, 

Chrysanthemum, Gerbera Daisy, Golden Pothos, Peace 

Lily, Rhapis Palm, Snake Plant, Spider Plant 

Total Size ~1.5 GB 

Data Augmentation Yes (90` Rotation, Flipping, Exposure, Brightness/  

Contrast Adjustments) 

Image Format JPEG, PNG 

Table 5.5 Dataset Summary 

 

5.3.1 Preparation of Datasets 

 

Figure 5.9 Collection of datasets 
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Figure 5.10 Collection of datasets 

The preparation of the datasets was an important step in developing the computer vision model. 

A diversified dataset was compiled, capturing plant images under varying conditions including 

different lighting scenarios, angles, occlusions, and backgrounds. Annotation was performed 

using Roboflow, where bounding boxes were drawn around each plant instance and accurately 

labelled according to their class. Data preprocessing included standardizing image resolutions 

and applying augmentation techniques such as rotations, flipping, brightness modifications, 

and exposure adjustments to artificially increase dataset diversity. This approach ensured that 

the YOLOv10 model could generalize better to unseen real-world conditions. Labelling 

examples are shown in Figure 5.11. 

 

Figure 5.11 Annotation of datasets 
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5.3.2 Training of the Model 

 

Figure 5.12 Model Training for YOLOv10 

The model was trained using the annotated plant dataset, with the training process optimized 

for both speed and performance. The annotated images were fed into YOLOv10, where the 

network iteratively updated its parameters using backpropagation and stochastic gradient 

descent. 

Training hyperparameters were carefully selected, including a learning rate of 0.01, batch size 

of 16, and a total of 100 epochs. The use of GPU acceleration (CUDA) allowed significant 

reductions in training time while improving the model's convergence. 
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5.3.3 Preprocessing and MQTT Integration: 

The initial detection script was modified to include MQTT publishing functionality. Upon 

detecting a plant species, the system formats the result into a JSON payload and publishes it to 

the MQTT broker hosted on the Raspberry Pi (identified by its static IP). 

 

Figure 5.13 MQTT Integration 

 

5.3.4 Sensor Assignment Function 

A key software feature was the implementation of a logic mapping function that assigns 

detected plant species to specific moisture sensors. This mapping was necessary for 

targeting irrigation to the correct plant and was based on predefined pairings of plant types to 

sensor numbers. 

  

 
Figure 5.14 Sensor Assignment Function 
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5.3.5 Flask Server Setup 

A Flask-based web server was written and executed via Thonny and Visual Studio to 

facilitate live video streaming from the Raspberry Pi Camera to the laptop for frame capture 

and preprocessing. This allowed the YOLOv10 model to continuously receive frames for 

inference. 

 

5.3.6 Setting Up the Pi Camera 

• The Raspberry Pi Camera Module was configured using terminal commands such as 

“sudo raspi-config” to enable the camera interface. 

• Video stream was transmitted over the network using MJPEG or GStreamer 

protocols, ensuring lightweight, real-time delivery to the laptop’s detection script. 

 

5.3.7 YOLOv10 Threshold Configuration 

 
Figure 5.15 Threshold Configuration 

 

The confidence threshold for the YOLOv10 model was set to 0.7 to improve detection 

accuracy by filtering out low-confidence predictions. Additionally, an inference interval was 

introduced to balance performance and processing load, especially on lightweight CPUs. 

This helped maintain real-time processing without overloading the system or causing 

detection lag. 
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5.3.8  MQTT publish rate 

To reduce unnecessary traffic and prevent MQTT message spamming, the publish rate was 

configured to once every 5 seconds. This ensures efficient communication without 

overwhelming the broker or causing message queue delays. 

 

5.3.9  AutoStart Scripts 

For system automation, Node-RED was configured to start automatically on Raspberry Pi 

boot using “systemctl”.  

The following command was used: “sudo systemctl enable nodered.service” 

This ensures that the control logic (hosted on Node-RED) is always active after reboot or power 

loss 

 

5.3.10 Network Setup 

To ensure reliable video streaming, VNC viewer access, and Node-RED dashboard 

availability, the Raspberry Pi was assigned a static IP address. This was configured in: 

“/etc/dhcpcd.conf” 

And Wi-Fi credentials were managed in: “/etc/wpa_supplicant/wpa_supplicant.conf” 

This configuration guarantees consistent connectivity and easier remote monitoring from the 

laptop. 

 

5.3.11 Setup of Node-RED on Raspberry Pi 

MQTT Subscription: 

Node-RED was configured to subscribe to a specific topic "plant/detection" via the MQTT 

input node to receive detection results. 
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5.4 System Operation (with Screenshot) 

5.4.1 Startup Sequence 

1. Raspberry Pi Flask Stream: 

The Raspberry Pi camera begins capturing video, and a Flask-based video streaming server is 

launched. This stream is made accessible at: http://<raspi_ip>:5000/video_feed 

 

Figure 5.16 Raspberry Pi Flask Stream 

 

2. Laptop CV Model Execution: 

The laptop, running a Python script, accesses the video stream. The YOLOv10 model 

(previously trained and exported as best.pt) is loaded, and real-time detection begins. Each 

frame is pre-processed, and objects (plants) are classified. 
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Figure 5.17 CV Model Execution 

5.4.2 Detection Demo 

 

Figure 5.18 Detection Demo 
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Figure 5.19 Terminal Output 

5.4.3 Watering Action Triggered 

Once a plant is identified and its corresponding soil moisture value is obtained: 

• Node-RED passes the detection result (via MQTT) to the Arduino. The Arduino 

compares the current soil moisture value with the predefined threshold for that plant 

type. 

If the soil is dry: 

• The relay is activated 

• The water pump turns on according to predefined moisture requirements. 

 

Figure 5.20 Moisture Assignments 

 

5.4.4 Visualization Using Node-RED Dashboard 2.0 

UI Chart and Gauge Nodes were configured to: 

• Display real-time moisture readings for each plant. 

• Indicate which plant was currently being watered and track past activity. 

• Control panel was implemented for clearing of visual charts and gauges for clearer 

updated history. 
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The Dashboard Layout was customized to present data in a clean, user-friendly interface, 

enabling at-a-glance monitoring of plant conditions and system activity. 

 

Figure 5.21 Dashboard Visualization 

 

Figure 5.22 Gauge Visualization 

 
Figure 5.23 Control Panel 

 

 

5.5.5 Function Node Configuration in Node-RED 
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To process logic and condition-based outputs in the smart watering system, a Function Node 

was used within Node-RED. This node played a critical role in interpreting sensor data and 

determining when to activate watering actions. 

The function node was scripted to: 

• Analysed incoming soil moisture readings. 

• Compare them to the predefined moisture threshold (e.g., below 30%). 

• Trigger a corresponding message payload to activate or deactivate the water pump. 

• This allowed the system to perform conditional automation in real-time based on live 

sensor input. 

 

Figure 5.24 Function Node Configuration 

 

5.5 Implementation Issues and Challenges 

5.5.1 Hardware Limitations 

One of the critical issues faced was attempting to run the YOLOv10 model on a lightweight 

device, specifically the Raspberry Pi. While YOLOv10 offers improved performance and 

speed, the limited processing power and thermal management of the Raspberry Pi made it 

unsuitable for direct model inference. During prolonged tests, the excessive CPU load from 

running YOLOv10 locally caused overheating, which led to hardware instability and 

ultimately damaged the camera module, as illustrated in Figure 5.23. 
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Figure 5.25 Test Image of Camera Module 

5.5.2 Integration with Arduino Leonardo 

Another major challenge arose from using Arduino Leonardo, which lacks built-in Wi-Fi 

capability. As a result, it could not directly connect to MQTT brokers or communicate 

wirelessly. This limitation required the implementation of a wired serial connection between 

the Arduino and Raspberry Pi, complicating the hardware layout and increasing dependency 

on physical connections for data transmission. 

 

5.5.3 Network Communication Delay 

The system depends on real-time MQTT messaging between the laptop (running the CV 

model) and Raspberry Pi (managing sensors and pumps). However, occasional latency issues 

were observed during command transmission, especially under heavy network load or during 

video streaming. These delays affected the promptness of watering actions and data feedback 

loops. 

 

5.5.4 Camera Positioning 

The accuracy of plant detection was highly sensitive to the camera’s height, angle, and 

lighting. Improper positioning resulted in: 

• Incomplete plant capture 

• Missed detections or bounding box errors 

• False positives due to background noise or shadow interference 
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This required repeated physical adjustments and fine-tuning of the webcam placement during 

system setup to ensure consistent and accurate detection. 

 

5.6 Concluding Remark 

The development and deployment of the smart plant monitoring and self-watering system 

proved that computer vision, IoT sensors, and automation into a functional real-time solution. 

Using the YOLOv10 model and OpenCV for plant detection, alongside MQTT for 

communication and Raspberry Pi to Arduino integration, the system successfully achieved its 

intended goal. 

 

The project offered important insights into real-world system implementation despite a number 

of technical obstacles, including hardware constraints, integration complexity, and calibration 

irregularities. Important tactics that guaranteed overall system performance and stability 

included stream processing using Flask, model offloading to laptops, and the application of 

error-handling techniques. 

 

In summary, the project not only demonstrated the potential of AI-driven plant care, but it also 

brought to light crucial factors to take into account when implementing such solutions in 

settings with limited resources. These include enhancing hardware configuration for long-term 

operation, guaranteeing dependable sensor communication, and optimising model inference 

for edge devices. Future iterations and advancements in automated smart agriculture systems 

will be built upon the lessons learnt. 
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Chapter 6 

System Evaluation and Discussion  

6.1  System Testing and Performance Metrics 

 

 

Figure 6.1 Metrics Curve 

During the training process, the performance of the model was continuously monitored and 

retrained, until metrics such as loss values, precision, recall, and mean Average Precision 

(mAP) being used to determine how well it could generalize to unseen data. The precision-

recall curve played a crucial role by showing a complete overview of the balance between 

precision and recall at different threshold levels. By analyzing the form of this curve, potential 

problems such as overfitting or underfitting can be recognized. Training stopped when the 

precision-recall curve showed a satisfactory balance of high precision and recall values, 

indicating that the model had effectively learned to detect plants without showing a preference 

for either metric. This method guaranteed that the model maintained a strong level of 

effectiveness in practical situations, where both precision and recall are essential for accurate 

plant identification. 

 

The outcomes of the inference testing phase show the key metrics and trends observed during 

the training of the YOLOv10 model. These metrics include training losses (train/box_loss, 

train/cls_loss, and train/dfl_loss), validation losses (val/box_loss, val/cls_loss, and 
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val/dfl_loss), and performance metrics such as precision, recall, and mean Average Precision 

(mAP). 

 

 

Figure 6.2 Training Loss Metrics 

Training Loss Metrics 

The training results indicate a consistent decrease in the training loss metrics beginning at 7th 

epoch, reflecting the model's improving accuracy and efficiency in plant detection tasks. 

Specifically, the train/box_loss, which represents the error in predicting the bounding boxes 

around detected plants, decreased steadily from an initial value of 1.158 in the 7th epoch to 

0.562 by the of epochs 99. This reduction suggests that the model's predictions of plant 

locations became more precise over time. Similarly, the train/cls_loss, which measures the 

error associated with classifying detected objects correctly, decreased significantly from 1.335 

to 0.327, indicating enhanced accuracy in identifying different plant species. The 

train/dfl_loss, which evaluates the distribution of the predicted bounding boxes relative to the 

ground truths, also showed a downward trend, reducing from 1.522 to approximately 1.092 by 

the end of the training period. This overall reduction in training losses illustrates that the model 

is learning to minimize errors effectively, enhancing its ability to correctly identify and classify 

plants. 
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Figure 6.3 Validation Loss Metrics 

 

Validation Loss Metrics 

The validation loss metrics also displayed a decreasing trend, show the ability of the model to 

generalize well to new, unseen data. Moreover, the val/box_loss began to drop rapidly from 

1.446 at epoch 5 to 1.17 by the end of epoch 99, demonstrating that the model is capable of 

maintaining high accuracy in plant localization even on the validation set. The val/cls_loss also 

showed significant improvement, reducing from 1.484 to around 0.934, which suggests that 

the model's classification performance on new data is becoming increasingly reliable. The 

consistent decrease in val/dfl_loss further supports these results, reflecting the model's 

enhanced ability to produce accurate bounding boxes that closely match the ground truth. 
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Figure 6.4 Performance Metrics 

 

Performance Metrics: Precision, Recall, and mAP 

The performance metrics, including precision, recall, and mean Average Precision (mAP), 

further underscore the model’s progress. The metrics/precision(B), which measures the 

proportion of true positive detections among all detections made, improved markedly from 

0.268 in epoch 0 to 0.807 in epoch 99. This improvement indicates that the model is effectively 

reducing the number of false positives and increasing the accuracy of its predictions. The 

metrics/recall(B), which represents the proportion of actual positive samples correctly 

identified, also showed substantial growth, rising from 0.486 to 0.778. This trend suggests that 

the model is becoming more proficient at detecting all relevant objects in the images. The 

metrics/mAP50(B) and metrics/mAP50-95(B), which evaluate the accuracy of the model’s 

detections across different Intersection over Union (IoU) thresholds, also demonstrated 
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positive trends. Metrics/mAP50(B) increased from 0.342 to approximately 0.8, while 

metrics/mAP50-95(B) increased from 0.196 to around 0.573, indicating that the model is 

achieving higher detection accuracy across varying degrees of overlap between the predicted 

and actual bounding boxes. 

 

6.2  Testing Setup and Result 

Following training, inference testing was performed with a live webcam feed, replicating real-

world deployment conditions. A Python script processed video frames in real-time, ran 

inference through the YOLOv10 model, and drew bounding boxes with class labels around 

detected plants. 

The performance was assessed based on two key metrics: 

• Precision: measuring the percentage of correctly predicted positive instances. 

• Recall: measuring the percentage of actual positives that were correctly identified. 

Testing results showed the model could reliably identify all 10 classes with high confidence 

under different lighting and background conditions. Fine-tuning of parameters such as 

confidence thresholds and non-maximum suppression (NMS) was conducted to optimize 

real-time performance. 

  



 
 

63 
Bachelor of Information Systems (Honours) Business Information Systems 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

   

Figure 6.5 Inference testing of Model 

 

 

Performance Metrics Across Epochs 

A detailed comparison of performance metrics at epochs 50, 80, and 100 is shown in Table 

6.1. The table illustrates how extended training boosts the model's detection precision, recall, 

and overall accuracy. 

Epoch Precision (B) Recall (B) mAP@0.5 (B) mAP@0.5:0.95 (B) 

50 0.614 0.594 0.583 0.512 

80 0.713 0.626 0.68 0.535 

100 0.807 0.778 0.80 0.573 

Table 6.1 Performance Metrics table 
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Testing Procedures and Results 

Test Case Procedure Expected Result Actual Result Status 

Plant 

Detection 

Accuracy 

Ran live video 

feed with 

multiple known 

plant types 

under various 

lighting 

conditions. 

Model correctly 

identifies plant 

types with at least 

85% confidence. 

Detection 

confidence 

ranged from 

85%–92% in 

controlled 

lighting. 

Passed 

Plant 

Classification 

Consistency 

Repeated tests 

on the same 

plant species 

from different 

angles and 

distances. 

Consistent 

classification 

across multiple 

test scenarios. 

YOLOv10 

consistently 

classified plants 

with minimal 

variation. 

Passed 

Real-Time 

Inference 

Speed 

Measured the 

time between 

camera input 

and bounding 

box display on 

screen. 

Inference delay 

should be under 1 

second for smooth 

real-time 

detection. 

Average delay 

observed: ~0.5 

seconds. 

Passed 

Detection–

Irrigation 

Integration 

Tested whether 

detection of a 

plant triggers 

correct 

moisture 

threshold 

retrieval and 

irrigation. 

Detected plant 

type fetches 

correct profile, 

system applies 

watering rules. 

Plant-specific 

profile correctly 

loaded; irrigation 

activated 

accordingly. 

Passed 

False 

Positive 

Filtering 

Introduced 

non-plant 

objects (e.g., 

furniture, tools) 

into the frame. 

Model should not 

detect or 

misclassify non-

plant objects as 

plants. 

No false positives 

detected in non-

plant objects. 

Passed 

Table 6.2 Testing Procedures and Results 
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6.3  Project Challenges 

The main challenge addressed by this project is by integrating multiple advanced technologies 

such as computer vision, IoT sensing, automated watering, and air purification into a single, 

reliable smart indoor plant care system. Even if separate parts, such air purifiers or soil moisture 

sensors, are well-known, integrating them into a coherent system that reacts sensibly to data in 

real time added a significant amount of complexity. 

 

One major challenge was achieving accurate plant type recognition with a camera system, 

particularly under shifting lighting conditions and with seemingly identical species. Computer 

vision models required extensive training and testing to achieve acceptable accuracy for 

species-specific watering profiles. Inconsistent lighting and camera angles further increased 

the likelihood of misclassification. 

 

On the hardware side, synchronizing the data flow between the Raspberry Pi, Arduino 

Leonardo, and multiple sensors presented integration difficulties, particularly when managing 

simultaneous operations like video streaming, sensor readings, and actuation of pumps. 

Resource limitations on edge devices also constrained model deployment, requiring efficient 

offloading of inference tasks to the laptop while maintaining real-time responsiveness. Another 

challenge was in watering and moisture visualization. Developing a reliable dashboard to 

display soil moisture data in real time required precise sensor calibration and MQTT-based 

communication handling. Achieving stability in data transmission and ensuring dashboard 

updates without latency were key issues to solve. 

 

In summary, this project addresses the multiple task of creating an intelligent, plant-aware 

environment that is adaptable, automated, and user-friendly by combining various technologies 

to create a fully functional and scalable indoor plant care system. 
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6.4    Objectives Evaluation 

1. Design and Train a Plant Recognition System for Watering Automation (Achieved) 

The project successfully integrates a YOLOv10-based computer vision model trained to 

identify multiple types of indoor plants through a live camera feed. The camera, mounted on a 

Raspberry Pi 4, streams video to a laptop for detection, where plant types are recognized in 

real-time. Each detected plant is linked to a pre-defined moisture profile to ensure species-

specific hydration. When paired with moisture readings from sensors in the soil, the system 

executes a custom watering action through relays and water pumps, ensuring each plant 

receives only the amount of water needed to maintain optimal health. 

 

2. Develop a Functional Prototype of a Smart Air Purifier with Self-Watering Plant 

Integration (Achieved) 

A fully operational prototype has been developed, assembled on a three-tier trolley frame. This 

prototype integrates multiple components, including: 

• A live camera for plant detection on the top level. 

• Plant compartments with embedded moisture sensors and watering systems on the 

middle level. 

• Air-purifying plants functioning alongside moisture automation, all housed within a 

compact, mobile frame. 

The design offers a holistic indoor environment solution that improves both air quality 

and plant health through smart automation. The combination of air-purifying plants and 

intelligent watering control helps maintain humidity and freshness in the space. 

 

3. Incorporate IoT Sensors for Monitoring and Dashboard Visualization (Achieved) 

The system effectively incorporates IoT soil moisture sensors within each plant pot and an AQI 

sensor module to monitor the surrounding air quality. All sensor data is transmitted using 

MQTT protocol to a centralized Node-RED dashboard, which presents real-time updates on: 
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• Soil moisture levels of each plant. 

• Detected plant species. 

• Current AQI values. 

• Watering history and system status. 

The dashboard allows users to visualize and interpret environmental data, ensuring informed 

decision-making and enhancing the overall usability of the system. Alerts and visual indicators 

provide additional support for proactive plant care and air quality monitoring. 

 

6.5    Concluding Remark   

The completion of this project signifies a meaningful advancement in smart indoor plant care 

by successfully integrating computer vision, IoT sensing, and automation technologies into a 

unified, functional system. Through the deployment of a plant based recognition model, a soil 

moisture–triggered watering mechanism, and real-time environmental monitoring via IoT 

sensors, the system demonstrates an intelligent, adaptive approach to maintaining plant health 

and improving air quality. 

 

The solution achieved all its core objectives such as accurate plant type detection, species-

specific watering automation, and real-time environmental data visualization through an 

interactive dashboard. Despite technical challenges such as hardware-software integration, 

sensor calibration, and edge computing constraints, strategic decisions like offloading model 

inference to a laptop and using Flask and Node-RED ensured system performance and stability. 

Overall, this project not only proves the feasibility of AI-driven plant care but also opens new 

opportunities for smart home applications. It provides a strong foundation for future 

improvements, such as mobile app integration, wireless sensor expansion, and predictive 

watering using machine learning. The success of this prototype shows how data-driven 

automation can significantly enhance plant maintenance, reduce human effort, and contribute 

to sustainable indoor environments. 
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Chapter 7 

Conclusion and Recommendation 
 

7.1 Conclusion 

This project successfully developed the Oasis system, an automated indoor plant care solution 

that integrates computer vision, IoT sensors, and smart watering mechanisms. By combining 

real-time plant detection using YOLOv10 with soil moisture monitoring and automated 

irrigation, the system reduces manual effort while promoting healthier indoor air-purifying 

plants. Despite some technical challenges, such as processing limitations and occasional 

detection errors, the project met its objectives and demonstrated the potential of using 

affordable, intelligent systems to support sustainable living and smart home applications. 

 

7.2 Recommendation 

Based on the observations and lessons learnt from this project, the following recommendations 

are made to improve the performance, scalability, and usability of the Oasis system in future 

iterations: 

 

1. Upgrade to Edge AI Accelerators 

To address the Raspberry Pi's computing constraints, edge AI accelerators such as the Google 

Coral TPU or NVIDIA Jetson Nano are recommended. These devices provide increased 

processing power for machine learning inference, allowing for faster and more sophisticated 

model execution. As a result, the system could handle higher-resolution photos, real-time 

multiple-object identification, and even more advanced analytics with little delay.  

 

2. Expand the Plant Dataset and Retrain the Model 

The latest YOLOv10 model was trained on a small but particular dataset of air-purifying plants. 

To improve accuracy and robustness, future work should concentrate on gathering a larger and 
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more diverse dataset that includes both indoor and outdoor plant species. Continuous retraining 

and model validation using new data can improve generalisation across plant kinds, lighting 

situations, and background noise.  

 

3. Develop a User-Centric Interface 

Implementing a dedicated user interface, such as a web or mobile application, can greatly 

increase user engagement. This dashboard might show current plant detection status, moisture 

levels, watering history, and system alerts. It may also allow users to customise watering 

thresholds, schedule system operations, or remotely regulate the pump, making the system 

more accessible and manageable to non-technical users. 

 

4. Integrate Plant Health Monitoring 

The system's capabilities can be expanded beyond presence detection to include plant health 

assessments. Using powerful image processing and deep learning techniques, the system may 

be trained to detect disease, discolouration, wilting, and pest infestations. These findings could 

serve as early alerts for users, encouraging proactive and preventive plant care. 

 

5. Incorporate Environmental and Weather Data 

For installations near windows or in semi-outdoor locations, ambient temperature, humidity, 

and light intensity may all have an impact on watering requirements. Integrating external 

sensors or APIs that provide weather forecasts could help the system make more informed 

decisions, such as deferring watering during wet or humid weather. 

6. Plan for Scalability and Integration 

The system architecture should be scaleable in order to facilitate widespread adoption. This 

includes support for several plant modules, connection with various home automation 

ecosystems (such as Google Home and Amazon Alexa), and modular hardware designs that 

can be readily upgraded or customised.  
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By implementing these recommendations, the Oasis system can develop into a full smart 

gardening solution that not only fits current user needs but also adapts to future technical 

improvements and environmental concerns.  
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