

Oasis - A Computer Vision Approach to Self-Watering System for Green

Air Purifier

BY

TAN WEI JUN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) BUSINESS INFORMATION

SYSTEMS

Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2025

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Tan Wei Jun. All rights reserved.

This Final Year Project report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Information Systems (Honours) Business Information

Systems at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project report

represents the work of the author, except where due acknowledgment has been made

in the text. No part of this Final Year Project report may be reproduced, stored, or

transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to thank and appreciate my supervisor, Dr. Aun Yichiet, for allowing me to work

on a computer vision system project. Thank you so much for assisting me with my first step

towards a career in computer vision projects, environmental monitoring, and data analysis.

Your advice and encouragement have been really helpful during this journey.

Nam Shing, a very special person in my life, for her patience, unconditional support, and love,

as well as for remaining by my side through difficult times. I am also very grateful to my

parents and family for their love, support, and encouragement throughout the course.

Above all, I give thanks to God, whose grace and guidance have carried me through every step

of this project. From the beginning to the end, I have seen doors open, and problems overcome

in ways I could never have accomplished on my own. I am humbled and grateful for the

strength, wisdom, and perseverance granted to me. Proverbs 16:3 “Commit to the Lord

whatever you do, and He will establish your plans.” This project is a testament to that promise.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This project presents an integrated smart system that enhances indoor plant care by combining

real-time object detection with automated environmental monitoring and control. At its core,

the system leverages the YOLOv10 deep learning model, renowned for its high accuracy in

real-time object detection, to identify and classify various indoor plant species from continuous

video feeds captured by a webcam. This facilitates real-time visual monitoring and enables a

responsive, automated plant care process.

To extend functionality, the project incorporates a self-sustaining air purification system that

utilizes natural plants as biofilters. Recognized plants are analysed for their suitability in air

purification, with the system adjusting care accordingly. The integration of environmental and

moisture sensors allows for dynamic adjustments in watering schedules to maintain optimal

plant health.

A key component of the system is the use of Node-RED as a middleware platform to facilitate

communication between the plant recognition module and an Arduino-based automated

watering system. Detected plants are mapped to corresponding moisture sensors, and each plant

receives water based on its specific moisture requirements. This precise matching ensures

resource efficiency and tailored care, reducing human intervention while promoting sustainable

indoor plant management.

Area of Study: Internet of Things, Computer Vision

Keywords: Data Collection in IoT, Monitoring Application, User-friendly Application, IoT

Security, Smart Irrigation, YOLOv10, Real-Time Plant Detection, Node-RED Integration,

Arduino-Based Automation, Environmental Sensors.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 12

1.1 Problem Statement and Motivation 13

1.2 Research Objectives 14

1.3 Project Scope and Direction 15

1.4 Contributions 16

1.5 Report Organization 17

CHAPTER 2 LITERATURE REVIEW 18

2.1 Previous works on Computer Vision

2.1.1 Performance of YOLOv5 for Plant Detection in

Agricultural Fields

2.1.2 Improved YOLOv5-Based Vegetable Disease Detection

2.2 Current available computer vision algorithms

2.2.1 Computer Vision Algorithm (YOLOv5)

2.2.2 Computer Vision Algorithm (YOLOv8)

2.3 Comparison Table

2.4 Limitation of Reviewed Algorithms

18

18

19

19

20

21

23

24

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

CHAPTER 3 SYSTEM METHODOLOGY 26

3.1 System Design Diagram 29

3.1.2 Use Case Diagram and Description 28

CHAPTER 4 SYSTEM DESIGN 30

4.1 System Block Diagram 30

4.2 System Components Specifications 31

4.3 System Components Interaction Operations 31

CHAPTER 5 SYSTEM IMPLEMENTATION 36

5.1 Hardware Setup 36

5.2 Software Setup 40

5.2.1 Python Environment 43

5.2.2 Raspberry Pi OS Configuration 45

5.3 Setting and Configuration 45

5.3.1 Preparation of Datasets 46

5.3.2 Training of the Model 48

5.3.3 Preprocessing and MQTT Integration 49

5.3.4 Sensor Assignment Function 49

5.3.5 Flask Server Setup 50

5.3.6 Setting Up the Pi Camera 50

5.3.7 YOLOv10 Threshold Configuration 50

5.3.8 MQTT publish rate 51

5.3.9 AutoStart Scripts 51

5.3.10 Network Setup 51

5.3.11 Setup of Node-RED on Raspberry Pi 51

5.4 System Operation (with Screenshot) 52

5.4.1 Startup Sequence 52

5.4.2 Detection Demo 53

5.4.3 Watering Action Triggered 54

5.4.4 Visualization Using Node-RED Dashboard 2.0 54

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

5.5 Implementation Issues and Challenges 55

5.5.1 Hardware Limitations 55

5.5.2 Integration with Arduino Leonardo 56

5.5.3 Network Communication Delay 56

5.5.4 Camera Positioning 56

5.6 Concluding Remark 57

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

58

6.1 System Testing and Performance Metrics 58

6.2 Testing Setup and Result 62

6.3 Project Challenges 65

6.4 Objectives Evaluation 66

6.5 Concluding Remark 67

CHAPTER 7 CONCLUSION AND RECOMMENDATION 69

7.1 Conclusion 69

7.2 Recommendation 70

REFERENCES 73

 APPENDIX 74

 POSTER 150

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

LIST OF FIGURES

Figure Number Title Page

2.1 YOLOv5 for Plant Detection in Agricultural Fields 1

2.2 Tomato Leaf Classification 10

2.3 General architecture of the YOLOv5 13

2.4 Comparison of YOLO models 14

2.5 Architecture of the YOLOv8 Model 19

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.11

5.12

5.13

5.14

5.15

5.16

System Diagram

Custom YOLOv8 architecture

Use Case Diagram

System Design

Flask Video Stream Code

Published MQTT message

Detection Results

Dashboard Visualization

System Node Flow

Raspberry Pi 4 Model B

Raspberry Pi Camera Module V2

Raspberry Pi Power Supply

Arduino Leonardo

Soil Moisture Sensors

Water Valve

USB Serial Cable

Node-RED Dashboard

Annotation of datasets

Model Training for YOLOv10

MQTT Integration

Sensor Assignment Function

Threshold Configuration

Raspberry Pi Flask Stream

20

28

29

31

34

34

35

35

36

39

39

39

40

40

40

40

41

48

49

50

50

51

53

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

6.1

6.2

6.3

6.4

6.5

CV Model Execution

Detection Demo

Terminal Output

Moisture Assignments

Dashboard Visualization

Gauge Visualization

Control Panel

Function Node Configuration

Test Image of Camera Module

Metrics Curve

Training Loss Metrics

Validation Loss Metrics

Performance Metrics

Inference testing of Model

54

54

55

55

56

56

56

57

58

60

61

63

64

65

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF TABLES

Table Number Title Page

2.1

2.2

2.3

YOLOv5 variants

YOLOv8 variants

Comparison Table of Reviewed Computer Vision Models

22

24

25

5.1

5.2

5.3

5.4

5.5

6.1

6.2

Specifications of laptop

Components of Computer Vision and Automation System

Libraries Requirements

Library Summary Contributions by Category

Dataset Summary

Performance Metrics table

Testing Procedures and Results

37

39

44

45

47

64

65

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF SYMBOLS

(mAP)

train/box_loss

train/cls_loss

train/dfl_loss

val/box_loss

val/cls_loss

val/dfl_loss

Mean Average Precision

Train Box Loss

Train Class Loss

Train Distribution Focal Loss

Validation Box Loss

Validation Class Loss

Validation Distribution Focal Loss

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF ABBREVIATIONS

CV Computer Vision

YOLO

(You Only Looked Once)

13
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Introduction

As society continues to evolve and cost of living increases, there is a growing concern on the

importance of maintaining indoor air quality. With the increased use of air conditioning and

recycled air, the air we breath end up being recycled repeatedly. This has contributed to what

is commonly referred to as modern "sick" buildings, where the very systems designed to

provide comfort but inevitably contributed to the decrease in air quality [1].

These buildings, which contributes to roughly 30% of global energy due to the extensive use

of indoor furniture and facilities, can trap harmful pollutants and negatively impact our

health[1]. One promising approach is the integration of computer vision technology with plant-

based systems for indoor air purification [4]. The advancements in computer vision for plant

monitoring offer significant potential for improving the efficiency and effectiveness of plant-

based air filtration systems. By leveraging computer vision, it is possible to monitor plant

health in real time, ensuring that plants are optimally maintained to perform their natural air-

purifying ability.

Ensuring the health of these biofilter plants is crucial for the continuous air purification in

indoor spaces. A computer vision system plays an role in maintaining these plants by providing

real-time monitoring and analysis of their health. By capturing real-time images of the plants,

the system can detect early signs of stress, disease, or lack of growth, reducing the need for

manual plant care and preventing the risk of human errors. The system can analyse various

visual signs, such as leaf colour, shape, and texture, to assess plant health and make data-driven

decisions [5]. This adaptability ensures that the plants receive the necessary care, allowing for

timely interventions and adjustments to their environment. By integrating with real-time data,

the computer vision system enhances the overall effectiveness of the green air purification

system, ensuring that the plants remain in peak condition and continue to contribute to a

healthier indoor environment.

14
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.1 Problem Statement and Motivation

Indoor plants are known to acts as natural air purifiers, as they clear the pollutants in the air by

absorbing the impurities in the environment and releasing oxygen. [1] However, the ability of

these air purifying plants is influenced on proper watering and care, and traditional methods

for the caring of these plants have its few disadvantages.

Traditional methods of plant care, such as manually scheduled monitoring of the plants. This

inconsistent monitoring can be a challenge and may cause uneven watering distribution of

water and care among plants, especially when they are different plants involved. Overwatering

can cause the root to rot, while underwatering can cause plants to wither and die. With a

consistent, scheduled monitoring solution, the efficiency of automated systems is improved,

which can prevent wastage of water and unhealthy plants. and make it difficult for the plant to

effectively clean the air. These issues affect both the plant's aesthetic appeal and its ability to

purify the air. Therefore, there is a rising curiosity in incorporating modern technologies like

computer vision (CV) to improve plant care systems [4].

This project explores the integration of a computer vision-based approach with a self-watering

system specifically designed for indoor plants that serve as green air purifiers. The system

proposed aims to improve to consistency and efficiency of watering schedules by utilizing real-

time image processing to monitor plant health indicators like leaf color, growth patterns, and

overall vitality [5]. The use of computer vision combined with IoT sensors allows for a more

flexible and accurate method for taking care of plants, ensuring each plant receives the right

amount of water tailored to its specific needs and environmental conditions [6].

The purpose of integrating computer vision system with a dashboard monitoring system is to

provide real time data of plant health visually. As urban living spaces continue to shrink and

the demand for low-maintenance, high-efficiency plant care systems increase, integrating

computer vision into these systems offers a promising solution for innovation [7]. By

advancing self-watering systems with computer vision capabilities, this project aims to

15
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

improve the effectiveness of indoor plants as air purifiers, ultimately leading to healthier indoor

environments [8].

1.2 Research Objectives

This project proposes the deployment of advanced computer vision technology to enhance the

self-watering system for indoor plants. The goal is to ensure precise and adaptive watering

based on real-time plant and environmental data. The key objectives are:

1. To design and train a Plant Recognition for Watering Automation. There is a camera

system capable of identifying different plant types and recommending customized

watering levels based on real-time soil moisture data. Integrate an automated self-

watering mechanism to maintain optimal plant health.

2. To develop a functional prototype of a smart air purifier housed on a three-level trolley,

integrating plant compartments, a self-watering mechanism, and an IoT sensor system

for real-time environmental data collection.

3. To Incorporate IoT sensors to monitor soil moisture levels in the plant compartments

and measure the Air Quality Index (AQI) in the surrounding environment. Stream this

data to a centralized dashboard for real-time monitoring.

During the process of image detection, a camera system will be developed to identify different

air-purifying plant species with trained datasets. The camera system will continuously capture

real-time video feed and pictures. By integrating this system with an automated self-watering

mechanism, the prototype will ensure that each plant receives the appropriate amount of water

tailored to its specific needs. Traditional manual watering methods often fail to deliver

consistent and optimal care. Hence, the first objective aims to utilize computer vision

technology to reduce the risk of over or under-watering and to streamline the process of plant

care and monitoring. The visual results of the computer vision will continuously monitor plants

and capture crucial data, improving plant health and reducing the need for manual intervention.

The collected data will be comprehensively visualized and monitored through Grafana,

allowing for real-time adjustments and improved management of the plant compartments.

16
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Continuing the process, the end result will be that the plants and their moisture levels are

constantly monitored using a computer vision (CV) model and IoT sensors to ensure optimal

air quality from the purifying plants. Each plant should consistently maintain moisture within

a predefined threshold, suitable for its species and environmental conditions. The CV system,

in conjunction with real-time sensor data, will assess the health of the plants based on visual

indicators such as leaf colour, texture, and overall appearance. For instance, signs of water

stress, such as wilting or discoloration, will be detected early, allowing for immediate

corrective actions. The integration of this monitoring system ensures that the self-watering

mechanism adjusts accordingly to maintain both plant health and optimal air quality.

1.3 Project Scope and Direction

In this project, the research and development will centre around the implementation and

exploration of various computer vision algorithms and models. The primary objective is to

develop a plant recognition model that can accurately identify and monitor plant health. The

project will investigate different computer vision approaches, evaluating their effectiveness in

recognizing plant species and assessing plant health.

The focus will be on optimizing the model's accuracy and reliability, with an emphasis on real-

time processing to enable timely monitoring and potential integration with automated systems,

such as a self-watering mechanism. This exploration will not only aim to achieve high precision

in plant recognition but also explore how these models can be enhanced or customized for

specific applications, such as indoor plant care and air quality improvement.

At the conclusion of the project, a prototype system will be delivered, comprising both software

and hardware components. The hardware will include a camera system for plant identification

and monitoring, while the software will include the plant recognition model, along with tools

for analysing plant health. This prototype will serve as a foundational system designed to

recognize plants, offering potential applications in smart gardening and automated plant care

systems.

17
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Contributions

The aim of this project is to showcase the practicality and effectiveness of integrating computer

vision and IoT technologies to enhance self-watering systems for indoor air-purifying plants.

Firstly, the project successfully demonstrates the computer vision system for plant recognition.

This sets the foundation for future progress in automating plant care with computer vision and

machine learning. By the end of the project, a solution will be provided, including hardware

and software elements. The hardware will have cameras to take high-quality images of plants,

with the software having a computer vision algorithm for identifying plant types. This project

aims to create a prototype system showcasing the capabilities of computer vision technology

in plant care and monitoring, leading the path for further developments in the field.

 1.5 Report Organization

This report focuses on developing a computer vision algorithm for a plant recognition system

to enhance a self-watering mechanism for indoor air purifying plants. Chapter 1 introduces the

problem statement and highlights the research objectives, project scope, and contributions. It

sets the stage for the project by explaining the significance of integrating computer vision with

automated plant care systems and the anticipated impact of this technology. Chapter 2 reviews

existing computer vision algorithms pertinent to plant recognition. This chapter explores

various approaches and techniques used in the field. Chapter 3 presents the proposed

methodology for implementing the computer vision system. This chapter focuses on the design

and structure of the system, including the hardware configuration, software requirements, and

the procedure for integrating computer vision algorithms with collected datasets. Chapter 4

focuses on the preliminary work done during the project, including initial experiments, setup

procedures, and challenges encountered. It discusses about the challenges and issues during the

development process and the strategies employed to address these issues. Chapter 5 concludes

the report based on the project's progress and evaluating its overall success. It reflects on the

achievements, assesses the effectiveness of the system, and offers recommendations for future

enhancements. It also discusses potential directions for further research and development to

advance the technology and its applications.

18
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Literature Review

2.1 Previous works on Computer Vision

2.1.1 Performance of YOLOv5 for Plant Detection in Agricultural Fields

Research in object detection using computer vision by [9], which evaluated effectiveness of

the YOLOv5 model in identifying the cotton plants within corn fields at various growth stages.

The research focused on assessing the accuracy of YOLOv5, under different environmental

conditions and plant growth stages, which are crucial for agricultural sectors. The study showed

that YOLOv5 could effectively idenfity cotton plants in corn fields across three distinct growth

stages, even under varying lighting and occlusion conditions. The algorithm showed high

detection accuracy and speed, which are essential for real-time detections where timely

decision-making is needed. The researchers highlighted that YOLOv5's capability to quickly

process and analyse images in complex backgrounds made it particularly suitable for

agricultural scenarios where multiple plant types co-exist.

Figure 2.1 YOLOv5 for Plant Detection in Agricultural Fields

2.1.2 Improved YOLOv5-Based Vegetable Disease Detection

[10] The improved method of this research focused on improving YOLOv5’s accuracy in real-

time detection and classification of different vegetable diseases. They trained the standard

YOLOv5 model to better generalize to the distinct features of vegetable leaves, like colours,

shapes, and textures, that could affect the accuracy of detection. The improved YOLOv5 model

included several innovative adjustments, such as fine-tuning the network layers and integrating

a new attention mechanism to enhance feature extraction in complex backgrounds.. The study

19
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

demonstrated that these modifications significantly boosted detection accuracy and reduced

false positives, particularly in cases with overlapping leaves or where diseases manifested

subtly. Additionally, the improved model achieved faster processing speeds, which was critical

for real-time agricultural applications where quick and accurate responses are necessary.

Figure 2.2 Tomato Leaf Classification

2.2 Current available computer vision algorithms

2.2.1 Computer Vision Algorithm (YOLOv5)

In this section, we explore the YOLOv5 computer vision algorithm for the plant recognition

and watering automation system. YOLOv5 is widely recognized for its real-time object

detection capabilities, offering a compelling balance between speed and accuracy [11]. This

makes it particularly suitable for applications where fast response times are critical, which

requires immediate decision-making to adjust watering schedules based on plant identification.

[12]

The YOLOv5 model uses convolutional neural networks (CNNs) to rapidly process visual data

captured by the camera system, allowing fast and accurate identification of plant species. Its

lightweight architecture and optimized performance allow for fast inference, ensuring that the

system can operate efficiently in real-time without significant latency. This ability to maintain

20
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

high detection speed while providing reliable accuracy makes YOLOv5 a potential choice for

our project. Figure 2.3 illustrates the general architecture of the YOLOv5 model. [12], [13]

Figure 2.3 General architecture of the YOLOv5

YOLOv5's flexible architecture, with variants (s, m, l, x) tailored to different requirements for

detection speed and accuracy, makes it ideal for applications that require balancing model

complexity with inference speed on limited hardware. the YOLOv5s version was selected due

to its lower computational demands and ability to run on devices with limited processing power

while achieving high accuracy for plant species recognition [15]. This makes YOLOv5s

potentially well-suited for our automated watering system, which requires real-time plant

detection to adapt watering schedules dynamically. Table 2.1 below shows the different model

of YOLOv5 variants. [11]

Table 2.1 YOLOv5 variants

Model
size

(pixels)

mAPval

50-95

mAPval

50

Speed
CPU b1

(ms)

Speed
V100 b1

(ms)

Speed
V100

b32

(ms)

params
(M)

FLOPs
@640 (B)

21
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5

YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5

YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0

YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1

YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7

YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6

YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8

YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0

YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4

2.2.2 Computer Vision Algorithm (YOLOv8)

This section explores the architecture of the YOLOv8 computer vision algorithm, focusing on

why it was selected for our plant recognition and watering automation system over its

predecessors. YOLOv8, introduced by Glenn Jocher in 2023 [16], is the most recent

development in the YOLO (You Only Look Once) lineup, building upon the achievements of

YOLOv5 and its previous models, it has improved significantly in terms of speed, accuracy,

and versatility for live object detection [17]. Figure 2.4 shows comparison of different model

versions of YOLO.

Figure 2.4 Comparison of YOLO models

22
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

YOLOv8 features various architectural enhancements that distinguish it from YOLOv5. The

model includes an improved backbone network that helps achieve improved feature extraction

and more accurate object detection [12]. This progress decreases the number of calculations

needed and training time while still achieving excellent results, allowing for quicker

predictions. Additionally, YOLOv8 uses innovative anchor-free detection heads to improve

localization accuracy and decrease false positives by getting rid of predefined anchor boxes.

This leads to enhanced identification of objects in different sizes and forms, making YOLOv8

highly efficient in a variety of challenging settings. The flexible design of YOLOv8 also makes

it easy to adapt to different scenarios and deployment environments [19]. Figure 2.5 below is

the architecture of YOLOv8.

Figure 2.5 Architecture of the YOLOv8 Model

YOLOv8 too comes with a variety of variants (n, s, m, l, x) tailored to different requirements

for detection speed and accuracy, makes it ideal for applications that require balancing model

complexity with inference speed on various hardware setups. The YOLOv8n version was

selected due to its lower computational demands and ability to run efficiently on devices with

limited processing power while still achieving high accuracy for plant species recognition.

This makes YOLOv8n best suited for our automated watering system, which relies on real-

time plant detection to dynamically adjust watering schedules. Table 2.2 below shows the

different model variants of YOLOv8. [16]

23
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Model
size

(pixels)

mAPval

50-95

Speed
CPU ONNX

(ms)

Speed
A100

TensorRT

(ms)

params
(M)

FLOPs
(B)

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7

YOLOv8s 640 44.9 128.4 1.20 11.2 28.6

YOLOv8m 640 50.2 234.7 1.83 25.9 78.9

YOLOv8l
640 52.9 375.2 2.39 43.7 165.2

YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

Table 2.2 YOLOv8 variants

2.3 Comparison Table

Based on the literature review on two different types of computer vision models, a comparison

table is structured to outline the main points for each model considered in the plant recognition

and watering automation system.

Table 2.3: Comparison Table of Reviewed Computer Vision Models

Feature YOLOv5 YOLOv8

Release Date June 2020 January 2023

Architecture
CSPDarknet53 with

PANet

Improved backbone with

enhanced PANet

Anchor Boxes
Uses predefined anchor

boxes
Anchor-free detection

Speed and Efficiency
Fast, but less optimized

for real-time

Faster with reduced

computations

Model Size Moderate to large
Smaller and more

lightweight

Accuracy
High, but struggles with

small objects

Improved accuracy,

especially for small

objects

False Positives
Higher due to anchor

boxes

Lower due to anchor-free

approach

24
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Real-time Applications
Suitable, but less efficient

than YOLOv8

Highly optimized for real-

time use

2.4 Limitation of Reviewed Algorithms

YOLOv5 faces several limitations despite its advancements in object detection. One of its

primary challenges is limited robustness in diverse environments. While YOLOv5 performs

well under normal conditions, it struggles with generalizing on unseen data, or complex

backgrounds. This lack of flexibility impacts the model’s effectiveness in real-world

applications where environmental conditions are less controlled. Additionally, YOLOv5's

computational resource requirements, though optimized, it is still a large model as compared

YOLOv8. This can be an issue for deployment on resource constraint devices. Additionally,

YOLOv5 may struggle with detecting smaller and more specific object, which can be crucial

in applications requiring precise object detection, like detailed medical images or complex

backgrounds. The exchange between accuracy and speed often means that YOLOv5 might not

capture fine details effectively. Finally, YOLOv5’s performance can fluctuate depending on

the specific object detection task. While it performs well in general object detection, specialized

tasks may require extra fine-tuning and additional training, potentially making it less versatile

and more resource intensive.

YOLOv8 introduces several advancements over its predecessors but also brings new

challenges. Its increased complexity and advanced architecture lead to higher computational

and memory overhead during both training and inference but it is still smaller than and faster

than YOLOv5 in terms of training time and datasets [11]. Additionally, YOLOv8’s enhanced

capabilities increase its susceptibility to overfitting, especially when trained on limited datasets.

Overfitting can decrease or reduce the model's capability to generalize to new data which was

what happened in our training and deployment of YOLOv5 model, which is crucial for real-

world scenarios. In our experience, using the same datasets, YOLOv8 performs better than

YOLOv5 with lesser training time and generalizes better on unseen data with higher confidence

level. Lastly, integrating YOLOv8 into existing systems can be complex. The model's

advanced features may require significant adjustments and optimizations during deployment,

posing challenges for users who need a more straightforward and easily integrable solution.

25
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3

System Methodology

3.1 System Design Diagram

The objective of this project is to create a specialized computer vision system for monitoring

indoor plants with advanced technology. The system will use advanced computer vision

techniques to accurately identify and assess the health of indoor plants. By integrating

computer vision into indoor plant care, the system aims to automate the monitoring of plant

care, resulting in better plant health and improved care. Figure 3.1 below is the proposed system

diagram our proposed method.

Figure 3.1 System diagram

To achieve this, a wide collection of images of plants will be gathered. This dataset will contain

of various air purifying plant species, covering different scenarios, angles, and environmental

settings to ensure the model’s accuracy. The gathering of data will require capturing detailed

images of the plants with varying lighting and angles to fully depict their visual attributes. The

gathered datasets will be used to train a computer vision model, using advanced models like

YOLOv5 or YOLOv8, which are known for their effectiveness in identifying objects.

Preparing the images to improve quality and consistency and labelling the data to provide plant

species information will be necessary for training the model. The training will require making

changes and fine tuning the model by adding more preprocessing steps to improve the accuracy

of the model and the ability to generalize on new data. Once training is complete, the model

26
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

will be tested to evaluate its performance in real-world settings, ensuring its ability to

accurately detect the plant species.

After successful testing, the model will be deployed into an environment where it will be

integrated with a Python-based script. This script will facilitate real-time operation by

processing live camera feeds to monitor plant conditions continuously. The Python script will

interface with the computer vision model to analyse images, detect plant species. The

deployment phase will include setting up the model on a suitable computing platform, ensuring

compatibility with the existing hardware and software infrastructure. The Python script will

manage the model's execution, handling tasks such as image capture, data processing, and

result visualization. The custom model that will be deployed will be based on the custom

datasets and weights trained, instead of the pre-trained weights.

Figure 3.2 Custom YOLOv8 architecture

27
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.2 Use Case Diagram and Description

Figure 3.3 Use Case Diagram

The use case diagram illustrates the interaction between the system's primary actors: User,

Raspberry Pi, Laptop, Arduino and the main functions of the automated plant monitoring and

watering system.

Description:

• User: The user can initiate system monitoring, configure plant type settings, and

observe system status via a user interface (Node-RED Dashboard or terminal output).

• Raspberry Pi: Acts as the middleware, receiving plant detection results from the laptop

via MQTT, processing sensor data, and forwarding commands to the Arduino. It also

runs Node-RED for managing logic flows.

28
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Laptop: Runs the YOLOv10-based detection script, captures the video feed streamed

from the Raspberry Pi camera, performs inference, and publishes the results to the

MQTT broker.

• Arduino: Receives watering commands and interfaces with moisture sensors and the

water pump. Based on soil conditions and plant type, it executes the watering process

accordingly.

Each use case represents a functional requirement of the system. For instance:

• Capture and Analyse Video Feed involves real-time processing using YOLOv10.

• Send Detection Result to MQTT Broker handles communication to the Raspberry Pi.

• Trigger Watering Based on Conditions uses decision-making logic on Node-RED to

determine when and how much to water the plant.

29
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4

System Design

4.1 System Block Diagram

This project implemented a hybrid computer vision–IoT-based system to automate the

monitoring and care of indoor plants. The core component was a custom-trained YOLOv10

object detection model, executed on a local laptop, which classified indoor air-purifying plants

in real time using a video stream captured from a Raspberry Pi Camera. Upon detection, the

system published the identified plant types via MQTT protocol to a Node-RED server hosted

on the Raspberry Pi, which acted as the communication bridge between the computer vision

pipeline and an Arduino-based automated watering system controlled by four moisture sensors

and water pumps. This integrated setup allowed dynamic, species-specific irrigation control

based on both real-time visual classification and environmental moisture feedback. Figure 4.1

below is the final system architecture diagram.

Figure 4.1 System Design

30
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Components Specifications

Component Specification

YOLOv10
Real-time object detection model

(PyTorch-based)

Camera
Raspberry Pi Camera v2, 8MP, 1080p

video

Laptop
Runs Python script for detection; uses

OpenCV, Flask

Raspberry Pi 4 Model B Hosts Node-RED and MQTT broker

Node-RED
Visual programming tool to control logic

flow

MQTT
Lightweight protocol for IoT

communication

Arduino Leonardo Microcontroller for sensor/pump control

Moisture Sensors Analog sensors to read soil moisture

Water Pumps 3V–6V DC pumps, controlled via relays

4.3 System Components Interaction Operations

Operation Involved Components Description

Capture & Detect Camera, Laptop, YOLOv10
Camera sends video to

YOLOv10 for classification

Publish Detection Laptop, MQTT Broker

YOLOv10 sends result (e.g., {

"plant": "Aloe Vera" }) via

MQTT

Receive & Process Node-RED, Raspberry Pi
Node-RED receives MQTT

data and maps plant to pump

Check Moisture Arduino, Sensors
Arduino checks moisture level

from mapped sensor

Watering Action Arduino, Relay, Pump
If needed, pump is triggered

for a specific duration

Dashboard Update Node-RED UI
System displays sensor data

and action logs in real-time

System Components and Flow:

1. Raspberry Pi with Pi Camera

o Captured live video of indoor plants.

o Streamed video to a connected laptop via Wi-Fi using a lightweight streaming

protocol (e.g., MJPEG or GStreamer).

2. Laptop (Model Inference Host)

31
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o Handled video preprocessing and real-time inference using the YOLOv10

model.

o Published detection results (plant type and confidence score) via MQTT to the

Raspberry Pi.

3. Raspberry Pi with Node-RED

o Hosted a Node-RED server acting as MQTT subscriber and control

intermediary.

o Detected plant types are published via MQTT protocol to a Node-RED

instance running on the Raspberry Pi, which acts as an intermediary

controller between the AI model and the actuator system.

o Routed the information to the Arduino based on predefined species-to-sensor

mappings.

4. Arduino Leonardo (ATMega32u4) with Moisture Sensors and Relay-Controlled

Watering Module

o Received commands from Node-RED through serial communication.

o Measured moisture levels for four individual plants.

o Activated water pumps only when the detected plant's assigned soil sensor

reported values below its moisture threshold.

Initially, object detection models such as YOLOv5 and YOLOv8 were explored due to their

strong performance in similar tasks. However, to improve both detection speed and accuracy,

the project eventually shifted to YOLOv10, the latest version in the YOLO series. YOLOv10

offers improved efficiency, particularly in handling high frame rates and small object features,

which made it an ideal choice for real-time video processing.

Once the computer vision pipeline was finalized, it was integrated into an automated plant

watering system using Node-RED as the central orchestration platform. Hosted on a

Raspberry Pi 4 Model B, Node-RED manages both data flow and command execution

between the detection system and hardware actuators, including Arduino Leonardo, moisture

sensors, and water pumps.

32
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2 Flask Video Stream Code

Following successful testing, the model was integrated into a Python-based script and deployed

on a laptop. This script handles the core computer vision tasks such as capturing frames from

the live video feed, performing inference with the YOLOv10 model, and determining the

detected plant species. The live video stream is captured using a Raspberry Pi Camera

Module, which streams the feed to the laptop via a local network connection. The laptop then

processes this input and identifies the plant species in real time.

The detection model runs on a laptop, which acts as the model inference host. A live video

feed is captured using the Raspberry Pi Camera Module V2, which streams video over Wi-

Fi using a lightweight protocol such as MJPEG. The Python script on the laptop handles frame

capturing, preprocessing, and real-time inference using the YOLOv10 model. Once a plant is

detected, the identified species (e.g., " Moisture Sensor 1": "Snake Plant") published as an

MQTT message to the Raspberry Pi.

Figure 4.3 Published MQTT message

On the Raspberry Pi, Node-RED acts as an MQTT subscriber, receiving detection results and

initiating a logic sequence. Each plant species is mapped to a specific soil moisture sensor.

33
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Upon receiving a detection result, Node-RED forwards a command to the Arduino Leonardo

via USB serial communication. The Arduino reads the corresponding sensor's moisture level,

compares it against a predefined threshold, and activates the water pump if watering is

required.

Figure 4.4 Detection Results

An additional enhancement to the system is the integration of a real-time dashboard, built

using Node-RED’s Dashboard module.

Figure 4.5 Dashboard Visualization

This dashboard serves multiple functions:

• Displays live updates of soil moisture levels from each sensor.

• Shows logs of detected moisture and watering actions taken.

• Visualizes MQTT messages and system health metrics (e.g., online/offline devices,

data timestamps).

34
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This interface enables users to monitor the system remotely through a web browser and

provides clear transparency into system decisions and environmental conditions.

Figure 4.6 System Node Flow

To enable visualization on UI Chart and Gauge nodes in Node-RED, a Function Node is

used to process raw moisture data received from Arduino (e.g., "Moisture 3: 43%"). This

node parses the string, extracts the plant number and moisture value, and assigns the correct

msg.topic for each plant. This is crucial because both the Chart and Gauge nodes rely on

consistent topics and numeric payloads for correct plotting.

35
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5

System Implementation

5.1 Hardware Setup

The hardware that will be involved in this project are laptop for development and testing of

programs and webcam. The laptop will also be the main device that runs the CV algorithm.

Table 5.1 Specifications of laptop

Description Specifications

Model HP Pavilion Gaming Laptop

Processor Intel Core i5-9300H / i7-9750H or equivalent

GPU NVIDIA GeForce GTX 1650 / GTX 1050 or equivalent

RAM 8GB / 16GB DDR4

Storage 256GB / 512GB SSD

Operating

System

Windows 10 / Windows 11

Display 15.6" Full HD (1920 x 1080) Anti-Glare IPS Display

Connectivity Wi-Fi 5 (802.11ac), Bluetooth 4.2

Ports 1 x USB Type-C, 3 x USB Type-A, 1 x HDMI, 1 x Ethernet, 1 x Audio

Combo Jack

36
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Raspberry Pi 4 Model B

• Function: Acts as the edge computing device responsible for streaming live video from

the camera and handling automation commands via Node-RED and MQTT.

• Processor: Quad-core ARM Cortex-A72 @ 1.5GHz

• RAM: 4GB LPDDR4 (expandable up to 8GB)

• Connectivity: Dual-band 2.4GHz and 5GHz Wi-Fi, Bluetooth 5.0, Gigabit Ethernet

• Ports: 2 × USB 3.0, 2 × USB 2.0, 2 × micro-HDMI, GPIO Header

• Operating System: Raspberry Pi OS (Debian 12 Bookworm, 64-bit)

Raspberry Pi Camera Module V2

• Function: Captures continuous image feed of the plants for real-time analysis.

• Resolution: 8 Megapixels

• Frame Rate: Up to 1080p at 30fps

• Interface: CSI (Camera Serial Interface)

37
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Components of Computer Vision and Automation System

Table 5.2 Components of Computer Vision and Automation System

Components Descriptions

Raspberry Pi 4 Model

B

Figure 5.1 Raspberry Pi 4 Model B

Acts as the core edge computing device. It runs a local

Flask server for video feed streaming and hosts the Node-

RED server for controlling and visualizing the self-

watering system. It also handles MQTT communications.

Raspberry Pi Camera

Module V2

Figure 5.2 Raspberry Pi Camera Module V2

Captures real-time images of plants and streams them for

computer vision analysis. This module uses an 8MP Sony

IMX219 sensor, ideal for high-definition detection tasks.

Raspberry Pi 15W

USB-C Power Supply

Figure 5.3 Raspberry Pi Power Supply

Provides stable 5V/3A power to the Raspberry Pi 4,

ensuring consistent performance for real-time image

processing, sensor data handling, and overall system

stability.

Laptop (Host

Computer)

My laptop runs the YOLOv10 object detection model to

classify plant species and determine watering needs. The

computer receives live feed via Flask and returns water

requirement results to the Raspberry Pi.

38
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Arduino Leonardo

(ATmega32U4)

Figure 5.4 Arduino Leonardo

Connected via USB serial to the Raspberry Pi. It reads

moisture data from four soil moisture sensors and triggers

the watering system. It acts as the actuator control unit.

Soil Moisture Sensors

(x4)

Figure 5.5 Soil Moisture Sensors

Placed in different plant pots, these analog sensors read

real-time soil moisture levels and transmit data to the

Arduino for decision-making

4-Way Water Valve

with Pump

Figure 5.6 Water Valve

Controlled by the Arduino. Dispenses water only to the

plants that require it, based on sensor input and visual

classification output.

USB Serial Cable Figure 5.7 USB Serial Cable

39
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Connects the Arduino Leonardo to the Raspberry Pi for

continuous data transfer of sensor readings and execution

of watering commands.

Node-RED Dashboard Figure 5.8 Node-RED Dashboard

5.2 Software Setup

Software such as Thonny, Visual Studio Code (VS Code), Roboflow, YOLOv10, Google

Collab, Node-RED, and Grafana will be used to implement the proposed smart plant care and

watering system. Each software tool contributes to specific stages of the development lifecycle,

from programming and model training to automation and visualization. The details are as

follows:

Thonny

• A beginner-friendly Python IDE that will be used on the Raspberry Pi 4 to handle

the live streaming of the Pi camera feed.

• Reason for Use:

o Its lightweight nature and minimal configuration requirements make it ideal

for running real-time scripts directly on the Raspberry Pi.

• Features:

o Simple Interface: Straightforward and intuitive, making it suitable for

embedded or resource-limited environments.

40
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o Integrated Debugger: Useful for debugging streaming scripts and sensor-

based triggers.

o Virtual Environment Support: Enables clean Python environment

management for modular script execution.

Visual Studio Code (VS Code)

• A powerful and extensible code editor from Microsoft that will be used on the laptop

to run the computer vision model using YOLOv10.

• Reason for Use:

o VS Code offers robust support for Python, integrated terminal, and

resource management tools, making it well-suited for handling the heavier

computational tasks involved in running and testing the trained model.

• Features:

o Rich Extension Support: Enhances development with tools like Python

linting, Docker, and Jupyter Notebooks.

o Built-in Version Control: Integrates Git for project tracking and collaborative

development.

o Cross-platform Compatibility: Runs smoothly across Windows, macOS, and

Linux, ensuring development flexibility.

Roboflow

• A web-based platform used for managing and annotating computer vision datasets.

• Features:

o Annotation & Augmentation: Provides tools for labeling plant images and

enhancing dataset diversity.

o Dataset Versioning: Supports tracking of different dataset iterations and their

respective training performances.

o Seamless Exports: Easily exports datasets in YOLOv10-compatible formats.

YOLOv10

• The most recent iteration of the YOLO (You Only Look Once) real-time object

detection model.

• Features:

41
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o Enhanced Accuracy & Speed: Delivers high-performance object detection

ideal for identifying plant types and stress indicators.

o Resource-Efficient: Supports deployment on edge devices like Raspberry Pi

and high-end machines alike.

o Modular Architecture: Easier to integrate with various detection and

automation workflows.

Google Colab

• A cloud-hosted Jupyter Notebook platform primarily used for training the YOLOv10

model.

• Features:

o Free GPU/TPU Access: Accelerates training, especially for deep learning

models.

o Drive Integration: Simplifies dataset management and result storage in the

cloud.

Node-RED

• A flow-based development tool installed on the Raspberry Pi to visually orchestrate the

automation logic.

• Features:

o Visual Programming: Allows creating automation flows using a simple drag-

and-drop interface.

o IoT Integration Ready: Supports protocols such as MQTT, HTTP, and

WebSocket for seamless IoT device communication.

o Logic and Control Flows: Automates watering decisions based on moisture

readings and detection results.

Node-RED Dashboard 2.0

• A dashboard extension for Node-RED used to visualize and monitor real-time sensor

data, such as soil moisture levels.

• Features:

o Real-Time Data Visualization: Displays live updates from soil moisture

sensors through gauges, charts, and indicators.

42
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o Customizable Widgets: Allows the creation of tailored dashboards to monitor

different aspects of the smart plant care system.

o Mobile-Friendly Interface: Accessible via web browsers on desktops, tablets,

and smartphones, providing flexibility in system monitoring.

o Lightweight and Responsive: Optimized for smooth performance even on

low-power devices like Raspberry Pi.

5.2.1 Python Environment

Platform: Installed on Laptop (VS Code)

Purpose: Library requirements to hadnle real-time plant detection using a YOLOv10 model

and processing detection results to the IoT control system.

Table 5.3 Libraries Requirements

Library Version Description

Ultralytics 8.3+ > Provides the implementation of YOLOv10

used for real-time object detection and

inference. Enables loading of the best.pt

model, frame-by-frame detection, and

output parsing.

opencv-python 4.11.0.86 Used to capture video frames from the

webcam or camera stream, draw bounding

boxes, and preprocess images for model

input.

torch 2.6.0+cu126 Core deep learning framework powering

the YOLOv10 model. Used for loading the

model, running inference, and accessing

GPU acceleration (CUDA).

torchvision 0.21.0+cu126 Provides utilities for image

transformations, pretrained models, and

handling vision-related tasks (used

internally by YOLO/Ultralytics).

torchaudio 2.6.0+cu126 Not directly used in my project but often

bundled with PyTorch installs; can be

safely ignored if unused.

numpy 2.1.1 Essential for array operations and image

frame manipulation during OpenCV and

PyTorch operations.

43
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

requests (standard lib) Typically used for making HTTP requests;

may be used to send logs or image data to

remote servers or REST APIs (optional in

your system).

paho.mqtt.client Latest (2.1.0) Enables the system to publish detection

results via the MQTT protocol to the

Raspberry Pi running Node-RED.

json (standard lib) Used to format detection results (e.g., {

"plant": "Aloe Vera" }) before sending

them via MQTT.

time (standard lib) Used for timestamping events, introducing

delays (e.g., sleep()), and time-based

operations.

pandas (required for

dashboard/logging)

While not in the main detection loop,

pandas can help structure sensor logs,

detection results, or generate summary

reports.

serial (pyserial) (on Arduino

communication

side)

Used for serial communication with the

Arduino via USB (e.g., sending watering

commands or receiving moisture data).

socket (optional) May be used for low-level network

communication, such as streaming the

camera feed or interacting with IoT

modules over TCP/UDP.

RPi.GPIO (on Raspberry Pi

only)

Used to interface with GPIO pins when

the Python code is running on the

Raspberry Pi (e.g., manual pump activation

via script). Not used in the detection laptop.

Table 5.4 Library Summary Contributions by Category

Function Libraries Involved

Real-time Detection ultralytics, torch, torchvision, opencv-python, numpy

MQTT Communication paho.mqtt.client, json

Camera Streaming &

Frame Capture

opencv-python, numpy, time

Hardware/IoT

Integration

serial, RPi.GPIO, socket

Data

Handling/Visualization

pandas, requests, time

44
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2.2 Raspberry Pi OS Configuration

The system uses Raspberry Pi OS based on Debian 12 (Bookworm) due to its modern

software support, enhanced security, and compatibility with the latest Python and AI libraries.

Bookworm enables seamless integration with critical packages such as paho-mqtt, serial, and

GPIO libraries, which are essential for moisture sensor reading, relay control, and MQTT-

based communication. Additionally, the OS ensures reliable performance when running Node-

RED and supports future upgrades to more advanced AI models or IoT functionalities.

5.3 Setting and Configuration

The development of the updated computer vision (CV) algorithm for plant detection using

YOLOv10 began with refining the testing environment to handle the increased complexity of

a larger number of plant classes. Due to the higher computational demands of YOLOv10

compared to previous models, a high-performance laptop was once again chosen over the

Raspberry Pi. The laptop's enhanced GPU acceleration and memory were critical in managing

the more intensive training and inference tasks associated with a 10-class detection system.

For real-time video feeds, flask code streams the video feed through pi camera. The software

setup included installing Python 3.10.11, along with updated versions of key libraries such as

torch for deep learning (PyTorch framework), OpenCV-python for image handling, NumPy

for numerical computation, and Ultralytics for seamless YOLOv10 integration.

The development environment was configured using Visual Studio Code (VS Code),

benefiting from its robust extension ecosystem, integrated terminal, and virtual environment

management. CUDA 12.6 was utilized for GPU acceleration, significantly boosting the

training and inference speeds.

The project began by collecting and curating an extensive dataset featuring 10 different types

of indoor plants, considerably expanding from the previous 3 classes. Training used a

combination of pre-trained YOLOv10 weights from the Ultralytics repository, which were

fine-tuned on the custom plant dataset. The resulting model checkpoint (best.pt) was optimized

for high-precision, real-time detection tasks. Table 5.5 summarizes the new dataset.

45
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Attribute Details

Number of Images 3090

Image Dimensions 640 x 640 pixels

Color Mode RGB

Image Size ~200 KB per image

Number of Classes 10

Plant Classes Aloe Vera, Areca Palm, Chinese Evergreen,

Chrysanthemum, Gerbera Daisy, Golden Pothos, Peace

Lily, Rhapis Palm, Snake Plant, Spider Plant

Total Size ~1.5 GB

Data Augmentation Yes (90` Rotation, Flipping, Exposure, Brightness/

Contrast Adjustments)

Image Format JPEG, PNG

Table 5.5 Dataset Summary

5.3.1 Preparation of Datasets

Figure 5.9 Collection of datasets

46
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.10 Collection of datasets

The preparation of the datasets was an important step in developing the computer vision model.

A diversified dataset was compiled, capturing plant images under varying conditions including

different lighting scenarios, angles, occlusions, and backgrounds. Annotation was performed

using Roboflow, where bounding boxes were drawn around each plant instance and accurately

labelled according to their class. Data preprocessing included standardizing image resolutions

and applying augmentation techniques such as rotations, flipping, brightness modifications,

and exposure adjustments to artificially increase dataset diversity. This approach ensured that

the YOLOv10 model could generalize better to unseen real-world conditions. Labelling

examples are shown in Figure 5.11.

Figure 5.11 Annotation of datasets

47
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.2 Training of the Model

Figure 5.12 Model Training for YOLOv10

The model was trained using the annotated plant dataset, with the training process optimized

for both speed and performance. The annotated images were fed into YOLOv10, where the

network iteratively updated its parameters using backpropagation and stochastic gradient

descent.

Training hyperparameters were carefully selected, including a learning rate of 0.01, batch size

of 16, and a total of 100 epochs. The use of GPU acceleration (CUDA) allowed significant

reductions in training time while improving the model's convergence.

48
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.3 Preprocessing and MQTT Integration:

The initial detection script was modified to include MQTT publishing functionality. Upon

detecting a plant species, the system formats the result into a JSON payload and publishes it to

the MQTT broker hosted on the Raspberry Pi (identified by its static IP).

Figure 5.13 MQTT Integration

5.3.4 Sensor Assignment Function

A key software feature was the implementation of a logic mapping function that assigns

detected plant species to specific moisture sensors. This mapping was necessary for

targeting irrigation to the correct plant and was based on predefined pairings of plant types to

sensor numbers.

Figure 5.14 Sensor Assignment Function

49
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.5 Flask Server Setup

A Flask-based web server was written and executed via Thonny and Visual Studio to

facilitate live video streaming from the Raspberry Pi Camera to the laptop for frame capture

and preprocessing. This allowed the YOLOv10 model to continuously receive frames for

inference.

5.3.6 Setting Up the Pi Camera

• The Raspberry Pi Camera Module was configured using terminal commands such as

“sudo raspi-config” to enable the camera interface.

• Video stream was transmitted over the network using MJPEG or GStreamer

protocols, ensuring lightweight, real-time delivery to the laptop’s detection script.

5.3.7 YOLOv10 Threshold Configuration

Figure 5.15 Threshold Configuration

The confidence threshold for the YOLOv10 model was set to 0.7 to improve detection

accuracy by filtering out low-confidence predictions. Additionally, an inference interval was

introduced to balance performance and processing load, especially on lightweight CPUs.

This helped maintain real-time processing without overloading the system or causing

detection lag.

50
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.8 MQTT publish rate

To reduce unnecessary traffic and prevent MQTT message spamming, the publish rate was

configured to once every 5 seconds. This ensures efficient communication without

overwhelming the broker or causing message queue delays.

5.3.9 AutoStart Scripts

For system automation, Node-RED was configured to start automatically on Raspberry Pi

boot using “systemctl”.

The following command was used: “sudo systemctl enable nodered.service”

This ensures that the control logic (hosted on Node-RED) is always active after reboot or power

loss

5.3.10 Network Setup

To ensure reliable video streaming, VNC viewer access, and Node-RED dashboard

availability, the Raspberry Pi was assigned a static IP address. This was configured in:

“/etc/dhcpcd.conf”

And Wi-Fi credentials were managed in: “/etc/wpa_supplicant/wpa_supplicant.conf”

This configuration guarantees consistent connectivity and easier remote monitoring from the

laptop.

5.3.11 Setup of Node-RED on Raspberry Pi

MQTT Subscription:

Node-RED was configured to subscribe to a specific topic "plant/detection" via the MQTT

input node to receive detection results.

51
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operation (with Screenshot)

5.4.1 Startup Sequence

1. Raspberry Pi Flask Stream:

The Raspberry Pi camera begins capturing video, and a Flask-based video streaming server is

launched. This stream is made accessible at: http://<raspi_ip>:5000/video_feed

Figure 5.16 Raspberry Pi Flask Stream

2. Laptop CV Model Execution:

The laptop, running a Python script, accesses the video stream. The YOLOv10 model

(previously trained and exported as best.pt) is loaded, and real-time detection begins. Each

frame is pre-processed, and objects (plants) are classified.

52
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.17 CV Model Execution

5.4.2 Detection Demo

Figure 5.18 Detection Demo

53
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.19 Terminal Output

5.4.3 Watering Action Triggered

Once a plant is identified and its corresponding soil moisture value is obtained:

• Node-RED passes the detection result (via MQTT) to the Arduino. The Arduino

compares the current soil moisture value with the predefined threshold for that plant

type.

If the soil is dry:

• The relay is activated

• The water pump turns on according to predefined moisture requirements.

Figure 5.20 Moisture Assignments

5.4.4 Visualization Using Node-RED Dashboard 2.0

UI Chart and Gauge Nodes were configured to:

• Display real-time moisture readings for each plant.

• Indicate which plant was currently being watered and track past activity.

• Control panel was implemented for clearing of visual charts and gauges for clearer

updated history.

54
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Dashboard Layout was customized to present data in a clean, user-friendly interface,

enabling at-a-glance monitoring of plant conditions and system activity.

Figure 5.21 Dashboard Visualization

Figure 5.22 Gauge Visualization

Figure 5.23 Control Panel

5.5.5 Function Node Configuration in Node-RED

55
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To process logic and condition-based outputs in the smart watering system, a Function Node

was used within Node-RED. This node played a critical role in interpreting sensor data and

determining when to activate watering actions.

The function node was scripted to:

• Analysed incoming soil moisture readings.

• Compare them to the predefined moisture threshold (e.g., below 30%).

• Trigger a corresponding message payload to activate or deactivate the water pump.

• This allowed the system to perform conditional automation in real-time based on live

sensor input.

Figure 5.24 Function Node Configuration

5.5 Implementation Issues and Challenges

5.5.1 Hardware Limitations

One of the critical issues faced was attempting to run the YOLOv10 model on a lightweight

device, specifically the Raspberry Pi. While YOLOv10 offers improved performance and

speed, the limited processing power and thermal management of the Raspberry Pi made it

unsuitable for direct model inference. During prolonged tests, the excessive CPU load from

running YOLOv10 locally caused overheating, which led to hardware instability and

ultimately damaged the camera module, as illustrated in Figure 5.23.

56
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.25 Test Image of Camera Module

5.5.2 Integration with Arduino Leonardo

Another major challenge arose from using Arduino Leonardo, which lacks built-in Wi-Fi

capability. As a result, it could not directly connect to MQTT brokers or communicate

wirelessly. This limitation required the implementation of a wired serial connection between

the Arduino and Raspberry Pi, complicating the hardware layout and increasing dependency

on physical connections for data transmission.

5.5.3 Network Communication Delay

The system depends on real-time MQTT messaging between the laptop (running the CV

model) and Raspberry Pi (managing sensors and pumps). However, occasional latency issues

were observed during command transmission, especially under heavy network load or during

video streaming. These delays affected the promptness of watering actions and data feedback

loops.

5.5.4 Camera Positioning

The accuracy of plant detection was highly sensitive to the camera’s height, angle, and

lighting. Improper positioning resulted in:

• Incomplete plant capture

• Missed detections or bounding box errors

• False positives due to background noise or shadow interference

57
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This required repeated physical adjustments and fine-tuning of the webcam placement during

system setup to ensure consistent and accurate detection.

5.6 Concluding Remark

The development and deployment of the smart plant monitoring and self-watering system

proved that computer vision, IoT sensors, and automation into a functional real-time solution.

Using the YOLOv10 model and OpenCV for plant detection, alongside MQTT for

communication and Raspberry Pi to Arduino integration, the system successfully achieved its

intended goal.

The project offered important insights into real-world system implementation despite a number

of technical obstacles, including hardware constraints, integration complexity, and calibration

irregularities. Important tactics that guaranteed overall system performance and stability

included stream processing using Flask, model offloading to laptops, and the application of

error-handling techniques.

In summary, the project not only demonstrated the potential of AI-driven plant care, but it also

brought to light crucial factors to take into account when implementing such solutions in

settings with limited resources. These include enhancing hardware configuration for long-term

operation, guaranteeing dependable sensor communication, and optimising model inference

for edge devices. Future iterations and advancements in automated smart agriculture systems

will be built upon the lessons learnt.

58
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

Figure 6.1 Metrics Curve

During the training process, the performance of the model was continuously monitored and

retrained, until metrics such as loss values, precision, recall, and mean Average Precision

(mAP) being used to determine how well it could generalize to unseen data. The precision-

recall curve played a crucial role by showing a complete overview of the balance between

precision and recall at different threshold levels. By analyzing the form of this curve, potential

problems such as overfitting or underfitting can be recognized. Training stopped when the

precision-recall curve showed a satisfactory balance of high precision and recall values,

indicating that the model had effectively learned to detect plants without showing a preference

for either metric. This method guaranteed that the model maintained a strong level of

effectiveness in practical situations, where both precision and recall are essential for accurate

plant identification.

The outcomes of the inference testing phase show the key metrics and trends observed during

the training of the YOLOv10 model. These metrics include training losses (train/box_loss,

train/cls_loss, and train/dfl_loss), validation losses (val/box_loss, val/cls_loss, and

59
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

val/dfl_loss), and performance metrics such as precision, recall, and mean Average Precision

(mAP).

Figure 6.2 Training Loss Metrics

Training Loss Metrics

The training results indicate a consistent decrease in the training loss metrics beginning at 7th

epoch, reflecting the model's improving accuracy and efficiency in plant detection tasks.

Specifically, the train/box_loss, which represents the error in predicting the bounding boxes

around detected plants, decreased steadily from an initial value of 1.158 in the 7th epoch to

0.562 by the of epochs 99. This reduction suggests that the model's predictions of plant

locations became more precise over time. Similarly, the train/cls_loss, which measures the

error associated with classifying detected objects correctly, decreased significantly from 1.335

to 0.327, indicating enhanced accuracy in identifying different plant species. The

train/dfl_loss, which evaluates the distribution of the predicted bounding boxes relative to the

ground truths, also showed a downward trend, reducing from 1.522 to approximately 1.092 by

the end of the training period. This overall reduction in training losses illustrates that the model

is learning to minimize errors effectively, enhancing its ability to correctly identify and classify

plants.

60
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3 Validation Loss Metrics

Validation Loss Metrics

The validation loss metrics also displayed a decreasing trend, show the ability of the model to

generalize well to new, unseen data. Moreover, the val/box_loss began to drop rapidly from

1.446 at epoch 5 to 1.17 by the end of epoch 99, demonstrating that the model is capable of

maintaining high accuracy in plant localization even on the validation set. The val/cls_loss also

showed significant improvement, reducing from 1.484 to around 0.934, which suggests that

the model's classification performance on new data is becoming increasingly reliable. The

consistent decrease in val/dfl_loss further supports these results, reflecting the model's

enhanced ability to produce accurate bounding boxes that closely match the ground truth.

61
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.4 Performance Metrics

Performance Metrics: Precision, Recall, and mAP

The performance metrics, including precision, recall, and mean Average Precision (mAP),

further underscore the model’s progress. The metrics/precision(B), which measures the

proportion of true positive detections among all detections made, improved markedly from

0.268 in epoch 0 to 0.807 in epoch 99. This improvement indicates that the model is effectively

reducing the number of false positives and increasing the accuracy of its predictions. The

metrics/recall(B), which represents the proportion of actual positive samples correctly

identified, also showed substantial growth, rising from 0.486 to 0.778. This trend suggests that

the model is becoming more proficient at detecting all relevant objects in the images. The

metrics/mAP50(B) and metrics/mAP50-95(B), which evaluate the accuracy of the model’s

detections across different Intersection over Union (IoU) thresholds, also demonstrated

62
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

positive trends. Metrics/mAP50(B) increased from 0.342 to approximately 0.8, while

metrics/mAP50-95(B) increased from 0.196 to around 0.573, indicating that the model is

achieving higher detection accuracy across varying degrees of overlap between the predicted

and actual bounding boxes.

6.2 Testing Setup and Result

Following training, inference testing was performed with a live webcam feed, replicating real-

world deployment conditions. A Python script processed video frames in real-time, ran

inference through the YOLOv10 model, and drew bounding boxes with class labels around

detected plants.

The performance was assessed based on two key metrics:

• Precision: measuring the percentage of correctly predicted positive instances.

• Recall: measuring the percentage of actual positives that were correctly identified.

Testing results showed the model could reliably identify all 10 classes with high confidence

under different lighting and background conditions. Fine-tuning of parameters such as

confidence thresholds and non-maximum suppression (NMS) was conducted to optimize

real-time performance.

63
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.5 Inference testing of Model

Performance Metrics Across Epochs

A detailed comparison of performance metrics at epochs 50, 80, and 100 is shown in Table

6.1. The table illustrates how extended training boosts the model's detection precision, recall,

and overall accuracy.

Epoch Precision (B) Recall (B) mAP@0.5 (B) mAP@0.5:0.95 (B)

50 0.614 0.594 0.583 0.512

80 0.713 0.626 0.68 0.535

100 0.807 0.778 0.80 0.573

Table 6.1 Performance Metrics table

64
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Testing Procedures and Results

Test Case Procedure Expected Result Actual Result Status

Plant

Detection

Accuracy

Ran live video

feed with

multiple known

plant types

under various

lighting

conditions.

Model correctly

identifies plant

types with at least

85% confidence.

Detection

confidence

ranged from

85%–92% in

controlled

lighting.

Passed

Plant

Classification

Consistency

Repeated tests

on the same

plant species

from different

angles and

distances.

Consistent

classification

across multiple

test scenarios.

YOLOv10

consistently

classified plants

with minimal

variation.

Passed

Real-Time

Inference

Speed

Measured the

time between

camera input

and bounding

box display on

screen.

Inference delay

should be under 1

second for smooth

real-time

detection.

Average delay

observed: ~0.5

seconds.

Passed

Detection–

Irrigation

Integration

Tested whether

detection of a

plant triggers

correct

moisture

threshold

retrieval and

irrigation.

Detected plant

type fetches

correct profile,

system applies

watering rules.

Plant-specific

profile correctly

loaded; irrigation

activated

accordingly.

Passed

False

Positive

Filtering

Introduced

non-plant

objects (e.g.,

furniture, tools)

into the frame.

Model should not

detect or

misclassify non-

plant objects as

plants.

No false positives

detected in non-

plant objects.

Passed

Table 6.2 Testing Procedures and Results

65
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Project Challenges

The main challenge addressed by this project is by integrating multiple advanced technologies

such as computer vision, IoT sensing, automated watering, and air purification into a single,

reliable smart indoor plant care system. Even if separate parts, such air purifiers or soil moisture

sensors, are well-known, integrating them into a coherent system that reacts sensibly to data in

real time added a significant amount of complexity.

One major challenge was achieving accurate plant type recognition with a camera system,

particularly under shifting lighting conditions and with seemingly identical species. Computer

vision models required extensive training and testing to achieve acceptable accuracy for

species-specific watering profiles. Inconsistent lighting and camera angles further increased

the likelihood of misclassification.

On the hardware side, synchronizing the data flow between the Raspberry Pi, Arduino

Leonardo, and multiple sensors presented integration difficulties, particularly when managing

simultaneous operations like video streaming, sensor readings, and actuation of pumps.

Resource limitations on edge devices also constrained model deployment, requiring efficient

offloading of inference tasks to the laptop while maintaining real-time responsiveness. Another

challenge was in watering and moisture visualization. Developing a reliable dashboard to

display soil moisture data in real time required precise sensor calibration and MQTT-based

communication handling. Achieving stability in data transmission and ensuring dashboard

updates without latency were key issues to solve.

In summary, this project addresses the multiple task of creating an intelligent, plant-aware

environment that is adaptable, automated, and user-friendly by combining various technologies

to create a fully functional and scalable indoor plant care system.

66
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Objectives Evaluation

1. Design and Train a Plant Recognition System for Watering Automation (Achieved)

The project successfully integrates a YOLOv10-based computer vision model trained to

identify multiple types of indoor plants through a live camera feed. The camera, mounted on a

Raspberry Pi 4, streams video to a laptop for detection, where plant types are recognized in

real-time. Each detected plant is linked to a pre-defined moisture profile to ensure species-

specific hydration. When paired with moisture readings from sensors in the soil, the system

executes a custom watering action through relays and water pumps, ensuring each plant

receives only the amount of water needed to maintain optimal health.

2. Develop a Functional Prototype of a Smart Air Purifier with Self-Watering Plant

Integration (Achieved)

A fully operational prototype has been developed, assembled on a three-tier trolley frame. This

prototype integrates multiple components, including:

• A live camera for plant detection on the top level.

• Plant compartments with embedded moisture sensors and watering systems on the

middle level.

• Air-purifying plants functioning alongside moisture automation, all housed within a

compact, mobile frame.

The design offers a holistic indoor environment solution that improves both air quality

and plant health through smart automation. The combination of air-purifying plants and

intelligent watering control helps maintain humidity and freshness in the space.

3. Incorporate IoT Sensors for Monitoring and Dashboard Visualization (Achieved)

The system effectively incorporates IoT soil moisture sensors within each plant pot and an AQI

sensor module to monitor the surrounding air quality. All sensor data is transmitted using

MQTT protocol to a centralized Node-RED dashboard, which presents real-time updates on:

67
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Soil moisture levels of each plant.

• Detected plant species.

• Current AQI values.

• Watering history and system status.

The dashboard allows users to visualize and interpret environmental data, ensuring informed

decision-making and enhancing the overall usability of the system. Alerts and visual indicators

provide additional support for proactive plant care and air quality monitoring.

6.5 Concluding Remark

The completion of this project signifies a meaningful advancement in smart indoor plant care

by successfully integrating computer vision, IoT sensing, and automation technologies into a

unified, functional system. Through the deployment of a plant based recognition model, a soil

moisture–triggered watering mechanism, and real-time environmental monitoring via IoT

sensors, the system demonstrates an intelligent, adaptive approach to maintaining plant health

and improving air quality.

The solution achieved all its core objectives such as accurate plant type detection, species-

specific watering automation, and real-time environmental data visualization through an

interactive dashboard. Despite technical challenges such as hardware-software integration,

sensor calibration, and edge computing constraints, strategic decisions like offloading model

inference to a laptop and using Flask and Node-RED ensured system performance and stability.

Overall, this project not only proves the feasibility of AI-driven plant care but also opens new

opportunities for smart home applications. It provides a strong foundation for future

improvements, such as mobile app integration, wireless sensor expansion, and predictive

watering using machine learning. The success of this prototype shows how data-driven

automation can significantly enhance plant maintenance, reduce human effort, and contribute

to sustainable indoor environments.

68
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

This project successfully developed the Oasis system, an automated indoor plant care solution

that integrates computer vision, IoT sensors, and smart watering mechanisms. By combining

real-time plant detection using YOLOv10 with soil moisture monitoring and automated

irrigation, the system reduces manual effort while promoting healthier indoor air-purifying

plants. Despite some technical challenges, such as processing limitations and occasional

detection errors, the project met its objectives and demonstrated the potential of using

affordable, intelligent systems to support sustainable living and smart home applications.

7.2 Recommendation

Based on the observations and lessons learnt from this project, the following recommendations

are made to improve the performance, scalability, and usability of the Oasis system in future

iterations:

1. Upgrade to Edge AI Accelerators

To address the Raspberry Pi's computing constraints, edge AI accelerators such as the Google

Coral TPU or NVIDIA Jetson Nano are recommended. These devices provide increased

processing power for machine learning inference, allowing for faster and more sophisticated

model execution. As a result, the system could handle higher-resolution photos, real-time

multiple-object identification, and even more advanced analytics with little delay.

2. Expand the Plant Dataset and Retrain the Model

The latest YOLOv10 model was trained on a small but particular dataset of air-purifying plants.

To improve accuracy and robustness, future work should concentrate on gathering a larger and

69
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

more diverse dataset that includes both indoor and outdoor plant species. Continuous retraining

and model validation using new data can improve generalisation across plant kinds, lighting

situations, and background noise.

3. Develop a User-Centric Interface

Implementing a dedicated user interface, such as a web or mobile application, can greatly

increase user engagement. This dashboard might show current plant detection status, moisture

levels, watering history, and system alerts. It may also allow users to customise watering

thresholds, schedule system operations, or remotely regulate the pump, making the system

more accessible and manageable to non-technical users.

4. Integrate Plant Health Monitoring

The system's capabilities can be expanded beyond presence detection to include plant health

assessments. Using powerful image processing and deep learning techniques, the system may

be trained to detect disease, discolouration, wilting, and pest infestations. These findings could

serve as early alerts for users, encouraging proactive and preventive plant care.

5. Incorporate Environmental and Weather Data

For installations near windows or in semi-outdoor locations, ambient temperature, humidity,

and light intensity may all have an impact on watering requirements. Integrating external

sensors or APIs that provide weather forecasts could help the system make more informed

decisions, such as deferring watering during wet or humid weather.

6. Plan for Scalability and Integration

The system architecture should be scaleable in order to facilitate widespread adoption. This

includes support for several plant modules, connection with various home automation

ecosystems (such as Google Home and Amazon Alexa), and modular hardware designs that

can be readily upgraded or customised.

70
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

By implementing these recommendations, the Oasis system can develop into a full smart

gardening solution that not only fits current user needs but also adapts to future technical

improvements and environmental concerns.

71
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] Brilli, F., Fares, S., Ghirardo, A., De Visser, P., Calatayud, V., Muñoz, A., Annesi-

Maesano, I., Sebastiani, F., Alivernini, A., Varriale, V., & Menghini, F. (2018). Plants

for sustainable improvement of indoor air quality. Trends in Plant Science, 23(6), 507–

512. https://doi.org/10.1016/j.tplants.2018.03.004

[2] M. L. K. et al., "Effects of Plant Health on Air Quality," Journal of Indoor Air, vol. 22, no.

3, pp. 215-227, 2012.

[3] T. H. C. et al., "The Impact of Watering Regimes on Plant Health and Performance,"

Horticultural Science, vol. 54, no. 1, pp. 23-32, 2019.

[4] A. R. Smith, "Computer Vision for Plant Monitoring: Current Technologies and Future

Directions," Computers and Electronics in Agriculture, vol. 169, p. 105211, 2020.

[5] J. A. Wang, L. J. Lee, "Real-Time Image Processing for Monitoring Plant Health," Journal

of Agricultural Engineering Research, vol. 86, no. 1, pp. 72-80, 2003.

[6] M. J. Lee, S. K. Kim, "Integration of IoT and Computer Vision for Smart Agriculture,"

Sensors, vol. 20, no. 8, p. 2335, 2020.

[7] B. R. Miller, "Urbanization and the Need for Efficient Plant Care Systems," Urban

Ecosystems, vol. 22, no. 2, pp. 299-310, 2019.

[8] K. H. Lee and S. J. Park, "Challenges in Traditional Plant Monitoring Systems,"

Horticultural Technology, vol. 29, no. 4, pp. 467-476, 2019.

[9] Yadav, P. K., Thomasson, J. A., Searcy, S. W., Hardin, R. G., Braga-Neto, U., Popescu, S.

C., Martin, D. E., Rodriguez, R., Meza, K., Enciso, J., Diaz, J. S., & Wang, T. (2022). Assessing

the performance of YOLOv5 algorithm for detecting volunteer cotton plants in corn fields at

three different growth stages. Artificial Intelligence in Agriculture, 6, 292–303.

https://doi.org/10.1016/j.aiia.2022.11.005

[10] Li, J., Qiao, Y., Liu, S., Zhang, J., Yang, Z., & Wang, M. (2022). An improved

YOLOv5-based vegetable disease detection method. Computers and Electronics in

Agriculture, 202, 107345. https://doi.org/10.1016/j.compag.2022.107345

[11] Ultralytics. (n.d.-a). GitHub - ultralytics/ultralytics: NEW - YOLOv8 in PyTorch >

ONNX > OpenVINO > CoreML > TFLite. GitHub. https://github.com/ultralytics/ultralytics

[12] YOLOv8 vs. YOLOv5: Choosing the Best Object Detection Model. (n.d.-b).

https://www.augmentedstartups.com/blog/yolov8-vs-yolov5-choosing-the-best-object-

detection-model

[13] Bie, M., Liu, Y., Li, G., Hong, J., & Li, J. (2023). Real-time vehicle detection algorithm

based on a lightweight You-Only-Look-Once (YOLOv5n-L) approach. Expert Systems With

Applications, 213, 119108. https://doi.org/10.1016/j.eswa.2022.119108

72
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[14] Rajamohanan, R., & Latha, B. C. (2023). An Optimized YOLO v5 Model for Tomato

Leaf Disease Classification with Field Dataset. Engineering Technology & Applied Science

Research, 13(6), 12033–12038. https://doi.org/10.48084/etasr.6377

[15] Sozzi, M., Cantalamessa, S., Cogato, A., Kayad, A., & Marinello, F. (2022). Automatic

bunch detection in white grape varieties using YOLOV3, YOLOV4, and YOLOV5 deep

learning algorithms. Agronomy, 12(2), 319. https://doi.org/10.3390/agronomy12020319

[16] Ultralytics. (n.d.-a). GitHub - ultralytics/ultralytics: NEW - YOLOv8 in PyTorch >

ONNX > OpenVINO > CoreML > TFLite. GitHub. https://github.com/ultralytics/ultralytics

[17] Torres, J. (2024a, September 2). What is New in YOLOv8; Deep Dive into its

Innovations-Yolov8. YOLOv8. https://yolov8.org/what-is-new-in-yolov8/#google_vignette

[18] Yadav, P. K., Thomasson, J. A., Searcy, S. W., Hardin, R. G., Braga-Neto, U., Popescu,

S. C., Martin, D. E., Rodriguez, R., Meza, K., Enciso, J., Diaz, J. S., & Wang, T. (2022).

Assessing the performance of YOLOv5 algorithm for detecting volunteer cotton plants in corn

fields at three different growth stages. Artificial Intelligence in Agriculture, 6, 292–303.

https://doi.org/10.1016/j.aiia.2022.11.005

[19] Sohan, M., Ram, T. S., & Reddy, C. V. R. (2024). A review on YOLOV8 and its

advancements. Algorithms for Intelligent Systems, 529–545. https://doi.org/10.1007/978-981-

99-7962-2_39

[20] Montaluisa-Mantilla, M. S., García-Encina, P., Lebrero, R., & Muñoz, R. (2023).

Botanical filters for the abatement of indoor air pollutants. Chemosphere, 345, 140483.

https://doi.org/10.1016/j.chemosphere.2023.14048

1
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

2
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

