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ABSTRACT 

 

This project presents the design and development of a real-time facial recognition attendance 

system aimed at automating and enhancing student attendance tracking in academic settings. 

Leveraging advancements in Artificial Intelligence and Computer Vision, the system integrates 

a deep learning-based Convolutional Neural Network (CNN) that generates 1024-dimensional 

facial embeddings for each registered user. These embeddings are used for identity verification 

through cosine similarity matching, achieving reliable and high-accuracy face recognition. To 

address security vulnerabilities such as spoofing and proxy attendance, the system incorporates 

active liveness detection mechanisms, including blink detection and head movement analysis, 

ensuring that only live human faces are authenticated. The front-end interface enables students 

to register their facial data and perform attendance scanning with minimal user interaction, 

while the web-based backend dashboard allows lecturers to manage class sections, enroll 

students, and monitor attendance records. The overall system demonstrates robust performance 

in real-world scenarios, achieving face recognition high accuracy with consistently high 

precision, recall, and F1-score. SQLite is used for lightweight data storage, while the Flask 

framework supports the real-time backend operations. The modular architecture ensures 

extensibility for future improvements. While the prototype is effective for controlled 

environments, limitations such as dataset diversity, backend scalability, and mobile 

accessibility remain. Future work may focus on expanding dataset coverage, implementing a 

cross-platform mobile application, and upgrading to a cloud-based database for better 

scalability. Overall, this project serves as proof-of-concept for a secure, efficient, and 

deployable biometric attendance system that reduces manual effort and improves 

accountability in academic institutions. 

 

Area of Study (Minimum 1 and Maximum 2): Artificial Intelligence, Computer Vision, Image 

Processing 

 

Keywords (Minimum 5 and Maximum 10): Deep Learning, Liveness Detection, Image 

Processing, Face Recognition, Image Processing, Real-Time Processing  
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Chapter 1 

Introduction 

 

This chapter establishes the foundational context for an in-depth exploration into the domain 

of automated face recognition systems. As a field at the dynamic intersection of computer 

vision, pattern recognition, and artificial intelligence, face recognition has undergone a 

profound transformation in recent years. This introduction will delineate the fundamental 

concepts governing this technology, underscore the pivotal and transformative role of deep 

learning in its modern incarnation, and situate this research within the specific, high-stakes 

application of secure and automated attendance management. Furthermore, this chapter will 

formally define the research problem this project seeks to address, articulate its precise 

objectives, and clearly demarcate the scope and strategic direction of the work undertaken. 

 
Face recognition is a sophisticated biometric modality used to algorithmically identify or verify 

an individual by analyzing their unique facial characteristics from a digital image or a video 

stream. The process is conventionally architected as a multi-stage pipeline. This pipeline begins 

with face detection, the task of locating and isolating one or more faces within a given image. 

Following detection, face alignment (or normalization) is performed to standardize the 

detected faces, correcting for variations in scale, in-plane rotation, and posing to present a 

consistent facial view to the subsequent stages. The core of the system is featuring extraction, 

where a specialized algorithm processes the aligned face to generate a compact, discriminative 

numerical vector known as a feature embedding. This embedding is designed to capture the 

essential identity-specific information on the face. Finally, face classification or 

matching occurs, where the extracted embedding is compared against a database of pre-

computed embeddings of known individuals to determine the identity. 

 
The rapid development of deep learning, and particularly the widespread adoption 

of Convolutional Neural Networks (CNNs), has catalyzed a paradigm shift in the field, 

moving from handcrafted feature descriptors (like Local Binary Patterns or Haar-like features) 

to end-to-end learned representations. CNNs possess the remarkable ability to autonomously 

learn a rich hierarchy of features directly from pixel data—from simple edges and textures in 

early layers to complex facial parts and global structures in deeper layers. This capability 
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enables them to achieve unprecedented robustness against challenging real-world variations 

such as extreme changes in illumination, non-frontal poses, diverse facial expressions, and 

partial occlusions. Seminal architectures like FaceNet, which introduced an embedding-based 

learning approach using a triplet loss function, have set new benchmarks. The triplet loss 

methodology trains the network to map images of the same person to points that are close 

together in an N-dimensional Euclidean space, while simultaneously pushing points from 

different identities far apart, thus creating a highly discriminative feature space. 

 
Despite these significant technological leaps, the practical deployment of face recognition 

systems, especially for security-critical applications like attendance management, reveals 

persistent challenges in reliability and security. Traditional systems are notoriously vulnerable 

to presentation attacks (or spoofing), where malicious actors use non-live artifacts such as 

high-resolution photographs, video replays on a screen, or even 3D masks to impersonate a 

legitimate user. To counteract this critical vulnerability, the integration of liveness 

detection has become an indispensable component. Liveness detection is a set of techniques 

designed to verify that the biometric being captured belongs to a live, physically present human 

being. By analyzing physiological signs like eye blinks, subtle head movements, or micro-

texture patterns, these systems can effectively differentiate between a genuine face and a 

fraudulent artifact, thereby preventing unauthorized access or fraudulent attendance marking. 

 
The key concepts that form the technical backbone of this project include CNN-based feature 

extraction for identity representation, advanced image preprocessing to enhance data quality, 

data augmentation to build model robustness, rigorous model training and evaluation protocols, 

real-time inference optimization for practical deployment, and the crucial integration of 

liveness detection for anti-spoofing. Together, these elements constitute a holistic approach to 

engineering, the secure and efficient attendance system developed in this work. 
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1.1  Problem Statement and Motivation 

While face recognition technology has rapidly matured from traditional feature engineering to 

highly accurate CNN-driven deep learning models, its application in practical, uncontrolled 

environments like classrooms continues to present a set of unresolved challenges. This project 

is directly motivated by the need to address these specific shortcomings. 

 

I. Critical Flaws in Prevailing Attendance Systems like QR Code Scanning 

Many academic and corporate institutions have adopted QR code-based systems for 

attendance tracking, aiming for digitalization and efficiency. However, these systems 

are fundamentally flawed in their security model. They are acutely susceptible to proxy 

attendance, where a QR code can be easily captured via screenshot and electronically 

shared with an absent individual, who can then scan it from a remote location. This 

loophole undermines the very purpose of attendance tracking: verifying physical 

presence. Furthermore, this method often imposes a significant administrative burden 

on lecturers, who must generate, display, and manage the codes, and later manually 

verify or reconcile the digital records, detracting from their primary teaching 

responsibilities. 

 

II. Inadequacies of Existing Face Recognition System 

While face recognition offers a theoretically superior alternative, off-the-shelf or naive 

implementations often fail in real-world deployment due to two primary issues: 

• Performance Degradation in Unconstrained Environments: Performance 

Degradation in Unconstrained Environments: Classroom settings are visually 

complex and dynamic. Factors such as variable and poor lighting (e.g., backlighting 

from windows, dim overhead lights), a wide range of facial angles as students move, 

and frequent occlusions (e.g., from glasses, face masks, or hair) can drastically 

reduce the accuracy of a recognition model not specifically trained to handle such 

intra-class variability. 

• Vulnerability to Presentation (Spoofing) Attacks: A face recognition system 

without a robust anti-spoofing mechanism is incomplete from a security standpoint. 

It remains vulnerable to simple yet effective attacks where an individual can present 

a photo or a video of a registered student to the camera. For an attendance system, 
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this vulnerability is critical, as it reintroduces the possibility of proxy attendance, 

thereby negating the primary advantage over QR code systems. 

 
 

III. Absence of a Fully Integrated and Automated Workflow 

A significant gap in many existing systems is the lack of seamless end-to-end 

automation. Even systems with recognition capabilities often require manual steps, such 

as a lecturer initiating the scan, manually verifying the logged entries against the actual 

class list, or exporting data for processing. This lack of integration between recognition, 

liveness verification, and automatic record logging creates friction and reduces the 

overall efficiency and reliability of the system. 

 

This project is motivated by the urgent need for a holistic solution that directly confronts these 

issues. By developing an integrated system that combines real-time, robust CNN-based face 

recognition with intelligent liveness detection, this work aims to create a secure, trustworthy, 

and fully automated attendance ecosystem. The goal is to eliminate the proxy attendance 

problem, fortify the system against spoofing attempts, and free educators from manual 

administrative tasks, thereby ensuring academic integrity and operational efficiency. 
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1.2  Objectives 

The primary objective of this project is to design, implement, and evaluate a real-time, deep 

learning-based face recognition attendance system with integrated liveness detection, 

engineered to ensure secure, accurate, and fully automated attendance marking in classroom 

environments. 

 
To achieve this overarching goal, the following specific objectives are defined: 

1. To develop a highly accurate, real-time face recognition model optimized for 

classroom conditions. This involves selecting and fine-tuning a state-of-the-art CNN 

architecture to handle challenging variations in lighting, diverse facial expressions, non-

frontal poses, and partial occlusions. This will be supported by a robust pipeline of image 

preprocessing and augmentation techniques designed to simulate real-world classroom 

scenarios. 

 
2. To design and integrate a robust liveness detection module for anti-spoofing. This 

objective focuses on implementing a mechanism that can reliably distinguish between a 

live person and a presentation attack (e.g., a photo or video). The system will analyze 

physiological cues, such as eye-blinking patterns, to ensure that attendance can only be 

marked by individuals who are physically present at the time of scanning. 

 
3. To implement a fully automated attendance management system. This requires 

building a backend infrastructure that seamlessly logs the identities of recognized and 

liveness-verified individuals into a persistent database. The system will provide an 

automated workflow, from real-time video capture to final record generation, thereby 

minimizing the need for manual intervention or verification by academic staff. 
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1.3  Project Scope and Direction  

This project is scoped to encompass the complete lifecycle of designing, developing, and 

evaluating a proof-of-concept prototype for a real-time face recognition attendance system 

fortified with liveness detection. The primary delivery is a functional software system capable 

of capturing a live video feed, concurrently performing face detection, recognition, and liveness 

verification, and securely recording the verified attendance data. 

The specific scope of this project includes: 

• Model Development: The selection, fine-tuning, and training of an appropriate CNN 

architecture (e.g., a lightweight variant of FaceNet or MobileNet) for the core face 

recognition task. 

• Data Handling: The implementation of image preprocessing techniques (e.g., 

histogram equalization, noise reduction) and a comprehensive data augmentation 

pipeline (e.g., random rotation, brightness adjustment, zoom) to enhance model 

generalization and robustness. 

• Liveness Detection: The development and integration of a software-based liveness 

detection module, specifically designed to identify and thwart spoofing attempts using 

static photos or video replays by analyzing physiological signals like eye blinks. 

• System Integration: The construction of a complete system architecture, including a 

backend server and a Flask-based web interface. This interface will provide a user-

friendly dashboard for lecturers to manage attendance sessions, view real-time logs, 

and generate reports. 

 

The project will deliberately exclude the following areas to maintain a clear focus on software-

based deep learning solutions: 

• GPS-based Location Verification: While useful for geofencing, this is considered an 

orthogonal security layer. The project will concentrate on solving the visual-based 

challenges of identity and liveness verification. 

• Hardware-Level Biometric Integration: The system will not integrate specialized 

hardware such as 3D cameras or infrared sensors, focusing instead on a solution that is 

deployable using standard, commodity webcams to ensure accessibility and scalability. 
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1.4  Contributions 

This project aims to make a significant and practical contribution to the field of intelligent 

attendance systems by delivering innovations across several key areas: 

I. A Robust CNN-Based Recognition Model for Uncontrolled Environments 

The primary contribution is a custom-trained and optimized CNN model specifically 

tailored for the challenges of real-world classroom environments. By fine-tuning on a 

curated dataset that includes variations in lighting, head orientation, and partial 

occlusions, this model will demonstrate superior real-time accuracy and resilience 

compared to generic, off-the-shelf recognition models. 

 

II. An Integrated Anti-Spoofing and Liveness Detection Pipeline 

This works pioneers the seamless integration of liveness detection directly into the 

real-time recognition workflow. By incorporating techniques such as eye-blink 

detection or subtle head movement analysis, the system introduces a critical layer of 

security that directly addresses the vulnerability of presentation attacks, ensuring that 

spoofing attempts using static media are effectively prevented. This integrated 

approach is a significant step beyond simple recognition-only systems. 

 

 

III. A Fully Automated, End-to-End Attendance Workflow 

The project will deliver a holistic system architecture that automates the entire process, 

from live video capture and identity verification to secure record-keeping. This 

automation significantly reduces the administrative workload on lecturers, eliminates 

human error in record management, and ensures the creation of a reliable, tamper-

proof audit trail of attendance. 

 

IV. A Practical and Scalable Platform for Institutional Deployment 

Beyond a mere algorithmic implementation, this project will produce a practical 

platform. It includes a student-facing module for face registration and scanning, and a 

lecturer-facing web dashboard for monitoring, management, and reporting. This dual-

interface design makes the system a viable and scalable solution, ready for pilot 

deployment in academic institutions. 
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In summary, this research provides a secure, accurate, and scalable real-time attendance system 

that leverages the power of deep learning and integrated liveness detection to overcome the 

critical limitations of both QR code-based methods and traditional face recognition systems. 

Its contributions have the potential to extend beyond the classroom, offering a blueprint for 

secure access control, workforce time and attendance monitoring, and other applications where 

verified physical presence is paramount. 

 

1.5  Report Organization 

This thesis is systematically organized into seven chapters, each designed to logically build 

upon the last, guiding the reader through the project's conception, methodology, 

implementation, and evaluation. 

• Chapter 1: Introduction provides the foundational context for the study. It presents 

the problem statement, defines the research objectives, delineates the project's scope, 

highlights its significance and contributions, and offers this overview of the report's 

structure. 

• Chapter 2: Literature Review conducts a critical analysis of existing research and 

technologies relevant to this project. It examines core technologies such as MTCNN 

for face detection and FaceNet for recognition, explores different approaches to 

liveness detection, and discusses the potential of hybrid systems like GPS geofencing. 

The chapter also reviews the limitations of current attendance systems and identifies 

the specific research gaps this project aims to fill. 

• Chapter 3: System Methodology and Approach details the theoretical and practical 

framework of the proposed system. It presents high-level system architecture, outlines 

the specific use cases for both student and lecturer roles, and explains the mathematical 

and algorithmic foundations, including cosine similarity for feature matching and the 

Eye Aspect Ratio (EAR) for blink detection. 

• Chapter 4: System Design provides a detailed blueprint of the system's architecture. 

This chapter specifies the interactions between different software components, presents 

the database schema for storing user embeddings and attendance records, and describes 

the image preprocessing pipeline used to enhance data quality before it is fed into the 

deep learning models. 

• Chapter 5: System Implementation documents the translation of the design into a 

functional prototype. It specifies the hardware and software configurations used, 
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illustrates the operational workflows with diagrams, and transparently discusses the key 

technical challenges encountered during development and the strategies employed to 

resolve them. 

• Chapter 6: System Evaluation and Discussion presents a rigorous validation of the 

system's performance. It uses quantitative metrics such as recognition accuracy, false 

acceptance/rejection rates, and processing latency to assess effectiveness. The chapter 

also describes real-world testing scenarios under various conditions and provides a 

comparative analysis of the results against the project's initial objectives. 

• Chapter 7: Conclusion and Recommendations concludes the report by summarizing 

the key findings and achievements, including the final measured accuracy of the 

system. It reflects on the project's successes and limitations and proposes concrete 

recommendations for future work, such as the integration of 3D mask detection and the 

exploration of deployment on edge computing devices. 
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Chapter 2 

Literature Review 

 

This chapter establishes the theoretical and practical foundations for the proposed facial 

recognition attendance system. It begins by critically examining previous works on automated 

attendance systems, identifying their strengths and vulnerabilities. Following this, the review 

delves into the core technologies that underpin the proposed solution, including fundamental 

image processing techniques and an in-depth analysis of prominent face recognition 

methodologies. By synthesizing and critiquing existing literature, this chapter identifies the 

critical research gaps that this project aims to address. 

 

2.1  Previous Works on Attendance Systems 

The automation of attendance tracking has been approached through various technological 

paradigms, each presenting a trade-off between convenience and security. 

 

2.1.1 Attendance System using QR code Scanning 

A prevalent approach to digitizing attendance involves QR code technology. Masalha and 

Hirzallah [1] proposed a system where unique, session-specific QR codes are generated for 

each lecture. Students scan these codes using a dedicated mobile application to transmit their 

identity and session details to a central server, as illustrated in Figure 2.1.1.1.  

 

Figure 2.1.1.1 Proposed System Infrastructure 
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While this method offers significant improvements in speed and convenience over manual 

sign-in sheets, its primary weakness is a critical security flaw: susceptibility to proxy 

attendance. QR codes can be easily screenshotted and distributed, allowing a student who is 

not physically present to have their attendance marked by a peer. This fundamental 

vulnerability undermines the integrity of the attendance data, highlighting the necessity for a 

verification method that confirms both the user's physical presence and authentic identity.  

 

2.1.2 Location Based time and attendance system 

To address the challenge of verifying physical presence, researchers have explored location-

based services. Uddin et al. [2] developed a system that uses the Global Positioning System 

(GPS) on student mobile devices to confirm their proximity to the lecture venue. Attendance 

is recorded only if the device is located within a predefined geographical boundary (geofence) 

during the scheduled class time as demonstrated in Figure 2.1.2.1.  

 

Figure 2.1.2.1 Block Diagram of Location-based Time and Attendance System 

 

 

Figure 2.1.2.2 Flows of operation for mobile application 
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For the proposed Management Software: 

 

Figure 2.1.2.3 Flows of operation for Time and Attendance Management Software 

 

Although this approach is an improvement over credential-based systems, it has significant 

limitations. GPS accuracy is often unreliable indoors, where most lectures occur. More 

critically, the system verifies the location of the device, not the person. This leaves it vulnerable 

to proxy attendance, as one student could bring multiple devices into the geofenced area. The 

absence of direct identity verification remains a key research gap that this project will address 

by using location data with robust biometric identification. 
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2.2  Previous work on Image Processing Techniques 

According to N. Barnouti [3], Image preprocessing is a critical precursor to any successful 

computer vision task, as it standardizes images and enhances salient features required for 

accurate recognition. As noted by Anila and Devarajan [4], effective preprocessing reduces 

computational overhead and increases the probability of a correct match. Key techniques 

relevant to this project include: 

 

2.2.1 Image Cropping 

According to N. Barnouti [3], image cropping is a fundamental step in image pre-processing. 

The image cropping is used for isolating the region of an image where the face is located and 

discarding the unwanted background which can affect the recognition efficiency. This helps in 

the recognition process only held on the vital features of the face. The cropped images are then 

normalized to a standard size, such as 64x64 pixels, to ensure uniformity across the dataset. As 

illustrated in Figure 2.2.1.1, the cropped region typically includes key facial landmarks like the 

eyes and mouth, which are crucial for accurate recognition.  

 

Figure 2.2.1.1 Image Cropping to 64 x 64 pixels 

 

2.2.2 Image Resizing 

The images used in this analysis were resized to various dimensions to investigate how 

different scales affect the recognition process. Since image size can influence the information 

content, a detailed examination was conducted to determine the optimal resizing scale. While 

the primary purpose of image resizing is to reduce data size and consequently processing time 

[5], selecting an inappropriate scale can be detrimental. The resizing scale was randomly varied 

between 0.1 and 0.9, resulting in a range of image sizes. Figure 2.2.2.1 illustrates an example 

of resizing an image with a scale of 0.5. 
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Figure 2.2.2.1 Original Image Resize with Scale 0.5 

 

However, resizing images to an excessively small scale can lead to a significant loss of essential 

features, which is particularly problematic when image texture is important for classification. 

Figure 2.2.2.2 demonstrates the loss of features when an image is resized with a scale of 0.25. 

 

Figure 2.2.2.2 Original Image Resize with Scale 0.25 

 

In this study, the image resizing scale ranged from 0.3 to 0.9. Resizing with a scale of 0.5 

resulted in images of 56 x 46 pixels, while a scale of 0.3 produced images of 34 x 28 pixels. 

Figure 2.2.2.3 shows examples of images resized using a 0.3 scale, and Figure 2.2.2.4 illustrates 

the increase in the recognition rate observed after resizing images with this 0.3 scale. Therefore, 

choosing an appropriate resizing scale based on image resolution can be an efficient way to 

improve the recognition rate. 

 

Figure 2.2.2.3 Images After Resized by Scale 0.3 
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Figure 2.2.2.4 Recognition Rate After Resized by Scale 0.3 

 

2.2.3 Brightness Changing  

A key image preprocessing step is brightness adjustment, which controls the overall lightness 

or darkness of an image. This is achieved by adding or subtracting a constant value from the 

intensity of each pixel. The range of this adjustment typically spans from -255 to +255; adding 

positive values brightens the image, while subtracting (negative values) darkens it. Figure 

2.2.3.1 provides an example of increasing image brightness. Modifying the brightness level 

can be beneficial in various image analysis scenarios. 

 

 

Figure 2.2.3.1 Increase Image Brightness 

 

The contrast between the darkest and lightest areas and the blurriness of images can also be 

modified. In this analysis, increasing the image brightness by adding 100 or 140 to each pixel 

resulted in an improved recognition rate. Conversely, darkening the images by subtracting 100 

or 140 from each pixel led to a decrease in the recognition rate. Figure 2.2.3.2 displays images 

after increasing the brightness by adding 140, and Figure 2.2.3.3 shows images after decreasing 

the brightness by subtracting 140. The corresponding recognition rates after these bright 

adjustments are presented in Figure 2.2.3.4. The results indicate that increasing the brightness 
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can enhance the recognition rate; while decreasing it is not an effective strategy and tends to 

reduce the recognition accuracy. 

 

 

Figure 2.2.3.2 Increase the brightness by adding 140 to each pixel. 

 

Figure 2.2.3.3 Decrease the brightness by adding 140 to each pixel. 

 

 

Figure 2.2.3.4 Recognition Rate After Increase and decrease the brightness. 
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2.3  Previous works on Face Recognition   

Face recognition has evolved from classical statistical methods to powerful deep learning 

architectures capable of handling complex, real-world variations. 

Before a face can be recognized, it must first be accurately located within an image. Early 

methods like the Viola-Jones algorithm used Haar-like features and a cascade of classifiers to 

achieve real-time detection, though they were sensitive to non-frontal poses. Modern systems 

rely on deep learning, with the Multi-task Cascaded Convolutional Network (MTCNN) being 

a prominent example. MTCNN uses a cascade of three CNNs to progressively detect faces and 

their key landmarks (eyes, nose, mouth) with high accuracy, even under challenging conditions 

with varying poses and partial occlusions [13]. 

 

2.3.1 Eigenfaces and PCA (Principal Component Analysis) 

One of the foundational methods in face recognition is Principal Component Analysis (PCA), 

used to implement the Eigenfaces approach [6], [7]. PCA is a dimensionality reduction 

technique that identifies the principal components that capture the most variance in a set of 

face images. These components, known as "eigenfaces," form a basis space on which new face 

images can be projected for comparison. While computationally efficient, the PCA-based 

Eigenfaces method is highly sensitive to variations in lighting, expression, and pose, making it 

less suitable for the uncontrolled environments of a typical classroom. 

 

1. Detecting Object as a Face 

The system initiates by accessing a camera to detect objects resembling a face using the 

CASCADE_FIND_BIGGEST_OBJECT method. The input image is converted to 

grayscale and resized to accelerate the detection process. Contrast and brightness are 

enhanced through histogram equalization, and the detected face is then isolated and stored 

for subsequent processing as shown in Figure 2.3.1.1. 
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Figure 2.3.1.1 Flowchart of detecting objects as a face 

 

2. Preprocess of detected face 

To prepare the detected face for recognition and minimize errors, preprocessing steps are 

applied. This includes aligning the face by detecting and adjusting the position of the eyes 

using geometric transformations (rotation, scaling, translation). Histogram equalization is 

applied to each half of the face independently to standardize lighting, and a bilateral filter 

is used to smooth the image while preserving important edges as illustrated by author in 

Figure 2.3.1.2. 
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Figure 2.3.1.2 Flowchart of preprocessing for detected face 

 

3. Collect and train faces 

The system gathers multiple face images for training, incorporating variations by including 

mirrored versions of the original images. These images are stored in the .pgm format and 

then used to train a model using PCA. This process involves calculating the mean face, 

subtracting it from the training images, computing the covariance matrix, and determining 

the eigenvalues and eigenvectors. The eigenfaces are subsequently generated, and the 

resulting model is saved in .xml format (Figure 2.3.1.3). The formulas for calculating the 

average face, subtracting the mean, and finding the covariance matrix are provided, 

followed by the steps to determine eigenvalues, eigenvectors, eigen images, and the weight 

matrix. The eigenface concept is explained as a set of eigenvectors used in computer vision 

to recognize human faces, derived from the covariance matrix to represent the probability 

distribution and vector space for face recognition by reconstructing faces. 
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Figure 2.3.1.3 Flowchart of collect and train the faces 

 

4. Recognition 

During recognition, the trained model is loaded, and a face is detected in real-time using 

the camera. The preprocessed face is then compared to the model by projecting it into the 

eigenface space. If the similarity score is below a predefined threshold of 0.5 [7], the system 

identifies the face; otherwise, it is classified as "Unknown" (Figure 2.3.1.4). 

 

Figure 2.3.1.4 Flowchart of face recognition 

 

The accuracy of the developed face recognition system was tested using a dataset of 6 

training users, each with 40 variations of images. Figure 2.3.1.5 shows the best 20 eigenface 

images from the database, and Figure 2.3.1.6 illustrates a reconstructed image from the 

database. Figure 2.3.1.7 presents the result of a face recognition test for "train user 1," and 
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Table 2.2.1.1 summarizes the testing results for all users. The average recognition accuracy 

achieved by the authors' proposed system was 96.3% (Figure 2.3.1.8). 

 

Figure 2.3.1.5 Best 20 eigenface images from the database 

 

 

Figure 2.3.1.6 Reconstructed image from one of the databases, “train user 1” 

 

 

 Figure 2.3.1.7 Result of face recognition testing (user: “train user 1”) 
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The testing result summarize: 

Table 2.3.1.1 Testing result summarization 

No Object  Recognized Times (%) 

1 Train user 1 99 

2 Train user 2 97 

3 Train user 3 95 

4 Train user 4 97 

5 Train user 5 92 

6 Train user 6 98 

 

The average result of the author’s proposed recognition system is 96.3%. 

 

Figure 2.3.1.8 Average result of recognition system (PCA) 
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Wagh et al. [7] also explored PCA algorithms, specifically Eigenfaces and Principal 

Component Analysis (PCA), for attendance systems. They noted that while algorithms like 

Neural Networks are effective for single-image systems, attendance systems require the 

recognition of multiple faces. Eigenfaces represent face images as a linear combination of 

weighted eigenvectors, referred to as "eigenfaces," aiming to reduce the dimensionality of face 

images by projecting them onto a lower-dimensional subspace that captures the most 

significant distinguishing features. PCA serves as the mathematical foundation of the 

Eigenfaces method, aiding in the identification of the principal components that capture the 

maximum variance in the data. The architecture of their proposed face recognition-based 

attendance system is shown in Figure 2.3.1.9. The authors outlined the hardware requirements, 

including a high-definition camera to capture the entire class. The captured image undergoes 

enhancement through grayscale conversion and histogram equalization before face detection 

algorithms identify individual faces. Each detected face is then cropped and compared against 

a database of student face images to mark attendance on a server. Table 2.2.1.2 provides a 

comparison of various algorithms for face recognition. The architecture of this face 

recognition-based attendance system proposed by the authors:  

 

 

Figure 2.3.1.9 Architecture of face recognition-based attendance system. 
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Table 2.3.1.2 Comparison of various algorithms for face recognition 

Method No. of Images Success Rate (%) 

Principal Component Analysis (PCA) 400 79.65 

Principal Component Analysis + Relevant 

Component Analysis 

400 92.34 

Independent Component Analysis 40 Gauss function 81.35 

Support Vector Machines - 85-92.1 

Neural Networks - 93.7 

Eigenfaces Method 70 92-100 

Eigenfaces with PCA method - 92.30 

 

 

2.3.2 Convolutional Neural Network (CNNs) 

Arsenovic et al. [8] introduced "FaceTime," a deep learning-based face recognition system 

utilizing Convolutional Neural Networks (CNNs) for real-time attendance tracking. This 

system offers an efficient alternative to traditional manual methods. Their study demonstrated 

the robustness of CNNs in handling variations in facial features, lighting, and angles, making 

it a reliable option for educational institutions and organizations. The system's implementation 

in academic settings showed promising results, indicating its potential for wider adoption. The 

block diagram proposed by the authors outlines the steps in their face recognition process 

(Figure 2.3.2.1). 

 

Figure 2.3.2.1 Deep Learning-Based Face Recognition Block Diagram 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    25 
 

Step 1: Face Detection 

The initial stage involves identifying the presence and location of faces within an image or 

video frame. The authors in [9] highlight the significant advancements of CNNs in both image 

classification and object detection, making them highly effective for face detection tasks. 

 

Step 2: Face Landmarks and Image Positioning 

Once a face is detected, the system proceeds to pinpoint key facial landmarks (e.g., eyes, nose, 

mouth) and determines the face's precise position and orientation. Arsenovic et al. utilized a 

sophisticated CNN-based face detector developed by Li et al. [11], which consists of a cascade 

of six interconnected CNNs for robust and accurate face localization. This face detector, built 

using the Torch [12] framework, forms the front-end of their recognition pipeline. 

 

Step 3: Face Embedding 

To create a unique representation for each face, the system employs FaceNet, a deep CNN 

architecture. FaceNet learns to map face images into a compact 128-dimensional Euclidean 

space, generating a 128-byte embedding for each face. This embedding serves as a distinctive 

"fingerprint" for the individual, where similar faces produce close embeddings, and dissimilar 

faces produce distant embeddings. The training of FaceNet utilizes a triplet loss function, 

comparing images of the same person with images of different individuals. 

 

Step 4: Classification 

The final step involves identifying the individual based on their generated face embedding. 

Arsenovic et al. trained a classifier, specifically a Support Vector Machine (SVM), on the 

embeddings extracted from a dataset of known individuals. To evaluate their system, they 

integrated it as a Face Recognition API into an existing RFID-based employee attendance 

system. The system continuously analyzed video feeds, detected faces, generated embeddings, 

and used the trained SVM classifier to predict the identity of the person. The predicted identity, 

along with a confidence score, the captured image, and timestamp, were stored in a database 

for analysis and comparison with the RFID data. 
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Figure 2.3.2.2 Face Recognition API and current RFID-based system 

 

The effectiveness of the integrated face recognition system was assessed over a three-month 

period by tracking employee entrances and exits. The recorded data was subsequently validated 

against the existing RFID card records. The prediction outcomes, including a confusion matrix, 

are provided in Table 2.2.2.1, and the per-class accuracy of the deep learning model is shown 

in Figure 2.3.2.3. Notably, the system proposed by Arsenovic et al. [10] demonstrated a high 

overall accuracy of 95.02%. This level of performance was achieved by training the model on 

a relatively small number of images per employee, leveraging a data augmentation strategy to 

enhance the training data. 

 

Figure 2.3.2.3 CNN Architecture 
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Table 2.3.2.1 Deep Learning-Based Face Recognition Result Confusion Matrix 

Classes 

Empl 1 Empl 2 Empl 3 Empl 4 Empl 5 Predictions 

230 8 0 6 1 Empl 1 

4 269 0 3 1 Empl 2 

0 0 301 0 3 Empl 3 

8 4 9 138 0 Empl 4 

2 5 6 1 227 Empl 5 

 

 

Figure 2.3.2.4 Deep Learning-Based Face Recognition Accuracy per class 

The use of Convolutional Neural Networks (CNNs) enables real-time face detection and 

recognition. The authors also enhanced system capabilities without a complete infrastructure 

overhaul by integrating the face recognition API with an existing RFID-based attendance 

system. However, the authors noted that the proposed model's accuracy could be significantly 

impacted by lighting conditions, particularly images captured in daylight with open windows, 

which led to a higher rate of incorrect predictions. Additionally, the performance of the CNN-

based face recognition model heavily relies on the quality and diversity of the training data, 

with limited or biased data potentially leading to reduced accuracy and generalization issues. 

 

On the other hand, the authors suggested that applying gradient transformation to the images 

could help mitigate lighting issues by adjusting brightness and contrast, thereby making the 

model more resilient to variations in lighting conditions. Furthermore, implementing automatic 

retraining of the deep CNN model at regular intervals using newly captured images with high 

prediction accuracy could continuously improve the model's performance and allow it to adapt 

to new variations and conditions. 
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2.3.3 Siamese Networks 

Siamese Networks are a class of neural network architecture that employs two or more identical 

subnetworks to compute output vectors for input pairs. These output vectors are then compared 

to measure the similarity or dissimilarity between the inputs. In the context of face recognition, 

Siamese Networks are particularly useful for verifying whether two face images belong to the 

same individual. 

 

The core idea behind Siamese Networks is to learn a function that maps face images into a 

feature space where images of the same person are close to each other, while images of different 

people are far apart. This is achieved by training the subnetworks to produce similar 

embeddings (vector representations) for matching pairs and dissimilar embeddings for non-

matching pairs. 

 

Several studies have explored the effectiveness of Siamese Networks in addressing specific 

challenges in face recognition. Song et al. (2019) [15] focused on the issue of occlusion, a 

significant problem in real-world scenarios where faces may be partially obscured by objects 

like masks or scarves. Their work, "Occlusion Robust Face Recognition Based on Mask 

Learning with Pairwise Differential Siamese Network," proposed a novel approach to mitigate 

the impact of occlusions. The authors introduced a "Pairwise Differential Siamese Network" 

that learns to compare face images in a way that is less sensitive to occluded regions. The 

network incorporates a "mask learning" component, potentially learning to identify or down-

weight the obscured parts of the face during the comparison process. This approach 

demonstrates the potential of Siamese Networks to enhance the robustness of face recognition 

systems in challenging conditions. The proposed system by the author [15] is shown as 

 

Figure 2.3.3.1 Proposed Pairwise Differential Siamese Network 
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Heidari and Fouladi-Ghaleh (2020) [16] addressed another critical challenge: face recognition 

with small-samples datasets. Their paper, "Using Siamese Networks with Transfer Learning 

for Face Recognition on Small-Samples Datasets," explored the combination of Siamese 

Networks with transfer learning. In many practical applications, including the initial enrollment 

phase of an attendance system, the number of available images per individual may be limited. 

The authors leveraged pre-trained weights from a model trained on a large, general dataset 

(likely a large-scale image dataset) and fine-tuned the Siamese network on a smaller, task-

specific face recognition dataset. This transfer learning strategy enables the network to learn 

effective face representations even with limited data per identity. Their work highlights the 

ability of Siamese Networks to learn robust similarity metrics from small datasets, making 

them well-suited for scenarios where collecting many images per user is impractical. 
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2.4  Limitation of Previous Studies  

While prior research has advanced the field of face recognition, several critical limitations 

reduce their suitability for real-world attendance management. 

Firstly, many studies remain restricted to controlled conditions, evaluating performance only 

under uniform lighting, neutral facial expressions, and frontal poses. In classroom 

environments, however, faces are often captured at non-frontal angles, in low or fluctuating 

lighting, and with dynamic expressions, all of which degrade recognition performance. 

 

Secondly, existing systems are frequently built on datasets lacking demographic diversity. 

Limited representation of different ethnicities, facial structures, or age groups often leads to 

biased recognition models. Such imbalances can result in unfair attendance outcomes, 

particularly in multicultural educational environments. 

Another major gap lies in the handling of occlusions and natural variations. While some 

studies focus only on frontal, unobstructed faces, students may appear with masks, glasses, or 

partially hidden by hair and hands. Systems not designed for these conditions experience 

significant drops in recognition accuracy. Although methods such as Siamese Networks (Song 

et al., 2019) attempt to mitigate occlusion issues, these solutions remain limited in 

generalizability. 

 

Finally, many existing studies overlook robust liveness verification. Without integrated 

countermeasures, spoofing attacks—such as presenting photos, videos, or even 3D masks—

can be used to bypass recognition systems. This makes them vulnerable to proxy attendance, 

a critical concern in academic contexts where trust and authenticity are paramount. 
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2.5  Summary of previous studies 

Face Recognition Techniques: 

Table 2.5.1 Comparison between recognition techniques 

Papers Method Advantages Disadvantages 

[6], [7] PCA with 

Eigenfaces 

Dimensionality reduction: 

compresses data while 

preserving critical features. 

Simplicity: straightforward to 

implement. Recognition: 

captures principal components 

for classification. 

Linear assumption: struggles 

with nonlinear variations. Poor 

generalization: sensitive to 

lighting, pose, and expression 

changes. Preprocessing 

needed: requires alignment and 

normalization. 

[8]–

[11] 

Convolutional 

Neural 

Networks 

Automatic feature learning 

extracts complex features 

directly from raw data. High 

accuracy: outperforms 

traditional methods in face 

recognition. Robustness: more 

tolerant to variations in pose, 

lighting, and expression. 

High resource demand 

requires powerful GPUs and 

large datasets. Complexity: 

needs extensive 

hyperparameter tuning and 

longer training. Data 

dependency: performance 

degrades with limited training 

data. 

[15], 

[16] 

Siamese 

Networks 

Few-shot learning works with 

limited labeled data. Effective 

verification: measures 

similarity instead of 

classification. Flexible: less 

dependent on large datasets. 

Pairwise, training 

requirement needs balanced 

positive/negative pairs. 

Sensitive to data quality: poor 

pair selection reduces accuracy. 

Training complexity: more 

complicated than classification-

based CNNs. 

 

In summary, among the reviewed approaches, CNN-based models stand out as the most 

effective due to their robustness, adaptability, and superior accuracy in handling real-world 

conditions. Hence, the proposed system adopts a deep CNN with residual blocks to strengthen 

feature learning and ensure reliable performance in academic attendance applications. 
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2.6  Proposed Solutions  

To address the shortcomings identified in traditional face recognition systems and previous 

attendance management solutions, this project proposes a real-time facial recognition 

attendance system that integrates deep learning-based recognition, robust liveness detection, 

and secure role-based access. 

 

The system begins with a face registration process, where each student captures multiple 

facial images from a live video stream. This ensures the collection of diverse samples under 

varying poses and expressions, improving robustness and fairness. 

For face detection, the system employs the Dlib face detector, which effectively locates faces 

and extracts aligned facial regions, even under moderate variations in pose and lighting. 

 

For feature extraction, a custom-built deep Convolutional Neural Network (CNN) with 

residual blocks is implemented. Residual connections allow deeper networks to be trained 

without vanishing gradients, thereby improving the learning of complex facial patterns. The 

network generates 1024-dimensional facial embeddings, representing unique identity 

features for each student. 

Identity verification is conducted using cosine similarity, which measures the angular 

distance between embeddings. This metric provides a robust similarity measure, less affected 

by illumination or scale variations, ensuring reliable recognition in diverse conditions. 

 

To prevent spoofing and proxy attendance, the system integrates multi-factor liveness 

detection during both registration and recognition. The liveness module evaluates: 

• Eye aspect ratio (EAR) for blink detection. 

• Mouth ratio (MAR) for lip or mouth movements. 

• Head pose estimation to detect natural head rotations. 

• Texture and motion cues to distinguish live faces from printed photos or screens. 

 

This multi-factor approach significantly enhances resistance against spoofing attacks. 

For system management, the platform includes role-based access control (RBAC). Lecturers 

can manage courses, create class sections, and generate attendance reports, while students are 

restricted to scanning attendance and viewing personal attendance records. 
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The backend leverages a centralized SQLite database that stores facial embeddings, 

attendance logs, and user information. This ensures real-time synchronization and supports 

analytical functions such as attendance rate monitoring and reporting. 

Finally, the system is deployed as a Flask web application, with a responsive interface 

optimized for both desktop and mobile devices. This guarantees accessibility and usability 

across different platforms, making the solution practical for academic institutions. 
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Chapter 3 

System Methodology/Approach OR System Model 

 

This chapter outlines the methodology adopted to develop the real-time face detection and 

recognition attendance system using deep learning models with liveness detection techniques.  

 

3.1 System Design Diagram/Equation 

 

3.1.1 System Architecture Diagram 

The system architecture in Figure 3.1.1.1 illustrates the full data flow from user login to 

attendance marking. It is divided into three primary components: 

1. User Authentication and Face Registration 

2. Liveness Detection (Active Challenge-Response) 

3. Face Recognition and Attendance Marking  
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Figure 3.1.1.1 System Architecture Diagram 
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3.1.1.1  User Authentication and Face Registration Flow 

 

The system workflow begins with user authentication via the Flask application's secure login 

portal. Upon successful login, the system checks the user's biometric registration status. If no 

facial data exists, the user is seamlessly guided to the registration module, which activates the 

integrated camera. 

Within the live video feed, a pre-trained Dlib 68-point facial landmark detector identifies 

key facial features, including the eyes, nose, mouth, and jawline. This landmark model is 

foundational to both face alignment and liveness detection. Once a stable face is detected with 

a confidence score exceeding 90%, the system automatically captures five high-quality images. 

Each captured image undergoes a mandatory preprocessing pipeline to ensure standardization 

for the CNN model: 

• Geometric Alignment: Facial landmarks are used to normalize the face's orientation, 

correcting for minor head tilts. 

• Image Resizing: Dimensions are standardized to match the input requirements of the 

CNN model (e.g., 64x64 pixels). 

• Photometric Normalization: Techniques like histogram equalization are applied to 

mitigate the effects of varying lighting conditions. 

The preprocessed images are then fed into a custom-trained deep Convolutional Neural 

Network (CNN). This network functions as a feature extractor, transforming each facial image 

into a high-dimensional 1024-dimensional feature vector, known as an embedding. To create 

a single, robust identity template that is resilient to minor variations, the five generated 

embeddings are mathematically averaged. This final average embedding is then securely stored 

in the database and uniquely associated with the user's profile. 

 

 

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    37 
 

3.1.1.2  Liveness Detection: Active Challenge-Response Module 

To prevent spoofing attacks from non-live sources, such as static photographs or video replays, 

the system incorporates a critical active liveness detection stage. This module ensures the 

integrity of the attendance record by verifying the user's physical presence through 

a challenge-response mechanism, where the user is prompted to perform simple actions that 

a static source cannot replicate. 

 

A. Facial Landmark-Based Metric Analysis 

The foundation of the liveness detection system lies in the accurate detection and tracking of 

facial landmarks. These landmarks are specific points on a face. The system utilizes a 68-point 

facial landmark model from Dlib, which are the standard in many computer vision applications, 

to locate these key features in each frame. 

 

 

Figure 3.1.1.2.1 Dlib 68-Facial Landmarks in a Face 

 

I. Eye Aspect Ratio (EAR) for Blink Detection 

Blink detection is a widely accepted biometric signal indicating liveness. This system 

employs the Eye Aspect Ratio (EAR) metric, a method proposed by Soukupová and 

Čech (2016). The EAR is computed from six facial landmarks surrounding each eye 

(typically detected using a 68-point facial landmark predictor). 

 

We then find the start and end values of landmark ids for both the eye. You can do it 

manually also (37-42 for the right eye and 43-48 for the left eye) but 

using face_utils you can get these values by just passing the eye name. 
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Figure 3.1.1.2.2 Dlib Facial Landmarks 

 

 

Figure 3.1.1.2.3 EAR for Open and Closed Eye 

 

The formula is given by: 

𝐸𝐴𝑅 =  
‖𝑝2 − 𝑝6‖ +  ‖‖𝑝3 − 𝑝5‖‖

2‖𝑝1 − 𝑝4‖
 

Where: 

• p1, …, p6 are the 2D coordinates of the eye landmarks. 

 

A sudden drop in EAR followed by a quick rebound to baseline is interpreted as a 

valid blink. Each recognized blink adds to the blink score, which contributes to the 

final liveness score. 

 

II. Mouth Aspect Ratio (MAR) for Smile and Mouth Open Detection 

MAR is used to quantify the state of the mouth. This metric is essential for the ‘smile’ 

and ‘open mouth’ challenges. It is calculated using the landmarks that define the mouth 

(points 49 through 68). The system computes the ratio of the vertical distance between 

the upper and lower lips to the horizontal width of the mouth. The formula is: 

𝑀𝐴𝑅 =  
‖𝑝52 −  𝑝58‖ + ‖‖𝑝54 − 𝑝56‖‖

2‖𝑝49 − 𝑝55‖
 

Where the points correspond to key vertical and horizontal positions on the lips. 
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• Open Mouth Detection: A significant increase in the MAR value indicates that 

the mouth is open. 

• Smile Detection: A smile is characterized by widening of the mouth (increase in 

the horizontal distance) without a significant increase in the vertical opening. 

 

B. 3D Head Pose Estimation – Motion Detection: 

Natural micro-movements of the head are another strong indicator of liveness. A static 

photo cannot change its orientation, and a simple video replay often has limited, repetitive 

motion. The system estimates the head's 3D orientation—specifically its pitch, yaw, and 

roll—to verify that the user can perform specific head movements like nodding or turning. 

 

 

Figure 3.1.1.2.4 Head Motion Classification 

 

Pitch (nodding "yes"), Yaw (shaking "no"), and Roll (side-to-side tilt) are the three 

degrees of freedom for head rotation. 

 

The calculate_head_pose method implements this by using a 3D facial model and the 

cv2.solvePnP function. This process works as follows: 

1. Define a Generic 3D Face Model: A standardized 3D model of key facial points 

(like the nose tip, chin, and eye corners) is defined. 

2. Map 2D Image Points: The corresponding 2D landmark points detected in the 

current frame are identified. 

3. Solve for Pose: The cv2.solvePnP ("Perspective-n-Point") algorithm finds rotation 

and translation that maps the 3D model points to the observed 2D image points. 
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This requires camera information, which is estimated based on the frame's 

dimensions. 

4. Calculate Angles: The resulting rotation vector is converted into the more 

intuitive pitch, yaw, and roll angles. 

 

These angles are then used in the "turn_left," "turn_right," and "nod" challenges. For 

example, to complete the "turn_left" challenge, the user's calculated yaw angle must 

exceed a predefined negative threshold (-self.config.HEAD_MOVEMENT_RANGE). 

 

C. Anti-Spoofing Heuristics: Texture and Motion Analysis 

To further defend against spoofing attacks, such as displaying a video of a person on a high-

resolution screen, two additional heuristics are employed: texture analysis and motion analysis. 

 

I. Texture Analysis 

A face captured live by a camera will have a different texture profile than a face 

displayed on a digital screen or a printed photograph. Screens have pixel grids, and 

photos can have moiré patterns or a lack of fine detail. The calculate_texture_score 

function analyzes the texture of the facial region. It applies a Laplacian operator to 

the grayscale image of the face and calculates the variance of the result. The Laplacian 

operator is sensitive to edges and fine details. 

• A high variance suggests a sharp, detailed image, typical of a live face. 

• A low variance suggests a blurry or uniform surface, which could indicate a 

spoof attempt (e.g., an out-of-focus photo or a smooth screen surface). 

This texture score provides a continuous measure of authenticity that complements the 

other behavioral checks. 

 

II. Motion Analysis 

While head pose estimation tracks large-scale movements, calculate_motion_score 

detects subtle, frame-to-frame motion. It calculates the meaning of the absolute 

difference between the current and previous grayscale frames. Even a person trying 

to stay still will exhibit natural, small movements (from breathing, slight sways, etc.), 

which will result in a non-zero motion score. A complete lack of motion (a score of 

or near zero) is a strong indicator of a static image. 
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D. The Challenge-Response Workflow and Liveness Decision 

The system's logic culminates in the challenge-response workflow, managed by the 

analyze_frame and process_challenge methods. 

1. Initiation: When a face is detected, the system selects a random challenge from a 

predefined list (e.g., "blink_twice," "smile," "turn_left"). 

2. Guidance and Progress: The user is presented with an instruction. The system 

continuously processes incoming frames, calculating the relevant metrics (EAR, MAR, 

head pose). The progress towards completing the challenge is calculated and can be 

displayed to the user in real-time. For instance, if the challenge is to blink twice, the 

progress bar would fill by 50% after the first blink. 

3. Timeout: To ensure the check is completed efficiently and to prevent indefinite stalling, 

each challenge has a timeout (self.config.CHALLENGE_TIMEOUT). If the user fails to 

complete the action within this window, the challenge fails, and a new one may be 

initiated. 

4. Completion and Decision: Once the criteria for a challenge are met (e.g., 

self.blink_count >= 2), the challenge is marked as completed. The analyze_frame 

function then sets the is_live flag to True and the confidence to 1.0. This successful 

verification confirms the user's presence, allowing the primary action (e.g., marking 

attendance) to proceed. 

 

This multi-faceted approach, combining physiological cues (blinking), voluntary actions 

(smiling, turning head), and anti-spoofing heuristics (texture analysis), creates a robust and 

user-friendly liveness detection system that is difficult to bypass with common spoofing 

techniques. 
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3.1.1.3 Face Recognition and Attendance Marking Flow 

Once face is detected and the liveness is confirmed, the system performs the final identity 

verification. The deep CNN model processes the live-verified face to extract its final, 

discriminative 1024-dimensional embedding, denoted as Elive. This embedding is then 

compared against the pre-registered templates, Estored, retrieved from the database. 

 

The comparison metric is Cosine Similarity, which measures the cosine of the angle between 

the two embedding vectors in the high-dimensional space. A value closer to 1 indicates a higher 

degree of similarity. The formula is: 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑙𝑖𝑣𝑒, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑) =
𝐸𝑙𝑖𝑣𝑒 ∙ 𝐸𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑

‖𝐸𝑙𝑖𝑣𝑒‖ ∙  ‖𝐸𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑‖
 

Where: 

• 𝐸𝑙𝑖𝑣𝑒 ∙ 𝐸𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 = dot product of the two vectors. 

• ‖𝐸𝑙𝑖𝑣𝑒‖ 𝑎𝑛𝑑  ‖𝐸𝑙𝑖𝑣𝑒‖ are the L2 norms (magnitude) of the vectors. 

 

If the similarity score meets or exceeds a strict threshold of 90% (0.90), the system confirms 

the student's identity. Upon successful recognition, the system finalizes the process by marking 

the student's attendance, logging the precise timestamp and associated location data into the 

attendance database. This final step creates a secure, non-repudiable audit trail for each 

attendance record. 
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3.2  Use Case Diagram and Description 

3.2.1 Use Case Diagram - Student 

 

Figure 3.2.1.1 Use Case Diagram for Student 

 

This diagram visually represents the interactions between the student actor and the Real-time 

Face Recognition Attendance System. It outlines the primary functions a student can perform, 

such as registering, logging in, managing their facial data, marking attendance, and viewing 

their records 

 

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    44 
 

Student Use Case Description: 

 

Use Case 1: Login 

Table 3.2.1.1 Use Case Description (Login) 

Field Description 

Use Case Name Login 

ID UC01 

Importance Level High 

Primary Actor Student 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

1. Student: Secure access to their dashboard and attendance 

functions 

2. System: Must verify identity against hashed passwords in the 

database and log access events.  

Brief Description The student logs into the system using their registered email and 

password. 

Trigger Student navigates to the login page and submits the login form. 

Relationships • Include: Authenticate User 

• Extend: Log timestamp into database 

Normal Flow 1. Students enter their email and password. 

2. The system hashes the entered password and compares it with 

the stored hash for the given email. 

3. If valid, the system creates a user session and records a login 

timestamp. 

4. Students are redirected to their personal dashboard. 

Sub flows None 

Alternate/Exceptional 

Flows 

1a. Invalid credentials → Display "Invalid email or password" 

error message. 

1b. System offline → Display “Service unavailable.” 

1c. Account not yet verified (if applicable) → Display "Please 

verify your email address. 

 

Use Case 2: Register Account 
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Table 3.2.1.2 Use Case Description (Register Account) 

Field Description 

Use Case Name Register Account 

ID UC02 

Importance Level High 

Primary Actor Student 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Student: Needs a valid account for system access. 

System: Must store valid user information and prevent 

duplicate accounts 

Brief Description A new student creates an account by providing personal details 

like name, student ID, email, and password. 

Trigger Student clicks “Register” on login page. 

Relationships Include: Input Validation 

Extend: Create Account, Update Database 

Normal Flow 1. Students fill out the registration form (Full Name, Student 

ID, Email, Password) 

2. On submission, the system performs server-side validation 

3. The system hashes the password and creates a new user 

record 

4. The new account is stored in the users table in the database. 

Subflows None 

Alternate/Exceptional 

Flows 

2a.  Email or Student ID already exists → Display error: “An 

account with this email/ID already exists”. 

2b. Invalid input → Display validation error. 
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Use Case 3: Register Face 

Table 3.2.1.3 Use Case Description (Register Face) 

Field Description 

Use Case Name Register Face 

ID UC03 

Importance Level High 

Primary Actor Student 

Preconditions Students must be logged in. 

Postconditions A serialized facial embedding is stored in the database, 

associated with the student's user ID. 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Student: Needs a registered face to use the attendance marking 

feature 

System: Must store unique, high-quality, and live-verified facial 

embedding. 

Brief Description The system captures the student’s face via a live video 

stream, validates liveness, generates a composite facial 

embedding from multiple captures, and stores it. 

Trigger Student clicks “Register Face” from their dashboard. 

Relationships Include: Access Camera via Browser API, Detect Face, Perform 

Blink Detection (Liveness), Extract Facial Features, Generate 

Composite Embedding, Store Embedding 

Extend: Check if Face is Already Registered 

Normal Flow 1. Student selects “Register Face.” 

2. System checks if already registered. 

3. The browser prompts the student for camera permission. 

Upon granting, the system activates the camera and displays 

the video feed. 

4. The system guides the student to align their face 

and analyses the video stream in real-time for active 

challenge response to confirm liveness 
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5. The final embedding is serialized and stored in the database. 

A success message is displayed. 

Subflows 4a. If face detection or liveness check fails intermittently, the 

system prompts the user to "Hold still" or "Ensure good lighting" 

and continues trying 

Alternate/Exceptional 

Flows 

2a. Face already registered → Display “You have already 

registered your face.” 

3a. Camera access denied by user → Display "Camera access is 

required for face registration." 

3b. No face detected for a prolonged period → Display “No face 

detected. Please position your face in the frame.” 

3c. No face detected → Prompt retry. 

3d. 3c. Liveness check repeatedly fails → Display “Liveness 

check failed. 
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Use Case 4: Scan Attendance 

Table 3.2.1.4 Use Case Description (Scan Attendance) 

Field Description 

Use Case Name Scan Attendance 

ID UC04 

Importance Level Critical 

Primary Actor Student 

Preconditions • Student is logged in and has a registered face 

• Students are enrolled in the target course-section 

• The lecturer has activated the attendance session for this 

specific class section. 

Postconditions A new attendance record is created in the database with the 

student's ID, section ID, status ('Present'), timestamp 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Student: Wants attendance marked accurately and efficiently 

Lecturer: Needs accurate, cheat-proof attendance records. 

System: Must validate identity, enrollment, schedule, and 

location to ensure data integrity. 

Brief Description The student initiates attendance marking. The system first 

verifies their enrollment, the class schedule, and their physical 

proximity to the lecturer. If all checks pass, it performs facial 

recognition with a liveness check to mark attendance. 

Trigger Student selects a specific class section from their dashboard and 

clicks “Mark Attendance.” 

Relationships Include: Verify Enrollment, Verify Schedule, Verify 

Proximity, Access Camera via Browser API, Perform 

Liveness Detection, Recognize Face, Mark Attendance 

Extend: Check if Face Registered 

Normal Flow 1. Students select class sections. 

2. The system performs three sequential checks: 

a. Enrollment Check: Verifies the student is enrolled in 

the selected section. 
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b.  Schedule Check: Confirms the current time is within 

the class's scheduled start and end time 

3. Only if all three checks pass, does the system activate the 

camera for face scanning 

4. The system performs a liveness check via blink detection to 

prevent spoofing. 

5. Upon confirming a live face, the system extracts its 

embedding and compares it against the student's stored 

embedding 

6.  If the face similarity score is above the defined threshold 

(e.g., >90%), the system creates an attendance record with 

the current timestamp and the student's captured GPS 

location 

7. The system displays a confirmation: “Attendance Marked 

Successfully.” 

Alternate/Exceptional 

Flows 

2a. Enrollment check fails → Display “You are not enrolled in 

this section.” 

2b. Schedule check fails → Display “This class session is not 

active currently. 

2c. Proximity check fails → Display “You are out of range. 

Please move closer to the class location.” 

3a. Student has no registered face → Redirect to the "Register 

Face" page. 

4a. Liveness check fails → Display “Liveness check failed. 

Please try again.” 

5a. Face not recognized (low similarity) → Display “Face not 

recognized. Please try again.” 

5b. Student has already marked attendance for this session → 

Display "Attendance already marked." 
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3.2.2 Use Case Diagram - Lecturer 

 

Figure 3.2.2.1 Use Case Diagram for Lecturer 

 

The use case diagram for the lecturer in the Real-time Face Recognition using Deep 

Learning Attendance System outlines the key functionalities available to lecturers, 

emphasizing course and student management, as well as attendance monitoring. Lecturers can 

log in and register accounts, with proper authentication and validation. Once authenticated, 

they can create class sections or schedules, enroll students into courses, and the system will 

automatically assign students to appropriate class sections. Lecturers also can view class lists, 

update course information, monitor real-time attendance records, and download attendance 

reports. Each primary function is supported by system-level processes such as input validation, 

database updates, and data retrieval to ensure accurate, efficient operation.  
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Lecturer Use Case Description: 

 

Use Case 1: Login 

Table 3.2.2.1 Use Case Description (Login) 

Field Description 

Use Case Name Login 

ID UC-L1 

Importance Level High 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs secure, role-based access to management 

functions. 

System: Must authenticate users against stored credentials and 

restrict access. 

Brief Description The lecturer logs into the system using their registered email 

and password to gain access to their dashboard. 

Trigger Lecturer submits the login form. 

Relationships Include: Authenticate User 

Extend: Log access timestamp 

Normal Flow 1. The lecturer enters their email and password. 

2. The system hashes the entered password and compares it 

against the stored hash for the email provided. 

3. If credentials are valid, the system creates a server-side 

session and records a login timestamp 

4.  The lecturer is redirected to their main dashboard. 

Alternate/Exceptional 

Flows 

1a. Invalid credentials → Display error message: "Invalid email 

or password." 

1b. System database is offline → Display error: "Service 

currently unavailable." 
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Use Case 2: Register Account 

Table 3.2.2.2 Use Case Description (Register Account) 

Field Description 

Use Case Name Register Account 

ID UC-L2 

Importance Level Medium 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs a straightforward method to create an account. 

System: Must securely store lecturer information and prevent 

duplicate accounts. 

Brief Description A new lecturer creates an account by providing personal and 

professional details. 

Trigger Lecturer clicks the “Register” link on the login page. 

Relationships Include: Input Validation 

Extend: Create Account, Update Database 

Normal Flow 1. The lecturer completes the form.  

2. On submission, the system performs server-side 

validation to check for required fields, valid email format 

3. The system hashes the password using a strong 

algorithm 

4. A new record is created in the users table with the role 

'lecturer' and stored in the database. 

Alternate/Exceptional 

Flows 

2a. Invalid input format → Display specific field-level 

validation errors (e.g., "Please enter a valid email address."). 
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Use Case 3: Enroll Student in Course 

Table 3.2.2.3 Use Case Description (Enroll Student in Course) 

Field Description 

Use Case Name Enrolling Student in Course 

ID UC-L3 

Importance Level High 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs to efficiently manage class rosters. 

Student: Must be formally enrolled to participate in a course. 

Brief Description The lecturer enrolls one or more existing students on a specific 

course they manage. 

Trigger The lecturer selects a course and navigates to the "Enroll 

Students" function. 

Relationships Include: Input Validation 

Extend: Update Database 

Normal Flow 1.  Lecturers select a course from their course list. 

2.  Lecturer selects one or more students to enroll (e.g., from a 

searchable list or by entering student IDs). 

3. The system validates the selected students and courses exist. 

4. The system creates records on the enrollments join table, 

linking the student IDs with the course ID. 

Alternate/Exceptional 

Flows 

2a. Student is already enrolled in the course → The system skips 

the duplicate entry and provides a notification: "[Student Name] 

is already enrolled." 
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Use Case 4: Create Class Section 

Table 3.2.2.4 Use Case Description (Create Class Section) 

Field Description 

Use Case Name Create Class Section 

ID UC-L4 

Importance Level High 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs to define specific class schedules for a course 

Student: Needs to know the exact time and day for their classes. 

Brief Description The lecturer creates a specific, scheduled class section (e.g., 

tutorial, lab) and links it to an existing course. 

Trigger Lecturer clicks “Add Class Section” from a course 

management page. 

Relationships Include: Input Validation. 

Extend: Update Database 

Normal Flow 1. The lecturer enters section details, including Section Name/Code, 

venue, and datetime. 

2. A new record is created in the class_sections table, linked to 

the courses table via a foreign key. 

Subflows None 

Alternate/Exceptional 

Flows 

2a. Invalid course selection → Error. 

2b. Schedule conflict → Alert lecturer. 
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Use Case 5: View Attendance Record 

Table 3.2.2.5 Use Case Description (View Attendance Record) 

Field Description 

Use Case Name View Attendance Record 

ID UC-L5 

Importance Level High 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs to monitor student attendance in real-time or 

historically. 

Brief Description The lecturer views the detailed attendance records for a specific 

class section. 

Trigger The lecturer selects a course and then a specific section to view 

its records. 

Relationships Include: Fetch Records from DB 

Normal Flow 1. Lecturer selects a course and a class section. 

2. The system retrieves all attendance records associated with 

that section. 

3. The system displays the records in a table, showing Student 

Name, Student ID, Date, Check-in Timestamp, and Status  

Subflows None 

Alternate/Exceptional 

Flows 

No attendance has been taken yet → Display message: “No 

attendance records found for this section.” 
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Use Case 6: Generate & Download Attendance Report 

Table 3.2.2.6 Use Case Description (Generate & Download Attendance Report) 

Field Description 

Use Case Name Generate & Download Report 

ID UC-L6 

Importance Level Medium 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs an offline, portable copy of attendance records 

for administrative purposes. 

Brief Description The lecturer generates and downloads a formatted attendance 

report for a class section. 

Trigger Lecturer clicks a “Download Report” button on the attendance 

view page for the selected class section. 

Relationships Include: Fetch Records from DB 

Normal Flow 1. The lecturer optionally selects report criteria. 

2. Lecturer selects a file format (CSV, PDF, Excel) 

3. The system retrieves the relevant attendance data from the 

database. 

4. The system generates the file in the selected format and 

initiates a download in the lecturer's browser. 

Subflows None 

Alternate/Exceptional 

Flows 

2a. No data matches the selected criteria → Display message: 

"No data available for the selected criteria." 

2b. Data retrieval or file generation error → Display error: 

"Could not generate the report. Please try again." 
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Use Case 7: Update Course Info 

Table 3.2.2.7 Use Case Description (Update Course Info) 

Field Description 

Use Case Name Update Course Info 

ID UC-L7 

Importance Level Medium 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs to keep course information accurate and up to 

date. 

Brief Description The lecturer edits the details of an existing course. 

Trigger Lecturer selects a course and clicks an “Edit” button. 

Relationships Include: Input Validation 

Extend: Update Database 

Normal Flow 1. Lecturer selects a course to edit. 

2. The system displays a form pre-populated with the 

current course information. 

3. The lecturer modifies the desired fields and submits the 

form. 

4. The system validates the new information. 

5. The corresponding record in the courses table is updated in 

the database. 

Subflows None 

Alternate/Exceptional 

Flows 

4a. Updated course code conflicts with an existing course → 

Display error: "This course code is already in use." 

 

 

 

 

 

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    58 
 

Use Case 8: View Class List 

Table 3.2.2.8 Use Case Description (View Class List) 

Field Description 

Use Case Name View Class List 

ID UC-L8 

Importance Level Medium 

Primary Actor Lecturer 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs to see a simple list of all students enrolled in a 

class. 

Brief Description The lecturer views a list of all students currently enrolled in a 

specific class section. 

Trigger Lecturer selects a course and a section. 

Relationships Include: Fetch Records from DB 

Normal Flow 1. Lecturer selects a course and a specific class section. 

2. The system queries the enrollments table to retrieve the list 

of students for that section 

3. The system displays a list containing student details 

like Student Name, Student ID, and Email. 

Subflows None 

Alternate/Exceptional 

Flows 

2a. No students are enrolled → Display message: “No students 

are currently enrolled in this section.” 
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Use Case 9: Auto-assign to Class Section 

Table 3.2.2.9 Use Case Description (Auto-Assign to Class Section) 

Field Description 

Use Case Name View Class List 

ID UC-L9 

Importance Level Medium 

Primary Actor System 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

System: Ensures efficient scheduling of students into available 

sections. 

Students: Are automatically placed into class sections upon 

course enrollment. 

Brief Description The system automatically assigns newly enrolled students to an 

available class section for that course. 

Trigger A student is successfully enrolled in a course (triggered by UC-

L3: Enroll Student in Course). 

Relationships Extend: Enroll Student in Course 

Normal Flow 1. Upon successful student enrollment in a course, the system 

checks for available class sections for that course. 

2. The system queries the enrollments table to retrieve the list 

of students for that section 

3. The system displays a list containing student details 

like Student Name, Student ID, and Email. 

Subflows None 

Alternate/Exceptional 

Flows 

2a. No class sections exist for the course → The student is 

enrolled in the course but remains unassigned to a section. A 

notification may be logged for the lecturer. 
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Use Case 10: Activate/Deactivate Class Session 

Table 3.2.2.10 Use Case Description (Activate/Deactivate Class Session) 

Field Description 

Use Case Name Activate/Deactivate Class Session 

ID UC-L10 

Importance Level Critical 

Primary Actor Lecturer 

Preconditions • The lecturer is logged in. 

• The class section is scheduled for the current day. 

Postconditions  • The class section is marked as "active" or "inactive" in the 

database, controlling the window for student check-ins. 

Use Case Type Basic, Essential 

Stakeholders and 

Interests 

Lecturer: Needs a simple control to start and stop the attendance-

taking window 

System: Requires an "active" flag to validate student attendance 

attempts. 
 

Brief Description The lecturer starts an attendance session, creating a time-bound 

window during which students can mark their attendance. They 

can later end the session. 

Trigger Lecturer clicks a “Start Session” or “End Session” button on 

their dashboard for a specific class. 

Relationships Include: Update Database 

Normal Flow 1. Lecturer selects the current class section from their 

dashboard 

2. Lecturer clicks the “Start Attendance Session” button. 

3. The system updates the session's status to "active" in the 

database and records the start time. 

4. The UI updates to show the session is "In Progress" and 

presents an "End Session" button. 

5. At the end of the class, the lecturer clicks the “End Session” 

button. 
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6. 6. The system updates the session's status 

to "inactive," preventing any further attendance marking. 

Subflows None 

Alternate/Exceptional 

Flows 

2a. Session is already active → The "Start Session" button is 

disabled or hidden, showing only the "End Session" option. 

5a. Attempting to end a session that is not active → The "End 

Session" button is disabled or hidden. 
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Chapter 4 

System Design 

 

The development of the core face recognition model followed a structured and systematic 

pipeline, encompassing data acquisition, preprocessing, model architecture design, training, 

and rigorous evaluation. This pipeline ensures the final model is both accurate and robust. The 

entire process is visually summarized in the block diagram below. 

 

4.1  Model Training Pipeline 

 

Figure 4.1.1 Model Training Block Diagram 
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1. Import Dependencies 

The construction and training of the face recognition model were facilitated by a curated 

ecosystem of powerful Python libraries. The selection of this particular stack was deliberate, 

leveraging the strengths of each component to create an efficient and effective development 

workflow: 

• TensorFlow and Keras: As the foundational deep learning framework, this combination 

provides both high-level abstraction through the Keras API for rapid prototyping and 

low-level flexibility through TensorFlow for custom operations. It was used to 

meticulously construct the Convolutional Neural Network (CNN) architecture layer-by-

layer (e.g., Conv2D, MaxPooling2D, Dense), manage the entire training loop 

via model.fit, and conduct the final performance assessment using model.evaluate. 

• OpenCV: This library is the de facto standard for computer vision tasks. In this project, 

it was employed for essential image preprocessing tasks, such as standardizing image 

dimensions with cv2.resize, which is a critical step to ensure all inputs to the neural 

network are of a uniform size. 

• NumPy: The bedrock of scientific computing in Python, NumPy was indispensable for 

all numerical operations. Its highly optimized N-dimensional array objects provided data 

structures for efficiently manipulating image pixel data throughout the entire pipeline. 

• Matplotlib: A model's internal learning process can often be a "black box." Matplotlib 

was crucial for peering inside this box through data and model visualization. It was used 

to display sample images (plt.imshow) for sanity checks and, more importantly, to plot 

the model's learning curves (accuracy and loss over epochs), providing vital insights into 

the training dynamics and helping diagnose issues like overfitting. 

•  

• scikit-learn: This versatile machine learning library streamlined several key, non-deep-

learning processes. Its modules were used for fetching and managing the LFW dataset 

(fetch_lfw_people), reliably partitioning the data into statistically sound training, 

validation, and test sets (train_test_split), and generating detailed classification reports 

with metrics beyond simple accuracy. 
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2. Load Dataset 

The model was trained, validated, and tested using the well-established Labeled Faces in the 

Wild (LFW) dataset, conveniently accessed through the scikit-learn library. The LFW dataset 

was chosen because it represents a "real-world" challenge: it contains images of individuals 

with variations in lighting, pose, expression, and background, which is essential for training a 

model that can perform well outside of a controlled lab environment. 

 

3. Extract Images & Labels 

Upon loading the dataset, the raw image data (pixel arrays) and their corresponding identity 

labels were extracted and segregated into separate variables. This fundamental step transforms 

the dataset into the standard (X, y) format expected by most machine learning frameworks, 

where X represents the input features (the images) and y represents the target labels (the 

identities). 

 

4. Split Dataset 

To ensure an unbiased evaluation and to build a model that generalizes well to new faces, the 

dataset was strategically partitioned into three distinct subsets. As emphasized in established 

machine learning literature [17], this division is a cornerstone of robust model development: 

 

• Training Set (60%): The largest portion of the data, used exclusively for the model to 

learn from. During this phase, the model is exposed to this data and iteratively adjusts its 

internal weights and biases through backpropagation to minimize a loss function, thereby 

learning the discriminative features of each identity. 

• Validation Set (20%): This separate subset acts as a proxy for unseen data during the 

training process. After each epoch, the model's performance is evaluated on this set. This 

feedback loop is essential for two reasons: tuning hyperparameters (like the learning rate) 

and triggering mechanisms like early stopping to prevent the model from simply 

memorizing the training data (overfitting). 

• Test Set (20%): This final, completely untouched subset is held in reserve until all training 

and tuning are complete. Its performance on this set provides the most honest and reliable 

estimate of how the model will perform on new, real-world data, as the model has never 

been exposed to it in any capacity. 
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5. Image Preprocessing 

The LFW dataset, as provided by scikit-learn's helper function, has already undergone 

significant preliminary processing, including face detection, alignment (ensuring features like 

eyes are in consistent locations), and cropping. This pre-processing is a major advantage, as it 

ensures that the faces are centered and consistently oriented, allowing CNN to focus on learning 

identity features rather than spatial variations. Consequently, any additional aggressive 

preprocessing was deemed unnecessary and potentially detrimental. Over-processing could 

disrupt this careful alignment or introduce artifacts, so the focus was on preserving the high 

quality of the provided images. 

 

6. Data Augmentation 

While the LFW dataset is diverse, the number of images per person can be limited. To enhance 

the model's ability to generalize to real-world variations and to combat overfitting, data 

augmentation was applied exclusively to the training set. Using Keras' ImageDataGenerator, 

the training dataset was artificially expanded on-the-fly by creating modified versions of the 

original images. This process simulates variations a face might exhibit in a real-world scenario 

while retaining the correct identity label. The augmentation pipeline included: 

• Geometric Transformations:  

Random rotations, horizontal flips, and slight width/height shifts to make the model robust 

to small changes in pose and camera angle. 

• Photometric Adjustments:  

Random variations in brightness and contrast to simulate different lighting conditions. 

This technique effectively exposes the model to a much wider and more varied range of 

data than was originally available, fostering the development of a more robust and 

invariant feature representation without the need to collect thousands of additional images. 

 

7. Model Training & Evaluation 

This phase represents the core intellectual contribution of the project, detailing the architectural 

design of the Convolutional Neural Network (CNN), the sophisticated methodology employed 

for its training, and the comprehensive evaluation process. The architecture was deliberately 

designed to be sufficiently deep to learn complex, discriminative features while incorporating 

modern deep learning techniques to ensure a stable, efficient, and effective training process. 

a. Define CNN Model Architecture 
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The CNN architecture was meticulously designed as a hierarchical feature extractor, where 

each successive layer learns progressively more complex and abstract representations of 

the input facial images. This hierarchical approach mimics the human visual cortex, starting 

with simple features and building up to holistic representations. 

i. Input Layers 

The model's entry point is a precisely defined Input layer, configured to accept RGB 

images of shape (64, 64, 3). This fixed input tensor size is a critical prerequisite for 

batch processing on a GPU, as it allows for highly parallelized matrix computations, 

drastically accelerating the training process. 

inputs = Input(shape=input_shape) 

 

ii. Convolutional Blocks 

These are the fundamental building blocks responsible for learning spatial hierarchies 

of features. The model leverages two types of blocks, each containing a suite of layers 

designed to work in concert: 

• Conv2D Layer: This layer is the cornerstone of the feature extraction process. It 

applies to a set of learnable filters (kernels) across the input volume. In this 

architecture, a 3x3 kernel size was chosen as it is the smallest size that can capture 

notions of corners, edges, and textures while maintaining a low parameter count. 

The use of "same" padding ensures that the spatial dimensions of the output 

feature maps match the input, preventing the rapid loss of spatial information at 

the borders of the image.  

• L2 regularization (l2(l2_reg): Applied directly to the kernel weights, adding a 

penalty term to the loss function that is proportional to the square of the weight 

values. This discourages the model from learning overly complex or large 

weights, a key strategy in mitigating overfitting. 

• ReLU Activation: Following each convolution, the Rectified Linear Unit 

(Activation('relu')) is applied. This non-linear activation function is 

computationally efficient and helps to alleviate the vanishing gradient problem. 

By setting all negative values to zero, it introduces non-linearity into the network, 

which is crucial for enabling the CNN to learn intricate and highly non-linear 

patterns present in complex data like faces. 
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• Batch Normalization: This layer is applied after the convolution and before the 

activation. It normalizes the activations of the previous layer by re-centering and 

re-scaling them to have a mean of zero and a standard deviation of one for each 

mini batch. This technique is critical for stabilizing the training of deep networks, 

as it ensures that the distribution of inputs to subsequent layers remains consistent, 

allowing for the use of higher learning rates and significantly accelerating model 

convergence.  

• Dropout: To further combat overfitting, a Dropout layer is employed. During 

training, this layer randomly sets a fraction of input units (neurons) to zero at each 

update step. This prevents neurons from co-adapting too much and forces the 

network to learn more robust and redundant features, making it less sensitive to 

the specific weights of any single neuron and thus improving its ability to 

generalize to unseen data. 

 

iii. Residual Blocks: 

To build a network capable of learning truly discriminative features, depth is essential. 

However, naively stacking layers in very deep networks can lead to the 

infamous vanishing gradient problem [19], where the gradient signal diminishes 

exponentially as it propagates back through the network, causing the early layers to learn 

extremely slowly or not at all. Residual blocks (ResNets) are the key architectural 

innovation to solve this. Each block contains two convolutional layers and a "shortcut 

connection" that performs an element-wise addition of the block's input to its output. 

This creates an unimpeded "identity pathway" for the gradient to flow directly through 

the network during backpropagation, enabling the stable training of much deeper 

architectures. The components include: 

• Two Convolutional Blocks: Perform the primary feature extraction. 

• Shortcut Connection: Adds the original input of the block to the output of the 

convolutional layers (Add()([x, shortcut])), facilitating gradient flow. 

• 1x1 Convolution (for dimension matching): If the number of filters changes or a 

stride is used for down-sampling, the dimensions of the input and output will not 

match the addition operation. In this case, a 1x1 convolution is applied to the shortcut 

connection to linearly project it into a new space with matching dimensions, ensuring 

the element-wise addition is possible. 
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𝑔′(𝑧) = {
1, 𝑧 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Figure 4.1.2 Effect on Implementation of Activation Functions 

 

iv. Model Layers (Specific Arrangement) 

The network's architecture is a sequential arrangement of these blocks, carefully 

designed for a progressive feature extraction pipeline that moves from low-level to 

high-level representations: 

1. Initial Feature Extraction:  

The first two residual blocks (with 32 and 64 filters) are designed to capture low-

level features like edges, corners, and basic textures from the raw pixel data. These 

are followed by MaxPooling2D for spatial down-sampling (which reduces the 

computational complexity and creates a degree of translational invariance) 

and Dropout (0.3) for initial regularization. 

MaxPooling2D(pool_size=(2, 2)) 

Dropout(0.3) 

 

2. Intermediate Feature Refinement: 

The next two residual blocks (with 128 filters each) have a larger receptive field 

and are capable of combining the low-level features into more complex patterns and 

object parts, such as components of eyes, noses, or mouths. The Dropout rate is 

increased to 0.4 as the network becomes deeper and more susceptible to overfitting. 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    69 
 

MaxPooling2D(pool_size=(2, 2)) 

Dropout(0.4) 

 

3. Deep Feature Abstraction: 

The final two residual blocks (with 256 filters each) operate on highly abstract 

representations and are responsible for learning the high-level, discriminative 

features that uniquely define a person's facial structure. This stage is regularized 

with the highest Dropout rate of 0.5 to aggressively combat overfitting in these 

deep, high-capacity layers. 

MaxPooling2D(pool_size=(2, 2)) 

Dropout(0.5) 

 

4. Spatial Information Aggregation:  

 A GlobalAveragePooling2D layer is used to condense each of the 256 feature 

maps into a single scalar value by taking the average. This is a powerful technique 

that drastically reduces the number of parameters compared to a 

traditional Flatten layer, making the network less prone to overfitting and more 

robust to spatial translations of features in the input image 

 

5. Feature Embedding 

A fully connected Dense layer with 1024 units acts as the final embedding layer. Its 

purpose is to project the abstract features learned by the convolutional backbone 

into a high-dimensional vector space. The goal of the training process is to organize 

this space such that embeddings of faces from the same person are clustered closely 

together, while embeddings from different people are pushed far apart. This 1024-

dimensional vector serves as the final, quantitative "facial signature." 
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Figure 4.1.3 Embedding Layer in Neural Network  

 

6. Classification:  

The final Dense output layer uses a softmax activation function. This function takes 

the raw outputs (logits) from the previous layer and transforms them into a 

probability distribution across all known identities, with the sum of all probabilities 

equaling 1. The identity corresponding to the neuron with the highest probability is 

the model's final prediction. 

 

b. Model Compilation 

Before training, the model must be compiled, a process that configures the learning 

algorithm by defining the loss function, optimizer, and evaluation metrics: 

• Loss Function: categorical_crossentropy was chosen as the standard, 

mathematically appropriate loss function for multi-class classification problems 

where each input belongs to exactly one class. It quantifies the dissimilarity between 

the model's predicted probability distribution and the true, one-hot encoded label 

distribution. The entire goal of the training process is to adjust the model's weights 

to minimize this value. 

• Optimizer: The Adam optimizer, with an initial learning rate of 0.0005, was 

selected. Adam is an adaptive learning rate optimization algorithm that is highly 

effective in practice. It computes individual adaptive learning rates for different 

parameters from estimates of first and second moments of the gradients. It combines 

the advantages of other optimizers like RMSprop and AdaGrad, making it 
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computationally efficient, requiring little memory, and generally robust to the choice 

of hyperparameters. 

• Metrics: accuracy was monitored during training to provide a straightforward, 

interpretable measure of the model's performance on the validation set after each 

epoch. This metric is essential for the callbacks that depend on performance 

monitoring. 

 

c. Train the Model 

The model was trained using the model.fit() method, which orchestrates the iterative 

process of feeding batches of data to the model and updating its weights. Several best 

practices were incorporated to ensure robust and efficient learning: 

• Class Weights: The LFW dataset is inherently imbalanced, with some individuals 

having significantly more photos than others. To prevent the model from becoming 

biased towards these majority classes, class weights were calculated and applied 

during training. This gives a higher weight in the loss function to samples from 

minority classes, effectively forcing the model to pay more attention to them and learn 

their features just as well. 

• Callbacks: These are utilities that can be applied at various stages of the training 

process: 

➢ Early Stopping: This callback is a crucial form of regularization that prevents 

overfitting by stopping the training process at the optimal time. It monitors the 

validation loss and, if the loss does not improve for a "patience" of 10 consecutive 

epochs, it automatically halts the training. The restore_best_weights=True 

argument is critical, as it ensures that the final model weights are reverted to those 

from the epoch with the lowest validation loss, rather than the potentially 

overfitted weights from the final training step. 

(EarlyStopping(patience=10, restore_best_weights=True) 
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Figure 4.1.4 Early Stopping to minimize overfitting  

 

➢ Learning Rate Scheduler: The ReduceLROnPlateau callback implements a 

dynamic learning rate schedule. If the validation loss stagnates for 5 epochs, the 

learning rate is automatically reduced by a factor of 0.5. This allows the model to 

take large, confident steps in the beginning of training when it is far from a 

minimum, and smaller, more precise steps as it gets closer, often leading to better 

convergence and a lower final loss value. 

(ReduceLROnPlateau(factor=0.5, patience=5) 

• Training Configuration: 

The model was set to train for a maximum of 300 epochs with a batch size of 32. A batch 

size of 32 is a common choice that provides a good balance between computational 

efficiency (larger batches are faster to process on a GPU) and stable gradient estimation 

(smaller batches introduce more noise, which can sometimes help escape local minimum). 

 

d. Evaluate the Model 

After training, the final, unbiased performance of the model was assessed using the 

unseen test set. The evaluation was based on a suite of standard classification metrics that 

provide a more nuanced and complete picture of performance than accuracy alone: 

• Learning Curve 

A plot of the training and validation accuracy/loss over epochs. This is the primary 

diagnostic tool for understanding the training process. A large and growing gap 
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between the training and validation curves is a clear sign of overfitting, while curves 

that flat line at a low accuracy indicate underfitting. 

 

• Accuracy  

The overall percentage of correct predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

While intuitive, it can be a misleading metric on imbalanced datasets. 

 

• Precision 

Of all the times the model predicted a certain person, what percentage of those 

predictions were correct? 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 High precision indicates a low false positive rate, meaning the model is reliable when 

it makes a positive identification. 

 

• Recall (Sensitivity) 

Of all the actual images of a certain person, what percentage did the model correctly 

identify? 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 High recall indicates a low false negative rate, meaning the model is good at finding 

all instances of a person 

 

• F1 score 

The harmonic means of Precision and Recall. It provides a single, balanced metric 

that is particularly useful when there is an uneven class distribution or when there is 

an asymmetric cost associated with false positives and false negatives. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

8. Save Trained Model 
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Upon completion of the entire training and evaluation pipeline, the final model, including 

its architecture, learned weights, and optimizer state, was serialized and saved to a single 

HDF5 file (face_recognition_model.h5). This encapsulates the entire trained model into a 

portable artifact. This allows the model to be easily loaded into the main Flask application 

for inference without needing to be recompiled or retrained, cleanly separating the 

intensive, offline training process from the lightweight, real-time deployment environment. 
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4.2  System Flowchart 

 
Figure 4.2.1 System Flowchart (1/7) – Main System 

 

Flowchart in Figure 4.2.1 outlines a user-based attendance system with distinct roles for 

lecturers and students. To ensure secure access and proper functionality within the proposed 

system, users are required to login before accessed to system’s features. Upon successful login, 

they select their role as either a lecturer or a student. Lectures access a dashboard where they 

can manage attendance records, export overall attendance records, and logout. Students, on the 

other hand, have a view where they can view their personal attendance records, scan their 

attendance, and log out. This flow chart provides a high-level overview of the system’s 

workflow, highlighting the different functionalities available to each role. 
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Figure 4.2.2 System Flowchart (2/7) – Manage Attendance Record 

 

The manage attendance record flow begins with user authentication and verifying the lecturer 

role. The lecturer selects a course section, and the system checks if it is already activated for 

attendance scanning. If not, the section is activated. The lecturer can then select a date range to 

fetch and display attendance data. From here, there are three possible actions: create, 

update, or delete records. New records can be added, existing records edited and updated, or 

records deleted after confirmation, ensuring flexible attendance management. 
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Figure 4.2.3 System Flowchart (3/7) – Export Reports 

 

The export reports flow begins with lecturer authentication, ensuring only authorized users can 

access the feature. The system retrieves all courses and sections managed by the lecturer, 

allowing them to select the desired class section and export format. A validation step confirms 

ownership of the section before proceeding. The system then fetches attendance data from 

enrolled students, formats timestamps, and organizes records into a summary table. Finally, the 

lecturer can export the report in CSV, Excel, or PDF format, enabling easy archiving, analysis, 

and sharing of attendance records. 
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Figure 4.2.4 System Flowchart (4/7) – Manage Course and Class Sections 

 

Flowchart in Figure 4.2.4 outlines a lecture-role-based course and class sections management. 

An authenticated lecturer gained entry to the course dashboard that displays all class sections 

for each course created. This system offers course-level operations: course creation, 

modification, and deletion. While, for course’ class management system, lecturer can view 

real-time attendance data, add/ delete and edit existing sections while maintaining attendance 

records, or remove sections after confirmation.  
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Figure 4.2.5 System Flowchart (5/7) – Student Enrollment in Course 

 

The student enrollment subsystem begins by authenticating the user and verifying lecturer 

privileges. Upon authorization, it displays an interactive form with student/course dropdowns 

populated from the database. When processing enrollments, the system performs multi-stage 

validation: confirming student status, course availability, and checking for duplicate 

enrollments. Detected duplicates trigger specific warnings while preserving form data. 

Successful enrollments execute atomic database transactions, simultaneously updating 

enrollment. Following enrollment, the interface refreshes with success notifications and resets 

for additional entries. The subsystem automatically generates face recognition enrollment 

tickets for new students, ensuring synchronization with the attendance module. Throughout the 

process, performance optimizations like paginated data loading and transaction rollback 

capabilities ensure reliability, while comprehensive audit trails support compliance 

requirements. The streamlined workflow combines robust validation with user-friendly 

feedback mechanisms for efficient course management. 
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Figure 4.2.6 System Flowchart (6/7) – Face Registration 

 

The face registration flow starts after authenticating a student user. The system first ensures 

liveness by prompting the student to perform random gestures such as blinking, smiling, or 

turning their head, verified through EAR, MAR, and head pose metrics. Once liveness is 

confirmed, the student provides live images, which are validated for size, clarity, and 

confidence using MTCNN. The detected face is cropped, preprocessed, and stored, with at least 

five diverse samples captured. Upon completion, embeddings are extracted through the CNN, 

averaged to form a robust identity vector, and securely stored in the database to finalize 

registration. 
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Image Processing Techniques (Real-Time): 

Image preprocessing is a critical step in preparing input images for a Convolutional Neural 

Network (CNN). Unlike the curated datasets used during model training, facial images cropped 

from a live video feed exhibiting significant variations in scale, lighting, and noise. As noted 

by [20], a robust preprocessing pipeline is essential to normalize these variations, ensuring that 

the images are in a consistent format and that key features are enhanced for optimal model 

performance [25].  

 

Figure 4.2.7 Real-time Image Processing Pipeline Flowchart 
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1. Image Resizing 

The first and most fundamental step is to resize every incoming facial image to a fixed 

dimension of 64x64 pixels. This standardization is a mandatory prerequisite for the CNN 

model, which is designed with a fixed-size input layer. By ensuring all images are of a uniform 

size, the model can apply its learned filters consistently, making the feature extraction process 

reliable and efficient. 

 

2. Noise Reduction 

Live video feeds, especially from webcams operating in non-ideal lighting, are often 

contaminated with high-frequency noise (e.g., sensor noise, grain). This noise can be 

detrimental to the CNN's performance, as the model might mistakenly interpret these random 

artifacts as meaningful features. To mitigate this, a Gaussian Blur is conditionally applied. 

The pipeline first assesses the noise level of the image by calculating the standard deviation of 

its pixel intensities. If this value exceeds a predefined noise_threshold, a Gaussian filter is 

applied, a standard technique for noise suppression in digital image processing [26].  

cv2.GaussianBlur(image, (5, 5), 0) 

 

This filter convolves the image with a 5x5 Gaussian kernel, effectively smoothing the image 

by averaging pixel values with their neighbors. This process reduces noise while preserving 

significant edges, ensuring the subsequent contrast enhancement steps do not amplify 

unwanted artifacts. 

 

3. Global Contrast Enhancement (Histogram Equalization) 

Poor or uneven lighting is one of the most common challenges in real-world face recognition. 

To address this, the pipeline first checks if the image suffers from low global contrast. This is 

determined using the skimage.exposure.is_low_contrast() function, which measures the 

dynamic range of the image's pixel intensities. If the image is identified as having low 

contrast, Histogram Equalization is applied. This technique redistributes the pixel intensity 

values to stretch across the entire possible range (0-255), effectively increasing the overall 

global contrast. 

The skimage.exposure.is_low_contrast() is used to detect low contrast image using the 

following expression: 
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𝑃99(𝑓(𝑥, 𝑦)) −  𝑃1(𝑓(𝑥, 𝑦))

max(𝑓(𝑥, 𝑦)) − min(𝑓(𝑥, 𝑦))
{
< 0.05, 𝑡ℎ𝑒𝑛 𝑙𝑜𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡
≥ 0.05,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

While this is a powerful method for brightening poorly lit images, it can sometimes lead to an 

unnatural appearance or over-amplification of noise, which is why it is applied conditionally 

and followed by local contrast enhancement [27]. 

 

 

4. Local Contrast Enhancement (CLAHE) 

While global histogram equalization improves overall contrast, it can wash out details in 

regions that are already well-lit or very dark. To address this, Contrast Limited Adaptive 

Histogram Equalization (CLAHE) is applied to enhance local contrast. As introduced by 

Pizer et al., CLAHE works by dividing the image into small, non-overlapping contextual 

regions (tiles) and applying histogram equalization to each tile independently [28]. A key 

feature is the "clip limit," which restricts the amplification of contrast in each tile, thereby 

preventing the over-amplification of noise. The resulting tiles are then stitched back together 

using bilinear interpolation to eliminate boundary artifacts. This method is particularly 

effective at revealing fine-grained facial features in areas of shadow or bright light, which 

might be lost with global methods alone. 

 

5. Apply Gradient Transformation 

As a final enhancement step, the pipeline can apply a Sobel gradient transformation. This 

operator acts as an edge detector by computing the gradient of the image intensity at each point, 

highlighting the contours and high-frequency details of the face, such as the jawline, eyes, and 

nose [29]. By emphasizing these structural features, the transformation can provide the initial 

layers of the CNN with a more distinct and feature-rich input, potentially aiding in the 

learningof more discriminative features and improving overall recognition accuracy. 
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Figure 4.2.8 System Flowchart (7/7) – Real-time Face Recognition for attendance 

 

The real-time face recognition attendance flow begins with verifying that the student is 

authenticated, and the lecturer has started an active session. The system performs an active 

liveness check, requiring actions such as blinking or head movements, to ensure the student is 

physically present. Once passed, the camera captures the student’s face, which is detected and 

preprocessed for normalization. A CNN generates a 1024-dimensional embedding, compared 

against stored templates using cosine similarity. If the similarity meets the 0.90 threshold, 

attendance is logged with timestamp, status, and confidence score. 
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4.3  System Architecture and Component Interaction 

The system is engineered upon a multi-layered client-server architecture, a strategic choice 

designed to deliver modularity, scalability, and the real-time responsiveness essential for a live 

attendance system. This layered model logically decouples the system's core responsibilities 

into six distinct, interoperable components: the Frontend Interface, Backend Server, AI-driven 

Face Processing Pipeline, Liveness Detection Module, Database System, and an Offline Model 

Training Pipeline. 

 

This separation of concerns is paramount. It allows development teams to work on different 

components concurrently, facilitates independent updates (e.g., upgrading the frontend 

framework without altering backend logic), and enables flexible integration of new features. 

Most importantly, it isolates resource-intensive AI computations on the server-side, ensuring 

the client-side remains lightweight and responsive while meeting the stringent real-time 

performance requirements of video stream analysis. 

 

Table 4.3.1: System Architecture Components 

Compone

nt 

Key 

Technologies 

Designed Functionality 

Frontend 

Interface 

(Client-

Side) 

HTML5, 

CSS3, 

JavaScript 

(ES6+), 

Bootstrap 5 

The frontend serves as the sole point of interaction for all users 

(students and lecturers). It provides a clean, responsive 

Graphical User Interface (GUI) built with standard web 

technologies for maximum browser compatibility. Its primary 

responsibilities include: 

• User Authentication & Session Views: Renders 

login/registration forms and dynamically displays different 

dashboards based on the user's role (student or lecturer). 

• Camera Access and Video Streaming: Uses the 

browser's MediaDevices.getUserMedia() API to request 

camera access and stream the video feed to an 

HTML <video> element. 

• API Communication: Utilizes JavaScript's fetch API or a 

library like axios to make asynchronous RESTful API calls 

to the backend server. This includes sending video frames 
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for processing, submitting form data, and retrieving data 

(e.g., course lists, attendance records) to populate the UI. 

• Real-time Feedback: Renders dynamic visual feedback 

received from the server, such as overlaying instructions 

("Blink Twice"), progress bars for challenges, and 

success/failure messages directly onto the video stream 

interface. 
 

Backend 

Server 

(API) 

Flask 

(Python Web 

Framework), 

Waitress 

(WSGI 

Server) 

The Flask server acts as the central nervous system of the 

application. It is a lightweight, stateless API gateway that 

orchestrates all interactions between the frontend, the AI 

modules, and the database. 

• Request Handling: Defines a set of RESTful endpoints 

(e.g., /login, /register_face, /scan_attendance) to receive and 

process HTTP requests from the client. 

• Business Logic and Session Management: Implements the 

core application logic, including user authentication, role-

based access control (RBAC), and managing user sessions 

to maintain a logged-in state. 

• Module Integration: Acts as the primary integrator. When 

a request for face recognition arrives, the backend calls the 

necessary functions within the Face Processing and Liveness 

Detection modules, passing the image data and awaiting a 

result. It then formats this result and sends it back to the 

client as a JSON response. 

• Database Abstraction: Manages all communication with 

the SQLite database, handling data creation, retrieval, 

updates, and deletion based on API requests. 
 

Face 

Processin

g 

Pipeline 

Dlib, 

TensorFlow/

Keras, 

OpenCV 

This is the core AI engine for identity verification. It operates as 

a sequential pipeline on the server-side, processing each frame 

received from the client. 

• Input: Receives a raw video frame (as a byte array or 

base64 encoded string) from the backend. 
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• Step 1: Detection & Cropping: Dlib's highly optimized 

HOG-based face detector scans the frame to identify and 

return the bounding box coordinates of any faces. The face 

region is then cropped for focused analysis. 

• Step 2: Preprocessing: The cropped face image undergoes 

a series of normalization steps to make it robust to variations 

in lighting and camera quality. 

• Step 3: Embedding Extraction: The preprocessed image is 

fed into the pre-trained custom Convolutional Neural 

Network (CNN). The CNN processes the image through its 

layers, outputting a dense 1024-dimensional vector 

(embedding) that mathematically represents the unique 

facial features. 

• Step 4: Recognition/Registration: The final embedding is 

either stored in the database (for registration) or compared 

against existing embeddings using cosine similarity (for 

recognition). 

Liveness 

Detection 

Module 

OpenCV, 

Dlib (for 

facial 

landmarks) 

• This security-critical module operates in tandem with the 

Face Processing Pipeline to prevent spoofing attacks. It is 

designed to run efficiently on every frame before 

committing to more computationally expensive recognition 

tasks. It confirms that the source of the video stream is a live 

human and not a static photo, video replay, or mask. Its two-

tiered approach provides layered security. 
 

Database 

System 

SQLite SQLite is chosen for its simplicity, serverless nature, and file-

based storage, making it ideal for this system's scale and 

deployment ease. 

• Schema: The database schema is relationally designed with 

tables 

for users, facial_embeddings, courses, class_sections, enrol

lments (a many-to-many join table between users and 

class_sections), and attendance_logs. 
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• Data Integrity: Foreign key constraints are heavily utilized 

to ensure relational integrity. For example, an attendance log 

must be linked to a valid user and a valid class section, 

preventing orphaned or inconsistent records. 
 

Model 

Training 

Pipeline 

Python, 

TensorFlow/

Keras, 

NumPy, 

Scikit-learn 

This is an entirely offline component, separate from the real-

time application. Its purpose is to periodically retrain and 

improve the face recognition CNN. 

• Workflow: The pipeline involves gathering and 

augmenting a large dataset of labeled face images, training 

the CNN model using techniques like triplet loss to learn 

discriminative embeddings, validating its performance on a 

held-out test set, and finally, exporting the trained model 

weights. These new weights can then be deployed to the 

production server to update the system's accuracy without 

any downtime. 
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4.4  Module Design and Description 

The system’s architecture is implemented through a set of cohesive, functionally distinct 

modules. This modular design philosophy ensures that each part of the system has a single, 

well-defined responsibility. Modules communicate through clearly defined interfaces—

primarily Flask API endpoints for client-server interaction and direct function calls or database 

queries for internal, server-side communication. This design simplifies development, 

debugging, and future enhancements. 

 

4.4.1 Face Processing and Registration Module 

This module forms the intelligent core of the system, encapsulating all AI-powered 

functionality required for robust and secure identity verification. It is a comprehensive pipeline 

that transforms raw video frames into actionable identity decisions. 

• Responsibilities (Detailed Breakdown): 

1. Face Detection: The process begins with dlib.get_frontal_face_detector, a 

computationally efficient detector based on Histogram of Oriented Gradients (HOG) 

features. It is optimized for near-frontal faces, which aligns with the typical use case of 

a user facing their camera. For each frame, it returns a list of bounding boxes for all 

detected faces. 

 

2. Preprocessing: Before feature extraction, each detected face crop undergoes a 

mandatory normalization routine to counteract real-world environmental variations: 

▪ Histogram Equalization: Redistributes pixel intensities to enhance global 

contrast, especially useful in poorly or unevenly lit conditions. 

▪ Noise Reduction: A Gaussian blur or median filter is applied to remove minor 

camera sensor noise that could degrade embedding quality. 

▪ Sharpening: A sharpening kernel is applied to enhance edges and fine details of 

facial features (eyes, nose, mouth), providing the CNN with more distinct 

information. 

 

3. Feature Extraction: The preprocessed face crop is resized to the CNN's required input 

dimensions (e.g., 160x160 pixels) and passed into the custom CNN. The network, 

architected with deep residual blocks, is designed to learn a highly discriminative 

function. The final output is a 1024-dimensional floating-point vector (embedding) 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    90 
 

where faces of the same person are clustered closely together in the vector space, and 

faces of different people are far apart. 

 

4. Registration: The registration process is designed for robustness. Instead of relying on 

a single image, the user is prompted to provide multiple samples (e.g., looking straight, 

slightly left, slightly right, smiling). The system extracts embedding for each valid 

sample. These embeddings are then averaged to produce a single, composite identity 

vector. This averaging process creates a more generalized and resilient representation 

of the user's face, making it less susceptible to minor variations in pose and expression 

during future recognition attempts. 

 

 

5. Recognition: During an attendance attempt, a new embedding is extracted from the 

user's live video feed. This "probe" embedding is compared against all "gallery" 

embeddings stored in the database using cosine similarity. This metric measures the 

cosine of the angle between two vectors, effectively judging their orientation rather than 

their magnitude. A similar score closes to 1.0 indicates a near-perfect match, while a 

score near 0.0 indicates orthogonality (no match). A match is confirmed only if the 

highest similarity score exceeds a fine-tuned threshold (e.g., 0.85), balancing the trade-

off between False Acceptance Rate (FAR) and False Rejection Rate (FRR). 

 

6. Liveness Detection: This is an integrated, non-negotiable security layer that precedes 

recognition. 

▪ Tier 1: Passive Anti-Spoofing: This runs silently and continuously on the video 

stream. 

▪ Texture Analysis (cv2.Laplacian): The Laplacian operator measures the 

second derivative of the image, which is high in areas of rapid intensity change 

(like edges and fine textures). A real face, with its pores and subtle skin texture, 

will have a significantly higher Laplacian variance than a blurry, out-of-focus, 

or printed photo displayed on a screen. 

▪ Motion Analysis (cv2.absdiff): This function calculates the per-pixel 

difference between the current frame and the previous one. Even a person 

trying to stay still exhibits natural, subtle movements (breathing, micro-
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expressions, slight sways). A static image will have a motion score of zero, and 

a replayed video often has unnatural motion patterns or compression artifacts 

that can be detected. 

▪ Tier 2: Active Challenge-Response: This tier is triggered as a definitive 

verification step. 

▪ Challenge Issuance: The system's random selection of a challenge from a pool 

("blink_twice", "smile", etc.) makes it extremely difficult for an attacker to pre-

record a video that can spoof the system. 

▪ Real-time Monitoring: The system uses Dlib's 68-point facial landmark 

predictor to precisely track facial components. The Eye Aspect Ratio (EAR) 

and Mouth Aspect Ratio (MAR) are calculated from these landmarks to 

algorithmically detect blinks and mouth movements, while Head Pose 

Estimation provides the yaw and pitch angles to verify head turns and nods. 

This is a robust, metric-driven verification process, not simple image matching. 
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4.4.2 Active Challenge (Liveness Detection) 

The EnhancedLivenessDetector class is a stateful object designed to manage the complexities 

of liveness verification over a sequence of frames, not just a single snapshot. Its use 

of collections.deque is critical for temporal analysis, allowing it to detect patterns like the open-

close-open sequence of a blink. 

 

Table 4.4.2.1 Threshold Value for Parameters 

Parameter Value Description 

EAR_THRESHOLD 0.23 Threshold for detecting a closed eye state. 

EAR_CONSEC_FRAMES 3 Number of consecutive frames an eye must be 

"closed" to register a blink. 

MAR_THRESHOLD 0.65 Threshold for detecting an "open mouth" 

challenge. 

HEAD_POSE_THRESHOLD 25° Yaw/pitch angle required to satisfy head turn/nod 

challenges. 

CHALLENGE_TIMEOUT 15s Maximum time allowed for a user to complete a 

challenge. 

TEXTURE_THRESHOLD 100 Minimum Laplacian variance scores to pass the 

texture test. 

 

Elaboration of Key Functions: 

a. Metric Calculation: 

• calculate_ear() / calculate_mar(): These functions take the 68 facial landmarks as 

input. They calculate the Euclidean distance between specific vertical and horizontal 

landmark points around the eyes and mouth, respectively, to compute a single ratio. 

This ratio is remarkably consistent for an open state and changes predictably during a 

blink or mouth opening, making it an excellent biometric indicator. 

• calculate_head_pose(): This function implements a standard computer vision 

technique. It uses a generic 3D model of a human face and the corresponding 2D 

landmark locations detected in the frame. By using cv2.solvePnP (Perspective-n-Point), 

it solves for the 3D rotation and translation that would project the 3D model points onto 

the observed 2D image points, thereby yielding the head's pitch, yaw, and roll angles 

in degrees. 
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• calculate_texture_score() and calculate_motion_score() are the implementations of 

the passive checks described in 4.4.1. 

 

b. Challenge-Response Logic: 

• select_random_challenge(): This function ensures unpredictability. It maintains a list 

of available challenges and uses Python's random.choice() to pick one for the current 

session. 

• process_challenge(): This is the core state machine of the module. For a "blink_twice" 

challenge, it might track a blink_counter state variable. It continuously monitors the 

EAR, and when the pattern for a blink is detected (EAR drops below 

EAR_THRESHOLD for EAR_CONSEC_FRAMES then rises again), it increments the 

counter. It provides feedback ("Blink once more") until the condition (blink_counter 

== 2) is met, at which point it returns to success status. If the 

CHALLENGE_TIMEOUT is reached before completion, it returns a failure. 

 

c. Core Orchestration & State Management: 

• analyze_frame(): This is the public-facing method of the class. For every frame it 

receives, it performs all metric calculations. It first checks passive liveness scores. If 

they pass, and an active challenge is in progress, it calls process_challenge(). The 

function returns a single, comprehensive dictionary containing a final boolean 

liveness_passed, a confidence_score, the status_message for the user (e.g., "Turn your 

head to the left"), and any other relevant data. 

• reset_state(): Clears temporary data like metric history buffers and counters. Critically, 

it is designed not to clear an active challenge in progress, allowing the user to 

seamlessly continue their attempt across multiple API calls if needed. 

 

d. Video Stream Generation: 

• generate_frames(): This Flask-specific function is implemented as a Python generator. 

It sits in a while True loop, continuously capturing frames from the camera. Inside the 

loop, it calls analyze_frame() to get the current liveness status. It then uses OpenCV's 

drawing functions (cv2.putText, cv2.rectangle) to overlay the feedback (bounding 

boxes, instructions, landmark points) directly onto the frame. Finally, it encodes the 

frame as a JPEG and yields it as part of a multipart/x-mixed-replace HTTP response. 
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This technique efficiently streams video to the browser. The "instruction stabilization 

logic" prevents the UI text from flickering by only updating the displayed instruction 

when the state from analyze_frame() changes. 

 

e. Key Endpoints: 

• /video_feed: This endpoint returns a Response object with the generate_frames() 

generator as its source. The browser interprets this special MIME type as a continuous 

video stream, updating the <img> tag's src attribute with each new frame yielded by the 

server. 

• /register_face: This is a standard POST endpoint. The client calls this endpoint after 

the liveness check has been successfully passed. The backend then captures a few high-

quality frames, extracts their embeddings, averages them, and inserts the final identity 

vector into the facial_embeddings table, linking it to the user's ID. 
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4.4.3 User and Course Management Module (Lecturer) 

This module provides the administrative backbone of the system, tailored specifically for 

lecturers. It is a secure, role-protected section of the application that allows for the complete 

management of the academic structure within which attendance is recorded. 

 

Key Endpoints and Functional Breakdown: 

1. Course Lifecycle Management: 

• POST /courses: When a lecturer submits the "Create Course" form, this endpoint 

receives the course name, code, and description. It performs validation (e.g., ensuring 

the course code is unique) before inserting a new record into the courses table. 

• POST /delete_course/<id>: This is a critical endpoint that must handle data integrity. 

Upon invocation, it not only deletes the specified course from the courses table but also 

triggers a cascading delete (or manual deletion logic) to remove all 

associated class_sections, enrollments, and attendance_logs to prevent orphaned 

records in the database. 

 

2. Class Section Management: 

• GET /manage_sections/<course_id>: This endpoint performs a database query to select 

all records from the class_sections table where the course_id foreign key matches the 

one provided in the URL. The results are returned as JSON for the frontend to display. 

• GET /view_section/<section_id>: This provides a more detailed view by performing 

a JOIN query across the users, enrollments, and class_sections tables to retrieve a list 

of all students enrolled in that specific section. 

 

3. Student Enrollment: 

• POST /enroll_student: This endpoint is typically called from the section management 

interface. It receives a student_id and a section_id and creates a new entry in 

the enrollments table, formally linking a student to a class. The logic includes checks 

to prevent duplicate enrollments. 

 

4. Attendance Session and Data Management: 

• GET /manage_attendance/<section_id>: This endpoint serves the main dashboard for 

a live class. It provides a real-time view of attendance. The front end might use 
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techniques like periodic polling (e.g., calling an API endpoint every 5 seconds) or 

WebSockets to get live updates of which students have successfully checked in. The 

"Start Session" and "Stop Session" buttons on this page trigger the corresponding 

functions in the Attendance Workflow Module. 

• POST /export_reports: This endpoint handles complex data aggregation. It queries 

the attendance_logs table, joining with users, courses, and class_sections to gather 

comprehensive data. It then uses libraries like Pandas to structure the data 

and openpyxl (for Excel), reportlab (for PDF), or Python's built-in csv module to 

generate a file, which is then sent back to the user as a file download. 

 

Architectural and Implementation Notes: 

▪ The get_db() helper function is a standard Flask pattern for managing database 

connections. It ensures that a single database connection is established per request and is 

properly closed (torn down) after the request is complete, preventing resource leaks. 

▪ The frontend dashboards are designed for data visualization, potentially including charts or 

graphs showing attendance rates over time, lists of frequent absentees, and other analytics 

to help lecturers quickly assess student engagement. 
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4.4.4  Attendance Workflow Module 

This module orchestrates the entire real-time attendance process, acting as the bridge between 

the AI-driven recognition and the academic database structure. It enforces the business rules 

that govern a valid attendance-taking session. 

 

Responsibilities (Detailed Workflow): 

1. Session Control: A lecturer initiates a session via their dashboard, calling start_session(). 

This creates a new record in an attendance_sessions table with the section_id and 

a start_time, and sets an is_active flag to TRUE. 

 

2. Attempt Validation: When a student attempts to check in via /scan_attendance, the first 

action the backend takes is to query the attendance_sessions table to find an active session 

(is_active = TRUE) for the section(s) the student is enrolled in. If no active session is 

found, the attempt is rejected immediately with a message like "Attendance is not 

currently open for this class." 

 

 

3. Uniqueness Enforcement: If an active session is found, the system then checks 

the attendance_logs table to see if a record already exists for the current student_id and 

the active session_id. If one exists, the attempt is rejected with the message "You have 

already been marked present." This prevents duplicate entries. 

 

4. Record Storage: Only after passing the session and uniqueness checks does the system 

proceed with liveness and recognition. Upon a successful 

match, mark_attendance() inserts a new record into attendance_logs, including 

the student_id, session_id, a precise timestamp, and the recognition confidence score. 

 

 

5. Real-time Feedback: The endpoint returns a clear JSON response to the student's client 

(e.g., { "status": "success", "message": "Welcome, [Student Name]! You are marked 

present." } or { "status": "failure", "message": "Face not recognized. Please try again." }). 

• Key Functions (Detailed Logic): 

o start_session(section_id): Inserts a new row into the attendance_sessions table, 

setting is_active = 1. 
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o stop_session(session_id): Updates the corresponding row in attendance_sessions, 

setting is_active = 0 and recording an end_time. No further check-ins for this 

session will be accepted. 

o mark_attendance(student_id, session_id, confidence_score): Performs the 

final INSERT operation into the attendance_logs table. 

o get_attendance_records(section_id): Retrieves and joins all relevant logs for a 

section, used to populate reports and the lecturer's real-time dashboard. 

• Key Endpoints: 

o /video_feed: As described before, this streams the live camera feed with overlays 

for the student during the check-in process. 

o /scan_attendance: This is the endpoint that executes the entire validation and 

recognition workflow described above. It is the primary transactional endpoint for 

students. 

 

Additional Notes: 

▪ The system's integrity is fundamentally guaranteed by the strict, sequential 

workflow: Session Active? -> Not Already Checked In? -> Liveness Verified? -> 

Face Recognized? -> Mark Present. A failure at any step terminates the process. 

Logging the recognition confidence score provides crucial data for auditing and 

troubleshooting any disputes over attendance records. For example, a lecturer can review 

low confidence matches if a student reports an issue. 
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4.5 Database Design 

 

 

Figure 4.5.1 Entity Relationship Diagram 

 

The database schema underpins the real-time face recognition attendance system by linking 

users, students, lecturers, courses, class sections, enrollments, and attendance records. 

Users are authenticated and distinguished as students or lecturers through one-to-one 

relationships. Students store facial embeddings and registration data, while lecturers manage 

courses with multiple class sections. A many-to-many relationship between students and 

sections is resolved via the enrollments table. Attendance records capture timestamps, status, 

and confidence scores. This design ensures integrity, scalability, and efficient performance, 

enabling seamless management of authentication, enrollment, and automated attendance 

tracking. 
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Chapter 5 

System Implementation  

 

5.1  Hardware Setup 

This chapter details the practical implementation of the face recognition attendance system, 

translating the architectural designs and methodologies from previous chapters into a 

functional, end-to-end prototype. It provides a comprehensive account of the hardware and 

software environments, crucial system configurations, and the operational workflows from an 

end-user perspective. Furthermore, this chapter discusses the technical challenges encountered 

during the development lifecycle and the strategic resolutions implemented to overcome them, 

culminating in a robust and validated system. 

 

Table 5.1 Hardware Specifications 

Description Specifications 

Model Victus 16-r0326TX 

Processor Intel Core i7-13700HX 

Operating System Windows 11 

Graphic NVIDIA GeForce RTX4060 

Memory 16GB DDR5-4800 MHz 

Storage 512GB 
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5.2  Software Setup 

The system was engineered using a carefully selected stack of open-source libraries and 

frameworks. Each component was chosen for its proven stability, extensive community 

support, and specific strengths in computer vision, deep learning, web application 

development, and data management. 

 

Table 5.2 Software Specifications 

Software Component Version Descriptions 

Python 3.12.7 The primary programming language, chosen for its 

extensive scientific computing ecosystem and robust 

support for machine learning libraries 

Flask  2.3.2 A lightweight and modular micro web framework used 

to build the backend server, RESTful API endpoints, 

and render the user interface. 

SQLite 3.42.0 Lightweight relational database engine for local data 

storage 

Dlib  64 Face 

Detector 

A powerful C++ library with Python bindings, utilized 

for its highly accurate facial landmark detection, which 

is fundamental to the liveness detection module 

TensorFlow 2.12.0 The core deep learning framework used for building, 

training, and deploying the custom CNN model for face 

feature extraction 

OpenCV 4.8.0 The standard library for real-time computer vision, 

employed for video capture from the webcam, image 

preprocessing, and rendering visual feedback on video 

frames 
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Supporting Libraries and Development Environment: 

• NumPy: The foundational package for numerical computing in Python, used for efficient 

manipulation of multi-dimensional arrays, particularly for handling image data and facial 

embedding vectors, and for performing mathematical operations like cosine similarity. 

• Pandas: A powerful data analysis library utilized for managing attendance records in a 

structured format (DataFrame) and for generating and exporting attendance reports in 

CSV format. 

• Flask-Login & Flask-Session: Extensions for Flask that provide robust, secure, and 

role-based user session management, ensuring that students and lecturers have access 

only to their authorized functionalities. 

• Kaggle: The cloud-based platform was leveraged for its free access to high-performance 

NVIDIA T4 GPUs, which significantly accelerated the initial and more demanding 

phases of model training. 

• Visual Studio Code (VS Code): The primary Integrated Development Environment 

(IDE), chosen for its excellent Python support, integrated debugging tools, seamless Git 

version control integration, and extensive ecosystem of extensions. 
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5.3  Settings and Configuration 

To ensure the system is stable, performant, and maintainable, a precise set of configurations 

was established. These settings are decoupled from the application logic, allowing for easy 

adjustments during development, testing, and deployment without requiring code changes. 

 

• Automated Database Initialization:  

The SQLite database is designed to initialize itself automatically. The system uses 

an Object-Relational Mapper (ORM) via Flask-SQLAlchemy. Upon the first application 

run, it checks for the database file's existence. If not found, db.create_all() is invoked, 

programmatically generating the complete schema from the model definitions. This 

eliminates manual setup errors and ensures a pristine database state for any new 

deployment. 

 

• Optimized Model Loading (Eager Loading) 

To achieve real-time performance, the CNN model is loaded into memory only once at 

server startup using tf.keras.models.load_model(). The loaded model object is stored in a 

global variable. Every subsequent recognition request access this in-memory model, 

preventing the significant I/O overhead of disk access and allowing for near-instantaneous 

inference. 

 

• Structured Data Storage 

Facial images captured during registration are stored in a highly organized manner. The file 

system contains a root dataset/ directory. Within it, a unique sub-directory is created for 

each student, named after their unique student_id (e.g., dataset/1001/). This provides a 

logical repository of raw biometric data, invaluable for auditing and future model 

retraining. 

 

• Empirically Tuned Recognition Threshold 

The cosine similarity threshold, which governs identity matching, was empirically set 

to 0.85. This value was determined through rigorous testing on a validation dataset. It 

represents the optimal balance point on the Receiver Operating Characteristic (ROC) 

curve, minimizing the False Acceptance Rate (FAR) to ensure security, while 

maintaining a low False Rejection Rate (FRR) for a smooth user experience. 
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• Development vs. Production Server Configuration: 

During development, the lightweight Flask development server was used 

on http://localhost:5000 for its convenience and debugging features. For a production 

deployment, this is switched to a production-grade WSGI (Web Server Gateway 

Interface) server like Gunicorn or Waitress, which is designed to handle multiple 

concurrent requests robustly and efficiently. 

 

• Efficient Embedding Storage 

The 1024-dimensional facial embeddings are stored as Binary Large Objects (BLOBs) in 

the SQLite database. The NumPy array is serialized into a compact binary format, which 

is significantly more space-efficient and allows for much faster retrieval and deserialization 

compared to storing it as a text-based format like JSON. 

 

• Centralized Configuration Management 

All system-wide parameters are consolidated into a central config.py file. This includes: 

• File Paths: MODEL_PATH, DATASET_DIR 

• Model Parameters: IMAGE_SIZE = (64, 64) 

• Operational Thresholds: RECOGNITION_THRESHOLD = 

0.85, EAR_THRESHOLD = 0.23, etc. 

This approach enhances modularity and simplifies maintenance, allowing parameters to be 

tuned without altering core application logic. 

 

• Environmental Variable Management 

For enhanced security and portability, sensitive configurations like the 

application's SECRET_KEY and DATABASE_URI are not hardcoded, even in config.py. 

They are managed as environmental variables. A .env file is used during local 

development, and these variables are set directly on the production server. This practice 

prevents secret keys from being committed to version control. 

 

• Secure Session Management 

The application is configured with a strong, randomly generated SECRET_KEY. This key 

is essential for Flask's session management, as it is used to cryptographically sign the 
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session cookie. This signature prevents clients from tampering with their session data (such 

as their user ID or role) before sending it back to the server. 

• Application Logging 

A robust logging mechanism is configured using Python's built-in logging module. The 

application logs key events to a file, including user logins, course creation, attendance 

session start/stop events, and, crucially, any errors or exceptions that occur. This provides 

an essential audit trail for troubleshooting and monitoring system health. 
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5.4  System Operation  

The system's operation is designed around intuitive, role-based workflows for Students and 

Lecturers. Access is governed by a secure authentication mechanism that directs users to the 

appropriate dashboard upon successful login, ensuring a clear separation of functionalities. 

 

All user interactions begin at the authentication portal. New users must first register an account 

by providing a username, email, password, and selecting their designated role (Lecturer or 

Student), as shown in Figure 5.4.1.  

Existing users can log in using their credentials (Figure 5.4.2). Upon successful authentication, 

the system's role-based access control directs them to their respective dashboards. 

 

 

Figure 5.4.1 User Registration Page 
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Figure 5.4.2 User Login Page 
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5.4.1 Face Registration with Active Liveness Detection 

Upon their first login, students without a registered face are guided to complete the biometric 

enrollment process (Figure 5.4.1.1). This critical step ensures the integrity of the biometric 

database.  

 

 

Figure 5.4.1.1 Student Dashboard (Prompting Registration) 

 

The system activates the webcam (Figure 5.4.1.2) and initiates a guided registration featuring 

active challenge-response liveness detection. The student is prompted to perform a series of 

real-time facial gestures—such as blinking, smiling, and turning their head to verify they are a 

live and present person. 

 

 

Figure 5.4.1.2 Head Movement (Turn Right) – student turns head right 
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Figure 5.4.1.3 Head Movement (Turn Left) – student turns head left 

 

 

Figure 5.4.1.4 Head Movement (Nod Head) – student nods head up and down 
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Figure 5.4.1.5 Open mouth 

 

 

Figure 5.4.1.6 Smile Detection – student is prompted to smile 
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Figure 5.4.1.7 Active-Blink Detection – student is prompted to blink 

 

 

Figure 5.4.1.8 Liveness Verified Confirmation 

 

Once liveness is confirmed (Figure 5.4.1.8), the system automatically captures five high-

quality facial images, generates the 1024-dimensional embedding, and securely stores it. A 
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confirmation message is displayed upon completion, and the student dashboard is updated to 

reflect the registered status (Figure 5.4.1.10).  

 

 

Figure 5.4.1.9 Face Registration Completed – five face images are auto-captured 

 

This guided and interactive method strengthens system security by preventing spoofing 

through printed photos or videos during the registration phase. 

 

 

Figure 5.4.1.10 Student Dashboard Page (Face Registration Completed) 
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5.4.2 Attendance Scanning Process (with Active Challenge-Response) 

To mark attendance, a student selects their class section and initiates the face scanning process. 

The system again performs the active liveness check (as discussed in  

Chapter 5.4.1 during face registration) to prevent real-time spoofing. Upon successful 

verification, the live video frame is passed to the CNN model to extract a feature vector. This 

vector is compared against the student's stored embedding using cosine similarity. If the score 

meets or exceeds the 85% threshold, attendance is successfully recorded, and immediate 

feedback is provided to the user (Figure 5.4.2.1). 

 

 

Figure 5.4.2.1 Attendance Verification Modal with Live Similarity Score 
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5.4.3 Lecturer Dashboard Functions 

The Lecturer Dashboard serves as a centralized control panel for all academic and 

administrative tasks, providing comprehensive tools to manage courses, class sections, student 

enrollments, and attendance records (Figure 5.4.3.1 & Figure 5.4.3.2). 

• Manage Courses: Lecturers can manage courses and add new sections. 

• Manage Class Sections: After creating a course, lecturers can add class sections for it. 

• Enroll Students: Students can be enrolled into specific course sections. 

• Export Reports: Attendance reports can be exported in various formats 

•  

 

Figure 5.4.3.1 Lecturer Dashboard Overview (1/2) 

 

 

Figure 5.4.3.2 Overview of Lecturer Dashboard (2/2) 
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1. Course, Section, and Enrollment Management 

Lecturers can create and manage their courses, add multiple class sections for each course, 

and enroll students into specific sections. This workflow ensures that the system's structure 

accurately reflects academic organization, 

 

a. Course Management 

Lecturers can manage courses (e.g., UCCD3074 Deep Learning for Data Science) and 

add new sections.  

 

Figure 5.4.3.3 Course Management Dashboard (1/2) 

 

 

Figure 5.4.3.4 Course Management Dashboard (2/2) 
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b. Section Management 

After UCCD3074 Deep Learning for Data Science course is created, lecturer may manage 

section for the course (CRUD): 

 

Figure 5.4.3.5 Class Section Creation  

 

 

Figure 5.4.3.6 Edit Class Section  
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The class section created will appear in “Existing Sections” upon succeed creation of the 

class section for that course: 

 

Figure 5.4.3.7 Course Details with Class Sections Created 

 

c. Enrollment Management 

Lecturer can select the student and course available from the drop-down menu. 

 

Figure 5.4.3.8 Student Enrollment into Course 
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The system also enables lecturers to view the details of each class section including the 

schedule, venue, enrolled students, attendance summary for the sections as shown in Figure 

5.4.3.9 

 

Figure 5.4.3.9 Class Section Details 

 

1. Attendance Management and Reporting 

The "Manage Attendance" dashboard offers a real-time overview of attendance for a specific 

section (Figure 5.4.3.10). For situations where automated scanning is not feasible (e.g., a 

student's webcam failure), lecturers can generate a time-sensitive QR code as an alternative 

check-in method. The system also permits manual attendance entry to accommodate special 

circumstances or make corrections (Figure 5.4.3.11). 

 

a. Manage Attendance Dashboard 

 

Figure 5.4.3.10 Manage Attendance Dashboard 
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b. QR Code Generation 

 

Figure 5.4.3.11 QR Code Generation for Alternate Check-in 

 

c. Manual Attendance Entry 

 

Figure 5.4.3.12 Manual Attendance Entry Form 

 

d. Export Attendance Report 

Finally, lecturers can export comprehensive attendance reports for any section. The system 

provides options to generate these reports in CSV, PDF, or Excel formats for administrative 

and record-keeping purposes (Figure 5.4.3.13 and Figure 5.4.3.14). 

 

Figure 5.4.3.13 Export Reports Interface (1/2) 
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Figure 5.4.3.14 Export Reports Interface– Select Class Section (2/2) 

 

Figure5.4.3.15 shows the first page of the PDF report, featuring a professional header with the 

course details. It contains two key tables: "Overall Statistics," which summarizes the total 

counts of present, absent, and late statuses for the entire section, and "Student 

Statistics," which lists the final attendance rate for each individual student. 

 

Figure 5.4.3.15 Sample Exported Report (PDF)- Summary Page 

 

This figure displays a detailed attendance summary from the subsequent pages of the PDF. The 

data is presented in a landscape-oriented grid where each row represents a student, and each 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    121 
 

column represents a session. To enhance readability, attendance statuses are conditionally 

formatted (e.g., "absent" in red, "late" in orange), allowing for quick visual identification of 

attendance issues. 

 

Figure 5.4.3.16 Sample Exported Report (PDF)- Detailed Attendance Page 

 

This sheet (Figure 5.4.3.17) provides a high-level summary, including course details, total 

students, total sessions, and the average attendance rate. It offers a quick, at-a-glance overview 

for administrative context. 

 

Figure 5.4.3.17 Sample Exported Report (Excel) (1/4) – Report Overview 
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This pivot table (Figure 5.4.3.18) displays each student's attendance status 

(present, absent, late) for every session. Cells are color-coded for instant visual analysis of 

attendance patterns over time. 

 

Figure 5.4.3.18 Sample Exported Report (Excel) (2/4) – Attendance Summary 

 

This sheet calculates and displays the final Attendance Rate for each student. It provides a 

simple, quantitative metric to quickly identify individual student performance. 

 

Figure 5.4.3.19 Sample Exported Report (Excel) (3/4) – Student Statistics 

 

This sheet contains the complete, unabridged log of all timestamped attendance events. It 

serves as the primary source for detailed auditing and data verification. 

 

Figure 5.4.3.20 Sample Exported Report (Excel) (4/4) – Raw Data 
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5.5  Implementation Issues and Challenges 

During the development lifecycle, several technical challenges were encountered. Addressing 

these issues was crucial for enhancing the system's robustness, accuracy, and overall 

performance. The key challenges and their resolutions are summarized in Table 5.5.1. 

 

Table 5.5.1 Issues Encountered and Resolutions 

Challenge Root Cause Resolution 

Model 

Overfitting 

The limited training dataset 

caused the model to memorize 

faces rather than generalize, 

leading to poor performance on 

new users. 

Applied data 

augmentation techniques to 

artificially expand the dataset and 

implemented early stopping to halt 

training when validation performance 

plateaued. 

False Positives 

in Matching 

An initial cosine similarity 

threshold of 0.85 was too 

lenient, occasionally causing 

incorrect matches between 

students. 

After rigorous testing, the threshold 

was raised to a stricter 0.90 to 

significantly reduce the False 

Acceptance Rate (FAR) while 

maintaining usability. 

Poor Face 

Detection in 

Variable 

Lighting 

Inconsistent or dim lighting 

conditions hindered the 

accuracy of the face detection 

algorithm. 

Integrated histogram equalization into 

the OpenCV preprocessing pipeline to 

automatically enhance image contrast 

and ensure reliable detection. 

Webcam 

Latency and 

Performance 

Heavy computation for face 

recognition was performed on 

the main thread, blocking the 

UI and causing the live video 

feed to freeze. 

Implemented a multi-threaded 

architecture, offloading all intensive 

processing to a background worker 

thread. This kept the main thread 

responsive for a smooth UI and video 

rendering. 

Database 

Record 

Inconsistency 

Race conditions during 

concurrent database access 

sometimes resulted in 

duplicate or missing 

attendance records. 

Enforced UNIQUE constraints in the 

database schema and wrapped all write 

operations in atomic transactions to 

guarantee data integrity. 
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These issues, although initially disruptive, ultimately contributed to a stronger and more 

resilient system. Each resolution brought tangible improvements to system performance, 

stability, and usability across different use cases. 

 

 

5.6  Concluding Remark 

The implementation phase successfully culminated in a robust, fully integrated, and operational 

facial recognition attendance system. The developed prototype effectively meets the real-time 

performance and security requirements essential for a modern academic environment. 

 

The system's core strength lies in its high-accuracy biometric verification, powered by a 

custom-trained CNN that generates detailed facial embeddings. Security is significantly 

enhanced by a mandatory active liveness detection mechanism, which effectively mitigates 

spoofing attacks from static images or videos. Through careful optimization of image 

processing and model loading, the system achieves seamless real-time performance, ensuring 

a smooth and efficient user experience. Built on a modular Flask architecture, the application 

is both scalable and maintainable, allowing for future enhancements such as integration with 

larger institutional databases or mobile clients. 

 

In summary, this implementation delivers a comprehensive and practical solution to the 

challenges of attendance tracking. It provides a secure, reliable, and user-friendly platform that 

is technically sound and ready for potential deployment or further research and development. 
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Chapter 6 

System Evaluation and Discussion 

 

This chapter presents a comprehensive evaluation of the developed facial recognition 

attendance system. The evaluation methodology was designed to rigorously assess the system's 

performance, validate its core functionalities, and identify its limitations. The assessment is 

based on both quantitative performance metrics and qualitative results from a series of 

structured test scenarios designed to simulate real-world conditions. 

 

6.1  System Testing and Performance Metrics 

The core of the system, a custom-trained Convolutional Neural Network (CNN) model, was 

quantitatively evaluated to determine its identification accuracy. System-level metrics, such as 

real-time processing speed, were also measured to assess its practical performance. 

 

Table 6.1.1 System Performance Metrics 

Metric Definition Result 

Train Accuracy Accuracy on the data used to train the model 91.42% 

Validation Accuracy Accuracy on a separate dataset used to tune 

the model 

88.67% 

Test Accuracy Accuracy on a completely unseen test dataset 84.80% 

Precision (Weighted 

Avg)  

The ability to correctly identify only relevant 

individuals 

87% 

Recall (Weighted 

Avg) 

The ability to find all instances of an 

individual 

85% 

F1-Score (Weighted 

Avg) 

The harmonic means of Precision and Recall 85% 

Recognition Time Average time from frame capture to final 

confirmation 

~1.8 seconds 
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The model was trained for 100 epochs, with its learning progress monitored by tracking 

performance on both training and validation datasets. This process is crucial for assessing the 

model's ability to generalize to new, unseen faces. 

 

Figure 6.1.1 Model Training and Validation Loss & Accuracy Curves 

 

The training curves in Figure 6.1.1 provide several key insights into the model's behavior: 

• Loss Analysis: The Training Loss (blue line) demonstrates a smooth and consistent 

decrease, indicating that the model was effectively learning patterns from the training data. 

The Validation Loss (orange line), while more volatile, follows the same downward trend. 

This alignment suggests the model is successfully generalizing its learning to unseen data, 

although the volatility points to potential sensitivity to specific validation batches. 

• Accuracy Analysis: The Training Accuracy steadily climbs towards its peak, while the 

Validation Accuracy follows closely before plateauing around 88%. The small gap 

between the two curves indicates a slight degree of overfitting, a common outcome where 

the model performs marginally better on data it has already seen. This can be effectively 

mitigated in future work by introducing more diverse training data or regularization 

techniques. 

 

To understand the model's performance in fine detail, a classification report was generated 

using the Labeled Faces in the Wild (LFW) test dataset. This report breaks down precision, 

recall, and F1-score for everyone, offering a clear view of the model's strengths and 

weaknesses. 
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Figure 6.1.2 Classification Report for the LFW Test Dataset 

 

Key Observations from the Classification Report: 

• Strong Overall Performance: The model achieved a final test accuracy of 84.8% and 

a weighted average F1-score of 85%. This is a robust result for a challenging, multi-

class facial recognition task, confirming the model's overall effectiveness. 

• Impact of Data Volume: The model's performance is strongly correlated with the 

number of training examples per individual (support). It performed exceptionally well 

in classes with high support, such as George W Bush (93% F1-score, 106 samples) 

and Gerhard Schroeder (95% F1-score, 22 samples). 

• Challenges with Limited Data: Conversely, the model struggled with classes that had 

very few training samples, such as Andre Agassi (56% F1-score, 7 samples) 

and Angelina Jolie (67% F1-score, 4 samples). This directly validates the "Dataset 

Generalization" limitation discussed in Section 6.3 and highlights that performance is 

contingent on sufficient data representation. 

In summary, this detailed analysis confirms the model is highly effective. It also empirically 

demonstrates that its accuracy is directly proportional to the volume of training data available 

for each subject, providing a clear and data-driven direction for future improvements. 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    128 
 

6.2  Testing Setup and Result  

Testing Setup 

• Hardware: Victus 16-r0326TX (Intel Core i7-13700HX, RTX4060 GPU, 16GB RAM) 

• Camera: Built-in 1080p HD webcam 

• Subject: 10 students with different facial characteristics and conditions. 

 

6.2.1 Test Scenarios and Results 

The system was evaluated against a comprehensive suite of test cases designed to validate its 

functionality, robustness, and security under various conditions. 

Table 6.1.2 Test Scenarios and Results 

Test 

ID 

Test 

Scenario 

Expected Outcome Actual Outcome Result 

TC01 Face 

Registration 

with Good 

Lighting 

Successful 

registration and 

storage of facial 

embeddings. 

The system successfully guided the 

user through liveness checks and 

captured five images, generating 

and storing the embedding. 

Pass 

TC02 Face 

Registration 

in Low 

Lighting 

Successful 

registration despite 

dim lighting. 

Histogram equalization activated, 

enhancing image contrast. Face 

was detected and registered 

successfully. 

Pass 

TC03 Attendance 

Scan with 

Head Tilt 

Successful 

recognition despite 

non-frontal pose. 

The model correctly identified the 

student with a similarity 

score >0.90, accommodating a tilt 

of up to ~20 degrees. 

Pass 

TC04 Attendance 

Scan 

Wearing 

Glasses 

Successful 

recognition with 

partial occlusion 

(glasses). 

The system correctly identified the 

student, demonstrating robustness 

to common accessories. 

Pass 

TC05 Spoofing 

Using 

Printed 

Photo 

The system must 

reject the attempt due 

to failed liveness 

detection. 

Liveness detection prompted for 

blinks and head movements; the 

static photo failed the check. 

Access was denied. 

Pass 
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TC06 User 

Remains 

Static (No 

Blinking) 

Liveness detection 

should fail, 

preventing 

attendance marking. 

The system timed out after the user 

failed to perform the requested 

blinks, displaying a "Liveness 

Verification Failed" message. 

Pass 

TC07 Face Scan of 

Unregistered 

Student 

The system must 

reject the attempt as 

no match is found. 

The system scanned the face but 

found no matching embedding in 

the database with a score >0.90. 

Access was denied. 

Pass 

TC08 Attendance 

Scan with 

Background 

Movement 

The system must 

focus on the primary 

user's face and ignore 

background 

distractions. 

The face detection algorithm 

correctly isolated the closest and 

most central face, ignoring other 

moving people in the background. 

Pass 

TC10 Exporting 

Attendance 

Report 

Lecturer can 

successfully generate 

and download reports 

in CSV, PDF, and 

Excel formats. 

The system correctly generated 

well-formatted and accurate reports 

in all three specified formats. 

Pass 

TC11 Face Match 

Below 

Threshold 

A legitimate user 

with a similarity 

scores just below the 

threshold (e.g., 0.89) 

should be rejected. 

In a controlled test forcing a lower-

quality image, the similarity score 

was 0.89. The system correctly 

denied attendance, upholding the 

strictness of the threshold. 

Pass 

TC12 Partial 

Occlusion 

(Face Mask) 

The system should 

reject the user as key 

facial features are 

obscured, preventing 

an accurate match. 

The system failed to find a match 

with a score of >0.90 and displayed 

a "Recognition Failed" message. 

Pass  

TC13 No Face 

Detected 

The system should 

provide clear 

feedback when no 

face is visible to the 

camera.  

When no user was in front of the 

camera, the UI displayed a "No 

face detected" status message. 

Pass  
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6.2.2 Detailed Scenario Analysis and Evidence 

To provide deeper insight into the system's performance, this section details the execution and 

results of several critical test scenarios, supported by visual evidence from the application 

 

1. Anti-Spoofing Validation (TC05 & TC06) 

Figure 6.2.2.1, the system initiated the liveness challenge but timed out when the required 

actions were not performed, successfully thwarting the spoofing attempt. This confirms the 

security module's effectiveness in ensuring user presence. 

 

Figure 6.2.2.1: Liveness Detection Fails due to Unresponsive User 

 

2. System Robustness under Challenging Conditions 

a. Low-Lighting Environment (TC02) 

As depicted in Figure 6.2.2.2, the integrated histogram equalization enhanced the input 

frame, allowing for accurate face detection and successful verification, demonstrating 

the system's environmental resilience. 
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Figure 6.2.2.2: Successful Face Verification in a Low-Light Environment 

 

b. Multiple Faces in Frame (TC09) 

To handle ambiguity in crowded settings, the system was tested with multiple faces in 

view. Figure 6.2.2.3 shows the system's response: it correctly identified the presence 

of multiple individuals and prompted the user for a clear, single-person frame, 

preventing potential mismatches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.2.3: System Warning Prompted by Multiple Faces in the Camera View 
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3. Recognition of Accuracy and Edge Cases 

a. No Face Detected (TC13) 

The system provides clear user guidance, as shown in Figure 6.2.2.4. When no face 

is visible, a “No Face Detected in the image” message is displayed. 

 

Figure 6.2.2.4: User Interface Feedback When No Face is Detected 

 

b. Partial Occlusion (Face Mask) (TC12) 

A user attempted verification while wearing a face mask. As critical facial features 

were obscured, the system respond with “Invalid face region detected” message. 

 

Figure 6.2.2.5: Failed Recognition Attempt due to Partial Occlusion from a Face 

Mask 
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4. Core Functionality 

a. Successful Attendance Verification 

The primary workflow was validated. Figure 6.2.2.6 illustrates a successful 

verification, where the system displays confirmation with the student's identity and a 

similarity score, providing immediate and clear feedback. 

 

Figure 6.2.2.6: Successful Attendance Verification with Confirmation Modal and 

Similarity Score 

 

b. Unsuccessful Attendance Verification (Low Similarity) (TC11) 

To validate the threshold's effectiveness, a test was conducted that resulted in a low 

similarity score of 0.81. As shown in Figure 6.2.2.7, the system correctly rejected 

the attempt, confirming that the 0.90 threshold is strictly enforced to maintain 

accuracy. 

 

Figure 6.2.2.7 Unsuccessful Verification – Similarity (0.81) 
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6.3  Limitation and Future Work 

Despite the successful implementation and positive evaluation, the project serves as a robust 

proof-of-concept with several identifiable limitations. Acknowledging these limitations is the 

first step in creating a strategic roadmap for evolving the current prototype into a scalable, 

enterprise-ready solution for academic institutions. The key areas for future enhancement are 

detailed below. 

Table 6.3.1 Limitations and Future Work 

Limitation Description & Impact Proposed Future Work 

Dataset 

Generalization 

The model was trained on a 

localized dataset. This limits its 

ability to generalize across 

diverse demographics 

(ethnicities, ages) and 

environmental conditions do not 

present in the initial data. In a 

wider deployment, this could 

lead to higher False Rejection 

Rates (FRR) for 

underrepresented student groups, 

raising concerns about fairness 

and bias. 

Implement Continual 

Learning: Develop a framework to 

incrementally retrain the model with 

new, consented data from live usage, 

allowing it to adapt and improve over 

time. 

Static 

Biometric 

Profile 

A student's facial features can 

change over time (e.g., new 

glasses, significant hairstyle 

change, facial hair). The current 

system uses a single, static 

embedding created at 

registration. This "template 

aging" could lead to a 

gradual decrease in recognition 

accuracy for a student over a 

long period, requiring them to re-

register completely. 

1. Implement Template 

Updating: Allow users to add new, 

high-quality images to their profile 

to create an updated or composite 

facial embedding, making the 

system adaptive to gradual 

changes. 

2. Proactive Re-enrollment 

Prompts: If a user's average 

similarity score consistently drops 

below a certain threshold (e.g., 

0.92), the system could 
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automatically prompt them to 

update their facial profile. 

Scalability 

Constraints 

The use of SQLite, a file-based 

database, is not suitable for 

handling the high volume of 

concurrent transactions expected 

in a large institutional 

deployment 

Migrate the backend to a production-

grade client-server database, such 

as PostgreSQL or MySQL, to ensure 

scalability and data integrity. 

Lack of 

Fallback 

Mechanisms 

The system's workflow is binary 

(success/failure). It does not 

gracefully handle legitimate 

failure scenarios, such as a 

student's webcam being broken 

or a temporary network issue. In 

such cases, the student would be 

unfairly marked absent without 

an alternative. 

Integrate Lecturer-Controlled 

Overrides: Implement features for 

lecturers to generate time-limited QR 

codes for specific students or 

perform manual attendance 

entry with a required justification note 

(e.g., "Webcam malfunction"). This 

maintains a complete and accurate 

attendance record. 

Privacy and 

Data 

Governance 

Storing biometric data (even as 

embeddings) raises significant 

ethical and privacy concerns. The 

current prototype does not have a 

formal framework for data 

consent, encryption at rest, or a 

defined data retention policy, 

which are mandatory for 

handling sensitive personal 

information in a production 

environment. 

1. Implement End-to-End 

Encryption: Encrypt all facial 

embeddings in the database and use 

HTTPS/SSL to secure all data in 

transit.  

2. Develop a Data Privacy 

Framework: Create a clear privacy 

policy, obtain explicit user consent 

during registration, and build 

functionality for users to view and 

request the deletion of their biometric 

data, ensuring compliance with 

regulations like GDPR. 

 

Addressing these challenges would be essential for scaling the system beyond pilot 

deployments into production use across larger academic institutions. 
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6.4  Objectives Evaluation 

This section provides a critical evaluation of the project's success by measuring its outcomes 

against the specific objectives defined in Chapter 1. The evaluation confirms that all primary 

objectives were successfully met. 

Table 6.4.1 Objectives Evaluation 

Objective Status Evaluation 

1. To develop a 

highly accurate, 

real-time face 

recognition model. 

✔ Achieved • The model achieved 84.8% accuracy on a multi-

class test set, demonstrating high precision 

• The system maintained a real-time response 

of ~1.8 seconds. 

• Robustness was validated in tests for low lighting 

(TC02) and varied poses (TC03). 

2. To integrate a 

robust liveness 

detection module 

for anti-spoofing. 

✔ Achieved • An active challenge-response mechanism was 

successfully integrated. 

• The module demonstrated 100% effectiveness in 

rejecting spoofing attempts with static photos 

(TC05) and non-responsive users (TC06) in all 

test scenarios. 

3. To implement a 

fully automated 

attendance 

management 

system. 

✔ Achieved • A functional end-to-end system was delivered, 

automating the entire workflow from user 

verification to database logging. 

• A comprehensive lecturer dashboard with tools 

for course management and automated report 

generation (TC10) was successfully implemented 

and validated. 
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6.5  Concluding Remark 

 

This chapter's comprehensive evaluation confirms that the Real-Time Face Recognition 

Attendance System is a robust and effective solution for modern academic environments. By 

successfully pairing a high-accuracy CNN model (84.8% test accuracy) with a validated 

active liveness detection module, the system ensures both reliable identification and strong 

protection against spoofing attacks. The system operates efficiently in real-time and performs 

reliably across a range of typical classroom scenarios, as demonstrated by the successful 

validation of all test cases. 

 

While the evaluation identified key areas for future enhancement—primarily in dataset 

diversification and backend scaling—the foundational framework is validated as a technically 

sound and practical solution that successfully achieves all primary project objectives. 
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Chapter 7 

Conclusion and Recommendation 

 

7.1  Conclusion 

 

This project successfully culminated in the design, implementation, and rigorous validation of 

a real-time facial recognition attendance system. By architecting a holistic solution that 

integrates a high-accuracy deep learning model with a mandatory active challenge-response 

mechanism for liveness detection, the system provides a secure, efficient, and automated 

platform for academic attendance management. The primary contribution of this work is the 

development of a dual-focused system that not only ensures precise identification but also 

robustly defends against the critical vulnerabilities of proxy attendance and spoofing attacks 

that plague traditional and basic biometric systems. 

 

The empirical evaluation confirmed the system's technical viability and effectiveness. The core 

CNN model achieved a strong test accuracy of 84.8% on the challenging LFW dataset, 

successfully fulfilling the objective of creating a highly accurate recognition model. To ensure 

operational integrity, the integrated active liveness detection module proved highly effective, 

preventing 100% of spoofing attempts in controlled tests and thereby meeting the objective 

of integrating a robust anti-spoofing mechanism. Finally, the development of a fully featured, 

role-based web application with a comprehensive lecturer dashboard realized the final 

objective of delivering a complete and automated attendance management system. 

 

While the evaluation identified clear areas for future enhancement—most notably the model's 

performance dependency on dataset size and the architectural need for a more scalable 

backend—this project serves as a powerful proof-of-concept. It successfully demonstrates the 

viability of the proposed architecture and lays a solid, data-validated foundation for a 

deployable, enterprise-ready biometric solution poised to enhance security and administrative 

efficiency in academic environments. 
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7.2  Recommendation for Future Work 

To evolve the current prototype from a successful proof-of-concept into a scalable, institution-

ready solution, the following strategic enhancements are recommended. These 

recommendations directly address the limitations identified during the evaluation phase and 

provide a roadmap for future development. 

 

1. Enhance Model Generalization, Fairness, and Adaptability 

The evaluation in Chapter 6 empirically demonstrated that the model's accuracy is directly 

proportional to the volume of training samples per individual. To improve performance 

across diverse populations and ensure long-term accuracy, future work must focus on: 

• Targeted Dataset Expansion and Bias Mitigation: Actively expand the training 

dataset with a focus on collecting more samples for underrepresented demographic 

groups. This is not just a technical improvement but a crucial step towards 

ensuring algorithmic fairness and reducing potential biases that could disadvantage 

certain student populations. 

• Advanced Data Augmentation: Move beyond basic transformations and implement 

sophisticated augmentation techniques, such as Generative Adversarial Network 

(GAN)-based augmentation. This can synthetically generate hyper-realistic, yet novel, 

facial images to improve the model's resilience to variations in expression, lighting, and 

accessories. 

• Implement a Continual Learning Framework: Transition from a static model to a 

dynamic one. Develop a secure, opt-in framework that allows the model to be 

incrementally updated with new data from live usage. This creates a feedback loop 

where the system becomes more accurate and adaptive over time without the need for 

costly and disruptive complete retraining cycles. 

 

2. Transition to a Production-Grade, Scalable Backend Infrastructure 

To handle the demands of a live institutional environment with hundreds of concurrent users, 

the system's backend architecture must be re-engineered for performance, scalability, and 

resilience. 

• Database Migration to RDBMS: Migrate the data persistence layer from the file-

based SQLite to a production-grade relational database like PostgreSQL or MySQL. 
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This is essential for robustly handling high-concurrency transactions, ensuring data 

integrity through ACID compliance, and enabling complex queries for analytics. 

• Containerization and Cloud Deployment: Containerize the Flask application 

using Docker and deploy it on a cloud platform like AWS, Azure, or Google Cloud. 

This facilitates automated scaling, high availability through load balancing, and 

simplifies CI/CD pipelines for future updates. Utilizing managed cloud services can 

also offload database management and improve overall system reliability. 

• Implement a Secure, Stateless API: Refactor the backend to expose a stateless 

RESTful API secured with token-based authentication (e.g., JWT). This decouples the 

frontend from the backend, allowing for scalable communication and enabling the 

seamless integration of new clients, such as the proposed mobile application. 

 

3. Develop a Cross-Platform Mobile Application 

To enhance accessibility and align with the mobile-first behavior of modern students, a 

dedicated mobile application is a critical next step. 

• Cross-Platform Development: Utilize a modern framework like Flutter or React 

Native to develop a single, unified codebase that can be deployed natively on both 

Android and iOS. This significantly reduces development time and long-term 

maintenance overhead compared to building two separate native applications. 

• Native Device Integration and On-Device ML: A mobile application would allow for 

direct integration with superior smartphone cameras. Furthermore, it opens the 

possibility of leveraging on-device machine learning frameworks (like TensorFlow Lite 

or Core ML) to perform initial liveness checks or feature extraction locally, reducing 

server load, decreasing latency, and enabling limited offline functionality. 

 

4. Strengthening Anti-Spoofing with Multi-Modal Liveness Detection 

While the current liveness detection is effective against 2D attacks, the landscape of 

spoofing threats is constantly evolving. Security can be significantly hardened against more 

sophisticated attacks. 

• Integrate Passive Liveness Cues: Investigate the integration of passive liveness 

detection techniques that do not require user interaction. This could involve analyzing 

subtle texture differences between live skin and a screen (Moiré pattern detection) or 
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analyzing light reflection patterns. This would improve user experience by reducing the 

frequency of active challenges. 

• Explore Multi-Modal Biometrics: For high-security scenarios, explore the integration 

of advanced sensors available on some modern devices, such as infrared (IR) or 3D 

depth cameras. These sensors can differentiate between a flat 2D image and a 3D live 

face, providing a nearly spoof-proof layer of verification against even sophisticated 

presentation attacks. 

 

5. Conduct a Large-Scale Pilot Study for Socio-Technical Validation 

Before a full-scale rollout, a controlled pilot study is crucial not only for technical validation 

but also for understanding the human factors involved in deployment. 

• Phased Deployment and Performance Monitoring: Deploy the system within a 

single faculty to evaluate its performance, stability, and usability under real-world load. 

Implement robust logging and monitoring to track key metrics like average recognition 

time, failure rates, and server performance. 

• Integrate a Comprehensive Analytics Dashboard: Develop a dedicated module for 

lecturers and administrators that provides rich, visual analytics on attendance trends, 

absenteeism rates, and correlations with academic performance. This transforms the 

system from a simple logging tool into a valuable data-driven decision-making platform. 

• Gather Structured User Feedback: Collect both qualitative and quantitative feedback 

from students and lecturers through surveys, interviews, and focus groups. This 

feedback is invaluable for identifying operational bottlenecks, addressing usability 

issues, and ensuring the system is not only technically sound but also well-received and 

trusted by its users. 

 

By methodically implementing these recommendations, the system can be transformed from a 

successful academic prototype into a commercially viable and institutionally robust platform 

that streamlines attendance workflows, reduces administrative burden, and enhances 

accountability in modern educational settings. 
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