

REAL-TIME DEEP LEARNING-BASED FACE DETECTION AND RECOGNITION

WITH INTEGRATED LIVENESS DETECTION FOR ATTENDANCE SYSTEM

BY

TAN YI XIN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Tan Yi Xin. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Dr Muhammad Husaini Bin

Nadri and my moderator, Dr. Chai Tong Yuen who have given me a golden opportunity to

involve on the Deep Learning and Computer Vision field study. Besides that, they have given

me a lot of guidance in order to complete this project. When I was facing problems in this

project, the advice from them always assists me in overcoming the problems. Again, a million

thanks to my supervisor and moderator.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This project presents the design and development of a real-time facial recognition attendance

system aimed at automating and enhancing student attendance tracking in academic settings.

Leveraging advancements in Artificial Intelligence and Computer Vision, the system integrates

a deep learning-based Convolutional Neural Network (CNN) that generates 1024-dimensional

facial embeddings for each registered user. These embeddings are used for identity verification

through cosine similarity matching, achieving reliable and high-accuracy face recognition. To

address security vulnerabilities such as spoofing and proxy attendance, the system incorporates

active liveness detection mechanisms, including blink detection and head movement analysis,

ensuring that only live human faces are authenticated. The front-end interface enables students

to register their facial data and perform attendance scanning with minimal user interaction,

while the web-based backend dashboard allows lecturers to manage class sections, enroll

students, and monitor attendance records. The overall system demonstrates robust performance

in real-world scenarios, achieving face recognition high accuracy with consistently high

precision, recall, and F1-score. SQLite is used for lightweight data storage, while the Flask

framework supports the real-time backend operations. The modular architecture ensures

extensibility for future improvements. While the prototype is effective for controlled

environments, limitations such as dataset diversity, backend scalability, and mobile

accessibility remain. Future work may focus on expanding dataset coverage, implementing a

cross-platform mobile application, and upgrading to a cloud-based database for better

scalability. Overall, this project serves as proof-of-concept for a secure, efficient, and

deployable biometric attendance system that reduces manual effort and improves

accountability in academic institutions.

Area of Study (Minimum 1 and Maximum 2): Artificial Intelligence, Computer Vision, Image

Processing

Keywords (Minimum 5 and Maximum 10): Deep Learning, Liveness Detection, Image

Processing, Face Recognition, Image Processing, Real-Time Processing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES xii

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 3

1.2 Objectives 5

1.3 Project Scope and Direction 6

1.4 Contributions 7

1.5 Report Organization 8

CHAPTER 2 LITERATURE REVIEW 10

2.1 Previous Works on Attendance System 10

 2.1.1 Attendance System using QR code Scanning 10

 2.1.2 Location Based time and attendance system 11

2.2 Previous work on Image Processing Techniques 13

 2.2.1 Image Cropping 13

 2.2.2 Image Resizing 13

 2.2.3 Brightness Changing 16

2.3 Previous works on Face Recognition 17

 2.3.1 Eigenfaces and PCA (Principal Component Analysis) 17

 2.3.2 Convolutional Neural Network (CNNs) 24

 2.3.3 Siamese Networks 28

2.4 Limitation of Previous Studies 30

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

2.5 Summary of previous studies 31

2.6 Proposed Solutions 32

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

34

3.1 System Design Diagram/Equation 34

3.1.1 System Architecture Diagram 34

 3.1.1.1 User Authentication and Face Registration Flow 36

 3.1.1.2 Liveness Detection: Active Challenge-Response 37

 3.1.1.3 Face Recognition and Attendance Marking Flow 42

 3.2 Use Case Diagram and Description 43

3.2.1 Use Case Diagram - Student 43

3.2.2 Use Case Diagram - Lecturer 50

CHAPTER 4 SYSTEM DESIGN 62

 4.1 Model Training Pipeline 62

 4.2 System Flowchart 75

 4.3 System Architecture and Component Interaction 85

 4.4 Module Design and Description 89

 4.4.1 Face Processing and Registration Module 89

 4.4.2 Active Challenge (Liveness Detection) 92

 4.4.3 User and Course Management (Lecturer) 95

 4.4.4 Attendance Workflow Module 97

 4.5 Database Design 99

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

100

 5.1 Hardware Setup 100

5.2 Software Setup 101

5.3 Setting and Configuration 103

5.4 System Operation (with Screenshot) 106

 5.4.1 Face Registration with Active Liveness Detection 108

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

 5.4.2 Attendance Scanning Process (with Active Challenge-

Response)

113

 5.4.3 Lecturer Dashboard Functions 114

5.5 Implementation Issues and Challenges 123

5.6 Concluding Remark 124

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 125

6.1 System Testing and Performance Metrics

125

6.2 Testing Setup and Result 128

 6.2.1 Test Scenarios and Results 128

 6.2.2 Detailed Scenario Analysis and Evidence 130

6.3 Limitation and Future Work 134

6.4 Objectives Evaluation 136

6.5 Concluding Remark 137

CHAPTER 7 CONCLUSION AND RECOMMENDATION 138

7.1 Conclusion 138

7.2 Recommendation for Future Work 139

REFERENCES 142

POSTER 146

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1.1 Proposed System Infrastructure 10

Figure 2.1.2.1 Block Diagram of Location-based Time and Attendance

System

11

Figure 2.1.2.2 Flows of operation for mobile application 11

Figure 2.1.2.3 Flows of operation for Time and Attendance Management

Software

12

Figure 2.2.1.1 Image Cropping to 64 x 64 pixels 13

Figure 2.2.2.1 Original Image Resize with Scale 0.5 14

Figure 2.2.2.2 Original Image Resize with Scale 0.25 14

Figure 2.2.2.3 Images After Resized by Scale 0.3 14

Figure 2.2.2.4 Recognition Rate After Resized by Scale 0.3 15

Figure 2.2.3.1 Increase Image Brightness 16

Figure 2.2.3.2 Increase the Brightness by Adding 140 to each Pixel 16

Figure 2.2.3.3 Decrease the Brightness by Adding 140 to each Pixel 16

Figure 2.2.3.4 Recognition Rate After Increase and Decrease the

Brightness

16

Figure 2.3.1.1 Flowchart of Detecting Objects as a Face 18

Figure 2.3.1.2 Flowchart of Preprocessing for Detected Face 19

Figure 2.3.1.3 Flowchart of Collect and Train the Faces 20

Figure 2.3.1.4 Flowchart of Face Recognition 20

Figure 2.3.1.5 Best 20 eigenface images from the database 21

Figure 2.3.1.6 Reconstructed image from One of the Databases, “train

user 1”

21

Figure 2.3.1.7 Result of Face Recognition Testing (user: “train user 1”) 21

Figure 2.3.1.8 Average result of recognition system (PCA) 22

Figure 2.3.1.9 Architecture of Face Recognition-based Attendance

System

23

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

Figure 2.3.2.1 Deep Learning-Based Face Recognition Block Diagram 24

Figure 2.3.2.2 Face Recognition API and current RFID-based system 26

Figure 2.3.2.3 CNN Architecture 26

Figure 2.3.2.4 Deep Learning-Based Face Recognition Accuracy per class 27

Figure 2.3.3.1 Proposed Pairwise Differential Siamese Network 28

Figure 3.1.1.1 System Architecture Diagram 35

Figure 3.1.1.2.1 Dlib 68-Facial Landmarks in a Face 37

Figure 3.1.1.2.2 Dlib Facial Landmarks 38

Figure 3.1.1.2.3 EAR for Open and Closed Eye 38

Figure 3.1.1.2.4 Head Motion Classification 39

Figure 3.2.1.1 Use Case Diagram for Student 43

Figure 3.2.2.1 Use Case Diagram for Lecturer 50

Figure 4.1.1 Model Training Block Diagram 62

Figure 4.1.2 Effect on Implementation of Activation Functions 68

Figure 4.1.3 Embedding Layer in Neural Network 70

Figure 4.1.4 Early Stopping to minimize overfitting 72

Figure 4.2.1 System Flowchart (1/7) – Main System 75

Figure 4.2.2 System Flowchart (2/7) – Manage Attendance Record 76

Figure 4.2.3 System Flowchart (3/7) – Export Reports 77

Figure 4.2.4 System Flowchart (4/7) – Manage Course and Class

Sections

78

Figure 4.2.5 System Flowchart (5/7) – Student Enrollment in Course 79

Figure 4.2.6 System Flowchart (6/7) – Face Registration 80

Figure 4.2.7 Real-time Image Processing Pipeline Flowchart 81

Figure 4.2.8 System Flowchart (7/7) – Real-time Face Recognition for

attendance

84

Figure 4.5.1 Entity Relationship Diagram 99

Figure 5.4.1 User Registration Page 106

Figure 5.4.2 User Login Page 107

Figure 5.4.1.1 Student Dashboard (Prompting Registration) 108

Figure 5.4.1.2 Head Movement (Turn Right) – student turns head right 108

Figure 5.4.1.3 Head Movement (Turn Left) – student turns head left 109

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 5.4.1.4 Head Movement (Nod Head) – student nods head up and

down

109

Figure 5.4.1.5 Open mouth 110

Figure 5.4.1.6 Smile Detection – student is prompted to smile 110

Figure 5.4.1.7 Active-Blink Detection – student is prompted to blink 111

Figure 5.4.1.8 Liveness Verified Confirmation 111

Figure 5.4.1.9 Face Registration Completed – five face images are auto-

captured

112

Figure 5.4.1.10 Student Dashboard Page (Face Registration Completed) 112

Figure 5.4.2.1 Attendance Verification Modal with Live Similarity Score 113

Figure 5.4.3.1 Lecturer Dashboard Overview (1/2) 114

Figure 5.4.3.2 Overview of Lecturer Dashboard (2/2) 114

Figure 5.4.3.3 Course Management Dashboard (1/2) 115

Figure 5.4.3.4 Course Management Dashboard (2/2) 115

Figure 5.4.3.5 Class Section Creation 116

Figure 5.4.3.6 Edit Class Section 116

Figure 5.4.3.7 Course Details with Class Sections Created 117

Figure 5.4.3.8 Student Enrollment into Course 117

Figure 5.4.3.9 Class Section Details 118

Figure 5.4.3.10 Manage Attendance Dashboard 118

Figure 5.4.3.11 QR Code Generation for Alternate Check-in 119

Figure 5.4.3.12 Manual Attendance Entry Form 119

Figure 5.4.3.13 Export Reports Interface (1/2) 119

Figure 5.4.3.14 Export Reports Interface– Select Class Section (2/2) 120

Figure 5.4.3.15 Sample Exported Report (PDF) – Summary Page 120

Figure 5.4.3.16 Sample Exported Report (PDF) – Detailed Attendance

Page

121

Figure 5.4.3.17 Sample Exported Report (Excel) (1/4) – Report Overview 121

Figure 5.4.3.18 Sample Exported Report (Excel) (2/4) – Attendance

Summary

122

Figure 5.4.3.19 Sample Exported Report (Excel) (3/4) – Student Statistics 122

Figure 5.4.3.20 Sample Exported Report (Excel) (4/4) – Raw Data 122

Figure 6.1.1 Model Training and Validation Loss & Accuracy Curves 126

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 6.1.2 Classification Report for the LFW Test Dataset 127

Figure 6.2.2.1 Liveness Detection Fails due to Unresponsive User 130

Figure 6.2.2.2 Successful Face Verification in a Low-Light Environment 131

Figure 6.2.2.3 System Warning Prompted by Multiple Faces in the

Camera View

131

Figure 6.2.2.4 User Interface Feedback When No Face is Detected 132

Figure 6.2.2.5 Failed Recognition Attempt due to Partial Occlusion from

a Face Mask

132

Figure 6.2.2.6 Successful Attendance Verification with Confirmation

Modal and Similarity Score

133

Figure 6.2.2.7 Unsuccessful Verification – Similarity (0.81) 133

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 2.3.1.1 Testing result summarization 22

Table 2.3.1.2 Comparison of various algorithms for face recognition 24

Table 2.3.2.1 Deep Learning-Based Face Recognition Result 26

Table 2.5.1 Comparison between recognition techniques 31

Table 3.2.1.1 Use Case Description (Login) 44

Table 3.2.1.2 Use Case Description (Register Account) 45

Table 3.2.1.3 Use Case Description (Register Face) 46

Table 3.2.1.4 Use Case Description (Scan Attendance) 48

Table 3.2.2.1 Use Case Description (Login) 51

Table 3.2.2.2 Use Case Description (Register Account) 52

Table 3.2.2.3 Use Case Description (Enroll Student in Course) 53

Table 3.2.2.4 Use Case Description (Create Class Section) 54

Table 3.2.2.5 Use Case Description (View Attendance Record) 55

Table 3.2.2.6 Use Case Description (Generate & Download Attendance

Report)

56

Table 3.2.2.7 Use Case Description (Update Course Info) 57

Table 3.2.2.8 Use Case Description (View Class List) 58

Table 3.2.2.9 Use Case Description (Auto-Assign to Class Section) 59

Table 3.2.2.10 Use Case Description (Activate/Deactivate Class Session) 60

Table 4.3.1 System Architecture Components 85

Table 4.4.2.1 Threshold Value for Parameters 92

Table 5.1.1 Hardware Specifications 100

Table 5.2 Software Specifications 101

Table 5.5.1 Issues Encountered and Resolutions 123

Table 6.1.1 System Performance Metrics 125

Table 6.1.2 Test Scenarios and Results 128

Table 6.3.1 Limitations and Future Work 134

Table 6.4.1 Objectives Evaluation 136

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF SYMBOLS

θ (pose) A set of head pose angles (Pitch, Yaw, Roll) used for liveness

verification.

E_live The 1024-dimensional embedding vector generated from a live

captured face.

E_stored The pre-registered 1024-dimensional embedding vector stored in

the database.

cos(θ) Cosine Similarity, the metric used to measure similarity between

two embeddings.

‖E‖ The L2 Norm (or Euclidean magnitude) of an embedding vector.

≥ 0.90 The Recognition Threshold; a cosine similarity score must meet or

exceed this value to confirm an identity.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DBMS Database Management System

EAR Eye Aspect Ratio (A metric for blink detection in liveness

verification)

FPS Frames Per Second (A measure of real-time video processing

performance)

FYP Final Year Project

GPU Graphics Processing Unit

HTML HyperText Markup Language

JWT JSON Web Token

MAR Mouth Aspect Ratio (A metric for smile/mouth open detection in

liveness verification)

MTCNN Multi-task Cascaded Convolutional Network

PCA Principal Component Analysis

RAM Random Access Memory

RBAC Role-Based Access Control

REST Representative State Transfer

SQL Structured Query Language

SVM Support Vector Machine

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

This chapter establishes the foundational context for an in-depth exploration into the domain

of automated face recognition systems. As a field at the dynamic intersection of computer

vision, pattern recognition, and artificial intelligence, face recognition has undergone a

profound transformation in recent years. This introduction will delineate the fundamental

concepts governing this technology, underscore the pivotal and transformative role of deep

learning in its modern incarnation, and situate this research within the specific, high-stakes

application of secure and automated attendance management. Furthermore, this chapter will

formally define the research problem this project seeks to address, articulate its precise

objectives, and clearly demarcate the scope and strategic direction of the work undertaken.

Face recognition is a sophisticated biometric modality used to algorithmically identify or verify

an individual by analyzing their unique facial characteristics from a digital image or a video

stream. The process is conventionally architected as a multi-stage pipeline. This pipeline begins

with face detection, the task of locating and isolating one or more faces within a given image.

Following detection, face alignment (or normalization) is performed to standardize the

detected faces, correcting for variations in scale, in-plane rotation, and posing to present a

consistent facial view to the subsequent stages. The core of the system is featuring extraction,

where a specialized algorithm processes the aligned face to generate a compact, discriminative

numerical vector known as a feature embedding. This embedding is designed to capture the

essential identity-specific information on the face. Finally, face classification or

matching occurs, where the extracted embedding is compared against a database of pre-

computed embeddings of known individuals to determine the identity.

The rapid development of deep learning, and particularly the widespread adoption

of Convolutional Neural Networks (CNNs), has catalyzed a paradigm shift in the field,

moving from handcrafted feature descriptors (like Local Binary Patterns or Haar-like features)

to end-to-end learned representations. CNNs possess the remarkable ability to autonomously

learn a rich hierarchy of features directly from pixel data—from simple edges and textures in

early layers to complex facial parts and global structures in deeper layers. This capability

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

enables them to achieve unprecedented robustness against challenging real-world variations

such as extreme changes in illumination, non-frontal poses, diverse facial expressions, and

partial occlusions. Seminal architectures like FaceNet, which introduced an embedding-based

learning approach using a triplet loss function, have set new benchmarks. The triplet loss

methodology trains the network to map images of the same person to points that are close

together in an N-dimensional Euclidean space, while simultaneously pushing points from

different identities far apart, thus creating a highly discriminative feature space.

Despite these significant technological leaps, the practical deployment of face recognition

systems, especially for security-critical applications like attendance management, reveals

persistent challenges in reliability and security. Traditional systems are notoriously vulnerable

to presentation attacks (or spoofing), where malicious actors use non-live artifacts such as

high-resolution photographs, video replays on a screen, or even 3D masks to impersonate a

legitimate user. To counteract this critical vulnerability, the integration of liveness

detection has become an indispensable component. Liveness detection is a set of techniques

designed to verify that the biometric being captured belongs to a live, physically present human

being. By analyzing physiological signs like eye blinks, subtle head movements, or micro-

texture patterns, these systems can effectively differentiate between a genuine face and a

fraudulent artifact, thereby preventing unauthorized access or fraudulent attendance marking.

The key concepts that form the technical backbone of this project include CNN-based feature

extraction for identity representation, advanced image preprocessing to enhance data quality,

data augmentation to build model robustness, rigorous model training and evaluation protocols,

real-time inference optimization for practical deployment, and the crucial integration of

liveness detection for anti-spoofing. Together, these elements constitute a holistic approach to

engineering, the secure and efficient attendance system developed in this work.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

1.1 Problem Statement and Motivation

While face recognition technology has rapidly matured from traditional feature engineering to

highly accurate CNN-driven deep learning models, its application in practical, uncontrolled

environments like classrooms continues to present a set of unresolved challenges. This project

is directly motivated by the need to address these specific shortcomings.

I. Critical Flaws in Prevailing Attendance Systems like QR Code Scanning

Many academic and corporate institutions have adopted QR code-based systems for

attendance tracking, aiming for digitalization and efficiency. However, these systems

are fundamentally flawed in their security model. They are acutely susceptible to proxy

attendance, where a QR code can be easily captured via screenshot and electronically

shared with an absent individual, who can then scan it from a remote location. This

loophole undermines the very purpose of attendance tracking: verifying physical

presence. Furthermore, this method often imposes a significant administrative burden

on lecturers, who must generate, display, and manage the codes, and later manually

verify or reconcile the digital records, detracting from their primary teaching

responsibilities.

II. Inadequacies of Existing Face Recognition System

While face recognition offers a theoretically superior alternative, off-the-shelf or naive

implementations often fail in real-world deployment due to two primary issues:

• Performance Degradation in Unconstrained Environments: Performance

Degradation in Unconstrained Environments: Classroom settings are visually

complex and dynamic. Factors such as variable and poor lighting (e.g., backlighting

from windows, dim overhead lights), a wide range of facial angles as students move,

and frequent occlusions (e.g., from glasses, face masks, or hair) can drastically

reduce the accuracy of a recognition model not specifically trained to handle such

intra-class variability.

• Vulnerability to Presentation (Spoofing) Attacks: A face recognition system

without a robust anti-spoofing mechanism is incomplete from a security standpoint.

It remains vulnerable to simple yet effective attacks where an individual can present

a photo or a video of a registered student to the camera. For an attendance system,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

this vulnerability is critical, as it reintroduces the possibility of proxy attendance,

thereby negating the primary advantage over QR code systems.

III. Absence of a Fully Integrated and Automated Workflow

A significant gap in many existing systems is the lack of seamless end-to-end

automation. Even systems with recognition capabilities often require manual steps, such

as a lecturer initiating the scan, manually verifying the logged entries against the actual

class list, or exporting data for processing. This lack of integration between recognition,

liveness verification, and automatic record logging creates friction and reduces the

overall efficiency and reliability of the system.

This project is motivated by the urgent need for a holistic solution that directly confronts these

issues. By developing an integrated system that combines real-time, robust CNN-based face

recognition with intelligent liveness detection, this work aims to create a secure, trustworthy,

and fully automated attendance ecosystem. The goal is to eliminate the proxy attendance

problem, fortify the system against spoofing attempts, and free educators from manual

administrative tasks, thereby ensuring academic integrity and operational efficiency.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

1.2 Objectives

The primary objective of this project is to design, implement, and evaluate a real-time, deep

learning-based face recognition attendance system with integrated liveness detection,

engineered to ensure secure, accurate, and fully automated attendance marking in classroom

environments.

To achieve this overarching goal, the following specific objectives are defined:

1. To develop a highly accurate, real-time face recognition model optimized for

classroom conditions. This involves selecting and fine-tuning a state-of-the-art CNN

architecture to handle challenging variations in lighting, diverse facial expressions, non-

frontal poses, and partial occlusions. This will be supported by a robust pipeline of image

preprocessing and augmentation techniques designed to simulate real-world classroom

scenarios.

2. To design and integrate a robust liveness detection module for anti-spoofing. This

objective focuses on implementing a mechanism that can reliably distinguish between a

live person and a presentation attack (e.g., a photo or video). The system will analyze

physiological cues, such as eye-blinking patterns, to ensure that attendance can only be

marked by individuals who are physically present at the time of scanning.

3. To implement a fully automated attendance management system. This requires

building a backend infrastructure that seamlessly logs the identities of recognized and

liveness-verified individuals into a persistent database. The system will provide an

automated workflow, from real-time video capture to final record generation, thereby

minimizing the need for manual intervention or verification by academic staff.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

1.3 Project Scope and Direction

This project is scoped to encompass the complete lifecycle of designing, developing, and

evaluating a proof-of-concept prototype for a real-time face recognition attendance system

fortified with liveness detection. The primary delivery is a functional software system capable

of capturing a live video feed, concurrently performing face detection, recognition, and liveness

verification, and securely recording the verified attendance data.

The specific scope of this project includes:

• Model Development: The selection, fine-tuning, and training of an appropriate CNN

architecture (e.g., a lightweight variant of FaceNet or MobileNet) for the core face

recognition task.

• Data Handling: The implementation of image preprocessing techniques (e.g.,

histogram equalization, noise reduction) and a comprehensive data augmentation

pipeline (e.g., random rotation, brightness adjustment, zoom) to enhance model

generalization and robustness.

• Liveness Detection: The development and integration of a software-based liveness

detection module, specifically designed to identify and thwart spoofing attempts using

static photos or video replays by analyzing physiological signals like eye blinks.

• System Integration: The construction of a complete system architecture, including a

backend server and a Flask-based web interface. This interface will provide a user-

friendly dashboard for lecturers to manage attendance sessions, view real-time logs,

and generate reports.

The project will deliberately exclude the following areas to maintain a clear focus on software-

based deep learning solutions:

• GPS-based Location Verification: While useful for geofencing, this is considered an

orthogonal security layer. The project will concentrate on solving the visual-based

challenges of identity and liveness verification.

• Hardware-Level Biometric Integration: The system will not integrate specialized

hardware such as 3D cameras or infrared sensors, focusing instead on a solution that is

deployable using standard, commodity webcams to ensure accessibility and scalability.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

1.4 Contributions

This project aims to make a significant and practical contribution to the field of intelligent

attendance systems by delivering innovations across several key areas:

I. A Robust CNN-Based Recognition Model for Uncontrolled Environments

The primary contribution is a custom-trained and optimized CNN model specifically

tailored for the challenges of real-world classroom environments. By fine-tuning on a

curated dataset that includes variations in lighting, head orientation, and partial

occlusions, this model will demonstrate superior real-time accuracy and resilience

compared to generic, off-the-shelf recognition models.

II. An Integrated Anti-Spoofing and Liveness Detection Pipeline

This works pioneers the seamless integration of liveness detection directly into the

real-time recognition workflow. By incorporating techniques such as eye-blink

detection or subtle head movement analysis, the system introduces a critical layer of

security that directly addresses the vulnerability of presentation attacks, ensuring that

spoofing attempts using static media are effectively prevented. This integrated

approach is a significant step beyond simple recognition-only systems.

III. A Fully Automated, End-to-End Attendance Workflow

The project will deliver a holistic system architecture that automates the entire process,

from live video capture and identity verification to secure record-keeping. This

automation significantly reduces the administrative workload on lecturers, eliminates

human error in record management, and ensures the creation of a reliable, tamper-

proof audit trail of attendance.

IV. A Practical and Scalable Platform for Institutional Deployment

Beyond a mere algorithmic implementation, this project will produce a practical

platform. It includes a student-facing module for face registration and scanning, and a

lecturer-facing web dashboard for monitoring, management, and reporting. This dual-

interface design makes the system a viable and scalable solution, ready for pilot

deployment in academic institutions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

In summary, this research provides a secure, accurate, and scalable real-time attendance system

that leverages the power of deep learning and integrated liveness detection to overcome the

critical limitations of both QR code-based methods and traditional face recognition systems.

Its contributions have the potential to extend beyond the classroom, offering a blueprint for

secure access control, workforce time and attendance monitoring, and other applications where

verified physical presence is paramount.

1.5 Report Organization

This thesis is systematically organized into seven chapters, each designed to logically build

upon the last, guiding the reader through the project's conception, methodology,

implementation, and evaluation.

• Chapter 1: Introduction provides the foundational context for the study. It presents

the problem statement, defines the research objectives, delineates the project's scope,

highlights its significance and contributions, and offers this overview of the report's

structure.

• Chapter 2: Literature Review conducts a critical analysis of existing research and

technologies relevant to this project. It examines core technologies such as MTCNN

for face detection and FaceNet for recognition, explores different approaches to

liveness detection, and discusses the potential of hybrid systems like GPS geofencing.

The chapter also reviews the limitations of current attendance systems and identifies

the specific research gaps this project aims to fill.

• Chapter 3: System Methodology and Approach details the theoretical and practical

framework of the proposed system. It presents high-level system architecture, outlines

the specific use cases for both student and lecturer roles, and explains the mathematical

and algorithmic foundations, including cosine similarity for feature matching and the

Eye Aspect Ratio (EAR) for blink detection.

• Chapter 4: System Design provides a detailed blueprint of the system's architecture.

This chapter specifies the interactions between different software components, presents

the database schema for storing user embeddings and attendance records, and describes

the image preprocessing pipeline used to enhance data quality before it is fed into the

deep learning models.

• Chapter 5: System Implementation documents the translation of the design into a

functional prototype. It specifies the hardware and software configurations used,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

illustrates the operational workflows with diagrams, and transparently discusses the key

technical challenges encountered during development and the strategies employed to

resolve them.

• Chapter 6: System Evaluation and Discussion presents a rigorous validation of the

system's performance. It uses quantitative metrics such as recognition accuracy, false

acceptance/rejection rates, and processing latency to assess effectiveness. The chapter

also describes real-world testing scenarios under various conditions and provides a

comparative analysis of the results against the project's initial objectives.

• Chapter 7: Conclusion and Recommendations concludes the report by summarizing

the key findings and achievements, including the final measured accuracy of the

system. It reflects on the project's successes and limitations and proposes concrete

recommendations for future work, such as the integration of 3D mask detection and the

exploration of deployment on edge computing devices.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Chapter 2

Literature Review

This chapter establishes the theoretical and practical foundations for the proposed facial

recognition attendance system. It begins by critically examining previous works on automated

attendance systems, identifying their strengths and vulnerabilities. Following this, the review

delves into the core technologies that underpin the proposed solution, including fundamental

image processing techniques and an in-depth analysis of prominent face recognition

methodologies. By synthesizing and critiquing existing literature, this chapter identifies the

critical research gaps that this project aims to address.

2.1 Previous Works on Attendance Systems

The automation of attendance tracking has been approached through various technological

paradigms, each presenting a trade-off between convenience and security.

2.1.1 Attendance System using QR code Scanning

A prevalent approach to digitizing attendance involves QR code technology. Masalha and

Hirzallah [1] proposed a system where unique, session-specific QR codes are generated for

each lecture. Students scan these codes using a dedicated mobile application to transmit their

identity and session details to a central server, as illustrated in Figure 2.1.1.1.

Figure 2.1.1.1 Proposed System Infrastructure

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

While this method offers significant improvements in speed and convenience over manual

sign-in sheets, its primary weakness is a critical security flaw: susceptibility to proxy

attendance. QR codes can be easily screenshotted and distributed, allowing a student who is

not physically present to have their attendance marked by a peer. This fundamental

vulnerability undermines the integrity of the attendance data, highlighting the necessity for a

verification method that confirms both the user's physical presence and authentic identity.

2.1.2 Location Based time and attendance system

To address the challenge of verifying physical presence, researchers have explored location-

based services. Uddin et al. [2] developed a system that uses the Global Positioning System

(GPS) on student mobile devices to confirm their proximity to the lecture venue. Attendance

is recorded only if the device is located within a predefined geographical boundary (geofence)

during the scheduled class time as demonstrated in Figure 2.1.2.1.

Figure 2.1.2.1 Block Diagram of Location-based Time and Attendance System

Figure 2.1.2.2 Flows of operation for mobile application

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

For the proposed Management Software:

Figure 2.1.2.3 Flows of operation for Time and Attendance Management Software

Although this approach is an improvement over credential-based systems, it has significant

limitations. GPS accuracy is often unreliable indoors, where most lectures occur. More

critically, the system verifies the location of the device, not the person. This leaves it vulnerable

to proxy attendance, as one student could bring multiple devices into the geofenced area. The

absence of direct identity verification remains a key research gap that this project will address

by using location data with robust biometric identification.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

2.2 Previous work on Image Processing Techniques

According to N. Barnouti [3], Image preprocessing is a critical precursor to any successful

computer vision task, as it standardizes images and enhances salient features required for

accurate recognition. As noted by Anila and Devarajan [4], effective preprocessing reduces

computational overhead and increases the probability of a correct match. Key techniques

relevant to this project include:

2.2.1 Image Cropping

According to N. Barnouti [3], image cropping is a fundamental step in image pre-processing.

The image cropping is used for isolating the region of an image where the face is located and

discarding the unwanted background which can affect the recognition efficiency. This helps in

the recognition process only held on the vital features of the face. The cropped images are then

normalized to a standard size, such as 64x64 pixels, to ensure uniformity across the dataset. As

illustrated in Figure 2.2.1.1, the cropped region typically includes key facial landmarks like the

eyes and mouth, which are crucial for accurate recognition.

Figure 2.2.1.1 Image Cropping to 64 x 64 pixels

2.2.2 Image Resizing

The images used in this analysis were resized to various dimensions to investigate how

different scales affect the recognition process. Since image size can influence the information

content, a detailed examination was conducted to determine the optimal resizing scale. While

the primary purpose of image resizing is to reduce data size and consequently processing time

[5], selecting an inappropriate scale can be detrimental. The resizing scale was randomly varied

between 0.1 and 0.9, resulting in a range of image sizes. Figure 2.2.2.1 illustrates an example

of resizing an image with a scale of 0.5.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Figure 2.2.2.1 Original Image Resize with Scale 0.5

However, resizing images to an excessively small scale can lead to a significant loss of essential

features, which is particularly problematic when image texture is important for classification.

Figure 2.2.2.2 demonstrates the loss of features when an image is resized with a scale of 0.25.

Figure 2.2.2.2 Original Image Resize with Scale 0.25

In this study, the image resizing scale ranged from 0.3 to 0.9. Resizing with a scale of 0.5

resulted in images of 56 x 46 pixels, while a scale of 0.3 produced images of 34 x 28 pixels.

Figure 2.2.2.3 shows examples of images resized using a 0.3 scale, and Figure 2.2.2.4 illustrates

the increase in the recognition rate observed after resizing images with this 0.3 scale. Therefore,

choosing an appropriate resizing scale based on image resolution can be an efficient way to

improve the recognition rate.

Figure 2.2.2.3 Images After Resized by Scale 0.3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Figure 2.2.2.4 Recognition Rate After Resized by Scale 0.3

2.2.3 Brightness Changing

A key image preprocessing step is brightness adjustment, which controls the overall lightness

or darkness of an image. This is achieved by adding or subtracting a constant value from the

intensity of each pixel. The range of this adjustment typically spans from -255 to +255; adding

positive values brightens the image, while subtracting (negative values) darkens it. Figure

2.2.3.1 provides an example of increasing image brightness. Modifying the brightness level

can be beneficial in various image analysis scenarios.

Figure 2.2.3.1 Increase Image Brightness

The contrast between the darkest and lightest areas and the blurriness of images can also be

modified. In this analysis, increasing the image brightness by adding 100 or 140 to each pixel

resulted in an improved recognition rate. Conversely, darkening the images by subtracting 100

or 140 from each pixel led to a decrease in the recognition rate. Figure 2.2.3.2 displays images

after increasing the brightness by adding 140, and Figure 2.2.3.3 shows images after decreasing

the brightness by subtracting 140. The corresponding recognition rates after these bright

adjustments are presented in Figure 2.2.3.4. The results indicate that increasing the brightness

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

can enhance the recognition rate; while decreasing it is not an effective strategy and tends to

reduce the recognition accuracy.

Figure 2.2.3.2 Increase the brightness by adding 140 to each pixel.

Figure 2.2.3.3 Decrease the brightness by adding 140 to each pixel.

Figure 2.2.3.4 Recognition Rate After Increase and decrease the brightness.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

2.3 Previous works on Face Recognition

Face recognition has evolved from classical statistical methods to powerful deep learning

architectures capable of handling complex, real-world variations.

Before a face can be recognized, it must first be accurately located within an image. Early

methods like the Viola-Jones algorithm used Haar-like features and a cascade of classifiers to

achieve real-time detection, though they were sensitive to non-frontal poses. Modern systems

rely on deep learning, with the Multi-task Cascaded Convolutional Network (MTCNN) being

a prominent example. MTCNN uses a cascade of three CNNs to progressively detect faces and

their key landmarks (eyes, nose, mouth) with high accuracy, even under challenging conditions

with varying poses and partial occlusions [13].

2.3.1 Eigenfaces and PCA (Principal Component Analysis)

One of the foundational methods in face recognition is Principal Component Analysis (PCA),

used to implement the Eigenfaces approach [6], [7]. PCA is a dimensionality reduction

technique that identifies the principal components that capture the most variance in a set of

face images. These components, known as "eigenfaces," form a basis space on which new face

images can be projected for comparison. While computationally efficient, the PCA-based

Eigenfaces method is highly sensitive to variations in lighting, expression, and pose, making it

less suitable for the uncontrolled environments of a typical classroom.

1. Detecting Object as a Face

The system initiates by accessing a camera to detect objects resembling a face using the

CASCADE_FIND_BIGGEST_OBJECT method. The input image is converted to

grayscale and resized to accelerate the detection process. Contrast and brightness are

enhanced through histogram equalization, and the detected face is then isolated and stored

for subsequent processing as shown in Figure 2.3.1.1.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Figure 2.3.1.1 Flowchart of detecting objects as a face

2. Preprocess of detected face

To prepare the detected face for recognition and minimize errors, preprocessing steps are

applied. This includes aligning the face by detecting and adjusting the position of the eyes

using geometric transformations (rotation, scaling, translation). Histogram equalization is

applied to each half of the face independently to standardize lighting, and a bilateral filter

is used to smooth the image while preserving important edges as illustrated by author in

Figure 2.3.1.2.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

Figure 2.3.1.2 Flowchart of preprocessing for detected face

3. Collect and train faces

The system gathers multiple face images for training, incorporating variations by including

mirrored versions of the original images. These images are stored in the .pgm format and

then used to train a model using PCA. This process involves calculating the mean face,

subtracting it from the training images, computing the covariance matrix, and determining

the eigenvalues and eigenvectors. The eigenfaces are subsequently generated, and the

resulting model is saved in .xml format (Figure 2.3.1.3). The formulas for calculating the

average face, subtracting the mean, and finding the covariance matrix are provided,

followed by the steps to determine eigenvalues, eigenvectors, eigen images, and the weight

matrix. The eigenface concept is explained as a set of eigenvectors used in computer vision

to recognize human faces, derived from the covariance matrix to represent the probability

distribution and vector space for face recognition by reconstructing faces.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Figure 2.3.1.3 Flowchart of collect and train the faces

4. Recognition

During recognition, the trained model is loaded, and a face is detected in real-time using

the camera. The preprocessed face is then compared to the model by projecting it into the

eigenface space. If the similarity score is below a predefined threshold of 0.5 [7], the system

identifies the face; otherwise, it is classified as "Unknown" (Figure 2.3.1.4).

Figure 2.3.1.4 Flowchart of face recognition

The accuracy of the developed face recognition system was tested using a dataset of 6

training users, each with 40 variations of images. Figure 2.3.1.5 shows the best 20 eigenface

images from the database, and Figure 2.3.1.6 illustrates a reconstructed image from the

database. Figure 2.3.1.7 presents the result of a face recognition test for "train user 1," and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Table 2.2.1.1 summarizes the testing results for all users. The average recognition accuracy

achieved by the authors' proposed system was 96.3% (Figure 2.3.1.8).

Figure 2.3.1.5 Best 20 eigenface images from the database

Figure 2.3.1.6 Reconstructed image from one of the databases, “train user 1”

 Figure 2.3.1.7 Result of face recognition testing (user: “train user 1”)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

The testing result summarize:

Table 2.3.1.1 Testing result summarization

No Object Recognized Times (%)

1 Train user 1 99

2 Train user 2 97

3 Train user 3 95

4 Train user 4 97

5 Train user 5 92

6 Train user 6 98

The average result of the author’s proposed recognition system is 96.3%.

Figure 2.3.1.8 Average result of recognition system (PCA)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Wagh et al. [7] also explored PCA algorithms, specifically Eigenfaces and Principal

Component Analysis (PCA), for attendance systems. They noted that while algorithms like

Neural Networks are effective for single-image systems, attendance systems require the

recognition of multiple faces. Eigenfaces represent face images as a linear combination of

weighted eigenvectors, referred to as "eigenfaces," aiming to reduce the dimensionality of face

images by projecting them onto a lower-dimensional subspace that captures the most

significant distinguishing features. PCA serves as the mathematical foundation of the

Eigenfaces method, aiding in the identification of the principal components that capture the

maximum variance in the data. The architecture of their proposed face recognition-based

attendance system is shown in Figure 2.3.1.9. The authors outlined the hardware requirements,

including a high-definition camera to capture the entire class. The captured image undergoes

enhancement through grayscale conversion and histogram equalization before face detection

algorithms identify individual faces. Each detected face is then cropped and compared against

a database of student face images to mark attendance on a server. Table 2.2.1.2 provides a

comparison of various algorithms for face recognition. The architecture of this face

recognition-based attendance system proposed by the authors:

Figure 2.3.1.9 Architecture of face recognition-based attendance system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

Table 2.3.1.2 Comparison of various algorithms for face recognition

Method No. of Images Success Rate (%)

Principal Component Analysis (PCA) 400 79.65

Principal Component Analysis + Relevant

Component Analysis

400 92.34

Independent Component Analysis 40 Gauss function 81.35

Support Vector Machines - 85-92.1

Neural Networks - 93.7

Eigenfaces Method 70 92-100

Eigenfaces with PCA method - 92.30

2.3.2 Convolutional Neural Network (CNNs)

Arsenovic et al. [8] introduced "FaceTime," a deep learning-based face recognition system

utilizing Convolutional Neural Networks (CNNs) for real-time attendance tracking. This

system offers an efficient alternative to traditional manual methods. Their study demonstrated

the robustness of CNNs in handling variations in facial features, lighting, and angles, making

it a reliable option for educational institutions and organizations. The system's implementation

in academic settings showed promising results, indicating its potential for wider adoption. The

block diagram proposed by the authors outlines the steps in their face recognition process

(Figure 2.3.2.1).

Figure 2.3.2.1 Deep Learning-Based Face Recognition Block Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Step 1: Face Detection

The initial stage involves identifying the presence and location of faces within an image or

video frame. The authors in [9] highlight the significant advancements of CNNs in both image

classification and object detection, making them highly effective for face detection tasks.

Step 2: Face Landmarks and Image Positioning

Once a face is detected, the system proceeds to pinpoint key facial landmarks (e.g., eyes, nose,

mouth) and determines the face's precise position and orientation. Arsenovic et al. utilized a

sophisticated CNN-based face detector developed by Li et al. [11], which consists of a cascade

of six interconnected CNNs for robust and accurate face localization. This face detector, built

using the Torch [12] framework, forms the front-end of their recognition pipeline.

Step 3: Face Embedding

To create a unique representation for each face, the system employs FaceNet, a deep CNN

architecture. FaceNet learns to map face images into a compact 128-dimensional Euclidean

space, generating a 128-byte embedding for each face. This embedding serves as a distinctive

"fingerprint" for the individual, where similar faces produce close embeddings, and dissimilar

faces produce distant embeddings. The training of FaceNet utilizes a triplet loss function,

comparing images of the same person with images of different individuals.

Step 4: Classification

The final step involves identifying the individual based on their generated face embedding.

Arsenovic et al. trained a classifier, specifically a Support Vector Machine (SVM), on the

embeddings extracted from a dataset of known individuals. To evaluate their system, they

integrated it as a Face Recognition API into an existing RFID-based employee attendance

system. The system continuously analyzed video feeds, detected faces, generated embeddings,

and used the trained SVM classifier to predict the identity of the person. The predicted identity,

along with a confidence score, the captured image, and timestamp, were stored in a database

for analysis and comparison with the RFID data.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Figure 2.3.2.2 Face Recognition API and current RFID-based system

The effectiveness of the integrated face recognition system was assessed over a three-month

period by tracking employee entrances and exits. The recorded data was subsequently validated

against the existing RFID card records. The prediction outcomes, including a confusion matrix,

are provided in Table 2.2.2.1, and the per-class accuracy of the deep learning model is shown

in Figure 2.3.2.3. Notably, the system proposed by Arsenovic et al. [10] demonstrated a high

overall accuracy of 95.02%. This level of performance was achieved by training the model on

a relatively small number of images per employee, leveraging a data augmentation strategy to

enhance the training data.

Figure 2.3.2.3 CNN Architecture

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Table 2.3.2.1 Deep Learning-Based Face Recognition Result Confusion Matrix

Classes

Empl 1 Empl 2 Empl 3 Empl 4 Empl 5 Predictions

230 8 0 6 1 Empl 1

4 269 0 3 1 Empl 2

0 0 301 0 3 Empl 3

8 4 9 138 0 Empl 4

2 5 6 1 227 Empl 5

Figure 2.3.2.4 Deep Learning-Based Face Recognition Accuracy per class

The use of Convolutional Neural Networks (CNNs) enables real-time face detection and

recognition. The authors also enhanced system capabilities without a complete infrastructure

overhaul by integrating the face recognition API with an existing RFID-based attendance

system. However, the authors noted that the proposed model's accuracy could be significantly

impacted by lighting conditions, particularly images captured in daylight with open windows,

which led to a higher rate of incorrect predictions. Additionally, the performance of the CNN-

based face recognition model heavily relies on the quality and diversity of the training data,

with limited or biased data potentially leading to reduced accuracy and generalization issues.

On the other hand, the authors suggested that applying gradient transformation to the images

could help mitigate lighting issues by adjusting brightness and contrast, thereby making the

model more resilient to variations in lighting conditions. Furthermore, implementing automatic

retraining of the deep CNN model at regular intervals using newly captured images with high

prediction accuracy could continuously improve the model's performance and allow it to adapt

to new variations and conditions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

2.3.3 Siamese Networks

Siamese Networks are a class of neural network architecture that employs two or more identical

subnetworks to compute output vectors for input pairs. These output vectors are then compared

to measure the similarity or dissimilarity between the inputs. In the context of face recognition,

Siamese Networks are particularly useful for verifying whether two face images belong to the

same individual.

The core idea behind Siamese Networks is to learn a function that maps face images into a

feature space where images of the same person are close to each other, while images of different

people are far apart. This is achieved by training the subnetworks to produce similar

embeddings (vector representations) for matching pairs and dissimilar embeddings for non-

matching pairs.

Several studies have explored the effectiveness of Siamese Networks in addressing specific

challenges in face recognition. Song et al. (2019) [15] focused on the issue of occlusion, a

significant problem in real-world scenarios where faces may be partially obscured by objects

like masks or scarves. Their work, "Occlusion Robust Face Recognition Based on Mask

Learning with Pairwise Differential Siamese Network," proposed a novel approach to mitigate

the impact of occlusions. The authors introduced a "Pairwise Differential Siamese Network"

that learns to compare face images in a way that is less sensitive to occluded regions. The

network incorporates a "mask learning" component, potentially learning to identify or down-

weight the obscured parts of the face during the comparison process. This approach

demonstrates the potential of Siamese Networks to enhance the robustness of face recognition

systems in challenging conditions. The proposed system by the author [15] is shown as

Figure 2.3.3.1 Proposed Pairwise Differential Siamese Network

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

Heidari and Fouladi-Ghaleh (2020) [16] addressed another critical challenge: face recognition

with small-samples datasets. Their paper, "Using Siamese Networks with Transfer Learning

for Face Recognition on Small-Samples Datasets," explored the combination of Siamese

Networks with transfer learning. In many practical applications, including the initial enrollment

phase of an attendance system, the number of available images per individual may be limited.

The authors leveraged pre-trained weights from a model trained on a large, general dataset

(likely a large-scale image dataset) and fine-tuned the Siamese network on a smaller, task-

specific face recognition dataset. This transfer learning strategy enables the network to learn

effective face representations even with limited data per identity. Their work highlights the

ability of Siamese Networks to learn robust similarity metrics from small datasets, making

them well-suited for scenarios where collecting many images per user is impractical.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

2.4 Limitation of Previous Studies

While prior research has advanced the field of face recognition, several critical limitations

reduce their suitability for real-world attendance management.

Firstly, many studies remain restricted to controlled conditions, evaluating performance only

under uniform lighting, neutral facial expressions, and frontal poses. In classroom

environments, however, faces are often captured at non-frontal angles, in low or fluctuating

lighting, and with dynamic expressions, all of which degrade recognition performance.

Secondly, existing systems are frequently built on datasets lacking demographic diversity.

Limited representation of different ethnicities, facial structures, or age groups often leads to

biased recognition models. Such imbalances can result in unfair attendance outcomes,

particularly in multicultural educational environments.

Another major gap lies in the handling of occlusions and natural variations. While some

studies focus only on frontal, unobstructed faces, students may appear with masks, glasses, or

partially hidden by hair and hands. Systems not designed for these conditions experience

significant drops in recognition accuracy. Although methods such as Siamese Networks (Song

et al., 2019) attempt to mitigate occlusion issues, these solutions remain limited in

generalizability.

Finally, many existing studies overlook robust liveness verification. Without integrated

countermeasures, spoofing attacks—such as presenting photos, videos, or even 3D masks—

can be used to bypass recognition systems. This makes them vulnerable to proxy attendance,

a critical concern in academic contexts where trust and authenticity are paramount.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

2.5 Summary of previous studies

Face Recognition Techniques:

Table 2.5.1 Comparison between recognition techniques

Papers Method Advantages Disadvantages

[6], [7] PCA with

Eigenfaces

Dimensionality reduction:

compresses data while

preserving critical features.

Simplicity: straightforward to

implement. Recognition:

captures principal components

for classification.

Linear assumption: struggles

with nonlinear variations. Poor

generalization: sensitive to

lighting, pose, and expression

changes. Preprocessing

needed: requires alignment and

normalization.

[8]–

[11]

Convolutional

Neural

Networks

Automatic feature learning

extracts complex features

directly from raw data. High

accuracy: outperforms

traditional methods in face

recognition. Robustness: more

tolerant to variations in pose,

lighting, and expression.

High resource demand

requires powerful GPUs and

large datasets. Complexity:

needs extensive

hyperparameter tuning and

longer training. Data

dependency: performance

degrades with limited training

data.

[15],

[16]

Siamese

Networks

Few-shot learning works with

limited labeled data. Effective

verification: measures

similarity instead of

classification. Flexible: less

dependent on large datasets.

Pairwise, training

requirement needs balanced

positive/negative pairs.

Sensitive to data quality: poor

pair selection reduces accuracy.

Training complexity: more

complicated than classification-

based CNNs.

In summary, among the reviewed approaches, CNN-based models stand out as the most

effective due to their robustness, adaptability, and superior accuracy in handling real-world

conditions. Hence, the proposed system adopts a deep CNN with residual blocks to strengthen

feature learning and ensure reliable performance in academic attendance applications.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

2.6 Proposed Solutions

To address the shortcomings identified in traditional face recognition systems and previous

attendance management solutions, this project proposes a real-time facial recognition

attendance system that integrates deep learning-based recognition, robust liveness detection,

and secure role-based access.

The system begins with a face registration process, where each student captures multiple

facial images from a live video stream. This ensures the collection of diverse samples under

varying poses and expressions, improving robustness and fairness.

For face detection, the system employs the Dlib face detector, which effectively locates faces

and extracts aligned facial regions, even under moderate variations in pose and lighting.

For feature extraction, a custom-built deep Convolutional Neural Network (CNN) with

residual blocks is implemented. Residual connections allow deeper networks to be trained

without vanishing gradients, thereby improving the learning of complex facial patterns. The

network generates 1024-dimensional facial embeddings, representing unique identity

features for each student.

Identity verification is conducted using cosine similarity, which measures the angular

distance between embeddings. This metric provides a robust similarity measure, less affected

by illumination or scale variations, ensuring reliable recognition in diverse conditions.

To prevent spoofing and proxy attendance, the system integrates multi-factor liveness

detection during both registration and recognition. The liveness module evaluates:

• Eye aspect ratio (EAR) for blink detection.

• Mouth ratio (MAR) for lip or mouth movements.

• Head pose estimation to detect natural head rotations.

• Texture and motion cues to distinguish live faces from printed photos or screens.

This multi-factor approach significantly enhances resistance against spoofing attacks.

For system management, the platform includes role-based access control (RBAC). Lecturers

can manage courses, create class sections, and generate attendance reports, while students are

restricted to scanning attendance and viewing personal attendance records.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

The backend leverages a centralized SQLite database that stores facial embeddings,

attendance logs, and user information. This ensures real-time synchronization and supports

analytical functions such as attendance rate monitoring and reporting.

Finally, the system is deployed as a Flask web application, with a responsive interface

optimized for both desktop and mobile devices. This guarantees accessibility and usability

across different platforms, making the solution practical for academic institutions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Chapter 3

System Methodology/Approach OR System Model

This chapter outlines the methodology adopted to develop the real-time face detection and

recognition attendance system using deep learning models with liveness detection techniques.

3.1 System Design Diagram/Equation

3.1.1 System Architecture Diagram

The system architecture in Figure 3.1.1.1 illustrates the full data flow from user login to

attendance marking. It is divided into three primary components:

1. User Authentication and Face Registration

2. Liveness Detection (Active Challenge-Response)

3. Face Recognition and Attendance Marking

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Figure 3.1.1.1 System Architecture Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

3.1.1.1 User Authentication and Face Registration Flow

The system workflow begins with user authentication via the Flask application's secure login

portal. Upon successful login, the system checks the user's biometric registration status. If no

facial data exists, the user is seamlessly guided to the registration module, which activates the

integrated camera.

Within the live video feed, a pre-trained Dlib 68-point facial landmark detector identifies

key facial features, including the eyes, nose, mouth, and jawline. This landmark model is

foundational to both face alignment and liveness detection. Once a stable face is detected with

a confidence score exceeding 90%, the system automatically captures five high-quality images.

Each captured image undergoes a mandatory preprocessing pipeline to ensure standardization

for the CNN model:

• Geometric Alignment: Facial landmarks are used to normalize the face's orientation,

correcting for minor head tilts.

• Image Resizing: Dimensions are standardized to match the input requirements of the

CNN model (e.g., 64x64 pixels).

• Photometric Normalization: Techniques like histogram equalization are applied to

mitigate the effects of varying lighting conditions.

The preprocessed images are then fed into a custom-trained deep Convolutional Neural

Network (CNN). This network functions as a feature extractor, transforming each facial image

into a high-dimensional 1024-dimensional feature vector, known as an embedding. To create

a single, robust identity template that is resilient to minor variations, the five generated

embeddings are mathematically averaged. This final average embedding is then securely stored

in the database and uniquely associated with the user's profile.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

3.1.1.2 Liveness Detection: Active Challenge-Response Module

To prevent spoofing attacks from non-live sources, such as static photographs or video replays,

the system incorporates a critical active liveness detection stage. This module ensures the

integrity of the attendance record by verifying the user's physical presence through

a challenge-response mechanism, where the user is prompted to perform simple actions that

a static source cannot replicate.

A. Facial Landmark-Based Metric Analysis

The foundation of the liveness detection system lies in the accurate detection and tracking of

facial landmarks. These landmarks are specific points on a face. The system utilizes a 68-point

facial landmark model from Dlib, which are the standard in many computer vision applications,

to locate these key features in each frame.

Figure 3.1.1.2.1 Dlib 68-Facial Landmarks in a Face

I. Eye Aspect Ratio (EAR) for Blink Detection

Blink detection is a widely accepted biometric signal indicating liveness. This system

employs the Eye Aspect Ratio (EAR) metric, a method proposed by Soukupová and

Čech (2016). The EAR is computed from six facial landmarks surrounding each eye

(typically detected using a 68-point facial landmark predictor).

We then find the start and end values of landmark ids for both the eye. You can do it

manually also (37-42 for the right eye and 43-48 for the left eye) but

using face_utils you can get these values by just passing the eye name.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Figure 3.1.1.2.2 Dlib Facial Landmarks

Figure 3.1.1.2.3 EAR for Open and Closed Eye

The formula is given by:

𝐸𝐴𝑅 =
‖𝑝2 − 𝑝6‖ + ‖‖𝑝3 − 𝑝5‖‖

2‖𝑝1 − 𝑝4‖

Where:

• p1, …, p6 are the 2D coordinates of the eye landmarks.

A sudden drop in EAR followed by a quick rebound to baseline is interpreted as a

valid blink. Each recognized blink adds to the blink score, which contributes to the

final liveness score.

II. Mouth Aspect Ratio (MAR) for Smile and Mouth Open Detection

MAR is used to quantify the state of the mouth. This metric is essential for the ‘smile’

and ‘open mouth’ challenges. It is calculated using the landmarks that define the mouth

(points 49 through 68). The system computes the ratio of the vertical distance between

the upper and lower lips to the horizontal width of the mouth. The formula is:

𝑀𝐴𝑅 =
‖𝑝52 − 𝑝58‖ + ‖‖𝑝54 − 𝑝56‖‖

2‖𝑝49 − 𝑝55‖

Where the points correspond to key vertical and horizontal positions on the lips.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

• Open Mouth Detection: A significant increase in the MAR value indicates that

the mouth is open.

• Smile Detection: A smile is characterized by widening of the mouth (increase in

the horizontal distance) without a significant increase in the vertical opening.

B. 3D Head Pose Estimation – Motion Detection:

Natural micro-movements of the head are another strong indicator of liveness. A static

photo cannot change its orientation, and a simple video replay often has limited, repetitive

motion. The system estimates the head's 3D orientation—specifically its pitch, yaw, and

roll—to verify that the user can perform specific head movements like nodding or turning.

Figure 3.1.1.2.4 Head Motion Classification

Pitch (nodding "yes"), Yaw (shaking "no"), and Roll (side-to-side tilt) are the three

degrees of freedom for head rotation.

The calculate_head_pose method implements this by using a 3D facial model and the

cv2.solvePnP function. This process works as follows:

1. Define a Generic 3D Face Model: A standardized 3D model of key facial points

(like the nose tip, chin, and eye corners) is defined.

2. Map 2D Image Points: The corresponding 2D landmark points detected in the

current frame are identified.

3. Solve for Pose: The cv2.solvePnP ("Perspective-n-Point") algorithm finds rotation

and translation that maps the 3D model points to the observed 2D image points.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

This requires camera information, which is estimated based on the frame's

dimensions.

4. Calculate Angles: The resulting rotation vector is converted into the more

intuitive pitch, yaw, and roll angles.

These angles are then used in the "turn_left," "turn_right," and "nod" challenges. For

example, to complete the "turn_left" challenge, the user's calculated yaw angle must

exceed a predefined negative threshold (-self.config.HEAD_MOVEMENT_RANGE).

C. Anti-Spoofing Heuristics: Texture and Motion Analysis

To further defend against spoofing attacks, such as displaying a video of a person on a high-

resolution screen, two additional heuristics are employed: texture analysis and motion analysis.

I. Texture Analysis

A face captured live by a camera will have a different texture profile than a face

displayed on a digital screen or a printed photograph. Screens have pixel grids, and

photos can have moiré patterns or a lack of fine detail. The calculate_texture_score

function analyzes the texture of the facial region. It applies a Laplacian operator to

the grayscale image of the face and calculates the variance of the result. The Laplacian

operator is sensitive to edges and fine details.

• A high variance suggests a sharp, detailed image, typical of a live face.

• A low variance suggests a blurry or uniform surface, which could indicate a

spoof attempt (e.g., an out-of-focus photo or a smooth screen surface).

This texture score provides a continuous measure of authenticity that complements the

other behavioral checks.

II. Motion Analysis

While head pose estimation tracks large-scale movements, calculate_motion_score

detects subtle, frame-to-frame motion. It calculates the meaning of the absolute

difference between the current and previous grayscale frames. Even a person trying

to stay still will exhibit natural, small movements (from breathing, slight sways, etc.),

which will result in a non-zero motion score. A complete lack of motion (a score of

or near zero) is a strong indicator of a static image.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

D. The Challenge-Response Workflow and Liveness Decision

The system's logic culminates in the challenge-response workflow, managed by the

analyze_frame and process_challenge methods.

1. Initiation: When a face is detected, the system selects a random challenge from a

predefined list (e.g., "blink_twice," "smile," "turn_left").

2. Guidance and Progress: The user is presented with an instruction. The system

continuously processes incoming frames, calculating the relevant metrics (EAR, MAR,

head pose). The progress towards completing the challenge is calculated and can be

displayed to the user in real-time. For instance, if the challenge is to blink twice, the

progress bar would fill by 50% after the first blink.

3. Timeout: To ensure the check is completed efficiently and to prevent indefinite stalling,

each challenge has a timeout (self.config.CHALLENGE_TIMEOUT). If the user fails to

complete the action within this window, the challenge fails, and a new one may be

initiated.

4. Completion and Decision: Once the criteria for a challenge are met (e.g.,

self.blink_count >= 2), the challenge is marked as completed. The analyze_frame

function then sets the is_live flag to True and the confidence to 1.0. This successful

verification confirms the user's presence, allowing the primary action (e.g., marking

attendance) to proceed.

This multi-faceted approach, combining physiological cues (blinking), voluntary actions

(smiling, turning head), and anti-spoofing heuristics (texture analysis), creates a robust and

user-friendly liveness detection system that is difficult to bypass with common spoofing

techniques.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

3.1.1.3 Face Recognition and Attendance Marking Flow

Once face is detected and the liveness is confirmed, the system performs the final identity

verification. The deep CNN model processes the live-verified face to extract its final,

discriminative 1024-dimensional embedding, denoted as Elive. This embedding is then

compared against the pre-registered templates, Estored, retrieved from the database.

The comparison metric is Cosine Similarity, which measures the cosine of the angle between

the two embedding vectors in the high-dimensional space. A value closer to 1 indicates a higher

degree of similarity. The formula is:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑙𝑖𝑣𝑒, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑) =
𝐸𝑙𝑖𝑣𝑒 ∙ 𝐸𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑

‖𝐸𝑙𝑖𝑣𝑒‖ ∙ ‖𝐸𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑‖

Where:

• 𝐸𝑙𝑖𝑣𝑒 ∙ 𝐸𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 = dot product of the two vectors.

• ‖𝐸𝑙𝑖𝑣𝑒‖ 𝑎𝑛𝑑 ‖𝐸𝑙𝑖𝑣𝑒‖ are the L2 norms (magnitude) of the vectors.

If the similarity score meets or exceeds a strict threshold of 90% (0.90), the system confirms

the student's identity. Upon successful recognition, the system finalizes the process by marking

the student's attendance, logging the precise timestamp and associated location data into the

attendance database. This final step creates a secure, non-repudiable audit trail for each

attendance record.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

3.2 Use Case Diagram and Description

3.2.1 Use Case Diagram - Student

Figure 3.2.1.1 Use Case Diagram for Student

This diagram visually represents the interactions between the student actor and the Real-time

Face Recognition Attendance System. It outlines the primary functions a student can perform,

such as registering, logging in, managing their facial data, marking attendance, and viewing

their records

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Student Use Case Description:

Use Case 1: Login

Table 3.2.1.1 Use Case Description (Login)

Field Description

Use Case Name Login

ID UC01

Importance Level High

Primary Actor Student

Use Case Type Basic, Essential

Stakeholders and

Interests

1. Student: Secure access to their dashboard and attendance

functions

2. System: Must verify identity against hashed passwords in the

database and log access events.

Brief Description The student logs into the system using their registered email and

password.

Trigger Student navigates to the login page and submits the login form.

Relationships • Include: Authenticate User

• Extend: Log timestamp into database

Normal Flow 1. Students enter their email and password.

2. The system hashes the entered password and compares it with

the stored hash for the given email.

3. If valid, the system creates a user session and records a login

timestamp.

4. Students are redirected to their personal dashboard.

Sub flows None

Alternate/Exceptional

Flows

1a. Invalid credentials → Display "Invalid email or password"

error message.

1b. System offline → Display “Service unavailable.”

1c. Account not yet verified (if applicable) → Display "Please

verify your email address.

Use Case 2: Register Account

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Table 3.2.1.2 Use Case Description (Register Account)

Field Description

Use Case Name Register Account

ID UC02

Importance Level High

Primary Actor Student

Use Case Type Basic, Essential

Stakeholders and

Interests

Student: Needs a valid account for system access.

System: Must store valid user information and prevent

duplicate accounts

Brief Description A new student creates an account by providing personal details

like name, student ID, email, and password.

Trigger Student clicks “Register” on login page.

Relationships Include: Input Validation

Extend: Create Account, Update Database

Normal Flow 1. Students fill out the registration form (Full Name, Student

ID, Email, Password)

2. On submission, the system performs server-side validation

3. The system hashes the password and creates a new user

record

4. The new account is stored in the users table in the database.

Subflows None

Alternate/Exceptional

Flows

2a. Email or Student ID already exists → Display error: “An

account with this email/ID already exists”.

2b. Invalid input → Display validation error.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Use Case 3: Register Face

Table 3.2.1.3 Use Case Description (Register Face)

Field Description

Use Case Name Register Face

ID UC03

Importance Level High

Primary Actor Student

Preconditions Students must be logged in.

Postconditions A serialized facial embedding is stored in the database,

associated with the student's user ID.

Use Case Type Basic, Essential

Stakeholders and

Interests

Student: Needs a registered face to use the attendance marking

feature

System: Must store unique, high-quality, and live-verified facial

embedding.

Brief Description The system captures the student’s face via a live video

stream, validates liveness, generates a composite facial

embedding from multiple captures, and stores it.

Trigger Student clicks “Register Face” from their dashboard.

Relationships Include: Access Camera via Browser API, Detect Face, Perform

Blink Detection (Liveness), Extract Facial Features, Generate

Composite Embedding, Store Embedding

Extend: Check if Face is Already Registered

Normal Flow 1. Student selects “Register Face.”

2. System checks if already registered.

3. The browser prompts the student for camera permission.

Upon granting, the system activates the camera and displays

the video feed.

4. The system guides the student to align their face

and analyses the video stream in real-time for active

challenge response to confirm liveness

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

5. The final embedding is serialized and stored in the database.

A success message is displayed.

Subflows 4a. If face detection or liveness check fails intermittently, the

system prompts the user to "Hold still" or "Ensure good lighting"

and continues trying

Alternate/Exceptional

Flows

2a. Face already registered → Display “You have already

registered your face.”

3a. Camera access denied by user → Display "Camera access is

required for face registration."

3b. No face detected for a prolonged period → Display “No face

detected. Please position your face in the frame.”

3c. No face detected → Prompt retry.

3d. 3c. Liveness check repeatedly fails → Display “Liveness

check failed.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Use Case 4: Scan Attendance

Table 3.2.1.4 Use Case Description (Scan Attendance)

Field Description

Use Case Name Scan Attendance

ID UC04

Importance Level Critical

Primary Actor Student

Preconditions • Student is logged in and has a registered face

• Students are enrolled in the target course-section

• The lecturer has activated the attendance session for this

specific class section.

Postconditions A new attendance record is created in the database with the

student's ID, section ID, status ('Present'), timestamp

Use Case Type Basic, Essential

Stakeholders and

Interests

Student: Wants attendance marked accurately and efficiently

Lecturer: Needs accurate, cheat-proof attendance records.

System: Must validate identity, enrollment, schedule, and

location to ensure data integrity.

Brief Description The student initiates attendance marking. The system first

verifies their enrollment, the class schedule, and their physical

proximity to the lecturer. If all checks pass, it performs facial

recognition with a liveness check to mark attendance.

Trigger Student selects a specific class section from their dashboard and

clicks “Mark Attendance.”

Relationships Include: Verify Enrollment, Verify Schedule, Verify

Proximity, Access Camera via Browser API, Perform

Liveness Detection, Recognize Face, Mark Attendance

Extend: Check if Face Registered

Normal Flow 1. Students select class sections.

2. The system performs three sequential checks:

a. Enrollment Check: Verifies the student is enrolled in

the selected section.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

b. Schedule Check: Confirms the current time is within

the class's scheduled start and end time

3. Only if all three checks pass, does the system activate the

camera for face scanning

4. The system performs a liveness check via blink detection to

prevent spoofing.

5. Upon confirming a live face, the system extracts its

embedding and compares it against the student's stored

embedding

6. If the face similarity score is above the defined threshold

(e.g., >90%), the system creates an attendance record with

the current timestamp and the student's captured GPS

location

7. The system displays a confirmation: “Attendance Marked

Successfully.”

Alternate/Exceptional

Flows

2a. Enrollment check fails → Display “You are not enrolled in

this section.”

2b. Schedule check fails → Display “This class session is not

active currently.

2c. Proximity check fails → Display “You are out of range.

Please move closer to the class location.”

3a. Student has no registered face → Redirect to the "Register

Face" page.

4a. Liveness check fails → Display “Liveness check failed.

Please try again.”

5a. Face not recognized (low similarity) → Display “Face not

recognized. Please try again.”

5b. Student has already marked attendance for this session →

Display "Attendance already marked."

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

3.2.2 Use Case Diagram - Lecturer

Figure 3.2.2.1 Use Case Diagram for Lecturer

The use case diagram for the lecturer in the Real-time Face Recognition using Deep

Learning Attendance System outlines the key functionalities available to lecturers,

emphasizing course and student management, as well as attendance monitoring. Lecturers can

log in and register accounts, with proper authentication and validation. Once authenticated,

they can create class sections or schedules, enroll students into courses, and the system will

automatically assign students to appropriate class sections. Lecturers also can view class lists,

update course information, monitor real-time attendance records, and download attendance

reports. Each primary function is supported by system-level processes such as input validation,

database updates, and data retrieval to ensure accurate, efficient operation.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Lecturer Use Case Description:

Use Case 1: Login

Table 3.2.2.1 Use Case Description (Login)

Field Description

Use Case Name Login

ID UC-L1

Importance Level High

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs secure, role-based access to management

functions.

System: Must authenticate users against stored credentials and

restrict access.

Brief Description The lecturer logs into the system using their registered email

and password to gain access to their dashboard.

Trigger Lecturer submits the login form.

Relationships Include: Authenticate User

Extend: Log access timestamp

Normal Flow 1. The lecturer enters their email and password.

2. The system hashes the entered password and compares it

against the stored hash for the email provided.

3. If credentials are valid, the system creates a server-side

session and records a login timestamp

4. The lecturer is redirected to their main dashboard.

Alternate/Exceptional

Flows

1a. Invalid credentials → Display error message: "Invalid email

or password."

1b. System database is offline → Display error: "Service

currently unavailable."

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

Use Case 2: Register Account

Table 3.2.2.2 Use Case Description (Register Account)

Field Description

Use Case Name Register Account

ID UC-L2

Importance Level Medium

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs a straightforward method to create an account.

System: Must securely store lecturer information and prevent

duplicate accounts.

Brief Description A new lecturer creates an account by providing personal and

professional details.

Trigger Lecturer clicks the “Register” link on the login page.

Relationships Include: Input Validation

Extend: Create Account, Update Database

Normal Flow 1. The lecturer completes the form.

2. On submission, the system performs server-side

validation to check for required fields, valid email format

3. The system hashes the password using a strong

algorithm

4. A new record is created in the users table with the role

'lecturer' and stored in the database.

Alternate/Exceptional

Flows

2a. Invalid input format → Display specific field-level

validation errors (e.g., "Please enter a valid email address.").

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Use Case 3: Enroll Student in Course

Table 3.2.2.3 Use Case Description (Enroll Student in Course)

Field Description

Use Case Name Enrolling Student in Course

ID UC-L3

Importance Level High

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs to efficiently manage class rosters.

Student: Must be formally enrolled to participate in a course.

Brief Description The lecturer enrolls one or more existing students on a specific

course they manage.

Trigger The lecturer selects a course and navigates to the "Enroll

Students" function.

Relationships Include: Input Validation

Extend: Update Database

Normal Flow 1. Lecturers select a course from their course list.

2. Lecturer selects one or more students to enroll (e.g., from a

searchable list or by entering student IDs).

3. The system validates the selected students and courses exist.

4. The system creates records on the enrollments join table,

linking the student IDs with the course ID.

Alternate/Exceptional

Flows

2a. Student is already enrolled in the course → The system skips

the duplicate entry and provides a notification: "[Student Name]

is already enrolled."

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

Use Case 4: Create Class Section

Table 3.2.2.4 Use Case Description (Create Class Section)

Field Description

Use Case Name Create Class Section

ID UC-L4

Importance Level High

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs to define specific class schedules for a course

Student: Needs to know the exact time and day for their classes.

Brief Description The lecturer creates a specific, scheduled class section (e.g.,

tutorial, lab) and links it to an existing course.

Trigger Lecturer clicks “Add Class Section” from a course

management page.

Relationships Include: Input Validation.

Extend: Update Database

Normal Flow 1. The lecturer enters section details, including Section Name/Code,

venue, and datetime.

2. A new record is created in the class_sections table, linked to

the courses table via a foreign key.

Subflows None

Alternate/Exceptional

Flows

2a. Invalid course selection → Error.

2b. Schedule conflict → Alert lecturer.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

Use Case 5: View Attendance Record

Table 3.2.2.5 Use Case Description (View Attendance Record)

Field Description

Use Case Name View Attendance Record

ID UC-L5

Importance Level High

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs to monitor student attendance in real-time or

historically.

Brief Description The lecturer views the detailed attendance records for a specific

class section.

Trigger The lecturer selects a course and then a specific section to view

its records.

Relationships Include: Fetch Records from DB

Normal Flow 1. Lecturer selects a course and a class section.

2. The system retrieves all attendance records associated with

that section.

3. The system displays the records in a table, showing Student

Name, Student ID, Date, Check-in Timestamp, and Status

Subflows None

Alternate/Exceptional

Flows

No attendance has been taken yet → Display message: “No

attendance records found for this section.”

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Use Case 6: Generate & Download Attendance Report

Table 3.2.2.6 Use Case Description (Generate & Download Attendance Report)

Field Description

Use Case Name Generate & Download Report

ID UC-L6

Importance Level Medium

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs an offline, portable copy of attendance records

for administrative purposes.

Brief Description The lecturer generates and downloads a formatted attendance

report for a class section.

Trigger Lecturer clicks a “Download Report” button on the attendance

view page for the selected class section.

Relationships Include: Fetch Records from DB

Normal Flow 1. The lecturer optionally selects report criteria.

2. Lecturer selects a file format (CSV, PDF, Excel)

3. The system retrieves the relevant attendance data from the

database.

4. The system generates the file in the selected format and

initiates a download in the lecturer's browser.

Subflows None

Alternate/Exceptional

Flows

2a. No data matches the selected criteria → Display message:

"No data available for the selected criteria."

2b. Data retrieval or file generation error → Display error:

"Could not generate the report. Please try again."

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Use Case 7: Update Course Info

Table 3.2.2.7 Use Case Description (Update Course Info)

Field Description

Use Case Name Update Course Info

ID UC-L7

Importance Level Medium

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs to keep course information accurate and up to

date.

Brief Description The lecturer edits the details of an existing course.

Trigger Lecturer selects a course and clicks an “Edit” button.

Relationships Include: Input Validation

Extend: Update Database

Normal Flow 1. Lecturer selects a course to edit.

2. The system displays a form pre-populated with the

current course information.

3. The lecturer modifies the desired fields and submits the

form.

4. The system validates the new information.

5. The corresponding record in the courses table is updated in

the database.

Subflows None

Alternate/Exceptional

Flows

4a. Updated course code conflicts with an existing course →

Display error: "This course code is already in use."

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Use Case 8: View Class List

Table 3.2.2.8 Use Case Description (View Class List)

Field Description

Use Case Name View Class List

ID UC-L8

Importance Level Medium

Primary Actor Lecturer

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs to see a simple list of all students enrolled in a

class.

Brief Description The lecturer views a list of all students currently enrolled in a

specific class section.

Trigger Lecturer selects a course and a section.

Relationships Include: Fetch Records from DB

Normal Flow 1. Lecturer selects a course and a specific class section.

2. The system queries the enrollments table to retrieve the list

of students for that section

3. The system displays a list containing student details

like Student Name, Student ID, and Email.

Subflows None

Alternate/Exceptional

Flows

2a. No students are enrolled → Display message: “No students

are currently enrolled in this section.”

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Use Case 9: Auto-assign to Class Section

Table 3.2.2.9 Use Case Description (Auto-Assign to Class Section)

Field Description

Use Case Name View Class List

ID UC-L9

Importance Level Medium

Primary Actor System

Use Case Type Basic, Essential

Stakeholders and

Interests

System: Ensures efficient scheduling of students into available

sections.

Students: Are automatically placed into class sections upon

course enrollment.

Brief Description The system automatically assigns newly enrolled students to an

available class section for that course.

Trigger A student is successfully enrolled in a course (triggered by UC-

L3: Enroll Student in Course).

Relationships Extend: Enroll Student in Course

Normal Flow 1. Upon successful student enrollment in a course, the system

checks for available class sections for that course.

2. The system queries the enrollments table to retrieve the list

of students for that section

3. The system displays a list containing student details

like Student Name, Student ID, and Email.

Subflows None

Alternate/Exceptional

Flows

2a. No class sections exist for the course → The student is

enrolled in the course but remains unassigned to a section. A

notification may be logged for the lecturer.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Use Case 10: Activate/Deactivate Class Session

Table 3.2.2.10 Use Case Description (Activate/Deactivate Class Session)

Field Description

Use Case Name Activate/Deactivate Class Session

ID UC-L10

Importance Level Critical

Primary Actor Lecturer

Preconditions • The lecturer is logged in.

• The class section is scheduled for the current day.

Postconditions • The class section is marked as "active" or "inactive" in the

database, controlling the window for student check-ins.

Use Case Type Basic, Essential

Stakeholders and

Interests

Lecturer: Needs a simple control to start and stop the attendance-

taking window

System: Requires an "active" flag to validate student attendance

attempts.

Brief Description The lecturer starts an attendance session, creating a time-bound

window during which students can mark their attendance. They

can later end the session.

Trigger Lecturer clicks a “Start Session” or “End Session” button on

their dashboard for a specific class.

Relationships Include: Update Database

Normal Flow 1. Lecturer selects the current class section from their

dashboard

2. Lecturer clicks the “Start Attendance Session” button.

3. The system updates the session's status to "active" in the

database and records the start time.

4. The UI updates to show the session is "In Progress" and

presents an "End Session" button.

5. At the end of the class, the lecturer clicks the “End Session”

button.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

6. 6. The system updates the session's status

to "inactive," preventing any further attendance marking.

Subflows None

Alternate/Exceptional

Flows

2a. Session is already active → The "Start Session" button is

disabled or hidden, showing only the "End Session" option.

5a. Attempting to end a session that is not active → The "End

Session" button is disabled or hidden.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Chapter 4

System Design

The development of the core face recognition model followed a structured and systematic

pipeline, encompassing data acquisition, preprocessing, model architecture design, training,

and rigorous evaluation. This pipeline ensures the final model is both accurate and robust. The

entire process is visually summarized in the block diagram below.

4.1 Model Training Pipeline

Figure 4.1.1 Model Training Block Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

1. Import Dependencies

The construction and training of the face recognition model were facilitated by a curated

ecosystem of powerful Python libraries. The selection of this particular stack was deliberate,

leveraging the strengths of each component to create an efficient and effective development

workflow:

• TensorFlow and Keras: As the foundational deep learning framework, this combination

provides both high-level abstraction through the Keras API for rapid prototyping and

low-level flexibility through TensorFlow for custom operations. It was used to

meticulously construct the Convolutional Neural Network (CNN) architecture layer-by-

layer (e.g., Conv2D, MaxPooling2D, Dense), manage the entire training loop

via model.fit, and conduct the final performance assessment using model.evaluate.

• OpenCV: This library is the de facto standard for computer vision tasks. In this project,

it was employed for essential image preprocessing tasks, such as standardizing image

dimensions with cv2.resize, which is a critical step to ensure all inputs to the neural

network are of a uniform size.

• NumPy: The bedrock of scientific computing in Python, NumPy was indispensable for

all numerical operations. Its highly optimized N-dimensional array objects provided data

structures for efficiently manipulating image pixel data throughout the entire pipeline.

• Matplotlib: A model's internal learning process can often be a "black box." Matplotlib

was crucial for peering inside this box through data and model visualization. It was used

to display sample images (plt.imshow) for sanity checks and, more importantly, to plot

the model's learning curves (accuracy and loss over epochs), providing vital insights into

the training dynamics and helping diagnose issues like overfitting.

•

• scikit-learn: This versatile machine learning library streamlined several key, non-deep-

learning processes. Its modules were used for fetching and managing the LFW dataset

(fetch_lfw_people), reliably partitioning the data into statistically sound training,

validation, and test sets (train_test_split), and generating detailed classification reports

with metrics beyond simple accuracy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

2. Load Dataset

The model was trained, validated, and tested using the well-established Labeled Faces in the

Wild (LFW) dataset, conveniently accessed through the scikit-learn library. The LFW dataset

was chosen because it represents a "real-world" challenge: it contains images of individuals

with variations in lighting, pose, expression, and background, which is essential for training a

model that can perform well outside of a controlled lab environment.

3. Extract Images & Labels

Upon loading the dataset, the raw image data (pixel arrays) and their corresponding identity

labels were extracted and segregated into separate variables. This fundamental step transforms

the dataset into the standard (X, y) format expected by most machine learning frameworks,

where X represents the input features (the images) and y represents the target labels (the

identities).

4. Split Dataset

To ensure an unbiased evaluation and to build a model that generalizes well to new faces, the

dataset was strategically partitioned into three distinct subsets. As emphasized in established

machine learning literature [17], this division is a cornerstone of robust model development:

• Training Set (60%): The largest portion of the data, used exclusively for the model to

learn from. During this phase, the model is exposed to this data and iteratively adjusts its

internal weights and biases through backpropagation to minimize a loss function, thereby

learning the discriminative features of each identity.

• Validation Set (20%): This separate subset acts as a proxy for unseen data during the

training process. After each epoch, the model's performance is evaluated on this set. This

feedback loop is essential for two reasons: tuning hyperparameters (like the learning rate)

and triggering mechanisms like early stopping to prevent the model from simply

memorizing the training data (overfitting).

• Test Set (20%): This final, completely untouched subset is held in reserve until all training

and tuning are complete. Its performance on this set provides the most honest and reliable

estimate of how the model will perform on new, real-world data, as the model has never

been exposed to it in any capacity.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

5. Image Preprocessing

The LFW dataset, as provided by scikit-learn's helper function, has already undergone

significant preliminary processing, including face detection, alignment (ensuring features like

eyes are in consistent locations), and cropping. This pre-processing is a major advantage, as it

ensures that the faces are centered and consistently oriented, allowing CNN to focus on learning

identity features rather than spatial variations. Consequently, any additional aggressive

preprocessing was deemed unnecessary and potentially detrimental. Over-processing could

disrupt this careful alignment or introduce artifacts, so the focus was on preserving the high

quality of the provided images.

6. Data Augmentation

While the LFW dataset is diverse, the number of images per person can be limited. To enhance

the model's ability to generalize to real-world variations and to combat overfitting, data

augmentation was applied exclusively to the training set. Using Keras' ImageDataGenerator,

the training dataset was artificially expanded on-the-fly by creating modified versions of the

original images. This process simulates variations a face might exhibit in a real-world scenario

while retaining the correct identity label. The augmentation pipeline included:

• Geometric Transformations:

Random rotations, horizontal flips, and slight width/height shifts to make the model robust

to small changes in pose and camera angle.

• Photometric Adjustments:

Random variations in brightness and contrast to simulate different lighting conditions.

This technique effectively exposes the model to a much wider and more varied range of

data than was originally available, fostering the development of a more robust and

invariant feature representation without the need to collect thousands of additional images.

7. Model Training & Evaluation

This phase represents the core intellectual contribution of the project, detailing the architectural

design of the Convolutional Neural Network (CNN), the sophisticated methodology employed

for its training, and the comprehensive evaluation process. The architecture was deliberately

designed to be sufficiently deep to learn complex, discriminative features while incorporating

modern deep learning techniques to ensure a stable, efficient, and effective training process.

a. Define CNN Model Architecture

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

The CNN architecture was meticulously designed as a hierarchical feature extractor, where

each successive layer learns progressively more complex and abstract representations of

the input facial images. This hierarchical approach mimics the human visual cortex, starting

with simple features and building up to holistic representations.

i. Input Layers

The model's entry point is a precisely defined Input layer, configured to accept RGB

images of shape (64, 64, 3). This fixed input tensor size is a critical prerequisite for

batch processing on a GPU, as it allows for highly parallelized matrix computations,

drastically accelerating the training process.

inputs = Input(shape=input_shape)

ii. Convolutional Blocks

These are the fundamental building blocks responsible for learning spatial hierarchies

of features. The model leverages two types of blocks, each containing a suite of layers

designed to work in concert:

• Conv2D Layer: This layer is the cornerstone of the feature extraction process. It

applies to a set of learnable filters (kernels) across the input volume. In this

architecture, a 3x3 kernel size was chosen as it is the smallest size that can capture

notions of corners, edges, and textures while maintaining a low parameter count.

The use of "same" padding ensures that the spatial dimensions of the output

feature maps match the input, preventing the rapid loss of spatial information at

the borders of the image.

• L2 regularization (l2(l2_reg): Applied directly to the kernel weights, adding a

penalty term to the loss function that is proportional to the square of the weight

values. This discourages the model from learning overly complex or large

weights, a key strategy in mitigating overfitting.

• ReLU Activation: Following each convolution, the Rectified Linear Unit

(Activation('relu')) is applied. This non-linear activation function is

computationally efficient and helps to alleviate the vanishing gradient problem.

By setting all negative values to zero, it introduces non-linearity into the network,

which is crucial for enabling the CNN to learn intricate and highly non-linear

patterns present in complex data like faces.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

• Batch Normalization: This layer is applied after the convolution and before the

activation. It normalizes the activations of the previous layer by re-centering and

re-scaling them to have a mean of zero and a standard deviation of one for each

mini batch. This technique is critical for stabilizing the training of deep networks,

as it ensures that the distribution of inputs to subsequent layers remains consistent,

allowing for the use of higher learning rates and significantly accelerating model

convergence.

• Dropout: To further combat overfitting, a Dropout layer is employed. During

training, this layer randomly sets a fraction of input units (neurons) to zero at each

update step. This prevents neurons from co-adapting too much and forces the

network to learn more robust and redundant features, making it less sensitive to

the specific weights of any single neuron and thus improving its ability to

generalize to unseen data.

iii. Residual Blocks:

To build a network capable of learning truly discriminative features, depth is essential.

However, naively stacking layers in very deep networks can lead to the

infamous vanishing gradient problem [19], where the gradient signal diminishes

exponentially as it propagates back through the network, causing the early layers to learn

extremely slowly or not at all. Residual blocks (ResNets) are the key architectural

innovation to solve this. Each block contains two convolutional layers and a "shortcut

connection" that performs an element-wise addition of the block's input to its output.

This creates an unimpeded "identity pathway" for the gradient to flow directly through

the network during backpropagation, enabling the stable training of much deeper

architectures. The components include:

• Two Convolutional Blocks: Perform the primary feature extraction.

• Shortcut Connection: Adds the original input of the block to the output of the

convolutional layers (Add()([x, shortcut])), facilitating gradient flow.

• 1x1 Convolution (for dimension matching): If the number of filters changes or a

stride is used for down-sampling, the dimensions of the input and output will not

match the addition operation. In this case, a 1x1 convolution is applied to the shortcut

connection to linearly project it into a new space with matching dimensions, ensuring

the element-wise addition is possible.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

𝑔′(𝑧) = {
1, 𝑧 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 4.1.2 Effect on Implementation of Activation Functions

iv. Model Layers (Specific Arrangement)

The network's architecture is a sequential arrangement of these blocks, carefully

designed for a progressive feature extraction pipeline that moves from low-level to

high-level representations:

1. Initial Feature Extraction:

The first two residual blocks (with 32 and 64 filters) are designed to capture low-

level features like edges, corners, and basic textures from the raw pixel data. These

are followed by MaxPooling2D for spatial down-sampling (which reduces the

computational complexity and creates a degree of translational invariance)

and Dropout (0.3) for initial regularization.

MaxPooling2D(pool_size=(2, 2))

Dropout(0.3)

2. Intermediate Feature Refinement:

The next two residual blocks (with 128 filters each) have a larger receptive field

and are capable of combining the low-level features into more complex patterns and

object parts, such as components of eyes, noses, or mouths. The Dropout rate is

increased to 0.4 as the network becomes deeper and more susceptible to overfitting.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

MaxPooling2D(pool_size=(2, 2))

Dropout(0.4)

3. Deep Feature Abstraction:

The final two residual blocks (with 256 filters each) operate on highly abstract

representations and are responsible for learning the high-level, discriminative

features that uniquely define a person's facial structure. This stage is regularized

with the highest Dropout rate of 0.5 to aggressively combat overfitting in these

deep, high-capacity layers.

MaxPooling2D(pool_size=(2, 2))

Dropout(0.5)

4. Spatial Information Aggregation:

 A GlobalAveragePooling2D layer is used to condense each of the 256 feature

maps into a single scalar value by taking the average. This is a powerful technique

that drastically reduces the number of parameters compared to a

traditional Flatten layer, making the network less prone to overfitting and more

robust to spatial translations of features in the input image

5. Feature Embedding

A fully connected Dense layer with 1024 units acts as the final embedding layer. Its

purpose is to project the abstract features learned by the convolutional backbone

into a high-dimensional vector space. The goal of the training process is to organize

this space such that embeddings of faces from the same person are clustered closely

together, while embeddings from different people are pushed far apart. This 1024-

dimensional vector serves as the final, quantitative "facial signature."

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

Figure 4.1.3 Embedding Layer in Neural Network

6. Classification:

The final Dense output layer uses a softmax activation function. This function takes

the raw outputs (logits) from the previous layer and transforms them into a

probability distribution across all known identities, with the sum of all probabilities

equaling 1. The identity corresponding to the neuron with the highest probability is

the model's final prediction.

b. Model Compilation

Before training, the model must be compiled, a process that configures the learning

algorithm by defining the loss function, optimizer, and evaluation metrics:

• Loss Function: categorical_crossentropy was chosen as the standard,

mathematically appropriate loss function for multi-class classification problems

where each input belongs to exactly one class. It quantifies the dissimilarity between

the model's predicted probability distribution and the true, one-hot encoded label

distribution. The entire goal of the training process is to adjust the model's weights

to minimize this value.

• Optimizer: The Adam optimizer, with an initial learning rate of 0.0005, was

selected. Adam is an adaptive learning rate optimization algorithm that is highly

effective in practice. It computes individual adaptive learning rates for different

parameters from estimates of first and second moments of the gradients. It combines

the advantages of other optimizers like RMSprop and AdaGrad, making it

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

computationally efficient, requiring little memory, and generally robust to the choice

of hyperparameters.

• Metrics: accuracy was monitored during training to provide a straightforward,

interpretable measure of the model's performance on the validation set after each

epoch. This metric is essential for the callbacks that depend on performance

monitoring.

c. Train the Model

The model was trained using the model.fit() method, which orchestrates the iterative

process of feeding batches of data to the model and updating its weights. Several best

practices were incorporated to ensure robust and efficient learning:

• Class Weights: The LFW dataset is inherently imbalanced, with some individuals

having significantly more photos than others. To prevent the model from becoming

biased towards these majority classes, class weights were calculated and applied

during training. This gives a higher weight in the loss function to samples from

minority classes, effectively forcing the model to pay more attention to them and learn

their features just as well.

• Callbacks: These are utilities that can be applied at various stages of the training

process:

➢ Early Stopping: This callback is a crucial form of regularization that prevents

overfitting by stopping the training process at the optimal time. It monitors the

validation loss and, if the loss does not improve for a "patience" of 10 consecutive

epochs, it automatically halts the training. The restore_best_weights=True

argument is critical, as it ensures that the final model weights are reverted to those

from the epoch with the lowest validation loss, rather than the potentially

overfitted weights from the final training step.

(EarlyStopping(patience=10, restore_best_weights=True)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Figure 4.1.4 Early Stopping to minimize overfitting

➢ Learning Rate Scheduler: The ReduceLROnPlateau callback implements a

dynamic learning rate schedule. If the validation loss stagnates for 5 epochs, the

learning rate is automatically reduced by a factor of 0.5. This allows the model to

take large, confident steps in the beginning of training when it is far from a

minimum, and smaller, more precise steps as it gets closer, often leading to better

convergence and a lower final loss value.

(ReduceLROnPlateau(factor=0.5, patience=5)

• Training Configuration:

The model was set to train for a maximum of 300 epochs with a batch size of 32. A batch

size of 32 is a common choice that provides a good balance between computational

efficiency (larger batches are faster to process on a GPU) and stable gradient estimation

(smaller batches introduce more noise, which can sometimes help escape local minimum).

d. Evaluate the Model

After training, the final, unbiased performance of the model was assessed using the

unseen test set. The evaluation was based on a suite of standard classification metrics that

provide a more nuanced and complete picture of performance than accuracy alone:

• Learning Curve

A plot of the training and validation accuracy/loss over epochs. This is the primary

diagnostic tool for understanding the training process. A large and growing gap

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

between the training and validation curves is a clear sign of overfitting, while curves

that flat line at a low accuracy indicate underfitting.

• Accuracy

The overall percentage of correct predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

While intuitive, it can be a misleading metric on imbalanced datasets.

• Precision

Of all the times the model predicted a certain person, what percentage of those

predictions were correct?

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 High precision indicates a low false positive rate, meaning the model is reliable when

it makes a positive identification.

• Recall (Sensitivity)

Of all the actual images of a certain person, what percentage did the model correctly

identify?

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 High recall indicates a low false negative rate, meaning the model is good at finding

all instances of a person

• F1 score

The harmonic means of Precision and Recall. It provides a single, balanced metric

that is particularly useful when there is an uneven class distribution or when there is

an asymmetric cost associated with false positives and false negatives.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

8. Save Trained Model

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Upon completion of the entire training and evaluation pipeline, the final model, including

its architecture, learned weights, and optimizer state, was serialized and saved to a single

HDF5 file (face_recognition_model.h5). This encapsulates the entire trained model into a

portable artifact. This allows the model to be easily loaded into the main Flask application

for inference without needing to be recompiled or retrained, cleanly separating the

intensive, offline training process from the lightweight, real-time deployment environment.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

4.2 System Flowchart

Figure 4.2.1 System Flowchart (1/7) – Main System

Flowchart in Figure 4.2.1 outlines a user-based attendance system with distinct roles for

lecturers and students. To ensure secure access and proper functionality within the proposed

system, users are required to login before accessed to system’s features. Upon successful login,

they select their role as either a lecturer or a student. Lectures access a dashboard where they

can manage attendance records, export overall attendance records, and logout. Students, on the

other hand, have a view where they can view their personal attendance records, scan their

attendance, and log out. This flow chart provides a high-level overview of the system’s

workflow, highlighting the different functionalities available to each role.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Figure 4.2.2 System Flowchart (2/7) – Manage Attendance Record

The manage attendance record flow begins with user authentication and verifying the lecturer

role. The lecturer selects a course section, and the system checks if it is already activated for

attendance scanning. If not, the section is activated. The lecturer can then select a date range to

fetch and display attendance data. From here, there are three possible actions: create,

update, or delete records. New records can be added, existing records edited and updated, or

records deleted after confirmation, ensuring flexible attendance management.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

Figure 4.2.3 System Flowchart (3/7) – Export Reports

The export reports flow begins with lecturer authentication, ensuring only authorized users can

access the feature. The system retrieves all courses and sections managed by the lecturer,

allowing them to select the desired class section and export format. A validation step confirms

ownership of the section before proceeding. The system then fetches attendance data from

enrolled students, formats timestamps, and organizes records into a summary table. Finally, the

lecturer can export the report in CSV, Excel, or PDF format, enabling easy archiving, analysis,

and sharing of attendance records.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Figure 4.2.4 System Flowchart (4/7) – Manage Course and Class Sections

Flowchart in Figure 4.2.4 outlines a lecture-role-based course and class sections management.

An authenticated lecturer gained entry to the course dashboard that displays all class sections

for each course created. This system offers course-level operations: course creation,

modification, and deletion. While, for course’ class management system, lecturer can view

real-time attendance data, add/ delete and edit existing sections while maintaining attendance

records, or remove sections after confirmation.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

Figure 4.2.5 System Flowchart (5/7) – Student Enrollment in Course

The student enrollment subsystem begins by authenticating the user and verifying lecturer

privileges. Upon authorization, it displays an interactive form with student/course dropdowns

populated from the database. When processing enrollments, the system performs multi-stage

validation: confirming student status, course availability, and checking for duplicate

enrollments. Detected duplicates trigger specific warnings while preserving form data.

Successful enrollments execute atomic database transactions, simultaneously updating

enrollment. Following enrollment, the interface refreshes with success notifications and resets

for additional entries. The subsystem automatically generates face recognition enrollment

tickets for new students, ensuring synchronization with the attendance module. Throughout the

process, performance optimizations like paginated data loading and transaction rollback

capabilities ensure reliability, while comprehensive audit trails support compliance

requirements. The streamlined workflow combines robust validation with user-friendly

feedback mechanisms for efficient course management.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Figure 4.2.6 System Flowchart (6/7) – Face Registration

The face registration flow starts after authenticating a student user. The system first ensures

liveness by prompting the student to perform random gestures such as blinking, smiling, or

turning their head, verified through EAR, MAR, and head pose metrics. Once liveness is

confirmed, the student provides live images, which are validated for size, clarity, and

confidence using MTCNN. The detected face is cropped, preprocessed, and stored, with at least

five diverse samples captured. Upon completion, embeddings are extracted through the CNN,

averaged to form a robust identity vector, and securely stored in the database to finalize

registration.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Image Processing Techniques (Real-Time):

Image preprocessing is a critical step in preparing input images for a Convolutional Neural

Network (CNN). Unlike the curated datasets used during model training, facial images cropped

from a live video feed exhibiting significant variations in scale, lighting, and noise. As noted

by [20], a robust preprocessing pipeline is essential to normalize these variations, ensuring that

the images are in a consistent format and that key features are enhanced for optimal model

performance [25].

Figure 4.2.7 Real-time Image Processing Pipeline Flowchart

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

1. Image Resizing

The first and most fundamental step is to resize every incoming facial image to a fixed

dimension of 64x64 pixels. This standardization is a mandatory prerequisite for the CNN

model, which is designed with a fixed-size input layer. By ensuring all images are of a uniform

size, the model can apply its learned filters consistently, making the feature extraction process

reliable and efficient.

2. Noise Reduction

Live video feeds, especially from webcams operating in non-ideal lighting, are often

contaminated with high-frequency noise (e.g., sensor noise, grain). This noise can be

detrimental to the CNN's performance, as the model might mistakenly interpret these random

artifacts as meaningful features. To mitigate this, a Gaussian Blur is conditionally applied.

The pipeline first assesses the noise level of the image by calculating the standard deviation of

its pixel intensities. If this value exceeds a predefined noise_threshold, a Gaussian filter is

applied, a standard technique for noise suppression in digital image processing [26].

cv2.GaussianBlur(image, (5, 5), 0)

This filter convolves the image with a 5x5 Gaussian kernel, effectively smoothing the image

by averaging pixel values with their neighbors. This process reduces noise while preserving

significant edges, ensuring the subsequent contrast enhancement steps do not amplify

unwanted artifacts.

3. Global Contrast Enhancement (Histogram Equalization)

Poor or uneven lighting is one of the most common challenges in real-world face recognition.

To address this, the pipeline first checks if the image suffers from low global contrast. This is

determined using the skimage.exposure.is_low_contrast() function, which measures the

dynamic range of the image's pixel intensities. If the image is identified as having low

contrast, Histogram Equalization is applied. This technique redistributes the pixel intensity

values to stretch across the entire possible range (0-255), effectively increasing the overall

global contrast.

The skimage.exposure.is_low_contrast() is used to detect low contrast image using the

following expression:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

𝑃99(𝑓(𝑥, 𝑦)) − 𝑃1(𝑓(𝑥, 𝑦))

max(𝑓(𝑥, 𝑦)) − min(𝑓(𝑥, 𝑦))
{
< 0.05, 𝑡ℎ𝑒𝑛 𝑙𝑜𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡
≥ 0.05, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

While this is a powerful method for brightening poorly lit images, it can sometimes lead to an

unnatural appearance or over-amplification of noise, which is why it is applied conditionally

and followed by local contrast enhancement [27].

4. Local Contrast Enhancement (CLAHE)

While global histogram equalization improves overall contrast, it can wash out details in

regions that are already well-lit or very dark. To address this, Contrast Limited Adaptive

Histogram Equalization (CLAHE) is applied to enhance local contrast. As introduced by

Pizer et al., CLAHE works by dividing the image into small, non-overlapping contextual

regions (tiles) and applying histogram equalization to each tile independently [28]. A key

feature is the "clip limit," which restricts the amplification of contrast in each tile, thereby

preventing the over-amplification of noise. The resulting tiles are then stitched back together

using bilinear interpolation to eliminate boundary artifacts. This method is particularly

effective at revealing fine-grained facial features in areas of shadow or bright light, which

might be lost with global methods alone.

5. Apply Gradient Transformation

As a final enhancement step, the pipeline can apply a Sobel gradient transformation. This

operator acts as an edge detector by computing the gradient of the image intensity at each point,

highlighting the contours and high-frequency details of the face, such as the jawline, eyes, and

nose [29]. By emphasizing these structural features, the transformation can provide the initial

layers of the CNN with a more distinct and feature-rich input, potentially aiding in the

learningof more discriminative features and improving overall recognition accuracy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

Figure 4.2.8 System Flowchart (7/7) – Real-time Face Recognition for attendance

The real-time face recognition attendance flow begins with verifying that the student is

authenticated, and the lecturer has started an active session. The system performs an active

liveness check, requiring actions such as blinking or head movements, to ensure the student is

physically present. Once passed, the camera captures the student’s face, which is detected and

preprocessed for normalization. A CNN generates a 1024-dimensional embedding, compared

against stored templates using cosine similarity. If the similarity meets the 0.90 threshold,

attendance is logged with timestamp, status, and confidence score.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

4.3 System Architecture and Component Interaction

The system is engineered upon a multi-layered client-server architecture, a strategic choice

designed to deliver modularity, scalability, and the real-time responsiveness essential for a live

attendance system. This layered model logically decouples the system's core responsibilities

into six distinct, interoperable components: the Frontend Interface, Backend Server, AI-driven

Face Processing Pipeline, Liveness Detection Module, Database System, and an Offline Model

Training Pipeline.

This separation of concerns is paramount. It allows development teams to work on different

components concurrently, facilitates independent updates (e.g., upgrading the frontend

framework without altering backend logic), and enables flexible integration of new features.

Most importantly, it isolates resource-intensive AI computations on the server-side, ensuring

the client-side remains lightweight and responsive while meeting the stringent real-time

performance requirements of video stream analysis.

Table 4.3.1: System Architecture Components

Compone

nt

Key

Technologies

Designed Functionality

Frontend

Interface

(Client-

Side)

HTML5,

CSS3,

JavaScript

(ES6+),

Bootstrap 5

The frontend serves as the sole point of interaction for all users

(students and lecturers). It provides a clean, responsive

Graphical User Interface (GUI) built with standard web

technologies for maximum browser compatibility. Its primary

responsibilities include:

• User Authentication & Session Views: Renders

login/registration forms and dynamically displays different

dashboards based on the user's role (student or lecturer).

• Camera Access and Video Streaming: Uses the

browser's MediaDevices.getUserMedia() API to request

camera access and stream the video feed to an

HTML <video> element.

• API Communication: Utilizes JavaScript's fetch API or a

library like axios to make asynchronous RESTful API calls

to the backend server. This includes sending video frames

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

for processing, submitting form data, and retrieving data

(e.g., course lists, attendance records) to populate the UI.

• Real-time Feedback: Renders dynamic visual feedback

received from the server, such as overlaying instructions

("Blink Twice"), progress bars for challenges, and

success/failure messages directly onto the video stream

interface.

Backend

Server

(API)

Flask

(Python Web

Framework),

Waitress

(WSGI

Server)

The Flask server acts as the central nervous system of the

application. It is a lightweight, stateless API gateway that

orchestrates all interactions between the frontend, the AI

modules, and the database.

• Request Handling: Defines a set of RESTful endpoints

(e.g., /login, /register_face, /scan_attendance) to receive and

process HTTP requests from the client.

• Business Logic and Session Management: Implements the

core application logic, including user authentication, role-

based access control (RBAC), and managing user sessions

to maintain a logged-in state.

• Module Integration: Acts as the primary integrator. When

a request for face recognition arrives, the backend calls the

necessary functions within the Face Processing and Liveness

Detection modules, passing the image data and awaiting a

result. It then formats this result and sends it back to the

client as a JSON response.

• Database Abstraction: Manages all communication with

the SQLite database, handling data creation, retrieval,

updates, and deletion based on API requests.

Face

Processin

g

Pipeline

Dlib,

TensorFlow/

Keras,

OpenCV

This is the core AI engine for identity verification. It operates as

a sequential pipeline on the server-side, processing each frame

received from the client.

• Input: Receives a raw video frame (as a byte array or

base64 encoded string) from the backend.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

• Step 1: Detection & Cropping: Dlib's highly optimized

HOG-based face detector scans the frame to identify and

return the bounding box coordinates of any faces. The face

region is then cropped for focused analysis.

• Step 2: Preprocessing: The cropped face image undergoes

a series of normalization steps to make it robust to variations

in lighting and camera quality.

• Step 3: Embedding Extraction: The preprocessed image is

fed into the pre-trained custom Convolutional Neural

Network (CNN). The CNN processes the image through its

layers, outputting a dense 1024-dimensional vector

(embedding) that mathematically represents the unique

facial features.

• Step 4: Recognition/Registration: The final embedding is

either stored in the database (for registration) or compared

against existing embeddings using cosine similarity (for

recognition).

Liveness

Detection

Module

OpenCV,

Dlib (for

facial

landmarks)

• This security-critical module operates in tandem with the

Face Processing Pipeline to prevent spoofing attacks. It is

designed to run efficiently on every frame before

committing to more computationally expensive recognition

tasks. It confirms that the source of the video stream is a live

human and not a static photo, video replay, or mask. Its two-

tiered approach provides layered security.

Database

System

SQLite SQLite is chosen for its simplicity, serverless nature, and file-

based storage, making it ideal for this system's scale and

deployment ease.

• Schema: The database schema is relationally designed with

tables

for users, facial_embeddings, courses, class_sections, enrol

lments (a many-to-many join table between users and

class_sections), and attendance_logs.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

• Data Integrity: Foreign key constraints are heavily utilized

to ensure relational integrity. For example, an attendance log

must be linked to a valid user and a valid class section,

preventing orphaned or inconsistent records.

Model

Training

Pipeline

Python,

TensorFlow/

Keras,

NumPy,

Scikit-learn

This is an entirely offline component, separate from the real-

time application. Its purpose is to periodically retrain and

improve the face recognition CNN.

• Workflow: The pipeline involves gathering and

augmenting a large dataset of labeled face images, training

the CNN model using techniques like triplet loss to learn

discriminative embeddings, validating its performance on a

held-out test set, and finally, exporting the trained model

weights. These new weights can then be deployed to the

production server to update the system's accuracy without

any downtime.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

4.4 Module Design and Description

The system’s architecture is implemented through a set of cohesive, functionally distinct

modules. This modular design philosophy ensures that each part of the system has a single,

well-defined responsibility. Modules communicate through clearly defined interfaces—

primarily Flask API endpoints for client-server interaction and direct function calls or database

queries for internal, server-side communication. This design simplifies development,

debugging, and future enhancements.

4.4.1 Face Processing and Registration Module

This module forms the intelligent core of the system, encapsulating all AI-powered

functionality required for robust and secure identity verification. It is a comprehensive pipeline

that transforms raw video frames into actionable identity decisions.

• Responsibilities (Detailed Breakdown):

1. Face Detection: The process begins with dlib.get_frontal_face_detector, a

computationally efficient detector based on Histogram of Oriented Gradients (HOG)

features. It is optimized for near-frontal faces, which aligns with the typical use case of

a user facing their camera. For each frame, it returns a list of bounding boxes for all

detected faces.

2. Preprocessing: Before feature extraction, each detected face crop undergoes a

mandatory normalization routine to counteract real-world environmental variations:

▪ Histogram Equalization: Redistributes pixel intensities to enhance global

contrast, especially useful in poorly or unevenly lit conditions.

▪ Noise Reduction: A Gaussian blur or median filter is applied to remove minor

camera sensor noise that could degrade embedding quality.

▪ Sharpening: A sharpening kernel is applied to enhance edges and fine details of

facial features (eyes, nose, mouth), providing the CNN with more distinct

information.

3. Feature Extraction: The preprocessed face crop is resized to the CNN's required input

dimensions (e.g., 160x160 pixels) and passed into the custom CNN. The network,

architected with deep residual blocks, is designed to learn a highly discriminative

function. The final output is a 1024-dimensional floating-point vector (embedding)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

where faces of the same person are clustered closely together in the vector space, and

faces of different people are far apart.

4. Registration: The registration process is designed for robustness. Instead of relying on

a single image, the user is prompted to provide multiple samples (e.g., looking straight,

slightly left, slightly right, smiling). The system extracts embedding for each valid

sample. These embeddings are then averaged to produce a single, composite identity

vector. This averaging process creates a more generalized and resilient representation

of the user's face, making it less susceptible to minor variations in pose and expression

during future recognition attempts.

5. Recognition: During an attendance attempt, a new embedding is extracted from the

user's live video feed. This "probe" embedding is compared against all "gallery"

embeddings stored in the database using cosine similarity. This metric measures the

cosine of the angle between two vectors, effectively judging their orientation rather than

their magnitude. A similar score closes to 1.0 indicates a near-perfect match, while a

score near 0.0 indicates orthogonality (no match). A match is confirmed only if the

highest similarity score exceeds a fine-tuned threshold (e.g., 0.85), balancing the trade-

off between False Acceptance Rate (FAR) and False Rejection Rate (FRR).

6. Liveness Detection: This is an integrated, non-negotiable security layer that precedes

recognition.

▪ Tier 1: Passive Anti-Spoofing: This runs silently and continuously on the video

stream.

▪ Texture Analysis (cv2.Laplacian): The Laplacian operator measures the

second derivative of the image, which is high in areas of rapid intensity change

(like edges and fine textures). A real face, with its pores and subtle skin texture,

will have a significantly higher Laplacian variance than a blurry, out-of-focus,

or printed photo displayed on a screen.

▪ Motion Analysis (cv2.absdiff): This function calculates the per-pixel

difference between the current frame and the previous one. Even a person

trying to stay still exhibits natural, subtle movements (breathing, micro-

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

expressions, slight sways). A static image will have a motion score of zero, and

a replayed video often has unnatural motion patterns or compression artifacts

that can be detected.

▪ Tier 2: Active Challenge-Response: This tier is triggered as a definitive

verification step.

▪ Challenge Issuance: The system's random selection of a challenge from a pool

("blink_twice", "smile", etc.) makes it extremely difficult for an attacker to pre-

record a video that can spoof the system.

▪ Real-time Monitoring: The system uses Dlib's 68-point facial landmark

predictor to precisely track facial components. The Eye Aspect Ratio (EAR)

and Mouth Aspect Ratio (MAR) are calculated from these landmarks to

algorithmically detect blinks and mouth movements, while Head Pose

Estimation provides the yaw and pitch angles to verify head turns and nods.

This is a robust, metric-driven verification process, not simple image matching.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

4.4.2 Active Challenge (Liveness Detection)

The EnhancedLivenessDetector class is a stateful object designed to manage the complexities

of liveness verification over a sequence of frames, not just a single snapshot. Its use

of collections.deque is critical for temporal analysis, allowing it to detect patterns like the open-

close-open sequence of a blink.

Table 4.4.2.1 Threshold Value for Parameters

Parameter Value Description

EAR_THRESHOLD 0.23 Threshold for detecting a closed eye state.

EAR_CONSEC_FRAMES 3 Number of consecutive frames an eye must be

"closed" to register a blink.

MAR_THRESHOLD 0.65 Threshold for detecting an "open mouth"

challenge.

HEAD_POSE_THRESHOLD 25° Yaw/pitch angle required to satisfy head turn/nod

challenges.

CHALLENGE_TIMEOUT 15s Maximum time allowed for a user to complete a

challenge.

TEXTURE_THRESHOLD 100 Minimum Laplacian variance scores to pass the

texture test.

Elaboration of Key Functions:

a. Metric Calculation:

• calculate_ear() / calculate_mar(): These functions take the 68 facial landmarks as

input. They calculate the Euclidean distance between specific vertical and horizontal

landmark points around the eyes and mouth, respectively, to compute a single ratio.

This ratio is remarkably consistent for an open state and changes predictably during a

blink or mouth opening, making it an excellent biometric indicator.

• calculate_head_pose(): This function implements a standard computer vision

technique. It uses a generic 3D model of a human face and the corresponding 2D

landmark locations detected in the frame. By using cv2.solvePnP (Perspective-n-Point),

it solves for the 3D rotation and translation that would project the 3D model points onto

the observed 2D image points, thereby yielding the head's pitch, yaw, and roll angles

in degrees.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

• calculate_texture_score() and calculate_motion_score() are the implementations of

the passive checks described in 4.4.1.

b. Challenge-Response Logic:

• select_random_challenge(): This function ensures unpredictability. It maintains a list

of available challenges and uses Python's random.choice() to pick one for the current

session.

• process_challenge(): This is the core state machine of the module. For a "blink_twice"

challenge, it might track a blink_counter state variable. It continuously monitors the

EAR, and when the pattern for a blink is detected (EAR drops below

EAR_THRESHOLD for EAR_CONSEC_FRAMES then rises again), it increments the

counter. It provides feedback ("Blink once more") until the condition (blink_counter

== 2) is met, at which point it returns to success status. If the

CHALLENGE_TIMEOUT is reached before completion, it returns a failure.

c. Core Orchestration & State Management:

• analyze_frame(): This is the public-facing method of the class. For every frame it

receives, it performs all metric calculations. It first checks passive liveness scores. If

they pass, and an active challenge is in progress, it calls process_challenge(). The

function returns a single, comprehensive dictionary containing a final boolean

liveness_passed, a confidence_score, the status_message for the user (e.g., "Turn your

head to the left"), and any other relevant data.

• reset_state(): Clears temporary data like metric history buffers and counters. Critically,

it is designed not to clear an active challenge in progress, allowing the user to

seamlessly continue their attempt across multiple API calls if needed.

d. Video Stream Generation:

• generate_frames(): This Flask-specific function is implemented as a Python generator.

It sits in a while True loop, continuously capturing frames from the camera. Inside the

loop, it calls analyze_frame() to get the current liveness status. It then uses OpenCV's

drawing functions (cv2.putText, cv2.rectangle) to overlay the feedback (bounding

boxes, instructions, landmark points) directly onto the frame. Finally, it encodes the

frame as a JPEG and yields it as part of a multipart/x-mixed-replace HTTP response.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

This technique efficiently streams video to the browser. The "instruction stabilization

logic" prevents the UI text from flickering by only updating the displayed instruction

when the state from analyze_frame() changes.

e. Key Endpoints:

• /video_feed: This endpoint returns a Response object with the generate_frames()

generator as its source. The browser interprets this special MIME type as a continuous

video stream, updating the tag's src attribute with each new frame yielded by the

server.

• /register_face: This is a standard POST endpoint. The client calls this endpoint after

the liveness check has been successfully passed. The backend then captures a few high-

quality frames, extracts their embeddings, averages them, and inserts the final identity

vector into the facial_embeddings table, linking it to the user's ID.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

4.4.3 User and Course Management Module (Lecturer)

This module provides the administrative backbone of the system, tailored specifically for

lecturers. It is a secure, role-protected section of the application that allows for the complete

management of the academic structure within which attendance is recorded.

Key Endpoints and Functional Breakdown:

1. Course Lifecycle Management:

• POST /courses: When a lecturer submits the "Create Course" form, this endpoint

receives the course name, code, and description. It performs validation (e.g., ensuring

the course code is unique) before inserting a new record into the courses table.

• POST /delete_course/<id>: This is a critical endpoint that must handle data integrity.

Upon invocation, it not only deletes the specified course from the courses table but also

triggers a cascading delete (or manual deletion logic) to remove all

associated class_sections, enrollments, and attendance_logs to prevent orphaned

records in the database.

2. Class Section Management:

• GET /manage_sections/<course_id>: This endpoint performs a database query to select

all records from the class_sections table where the course_id foreign key matches the

one provided in the URL. The results are returned as JSON for the frontend to display.

• GET /view_section/<section_id>: This provides a more detailed view by performing

a JOIN query across the users, enrollments, and class_sections tables to retrieve a list

of all students enrolled in that specific section.

3. Student Enrollment:

• POST /enroll_student: This endpoint is typically called from the section management

interface. It receives a student_id and a section_id and creates a new entry in

the enrollments table, formally linking a student to a class. The logic includes checks

to prevent duplicate enrollments.

4. Attendance Session and Data Management:

• GET /manage_attendance/<section_id>: This endpoint serves the main dashboard for

a live class. It provides a real-time view of attendance. The front end might use

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

techniques like periodic polling (e.g., calling an API endpoint every 5 seconds) or

WebSockets to get live updates of which students have successfully checked in. The

"Start Session" and "Stop Session" buttons on this page trigger the corresponding

functions in the Attendance Workflow Module.

• POST /export_reports: This endpoint handles complex data aggregation. It queries

the attendance_logs table, joining with users, courses, and class_sections to gather

comprehensive data. It then uses libraries like Pandas to structure the data

and openpyxl (for Excel), reportlab (for PDF), or Python's built-in csv module to

generate a file, which is then sent back to the user as a file download.

Architectural and Implementation Notes:

▪ The get_db() helper function is a standard Flask pattern for managing database

connections. It ensures that a single database connection is established per request and is

properly closed (torn down) after the request is complete, preventing resource leaks.

▪ The frontend dashboards are designed for data visualization, potentially including charts or

graphs showing attendance rates over time, lists of frequent absentees, and other analytics

to help lecturers quickly assess student engagement.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

4.4.4 Attendance Workflow Module

This module orchestrates the entire real-time attendance process, acting as the bridge between

the AI-driven recognition and the academic database structure. It enforces the business rules

that govern a valid attendance-taking session.

Responsibilities (Detailed Workflow):

1. Session Control: A lecturer initiates a session via their dashboard, calling start_session().

This creates a new record in an attendance_sessions table with the section_id and

a start_time, and sets an is_active flag to TRUE.

2. Attempt Validation: When a student attempts to check in via /scan_attendance, the first

action the backend takes is to query the attendance_sessions table to find an active session

(is_active = TRUE) for the section(s) the student is enrolled in. If no active session is

found, the attempt is rejected immediately with a message like "Attendance is not

currently open for this class."

3. Uniqueness Enforcement: If an active session is found, the system then checks

the attendance_logs table to see if a record already exists for the current student_id and

the active session_id. If one exists, the attempt is rejected with the message "You have

already been marked present." This prevents duplicate entries.

4. Record Storage: Only after passing the session and uniqueness checks does the system

proceed with liveness and recognition. Upon a successful

match, mark_attendance() inserts a new record into attendance_logs, including

the student_id, session_id, a precise timestamp, and the recognition confidence score.

5. Real-time Feedback: The endpoint returns a clear JSON response to the student's client

(e.g., { "status": "success", "message": "Welcome, [Student Name]! You are marked

present." } or { "status": "failure", "message": "Face not recognized. Please try again." }).

• Key Functions (Detailed Logic):

o start_session(section_id): Inserts a new row into the attendance_sessions table,

setting is_active = 1.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

o stop_session(session_id): Updates the corresponding row in attendance_sessions,

setting is_active = 0 and recording an end_time. No further check-ins for this

session will be accepted.

o mark_attendance(student_id, session_id, confidence_score): Performs the

final INSERT operation into the attendance_logs table.

o get_attendance_records(section_id): Retrieves and joins all relevant logs for a

section, used to populate reports and the lecturer's real-time dashboard.

• Key Endpoints:

o /video_feed: As described before, this streams the live camera feed with overlays

for the student during the check-in process.

o /scan_attendance: This is the endpoint that executes the entire validation and

recognition workflow described above. It is the primary transactional endpoint for

students.

Additional Notes:

▪ The system's integrity is fundamentally guaranteed by the strict, sequential

workflow: Session Active? -> Not Already Checked In? -> Liveness Verified? ->

Face Recognized? -> Mark Present. A failure at any step terminates the process.

Logging the recognition confidence score provides crucial data for auditing and

troubleshooting any disputes over attendance records. For example, a lecturer can review

low confidence matches if a student reports an issue.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

4.5 Database Design

Figure 4.5.1 Entity Relationship Diagram

The database schema underpins the real-time face recognition attendance system by linking

users, students, lecturers, courses, class sections, enrollments, and attendance records.

Users are authenticated and distinguished as students or lecturers through one-to-one

relationships. Students store facial embeddings and registration data, while lecturers manage

courses with multiple class sections. A many-to-many relationship between students and

sections is resolved via the enrollments table. Attendance records capture timestamps, status,

and confidence scores. This design ensures integrity, scalability, and efficient performance,

enabling seamless management of authentication, enrollment, and automated attendance

tracking.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

Chapter 5

System Implementation

5.1 Hardware Setup

This chapter details the practical implementation of the face recognition attendance system,

translating the architectural designs and methodologies from previous chapters into a

functional, end-to-end prototype. It provides a comprehensive account of the hardware and

software environments, crucial system configurations, and the operational workflows from an

end-user perspective. Furthermore, this chapter discusses the technical challenges encountered

during the development lifecycle and the strategic resolutions implemented to overcome them,

culminating in a robust and validated system.

Table 5.1 Hardware Specifications

Description Specifications

Model Victus 16-r0326TX

Processor Intel Core i7-13700HX

Operating System Windows 11

Graphic NVIDIA GeForce RTX4060

Memory 16GB DDR5-4800 MHz

Storage 512GB

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

5.2 Software Setup

The system was engineered using a carefully selected stack of open-source libraries and

frameworks. Each component was chosen for its proven stability, extensive community

support, and specific strengths in computer vision, deep learning, web application

development, and data management.

Table 5.2 Software Specifications

Software Component Version Descriptions

Python 3.12.7 The primary programming language, chosen for its

extensive scientific computing ecosystem and robust

support for machine learning libraries

Flask 2.3.2 A lightweight and modular micro web framework used

to build the backend server, RESTful API endpoints,

and render the user interface.

SQLite 3.42.0 Lightweight relational database engine for local data

storage

Dlib 64 Face

Detector

A powerful C++ library with Python bindings, utilized

for its highly accurate facial landmark detection, which

is fundamental to the liveness detection module

TensorFlow 2.12.0 The core deep learning framework used for building,

training, and deploying the custom CNN model for face

feature extraction

OpenCV 4.8.0 The standard library for real-time computer vision,

employed for video capture from the webcam, image

preprocessing, and rendering visual feedback on video

frames

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

Supporting Libraries and Development Environment:

• NumPy: The foundational package for numerical computing in Python, used for efficient

manipulation of multi-dimensional arrays, particularly for handling image data and facial

embedding vectors, and for performing mathematical operations like cosine similarity.

• Pandas: A powerful data analysis library utilized for managing attendance records in a

structured format (DataFrame) and for generating and exporting attendance reports in

CSV format.

• Flask-Login & Flask-Session: Extensions for Flask that provide robust, secure, and

role-based user session management, ensuring that students and lecturers have access

only to their authorized functionalities.

• Kaggle: The cloud-based platform was leveraged for its free access to high-performance

NVIDIA T4 GPUs, which significantly accelerated the initial and more demanding

phases of model training.

• Visual Studio Code (VS Code): The primary Integrated Development Environment

(IDE), chosen for its excellent Python support, integrated debugging tools, seamless Git

version control integration, and extensive ecosystem of extensions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 103

5.3 Settings and Configuration

To ensure the system is stable, performant, and maintainable, a precise set of configurations

was established. These settings are decoupled from the application logic, allowing for easy

adjustments during development, testing, and deployment without requiring code changes.

• Automated Database Initialization:

The SQLite database is designed to initialize itself automatically. The system uses

an Object-Relational Mapper (ORM) via Flask-SQLAlchemy. Upon the first application

run, it checks for the database file's existence. If not found, db.create_all() is invoked,

programmatically generating the complete schema from the model definitions. This

eliminates manual setup errors and ensures a pristine database state for any new

deployment.

• Optimized Model Loading (Eager Loading)

To achieve real-time performance, the CNN model is loaded into memory only once at

server startup using tf.keras.models.load_model(). The loaded model object is stored in a

global variable. Every subsequent recognition request access this in-memory model,

preventing the significant I/O overhead of disk access and allowing for near-instantaneous

inference.

• Structured Data Storage

Facial images captured during registration are stored in a highly organized manner. The file

system contains a root dataset/ directory. Within it, a unique sub-directory is created for

each student, named after their unique student_id (e.g., dataset/1001/). This provides a

logical repository of raw biometric data, invaluable for auditing and future model

retraining.

• Empirically Tuned Recognition Threshold

The cosine similarity threshold, which governs identity matching, was empirically set

to 0.85. This value was determined through rigorous testing on a validation dataset. It

represents the optimal balance point on the Receiver Operating Characteristic (ROC)

curve, minimizing the False Acceptance Rate (FAR) to ensure security, while

maintaining a low False Rejection Rate (FRR) for a smooth user experience.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 104

• Development vs. Production Server Configuration:

During development, the lightweight Flask development server was used

on http://localhost:5000 for its convenience and debugging features. For a production

deployment, this is switched to a production-grade WSGI (Web Server Gateway

Interface) server like Gunicorn or Waitress, which is designed to handle multiple

concurrent requests robustly and efficiently.

• Efficient Embedding Storage

The 1024-dimensional facial embeddings are stored as Binary Large Objects (BLOBs) in

the SQLite database. The NumPy array is serialized into a compact binary format, which

is significantly more space-efficient and allows for much faster retrieval and deserialization

compared to storing it as a text-based format like JSON.

• Centralized Configuration Management

All system-wide parameters are consolidated into a central config.py file. This includes:

• File Paths: MODEL_PATH, DATASET_DIR

• Model Parameters: IMAGE_SIZE = (64, 64)

• Operational Thresholds: RECOGNITION_THRESHOLD =

0.85, EAR_THRESHOLD = 0.23, etc.

This approach enhances modularity and simplifies maintenance, allowing parameters to be

tuned without altering core application logic.

• Environmental Variable Management

For enhanced security and portability, sensitive configurations like the

application's SECRET_KEY and DATABASE_URI are not hardcoded, even in config.py.

They are managed as environmental variables. A .env file is used during local

development, and these variables are set directly on the production server. This practice

prevents secret keys from being committed to version control.

• Secure Session Management

The application is configured with a strong, randomly generated SECRET_KEY. This key

is essential for Flask's session management, as it is used to cryptographically sign the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 105

session cookie. This signature prevents clients from tampering with their session data (such

as their user ID or role) before sending it back to the server.

• Application Logging

A robust logging mechanism is configured using Python's built-in logging module. The

application logs key events to a file, including user logins, course creation, attendance

session start/stop events, and, crucially, any errors or exceptions that occur. This provides

an essential audit trail for troubleshooting and monitoring system health.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 106

5.4 System Operation

The system's operation is designed around intuitive, role-based workflows for Students and

Lecturers. Access is governed by a secure authentication mechanism that directs users to the

appropriate dashboard upon successful login, ensuring a clear separation of functionalities.

All user interactions begin at the authentication portal. New users must first register an account

by providing a username, email, password, and selecting their designated role (Lecturer or

Student), as shown in Figure 5.4.1.

Existing users can log in using their credentials (Figure 5.4.2). Upon successful authentication,

the system's role-based access control directs them to their respective dashboards.

Figure 5.4.1 User Registration Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 107

Figure 5.4.2 User Login Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 108

5.4.1 Face Registration with Active Liveness Detection

Upon their first login, students without a registered face are guided to complete the biometric

enrollment process (Figure 5.4.1.1). This critical step ensures the integrity of the biometric

database.

Figure 5.4.1.1 Student Dashboard (Prompting Registration)

The system activates the webcam (Figure 5.4.1.2) and initiates a guided registration featuring

active challenge-response liveness detection. The student is prompted to perform a series of

real-time facial gestures—such as blinking, smiling, and turning their head to verify they are a

live and present person.

Figure 5.4.1.2 Head Movement (Turn Right) – student turns head right

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 109

Figure 5.4.1.3 Head Movement (Turn Left) – student turns head left

Figure 5.4.1.4 Head Movement (Nod Head) – student nods head up and down

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 110

Figure 5.4.1.5 Open mouth

Figure 5.4.1.6 Smile Detection – student is prompted to smile

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 111

Figure 5.4.1.7 Active-Blink Detection – student is prompted to blink

Figure 5.4.1.8 Liveness Verified Confirmation

Once liveness is confirmed (Figure 5.4.1.8), the system automatically captures five high-

quality facial images, generates the 1024-dimensional embedding, and securely stores it. A

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 112

confirmation message is displayed upon completion, and the student dashboard is updated to

reflect the registered status (Figure 5.4.1.10).

Figure 5.4.1.9 Face Registration Completed – five face images are auto-captured

This guided and interactive method strengthens system security by preventing spoofing

through printed photos or videos during the registration phase.

Figure 5.4.1.10 Student Dashboard Page (Face Registration Completed)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 113

5.4.2 Attendance Scanning Process (with Active Challenge-Response)

To mark attendance, a student selects their class section and initiates the face scanning process.

The system again performs the active liveness check (as discussed in

Chapter 5.4.1 during face registration) to prevent real-time spoofing. Upon successful

verification, the live video frame is passed to the CNN model to extract a feature vector. This

vector is compared against the student's stored embedding using cosine similarity. If the score

meets or exceeds the 85% threshold, attendance is successfully recorded, and immediate

feedback is provided to the user (Figure 5.4.2.1).

Figure 5.4.2.1 Attendance Verification Modal with Live Similarity Score

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 114

5.4.3 Lecturer Dashboard Functions

The Lecturer Dashboard serves as a centralized control panel for all academic and

administrative tasks, providing comprehensive tools to manage courses, class sections, student

enrollments, and attendance records (Figure 5.4.3.1 & Figure 5.4.3.2).

• Manage Courses: Lecturers can manage courses and add new sections.

• Manage Class Sections: After creating a course, lecturers can add class sections for it.

• Enroll Students: Students can be enrolled into specific course sections.

• Export Reports: Attendance reports can be exported in various formats

•

Figure 5.4.3.1 Lecturer Dashboard Overview (1/2)

Figure 5.4.3.2 Overview of Lecturer Dashboard (2/2)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 115

1. Course, Section, and Enrollment Management

Lecturers can create and manage their courses, add multiple class sections for each course,

and enroll students into specific sections. This workflow ensures that the system's structure

accurately reflects academic organization,

a. Course Management

Lecturers can manage courses (e.g., UCCD3074 Deep Learning for Data Science) and

add new sections.

Figure 5.4.3.3 Course Management Dashboard (1/2)

Figure 5.4.3.4 Course Management Dashboard (2/2)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 116

b. Section Management

After UCCD3074 Deep Learning for Data Science course is created, lecturer may manage

section for the course (CRUD):

Figure 5.4.3.5 Class Section Creation

Figure 5.4.3.6 Edit Class Section

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 117

The class section created will appear in “Existing Sections” upon succeed creation of the

class section for that course:

Figure 5.4.3.7 Course Details with Class Sections Created

c. Enrollment Management

Lecturer can select the student and course available from the drop-down menu.

Figure 5.4.3.8 Student Enrollment into Course

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 118

The system also enables lecturers to view the details of each class section including the

schedule, venue, enrolled students, attendance summary for the sections as shown in Figure

5.4.3.9

Figure 5.4.3.9 Class Section Details

1. Attendance Management and Reporting

The "Manage Attendance" dashboard offers a real-time overview of attendance for a specific

section (Figure 5.4.3.10). For situations where automated scanning is not feasible (e.g., a

student's webcam failure), lecturers can generate a time-sensitive QR code as an alternative

check-in method. The system also permits manual attendance entry to accommodate special

circumstances or make corrections (Figure 5.4.3.11).

a. Manage Attendance Dashboard

Figure 5.4.3.10 Manage Attendance Dashboard

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 119

b. QR Code Generation

Figure 5.4.3.11 QR Code Generation for Alternate Check-in

c. Manual Attendance Entry

Figure 5.4.3.12 Manual Attendance Entry Form

d. Export Attendance Report

Finally, lecturers can export comprehensive attendance reports for any section. The system

provides options to generate these reports in CSV, PDF, or Excel formats for administrative

and record-keeping purposes (Figure 5.4.3.13 and Figure 5.4.3.14).

Figure 5.4.3.13 Export Reports Interface (1/2)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 120

Figure 5.4.3.14 Export Reports Interface– Select Class Section (2/2)

Figure5.4.3.15 shows the first page of the PDF report, featuring a professional header with the

course details. It contains two key tables: "Overall Statistics," which summarizes the total

counts of present, absent, and late statuses for the entire section, and "Student

Statistics," which lists the final attendance rate for each individual student.

Figure 5.4.3.15 Sample Exported Report (PDF)- Summary Page

This figure displays a detailed attendance summary from the subsequent pages of the PDF. The

data is presented in a landscape-oriented grid where each row represents a student, and each

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 121

column represents a session. To enhance readability, attendance statuses are conditionally

formatted (e.g., "absent" in red, "late" in orange), allowing for quick visual identification of

attendance issues.

Figure 5.4.3.16 Sample Exported Report (PDF)- Detailed Attendance Page

This sheet (Figure 5.4.3.17) provides a high-level summary, including course details, total

students, total sessions, and the average attendance rate. It offers a quick, at-a-glance overview

for administrative context.

Figure 5.4.3.17 Sample Exported Report (Excel) (1/4) – Report Overview

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 122

This pivot table (Figure 5.4.3.18) displays each student's attendance status

(present, absent, late) for every session. Cells are color-coded for instant visual analysis of

attendance patterns over time.

Figure 5.4.3.18 Sample Exported Report (Excel) (2/4) – Attendance Summary

This sheet calculates and displays the final Attendance Rate for each student. It provides a

simple, quantitative metric to quickly identify individual student performance.

Figure 5.4.3.19 Sample Exported Report (Excel) (3/4) – Student Statistics

This sheet contains the complete, unabridged log of all timestamped attendance events. It

serves as the primary source for detailed auditing and data verification.

Figure 5.4.3.20 Sample Exported Report (Excel) (4/4) – Raw Data

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 123

5.5 Implementation Issues and Challenges

During the development lifecycle, several technical challenges were encountered. Addressing

these issues was crucial for enhancing the system's robustness, accuracy, and overall

performance. The key challenges and their resolutions are summarized in Table 5.5.1.

Table 5.5.1 Issues Encountered and Resolutions

Challenge Root Cause Resolution

Model

Overfitting

The limited training dataset

caused the model to memorize

faces rather than generalize,

leading to poor performance on

new users.

Applied data

augmentation techniques to

artificially expand the dataset and

implemented early stopping to halt

training when validation performance

plateaued.

False Positives

in Matching

An initial cosine similarity

threshold of 0.85 was too

lenient, occasionally causing

incorrect matches between

students.

After rigorous testing, the threshold

was raised to a stricter 0.90 to

significantly reduce the False

Acceptance Rate (FAR) while

maintaining usability.

Poor Face

Detection in

Variable

Lighting

Inconsistent or dim lighting

conditions hindered the

accuracy of the face detection

algorithm.

Integrated histogram equalization into

the OpenCV preprocessing pipeline to

automatically enhance image contrast

and ensure reliable detection.

Webcam

Latency and

Performance

Heavy computation for face

recognition was performed on

the main thread, blocking the

UI and causing the live video

feed to freeze.

Implemented a multi-threaded

architecture, offloading all intensive

processing to a background worker

thread. This kept the main thread

responsive for a smooth UI and video

rendering.

Database

Record

Inconsistency

Race conditions during

concurrent database access

sometimes resulted in

duplicate or missing

attendance records.

Enforced UNIQUE constraints in the

database schema and wrapped all write

operations in atomic transactions to

guarantee data integrity.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 124

These issues, although initially disruptive, ultimately contributed to a stronger and more

resilient system. Each resolution brought tangible improvements to system performance,

stability, and usability across different use cases.

5.6 Concluding Remark

The implementation phase successfully culminated in a robust, fully integrated, and operational

facial recognition attendance system. The developed prototype effectively meets the real-time

performance and security requirements essential for a modern academic environment.

The system's core strength lies in its high-accuracy biometric verification, powered by a

custom-trained CNN that generates detailed facial embeddings. Security is significantly

enhanced by a mandatory active liveness detection mechanism, which effectively mitigates

spoofing attacks from static images or videos. Through careful optimization of image

processing and model loading, the system achieves seamless real-time performance, ensuring

a smooth and efficient user experience. Built on a modular Flask architecture, the application

is both scalable and maintainable, allowing for future enhancements such as integration with

larger institutional databases or mobile clients.

In summary, this implementation delivers a comprehensive and practical solution to the

challenges of attendance tracking. It provides a secure, reliable, and user-friendly platform that

is technically sound and ready for potential deployment or further research and development.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 125

Chapter 6

System Evaluation and Discussion

This chapter presents a comprehensive evaluation of the developed facial recognition

attendance system. The evaluation methodology was designed to rigorously assess the system's

performance, validate its core functionalities, and identify its limitations. The assessment is

based on both quantitative performance metrics and qualitative results from a series of

structured test scenarios designed to simulate real-world conditions.

6.1 System Testing and Performance Metrics

The core of the system, a custom-trained Convolutional Neural Network (CNN) model, was

quantitatively evaluated to determine its identification accuracy. System-level metrics, such as

real-time processing speed, were also measured to assess its practical performance.

Table 6.1.1 System Performance Metrics

Metric Definition Result

Train Accuracy Accuracy on the data used to train the model 91.42%

Validation Accuracy Accuracy on a separate dataset used to tune

the model

88.67%

Test Accuracy Accuracy on a completely unseen test dataset 84.80%

Precision (Weighted

Avg)

The ability to correctly identify only relevant

individuals

87%

Recall (Weighted

Avg)

The ability to find all instances of an

individual

85%

F1-Score (Weighted

Avg)

The harmonic means of Precision and Recall 85%

Recognition Time Average time from frame capture to final

confirmation

~1.8 seconds

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 126

The model was trained for 100 epochs, with its learning progress monitored by tracking

performance on both training and validation datasets. This process is crucial for assessing the

model's ability to generalize to new, unseen faces.

Figure 6.1.1 Model Training and Validation Loss & Accuracy Curves

The training curves in Figure 6.1.1 provide several key insights into the model's behavior:

• Loss Analysis: The Training Loss (blue line) demonstrates a smooth and consistent

decrease, indicating that the model was effectively learning patterns from the training data.

The Validation Loss (orange line), while more volatile, follows the same downward trend.

This alignment suggests the model is successfully generalizing its learning to unseen data,

although the volatility points to potential sensitivity to specific validation batches.

• Accuracy Analysis: The Training Accuracy steadily climbs towards its peak, while the

Validation Accuracy follows closely before plateauing around 88%. The small gap

between the two curves indicates a slight degree of overfitting, a common outcome where

the model performs marginally better on data it has already seen. This can be effectively

mitigated in future work by introducing more diverse training data or regularization

techniques.

To understand the model's performance in fine detail, a classification report was generated

using the Labeled Faces in the Wild (LFW) test dataset. This report breaks down precision,

recall, and F1-score for everyone, offering a clear view of the model's strengths and

weaknesses.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 127

Figure 6.1.2 Classification Report for the LFW Test Dataset

Key Observations from the Classification Report:

• Strong Overall Performance: The model achieved a final test accuracy of 84.8% and

a weighted average F1-score of 85%. This is a robust result for a challenging, multi-

class facial recognition task, confirming the model's overall effectiveness.

• Impact of Data Volume: The model's performance is strongly correlated with the

number of training examples per individual (support). It performed exceptionally well

in classes with high support, such as George W Bush (93% F1-score, 106 samples)

and Gerhard Schroeder (95% F1-score, 22 samples).

• Challenges with Limited Data: Conversely, the model struggled with classes that had

very few training samples, such as Andre Agassi (56% F1-score, 7 samples)

and Angelina Jolie (67% F1-score, 4 samples). This directly validates the "Dataset

Generalization" limitation discussed in Section 6.3 and highlights that performance is

contingent on sufficient data representation.

In summary, this detailed analysis confirms the model is highly effective. It also empirically

demonstrates that its accuracy is directly proportional to the volume of training data available

for each subject, providing a clear and data-driven direction for future improvements.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 128

6.2 Testing Setup and Result

Testing Setup

• Hardware: Victus 16-r0326TX (Intel Core i7-13700HX, RTX4060 GPU, 16GB RAM)

• Camera: Built-in 1080p HD webcam

• Subject: 10 students with different facial characteristics and conditions.

6.2.1 Test Scenarios and Results

The system was evaluated against a comprehensive suite of test cases designed to validate its

functionality, robustness, and security under various conditions.

Table 6.1.2 Test Scenarios and Results

Test

ID

Test

Scenario

Expected Outcome Actual Outcome Result

TC01 Face

Registration

with Good

Lighting

Successful

registration and

storage of facial

embeddings.

The system successfully guided the

user through liveness checks and

captured five images, generating

and storing the embedding.

Pass

TC02 Face

Registration

in Low

Lighting

Successful

registration despite

dim lighting.

Histogram equalization activated,

enhancing image contrast. Face

was detected and registered

successfully.

Pass

TC03 Attendance

Scan with

Head Tilt

Successful

recognition despite

non-frontal pose.

The model correctly identified the

student with a similarity

score >0.90, accommodating a tilt

of up to ~20 degrees.

Pass

TC04 Attendance

Scan

Wearing

Glasses

Successful

recognition with

partial occlusion

(glasses).

The system correctly identified the

student, demonstrating robustness

to common accessories.

Pass

TC05 Spoofing

Using

Printed

Photo

The system must

reject the attempt due

to failed liveness

detection.

Liveness detection prompted for

blinks and head movements; the

static photo failed the check.

Access was denied.

Pass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 129

TC06 User

Remains

Static (No

Blinking)

Liveness detection

should fail,

preventing

attendance marking.

The system timed out after the user

failed to perform the requested

blinks, displaying a "Liveness

Verification Failed" message.

Pass

TC07 Face Scan of

Unregistered

Student

The system must

reject the attempt as

no match is found.

The system scanned the face but

found no matching embedding in

the database with a score >0.90.

Access was denied.

Pass

TC08 Attendance

Scan with

Background

Movement

The system must

focus on the primary

user's face and ignore

background

distractions.

The face detection algorithm

correctly isolated the closest and

most central face, ignoring other

moving people in the background.

Pass

TC10 Exporting

Attendance

Report

Lecturer can

successfully generate

and download reports

in CSV, PDF, and

Excel formats.

The system correctly generated

well-formatted and accurate reports

in all three specified formats.

Pass

TC11 Face Match

Below

Threshold

A legitimate user

with a similarity

scores just below the

threshold (e.g., 0.89)

should be rejected.

In a controlled test forcing a lower-

quality image, the similarity score

was 0.89. The system correctly

denied attendance, upholding the

strictness of the threshold.

Pass

TC12 Partial

Occlusion

(Face Mask)

The system should

reject the user as key

facial features are

obscured, preventing

an accurate match.

The system failed to find a match

with a score of >0.90 and displayed

a "Recognition Failed" message.

Pass

TC13 No Face

Detected

The system should

provide clear

feedback when no

face is visible to the

camera.

When no user was in front of the

camera, the UI displayed a "No

face detected" status message.

Pass

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 130

6.2.2 Detailed Scenario Analysis and Evidence

To provide deeper insight into the system's performance, this section details the execution and

results of several critical test scenarios, supported by visual evidence from the application

1. Anti-Spoofing Validation (TC05 & TC06)

Figure 6.2.2.1, the system initiated the liveness challenge but timed out when the required

actions were not performed, successfully thwarting the spoofing attempt. This confirms the

security module's effectiveness in ensuring user presence.

Figure 6.2.2.1: Liveness Detection Fails due to Unresponsive User

2. System Robustness under Challenging Conditions

a. Low-Lighting Environment (TC02)

As depicted in Figure 6.2.2.2, the integrated histogram equalization enhanced the input

frame, allowing for accurate face detection and successful verification, demonstrating

the system's environmental resilience.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 131

Figure 6.2.2.2: Successful Face Verification in a Low-Light Environment

b. Multiple Faces in Frame (TC09)

To handle ambiguity in crowded settings, the system was tested with multiple faces in

view. Figure 6.2.2.3 shows the system's response: it correctly identified the presence

of multiple individuals and prompted the user for a clear, single-person frame,

preventing potential mismatches.

Figure 6.2.2.3: System Warning Prompted by Multiple Faces in the Camera View

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 132

3. Recognition of Accuracy and Edge Cases

a. No Face Detected (TC13)

The system provides clear user guidance, as shown in Figure 6.2.2.4. When no face

is visible, a “No Face Detected in the image” message is displayed.

Figure 6.2.2.4: User Interface Feedback When No Face is Detected

b. Partial Occlusion (Face Mask) (TC12)

A user attempted verification while wearing a face mask. As critical facial features

were obscured, the system respond with “Invalid face region detected” message.

Figure 6.2.2.5: Failed Recognition Attempt due to Partial Occlusion from a Face

Mask

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 133

4. Core Functionality

a. Successful Attendance Verification

The primary workflow was validated. Figure 6.2.2.6 illustrates a successful

verification, where the system displays confirmation with the student's identity and a

similarity score, providing immediate and clear feedback.

Figure 6.2.2.6: Successful Attendance Verification with Confirmation Modal and

Similarity Score

b. Unsuccessful Attendance Verification (Low Similarity) (TC11)

To validate the threshold's effectiveness, a test was conducted that resulted in a low

similarity score of 0.81. As shown in Figure 6.2.2.7, the system correctly rejected

the attempt, confirming that the 0.90 threshold is strictly enforced to maintain

accuracy.

Figure 6.2.2.7 Unsuccessful Verification – Similarity (0.81)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 134

6.3 Limitation and Future Work

Despite the successful implementation and positive evaluation, the project serves as a robust

proof-of-concept with several identifiable limitations. Acknowledging these limitations is the

first step in creating a strategic roadmap for evolving the current prototype into a scalable,

enterprise-ready solution for academic institutions. The key areas for future enhancement are

detailed below.

Table 6.3.1 Limitations and Future Work

Limitation Description & Impact Proposed Future Work

Dataset

Generalization

The model was trained on a

localized dataset. This limits its

ability to generalize across

diverse demographics

(ethnicities, ages) and

environmental conditions do not

present in the initial data. In a

wider deployment, this could

lead to higher False Rejection

Rates (FRR) for

underrepresented student groups,

raising concerns about fairness

and bias.

Implement Continual

Learning: Develop a framework to

incrementally retrain the model with

new, consented data from live usage,

allowing it to adapt and improve over

time.

Static

Biometric

Profile

A student's facial features can

change over time (e.g., new

glasses, significant hairstyle

change, facial hair). The current

system uses a single, static

embedding created at

registration. This "template

aging" could lead to a

gradual decrease in recognition

accuracy for a student over a

long period, requiring them to re-

register completely.

1. Implement Template

Updating: Allow users to add new,

high-quality images to their profile

to create an updated or composite

facial embedding, making the

system adaptive to gradual

changes.

2. Proactive Re-enrollment

Prompts: If a user's average

similarity score consistently drops

below a certain threshold (e.g.,

0.92), the system could

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 135

automatically prompt them to

update their facial profile.

Scalability

Constraints

The use of SQLite, a file-based

database, is not suitable for

handling the high volume of

concurrent transactions expected

in a large institutional

deployment

Migrate the backend to a production-

grade client-server database, such

as PostgreSQL or MySQL, to ensure

scalability and data integrity.

Lack of

Fallback

Mechanisms

The system's workflow is binary

(success/failure). It does not

gracefully handle legitimate

failure scenarios, such as a

student's webcam being broken

or a temporary network issue. In

such cases, the student would be

unfairly marked absent without

an alternative.

Integrate Lecturer-Controlled

Overrides: Implement features for

lecturers to generate time-limited QR

codes for specific students or

perform manual attendance

entry with a required justification note

(e.g., "Webcam malfunction"). This

maintains a complete and accurate

attendance record.

Privacy and

Data

Governance

Storing biometric data (even as

embeddings) raises significant

ethical and privacy concerns. The

current prototype does not have a

formal framework for data

consent, encryption at rest, or a

defined data retention policy,

which are mandatory for

handling sensitive personal

information in a production

environment.

1. Implement End-to-End

Encryption: Encrypt all facial

embeddings in the database and use

HTTPS/SSL to secure all data in

transit.

2. Develop a Data Privacy

Framework: Create a clear privacy

policy, obtain explicit user consent

during registration, and build

functionality for users to view and

request the deletion of their biometric

data, ensuring compliance with

regulations like GDPR.

Addressing these challenges would be essential for scaling the system beyond pilot

deployments into production use across larger academic institutions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 136

6.4 Objectives Evaluation

This section provides a critical evaluation of the project's success by measuring its outcomes

against the specific objectives defined in Chapter 1. The evaluation confirms that all primary

objectives were successfully met.

Table 6.4.1 Objectives Evaluation

Objective Status Evaluation

1. To develop a

highly accurate,

real-time face

recognition model.

✔ Achieved • The model achieved 84.8% accuracy on a multi-

class test set, demonstrating high precision

• The system maintained a real-time response

of ~1.8 seconds.

• Robustness was validated in tests for low lighting

(TC02) and varied poses (TC03).

2. To integrate a

robust liveness

detection module

for anti-spoofing.

✔ Achieved • An active challenge-response mechanism was

successfully integrated.

• The module demonstrated 100% effectiveness in

rejecting spoofing attempts with static photos

(TC05) and non-responsive users (TC06) in all

test scenarios.

3. To implement a

fully automated

attendance

management

system.

✔ Achieved • A functional end-to-end system was delivered,

automating the entire workflow from user

verification to database logging.

• A comprehensive lecturer dashboard with tools

for course management and automated report

generation (TC10) was successfully implemented

and validated.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 137

6.5 Concluding Remark

This chapter's comprehensive evaluation confirms that the Real-Time Face Recognition

Attendance System is a robust and effective solution for modern academic environments. By

successfully pairing a high-accuracy CNN model (84.8% test accuracy) with a validated

active liveness detection module, the system ensures both reliable identification and strong

protection against spoofing attacks. The system operates efficiently in real-time and performs

reliably across a range of typical classroom scenarios, as demonstrated by the successful

validation of all test cases.

While the evaluation identified key areas for future enhancement—primarily in dataset

diversification and backend scaling—the foundational framework is validated as a technically

sound and practical solution that successfully achieves all primary project objectives.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 138

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

This project successfully culminated in the design, implementation, and rigorous validation of

a real-time facial recognition attendance system. By architecting a holistic solution that

integrates a high-accuracy deep learning model with a mandatory active challenge-response

mechanism for liveness detection, the system provides a secure, efficient, and automated

platform for academic attendance management. The primary contribution of this work is the

development of a dual-focused system that not only ensures precise identification but also

robustly defends against the critical vulnerabilities of proxy attendance and spoofing attacks

that plague traditional and basic biometric systems.

The empirical evaluation confirmed the system's technical viability and effectiveness. The core

CNN model achieved a strong test accuracy of 84.8% on the challenging LFW dataset,

successfully fulfilling the objective of creating a highly accurate recognition model. To ensure

operational integrity, the integrated active liveness detection module proved highly effective,

preventing 100% of spoofing attempts in controlled tests and thereby meeting the objective

of integrating a robust anti-spoofing mechanism. Finally, the development of a fully featured,

role-based web application with a comprehensive lecturer dashboard realized the final

objective of delivering a complete and automated attendance management system.

While the evaluation identified clear areas for future enhancement—most notably the model's

performance dependency on dataset size and the architectural need for a more scalable

backend—this project serves as a powerful proof-of-concept. It successfully demonstrates the

viability of the proposed architecture and lays a solid, data-validated foundation for a

deployable, enterprise-ready biometric solution poised to enhance security and administrative

efficiency in academic environments.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 139

7.2 Recommendation for Future Work

To evolve the current prototype from a successful proof-of-concept into a scalable, institution-

ready solution, the following strategic enhancements are recommended. These

recommendations directly address the limitations identified during the evaluation phase and

provide a roadmap for future development.

1. Enhance Model Generalization, Fairness, and Adaptability

The evaluation in Chapter 6 empirically demonstrated that the model's accuracy is directly

proportional to the volume of training samples per individual. To improve performance

across diverse populations and ensure long-term accuracy, future work must focus on:

• Targeted Dataset Expansion and Bias Mitigation: Actively expand the training

dataset with a focus on collecting more samples for underrepresented demographic

groups. This is not just a technical improvement but a crucial step towards

ensuring algorithmic fairness and reducing potential biases that could disadvantage

certain student populations.

• Advanced Data Augmentation: Move beyond basic transformations and implement

sophisticated augmentation techniques, such as Generative Adversarial Network

(GAN)-based augmentation. This can synthetically generate hyper-realistic, yet novel,

facial images to improve the model's resilience to variations in expression, lighting, and

accessories.

• Implement a Continual Learning Framework: Transition from a static model to a

dynamic one. Develop a secure, opt-in framework that allows the model to be

incrementally updated with new data from live usage. This creates a feedback loop

where the system becomes more accurate and adaptive over time without the need for

costly and disruptive complete retraining cycles.

2. Transition to a Production-Grade, Scalable Backend Infrastructure

To handle the demands of a live institutional environment with hundreds of concurrent users,

the system's backend architecture must be re-engineered for performance, scalability, and

resilience.

• Database Migration to RDBMS: Migrate the data persistence layer from the file-

based SQLite to a production-grade relational database like PostgreSQL or MySQL.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 140

This is essential for robustly handling high-concurrency transactions, ensuring data

integrity through ACID compliance, and enabling complex queries for analytics.

• Containerization and Cloud Deployment: Containerize the Flask application

using Docker and deploy it on a cloud platform like AWS, Azure, or Google Cloud.

This facilitates automated scaling, high availability through load balancing, and

simplifies CI/CD pipelines for future updates. Utilizing managed cloud services can

also offload database management and improve overall system reliability.

• Implement a Secure, Stateless API: Refactor the backend to expose a stateless

RESTful API secured with token-based authentication (e.g., JWT). This decouples the

frontend from the backend, allowing for scalable communication and enabling the

seamless integration of new clients, such as the proposed mobile application.

3. Develop a Cross-Platform Mobile Application

To enhance accessibility and align with the mobile-first behavior of modern students, a

dedicated mobile application is a critical next step.

• Cross-Platform Development: Utilize a modern framework like Flutter or React

Native to develop a single, unified codebase that can be deployed natively on both

Android and iOS. This significantly reduces development time and long-term

maintenance overhead compared to building two separate native applications.

• Native Device Integration and On-Device ML: A mobile application would allow for

direct integration with superior smartphone cameras. Furthermore, it opens the

possibility of leveraging on-device machine learning frameworks (like TensorFlow Lite

or Core ML) to perform initial liveness checks or feature extraction locally, reducing

server load, decreasing latency, and enabling limited offline functionality.

4. Strengthening Anti-Spoofing with Multi-Modal Liveness Detection

While the current liveness detection is effective against 2D attacks, the landscape of

spoofing threats is constantly evolving. Security can be significantly hardened against more

sophisticated attacks.

• Integrate Passive Liveness Cues: Investigate the integration of passive liveness

detection techniques that do not require user interaction. This could involve analyzing

subtle texture differences between live skin and a screen (Moiré pattern detection) or

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 141

analyzing light reflection patterns. This would improve user experience by reducing the

frequency of active challenges.

• Explore Multi-Modal Biometrics: For high-security scenarios, explore the integration

of advanced sensors available on some modern devices, such as infrared (IR) or 3D

depth cameras. These sensors can differentiate between a flat 2D image and a 3D live

face, providing a nearly spoof-proof layer of verification against even sophisticated

presentation attacks.

5. Conduct a Large-Scale Pilot Study for Socio-Technical Validation

Before a full-scale rollout, a controlled pilot study is crucial not only for technical validation

but also for understanding the human factors involved in deployment.

• Phased Deployment and Performance Monitoring: Deploy the system within a

single faculty to evaluate its performance, stability, and usability under real-world load.

Implement robust logging and monitoring to track key metrics like average recognition

time, failure rates, and server performance.

• Integrate a Comprehensive Analytics Dashboard: Develop a dedicated module for

lecturers and administrators that provides rich, visual analytics on attendance trends,

absenteeism rates, and correlations with academic performance. This transforms the

system from a simple logging tool into a valuable data-driven decision-making platform.

• Gather Structured User Feedback: Collect both qualitative and quantitative feedback

from students and lecturers through surveys, interviews, and focus groups. This

feedback is invaluable for identifying operational bottlenecks, addressing usability

issues, and ensuring the system is not only technically sound but also well-received and

trusted by its users.

By methodically implementing these recommendations, the system can be transformed from a

successful academic prototype into a commercially viable and institutionally robust platform

that streamlines attendance workflows, reduces administrative burden, and enhances

accountability in modern educational settings.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 142

REFERENCES

[1] Masalha, F., & Hirzallah, N. (2014). A students attendance system using QR code.

International Journal of Advanced Computer Science and Applications, 5(3).

[2] Uddin, M. S., Allayear, S. M., Das, N. C., & Talukder, F. A. (2014). A location-based time

and attendance system. International journal of computer theory and engineering, 6(1), 36.

[3] N. Barnouti. “Improve Face Recognition Rate Using Different Image Pre-processing

Technique,” in American Journal of Engineering Research (AJER), 2016. [Online]. Available:

https://www.ajer.org/papers/v5(04)/E0504046053.pdf

[4] Anila, S., and N. Devarajan. "Preprocessing technique for face recognition applications

under varying illumination conditions." Global Journal of Computer Science and Technology

12, no. 11-F (2012).

[5] Dharavath, Krishna, Fazal Ahmed Talukdar, and RabulHussainLaskar. "Improving face

recognition rate with image preprocessing." Indian Journal of Science and Technology 7, no.

8 (2014): 1170-1175.

[6] A. L. Ramadhani, P. Musa and E. P. Wibowo, "Human face recognition application using

pca and eigenface approach," 2017 Second International Conference on Informatics and

Computing (ICIC), Jayapura, Indonesia, 2017, pp. 1-5, doi: 10.1109/IAC.2017.8280652.

[7] P. Wagh, R. Thakare, J. Chaudhari and S. Patil, "Attendance system based on face

recognition using eigen face and PCA algorithms," 2015 International Conference on Green

Computing and Internet of Things (ICGCIoT), Greater Noida, India, 2015, pp. 303-308, doi:

10.1109/ICGCIoT.2015.7380478.

[8] M. Arsenovic, S. Sladojevic, A. Anderla and D. Stefanovic, "FaceTime — Deep learning-

based face recognition attendance system," 2017 IEEE 15th International Symposium on

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 143

Intelligent Systems and Informatics (SISY), Subotica, Serbia, 2017, pp. 000053-000058, doi:

10.1109/SISY.2017.8080587.

[9] Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International

Journal of Computer Vision 115.3 (2015): 211 252.

[10] Everingham, Mark, et al. "The pascal visual object classes (voc) challenge." International

journal of computer vision 88.2 (2010): 303 338.

[11] Li, Haoxiang, et al. "A convolutional neural network cascade for face detection."

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[12] Collobert, Ronan. "Torch." Workshop on Machine Learning Open-Source Software,

NIPS. Vol. 113. 2008.

[13] S, Emami, et al, Mastering OpenCV with practical computer vision projects, PACKT

publishing: Birmingham, 2012.

[14] H. Yang and X. Han, "Face Recognition Attendance System Based on Real-Time Video

Processing," in IEEE Access, vol. 8, pp. 159143-159150, 2020, doi:

10.1109/ACCESS.2020.3007205.

[15] Lingxue Song, Dihong Gong, Zhifeng Li, Changsong Liu, Wei Liu, "Occlusion Robust

Face Recognition Based on Mask Learning with Pairwise Differential Siamese Network,"

2019, pp. 773-782

[16] M. Heidari and K. Fouladi-Ghaleh, "Using Siamese Networks with Transfer Learning for

Face Recognition on Small-Samples Datasets," 2020 International Conference on Machine

Vision and Image Processing (MVIP), Iran, 2020, pp. 1-4, doi:

10.1109/MVIP49855.2020.9116915.

[17] Muraina, I. (2022, February). Ideal dataset splitting ratios in machine learning algorithms:

general concerns for data scientists and data analysts. In 7th international Mardin Artuklu

scientific research conference (pp. 496-504).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 144

[18] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for

Deep Learning. Journal of Big Data, 6(1), 1-48.

[19] Nitin. (2024, May 4). Learning from Introduction to Deep Learning - Learn Code Camp.

Code Camp Guides. https://learncodecamp.net/learning-from-introduction-to-deep-learning/

[20] Soekarta, R., & Ku-Mahamud, K. R. (2025). Recent Facial Image Preprocessing

Techniques: A Review. Engineering Proceedings, 84(1), 39.

https://doi.org/10.3390/engproc2025084039

[21] K. Gu, G. Zhai, W. Lin and M. Liu, "The Analysis of Image Contrast: From Quality

Assessment to Automatic Enhancement," in IEEE Transactions on Cybernetics, vol. 46, no. 1,

pp. 284-297, Jan. 2016, doi: 10.1109/TCYB.2015.2401732.

[22] Nitin, “Learning from Introduction to Deep Learning - Learn Code Camp,” Code Camp

Guides, May 04, 2024. https://learncodecamp.net/learning-from-introduction-to-deep-learning

[23] Brownlee, J. (2019, April 3). A Gentle Introduction to Learning Curves for Diagnosing

Machine Learning Model Performance. Machine Learning Mastery.

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-

model-performance/

[24] D. Guo, Y. Wu, S. S. Shitz and S. Verdú, "Estimation in Gaussian Noise: Properties of the

Minimum Mean-Square Error," in IEEE Transactions on Information Theory, vol. 57, no. 4,

pp. 2371-2385, April 2011, doi: 10.1109/TIT.2011.21

[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Pearson, 2018

[26] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2nd ed. Pearson, 2012.

[27] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter

Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, "Adaptive histogram equalization and its

variations," Computer Vision, Graphics, and Image Processing, vol. 38, no. 1, pp. 99-108,

1987.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 145

[28] K. Zuiderveld, "Contrast limited adaptive histogram equalization," in Graphics Gems IV,

P. S. Heckbert, Ed. Academic Press, 1994, pp. 474–485.

[29] I. Sobel, "An isotropic 3x3 image gradient operator," presented at the Stanford A.I. Project,

1968.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 146

POSTER

