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DEVELOPMENT OF A DIGITAL TWIN FOR THE CONTROL OF FLOW 

AND LEVEL SYSTEMS USING PID AND CASCADE CONTROL 

STRATEGIES 

 

ABSTRACT 

 

 

This project presents the development and validation of a digital twin for flow 

and level control systems, including a cascade control configuration, aiming to 

enhance educational platforms through sustainable and interactive learning tools. The 

performance of P, PI, and PID controllers was experimentally evaluated in regulating 

flow rate, highlighting the trade-offs between steady-state error, overshoot, and system 

stability. A mathematical model of the physical process was derived using first 

principles, linearized, and transformed into transfer functions for simulation in 

MATLAB Simulink. Some parameters were estimated and assumed through 

comparison with experimental data, achieving close alignment and confirming the 

model's accuracy for flow control system. Simulations of the flow, level, and cascade 

control systems revealed that higher proportional gains improved response time but 

introduced oscillations, while integral and derivative actions contributed to error 

elimination and improved damping, respectively. The cascade control system 

demonstrated enhanced stability and responsiveness by addressing disturbances at the 

inner-loop level. Despite some discrepancies during initial transients, likely due to 

simplified assumptions and unmodeled disturbances, the digital twin effectively 

replicates real system behavior and serves as a valuable educational resource for 

control system learning and analysis. 

 

Keywords: Digital Twin, PID Controller, MATLAB Simulink, Virtual Laboratory, 

Engineering Education 

Subject area: Flow and Level Control Systems  
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Project Background 

 

Section 1.1 explains the background of the project, which includes process control, 

digital twin, MATLAB Simulink, application of digital twin in process control and 

comparison between offline and online laboratory. Section 1.2 and 1.3 explains the 

problem statement and objectives of this study. Section 1.4 covers the scope and 

limitations of this project 

 

 

 

1.1.1 Process Control 

 

Process control aims to enhance process safety, satisfy environmental constraints and 

reduce pollution, meet product quality specifications, minimize operating costs, and 

maintain a process’s intended operating parameters (Seborg et al., 2016). Process 

control systems gather, store, and analyze real-time data from controllers and other 

connected automation systems. This historized data are beneficial in displaying trends 

in a process over time or in identifying the root cause of process disturbances (Harbud, 

2022). Process variables involved in a control system are controlled variables, 

manipulated variables and disturbance variables. Some examples of process variables 

include composition, temperature, pressure and flow rates. Process control works 

based on the principle of continuously monitoring process variables and making 
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adjustments to maintain desired operating conditions. Control systems use sensors to 

measure process variables, compare them to setpoints, and apply corrective actions 

through controllers to minimize deviations and ensure stable operation. Some of the 

simplest process control strategies are feedback control strategy, feedforward control 

strategy, the combination of feedback and feedforward control strategy, and cascade 

control strategy (Seborg et al., 2016).  

 

 

 

1.1.2 Digital Twin 

 

A generalized definition for a digital twin is a virtual representation of a physical 

system that is updated through the exchange of information between physical and 

virtual systems. There are three characteristics a digital twin consists of: (i) a physical 

reality, (ii) a virtual representation, and (iii) interconnections that enables two-way 

communication between the physical reality and the virtual representation. The 

physical reality is a general way to represent the system that is to be modeled. This 

includes the physical system, physical environment, and physical processes. The 

physical system is made up of a group of interacting and interrelated entities that form 

a unified whole. The physical environment is what surrounds the physical system and 

influences the physical system through external factors such as room temperature, air 

flow, vibration or others. Physical processes are how the physical system reacts to the 

changes in the environment which subsequently leads to changes in state over time. 

The virtual representation is a data model that mirrors an idealized form of the physical 

reality in a virtual space. Likewise, there are also the virtual system, virtual 

environment and virtual processes in the virtual representation. The last characteristic 

of a digital twin is the exchange of information between the physical reality and the 

virtual representation. The physical-to-virtual connection involved data collection in 

the physical reality, interpretation of the collected data, and update the states in the 

virtual representation. On the other hand, virtual-to-physical connection closes the 

loop in the digital twin by transferring information from the virtual representation to 

the physical reality. This allows decisions generated in the virtual representation to be 

implemented in the physical reality (VanDerHorn and Mahadevan, 2021).  
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Digital twin technology can be used in different sectors such as healthcare, 

maritime and shipping, manufacturing, city management and aerospace (Semeraro, 

2021). Through simulation of scenarios, it determines better therapy options; improve 

structural and functional components of a ship, prediction of equipment failures, 

improve urban environment and quality of life, enhance safety  and security, carry out 

predictive maintenance and reduce cost. There are still some drawbacks of virtual 

models even though digital twins have very big influences. According to Pires et al. 

(2019), the lack of methodologies and techniques for validation against real processes 

causes it to be time consuming and difficult. The second challenge is the difficulty in 

unification and exchange of information within a company. Lack of knowledge and 

skills about digital engineering and organization of the company structure lead to 

difficulties in accessing information from different structures. The third challenge is 

to establish real-time connection and synchronization between the virtual and physical 

model. This is namely due to the variability, uncertainties and fuzziness of the physical 

environment. This induces doubt towards these systems to perform autonomous 

decisions. 

 

 

 

1.1.3 MATLAB Simulink 

 

Researchers usually prefer to develop their models in a real-time environment and 

MATLAB Simulink provides a graphical programming environment for modeling, 

simulating, and analyzing dynamic systems. It allows users to create block diagrams 

to represent systems, enabling simulation of their behavior over time, and supports 

model-based design for control systems and signal processing. MATLAB Simulink 

provides a user-friendly graphical interface for building complex models using block 

diagrams, making it easier to visualize system dynamics. Besides, it allows for real-

time simulation and testing of models, enabling engineers to identify issues early in 

the design process and optimize performance. It also seamlessly integrates with 

MATLAB for advanced data analysis and algorithm development, and supports 

various toolboxes for specialized applications, enhancing its versatility in engineering 

projects. MATLAB Simulink is commonly used in engineering fields such as control 
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systems, signal processing, communications, and robotics for design, testing, and 

validation of algorithms and systems (Mikkili et al., 2015). 

 

Simulation tools are very important as the demand in the automotive 

electronics, disk drive electronics and robotics industry are increasing for Industry 4.0. 

Kiyakli and Solmaz (2019) created and simulated a dynamic model of an electric 

vehicle using MATLAB Simulink to test its reliability. They successfully conducted 

this study and concluded that the energy consumption, vehicle speed and cycle speed 

are correct for both NEDC and WLTP cycles. Besides, Shukla et al. (2015) developed 

a program in MATLAB Simulink for a 36W photovoltaic module. This software 

allows simulation of the PV module for prediction and validation of its’ behaviour 

under varying temperature and solar radiation. The research was a success as the 

accurateness of the simulated results were validated with the manufacturers results. 

 

Simulation tools are incorporated in the development of digital twins. Bilansky 

et al. (2023) describe how a digital twin of a Li-ion battery cell was developed using 

MATLAB Simulink based on measured data. The designed digital twin was then tested 

and compared against a generic MATLAB Simulink model, which represents an 

empirical battery cell model, to assess accuracy. The comparison involved the 

dynamics of the real battery cell, the developed digital twin in MATLAB Simulink, 

and the generic model. The results showed that the digital twin was more accurate 

under steady-state conditions, but less accurate during dynamic current changes. It was 

recommended that accuracy could be improved by collecting more dynamic test data, 

such as through the implementation of Hybrid Pulse Power Characterization (HPPC) 

and micro-cycling. This would enhance the dataset and lead to more realistic parameter 

estimation. 
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1.1.4 Application of Digital Twin in Process Control System 

 

Digital twins are widely used to optimize control in process systems integrating virtual 

modelling, monitoring, diagnosis, and control. He et al. (2019) emphasizes the control 

of digital twins in monitoring, diagnosing, and optimizing control in industrial 

automation. It highlights how digital twins can simulate physical systems, manage 

process faults, and enhance operational safety and efficiency. The three types of 

failures addressed include sensor faults, actuator failures, and process disturbances, 

while optimized control configurations and adaptive algorithms for real-time and 

offline optimization were proposed. The findings indicate that the digital twin system 

enhances safety, reduces operational fluctuations, and improves fault tolerance in 

industrial process control systems. 

 

 

 

1.1.5 Comparison Between Offline and Online Laboratory 

 

Traditional education for laboratory sessions is no longer as effective as it once was. 

Technology has been advancing at a rapid pace, and traditional laboratories are 

struggling to keep up with modern industry requirements. Although physical 

laboratories allow face-to-face sessions, they come with numerous limitations. Not 

only do they have restricted resources, but they also suffer from limited accessibility. 

There is often an insufficient number of equipment, leaving some students merely 

observing rather than actively participating. Furthermore, students are constrained by 

the laboratory hours, limiting opportunities to conduct experiments. Additionally, 

there may not be enough qualified faculty members to supervise all experiments 

(Kathane et al., 2013). The high costs of maintaining outdated equipment and the 

safety concerns associated with physical experiments are undeniable. The limited 

availability of equipment makes it difficult to accommodate large groups of students, 

leading to scalability challenges (Faulconer and Gruss, 2018). 

 

In contrast, online laboratory sessions provide 24/7 availability and accessibility. 

They can be extensively utilised for virtual teaching, e-learning, and other computer-
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based education. They allow students to repeat experiments as many times as they wish 

without any safety risks. Additionally, online laboratories are cost-effective and highly 

scalable. Moreover, they promote inclusivity by offering equal opportunities to all 

students, regardless of time and location. The integration of modern technology in 

online laboratories enhances growth potential, enabling remote operations and 

collaboration. In some cases, students can even monitor their experimental progress in 

real-time from a remote location (Faulconer and Gruss, 2018). 

 

 

 

1.2 Problem Statement 

 

Today’s rapidly digitalizing world makes it crucial to discover and adopt sustainable 

methods to improve education experience specifically. The integration of technology 

into education frameworks is no longer a trend but a necessity to be on par with the 

evolving demands of the digital era. Although education continues to evolve, it has not 

kept pace with digitalization. It is still not advancing fast enough to be in conjunction 

with the digitalizing world. Pires et al. (2019) suggested that Industry 4.0 have 

triggered concepts such as the digital twin, Artificial Intelligence (AI) and Internet-of-

Things (IoT). The concept of digital twin is widely applied especially in the 

manufacturing sector. Consequently, the development of digital twins that can conduct 

simulations of real time experiments are essential in education. Nowadays, most 

institutes in the education sector still cling onto their old ways and are not 

implementing technologies that have been integrated into modern industries, leading 

to inefficiencies and students not grasping and utilizing the technology until they work 

in the relevant industries. These digital models that are replicas of real models can 

provide a dynamic and interactive platform for students to engage with complex 

systems and foster a deeper understanding with hands-on experience without 

constraints and risks associated with physical equipment. Furthermore, educational 

institutions can effectively utilize resources by implementing digital twins that can be 

reused indefinitely with minimal maintenance, and most importantly allowing multiple 

students to participate simultaneously. This approach significantly reduces the need 

for physical materials, equipment, and energy consumption traditionally required for 
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hands-on learning. By minimizing waste and optimizing resource usage, digital twins 

contribute to a more sustainable and environmentally conscious education system. 

Developing virtual real-time models also sparks innovative and creative ideas within 

the students, allowing them to explore and refine their solutions iteratively. Hence, 

investing time, talents and capital into digital twins present educational institutions 

with more flexible, scalable and immersive leaning experiences, ultimately prepare 

students for technological challenges of the future. 

 

In conjunction with this situation, this project aims to develop a comprehensive 

digital twin of the existing physical education equipment of flow and level control 

system that can enable students to conduct the experiments in a virtual mode while 

obtaining feedback or result that imitate the real time experiment. Experiments are first 

conducted by using the existing educational equipment (flow and level control system) 

to collect real time experimental data. Then, the mathematical model of the control 

system is formulated by using the first principle, which is then transformed to the 

transfer functions in a block diagram in MATLAB Simulink.  The model is then 

simulated to collect the response resulted from the model calculation. The response is 

analyzed and the model is validated by comparing the response with the real time 

experimental data. With the validated digital twin model, the parameters/settings of 

the control system can be adjusted to observe the responses of the system under 

different circumstances without the need to conduct the experiment by using the real 

time equipment. The digital twin model will be more cost-effective and accessible to 

everyone, accommodating various educational settings whether online or physical 

classes. This way, students can engage in learning together instead of taking turns 

waiting for the equipment. Therefore, this project will be beneficial to the education 

sector as it is more flexible and provides a more interactive experience to students. 
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1.3  Aim and Objectives 

 

This final year project aims to digitalize PID and cascade control education for the 

flow and level control systems through the development of a digital twin utilizing 

MATLAB Simulink. The four objectives are as follows: 

 

i) To evaluate the performance of P, PI, and PID controllers in regulating flow 

rate under various controller settings through experimental analysis. 

ii) To develop mathematical models for the flow control system, level control 

system, and cascade control system. 

iii) To simulate the developed control system models using Simulink software. 

iv) To assess the performance of the control systems in controlling the liquid level 

in the tank under different controller settings by simulation. 

 

 

 

1.4 Scope and Limitations 

 

The scope of this project revolves around designing a MATLAB-based digital twin for 

flow and level control systems using PID and cascade control strategies. It focuses on 

creating a comprehensive, accurate and engaging model that improves learning 

experience solely for students. The digital twin for flow and level control systems will 

include components such as tanks, sensors, controllers, and a source. 

 

The control system utilized is PID controller with feedback and cascade control 

strategies. The feedback control strategy gives corrective action after the system is 

being disturbed and cascade control strategies can quickly correct any disturbances in 

the inner control loop are incorporated in this project. Other strategies such as fuzzy 

logic controllers that can handle disturbances better than PID controllers are not 

considered nor used in this project. 

 

The digital twin is only built for the control of flow and level systems. 

Temperature and pressure are not considered in the system. Besides, this project only 
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uses MATLAB Simulink for the development and simulation of the virtual model. 

Any other real-time simulation software is not tested in this project. 

 

Responses that will be collected in this project include the response of water 

flow rate towards change in the set point of the water pump. The responses using 

feedback and cascade control strategies may consist of rise time, overshoot, oscillation 

around the set point, damping, and the time taken to achieve a steady-state flow rate. 

 

The experiments conducted will focus solely on flow control. Level control 

and flow/level cascade control experiments will not be performed. Disturbances 

affecting flow control will not be considered during the process modelling, and certain 

instrument gains will be assumed due to the lack of available data. 

 

The success of this project is determined through the accuracy and stability of 

the simulated data compared to the real data, and the proficiency of it as an educational 

tool. All constraints and limitations have been evaluated based on the problem 

statement, aim and objectives.
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

This chapter discusses process control in depth, encompassing the different control 

strategies and the PID controller. Furthermore, Section 2.5 depicts an example of 

process modelling and Section 2.6 discusses the relationship between digital twins and 

real-time simulation. 

 

 

 

2.2 Introduction to Process Control 

 

The goal of process control is to ensure safe and cost-effective operation while 

adhering to environmental and product quality standards. In complex processing 

systems like oil refineries and ethylene plants, thousands of process variables such as 

compositions, temperatures, and pressures are monitored and regulated. Fortunately, 

many of these variables can be adjusted to meet these objectives. The three main 

categories of processes are continuous, batch, and semibatch. Continuous processes 

include tubular heat exchanger, where the exit temperature of a process fluid is 

regulated by adjusting the cooling water flow rate, while disturbances like variations 

in inlet temperatures and flow rates impact performance. In a continuous stirred-tank 

reactor, where exothermic reactions occur, reactor temperature is controlled by 

manipulating coolant flow, with feed conditions potentially acting as either control or 
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disturbance variables. Similarly, in a thermal cracking furnace, the furnace 

temperature and excess air levels are managed by adjusting fuel flow and fuel/air ratio, 

with crude oil composition and fuel quality as common disturbances. In a kidney 

dialysis unit, blood flow is maintained by a pump, and ambient conditions are 

controlled by adjusting flow rates to ensure the removal of waste products to 

acceptable levels (Seborg et al., 2016).  

 

The three types of variables that have to be identified in a process control 

problem are controlled variables, manipulated variables and disturbance variables. The 

controlled variable is a desired value that the system aims to maintain usually known 

as the set point. The manipulated variable is a parameter that can be adjusted to 

influence the controlled variable and maintain it at or near to the desired set point. 

Normally, manipulated variables are factors such as flow rates, valve positions, or 

power inputs that can be directly changed by finite control elements within the system. 

Disturbance variables are parameters that can influence controlled variables but cannot 

be directly changed. Disturbance variables typically arise from changes in the external 

environment or fluctuations within the process itself, such as variations in raw material 

quality, ambient temperature, or feed conditions. These disturbances can cause the 

controlled variable to deviate from its desired set point (Seborg et al., 2016). 

 

 

 

2.3 Proportional, Integral and Derivative (PID) Controller 

 

PID control employs three modes—proportional, integral, and derivative—each 

contributing uniquely to the control output. The proportional term (P) adjusts the 

output based on the current error, which is the difference between the setpoint and the 

process variable. The integral term (I) accumulates past errors over time to reduce any 

offset, ensuring the process variable reaches the desired setpoint. The derivative term 

(D) responds to the rate of change in the process variable, allowing for adjustments 

when there are sudden variations. These three control actions are tuned to achieve 

optimal performance, making PID controllers widely popular in various industries, 

such as motion control, process control, and manufacturing, due to their simplicity, 
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effectiveness, and favorable cost-benefit ratio. PID controllers are also applied to 

modern technologies like self-driving cars, UAVs, and autonomous robots. They 

account for 90-95% of control loops in most applications (Borase et al., 2021) 

 

 The two common structures for PID controllers are the parallel type, where P, 

I, and D actions occur in separate terms, and the series type, where changes in gain 

affect all three actions interactively. In practical applications, finding a perfect model 

is challenging, so manipulation and trial-and-error methods remain valuable. For 

example, if a control loop is overly aggressive and causes excessive oscillation, 

reducing the gain can help. This adjustment slows the response but adds robustness to 

the loop, making it more stable (Borase et al., 2021). Figure 2.3.1 and Figure 2.3.2 

shows the block diagram of the parallel form and series form of PID control. 

 

 

Figure 2.1: Parallel form of PID controller 

 

 

Figure 2.2: Series form of PID controller 

 

Padula et al. (2017) conducted the optimization of PID control for regulating 

the depth of hypnosis in anesthesia by using propofol administration and the bispectral 
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index. The study also explored the optimal PI controller tuning using the same 

methodology as PID controller. Optimal tuning parameters were determined for both 

controllers. However, it was evident that PID controller outperforms the PI controller 

and model predictive controller (MPC). PID controller was able to achieve faster 

induction time and maintain a similar maximum overshoot compared to MPC. The 

performance of the PI controller that lacks the derivative action is inferior to MPC. 

These findings suggest that any advanced control strategy for regulating anesthesia 

should be benchmarked against optimally tuned PID controllers, as they deliver faster 

induction time with acceptable overshoot and satisfactory disturbance rejection. 

 

 

 

2.4 Control Strategies 

 

This section explains different control strategies including feedback control, 

feedforward control, cascade control, on/off control, model predictive control, and 

other control strategies. 

 

 

 

2.4.1 Feedback Control 

 

Feedback control system plays a major role by comparing measurements to 

target values and making necessary adjustments to the controlled variables. It involves 

measuring the controlled variable and using that measurement to adjust the 

manipulated variable. The disturbance variable is not measured. Feedback control 

ensures that corrective actions are taken to keep the controlled variable close to its set 

point. Negative feedback is preferred as the controller will correct deviations, while 

positive feedback means that the controller amplifies errors and causes the controlled 

variable to deviate more. The main advantages of feedback control include its ability 

to handle disturbances from any source and reduce sensitivity to unmeasured 

disturbances. However, a key limitation is that corrective action only occurs after a 
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disturbance has already caused the controlled variable to deviate from the set point 

(Seborg et al., 2016).  

 

Figure 2.3 below shows a simplified block diagram of a feedback control 

system, where the controlled variable, Y, is measured and compared with the setpoint, 

Ysp, to make corrective adjustments. The disturbance, D, is not measured, and 

corrective action is taken regardless of the source of the disturbance. 

 

Figure 2.3: Simplified block diagram for feedback control 

 

Yang et al. (2019) summarized the key components surrounding force 

feedback and control during robot-assisted needle insertion. This included reviewing 

state-of-the-art force modelling, measurement methods, factors influencing interaction 

forces, parameter identification, and force control algorithms. The study aimed to 

enhance the precision and effectiveness of needle insertion procedures in minimally 

invasive surgeries by improving the force control mechanisms. Feedback control is 

crucial in this study for reducing tissue deformation and needle deflection during 

insertion. It provides the surgeon with better control over surgical instruments by 

integrating force feedback systems that respond to the interaction between the needle 

and tissue. The study explores various control algorithms and strategies that enable 

real-time adjustments based on the forces detected during the insertion process. 

Feedback control in needle insertion enhanced precision by allowing real-time 

adjustments, improving trajectory and depth accuracy. It reduces tissue deformation 

and compensates for needle deflection, ensuring the needle stays on the intended path 

through monitoring and controlling. Surgeons also benefit from force feedback thus 

gaining better control and making informed decisions during the procedure. Advanced 

feedback systems can autonomously adapt to unforeseen circumstances, improving 

safety and effectiveness. 
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2.4.2 Feedforward Control 

 

Feedforward control is characterized by measuring the disturbance variable instead of 

the controlled variable. This approach offers a significant advantage, that is the 

corrective action can be taken preemptively, which is before the controlled variable 

deviates from its set point. Ideally, this corrective action would completely counteract 

the effects of the disturbance, ensuring that the controlled variable remains unaffected. 

Although perfect cancellation of disturbances is generally not achievable, feedforward 

control can still greatly mitigate the impact of measured disturbances. However, there 

are a few drawbacks to this method. First, it requires that the disturbance variable be 

accurately measured or estimated. Second, it does not provide corrective action for 

disturbances that are not measured. Third, the implementation of feedforward control 

necessitates an accurate process model, which can add complexity. For example, in a 

blending system, a feedforward control strategy may not account for unmeasured 

disturbances in certain inputs, such as the mass flow rate of input stream 1, which 

consists of a mixture of two chemicals, A and B. While it is theoretically possible to 

manage this by measuring the mass fraction of chemical A and the mass flow rate of 

input stream 1 and then adjusting the mass flow rate of input stream 2 accordingly, it 

is often impractical in industrial applications to measure every potential disturbance 

variable due to economic constraints (Seborg et al., 2016).  

 

Figure 2.4 shows a simplified block diagram of a feedforward control system, 

where the disturbance D is measured and used, along with the setpoint Ysp, to make 

corrective adjustments. The controlled variable, Y, is not measured, and corrective 

action is taken in advance, before the disturbance causes any deviation from the 

setpoint. 
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Figure 2.4: Simplified block diagram for feedforward control 

 

Wu et al. (2021) developed an iterative learning method for accurate dynamic 

feedforward control of industrial hybrid robots by combining a standard dynamic 

model with iterative learning control (ILC) to optimize feedforward parameters. The 

study aimed to reduce motion errors and improve tracking performance by addressing 

uncertainties in the robot's dynamic characteristics. Feedforward control in this study 

is used to compensate for external dynamic disturbances affecting the robot's 

performance. The disturbances include external forces acting on the robot that can 

affect its motion and accuracy, variations in the environment or system that are 

difficult to predict or model accurately, elastic deformation in the robot's structure 

under load that can impact its performance and transmission system clearance which 

are mechanical gaps in the robot's joints and connections that can introduce errors in 

motion control. Experiments on a 5-DOF hybrid robot showed a reduction in average 

position errors from 0.18 mm to 0.06 mm with a 66% improvement.  

 

 

 

2.4.3 Cascade Control 

 

Another method that can improve how the system responds to disturbances is known 

as cascade control which involves using a secondary measured variable and a 

secondary feedback controller. This secondary variable is placed to detect disturbances 

earlier than the main controlled variable, even if the disturbances themselves aren't 

directly measured. This approach is widely used in process industries and is 
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particularly effective when disturbances are related to the manipulated variable or 

when the final control element doesn't behave in a straightforward manner. The 

cascade control loop has two main characteristics: the primary controller's output 

serves as the set point for the secondary controller, and the two feedback loops are 

arranged with the secondary loop nested within the primary loop. This means there are 

two controlled variables and two sensors, all managing one manipulated variable. In 

contrast, a conventional control structure only has one controlled variable, one sensor, 

and one manipulated variable. The primary advantage of the cascade control strategy 

is that it positions a second measured variable near a major disturbance, enabling its 

feedback loop to respond swiftly and improve the system's overall response (Seborg 

et al., 2016).  

 

Figure 2.5 shows a simplified block diagram of a cascade control system, 

which consists of two feedback loops. The secondary loop is nested within the primary 

loop, and the output of the primary controller,  Ysp2, serves as the setpoint for the 

secondary loop. The secondary loop can detect disturbances, D2 and apply corrective 

actions more quickly, thereby reducing the response time of the primary feedback loop. 

Finally, the output Y1 is compared with the setpoint of the primary loop, Ysp1, and then 

used as the input to the secondary loop. 

 

 

Figure 2.5: Simplified block diagram for cascade control 

 

 A study by Ito et al. (2018) aimed to regulate the flow rate from the ladle and 

maintain the liquid level in the mold sprue cup using a feedback control system that 

relies on visual measurement at the sprue cup. In the proposed cascade control system, 

the primary (outer) loop manages the liquid level in the sprue cup, while the secondary 

(inner) loop controls the flow rate from the pouring ladle. Simulations were conducted 

to validate the system's performance by comparing it against reference models, both 
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with and without modelling errors. The simulations revealed that the control outputs 

for both flow rate and liquid level closely matched the reference models, confirming 

the effectiveness of the proposed cascade control system. The study's results 

demonstrated that the proposed system successfully maintained the desired liquid level 

in the mold sprue cup, even in the presence of modelling errors and disturbances. The 

system proved to be robust in controlling the ladle's flow rate and minimizing the 

impact of decreased discharge coefficients. 

 

 

 

2.4.4 On/off Control 

 

On-off controllers are the simplest and inexpensive feedback controllers used as 

thermostats in household heating systems and refrigerators. They are also utilized in 

non-critical industrial applications, including level control loops and heating systems. 

On-off controllers are not as extensively utilized as PID controllers in the critical 

industrial applications due to their limited versatility and effectiveness (Seborg et al., 

2016). On-off controllers face several challenges, including the potential for 

significant overshoot and oscillation around the setpoint due to their binary switching 

nature, particularly in systems with inherent lag. The presence of hysteresis, where 

there is a difference between the turn-on and turn-off levels, can cause the controlled 

variable to fluctuate within a range instead of settling at a precise value. Additionally, 

on-off controllers offer limited control quality, making them less suitable for 

applications that require high precision and stability, especially in systems with 

stringent control demands (Urica et al., 2019). The study by Ardabili et al. (2016) of 

comparing fuzzy and on/off controllers in a mushroom growing hall also proved that 

on/off controllers have higher standard deviation, variance, and error compared to 

fuzzy controllers. Both controllers were used to control temperature, humidity and CO2 

parameters. On/off controllers resulted in bigger fluctuation when controlling the 

process, higher energy consumption, and a further value from the set point compared 

to fuzzy control.   
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Urica et al. (2019) focused their study on the control of stable, 2nd order, 

continuous systems with overdamped step response. The aim is to enhance the fixed 

frequency mode of an on-off controller by introducing a hybrid mode that combines 

the advantages of both comparative and fixed frequency modes. The three control 

algorithms of the on-off controller used are comparative mode, fixed frequency mode, 

and hybrid mode. They differ in their approach to managing output. The comparative 

mode switches the controller output based on the comparison between the desired and 

actual states, offering faster response times but often resulting in higher overshoots 

and oscillations. The fixed frequency mode controls the output using a calculated duty 

cycle and frequency, providing smoother regulation without overshoot, though it has 

a longer settling time compared to the comparative mode. The hybrid mode combines 

the advantages of both comparative and fixed frequency modes, delivering enhanced 

control quality and dynamics while minimizing overshoot, effectively balancing speed 

and stability better than the other two modes. The results show that the comparative 

mode offers good speed of control with a settling time of approximately 1.5 seconds 

but can experience high overshoots, reaching up to 17.5%. The fixed frequency mode 

provides better quality of regulation with no overshoot, but has a longer settling time, 

typically between 3.12 to 2.5 times longer than the comparative mode. The hybrid 

mode achieved the best control quality with optimized settling time and reduced 

overshoot when the interruption time is set correctly. 

 

 

 

2.4.5 Model Predictive Control (MPC) 

 

Model Predictive Control (MPC) is an advanced control strategy that uses a 

mathematical model to predict future behaviour and optimize control inputs of a 

system over a specified time horizon. It solves an open-loop optimal control problem 

at each time step, adjusting control set-points dynamically based on current and 

predicted conditions to determine the best control inputs. MPC is particularly effective 

in managing complex systems such as heating, ventilation and air conditioning (HVAC) 

system where traditional linear control methods may fail. However, MPC relies on 

accurate data-driven building models where inaccuracies can lead to suboptimal 
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control performance and energy inefficiencies. Besides, the optimization process can 

be computationally intensive, requiring significant processing power and time, 

especially in real-time applications (Joe and Karava, 2019). These challenges were 

also brought up by Wang et al. (2015) that the effectiveness of MPC heavily relies on 

the accuracy of the system model and solving the optimization problem at each time 

step can be computationally intensive, especially for nonlinear systems or large-scale 

problems, leading to delays in control actions. 

 

Joe and Karava (2019) evaluated the performance of an on-line MPC strategy 

implemented in an office building with a radiant floor system, focusing on energy use 

reduction and cost savings under realistic operational conditions. The study involved 

selecting and setting up three open-plan office spaces on a university campus, with one 

space equipped with a radiant floor system and the others with conventional air 

delivery systems. Sensors were installed to collect data on temperature, energy 

consumption, and HVAC performance during both cooling and heating seasons. This 

data was used to create data-driven building models that accurately represented the 

thermal dynamics of the spaces. MPC strategy was then implemented within the 

Building Management System (BMS) to optimize heating and cooling in real-time. 

The study found that  the radiant floor system with MPC achieved significant energy 

and cost savings, with reductions of approximately 34% in cooling costs compared to 

simulated feedback control and 16% in heating energy savings. The MPC strategy 

demonstrated superior performance over conventional air delivery systems, with 

electricity consumption reduced by 52-64% and costs lowered by 70-78%. Overall, 

the implementation of MPC in the radiant floor system proved to be more efficient and 

effective in maintaining comfort while minimizing energy use compared to traditional 

HVAC approaches. Traditional HVAC approaches primarily involve forced-air 

systems that use ductwork to distribute heated or cooled air throughout a building. 

These systems typically rely on furnaces or air conditioners to regulate indoor 

temperatures, often using thermostats for control. Additionally, they may include 

components like fans, filters, and humidifiers. 
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2.4.6 Other Control Strategies 

 

There are other control strategies such as ratio control, multiloop and multivariable 

control, adaptive control and sequential logic control.  

 

Ratio control is a specialized form of feedforward control commonly used in 

the process industries. Its purpose is to maintain a specific ratio between two process 

variables, which are typically flow rates, one is a manipulated variable, and the other 

is a disturbance variable. Instead of controlling each variable individually, the focus is 

on regulating their ratio. This method is often applied in tasks such as setting the 

correct proportions of components in blending operations, maintaining the 

stoichiometric ratio of reactants in reactors, controlling the reflux ratio in distillation 

columns, and optimizing the fuel-air ratio in furnaces (Seborg et al., 2016). 

 

A multivariable control system is designed to handle multiple inputs and 

outputs simultaneously, typically represented using a matrix of transfer functions 

between inputs and outputs. It is used to control complex processes where the 

interaction between different variables can influence system performance. These 

systems are referred to as multiple-input, multiple-output (MIMO) control systems. 

These systems can be implemented with centralized or decentralized control strategies 

to achieve desired performance outcomes (Huilcapi et al., 2019). 

 

In cases where operating conditions or environmental factors change 

considerably, adaptive control techniques become necessary. Adaptive control 

systems automatically adjust their parameters to account for unpredictable or unknown 

variations in the process, unlike gain-scheduling, which is suitable for more 

predictable situations. Examples of scenarios that may require adaptive control include 

changes in equipment characteristics, unusual operational statuses like startup or 

shutdown, large disturbances such as fluctuations in feed composition, ambient 

variations, shifts in product specifications, and nonlinear behaviors. When such 

changes can't be easily measured or predicted, adaptive control is typically 

implemented using a feedback approach, leading to systems often referred to as self-

tuning or self-adaptive controllers (Seborg et al., 2016). 
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Process control strategies are crucial for ensuring stable and efficient operations 

across various industries. Each strategy has its own advantages: feedback control is 

simple, feedforward control can manage expected disturbances, and cascade control 

responds quickly to important disturbances. Adaptive control is notable for its ability 

to automatically adjust to changing conditions, making it suitable for processes with 

unpredictable or unknown variations. In order to achieve effective process control, it’s 

important to choose the right strategy based on the specific needs of the process. While 

traditional methods like feedback and feedforward control are commonly used, 

advanced techniques like cascade and adaptive control provide significant benefits in 

more complex or dynamic environments. Selecting the appropriate control strategy is 

essential for maintaining stable, efficient, and reliable operations. 

 

 

 

2.5  Process Modelling: An example of a stirred-tank blending system 

 

Process modeling is a fundamental step in achieving precise real-time process control, 

as it enables the development of mathematical representations that describe the 

dynamic behavior of a system. These models help predict process responses to various 

inputs, optimize control strategies, and improve system stability, ensuring efficient and 

reliable operation. One of the simplest process control model is the blending system. 

The blending process is a very common process used in various industries such as 

chemical, pharmaceutical and food and beverage. Blending process is usually applied 

to ensure consistency and uniformity in the final product. Ingredients such as additives 

in food is important to be evenly distributed in the mixture. Similarly, active 

ingredients must be uniformly distributed to ensure consistent dosage in the medicine.  

 

In this section, the process modelling of a simple stirred-tank blending system 

is illustrated. The goal of this system is to blend the two inlet streams to produce one 

outlet stream with the wanted composition by changing the amount of chemical A in 

the tank. Stream 1 is a mixture of 2 types of chemicals, A and B. Stream 2 only consists 

of chemical A, hence the mass fraction, 𝑥2 = 1. In stream 1, it is assumed that the 

mass flow rate, 𝑤1 is constant, but the mass fraction of A, 𝑥1 changes with time. In 
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stream 2, the mass flow rate, 𝑤2 can be altered using the control valve. The mass 

fraction of chemical A, 𝑥 is the controlled variable and the value that is desired which 

is the setpoint is 𝑥𝑥𝑝. 𝑤2 is the manipulated variable and 𝑥1 is the disturbance variable 

(Seborg et al., 2016).  

 

Figure 2.6 shows the illustration of the continuous stirred tank blending 

system. 

 

 

Figure 2.6: Stirred tank blending system 

 

By applying the overall balance and the component A balance to the tank, the 

following dynamic and steady-state equations are derived: 

Overall balance equation: 

 

 
ⅆ𝑚

ⅆ𝑡
= 𝑤1 + 𝑤2 − 𝑤 (2.1) 

 0 = 𝑤̅1 + 𝑤̅2 − 𝑤̅ (2.2) 

 

Component A balance equation: 

 

 𝜌𝑉
ⅆ𝑥

ⅆ𝑡
= 𝑤1𝑥1 + 𝑤2𝑥2 − (𝑤1 + 𝑤2)𝑥 (2.3) 

 𝜌𝑉
ⅆ𝑥

ⅆ𝑡
= 𝑓(𝑥, 𝑤1, 𝑤2, 𝑥1) (2.4) 

 0 = 𝑓(𝑥̅, 𝑤̅1, 𝑤̅2, 𝑥̅1) (2.5) 
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where 

Mass fraction of chemical A in stream 1: 𝑥1 

Mass flow rate of chemical A in stream 1: 𝑤1 

Mass fraction of chemical A in stream 2: 𝑥2 = 1 

Mass flow rate of stream 2: 𝑤2 

Mass fraction of chemical A in output: 𝑥 

Mass flow rate of output: 𝑤 

 

Taylor series is applied to linearize equation (2.3).  

 

𝜌𝑉
ⅆ𝑥

ⅆ𝑡
= 𝑓(𝑥̅, 𝑤̅1, 𝑤̅2, 𝑥̅1) +

𝜕𝑓

𝜕𝑥
|

𝑠𝑠
(𝑥 − 𝑥̅) +

𝜕𝑓

𝜕𝑤1
|

𝑠𝑠
(𝑤1 − 𝑤̅1) +

𝜕𝑓

𝜕𝑤2
|

𝑠𝑠
(𝑤2 − 𝑤̅2) +

𝜕𝑓

𝜕𝑥1
|

𝑠𝑠
(𝑥1 − 𝑥̅1)  (2.6) 

 𝜌𝑉
ⅆ𝑥′

ⅆ𝑡
=

𝜕𝑓

𝜕𝑥
|

𝑠𝑠
𝑥′ +

𝜕𝑓

𝜕𝑤1
|

𝑠𝑠
𝑤1

′ +
𝜕𝑓

𝜕𝑤2
|

𝑠𝑠
𝑤2

′ +
𝜕𝑓

𝜕𝑥1
|

𝑠𝑠
𝑥1

′  (2.7) 

 𝜌𝑉
ⅆ𝑥′

ⅆ𝑡
= −𝑤̅2𝑥′ + (𝑥̅1 − 𝑥)𝑤1

′ + (1 − 𝑥̅)𝑤2
′ + 𝑤̅1𝑥1

′  (2.8)

   

Laplace transform is applied to equation (2.8). 

 

 𝜌𝑉𝑠𝑋′(𝑠) = −𝑤̅2𝑋′(𝑠) + (𝑥̅1 − 𝑥)𝑊1
′(𝑠) + (1 − 𝑥̅)𝑊2

′(𝑠) + 𝑤̅1𝑋1
′ (𝑠) (2.9) 

 𝑋′(𝑠) =
(𝑥̅1−𝑥)𝑊1

′ (𝑠)
𝑤̅

𝜌𝑉𝑠
𝑤̅

+1
+

(1−𝑥̅)𝑊2
′ (𝑠)

𝑤̅
𝜌𝑉𝑠

𝑤̅
+1

+
𝑤̅1𝑋1

′ (𝑠)
𝑤̅

𝜌𝑉𝑠
𝑤̅

+1
 (2.10) 

 

Block diagram is a graphical representation of the control system used to 

show the flow of information within the system. Each block represents a function or 

operation, and the quantitative representation of each block is depicted by transfer 

functions (Seborg et al., 2016). Figure 2.7 shows the block diagram for process 

dynamics. 
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Figure 2.7: Block diagram for process dynamics 

 

Figure 2.8 shows the feedback control block diagram of stirred tank blending system. 

 

Figure 2.8: Feedback control block diagram of stirred tank blending system 

 

where 

Km = Analyzer calibration 

Gc = Feedback controller 

GIP = Current-to-pressure transducer 

Gv = Control valve 

Gp = Stirred tank process 

Gm = Analyzer and transmitter (sensor) 

 

The composition of the chemical in the tank is measured by the sensor and 

the output is sent to the electronic controller. The transfer function of the analyzer and 

transmitter (sensor), Gm is assumed to obey the first order kinetics, which can be 
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formulated as 
𝐾𝑚

𝜏𝑚𝑠+1
. The reading is then compared with the set point and the error 

signal will be sent to the electronic controller. Assuming a PI controller is used, the 

transfer function of the controller Gc is 𝐾𝐶(1 +
1

𝜏𝐼𝑠
). Next, the electrical signal will be 

converted to pneumatic signal by the current-to-pressure transducer, GIP. Since 

transducers usually have linear characteristics and negligible dynamics, it is assumed 

that the transducer only consists of a steady-state gain KIP. The output signal of the 

transducer will be used to adjust the control valve opening, Gc. The transfer function 

of the control valve is assumed to be 
𝐾𝑣

𝜏𝑣𝑠+1
. Here, the symbol K represents the steady-

state gain whereas 𝜏 represents the time constant (Seborg et al., 2016). 

 

A schematic diagram shows the physical connections between the 

components within the system. Figure 2.9 shows the schematic diagram of the 

continuous stirred tank blending system. It shows how the mass flow rate 𝑤2  is 

manipulated to control the tank composition (Seborg et al., 2016). 

 

 

Figure 2.9: Schematic diagram of stirred tank blending system 

 

 

 

2.6  Digital Twin 

 

Schluse et al. (2018) explained that a digital twin is a one-to-one virtual replica of a 

physical asset, such as a machine or a component, that integrates its data, functionality 
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and communication interfaces. Simulation techniques enable Digital Twins to be 

brought to life and become experimentable. In the Industry 4.0 era, physical and virtual 

worlds have to grow together. The study proposes a new structuring element called 

“Experimentable Digital Twin” that incorporates all relevant components in the virtual 

system. Digital Twins can provide enhanced simulation that allows testing and 

optimization of systems in a virtual environment before implementation.  

 

Kazała et al. (2021) presented applicable open-source tools that can be used 

to create models with the concept of Digital Twins. Developing a Digital Twin 

necessitates specialized software tools for creating virtual process models, simulations, 

optimizations, and visualizations. Complex models such as modelling dynamic 

processes, allowing communication with the environment, and visualising process 

variables require highly developed softwares. Commercial software packages such as 

Emulate3D, iTwin, Forge, and Seebo Digital Twin are commonly used in the industry 

for the development and implementation of Digital Twins. As discussed by 

VanDerHorn and Mahadevan (2021), Kazała et al. (2021) also further reinforced the 

idea of Digital Twins consisting of three elements: (i) physical product in real space, 

(ii) virtual product in a virtual space and set of virtual subsystems, (iii) the connection 

of data and information that ties the two spaces together. Therefore, a Digital Twin 

should provide any information that can be obtained from inspecting a physically 

manufactured product. Mikkili et al. (2015) discussed the advantages of real-time 

simulation by implementing a model from MATLAB. One of the advantages is time 

efficiency. It provides more time for engineers to troubleshoot and identify problems 

at an earlier stage. Besides, testing costs can be reduced, enabling countless 

simulations without any physical modification. Other than that, it provides more 

flexibility as it can simulate various real-life scenarios and parameters. 

 

Glatt et al. (2021) states that MATLAB offers an OPC UA library that 

facilitates universal, bidirectional communication between the simulation model and 

its real-world counterpart. This means data can flow seamlessly in both directions, 

allowing for real-time interaction and updates between the digital and physical systems. 

However, since MATLAB’s simulation environments do not inherently include 

modules specifically designed for digital twins in material handling, a similar amount 
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of development and customization work would be required, much like what is needed 

when using Python-based solutions. Essentially, the creation of the necessary 

components for a functional Digital Twin demands substantial manual implementation, 

regardless of the platform used. 

 

Davies et al. (2022) used MATLAB to develop a dashboard as the user 

interface for the Digital Twin system. The study resulted in a successful development 

of a dashboard that provided a real-time tracking of component degradation and 

remaining useful life (RUL) estimations. It allows for effective monitoring and 

assessment of maintenance strategies, leading to improved planning of maintenance 

interventions. Additionally, the simulation-based Digital Twin system demonstrates 

accurate predictions of RUL for critical components, enhancing decision-making in 

maintenance operations. 

 

Irimia et al. (2019) used Simcenter Amesin software to model and simulate 

the electric vehicle’s control systems, enabling the validation the battery model and 

analysis of the vehicle under various conditions. The study highlighted that Simcenter 

Amesin allows efficient Model-in-the-Loop (MIL) simulation, easy modeling of 

physical models and environments, and provides good reliability and accuracy through 

its variable step solver with discontinuity handling.  

 

Rodemann and Unger (2018) used SimulationX software to simulate a 

Modelica based model of a smart building complex. According to the study, Modelica 

was developed to achieve the purpose of covering a large number of physical domains 

as a free modeling standard. Many commercial and free tools have been developed 

using Modelica framework, offering an alternative to MATLAB/Simulink for system 

modeling and simulation. Modelica framework provides a flexible approach and 

avoids unidirectional information flow, leading to loops in system design. However,  

the implementation of more advanced controller approaches in Modelica has certain 

limitations. More complicated approaches such as Model-Predictive-Control are better 

suited in high level languages like MATLAB and Python.  
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Johra et al. (2021) used LabVIEW to model the hydronic heating system with 

parallel loops. The study aimed to establish a series of digital twins of experimental 

setups for teaching building physics, energy in buildings, and indoor environmental 

quality. This looks to enhance e-learning experiences by providing realistic, interactive 

simulations that allow students to explore complex systems and apply theoretical 

knowledge in practical scenarios. The study also seeks to address the limitations of 

physical laboratory access and improve student engagement in engineering education. 

The LabVIEW model was validated against a reference Modelica model of the same 

system. The LabVIEW model is better for educational purposes as it provides an 

interactive graphical user interface that enhances student engagement and 

understanding. However, the Modelica model serves as a reliable reference for 

validation, demonstrating high accuracy with strong performance metrics. Therefore, 

LabVIEW is advantageous for teaching, while Modelica is beneficial for detailed 

simulations and analysis. 

 

Yang et al. (2020) introduced a novel Digital Twin simulation platform for 

multi-rotor UAV by combining Unity, ROS, MATLAB and SimulIDE. MATLAB can 

conduct method verification using the toolboxes provided. Unity and MATLAB were 

combined to present a digital twin theory verification platform. MATLAB enables 

processing, predicting, and learning the interactive data between the twin and physical 

platform by using the data processing tools provided. Unity will then use the processed 

results to adjust the parameters of the physical model. Due to MATLAB being a lower 

level programming language, causing a gap between data byte alignment and C# 

language. Hence, Unity and MATLAB cannot be directly connected. As MATLAB 

supports interaction with C++ language, it is used as a communication interface 

between MATLAB and unity. As MATLAB does not allow multi-threading, hence 

multi-threading was not used to realize real-time data transmission and reception in 

this study. 

 

Table 2.1 provides a comparative summary of various modelling software, 

including Emulate3D, iTwin, Forge, Seebo, MATLAB Simulink, Simcenter Amesim, 

SimulationX Modelica, LabVIEW, and Unity. 
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Table 2.1: Summary of different modelling softwares 

Software Characteristics 

Emulate3D, 

iTwin, Forge, 

and Seebo 

- Commercial software packages 

- Meant for complex models that require highly 

developed software 

MATLAB 

Simulink 

- Offers an Open Platform Communications Unified 

Architecture (OPC UA) library 

- Allows effective monitoring and assessment of 

maintenance strategies 

- Able to handle more advanced controller approches 

- Supports interaction with C++ programming language 

- Does not allow multi-threading 

- Enables processing, predicting and learning interactive 

data 

Simcenter 

Amesin 

- Allows efficient Model-in-the-Loop (MIL) simulation 

- Easy modeling of physical models and environments 

- Provides good reliability and accuracy 

SimulationX 

Modelica 

- covers many physical domains as a free modeling 

standard 

- provides a flexible approach and avoids unidirectional 

information flow 

- Better accuracy compared to LabVIEW 

- Less suitable to handle more advanced controller 

approches 

LabVIEW 
- Provides an interactive graphical user interface 

- Not suitable for detailed simulation and analysis 

Unity 

- Higher level C# programming language 

- Adjusts parameters of physical model based on 

processed results 

   

MATLAB Simulink stands out as a powerful and versatile tool for developing 

Digital Twin systems, particularly in engineering and industrial applications. It offers 

robust simulation capabilities, advanced data processing tools, and strong 
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communication support. Unlike Emulate3D, iTwin, Forge, and Seebo which are 

commercial platforms designed for highly complex models that require significant 

investment, MATLAB provides a more flexible and accessible environment without 

sacrificing functionality. The integration of the OPC UA library enables seamless, 

bidirectional communication between the virtual model and the physical system, 

facilitating real-time interaction and monitoring. While Simcenter Amesim excels in 

physical modelling and reliability, MATLAB offers a broader range of advanced 

controller design tools and superior data analytics capabilities. Compared to 

SimulationX and Modelica, which are strong in multi-domain physical modelling but 

limited in advanced control strategies, MATLAB supports complex algorithm 

development and predictive control. LabVIEW, though useful for educational 

purposes due to its interactive graphical interface, lacks the depth required for detailed 

simulation and real-time data analysis. Similarly, while Unity excels in 3D 

visualisation and interactivity, it does not match MATLAB’s analytical and simulation 

strength. Overall, MATLAB provides the ideal balance of modelling, control, 

prediction, and integration, making it the preferred platform for those seeking a 

technically robust and comprehensive solution for Digital Twin development. 
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

3.1 Introduction 

 

This chapter explains the method of conducting this study to achieve the aims and 

objectives. Section 3.2 shows the flow chart of the project. Section 3.3 is the process 

description, section 3.4 focuses on the experiment using physical equipment and 

section 3.5 focuses on development and simulation of the digital twin that mirrors the 

physical equipment.  
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3.2 Project Flow 

 

Figure 3.1 is the flow chart of this project. 

 

 

Figure 3.1: Project flow chart 
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3.3 Process Description 

 

The schematic diagram of the flow and level control system to be modelled in this 

study is shown in Figure 3.2. This system is denoted as the Flow/Level Cascade 

Control Trainer (Model: SE 465), which involves the pumping of water from sump 

tank, T-601 by P-601 to the level tank, T-602, then return to sump tank, T-601 by 

gravity flow. A water rotameter and flow transmitter,  FI-602 and FT-602 respectively 

are used to measure the water flow rate. A differential pressure transmitter, LT-601 is 

used to measure the water level in T-602 by using differential pressure. In this process, 

the ultimate goal is to control the water level in T-602. To achieve this, PID controllers 

LIC-601 and FIC-602 are used to control water level and water flow respectively. The 

control strategies includes feedback flow control, feedback level control, and 

flow/level cascade control model. 

 

 

Figure 3.2: Schematic diagram of SOLTEQ® flow/level cascade control trainer 

(model: SE 465) 
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Table 3.1 shows the main instruments used in the flow/level cascade control 

trainer and their functions.  

 

Table 3.1 Instruments functions 

No. Instrument Tag No. Description Range 

1 
PID 

Controller 

LIC-601 

FIC-602 

Microprocessor based PID 

controller, controlling 

level/flow 

- 

2 Recorder 
LR-601 

FR-601 
Paperless chart recorder - 

3 
Water Flow 

Transmitter 
FT-602 

Primary flow measurement 

device giving 4-20mA output 
0 – 20 LPM 

4 
D/P 

Transmitter 
LT-601 

Level measurement using 

differential pressure 
0 – 1000 mmH2O 

5 
Control 

Valve 
LCV-601 

½ inch globe type valve with 

Cv=2.5, linear characteristic 

with I/P positioner and I/P 

converter 

1 - 100% 

6 Pumps P-601 Water circulation pumps 0 – 20 LPM 

7 
Process 

Tanks 

T-601 

T-602 

Sump Tank 

Level Control Tank 

60 L 

20 L 

8 Relief Valve PSV-602 

Mechanically activated 

device, spring loaded 

normally closed valve. Opens 

and purges air to atmosphere 

in case of over pressure in 

tank 

- 

9 Rotameter FI-602 
Flowrate measurement for 

water 
0 – 20 LPM 

10 
Pressure 

Indicator 
PI-602 

Dial gauge pressure indicator 

at location 
0 – 3000 mmH2O 

11 Side Glass 
SG-601 

SG-602 

Observation of water level in 

tanks 
- 
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3.4 Experimental Methods 

 

In this project, only flow control experiment will be conducted. The local control panel 

allows the selection of any one of the experiments. The flow control loop involves the 

water flow transmitter FT-602 to feed the signal to the controller FIC-602 that will 

control the valve LCV-601. Similarly, the level control loop involves the D/P 

transmitter LT-601 to feed the signal to the controller LIC-601 that will control the 

valve LCV-601. In the flow/level cascade control loop, the D/P transmitter LT-601 

will feed the signal to the controller LIC-601. The output of the controller will then be 

used as the set point for the controller FIC-602. The flow rate measurement from the 

water flow transmitter FT-602 will be compared with the set point and the controller 

will control the valve LCV-601.  

 

The flow control experiment begins with the general start-up steps, ensuring 

all valves are set to their initial positions according to the flow control settings. The 

experiment is initiated by selecting the "Flow Control" mode. In "Manual" mode, the 

proportional band (PB), integral (I), and derivative (D) values are entered, with initial 

values set at PB = 30%, I = 0 s-1, and D = 0 s for flow control. The output is gradually 

adjusted until the flow measurement stabilises at 10 LPM. Subsequently, the mode is 

switched to "Auto," and the set point is changed to 15 LPM. This is repeated for 

different values of PB, specifically 150%, 300%, 500%, and 900%. In the second 

iteration of the experiment, the value of PB is held constant at 150%, while D remains 

at 0 s, and the value of I is varied to 5 s-1, 20 s-1, 50 s-1, 80 s-1, and 100 s-1. The third 

iteration involves keeping PB constant at 150% and I at 20 s, while D is adjusted to 2 

s, 3 s, 5 s, 7 s, 10 s, and 50 s. During each experiment, the response of the manipulated 

variable, the output flow rate, is observed and recorded in terms of oscillation period, 

amplitude, and the time taken to reach steady-state conditions. It should be noted that 

the relationship between the proportional band and proportional controller is 𝑃𝐵 =

100%

𝑃
. 
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3.5 Modelling and Simulation 

 

This project focuses on flow control, level control, and flow/level cascade control 

systems. The process of modelling the digital twin begins with deriving the process 

dynamics for each of these control systems. The initial step involves determining the 

transfer function for each instrument and level tank process, which includes modelling 

and linearising any non-linear processes using the Laplace transform. Once the transfer 

functions are derived, they are incorporated into the respective block diagrams. These 

block diagrams for flow control, level control, and flow/level cascade control are then 

constructed using MATLAB Simulink software to simulate the system dynamics. All 

transfer functions are entered into the blocks in MATLAB Simulink to replicate the 

behaviour of their real-life counterparts. This includes constants, steady-state gains, 

time constants and PID controller values. Then, each component of the model are 

simulated individually first to minimise troubleshooting issues when the entire model 

is integrated. Subsequently, simulations of the entire control loop are conducted, and 

the output displayed on the scope will be compared and validated against the results 

from the real-life experiment. 
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSION 

 

4.1 Flow Control Experiment  

 

This section presents a detailed discussion of the real-time experimental results for the 

flow control system. In this system, the flow rate serves as the controlled variable, 

while the valve opening acts as the manipulated variable. The valve opening is adjusted 

through a feedback control strategy to maintain the desired flow rate. 

 

 

 

4.1.1 Proportional Controller 

 

Figure 4.1 shows the response of flow rate toward the set point change at different 

proportional band (PB) values, while using only the proportional controller. The 

relationship of the proportional gain (P) and the proportional band is 𝑃𝐵 =
100%

𝑃
 , 

which implies that a higher value of PB indicates a lower proportional gain.  
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Figure 4.1: Response of flow rate (controlled variable) toward the set point change 

(from 10 LPM to 15 LPM) regulated by proportional controller with different PB 

values 

 

Figure 4.1 illustrates how varying Proportional Band (PB) settings of a 

proportional controller affect its ability to regulate flow rate (in litres per minute, LPM) 

over time (in seconds) after a step change in the set point of the flow rate. In this figure, 

each curve corresponds to a different PB value: 30%, 150%, 300%, 500%, and 900%, 

which equate to proportional gains of P = 3.33, 0.67, 0.33, 0.20, and 0.11, respectively. 

The red line indicates the setpoint change from 10 LPM to 15 LPM at t = 15 seconds. 

Lower PB values (higher proportional gain), such as 30% (dark blue colour graph in 

Figure 4.1), result in faster system responses but cause significant fluctuations and 

oscillations. This indicates instability due to overly aggressive control, making the 

system highly sensitive to the deviation of the controlled variable from its set point 

value. As the PB value increases (proportional gain decreases), the system exhibits 

improved stability with reduced oscillations. However, this comes at the cost of a 

larger offset between the output flow rate and the setpoint, as well as a slower response. 

For instance, the offset between the actually stabilized value of the flowrate and the 

set point is 3 LPM for PB setting of 150%. However, the offset increases to 4.5 LPM 

under a PB setting of 900%. This observation highlights that a proportional controller 

yield quicker responses and lower offset towards a step change in the set point if PB 

value is lower (proportional gain is higher) but there is a risk of instability in the 

response. On the other hand, with a higher PB value (or a lower proportional gain), 
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stability can be enhanced at the expense of slower regulation and increased offset. The 

most significant drawback of proportional controller is the occurrence of offset which 

causes the controlled variable to be always deviated from the desired set point. 

 

 

 

4.1.2 Integrative Controller 

 

Figure 4.2 illustrates the response of the flow rate (controlled variable) to a step change 

in the setpoint from 10 LPM to 15 LPM, as regulated by a PI controller. The 

Proportional Band (PB) is held constant at 150%, corresponding to a proportional gain 

(P) of 0.67. 

 

 

Figure 4.2: Response of flow rate (controlled variable) toward the set point change 

(from 10 LPM to 15 LPM) regulated by the proportional controller and integral 

controller with different I values and constant PB = 150% 

 

Each curve in Figure 4.2 represents the response of the flow rate toward the 

set point change controlled by PI controller with different integral gain setting: 5 s-1, 

20 s-1, 50 s-1, 80 s-1, and 100 s-1. The integral gain is the reciprocal of integral time, 𝜏𝐼, 

which means 𝐼 =
1

𝜏𝐼
. Besides, the red line indicates the setpoint change from 10 LPM 

to 15 LPM which occurs at t = 15 s. With the incorporation of the integral action in the 
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controller, the offset between the controller variable and the desired set point in the 

proportional control loop is generally eliminated, as the controlled variable can achieve 

the desired set point after given sufficient time. Since the integral function is inversely 

proportional to the response, the PI controller with I of 5 s-1 (higher integral time 𝜏𝐼 at 

0.2 s), result in a slower and more gradual response, taking longer to reach steady state. 

As the integral gain increases to 80 s-1 or 100 s-1 (integral time 𝜏𝐼 decreases to 0.0125 

s and 0.01 s), the system responds more quickly and achieves steady state faster. This 

quicker reaction comes at the cost of increased instability and overshoot, indicating 

that overly aggressive integral action makes the system more sensitive to step change 

in the set point. This observation highlights the trade-off between responsiveness and 

stability. Lower integral gain result in smaller or no overshoots but slower convergence 

to the setpoint. In contrast, higher integral gain allow the system to respond more 

rapidly, but this comes with initial instability and significant overshoot.  

 

 

 

4.1.3 Derivative Controller 

 

Figure 4.3 shows the response of the flow rate to a change in the setpoint at different 

derivative (D) values, with the Proportional Band (PB) fixed at 150%, corresponding 

to a proportional gain (P) of 0.67, and the integral gain (I), which is the reciprocal of 

the integral time, is set to 20 s-1. 
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Figure 4.3: Response of flow rate (controlled variable) toward the set point change 

(from 10 LPM to 15 LPM) regulated by proportional, integral, and derivative 

controller with different D Values, constant PB = 150% and I = 20 s-1 

  

Each curve in Figure 4.3 represents the response of flow rate toward the set 

point change controlled by a PID controller with different derivative time setting: 2 s, 

3 s, 5 s, 7 s, 10 s, and 60 s. The red line indicates the setpoint change from 10 LPM to 

15 LPM which occurs at t = 15 s. In general, the incorporation of the derivative action 

into the controller has caused the response to be faster and less sluggish, as compared 

to the performance demonstrated by PI controller in Figure 4.2. For instance, with the 

relatively shorter derivative times, such as D = 2 s, 3 s, and 5 s, the results show a 

relatively smooth response with minimal oscillations, allowing the system to approach 

the setpoint efficiently and stably. These settings help dampen sudden changes without 

overly delaying the system’s response, achieving a good balance between 

responsiveness and stability. As the derivative time increases at D = 7 s, the system 

begins to show signs of instability, with noticeable fluctuations around the setpoint 

during the transient phase. For the extreme case with very high D value (60 s), the 

response toward the set point change becomes highly unstable, as the output exhibits 

excessive oscillations. This instability is due to overly aggressive derivative action, 

making the system overly sensitive to any changes occur in the system. In short, this 

observation highlights the trade-off involved in tuning derivative settings, in which the 

lower derivative times provide more stable and well-damped responses, eliminating 
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overshoots, while excessively high derivative times lead to large amount of oscillations 

and unstable behaviour. 

 

 

 

4.2 Process Modelling  

 

This section presents the modelling process of the control system in detail. The 

process begins with a description of the individual instruments and components 

involved. These elements are then interconnected to form a closed feedback control 

loop, with the corresponding mathematical relationships also defined. The control 

loops considered in this modelling are: (i) the flow control system, (ii) the level control 

system, and (iii) the cascade control system. 

 

 

 

4.2.1 Modelling of Process and Instruments 

 

In this subsection, the mathematical modelling of the liquid level dynamics in the tank, 

along with the relevant instruments such as the transducer, control valve, and 

transmitter is described in detail. The modelling involves formulating dynamic 

ordinary differential equations (ODEs) that represent the behaviour of the process or 

instruments. These equations are subsequently transformed into transfer functions 

using the Laplace transform, enabling simulation in Simulink software. 

 

 

 

4.2.1.1 Level Tank 

 

A level tank is a vessel used to store and control the level of liquid within it. It features 

an inlet for liquid flow, an outlet for discharge, and a level measurement device (sensor) 

to monitor the liquid level. The level is maintained through a control system that 

adjusts the flow rate at the inlet based on feedback from the level measurement. In the 
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level tank employed in this study, the outlet flow rate is not regulated and it is 

dependent on the liquid level in the level tank. To mathematically model the dynamical 

behaviour of the level tank, mass conservation (or mass balance) is applied  to relate 

the inflow, 𝑞𝑖, the outflow, 𝑞, and the water level, h within the level tank. Here, the 

difference between the inflow and outflow equals to the accumulation of the liquid (or 

rate of change of liquid volume) in the level tank, 𝐴
ⅆℎ

ⅆ𝑡
 is formulated by the following 

equation: 

 

 𝐴
ⅆℎ

ⅆ𝑡
= 𝑞𝑖 − 𝑞 (4.1) 

 

where 𝐴 = area of level tank 

           ℎ = height of liquid in the level tank 

           𝑞𝑖 = input stream 

           𝑞 = output stream 

 

If the inflow rate is higher than the outflow rate, the water level increases, 

while if the outflow exceeds the inflow, the water level decreases. When the inflow 

and outflow are equal, the water level remains stable, ensuring a steady-state condition 

within the system. Since the outflow is driven by gravity and not actively controlled, 

the outlet flow rate can be expressed as a function of the liquid level in the tank, as 

given by (Seborg et al., 2016): 

 

 𝑞 = 𝐶𝑣√ℎ (4.2) 

 

where 𝐶𝑣 is valve flow coefficient, a constant that depends on the opening of the valve. 

By inserting equation (4.2) into equation (4.1), the following equation is resulted: 

 

 𝐴
ⅆℎ

ⅆ𝑡
= 𝑞𝑖 − 𝐶𝑣√ℎ (4.3) 

 

The 𝐶𝑣 from Eq. (4.2) can be formulated as (Seborg et al., 2016): 

 

 𝐶𝑣 =
𝑞

𝑁𝑓(𝑙)
∆𝑝𝑣
𝑔𝑠

 (4.4) 
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where 𝑁 = conversion unit 
𝑔𝑝𝑚

𝑝𝑠𝑖
1
2

 

          𝑓(𝑙) = 1% to 100% valve opening 

          ∆𝑝𝑣 = pressure drop across valve 

          𝑔𝑠 = specific gravity of water = 1 

 

Under the steady-state condition, the height of liquid in the level tank is not changing 

with respect to time. Thus, 𝐴
ⅆℎ

ⅆ𝑡
= 0, and equation (4.3) can be transformed to: 

 

 0 = 𝑞̅𝑖 − 𝐶𝑣√ℎ̅ (4.5) 

 

where 𝑞̅𝑖 and ℎ̅ are input stream flow rate and height of liquid in the level tank under 

the steady-state condition, respectively. 

 

Since the process is non-linear (due to √ℎ term), linearization by using Taylor 

series approximation is required to convert the mathematical equations that describe 

this process to a linear transfer function. To do this, let: 

 

 𝐴
ⅆℎ

ⅆ𝑡
= 𝑓(𝑞𝑖, ℎ) = 𝑞𝑖 − 𝐶𝑣√ℎ (4.6) 

 0 = 𝑓(𝑞̅𝑖, ℎ̅) (4.7) 

 

and the Taylor series approximation can be written as: 

 

 𝑓(𝑞𝑖, ℎ) ≈ 𝑓(𝑞̅𝑖, ℎ̅) +
𝜕𝑓

𝜕𝑞𝑖
|

𝑞̅𝑖,ℎ̅
(𝑞𝑖 − 𝑞̅𝑖) +

𝜕𝑓

𝜕ℎ
|

𝑞̅𝑖,ℎ̅
(ℎ − ℎ̅) (4.8) 

 

The difference between the dynamic and steady state variables is denoted as the 

deviation variable, which is given by: 

 

 𝑞𝑖 − 𝑞̅𝑖 = 𝑞𝑖
′ (4.9) 

  ℎ − ℎ̅ = ℎ′ (4.10) 

 

Substitute equation (4.9) and (4.10) into equation (4.8), 
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 𝑓(𝑞𝑖, ℎ) − 𝑓(𝑞̅𝑖, ℎ̅) =
𝜕𝑓

𝜕𝑞𝑖
|

𝑞̅𝑖,ℎ̅
𝑞𝑖

′ +
𝜕𝑓

𝜕ℎ
|

𝑞̅𝑖,ℎ̅
ℎ′ (4.11) 

 

By differentiating equation (4.6) with respect to 𝑞𝑖 and ℎ, the following expressions 

yield: 

 

 
𝜕𝑓

𝜕𝑞𝑖
|

𝑞̅𝑖,ℎ̅
=

𝜕𝑓

𝜕𝑞𝑖
(𝑞̅𝑖 − 𝐶𝑣√ℎ̅) = 1 (4.12) 

 
𝜕𝑓

𝜕ℎ
|

𝑞̅𝑖,ℎ̅
=

𝜕𝑓

𝜕ℎ
(𝑞̅𝑖 − 𝐶𝑣√ℎ̅) = −

𝐶𝑣

2√ℎ̅
 (4.13) 

 

Substitute equations (4.12) and (4.13) into equation (4.11), 

 

 𝐴
ⅆℎ′

ⅆ𝑡
= 𝑞𝑖

′ −
𝐶𝑣

2√ℎ̅
ℎ′ (4.14) 

 

To obtain the transfer function of this process, Laplace transform is applied to equation 

(4.14), which gives: 

 

 𝐴𝑠𝐻′(𝑠) = 𝑄𝑖
′(𝑠) −

𝐶𝑣

2√ℎ̅
𝐻′(𝑠) (4.15) 

 

After algebraic rearrangement of equation (4.15), the following transfer function is 

obtained: 

 

 𝐺𝑝 =
𝐻′(𝑠)

𝑄𝑖
′(𝑠)

=

2√ℎ̅

𝐶𝑣

[
2√ℎ̅

𝐶𝑣
𝐴𝑠+1]

 (4.16) 

 

It should be noted that Equation (4.16) is depicting the change of the height of liquid 

in level tank due to the change of the inlet flow rate of the liquid to the tank. 

Furthermore, it is in the form of first order transfer function 
𝐾𝑝

𝜏𝑝𝑠+1
 , in which the 

corresponding gain and time constant are given by: 

 

 𝐾𝑝 =
2√ℎ̅

𝐶𝑣
 (4.17) 
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 𝜏𝑝 =
2√ℎ̅

𝐶𝑣
𝐴 (4.18) 

 

 

 

4.2.1.2 Control Valve and I/P Transducer 

 

The current-to-pressure transducer plays a role in converting electrical signals into 

pressure, which is then used to control the operation of the control valve. Due to the 

relatively fast response (almost immediate response) of the I/P transducer as compared 

to the entire process, it is reasonable to assume the transducer has negligible dynamic 

effects with time constant of zero in the transfer function that depicts its dynamical 

behaviour (Seborg et al., 2016). As a result, the system's behaviour is defined solely 

by the transducer’s gain, denoted as 𝐾𝐼𝑃, which represents the proportional relationship 

between the input and output: 

 

 𝐺𝐼𝑃 = 𝐾𝐼𝑃 (4.19) 

 

The control valve receives pressure signals from the transducer and adjusts 

its opening in % to regulate the flow rate in LPM. However, its response is not 

immediate as mechanical and fluid dynamic factors introduce a delay. This delay helps 

maintain system stability by preventing abrupt changes that could lead to oscillations. 

As a result, its time constant, 𝜏𝑣, in the transfer function that describes its dynamics is 

not negligible, and it represents the time scale required for the valve to respond after a 

change in input. Thus, the transfer function of the control valve is given by: 

 

 𝐺𝑣 =
𝐾𝑣

𝜏𝑣𝑠+1
 (4.20) 

 

where 𝐾𝑣 = control valve gain 

           𝜏𝑣 = control valve time constant 

 

 



48 

 

4.2.1.3 Transmitter 

 

The main function of a flow transmitter is to measure the flow rate and transmit it as 

an electronic signal to the controller. It is reasonable to assume the flow transmitter 

has linear characteristics and negligible dynamics (where the time constant is zero in 

the transfer function) due to its significantly fast response as compared to the other 

processes in the control system to be studied (Seborg et al., 2016). Therefore, the 

transfer function of the flow transmitter is given by: 

 

 𝐺𝑚 = 𝐾𝑚 (4.21) 

 

where 𝐾𝑚 = flow transmitter gain. 

 

The level transmitter measures the height difference and transmits it as an 

electronic signal to the controller. Similar to the flow transmistter, it is also reasonable 

to assume that the level transmitter has linear characteristics and negligible dynamic 

effects with zero time constant in its transfer function (Seborg et al., 2016). Thus, the 

transfer function of the level transmitter is given by: 

 

 𝐺𝑙 = 𝐾𝑙 (4.22) 

 

where 𝐾𝑙 = level transmitter gain. 

 

 

 

4.2.1.4 PID Controller 

 

In a feedback control loop, the controller receives an input signal from sensors, 

representing the measured process variable. It then compares this value with the 

setpoint and determines the necessary corrective action. The controller transmits this 

adjustment as an electrical signal to the transducer, which converts it into pressure to 

regulate the control valve for system that is controlling/manipulating the flow rate of 
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a fluid. This continuous process ensures the system maintains stability and responds 

effectively to changes or disturbances. The ideal PID controller has an equation of: 

 

 𝐺𝑐 = 𝐾𝑐[1 +
1

𝜏𝐼𝑠
+ 𝜏𝐷𝑠] (4.23) 

 

where 𝐾𝑐 = controller gain 

           𝜏𝐼 = time constant of I controller 

           𝜏𝐷 = time constant of D controller 

 

In equation (4.23), it has been assumed that the proportional (P), integral (I) and 

derivative (D) controllers are connected in parallel manner. 

 

In addition, a derivative filter, N is used in the PID controller to reduce the 

sensitivity of control calculations to noisy measurements under the actual scenario. 

Noisy measurements refer to high-frequency components or random fluctuations in 

the process. The ideal form of the derivative action, 𝐾𝑐𝜏𝐷𝑠 can amplify noise unless 

the measurement is properly filtered. With the incorporation of the derivative filter, 

the transfer function of the PID controller becomes: 

 

 𝐺𝑐 = 𝐾𝑐 +
𝐾𝑐

𝜏𝐼𝑠
+ 𝐾𝑐𝜏𝐷

1

𝛼𝜏𝐷

1+
1

𝛼𝜏𝐷

1

𝑠

 (4.24) 

 

where 𝑁 =
1

𝛼𝜏𝐷
 and 𝛼 = a constant between 0.05 and 0.2, with 0.1 being a common 

choice (Seborg et al., 2016). 

 

The equation of a parallel PID controller in Simulink software is given in the following 

form: 

 

 𝐺𝑐 = 𝑃 + 𝐼
1

𝑠
+ 𝐷

𝑁

1+𝑁
1

𝑠

 (4.25) 
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By comparing equation (4.24) and (4.25), it can be deduced that the P, I, D and N 

settings to be inserted to the Simulink software during the simulation is given by: 

𝑃 = 𝐾𝑐, 𝐼 =
𝐾𝑐

𝜏𝐼
 , 𝐷 = 𝐾𝑐𝜏𝐷, and 𝑁 =

1

𝛼𝜏𝐷
. 

 

 

 

4.2.2 Control Loop 

 

This subsection explains how the previously described processes and instruments are 

interconnected to form various control systems. The control systems modelled include: 

(i) a feedback flow control system, (ii) a feedback level control system, and (iii) a 

cascade control system. For each system, the equations relating the control variables 

to changes in the setpoint are formulated
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4.2.2.1 Flow Control Loop 

 

Figure 4.4 illustrates the flow control feedback loop modelled and to be simulated by Simulink software. The dynamic relationship between the 

output water flow rate and the step input in Figure 4.4 can be characterized by a single transfer function, in which the detailed derivation is shown 

in the following text. 

 

 

Figure 4.4: Flow control feedback loop in MATLAB Simulink
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From Figure 4.4, the following equations can be derived: 

 

 𝐹 = 𝐺𝐼𝑃,𝑣𝑃 (4.26) 

 𝑃 = 𝐺𝑐𝐸 (4.27) 

 𝐸 = 𝑋𝑠𝑝 − 𝐹𝑚 (4.28) 

 

Substituting equation (4.28) into equation (4.27) gives: 

 

 𝑃 = 𝐺𝑐(𝑋𝑠𝑝 − 𝐹𝑚) (4.29) 

 

Substituting equation (4.29) into equation (4.26) gives: 

 

 𝐹 = 𝐺𝐼𝑃,𝑣𝐺𝑐(𝑋𝑠𝑝 − 𝐹𝑚) (4.30) 

 

In addition, the following relations can be formulated according to Figure 4.4: 

 

 𝑋𝑠𝑝 = 𝐾𝑚𝐹𝑠𝑝 (4.31) 

 𝐹𝑚 = 𝐺𝑚𝐹 (4.32) 

 

Substituting equation (4.31) and equation (4.32) into equation (4.30) gives: 

 

 𝐹 = 𝐺𝐼𝑃,𝑣𝐺𝑐(𝐾𝑚𝐹𝑠𝑝 − 𝐺𝑚𝐹) (4.33) 

 
𝐹

𝐹𝑠𝑝
=

𝐺𝐼𝑃,𝑣𝐺𝑐𝐾𝑚

𝐺𝐼𝑃,𝑣𝐺𝑐𝐺𝑚+1
 (4.34) 

 

The block diagram in Figure 4.4 indicates that the step change input is 

a deviational value. However, the real-time output flow rate, U includes a bias 

term (10 LPM) to represent the actual flow rather than just the deviation. 

Therefore, a bias, X is added to the output flow rate, F as shown in equation 

(4.35). 

 

 𝑈 = 𝐹 + 𝑋 (4.35) 

 𝑈 =
𝐺𝐼𝑃,𝑣𝐺𝑐𝐾𝑚𝐹𝑠𝑝

𝐺𝐼𝑃,𝑣𝐺𝑐𝐺𝑚+1
+ 𝑋 (4.36) 
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4.2.2.2 Level Control Loop 

 

Figure 4.5 shows level control feedback loop modelled and to be simulated by Simulink software. The dynamic relationship between the output 

water level and the step input in Figure 4.5 can be characterized by a single transfer function. The unit conversion blocks are ignored in the 

derivation of the overall transfer function. 

 

 

Figure 4.5: Level control feedback loop in MATLAB Simulink
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According to Figure 4.5, the following equations can be written: 

 

 𝐻 = 𝐺𝑝𝑊 (4.37) 

 𝑊 = 𝐺𝐼𝑃,𝑣𝑆 (4.38) 

 𝑆 = 𝐺𝑐𝑇 (4.39) 

 𝑇 = 𝑌𝑠𝑝 − 𝐻𝑙 (4.40) 

 

Substituting equation (4.40) into equation (4.39) gives: 

 

 𝑆 = 𝐺𝑐(𝑌𝑠𝑝 − 𝐻𝑙) (4.41) 

 

Substituting equation (4.41) into equation (4.38) gives: 

 

 𝑊 = 𝐺𝐼𝑃,𝑣𝐺𝑐(𝑌𝑠𝑝 − 𝐻𝑙) (4.42) 

 

In addition, the following relations can be formulated according to Figure 4.5: 

 

 𝑌𝑠𝑝 = 𝐾𝑙𝐻𝑠𝑝 (4.43) 

 𝐻𝑙 = 𝐺𝑙𝐻 (4.44) 

 

Substituting equation (4.43) and equation (4.44) into equation (4.42) gives: 

 

 𝑊 = 𝐺𝐼𝑃,𝑣𝐺𝑐(𝐾𝑙𝐻𝑠𝑝 − 𝐺𝑙𝐻) (4.45) 

 

Substituting equation (4.45) into equation (4.37) gives: 

 

 𝐻 = 𝐺𝑝𝐺𝐼𝑃,𝑣𝐺𝑐(𝐾𝑙𝐻𝑠𝑝 − 𝐺𝑙𝐻) (4.46) 

 
𝐻

𝐻𝑠𝑝
=

𝐺𝑝𝐺𝐼𝑃,𝑣𝐺𝑐𝐾𝑙

𝐺𝑝𝐺𝐼𝑃,𝑣𝐺𝑐𝐺𝑙+1
 (4.47) 

 

The block diagram in Figure 4.5 indicates that the step change input is 

a deviational value. However, the real-time output water level, L includes a bias 

term (250 mm) to represent the actual flow rather than just the deviation. 
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Therefore, a bias, Y is added to the output flow rate, H as shown in equation 

(4.48). 

 

 𝐿 = 𝐻 + 𝑌 (4.48) 

 𝐿 =
𝐺𝑝𝐺𝐼𝑃,𝑣𝐺𝑐𝐾𝑙𝐻𝑠𝑝

𝐺𝑝𝐺𝐼𝑃,𝑣𝐺𝑐𝐺𝑙+1
+ 𝑌 (4.49) 
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4.2.2.3 Flow/Level Cascade Control Loop 

 

Figure 4.6 illustrates the flow/level cascade control loop to be modelled and simulated by Simulink software. The level control system serves as 

the primary loop and the flow control system serves as the secondary loop. The inner loop is responsible for detecting and responding to flow 

disturbances, while the outer loop regulates and maintains the water level in the tank. The dynamic relationship between the output water level and 

the step input of the flow/cascade control loop in Figure 4.6 can be characterized by a single transfer function. The unit conversion blocks are 

ignored in the derivation of the overall transfer function. 

 

 

Figure 4.6: Flow/level cascade control loop in MATLAB Simulink 
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The derivation starts from the inner loop. The block diagram of the inner loop can then be simplified as shown in Figure 4.7 and the simplified 

transfer function is denoted to be 𝐺𝑖. 

 

 𝐹 = (𝑆 − 𝐺𝑚𝐹)(𝐺𝐼𝑃,𝑣𝐺𝑐2) (4.50) 

 𝐺𝑖 =
𝐹

𝑆
=

𝐺𝐼𝑃,𝑣𝐺𝑐2

𝐺𝐼𝑃,𝑣𝐺𝑐2𝐺𝑚+1
 (4.51) 

 

 

Figure 4.7: Simplified flow/level cascade control feedback loop in MATLAB Simulink
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For the outer loop, the equation can be written and rearranged as follows: 

 

 (𝐻𝑠𝑝𝐾𝑙1 − 𝐺𝑙1𝐻)𝐺𝑐2𝐺𝑖𝐺𝑝1 = 𝐻 (4.52) 

 
𝐻

𝐻𝑠𝑝
=

𝐺𝑐1𝐺𝑖𝐺𝑝1𝐾𝑙1

𝐺𝑐1𝐺𝑖𝐺𝑝1𝐺𝑙1+1
 (4.53) 

 

Substitute equation (4.51) into equation (4.53), the following equations are obtained: 

 

 
𝐻

𝐻𝑠𝑝
=

𝐺𝑐1𝐺𝑝1𝐾𝑙1
𝐺𝐼𝑃,𝑣𝐺𝑐2

𝐺𝐼𝑃,𝑣𝐺𝑐2𝐺𝑚+1

𝐺𝑐1𝐺𝑝1𝐺𝑙1
𝐺𝐼𝑃,𝑣𝐺𝑐2

𝐺𝐼𝑃,𝑣𝐺𝑐2𝐺𝑚+1
+1

 (4.54) 

 
𝐻

𝐻𝑠𝑝
=

𝐺𝑐1𝐺𝑐2𝐺𝐼𝑃,𝑣𝐺𝑝1𝐾𝑙1

𝐺𝑐1𝐺𝑐2𝐺𝑝1𝐺𝐼𝑃,𝑣𝐺𝑙1+𝐺𝑐2𝐺𝐼𝑃,𝑣𝐺𝑚+1
 (4.55) 

 

 

 

4.3 Value Assignment  

 

After formulating the mathematical model, the next step is to simulate the developed 

model. However, before proceeding with the simulation, it is essential to assign values 

to all constants in the mathematical model to enable the required calculations. This 

section therefore provides a detailed explanation of how the values of all constants are 

determined, either through direct calculation, experimental measurement or by adopting 

values from relevant sources. 

 

 

 

4.3.1 Level Tank  

 

Under a steady state condition, it is reasonable to assume that the height of the liquid in 

the level tank, ℎ̅  is given by 500 mm (the range of the height is 0 – 1000 mm). In 

addition, the valve coefficient 𝐶𝑣 is equal to 0.5 
𝐿𝑃𝑀

√𝑚𝑚
 as given by the specification of the 

equipment. By substituting these values into equation (4.5), 
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 0 = 𝑞̅𝑖 − 0.5√500 (4.56) 

 𝑞̅𝑖 = 11.18 𝐿𝑃𝑀 (4.57) 

 

Hence, the steady-state flowrate of the liquid circulating though the system is given by 

11.18 LPM, which is a reasonable value as observed from experiments reported in 

Section 4.1. In addition, it is also desired to express all the quantities involved in the SI 

units, for the consistency in the calculation. From equation (4.56), 

 

 𝑞̅𝑖[𝐿𝑃𝑀] = 0.5√ℎ̅[𝑚𝑚] (4.58) 

 

By multiplying equation (4.58) with appropriate factors, the Cv value in the unit of 

𝑚3

𝑚𝑖𝑛√𝑚
 can be obtained, which is given by 0.01581 

𝑚3

𝑚𝑖𝑛√𝑚
. The detailed calculation is 

shown below: 

 

 𝑞̅𝑖[
𝑚3

𝑚𝑖𝑛
] = 0.0005√ℎ̅[𝑚𝑚] (4.59) 

 𝑞̅𝑖[
𝑚3

𝑚𝑖𝑛
] = 0.0005√1000ℎ̅[𝑚] (4.60) 

 𝐶𝑣 = 0.0005√1000 = 0.01581
𝑚3

𝑚𝑖𝑛√𝑚
 (4.61) 

 

Additionally, the radius of the level tank is measured as 0.08 m from the actual 

equipment, hence the cross-sectional area of the tank is calculated as: 

 

 𝐴 = 𝜋𝑟2 = 0.02 𝑚2 (4.62) 

 

Substituting values of ℎ̅, 𝐶𝑣 and 𝐴 into equation (4.16), the transfer function of chainge 

of the height of liquid in the level tank process is given by: 

 

 𝐺𝑝 =
𝐻′(𝑠)

𝑄𝑖
′(𝑠)

=
2√0.5

0.01581

[
2√0.5

0.01581
0.02𝑠+1]

 (4.63) 
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4.3.2 I/P Transducer and Control Valve  

 

To simulate the mathematical model developed in Section 4.2, it is necessary to include 

the dynamic behavior of the I/P transducer and control valve. Figure 4.8 illustrates the 

signal flow involving these instruments within the control system. The controller sends 

an electric signal (in mA) to the I/P transducer, which converts it into a pneumatic signal 

(in psi). This pneumatic signal adjusts the valve opening, thereby regulating the flow 

rate (in LPM). The combined dynamics of the I/P transducer and valve can be 

represented by the following transfer function: 

 

 𝐾𝐼𝑃 (
𝐾𝑣

𝜏𝑣𝑠+1
) =

𝐾𝐼𝑃𝐾𝑣

𝜏𝑣𝑠+1
 (4.64) 

 

To perform the simulation, the parameters 𝐾𝐼𝑃, 𝐾𝑣 and 𝜏𝑣 must be determined. However, 

specific data for the gain and time constant of these instruments is unavailable, as they 

are permanently installed on the equipment and cannot be removed for detailed 

characterization. This presents a challenge in directly measuring the model parameters. 

 

Fortunately, since the I/P transducer and control valve are typically used 

together as a fixed pair (as shown in Figure 4.8), it is not necessary to determine 𝐾𝐼𝑃 

and 𝐾𝑣 invididually. Instead, only the product 𝐾𝐼𝑃𝐾𝑣 needs to be estimated, along with 

the valve time constant, 𝜏𝑣. These values are estimated by comparing the experimental 

response of the system with the simulation results. The unknown parameters are then 

iteratively tuned until the simulated behavior closely matches the observed system 

response.  

 

 

 

 

 

Figure 4.8: Block diagram with transfer function of I/P transducer  

and control valve 

 

 𝐾𝐼𝑃  
𝐾𝑣

𝜏𝑣𝑠 + 1
 

 

mA psi LPM 

I/P transducer Control valve 
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Figures 4.9 and 4.10 illustrate the simulated and experimental responses of the 

flow rate to a setpoint change (from 10 LPM to 15 LPM) for different proportional band 

(PB) values. The responses are shown at two different process gains: 𝐾𝐼𝑃𝐾𝑣 = 0.5 
𝐿𝑃𝑀

𝑚𝐴
 

(Figure 4.9) and 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 (Figure 4.10), with a constant process time delay 𝜏𝑣 =

2.3 for both figures. It is observed that while both sets of responses exhibit an offset, 

the configuration with 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 produces a closer match between the simulation 

and experimental results across the different PB values. 

 

 

Figure 4.9: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 0.5 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

2.3 regulated by proportional controller 
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Figure 4.10: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 = 2.3 

regulated by proportional controller 

 

Figures 4.11 and 4.12 demonstrate the effect of varying the integral action on 

the flow rate response while maintaining a constant PB value at 150%. From Figure 

4.11, it is evident that introducing integral action improves the steady-state accuracy 

and reduces offset, with relatively good agreement between the simulated and 

experimental results, particularly for moderate values of the integral gain. 
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Figure 4.11: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 0.5 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

2.3 regulated by proportional and integral controller 

 

 

Figure 4.12: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

2.3 regulated by proportional and integral controller 
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Although Figure 4.11 indicates better similarity between the simulation and 

experimental results when compared to Figure 4.12, the comparison between Figures 

4.9 and 4.10 reveals that the higher process gain at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
  yields a more 

accurate match. Therefore, it is inferred that 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
  is a more suitable process 

gain for this system under the tested conditions. 

 

Figures 4.13, 4.14, and 4.15 depict the simulated and experimental responses 

of the flow rate to a set point change (from 10 LPM to 15 LPM) for different 

proportional band (PB) values. The responses are evaluated at three time constants for 

control valve: 𝜏𝑣 = 0.2  (Figure 4.13), 𝜏𝑣 = 1.5  (Figure 4.14), and 𝜏𝑣 = 2.3  (Figure 

4.15)  with a constant process gain 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 for all three figures. Among these, 

𝜏𝑣 = 0.2 demonstrates the closest agreement between the simulated and experimental 

results. 

 

 

Figure 4.13: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

0.2 regulated by proportional controller 
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Figure 4.14: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

1.5 regulated by proportional controller 

 

 

Figure 4.15: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

2.3 regulated by proportional controller 
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Figures 4.16, 4.17, and 4.18 illustrate the simulated and experimental 

responses of the flow rate to the same set point change, but with the addition of an 

integral controller. These responses are analyzed for different integral gain (I) values 

while maintaining a constant PB value of 150% (P = 0.67). The time constants examined 

are 𝜏𝑣 = 0.2 (Figure 4.16), 𝜏𝑣 = 1.5 (Figure 4.17), and 𝜏𝑣 = 2.3 (Figure 4.18)  with a 

constant process gain 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
  for all three figures. In this case, 𝜏𝑣 = 2.3  

emerges as the most suitable value. 

 

 

Figure 4.16: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

0.2 regulated by proportional and integral controller 
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Figure 4.17: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

1.5 regulated by proportional and integral controller 

 

 

Figure 4.18: Response of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) at 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
 and 𝜏𝑣 =

2.3 regulated by proportional and integral controller 
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While 𝜏𝑣 = 0.2  is optimal for the proportional controller alone, it causes the 

system to respond too aggressively when the integral controller is introduced, leading 

to significant discrepancies between the simulated and experimental results. In contrast, 

𝜏𝑣 = 2.3 provides a balanced performance where it aligns well with the experimental 

stabilization time when the integral controller is used and does not compromise 

performance excessively when only the proportional controller is active. 

 

 After adjusting the multiplied gain of 𝐾𝐼𝑃𝐾𝑣  and the time constant of the 

control valve 𝜏𝑣, the parameters are set where the simulated response of the output flow 

rate resembles the experimental response output flow rate. The combined transfer 

function of the I/P transducer and the control valve, 𝐺𝑣,𝐼𝑃 is shown in equation (4.67). 

 

 𝐾𝐼𝑃𝐾𝑣 = 1 
𝐿𝑃𝑀

𝑚𝐴
  (4.65) 

 𝜏𝑉 = 2.3 (4.66) 

 𝐺𝐼𝑃,𝑣 =
1

2.3𝑠+1
 (4.67) 

 

 

 

4.3.3 Transmitter 

 

Based on information available from the manual of the control system, the gain of the 

flow transmitter, 𝐾𝑚 and level transmitter, 𝐾𝑙 are calculated as follows: 

 

 𝐾𝑚 =
(20−4) 𝑚𝐴

(20−0) 𝐿𝑃𝑀
= 0.8 

𝑚𝐴

𝐿𝑃𝑀
 (4.67) 

 𝐾𝑙 =
(20−4) 𝑚𝐴

(1000−0) 𝑚𝑚
= 0.016 

𝑚𝐴

𝑚𝑚
 (4.68) 

 

 

 

4.4 Simulation Results 

 

After determining all the parameters of each instrument and the level process, 

simulations were conducted using MATLAB Simulink. This section presents a 
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comparison between the simulated and experimental output flow rates for the flow 

control system. As the level control and flow/level cascade control experiments were 

not conducted, only simulation results for these control systems are provided without 

experimental comparison. Nevertheless, the trends and behavior observed in each 

simulation will be analyzed and discussed. 

 

 

 

4.4.1 Flow Control 

 

A step change of 5 LPM is applied to all flow control simulations for 45 s and their 

outputs are compared and analysed. 

 

Figure 4.19 presents a comparison of different proportional (P) controller 

values when the integral (I) and derivative (D) controllers are not utilised. The results 

indicate that a higher P value reduces the steady-state error (offset from the set point 

once it achieves steady-state) and a faster response, while lower P values result in larger 

offsets and slower response. However, using only a P controller will still result in an 

offset; the difference lies in whether the offset is larger or smaller.  

 

 

Figure 4.19: Response of simulated flow rate (controlled variable) toward the set point 

change (from 10 LPM to 15 LPM) regulated by proportional controller with different 

P values 
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Figure 4.20 presents a comparison between the simulated and experimental 

results for P = 0.67, 0.33 and 0.11. The simulated results show a high degree of 

similarity to the experimental data, particularly in the offset of the steady-state flow rate 

from the set point. However, some discrepancies are observed during the transient phase 

at the beginning of the graph for all three comparisons. These differences may be 

attributed to the overly idealized nature of the simulation model. Despite this, both the 

simulated and experimental results consistently demonstrate that using a proportional 

(P) controller alone leads to a steady-state error, resulting in a persistent offset between 

the output flow rate and the set point. 

 

 

Figure 4.20: Comparison of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) regulated by proportional 

controller with different P values 

 

Figure 4.21 and 4.22 illustrates the influence of the integral controller when 

the proportional controller is fixed at P = 0.67. A larger integral gain introduces a larger 

overshoot when a step change is applied, as the system reacts more aggressively to 

eliminate error. Conversely, a smaller integral gain gradually eliminates the steady-state 

error introduced by the proportional controller. This demonstrates the integral 

controller’s role in eliminating long-term errors while maintaining system stability. This 

trend is consistent with the experiment findings as shown in Figure 4.2. 
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Figure 4.21: Response of simulated flow rate (controlled variable) toward the set point 

change (from 10 LPM to 15 LPM) regulated by proportional and integral controller 

with different I values and constant P = 0.67 

 

 

Figure 4.22: Detailed view of early-stage system response in Figure 4.21 

 

Figure 4.23 depicts the comparison between the simulated and experimental 

results for constant P = 0.67, varying I = 20 s-1 and 100 s-1. From both the experimental 

and simulated results in both scenarios, the controlled flow rate ultimately achieve the 

set point of 15 LPM. However, during the initial phase of the response, noticeable 
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oscillations before gradually stabilizing. Additionally, the simulated response 

demonstrates a significantly larger overshoot than the experimental results. These 

differences may be attributed to various assumptions made during the modelling process, 

particularly regarding the gain settings of the control valve and transducer, as well as 

the time constant of the control valve. In real life, the dynamic behaviour of these 

components may differ from the idealised values used in the simulation, leading to the 

non-uniformity in the initial system response.  

 

 

Figure 4.23: Comparison of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) regulated by proportional and 

integral controller with different I values and constant P = 0.67 

 

Figure 4.24 analyzes the effect of varying the derivative time (D) in the PID 

controller while keeping the proportional gain (P = 2/3), integral time (I = 20 s-1), and 

filter coefficient (N = 3) constant. The results in Figure 4.25 indicate that the derivative 

component plays a significant role in reducing the overshoot typically introduced by the 

integral action. At lower D values, such as 2 s and 3 s, the system exhibits a higher 

overshoot and increased oscillations. As the value of D increases, the response becomes 

progressively more damped, leading to a noticeable reduction in overshoot and 

improved system stability. The trend is indeed consistent with the experimental results 

as shown in Figure 4.3. 
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Figure 4.24: Response of simulated flow rate (controlled variable) toward the set point 

change (from 10 LPM to 15 LPM) regulated by proportional, integral, and derivative 

controller with different D values and constant P = 0.67, I = 20 s-1 and N = 3 

 

 

Figure 4.25: Detailed view of early-stage system response in Figure 4.24 

 

Figure 4.26 presents a comparison between the simulated and experimental 
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behavior. When compared to Figure 4.23 where only the PI controller is utilised, it is 

evident that the inclusion of the derivative component helps to smoothen the system 

response, significantly reducing both overshoot and oscillations. This highlights the 

effectiveness of the derivative controller in improving system stability and transient 

performance. 

 

 

Figure 4.26: Comparison of simulated and experimental flow rate (controlled variable) 

toward the set point change (from 10 LPM to 15 LPM) regulated by proportional, 

integral and derivative controller with different D values and constant P = 0.67, I = 20 

s-1, and N = 3 

 

These findings highlight the individual roles of P, I, and D controllers and their 

combined effects on system performance. While the proportional controller primarily 

reduces the offset, the integral controller eliminates steady-state error, and the derivative 

controller can help to reduce overshoot while stabilize the response. 

 

 

 

4.4.2 Level Control 

 

In this subsection, the simulation results of the level control system's response to a step 

change in the setpoint are presented. Similar to the previous subsection, the effects of 

the P, I, and D values on the controlled variable (liquid level in the tank) are thoroughly 

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50

F
lo

w
 R

at
e 

(L
P

M
)

Time (seconds)

Simulated D = 3 s Experiment D = 3 s Set Point (LPM)

Simulated D = 5 s Experiment D = 5 s Simulated D = 7 s

Experiment D = 7 s



75 

 

analyzed. A step change of 250 mm (from 500 mm to 750 mm) is applied in all 

simulations, and the system response over the first 200 seconds is recorded, compared, 

and discussed. 

 

Figure 4.27 compares the performance of a proportional (P) controller at 

various gain settings in a level control system, operating without integral (I) or 

derivative (D) components. At a low gain of P = 0.1, the system exhibits a very slow 

response, with minimal change in output height. Under this scenario, the steady-state 

value is still very far away from the set point, giving a very high offset. Increasing the 

gain to P = 0.5 and P = 1 enhances the response speed, but a significant steady-state 

error remains. When the gain is further increased to P = 3, the system responds much 

more rapidly to the step change and the offset during the steady state has been 

significantly reduced. However, a slight overshoot is observed due to the aggressive 

nature of the higher proportional gain. Despite improvements in response time, all cases 

exhibit a persistent steady-state offset, which is a known limitation of using a P 

controller alone. The magnitude of this error varies with the gain setting, but it cannot 

be completely eliminated without incorporating integral action into the control strategy 

after a set point change.  

 

 

Figure 4.27: Response of simulated liquid level (controlled variable) toward the set 

point change (from 10 LPM to 15 LPM) regulated by proportional controller at 

different P values 
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Figure 4.28 compares the performance of an integral (I) controller at varying 

gain settings in a level control system, where the proportional gain is fixed at P = 

1 without derivative (D) control. Figure 4.29 illustrates that at I = 0.1 s-1, the system 

exhibits a slow response, requiring the longest time to reach both steady state and the set 

point of 750 mm. Increasing the integral gain to I = 0.2 s-1 significantly improves the 

response speed, achieving a balanced performance, reaching steady state and the set 

point within approximately 30 seconds without overshoot. However, further increasing 

the integral gain to I = 0.5 s-1, and 1 s-1 produces more aggressive responses towards the 

step change. These higher gains introduce undesirable overshoot and 

oscillations around the set point which is a consequence of excessive integral action. 

When the integral gain is increased to 2 s-1, the system is unable to stabilize and 

oscillations increase in amplitude as time passes. While higher integral gains solve 

offset errors, they can also destabilize the system by oscillatory behavior and introduce 

overshoot.  

 

 

Figure 4.28: Response of simulated liquid level (controlled variable) toward the set 

point change (from 10 LPM to 15 LPM) regulated by proportional and integral 

controller with different I values and constant P = 1 
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Figure 4.29: Detailed view of early-stage system response in Figure 4.28 

 

Figure 4.30 illustrates the effect of varying the derivative (D) parameter on 

system performance, with the proportional gain set to P = 1, integral gain to I = 0.2 s-1, 

and derivative filter coefficient to N = 3. Figure 4.31 shows that a properly tuned 

derivative action effectively reduces overshoot and improves damping. However, when 

the derivative time becomes too large (D = 20 s), the system exhibits prolonged 

oscillations before settling, though the amplitude of these oscillations is significantly 
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the derivative action is too strong, it can slow convergence and introduce persistent but 
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Figure 4.30: Response of simulated liquid level (controlled variable) toward the set 

point change (from 10 LPM to 15 LPM) regulated by proportional, integral, and 

derivative controller with different D values and constant P = 1, I = 0.2 s-1 and N = 3 

 

 

Figure 4.31: Detailed view of early-stage system response in Figure 4.30 
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proportional gain leads to a faster system response but introduces oscillations before 

eventually stabilizing with an offset. Increasing the integral gain (i.e., decreasing the 

integral time) results in a slower return of the controlled variable to the setpoint, but it 

effectively eliminates the offset. Conversely, a large derivative time tends to amplify 

noise and induce oscillations, whereas a smaller derivative time can enhance the system 

response by reducing response time, oscillations, and deviation (Seborg et al., 2016). 

 

 

 

4.4.3 Flow/Level Cascade Control 

 

In this subsection, the simulation results of the cascade control system's response to a 

step change in the set point are presented. As with the previous cases, the impact of 

tuning parameters, specifically the P, I, and D values of both the level (primary) 

controller on the system performance is analyzed in detail. A 250 mm step change (from 

500 mm to 750 mm) is introduced to the setpoint of the primary controller, and the 

response of the controlled variable (liquid level) is observed over a 200-second period. 

The results are compared to evaluate the effectiveness of the cascade structure in 

improving control performance relative to single-loop configurations.  

 

In this system, cascade control consists of an outer loop and an inner loop, 

working together to improve system stability and performance. The level (primary) 

controller is denoted as 𝐺𝑐1 while the flow (secondary) controller is denoted as 𝐺𝑐2, 

while their controller settings are denoted as 𝑃1, 𝐼1, 𝐷1, and 𝑃2, 𝐼2, 𝐷2 respectively. The 

values of 𝐺𝑐2 are kept constant at 𝑃2 = 0.67, 𝐼2 = 20 𝑠, 𝐷2 = 3. The derivative filter 

coefficient N is kept constant at 3 for both controllers (as long as the derivative 

controller is applied). The settings of the level (primary) controller is varied to examine 

the effect of the controller settings on response of the controlled variable toward the set 

point change. 

 

Figure 4.32 illustrates the response of the tank level (height) over time under 

varying proportional gain (𝑃1) settings in the primary level controller, 𝐺𝑐1. As seen in 

the graph, increasing the proportional gain (𝑃1) reduces the steady-state error, bringing 
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the output closer to the set point. However, higher values of 𝑃1, can induce more 

oscillations and reduce system stability. This causes the output to overshoot a little and 

oscillate around the set point for a longer period before gradually settling. On the other 

hand, a very low 𝑃1 value, such as 0.1, results in a sluggish response with a large steady-

state error. Although the system remains stable, it fails to reach the set point and 

stabilizes below it. Among the tested values, 𝑃1  = 1 offers the most favorable 

compromise between responsiveness and stability. The system reaches a relatively 

smooth response with minimal oscillations and achieves a final height approximately 

90 mm below the desired set point. While some offset remains, this controller setting 

avoids excessive overshoot and maintains better overall control performance compared 

to higher 𝑃1 values.  

 

 

Figure 4.32: Response of simulated liquid level (controlled variable) toward the set 

point change (from 10 LPM to 15 LPM) regulated by proportional controller with 

different P1 values 
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controller alone, without significantly compromising system performance. As the 

integral gain increases to 𝐼1  = 0.5  s-1, and 1  s-1, the system begins to display 

increasingly larger oscillations and larger overshoots. The damping decreases, and the 

time taken to stabilize becomes longer. These oscillations demonstrate that a higher 

integral action can lead to excessive correction and instability if not properly tuned. 

Further increasing 𝐼1 to 2.5 s-1, the system becomes unstable. The oscillations grow in 

amplitude over time, and the water tank level fails to stabilize near the set point. This 

indicates that the integral gain is too aggressive, resulting in an uncontrollable loop 

where the controller continuously overcorrects the error, amplifying disturbances 

instead of correcting them. Despite the drawbacks of higher integral gain settings, it is 

evident that the inclusion of the integral term successfully eliminates the offset caused 

by the proportional-only controller. Therefore, a lower integral gain such as 𝐼1=0.2 s-1, 

offers the best compromise, achieving accurate set point tracking with acceptable 

dynamic performance. 

 

 

Figure 4.33: Response of simulated liquid level (controlled variable) toward the set 

point change (from 10 LPM to 15 LPM) regulated by proportional and integral 

controller with different I1 values and constant P1 = 1 
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Figure 4.34: Detailed view of early-stage system response in Figure 4.33 

 

Figure 4.35 illustrates the dynamic response of the tank level when the 

derivative gain 𝐷1  in the primary level controller 𝐺𝑐1 is varied. The primary level 

controller operates with constant values of  𝑃1 = 1, 𝐼1 = 0.2 s-1  and N = 3. and only the 

derivative time constant, 𝐷1 is adjusted from 0.1 s to 10 s. As shown in Figure 4.31, 

when 𝐷1 = 0.1 s, the response shows almost no difference compared to Figure 4.36 

when the derivative action is not utilized. As the derivative action increases to 0.5 s, the 

system shows a reduction in the overshoot caused by the integral action. The system 

reaches the set point more smoothly compared to the case in which 𝐷1 = 0.1 s. The 

further increment of the derivative value at 𝐷1 = 2.5 s shows that the system becomes 

progressively more damped with no overshoot and the system stabilizes more quickly 

around the set point with minimal oscillation. At 𝐷1 = 10 s, the system response exhibits 

an overshoot due to the strong influence of the derivative term at the beginning of the 

response. The derivative component in a PID controller reacts to the rate of change of 

the error rather than the error itself. As the set point changes abruptly at the start of the 

simulation, the resulting rapid increase in error causes the derivative term to respond 

aggressively in an attempt to preemptively correct future deviations. While the 

derivative gain can improve damping and suppress overshoot, but may introduce sharp 

initial movements in response to sudden set point changes if tuned too aggressively. 

Therefore, for the cascade control system, the use of a PI controller is sufficient to 
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achieve effective control of the liquid level in the tank. The addition of a derivative 

component offers minimal improvement in performance and is not deemed necessary. 

 

 

Figure 4.35: Response of simulated liquid level (controlled variable) toward the set 

point change (from 10 LPM to 15 LPM) regulated by proportional, integral, and 

derivative controller with different D values and constant P1 = 1 and I1 = 0.2 s-1 

 

 

Figure 4.36: Detailed view of early-stage system response in Figure 4.35 
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control behavior, analyze system performance, and understand the impact of various 

controller settings in a simulated environment. The model’s validity is further supported 

by consistency with the findings of Seborg et al. (2016). As the proportional gain 

increases, the system responds more quickly but tends to exhibit oscillations, leading to 

reduced stability despite a smaller steady-state offset. Despite this trade-off, 

proportional-only control remains attractive due to its simplicity and is suitable for 

applications where high precision is not essential. Integral control, on the other hand, 

effectively eliminates steady-state offset for all gain values. However, a very low 

integral gain results in a sluggish response, while a high integral gain may introduce 

oscillatory behavior. Derivative control can help improve system performance by 

reducing the maximum deviation, response time, and oscillations if the derivative time 

is appropriately tuned. If set too small, it may have little to no effect, while an 

excessively large derivative time can amplify noise and cause instability (Seborg et al., 

2016). 
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CHAPTER 5 

 

 

 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 

This project aimed to address the limitations of traditional laboratory-based education 

by developing a digital twin for flow and level control systems, utilizing both feedback 

PID and cascade control strategies (for SOLTEQ® Flow/Level Cascade Control 

Trainer). The core problem identified was the inefficiency of conventional physical 

laboratories, which often suffer from restricted accessibility, high operational costs, and 

inherent safety risks. These constraints can significantly impede students’ learning 

outcomes and practical understanding of control systems. To mitigate these challenges, 

the project introduced a digital twin model of a educational control unit (flow and level 

control system) that offers a flexible, scalable, and immersive virtual environment 

where students can safely and independently perform experiments without relying on 

physical lab infrastructure. By enhancing accessibility and promoting sustainable 

educational practices, this initiative aligns with the United Nations’ Sustainable 

Development Goals (SDGs), particularly SDG 4: Quality Education and SDG 11: 

Sustainable Cities and Communities.  

 

To start this project, real time experiments involving P, PI, and PID controllers 

for flow control were carried out and thoroughly evaluated. The experimental findings 

reveal that when only a P controller is used, a steady-state offset remains, although it 

gradually decreases as the proportional gain increases. However, this also makes the 

system response more aggressive and may introduce a slight overshoot. When a PI 
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controller is applied, the offset is eliminated, but this comes at the cost of introducing 

overshoot and oscillations around the setpoint before the system stabilizes. With a PID 

controller, the overshoot is reduced and the response becomes more damped, resulting 

in a smoother and more stable system behavior. Overall, the PID controller provides the 

best balance between accuracy and stability, making it the most effective option for 

minimizing both offset and oscillation. 

 

Then, the process and associated instruments were mathematically modeled to 

replicate the dynamics of physical equipment. The mathematical model of the system 

was then derived using first principles, linearized, and transformed into transfer 

functions. These functions were implemented in MATLAB Simulink to create the 

digital twin, which was simulated and validated against the experimental data. 

Unknown process parameters were determined by comparing experimental outcomes 

with simulation data from the flow control loop. For instance, from the trial-and-error 

fitting between the experimental and simulation results, it is found that 𝐾𝐼𝑃𝐾𝑉 = 1 and 

𝜏𝑉 = 2.3 With these values, the simulation of the model is conducted and it is found that 

the simulation results are closely aligned with real-time experimental results for the 

flow control system, confirming its reliability in representing the actual system. 

 

Furthermore, the simulation on the level control system and cascade control 

system shows the general trend. Key findings include higher proportional gains reduced 

steady-state error but introduced oscillations, while lower gains resulted in slower 

responses and larger offsets. The integral action eliminats steady-state error but required 

careful tuning to avoid overshoot and instability. The derivative component had 

minimal impact on the fast-response system but could improve damping in slower 

systems. The combination of flow and level control loops enhanced system stability and 

responsiveness, with the inner loop mitigating disturbances before they affected the 

outer loop. 

 

In conclusion, this project successfully developed a functional digital twin for 

flow and level control systems, including a flow/level cascade control system. The 

digital twin was able to replicate experimental results with reasonable accuracy, 

demonstrating its potential as an effective educational tool. However, some 
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discrepancies observed during the initial response phases for each PID controller setting 

indicate the need for further refinement of the model. These variations may be attributed 

to simplified assumptions in areas such as control valve dynamics, transducer gains, 

unmodeled disturbances, and external factors like pressure fluctuations and friction 

losses.  

 

 

 

5.2 Recommendation 

 

In order to enhance the digital twin's accuracy and utility, future work could: 

 

1. Incorporate additional disturbances and external factors, such as pressure 

fluctuations and sensor noise, into the model. 

2. Explore advanced control strategies like Model Predictive Control (MPC) or 

fuzzy logic for improved performance. 

3. Expand the scope to include temperature and pressure control systems for a more 

comprehensive learning experience. 

 

This project successfully demonstrated its potential to revolutionize engineering 

education by providing an accessible, cost-effective, and interactive learning platform. 

The findings underscore the importance of digital twins in modern education and their 

role in preparing students for the technological demands of Industry 4.0. 
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