

PARKING FINDER MOBILE APPLICATION

BY

THAM CHEE MING

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Tham Chee Ming. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Computer Science (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project report

represents the work of the author, except where due acknowledgment has

been made in the text. No part of this Final Year Project report may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Example

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr. Tou

Jing Yi, who has given me this bright opportunity to engage in a deep learning and

mobile application development project. It is my first step in establishing a career in

this field. A million thanks to you.

I want to thank all my friends for their patience, unconditional support, and for

standing by my side during hard times. Finally, I must say thanks to my parents and

family for their love, support, and continuous encouragement throughout the course.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

With the rise in the number of car owners in fast-growing metropolitan areas, the need

for effective parking solutions is becoming more demanding. This project proposes a

Parking Finder Mobile Application that will provide real-time information about

parking space availability and the parking finding status of vehicles in the parking lot.

In this system, computer vision and deep learning models such as YOLOv8 will be

utilized for parking spaces and vehicle detection while the DeepSORT algorithm is

implemented to track vehicle movement in real-time. The proposed solution tackles the

limitations that existing parking systems have including the high cost of

implementation and lack of real-time vehicle monitoring. Combining parking space

detection with vehicle tracking, the program will shorten the parking search times and

improve user experience using a colour-coded status indicator and a simple interface.

It is anticipated that such an approach would optimize parking space utilization in cities

and promote urban mobility.

Area of Study (Minimum 1 and Maximum 2): Mobile Application Development,

Computer Vision

Keywords (Minimum 5 and Maximum 10): Mobile Application, YOLOv8,

DeepSORT, Vehicle Parking, Navigation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

COPYRIGHT STATEMENT .. ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

TABLE OF CONTENTS.. v

LIST OF FIGURES .. viii

LIST OF TABLES ... x

LIST OF ABBREVIATIONS ... xi

CHAPTER 1.. 1

1.1 Problem Statement and Motivation .. 1

1.2 Project Objectives .. 2

1.3 Project Scope and Direction... 3

1.4 Contributions ... 4

1.5 Report Organization ... 5

CHAPTER 2.. 6

2.1 Review of the Detection Technologies .. 6

2.1.1 Previous works on Faster R-CNN and RetinaNet .. 6

2.1.2 Previous works on YOLO (You Only Look Once) ... 7

2.1.3 Summary of the Detection Technologies ... 11

2.2 Review of the Tracking Technologies .. 12

2.2.1 Previous Works on DeepSORT .. 12

2.2.2 Previous Works on Kernelized Correlation Filter (KCF) 13

2.2.3 Previous Works on FairMOT-MCVT .. 14

2.2.4 Previous Works on Bounding-Box-Based Tracking Algorithm 15

2.2.5 Summary of the Tracking Technologies .. 17

2.3 Review of the Existing Systems/Applications .. 17

2.3.1 Parking Finder Application for Intelligent Parking System 17

2.3.2 Parking Finder Application for Intelligent Parking System 18

CHAPTER 3.. 20

3.1 System Architecture ... 20

3.2 Use Case Diagram .. 21

3.3 Use Case Description ... 22

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

3.3.1 Select Parking Lot .. 22

3.3.2 View Parking Lot Overview ... 23

3.3.3 Auto Navigate to Available Space ... 23

3.3.4 Map Parking Space .. 24

3.4 Activity Diagram ... 25

CHAPTER 4.. 26

4.1 System Block Diagram .. 26

4.2 System Components Specifications ... 26

4.2.1 Vehicle Detection and Tracking Module ... 27

4.2.2 Firebase Realtime Database ... 27

4.2.3 Mobile Application .. 28

4.3 Components Design ... 28

4.3.1 Vehicle Detection and Tracking Design .. 28

4.3.2 Database Design ... 30

4.3.3 Mobile Application Design .. 30

4.4 System Components Interaction Operations .. 31

CHAPTER 5.. 34

5.1 Hardware Setup ... 34

5.1.1 Processing Unit (PC) .. 34

5.1.2 Android Mobile Device ... 35

5.2 Software Setup ... 36

5.2.1 YOLOv8 for Vehicle Detection .. 36

5.2.2 DeepSORT for Vehicle Tracking .. 36

5.2.3 Python Environment and Libraries ... 36

5.2.4 Firebase Realtime Database ... 37

5.2.5 Flutter Mobile Application .. 37

5.2.6 Development Tools ... 37

5.3 Setting and Configuration .. 38

5.3.1 Backend Configuration .. 38

5.3.2 Database Configuration .. 39

5.3.3 Flutter App Configuration ... 41

5.4 System Operation .. 42

5.4.1 Detection and tracking .. 42

5.4.2 Parking space plotting and occupancy determination 43

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

5.4.3 Firebase update and data packaging .. 45

5.4.4 Mobile app visualization and navigation .. 46

5.5 Implementation Issues and Challenges ... 47

5.6 Concluding Remarks... 48

CHAPTER 6.. 49

6.1 System Testing and Performance Metrics ... 49

6.1.1 Detection Accuracy (mAP) .. 49

6.1.2 Tracking Stability (ID Switches) ... 50

6.1.3 Database Update Time ... 50

6.1.4 Mobile Application Pathfinding .. 50

6.2 Testing Setup and Result.. 51

6.2.1 Test Environment .. 51

6.2.2 Test Procedure .. 51

6.2.3 Test Results ... 52

6.3 Projects Challenges .. 54

6.4 Objectives Evaluation... 55

6.5 Concluding Remarks... 56

CHAPTER 7.. 57

7.1 Conclusion .. 57

7.2 Recommendation ... 58

REFERENCES ... 59

Appendix A: requirement.txt ... A-1

Appendix B: Poster ... B-1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Faster R-CNN network structure 6

Figure 2.1.2 Standard YOLOv3 network structure 7

Figure 2.1.3 Standard YOLOv5 network structure 8

Figure 2.1.4 Traditional Mosaic Algorithm 9

Figure 2.1.5 Flip-Mosaic Algorithms 9

Figure 2.1.6 YOLOv8 network structure 10

Figure 2.2.1 Flowchart for Visual Object Detection and Tracking 12

Figure 2.2.2 Kapania et al. Proposed Architecture 13

Figure 2.2.3 KCF Model Tracking Steps (from right to left) 13

Figure 2.2.4 The Structure of FairMOT-MCVT 14

Figure 2.3.1 Field device data from the firebase 17

Figure 2.3.2 The flow of the CarPark Mobile Application. 19

Figure 3.1 High-level system architecture diagram 20

Figure 3.2 Use case diagram of the parking finder system 21

Figure 3.3 Activity Diagram for Parking Finder Mobile

Application

25

Figure 4.1 High-Level System Block Diagram 26

Figure 4.2 Component Design for Mobile Application. 31

Figure 5.1 Firebase data format for each parking lot 40

Figure 5.2 Firebase data format for summary node 40

Figure 5.3 Detection and tracking output 43

Figure 5.4 Parking space plotting 44

Figure 5.5 Parking space coordinate file 44

Figure 5.6 Parking space occupancy determination 45

Figure 5.7 Firebase Realtime Database entries produced by the

backend

46

Figure 5.8 Mobile app visualizing space availability, vehicle

positions and calculated navigation route

47

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

Figure 6.1 Model training result using online dataset 49

Figure 6.2 Car detection results mean Average Precision 52

Figure 6.3 Stable ID assigned between few frames 52

Figure 6.4 Shortest Path Result with Random Simulated Data Set 53

Figure 6.5 Shortest Path Result with other Random Simulated

Data Set

54

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF TABLES

Table Number Title Page

Table 2.1.1 Class-wise Precision for Object Detection 7

Table 2.1.2 Performance comparison for YOLOv5 and YOLOv8 11

Table 2.2.1 Result of Different Tracking Algorithm Experiments 15

Table 3.3.1 Use Case Description for Select Parking Lot 22

Table 3.3.2 Use Case Description for View Parking Lot Overview 23

Table 3.3.3 Use Case Description for Auto Navigate to Available

Space

23

Table 3.3.4 Use Case Description for Map Parking Space 24

Table 5.1.1 Specifications of desktop computer 34

Table 5.1.2 Specifications of android mobile device 35

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF ABBREVIATIONS

R-CNN Region-based Convolutional Neural Network

YOLO You Only Look Once

iOS Iphone Operating System

RPN Region Proposal Network

AP Average Precision

mAP Mean Average Precision

UAV Unmanned Aerial Vehicle

CIoU Complete Intersection over Union

DFL Distribution Focal Loss

SORT Simple Online and Realtime Tracking

KCF Kernelized Correlation Filter

FFT Fast Fourier Transform

RMSE Root-Mean-Square Deviation

FairMOT-MCVT Fairness of Detection and Re-Identification in Multiple Object

Tracking – Multi-Camera Vehicle Tracking

MSDA Multi-scale Dilated Attention

MOTA Multi-Object Tracking Accuracy

FPS Frame Per Second

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

JSON JavaScript Object Notation

CCTV Closed-Circuit Television

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

SDK Software Development Kit

UTAR Universiti Tunku Abdul Rahman

IOT Internet of Things

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

CHAPTER 1

Introduction

As we stepped into the 21st century, the cities grew and car ownership became

widespread which makes the demand for parking spaces increase significantly. In an

urban setting, looking for a vacant parking space is a tough challenge that every driver

encounters. Especially in denser populated areas such as towns and campuses, the

shortage of parking spaces causes an increase in frustration and time wasted for every

driver in searching for one. This scenario worsens at peak hours or in the case of some

special event where the demand for parking spaces gets maximized.

1.1 Problem Statement and Motivation

This problem is crucial as it can contribute to several impacts on life and infrastructure.

Traffic congestion is one of the issues as great part of congestion in city traffic due to

cars looking for parking and circling the area, this not only contributes to traffic

congestion but also affects environmental sustainability since the gas of cars circling

for parking adds to air pollution. Moreover, drivers not finding a vacant spot will get

frustrated and stressed leading to aggressive driving habits as well like double parking

or off-road parking, this in turn poses serious safety issues for other road users.

Without real-time parking information, drivers will have to cruise around the

parking spaces adding to traffic congestion and environmental pollution. There are a

few existing solutions that solve the parking issues in many places; however, the current

existing solutions are costly and time-consuming [1]. The existing solutions mostly use

in-ground or surface-mount sensors and surveillance footage. These solutions have high

installation and maintenance costs and surveillance footage requires segmenting the

video frame manually which is time-consuming.

Nowadays, most of the current existing parking finding applications only

display areas that have an open space, as well as give directions to get there. These

systems, however, do not consider the current information concerning other vehicles

that might be travelling in the same direction. When a group of vehicles arrive at one

location and it is already occupied, it may lead to frustration and loss of time due to the

lack of coordination. This is due to the absence of real-time vehicle condition

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

monitoring which would indicate whether a car nearby is actively searching for an

available space or is going to leave the parking lot.

The motivation of this research is to address the costs and inefficiencies of the

current parking detection systems. As urban growth and car ownership patterns

continue to expand, there is a rising demand for more effective and affordable solutions

that will provide drivers with real-time parking information. Reducing the time spent

searching for available parking space can contribute to decreasing traffic jams, lower

pollution levels, as well as improve general road safety. Additionally, the development

of a more efficient parking detection system may enhance the use of existing parking

facilities thus reducing additional parking space needs while maintaining valuable

urban land.

1.2 Project Objectives

The main objectives of developing this parking finder mobile application are focused

on enhancing parking management efficiency, improving user experience, and

providing real-time smart navigation. The objectives are as follows:

Real-Time Parking Space Vacancy Detection

By using computer vision and deep learning technologies, the system able to detect,

identify and show the availability of the parking spaces in a parking lot in real-time

accurately. This is to ensure that the user able to receive the real-time update for parking

spaces vacancy.

Vehicle Detection and Tracking with Parking Status

This system will detect and track the vehicles in the parking lot and determine the

parking finder status of the vehicles such as the vehicle still actively searching or

leaving the parking lot based on the movement of the vehicle. With this system, it can

provide real-time insight into other vehicles' movement within the parking lot for the

user.

Smart Parking Navigation System

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

By integrating both detection and tracking system into the mobile application, the

application able to provide a smart navigation system for the user to the nearest vacant

parking space using the result data from the detection and tracking systems. This smart

navigation system calculates and navigates user to nearest vacant parking space based

on the real-time parking spaces vacancies and other vehicles’ movement and status in

the parking lot.

1.3 Project Scope and Direction

This project's scope includes designing, creating, and implementing a smart parking

system that gives users effective, real-time information on parking space availability.

The system's goal is to improve overall parking efficiency and user experience by

integrating computer vision techniques, tracking algorithms, cloud-based data

management, and mobile application development.

The detection model is the project's first component. In order to detect vehicles

and parking spaces, this module process video input retrieve from the parking lot.

Custom datasets are used to train a deep learning-based detection framework that can

detect vehicles in a variety of scenarios, including partial occlusions, changing lighting,

and different vehicle variations. In order to give users precise information about

available spaces, the detection model is also made to interpret the occupancy status of

preset parking spaces.

The second part is the tracking system, which maintains constant vehicle

monitoring over several frames by integrate on the detection results. Each detected

vehicles are given a unique identification through the integration of tracking algorithms,

which allows the system to identify whether a vehicle is finding or exiting a parking

space. This continuous tracking approach enhances reliability compared to detection

alone, as it minimizes false updates caused by temporary occlusions or detection errors.

The data produced by the tracking system serves as the foundation for accurately

determining the real-time occupancy status of each parking space.

The third element is the smart navigation system of the mobile application. This

feature transforms the unprocessed tracking and detection data into useful

recommendations for users. With the real-time database updates, the application

determines navigation routes and displays the availability of parking spaces while

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

mapping vehicle locations within the parking lot. This enables users to be directed to

the closest parking spot efficiently. Users can easily follow parking instructions with

the application's user-friendly interface, which makes use of visual cues like colours

and routes.

Finally, the system integration ensure that each module works together. The

tracking and detection modules are backend-based and communicate with the mobile

application continuously as they are connected to a cloud-based database service. This

enhances convenience and time efficiency by offering real-time synchronization,

allowing users to search for available parking space easily.

1.4 Contributions

This project makes several significant advancements in the field of smart parking

management. First, creative and affordable alternatives are presented that reduce

reliance on expensive infrastructures. Unlike current systems that often rely on IoT

sensors, RFID tags, or physical hardware embedded in each parking lot, this research

uses computer vision and deep learning techniques. By utilizing software-based

detection algorithms and pre-existing camera infrastructure, the solution lowers

installation expenses and continuous maintenance requirements. This approach not only

reduces the system's cost but also increases its scalability, allowing it to be implemented

across larger parking lots without incurring significant costs.

Another noteworthy addition to this project is the use of real-time data to

improve user experience. The system provides incredibly accurate updates on parking

space availability by combining tracking and detecting technologies to prevent

temporary occlusions or detection errors. The mobile application, which allows users

to monitor available spaces, track vehicle positions, and receive routing to the nearest

parking space, is directly supported by this real-time feature. The solution reduces

traffic congestion caused by prolonged searching, speeds up the process of finding an

available space and saves users a significant amount of time through an easy-to-use

mobile interface.

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

1.5 Report Organization

This report includes a few chapters to show the details of the project. In chapter 1, this

chapter mainly introduces the introduction of the problem, stating the project scope and

objectives, and contribution of this project. Next, technologies, existing systems and

application with their strength and weaknesses are reviewed in chapter 2. Moreover,

the methodologies and system flows are covered in chapter 3. In chapter 4, this chapter

focused on the system design of this application for this project while chapter 5

described how this system and application was implemented. Next, the system

evaluation and discussion are presented in chapter 6. Lastly, chapter 7 are the

conclusion and recommendation for future enhancements for this project.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

CHAPTER 2

Literature Reviews

This chapter gives a summary of previous research, relevant technologies, and

existing systems that serve as the project's framework. In addition to highlighting how

the suggested system expands upon or enhances existing efforts, it looks at what has

previously been created in the field and points out any gaps or limits in existing

solutions.

2.1 Review of the Detection Technologies

2.1.1 Previous works on Faster R-CNN and RetinaNet

Faster R-CNN introduced by Ren et al. in the year 2015, is an extremely precise two-

stage object detection model and is an enhancement of the R-CNN architecture (Figure

2.1.1) that generates high-quality region proposals rapidly by using RPN. During its

second stage, these proposals get further classified and refined, making significant

advances in terms of detection accuracy, especially for partially occluded or crowded

items.

Figure 2.1.1: Faster R-CNN network structure [2]

Alternately, RetinaNet that is introduced by Lin et al. in the year 2017 is a

single-stage object detection model that achieves a balance of speed and accuracy. This

model included a focus loss function which can solve the class imbalance problem that

reduces the performance of the single-stage model [1]. With this development,

RetinaNet can assist in faster inference times while attaining accuracy levels

comparable to Faster R-CNN. RetinaNet is more useful in real-time applications for

object detection. However, Faster R-CNN is more accurate when the scene contains

densely packed objects.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

To research the effectiveness of RetinaNet and Faster R-CNN in detecting

parking space availability, a study was carried out by Padmasiri et al. using surveillance

footage. This study found that RetinaNet outperformed Faster R-CNN in identifying

unoccupied parking spaces with higher recall and accuracy. Therefore, RetinaNet

would be more suitable for situations where the detection of unoccupied parking is

important. Nevertheless, it can be shown that the Faster R-CNN and RetinaNet with

ResNet-101 backbone have similar performance but are better than RetinaNet with

ResNet-50 backbone in detecting occupied parking spaces due to their better object

localization and more detailed region proposal suggestions [1].

Table 2.1.1: Class-wise Precision for Object Detection [1]

Model AP-occupied AP-unoccupied

RetinaNet (ResNet-50+FPN) 21.03 19.28

RetinaNet (ResNet-101+FPN) 25.48 15.78

Faster RCNN (ResNet-50-C4) 25.46 11.23

2.1.2 Previous works on YOLO (You Only Look Once)

Improved YOLOv3

YOLOv3 uses a feature pyramid network and thus has an advantage over its

predecessors as it can recognize at three different scales more competently.

Nevertheless, some aspects can still be improved in its performance. Figure 2.1.2 shows

the network structure of standard YOLOv3.

Figure 2.1.2: Standard YOLOv3 network structure [3]

One of the papers proposed a few modifications aimed at enhancing the

accuracy of the standard YOLOv3 framework. The attention mechanism is one of the

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

main improvements where it assists in focusing on relevant picture components

resulting in increased detection performance, especially in complex situations when

items may overlap with each other or if there are disarranged backgrounds. This

technique makes it possible for the model to ignore less relevant background

information and focus on the most important sections such as cars and parking spots.

This can reduce challenges in recognizing parking spaces which involves being unable

to distinguish between the occupied or unoccupied spaces. The result in this paper

shows that employing an attention mechanism in the improved YOLOv3 algorithm led

to marked improvements in detection accuracy and precision in comparison with the

original YOLOv3 [3].

Besides, another paper proposed an integration of YOLOv3 with MobileNetv2

for detecting parking space occupancy. This combination allows the model to process

real-time video streams, detect cars and detect parking space occupancy in varying

environmental conditions. The authors used a dataset that includes pictures with

different backgrounds to test the YOLOv3-MobileNet model and the results show that

it can accurately identify vehicle parking status. MobileNet was used to drastically

reduce the model size and increase its detection speed without affecting its accuracy.

Balancing between precision and efficiency is crucial for such systems’ successful

deployment into real-life scenarios [4].

Improved YOLOv5

YOLOv5 uses PyTorch for more accurate and quicker deployment while being an

enhanced version of the previous YOLO model. Nevertheless, some aspects can still be

improved in its performance. Figure 2.1.3 shows the network structure of standard

YOLOv5.

Figure 2.1.3: Standard YOLOv5 network structure [5]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Chang et al. propose several other innovations to improve the YOLOv5 model,

but the Flip-Mosaic algorithm is a major improvement in this implementation. The

traditional Mosaic algorithm only randomly adds 3 images from the dataset for each

image and randomly finds the flattening point in a blank image and the 4 segments of

imagery were created by utilizing the intersection point, while the additional parts were

discarded (Figure 2.1.4). This Flip-Mosaic algorithm has improved the model’s ability

to detect smaller car sizes by using the traditional Mosaic algorithm, flipping the 4

images randomly and mosaicing during training (Figure 2.1.5). In addition to this, it

reduces occlusion effects and helps the model learn more robust features. The results

show that the Flip-Mosaic algorithm significantly increases mAP scores for small cars

and those that are partially occluded by other objects, making it better than standard

YOLOv5. The improved YOLOv5 obtained greater precision and recall rates with the

contribution to a reduction in false positives from the algorithm [5].

Figure 2.1.4: Traditional Mosaic Algorithm [5]

Figure 2.1.5: Flip-Mosaic Algorithms [5]

YOLOv8

In comparison to YOLOv5, YOLOv8 is a stronger tool for object detection tasks,

particularly in complex scenarios like car identification from satellite images. One of

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

the significant improvements is the addition of a Feature Pyramid Network (FPN) and

Path Aggregation Network (PAN), which makes it possible for YOLOv8 to detect

objects more successfully at various scales and resolutions. Figure 2.1.6 shows the

network structure of YOLOv8.

Figure 2.1.6: YOLOv8 network structure [6]

In addition, YOLOv8 comes with an advanced tagging tool that contains auto-

tagging, shortcut tagging, and hotkey customisable features that assist in speeding up

the labelling process. The model also uses advanced loss functions such as Complete

Intersection over Union (CIoU) and Distribution Focal Loss (DFL) which improve the

accuracy of bounding boxes, especially for small-sized items. Furthermore, YOLOv8

can be used for a variety of purposes since it supports different tasks like tracking,

posture estimation and segmentation. Users can also choose between YOLOv8 nano

(YOLOv8n) to YOLOv8 extra-large (YOLOv8x) based on their performance and

processing power needs.

However, Table 2.1.2 represents the result from this research and shows that in

terms of recall and precision, YOLOv5 always outperforms YOLOv8 resulting in lower

numbers of false negatives or false positives. The F1-score comparison is where this is

most notably seen as YOLOv5 surpasses YOLOv8 by approximately 2.1%, thus

making YOLOv5 the better choice when it comes to situations that necessitate reducing

misclassification rates. Moreover, even though the new design of YOLOv8 provides

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

more capabilities, it also has increased processing demands which may be problematic

for real-time applications or devices with lower processing capabilities. With greater

precision and a less complex structure, there are still scenarios where YOLOv5 could

be a more appropriate option when resource constraints are an issue.

Table 2.1.2: Performance comparison for YOLOv5 and YOLOv8 [6]

2.1.3 Summary of the Detection Technologies

One of the limitations of the previous works of object detection is the detection

challenges in complex environments. Many different methods including RetinaNet,

improved versions of YOLOv3, and YOLOv5 are weak in identifying small objects

especially when they are far away or partly covered. The next limitation is there are

computational and resource limitations. The models such as Faster R-CNN and the

improved versions of YOLO that include an attention mechanism and Flip-Mosaic

algorithm will require vast computing resources due to their complex structures and

additional features. Lastly, the exchange between accuracy and speed is also one of the

limitations of object detection in previous works. For example, speed compromises the

accuracy in speed-oriented models like any YOLO version especially when detecting

tiny and concealed objects. On the other hand, despite having more precision, models

such as Faster R-CNN have considerable disadvantages for real-time applications since

their inference times are too long.

The best model for precise and effective real-time parking detection in this

project is YOLOv8, which offers enhanced multi-scale detection, advanced loss

functions, and flexible task support.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

2.2 Review of the Tracking Technologies

2.2.1 Previous Works on DeepSORT

DeepSORT is an enhanced version of the SORT algorithm that merges the Hungarian

method for data association with the Kalman Filter for motion prediction. Nevertheless,

it does not consider appearance information which might lead to identity swapping

during tracking. DeepSORT addresses this issue by using a deep learning-based

appearance descriptor that allows object identities to be preserved despite having

similar-looking objects and occlusions.

Integration of YOLOv3 with DeepSORT allows fast and accurate object

detection abilities with reliable tracking capabilities. YOLOv3 is responsible for

identifying all objects in every frame of a video by providing bounding boxes as well

as class probabilities. Afterwards, these detections with bounding boxes are sent to

DeepSORT and use the Kalman filter to predict each object’s subsequent place then

use the Hungarian algorithm to associate detections with tracks that already existed [7].

In addition, the deep appearance characteristics enable DeepSORT to maintain item IDs

across frames.

In this paper, bathija et al. employed SORT for tracing and YOLOv3 (Figure

2.2.1) for detection and was applied to custom datasets, it showed high accuracy and

real-time performance with the combination. The experiment shows the advantages of

optimizing the system and suggests that more trackers, like DeepSORT, could be

integrated into the existing framework to enhance tracking efficiency [8]. On the other

hand, Kapania et al. combined DeepSORT and YOLOv3 (Figure 2.2.2) for tracking

multiple objects in drone-captured aerial images. Such a combination was required to

address issues of occlusions and motion blur, as well as small sizes that come with high

altitudes at which drones fly. The authors demonstrated how the tracker’s precision was

improved using YOLOv3 and DeepSORT to facilitate real-time tracking of many small

objects within UAV contexts [7].

Figure 2.2.1: Flowchart for Visual Object Detection and Tracking [8]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Figure 2.2.2: Kapania et al. Proposed Architecture [7]

There are a few advantages that come with using DeepSORT such as solving

the identity shifts issue. Identity shift is a common issue in multi-object tracking

especially under cluttered conditions or when objects look alike, by adding appearance

features. Another advantage is scalability, in different real-time applications including

UAV-based tracking, traffic monitoring and surveillance, DeepSORT can scale up and

work efficiently.

2.2.2 Previous Works on Kernelized Correlation Filter (KCF)

The tracking method proposed in this paper is a Kernelized Correlation Filter (KCF)

(Figure 2.2.3) [9]. This method was designed to have a fast and efficient manner of

tracking cars from UAV recordings. First, a set of vehicle images is used for tracker

training for the KCF method to reduce regularization risks through correlation function

optimization. Thus, it employs a kernel function that helps map input vehicle images

into a feature space, which makes it possible to deal with non-linear patterns in the

vehicle data. To achieve effective tracking, this technique can calculate correlations

using the Fourier domain based on the Fast Fourier Transform (FFT) along with

circulant matrices and kernelized techniques. Such guarantees that each new frame

recognizes the position of the respective automobile accurately and rapidly.

Figure 2.2.3: KCF Model Tracking Steps (from right to left) [9]

 The advantages of the KCF are this algorithm for vehicle tracking extraction is

very precise with an RMSE of 0.175m and a Pearson correlation of 0.999 and it is an

ideal one for detailed traffic studies. By using UAVs, occlusions are minimized and

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

wide coverage and clear picture are offered. Even when the vehicles are partially

occluded, the KCF algorithm ensures proper as well as effective tracking while the

wavelet transform effectively smoothens the trajectories providing seamless results.

However, the disadvantage of KCF is when visibility is low like at night or during bad

weather, this algorithm will encounter difficulties due to it relying on a static camera

angle, there is no way to adjust for dynamic UAV movements. In addition to being

ineffective, manual curve fitting along lanes may not perform well in complex or high-

volume traffic situations.

2.2.3 Previous Works on FairMOT-MCVT

The FairMOT-MCVT method (Figure 2.2.4) proposed in this paper [10] contains

different important developments to improve the efficiency and accuracy of vehicle

tracking across non-overlapping focus spaces. The FairMOT-MCVT technique's core

part is its Block-efficient module, which improves the feature extraction process

significantly. This module includes depth-separable convolutions with a multi-branch

structure to enhance the detection of small and far-off vehicles. The structure needs to

be there so that more detailed image characteristics can be captured by the network

which is important for tracking cars over long distances or in low-visibility areas.

Furthermore, minimising computational overheads, focusing on important areas within

the image as well as concentrating on key locations are some of the ways through which

the Multi-scale Dilated Attention (MSDA) module helps in improving the model’s

feature extraction ability. Thus, these aspects ensure that real-time vehicle tracking is

possible without speed loss due to computational complexity.

Figure 2.2.4: The Structure of FairMOT-MCVT [10]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

One of the main contributions of FairMOT-MCVT is it considers position and

velocity continuity in the optimization process using a joint loss function. The loss

function helps to maintain a consistent trajectory of the vehicles even when they are

obscured from view or have similar appearances by incorporating trajectory smoothing

as well as velocity consistency. Additionally, the Re-ID branch enhances this as it

enables the algorithm to distinguish between vehicles with similar characteristics. This

minimizes the chances of identity switches, which is a common issue in multi-camera

tracking.

In this research, the authors used the UA-DETRAC dataset to evaluate this

FairMOT-MCVT method and the results in Table 2.2.1 show that it has an improvement

in tracking accuracy compared to other tracking algorithms. This algorithm has a

MOTA of 79.0, IDF1 score of 84.5, and can process the video at 29.03 FPS which can

indicate that it’s suitable to use for real-time applications.

Table 2.2.1: Result of Different Tracking Algorithm Experiments [10]

2.2.4 Previous Works on Bounding-Box-Based Tracking Algorithm

The Bbox-based vehicle tracking algorithm [11] proposed by the authors in this study

is a robust tool for tracking and re-identifying cars across video sequences. Initially, the

algorithm extracts the bounding box data of the detected vehicles, which includes their

width (W), height (H) and centre coordinates (X, Y). To link vehicles within frames it

computes the Euclidean distance (Eq.1) between bounding boxes from two consecutive

frames. This way, Euclidean distance helps to identify good matches of vehicle pairs

thus ensuring that the tracker can follow every car’s movement in time. This process

involves creating a distance matrix that is sorted to determine which pairs of identified

vehicles in subsequent frames are closest to each other.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

 (1)

 Bbox-based vehicle tracking algorithm has a feature of tracking the appearance

and disappearance timing which is intended to deal with situations where vehicles

temporarily disappear due to obstructions, external elements or even shaken cameras.

If the target leaves for some time, the program predicts its next location using linear

equations (Eq.2) based on the previous trajectory of the car. Hence, the prediction step

makes the tracking algorithm more robust against temporary disturbances in vehicle

visibility as it allows for the system’s knowledge of probable places where the vehicle

can come into view again. According to this paper if a vehicle is out of sight for a long

time (beyond 100 frames), then it is considered lost by the algorithm and removed from

active surveillance.

 (2)

This novel proposed Bbox-based vehicle tracking algorithm has several

advantages. It is computationally efficient since it only utilizes geometric information

rather than pixel, shape or colour data which are more sophisticated and slow methods

of tracking. In addition, it resists common issues faced in real-time videos such as

camera shaking and occlusion due to its predictive nature. However, the tracker does

have some limitations. In crowded or fast-moving environments where bounding boxes

overlap, accurate tracking may be difficult. Furthermore, when vehicles suddenly

change direction, the linear motion prediction may not apply anymore thus causing

tracking errors under challenging conditions.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

2.2.5 Summary of the Tracking Technologies

There are a few limitations of object tracking in the previous works. The first limitation

is it greatly dependent on the detection system. If the detection system is unable to

detect and locate the vehicles, there will be no bounding box for the tracking system to

track the object. Therefore, the tracking system required a very accurate detection

system to track the vehicles. The next limitation is low performance in poor visibility.

For example, during low brightness situations, fog, and rain the tracking system will

face difficulties in tracking vehicles due to tracking depending on clear visual. Lastly,

difficulty in tracking in a packed area is also one of the limitations. This is because

when two or more vehicles are near each other, it will cause overlapping and tracking

will more likely have inconsistent tracking.

In the end, DeepSORT is the recommended option for this project because it

reduces identity shifts and ensures dependable real-time tracking by fusing motion

prediction with deep appearance descriptors.

2.3 Review of the Existing Systems/Applications

2.3.1 Parking Finder Application for Intelligent Parking System

The parking finder application proposed by the author [12] uses a system that is

integrated with hardware and software. The author chose ultrasonic sensors with

Arduino as a detection method for reliability and real-time accuracy and Raspberry Pi

as a server. The flow of the proposed method is the sensors first detect the parking

occupancy and the information is transmitted wirelessly through the Raspberry Pi and

saved information in cloud storage. The system uses Firebase for cloud storage and the

information is saved in the format shown in Figure 2.3.1.

Figure 2.3.1: Field device data from the firebase [12]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

 In the Firebase the vacancy status of the parking spaces is saved as “V” for

vacant and “O” for occupied which later be used in the mobile application for parking

status. The author developed the parking finder application in Android Studio using

Java programming language. The parking finder application consists of features such

as an authentication page and interface for parking space status display. The parking

space's status is colour-coded where red indicators are for occupied and green indicators

for vacant for user friendly interface.

In this parking finder application, the limitation was that the application only

displayed parking lot information to the user. In the parking finder application

developed by the author [12], as it only shows the availability of the parking spaces in

the parking lot to the user, the user might not be able to fully utilize the vacant parking

space information as some other vehicle might get to the vacant space before the user.

This will waste user time and make users frustrated.

2.3.2 Parking Finder Application for Intelligent Parking System

Yindeesuk et al. [13] introduced the CarPark mobile application, a smart parking

solution designed for Nakhon Ratchasima Rajabhat University. The system integrates

IoT-based sensors installed at individual parking spaces to detect whether a space is

occupied or available. Users able to check the availability of spaces in real time before

they arrive at the parking lot because of the sensor data that is sent to a central server

and instantly reflected in the CarPark mobile application. Another advantage of the

system is that, in the event that a vehicle's owner is blocked, users can use the

application to search the license plate and contact them directly. This function improves

coordination and lessens driver disagreements. The mobile application improves

efficiency and user experience by reducing the needless traffic flow inside the lot and

the amount of time users spend searching for parking space. In terms of technology,

this project shows how to effectively integrate IOT devices in conjunction with a mobile

interface to provide precise and current parking information.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

Figure 2.3.2: The flow of the CarPark Mobile Application.

Despite these advantages, this review also identifies a number of limitations.

Due to the system's reliance on physical sensors, it is less feasible for large-scale

installations like shopping centres, airports, or citywide parking systems because it is

more expensive to build and requires constant maintenance. An additional drawback is

that the app just offers parking availability status updates where it lacks of navigation

and route assistance that can assist users in finding the closest available space quickly.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

CHAPTER 3

System Methodology/Approach

This chapter outlines the system's general architecture and design. The system

methodologies are presented using a variety of models and diagrams that illustrate the

structure, user interactions, and operational workflows of the system before the actual

implementation.

3.1 System Architecture

Figure 3.1: High-level system architecture diagram

In figure 3.1 shows that the smart navigation system and parking finder mobile

application are modular, with each component being built, tested, and improved upon

before being fully integrated. Model training, system integration, mobile application

development, dataset preparation, and performance evaluation are some of the phases

that make up the project. Datasets with a variety of parking lot and vehicle photos taken

in a range of lighting, weather, and layout scenarios were first gathered from internet

sources. These datasets were used to improve detection accuracy by fine-tuning and

training a pre-trained YOLOv8 model with data augmentation approaches. Following

model validation, the vehicle detection module was merged with the DeepSORT

tracking algorithm. Parking spaces are manually mapped in this configuration, and the

bottom-centre point of a detected vehicle's bounding box is used to calculate the

occupancy of each space. This guarantees accurate and real-time updates on parking

availability. A Firebase Realtime Database, which is organized into two primary nodes

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

where one of every parking lot and one for summary of all parking lot receives the

processed results of detection and tracking.

Concurrently, the Flutter framework and the Dart programming language were

used to develop a cross-platform mobile application. The app's user-friendly interface

shows the parking layout, the locations of the vehicles, and the current parking space

status (red for occupied, green for available). Using a graph-based Dijkstra's algorithm,

its smart navigation system calculates and displays the shortest route from the user's

location to the closest available space while taking into consideration vehicles ahead of

them.

3.2 Use Case Diagram

Figure 3.2: Use case diagram of the parking finder system

Figure 3.2 shows the use case diagram that illustrates the interactions between two main

actors, the user and the admin, with the system. The user represents the driver who

makes use of the mobile application to find and navigate to an available parking space.

Through the system, the user can select a parking lot of their choice, view the parking

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

lot overview, and automatically navigate to an available space. When selecting a

parking lot, the user chooses from a list of available lots, and upon selection, the system

loads the chosen lot for further use. Once selected, the user can view the parking lot

overview, which displays the layout together with the real-time status of spaces,

showing which are occupied and which are available. The system also supports

automatic navigation, where the user is guided to the nearest available space through a

calculated path that take consideration of other vehicles status along the path.

On the other hand, the admin is responsible for mapping parking spaces within

the backend system and configuring the layout inside the code. This task includes

defining the structure of roads and parking spaces so that the system can accurately

represent the real parking environment. Once the mapping is completed, the layout is

linked with the application logic, ensuring that users can access it for navigation and

real-time monitoring. By handling this responsibility, the admin ensures that both the

backend data and the application code remain consistent, which is essential for accurate

pathfinding and reliable parking space updates.

3.3 Use Case Description

3.3.1 Select Parking Lot

Table 3.3.1: Use Case Description for Select Parking Lot

Use Case ID UC001

Use Case Select Parking Lot

Purpose To allow user select the parking lot user wanted to view

the overview and use navigation feature.

Actor User

Trigger Launch the parking finder app and in homepage.

Precondition User is in the homepage of the Parking Finder App.

Scenario Step Action

Main Flow 1 The user launches the Parking Finder Mobile

Application.

2 App load and connect to Firebase.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

3 System displays list of parking lot available in

homepage.

4 User allowed to select any parking lot.

3.3.2 View Parking Lot Overview

Table 3.3.2: Use Case Description for View Parking Lot Overview

Use Case ID UC002

Use Case View Parking Lot Overview

Purpose To allow user to view the overview of the parking lot

selected such as parking spaces status and vehicle

location.

Actor User

Trigger User selects a parking lot layout from the homepage.

Precondition The Firebase Realtime Database must be running and

synchronized with backend system.

Scenario Step Action

Main Flow 1 User select any parking lot from homepage.

2 System displays parking lot layout.

3 System retrieves both parking and vehicle data

from Firebase.

4 System updates the map with the data retrieved

periodically.

5 User view the parking lot layout with parking

spaces statuses and vehicle movement within the

parking lot.

3.3.3 Auto Navigate to Available Space

Table 3.3.3: Use Case Description for Auto Navigate to Available Space

Use Case ID UC003

Use Case Auto Navigate to Available Space

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

Purpose To guide user to the nearest available parking space with

shortest path take consideration of other vehicle’s status.

Actor User

Trigger User choose any parking lot from the homepage.

Precondition The parking lot layout is available in the system.

Scenario Step Action

Main Flow 1 User chooses a parking lot from the homepage.

2 App retrieves both parking space data and vehicle

data from Firebase.

3 App display parking lot layout with parking space

status and vehicle movement status.

4 System calculates the shortest path using

algorithm.

5 System highlighted shortest path with green

colour.

3.3.4 Map Parking Space

Table 3.3.4: Use Case Description for Map Parking Space

Use Case ID UC004

Use Case Map Parking Space

Purpose To allow admin to define and update the structure of the

parking lot

Actor Admin

Trigger The admin configures or modifies a parking lot layout.

Precondition Have access to backend system and codebase.

Scenario Step Action

Main Flow 1 The admin defines nodes representing roads and

parking spaces in the system code.

2 Admin add edges to connect the nodes, forming a

directed graph of the parking lot.

3 The updated layout is made available for user

navigation and monitoring.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

3.4 Activity Diagram

Figure 3.3: Activity Diagram for Parking Finder Mobile Application.

Figure 3.3 shows the interaction between the user, Flutter mobile application, Firebase,

and backend system. When the user launches the mobile application, it initializes and

request summary data from Firebase. The application then displays a list of parking lots

with overview information after fetching the required summary data from Firebase.

When a user chose a particular parking lot from the list, the app request Firebase again

for parking lot information user selected. In response, Firebase retrieves and returns to

the app the particular parking lot data. In the meantime, the backend system

continuously analyses video input, utilizing DeepSORT to monitor and a fine-tuned

YOLOv8 model to detect vehicles. It also checks the parking space availability within

the parking lot and combines parking and vehicle data before updating Firebase with

the latest summary and specific parking lot information. After receiving this

information, the application calculates the shortest route to the closest parking space

and shows the user a map of the parking lot with directions, which allow them view

parking lot information visually and follow the path for easier parking finding.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

CHAPTER 4

System Design

4.1 System Block Diagram

Figure 4.1: High-Level System Block Diagram

The system block diagram shown in figure 4.1 is the overall work flow of the Parking

Finder Mobile Application. The video feed from the parking lot cameras is first

processed using the YOLOv8 detection model to detect vehicles. The detections are

then passed into the DeepSORT tracker, where IDs are assigned and vehicle identities

are maintained between frames. Bottom-centre coordinates of bounding boxes are

utilized within the occupancy checking module, where space availability is determined

using predefined parking space coordinates as to whether a space is available or

occupied. This processed data is formatted into space status, vehicle information, and

summary statistics, which are uploaded continuously to Firebase Realtime Database.

The Flutter mobile application then fetches this information in real time, providing

users with a graphical parking map, vehicle location, and smart navigation instructions

to the nearest available space.

4.2 System Components Specifications

The Parking Finder Mobile Application is built from several interdependent

components that together enable real-time vehicle detection, status tracking, and mobile

navigation assistance. Each component has its own specifications, covering the

algorithms, technologies, and configurations that ensure its functionality.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

4.2.1 Vehicle Detection and Tracking Module

The vehicle detection and tracking module is responsible for processing live video

streams to detect and track vehicles within the parking lot. This module is built around

the YOLOv8 object detection model, which has been fine-tuned using both public and

custom datasets to improve detection accuracy in real parking environments. Each

video frame is standardized through resizing to a fixed resolution and conversion into

RGB colour format before being passed into the model for inference. Detection

parameters, such as the confidence threshold and Intersection-over-Union (IoU)

threshold, are configured to minimize false positives and handle overlapping bounding

boxes effectively. The detection outputs, including bounding box coordinates and

confidence scores, are then processed by the DeepSORT tracker, which assigns unique

IDs to each vehicle and maintains consistent identities across frames. By combining

motion prediction with appearance-based features, the tracker is able to follow vehicles

reliably, even under temporary occlusions. To determine occupancy, the bottom-centre

point of each bounding box is tested against pre-defined parking space polygons that

are manually plotted during system setup. Alongside generating structured metadata

such as vehicle ID, coordinates, status, and timestamp, the module also provides visual

overlays of bounding boxes, IDs, and status labels during testing to enable verification

of detection accuracy.

4.2.2 Firebase Realtime Database

The Firebase Realtime Database serves as the central communication component that

connects backend detection processes with the mobile application interface. It operates

as a NoSQL, JSON-based database designed to maintain live synchronization between

multiple system components. Within each parking lot node, the database maintains two

primary structures which are a parking_data node that stores parking space information

such as unique identifiers, current occupancy status, and timestamps of the latest

updates, and a vehicle_data node that stores details of all tracked vehicles, including

assigned IDs, current coordinates, statuses, and update timestamps. In addition, a

summary node provides an overview of parking lot conditions by storing aggregated

data such as the number of available and occupied spaces. Through Firebase’s real-time

synchronization, any updates made by the detection and tracking module are instantly

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

reflected on mobile application, ensuring that vehicle movements and parking space

changes are available within milliseconds.

4.2.3 Mobile Application

The mobile application serves as the user-interface component of the system, acting as

the main interface through which users interact with the parking finder and navigation

features. It is developed using the Flutter framework, allowing deployment on both

Android and iOS platforms while ensuring a consistent and responsive user experience.

The main specification of the mobile application is its integration with the Firebase

Realtime Database, which allows it to receive instant updates on parking space

availability and vehicle movements. As soon as the detection and tracking module

updates the database, the changes are reflected in the app without delay, ensuring users

always have access to the latest parking information.

From a functional perspective, the mobile application provides an overview of

parking lots and their current status, including the number of available and occupied

spaces. When a user selects a particular parking lot, the application displays a detailed

layout of the lot, highlighting each parking spaces in real time with clear visual

indicators where green for available and red for occupied. Vehicle icons are also shown

to reflect active vehicle movements within the parking area.

Next, another main specification of the application is its pathfinding features.

The parking layout is represented as a graph of nodes and connecting roads, and

Dijkstra’s shortest path algorithm is applied to determine the shortest path from the

user’s location to the nearest available space according to other vehicles status. This

path is dynamically updated whenever parking space statuses change, ensuring that the

user is always directed to the nearest and most possible parking space.

4.3 Components Design

4.3.1 Vehicle Detection and Tracking Design

The detection and tracking module are designed around a pipeline structure that begins

with video input and ends with structured output ready for database updates. The video

stream is continuously read frame by frame. Each frame undergoes pre-processing steps,

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

including resizing to a consistent resolution and conversion to RGB format. These steps

standardize input and reduce computational overhead during inference.

The YOLOv8 object detection model is the core of this pipeline. The model was

trained and fine-tuned to detect vehicles in parking lot, and its design supports high-

speed inference while maintaining accuracy. During processing, YOLOv8 produces

bounding boxes, class labels, and confidence scores for detected objects. To ensure

reliability, the design includes thresholds for confidence and IoU, filtering out low-

quality detections and resolving overlapping boxes.

The DeepSORT tracking module receives the results from the YOLOv8 model's

vehicle detections. The DeepSORT combines appearance-based feature embeddings

with motion prediction via a Kalman filter, allowing the system to consistently assign

and maintain unique IDs for every vehicle, even when there is temporary occlusion or

overlapping movement. Besides, each bounding box's bottom-centre point is computed

and compared to predefined parking space polygons in order to connect detections with

the actual parking lot layout. These polygons are defined during the system setup where

they are representing the boundaries of individual parking spaces. By checking whether

a vehicle’s bottom-centre point lies within these polygons, the system can determine if

the vehicle is entering, currently parked, or exiting a space.

The design of the system also incorporates a state-labelling scheme that assigns

status indicators to vehicles according to their position and movements. Vehicles that

are first entered into parking lot are assigned with the status "finding”. If the bottom-

centre point is stably for a period of time within a parking space polygon, then “parked”

status is assigned. If a parked vehicle exits from a parking space polygon, then its status

is changed to "exiting". These assignments of status are not only important for

maintaining database consistency, they are also a useful context for the mobile app,

such that mobile app system able to calculate the shortest path based on these statuses

for users.

For debugging and verification, the system overlaying IDs, bounding boxes, and

status indicators onto the live feed. The visual response allows easier verification on

vehicles are being properly tracked and correctly identified, thus guaranteeing that the

whole tracking and detection pipeline is working correctly.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

4.3.2 Database Design

Firebase Realtime Database is constructed to be the backend and frontend's data

synchronization backbone. It is stored in structured JSON, and two top-level nodes are

maintained which include each parking lot node and summary node. In each parking

lot node, they include parking_data and vehicle_data, parking_data is the node that

contains details of all parking spaces. Each space is act as a child node with id, status,

and timestamp attributes. The status attribute is binary, either the space is "occupied"

or "available” and the timestamp allows for consistency in case of updating conflict.

The vehicle_data node holds real-time information for all vehicle being tracked

within the parking lot. The record holds the ID that is unique, vehicle coordinates at the

moment, and its status (finding, parked, exiting). The vehicle_data node enables the

system to not only maintain vehicle locations but to also deliver context data that could

be utilized in the navigation logic of the mobile application.

To enable smooth operation, real-time event listeners are utilized in database

design. These notify the mobile application in real time whenever modifications are

being performed on the data. Push-based communication therefore eliminates

continuous polling at every point, ensuring that users are always served the current

parking updates. Security rules are also defined to allow read and write access during

development times to enable the backend to change data while it is being read by the

application without interference.

4.3.3 Mobile Application Design

The mobile application is designed as the user interaction layer, where it is modular and

layered architecture type for maintainability and clarity. The main.dart file served as an

entry point of the application and it sets up Firebase according to the configuration that

is defined in firebase_options.dart. This ensures that the application is synchronized

with the database prior to displaying any of the application's UI screens. Initially, it first

shows a splash screen to provide users with some feedback during initialization. Once

the app is opened, it takes the user to the home page screen that list down every parking

lot availability overview. The home page draws aggregated data from Firebase and

shows the number of parking space that are available for every lot. Users able to choose

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

their parking lot of preference, and it will redirect user to the lot layout screen that

matches.

Next, layout screens for each parking lot aim to combine real-time parking

information with pre-defined graph-based parking maps. The layouts comprise nodes

and edges that represent roads and parking space. The structure of the nodes is defined

in the file node.dart and includes connections to adjacent nodes. The structure is a

directed graph type, in which edges represent allowable driving routes between nodes.

Pathfinding is done with Dijkstra-based algorithm. Once the user enters the parking lot,

the app requests Firebase for the most up to date available parking spaces. The

algorithm will find the shortest path from the user's point to the closest available space

take consideration on other vehicle’s status. The output is marked directly onto the map

to display the suggested path. If circumstances are changed such as earlier available

space being taken, the app works out the path dynamically again to ensure that the user

is at all times pointed towards the nearest available space.

To graphically represent this information, the app implements custom widgets

for rendering. Parking spaces are rendered as rectangles, green to indicate availability

and red to indicate occupied. Roads and intersections are represented as connected

sections, and vehicles as moving markers. The UI is self-updated at all times whenever

Firebase is updated with fresh data, making it real-time and responsive.

Figure 4.2: Component Design for Mobile Application.

4.4 System Components Interaction Operations

The operation of this project is not only based upon the individual operation of its

components, but it is also based upon the interaction of components and data exchange.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Although all of the modules are individually assigned tasks, interactions form repeated

and continuous loops extending from the beginning of video input to tracking, from

synchronization of data to the Firebase Realtime Database, to the mobile application

for use by users.

The process begins with the detection and tracking module, which processes

incoming video streams from the parking lot cameras. Each frame is analysed by the

YOLOv8 detection model to detect vehicles, and these detections are then passed to the

DeepSORT tracker to assign consistent IDs across frames. The tracker also determines

vehicle statuses such as “finding,” “parked,” or “exiting,” based on their movement and

position relative to defined parking space polygons. At this stage, visual overlays such

as bounding boxes and ID labels are added for monitoring purposes, but more

importantly, structured data is generated for further use. This structured data includes

vehicle identifiers, coordinates, and space occupancy, all of which are essential for

synchronization with the backend.

Once results of tracking and detection for a frame are settled, the system sets up

for updating of the database. The parking space status is kept under the parking_data

node while vehicle information like ID, coordinates, and status are kept under the

vehicle_data node inside a parking lot node in Firebase, and. These updates are sent to

the database asynchronously to ensure that latest results overwrite old data without

interrupting running processes. The database itself serves as the communication link

between backend and frontend, provide a single repository where the latest status of the

vehicle and spaces can be obtained. The real-time aspects of Firebase allow the mobile

application to obtain these updates almost in real-time, without manual refreshing or

constant polling.

On the mobile side, the Flutter application is designed to respond immediately

to database changes. As soon as new data arrives, Firebase listeners trigger state updates

within the app, prompting the user interface to refresh the map view. Parking spaces

are updated to reflect to the most recent availability, with green indicating available and

red showing occupied. At the same time, vehicle positions and movement statuses are

rendered on the map, giving users a live representation of the parking lot. This creates

an interactive, real-time link between the backend detection pipeline and the frontend

user interface, allowing users to monitor parking space availability and vehicle flow

seamlessly.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Implementation of the pathfinding system into this cycle is important to the

system's effectiveness. The application employs the use of the defined node and edge

structures from the graph-based representation of the map to determine navigation

routes. Once a new user enters the lot, the application detects available parking spaces

from the parking_data node and chooses the nearest available space based on graph

distance. Dijkstra's Algorithm is employed to work out the shortest path from the user's

point to the destination parking space. The output of this operation is a highlighted path

on the map, directing the user step by step through the parking lot. In case a formerly

available parking space is taken by another vehicle before the user reaches it, Firebase

instantly pushes out the change to the app, prompting the pathfinding system to

recalculate and reroute the user to the next nearest available space. This continuous

recalculation ensures that navigation is accurate and reliable even for very dynamic

parking lots.

Overall component interaction is designed to be continuous and recurring.

Cameras continuously feed video input, the tracking and detection module generate

structured data, the database assigns this data, and the mobile application utilize it for

visualization and navigation. Therefore, the vehicle movements within the parking lot

will determine the state of the system because occupied or available spaces trigger the

new detections that roll again. This tightly coupled loop creates a closed feedback

system in which all activities in the actual parking lot are resemble electronically within

the application.

By structuring interactions in this way, this project system can ensure that its

components never operate in isolation but rather operate to build towards a logical

workflow. The design guarantees that vehicle detections feed seamlessly into updates

of parking availability, that updates are pushed to the mobile application in quick

succession, and that users always receive accurate navigation recommendations. The

interaction operations thus become the foundation of the system, thus transforming raw

video inputs to useful, real-time assistance for drivers at parking locations.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

CHAPTER 5

System Implementation

This chapter explains how the system was implemented, including how the hardware

and software were set up, configured, and integrated. Additionally, it provides

screenshots of the system in use, discussion about implementation difficulties, and

concludes with the overall results.

5.1 Hardware Setup

The processor unit and the mobile device used for application testing make up the two

primary components of the hardware setup for this project. The system's processing

unit handled video processing, communication with Firebase, and the implementation

of the detection and tracking algorithms. In the meantime, the mobile device mainly

served as the end-user platform, enabling real-time parking space availability

monitoring with pathfinding for user and confirming that the Flutter application

accurately presented data from the backend.

5.1.1 Processing Unit (PC)

Table 5.1.1: Specifications of desktop computer

Description Specifications

Mobo MSI B650M Gaming Plus WIFI

Processor AMD Ryzen 5 7500F

Operating System Windows 11 Pro

Graphic NVIDIA GeForce RTX 4060 Ti 8GB GDDR6

Memory 16GB DDR5 RAM

Storage 1TB SSD

A desktop computer is served as the primary processing platform for the development

and operation of the parking space and vehicle detection and tracking modules. While

the CPU and memory resources enabled video processing, Firebase connectivity, and

result logging, the GPU played a crucial role in speeding up the YOLOv8 model for

model training, model fine-tuning and enabling real-time detection and tracking. By

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

sending detection outputs to Firebase and synchronizing data with the mobile

application, the desktop not only ran the models but also manage the integration of

many components. During testing, this hardware configuration made sure that

everything worked easily and dependably, from video input to real-time monitoring.

5.1.2 Android Mobile Device

Table 5.1.2: Specifications of android mobile device

Description Specifications

Model Vivo V25 5G

Processor Mediatek Dimensity 900 (6nm)

Operating System Android 14

Graphic Mali-G68 MC4

Memory 16GB RAM (8GB + 8GB Extended)

Storage 256GB

During the deployment phase, an android mobile device was widely utilized to facilitate

the mobile application's testing and validation. It served as the main operating base for

the Smart Parking Finder Flutter application, which offered the user interface for real-

time pathfinding, vehicle tracking results and parking space status monitoring. The

Firebase database updates were continuously synchronized and seen via the mobile

device, enabling confirmation of the correct transmission and presentation of detection

outputs from the backend.

During the testing stage, the smartphone was also utilized to record videos and

capture images for parking lot data. By giving the detection and tracking modules

accurate input, these video recordings and images made it possible to test the system in

real-world parking lot scenarios. Vehicle detecting and tracking, data exchange, and

end-user real-time visualization were all part of the end-to-end workflow that was

validated by using a mobile device for testing and data gathering.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

5.2 Software Setup

The detection and tracking framework, database service, and mobile application

environment must be installed and configured as part of the software setup process. The

way these parts were put together enables them to function as a single, cohesive system.

The backend environment was configured to track and detect vehicles, handle video

data, and determine the availability of parking spaces. The mobile application

environment was ready to retrieve the data and provide it to users via an easy-to-use

interface, while the database service was set up to store and update this information in

real time.

5.2.1 YOLOv8 for Vehicle Detection

Ultralytics' YOLOv8 (You Only Look Once, version 8) detection framework was

chosen for this project due to its ability to effectively balance processing speed and

accuracy. To ensure that the detection was adjusted for real-world circumstances, a

small-sized model, YOLOv8s was trained using a custom dataset that included

annotated photos of vehicles gathered from online datasets and the target parking

location. The model was deployed using the Ultralytics Python module after training

and fine-tuning, enabling real-time inference and acting as the system's basis for vehicle

detection.

5.2.2 DeepSORT for Vehicle Tracking

DeepSORT was combined with YOLOv8 to guarantee that vehicles were given

consistent IDs across frames and overlapping camera views. Through a pre-trained

ReID (re-identification) model, the tracker integrated appearance-based matching with

motion prediction using a Kalman filter. This made it possible for the system to

consistently preserve vehicle IDs over time, even in situations when cars were

momentarily obscured or in close proximity.

5.2.3 Python Environment and Libraries

The pipeline for tracking and detection was using Python 3.13. Ultralytics for

YOLOv8-based car detection, deep-sort-realtime for tracking multiple objects, opencv-

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

python for processing video frames and detecting parking spaces, and firebase-admin

for interacting with the Firebase Realtime Database were among the essential libraries.

The implementation of real-time detection, tracking, and data logging was made

possible by these fundamental elements. The complete list of dependencies and their

version details is documented in the requirements.txt file, which is included in

Appendix A for reference.

5.2.4 Firebase Realtime Database

The Firebase Realtime Database was set up to handle vehicles activity logs and parking

spaces availability. Vehicles and spaces were the two main branches of the database

structure. While the space branch kept track of each parking space's occupancy status,

the vehicle branch stored information including IDs, status, coordinates xy and

timestamps. The configuration file google-services.json was incorporated into the

Flutter application to facilitate smooth synchronization with the backend, and database

administration and monitoring were done via the Firebase Console.

5.2.5 Flutter Mobile Application

The Flutter SDK (version 3.29) in Android Studio was used to create the mobile

application, and Firebase was implemented using firebase_core and firebase_database.

Real-time parking spaces availability, vehicles positions, and navigation routes are all

displayed on the application's user-friendly interface. By integrating these functions,

the software improves monitoring, direction, and general efficiency in the parking

environment in addition to helping users find available spots.

5.2.6 Development Tools

Visual Studio Code, which offered an environment for writing and debugging Python

scripts, was used to construct the system's backend. The Flutter mobile application,

including emulator simulations, was developed and tested using Android Studio.

Throughout the project, effective code management and collaboration were made

possible by the usage of GitHub for version control.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

5.3 Setting and Configuration

5.3.1 Backend Configuration

In order to develop the Smart Parking Finder Application, the backend configuration

was created to incorporate real-time database synchronization, vehicle detection, and

tracking. Starting with the environment setup, Python 3.13 was utilized together with

necessary libraries including DeepSORT, OpenCV, NumPy, and Ultralytics YOLO.

Additionally, the Firebase Admin SDK was set up to facilitate connection with cloud

databases.

The detection component made use of a specially trained YOLOv8 model that

was fine-tuned for vehicle detection in order to increase accuracy in the intended

setting. The inference parameters were set at an IoU threshold of 0.3 and a confidence

threshold of 0.6, and the model weights were fed straight into the system. When

detecting vehicles, these criteria made sure that recall and precision were balanced.

The DeepSORT tracking was included to keep track of the vehicle’s identity

consistency between frames. With a maximum age limit of 30, this tracker combined

motion and appearance elements to allow for brief occlusions without erasing track IDs.

Every vehicle that was detected was given a unique identification number and

continuously monitored throughout the video frames.

A technique for manually generating coordinates was used to predefine parking

spaces. Each space was represented by four points that admin user could indicate on an

image frame using the program. The coordinates were then saved in a text file called

parking_coords.txt. In order to determine if a slot was occupied or available in real time,

the backend loaded these coordinates during runtime and used a polygon test to match

vehicle positions against them.

A local video file was used as the system’s primary input during testing, with

each frame resized to a fixed resolution for consistent processing. The YOLOv8

detector first identified vehicles, which were then passed to the DeepSORT tracker. The

tracker output included bounding boxes, unique IDs, and the bottom-centre point of

each vehicle, which was cross-referenced with the parking slot coordinates.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

The processed data was then structured into three categories which are

individual space availability, vehicle details, and summary statistics. To optimize

performance, Firebase database updates were performed asynchronously using

Python’s threading library. This ensured that detection and tracking continued

uninterrupted while maintaining real-time synchronization of data, including the

number of totals, occupied, and available spaces.

Finally, a visualization layer was implemented for verification. Bounding

boxes, vehicle IDs, and space boundaries were overlaid on the video feed, with colour

coding (green for available and red for occupied) to provide immediate feedback during

operation. This configuration allowed the backend to operate efficiently, ensuring

accurate detection, robust tracking, and reliable data management.

5.3.2 Database Configuration

The backend of the system was integrated with Firebase Realtime Database to manage

parking slot status, vehicle logs, and overall lot summaries in real time. The connection

was established using the Firebase Admin SDK, which required the export of a service

account JSON key from the Firebase Console. This file was attached to the backend for

authentication and secure access, allowing the Python program to perform read and

write operations during execution. Similarly, a google-services.json file was exported

and integrated into the Flutter project to enable synchronization between the mobile

application and the database.

The database was organized under the root node of each parking lot and

summary node, where each parking lot node consisted of two primary branches which

is parking_data and vehicle_data. The first branch parking_data, stored information for

each individual parking space, including its unique identifier, availability status, and a

timestamp of the last update. The second branch vehicle_data, logged the tracking

results from the DeepSORT algorithm, with each entry indexed by a unique vehicle ID.

These records contained the bounding box coordinates of vehicles, their current status

(finding, parked, or exiting), and the corresponding timestamp. Another root node

which is summary, provided collection statistics for each parking lot such as the total

number of spaces, the numbers of occupied slots, available slots, and the last update

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

time. The data format in the Firebase for each parking lot node and summary node is

shown in Figure 5.1 and Figure 5.2.

Figure 5.1: Firebase data format for each parking lot

Figure 5.2: Firebase data format for summary node

This hierarchical structure was chosen to ensure a clear separation between

space-level details, vehicle-level logs, and high-level summaries, enabling efficient

retrieval and updates from both backend and frontend. To maintain real-time

responsiveness, updates to Firebase were pushed every one second on a background

thread, ensuring continuous synchronization without disrupting detection and tracking.

The database rules were configured such that both read and write permissions were set

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

to true, allowing the backend system to update data and the Flutter mobile application

to retrieve information without restrictions.

5.3.3 Flutter App Configuration

The Flutter mobile application was created using a modular architecture to achieve

scalability, maintainability, and a clear separation of responsibilities. Firstly, the

main.dart file serves as the entry point of the Flutter application. It begins by initializing

Firebase using the credentials specified in the firebase_options.dart file, ensuring

seamless synchronization with the Firebase Realtime Database. Once initialization is

complete, the application launches into the splash_screen.dart, which provides a brief

loading interface before redirecting the user to the homepage.

The screens directory is the central location where all application interfaces are

organized. The homepage.dart acts as the entry point for users, displaying a list of

available parking lots together with the corresponding parking availability data

retrieved from Firebase. From this page, users can select their desired parking lot. Each

subsequent screen, such as hospital_layout.dart, parking_layout.dart, and

simulation_layout.dart, is designed to render the parking lot map specific to its

environment. These layouts integrate components from other directories, such as

utilities and widgets, to build the interactive map, plot parking spaces, and provide real-

time navigation features. Additionally, the splash_screen.dart is used to display the

initialization interface during app startup.

The utilities directory contains a collection of utility classes that the application

uses to support computational and data processing operations. Real-time listeners are

managed via the data_retrieval.dart file, which retrieves vehicles and parking spaces

changes straight from Firebase. The node.dart file defines the structure of nodes

representing roads and parking spaces. It connects these nodes into a directed graph,

enabling pathfinding features within the parking map. By implementing Dijkstra's

Algorithm, the pathfinding.dart file enables the system to determine the quickest route

between the user's present location and a parking space that is available.

Custom widgets from the widget directory are used to create the parking lot's

graphical representation. Each parking space is represented graphically via the

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

parking_spaces.dart widget, which is updated dynamically based on the database's

availability status. Road connections within the lot are rendered by the road.dart file,

while gaps between spaces and roads are filled by space_fill.dart to guarantee correct

alignment of unoccupied regions. Using coordinates retrieved from the backend, the

vehicle.dart widget is in charge of showing and animating vehicles on the layout.

For these to work as one, first the parking map is defined and connected as a

graph structure, where nodes that represent parking spaces, road, and space fills, while

edges define the valid paths between them such as one way road. Once the graph is

established, real-time data retrieved from Firebase such as parking space statuses and

vehicle locations are integrated into the map. This data ensures the system reflects the

current parking lot conditions. The pathfinding algorithm, based on this graph,

calculates the shortest available route from the user’s position to the nearest available

spaces, taking into account of vehicles status in front of user. The resulting path is then

highlighted on the user interface, visually guiding the user along the road network.

Every time new updates are received from Firebase, the pathfinding process is

recalculated, ensuring that users are always directed to the most optimal available

parking space with accurate, real-time navigation.

5.4 System Operation

5.4.1 Detection and tracking

When the system runs, video frames are read continuously and pre-processed before

inference. Frames are first resized for consistent processing and converted to the

required colour space for the model. The fine-tuned pre-trained YOLOv8 model

performs vehicle detection on each frame using the configured inference thresholds,

and detected vehicle bounding boxes are returned together with confidence scores.

These bounding boxes are then passed to the DeepSORT tracker, which assigns and

maintains unique tracking IDs across subsequent frames. During tracking, each vehicle

is also assigned a real-time status such as “finding” when it is first detected and still

moving through the lot, “parked” when it occupies a predefined parking space, and

“exiting” when leaving a previously occupied parking space. For visual verification,

bounding boxes are drawn onto the frame along with the tracker ID, status label, and a

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

small marker at the bottom-centre of each box. These overlays make it straightforward

to observe whether a vehicle is being consistently tracked over time and to confirm its

current parking status. Figure 5.3 shows a sample detection frame with bounding boxes,

assigned IDs, statuses, and bottom-centre markers.

Figure 5.3: Detection and tracking output

5.4.2 Parking space plotting and occupancy determination

Once detections are available and vehicles are tagged with track IDs, the system

determines parking space occupancy by testing each vehicle’s bottom-centre point

against predefined parking slot polygons. Parking slots are manually mapped (four-

point polygons per slot) and stored in a coordinate file which the backend loads at

runtime. After the plotting, each parking space is drawn as a polygon using the

coordinate loads from the file on the video frame. The spaces are color-coded where

green if available and red if occupied based on the results of the polygon test that checks

whether a small marker at the bottom-centre of each vehicle box falls inside the space,

shown in Figure 5.6. Parking space IDs are also displayed next to each polygon for

easier verification. This visual overlay clearly shows which vehicle belongs to which

space and is done right before updating the database with the occupancy results.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Figure 5.4: Parking space plotting

Figure 5.5: Parking space coordinate file

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Figure 5.6: Parking space occupancy determination

5.4.3 Firebase update and data packaging

After occupancy and tracking state are determined per frame, the backend combined

the information into structured records for cloud synchronization. For each parking

space the system composes a parking record (id, status, timestamp), and for each

confirmed track it produces a vehicle record (id, coordinates, status, timestamp). A

small summary object containing total spaces, occupied count and available count is

also constructed. To avoid impacting real-time inference, these updates are dispatched

on a background thread at a regular interval (which is every one second in this project),

so detection and tracking continue without blocking. The database schema is written to

the Realtime Database under the configured root, populating parking_data,

vehicle_data and summary branches so the frontend can efficiently retrieve slot and

vehicle information.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Figure 5.7: Firebase Realtime Database entries produced by the backend

5.4.4 Mobile app visualization and navigation

The mobile application listens for changes on the corresponding Firebase nodes and

reacts in real time. When parking_data or vehicle_data is updated, the data_retrieval

utility receives the change and updates the app state. The app renders the parking lot as

a graph-based map using custom widgets where parking spaces are drawn and colour

coded, roads and empty areas are rendered, and vehicles are animated at their reported

coordinates. The pathfinding utility recalculates routes using the current parking graph

and Dijkstra’s algorithm whenever the user’s position or parking spaces availability

changes, edge weights reflect travel cost and can be adjusted to account for other

vehicles status in front of user. The app interface also provides live animation of the

recommended route so users see the path to the target parking space and any vehicles

ahead.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Figure 5.8: Mobile app visualizing space availability, vehicle positions and calculated

navigation route

5.5 Implementation Issues and Challenges

Throughout the development of this project, several implementation challenges were

encountered that directly impacted both the accuracy and efficiency of the solution.

One of the most significant issues was related to GPU memory usage during the training

and fine-tuning of the YOLOv8 detection model. While higher-capacity variants of the

model, such as YOLOv8l or YOLOv8x, could potentially provide superior accuracy in

detecting vehicles under diverse conditions, the limited GPU resources available

restricted the use of these larger models. Attempting to train or fine-tune them often

resulted in out-of-memory errors, forcing the system to rely on a smaller version of

YOLOv8. This choice provided a practical trade-off between performance and

hardware limitations, though it introduced a compromise in detection precision that

may affect scalability in larger deployments.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Another challenge is from the problem of occlusion and overlapping vehicles.

In real-world scenarios, vehicles often park closely side by side or temporarily obstruct

one another when entering or leaving parking space. While the integration of the

DeepSORT tracking algorithm helped address short-term occlusions by combining

appearance and motion cues, prolonged or severe occlusions still caused occasional ID

switches. These ID mismatches sometimes led to false occupancy updates, particularly

when two vehicles overlapped near the same parking space. Additional measures, such

as more advanced ReID models, may be necessary in future iterations to further

enhance tracking stability.

Moreover, due to restrictions in accessing actual parking lots for data collection,

real-world datasets of vehicles entering and exiting parking lots could not be obtained

for this project. Instead, simulated data was generated and uploaded to Firebase to

recreate parking lot scenarios, allowing the mobile application to function as though it

were connected to a live environment. The simulated data included both parking_data

and vehicle_data, which were used by the mobile application to perform pathfinding

and navigation functions. This setup enabled controlled testing of detection, tracking,

and navigation features within the app. However, it may not fully capture the

unpredictability and diversity of real-world conditions such as varying lighting, weather,

or heavy traffic flow. As such, the results obtained serve primarily as a proof-of-concept

rather than a definitive evaluation of the system’s performance in live deployment.

5.6 Concluding Remarks

The implementation of this project successfully demonstrated the integration of

computer vision, real-time database synchronization, and mobile application

visualization into a cohesive end-to-end solution. Despite challenges such as GPU

resource limitations, vehicle occlusion, and reliance on simulated datasets, the system

proved capable of detecting and tracking vehicles, determining parking space

occupancy, and guiding users to available parking space through a responsive Flutter

application. The project validates the feasibility of using YOLOv8 and DeepSORT in

a smart parking context and highlights the potential of cloud-backed mobile

applications for real-time user assistance.

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

CHAPTER 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

To evaluate the performance of this project, a series of tests were conducted focusing

on four primary metrics which includes detection accuracy, tracking stability, database

update time, and mobile application latency. These metrics were chosen to measure the

accuracy, reliability, and responsiveness of the system across its major components,

ensuring both backend and frontend performance could be objectively assessed.

6.1.1 Detection Accuracy (mAP)

The accuracy of vehicle detection was measured using the mean Average Precision

(mAP), which evaluates the precision-recall performance of the YOLOv8 model at

various confidence thresholds. Two different training setups were tested. First, the

YOLOv8s model was trained simply on an online vehicle dataset, providing a baseline

for general detection capability across varied environments on detecting vehicles. Next,

this model was further fine-tuned using custom images collected from the target parking

lot, allowing adaptation to environment-specific characteristics such as camera angle,

lighting, and parking space geometry.

Figure 6.1: Model training result using online dataset

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

6.1.2 Tracking Stability (ID Switches)

The consistency of the DeepSORT tracker was evaluated by monitoring the number of

ID switches that occurred during vehicle movements. An ID switch is recorded when

the same vehicle is mistakenly assigned a new identifier during continuous tracking.

While short-term occlusions and side-by-side vehicles were generally handled well,

longer occlusions or overlapping vehicles sometimes caused ID mismatches. These

switches could occasionally propagate to false parking space status updates.

6.1.3 Database Update Time

The responsiveness of the backend-to-database communication was assessed by

measuring the time taken to package detection and tracking results and push them to

Firebase Realtime Database. On average, updates were performed asynchronously at

an interval of one second, which balanced real-time responsiveness with stable system

performance. This ensured that parking space availability and vehicle data remained up

to date without introducing significant computational overhead.

6.1.4 Mobile Application Pathfinding

The performance of the mobile application was examined by testing the accuracy and

reliability of its pathfinding feature. The system was compared to its ability to calculate

and display the shortest path from user's point to the nearest available parking space

under different simulated parking lot conditions. Using the graph-based representation

of the lot, Dijkstra's algorithm always produced optimum paths that occupied spaces.

One of the main observations during testing is that the algorithm continuously updated

navigation to reflect the shortest available route even as space availability changed with

vehicles entering or exiting. With each update of the database, the application

recalculated routes in real time and marked the new route on the parking map. The

findings reconfirmed that the navigation module not only preserved route validity but

also guaranteed that users were always routed through the most optimal path to the

destination, making the system effective for real-time parking directions.

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

6.2 Testing Setup and Result

6.2.1 Test Environment

The system was tested with real videos shot using the mobile phone's camera

maintained at the entrance and within the UTAR Hospital parking lot. The videos were

shot at 1920×1080-pixel resolution and 30 frames per second, which represents the

typical field of view of a fixed surveillance camera. The captured videos were then

provided as input to the backend tracking and detection system.

The backend was executed on a desktop computer with the specification from

chapter 5 (Table 5.1.1). YOLOv8 fine-tuned using parking lot images specific to the

custom environment was used for vehicle detection, while object tracking was carried

out using DeepSORT. Detection and tracking output were pushed to Firebase Realtime

Database in real time for synchronization with the mobile app.

The mobile app was then tested using an Android phone running on

specification from chapter 5 (Table 5.1.2). The app connected to real-time updates of

Firebase and presented both the status of parking space and navigation directions.

Pathfinding effectiveness was then tested through testing different parking lot situations

using the simulated data to ensure that the app always calculated and displayed the

shortest path accordingly to available spaces.

6.2.2 Test Procedure

For testing the system in a simulated environment, a 30-slot simulated parking lot

facility was created. Before running each simulation, 25 slots were randomly pre-

assigned as occupied and 5 slots were kept available for incoming cars. The test process

was designed in a way to test entry and exit parking space scenarios. For vehicle entry,

five vehicles were created at the given entry node and automatically directed to the

nearest available space using Dijkstra's shortest path algorithm. Their positions were

updated continuously until they arrived and took up their given parking positions. In

the meantime, vehicle exit was simulated by randomly selecting three cars from the

parked group and directing them out to given exit nodes. These vehicles experienced a

"parking" to an "exit" state and were removed from simulation as they hit the boundary

of their path. Simulation loop executed in real time with one-second tick interval, in

which vehicle displacements were updated, parking space statuses recalculated, and all

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

updates synchronized to Firebase Realtime Database. This ensured the mobile

application is always showing the latest parking availability and movement of vehicles.

The process was performed numerous times to ensure detection stability, correct state

transition correctness, correctness of available parking space updates, and pathfinding

result reliability. Tests confirmed whether users were always routed to the nearest

available space and whether exiting cars correctly left their designated spaces in the

database.

6.2.3 Test Results

The system was subjected to independent test scenarios to evaluate its detection,

tracking, database synchronization, and mobile app performance. Overall, the findings

justified that the designed approach achieved high accuracy and robust performance

under different parking conditions.

Detection was done using the fine-tuned YOLOv8 model with an overall mean

Average Precision of 61.2%, though fairly modest by other standards, it was adequate

for good vehicle detection in real-world conditions with fluctuating light and occlusion.

Tracking performance using the DeepSORT algorithm was consistent with minimal

switches per run. Though longer occlusions at times led to mismatches, overall vehicle

ID continuity between frames was good enough to provide correct parking space status

transitions.

Figure 6.2: Car detection results mean Average Precision

Figure 6.3: Stable ID assigned between few frames

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Communication between the database also worked as required with updates

arriving at a mean rate of one second. This was sufficient to provide changes in the

availability of spaces and vehicles locations continuously on Firebase without being too

laggy. The mobile application could effectively utilize these updates to dynamically

recalculate pathfinding directions.

Pathfinding outputs also showed the robustness level of the system. In all test

cases, the application achieved a 100% success rate of the shortest path from the user's

point to a nearest available parking space according to other vehicle’s status. Ideally,

when vehicles departed and left newly opened spaces, the app dynamically recalculated

and updated changed routes, always directing users through the best route.

Figure 6.4: Shortest Path Result with Random Simulated Data Set

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

Figure 6.5: Shortest Path Result with other Random Simulated Data Set

The combined outcomes indicate that not only does the system identify and

pinpoint vehicles with excellent precision but also learns synergistically with the

backend and mobile application to provide real-time parking instructions.

6.3 Projects Challenges

First challenge faced during the project was related to real-time synchronization

overhead. Since the system relies on multiple components which are detection,

tracking, database updates, and mobile app visualization to operate simultaneously,

maintaining smooth synchronization across all modules occasionally introduced

latency. When detection and tracking workloads were heavy, for example in frames

with multiple vehicles, the asynchronous updates to Firebase sometimes lagged behind,

which slightly affected the freshness of the data displayed on the mobile application.

In addition, the next project challenge is unexpected user behaviour. Although

the system is designed to guide users to the nearest vacant parking space using the

shortest path, users may not always strictly follow the recommended route. Besides,

some other vehicle may also not take the nearest empty parking space which will make

the navigation route constantly changing for user as it brings user to nearest vacant

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

parking space. Such behaviours introduce uncertainties that can affect the accuracy of

real-time navigation and occasionally lead to inconsistencies between the system’s

guidance and the actual user actions.

Finally, the mobile application itself presented performance constraints,

particularly when rendering large layouts with many parking spaces and active vehicles.

The Flutter framework, while flexible, required optimization to handle frequent updates

and animations in real time. When multiple widgets such as vehicles, spaces, and

navigation paths were updated simultaneously, occasional performance drops occurred

in a larger lot, which reduced the smoothness of the user experience. These issues

highlighted the need for further optimization and possibly more efficient rendering

techniques in future versions of the application.

6.4 Objectives Evaluation

The first objective of this project was to develop a real-time parking space vacancy

detection system using computer vision and deep learning. This objective was

successfully achieved by integrating the YOLOv8 detection model with predefined

parking space coordinates. The system was able to determine whether each space was

occupied or available and update this information continuously in real time. By

synchronizing the processed results with Firebase Realtime Database, users could

access the latest parking availability through the mobile application, ensuring that

accurate and reliable information was always presented.

The second objective was to implement a vehicle detection and tracking system

with parking finding status. This goal was also accomplished by combining YOLOv8

with the DeepSORT tracking algorithm, which maintained vehicle identities across

frames and provided insights into their status, such as whether a vehicle was searching

for a space, parked, or exiting the space. Despite occasional challenges caused by

occlusion or overlapping vehicles, the system demonstrated stable tracking

performance and ensured that vehicle behaviour within the parking lot could be

monitored effectively. This provided valuable real-time information on the movements

of other vehicles for the end user.

The final objective was to design and develop a mobile application that delivers

a smart navigation system to guide users to the nearest vacant parking space according

to vehicle status in front. This was achieved using Flutter to create a cross-platform

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

application that integrates seamlessly with Firebase. The application not only displayed

parking space availability and vehicle movements in real time but also implemented a

graph-based navigation system using Dijkstra’s Algorithm to calculate the shortest path

to an available slot taking consideration of other vehicle’s status along the path. The

interface provided users with clear visualization, live updates, and dynamic route

adjustments, ensuring efficient and user-friendly navigation throughout the parking lot.

6.5 Concluding Remarks

The evaluation and discussion of this project highlighted both the strengths and

limitations of the proposed solution. Testing results showed that the system was able to

achieve accurate vehicle detection, stable tracking performance, and timely

synchronization with Firebase, ensuring that users could rely on real-time updates for

parking availability. The mobile application also performed effectively in delivering

navigation guidance and visualizing parking spaces statuses with minimal latency,

demonstrating the feasibility of integrating backend intelligence with a user-friendly

frontend interface.

At the same time, several challenges were observed during evaluation, such as

GPU memory constraints that limited the use of higher-capacity detection models,

occlusions that occasionally caused ID switches in tracking, and performance

overheads in rendering complex layouts within the mobile app. Additionally, the

unpredictability of user behaviour posed practical challenges for navigation accuracy.

Despite these issues, the system met its core objectives and provided a strong proof of

concept for a smart parking finder solution.

CHAPTER 7

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

This project pursues to develop a Smart Parking Finder Mobile Application using

computer vision, real-time databases, and mobile navigation to address the daily

problem of finding available parking in urban cities. The overall objectives were to

develop a parking space detector system, create a vehicle tracking system with parking

status, and offer a user-friendly mobile application with smart navigation features. All

of these objectives were achieved, providing a proof of concept for how AI and mobile

technologies can be used to improve parking efficiency.

On the backend, the system used YOLOv8 for real-time vehicle detection and

DeepSORT for continuous tracking to detect and track vehicles across frames. Status

tags such as finding, parked, and exiting were incorporated to provide reasonable

context for database records and mobile application updates. The data was

synchronized in real time with Firebase Realtime Database, which acted as the

communication gap between the mobile application and backend. On the frontend, this

information was retrieved in real time by the mobile app built with Flutter, presenting

a dynamic parking map and providing smart navigation. Using a graph-based model of

the parking lot and Dijkstra's algorithm, the app was constantly highlighting the shortest

available path to an available parking space, adapting instantly to such events as vehicle

entering, parked, or exiting.

Although the system achieved its major goals, there were some issues faced

during the implementation process. The finite GPU memory limited fine-tuning of

larger detection models, and occlusions and overlapping vehicles occasionally caused

ID switches in tracking. Moreover, mobile rendering performance had to be optimized

when handling frequent updates and a high number of vehicles and slots. Despite these

issues, the system worked effectively as a functional prototype, proving that the

integration of detection, tracking, and navigation has the potential to reduce parking

search times, minimize congestion, and enhance the user experience.

CHAPTER 7

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

7.2 Recommendation

One of the key recommendations for enhancing the system is the integration of a

License Plate Recognition (LPR) system. Many parking facilities, particularly in

shopping malls and office complexes, already employ LPR to monitor vehicle entry

and exit. By combining LPR with the YOLO-based detection and DeepSORT tracking,

the system would gain a secondary method of vehicle identification. This would

significantly reduce cases of ID switches or tracking errors, as each vehicle could be

consistently tied to its license plate rather than relying solely on appearance-based

tracking. In turn, this integration would improve tracking accuracy, provide a more

reliable user record, and open opportunities for added features such as personalized

navigation or secure access control.

Another recommendation involves expanding the mobile application features to

make the system more useful and user-friendly. While the current version focuses on

real-time vacancy detection and navigation, future iterations could include a parking

history log for users to review their past activity. A reservation feature could also allow

users to book parking spaces in advance, reducing uncertainty during peak hours.

Additionally, integration with payment systems would enable drivers to not only locate

and reserve a space but also pay parking fees directly within the application. These

expansions would elevate the system from a basic navigation tool into a comprehensive

smart parking platform capable of supporting both operational efficiency and customer

convenience.

Finally, it is essential to take user behaviour into account when refining the

system’s navigation logic. Real-world drivers may not always behave predictably—

some may stop midway along a suggested route, double park in unauthorized areas, or

even enter the parking lot from non-monitored entrances. Such behaviour can lead to

mismatches between the system’s suggested paths and actual driver movements. By

designing navigation logic that adapts to these situations, such as recalculating paths

dynamically or flagging irregular actions, the system can remain robust and reliable

even under unpredictable conditions. This would ensure that the smart parking solution

continues to provide realistic and practical guidance, thereby improving its readiness

for real-world deployment.

REFERENCES

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

REFERENCES

[1] H. Padmasiri, R. Madurawe, C. Abeysinghe and D. Meedeniya, "Automated

Vehicle Parking Occupancy Detection in Real-Time," 2020 Moratuwa Engineering

Research Conference (MERCon), Moratuwa, Sri Lanka. 2020, pp. 1-6, doi:

10.1109/MERCon50084.2020.9185199.

[2] Deng, Zhipeng & Sun, Hao & Zhou, Shilin & Zhao, Juanping & Lei, Lin & Zou,

Huanxin. “Multi-scale object detection in remote sensing imagery with

convolutional neural networks.” ISPRS Journal of Photogrammetry and Remote

Sensing. 2018, 145, doi: 10.1016/j.isprsjprs.2018.04.003.

[3] Z. Xie and X. Wei, "Automatic parking space detection system based on improved

YOLO algorithm," 2nd International Conference on Computer Science and

Management Technology (ICCSMT), Shanghai, China, 2021, pp. 279-285.

doi: 10.1109/ICCSMT54525.2021.00060

[4] L.-C. Chen, R.-K. Sheu, W.-Y. Peng, J.-H. Wu, and C.-H. Tseng, “Video-Based

Parking Occupancy Detection for Smart Control System,” Applied Sciences, vol.

10, no. 3, p. 1079, Feb. 2020, doi: 10.3390/app10031079.

[5] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-Time Vehicle

Detection Based on Improved YOLO v5,” Sustainability, Sep. 2022, vol. 14, no. 19,

p. 12274, doi: 10.3390/su141912274.

[6] Kılıçkaya, Fatma Nur & Taşyürek, Murat & Öztürk, Celal. “Performance evaluation

of YOLOv5 and YOLOv8 models in car detection”. Imaging and Radiation

Research, 2024 6, 5757, doi: 10.24294/irr.v6i2.5757.

[7] Kapania, Shivani & Saini, Dharmender & Goyal, Sachin & Thakur, Dr. Narina &

Jain, Rachna & Nagrath, Preeti. “Multi Object Tracking with UAVs using Deep

SORT and YOLOv3 RetinaNet Detection Framework”. 2020, 1-6, doi:

10.1145/3377283.3377284.

[8] Bathija, A. and Sharma, G. “Visual Object Detection and Tracking Using Yolo and

Sort.” International Journal of Engineering Research Technology, 2019, 8, 705-708,

doi: 10.32628/CSEIT206256.

[9] X. Chen, Z. Li, Y. Yang, L. Qi and R. Ke, "High-Resolution Vehicle Trajectory

Extraction and Denoising From Aerial Videos," in IEEE Transactions on Intelligent

REFERENCES

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Transportation Systems, vol. 22, no. 5, pp. 3190-3202, May 2021, doi:

10.1109/TITS.2020.3003782.

[10] M. Li, M. Liu, W. Zhang, W. Guo, E. Chen, and C. Zhang, “A Robust Multi-

Camera Vehicle Tracking Algorithm in Highway Scenarios Using Deep

Learning,” Applied Sciences, vol. 14, no. 16, pp. 7071–7071, Aug. 2024, doi:

https://doi.org/10.3390/app14167071.

[11] J. Azimjonov and A. Özmen, “A real-time vehicle detection and a novel vehicle

tracking systems for estimating and monitoring traffic flow on

highways,” Advanced Engineering Informatics, vol. 50, p. 101393, Oct. 2021, doi:

https://doi.org/10.1016/j.aei.2021.101393

[12] Benny, L & Soori, PK 2017, 'Prototype of parking finder application for intelligent

parking system', International Journal on Advanced Science, Engineering and

Information Technology, vol. 7, no. 4, pp. 1185-1190.

https://doi.org/10.18517/ijaseit.7.4.2326

[13] W. Yawai, “Smart Application for Car Parking System at Nakhon Ratchasima

Rajabhat University”, IJC, vol. 42, no. 1, pp. 41–58, Apr. 2022, Accessed: Sep. 17,

2025. [Online]. Available: https://ijcjournal.org/InternationalJournalOfComputer

/article/view/1922

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-1

Appendix A: requirement.txt

anyio==4.9.0

CacheControl==0.14.3

cachetools==5.5.2

certifi==2025.1.31

cffi==1.17.1

charset-normalizer==3.4.1

colorama==0.4.6

contourpy==1.3.1

cryptography==45.0.5

cycler==0.12.1

deep-sort-realtime==1.3.2

filelock==3.17.0

filetype==1.2.0

firebase-admin==6.9.0

fonttools==4.56.0

fsspec==2025.2.0

google-api-core==2.25.1

google-api-python-client==2.176.0

google-auth==2.40.3

google-auth-httplib2==0.2.0

google-cloud-core==2.4.3

google-cloud-firestore==2.21.0

google-cloud-storage==3.2.0

google-crc32c==1.7.1

google-resumable-media==2.7.2

googleapis-common-protos==1.70.0

grpcio==1.73.1

grpcio-status==1.73.1

h11==0.16.0

h2==4.2.0

hpack==4.1.0

httpcore==1.0.9

httplib2==0.22.0

httpx==0.28.1

hyperframe==6.1.0

idna==3.7

Jinja2==3.1.5

joblib==1.5.1

kiwisolver==1.4.8

MarkupSafe==3.0.2

matplotlib==3.10.0

mpmath==1.3.0

msgpack==1.1.1

networkx==3.4.2

numpy==2.1.1

opencv-python==4.11.0.86

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-2

packaging==24.2

pandas==2.2.3

pillow==11.1.0

proto-plus==1.26.1

protobuf==6.31.1

psutil==6.1.1

py-cpuinfo==9.0.0

pyasn1==0.6.1

pyasn1_modules==0.4.2

pycparser==2.22

PyJWT==2.10.1

pyparsing==3.2.1

python-dateutil==2.9.0.post0

python-dotenv==1.0.1

pytz==2025.1

PyYAML==6.0.2

requests==2.32.3

requests-toolbelt==1.0.0

rsa==4.9.1

scikit-learn==1.7.1

scipy==1.15.1

seaborn==0.13.2

setuptools==75.8.0

six==1.17.0

sniffio==1.3.1

sympy==1.13.1

threadpoolctl==3.6.0

torch==2.6.0+cu118

torchaudio==2.6.0+cu118

torchvision==0.21.0+cu118

tqdm==4.67.1

typing_extensions==4.12.2

tzdata==2025.1

ultralytics==8.3.75

ultralytics-thop==2.0.14

uritemplate==4.2.0

urllib3==2.3.0

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1

Appendix B: Poster

