PARKING FINDER MOBILE APPLICATION
BY
THAM CHEE MING

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Tham Chee Ming. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the
requirements for the degree of Bachelor of Computer Science (Honours) at
Universiti Tunku Abdul Rahman (UTAR). This Final Year Project report
represents the work of the author, except where due acknowledgment has
been made in the text. No part of this Final Year Project report may be
reproduced, stored, or transmitted in any form or by any means, whether
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr. Tou
Jing Yi, who has given me this bright opportunity to engage in a deep learning and
mobile application development project. It is my first step in establishing a career in

this field. A million thanks to you.

I want to thank all my friends for their patience, unconditional support, and for
standing by my side during hard times. Finally, I must say thanks to my parents and

family for their love, support, and continuous encouragement throughout the course.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

With the rise in the number of car owners in fast-growing metropolitan areas, the need
for effective parking solutions is becoming more demanding. This project proposes a
Parking Finder Mobile Application that will provide real-time information about
parking space availability and the parking finding status of vehicles in the parking lot.
In this system, computer vision and deep learning models such as YOLOv8 will be
utilized for parking spaces and vehicle detection while the DeepSORT algorithm is
implemented to track vehicle movement in real-time. The proposed solution tackles the
limitations that existing parking systems have including the high cost of
implementation and lack of real-time vehicle monitoring. Combining parking space
detection with vehicle tracking, the program will shorten the parking search times and
improve user experience using a colour-coded status indicator and a simple interface.
It is anticipated that such an approach would optimize parking space utilization in cities

and promote urban mobility.

Area of Study (Minimum 1 and Maximum 2): Mobile Application Development,

Computer Vision

Keywords (Minimum 5 and Maximum 10): Mobile Application, YOLOVS,
DeepSORT, Vehicle Parking, Navigation

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

COPYRIGHT STATEMENT ..ttt sttt e s e es i
ACKNOWLEDGEMENTSeeiiieitieeie ettt ettt sttt ettt st s e e beesaeesabeesaee e ifi
ABSTRACT ...ttt ettt ettt et sttt e s at e bt esat e e beesae e e bt e sabeeabeesaee e bt e eateebeesateeane iv
TABLE OF CONTENTS. ...ttt ettt ettt ettt ettt ettt sbe e s abe e sae e st e e saeesabeesseesaneesaeeens v
LIST OF FIGURESciitiitieetteeite ettt sttt ettt st st sbt e st e e be e s aneesaee e viii
LIST OF TABLES ...ttt sttt s esne e s b e s neesreesaneens X
LIST OF ABBREVIATIONS ...ttt ettt ettt ettt esane e xi
CHAPTER Lottt ettt ettt e s e et e s bt e et esae e et e e saneenneesnneenneas 1
1.1 Problem Statement and Motivationcccceeeviiiiiiiiiiieceee e 1
1.2 ProjeCt ODjJECHIVES ..oiieeieeeieiiiee ettt ettt ettt e e et e e s ate e e s s saae e e e s sabaeeesenneeeeenns 2
1.3 Project SCOpe and Dir€CtioN......cccuuiiiiiiiieee ettt e e e e s e e e srae e e e e 3
1.4 CONEFIDULIONS .o e st 4
1.5 RePOrt Organizationu i nan 5
CHAPTER 2.ttt ettt ettt et s et e et esae e e bt e sateeabeesaneenneesneeeaneas 6
2.1 Review of the Detection TechNOIOGIESuvvveeiiiiccciiiiiee e, 6
2.1.1 Previous works on Faster R-CNN and RetinaNet..........cccocceeriiiiiieiniieennne. 6
2.1.2 Previous works on YOLO (You Only Look ONCE)uvveeeeeeeiieiicinrieeeeeeeeeenns 7
2.1.3 Summary of the Detection TechNOIOGIESccoecvurrvveeiieiieiceeeee e, 11

2.2 Review of the Tracking TEChNOIOZIESuvvveeiieiiiiiirieeeee e, 12
2.2.1 Previous Works on DEEPSORTcoieicciirrieeeeeeeeccctrreeeeeeeeeesettnrrereeeeeseennnnns 12
2.2.2 Previous Works on Kernelized Correlation Filter (KCF)cccovvvvevieeiiriinnns 13
2.2.3 Previous Works on FairMOT-MCVTcooiiiiiiiiiniieenieeenieesiee e 14
2.2.4 Previous Works on Bounding-Box-Based Tracking Algorithm.................... 15
2.2.5 Summary of the Tracking TechnolOogies.....ccccceeeecmiiiiieiieiceceeeee e, 17

2.3 Review of the Existing Systems/Applicationscccveeeveeevieeeceeecceee e 17
2.3.1 Parking Finder Application for Intelligent Parking Systemccccccceeveunnnns 17
2.3.2 Parking Finder Application for Intelligent Parking Systemccccccceeveunnnns 18
CHAPTER 3.ttt sttt e e st e be e s aneesne e e neesnnesaneesnneens 20
3.1 SyStemM ArChItECLUIE...ciiii it e e e e e e 20
3.2 USE CaSE DIaglram ... ieieieieieieiece i s s s s e s e s e s s s e s s s e s s 21
3.3 USE CaSe DESCIIPLION ...uieieieieieieieieie i re s e se s s s e s e s s s e s e s s e 22

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.1 SeleCt Parking LOt...uuueiiiiiieiciiieeeeiee ettt ettt e e e e e eeessibrrereeesessennnnes 22

3.3.2 View Parking Lot OVEIVIEWcceiiiiieiciiieeee et e e e sveree e e e e e e e 23
3.3.3 Auto Navigate to Available SPace.......ccocveviiiiiiiiie e 23
3.3.4 Map Parking SPace.......cccieiiuiiiiiiiiiee it e st ee e e srre e e saae e e s aaae e e e 24
3.4 ACHIVITY Diagram ... e 25
CHAPTER ...ttt ettt ettt ae e st e e s bt e e ab e e bt e sabeesateebeesateenbeesaneeas 26
4.1 System BlOCK Di@grami.......ueeeei i i et e e e e e e e s e e e snrare e e e e e e 26
4.2 System Components SPecifications.........occcveeeeeiiiee e 26
4.2.1 Vehicle Detection and Tracking Module...........cccceeeiiieicciiieeeee e, 27
4.2.2 Firebase Realtime Databaseccccoceeiiiiiiiiiiiiiiecieee e 27
4.2.3 Mobile APPliCatioNccuueiiieieie e 28
4.3 COMPONENTS DESIZN c.eeviiiiiiiiiiiiiiiiiiietieettertrererererererererererererererererererrrrerre 28
4.3.1 Vehicle Detection and Tracking DeSIgNccccveeeeriieeeiniiieee e 28
4.3.2 Database DESIZNueeiiiiieeeieiiie ettt e saeee s 30
4.3.3 Mobile Application DESIgNccov it e 30
4.4 System Components Interaction Operationscueeevevererererererererreeeereree. 31
CHAPTER 5.ttt st ettt e b e st e e bt e st e bt e st e e bt e e abeesneeenneesnneens 34
ST A o - T T T I <1 0 o 34
5.1.1 Processing UNit (PC)uueieeiiiiee e eecieee et ee et e e s ssve e e e nae e e s eaaaee e e 34
5.1.2 Android Mobile DEVICEcoceeriiriiieiiieeere e 35
5.2 SOTEWAIE SETUPttt et er e e e e e e e eeeaaraereeeeeesesanrreeeees 36
5.2.1 YOLOV8 for Vehicle Detectionccccueeiiiieiiieiiiieeniiecsiecsieeesee e 36
5.2.2 DeepSORT for Vehicle Trackingccccovvieeeeeeee e e e e 36
5.2.3 Python Environment and Librariesccccceeei e 36
5.2.4 Firebase Realtime Databaseccccooiiiiiiiiiiiiiiieee e 37
5.2.5 Flutter Mobile APPliCationueeeiiei i e e 37
5.2.6 DEVElIOPMENT TOOIS ..ciiiiiiieiiiiieee et e et e e e e e eseirrreeeeeeeeeenannes 37
5.3 Setting and Configurationccueeeeiiiiieiiiiieeeee e e 38
5.3.1 Backend Configuration........ccceeeeieeiieiiiiirieeiee e e e eesirrreeeeeeeeeennnes 38
5.3.2 Database Configurationcccceeee i 39
5.3.3 Flutter App Configurationccceee et 41
Rt YA (=T 4 T O] o =T = [0 o 42
5.4.1 Detection and tracking.......cccueeeeiiei e 42
5.4.2 Parking space plotting and occupancy determinationcccccveveeeeeenennns 43

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vi

5.4.3 Firebase update and data packagingccccceeeevieiicrreeeeiieeieiiieeeeee e e 45

5.4.4 Mobile app visualization and navigationcccccevveeeiiii e, 46

5.5 Implementation Issues and ChalleNgescccvvviviiieeeiriiiie e 47
5.6 Concluding REMAIKS......uviiiiiiiieiciieee ettt e e e saaeee s 48
CHAPTER Bttt ettt ettt ettt ae e st e e bt e eabe e bt e sabeesaeeeabeesaseenbeesaneeas 49
6.1 System Testing and Performance MetriCS......ccccvvvviieeeiriiiiee e 49
6.1.1 Detection ACCUracy (MAP) ... e 49
6.1.2 Tracking Stability (ID SWItChes)ccieiiiiieiiiiie e 50
6.1.3 Database Update Time ... e e e e 50
6.1.4 Mobile Application Pathfindingcccceeeeiiiiiiiici e, 50

6.2 Testing Setup and RESUIE.........eiiiiiiiiee e 51
6.2.1 TeSt ENVIFONMENT....coiiiiiiiiiiiee e e e e e 51
6.2.2 TESE PrOCEAUIE ..ottt ettt ettt e sane e e sanee e 51
5.2.3 TESE RESUILS ..eeiuiiieiiiie ettt ettt st e s sanee e 52

6.3 Projects ChallE@NGESccuee i e e e s 54
6.4 Objectives EValuation.......ccccuiiiiiiee e 55
R oY el (UL [T oY= 2=T 0 g - [o T 56
CHAPTER 7.ttt sttt st ettt e b e st e bt e st e bt e st e e sne e e b e e sneeenneesnneens 57
7.0 CONCIUSION .ttt ettt e st s e e s b e s e b e s eanee e sans 57
7.2 ReCOMMENATION. ...ciiiiiiieieerte e 58
REFERENCES ... oottt esmeeenees 59
Appendix A: reqUIreMENT.EXE ...ueeeeee e e e A-1
FAN o 01T oo D = N 2o 1] A= SRR B-1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vii

Figure Number

Figure 2.1.1
Figure 2.1.2
Figure 2.1.3
Figure 2.1.4
Figure 2.1.5
Figure 2.1.6
Figure 2.2.1
Figure 2.2.2
Figure 2.2.3
Figure 2.2.4
Figure 2.3.1
Figure 2.3.2
Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8

LIST OF FIGURES

Title

Faster R-CNN network structure

Standard YOLOV3 network structure

Standard YOLOVS5 network structure

Traditional Mosaic Algorithm

Flip-Mosaic Algorithms

YOLOVS network structure

Flowchart for Visual Object Detection and Tracking
Kapania et al. Proposed Architecture

KCF Model Tracking Steps (from right to left)
The Structure of FairMOT-MCVT

Field device data from the firebase

The flow of the CarPark Mobile Application.
High-level system architecture diagram

Use case diagram of the parking finder system
Activity Diagram for Parking Finder Mobile
Application

High-Level System Block Diagram

Component Design for Mobile Application.
Firebase data format for each parking lot
Firebase data format for summary node
Detection and tracking output

Parking space plotting

Parking space coordinate file

Parking space occupancy determination

Firebase Realtime Database entries produced by the
backend

Mobile app visualizing space availability, vehicle

positions and calculated navigation route

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

O O o0 9

26
31
40
40
43
44
44
45
46

47

viii

Figure 6.1 Model training result using online dataset

Figure 6.2 Car detection results mean Average Precision

Figure 6.3 Stable ID assigned between few frames

Figure 6.4 Shortest Path Result with Random Simulated Data Set

Figure 6.5 Shortest Path Result with other Random Simulated
Data Set

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49
52
52

54

Table Number

Table 2.1.1
Table 2.1.2
Table 2.2.1
Table 3.3.1
Table 3.3.2
Table 3.3.3

Table 3.3.4
Table 5.1.1
Table 5.1.2

LIST OF TABLES

Title

Class-wise Precision for Object Detection
Performance comparison for YOLOvS and YOLOvVS
Result of Different Tracking Algorithm Experiments
Use Case Description for Select Parking Lot

Use Case Description for View Parking Lot Overview
Use Case Description for Auto Navigate to Available
Space

Use Case Description for Map Parking Space
Specifications of desktop computer

Specifications of android mobile device

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

11
15
22
23
23

24
34
35

LIST OF ABBREVIATIONS

R-CNN Region-based Convolutional Neural Network
YOLO You Only Look Once

ioS Iphone Operating System

RPN Region Proposal Network

AP Average Precision

mAP Mean Average Precision

UAV Unmanned Aerial Vehicle

CloU Complete Intersection over Union
DFL Distribution Focal Loss

SORT Simple Online and Realtime Tracking
KCF Kernelized Correlation Filter

FFT Fast Fourier Transform

RMSE Root-Mean-Square Deviation

FairMOT-MCVT Fairness of Detection and Re-Identification in Multiple Object
Tracking — Multi-Camera Vehicle Tracking

MSDA Multi-scale Dilated Attention

MOTA Multi-Object Tracking Accuracy

FPS Frame Per Second

CUDA Compute Unified Device Architecture
GPU Graphics Processing Unit

JSON JavaScript Object Notation

ccrv Closed-Circuit Television

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xi

SDK Software Development Kit
UTAR Universiti Tunku Abdul Rahman

10T Internet of Things

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xii

CHAPTER 1

CHAPTER 1

Introduction

As we stepped into the 21st century, the cities grew and car ownership became
widespread which makes the demand for parking spaces increase significantly. In an
urban setting, looking for a vacant parking space is a tough challenge that every driver
encounters. Especially in denser populated areas such as towns and campuses, the
shortage of parking spaces causes an increase in frustration and time wasted for every
driver in searching for one. This scenario worsens at peak hours or in the case of some

special event where the demand for parking spaces gets maximized.

1.1 Problem Statement and Motivation

This problem is crucial as it can contribute to several impacts on life and infrastructure.
Traffic congestion is one of the issues as great part of congestion in city traffic due to
cars looking for parking and circling the area, this not only contributes to traffic
congestion but also affects environmental sustainability since the gas of cars circling
for parking adds to air pollution. Moreover, drivers not finding a vacant spot will get
frustrated and stressed leading to aggressive driving habits as well like double parking
or off-road parking, this in turn poses serious safety issues for other road users.

Without real-time parking information, drivers will have to cruise around the
parking spaces adding to traffic congestion and environmental pollution. There are a
few existing solutions that solve the parking issues in many places; however, the current
existing solutions are costly and time-consuming [1]. The existing solutions mostly use
in-ground or surface-mount sensors and surveillance footage. These solutions have high
installation and maintenance costs and surveillance footage requires segmenting the
video frame manually which is time-consuming.

Nowadays, most of the current existing parking finding applications only
display areas that have an open space, as well as give directions to get there. These
systems, however, do not consider the current information concerning other vehicles
that might be travelling in the same direction. When a group of vehicles arrive at one
location and it is already occupied, it may lead to frustration and loss of time due to the

lack of coordination. This is due to the absence of real-time vehicle condition

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

monitoring which would indicate whether a car nearby is actively searching for an
available space or is going to leave the parking lot.

The motivation of this research is to address the costs and inefficiencies of the
current parking detection systems. As urban growth and car ownership patterns
continue to expand, there is a rising demand for more effective and affordable solutions
that will provide drivers with real-time parking information. Reducing the time spent
searching for available parking space can contribute to decreasing traffic jams, lower
pollution levels, as well as improve general road safety. Additionally, the development
of a more efficient parking detection system may enhance the use of existing parking
facilities thus reducing additional parking space needs while maintaining valuable

urban land.

1.2 Project Objectives

The main objectives of developing this parking finder mobile application are focused
on enhancing parking management efficiency, improving user experience, and

providing real-time smart navigation. The objectives are as follows:

Real-Time Parking Space Vacancy Detection

By using computer vision and deep learning technologies, the system able to detect,
identify and show the availability of the parking spaces in a parking lot in real-time
accurately. This is to ensure that the user able to receive the real-time update for parking

Spaces vacancy.

Vehicle Detection and Tracking with Parking Status

This system will detect and track the vehicles in the parking lot and determine the
parking finder status of the vehicles such as the vehicle still actively searching or
leaving the parking lot based on the movement of the vehicle. With this system, it can
provide real-time insight into other vehicles' movement within the parking lot for the

user.

Smart Parking Navigation System

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

By integrating both detection and tracking system into the mobile application, the
application able to provide a smart navigation system for the user to the nearest vacant
parking space using the result data from the detection and tracking systems. This smart
navigation system calculates and navigates user to nearest vacant parking space based
on the real-time parking spaces vacancies and other vehicles” movement and status in

the parking lot.

1.3 Project Scope and Direction

This project's scope includes designing, creating, and implementing a smart parking
system that gives users effective, real-time information on parking space availability.
The system's goal is to improve overall parking efficiency and user experience by
integrating computer vision techniques, tracking algorithms, cloud-based data
management, and mobile application development.

The detection model is the project's first component. In order to detect vehicles
and parking spaces, this module process video input retrieve from the parking lot.
Custom datasets are used to train a deep learning-based detection framework that can
detect vehicles in a variety of scenarios, including partial occlusions, changing lighting,
and different vehicle variations. In order to give users precise information about
available spaces, the detection model is also made to interpret the occupancy status of
preset parking spaces.

The second part is the tracking system, which maintains constant vehicle
monitoring over several frames by integrate on the detection results. Each detected
vehicles are given a unique identification through the integration of tracking algorithms,
which allows the system to identify whether a vehicle is finding or exiting a parking
space. This continuous tracking approach enhances reliability compared to detection
alone, as it minimizes false updates caused by temporary occlusions or detection errors.
The data produced by the tracking system serves as the foundation for accurately
determining the real-time occupancy status of each parking space.

The third element is the smart navigation system of the mobile application. This
feature transforms the unprocessed tracking and detection data into useful
recommendations for users. With the real-time database updates, the application

determines navigation routes and displays the availability of parking spaces while

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

mapping vehicle locations within the parking lot. This enables users to be directed to
the closest parking spot efficiently. Users can easily follow parking instructions with
the application's user-friendly interface, which makes use of visual cues like colours
and routes.

Finally, the system integration ensure that each module works together. The
tracking and detection modules are backend-based and communicate with the mobile
application continuously as they are connected to a cloud-based database service. This
enhances convenience and time efficiency by offering real-time synchronization,

allowing users to search for available parking space easily.

1.4 Contributions

This project makes several significant advancements in the field of smart parking
management. First, creative and affordable alternatives are presented that reduce
reliance on expensive infrastructures. Unlike current systems that often rely on IoT
sensors, RFID tags, or physical hardware embedded in each parking lot, this research
uses computer vision and deep learning techniques. By utilizing software-based
detection algorithms and pre-existing camera infrastructure, the solution lowers
installation expenses and continuous maintenance requirements. This approach not only
reduces the system's cost but also increases its scalability, allowing it to be implemented
across larger parking lots without incurring significant costs.

Another noteworthy addition to this project is the use of real-time data to
improve user experience. The system provides incredibly accurate updates on parking
space availability by combining tracking and detecting technologies to prevent
temporary occlusions or detection errors. The mobile application, which allows users
to monitor available spaces, track vehicle positions, and receive routing to the nearest
parking space, is directly supported by this real-time feature. The solution reduces
traffic congestion caused by prolonged searching, speeds up the process of finding an
available space and saves users a significant amount of time through an easy-to-use

mobile interface.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.5 Report Organization

This report includes a few chapters to show the details of the project. In chapter 1, this
chapter mainly introduces the introduction of the problem, stating the project scope and
objectives, and contribution of this project. Next, technologies, existing systems and
application with their strength and weaknesses are reviewed in chapter 2. Moreover,
the methodologies and system flows are covered in chapter 3. In chapter 4, this chapter
focused on the system design of this application for this project while chapter 5
described how this system and application was implemented. Next, the system
evaluation and discussion are presented in chapter 6. Lastly, chapter 7 are the

conclusion and recommendation for future enhancements for this project.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

CHAPTER 2

Literature Reviews

This chapter gives a summary of previous research, relevant technologies, and
existing systems that serve as the project's framework. In addition to highlighting how
the suggested system expands upon or enhances existing efforts, it looks at what has
previously been created in the field and points out any gaps or limits in existing

solutions.

2.1 Review of the Detection Technologies

2.1.1 Previous works on Faster R-CNN and RetinaNet

Faster R-CNN introduced by Ren et al. in the year 2015, is an extremely precise two-
stage object detection model and is an enhancement of the R-CNN architecture (Figure
2.1.1) that generates high-quality region proposals rapidly by using RPN. During its
second stage, these proposals get further classified and refined, making significant
advances in terms of detection accuracy, especially for partially occluded or crowded

items.

Region Proposal Network

DR =
| ——
)
..H] L=
4101 :
Fast RONN

of o] 1 Bouading e
Object-like regions propesed [o)>Fe) I r—
in feature map ROUpsolog 3¢ frers

(

|
|
I
|
|
|
1
|
|
\, Sliding feature map
e
|
|
|
I
I
|
I
|
|

layer

Figure 2.1.1: Faster R-CNN network structure [2]

Alternately, RetinaNet that is introduced by Lin et al. in the year 2017 is a
single-stage object detection model that achieves a balance of speed and accuracy. This
model included a focus loss function which can solve the class imbalance problem that
reduces the performance of the single-stage model [1]. With this development,
RetinaNet can assist in faster inference times while attaining accuracy levels
comparable to Faster R-CNN. RetinaNet is more useful in real-time applications for
object detection. However, Faster R-CNN is more accurate when the scene contains

densely packed objects.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

To research the effectiveness of RetinaNet and Faster R-CNN in detecting
parking space availability, a study was carried out by Padmasiri et al. using surveillance
footage. This study found that RetinaNet outperformed Faster R-CNN in identifying
unoccupied parking spaces with higher recall and accuracy. Therefore, RetinaNet
would be more suitable for situations where the detection of unoccupied parking is
important. Nevertheless, it can be shown that the Faster R-CNN and RetinaNet with
ResNet-101 backbone have similar performance but are better than RetinaNet with
ResNet-50 backbone in detecting occupied parking spaces due to their better object
localization and more detailed region proposal suggestions [1].

Table 2.1.1: Class-wise Precision for Object Detection [1]

Model AP-occupied AP-unoccupied
RetinaNet (ResNet-50+FPN) 21.03 19.28
RetinaNet (ResNet-101+FPN) 25.48 15.78
Faster RCNN (ResNet-50-C4) 25.46 11.23

2.1.2 Previous works on YOLO (You Only Look Once)

Improved YOLOV3

YOLOv3 uses a feature pyramid network and thus has an advantage over its
predecessors as it can recognize at three different scales more competently.
Nevertheless, some aspects can still be improved in its performance. Figure 2.1.2 shows

the network structure of standard YOLOvV3.

2. Backbone 38'38 3. Neck

CBL'S 4. Prediction

oL | cony [

19%19*255

Yolov3 Structure
384384255

16°76°255

Figure 2.1.2: Standard YOLOV3 network structure [3]
One of the papers proposed a few modifications aimed at enhancing the

accuracy of the standard YOLOvV3 framework. The attention mechanism is one of the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

main improvements where it assists in focusing on relevant picture components
resulting in increased detection performance, especially in complex situations when
items may overlap with each other or if there are disarranged backgrounds. This
technique makes it possible for the model to ignore less relevant background
information and focus on the most important sections such as cars and parking spots.
This can reduce challenges in recognizing parking spaces which involves being unable
to distinguish between the occupied or unoccupied spaces. The result in this paper
shows that employing an attention mechanism in the improved YOLOV3 algorithm led
to marked improvements in detection accuracy and precision in comparison with the
original YOLOV3 [3].

Besides, another paper proposed an integration of YOLOv3 with MobileNetv2
for detecting parking space occupancy. This combination allows the model to process
real-time video streams, detect cars and detect parking space occupancy in varying
environmental conditions. The authors used a dataset that includes pictures with
different backgrounds to test the YOLOv3-MobileNet model and the results show that
it can accurately identify vehicle parking status. MobileNet was used to drastically
reduce the model size and increase its detection speed without affecting its accuracy.
Balancing between precision and efficiency is crucial for such systems’ successful

deployment into real-life scenarios [4].

Improved YOLOVS
YOLOVS uses PyTorch for more accurate and quicker deployment while being an
enhanced version of the previous YOLO model. Nevertheless, some aspects can still be

improved in its performance. Figure 2.1.3 shows the network structure of standard

YOLOVS.

Input Backbone

a8 sa8e3

e —— |
8- B
e - - o

. [o
o &

| - EB3rE-
L e

1919%255

Figure 2.1.3: Standard YOLOVS5 network structure [5]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Chang et al. propose several other innovations to improve the YOLOvS model,
but the Flip-Mosaic algorithm is a major improvement in this implementation. The
traditional Mosaic algorithm only randomly adds 3 images from the dataset for each
image and randomly finds the flattening point in a blank image and the 4 segments of
imagery were created by utilizing the intersection point, while the additional parts were
discarded (Figure 2.1.4). This Flip-Mosaic algorithm has improved the model’s ability
to detect smaller car sizes by using the traditional Mosaic algorithm, flipping the 4
images randomly and mosaicing during training (Figure 2.1.5). In addition to this, it
reduces occlusion effects and helps the model learn more robust features. The results
show that the Flip-Mosaic algorithm significantly increases mAP scores for small cars
and those that are partially occluded by other objects, making it better than standard
YOLOVS. The improved YOLOVS obtained greater precision and recall rates with the

contribution to a reduction in false positives from the algorithm [5].

(xv)

random{xy) —p Imaged

Figure 2.1.4: Traditional Mosaic Algorithm [5]

Figure 2.1.5: Flip-Mosaic Algorithms [5]

YOLOVS
In comparison to YOLOvS, YOLOVS is a stronger tool for object detection tasks,

particularly in complex scenarios like car identification from satellite images. One of

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

the significant improvements is the addition of a Feature Pyramid Network (FPN) and
Path Aggregation Network (PAN), which makes it possible for YOLOvS to detect
objects more successfully at various scales and resolutions. Figure 2.1.6 shows the

network structure of YOLOVS.

YOLOv8 @ Rangeki

Backbone Head voL0v8Hesd

j Details
b

Maoolzd | comad

Botteneck ¥
uuuuuuuuu

.............

......

Detect ~

Detect

cccccc

Figure 2.1.6: YOLOVS8 network structure [6]

In addition, YOLOVS8 comes with an advanced tagging tool that contains auto-
tagging, shortcut tagging, and hotkey customisable features that assist in speeding up
the labelling process. The model also uses advanced loss functions such as Complete
Intersection over Union (CloU) and Distribution Focal Loss (DFL) which improve the
accuracy of bounding boxes, especially for small-sized items. Furthermore, YOLOvV8
can be used for a variety of purposes since it supports different tasks like tracking,
posture estimation and segmentation. Users can also choose between YOLOvV8 nano
(YOLOvV8n) to YOLOvVS extra-large (YOLOvV8x) based on their performance and
processing power needs.

However, Table 2.1.2 represents the result from this research and shows that in
terms of recall and precision, YOLOVS always outperforms YOLOVS resulting in lower
numbers of false negatives or false positives. The F1-score comparison is where this is
most notably seen as YOLOVS surpasses YOLOvVS by approximately 2.1%, thus
making YOLOVS the better choice when it comes to situations that necessitate reducing

misclassification rates. Moreover, even though the new design of YOLOvVS provides

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

CHAPTER 2

more capabilities, it also has increased processing demands which may be problematic
for real-time applications or devices with lower processing capabilities. With greater
precision and a less complex structure, there are still scenarios where YOLOVS could
be a more appropriate option when resource constraints are an issue.

Table 2.1.2: Performance comparison for YOLOvS and YOLOVS [6]

Approach Total TP FP FN TN Accuracy Precision Recall F1-Score
YOLOvS 1139 1105 139 61 i5 0.928 0.947 0.969 0.958
YOLOvE 1154 1086 129 20 64 0.894 0.931 0.944 0.937
YOLOvS (not FP) 1139 1105 139 0 35 0.972 1 0.969 0.984
YOLOvE (not FP) 1154 1086 129 0 64 0.949 1 0.944 0.971

TP = true positive; FP = false positive; FN = false negative; TN = true negative; accuracy = TP + TN/TP + TN + FP + FN; precision
= TP/TP + FP; recall = TP/TP + FN; F1 score = 2* precision * recall/precision + recall.

2.1.3 Summary of the Detection Technologies

One of the limitations of the previous works of object detection is the detection
challenges in complex environments. Many different methods including RetinaNet,
improved versions of YOLOv3, and YOLOVS are weak in identifying small objects
especially when they are far away or partly covered. The next limitation is there are
computational and resource limitations. The models such as Faster R-CNN and the
improved versions of YOLO that include an attention mechanism and Flip-Mosaic
algorithm will require vast computing resources due to their complex structures and
additional features. Lastly, the exchange between accuracy and speed is also one of the
limitations of object detection in previous works. For example, speed compromises the
accuracy in speed-oriented models like any YOLO version especially when detecting
tiny and concealed objects. On the other hand, despite having more precision, models
such as Faster R-CNN have considerable disadvantages for real-time applications since
their inference times are too long.

The best model for precise and effective real-time parking detection in this
project 1s YOLOvS, which offers enhanced multi-scale detection, advanced loss

functions, and flexible task support.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

CHAPTER 2

2.2 Review of the Tracking Technologies

2.2.1 Previous Works on DeepSORT

DeepSORT is an enhanced version of the SORT algorithm that merges the Hungarian
method for data association with the Kalman Filter for motion prediction. Nevertheless,
it does not consider appearance information which might lead to identity swapping
during tracking. DeepSORT addresses this issue by using a deep learning-based
appearance descriptor that allows object identities to be preserved despite having
similar-looking objects and occlusions.

Integration of YOLOv3 with DeepSORT allows fast and accurate object
detection abilities with reliable tracking capabilities. YOLOvV3 is responsible for
identifying all objects in every frame of a video by providing bounding boxes as well
as class probabilities. Afterwards, these detections with bounding boxes are sent to
DeepSORT and use the Kalman filter to predict each object’s subsequent place then
use the Hungarian algorithm to associate detections with tracks that already existed [7].
In addition, the deep appearance characteristics enable DeepSORT to maintain item IDs
across frames.

In this paper, bathija et al. employed SORT for tracing and YOLOV3 (Figure
2.2.1) for detection and was applied to custom datasets, it showed high accuracy and
real-time performance with the combination. The experiment shows the advantages of
optimizing the system and suggests that more trackers, like DeepSORT, could be
integrated into the existing framework to enhance tracking efficiency [8]. On the other
hand, Kapania et al. combined DeepSORT and YOLOv3 (Figure 2.2.2) for tracking
multiple objects in drone-captured aerial images. Such a combination was required to
address issues of occlusions and motion blur, as well as small sizes that come with high
altitudes at which drones fly. The authors demonstrated how the tracker’s precision was
improved using YOLOvV3 and DeepSORT to facilitate real-time tracking of many small
objects within UAV contexts [7].

YOLOV3
Object
Detector

Image | SORT
Frames Tracker

Input
Video

Figure 2.2.1: Flowchart for Visual Object Detection and Tracking [8]
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

CHAPTER 2

Predictions Tracks

Figure 2.2.2: Kapania et al. Proposed Architecture [7]

There are a few advantages that come with using DeepSORT such as solving
the identity shifts issue. Identity shift is a common issue in multi-object tracking
especially under cluttered conditions or when objects look alike, by adding appearance
features. Another advantage is scalability, in different real-time applications including
UAV-based tracking, traffic monitoring and surveillance, DeepSORT can scale up and

work efficiently.

2.2.2 Previous Works on Kernelized Correlation Filter (KCF)

The tracking method proposed in this paper is a Kernelized Correlation Filter (KCF)
(Figure 2.2.3) [9]. This method was designed to have a fast and efficient manner of
tracking cars from UAV recordings. First, a set of vehicle images is used for tracker
training for the KCF method to reduce regularization risks through correlation function
optimization. Thus, it employs a kernel function that helps map input vehicle images
into a feature space, which makes it possible to deal with non-linear patterns in the
vehicle data. To achieve effective tracking, this technique can calculate correlations
using the Fourier domain based on the Fast Fourier Transform (FFT) along with
circulant matrices and kernelized techniques. Such guarantees that each new frame

recognizes the position of the respective automobile accurately and rapidly.

X similar trajectory] |
X stopped vehicle

X large
displacement
'
'
overlapped
tracking area

Figure 2.2.3: KCF Model Tracking Steps (from right to left) [9]
The advantages of the KCF are this algorithm for vehicle tracking extraction is
very precise with an RMSE of 0.175m and a Pearson correlation of 0.999 and it is an

ideal one for detailed traffic studies. By using UAVs, occlusions are minimized and
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

CHAPTER 2

wide coverage and clear picture are offered. Even when the vehicles are partially
occluded, the KCF algorithm ensures proper as well as effective tracking while the
wavelet transform effectively smoothens the trajectories providing seamless results.
However, the disadvantage of KCF is when visibility is low like at night or during bad
weather, this algorithm will encounter difficulties due to it relying on a static camera
angle, there is no way to adjust for dynamic UAV movements. In addition to being
ineffective, manual curve fitting along lanes may not perform well in complex or high-

volume traffic situations.

2.2.3 Previous Works on FairMOT-MCVT

The FairMOT-MCVT method (Figure 2.2.4) proposed in this paper [10] contains
different important developments to improve the efficiency and accuracy of vehicle
tracking across non-overlapping focus spaces. The FairMOT-MCVT technique's core
part is its Block-efficient module, which improves the feature extraction process
significantly. This module includes depth-separable convolutions with a multi-branch
structure to enhance the detection of small and far-off vehicles. The structure needs to
be there so that more detailed image characteristics can be captured by the network
which is important for tracking cars over long distances or in low-visibility areas.
Furthermore, minimising computational overheads, focusing on important areas within
the image as well as concentrating on key locations are some of the ways through which
the Multi-scale Dilated Attention (MSDA) module helps in improving the model’s
feature extraction ability. Thus, these aspects ensure that real-time vehicle tracking is

possible without speed loss due to computational complexity.

Figure 2.2.4: The Structure of FairMOT-MCVT [10]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
14

CHAPTER 2

One of the main contributions of FairMOT-MCVT is it considers position and
velocity continuity in the optimization process using a joint loss function. The loss
function helps to maintain a consistent trajectory of the vehicles even when they are
obscured from view or have similar appearances by incorporating trajectory smoothing
as well as velocity consistency. Additionally, the Re-ID branch enhances this as it
enables the algorithm to distinguish between vehicles with similar characteristics. This
minimizes the chances of identity switches, which is a common issue in multi-camera
tracking.

In this research, the authors used the UA-DETRAC dataset to evaluate this
FairMOT-MCVT method and the results in Table 2.2.1 show that it has an improvement
in tracking accuracy compared to other tracking algorithms. This algorithm has a
MOTA of 79.0, IDF1 score of 84.5, and can process the video at 29.03 FPS which can
indicate that it’s suitable to use for real-time applications.

Table 2.2.1: Result of Different Tracking Algorithm Experiments [10]

MOTA IDF1 MT ML IDS FPS

SORT 70.3 79.6 145 4 65 25.10
DeepSORT 74.5 82.4 153 3 55 26.88
FairMOT 777 84.2 160 4 47 28.35
CenterTrack 77.0 8d.6 155 4 50 27.55
RobMOT 76.0 83.0 150 5 53 27.00
MTracker 75.5 8.7 152 4 54 26,75
FairMOT-MCVT 79.0 84.5 159 4 45 29.03

2.2.4 Previous Works on Bounding-Box-Based Tracking Algorithm

The Bbox-based vehicle tracking algorithm [11] proposed by the authors in this study
is a robust tool for tracking and re-identifying cars across video sequences. Initially, the
algorithm extracts the bounding box data of the detected vehicles, which includes their
width (W), height (H) and centre coordinates (X, Y). To link vehicles within frames it
computes the Euclidean distance (Eq.1) between bounding boxes from two consecutive
frames. This way, Euclidean distance helps to identify good matches of vehicle pairs
thus ensuring that the tracker can follow every car’s movement in time. This process
involves creating a distance matrix that is sorted to determine which pairs of identified

vehicles in subsequent frames are closest to each other.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

CHAPTER 2

Bi o [[Xgmer, Yo, Wy, Hyl. ..o, [X5™™, YU W, H,|]
B : :Xijrr.-r;r_ }/[r'.'l.'r.r. H-‘J[:,.ffu: _____ Xl:w-r“ Y:r'lhlw- H"J.-n- ";fm]]

b

D; = III'IIZZ[B,- — B}.‘}:. ie |Oon| andje |0;m
VT (1)
Bbox-based vehicle tracking algorithm has a feature of tracking the appearance
and disappearance timing which is intended to deal with situations where vehicles
temporarily disappear due to obstructions, external elements or even shaken cameras.
If the target leaves for some time, the program predicts its next location using linear
equations (Eq.2) based on the previous trajectory of the car. Hence, the prediction step
makes the tracking algorithm more robust against temporary disturbances in vehicle
visibility as it allows for the system’s knowledge of probable places where the vehicle
can come into view again. According to this paper if a vehicle is out of sight for a long
time (beyond 100 frames), then it is considered lost by the algorithm and removed from
active surveillance.
n n
Z Xi > Vi oW Yo h

i—0 ; i=0 i=0
dx - ? d,\-‘ - 3 dw = dii = ’
n n

Xn+1 = Xy + dx: Y41 = Yn + d\'? Wyl = W,y +dw:'

hJH—] = hu + dh: Bpredfcr = [xn+]ayn+l s Wht1s h11+1:|

@)

This novel proposed Bbox-based vehicle tracking algorithm has several
advantages. It is computationally efficient since it only utilizes geometric information
rather than pixel, shape or colour data which are more sophisticated and slow methods
of tracking. In addition, it resists common issues faced in real-time videos such as
camera shaking and occlusion due to its predictive nature. However, the tracker does
have some limitations. In crowded or fast-moving environments where bounding boxes
overlap, accurate tracking may be difficult. Furthermore, when vehicles suddenly
change direction, the linear motion prediction may not apply anymore thus causing

tracking errors under challenging conditions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

CHAPTER 2

2.2.5 Summary of the Tracking Technologies

There are a few limitations of object tracking in the previous works. The first limitation
is it greatly dependent on the detection system. If the detection system is unable to
detect and locate the vehicles, there will be no bounding box for the tracking system to
track the object. Therefore, the tracking system required a very accurate detection
system to track the vehicles. The next limitation is low performance in poor visibility.
For example, during low brightness situations, fog, and rain the tracking system will
face difficulties in tracking vehicles due to tracking depending on clear visual. Lastly,
difficulty in tracking in a packed area is also one of the limitations. This is because
when two or more vehicles are near each other, it will cause overlapping and tracking
will more likely have inconsistent tracking.

In the end, DeepSORT is the recommended option for this project because it
reduces identity shifts and ensures dependable real-time tracking by fusing motion

prediction with deep appearance descriptors.

2.3 Review of the Existing Systems/Applications

2.3.1 Parking Finder Application for Intelligent Parking System

The parking finder application proposed by the author [12] uses a system that is
integrated with hardware and software. The author chose ultrasonic sensors with
Arduino as a detection method for reliability and real-time accuracy and Raspberry Pi
as a server. The flow of the proposed method is the sensors first detect the parking
occupancy and the information is transmitted wirelessly through the Raspberry Pi and
saved information in cloud storage. The system uses Firebase for cloud storage and the
information is saved in the format shown in Figure 2.3.1.
= -KedmyrHsgqgYsWdMGgUc
value: "Vv"
- -KedmzKah8FMerlNpB3I
value: "0"
= -Kedmzx-5mu3P-3opFjT
value: “v*
<. -Kedn-gDMkUp1Y3_6lf8

value: "0”

Figure 2.3.1: Field device data from the firebase [12]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

CHAPTER 2

In the Firebase the vacancy status of the parking spaces is saved as “V” for
vacant and “O” for occupied which later be used in the mobile application for parking
status. The author developed the parking finder application in Android Studio using
Java programming language. The parking finder application consists of features such
as an authentication page and interface for parking space status display. The parking
space's status is colour-coded where red indicators are for occupied and green indicators
for vacant for user friendly interface.

In this parking finder application, the limitation was that the application only
displayed parking lot information to the user. In the parking finder application
developed by the author [12], as it only shows the availability of the parking spaces in
the parking lot to the user, the user might not be able to fully utilize the vacant parking
space information as some other vehicle might get to the vacant space before the user.

This will waste user time and make users frustrated.

2.3.2 Parking Finder Application for Intelligent Parking System

Yindeesuk et al. [13] introduced the CarPark mobile application, a smart parking
solution designed for Nakhon Ratchasima Rajabhat University. The system integrates
IoT-based sensors installed at individual parking spaces to detect whether a space is
occupied or available. Users able to check the availability of spaces in real time before
they arrive at the parking lot because of the sensor data that is sent to a central server
and instantly reflected in the CarPark mobile application. Another advantage of the
system 1is that, in the event that a vehicle's owner is blocked, users can use the
application to search the license plate and contact them directly. This function improves
coordination and lessens driver disagreements. The mobile application improves
efficiency and user experience by reducing the needless traffic flow inside the lot and
the amount of time users spend searching for parking space. In terms of technology,
this project shows how to effectively integrate IOT devices in conjunction with a mobile

interface to provide precise and current parking information.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

CHAPTER 2

. Q
o> 6 |

SELECT CAan

CHECK CAR PARK
PARKING AR
SPACES

'- CALCULATE DISTANCE &-) @

LEAVING
SEARCH USER CAR Locour

SEARCH CAR OWNER CALL CAR OWNER

Figure 2.3.2: The flow of the CarPark Mobile Application.

Despite these advantages, this review also identifies a number of limitations.
Due to the system's reliance on physical sensors, it is less feasible for large-scale
installations like shopping centres, airports, or citywide parking systems because it is
more expensive to build and requires constant maintenance. An additional drawback is
that the app just offers parking availability status updates where it lacks of navigation

and route assistance that can assist users in finding the closest available space quickly.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

CHAPTER 3

CHAPTER 3

System Methodology/Approach

This chapter outlines the system's general architecture and design. The system
methodologies are presented using a variety of models and diagrams that illustrate the
structure, user interactions, and operational workflows of the system before the actual

implementation.

3.1 System Architecture

Data Source

Processing Layer
(Python Backend Server)

YOLOv8 Model
(Vehicle Detection)

Cloud Layer
(Firebase Realtime Database)

I summary node \

parking lot name
-total
-available

Client Layer
(Flutter Mobile App)

-listens to Firebase
Realtime
-display parking lot map

]

3 1 1 : . -occupied : : with status
3 Parking Lot Viceo ;’ DeepSORT ‘ w -auto gen;;?;e shortest
! 3 : (Vehicle Tracking) : ; S —— H ;
i | ! / parking lot node \ |
-parking data
-vehicle data

J H End User

Polygon Point Checking
(Parking Gccupancy)

(Parking Lot User)

Figure 3.1: High-level system architecture diagram

In figure 3.1 shows that the smart navigation system and parking finder mobile
application are modular, with each component being built, tested, and improved upon
before being fully integrated. Model training, system integration, mobile application
development, dataset preparation, and performance evaluation are some of the phases
that make up the project. Datasets with a variety of parking lot and vehicle photos taken
in a range of lighting, weather, and layout scenarios were first gathered from internet
sources. These datasets were used to improve detection accuracy by fine-tuning and
training a pre-trained YOLOvV8 model with data augmentation approaches. Following
model validation, the vehicle detection module was merged with the DeepSORT
tracking algorithm. Parking spaces are manually mapped in this configuration, and the
bottom-centre point of a detected vehicle's bounding box is used to calculate the
occupancy of each space. This guarantees accurate and real-time updates on parking

availability. A Firebase Realtime Database, which is organized into two primary nodes

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

CHAPTER 3

where one of every parking lot and one for summary of all parking lot receives the
processed results of detection and tracking.

Concurrently, the Flutter framework and the Dart programming language were
used to develop a cross-platform mobile application. The app's user-friendly interface
shows the parking layout, the locations of the vehicles, and the current parking space
status (red for occupied, green for available). Using a graph-based Dijkstra's algorithm,
its smart navigation system calculates and displays the shortest route from the user's
location to the closest available space while taking into consideration vehicles ahead of

them.

3.2 Use Case Diagram

Parking Finder System

Select Parking Lot

Map Parking Spaces

View Parking Lot

User Overview

Admin

Auto Navigate to
Available Space

Figure 3.2: Use case diagram of the parking finder system

Figure 3.2 shows the use case diagram that illustrates the interactions between two main
actors, the user and the admin, with the system. The user represents the driver who
makes use of the mobile application to find and navigate to an available parking space.

Through the system, the user can select a parking lot of their choice, view the parking

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

CHAPTER 3

lot overview, and automatically navigate to an available space. When selecting a
parking lot, the user chooses from a list of available lots, and upon selection, the system
loads the chosen lot for further use. Once selected, the user can view the parking lot
overview, which displays the layout together with the real-time status of spaces,
showing which are occupied and which are available. The system also supports
automatic navigation, where the user is guided to the nearest available space through a

calculated path that take consideration of other vehicles status along the path.

On the other hand, the admin is responsible for mapping parking spaces within
the backend system and configuring the layout inside the code. This task includes
defining the structure of roads and parking spaces so that the system can accurately
represent the real parking environment. Once the mapping is completed, the layout is
linked with the application logic, ensuring that users can access it for navigation and
real-time monitoring. By handling this responsibility, the admin ensures that both the
backend data and the application code remain consistent, which is essential for accurate

pathfinding and reliable parking space updates.

3.3 Use Case Description

3.3.1 Select Parking Lot

Table 3.3.1: Use Case Description for Select Parking Lot

Use Case ID UCo001
Use Case Select Parking Lot
Purpose To allow user select the parking lot user wanted to view

the overview and use navigation feature.

Actor User
Trigger Launch the parking finder app and in homepage.
Precondition User is in the homepage of the Parking Finder App.
Scenario Step | Action
Main Flow 1 The user launches the Parking Finder Mobile
Application.
2 App load and connect to Firebase.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
22

CHAPTER 3

3 System displays list of parking lot available in
homepage.
4 User allowed to select any parking lot.

3.3.2 View Parking Lot Overview

Table 3.3.2: Use Case Description for View Parking Lot Overview

Use Case ID UCo002

Use Case View Parking Lot Overview

Purpose To allow user to view the overview of the parking lot
selected such as parking spaces status and vehicle
location.

Actor User

Trigger User selects a parking lot layout from the homepage.

Precondition The Firebase Realtime Database must be running and
synchronized with backend system.

Scenario Step | Action

Main Flow 1 User select any parking lot from homepage.

2 System displays parking lot layout.

3 System retrieves both parking and vehicle data

from Firebase.

4 System updates the map with the data retrieved
periodically.
5 User view the parking lot layout with parking

spaces statuses and vehicle movement within the

parking lot.

3.3.3 Auto Navigate to Available Space

Table 3.3.3: Use Case Description for Auto Navigate to Available Space

Use Case ID

UcCo03

Use Case

Auto Navigate to Available Space

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

CHAPTER 3

Purpose To guide user to the nearest available parking space with
shortest path take consideration of other vehicle’s status.
Actor User
Trigger User choose any parking lot from the homepage.
Precondition The parking lot layout is available in the system.
Scenario Step | Action
Main Flow 1 User chooses a parking lot from the homepage.
2 App retrieves both parking space data and vehicle
data from Firebase.
3 App display parking lot layout with parking space
status and vehicle movement status.
4 System calculates the shortest path using
algorithm.
5 System highlighted shortest path with green
colour.
3.3.4 Map Parking Space
Table 3.3.4: Use Case Description for Map Parking Space
Use Case ID ucCoo4
Use Case Map Parking Space
Purpose To allow admin to define and update the structure of the
parking lot
Actor Admin
Trigger The admin configures or modifies a parking lot layout.
Precondition Have access to backend system and codebase.
Scenario Step | Action
Main Flow 1 The admin defines nodes representing roads and
parking spaces in the system code.
2 Admin add edges to connect the nodes, forming a
directed graph of the parking lot.
3 The updated layout is made available for user
navigation and monitoring.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

CHAPTER 3

3.4 Activity Diagram

User Flutter Mobile Application Firebase Backend System

" Initialize app & 5| Retrieve Summary .
Start the mobile a| »
[PP request data - Data Waiting for
- / Video Input
—_— d
Display list of
Is there any 0

View the List

A

< parking lot with

overview data video input?

Select a
Parking Lot

5| Request Parking y| Retrieve Specific Detect Vehicle with
7 Lot Data ~1 Parking Lot Data fine-tuned YOLOV8

Calculate Shortest

Path Track vehicle with
DeepSORT

o

Check Parking Space

View Parking Lot Map with

Navigation to Nearest Display Parking Lot Map

with Shortest Path

Available Parking Space Availability
Update Specific Parking Lot | Combine Parking Data
Data & Summary Data D & Vehicle Data

|

Figure 3.3: Activity Diagram for Parking Finder Mobile Application.
Figure 3.3 shows the interaction between the user, Flutter mobile application, Firebase,
and backend system. When the user launches the mobile application, it initializes and
request summary data from Firebase. The application then displays a list of parking lots
with overview information after fetching the required summary data from Firebase.
When a user chose a particular parking lot from the list, the app request Firebase again
for parking lot information user selected. In response, Firebase retrieves and returns to
the app the particular parking lot data. In the meantime, the backend system
continuously analyses video input, utilizing DeepSORT to monitor and a fine-tuned
YOLOV8 model to detect vehicles. It also checks the parking space availability within
the parking lot and combines parking and vehicle data before updating Firebase with
the latest summary and specific parking lot information. After receiving this
information, the application calculates the shortest route to the closest parking space
and shows the user a map of the parking lot with directions, which allow them view

parking lot information visually and follow the path for easier parking finding.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

CHAPTER 4

CHAPTER 4

System Design

4.1 System Block Diagram

Backend

Mobile Application
Vehicle Detection

Parking Lot Layout
. . Firebase Realtime
Parking Lot Video Vehicle Tracking ’ Database

Pathfinding

(i

Parking Occupancy ’

pN.

Figure 4.1: High-Level System Block Diagram
The system block diagram shown in figure 4.1 is the overall work flow of the Parking
Finder Mobile Application. The video feed from the parking lot cameras is first
processed using the YOLOvS8 detection model to detect vehicles. The detections are
then passed into the DeepSORT tracker, where IDs are assigned and vehicle identities
are maintained between frames. Bottom-centre coordinates of bounding boxes are
utilized within the occupancy checking module, where space availability is determined
using predefined parking space coordinates as to whether a space is available or
occupied. This processed data is formatted into space status, vehicle information, and
summary statistics, which are uploaded continuously to Firebase Realtime Database.
The Flutter mobile application then fetches this information in real time, providing
users with a graphical parking map, vehicle location, and smart navigation instructions

to the nearest available space.

4.2 System Components Specifications

The Parking Finder Mobile Application is built from several interdependent
components that together enable real-time vehicle detection, status tracking, and mobile
navigation assistance. Each component has its own specifications, covering the

algorithms, technologies, and configurations that ensure its functionality.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.2.1 Vehicle Detection and Tracking Module

The vehicle detection and tracking module is responsible for processing live video
streams to detect and track vehicles within the parking lot. This module is built around
the YOLOVS object detection model, which has been fine-tuned using both public and
custom datasets to improve detection accuracy in real parking environments. Each
video frame is standardized through resizing to a fixed resolution and conversion into
RGB colour format before being passed into the model for inference. Detection
parameters, such as the confidence threshold and Intersection-over-Union (IoU)
threshold, are configured to minimize false positives and handle overlapping bounding
boxes effectively. The detection outputs, including bounding box coordinates and
confidence scores, are then processed by the DeepSORT tracker, which assigns unique
IDs to each vehicle and maintains consistent identities across frames. By combining
motion prediction with appearance-based features, the tracker is able to follow vehicles
reliably, even under temporary occlusions. To determine occupancy, the bottom-centre
point of each bounding box is tested against pre-defined parking space polygons that
are manually plotted during system setup. Alongside generating structured metadata
such as vehicle ID, coordinates, status, and timestamp, the module also provides visual
overlays of bounding boxes, IDs, and status labels during testing to enable verification

of detection accuracy.

4.2.2 Firebase Realtime Database

The Firebase Realtime Database serves as the central communication component that
connects backend detection processes with the mobile application interface. It operates
as a NoSQL, JSON-based database designed to maintain live synchronization between
multiple system components. Within each parking lot node, the database maintains two
primary structures which are a parking data node that stores parking space information
such as unique identifiers, current occupancy status, and timestamps of the latest
updates, and a vehicle data node that stores details of all tracked vehicles, including
assigned IDs, current coordinates, statuses, and update timestamps. In addition, a
summary node provides an overview of parking lot conditions by storing aggregated
data such as the number of available and occupied spaces. Through Firebase’s real-time

synchronization, any updates made by the detection and tracking module are instantly

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

CHAPTER 4

reflected on mobile application, ensuring that vehicle movements and parking space

changes are available within milliseconds.

4.2.3 Mobile Application

The mobile application serves as the user-interface component of the system, acting as
the main interface through which users interact with the parking finder and navigation
features. It is developed using the Flutter framework, allowing deployment on both
Android and iOS platforms while ensuring a consistent and responsive user experience.
The main specification of the mobile application is its integration with the Firebase
Realtime Database, which allows it to receive instant updates on parking space
availability and vehicle movements. As soon as the detection and tracking module
updates the database, the changes are reflected in the app without delay, ensuring users
always have access to the latest parking information.

From a functional perspective, the mobile application provides an overview of
parking lots and their current status, including the number of available and occupied
spaces. When a user selects a particular parking lot, the application displays a detailed
layout of the lot, highlighting each parking spaces in real time with clear visual
indicators where green for available and red for occupied. Vehicle icons are also shown
to reflect active vehicle movements within the parking area.

Next, another main specification of the application is its pathfinding features.
The parking layout is represented as a graph of nodes and connecting roads, and
Dijkstra’s shortest path algorithm is applied to determine the shortest path from the
user’s location to the nearest available space according to other vehicles status. This
path is dynamically updated whenever parking space statuses change, ensuring that the

user is always directed to the nearest and most possible parking space.

4.3 Components Design

4.3.1 Vehicle Detection and Tracking Design

The detection and tracking module are designed around a pipeline structure that begins
with video input and ends with structured output ready for database updates. The video

stream is continuously read frame by frame. Each frame undergoes pre-processing steps,

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

CHAPTER 4

including resizing to a consistent resolution and conversion to RGB format. These steps
standardize input and reduce computational overhead during inference.

The YOLOVS object detection model is the core of this pipeline. The model was
trained and fine-tuned to detect vehicles in parking lot, and its design supports high-
speed inference while maintaining accuracy. During processing, YOLOv8 produces
bounding boxes, class labels, and confidence scores for detected objects. To ensure
reliability, the design includes thresholds for confidence and IoU, filtering out low-
quality detections and resolving overlapping boxes.

The DeepSORT tracking module receives the results from the YOLOvSE model's
vehicle detections. The DeepSORT combines appearance-based feature embeddings
with motion prediction via a Kalman filter, allowing the system to consistently assign
and maintain unique IDs for every vehicle, even when there is temporary occlusion or
overlapping movement. Besides, each bounding box's bottom-centre point is computed
and compared to predefined parking space polygons in order to connect detections with
the actual parking lot layout. These polygons are defined during the system setup where
they are representing the boundaries of individual parking spaces. By checking whether
a vehicle’s bottom-centre point lies within these polygons, the system can determine if
the vehicle is entering, currently parked, or exiting a space.

The design of the system also incorporates a state-labelling scheme that assigns
status indicators to vehicles according to their position and movements. Vehicles that
are first entered into parking lot are assigned with the status "finding”. If the bottom-
centre point is stably for a period of time within a parking space polygon, then “parked”
status is assigned. If a parked vehicle exits from a parking space polygon, then its status
is changed to "exiting". These assignments of status are not only important for
maintaining database consistency, they are also a useful context for the mobile app,
such that mobile app system able to calculate the shortest path based on these statuses
for users.

For debugging and verification, the system overlaying IDs, bounding boxes, and
status indicators onto the live feed. The visual response allows easier verification on
vehicles are being properly tracked and correctly identified, thus guaranteeing that the

whole tracking and detection pipeline is working correctly.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

CHAPTER 4

4.3.2 Database Design

Firebase Realtime Database is constructed to be the backend and frontend's data
synchronization backbone. It is stored in structured JSON, and two top-level nodes are
maintained which include each parking lot node and summary node. In each parking
lot node, they include parking data and vehicle data, parking data is the node that
contains details of all parking spaces. Each space is act as a child node with id, status,
and timestamp attributes. The status attribute is binary, either the space is "occupied"
or "available” and the timestamp allows for consistency in case of updating conflict.

The vehicle data node holds real-time information for all vehicle being tracked
within the parking lot. The record holds the ID that is unique, vehicle coordinates at the
moment, and its status (finding, parked, exiting). The vehicle data node enables the
system to not only maintain vehicle locations but to also deliver context data that could
be utilized in the navigation logic of the mobile application.

To enable smooth operation, real-time event listeners are utilized in database
design. These notify the mobile application in real time whenever modifications are
being performed on the data. Push-based communication therefore eliminates
continuous polling at every point, ensuring that users are always served the current
parking updates. Security rules are also defined to allow read and write access during
development times to enable the backend to change data while it is being read by the

application without interference.

4.3.3 Mobile Application Design

The mobile application is designed as the user interaction layer, where it is modular and
layered architecture type for maintainability and clarity. The main.dart file served as an
entry point of the application and it sets up Firebase according to the configuration that
is defined in firebase options.dart. This ensures that the application is synchronized
with the database prior to displaying any of the application's Ul screens. Initially, it first
shows a splash screen to provide users with some feedback during initialization. Once
the app is opened, it takes the user to the home page screen that list down every parking
lot availability overview. The home page draws aggregated data from Firebase and

shows the number of parking space that are available for every lot. Users able to choose

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

CHAPTER 4

their parking lot of preference, and it will redirect user to the lot layout screen that
matches.

Next, layout screens for each parking lot aim to combine real-time parking
information with pre-defined graph-based parking maps. The layouts comprise nodes
and edges that represent roads and parking space. The structure of the nodes is defined
in the file node.dart and includes connections to adjacent nodes. The structure is a
directed graph type, in which edges represent allowable driving routes between nodes.
Pathfinding is done with Dijkstra-based algorithm. Once the user enters the parking lot,
the app requests Firebase for the most up to date available parking spaces. The
algorithm will find the shortest path from the user's point to the closest available space
take consideration on other vehicle’s status. The output is marked directly onto the map
to display the suggested path. If circumstances are changed such as earlier available
space being taken, the app works out the path dynamically again to ensure that the user
is at all times pointed towards the nearest available space.

To graphically represent this information, the app implements custom widgets
for rendering. Parking spaces are rendered as rectangles, green to indicate availability
and red to indicate occupied. Roads and intersections are represented as connected
sections, and vehicles as moving markers. The Ul is self-updated at all times whenever

Firebase is updated with fresh data, making it real-time and responsive.

Utilities

e

node.dart

o :
—_— . . ‘ road.dart J [space_fill.dart J
pathfinding.dart ' parking_lot.dart :
: ' parking_spaces.dart} [vehicle.dart J

data_retreiving.dart

Figure 4.2: Component Design for Mobile Application.

4.4 System Components Interaction Operations
The operation of this project is not only based upon the individual operation of its
components, but it is also based upon the interaction of components and data exchange.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

CHAPTER 4

Although all of the modules are individually assigned tasks, interactions form repeated
and continuous loops extending from the beginning of video input to tracking, from
synchronization of data to the Firebase Realtime Database, to the mobile application
for use by users.

The process begins with the detection and tracking module, which processes
incoming video streams from the parking lot cameras. Each frame is analysed by the
YOLOVS detection model to detect vehicles, and these detections are then passed to the
DeepSORT tracker to assign consistent IDs across frames. The tracker also determines

29 ¢¢.

vehicle statuses such as “finding,” “parked,” or “exiting,” based on their movement and
position relative to defined parking space polygons. At this stage, visual overlays such
as bounding boxes and ID labels are added for monitoring purposes, but more
importantly, structured data is generated for further use. This structured data includes
vehicle identifiers, coordinates, and space occupancy, all of which are essential for
synchronization with the backend.

Once results of tracking and detection for a frame are settled, the system sets up
for updating of the database. The parking space status is kept under the parking data
node while vehicle information like ID, coordinates, and status are kept under the
vehicle data node inside a parking lot node in Firebase, and. These updates are sent to
the database asynchronously to ensure that latest results overwrite old data without
interrupting running processes. The database itself serves as the communication link
between backend and frontend, provide a single repository where the latest status of the
vehicle and spaces can be obtained. The real-time aspects of Firebase allow the mobile
application to obtain these updates almost in real-time, without manual refreshing or
constant polling.

On the mobile side, the Flutter application is designed to respond immediately
to database changes. As soon as new data arrives, Firebase listeners trigger state updates
within the app, prompting the user interface to refresh the map view. Parking spaces
are updated to reflect to the most recent availability, with green indicating available and
red showing occupied. At the same time, vehicle positions and movement statuses are
rendered on the map, giving users a live representation of the parking lot. This creates
an interactive, real-time link between the backend detection pipeline and the frontend
user interface, allowing users to monitor parking space availability and vehicle flow

seamlessly.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

CHAPTER 4

Implementation of the pathfinding system into this cycle is important to the
system's effectiveness. The application employs the use of the defined node and edge
structures from the graph-based representation of the map to determine navigation
routes. Once a new user enters the lot, the application detects available parking spaces
from the parking data node and chooses the nearest available space based on graph
distance. Dijkstra's Algorithm is employed to work out the shortest path from the user's
point to the destination parking space. The output of this operation is a highlighted path
on the map, directing the user step by step through the parking lot. In case a formerly
available parking space is taken by another vehicle before the user reaches it, Firebase
instantly pushes out the change to the app, prompting the pathfinding system to
recalculate and reroute the user to the next nearest available space. This continuous
recalculation ensures that navigation is accurate and reliable even for very dynamic
parking lots.

Overall component interaction is designed to be continuous and recurring.
Cameras continuously feed video input, the tracking and detection module generate
structured data, the database assigns this data, and the mobile application utilize it for
visualization and navigation. Therefore, the vehicle movements within the parking lot
will determine the state of the system because occupied or available spaces trigger the
new detections that roll again. This tightly coupled loop creates a closed feedback
system in which all activities in the actual parking lot are resemble electronically within
the application.

By structuring interactions in this way, this project system can ensure that its
components never operate in isolation but rather operate to build towards a logical
workflow. The design guarantees that vehicle detections feed seamlessly into updates
of parking availability, that updates are pushed to the mobile application in quick
succession, and that users always receive accurate navigation recommendations. The
interaction operations thus become the foundation of the system, thus transforming raw

video inputs to useful, real-time assistance for drivers at parking locations.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

CHAPTER 5

CHAPTER 5

System Implementation

This chapter explains how the system was implemented, including how the hardware
and software were set up, configured, and integrated. Additionally, it provides
screenshots of the system in use, discussion about implementation difficulties, and

concludes with the overall results.

5.1 Hardware Setup

The processor unit and the mobile device used for application testing make up the two
primary components of the hardware setup for this project. The system's processing
unit handled video processing, communication with Firebase, and the implementation
of the detection and tracking algorithms. In the meantime, the mobile device mainly
served as the end-user platform, enabling real-time parking space availability
monitoring with pathfinding for user and confirming that the Flutter application

accurately presented data from the backend.

5.1.1 Processing Unit (PC)

Table 5.1.1: Specifications of desktop computer

Description Specifications
Mobo MSI B650M Gaming Plus WIFI
Processor AMD Ryzen 5 7500F
Operating System Windows 11 Pro
Graphic NVIDIA GeForce RTX 4060 Ti 8GB GDDR6
Memory 16GB DDR5 RAM
Storage 1TB SSD

A desktop computer is served as the primary processing platform for the development
and operation of the parking space and vehicle detection and tracking modules. While
the CPU and memory resources enabled video processing, Firebase connectivity, and
result logging, the GPU played a crucial role in speeding up the YOLOvS model for

model training, model fine-tuning and enabling real-time detection and tracking. By

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

CHAPTER 5

sending detection outputs to Firebase and synchronizing data with the mobile
application, the desktop not only ran the models but also manage the integration of
many components. During testing, this hardware configuration made sure that

everything worked easily and dependably, from video input to real-time monitoring.

5.1.2 Android Mobile Device

Table 5.1.2: Specifications of android mobile device

Description Specifications
Model Vivo V25 5G
Processor Mediatek Dimensity 900 (6nm)
Operating System Android 14
Graphic Mali-G68 MC4
Memory 16GB RAM (8GB + 8GB Extended)
Storage 256GB

During the deployment phase, an android mobile device was widely utilized to facilitate
the mobile application's testing and validation. It served as the main operating base for
the Smart Parking Finder Flutter application, which offered the user interface for real-
time pathfinding, vehicle tracking results and parking space status monitoring. The
Firebase database updates were continuously synchronized and seen via the mobile
device, enabling confirmation of the correct transmission and presentation of detection
outputs from the backend.

During the testing stage, the smartphone was also utilized to record videos and
capture images for parking lot data. By giving the detection and tracking modules
accurate input, these video recordings and images made it possible to test the system in
real-world parking lot scenarios. Vehicle detecting and tracking, data exchange, and
end-user real-time visualization were all part of the end-to-end workflow that was

validated by using a mobile device for testing and data gathering.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

CHAPTER 5

5.2 Software Setup

The detection and tracking framework, database service, and mobile application
environment must be installed and configured as part of the software setup process. The
way these parts were put together enables them to function as a single, cohesive system.
The backend environment was configured to track and detect vehicles, handle video
data, and determine the availability of parking spaces. The mobile application
environment was ready to retrieve the data and provide it to users via an easy-to-use
interface, while the database service was set up to store and update this information in

real time.

5.2.1 YOLOVS for Vehicle Detection

Ultralytics' YOLOvV8 (You Only Look Once, version 8) detection framework was
chosen for this project due to its ability to effectively balance processing speed and
accuracy. To ensure that the detection was adjusted for real-world circumstances, a
small-sized model, YOLOvV8s was trained using a custom dataset that included
annotated photos of vehicles gathered from online datasets and the target parking
location. The model was deployed using the Ultralytics Python module after training
and fine-tuning, enabling real-time inference and acting as the system's basis for vehicle

detection.

5.2.2 DeepSORT for Vehicle Tracking

DeepSORT was combined with YOLOvVS to guarantee that vehicles were given
consistent IDs across frames and overlapping camera views. Through a pre-trained
RelD (re-identification) model, the tracker integrated appearance-based matching with
motion prediction using a Kalman filter. This made it possible for the system to
consistently preserve vehicle IDs over time, even in situations when cars were

momentarily obscured or in close proximity.

5.2.3 Python Environment and Libraries

The pipeline for tracking and detection was using Python 3.13. Ultralytics for
YOLOV8-based car detection, deep-sort-realtime for tracking multiple objects, opencv-

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

CHAPTER 5

python for processing video frames and detecting parking spaces, and firebase-admin
for interacting with the Firebase Realtime Database were among the essential libraries.
The implementation of real-time detection, tracking, and data logging was made
possible by these fundamental elements. The complete list of dependencies and their
version details is documented in the requirements.txt file, which is included in

Appendix A for reference.

5.2.4 Firebase Realtime Database

The Firebase Realtime Database was set up to handle vehicles activity logs and parking
spaces availability. Vehicles and spaces were the two main branches of the database
structure. While the space branch kept track of each parking space's occupancy status,
the vehicle branch stored information including IDs, status, coordinates xy and
timestamps. The configuration file google-services.json was incorporated into the
Flutter application to facilitate smooth synchronization with the backend, and database

administration and monitoring were done via the Firebase Console.

5.2.5 Flutter Mobile Application

The Flutter SDK (version 3.29) in Android Studio was used to create the mobile
application, and Firebase was implemented using firebase core and firebase database.
Real-time parking spaces availability, vehicles positions, and navigation routes are all
displayed on the application's user-friendly interface. By integrating these functions,
the software improves monitoring, direction, and general efficiency in the parking

environment in addition to helping users find available spots.

5.2.6 Development Tools

Visual Studio Code, which offered an environment for writing and debugging Python
scripts, was used to construct the system's backend. The Flutter mobile application,
including emulator simulations, was developed and tested using Android Studio.
Throughout the project, effective code management and collaboration were made

possible by the usage of GitHub for version control.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

CHAPTER 5

5.3 Setting and Configuration

5.3.1 Backend Configuration

In order to develop the Smart Parking Finder Application, the backend configuration
was created to incorporate real-time database synchronization, vehicle detection, and
tracking. Starting with the environment setup, Python 3.13 was utilized together with
necessary libraries including DeepSORT, OpenCV, NumPy, and Ultralytics YOLO.
Additionally, the Firebase Admin SDK was set up to facilitate connection with cloud

databases.

The detection component made use of a specially trained YOLOvV8 model that
was fine-tuned for vehicle detection in order to increase accuracy in the intended
setting. The inference parameters were set at an IoU threshold of 0.3 and a confidence
threshold of 0.6, and the model weights were fed straight into the system. When

detecting vehicles, these criteria made sure that recall and precision were balanced.

The DeepSORT tracking was included to keep track of the vehicle’s identity
consistency between frames. With a maximum age limit of 30, this tracker combined
motion and appearance elements to allow for brief occlusions without erasing track IDs.
Every vehicle that was detected was given a unique identification number and

continuously monitored throughout the video frames.

A technique for manually generating coordinates was used to predefine parking
spaces. Each space was represented by four points that admin user could indicate on an
image frame using the program. The coordinates were then saved in a text file called
parking_coords.txt. In order to determine if a slot was occupied or available in real time,
the backend loaded these coordinates during runtime and used a polygon test to match

vehicle positions against them.

A local video file was used as the system’s primary input during testing, with
each frame resized to a fixed resolution for consistent processing. The YOLOv8
detector first identified vehicles, which were then passed to the DeepSORT tracker. The
tracker output included bounding boxes, unique IDs, and the bottom-centre point of

each vehicle, which was cross-referenced with the parking slot coordinates.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

CHAPTER 5

The processed data was then structured into three categories which are
individual space availability, vehicle details, and summary statistics. To optimize
performance, Firebase database updates were performed asynchronously using
Python’s threading library. This ensured that detection and tracking continued
uninterrupted while maintaining real-time synchronization of data, including the

number of totals, occupied, and available spaces.

Finally, a visualization layer was implemented for verification. Bounding
boxes, vehicle IDs, and space boundaries were overlaid on the video feed, with colour
coding (green for available and red for occupied) to provide immediate feedback during
operation. This configuration allowed the backend to operate efficiently, ensuring

accurate detection, robust tracking, and reliable data management.

5.3.2 Database Configuration

The backend of the system was integrated with Firebase Realtime Database to manage
parking slot status, vehicle logs, and overall lot summaries in real time. The connection
was established using the Firebase Admin SDK, which required the export of a service
account JSON key from the Firebase Console. This file was attached to the backend for
authentication and secure access, allowing the Python program to perform read and
write operations during execution. Similarly, a google-services.json file was exported
and integrated into the Flutter project to enable synchronization between the mobile

application and the database.

The database was organized under the root node of each parking lot and
summary node, where each parking lot node consisted of two primary branches which
is parking_data and vehicle data. The first branch parking data, stored information for
each individual parking space, including its unique identifier, availability status, and a
timestamp of the last update. The second branch vehicle data, logged the tracking
results from the DeepSORT algorithm, with each entry indexed by a unique vehicle ID.
These records contained the bounding box coordinates of vehicles, their current status
(finding, parked, or exiting), and the corresponding timestamp. Another root node
which is summary, provided collection statistics for each parking lot such as the total

number of spaces, the numbers of occupied slots, available slots, and the last update

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 5

time. The data format in the Firebase for each parking lot node and summary node is

shown in Figure 5.1 and Figure 5.2.

id: "PO01"
tus: "available”

tamp: 1757181175

*parked"
timestamp: 1757181175

simulation_lot
available: 3

occupied: 27

parking_lot: "simulation_lot"

timestamp: 1757181175

total_spaces: 30

utar_hospital

Figure 5.2: Firebase data format for summary node

This hierarchical structure was chosen to ensure a clear separation between
space-level details, vehicle-level logs, and high-level summaries, enabling efficient
retrieval and updates from both backend and frontend. To maintain real-time
responsiveness, updates to Firebase were pushed every one second on a background
thread, ensuring continuous synchronization without disrupting detection and tracking.
The database rules were configured such that both read and write permissions were set

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

CHAPTER 5

to true, allowing the backend system to update data and the Flutter mobile application

to retrieve information without restrictions.

5.3.3 Flutter App Configuration

The Flutter mobile application was created using a modular architecture to achieve
scalability, maintainability, and a clear separation of responsibilities. Firstly, the
main.dart file serves as the entry point of the Flutter application. It begins by initializing
Firebase using the credentials specified in the firebase options.dart file, ensuring
seamless synchronization with the Firebase Realtime Database. Once initialization is
complete, the application launches into the splash_screen.dart, which provides a brief

loading interface before redirecting the user to the homepage.

The screens directory is the central location where all application interfaces are
organized. The homepage.dart acts as the entry point for users, displaying a list of
available parking lots together with the corresponding parking availability data
retrieved from Firebase. From this page, users can select their desired parking lot. Each
subsequent screen, such as hospital layout.dart, parking layout.dart, and
simulation_layout.dart, is designed to render the parking lot map specific to its
environment. These layouts integrate components from other directories, such as
utilities and widgets, to build the interactive map, plot parking spaces, and provide real-
time navigation features. Additionally, the splash screen.dart is used to display the

initialization interface during app startup.

The utilities directory contains a collection of utility classes that the application
uses to support computational and data processing operations. Real-time listeners are
managed via the data retrieval.dart file, which retrieves vehicles and parking spaces
changes straight from Firebase. The node.dart file defines the structure of nodes
representing roads and parking spaces. It connects these nodes into a directed graph,
enabling pathfinding features within the parking map. By implementing Dijkstra's
Algorithm, the pathfinding.dart file enables the system to determine the quickest route

between the user's present location and a parking space that is available.

Custom widgets from the widget directory are used to create the parking lot's

graphical representation. Each parking space is represented graphically via the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

CHAPTER 5

parking spaces.dart widget, which is updated dynamically based on the database's
availability status. Road connections within the lot are rendered by the road.dart file,
while gaps between spaces and roads are filled by space_fill.dart to guarantee correct
alignment of unoccupied regions. Using coordinates retrieved from the backend, the

vehicle.dart widget is in charge of showing and animating vehicles on the layout.

For these to work as one, first the parking map is defined and connected as a
graph structure, where nodes that represent parking spaces, road, and space fills, while
edges define the valid paths between them such as one way road. Once the graph is
established, real-time data retrieved from Firebase such as parking space statuses and
vehicle locations are integrated into the map. This data ensures the system reflects the
current parking lot conditions. The pathfinding algorithm, based on this graph,
calculates the shortest available route from the user’s position to the nearest available
spaces, taking into account of vehicles status in front of user. The resulting path is then
highlighted on the user interface, visually guiding the user along the road network.
Every time new updates are received from Firebase, the pathfinding process is
recalculated, ensuring that users are always directed to the most optimal available

parking space with accurate, real-time navigation.

5.4 System Operation

5.4.1 Detection and tracking

When the system runs, video frames are read continuously and pre-processed before
inference. Frames are first resized for consistent processing and converted to the
required colour space for the model. The fine-tuned pre-trained YOLOvV8 model
performs vehicle detection on each frame using the configured inference thresholds,
and detected vehicle bounding boxes are returned together with confidence scores.
These bounding boxes are then passed to the DeepSORT tracker, which assigns and
maintains unique tracking IDs across subsequent frames. During tracking, each vehicle
is also assigned a real-time status such as “finding” when it is first detected and still
moving through the lot, “parked” when it occupies a predefined parking space, and
“exiting” when leaving a previously occupied parking space. For visual verification,

bounding boxes are drawn onto the frame along with the tracker ID, status label, and a

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

CHAPTER 5

small marker at the bottom-centre of each box. These overlays make it straightforward
to observe whether a vehicle is being consistently tracked over time and to confirm its
current parking status. Figure 5.3 shows a sample detection frame with bounding boxes,

assigned IDs, statuses, and bottom-centre markers.

.
B3 parking detection

- O
e
ked —parked parked parked
- A - E

e

=

;IT = "'@Er' \\
- L hp‘J‘L:'edd‘:‘_‘eMr-—\ § ‘

R

Figure 5.3: Detection and tracking output

5.4.2 Parking space plotting and occupancy determination

Once detections are available and vehicles are tagged with track IDs, the system
determines parking space occupancy by testing each vehicle’s bottom-centre point
against predefined parking slot polygons. Parking slots are manually mapped (four-
point polygons per slot) and stored in a coordinate file which the backend loads at
runtime. After the plotting, each parking space is drawn as a polygon using the
coordinate loads from the file on the video frame. The spaces are color-coded where
green if available and red if occupied based on the results of the polygon test that checks
whether a small marker at the bottom-centre of each vehicle box falls inside the space,
shown in Figure 5.6. Parking space IDs are also displayed next to each polygon for
easier verification. This visual overlay clearly shows which vehicle belongs to which

space and is done right before updating the database with the occupancy results.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
43

CHAPTER 5

"7 RGB = (m] X

Figure 5.5: Parking space coordinate file

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
44

CHAPTER 5

-
R parking detection = O

)

Figure 5.6: Parking space occupancy determination

5.4.3 Firebase update and data packaging

After occupancy and tracking state are determined per frame, the backend combined
the information into structured records for cloud synchronization. For each parking
space the system composes a parking record (id, status, timestamp), and for each
confirmed track it produces a vehicle record (id, coordinates, status, timestamp). A
small summary object containing total spaces, occupied count and available count is
also constructed. To avoid impacting real-time inference, these updates are dispatched
on a background thread at a regular interval (which is every one second in this project),
so detection and tracking continue without blocking. The database schema is written to
the Realtime Database under the configured root, populating parking data,
vehicle data and summary branches so the frontend can efficiently retrieve slot and

vehicle information.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

CHAPTER 5

sble: 3
d: 27

lot: "simulation_lot"

amp: 1757181175

Figure 5.7: Firebase Realtime Database entries produced by the backend

5.4.4 Mobile app visualization and navigation

The mobile application listens for changes on the corresponding Firebase nodes and
reacts in real time. When parking_data or vehicle data is updated, the data retrieval
utility receives the change and updates the app state. The app renders the parking lot as
a graph-based map using custom widgets where parking spaces are drawn and colour
coded, roads and empty areas are rendered, and vehicles are animated at their reported
coordinates. The pathfinding utility recalculates routes using the current parking graph
and Dijkstra’s algorithm whenever the user’s position or parking spaces availability
changes, edge weights reflect travel cost and can be adjusted to account for other
vehicles status in front of user. The app interface also provides live animation of the

recommended route so users see the path to the target parking space and any vehicles

ahead.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

CHAPTER 5

Simulation Parking Lot

W ~vailable [l Occupied [l Reserve.

002000

“000000
QQ000eQ

& Q00

000
000000

-~

Figure 5.8: Mobile app visualizing space availability, vehicle positions and calculated

navigation route

5.5 Implementation Issues and Challenges

Throughout the development of this project, several implementation challenges were
encountered that directly impacted both the accuracy and efficiency of the solution.
One of the most significant issues was related to GPU memory usage during the training
and fine-tuning of the YOLOVS8 detection model. While higher-capacity variants of the
model, such as YOLOV8I or YOLOVS8x, could potentially provide superior accuracy in
detecting vehicles under diverse conditions, the limited GPU resources available
restricted the use of these larger models. Attempting to train or fine-tune them often
resulted in out-of-memory errors, forcing the system to rely on a smaller version of
YOLOvS. This choice provided a practical trade-off between performance and
hardware limitations, though it introduced a compromise in detection precision that

may affect scalability in larger deployments.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
47

CHAPTER 5

Another challenge is from the problem of occlusion and overlapping vehicles.
In real-world scenarios, vehicles often park closely side by side or temporarily obstruct
one another when entering or leaving parking space. While the integration of the
DeepSORT tracking algorithm helped address short-term occlusions by combining
appearance and motion cues, prolonged or severe occlusions still caused occasional ID
switches. These ID mismatches sometimes led to false occupancy updates, particularly
when two vehicles overlapped near the same parking space. Additional measures, such
as more advanced RelD models, may be necessary in future iterations to further
enhance tracking stability.

Moreover, due to restrictions in accessing actual parking lots for data collection,
real-world datasets of vehicles entering and exiting parking lots could not be obtained
for this project. Instead, simulated data was generated and uploaded to Firebase to
recreate parking lot scenarios, allowing the mobile application to function as though it
were connected to a live environment. The simulated data included both parking_data
and vehicle data, which were used by the mobile application to perform pathfinding
and navigation functions. This setup enabled controlled testing of detection, tracking,
and navigation features within the app. However, it may not fully capture the
unpredictability and diversity of real-world conditions such as varying lighting, weather,
or heavy traffic flow. As such, the results obtained serve primarily as a proof-of-concept

rather than a definitive evaluation of the system’s performance in live deployment.

5.6 Concluding Remarks

The implementation of this project successfully demonstrated the integration of
computer vision, real-time database synchronization, and mobile application
visualization into a cohesive end-to-end solution. Despite challenges such as GPU
resource limitations, vehicle occlusion, and reliance on simulated datasets, the system
proved capable of detecting and tracking vehicles, determining parking space
occupancy, and guiding users to available parking space through a responsive Flutter
application. The project validates the feasibility of using YOLOVS and DeepSORT in
a smart parking context and highlights the potential of cloud-backed mobile

applications for real-time user assistance.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

CHAPTER 6

CHAPTER 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

To evaluate the performance of this project, a series of tests were conducted focusing
on four primary metrics which includes detection accuracy, tracking stability, database
update time, and mobile application latency. These metrics were chosen to measure the
accuracy, reliability, and responsiveness of the system across its major components,

ensuring both backend and frontend performance could be objectively assessed.

6.1.1 Detection Accuracy (mAP)

The accuracy of vehicle detection was measured using the mean Average Precision
(mAP), which evaluates the precision-recall performance of the YOLOv8 model at
various confidence thresholds. Two different training setups were tested. First, the
YOLOv8s model was trained simply on an online vehicle dataset, providing a baseline
for general detection capability across varied environments on detecting vehicles. Next,
this model was further fine-tuned using custom images collected from the target parking
lot, allowing adaptation to environment-specific characteristics such as camera angle,

lighting, and parking space geometry.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
1.1 104 —e— results 0.951
smooth 1.101 0.95
104 0.90
: 0.81 1.05 - 0.90 4
0.4 0.85 | r‘
0.6 1.004 0.85 4
08 ' 0.80 J
0.95 0.80 4 -
0.74 4 754
04 0.75 4
0.90 4
0.64 0.70
T v T T v v r T v v v v T v v
0 20 40 0 20 40 o] 20 40 Q 20 40 0 20 40
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1.04 nmm 08
0.71 k 0.95 -
0.9 1.004 0.8
061 h 0.90
o8{ & L
& 051 0951 0.85 0.7 1
0.7
0.4
0.80 4
M.__ M| 8 J %]
0‘67‘ T T Ol3-| T T T T T 0‘757\ T T T T T
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

Figure 6.1: Model training result using online dataset

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
49

CHAPTER 6

6.1.2 Tracking Stability (ID Switches)

The consistency of the DeepSORT tracker was evaluated by monitoring the number of
ID switches that occurred during vehicle movements. An ID switch is recorded when
the same vehicle is mistakenly assigned a new identifier during continuous tracking.
While short-term occlusions and side-by-side vehicles were generally handled well,
longer occlusions or overlapping vehicles sometimes caused ID mismatches. These

switches could occasionally propagate to false parking space status updates.

6.1.3 Database Update Time

The responsiveness of the backend-to-database communication was assessed by
measuring the time taken to package detection and tracking results and push them to
Firebase Realtime Database. On average, updates were performed asynchronously at
an interval of one second, which balanced real-time responsiveness with stable system
performance. This ensured that parking space availability and vehicle data remained up

to date without introducing significant computational overhead.

6.1.4 Mobile Application Pathfinding

The performance of the mobile application was examined by testing the accuracy and
reliability of its pathfinding feature. The system was compared to its ability to calculate
and display the shortest path from user's point to the nearest available parking space
under different simulated parking lot conditions. Using the graph-based representation
of the lot, Dijkstra's algorithm always produced optimum paths that occupied spaces.
One of the main observations during testing is that the algorithm continuously updated
navigation to reflect the shortest available route even as space availability changed with
vehicles entering or exiting. With each update of the database, the application
recalculated routes in real time and marked the new route on the parking map. The
findings reconfirmed that the navigation module not only preserved route validity but
also guaranteed that users were always routed through the most optimal path to the

destination, making the system effective for real-time parking directions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

CHAPTER 6

6.2 Testing Setup and Result

6.2.1 Test Environment

The system was tested with real videos shot using the mobile phone's camera
maintained at the entrance and within the UTAR Hospital parking lot. The videos were
shot at 1920x1080-pixel resolution and 30 frames per second, which represents the
typical field of view of a fixed surveillance camera. The captured videos were then
provided as input to the backend tracking and detection system.

The backend was executed on a desktop computer with the specification from
chapter 5 (Table 5.1.1). YOLOVS fine-tuned using parking lot images specific to the
custom environment was used for vehicle detection, while object tracking was carried
out using DeepSORT. Detection and tracking output were pushed to Firebase Realtime
Database in real time for synchronization with the mobile app.

The mobile app was then tested using an Android phone running on
specification from chapter 5 (Table 5.1.2). The app connected to real-time updates of
Firebase and presented both the status of parking space and navigation directions.
Pathfinding effectiveness was then tested through testing different parking lot situations
using the simulated data to ensure that the app always calculated and displayed the

shortest path accordingly to available spaces.

6.2.2 Test Procedure

For testing the system in a simulated environment, a 30-slot simulated parking lot
facility was created. Before running each simulation, 25 slots were randomly pre-
assigned as occupied and 5 slots were kept available for incoming cars. The test process
was designed in a way to test entry and exit parking space scenarios. For vehicle entry,
five vehicles were created at the given entry node and automatically directed to the
nearest available space using Dijkstra's shortest path algorithm. Their positions were
updated continuously until they arrived and took up their given parking positions. In
the meantime, vehicle exit was simulated by randomly selecting three cars from the
parked group and directing them out to given exit nodes. These vehicles experienced a
"parking" to an "exit" state and were removed from simulation as they hit the boundary
of their path. Simulation loop executed in real time with one-second tick interval, in

which vehicle displacements were updated, parking space statuses recalculated, and all

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

CHAPTER 6

updates synchronized to Firebase Realtime Database. This ensured the mobile
application is always showing the latest parking availability and movement of vehicles.
The process was performed numerous times to ensure detection stability, correct state
transition correctness, correctness of available parking space updates, and pathfinding
result reliability. Tests confirmed whether users were always routed to the nearest
available space and whether exiting cars correctly left their designated spaces in the

database.

6.2.3 Test Results

The system was subjected to independent test scenarios to evaluate its detection,
tracking, database synchronization, and mobile app performance. Overall, the findings
justified that the designed approach achieved high accuracy and robust performance
under different parking conditions.

Detection was done using the fine-tuned YOLOv8 model with an overall mean
Average Precision of 61.2%, though fairly modest by other standards, it was adequate
for good vehicle detection in real-world conditions with fluctuating light and occlusion.
Tracking performance using the DeepSORT algorithm was consistent with minimal
switches per run. Though longer occlusions at times led to mismatches, overall vehicle
ID continuity between frames was good enough to provide correct parking space status

transitions.

Ultralytics . @+cull8 CUDA:@ (NVIDIA GeForce RTX 4068 Ti, 8188MiB)
Model summary (d): 168 rs, 11,1 parameters, @ gradients, 28.4 GFLOPs
Scanning D:\UTAR\Degree\FYP\YOLO\car_dataset\valid\labels.cache... 58@ images, @ backgro
Class Images Instances [R mAP58 mAP58-95): 188
all Sea 4845 .25 . 76 . e

bus 94 96 . i . . 8¢ 0.88413
car Sea 183 . . L6132 8.445
truck 13 3 - - .175 8.14
van . .9 .817 8.676
Speed: @.5ms preprocess, 5.1ms inference, ©.6ms loss, 1.1ms postprocess per image
Results saved to runs\detect\val8

Figure 6.3: Stable ID assigned between few frames

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

CHAPTER 6

Communication between the database also worked as required with updates
arriving at a mean rate of one second. This was sufficient to provide changes in the
availability of spaces and vehicles locations continuously on Firebase without being too
laggy. The mobile application could effectively utilize these updates to dynamically
recalculate pathfinding directions.

Pathfinding outputs also showed the robustness level of the system. In all test
cases, the application achieved a 100% success rate of the shortest path from the user's
point to a nearest available parking space according to other vehicle’s status. Ideally,

when vehicles departed and left newly opened spaces, the app dynamically recalculated

Simulation Parking Lot

M Available [l Occupied [l Reserved

Q00000

v 000000
Q000020

000 000

OO0 000 -
> &2 = >
-~

Figure 6.4: Shortest Path Result with Random Simulated Data Set

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

CHAPTER 6

Simulation Parking Lot

M Availabie [Occupied [l Reserved

Q00000

vO000000

Q00000
Q00 000
000000

> =
= v

Figure 6.5: Shortest Path Result with other Random Simulated Data Set
The combined outcomes indicate that not only does the system identify and
pinpoint vehicles with excellent precision but also learns synergistically with the

backend and mobile application to provide real-time parking instructions.

6.3 Projects Challenges

First challenge faced during the project was related to real-time synchronization
overhead. Since the system relies on multiple components which are detection,
tracking, database updates, and mobile app visualization to operate simultaneously,
maintaining smooth synchronization across all modules occasionally introduced
latency. When detection and tracking workloads were heavy, for example in frames
with multiple vehicles, the asynchronous updates to Firebase sometimes lagged behind,
which slightly affected the freshness of the data displayed on the mobile application.
In addition, the next project challenge is unexpected user behaviour. Although
the system is designed to guide users to the nearest vacant parking space using the
shortest path, users may not always strictly follow the recommended route. Besides,
some other vehicle may also not take the nearest empty parking space which will make

the navigation route constantly changing for user as it brings user to nearest vacant

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

CHAPTER 6

parking space. Such behaviours introduce uncertainties that can affect the accuracy of
real-time navigation and occasionally lead to inconsistencies between the system’s
guidance and the actual user actions.

Finally, the mobile application itself presented performance constraints,
particularly when rendering large layouts with many parking spaces and active vehicles.
The Flutter framework, while flexible, required optimization to handle frequent updates
and animations in real time. When multiple widgets such as vehicles, spaces, and
navigation paths were updated simultaneously, occasional performance drops occurred
in a larger lot, which reduced the smoothness of the user experience. These issues
highlighted the need for further optimization and possibly more efficient rendering

techniques in future versions of the application.

6.4 Objectives Evaluation

The first objective of this project was to develop a real-time parking space vacancy
detection system using computer vision and deep learning. This objective was
successfully achieved by integrating the YOLOvVS8 detection model with predefined
parking space coordinates. The system was able to determine whether each space was
occupied or available and update this information continuously in real time. By
synchronizing the processed results with Firebase Realtime Database, users could
access the latest parking availability through the mobile application, ensuring that
accurate and reliable information was always presented.

The second objective was to implement a vehicle detection and tracking system
with parking finding status. This goal was also accomplished by combining YOLOVS
with the DeepSORT tracking algorithm, which maintained vehicle identities across
frames and provided insights into their status, such as whether a vehicle was searching
for a space, parked, or exiting the space. Despite occasional challenges caused by
occlusion or overlapping vehicles, the system demonstrated stable tracking
performance and ensured that vehicle behaviour within the parking lot could be
monitored effectively. This provided valuable real-time information on the movements
of other vehicles for the end user.

The final objective was to design and develop a mobile application that delivers
a smart navigation system to guide users to the nearest vacant parking space according

to vehicle status in front. This was achieved using Flutter to create a cross-platform

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

CHAPTER 6

application that integrates seamlessly with Firebase. The application not only displayed
parking space availability and vehicle movements in real time but also implemented a
graph-based navigation system using Dijkstra’s Algorithm to calculate the shortest path
to an available slot taking consideration of other vehicle’s status along the path. The
interface provided users with clear visualization, live updates, and dynamic route

adjustments, ensuring efficient and user-friendly navigation throughout the parking lot.

6.5 Concluding Remarks

The evaluation and discussion of this project highlighted both the strengths and
limitations of the proposed solution. Testing results showed that the system was able to
achieve accurate vehicle detection, stable tracking performance, and timely
synchronization with Firebase, ensuring that users could rely on real-time updates for
parking availability. The mobile application also performed effectively in delivering
navigation guidance and visualizing parking spaces statuses with minimal latency,
demonstrating the feasibility of integrating backend intelligence with a user-friendly
frontend interface.

At the same time, several challenges were observed during evaluation, such as
GPU memory constraints that limited the use of higher-capacity detection models,
occlusions that occasionally caused ID switches in tracking, and performance
overheads in rendering complex layouts within the mobile app. Additionally, the
unpredictability of user behaviour posed practical challenges for navigation accuracy.
Despite these issues, the system met its core objectives and provided a strong proof of

concept for a smart parking finder solution.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

CHAPTER 7

CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

This project pursues to develop a Smart Parking Finder Mobile Application using
computer vision, real-time databases, and mobile navigation to address the daily
problem of finding available parking in urban cities. The overall objectives were to
develop a parking space detector system, create a vehicle tracking system with parking
status, and offer a user-friendly mobile application with smart navigation features. All
of these objectives were achieved, providing a proof of concept for how Al and mobile
technologies can be used to improve parking efficiency.

On the backend, the system used YOLOVS for real-time vehicle detection and
DeepSORT for continuous tracking to detect and track vehicles across frames. Status
tags such as finding, parked, and exiting were incorporated to provide reasonable
context for database records and mobile application updates. The data was
synchronized in real time with Firebase Realtime Database, which acted as the
communication gap between the mobile application and backend. On the frontend, this
information was retrieved in real time by the mobile app built with Flutter, presenting
a dynamic parking map and providing smart navigation. Using a graph-based model of
the parking lot and Dijkstra's algorithm, the app was constantly highlighting the shortest
available path to an available parking space, adapting instantly to such events as vehicle
entering, parked, or exiting.

Although the system achieved its major goals, there were some issues faced
during the implementation process. The finite GPU memory limited fine-tuning of
larger detection models, and occlusions and overlapping vehicles occasionally caused
ID switches in tracking. Moreover, mobile rendering performance had to be optimized
when handling frequent updates and a high number of vehicles and slots. Despite these
issues, the system worked effectively as a functional prototype, proving that the
integration of detection, tracking, and navigation has the potential to reduce parking

search times, minimize congestion, and enhance the user experience.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

CHAPTER 7

7.2 Recommendation

One of the key recommendations for enhancing the system is the integration of a
License Plate Recognition (LPR) system. Many parking facilities, particularly in
shopping malls and office complexes, already employ LPR to monitor vehicle entry
and exit. By combining LPR with the YOLO-based detection and DeepSORT tracking,
the system would gain a secondary method of vehicle identification. This would
significantly reduce cases of ID switches or tracking errors, as each vehicle could be
consistently tied to its license plate rather than relying solely on appearance-based
tracking. In turn, this integration would improve tracking accuracy, provide a more
reliable user record, and open opportunities for added features such as personalized
navigation or secure access control.

Another recommendation involves expanding the mobile application features to
make the system more useful and user-friendly. While the current version focuses on
real-time vacancy detection and navigation, future iterations could include a parking
history log for users to review their past activity. A reservation feature could also allow
users to book parking spaces in advance, reducing uncertainty during peak hours.
Additionally, integration with payment systems would enable drivers to not only locate
and reserve a space but also pay parking fees directly within the application. These
expansions would elevate the system from a basic navigation tool into a comprehensive
smart parking platform capable of supporting both operational efficiency and customer
convenience.

Finally, it is essential to take user behaviour into account when refining the
system’s navigation logic. Real-world drivers may not always behave predictably—
some may stop midway along a suggested route, double park in unauthorized areas, or
even enter the parking lot from non-monitored entrances. Such behaviour can lead to
mismatches between the system’s suggested paths and actual driver movements. By
designing navigation logic that adapts to these situations, such as recalculating paths
dynamically or flagging irregular actions, the system can remain robust and reliable
even under unpredictable conditions. This would ensure that the smart parking solution
continues to provide realistic and practical guidance, thereby improving its readiness

for real-world deployment.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

REFERENCES

REFERENCES

[1] H. Padmasiri, R. Madurawe, C. Abeysinghe and D. Meedeniya, "Automated
Vehicle Parking Occupancy Detection in Real-Time," 2020 Moratuwa Engineering
Research Conference (MERCon), Moratuwa, Sri Lanka. 2020, pp. 1-6, doi:
10.1109/MERCon50084.2020.9185199.

[2] Deng, Zhipeng & Sun, Hao & Zhou, Shilin & Zhao, Juanping & Lei, Lin & Zou,
Huanxin. “Multi-scale object detection in remote sensing imagery with
convolutional neural networks.” ISPRS Journal of Photogrammetry and Remote
Sensing. 2018, 145, doi: 10.1016/j.isprsjprs.2018.04.003.

[3] Z. Xie and X. Wei, "Automatic parking space detection system based on improved
YOLO algorithm," 2nd International Conference on Computer Science and
Management Technology (ICCSMT), Shanghai, China, 2021, pp. 279-285.
doi: 10.1109/ICCSMT54525.2021.00060

[4] L.-C. Chen, R.-K. Sheu, W.-Y. Peng, J.-H. Wu, and C.-H. Tseng, “Video-Based
Parking Occupancy Detection for Smart Control System,” Applied Sciences, vol.
10, no. 3, p. 1079, Feb. 2020, doi: 10.3390/app10031079.

[5] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-Time Vehicle
Detection Based on Improved YOLO v5,” Sustainability, Sep. 2022, vol. 14, no. 19,
p. 12274, doi: 10.3390/sul41912274.

[6] Kilickaya, Fatma Nur & Tasyiirek, Murat & Oztiirk, Celal. “Performance evaluation
of YOLOvVS5 and YOLOv8 models in car detection”. Imaging and Radiation
Research, 2024 6, 5757, doi: 10.24294/irr.v612.5757.

[7] Kapania, Shivani & Saini, Dharmender & Goyal, Sachin & Thakur, Dr. Narina &
Jain, Rachna & Nagrath, Preeti. “Multi Object Tracking with UAVs using Deep
SORT and YOLOv3 RetinaNet Detection Framework”. 2020, 1-6, doi:
10.1145/3377283.3377284.

[8] Bathija, A. and Sharma, G. “Visual Object Detection and Tracking Using Yolo and
Sort.” International Journal of Engineering Research Technology, 2019, 8, 705-708,
doi: 10.32628/CSEIT206256.

[9] X. Chen, Z. Li, Y. Yang, L. Qi and R. Ke, "High-Resolution Vehicle Trajectory

Extraction and Denoising From Aerial Videos," in /[EEE Transactions on Intelligent

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

REFERENCES

Transportation Systems, vol. 22, no. 5, pp. 3190-3202, May 2021, doi:
10.1109/TITS.2020.3003782.

[10] M. Li, M. Liu, W. Zhang, W. Guo, E. Chen, and C. Zhang, “A Robust Multi-
Camera Vehicle Tracking Algorithm in Highway Scenarios Using Deep
Learning,” Applied Sciences, vol. 14, no. 16, pp. 7071-7071, Aug. 2024, doi:
https://doi.org/10.3390/app14167071.

[11] J. Azimjonov and A. Ozmen, “A real-time vehicle detection and a novel vehicle
tracking systems for estimating and monitoring traffic flow on
highways,” Advanced Engineering Informatics, vol. 50, p. 101393, Oct. 2021, doi:
https://doi.org/10.1016/j.2e1.2021.101393

[12] Benny, L & Soori, PK 2017, 'Prototype of parking finder application for intelligent
parking system', International Journal on Advanced Science, Engineering and
Information Technology, vol. 7, no. 4, pp- 1185-1190.
https://doi.org/10.18517/ijaseit.7.4.2326

[13] W. Yawai, “Smart Application for Car Parking System at Nakhon Ratchasima
Rajabhat University”, IJC, vol. 42, no. 1, pp. 41-58, Apr. 2022, Accessed: Sep. 17,
2025. [Online]. Available: https://ijcjournal.org/InternationalJournalOfComputer
/article/view/1922

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

APPENDIX

Appendix A: requirement.txt

anyio==4.9.0
CacheControl==0.14.3
cachetools==5.5.2
certifi==2025.1.31

cffi==1.17.1
charset-normalizer==3.4.1
colorama==0.4.6
contourpy==1.3.1
cryptography==45.0.5
cycler==0.12.1
deep-sort-realtime==1.3.2
filelock==3.17.0

filetype==1.2.0
firebase-admin==6.9.0
fonttools==4.56.0
fsspec==2025.2.0
google-api-core==2.25.1
google-api-python-client==2.176.0
google-auth==2.40.3
google-auth-httplib2==0.2.0
google-cloud-core==2.4.3
google-cloud-firestore==2.21.0
google-cloud-storage==3.2.0
google-crc32c==1.7.1
google-resumable-media==2.7.2
googleapis-common-protos==1.70.0
grpcio==1.73.1
grpcio-status==1.73.1
h11==0.16.0

hpack==4.1.0
httpcore==1.0.9
httplib2==0.22.0
httpx==0.28.1
hyperframe==6.1.0
idna==3.7
Jinja2==3.1.5
joblib==1.5.1
kiwisolver==1.4.8
MarkupSafe==3.0.2
matplotlib==3.10.0

mpmath==1.3.0
msgpack==1.1.1
networkx==3.4.2
numpy==2.1.1

opencv-python==4.11.0.86

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-1

APPENDIX

packaging==24.2
pandas==2.2.3
pillow==11.1.0
proto-plus==1.26.1
protobuf==6.31.1
psutil==6.1.1
py-cpuinfo==9.0.0
pyasn1==0.6.1

pyasnl modules==0.4.2
pycparser==2.22
PyJWT==2.10.1
pyparsing==3.2.1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
pytz==2025.1
PyYAML==6.0.2
requests==2.32.3
requests-toolbelt==1.0.0
rsa==4.9.1
scikit-learn==1.7.1
scipy==1.15.1
seaborn==0.13.2
setuptools==75.8.0
six==1.17.0
sniffio==1.3.1
sympy==1.13.1
threadpoolct]==3.6.0
torch==2.6.0+cul 18
torchaudio==2.6.0+cul18
torchvision==0.21.0+cul 18
tqdm==4.67.1
typing_extensions==4.12.2
tzdata==2025.1
ultralytics==8.3.75
ultralytics-thop==2.0.14
uritemplate==4.2.0
urllib3==2.3.0

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Appendix B: Poster

Parking Finder Mobile Applicatio

Introduction

Urban growth and growing car ownership have led to the
difficulty of finding parking. This project aims to develop real-
time parking detection system with smart navigation mobile app

to solve this difficulty. |
/&
- v WU
- Objectives
* develop a real-time » developing a vehicle » create a mobile

parking space detection and tracking application for a

vacancy detection system with parking smart parking

system finding status navigation system

Methodology

« Fined-tuned pre-trained YOLOv8 Model for parking space
vacancy and vehicle detection

* Integrate DeepSORT algorithm for vehicle tracking

» Stored detection result in Firebase

» Flutter-based mobile application for displaying parking lot layout
and spaces availability

» Dijkstra's algorithm calculates shortest path to nearest space

* Smart navigation based on nearby vehicle status and flow
direction

This project offers a smart, affordable parking solution via
real-time detection, tracking, and navigation with the aim of

reducing congestion, saving time, and enhancing the urban
driving experience.

By: Tham Chee Ming

UT R Faculty of Information and Technology
D 1IN Communications (FICT) Supervisor: Mr. Tou Jing Yi

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

