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ABSTRACT 

 

This project explores the use of natural language processing techniques, 

specifically Large Language Models (LLMs), for fundamental stock analysis by 

leveraging qualitative data in corporate financial reports and disclosures. It addresses 

the challenge of information overload faced by retail investors by automating the 

collection, processing, and interpretation of fundamental data. The system employs a 

multi-agent architecture integrating web scraping of financial reports, LLM-based 

report processing of lengthy documents, and embedding the resulting processed data 

into a vector database to enable semantic search and efficient information retrieval. 

Using vector embeddings and retrieval-augmented generation, the system acts as a 

“virtual analyst” that retrieves relevant information and synthesizes coherent responses 

to complex investor queries about a company’s fundamentals. The results demonstrate 

that this LLM-driven approach efficiently distills key insights from enormous 

unstructured texts, thereby making qualitative analysis more accessible and bridging 

the gap in analytical capability for retail investors. The project provided a functional 

proof of concept and highlighted opportunities for further improvements, including 

expanding data sources, improving summary accuracy, and strengthening the system’s 

real-time information integration capabilities. 

 

Area of Study: Application Development, Large Language Models 

 

Keywords: Fundamental Analysis, Natural Language Processing, Web Scraping, 

Information Retrieval, Semantic Search 
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CHAPTER 1 INTRODUCTION 

In this chapter, we present the background and motivation for our project, highlighting 

the significance of fundamental analysis in the stock market for individual investors. 

We outline our contributions to simplifying and automating this process and provide an 

overview of the project structure. 

 

1.1 Problem Statement and Motivation 

Retail investors often struggle with fundamental stock analysis due to the 

enormous volume and complexity of information available. Critical data is scattered 

across lengthy financial reports, company prospectuses, news articles, and policy 

announcements, making it very challenging for an individual to digest and interpret all 

relevant qualitative information. This problem is compounded by the fact that 

professional analysts have teams and tools to work through such data, whereas retail 

investors are usually on their own. As a result, there is an information asymmetry, 

where some important signals about a company’s performance or risks may be 

overlooked by non-experts, leading to suboptimal investment decisions. Therefore, 

there is a clear need for a solution that can bridge this gap by automatically gathering 

and analyzing the financial data that provides a solid foundation for investment 

analysis. 

Recent advances in Artificial Intelligence (AI), especially in Large Language 

Models (LLMs), provide a significant opportunity to address this challenge. LLMs like 

OpenAI’s ChatGPT and Google’s Gemini have demonstrated an incredible ability to 

understand and generate human-like text, which means they can potentially read and 

summarize complex financial documents just as a human analyst would. Notably, early 

research by Lopez-Lira and Tang showed that even a general-purpose LLM (ChatGPT) 

can interpret financial news headlines and predict short-term stock price movements 

[1]. This suggests that LLMs can extract meaningful signals from unstructured financial 

text, motivating their use in aiding stock market analysis. Therefore, the motivation for 

this project is to leverage LLM’s natural language understanding to perform 

fundamental analysis tasks at scale, which includes scanning through huge amounts of 

financial reports and news to identify the key insights for investors. By doing so, we 
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aim to create a system that acts as a virtual stock analyst for retail investors, an AI-

powered assistant that can quickly and efficiently digest large amounts of information 

and provide coherent, insightful analysis in a timely manner. 

 Furthermore, this project is driven by the observation that while quantitative 

trading algorithms and technical analysis tools are abundant, there is a lack of accessible 

tools focusing on qualitative analysis of fundamentals for retail investors. As Benjamin 

Graham famously stated, “In the short run, the market is a voting machine but in the 

long run, it is a weighing machine,” highlighting the importance of fundamental 

analysis in evaluating a company’s intrinsic value beyond short-term market 

fluctuations [2]. Given the proven importance of qualitative factors in determining a 

company’s intrinsic value, an AI system that can handle such qualitative data could 

significantly enhance decision-making. In summary, this project exists to solve the 

problem of information overload in fundamental stock analysis, with the motivation to 

simplify complex analysis through advanced technology, allowing retail investors to 

make more informed and confident investment choices. 

 

1.2 Project Scope 

This project focuses on the development of a multi-agent AI system for 

fundamental stock analysis, emphasizing the integration of LLMs with qualitative 

financial data. This project utilizes fundamental approaches such as evaluating the 

intrinsic value and business health of companies based on the information about their 

financials and operating environment. 

 The system will digest publicly available textual data that are crucial to 

fundamental analysis, which include corporate disclosures such as annual reports, 

quarterly reports, company prospectuses, and relevant financial news articles and 

announcements. The core functionality is to collect, process, analyse qualitative 

information to produce useful insights about a company’s stock. Specifically, the 

system will identify and extract key fundamental indicators and narratives like business 

descriptions, management commentary, risk factors, competitive landscape, significant 

partnerships or supply chain relationships. The analysis will yield outputs such as 

summarized reports on a company’s financial health, identified strength and 
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weaknesses, and potentially an evaluation or rating of the stock’s performance. 

Meanwhile, the system may incorporate some basic quantitative analysis like reading 

financial statements from reports, its emphasis is on interpreting the textual information 

rather than performing deep numerical financial modelling from scratch. 

 This project will implement a multi-agent design, where each different 

components will handle different tasks in a coordinated way. For instance, one agent 

may be responsible for continuously fetching new financial documents and news (data 

collection agent), another may specialize in parsing and summarizing those documents 

using LLM capabilities (analysis agent) and another may construct a knowledge graph 

of entities (relationship-mapping agent). These different components will communicate 

and share information, in the end working together to emulate the comprehensive 

analysis that a human analyst or team of analyst might perform. By defining these 

agents and their interactions, the project scope includes designing the workflow for how 

raw data becomes a refined analysis through the system. 

The end deliverable is expected to be a prototype “virtual stock analyst” tool. 

This includes developing a user interface which a retail investor can query the system 

to ask for an analysis of a particular company and receive an intelligible, well-structured 

response from the system. This response might be a written report or answers to specific 

questions about the company. The system will provide information and analytical 

opinions to support the user’s decision. Therefore, this project will demonstrate the 

system’s capabilities through case studies or examples, such as analysing a sample 

company and the reaction to a breaking news event that affecting that company. 

 

1.3 Project Objectives  

The focus of this project is on the module of developing a vector database for 

company reports, which plays a crucial role in enabling the system to provide accurate 

and timely insights about companies. The objectives of this module are divided into 

three sub-objectives: 

• Develop an Automated Multi-Agent Analysis System 

Design and implement a multi-agent software system capable of autonomously 

gathering and processing financial information. This includes agents for 
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collecting financial reports and company prospectuses, an agent powered by 

LLMs to parse, analyze and summarize these qualitative data. This architecture 

should allow these components to work collaboratively, mimicking the 

workflow of a human analyst team. 

• Leverage LLMs for Qualitative Data Interpretation 

Utilize state-of-the-art LLMs to perform tasks such as summarizing annual 

reports and extracting key facts from prospectuses. This LLM-driven 

components should be able to parse complex financial text which includes 

charts, tables, diagrams, infographics, and illustrations that cannot be converted 

directly into text and produce outputs that are accurate and useful. 

• Real-Time Information Integration 

Enable the system to incorporate real-time or recent information, particularly 

from the financial reports and announcements. The objective is that the system 

should be able to update its analysis when new information appears. For 

instance, when a company releases a new quarterly or annual report at the end 

of its reporting period, the system’s financial-reports agent should automatically 

fetch it and the LLM analysis agent should immediately parse and analyze the 

latest disclosures. This ensures that the output remains current and relevant, just 

like a human analyst would continuously update their view based on new 

information. 

 

1.4 Impact, Significance and Contribution 

 This project’s expected impact is enormous, both for individual investors and 

for the broader intersection of AI and finance. Firstly, for retail investors, which having 

access to this virtual analyst could be game-changing. It can effectively lower the 

barrier to performing comprehensive research on stocks. Individuals who lack the time 

or training to read dense financial reports would benefit from this concise AI-generated 

analyses, leading to a more informed investment decisions. In the long run, this could 

make investment research more accessible, by narrowing the gap between what 

institutional investors with large research departments and retail investors can know 

about a company. If successful, this tool could also empower more people to invest 
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wisely, potentially improving financial outcomes for those who previously might have 

depended on inadequate and insufficient information. 

 Besides that, this project is important because it advances the application of 

LLMs in the financial analysis. While previous works have started to show that LLMs 

can interpret financial related text, this project takes a novel approach by integrating 

multiple components of fundamental analysis into one system. The system is no longer 

for a single-use case like just parsing news sentiment alone or reading one financial 

report itself. Instead, this system combines multiple sources and tasks into one, which 

is an ambitious initiative to imitate a comprehensive analyst. This integration is an 

important contribution because it explores how far we can utilize AI towards complex, 

multi-step reasoning in a critical fields. A successful implementation could inspire 

further research into multi-agent AI architectures for other knowledge-intensive fields 

as well. 

 

1.5 Background Information 

 Fundamental analysis is the core concept in investing, which refers to the 

evaluation of a company’s intrinsic value and financial health through deep analysis of 

its financial statements, operational data and the context in which it operates. In general, 

fundamental analysis involves examining a company’s economic and financial reports, 

that includes all qualitative and quantitative information, to determine an estimate of its 

true value [3]. This approach looks at factors like revenues, earnings, profit margins, 

assets and liabilities, as well as the qualitative aspects such as the competence of 

management, company’s competitive advantages and industry trends. The goal is to 

determine whether the current market price of a company’s stock is consistent with its 

fundamentals or if there is a mispricing, either undervaluation or overvaluation that 

could be exploited by investors. 

To perform fundamental analysis, traditional analysts rely on the financial 

statements such as income statements, balance sheets, cash flow statements and 

company disclosures. These provide the quantitative information and are often used to 

calculate ratios like Return on Equity (ROE), Price-to-Earnings (P/E) and debt-to-

equity. This can help in comparing companies and track performance over time. 
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However, equally important is the qualitative information found in those reports. This 

includes the company’s business model, list of risk factors, and the outlook given by 

executives. For example, the Management Discussion and Analysis (MD&A) section 

in every annual reports can give insight into the management’s strategy and perspective 

on the year’s results, which is some information not captured in numbers. Not only that, 

fundamental analysts also need to pay attention to some external factors like industry 

conditions, macroeconomic indicators and regulatory changes. All of these is very 

important in forming a complete picture of a company’s prospects. 

 Fundamental analysis is always been a labour-intensive process which manually 

done by experts. Research analysts at investment firms might have to go through 

multiple companies, spending weeks or even months reading through each company’s 

reports. Then, they would write research reports by summarizing their findings and 

providing some of their investment recommendations. As for retail investors, they 

usually have limited resources and often had to rely on these reports written by the 

experts or the simplified metrics available on financial websites. This is where 

advanced computing and artificial intelligence come in, to automate some of the work 

of these analysts. 

 In recent years, there were numerous attempts that have introduced automation 

and quantitative algorithms into stock analysis. Machine Learning (ML) alongside with 

statistical techniques have been applied to forecasting stock prices and predicting trends 

using historical numerical data. However, most of this work falls under the technical 

analysis part, also known as quantitative strategy, where it often ignores the importance 

of the rich qualitative information that used by fundamental analysts. We have seen 

more and more efforts that incorporate textual data (news or reports) into models, which 

through simple natural language processing (NLP) techniques initially. This involves 

sentiment analysis using dictionaries of positive/negative words and topic modelling of 

annual report text to identify themes. 

 Natural language processing models have been well developed and powerful 

enough to truly understand financial text. Early approaches included domain-specific 

models like FinBERT (a variant of BERT tuned to finance text) for sentiment 

classification of news or reports [4]. However, fully interpreting a document in context 

remained challenging. An important turning point, which is when the introduction of 
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LLMs, pre-trained on massive text datasets. LLMs were not only trained on financial 

data, but they appear to have absorbed a lot of financial knowledges from the internet. 

LLMs can also perform complex language tasks with minimal additional training 

required. Therefore, LLMs have shown the ability to summarize articles or answer 

questions about a given text with an understanding of nuance. 

 In addition to LLMs, the concept of a multi-agent system forms part of our 

project’s background. Multi-agent systems in AI refer to a collection of autonomous 

agents that interact within an environment to achieve certain goals, collaborating and 

dividing tasks among themselves. This concept has been used in various fields and is 

increasingly seen in complex AI applications where single model is insufficient or 

inefficient. For instance, the process of fundamental analysis in our project can be 

considered as a pipeline of distinct tasks such as gather data, analyse text, compare 

information and output conclusions, where each can be handled by a different 

specialized agents. By having these as separate components, the system can be more 

modular and each agent can be optimized or fine-tuned for its specific function. 

 As conclusion, the background of this project sits between finance and AI 

innovation. AI, especially LLMs technology and multi-agent system design provides 

the tool that has only recently become powerful enough to tackle those challenges in a 

comprehensive approach. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

  Fundamental stock analysis traditionally involves an in-depth review of 

financial statements and qualitative disclosures to assess a company’s value [2]. In 

recent years, advances in LLMs have opened up new possibilities for automating this 

process using unstructured text data like news, reports and transcripts. Since 2023, there 

has been a significant increase in research applying this state-of-the-art LLMs to tasks 

ranging from sentiment analysis of news to automated reading of annual reports. This 

chapter surveys the latest academic and industry work on using LLMs and AI for 

fundamental stock analysis with qualitative data. 

 

2.2  Market Prediction from News and Sentiment with LLMs 

 One of the earliest breakthroughs was demonstrating that general LLMs can 

interpret financial news for stock prediction. Lopez-Lira & Tang showed that 

ChatGPT’s analysis of news headlines can successfully predict short-term stock price 

movements [1]. In their study, ChatGPT was prompted to evaluate whether a headline 

was good, bad or irrelevant for a firm. These LLM-generated sentiment scores had 

significant power to predict upcoming day returns, outperforming traditional sentiment 

analysis method. However, this effect was strongest for smaller stocks and after 

negative news, suggesting LLMs capture nuanced information that retail investors 

underreact to.  

 In 2024, Wu applied a similar approach in the Chinese market, where news were 

fed to both ChatGPT and domestic Chinese LLMs (Alibaba’s Qwen), to score their 

impact on stocks [5]. The results obtained is consistent with Lopez-Lira & Tang, such 

that the daily sentiment scores from LLMs correlated with the next-day returns and 

enabled profitable backtested strategies. An interesting finding was that the market 

seems to be more sensitive to negative news, as short strategies using the LLM news 

score outperform long strategies. These works underscore that news sentiment analysis 

with LLMs has become a useful tool for return forecasting, often incorporating earlier 

sentiment methods. 
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 In addition to news headlines, researchers have explored other textual sentiment 

signals. For example, social media and real-time feeds are a natural extension, although 

rigorous academic research (after 2023) is still rare. Overall, the general view after 2023 

is that LLMs can read the news or reports like an analyst, extracting sentiment and 

signals that translate into measurable predictability of returns. However, these studies 

are often limited to short-term forecasts and rely on single data sources, without 

integrating a deeper fundamental analysis. 

 

2.3 Financial Report and Disclosure Analysis with LLMs 

 Another additional research approach examines using LLMs to parse company 

disclosures like annual reports, regulatory filings, and earnings call transcripts, which 

are the core component to fundamental analysis. These documents are long and 

complex, making it an ideal candidate for LLM-driven summarization and insight 

extraction. Kim, Muhn & Nikolaev have lead multiple studies in this area, where one 

of the study investigated whether ChatGPT could help investors digest large amount of 

corporate filings [6]. They utilized GPT-3.5 to summarize SEC filings and earnings call 

transcripts, they found that AI-generated summaries distilled the most relevant 

information.  

Notably, the sentiment of the ChatGPT’s summary correlates more strongly 

with stock’s market reaction than the sentiment of the original full document. In other 

words, LLMs was better at pinpointing the material content driving investor responses, 

effectively filtering out the “noise” in long reports [6]. The overall conclusion of the 

study is that generative AI adds considerable value in distilling financial disclosures, 

making it easier for retail investors to grasp essential information. This is a significant 

development in qualitative analysis where tasks like reading a 100+ pages reports and 

assessing its tone, once was the domain of experienced analysts, can now be partially 

automated with LLMs summarization. 

 Industry projects have similarly targeted financial statement analysis with 

LLMs. Gupta introduced GPT-InvestAR, which uses ChatGPT to read annual reports 

and generate quantitative features for stock picking [7]. In this approach, the LLM 

produces a summary and key points from each annual report, which are then encoded 
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into a “quant-style” numerical dataset, which are then fed into a machine learning 

model to predict future stock returns. In forward testing on historical data, the LLM-

augmented model achieved promising outperformance over the S&P 500 [7]. 

Essentially, this pipeline uses LLMS to do the tedious task of reading and distilling 

fundamental reports for possibly thousands of companies, then uses those findings in a 

quantitative strategy. 

 

2.4 Earnings Forecasting and Financial Reasoning with LLMs 

 A key aspect of fundamental analysis is predicting a company’s future earnings 

or performance. Recent research suggests that LLMs, when prompted correctly, can 

perform this analytical reasoning at a high level. Another work by Kim, Muhn & 

Nikolaev, asked whether an LLM could analyse financial statements like a professional 

analyst to predict earnings changes [8]. In their experiment, they fed GPT-4 a 

standardized set of financial statements for a company, purposely without any textual 

narrative or management discussion. The LLM was able to predict the likely direction 

of future earnings even with just raw numbers. This outperforms human analyst in 

accuracy and matches the performance of state-of-the-art specialized machine learning 

models. 

 LLMs showed particular strength in cases where human analysts often made 

mistakes, suggesting that it finds subtle patterns or relationships in financial situations 

[8]. Notably, because the model was not given any data beyond the financial statements, 

its success suggests it is able to make immediate financial inferences rather than simply 

repeating learned answers. Besides that, this work is crucial because it shows that LLMs 

can handle numeric financial analysis tasks that traditionally require expert judgment. 

This also hints that LLMs, especially advanced ones like GPT-4o, Gemini 2.5 Pro, can 

integrate quantitative data with qualitative reasoning. One limitation worth noting is 

that adding too much narrative context to a single prompt increases the risk of model 

errors or “hallucinations.” 

 In summary, the application of LLMs to earnings forecasting and reasoning is 

new but growing. A major advantage observed is the explainability, where LLMs can 

output a human-readable explanation for its prediction, unlike a typical ML model. 
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However, challenges remain in ensuring factual accuracy when dealing with long text 

contexts and integrating real-time data. The key is to orchestrate these capabilities 

within a robust analytical pipeline, which motivates our proposed multi-agent system. 

 

2.5 LLM-Driven Investment Report Generation and Decision Support 

 Beyond the specific prediction tasks, some projects have used LLMs to produce 

full investment analyses or recommendations. For instance, the FinSphere system, 

which is a conversational agent that answer user queries about stocks by combining 

real-time financial data with LLM analysis [9]. Their system can generate a detailed 

stock analysis report including assessments of financial ratios, recent news, and 

valuation metrics in a conversational format. It integrates an instruction-tuned LLM 

with quantitative tools and live data feeds. This comprehensive framework has achieved 

significant improvements in analysis quality and authenticity, outperforming both 

general models like GPT-4 when they were not similarly enhanced. 

 Another interesting example is an open-source project, AI Hedge Fund by the 

user Virattt on GitHub [10]. The project simulates a team of AI-driven investment 

agents working together, with each agent representing a different investment strategy 

or role. For instance, they implemented a “Ben Graham Agent” focusing on classic 

value investing, a “Cathie Wood Agent” seeking growth and innovation, and others 

modelled after famous investors. Not only that, they also have a “Valuation Agent” that 

computes intrinsic values, the “Sentiment Agent” that gauges market mood and a 

“Fundamental Agent” that parses financial metrics. This multi-agent architecture is 

essentially an AI investment committee that generates and executes investment thesis 

from multiple perspectives. It illustrates how to scale an LLM-centric system into a 

complete process, from data extraction to analysis to decision making. This approach 

addresses the limitations of a single LLM approach by introducing modularity and 

specialization, which forms like a team of human analysts with different specialties 

working together. 
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2.6 Limitations of Prior Work and Research Gaps 

 Although recent literature is promising, some limitations and gaps remain. 

Firstly, many studies only focus on isolated narrow sub-tasks. For instance, Lopez-Lira 

& Tang consider news sentiment for one-day return prediction, but they do not connect 

this to longer-term fundamental valuation or portfolio construction [1]. This narrow 

focus means previous solutions often lacked a complete fundamental analysis pipeline. 

In practice, analysts combine multiple sources of information like news, filings, 

industry reports, macro data, to form a comprehensive view. However, very few works 

so far have achieved this level of integration. Multi-agent system like the AI Hedge 

Fund project is an exception, but even here, this approach is in its early stages and 

mostly unvalidated with real financial results. 

 Evaluation and objectivity are also a focus. Some early works performed well 

and surpassed the market, but these need to be interpreted carefully. For instance, 

Erdem found a ChatGPT-chosen portfolios beat the S&P 500 over 6 months, but this 

was attributed to higher risk exposure and did not produce a statistically significant 

alpha value [11]. Furthermore, LLMs are prone to hallucinations, which involves 

making up facts, that can be dangerous in the financial world. While the summarization 

task has demonstrated accuracy, in some cases the LLM may infer incorrect 

relationships or overlook key nuances. Ensuring the factual correctness and stability of 

outputs remains a challenge, highlighting the need for interpretability frameworks. 

 A major limitation of previous studies is that they focus on single-company 

analysis and do not consider the interconnectedness between companies. Many existing 

studies treat each company in isolation, ignoring the upstream and downstream linkages 

that link companies together in practice. This independent-company approach ignores 

how a company’s suppliers, customers, and strategic partners can significantly 

influence its performance. For example, a shock to one company can be transmitted to 

other companies through the customer-supplier channel, which means that isolated 

analysis will miss these ripple effects. Companies in reality are embedded in complex 

networks of business relationships, so ignoring such inter-company dependencies 

constitutes a significant research gap. By ignoring the broader corporate ecosystem, 

including supply chain connections and strategic alliances, prior LLM-driven 
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fundamental analysis may fail to capture important contextual and risk factors that 

influence stock performance. 

 

2.7 Suggested Improvements and Proposed Solutions 

 Given the above, several improvements and solutions are suggested. First, a 

common suggestion is to adopt a modular, multi-step approach to financial analysis 

with AI. Instead of one long prompt or model trying to do everything, breaking down 

the task into stages. For example, different stages for information retrieval, analysis and 

recommendation. This can improve overall accuracy and mange complexity. This also 

aligns with the multi-agent concept, where each agent can be optimized for its own task. 

Not only that, ensuring all the modules to share information effectively is an active area 

of development. 

 To address the lack of inter-company dependencies, this project proposes the 

development of a company relationship mapping system as a key advancement. The 

system will explicitly capture inter-company dependencies by collecting relationship 

information from financial reports and corporate disclosures, with a focus on 

identifying upstream suppliers, downstream customers, and strategic partnerships. 

Conceptually, the mapping will compile a network of companies where the edges 

represent significant business relationships based on qualitative disclosures. Next, by 

incorporating this relationship map into the analysis, LLMs can assess how 

developments in one company affect related companies. 

 Integrating awareness of inter-company relationships promises to produce a 

more comprehensive and realistic fundamental analysis than previous single-company 

approaches. In summary, the proposed relationship mapping technique will extend 

LLM-based stock analysis beyond isolated entities, enabling the model to consider 

supply chain and partnership dynamics as part of qualitative analysis. 
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CHAPTER 3 SYSTEM METHODOLOGY 

This chapter details the technical approach adopted to transform raw company 

documents into a query-ready knowledge base that can be used for fundamental stock 

analysis. The overall system architecture and modular, pipeline-oriented design 

principles are outlined. This provides a comprehensive blueprint for how the proposed 

system will achieve the functional and performance goals. 

3.1 System Model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 Overall Model of the System 

 The Development of a Vector Database for Company Reports is one part of the 

overall system for “Fundamental Stock Analysis with LLMs and Qualitative Data”. It 

specifically handles the ingestion, processing, storage and retrieval of company reports. 

In the structure of the broader system, this module provides foundational data that other 

modules can utilize. For instance, a separate module will use these information from 

the reports to find relationships between companies, and an overall evaluation module 

might combine this data with news analysis.  
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This Development of a Vector Database for Company Reports consists of two 

tightly integrated components, a Company Report Database Module and a Vector RAG 

Module. Together, these components transform raw financial documents from Bursa 

Malaysia into a structured knowledge base and power an intelligent Q&A system. The 

Company Report Database Module handles data ingestion and preparation, such as 

making the data well-structured and ready for chunking and embedding, while the 

Vector RAG Module provides a chat-based interface that performs semantic search and 

retrieval augmented generation on that vectorized data. 

3.1.1 Company Report Database Module 

 

 

 

 

 

 

 

 

 

Figure 3.1.1.1 Company Report Database Module Block Diagram 

 The design of this Company Report Database Module is illustrated in a top-

down system block diagram as shown in Figure 3.1.2, which shows all the major 

components and their interactions. Each component or agent in the diagram is 

responsible for a distinct functionality, and collaborate together to form a pipeline that 

ingests Bursa Malaysia reports, preprocess and validates them, and stores both 

structured data and text embeddings. The module creates a NoSQL document store for 

original and processed reports data, and a vector index of the textual content for 

semantic search. 
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 This module is responsible for the collection, processing, storage and retrieval 

of company reports data. It takes raw corporate disclosures (annual reports, quarterly 

reports, prospectuses) from Bursa Malaysia and converts them into a query-ready 

database. The processed data is structured and cleaned to suit subsequent chunking and 

embedding steps, ensuring it can be effectively loaded into a vector database for 

semantic search.  

3.1.2 Vector RAG Module 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2.1 Vector RAG Module Block Diagram 

 The Vector RAG module is served as a chat-based Retrieval-Augmented 

Generation workflow to answer user questions by drawing on the vector database of 

company reports. In essence, this module allows a user to ask natural language 

questions about companies, and it will retrieve the most relevant information from the 

reports via the embeddings and generate a coherent answer. This approach extends a 

base large language model with the latest company-specific knowledge, avoiding the 

model’s limitations, such as hallucinations and outdated training data by grounding 

answers in an external knowledge base. 

In summary, the Vector RAG Module acts as a smart Q&A agent on top of the 

vectorized company report database. A user can query it in a chat interface, and 

behind the scenes the module will perform semantic search over the embedded 

knowledge base and then utilize an LLM to generate an answer that integrates the 

retrieved information. This design makes the system behave like a “virtual analyst,” 
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capable of synthesizing insights from across many documents and delivering answers 

to complex questions about a company’s fundamentals. 

3.1.3 Integration with Inter-Company Relationship Database 

 An important aspect of this project is how the above two components integrate 

with the Inter-Company Relationship Database Module (a separate but related 

subsystem). The Company Report Database’s processed data provides a rich source of 

facts and disclosures that can be used to construct an ontology and knowledge graph of 

relationships between companies. For example, by scanning the reports’ content, the 

system can identify mentions of partnerships, supplier-customer relationships, joint 

ventures, or other inter-company links. The relationship database module uses this 

information to build a network graph where companies are nodes and their significant 

business relationships form the edges. This means that from the raw textual data, such 

as “Company A’s annual report mentions Company B as a major supplier”, the system 

can formally represent that Company A → Company B has a supplier relationship in 

the graph. 

 The integrated system leverages both the structured relationship knowledge and 

the unstructured textual knowledge via RAG. The relationship mapping module can 

query the Company Report Database Module to get relevant data for populating the 

graph. Conversely, when answering a complex user query that involves multiple 

companies or dependencies, the relationship module’s graph-based agent can call upon 

the Vector RAG Module to enrich the answer. For example, suppose a user asks, “How 

might Company A’s recent earnings affect its major suppliers?” The relationship 

database can identify Company A’s major suppliers from the ontology, and then for 

each supplier, use the vector database to retrieve contextual statements about the 

business relationship or any guidance given. The Chat Agent can then generate a 

nuanced answer that not only lists the related companies but also explains the inter-

company impact with evidence from the reports, such as referring to Company A’s 

outlook statements or the supplier’s dependency noted in their own financial reports. 

This synergy between the graph and RAG components leads to more comprehensive 

and insightful answers than either approach alone. 
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3.2 Use Case Diagram 

3.2.1 Module 1: Company Report Database Module 

 This module is responsible for ingesting, processing and storing company 

disclosure documents (annual report, quarterly reports, prospectuses). It provides a 

foundational repository of structured company information that other parts of the 

system can utilize. An Admin user oversees this module, primarily by triggering the 

retrieval and update of report data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1.1 Company Report Database Module Use Case Diagram 

 The Admin initiates the process of scraping and processing company reports. 

The use case shown in Figure 3.2.1.1 represents the functionality for collecting new 

financial reports and transforming them into structured data. 

 The Admin triggers the system to fetch new company reports and incorporate 

them into the database. This includes scraping all the financial reports from Bursa 

Malaysia’ website and then processing these documents using LLM techniques. The 

system extracts key information such as report sections and definitions and parsed 

content, ensuring the data is structured for analysis. Finally, it stores the processed 
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results in persistent storage, including a document database and a vector database for 

downstream use. 

3.2.2 Module 2: Vector RAG Module 

The Vector RAG Module provides the user question-answering capability. It 

uses the processed data from the report database to answer users’ questions. In this 

module, an end user asks questions in natural language, and the system employs vector 

semantic search and LLM-based generation to retrieve information and produce a 

helpful answer. This design allows the system to act as a “virtual analyst” that finds 

pertinent facts and delivers coherent responses to complex queries, effectively handling 

both straightforward data lookups and open-ended analytical questions. 

 

 

 

 

 

 

 

 

Figure 3.2.2.1 Vector RAG Module Use Case Diagram 

 The End-User interacts with this module by posing a question, such as, asking 

about a company’s financials or management commentary. The use case represents the 

system’s functionality to process the query and return an answer. The diagram in Figure 

3.2.2.1 shows that the End-User initiates the Ask Questions use case, which the module 

handles internally by retrieving relevant knowledge through semantic searching and 

formulating a final response. 

 The End-User poses a natural-language question to the system about a 

company’s fundamentals and receives a final answer. This covers the retrieval of 

relevant information from the vector report database and the generation of a response 
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by the system’s language model. The. Module utilizes retrieval-augmented generation 

where it finds semantically relevant pieces of stored text using vector embeddings, then 

a chat agent with LLM synthesizes those pieces into a coherent answer for the user. 

This allows the system to effectively address both direct factual queries and more open-

ended analytical questions about the company. 

3.3 Activity Diagram 

3.3.1 Module 1: Company Report Database Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1.1 Company Report Database Module Activity Diagram 

 Figure 3.3.1.1 illustrates the step-by-step workflow of Company Report 

Database module from start to finish. The process begins when the Admin initiates the 

scraping operation. The system checks Bursa Malaysia for any new financial report 

documents. If new reports are found, it enters a loop to download each PDF, extract 
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and parse its contents using LLMs, validate the extracted data, perform chunking and 

embedding, and then store the results in both the document database and the vector 

database. After each report is processed, the system checks if more reports remain to 

be handled. Once all new documents have been ingested, the flow terminates at the end 

node.  

3.3.2 Module 2: Vector RAG Module 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2.1 Vector RAG Module Activity Diagram 

 Figure 3.3.2.1 shows the flow of control when an End-User asks a question, and 

the system returns an answer. The process starts with the user’s query. The question is 

first embedded into a vector representation, which is then used to query the vector 

database for relevant information. The decision node checks whether any relevant 

content was found in the knowledge base. If yes, the system invokes the LLM to 

generate an answer using those relevant report snippets as context. If no relevant 

content is available, the system hand this by preparing a response indicating it has no 

information. In either case, the final step is returning an answer to the End-User. The 

flow terminates. This activity diagram highlights how the module integrates RAG 

which involves both retrieval (vector similarity search) and generation (LLM-based 

answer formulation) to satisfy the user’s query. 



CHAPTER 4 
 

22 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

CHAPTER 4 SYSTEM DESIGN 

4.1 System Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.1 System Block Diagram 

4.1.1 Web Scraping Agent 

This report scraper component is the data ingestion point for the whole system. 

Its function is to retrieve financial reports (annual reports, company prospectuses) from 

Bursa Malaysia’s official website. This agent periodically checks the target website for 

new financial documents and it can also be triggered when a user requests a report that 

is not yet in the database. It uses different web scraping tools to navigate through the 

site and download the report files (typically in PDF format). Besides that, this agent not 

only fetches the PDF documents, but it also collect additional data such as the report 
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title, company name and code, financial period and the publication date. This metadata 

helps in organizing and referencing the documents later. 

 The agent automatically crawls the specified sources to retrieve the latest 

financial documents. It can handle both HTML webpages and PDF files. For HTML 

content, the agent employs web crawling and parsing techniques to extract relevant text 

and data fields. For PDF reports, it downloads the file and prepares them for extraction 

in subsequent steps. By automating the retrieval of these documents, the Web Scraping 

Agent ensures a comprehensive and timely data collection with minimal manual effort. 

The output of this stage is a collection of raw report data, which will be passed along 

to the next component for processing. 

 

4.1.2 Data Pre-Process Agent 

 The Data Pre-Process Agent is responsible for parsing incoming company 

reports and extracting structured information from them. It uses LLMs to perform 

multiple sub-tasks in parallel, thus speeding up the processing of large documents. The 

agent executes three LLM-driven extraction tasks and then persists every result per 

section to MongoDB for reuse by other modules. These extraction tasks include 

prospectus definitions extraction for ontology, table of contents extraction and parallel 

section extraction from TOC. 

 Many financial reports especially prospectuses contain a “Definitions” or 

glossary section defining key terms and abbreviations. The agent uses an LLM prompt 

to identify if such a section exists and to extract the definitions of terms. This is done 

by instructing the LLM to scan the text for a definitions list and output a structured 

collection of term-definition pairs. By leveraging an LLM’s understanding of language, 

the agent can accurately pull out the glossary of terms which can be important for 

interpreting the rest of the report. 

 Next, using the document’s internal TOC page, the agent determines the major 

section headings of the report. It prompts an LLM with the full report text to output a 

list of the report’s sections and sub-sections in order. The LLM is instructed via a 

specially crafter prompt, like “Extract the table of contents” and returns the section 

titles, which the agent parses as a JSON list of headings. This TOC extraction step 
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yields an ordered outline of the report’s structure, which is critical for guiding the next 

phase of extraction. 

 With the TOC in hand, the agent then extracts the content of each section one 

by one, often using LLMs. For each section title form the TOC, the agent can prompt 

the LLM to retrieve the text of that section from the report. Essentially, the LLM acts 

as a reader that, given the section name and the full report text, will output the exact 

content of that section.  This divides a 100+ page report into logical chunks, each 

labelled by section. By performing these LLM extraction calls asynchronously, the 

agent can handle multiple sections in parallel, significantly accelerating processing. The 

result is a collection of section texts categorized by section name. Each section’s 

content is now available as a clean text that can further analysed. 

 Traditional PDF pipelines frequently lose semantic content carried by visuals 

like charts, infographics and figures that management uses to communicate trends. By 

contrast, the LLM is able to interprets visual structure and language jointly, generates 

searchable captions and structured descriptors for each figure. This boosts retrieval 

recall for queries that would otherwise miss non-textual evidence. By the end of 

preprocessing, the originally unstructured report is converted into a structured dataset. 

It contains cleaned and standardized financial data as well as condensed textual insights.  

 

4.1.3 Data Validation Agent 

After preprocessing the reports, the Data Validation Agent checks for the 

integrity and quality of the processed data. Its main role is to validate and clean the data 

before it is stored in database. This agent verifies that all essential information from the 

original financial documents is present and correctly captured in the processed data. It 

checks for any missing key values and also confirms that the data are in the correct 

formats. Not only that, it makes sure that there are no duplicates or inconsistencies 

introduced during the scraping or preprocessing stages. If any errors are detected such 

as incomplete data sections, misparsed values or contradictory information, the agent 

will flag them for further review or attempt to correct them. For instance, it may attempt 

to re-process a particular missing section of a report. Therefore, the output of the Data 

Validation Agent is a clean, validated dataset of company reports and summarized texts. 
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This helps to ensure only reliable and high quality data proceeds to the storage stage, 

which is important for maintaining trustworthiness of the system’s outputs. 

 

4.1.4 Data Storage Agent 

 The Data Storage Agent is responsible for persistently storing both the original 

documents, processed data and the vector embeddings of the textual data. The system 

uses a dual storage approach to handle different data types optimally, a NoSQL 

document database for flexible storage of documents and metadata, and a vector 

database for efficient similarity search on text embeddings. 

 NoSQL Document Database is used to store all the original financial documents 

and the processed company’s data. This includes the company name and code, report 

metadata, the extracted structured financial metrics and the textual content of each 

section. A document store is chosen for its flexibility and scalability in handling semi-

structured data. For instance, financial reports can greatly vary in sections and length, 

which a NoSQL database can accommodate without a fixed schema. Each report is 

stored as a document, making it easy to retrieve the full report details or update them. 

 In parallel, the qualitative text extracted from each report is converted into a 

high-dimensional numeric vector using an embedding model. An embedding is a dense 

vector representation of the text such that semantically similar texts have similar vector 

values. These vectors are stored in a specialized vector database that supports fast 

nearest-neighbour searches.  

 Before any text is embedded, the system splits documents into chunks, because 

embedding whole report or a very long sections dilutes semantic signal and harms 

retrieval quality. A chunk is a contiguous span of text that is small enough for the 

embedding model to represent coherently, yet large enough to preserve local context. 

In practice, we first segment by logical section, then sub-segment each section into a 

fixed-length windows of 1200 characters with a sliding overlap of 150 characters. 

 When the chunk size is too large, the vector blends multiple topics together, 

causing its similarity scores become noisy. Whereas, if the chunk size is too small, the 

sentences will lose its context, leading to false positives and brittle answers. Therefore, 

overlapping preserves cross-boundary meaning and improves recall during retrieval. 
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Each chunk is cleaned, normalised and for tables, accompanied by a caption, header-

aware textual linearization so its quantitative context is not lost. The system converts 

every chunk into a dense embedding vector using OpenAI’s embedding model and 

stores it in the vector database with rich metadata. These metadata enables filtered 

search and precise source attribution. 

 Using both database in series forms a robust knowledge base where this 

approach is similar to an integrated vector database concept where embeddings are 

stored alongside original data for consistency, but here it is achieved by coordination 

between two systems. The NoSQL store and vector store are kept in sync through 

unique IDs, ensuring that a query result from the vector DB can always fetch the 

corresponding document from the document DB. The end result is a comprehensive, 

easily queryable repository of financial reports, where one that can be queried by 

specific fields, and by semantic content. 

 

4.1.5 Query Agent 

 The Query Agent is the entry point for user questions. Its job is to understand 

the user’s query and prepare it for effective retrieval. This involves potentially 

decomposing complex queries, extracting key parameters, and formulating a 

normalized query representation. 

 Users may ask questions in natural language, possible referencing companies 

and years in various ways. The Query Agent uses an LLM to parse and interpret these 

questions. Specifically, it can employ an LLM prompt designed for query analysis to 

identify any company names mentioned in the question. The system’s design 

anticipates a future where the user might not explicitly provide structured inputs like a 

separate field for company name, so the Query Agent must infer those from the query 

text. 

 Using the LLM prompting, the agent detects which company the question is 

about. The prompt to the LLM could be something like “Extract the company names 

and years from this questions.” The LLM’s response can then be parsed to get a list of 

relevant company names. This is crucial for filtering the search later. If multiple 
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companies are mentioned, the agent knows the query might require retrieving 

information for each and comparing. 

 At the same time, if the query is complex or multi-part, the Query Agent may 

break it down. For example, “How do the 2022 financial results of Company X compare 

to 2021?” might be split into two sub-queries. One to retrieve information about 2021 

results and another for 2022, with a plan to compare them. In the architecture, this 

decomposition can be handled by sequential retrievals or by formulating a single query 

that covers both aspects. 

 Other than that, the Query Agent also normalizes the query into a form suitable 

for the retrieval steps. This could mean simplifying the language or ensuring the 

terminology matchers what is in the database. For example, if the user uses an informal 

term, the agent might rewrite it in terms of report language, using an LLM to paraphrase 

the question more formally and explicitly. It might also append or restructure the query 

with the identified parameters. This normalized query ensures that the subsequent 

embedding step focuses on the right aspects, like the core question text, possibly 

augmented with detected company metadata. 

 In summary, the Query Agent serves as the “brain” that interpret user intent. It 

heavily leverages LLM capabilities to parse free-form text and can use prompt-based 

logic to extract entities like company names. By the time the Query Agent has done its 

work, the system has a well-defined query or set of sub-queries along with the target 

company metadata, ready to feed into the retrieval system. 

4.1.6 Data Retrieval Agent 

 Once the query is understood and refined, the next step is to convert that query 

into a form that can be used to search the semantic index. This is where the embedding 

process comes in. The core idea is to generate a dense vector representation of the user’s 

question, using the same embedding space that the documents were stored in, so that to 

find semantically similar contents. 

 The normalized query text is passed through a text embedding model to produce 

a numerical vector. The system then uses this vector for similarity search. It is important 

that the same embedding technique was applied to the documents, since the system 

stored report sections as vectors using the identical model. The user’s question is now 
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in a vector form that captures its essence, which then be used to probe the vector 

database for relevant information. 

 The Data Retrieval Agent is responsible for searching the knowledge base and 

fetching the pieces of data that can answer the query. Using the query vector from 

previous step, it performs a similarity search in the vector database to retrieve the most 

relevant chunks of text from company reports. The query vector is sent to vector 

database with a request for the top K nearest neighbour vectors. Vector database which 

indexes all the embedded report sections, computes the similarity (via consine 

similarity) between the query vector and every stored vector, efficiently returning the 

closest matches. Each match returned includes the stored vector’s metadata and the 

original text chunk. This retrieval’s speed and optimization for this task allow these 

nearest-neighbour lookups to be very fast, even with thousands of embedded sections. 

 Not only that, the retrieval can be scoped using metadata filters if the Query 

Agent identified any specific company in the query. The search can be restricted to only 

the company’s data. This prevents irrelevant results from other companies from 

showing up. So the Data Retrieval Agent might search with a filter like “{“company”: 

“ACME CORP”}”, if the query is specifically about Acme Corp’s report. By applying 

these filters, the system increase precision, where it will not retrieve a chunk that is 

totally irrelevant to the question. 

 The most semantically relevant chunks of text were returned after each search, 

where each usually a paragraph or section excerpt that potentially contains the answer. 

Each chunk comes with its source metadata and also store a snippet of text in metadata. 

 The Data Retrieval Agent thus bridges the gap between the user’s question and 

the knowledge base content. After this step, the system has a collection of relevant 

report chunks that likely contain the answer to the question, plus context around it. 

These chunks are now handed off to the Chat Agent for final answer synthesis. It is 

important to note that by retrieving actual text segments, it maintains a grounding for 

the answer. The next stage will use these exact segments to generate the answer. 
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4.1.7 Chat Agent 

 The Chat Agent is the component that generates the final answer to the user 

question. It takes the retrieved chunks of report text and the original query, and uses an 

LLM to compose a coherent answer strictly grounded in the provided content.  

 The Chat Agent builds a prompt for the LLM that includes the context and clear 

instructions. After listing the relevant context, the prompt then appends the user’s actual 

question at the end. The prompt also includes a system message instructing the LLM 

on how to answer. This instruction would tell the model to use only the given context 

to answer the question and not to rely on any outside knowledge. It also enforces strict 

grounding rules through the prompt. Specifically, it multiple companies are in context, 

it ensures the LLM distinguishes them and does not mix information from different 

companies. The context chunks themselves are labelled by company, and the question 

usually makes it clear which company’s information is needed, so the prompt will 

remind the model to keep data separated by company. To prevent hallucination, the 

instruction explicitly forbids the LLM from introducing any information that is not 

present in the context. 

 Once the prompt is assembled, the Chat Agent invokes the LLM to generate the 

answer. Because the prompt includes the relevant report text, the LLM can draw the 

answer from those chunks. The use of a state-of-the-art LLM ensures the answer is 

fluent and well-structured, while the grounding ensures accuracy. The result delivered 

by the Chat Agent is a well-formed answer to the user’s query, with each factual claim 

grounded in the retrieved source material. 

 Through the Chat Agent’s careful orchestration of the LLM, the system adheres 

to a retrieval-augmented generation paradigm, where the generation is augmented and 

constrained by real data from the reports. This design means the answer will remain 

accurate even when the LLM’s own training knowledge is outdated or if the question 

is very specific, because the model is not generating from scratch but rather 

synthesizing given facts. 
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CHAPTER 5 SYSTEM IMPLEMENTATION 

5.1 Hardware Setup 

The hardware involved in this project is only a computer. This computer is 

responsible for handling full range of system operations, including web scraping, data 

processing, data storing. No dedicated GPU is required since heavy LLM computations 

such as embeddings and contents generation are offloaded to cloud APIs through 

OpenAI and Google. Server with network access to MongoDB Atlas and Pinecone 

cloud services were configured to ensure scalability and low-latency vector search. 

Here are the specifications and usage details for the computer. 

Description Specifications 

Model Apple Mac Mini 

Processor M4 

Operating System MacOS Sequoia 

Memory 16GB RAM 

Storage 256GB SSD 

Table 5.1.1 Specifications of Computer 

5.2 Software Setup 

Category Component Description 

Development Prototyping Python 

Implementation Python 

Libraries Requests, BeautifulSoup4, OpenAI, 

Pinecone, Google-GenerativeAI 

IDE Visual Studio Code 

Data Management Data Storage MongoDB, Pinecone 

Data Transfer JSON 

Core Technology LLMs OpenAI GPT, Google Gemini 

Communication Protocol HTTP/HTTPS, RESTful APIs 

Version Control Platform GitHub 

Table 5.2.1 Overview of Software Tools 
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5.3 Design Specifications 

The development of the Company Report Database Module follows a modular 

and iterative approach. The system is designed as a pipeline consisting of different 

components, each responsible for a specific task in the data flow from raw input to final 

output. The general workflow starts with data collection, then data processing, followed 

by storage, and finally information retrieval. This step-by-step approach ensures that 

each stage is functional and validated before being integrated into the larger system. 

 

5.3.1 Tools and Technologies Used 

  To implement the above methodology, the project leverages a range of tools and 

technologies, where each is chosen because of its suitability to meet the specific 

requirements of the system. 

• Web Scraping 

The system attempts to download financial documents and PDF links with the 

lightweight Python request library, which issues direct HTTP GET/HEAD calls 

and follows redirects [12]. This requests library is faster and consumes far fewer 

resources than a full browser session, making it the preferred path for the large 

majority pages that return static HTML. Only when a target page employs a 

CAPTCHA or anti-bot mechanisms, alternative solutions such as Selenium or 

Playwright become useful. These uses browser automation framework to 

navigate and interact with web pages when scraping data. Selenium is a widely 

used tool that automates web browsers [13]. It was originally developed for 

automated web testing but is equally useful for web scraping dynamic sites. 

Playwright which is a newer automation library, is designed for fast, reliable 

web automation across different browsers [14]. Both Selenium and Playwright 

allow web scraper to mimic real user behavior, which is essential for accessing 

websites with dynamic content loading or anti-scraping measures. By using 

these automation tools, the Web Scraping Agent can handle complex, 

JavaScript-driven content on Bursa Malaysia website. 

• HTML Parsing 

After fetching HTML pages, the project employs BeautifulSoup (a Python 

library) to parse and extract data from the raw HTML content [15]. 
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BeautifulSoup provides a convenient way to navigate the HTML DOM, find 

specific tags, and retrieve text. This allows the agent to find tables of company 

announcements by tag/attribute patterns and traverse through all the anchor tags 

inside those tables to capture the PDF download URLs for the full reports. The 

library’s tolerant parser handles imperfect or nested HTML, and its CSS-

selector-like queries make the workflow concise and maintainable. Therefore, 

BeautifulSoup allows system to systematically pulls out the needed pieces of 

information from each page. 

• NoSQL Database 

All the financial reports gathered and processed data is stored in MongoDB 

database. MongoDB is a document-oriented NoSQL database that stores 

information in flexible, JSON-like documents rather than rigid tables [16]. This 

schemeless design fits our needs perfectly, since different reports may have 

different sets of fields or sections. MongoDB ensures scalability and allows for 

easy addition of new data points without changing the fixed schema. By using 

MongoDB, the module benefits from high-performance CRUD operations on 

large numbers of documents and can be easily scaled horizontally if the data 

volume grows. 

• Vector Database 

In addition to MongoDB, the system uses Pinecone as a vector database to store 

and search high-dimensional embeddings of textual data. Pinecone is a cloud 

database optimized for vector similarity search, commonly used in AI 

applications [17]. It enables the system to perform semantic queries, instead of 

doing keyword matching, the query is converted into a vector and compared 

with the stored vectors to find semantically similar content. Pinecone is known 

for its speed and scalability for processing large vectors, as well as millisecond 

query latencies, making it an ideal choice for our use case of searching large 

amounts of document text. In our design, textual portions of reports are 

embedded into vector form using a pre-trained language model for embeddings 

and stored in Pinecone. By leveraging Pinecone, the module enables intelligent 

search capabilities beyond exact matches, which is critical for gaining 

qualitative insights from reports. 

• Large Language Models (LLMs) 
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The system integrates LLMs to enhance its understanding and generation of 

natural language content. In this project, LLMs (such as OpenAI’s GPT-5 mini, 

Google’s Gemini 2.5 Pro) is utilized in two ways. First, during data processing, 

it helps to process and extract insights from lengthy reports. This helps 

transform unstructured text into more structured insights that can be stored or 

presented directly. Second, at query time, LLM helps interpret complex user 

questions and formulate responses. The system can use LLMs to understand the 

intent of the question and compose an answer based on the retrieved data. The 

use of LLMs elevates the system from a basic data retrieval service to an 

intelligent assistant capable of understanding nuance in questions and answers. 

• Embedding & Chunking 

Before embedding, reports are segmented into semantically coherent chunks to 

preserve meaning while fitting model limits. The agent first uses the extract 

TOC to split by logical sections, then sub-segments long sections into ~1200 

characters with 150 characters overlap. Overlap protects context across 

boundaries. For instance, excessively large chunks will blur out topics, while 

tiny chunks lose context. Cleaned chunks are converted into dense vectors using 

an OpenAI embedding model (text-embedding-3-small). The same model is 

used later for query embeddings to ensure vector space alignment. 
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5.4 System Operation 

5.4.1 Web Scraping Agent 

Before starting to develop web scraping agent, the structure of the “Company 

Announcement” page of Bursa Malaysia’s website was explored and studied. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.1.1 Company Announcement Page 

 First of all, Figure 5.4.1.1 shows the “Annual Report” category is selected in 

the filtering section to show only company’s’ annual reports. It also can be searched by 

entering the keyword, such as “Annual Report & CG Report – 2024” to filter out the 

annual report of the year 2024. The page will then loads all the results found in a tabular 

form. It contains all the corresponding URLs to the announcement page for each result 

found. These announcement URLs will bring us to the page that shows all the details 

about the specific announcement as shown in Figure 5.4.1.2 below. 
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Figure 5.4.1.2 Announcement Details Page 

 This page will show all the details about the announcement including the subject 

title, company name and the date of announcement. It also contains an attachments 

section that contains all the URLs to access the financial documents attached. These 

attachment URLs are the main object the web scraping agent is looking for. The agent 

will then access and download all the financial documents using these URLs. These 

steps are repeated to scrape for all financial documents from Bursa Malaysia’s official 

website. 

 Two approaches were prototyped for web scraping, one using direct HTTP 

requests in Python, and another using browser automation tools (Selenium and 

Playwright). In the direct HTTP requests method, Python requests and BeautifulSoup 

libraries were used together to fetch HTML content and parse links to PDF files. 

  

 



CHAPTER 5 
 

36 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.1.3 Web Scraping Agent 
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 Figure 5.4.1.3 shows that the agent successfully scraped a set of annual report 

PDFs from Bursa Malaysia. The scraper query the Bursa Malaysia announcements page 

for a given year and visit each announcement’s detail page to find the actual PDF 

download links. The PDF files for each company were downloaded and stored in a 

MongoDB database as shown in Figure 5.4.1.4 and Figure 5.4.1.5 below. A GridFS file 

storage was used to accommodate the binary PDF data, and a separate metadata 

collection recorded the company name, report year, and source URL for each file. This 

confirmed that the relevant reports can be automatically collected and persisted for 

further processing. 

 

 

 

 

 

 

 

 

Figure 5.4.1.4 AVANGAAD BERHAD in MongoDB 

 

 

 

 

 

 

 

Figure 5.4.1.5 TURBO-MECH BERHAD in MongoDB 



CHAPTER 5 
 

38 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 However, one observation during scraping was the potential risk of being 

blocked due to high-frequency access. Rapid and repeated requests to the Bursa website 

could result in HTTP errors or temporary bans if the site detected a bot. Going forward, 

rotating IP proxies or a more distributed scraping schedule may be considered to further 

reduce the chance of being blocked. Nevertheless, in the preliminary experiments the 

scraper was able to retrieve the required documents without encountering a permanent 

block. 

 To increase throughput while keeping the crawler responsive, the Web Scraping 

Agent runs the listing crawl, announcement-page parsing and PDF downloading 

concurrently in a three stage pipeline. Announcement listings, announcement detail 

pages and attachment (PDF) downloads are processed in parallel and decoupled with 

in-memory task queues. An asynchronous HTTP client handles I/O-bound requests 

with a shared keep-alive session, while a small thread pool performs CPU-bound 

HTML parsing and MongoDB GridFS writes. 

 

5.4.2 Data Preprocess Agent 

 After obtaining the PDF reports, the next step was to preprocess these 

documents for analysis by language models. Preliminary testing was conducted with 

open-source PDF parsing techniques to extract text from the annual reports. Libraries 

such as PyMuPDF were explored to programmatically convert PDF content into plain 

text. However, a key challenge noted was that while these libraries can extract textual 

content, they do not capture the information in charts, tables, or images, which are 

abundant in annual reports. Simply extracting all text can also produce a very large 

string, often tens of thousands of words for a single report, which will increase the input 

tokens and cost of the analysis by LLMs. 

 Therefore, a direct PDF-to-LLM approach was tried and the results outperform 

the previous method. In this approach, raw PDF files were fed into a LLMs to let the 

model parse and extract the content. Specifically, we utilized Google’s generative AI 

model (Gemini 2.5 Pro) via Google’s File API that allowed file upload as context. The 

model was prompted to read the entire annual report PDF and extract key information 

to produce a structured data in markdown format. The model will perform three tasks, 



CHAPTER 5 
 

39 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

including extracting the definitions, TOC, and each TOC sections using the detailed 

prompt as shown in Figure 5.4.2.1, Figure 5.4.2.2 and Figure 5.4.2.3 respectively. The 

prompt explicitly directed the model to not omit any details and to interpret non-textual 

content like charts or infographics in words. Surprisingly, the token usage for a direct 

PDF-to-LLM approach is lesser than the traditional PDF pure text extraction method 

due to many repeated and unwanted sections were extracted as well. 

 

 

 

Figure 5.4.2.1 Detailed Prompt for Definitions Extraction 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.2.2 Example of Definitions in Company Prospectus 
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Figure 5.4.2.3 Extracted Definitions Saved in MongoDB 

 

 

 

 

 

 

 

Figure 5.4.2.4 Detailed Prompt for Table of Contents Extraction 
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Figure 5.4.2.5 Example of Table of Contents in Company Reports 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.2.6 Extracted Table of Contents Saved in MongoDB 
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Figure 5.4.2.7 Detailed Prompt for Sections Extraction 
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Figure 5.4.2.8 Example of Extracted Section 1 of Company Reports 

  

Figures 5.4.2.9 and 5.4.2.10 below illustrate how the module converts non-

textual report content (tables, charts and other visuals) into RAG-ready artifacts. The 

pipeline detects each table, reads headers, legends and then linearizes the content into 

header-aware records with preserved units and footnotes, alongside a concise LLM-

generated caption and description. The result is stored as Markdown formation with 

rich metadata, making it easy to chunk and embed for semantic retrieval while 

retaining exact values and provenance for grounded answers. 
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Figure 5.4.2.9 Original Table from Company Report 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.2.10 Linearized Table Output with Caption & Metadata 
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This experiment showed that the LLM can indeed ingest a full financial report 

and return an organized text version covering all the key points, including descriptions 

of images and tables based on context. However, it also highlighted a significant issue, 

which it token consumption and performance. Processing an entire PDF of 100+ pages 

in one go is extremely token-intensive for the LLM. In our tests, a single report could 

consume many thousands of input tokens and a similarly large number of output tokens 

in the summary, pushing the limits of the model’s context window and incurring 

substantial API usage cost. The generation process was also time-consuming for very 

large inputs. Therefore, after extracting the TOC, each section is processed 

independently and simultaneously. Additionally, per-section processing helps keep 

generations within the model’s output token limit, which often smaller than the input 

context limit.  

In summary, the observations suggest that while directly using an LLM on raw 

PDFs is feasible and yield good results, it is still costly. Therefore, a hybrid approach 

with better parsing techniques to trim down the input, then using the LLM in a more 

targeted way could be more efficient. These learnings will inform the next iteration of 

the preprocessing pipeline to optimize token usage and runtime. 

 

5.4.3 Chunking & Vector Embedding 

 Next, once the financial report content was converted into structured data, the 

next step was to create vector embeddings of this text for semantic search. We used 

Pinecone as the vector database to store and index the embeddings, and OpenAI’s text-

embedding-3-small model to generate the embeddings. The text-embedding-3-small 

model produces a 1536-dimensional numerical representation for each input text, 

capturing its semantic meaning in vector form. This model is part of OpenAI’s third-

generation embedding models, chosen for its balance of efficiency (lower cost, smaller 

size) and good accuracy for general text similarity tasks. 

In our implementation, each company report is split into smaller chunks before 

embedding. Typically, we split the processed data into sections or paragraphs, with 

each chunk containing a few hundred words. This is showed in the Figure 4.3.1 below. 

By chunking, we ensure that the embeddings correspond to focused pieces of content, 
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which improves the relevance of search results. Each chunk of text is passed to the 

OpenAI embedding API, returning a 1536-dimension vector. These vectors are then 

upserted into the Pinecone index as shown in Figure 5.4.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.3.1 Chunking Example of Extracted Data 

 

 

 

 

 

 

 

 

Figure 5.4.3.2 Pinecone Dashboard 
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 Storing the embeddings in a vector database allows us to perform efficient 

similarity searches. Pinecone is optimized for nearest-neighbour search on vectors, 

meaning given a new vector like an embedded query, it can quickly return the most 

similar vectors in the database by using cosine similarity in our case. 

 

5.4.4 Vector RAG 

 This RAG runs as a lightweight chat app using Gradio ChatInterface as shown 

in Figure 5.4.4.1 below.  

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5.4.4.1 Vector RAG Chat App 

In the end-to-end flow, a new RAG request is logged with the raw question 

(“What is the mission and vision of Autocount Dotcom Berhad”), after which the 

system loads the catalog of company names to support robust matching. The Query 

Agent then runs the decompose prompt to split the query into atomic sub-queries 

(“What is the mission …?”, “What is the vision …?”), followed by company detection 

and normalization where each sub-query is mapped to detected company and rewritten 
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as a company-agnostic, grammatical search string (“What is the mission of the 

company?”) to minimize lexical mismatch while preserving constraints. Each 

normalized sub-query is embedded with the same model used for the corpus and issued 

to Pinecone with top_k=20, metric=“consine” and a metadata filter such as 

{“from_company”: “AUTOCOUNT_DOTCOM_BERHAD”}. Thus, only that 

company’s chunks are considered. Finally, the Chat Agent receives the original 

question plus these company-scoped contexts and applies a strict system prompt, that 

use only provided chunks, group by company, never mix entities and if evidence is 

insufficient, output “Not found in provided documents”. Figure 5.4.4.2 shows the log 

of this end-to-end flow, that shows each stage including RAG start, sub-queries, 

detected company, normalized query, Pinecone filter used, final synthesized answer. 

 

 

 

 

 

 

 

 

Figure 5.4.4.2 Vector RAG Log 
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5.5 Implementation Issues and Challenges 

 One of the primary implementation challenges would be the web scraping of a 

very large number of financial documents. Sequentially fetching such a volume would 

result in a severe performance bottleneck, as fetching thousands of pages one by one is 

very time consuming. Not only that, sending a high frequency of requests may raise the 

risk of triggering anti-scraping mechanisms on target websites. For instance, 

Cloudflare’s bot protection in Bursa Malaysia could result in the scraper being blocked. 

To address these issues, the system’s web scraping agent was designed to use 

multithreading for parallel downloads. This can improve the overall throughput and 

reduce the total crawl time. At the same time, careful backoff strategies such as 

inserting delays and monitoring for throttling responses were implemented to avoid the 

target servers from overloading. Therefore, the agent will be under the detection 

thresholds and minimizes the likelihood of being blocked. 

 Processing lengthy financial documents with LLMs introduced significant 

computational complexity. Feeding such large texts into LLMs would also incur a huge 

computational cost. To overcome these limitations, the implementation must rely on 

token reduction techniques and intelligent chunking strategies. For instance, before 

summarization, unnecessary or repetitive parts of the text are removed to reduce the 

number of input’s token. Each report is then split into smaller chunks that fit within the 

LLM context window while preserving the logical structure. Determining the optimal 

chunk size requires careful tuning. Chunks must be large enough to preserve important 

context, but small enough to stay within the capacity of the model. 

 Other than that, LLMs also poses a challenge in terms of its output reliability, 

as they can sometimes produce information that does not present in the source context, 

a phenomenon known as “hallucination”. This hallucination is particularly problematic 

in the context of summary financial reporting, as any fabricated facts or figures can 

mislead the analysis and undermine the credibility of the system. This risk can be 

mitigated. By tuning the LLMs’ generation parameters and incorporating with some 

additional verification steps. 

 A further challenge encountered during implementation was provider-side 

safety enforcement. When processing some company reports, the hosted LLM 

intermittently returned RECITATION errors and terminated the process, likely due to 
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the model’s policy guardrails against long verbatim reproduction from copyrighted 

material. The only deterministic workaround would be to self-host an open-source LLM 

and fine-tune it with domain-specific data and adjusted safety settings. However, this 

requires substantial GPU resources, expertise, and ongoing maintenance, which is 

costly and beyond the scope of this project. 

 Lastly, as the reports grew, ensuring reliable storage and efficient data retrieval 

becomes a critical issue. The system needs to handle not only the original financial 

documents themselves, but also derived data such as summaries and their embeddings, 

which represent a large amount of information. 
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CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 

6.1 System Testing and Result 

 The system’s web scraping agent collected company filings by crawling the 

Bursa Malaysia announcements pages and downloading linked PDFs. In practice, it 

targeted about 30 technology-sector companies, fetching roughly 5-10 financial 

documents each. For each company, the scraper ran listing crawls and parsed 

announcement pages in loop, then downloaded every new PDF it found. The 

downloaded files were stored in database along with metadata like company name and 

report year. Most pages on Bursa Malaysia are static HTML, so the scraper primarily 

used direct HTTP requests and HTML parsing (with BeautifulSoup) to extract PDF 

links. After fetching each announcement page, BeautifulSoup or similar parsing logic 

finds the table of attachments and extracts all PDF URLs in it. 

 In initial tests the agent successfully scraped and saved a batch of annual reports 

from multiple companies as proof of concept. It stored each PDF as a binary file in 

GridFS, indexed by company and year. The agent’s pipelined design lets it handle many 

documents in parallel queues. 

 Heavy scraping risks triggering anti-bot defences. Indeed, one observation was 

that high-frequency requests can lead to HTTP errors or temporary bans on the site. To 

mitigate anti-bot blocking from high-frequency requests, use “curl_cffi” for HTTP 

fetching. It is a Python binding to curl-impersonate that can impersonate real browsers’ 

TLS and HTTP fingerprints, which helps bypass fingerprinting-based defences that 

often flag requests. Overall, the scraping module proved robust in collecting the needed 

reports across the target companies. 
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Figure 6.1.1 MongoDB Dashboard 

 Once documents are scraped, they are converted into machine-readable text and 

structured data by LLMs. A key challenge is token usage. Naïve text extraction from a 

large PDF can produce extremely long strings. In testing, a single annual report yielded 

“tens of thousands of words,” translating to a very large token count for an LLM. This 

inflates API costs and may exceed context limits. To address this, the project 

experimented with a “PDF-to-LLM” method where an LLM (Google’s Gemini 2.5 Pro 

via the file-upload API) is prompted to read the entire PDF and output structured 

content. Interestingly, the direct PDF-to-LLM method used fewer tokens overall than 

the raw-text approach. This is because the LLM can ignore repeated boilerplate when 

generating structured content, whereas a blind text dump contains all content verbatim. 

In practice, the system feeds each report to the LLM to extract key sections, definitions, 

and figures of interest in markdown/JSON format. 

 Even so, processing dozens of long reports can approach rate or usage quotas. 

In our experiments on a free-tier API account, we often hit error 429 (“quota exceeded”) 

once the free credit was consumed. This meant only about 10 companies’ reports could 

be fully processed before hitting the limit. Occasional 500 Internal Server Errors also 

appeared, indicating transient issues on the service side, requiring simple retries. 

The solution was to upgrade to a paid plan. In fact, the documentation notes that 

429 errors mean the monthly or usage quota has been reached. After adding billing 

credentials, the errors ceased as the account moved to pay-as-you-go. Therefore, the 
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system could run the TOC-guided sections extraction pipeline concurrently, processing 

multiple sections in parallel without tripping quota errors. Concretely, Gemini 2.5 Pro’s 

rate limits jumped from the Free tier (5 RPM, 250000 TPM, 100 RPD) to the default 

Tier 1 paid limits (150 RPM, 2000000 TPM, 10000 RPD), which removes the earlier 

429 bottleneck and comfortably supports simultaneous section extraction. 

 Overall, while the model generally produced useful structured information of 

each report, outputs were always reviewed for accuracy. The logs confirmed that 

careful prompting and validation are necessary to prevent or catch hallucinations. 

 As for the Vector RAG module, which is the system’s Q&A engine, it was 

evaluated through response correctness by comparing RAG outputs to known facts. In 

tests, straightforward factual questions were answered correctly by the RAG system, 

matching the values in the actual reports. For more open-ended queries, the answers 

synthesized multiple relevant excerpts. This result was also cross-checked with the 

external sources, such as a Google search or even a plain ChatGPT query sometimes 

yielded a conflicting or made-up answer, whereas the system’s RAG stuck to the source 

content. Though our domain is financial text, this suggests RAG markedly improves 

factual accuracy and source citation compared to unguided generation. 

 In evaluating the retriever component, precision measures how many of the top-

k retrieved chunks are relevant, while Recall measures how many of the truly relevant 

chunks the retriever found out of all relevant chunks. In our case, high recall is crucial. 

Therefore, the retriever should fetch all pieces needed to answer the questions. Any 

missed chunk could leave out key facts. In practice, the system used a relatively large 

k to ensure recall, trusting that the LLM can ignore any extra noise. Indeed, if only 1 of 

10 chunks has the answer, precision is low but recall is 100%, which is acceptable here 

because the LLM then filters out itself.  

 Overall, the retrieval step worked well on our company corpus, and the 

generated answers generally remained faithful to the evidence. Any incorrect or 

incomplete answer could be traced to either a missing snippet or a generation slip, 

guiding us to iteratively improve chunk coverage and prompts. 

 The following screenshots shows some results of the Vector RAG module 

comparing with answer generated using ChatGPT. 
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Figure 6.1.2 Mission & Vision Answers (Vector RAG vs ChatGPT) 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.3 Main Customers & Target Markets Answers (Vector RAG vs ChatGPT) 
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Figure 6.1.4 Core Business & Business Model Answers (Vector RAG vs ChatGPT) 
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Figure 6.1.5 Key Competitors Answers (Vector RAG vs ChatGPT) 
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6.2 Objectives Evaluation 

 The implemented system successfully illustrates a multi-agent architecture. We 

have separate components for crawling listing pages, parsing announcement pages, 

downloading PDFs, embedding text, and querying the LLM. These components operate 

in parallel and communicate through shared resources like the database and queues, 

effectively mimicking a team of analyst working simultaneously. In testing, this 

autonomy was demonstrated, where the system collected and processed new reports 

without further human intervention. This meets the first objective of an end-to-end 

automated workflow.  

 The second objective was to use LLMs to interpret qualitative financial text. 

Our system meets this by employing state-of-the-art LLMs (Gemini 2.5 Pro) to digest 

and extract information from each report’s narrative sections. The generated outputs 

include key facts presented in structured markdown/JSON. In practice, the LLM 

extracts were generally accurate. For example, descriptions of the company’s business 

model, management commentary, and strategy were correctly captured. The LLM 

successfully handled complex language and jargon in the reports, subject to the 

grounding provided by retrieval. Importantly, the evidence shows the combination of 

retrieval and generation led to reliable answers. A RAG approach yields higher factual 

accuracy than generation alone, and the system’s results reflect this. Thus, the system 

largely achieves the second objective of leveraging LLMs for deep qualitative 

interpretation of reports. 

 In conclusion, the system successfully achieved its project objectives. The 

vector database of embedded report text was built as the core module enabling semantic 

search. The system’s pipeline autonomously gathers and processes reports, the LLM 

component effectively interprets qualitative content and the retrieval mechanism 

ensures that answers are grounded in the latest information. Overall, the evaluation 

shows that the system meets its design goals, providing accurate and timely company 

insights. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 

This project set out to address the challenge of fundamental stock analysis using 

qualitative data by leveraging LLMs in an innovative, data-driven system. The core 

problem to be solved is that crucial information on stock valuation is often hidden in 

lengthy company reports and other unstructured documents, making it difficult for 

investors, especially retail investors to effectively extract insights. By integrating 

cutting-edge AI technology, the project aims to bridge this gap and provide non-expert 

investors with a “virtual analyst” who can read, understand and summarize complex 

financial disclosures.  

To achieve this goal, the project implemented a comprehensive multi-agent 

system consisting of several key components. The architectural innovation introduced 

by the project is that it uses multiple specialized agents to coordinate the execution of 

a single analytical task. Each agent is optimized for a different function (data collection, 

preprocessing, storage/retrieval, and analysis), which makes the entire system modular 

and robust. Essentially, this project demonstrates a cutting-edge approach where LLMs 

are augmented with external memory (via vector embeddings), enabling them to 

generate sensible analytics on large-scale financial texts. 

 The successful implementation of this approach marks a significant step 

forward in the application of AI in fundamental analysis. It demonstrates that generative 

AI can create tremendous value in distilling complex financial disclosures into easily 

digestible intelligence. Tasks such as reading an annual report of more than 100 pages 

and assessing its tone and key points, which once performed only by experienced 

analysts can now be partially automated through LLM-based summarization and Q&A 

capabilities. This capability is particularly meaningful for retail investors, where the 

system lowers the barrier to thorough stock research by automatically synthesizing 

information that would require hours of manual reading. 

The project helps to narrow the information asymmetry between retail investors 

and institutional investors with large research teams. In short, the system can serve as 

a proof-of-concept "AI analyst" to enhance decision support capabilities and make 



CHAPTER 7 

59 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

stock fundamental analysis more accessible to investors with limited time or financial 

expertise. 

 

7.2 Recommendation 

 For scraping, adopt an on-demand acquisition policy rather than continuously 

crawling everything. Concretely, trigger the scraper only when a user query or 

downstream task requires a report that is missing. This event-driven approach reduces 

bandwidth, compute and storage, while keeping the essential documents up to date. Pair 

it with a small cache and a recency index so repeated requests do not re-download the 

same files and keep polite, bounded concurrency with retries for resilience. 

 For LLM-based report processing, restrict inference to section-scoped chunks 

before calling the model. Use the extracted table of contents to isolate only the sections 

required for the task and then subdivide those sections so they fit comfortably within 

the model’s context window. This targeted, TOC-guided chunking reduces token usage, 

prevents context overflows and lowers latency, while still preserving coherence 

because the boundaries follow the document’s own structure. Enforce a strict max 

tokens limit for each call and apply iterative or hierarchical summarization only when 

a section still exceeds those limits. 

  For retrieval, prioritize a systematic study of pre-embedding chunking to 

preserve semantic meaning. Future work should compare approaches such as TOC-

aligned chunks versus sentence or paragraph window, fixed window sizes versus 

adaptive windows and different overlaps to maintain cross-boundary context. Each 

configuration should be evaluated with retrieval and answer-quality metrics as well as 

operational metrics. The objective is to identify a chunking strategy that maximizes 

semantic recall and downstream answer fidelity while minimizing cost and storage 

overhead. 
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