INTELLIHIRE: AN AI-POWERED INTERVIEWER FOR AUTOMATED
CANDIDATE SELECTION
BY
TONG QIAN RU

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Tong Qian Ru. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku
Abdul Rahman (UTAR). This Final Year Project report represents the work of the
author, except where due acknowledgment has been made in the text. No part of this
Final Year Project report may be reproduced, stored, or transmitted in any form or
by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

i

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Jasmina Khaw
Yen Min, for giving me the invaluable opportunity to work on my final year project titled
"IntelliHire: An Al-Powered Interviewer for Automated Candidate Selection." Her guidance,
support, and encouragement have been crucial in helping me navigate through the challenges

of this project and take my first steps toward a future in Al-driven solutions.

I am also deeply grateful to my parents and family for their endless love, support, and

encouragement throughout this journey.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

111

ABSTRACT

The recruitment process has gone a long way to determine the success of organisations in
today's highly competitive job market. Traditional interview techniques conducted by human
recruiters can be time-consuming, require a huge number of resources, and often suffer from
scheduling challenges and inconsistent evaluation criteria, which can influence the way
decisions are made. These struggles can cause an inconsistency in the way candidates are
evaluated and ultimately result poor hiring decision making. Artificial intelligence (Al) is the
up-and-coming technological process that addresses these problems in recruitment. IntelliHire:
an Al Interviewer for automated candidate selection is a project that envisions building an
extensive Audio-visual enabled machine understanding engine to automate the shortlisting
from resumes till scoring interview sessions. IntelliHire provides an inexpensive, time-
effective and unbiased way to replace traditional interview methods. This innovation attempts
to minimize the time and resources expected from a recruitment process while improving
precision in selection as well as providing fairness for job applicants. Ultimately, IntelliHire
has the potential to revolutionize the hiring process, providing organizations with a powerful

tool to make more informed and objective hiring decisions.

Area of Study: Artificial Intelligence, Web Application Development

Keywords: Al Interview System, Resume Screening, Job Recommendation, Natural Language

Processing, Candidate Evaluation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

v

TABLE OF CONTENTS

TITLE PAGE ...ttt ettt ettt et e et e s e e e s e seensesneesseenseeneas I
COPYRIGHT STATEMENT ...ttt ettt s I
ACKNOWLEDGEMENTS ..ottt sttt ettt nbe e 1
ABSTRACT ...ttt ettt ettt ettt e st e bt e st e e st e bt eatesseenbeenseeneenseenaesneens v
TABLE OF CONTENTS. ..ottt ettt et sttt et entessaeseeneaeneeneas A%
LIST OF FIGURES ...ttt sttt sttt IX
LIST OF TABLES ...ttt sttt ettt be b s s e X1
LIST OF ABBREVIATIONSooiiieieeeseete ettt XV
CHAPTER 1 INTRODUCTION ..ottt ettt sse e eneas 1

1.1 Problem Statement and MOtIVATIONcccuerieriiiiriiniiienieneeiceeese e 1

1.1.1 Problem Statementccceeuerierieniienieieetesteeie et 1

1.1.2 MOTIVALION ...ttt sttt ettt 2

1.2 ODJECLIVES ..vveeeiviieeiiiieeiieesieeeeiee e et e e seteeeseaeeetaeesseaesaaeessseeessseeessseeensseeansseesnsseennnns 2

1.2.1 Develop an Al-Powered Resume Screening System...........ccceeeeeeeunennee. 2

1.2.2 Automate the Interviewing Process for Increased Efficiency and Consistency

... 3

1.2.3 Real-Time Scheduling and Feedback System...........cccccoveevviernieeeninnnnee. 3

1.3 Project Scope and DiIreCtion..........c.eeecvieeiieeeiiie et 3
1.4 CONTIDULIONS. ...ttt sttt ettt sttt et sbe et et seeenaeeaee s 3
1.5 Report OrganiZation..........cccueerueeeiieeniieniienieereeseeeeteesteesseesseesseesseessseesseesnseesseesnns 4

CHAPTER 2 LITERATURE REVIEW ..ottt 5

2.1 Previous Works on Al INterVIEWETS........cccvieiiiiieeiieeeiee et 5
2.1 INEETVIEWET A1 1.ttt sttt ettt sttt 5

2.1.2 TaleNtIY. Q1 c.evieiieiiieieecie et e 9

B R BN o 4 10 - SRS PSR 13

2.1.4 BIraINtIUST....cociiieeiiieciie ettt ettt e e e e e e eareeenaeeensaeeenaeeenneeas 14

2.2 Limitation of Previous StUdies..........ceoeriiriiiieiiiniiienierieeesteeeeeee e 17
2.3 Comparison of Reviewed SYSteM........cccueeviiriiiiiieiieiiecie et 20
2.4 PropoSEd SOIULIONS.ccviieiiieeeiieeeiie et eeie e eeieeesaee e beeeseaeeesaeeeaaeesnsaeeensaeeennaeas 21

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.5 SUMIMATY ..ottt et sttt e esane e b e saneenees 22

CHAPTER 3 SYSTEM METHODOLOGY AND MODEL.......cccccccoviininiiniiieienieneens
3.1 SYStEM DESIZN ..coenevieeiiieeiie ettt ettt e et et e e e enaee e 23
3.1.1 System Design Diagramcccceeeviieeiiieeiiieeeiee e e 24

3.2 System ATCRITECTUIE.....ccuviiiieiiietieete ettt st et eaae e 24
3201 USEI ettt e 25

322 Frontendoouieiiiiieeeeeee e e 25

3.2.3 Backend Server (Laravel Framework)..........cccecveeviiiieniiieeciie e 25

3.2.4 Database layer (MYSQL) ...cocvoiiiiiieieeieeieeeee e 26

3.2.5 External APIs (Gemini API).....ccccccooviieiiiiiiiiieeccee e 27

3.2.6 System Architecture Diagrami.........cccceevveeriiieeniiieeniie e 28

3.3 SYSIEM FIOW....uiiiiiiiieiie ettt ettt e e e e e aae e e s e e eaaeeennaee e 28
3.3.1 System FIow Chart.........cccooiieiiiiiiiiecee e 29

3.4 SYStEM USE CASE.....eeeuiiieiiieeiiieeiiee et e ettt e s tteestteesaeeesbeeesabeeeateessseesseeesnsaeenns 32
3.4.1 System Use Case DIagram..........cceccveeeiuieeniiieeniiieeniieesieeeeeeeeeeeieee e 32

3.4.2 Use Case DESCIIPLIONueeeieiieeiiieeiiieeiiieeeiieeeteeesreeesseeeseneessaeesnneeens 33

3.5 SYSTEM ACLIVILY ..eeiutiitiiiiieiie ettt ettt ete et ee st e et e sbeebeesnbeesaeenseens 40
3.5.1 System Activity DIiagrami.........ccceecueerieriiienieeiienie e 40

3.6 Methodology of the SYStemMccuiiiiiiiieiiieieciece e 42
3.7 TIMEIINE ...ttt et ettt et e be e et enbee st ens 43
CHAPTER 4 SYSTEM DESIGNoiiiiiiiiiieiesiee ettt snaense e
4.1 System Block DIiagramccceeviiiiiiiniieiieeieeieee e 44
4.1.1 High-Level System Block Diagram.............cccccceevviiinieniiienieeiienreeneene 44

4.1.2 Internal Subsystems Block Diagram...........cccceevviivriieeiiiennieeeieeee, 45

4.2 System Components SPeCifiCatiONS.........ccvveeeriireririeerieeerieeeereeeeereeereeeeeeeeeneens 45
4.2.1 Frontend COMPONENLS.........ccruieriieriieeiieiieeieeieeeieenieeeieeiee e eseeeeeeens 46

4.2.2 Backend COMPONENLScccueeriieriieeiiieiieeieeiieeteesieesreesreeeseessaesnseens 48

4.2.3 External Services INtegration..........cccceeeevieeriieeiieeeiiie e 50

4.2.4 System Integration Patternscccoeouieiieiiiiiiiiniieeeeeee e 51

4.3 Database DESIZN.......ceiiiiiieiiieiieiie ettt ettt ettt ettt ettt st e e nees 52
4.3.1 Entity-Relationship Diagram (ERD).........cccccoooiiiiiiiiiiniiiiiicieeieee 53

4.4 System Components Interaction Operations..........c.ceeecveeerveeerveeerveeesveessveesnnens 55

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

vi

4.4.1 Main Laravel Controllers and Routes...........cccceeeveeeviieeciieeciee e, 55
4.4.2 Background Jobs and QUEUEScccueeruieriieniieniieiieeie e 56
4.4.3 External API Callscocoviiiiiiiiiiieeeeeeeee e 58
4.4.4 Data PersiStENCEcccuueriieiiieiieiie ettt ettt st 59
4.4.5 Real-time Featurescoceevuiriiriiiiinieniiciectcsiccieeeeseeee e 60
4.4.6 Security and Authentication...........c..eecuierieriieeniieniierie e 61
CHAPTER 5 SYSTEM IMPLEMENTATIONccoiiiiiiiiiieeieeieeee et 63
5.1 HardwWare SETUP......ccccuiiiiciieeiiieeeieeeeieeerteeeseteeeieeeeteeesteeessaaeessseeesaseeensseesnnaeeennns 63
5.2 SOFEWATE SETUP ..eeiiieiieeiit ettt sttt ettt e sbeesabeeseeenseens 63
5.2.1 XAMPP (for local server environment)............cccceeeevrerreeeveennenveennnennn 63
5.2.2 Installing Laravelcocuiveiiieiiieceeeceee e 66
5.2.3 Visual Studio Code (IDE)......cccoieiiiiiiieeieeeeeeee e 66
5.3 Setting and ConfiguIationcc.eeviuiirieriiieiie ettt 68
5.3.1 Create Laravel Project.........cccveviieiierieiiieieeieeee et 68
5.3.2 Database SELUP.......cccueieriieeiiieeiieeeieeete ettt e e ee e et saaeeens 69
5.3.3 API Key Configuration..........ccceeeeiieeiiieeiieeeiieeeiee e eeveeesevee e e 70
5.3.4 Installing HTTP Client Packagecccccceeveeriienieniienieeieeeeeee 70
5.4 System Operation (With SCreenshot)cccceeeviieriiiiienieeicece e 71
5.4.1 Landing Page & Authentication............ccceevveeiieneeeiieenieenreeneeeieeneee e 71
5.4.2 Candidate Dashboard............cccccoiiiiiiiiiiiiiiiieeeeee, 73
5.4.3 Job Browsing & Applicationccceeeceeeiieeniiiiiienieeieeee e 75
5.4.4 INtEIVIEW SYSLEIML ...uuiiiiiiiieiiieiie ettt ettt seee et e et e e ssaeeaeeesaee e 84
5.4.5 ASSESSMENT SYSLEIMeceuiiieiiieeiiieeiieeeieeeriteerieeesteeesreeeireeeaeeesaeee e 95
5.4.6 Recruiter Dashboardcoocooiiiiiiiiieee, 97
5.4.7 JOb Managementc.eeeeveeerveeeiieeerieeeeeeeieeeeeeeeeree e 100
5.4.8 Application Management............cccueevueereeeiiienieenieenieeeeeneee e 104
5.4.9 AT ANALYSIS .ouvviieiieiieeieeieece ettt 106
5.4.10 PDF Report Generation SySte€m..........ccceeeveeerveeriieesnneeennnen. 113
5.5 Implementation Issues and Challenges...........cccceeeueeriiniiienieiiieenieeies 116
5.6 Concluding Remarkcccooiieiiiiiiiiiiieiccieeeee e 118
CHAPTER 6 SYSTEM EVALUATION AND DISCUSSIONccccocevieiiieieieieeeienen 119
6.1 System Testing and Performance Metricsccccuvevveeerieeecieeeeiee e, 119

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

vil

6.1.1 Objectives and SCOPE.......ccueruierierieriirieniienieeent ettt 119

6.1.2 Testing TeChNIQUESocoviiiiieiieeieeeeee e 120

6.1.3 Acceptance CriteTia........ccuiriieriieeiieiieeeieeieeseeeeteeseeeteesseeereessseeneens 120

6.1.4 Coverage Plan and Test Inventory..........cccccveeeiieeecieeeciee e, 121

6.1.5 Test Data and Environment ASSUMPLIONScccueeveeerieeneeeiieenieenneans 121

6.1.6 Performance MEtriCS.......cocuerieierieriieieriieieeie et 121

6.2 Testing Setup and ReSultooooviieiiiiiiiieeeee e 122
6.2.1 Decision Table TeStiNGcceeeveeeeiieeeiieeeiie et 122

6.2.2 State Transition TeStNGcecveeriieiieiiieiiesie e 126

6.2.3 Testing RESUILS......ccviviiiiiiieeiiee e 130

6.3 Project Challen@escccovueeeiiieeiieeieeeee et e e 131

6.4 Objective Evaluation.........cccceciieeiiiieiiecieecee et 132

6.5 Concluding Remarkcoooiieiiiiiiiiiiiiiiee et 134
CHAPTER 7 CONCLUSION AND RECOMMENDATIONccoovinininiinieieieieeeee
7.1 CONCIUSION ...ttt ettt et e bt e e neees 135
7.2 ReCOMMENAATIONoutieiiiiiieiie ettt ettt et et e s 136
REFERENCES ...ttt sttt sttt st sttt et e
POSTER ...ttt ettt s h ettt sat et et eaee bt et e e aeenae e

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

viil

LIST OF FIGURES

Figure 2.1.1.1 OVerview Of INTEIVIEWET. A1 ...ccc.ueiruiiiiiiiiiiieeiie ettt ettt s 5
Figure 2.1.1.2 Cerate JOD INtEIVIEW PAZEveevvieeeiireeiieeeieeerteeeseteeesieeeeeeeeseeeessseeessseeessseeennnes 6
Figure 2.1.1.3 Question bank of INTEIVIEWET. A1couervuiriirieiiinieniieieetere et 7
Figure 2.1.1.4 Insights page of INtEIVIEWET.Q1 «...c..eevueruiriiniieienienieeieeeeeee et 7
Figure 2.1.1.5 Overall review of created JOb INTEIVIEWccceervieiiiiiiiiiniiniieniceieeee e 8
Figure 2.1.1.6 Auto generate email PAZEccceeecueieeiiieiiiiieeriie et et eeee e eee e ere e e sreeeeeree e 9
Figure 2.1.2.1 Share screen reminder before interview Start...........cc.coeceeveevienenieneenennieneens 10
Figure 2.1.2.2 Shared screen technical test in talently.ai.........coccoeoerieneniiniineniieneceenens 10
Figure 2.1.2.3 Shortlisted candidate overview in talently.ai.........cccccoeverieiniiniiiniiinicenienen. 11
Figure 2.1.2.4 talently.ai iNt@IVIEW T€POTT.....cccuveerrieeiiieeeieeesreeerteeesieeeeeeeeeaeeesseeessneeessseeenns 12
Figure 2.1.3.1 APIiora iNtEIVIEW PAZEcc.eeveruieruiriiniieieeienieerteeitesieeteetesteenteeasesieesaesnenaeens 13
Figure 2.1.3.2 Interview report OF APIIOTacc.eevueeeiieriieriieeieeeiieeieeeite e esiee e e saeeereeseaeenneas 14
Figure 2.1.4.1 Talent matching algorithm in Braintrustccccceeeiiieniiieniiieeieccce e 15

Figure 2.1.4.2 Al generate job with user description and the Al interview interface in Braintrust

ATR ettt 16
Figure 2.1.4.3 Al filtering feature in Braintrust AIRcoocoiiiiiiniiniiieceeees 16
Figure 2.1.4.4 Generated scorecard after interview session in Braintrust AIR 17

Figure 3.1.1.1 System Design Diagram illustrating the interaction between Recruiter Portal,

Candidate Portal, Backend Server, Database, and External APIs in IntelliHire...................... 24
Figure 3.2.6.1 System architecture diagramccceeeerueriiirienenienieieete et 28
Figure 3.3.1.1 System flow chart (Part 1)cocoeviiiiiiiniiieeeee e 30
Figure 3.3.1.2 System flow chart (Part 2)ceeeecuieeriiieeiiie ettt e 31
Figure 3.4.1.1 System use case dia@ram.........cc.eeccuireriuieeriieeiieeeireeeieeeeeeeereeesreeesaeeeseseeenns 33
Figure 3.5.1.1 System Activity DIagramc.ccooceeviiriiniiiiinienieieseeeetesitee et 41
Figure 3.7.1 Gantt Chartc.ooioiiiiiiieieeeee ettt ettt e saeens 43
Figure 4.1.1.1 High-level system block diagram............cccceoiiiiiiiiiiniiniiiceeeeeeee e 44
Figure 4.1.2.1 Internal subsystem block diagram............ccccoevviieiiieeiiieeiieeeece e 45
Figure 4.3.1.1 Entity Relationship Diagram (ERD)cc.ccccoviiiiiiiiiniiniiiinieiecciceienne 53
Figure 5.2.1.1 XAMPP download Page.........cccueevieriieiiiiniieiieeieeie et e 64
Figure 5.2.1.2 XAMPP control paneloocveeeiiiiiiiiiieeiie et 64

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

X

Figure 5.2.1.3 Composer download Pageccoceevuerieriiriiinieniiieeceeteseeie et 65

Figure 5.2.1.4 COMPOSET SELUP PALZE....eeruvierieruiieiieeieetieniieeieesseeeseesseeeseessnesseessseeseesssesnses 65
Figure 5.2.1.5 Composer version CheCk...........ocoiiiiiriiriiiiiiierieeeeeee e 66
Figure 5.2.2.1 Laravel inStallationcccueeeeuiieriiiieiiie et svae e e e senee e 66
Figure 5.2.3.1 Visual Studio Code download pageccceeeueeriieiiienieeiiieieeiiesee e 67
Figure 5.2.3.2 Laravel Blade FOrmatter............ccooeiviiriiniiiiinieiiiereeeteseeeee e 67
Figure 5.2.3.3 Laravel SNIPPELS ...ccuueieiuiieeiieeeiieeeieeesieeeeiee et e esveeeeeesateesaaeessaeesnaeeennseeenns 68
Figure 5.2.3.4 Laravel Blade SnIPPeLS......cueeicuieeiiuiiiiiieeeiieeriee ettt vee e vaeesaeeesevee e 68
Figure 5.3.1.1 Laravel project Creationc.eecuieriieiiienieeiiesiee ettt ettt siee e 69
Figure 5.3.2.1 Database Creation PAZE.......ccvervrerueeriieeriienieeieesereeseesseeeseessresseessseeseesssesnses 70
Figure 5.3.2.2 Database setup page in .env of Laravel project........cccccveeviieevieeniieeniieenieeens 70
Figure 5.3.3.1 Gemini API key setup in .env of Laravel project..........cccccvveevieeriieenceeenneeens 70
Figure 5.3.4.1 GuzzleHTTP installationcocooeriiriiniiiinieinieeeeeesieee et 71
Figure 5.4.1.1 IntelliHire [anding Page..........ccceevueeriieriiiniieiiesie ettt siee e 72
Figure 5.4.1.2 IntelliHire 10ZIn Page.......ccocveeeiuiiiiiiiieiiie ettt sevee e 72
Figure 5.4.1.3 IntelliHire registration Page.........cccveercueeeriiieeiiieeiieeeieeeeieeeeveeesveeesneeeseseeenns 73
Figure 5.4.2.1 IntelliHire candidate dashboard.............ccccceceriiiiiiiniiniiiiniecee, 74
Figure 5.4.3.1 Intellihire candidate job browsing page (with resume information found in
ATADASE) ...evieeeieeiiieiie ettt et et st e et et e bt e tbeesbaeenbeeseeenbeesteenneesaeenseas 75
Figure 5.4.3.2 Intellihire candidate job browsing page (with no resume information found in
ATADASE) ...evieeiiieeciie ettt e et e e s ta e e ta e e e tae e e aaeeebaeeeraeeabaeenabaeennaeeennraeanns 76
Figure 5.4.3.3 Intellihire candidate job browsing page (resume uploaded for session
CAICUIATIONS) 1.ttt ettt ettt e et e et e e st eesbeessaeesbeeesbeesseeesbeenseesasaensaeenseeseesnsens 76
Figure 5.4.3.4 IntelliHire candidate view job details pageccccceeevveeeiieeeciieeeie e 77
Figure 5.4.3.5 IntelliHire candidate application Page.........cceccveeevieeeiieeeiiieeeieeereeeeveeesvee s 78
Figure 5.4.3.6 IntelliHire candidate applied JOb page........ccoeoveeviieiiienieeiierieeeeeeeeeee e 78
Figure 5.4.3.7 IntelliHire candidate status: appliedccoeoveriieiieniieeiieceeeeee e 79
Figure 5.4.3.8 IntelliHire candidate status: shortlistedccoceiiiiniiiiniieee, 79
Figure 5.4.3.9 IntelliHire candidate status: shortlisted, but expired...........ccccoveeeiveerciieennenns 80
Figure 5.4.3.10 IntelliHire candidate status: interviewed............coceeveveriienieneniienienenienens 80
Figure 5.4.3.11 IntelliHire candidate status: offeredoceveriiniininiineneeeeeee, 80
Figure 5.4.3.12 IntelliHire candidate status: rejectedcovveieriieeiiieeiiieeieeeee e 80

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.3.13 Job matching algorithm weighted SCOring..........ccccevveveriiiniininienienenienens 81

Figure 5.4.3.14 Rule-based skill matching with weighted scoring............cccceeevieniieciennennen. 82
Figure 5.4.3.15 Al prompt construction for semantic skill evaluationccoceevvevvenenens 82
Figure 5.4.3.16 Circuit Breaker Pattern..........coeeeiuiiiiiiiiieiieecieeeeeeeeee e 83
Figure 5.4.3.17 Caching Implementationccoocueeiiiriieiienie e 83
Figure 5.4.3.18 Rate LIMItING......cooiiiiiiieiieiiiieieeiei ettt sttt 83
Figure 5.4.3.19 Failure Cachingcccocueiiiiiiiiiiiiiiee et 83
Figure 5.4.3.20 Timeout CONLIOLS.......cvieiiuiiiiiiieeiieeeiee ettt e e e e e rae e aeeeseseeenes 83
Figure 5.4.3.21 Fallback to Basic MatChing..........ccccoeveviiriiiniiniiiiiiccetceeeeeee e 83
Figure 5.4.3.22 Final Output StrUCIUIEcocviriiriiiiiriieieeerieeteee et 84
Figure 5.4.3.23 Confidence Score Calculationc.cccooeeiiiiniiiiiinieniieceeeeeeeeeen 84
Figure 5.4.4.1 IntelliHire interview code entrance Page.........ccceeeveeerrveeeieeeeireeesireeesveeesveeenns 85
Figure 5.4.4.2 Intellihire interview page entry permission check..........cocccoveiiiiiniiiniinnnnen. 86
Figure 5.4.4.3 Interview session completed popup (no assessment)ccceeeveerveeveenenennnen. 88
Figure 5.4.4.4 Interview session completed popup (with assessment)..........ccceeeeeveeecieeennenns 88
Figure 5.4.4.5 Controller logic for storing candidate reSponSescceeeevveeeveeescveeeriveeesveeenns 89
Figure 5.4.4.6 Constructing Al evaluation prompt for Gemini API...........ccooiniiniininicnnn. 90
Figure 5.4.4.7 Prompt construction logic for different interview stagescccceevverveeennens 91
Figure 5.4.4.8 Handling Gemini API response and saving Al evaluation results................... 92
Figure 5.4.4.9 Retry logic for handling API errors in interview evaluation...........cccccceveeneen. 92
Figure 5.4.4.10 Interview Backend Flow Diagram...........c.ccccceieiiiieiiieeiiiecie e 95
Figure 5.4.5.1 IntelliHire assessment interface with instructions, active question, and
COUNEAOWIN LIIMNET ..ottt ettt ettt ettt et e bt e s e et e e st e eaee bt entesatenbeenseenteebeenteennenaeans 96
Figure 5.4.5.2 IntelliHire assessment COMPIEtion PAZEcccveeerveeeiveeeiiieeeiieeeiieeeieeesvee s 97
Figure 5.4.6.1 IntelliHire recruiter dashboardc.ccoooviieiiiiiiiiiceceeee e 99
Figure 5.4.7.1 IntelliHire recruiter job posting page: preset question and assessment section
.. 100
Figure 5.4.7.2 IntelliHire recruiter job management SCIEENc.eeevuveeecereeecreeerureerreeennnenns 101
Figure 5.4.7.3 IntelliHire recruiter edit JOD PAZEcc.eeveiiriieiiiiiiieeieee e 102
Figure 5.4.8.1 IntelliHire recruiter application overview list with candidate table. 104

Figure 5.4.8.2 IntelliHire recruiter application management screen: candidate details and
INEETVIEW TESPOIISES ..euvvieeereeeureeesereeesteeessseeassseeassseeassaessseessseessseeesssesessssesssseesssseeesssessssees 105

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

X1

Figure 5.4.8.3 IntelliHire recruiter application management screen: schedule screen.......... 106
Figure 5.4.9.1 IntelliHire Al-powered job match analysis interfaceccccoceeverieneennene 107
Figure 5.4.9.2 IntelliHire overall interview performance summary with key strengths and areas
RO e [S0S] 1470740155 L PSR 107
Figure 5.4.9.3 IntelliHire detailed skill assessment and recruiter-oriented observations....... 108
Figure 5.4.9.4 IntelliHire Al analysis of individual interview responsesccoccecveeeenenne 108
Figure 5.4.9.5 IntelliHire Al-powered assessment evaluation SCreenccceeeveeerveeennnenn. 109
Figure 5.4.9.6 Al prompt engineering for skill matching with version-aware scoring criteria
and structured JSON response fOrmat.........c.cecuierieriiieiieniieie et 110
Figure 5.4.9.7 Speech-to-text aware interview analysis prompt with five-dimensional scoring
criteria and structured JSON feedback format...........ccccooiiiiiiiiiiiiiiie 111
Figure 5.4.9.8 Assessment evaluation prompt with four-dimensional scoring and direct HTTP
API integration for automated response analysis..........cceevveeriieriieriienieeiienie e 112
Figure 5.4.9.9 Circuit breaker pattern implementation with failure tracking, rate limiting, and
aggressive timeout handling for Al service reliability........ccccceeviiieeiiieniieeeieeee e 113
Figure 5.4.10.1 Application detail page showing the download report feature once all analyses
ATE COMPIELE. ..eiiiieiiieeiietie ettt ettt ettt e et e bt e ettt e steeeabeesbeeeabe e seesaseenseesnseenseesnseenseeanseenses 114
Figure 5.4.10.2 Sample of generated PDF report overview showing candidate and application
AEEALLS. ..ttt et b ettt b et eat et et eaean 114
Figure 5.4.10.3 Resume section within the generated PDF, including work experience,
education, sKills, and CETtITICAtIONS.vviiiiiiiiiiiiiiiiecee e e e 115
Figure 5.4.10.4 Overall interview analysis section highlighting Al-generated strengths,
weaknesses, and final reCOMMENAAtIONS.coivvreiiuriieeee ettt e e e e e e eeeeeeee e e e e e e eeaaneeeas 115
Figure 5.4.10.5 Breakdown of candidate responses and Al evaluation per question. 116

Figure 5.4.10.6 Assessment report showing candidate answers, expected outcomes, and Al

SCOTIIIZ. .eeettenteeeeteeteeeuteeteeeeteeteeeateesseasabeenseeenseenseeeaseenseeeaseenseeesbeenseesnseenseesnseenseesnseenseesnseensns 116
Figure 6.2.2.1 State Transition Diagram: Authentication and Role Routing......................... 126
Figure 6.2.2.2 State Transition Diagram: Job Browsing (Resume-Based Display) 127
Figure 6.2.2.3 State Transition Diagram: Interview FIOWccccooovviiiiiiiciiiicieecee e, 128
Figure 6.2.2.4 State Transition Diagram: Assessment FIOWccccoociiniiiiniininiinicnennn 129
Figure 6.2.2.5 State Transition Diagram: Application Management Workflow 130

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

xii

LIST OF TABLES

Table 2.3.1 CompariSOn RESULL.........cc.ceiuiiiiiiiiieiiieie ettt e e 20
Table 3.4.1 Use case description for User Registration............ccccveeeevveeeiieescieeeniieesiee e 33
Table 3.4.3 Use case description for Candidate Applies for Job.........coocveviiiiiiiniiiiiienienen. 34
Table 3.4.4 Use case description for Candidate Joins INterviewccceevveecveenieecieennennnen. 36
Table 3.4.5 Use case description for Recruiter Posts JODccccvvveiiiiiiiieniiiiieeeeeees 37
Table 3.4.6 Use case description for Recruiter Manages Application..........cccceeevveeeveeenneennns 38
Table 3.4.7 Use case description for Recruiter Reviews Interview Result.............cccceeenneee. 39
Table 5.1.1 Specification Of IaptOPeecviereieiiieiieeeee e e 63
Table 6.2.1 Decision Table: Authentication & Registration Rulesccccccveevciieenieennnnnn. 122
Table 6.2.2 Decision Table: Job Browsing (Resume Rules)cccccvvevciiieniiiiniieicieeee. 123
Table 6.2.3 Decision Table: Application Status Transitionsccecceeveeeceeeneersieeneenneenne 123
Table 6.2.4 Decision Table: Interview Code Validationcccceeeveveenenienienienienceiene. 124
Table 6.2.5 Decision Table: Interview TTS Decisionccceeveeriiiiiiniiiininiieenieieeeee 125
Table 6.2.6 Decision Table: Assessment Availability Rules...........cccceevevieeiciiienciiecciieee. 125

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

xiil

Al
RDBMS
Ul

GUI
ERD

VS Code
IDE
N
STT

C

SLA
API
HTTP
HTTPS
JSON
AJAX
WebRTC
RBAC
CSRF
XSS
CRUD
MVC
ORM
SOL

Uux
CDN
PDF
DOCX

LIST OF ABBREVIATIONS

Artificial Intelligence

Relational Database Management System
User Interface

Graphical user interface

Entity Relationship Diagram
Visual Studio Code

Integrated Development Environment
Text-to-Speech

Speech-to-Text

Test Case

Service-Level Agreement
Application Programming Interface
Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure
JavaScript Object Notation
Asynchronous JavaScript and XML
Web Real-Time Communication
Role-Based Access Control
Cross-Site Request Forgery
Cross-Site Scripting

Create, Read, Update, Delete
Model-View-Controller
Object-Relational Mapping
Structured Query Language

User Experience

Content Delivery Network

Portable Document Format

Office Open XML Document

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiv

CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

In this chapter, we present the background and motivation of our research, the contributions

of this project to the field, and the overall organization of this report.

With the rapidly evolving technological landscape nowadays, Artificial Intelligence (AI)
has been widely integrated in various industries and sectors, improving processes compared to
traditional methods. One such industry is recruitment, where conventional practices previously
relied a lot on human interviewers to screen and select suitable candidates. These such outdated
methods would typically be plagued with drawbacks such as high costs, slow processing, and
inconsistent evaluation criteria, which have a tendency to influence the efficiency and

impartiality of candidate screening in a negative manner.

To address these issues, this project introduces IntelliHire: An Al-Powered Interviewer for
Automated Candidate Selection. IntelliHire system uses Al to match candidate resumes,
interview the candidates with a blend of generic and position-specific questions, and generate
evaluation reports that suggest candidate suitability for specific jobs. This approach saves time
and effort compared to traditional methods, eliminates scheduling conflicts, and ensures that

all candidates are assessed on a level playing field [1].

With this work, we demonstrate how the recruitment process can be enhanced by Al to
make the hiring process more consistent, efficient, and fair. The following sections present the
problem statement and motivation, project goals, scope, contributions, and overall organization

of this report.
1.1 Problem Statement and Motivation
1.1.1 Problem Statement

1.1.1.1 Resume Screening Challenges

One of the problems with the recruitment process is screening resumes manually [2], which is

time-consuming and prone to human error. Recruiters may overlook potential candidates due

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

to exhaustion, heavy workload, or inconsistency in criteria of evaluation. This lack of

standardization creates inefficiencies and possibly overlooks top talent.

1.1.1.2 Inefficient and Resource-Intensive Interview Process

Traditional interview process is always inconsistent and highly reliant on human effort,
requiring much time and human resources to arrange and conduct interviews [3]. Coordinating
multiple candidate interviews manually may be resource-draining, lead to schedule conflicts,

and prolong the overall recruitment process.

1.1.1.3 Delays in Interview Scheduling and Feedback

Manual scheduling of interviews and providing feedback are likely to cause delays, which can
frustrate candidates and result in losing good talent [4]. Lack of an automated scheduling

system and feedback mechanism causes inefficiency, which slows down the hiring process.

1.1.2 Motivation

The main motivation behind developing IntelliHire is to make the hiring process more
efficient and unbiased. Traditional methods are time and cost intensive, especially when
handling a large number of applicants. Moreover, manual evaluations are prone to vary from
interviewer to interviewer, and it may be difficult to maintain consistency while assessing the

candidates, which may eventually lead to less than optimal hiring decisions.

1.2 Objectives

The project objectives of IntelliHire project are:

1.2.1 Develop an AI-Powered Resume Screening System

To make the resume screening process automated using Al that analyses and filters resumes
based on predefined criteria, only the most suitable candidates proceeding to the interview
stage. This will save time and effort required in manual evaluation and create a standardized

process to resume screening.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

1.2.2 Automate the Interviewing Process for Increased Efficiency and Consistency

To create an Al-powered interviewer that can conduct structured virtual interviews, generate
relevant questions from the job description and the candidate background, and provide real-
time responses analysis. This will save time and human effort, increase consistency in

candidate assessments, and streamline the entire recruitment process.

1.2.3 Real-Time Scheduling and Feedback System

To develop an automated scheduling module that allows candidates to schedule interviews in
real-time and receive timely, automated feedback after each interview. It would simplify the
recruitment process, enhance the candidate’s experience, and reduce delays in decision-

making.

1.3 Project Scope and Direction

The proposed IntelliHire system is designed to transform the traditional hiring process
through the use of Al in resume screening, interviewing, and even evaluating candidates based
on the same parameters. The scope of the project involves the development of an Al-powered
interviewer that can scan resumes, interview, and render a fair judgement of the candidates.
The system will promote the interersts of various industries with a perspective towards

improving the fairness, objectivity, and efficiency of the recruitment process.

The IntelliHire system will be developed as a web application, which can be accessed by
both recruiters and candidates. It will have support for multiple job roles across different fields
and hence be applicable to any size of company. The system will also include features such as
scheduling interviews in real-time, Al-based question generation, and automated feedback
mechanisms. The project will also involve the development of a user-friendly interface that

ensures ease of use for all users.

1.4 Contributions

The contributions of this project are:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

e Development of an Al interviewer: This project will develop an Al-powered system
that is able to conduct candidate interviews autonomously, analyze their responses, and
provide a comprehensive evaluation.

e Resume analysis and interview evaluation integration: The system will combine
resume data with interview performance to provide a full view of a candidate’s
suitability for a job.

¢ Enhancement of recruitment efficiency: By automating time-consuming tasks, the
system will significantly reduce the time and expense involved in the hiring process.

e Improvement of consistency in candidate evaluation: The Al system is designed to
provide uniform assessments across all candidates, minimizing variability caused by
manual evaluations.

This project represents a significant advancement in the use of Al in human resource

management and providing a more efficient, cost-effective, and fairer means of candidate

screening.

1.5 Report Organization

This report is organized into seven chapters to systematically present the development of
the IntelliHire system. Chapter 1 introduces the background of the project, the problem
statement, objectives, scope, contributions, and the overall structure of the report. Chapter 2
provides a literature review of existing Al-powered recruitment systems, highlighting their
features, limitations, and relevance to this study, followed by a comparative analysis of the
reviewed systems and the proposed solution. Chapter 3 explains the system methodology,
which includes design diagrams, architecture, system flows, use cases, activity diagrams, and
the Agile development approach, before concluding with the project timeline. Chapter 4 details
the system design by presenting the block diagrams, component specifications, database
design, and system interactions. Chapter 5 focuses on the implementation phase, covering
hardware and software setup, configurations, system operations, and the challenges
encountered during implementation. Chapter 6 presents the evaluation and discussion of the
system, including testing objectives, techniques, acceptance criteria, decision table testing,
state transition testing, and project challenges. Finally, Chapter 7 concludes the report with a
summary of findings and recommendations for future improvements to IntelliHire.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

Chapter 2 Literature Review

2.1 Previous Works on AI Interviewers

The use of Al-powered platforms in recruitment has significantly changed the way
companies conduct interviews, offering more efficient and data-driven processes.
Interviewer.ai, Talently.ai, and Apriora are three prominent platforms that have contributed to
this evolution. Each platform offers unique features designed to streamline the interview

process, improve candidate evaluation, and reduce the workload for recruiters.

2.1.1 Interviewer.ai

Interviewer.ai [5] stands out for its well-rounded approach to assessing job candidates. It
doesn’t just screen resumes—it also analyzes interview responses using Al, producing detailed
reports that help recruiters make informed decisions. These reports include scores for key traits
like communication, energy, professionalism, and sociability. Each score is generated by the
platform based on the candidate's video interview performance. One of its strong points is the
report generation system. For every interview, Interviewer.ai creates an Excel file that stores
important candidate details. This includes their name, contact info, application status, interview
date, and their overall and individual scores. This structure is especially helpful for large

recruitment drives, where organizing and comparing candidate data quickly becomes essential.

- =3

Figure 2.1.1.1 Overview of interviewer.ai
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

Figure 2.1.1.1 shows the overview page of Interviewer.ai, which provides companies with
a comprehensive analysis of the number of candidates applying for various positions in the
organization. This feature offers a centralized view of the recruitment pipeline, enabling
recruiters to quickly assess the volume and distribution of applicants across different job
postings. Such an overview aids in identifying which positions attract the most interest and

may require more attention or adjustment in the recruitment strategy.

| O— o) B~

< Bock - .
[e e]

Create Job Interview -.lf;"' st

workmap Avsessmant
A8 rano Form Gravtons
83 Video Quartore

rervem Tt o

Figure 2.1.1.2 Cerate job interview page

Figure 2.1.1.2 depicts the initial stage of the interview process within Interviewer.ai, where
the company creates a job interview profile. This step involves inputting essential details such
as the job title, company location, and specific requirements for the role. Additionally, the
platform allows users to include a detailed job description, ensuring that candidates fully
understand the expectations before proceeding with the interview. A key feature at this stage
is the ability to set interview questions and assign a time limit for each, providing structure to

the interview process and ensuring that all candidates are assessed under consistent conditions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

Figure 2.1.1.3 Question bank of interviewer.ai

As seen in Figure 2.1.1.3, users can pick questions from the platform’s question banks or
write their own. There are two main sections: the “Additional Form Question Bank,” which
includes community-submitted questions, and the “Video Question Bank,” which is more
structured and organized by category. While the form bank sometimes contains irrelevant or

spam content, the video bank is more reliable and easier to use.

SOV, R, e

Figure 2.1.1.4 Insights page of interviewer.ai

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

After the interview setup is complete, users can access overall insights for that specific
interview, as seen in Figure 2.1.1.4. This page provides detailed demographic and educational
data about the candidates, including their location, gender, and academic background. These
insights are invaluable for recruiters as they offer a quick yet comprehensive overview of the
applicant pool, helping to identify trends or patterns that may influence the hiring decision. For
example, understanding the geographical distribution of candidates could inform future
recruitment strategies, while educational backgrounds might highlight the need for additional

training or support in certain areas.

P == P ™ s P =

Figure 2.1.1.5 Overall review of created job interview

Figure 2.1.1.5 presents the overall review page for an individual candidate. Here, recruiters
can evaluate the candidate's interview performance based on Interviewer.ai's automated scoring
and analysis. The platform provides a transcript of the interview alongside the recorded video,
which is conveniently segmented according to each question asked. This feature significantly
enhances the review process, as it allows recruiters to focus on specific responses without
having to sift through the entire interview. After reviewing, recruiters can decide whether to

shortlist the candidate, keep them in view for future opportunities, or reject them.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

Figure 2.1.1.6 Auto generate email page

For candidates who are not selected, Interviewer.ai will send an auto-generated email, as
shown in Figure 2.1.1.6 which allows recruiters to efficiently communicate rejections,
streamlining the process and ensuring that all candidates receive timely feedback. This feature
not only saves time but also maintains a professional and courteous communication flow with

all applicants, enhancing the company's employer brand.

In summary, Interviewer.ai offers a robust platform with a variety of features designed to
streamline and enhance the recruitment process. From creating detailed job profiles and
selecting relevant interview questions to analysing candidate data and automating
communication, the platform addresses many common challenges faced by recruiters. By
providing structured tools and insights, Interviewer.ai enables more informed decision-making
and contributes to a more efficient and effective hiring process. However, improvements in
user-generated content management and further enhancement of candidate interaction could

elevate the platform's utility even further.

2.1.2 Talently.ai

Talently.ai [6] is a platform designed with a strong emphasis on flexibility, integrity, and
efficiency in the interview process. Unlike traditional scheduling systems, Talently.ai allows
candidates to begin their interview sessions at their convenience without needing to set an
appointment. This on-demand approach ensures that the interview process is accessible and
accommodating to candidates from various time zones and with different schedules, thereby

broadening the talent pool. One of Talently.ai's standout features is its rigorous anti-cheating

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

mechanism, which requires candidates to share their entire screen before starting the interview,
as shown in Figure 2.1.2.1. This feature is particularly effective in preventing candidates from
browsing unauthorized websites or using external resources during the interview, thereby

maintaining the integrity of the assessment.

first - second (-inf")

in

first, num

Figure 2.1.2.2 Shared screen technical test in talently.ai

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

CHAPTER 2 LITERATURE REVIEW

As shown in Figure 2.1.2.2, the platform includes coding or logic-based challenges,
depending on the job role. The Al evaluates answers in real-time, checking syntax, logic flow,

and problem-solving approach.

This method shifts the focus from surface-level responses to real performance. It reduces
bias by prioritizing skill over personality or presentation style. Recruiters can then view the
top-performing candidates through a ranked list, as seen in Figure 2.1.2.3, which simplifies

decision-making.

/A Talentiy.ol Jobs jat tom Quest terview » .

Candidates

Senior Product Designer

10 3

1,2210 Applied Candidates

‘ Michael Okor Senior Product Designe ygos, Nigeria 92.10% 01/10/2023

Figure 2.1.2.3 Shortlisted candidate overview in talently.ai

While Talently.ai excels in testing job-related skills and upholding fairness, it lacks some
of the deeper insights that platforms like Interviewer.ai provide. For example, Interview.ai
breaks down traits such as communication, sociability, and energy. These soft skills are
important in many roles and help recruiters form a complete view of a candidate. Talently.ai,
in contrast, mainly scores based on task responses. This approach works well for technical roles

but may fall short when evaluating interpersonal strengths or leadership potential.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

CHAPTER 2 LITERATURE REVIEW

QR 26%

Question 2 40% 20% 1

0% 20% 1

Question 4

Figure 2.1.2.4 talently.ai interview report

Another key difference is in how the platforms handle candidate feedback. Unlike
Interviewer.ai, which requires recruiters to manually share interview reports, Feedback in
Talently.ai is instant. As soon as the interview ends, candidates receive a report by email, as
shown in Figure 2.1.2.4. This allows them to reflect on their performance right away, helping
them prepare better for future interviews. However, these reports are not as detailed as those
from Interviewer.ai. Instead of giving scores across multiple traits, Talently.ai either scores
individual questions or gives a general performance summary. This limits how much insight

the recruiters and candidates can gain from the results.

In summary, Talently.ai is a strong platform for roles that require technical accuracy and
independent problem-solving. Its flexible, on-demand interview system and real-time
assessment make it a convenient choice for both recruiters and applicants. Its anti-cheating

measures and fast feedback loop are major advantages. However, for roles that rely on soft

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

CHAPTER 2 LITERATURE REVIEW

skills or require a deeper personality analysis, it may not be the most comprehensive option.
Even so, Talently.ai plays an important role in streamlining hiring processes—especially where

technical performance is the top priority.

2.1.3 Apriora

Apriora [7] is an Al-powered interview platform that emphasizes both efficiency and
candidate engagement, offering a range of features designed to streamline the interview process
while maintaining a high level of interaction. This platform aims to create a more dynamic and
responsive interview experience by integrating unique functionalities that distinguish it from

other Al interview platforms such as Interviewer.ai and Talently.ai.

Figure 2.1.3.1 Apriora interview page

One of Apriora’s standout features, as shown in Figure 2.1.3.1, is the convenience it offers
during the interview session. Unlike other platforms, Apriora allows candidates to control the
recording process by simply pressing the space bar to stop recording after they finish answering
a question. This functionality is not available in the other platforms mentioned earlier, where
the system automatically detects when a candidate has finished speaking. By giving candidates
direct control, Apriora not only saves time during the interview process but also reduces the
risk of the system prematurely ending a recording due to misdetection. This small yet

significant feature contributes to a smoother and more efficient interview experience.

In addition to this, Apriora promotes a more interactive interview environment by allowing
candidates to ask questions before the interview concludes. This feature fosters a two-way

communication channel, enabling candidates to seek clarification or express any concerns they

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

CHAPTER 2 LITERATURE REVIEW

might have, which can be particularly beneficial for roles that require strong communication

and interpersonal skills.

Vewr v Report tor

i

) f = O,

EEERRI

Figure 2.1.3.2 Interview report of Apriora

Similar to Talently.ai, Apriora provides candidates with their interview report immediately
after the session concludes. This instant feedback mechanism allows candidates to quickly
review their performance and gain insights into areas where they can improve. However,
Apriora goes a step further by delivering a full transcript of the interview session, which makes
it easier for recruiters to review the content in detail. It looks at both job-specific skills and
broader qualities like communication and analytical thinking. This targeted evaluation helps

recruiters focus on the candidates who are most likely to succeed in the role.

In short, Apriora combines smart automation with human-friendly features. It gives
candidates more control, promotes interaction, and offers valuable feedback. These qualities

help set it apart from other Al interview platforms.

2.1.4 Braintrust

Braintrust [8] is a decentralized talent network that uses blockchain technology to connect
freelancers with companies in a transparent, efficient, and user-empowered ecosystem. Unlike
traditional Al interview platforms, Braintrust redefines recruitment by offering a decentralized

model that prioritizes trust, control, and community participation.

One of the standout features of Braintrust is its sophisticated talent-matching algorithm.

The platform uses advanced algorithms to pair freelancers with job opportunities that align

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

CHAPTER 2 LITERATURE REVIEW

with their skills and experience. This Al-driven matching process is particularly beneficial for
ensuring that candidates are evaluated based on their fit for the role, streamlining the hiring
process and improving outcomes for both freelancers and companies. The use of Al in this
context could extend to matching candidates with interview questions and assessments that
best evaluate their suitability for the role, further enhancing the efficiency of the recruitment

process.

% Braintrust Q, Search Talent v & P {0¢

B My Jobs

Test Job (direct hire) © Visibility Editlob @ View JobPost A

& Talent

Invite Talent

Invite matched Talent to apply

Babatunde Akingbemi

@~ T =

4 Looking for Work

Jameel Syed
nher o ¢ Losking for Werk)

&' Prajest Menagess * Stskehoider Mansgement Viewproie 2

,

Figure 2.1.4.1 Talent matching algorithm in Braintrust

Braintrust also emphasizes user empowerment, giving freelancers greater control over their
work environment. Freelancers can set their own rates, select projects that resonate with their
interests, and participate in the platform's governance. This level of personalization not only
enhances user satisfaction but could also make the interview process more engaging and

candidate friendly.

However, access to Braintrust's Al-driven interview capabilities is available only through
a subscription to Braintrust AIR. As depicted in Figure 2.1.4.1, hiring managers can utilize
Braintrust AIR to automate the job description creation process, with Al writing the full job
description and posting it to the Braintrust job board. Once applications are received, Braintrust
AIR analyses them to determine which candidates should proceed to the interview stage. It then
schedules and conducts live interviews with the selected applicants.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

CHAPTER 2 LITERATURE REVIEW

€ Back X

i
3

+ voo
Z Include a brief job overview to assist our Al in

crafting a job for you.

I'm looking for a full time senior fronted developer with react, typescript,
and javascript experience. This position is remote.|

IL

*% Brointrust AR Rana x Reddit

‘0 Generate with Al

Let’s get started: Can you share a little about yourself and your background?|

¢) Leave interview

Figure 2.1.4.2 Al generate job with user description and the Al interview interface in

Braintrust AIR

During the interview, Braintrust AIR generates questions tailored to the specific role and

the applicant’s background. This ensures that the interview is not only relevant but also

thorough, covering all necessary aspects of the candidate’s qualifications.

& Braintrust Q =2 Q 6
O Dashboard Senior Frontend Engineer 2 Add 10Gin Members Edit Al interview Editjob @
B My jobs
S Invoices
93 Interviewing
O Tolent ———————
Al v v a1 v < Sortbydate
S Advance 1o next round Maoie offer Revoct =2
Rana Mohamed &
@ Chicaga, R USA Round1 15 years in Engineering E @ n
I e
= Pending interview completion ond grading
== Interview request wos sent today ot 1:37 PM EST. Re-send Al Interview request.
o) (o] Advence 1o next round Make offer Reyoct =

Figure 2.1.4.3 Al filtering feature in Braintrust AIR

After the interview session, Braintrust AIR generates a scorecard for each candidate, as

shown in Figure 2.1.4.4. This scorecard is based on the applicant's performance during the

interview and provides hiring managers with a clear, data- driven assessment of each candidate.

The scorecard includes a grading criterion and a short description of the applicant’s answers,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

CHAPTER 2 LITERATURE REVIEW

helping hiring managers make informed decisions about advancing candidates to the next

round, extending an offer, or rejecting the applicant.

+, 3.5 Al Interview score

Sarah exhibits exemplary communication skills, demonstrates profound
expertise in product design, and effectively articulates their professional
experiences. Where he might struggle in storytelling ability he makes up for
in technical competence.

+, Grading criteria

Technical competence
5.0 .

Their proficiency in design tools and software is evident in the high-
quality designs they produce. Whether it's creating user interfaces,
wireframes, or prototypes, Sarah exhibits a deep understanding of

Communication
They excel in articulating their design concepts, ideas, and rctionolé@

43

Figure 2.1.4.4 Generated scorecard after interview session in Braintrust AIR

In summary, Braintrust stands out as a forward-thinking platform that leverages blockchain
technology and Al to create a transparent, efficient, and user-centric talent network. Its
decentralized approach and advanced talent-matching algorithms make it a powerful tool for
connecting freelancers with suitable job opportunities. However, its reliance on blockchain,
focus on the tech industry, and subscription-based access to Al- driven features present
challenges that may limit its broader applicability. Despite these limitations, Braintrust's

innovative model offers a glimpse into the future of decentralized talent networks.

2.2 Limitation of Previous Studies

Al-driven recruitment tools have made major strides, but they still fall short in several
key areas. Each platform brings something useful to the table, but they also carry limitations
that reduce their overall effectiveness. Below is a breakdown of the most common issues found

across some popular platforms.

Interviewer.ai has several limitations, particularly in its interaction and transparency with
candidates. The platform does not allow candidates to ask questions during the interview,
which could limit the depth of the interaction. Additionally, candidates are not able to view

their interview results, which could lead to a lack of transparency and feedback. Besides, the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

CHAPTER 2 LITERATURE REVIEW

transcript is only available alongside the recorded video, which can make it challenging for
recruiters to review the content thoroughly. Moreover, the platform lacks features to prevent

dishonest practices, such as screen sharing or tab switching checkers.

Talently.ai does a good job with cheating prevention and flexible scheduling. However,
it falls short in documentation and feedback. Recruiters can't generate detailed reports from the
platform, which makes tracking and comparing candidates harder. It also doesn't assess
resumes—only the interview performance is considered. This limits how well the platform
captures a full picture of the applicant. Candidates also face several limitations. They can't ask
follow-up questions, view their scores, or get any feedback through email. Another issue is that
the platform doesn't allow recruiters to set time limits for individual questions, which could

lead to inconsistencies during evaluations.

Apriora has limitations in terms of video review and overall candidate analysis. The
platform does not segment video recordings by question, which can make it difficult for
recruiters to navigate and review specific parts of the interview. It also does not offer an overall
analysis of all candidates' results, focusing instead on individual performance without
providing a comprehensive overview. The platform does not support the auto-generation of
emails to inform candidates about their results, nor does it allow for setting time limits on

questions, which might affect the consistency of evaluations.

While Braintrust offers a decentralized and transparent approach to talent matching, it is
not without its challenges. The complexity of its decentralized system may be intimidating for
users unfamiliar with blockchain technology, potentially deterring them from fully utilizing the
platform. Additionally, Braintrust's current focus on the tech industry limits its applicability
across other sectors, reducing its versatility as a comprehensive talent-matching solution.
Moreover, Braintrust's reliance on user participation in governance is a double-edged sword.
While it empowers users by giving them a voice in platform decisions, the success of this model
depends heavily on active and informed participation. If users are not fully engaged or lack the
necessary knowledge to participate effectively, the platform's governance and decision-making

processes could be hindered. Furthermore, while the Al-powered features of Braintrust AIR

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

CHAPTER 2 LITERATURE REVIEW

are impressive, they come at a cost, as access to these advanced tools requires a subscription,

which could be a barrier for smaller companies or independent freelancers.

These limitations across the platforms underline the importance of a well- rounded, user-
friendly, and transparent Al-powered interview system, which the proposed IntelliHire project

aims to address by integrating and improving upon the strengths of these existing tools.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

CHAPTER 2 LITERATURE REVIEW

2.3 Comparison of Reviewed System

Table 2.3.1 Comparison Result

Feature Interviewer.ai Talently.ai Apriora Braintrust
User-friendly | Yes Yes Yes Yes
Free to use No No No No
Avatar N/A N/A N/A N/A
Device Desktop/ Laptop Desktop/ Laptop Desktop/ Laptop Desktop/ Laptop
Effective No (candidates cannot ask | No (candidates cannot ask | Yes (candidates can ask Yes (user control and
Interaction questions) questions) questions) participation)
Strength - Detailed candidate - Flexible - Candidate controls recording | - Transparency and
reports interview _Interactive interview empowerment
- Automated data export scheduling environment - Efficient talent matching
. - Anti-cheating measures - Immediate feedback with
- Comprehensive .
- Immediate feedback .
. . . full transcript
interviewanalysis
Weakness - Limited interaction - Lack of - No segmented video review | - Complex for non-tech-
- Transcript only comprehensivereports _ Focuses on individual savvy user
availablewith video - No resume scoring . - Limited industry scope
analysis only
- No anti-cheating - Limited transparency - No automated emails - User participation required
measures forcandidates

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

CHAPTER 2 LITERATURE REVIEW

2.4 Proposed Solutions

This project introduces a new Al-powered interview platform designed to bring together

the best parts of existing systems—Iike Interviewer.ai, Talently.ai, Apriora, and Braintrust—

while fixing their weaknesses. The goal is to create a complete, smart, and user-friendly

solution that works better for both recruiters and candidates. Here is how the proposed system

improves upon current tools:

1.

Enhanced Candidate Interaction and Transparency: The platform will promote
better interaction between candidates and the system. Like Apriora, candidates will be
allowed to ask questions during the interview. This supports a more engaging, two-way
experience. In addition, candidates will be able to view their results afterward. This
adds transparency and helps them understand how they performed.

Detailed Reports and Easy-to-Read Transcripts: To go beyond what Talently.ai and
Braintrust offer, the platform will provide detailed documentation for both resume
screening and interview performance. After each interview, candidates will be able to
view their performance. Transcripts will also be shared in a clear format, separated from
the video files, making it easier for both candidates and recruiters to review them.
Improved Video Review Capabilities: Interviewer.ai allows video interviews to be
broken into parts. This makes reviewing easier. This platform takes that idea further.
Recruiters will be able to jump directly to specific questions in the video. They can also
read the full transcript at the same time. By combining video playback with transcript
viewing, Apriora does, recruiters can evaluate candidates more efficiently and with
better focus.

Flexible Scoring and Candidate Insights: The scoring system will be fully
customizable. Recruiters can set criteria that match both job-specific skills and broader
qualities like communication or problem-solving. After interviews are complete, the
system will offer an overall analysis of all applicants. This will help recruiters compare

candidates more effectively and make smarter, data-driven hiring decisions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

CHAPTER 2 LITERATURE REVIEW

By integrating these features, the proposed solution aims to create a more comprehensive,
transparent, and effective Al-powered interview platform that addresses the limitations of

existing tools while leveraging their strengths.

2.5 Summary

The review has passed through four Al interview platforms: Interviewer.ai, Talently.ai,
Apriora, and Braintrust. Each platform has unique features while exposing some limitations.
Interviewer.ai is good at detailed candidate reports and analysis but poor in interactive
elements. Talently.ai is good at anti-cheating features and customizable scheduling but poor in
extensive documentation. Apriora is good at superior candidate control and interaction but
lacking in segmented video reviews. Braintrust employs blockchain technology for truthful

talent matching but exposes complexity issues for non-tech users.

The comparative review also revealed key shortcomings shared by the existing systems,
such as restrictions on candidate communication, limited transparency levels, inadequate
documentation, and insufficient anti-cheating capabilities. Against these background, the
proposed IntelliHire platform aims to complement the functionality of existing platforms by
addressing their flaws through enhanced candidate interaction, extensive reports, advanced
video review functionality, robust anti-cheating capabilities, and flexible score mechanism.
This synergistic approach intends to create an improved, transparent, and easy-to-use Al-

powered interview platform that can both benefit recruiters and candidates.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Chapter 3 System Methodology and Model

3.1 System Design

The architecture employed is a client-server model where the client (web browser) engages
with the server-side application created with Laravel. Within this model, there are two
categories of clients: the Recruiter portal and the Candidate portal. Each portal serves as an

interface that permits users to interact with the system according to their specific roles.

The Recruiter Portal allows recruiters to create job postings, review candidate applications,
set interview schedules, and monitor interview results. The Candidate Portal allows candidates
to browse available jobs, submit applications with uploaded resumes and cover letters, and

attempt interviews once scheduled.

Both portals communicate with a backend server, which processes client requests, applies
the required business logic, and interacts with a local MySQL database (running on XAMPP)
for data storage and retrieval. In addition, the backend server interacts with external APIs,
especially the Gemini API, which is used to generate interview questions based on the provided

job information.

The server-side application uses the Model-View-Controller (MVC) design pattern
internally, which is a fundamental characteristic of the Laravel framework. Models handle data
management and interact with the database, views display information to users via interfaces,
and controllers serve as middlemen, managing user input, executing business logic, and

producing suitable responses.

This separation of concerns improves the maintainability and extensibility of the code and
simplifies the update and debugging process.

By combining the client-server architecture for external communication and the MVC
design pattern for internal code structure, the system ensures a clear, orderly, and efficient

development and operation process.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

3.1.1 System Design Diagram

The system design diagram shows the interaction between the recruiter portal, candidate portal,

backend server, database, and external API.

Data retrieval and
storage

Job creation,
review, scheduling

Recruiter Portal Backend Server

Gemini API for

Job application, question generation

interview attempt

Candidate Portal External APIs

Figure 3.1.1.1 System Design Diagram illustrating the interaction between Recruiter Portal,

Candidate Portal, Backend Server, Database, and External APIs in IntelliHire.

3.2 System Architecture

IntelliHire follows a well-structured client-server architecture with different
responsibilities assigned to various system layers. This approach ensures modularity,
extensibility, and ease of maintenance, which are important for support future upgrades and a
larger user base. Although IntelliHire is built on Laravel, a framework that follows the Model-
View-Controller (MVC) pattern internally, its overall architecture operates on a client-server

model at a broader level, incorporating database management and external API services.

The IntelliHire system is made up of five main components:

e Users

e Frontend

e Backend Server (Laravel Framework)

e Database Layer (MySQL)

e External APIs (Gemini API)

Each component plays different role, working together to support a smooth and efficient
recruitment process. These elements connect users with application logic, storage, and external

services.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

3.2.1 User

IntelliHire serves two main types of users: recruiters and candidates. Recruiters are in
charge of the hiring process. They create job listings, review applications, shortlist candidates,
schedule interviews, and update application statuses. Candidates use the system to look for jobs,
submit their applications, attend Al-powered interviews, and track their application results. The
system tailors the experience based on the role of the user so that both groups get tools suitable

to their needs.

3.2.2 Frontend

Frontend layer comprises two distinct portals, each designed to cater the requirements of a
particular set of users:

1. Recruiter Portal

2. Candidate Portal

Both portals are the primary means for users to interact with the IntelliHire system.

In the recruiter portal, users can post jobs, monitor applications, schedule interviews, and
view interview feedback. Recruiters also get insights by way of performance summaries and

analytics.

The candidate portal allows the candidates to register, complete their profiles, search for
jobs, apply for jobs, and attend automated interviews. They can also view the results of their

applications.

The frontend communicates with the backend server using HTTP-based API calls. It sends
data collected from users (e.g., applications and interview responses) and retrieves information
(e.g., job listings and interview scheduling) by securely interacting with the Laravel backend.

Separating the frontend and backend ensures a more responsive and dynamic user experience.

3.2.3 Backend Server (Laravel Framework)

The core of application logic, the Laravel backend server, is used to manage the interaction

between the frontend, database, and external APIs.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Internally, Laravel employs the MVC (Model-View-Controller) pattern, in which the
application logic is divided into three primary layers: data is managed by models, presentation
is managed by views, and logic that binds models and views together is managed by controllers.

This internal structure makes the backend highly organized and manageable.

At the system level, the Laravel backend acts as a middleman, handling client requests from
both portals, applying business logic, and communicating with the database for data storage

and retrieval.

The specific responsibilities of the backend include:

1. Manage job postings created by recruiters, ensuring they are properly stored and
updated in the database.

2. Process candidate applications, record submitted information, and update application
status.

3. Store and retrieve candidate interview responses and feedback data.

4. Manage interview scheduling between recruiters and candidates.

5. Prepare and format data to be sent to the Gemini API in order to generate customized

interview questions based on specific job postings.

The backend ensures that all business rules are enforced, validates data, manages
authentication and authorization, and secure communication. It is the intellectual component

of the system, tasked with directing all the activities to ensure consistency and reliability.

3.2.4 Database layer (MySQL)

The IntelliHire system implements a MySQL database to keep the core data of the system
in the storage. The database is hosted locally using XAMPP during the development phase so

that it's readily accessible along with schema and data management.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Each of the tables gets associated with other tables through structured relationship to ensure
data integrity along with optimizing processes for queries. The database layer plays a major

role in providing real-time facilities for front-end and back-end activities.

3.2.5 External APIs (Gemini API)

One of the standout features of IntelliHire is its deep integration with the Gemini API,
which facilitates multiple stages of the hiring process. The most visible application is in the
generation of interview questions, where Gemini receives job descriptions and returns
customized sets of questions that are match for each role. This automation saves recruiter time,

ensures consistency, and offers a more engaging candidate experience.

Aside from question generation, the Gemini API also powers an interview chat system in
real time. By maintaining conversational context, the system can ask follow-up questions and
provide dynamic responses, making the interview process more natural. Gemini also performs
resume parsing and analysis, extracting text from different file formats and translating it into
structured information such as skills, education, and experience. This makes candidates easier

to compare for recruiters.

On the employer side, the API is used for job requirements parsing, whereby the content of
job postings is parsed to find skills, qualifications, and certifications. The structured data feeds
Al-driven job matching, whereby Gemini goes beyond simple keyword comparisons to align

applicants with jobs based on semantic understanding, context, and skill equivalence.

At the assessment and interview stages, Gemini supports response evaluation via analysis
of candidate answers, completeness assessment, clarity, and communication, followed by the
generation of feedback, scores, and suggestions. It also evaluates answers to assessment
questions and discriminates between content issues and possible speech-to-text processing

transcription errors.

Finally, all the AI insights, like scores from evaluations, feedback, and suggestions—

remains in Al data models within the system. The records maintain structured metrics like

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

confidence levels, improvement suggestions, and suggestions for hiring, providing recruiters

with solid decision support throughout the recruitment process.

3.2.6 System Architecture Diagram

The following diagram illustrates how the different system components are connected and
interact with each other.

P
& MYSQL DATABASE

manage
i i 1S

s
(-)\ applications
(o \ [FRONTEND |
[usens |
create job,
review, shortlist, taGard
schedule,
O —L /7 update status g] responses & _ > @
4 feedback
;
Recruiter fisoruher interview_responses
Portal _resp
manage jobs
O JR— apply, interview, >
— [\— " View results fetch
s requirements
Candidate - Laravel for Gemini APl job_postings
Candidate Backend
\ J Portal
| SR

schedules

|

|

|

|

| \ manage
| schedules
|

|

|

|

|

|

|

generate

interview
~— T questions — T T >

Gemini APl

Figure 3.2.6.1 System architecture diagram

3.3 System Flow

The IntelliHire platform guides users through the recruitment process based on their roles.
When users first enter the system, they log in or register. They also select whether they are a

recruiter or a candidate. Based on this, they are taken to the matching portal.

In the recruiter portal, users can perform a variety of tasks including create job postings by
entering all relevant details and optionally setting preset interview questions and assessment
parameters. Recruiters can also manage existing job listings and review applications for
specific positions. Within the application management module, recruiters can update
application statuses to “shortlisted,” “rejected,” or “offered.” When a candidate is shortlisted,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

the recruiter sets a date range for interviews, which automatically generates a unique interview

code.

On the candidate side, users can browse job listings, submit applications with a resume,
cover letter, and optional notes, and track the status of their applications. If shortlisted,
candidates gain access to a “Join Interview” function, which requires the generated code and
must fall within the recruiter’s scheduled date range. The system then checks for code validity
and interview eligibility before launching the Al-powered interview interface. During the
interview, questions are generated by Gemini API, either solely based on job and candidate
data or with preset questions if configured. After the interview, recruiters review the
candidate’s responses and update the status accordingly. The workflow offers a fully automated,

yet customizable, recruitment process from job posting to final hiring decision.

3.3.1 System Flow Chart

The system flowchart provides a clear indication of the user interactions with the
platform, categorized into two main user types: candidates and recruiters. Upon entering the
system, the user is prompted to register or log in. Based on the selected user type, users are
redirected to the appropriate portal. Users can search for posted jobs, apply for jobs with
supporting documents, and track the status of their application through the candidate portal. If
shortlisted, they can proceed to an interview session using a unique code within a scheduled
date range. The recruiter portal enables users to post new jobs, define interview questions and
assessments, and manage applications. Recruiters can review applications, update statuses, and
assess interview responses. The interview process is automated using the Gemini API, which
generates interview questions dynamically. If preset questions are provided, these are passed
into the API to guide the question generation; otherwise, the API relies on the job description
and candidate profile to generate appropriate questions. This structured flow ensures seamless
interaction and automation between application submission, interview handling, and final

selection.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

.

Login

Select user type

Candidate Recruiter

User Type

A

Browse Job

My Applications

Apply for job Check application

slatus

Upload resume

Status
Shortlisted?

Upload cover letter

Join Interview

Add notes
(optionaly

Attempt interview

. Generate question
Pass prest question - .
from job and
w0 APL .
candidate

rate question
with preset

Start assessment End interview

Review interview
response

Figure 3.3.1.1 System flow chart (part 1)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

M
Recruiter Portal

L)
A

Y 4 A 4

Post new job Manage job Manage
applications
Y Y
Y
Insert job details View or edit job .

Select job

Y

reset interview

! View application
questions?

status

. pplication exists’
Sel preset questions

View application

Set assessment . detail
. Save job
questions

Set interview date
range

Tew Interview
responses and Update status | 1 I
analvsis

Figure 3.3.1.2 System flow chart (part 2)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

3.4 System Use Case

There are two primary actors in the system. Both actors can login and register and select

their user type, which determines the access path.

Candidate Use Cases:

After logging in, candidates can view available jobs, apply for jobs, and upload their resume
and cover letter as part of the application process. They can also join interview sessions, during
which questions may be generated automatically via Al. After the interview, candidates can
view their interview status. Candidate can also receive job recommendations based on jobs
they have not applied for. These features aim to streamline the application and interview
process, while the inclusion of future capabilities like Al feedback and real-time transcription

will further improve the user experience.

Recruiter Use Cases:

Recruiters can post, view the job applications, and view resumes and cover letters of the
applicants. Recruiters can also define the application status and create or preset interview
questions, which are used during interview sessions. These procedures help screen candidates

more efficiently.

3.4.1 System Use Case Diagram

The use case diagram shows the interactions between the two primary actors, Candidate
and Recruiter. Each actor is associated with a range of system functionalities reflecting real-

world hiring workflows.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

<include> Shortlisted/ <extend
Rejected/Offered
<extend> - g
T - iew Candidate

Resume

.

N 1ew Candidate

*<extend>
N

N
v .

<extendsy

\

Cover Letter
Recruiter

~

Preset Question

-
3
.
.

Candidate

~

ot
*<include>
A ‘\‘

<extend>.
.
Q

. ~TInclude Prese
Questions

View Job
Recommendatiop

Figure 3.4.1.1 System use case diagram

3.4.2 Use Case Description

3.4.2.1 Use Case 1 — User Registration

Table 3.4.1 Use case description for User Registration

Candidate/Recruiter portal.

Use Case ID UcCo01 Version 1.0
Use Case User Registration
Purpose Allow a new user to create an account and access the

Actor User (primary), System (supporting)

Trigger User clicks Register on the landing page.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Precondition User is not logged in and does not already have an account.
Scenario Name Step | Action
Main Flow 1 System displays the registration form.
2 User enters name, email, password, and selects role.
3 User submits the form.
4 System validates required fields and formats (email, password
length).
5 System checks for duplicate email/username.
6 System creates the account and initializes default profile.
7 System confirms registration and redirects to Login.
Alternate Flow - |5.1 Duplicate is found.
Duplicate email 52 System blocks creation and shows “Email already registered”
message.
53 User is prompted to Login or use a different email.
Alternate Flow - | 4.1 Password policy fails.
Weak/Invalid 4.2 System highlights the field and shows password rules.
Password 4.3 Candidate re-enters a valid password and resubmits.
Rules - Email must be unique.
- Password must meet minimum policy (length/complexity).
Author Tong Qian Ru

3.4.2.2 Use Case 2 — Candidate Applies for Job

Table 3.4.2 Use case description for Candidate Applies for Job

Use Case ID UuCo002 Version 1.0

Use Case Candidate Applies for Job

Purpose Enable a candidate to submit an application with supporting documents
for a selected job.

Actor Candidate (primary), Recruiter (secondary reviewer), System

Trigger Candidate selects a job and clicks Apply.

Precondition Candidate is logged in as Candidate; the job is open for applications.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Scenario Name Step Action
Main Flow 1 System shows the application form for the selected job.
2 Candidate uploads resume and (optional) cover letter.
3 Candidate submits the application.
4 System validates file types/sizes and required fields.
5 System stores the application with status Pending.
6 Resume Parsing: System extracts text and structured data
(skills, education, experience).
7 Job Matching: System compares parsed resume with parsed
job requirements and computes a matching score.
8 System records application, parsing output, and matching
score.
9 System notifies the candidate that the application was
submitted successfully.
Alternate Flow — | 3.1 System detects an existing application by the same candidate
Duplicate for the same job.
Application 3.2 System blocks submission and shows “You have already
applied to this job.”
Alternate Flow — 4.1 File format is unsupported.
Invalid File 4.2 System rejects the file and prompts for PDF/DOCX.
Format 43 Candidate re-uploads and resubmits.
Alternate Flow — | 6.1/7.1 | Parsing/matching temporarily fails.
Parsing/Matching | 6.2/7.2 | System queues a retry; application is still stored as Pending.
Fails 6.3/7.3 | System completes parsing/matching asynchronously and
updates the record.
Rules - One active application per candidate per job.
- Resume must be PDF/DOCX within allowed size.
- Applications default to Pending until recruiter action.
Author Tong Qian Ru

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

3.4.2.3 Use Case 3 — Candidate Joins Interview

Table 3.4.3 Use case description for Candidate Joins Interview

Use Case ID UCo003 Version 1.0

Use Case Candidate Joins Interview

Purpose Allow a shortlisted candidate to join a scheduled interview and
complete the Al-led session (and assessment if configured).

Actor Candidate (primary), System, Gemini API (external service)

Trigger Candidate clicks Join Interview and enters the Interview Code.

Precondition Candidate is Shortlisted for the job; an interview date range and code

have been set by the recruiter; current time is within the range.

Scenario Name Step | Action
Main Flow 1 System prompts for Interview Code.

2 Candidate enters the code and submits.

3 System validates the code and checks the scheduled date/time
window.

4 System retrieves job information, any preset questions, and
candidate profile.

5 Question Generation: System calls Gemini to generate
tailored questions (uses preset if present; otherwise job +
candidate data).

6 Interview Chat: System starts the real-time interview;
context is maintained; follow-up questions may be generated
automatically.

7 Candidate provides responses (text/audio; audio may be
transcribed).

8 Evaluation: System sends responses to Gemini for multi-
criteria scoring and feedback.

9 Assessment (if configured): System delivers assessment
questions, collects answers, and evaluates them.

10 System stores the transcript, scores, and feedback in the

database.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

11 System shows completion status to the candidate.
Alternate Flow - | 3.1 Code is invalid or outside the scheduled range.
Invalid/Expired 3.2 System blocks access and displays the reason; Candidate may
Code retry or contact recruiter.
Alternate Flow — 4.1 Candidate closes the interview mid-session.
Candidate 4.2 System saves partial progress and marks the attempt as
Abandons completed.
Rules - Interview can only be started within the scheduled date/time

window.

- Each code is unique per interview session.

- Multiple attempts may be restricted per job (institution policy).
Author Tong Qian Ru

3.4.2.4 Use Case 4 — Recruiter Posts Job

Table 3.4.4 Use case description for Recruiter Posts Job

Use Case ID ucCoo4 Version 1.0
Use Case Recruiter Posts Job
Purpose Allow a recruiter to create and publish a job posting with structured
requirements and optional interview/assessment presets.
Actor Recruiter (primary), System
Trigger Recruiter clicks Post New Job.
Precondition Recruiter is logged in with Recruiter role.
Scenario Name Step | Action
Main Flow 1 System displays the job creation form.
2 Recruiter enters job title, description, location, employment
type, and other details.
3 Recruiter defines requirements (skills, education, experience,
certifications).
4 (Optional) Recruiter sets preset interview questions.
5 (Optional) Recruiter sets assessment questions/parameters.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

6 Recruiter saves the job.
7 System validates fields and required data.
8 Job Requirements Parsing: System analyzes the job content

and stores a structured requirement profile.

9 System publishes the job, creates a Job ID, and confirms
creation.
Alternate Flow - | 7.1 Validation fails (e.g., title/description missing).

Missing Required | 7.2 System highlights errors and prevents publishing until fixed.
Fields

Rules - One active application per candidate per job.
- Resume must be PDF/DOCX within allowed size.

- Applications default to Pending until recruiter action.

Author Tong Qian Ru

3.4.2.5 Use Case 5 — Recruiter Manages Application

Table 3.4.5 Use case description for Recruiter Manages Application

Use Case ID ucCo0s Version 1.0
Use Case Recruiter Manages Application
Purpose Allow a recruiter to review applications, view candidate documents,

shortlist/reject/offer, and schedule interviews.

Actor Recruiter (primary), System

Trigger Recruiter opens Manage Applications for a specific job.
Precondition The job exists and has at least one submitted application.

Scenario Name Step Action

Main Flow 1 System lists all applications for the selected job with key

indicators (matching score, submission time).

2 Recruiter selects an application to review.

3 System displays candidate profile, parsed resume summary,

and cover letter.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

4 Recruiter updates Application Status to
Shortlisted/Rejected/Offered.

5 If Shortlisted, recruiter sets an interview date range; System
generates a unique Interview Code and associates it with the
candidate + job.

6 System saves changes and (optionally) notifies the candidate.

Alternate Flow - | 1.1 There are no applications.

No Application 1.2 System displays an empty state.

Rules - Interview code must be unique per candidate+job and time-bound.
Author Tong Qian Ru

3.4.2.6 Use Case 6 — Recruiter Reviews Interview Results

Table 3.4.6 Use case description for Recruiter Reviews Interview Result

Use Case ID ucCo006 Version 1.0

Use Case Recruiter Reviews Interview Results

Purpose Allow a recruiter to view interview transcripts, Al feedback/scores, and
make a hiring decision.

Actor Recruiter (primary), System, Gemini API

Trigger Recruiter opens Application Details for a specific candidate and job.

Precondition The candidate has completed the interview (and assessment if

applicable); evaluation data is available.

Scenario Name Step Action
Main Flow 1 System retrieves the interview transcript, Al feedback, and
scoring breakdown.
2 System shows any assessment results and overall
recommendations.
3 Recruiter reviews results and (optionally) adds notes.
4 Recruiter updates the application status to Rejected,

Shortlisted (next round), or Offered.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

5 System stores the final decision and (optionally) notifies the
candidate.

Alternate Flow — | 1.1 Al evaluation is still processing.
Evaluation 1.2 System indicates Pending and offers a refresh option.
Pending
Rules - Only authorized recruiters for the job can view results.

- Final status change is audit-logged with timestamp and user.
Author Tong Qian Ru

3.5 System Activity

The IntelliHire system involves various activities performed by the candidates, recruiters,
and system. To better illustrate how these activities work with each other and progress, the
activity diagram is used. While the flowchart is focused on sequential steps, the activity
diagram emphasizes role coordination of activity, decision nodes, and automated activities such
as resume parsing, job requirements analysis, Al-based job matching, and interview assessment.
This provides a clearer picture of how human actions and system work together to streamline
the recruitment process. It maps the interactions between candidates, recruiters, and the system
across different stages of recruitment, from job posting and application submission to interview

handling and Al-driven evaluation.

3.5.1 System Activity Diagram

The system activity diagram below shows the overall workflow of IntelliHire.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Job Recruitment System Activity Diagram

User/System Candidate Recruiter System

User Enters System

Register

Recruiter

User Type?

Candidate

Parse Job
Requirements

Match Candidate
Skills with Job
Requirements

A A

Manage Jobs

View
Applications

i

Generate Matching
Score

o Parse Resume &
> E
Rejected/ u et
Yes

Update Status
(Shortlist/Reject/Offer)

Set Interview
Date

View Interview
Results & Al
Analysis

A

<

» G Questions
‘ (Preset or Gemini
API)

A

Al Scoring &
Feedback

Y

Store Interview &
Assessment
Results in Database

Figure 3.5.1.1 System Activity Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

3.6 Methodology of the System

The IntelliHire system will be developed using the Agile methodology [9], which is well-

suited for projects that require flexibility and rapid iterations. Agile methodology emphasizes

continuous feedback, iterative development, and adaptability to change, making it ideal for

developing a complex system like IntelliHire.

The development process will be divided into several sprints, each focusing on a specific

aspect of the system [10]. The sprints will be typically lasting two to four weeks, allowing the

development team to deliver functional components of the system incrementally. This

approach ensures that any issues or changes in requirements can be addressed promptly,

reducing the risk of project delays.

Key Phases of the Agile Methodology for IntelliHire:

1.

Sprint Planning: For each sprint, tasks are identified and prioritized based on project
requirements and milestones. Sprint goals are determined by aligning the most
important features with the project timeline and available resources.

Design and Prototyping: Before implementation, wireframes and prototypes of the
system interface and components are created. These help in visualizing the workflow
and ensuring the design meets the intended objectives before development begins.
Development: Each sprint focuses on implementing the planned features through
coding. As the sole developer, best practices such as modular coding, version tracking,
and consistent documentation are applied to maintain quality and allow for easier
debugging and enhancements.

Testing: After development, the implemented features are tested systematically. This
includes unit testing to verify individual functions, integration testing to ensure
components work together, and functional testing to confirm that features perform as
expected.

Review and Retrospective: At the end of each sprint, progress is reviewed against the
sprint goals. Reflection is carried out to identify what worked well, challenges faced,

and adjustments that can be made to improve productivity in the next sprint.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

6. Finalization: Once all sprints are completed, the system will be finalized in a controlled

environment for demonstration and evaluation purposes. Final testing ensures that the

project meets the defined scope and objectives.

7. Maintenance and Updates: Opportunities for improvement or additional features can

be identified after evaluation. Future updates may include refining existing modules or

extending functionality based on project feedback.

3.7 Timeline

Task
Define detailed system requirements and objectives
Design database schema and establish model relationships
Implement user authentication and role-based access control
D idate portal d profile]
Implement job browsing and job application modules
Integrate resume upload and parsing functicnality
Develop recruiter partal core structure [dashboard and job posting)
Implement job posting and job management modules
Create application management module with status tracking

Develop interview scheduling and code generation module
Build Al-driven interview interface with prompt handling.
Integrate Gemini API for question generation and ordering
Implement candidate response recording and storage
Develop Al evaluation pipeline for candidate responses.
Implement recruiter view for interview results and Al feedback
Add candidate job recommendation module with scoring
Conduct unit testing and integration testing of all modules
Debug functional lssues and refine UI/UX design with Laravel Breeze
Perform state transition and decision table testing for workflows
Optimize system performance, caching, and error handling
Prepare final documentation, report, and project poster
Conduct final evaluation and prepare for project demonstration
Legend:

Bachelor of Computer Science (Honours)

StartWeek End Week W1 W2 W3 W4 W5 We W7 Ws W9 WID Wil Wi2 Wi3 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 w28
1 6

2
3
5
8
10
11
12
13
15
17
18
19
19
20
20
21
13
13
26
27
27

8
10
12
13
15
16
18
19
20
21
22
23
24
25
25
26
26
27
27
28
28

Planning/Design P

Figure 3.7.1 Gantt Chart

Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

CHAPTER 4 SYSTEM DESIGN

Chapter 4 System Design

4.1 System Block Diagram

The system block diagram provides a high-level description of IntelliHire architecture,
describing how the different components and modules interact with each other to achieve the
system goals. It illustrates the process of data input from users (candidates and recruiters) into
the system, how inputs are routed through the backend and external Al services, how data is
stored inside the database, and finally how outputs are shown back to the users. By concealing
low-level implementation details, the block diagram unveils the main building blocks of
IntelliHire and their relations to each other, which makes the overall system easier to

understand.

4.1.1 High-Level System Block Diagram

The high-level system block diagram depicts the main entities in IntelliHire and how they
relate to one another. The system is accessed by the recruiter and candidate through the frontend
that communicates with the Laravel backend. The authentication, applications, scheduling,
notifications, and file handling and transfer Al-based tasks like resume extraction, job matching,
and interview assessment are delegated to the Gemini API in the backend. The MySQL
database is used to store data persistently, while real-time audio/video recording and text-to-
speech features are dealt with using browser APIs on the client side. Here is a clear indication

of the system boundaries and external interactions.

IntelliHire
Candidate l Use syste ‘ Auth & Roles ‘ Application Mgmt . ‘ SIE:‘ZZLTI: Browser APls « WebRTC (A/V)
J o)] 9 Front-end AV & TSP+ Speech Synthesis (TTS) «
MediaRecorder
‘ Recruiter Use system (ificati [(
hictification File Management Al Orchestrator
Orchestrator
-)
- vy
Persist / Query Al requests

MySQL Database * Users, Jobs,
Applications + Resumes (parsed
JSON) * Interviews & Assessments »
Al Feedback & Analytics

Gemini API + Resume/Job Parsing
+ Q-Gen & Evaluation * Semantic
Matching

Figure 4.1.1.1 High-level system block diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

CHAPTER 4 SYSTEM DESIGN

4.1.2 Internal Subsystems Block Diagram

The block diagram of internal subsystems is more precise in depicting IntelliHire's structure.
It breaks the backend into distinct modules such as Core Services, Al Orchestrator, and
Persistence Layer. Core Services have application logic (authentication, scheduling, file
management, notifications), while the Al Orchestrator regulates Gemini API operations such
as resume parsing, job requirements extraction, interview question generation, and candidate
response assessment. The MySQL persistence layer stores user, job, resume, interview, and
assessment data. The frontend includes portals for candidates and recruiters, as well as
dedicated interfaces for interviews and assessments. Browser APIs complement the frontend
by enabling real-time multimedia processing. This diagram emphasizes the internal

responsibilities and communication between system modules.

Laravel Backend

N

Core Services Al Orchestrator
Auth & RBAC Application Mgt Res[‘:_,";;rr’:)’ = Job Parser (Gemini)
) ;) Job Matching Interview
Interview Schedul File M t
= Lehe b el Lt AL il kel (semantic + fallback) Q-Generatar
; - Notfication
Candidate Portal Recruiter Portal Validation & Securlty T :::ss:;z :i Scoring & Report

Evalul Builder Al requests Gemini API + Parsing +

valuator | e Q-Gen + Evaluation +

Interview UI (chat, timers, audiofvidec) ——» Matchi
HTTPWebSacket Cache & Ratry | At

Assessment Ul p.

MySQL Persistence

Users, Jobs, Resumes +

(EduiSkills/ P
(il i parsed_data JSON Exp/Edu/Skills/Certs resel Qs & Bank

Browser APls * WebRTC (AV) * Front-end AV & TTS

]
Speech Synthesis (TTS) + MediaRecorder
Schedules & Al Feadback & Assessments &

]
REsponses Analysis Qs/Responses Analytics & Metrics

i Persist/ Query

Figure 4.1.2.1 Internal subsystem block diagram

4.2 System Components Specifications

This section outlines the main parts of the IntelliHire system, divided into frontend
interfaces, backend services, external integrations, and system-wide patterns of communication.
Each component plays an essential role in ensuring the smooth communication between
candidates, recruiters, and the platform as the backend's role lies in handling data, Al-driven

analysis, and storage.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

CHAPTER 4 SYSTEM DESIGN

4.2.1 Frontend Components

The frontend provides all user-facing interfaces for candidates and recruiters. It has been

designed with responsiveness, usability, and real-time interaction, offering ease of access to

job postings, interviewing procedures, and assessments.

4.2.1.1 Candidate Portal

The frontend provides all user-facing interfaces for candidates and recruiters. It has been

designed with responsiveness, usability, and real-time interaction, offering ease of access to

job postings, interviewing procedures, and assessments.

Dashboard interface: The dashboard consolidates all essential information such as Al-
generated job recommendations, current application statuses, and scheduled interviews,
allowing candidates to view everything at a glance.

Job search and application: Candidates can browse and filter available job postings,
then apply by uploading resumes or cover letters directly through the system,
streamlining the application process.

Profile management: Allows candidates to manage personal information, and keep
track of their application history, ensuring their profile stays updated.

Interactive job cards with AI matching scores: Each job listing is presented with a
compatibility score, helping candidates quickly gauge suitability based on their skills

and experiences.

4.2.1.2 Recruiter Portal

The recruiter portal enables HR personnel and hiring managers to create, manage, and

monitor job postings, applications, and interviews.

Job posting management: Recruiters can create, edit, and publish postings with Al-
powered parsing of job requirements, which ensures job descriptions are consistent and
accurate.

Application management: This interface allows recruiters to review candidate

submissions, update statuses, and manage the overall hiring funnel efficiently.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

CHAPTER 4 SYSTEM DESIGN

Interview scheduling: Recruiters can set up interview sessions and automatically
generate unique interview codes, simplifying session management.

Analytics dashboard: Al-driven analytics provide recruiters with insights into
candidate performance, evaluation scores, and hiring statistics to support evidence-
based decisions.

Rich text editor for job descriptions: Recruiters can compose detailed job postings
using an editor that supports formatting and rich content.

Exportable reports: Candidate data and evaluation reports can be exported for further

review, record-keeping, or sharing with stakeholders.

4.2.1.3 Interview User Interface

The interview interface provides a real-time, Al-enhanced experience for both candidates

and recruiters, incorporating conversational features and multimedia integration.

Chat-based interview experience: The interface presents questions in a conversational
flow, simulating a natural interview session.

Speech recognition integration: Candidates can answer using voice input, which is
processed via WebRTC and transcribed for Al evaluation in real time.

Video recording: The system records interview sessions using camera and microphone,
enabling richer evaluation through video playback.

Al-generated text-to-speech: Questions are read aloud using text-to-speech, making
the interview more interactive and accessible.

Real-time conversation flow management: The module ensures seamless

coordination between Al prompts, candidate responses, and evaluation feedback.

4.2.1.4 Assessment User Interface

The assessment interface supports structured evaluations, allowing recruiters to test

candidates with both text and audio-based answers.

Dynamic question display: The assessment interface supports structured evaluations,

allowing recruiters to test candidates with both text and audio-based answers.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

CHAPTER 4 SYSTEM DESIGN

e Multi-modal input: The interface accepts text responses and audio recordings, giving
candidates multiple ways to respond.

e Progress tracking: Candidates are guided with counters and timers, helping them
manage time effectively during assessments.

e Immediate scoring and feedback: The Al system evaluates responses instantly and
provides feedback, speeding up the selection proces.

e Audio recording capabilities: Spoken answers are recorded for later review and cross-

verification of Al scoring.

4.2.2 Backend Components

The backend powers the core business logic, Al orchestration, and data management of
IntelliHire. It is developed on the Laravel framework and designed for scalability, security, and

seamless integration with external services.

4.2.2.1 Core Services Architecture

e Laravel MVC framework: The system is built on the model-view-controller pattern,
which separates concerns and simplifies maintainability.

e Authentication and role-based access: Access rights are controlled based on user type
(candidate or recruiter), ensuring secure role-specific operations.

e File management service: Handles the uploading, processing, and retrieval of
candidate documents such as resumes and cover letters.

¢ Interview session management: Maintains interview state and session data to ensure
reliability during live assessments.

e RESTful API design: Facilitates structured communication between frontend and

backend using JSON-based APIs.

4.2.2.2 Al Orchestrator

¢ Resume parser service: Extracts and structures text from candidate resumes in PDF or

DOCX formats for easy analysis.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

CHAPTER 4 SYSTEM DESIGN

Job requirements parser: Identifies and organizes required skills, qualifications, and
experience from job postings.

Job matching engine: Compares parsed resume data with job requirements to produce
compatibility scores.

Interview response evaluator: Processes candidate responses (text or speech) and
provides detailed Al-driven feedback.

Assessment scorer: Automatically grades candidate answers against expected
solutions, ensuring objective evaluation.

Error handling and retry logic: Protects against API failures by retrying requests with
exponential backoff strategies.

Caching mechanisms: Improves performance by temporarily storing frequently

accessed results from the Al service.

4.2.2.3 Data Processing Services

Resume processing pipeline: Automates the sequence from uploading resumes to
extracting text, parsing with Al, and storing in the database.

Job matching algorithm: Performs semantic analysis across multiple criteria to
recommend best-fit jobs for candidates.

Response analysis pipeline: Converts spoken responses into text, evaluates with Al,
and formats structured feedback.

Asynchronous processing queues: Offloads heavy tasks like Al evaluation into
background jobs to improve system responsiveness.

Error logging and monitoring: Captures system errors with detailed logs for

debugging and continuous improvement.

4.2.2.4 Persistence Layer

Database design: Employs a normalized schema to represent entities such as users,
jobs, applications, and interviews.
Eloquent ORM relationships: Maps database entities into Laravel models,

maintaining associations and constraints automatically.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

CHAPTER 4 SYSTEM DESIGN

Migration system: Provides schema version control, allowing updates without
disrupting operations.

Caching strategy: Uses Redis or memory caching to reduce repeated API requests and
heavy calculations.

Foreign key constraints and indexing: Safeguards data integrity and speeds up query

performance.

4.2.3 External Services Integration

IntelliHire integrates with several external services to deliver Al-powered analysis, multimedia

processing, and secure file management.

4.2.3.1 Gemini AI API

Model configuration: Integrates Gemini 2.0 Flash for resume parsing, interview
question generation, and evaluation tasks.

Integration patterns: Uses structured API requests with formatted payloads to
communicate effectively with the Al service.

Error handling: Applies retry strategies and fallback options to maintain resilience
when requests fail.

Performance optimization: Uses batching and caching to minimize costs and reduce

response times.

4.2.3.2 Browser APIs

WebRTC API: Enables real-time voice and video streaming during interviews and
assessments.

Speech Synthesis API: Generates spoken versions of text-based interview questions
for natural interaction.

MediaRecorder API: Captures audio and video from candidate devices for storage and
later review.

File API: Manages secure file upload and validation directly in the browser.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

CHAPTER 4 SYSTEM DESIGN

4.2.3.3 Database Management

MySQL database: Serves as the main storage solution for all system data, including
users, jobs, and interviews.

Connection pooling: Enhances performance by reusing database connections
efficiently.

Backup strategy: Implements regular backups to prevent data loss and ensure recovery.

4.2.3.4 File Storage System

Laravel storage service: Manages secure file storage for resumes and other documents.
File validation: Ensures uploaded files meet type, size, and security requirements.
Storage optimization: Compresses files and integrates with CDN for faster delivery
and scalability.

Access control: Restricts file access based on user roles and permissions.

4.2.4 System Integration Patterns

This section describes the system-wide mechanisms that connect different components together

and ensure secure, reliable communication.

4.2.4.1 API Communication

HTTP client implementation: Uses Laravel’s HTTP facade to make structured API
requests.

Request/response handling: Manages JSON serialization and error mapping
consistently.

Authentication: Protects API communication with keys and digital signatures.

Rate limiting: Applies request throttling and quotas to prevent abuse.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

CHAPTER 4 SYSTEM DESIGN

4.2.4.2 Real-time Communication

e WebSocket integration: Provides immediate updates during live interviews and
assessments.

e Event broadcasting: Sends notifications and system status updates to connected users.

e Session management: Maintains session state across interview interactions.

e Concurrent user handling: Supports multi-user participation without service

interruption.

4.2.4.3 Security Implementation

e Data encryption: Protects sensitive information both at rest and in transit.

e Access control: Enforces role-based permissions to separate candidate and recruiter
functions.

e Input validation: Prevents malicious input such as XSS or SQL injection.

e Audit logging: Records user activities for accountability and security monitoring.

4.3 Database Design

The entity-relationship diagram (ERD) illustrates the logical structure of the IntelliHire
database. It defines the main entities such as Users, Jobs, Applications, Resumes, Interview
Sessions, and Assessments, along with their attributes and relationships. This diagram provides
a clear overview of how data is organized and linked within the system. For instance, a User
entity can represent either a Candidate or Recruiter, while Applications link Candidates to
specific Jobs. Resumes store parsed information such as education, experience, and skills, and
are associated with Candidates. Assessment entities capture test questions, candidate responses,
and Al evaluation scores. By presenting these relationships, the ERD highlights how IntelliHire
maintains consistency, supports efficient queries, and enables seamless integration between

different functional modules.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

CHAPTER 4 SYSTEM DESIGN

4.3.1 Entity-Relationship Diagram (ERD)

submitted_at

users application resumes
uestion_bank job_posting
a - Jobpostines PK | id PK | id PK | id
PK | id PK | id
name FK | job_id FK || application_id
category company_name
- email FK | candidate_id full_name
question address_linel
user_type resume_url email
address_line2
- password o cover_letter_url phone
) street . .
preset_questions remember_token application_notes location
3 city
PK | id created_at application_date linkedin_url
) state
FK | job_id updated_at status professinal summary
ostal_code
order_index i parsed_data
country
question
job_title
time_limit analysis_result
interview_responses schedule -
application_status "
fime_unit - T PK | id
. PK | id PK | id
salary range min
T FK | schedule_id
FK | session_id date_range_start -
assessment salary_range_max
session_avg_score
question_no date_range_end
PK | id job_description_shart
- . - question # FK | application_id
—oH instruction job_responsibilities
consistency_level
answer code
job_requirement
competency_coverage
answer_url status
job_extra_requirement
assessment_questions strengths
- ai_feedback start_datetime
N work_mode - -
PK | id E weaknesses
end_datetime
role_type
FK | assessment_id - skill_assessment
created_at .)
question_no final_recommendation
ai_feedback
FK | assessment_id - assessment_responses
question — T - hiring_confidence
PK | id .
PK | id
answer_type B red_flags
FK | response_id
) - FK | schedule id
time_limit standout_moments
- - completeness
job_requirements assessment_id
time_unit is_processed
relevance
. PK | id question_no
ai_evaluation created_at
, N depth
FK | job_posting id answer
expected_answer updated_at
clarity
parsed_data answer_url
communication
parse_status answer_size
score .
parsed_at answer_duration
score_reason
created_at - is_ai_evaluated
key_points
updated_at ai_score
improvement_suggestions.
ai_comment
confidence level , .
ai_evaluation_details

Figure 4.3.1.1 Entity Relationship Diagram (ERD)

The following description outlines the purpose of each major table included in the database
design:

e Users: Stores information for all system users, including both candidates and recruiters.
The table also manages role assignments, authentication details, and unique identifiers
such as email addresses.

e Job Postings: Holds data related to job opportunities posted by recruiters. Attributes
include company details, job title, job description, work mode, salary range, and parsed
requirements.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

CHAPTER 4 SYSTEM DESIGN

e Job Requirements: Breaks down each posting into structured requirements such as
skills, education, work experience, and certifications, enabling precise candidate-job
matching.

e Applications: Captures candidate submissions for specific job postings. Each record
links a candidate to a job and tracks application status (e.g., applied, shortlisted,
interviewed, offered, rejected).

e Resumes: Stores uploaded resumes and their parsed content in structured format.
Associated tables (resume skills, resume education, resume experiences,
resume_certifications) extend this entity with detailed candidate background
information.

e Schedules: Manages interview time ranges and unique session codes. It ensures that
interviews are securely scheduled, tracked, and linked to the appropriate applications
or assessments.

e Interview Responses: Records candidate answers during interviews, including text,
audio, or video responses. Each response is linked to a session and can be further
evaluated by the Al system.

e Al Feedback: Stores Al-generated evaluation results for each interview response,
including indicators such as completeness, clarity, and communication skills, to support
recruiter decision-making.

e Analysis Results: Summarizes the overall outcome of interview sessions by compiling
feedback into structured evaluation reports and hiring recommendations.

e Assessments: Represents structured tests that recruiters can assign to candidates.
Attributes include assessment configuration, instructions, and links to relevant
questions.

o Assessment Questions: Defines individual questions within each assessment,
including expected answers and time constraints.

e Assessment Responses: Stores candidate responses to assessment questions, together
with Al evaluation results and scoring.

e Preset Questions: Allows recruiters to predefine interview questions tied to a specific

job posting, making interview preparation more efficient.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

CHAPTER 4 SYSTEM DESIGN

Question Bank: A reusable repository of predefined questions that recruiters can select
from when creating job postings or assessments, ensuring consistency across different

recruitment processes.

4.4 System Components Interaction Operations

This section describes how different modules of IntelliHire interact during system operation.

While Chapter 3 introduced the static structure of the system architecture, this section provides

a dynamic perspective of how components work together in real execution. The interaction

operations cover controller responsibilities, request handling, Al communication, persistence

through the database, and feedback to the frontend.

4.4.1 Main Laravel Controllers and Routes

The IntelliHire system follows Laravel’s MVC structure, where controllers manage

requests, invoke services, and return responses to the frontend. Each controller is responsible

for a specific domain of operations:

JobPostingController (/jobs): Handles CRUD operations for job postings. The store()
method creates job postings and immediately triggers Al-powered parsing of
requirements, while the update() method allows recruiters to modify postings and re-
parse requirements. The toggleStatus() endpoint manages the active/inactive state of
job applications.

CandidateJobController (/candidate/jobs): Provides candidates with job browsing
and application functionality. The index() method displays available jobs with Al-
calculated matching scores, while show() retrieves job details. The apply() method
manages application submissions, including resume uploads handled by
uploadResume().

InterviewController (/candidate/interview): Manages interview sessions. The
validateCode() method authenticates session access, startlnterview() initializes
interviews, and chat() coordinates Al-driven interview conversations. The clearChat()

function resets a session for a fresh start.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

CHAPTER 4 SYSTEM DESIGN

e RecruiterApplicationController (/recruiter/applications): Supports recruiters in
managing candidate applications. The index() method lists applications,
applicationDetails() provides detailed candidate data, and analyzelnterview() invokes
Al evaluation of responses. Recruiters can update statuses through updateStatus() and
arrange sessions via schedulelnterview().

¢ ResumeParserController (internal): Dedicated to processing uploaded resumes. Its
methods extract text using Gemini Al (extractTextWithGemini()) and save structured
data into the database (parseAndSave()).

e JobRequirementsParserController (internal): Analyzes job postings for structured
requirements. It parses recruiter inputs with Gemini Al and saves results for the job
matching module.

e JobMatchingController (internal): Implements the Al-powered job recommendation
process. The calculateMatch() and calculateSkillsMatchOptimized() methods compute
compatibility scores between candidates and job requirements.

o AssessmentController (/assessment/{schedule}): Handles assessment management.
showAssessment() displays test interfaces, while submitAnswer() records candidate
responses. The evaluateResponse() method integrates with Gemini to automatically
SCOre answers.

¢ CandidateDashboardController (/candidate/dashboard): Displays personalized
dashboards, including job recommendations, application progress, and upcoming
interviews.

e RecruiterDashboardController (/recruiter/dashboard): Provides recruiters with an
overview of job postings, applications, and analytics in one interface.

¢ RecruiterResumeController (internal): Allows recruiters to access and review
candidate resumes, complementing the parsing process.

e ProfileController (/profile): Manages user accounts and profile data. Methods include

edit(), update(), and destroy() for profile editing and deletion.

4.4.2 Background Jobs and Queues

Although IntelliHire is built with Laravel’s queue infrastructure enabled, the current
implementation does not actively dispatch background jobs. The system is configured to use

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

CHAPTER 4 SYSTEM DESIGN

the database as the queue driver, and tables such as jobs, job_batches, and failed jobs are
already created in the schema. This ensures that the technical foundation for asynchronous
processing exists, but at present all interactions with the Gemini API, resume parsing, job
requirement analysis, and interview evaluations are executed synchronously. In practice, this
means that whenever a candidate uploads a resume or submits an interview response, the
backend controller immediately calls the Gemini API and waits for a response before sending
feedback back to the frontend. This synchronous design has the advantage of simplicity and
predictability, because candidates and recruiters receive instant responses within the same

request cycle without needing to check back later for results.

However, the synchronous approach also comes with limitations. When large resumes are
uploaded or when many candidates are attempting interviews at the same time, the system may
experience delays while waiting for Al responses to return. For example, parsing a resume may
take several seconds, and during this time the candidate must wait for the server to complete
its interaction with Gemini before receiving confirmation. Similarly, recruiters who attempt to
analyze interview sessions may encounter slower response times because the evaluation is
carried out in real time. In high-traffic scenarios, this synchronous execution could become a

bottleneck, affecting the perceived responsiveness of the platform.

Laravel’s queue system provides a solution to these challenges by allowing certain
workloads to be offloaded into background jobs. If IntelliHire were to adopt asynchronous
queues, operations such as resume parsing, requirement extraction, Al interview evaluations,
and automated notifications could be dispatched into the job queue instead of being executed
directly in the request cycle. The queue worker, running in the background, would process each
job independently and update the database once results are ready. Candidates and recruiters
could then retrieve processed results through dashboard updates or notifications, while the main
application remains responsive. For example, a candidate might upload a resume and receive
immediate confirmation that the file was accepted, while the parsing and Al analysis occur in

the background, with the parsed results made available shortly thereafter.

At present, IntelliHire has chosen not to implement full queue-based processing in order to
keep the system architecture straightforward for deployment and testing. Nevertheless, the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

CHAPTER 4 SYSTEM DESIGN

underlying support for queues is already present, meaning the system can evolve to adopt
asynchronous operations in future iterations. This would allow the platform to handle higher
traffic loads, reduce waiting times during Al-heavy operations, and make better use of system
resources. In particular, enabling queues would be beneficial for scheduled batch operations,
such as nightly job matching calculations across thousands of candidates or sending bulk
interview reminders to applicants. By laying this foundation early, IntelliHire demonstrates
forward compatibility, ensuring that scalability improvements can be introduced when required

without a major redesign of the system.

4.4.3 External API Calls

The IntelliHire system integrates extensively with the Gemini Al API to deliver resume
parsing, job requirement analysis, interview evaluation, and assessment scoring. The
integration pattern is relatively straightforward, relying on Laravel’s built-in Http facade to
construct requests and process responses. Controllers are directly responsible for formatting
the request payloads, sending them to the API, and parsing the returned JSON into structured
data. Although this approach creates a tighter coupling between controllers and the external
API, it simplifies the development process by avoiding additional abstraction layers such as
dedicated service classes. Each request includes candidate or recruiter data prepared in

structured format, and the responses are stored directly in the database for further use.

To enhance reliability, IntelliHire implements a basic retry logic with exponential backoff
whenever Gemini API requests fail. Instead of failing immediately, the system automatically
attempts to resend the request up to three times. Each retry doubles the waiting period, which
allows temporary network delays or service interruptions to resolve before the next attempt.
This mechanism ensures that the system is more resilient against transient errors, improving
the overall reliability of Al-based operations. However, since the system does not currently use
asynchronous queues, all retries still occur within the same user request cycle, which may

occasionally increase response time during heavy operations such as large resume parsing.

The API calls are used in different parts of the system, and the main examples include:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

CHAPTER 4 SYSTEM DESIGN

e InterviewController::chat(): Handles conversational Al during interview sessions by
sending candidate responses and retrieving Al-generated follow-up questions.

e ResumeParserController::parseWithGemini(): Extracts structured data from
resumes uploaded in PDF or DOCX format.

¢ JobRequirementsParserController::parseWithGemini(): Analyzes job descriptions
to extract standardized requirements.

e JobMatchingController::makeAIRequest(): Computes compatibility scores
between candidates and job postings.

¢ RecruiterApplicationController::analyzelnterview(): Submits recorded interview
responses to Gemini for structured evaluation and feedback.

e AssessmentController::evaluateResponse(): Automatically grades candidate

assessment responses against expected answers.

4.4.4 Data Persistence

The IntelliHire system relies on Laravel’s Eloquent ORM to manage all data persistence
operations, ensuring a structured and maintainable interaction with the underlying MySQL
database. Each entity in the database is mapped to a corresponding model class, which defines
the relationships between tables and enforces referential integrity at the application level.
For example, a User model is associated with multiple Applications through a hasMany
relationship, while an Application is linked to a specific Job Posting and may also have a one-
to-one relationship with a Resume. These mappings allow the system to express complex
queries in an object-oriented manner without writing raw SQL, thereby improving both

readability and maintainability.

During runtime, controllers interact with the persistence layer by creating, retrieving,
updating, and deleting records through Eloquent models. For instance, when a candidate
submits an application, the Application model automatically stores the job reference,
candidate reference, and status in the database, while linked Resume models handle resume
uploads and parsed data storage. The use of foreign keys and indexed relationships ensures

that database operations remain consistent and efficient, reducing redundancy and preventing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

CHAPTER 4 SYSTEM DESIGN

orphaned records. Additionally, the system implements migrations to manage schema changes

over time, enabling smooth evolution of the database design without disrupting live data.

Caching mechanisms are also integrated into the persistence layer. Frequently accessed
data, such as parsed resume results or Al matching scores, can be temporarily stored in Redis
or in-memory cache. This reduces repetitive API calls to Gemini and minimizes query load on
the database, enhancing the system’s responsiveness under heavy traffic. By combining ORM
abstractions, data integrity enforcement, and caching strategies, IntelliHire achieves a
persistence layer that is both robust and scalable, capable of supporting the complex workflows

of recruitment operations.

4.4.5 Real-time Features

Real-time interactivity is a critical component of IntelliHire, particularly in the AI-driven
interview and assessment modules. Although the system does not currently implement
Laravel Echo or dedicated WebSocket servers, it leverages a combination of AJAX polling
and browser APIs to achieve near real-time communication. In the Interview User Interface,
candidate responses are captured through WebRTC, transcribed into text, and transmitted to
the backend, where they are immediately evaluated by the Gemini API. The backend then
returns Al feedback, which is displayed on the frontend chat interface with minimal delay. This
creates a conversational flow that closely simulates a live interviewer experience, even though

the underlying mechanism relies on request-response cycles rather than persistent connections.

Multimedia integration also contributes to real-time functionality. The MediaRecorder
API enables the capture of candidate video and audio during interviews and assessments, while
the Speech Synthesis API delivers Al-generated questions audibly to candidates. These
browser-native features reduce dependency on external services and ensure that interactions
feel immediate and engaging. Similarly, text-to-speech and speech-to-text capabilities
enhance accessibility by allowing candidates to interact naturally through voice commands and

spoken answers.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

CHAPTER 4 SYSTEM DESIGN

While some updates, such as application status changes or dashboard refreshes, still
require manual page reloads or timed polling, the foundation for more advanced real-time
features has already been established. The architecture is designed to be extensible, meaning
future iterations of IntelliHire could integrate WebSockets or push notifications to replace
polling with true event-driven communication. Nevertheless, even in its current form, the
system demonstrates the ability to support real-time interviews, dynamic assessments, and
instant feedback, which collectively represent one of the most innovative aspects of the

platform.

4.4.6 Security and Authentication

The security architecture of IntelliHire is designed around Laravel’s built-in
authentication framework, which provides a robust foundation for managing user sessions,
role-based access, and data protection. Users authenticate through a standard login system,
where credentials are verified and stored using berypt hashing for passwords. Once
authenticated, session tokens maintain persistent access across the application until logout or
expiration. Unlike token-based authentication systems such as Laravel Sanctum or Passport,
IntelliHire employs a session-based model, which is simpler to implement and sufficient for
the scope of a web-based recruitment platform. This design choice prioritizes ease of use while

maintaining a secure boundary between candidate and recruiter roles.

Role management is enforced through the user type attribute stored in the Users table,
which distinguishes candidates from recruiters. Laravel middleware checks this attribute
before granting access to restricted routes, ensuring that recruiters cannot impersonate
candidates and vice versa. For example, job posting endpoints are protected by recruiter-only
middleware, while application submission endpoints are limited to candidate accounts. This
role-based access control (RBAC) guarantees that users interact only with data and functions

relevant to their role, preventing unauthorized operations.

Additional security layers are applied to protect against common web vulnerabilities.
Cross-Site Request Forgery (CSRF) tokens are automatically embedded in all form

submissions to prevent malicious requests, while input validation rules sanitize user-provided

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

CHAPTER 4 SYSTEM DESIGN

data before it reaches the database. File uploads, particularly resumes and cover letters, undergo
validation for file type, size, and MIME type to ensure that harmful scripts cannot be
executed through document submissions. Furthermore, resource ownership checks are
consistently enforced in controllers; for example, a candidate can only view or modify their
own applications and resumes, and a recruiter can only access applications associated with their

job postings.

In addition to preventative measures, IntelliHire incorporates audit logging features that
record critical user activities such as logins, application submissions, interview scheduling, and
profile updates. These logs serve as a valuable tool for monitoring suspicious activity, tracing
errors, and ensuring accountability within the system. Combined with the use of HTTPS
encryption for all data transmissions, the platform ensures that sensitive information such as

personal details, resumes, and interview data remain secure both in transit and at rest.

Through this layered approach—spanning authentication, authorization, input
validation, file handling, and audit monitoring—IntelliHire establishes a comprehensive
security model that protects both candidates and recruiters while maintaining system reliability

and trustworthiness.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

CHAPTER 5 SYSTEM IMPLEMENTATION

Chapter 5 System Implementation

5.1 Hardware Setup

The hardware involved in this project includes a laptop computer. The laptop, equipped
with an Intel Core 15-11400H processor, 16GB DDR4 RAM, NVIDIA GeForce RTX 3050
GPU, and a 500GB M.2 PCIe NVMe SSD, is used for system development, UI/UX design,
and implementation of Al integration tasks. It provides the necessary computational power for
building the IntelliHire platform and conducting simulated interview sessions within a

Windows 11 operating environment.

Table 5.1.1 Specification of laptop

Description Specifications
Model Illegear Onyx V series
Processor Intel Core 15-11400H

Operating System Windows 11

Graphic NVIDIA GeForce RTX 3050 Laptop GPU
Memory 16GB DDR4 RAM
Storage 500GB M.2 PCle NVMe Solid State Drive

5.2 Software Setup

In order to begin the development of the IntelliHire system, several essential software tools
are required to be installed and configured. These tools provided the foundational environment

for local development, database management, package handling, and code editing.

5.2.1 XAMPP (for local server environment)
XAMPP [13] is an open-source cross-platform web server solution stack package

developed by Apache Friends. It includes Apache, MariaDB, PHP, and Perl, which allows

developers to create a local server environment to develop and test PHP applications efficiently.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

CHAPTER 5 SYSTEM IMPLEMENTATION

In this project, XAMPP is utilized to run the Apache server and MySQL database locally,

simulating the functioning of an actual web server without deploying it to the cloud.

Apache Friends Download

XAMPP Apache + MariaDB + PHP + Perl

What is XAMPP?

XAMPP is the most popular PHP development
environment

XAMPP is a complotely free, easy to nstall Apache di

XAMPP

Download 28 XAMPP for Windows A XAMPP for Linux & XAMPP for 0S X
Chck tove Jor Ot versions 8212 (PHPB.2.12 8.2.12 (PHP 8.2.12 24 (PHP 8.2.4

Figure 5.2.1.1 XAMPP download page

XAMPP Control Panel v3.3.0 [Compiled: Apr 6th 20211 — O *
=
~ XAMPP Control Panel v3.3.0
Modules
N .) Metstat
Service Module PID(s) Port{s) Actions @
54356
Apache oo oo 80, 443 Stop Admin Config Logs B shel
MySaL 23844 3306 Stop Admin Config Logs || Explorer
FileZilla Start Admin Config Logs B Services
Mercury Start Admin Config Logs & Help
Tomcat Start Admin Config Logs I_Tl Quit

11:43:55 AM [main] Starting Check-Timer

11:43:55 AM [main] Control Panel Ready

11:43:56 AM [Apache] Autostart active: starting...
11:43:56 AM [Apache] Attempting to start Apache app...
1143568 AM [mysgl] Autostart active: starting...
1143568 AM [mysgl] Attempting to start MySQL app...
11:43:56 AM [Apache] Status change detected: running
11:43:568 AM [mysgl] Status change detected: running

Figure 5.2.1.2 XAMPP control panel

1. Composer (PHP dependency manager)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

CHAPTER 5 SYSTEM IMPLEMENTATION

Composer [14] is amongst the most sought-after dependency managers for PHP. With
Composer, one can easily install and run libraries or packages required in PHP projects.
Composer is utilized in managing Laravel dependencies, and so it is required in any Laravel

project. Composer is installed and configured to globally access Laravel installation.

Home Getting Started Download Documentation Browse Packages

Download Composer Latst 288

Windows Installer

The installer - which requires that you have PHP already installed - will download Composer for you and set up your PATH environment
variable so you can simply call composer from any directory.

Download and run Composer-Setup.exe - it will install the latest composer version whenever it is executed.

Command-line installation

To quickly install Composer in the current directory, run the following script in your terminal. To automate the installation, use the guide on
installing Composer programmatically

php -r "copy('https://getcomposer.org/installer’, 'composer-setup.php');"

php -r "if (hash_file('sha384', ‘composer-setup.php') === 'dac665fdc3efdd8ec78b38b9800061b4150413FF2e3b6F88543¢
php composer-setup.php

php -r "unlink('composer-setup.php');"

“«

This installer script will simply check some php.ini settings, warn you if they are set incorrectly, and then download the latest
composer.phar in the current directory. The 4 lines above will, in order:

« Download the installer to the current directory
« Verify the installer SHA-384, which you can also cross-check here

[SETE———— - Run o insialer

Figure 5.2.1.3 Composer download page

F‘_L’l Composer Setup

o §
Installation Options \ / £
Choose your installation type.

Setup will install Composer to a fixed location for the current user. This includes a Control
Panel uninstaller and is the recommended option. Click Next to use it.

() Developer mode

Take control and just install Composer. An uninstaller will not be included.

Next Cancel

Figure 5.2.1.4 Composer setup page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

CHAPTER 5 SYSTEM IMPLEMENTATION

Microsoft Windows [Version 10.6.261600.3775]
(c) Microsoft Corporation. ALl rights reserved.

C:\Users\tongq>composer ——version
8.4 2024-12-11 11:57:47
(C:\xampp\php\php.exe)
Run the "diagnose" command to get more detailed diagnostics output.

C:\Users\tongg>|

Figure 5.2.1.5 Composer version check

5.2.2 Installing Laravel

Laravel is a PHP framework that simplifies web development. It follows the MVC(Model-
View-Controller) structure and offers built-in features like routing, templating, and database
integration. To install Laravel, the command composer global require laravel/installer is used.

This command downloads the Laravel installer, making it easyto create new Laravel projects.

C:\Users\tonggq>composer global require laravel/installer

- Upgrading (v5.14.0 == v5.14.2)

- Syncing into cache
- Upgrading @ => v5.14.2): Checking out 229alif9e9b from cache

Using version

Figure 5.2.2.1 Laravel installation

5.2.3 Visual Studio Code (IDE)
Visual Studio Code (VS Code) [15] is used as the main code editor for IntelliHire.It is
lightweight, fast, and supports many useful extensions. It works well with Laravelprojects and

allows developers to customize the environment as needed.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

CHAPTER 5 SYSTEM IMPLEMENTATION

J Visual Studio Code

Your code editor.
Redefined with Al.

Download for Windows Try agent mode

Figure 5.2.3.1 Visual Studio Code download page

Several VS Code extensions are also being installed to enhance development withLaravel:

Laravel Blade Formatter: This extension formats .blade.php files, makingthe code cleaner

and easier to read.

Laravel Blade formatter
Shuhei Hayashibara # shufo.de D 1,960,372 * % & & 17 (29) ¥ Sponsor

Laravel Blade formatter for VSCode

Disable | | Uninstall [/ Auto Update 5

DETAILS

vscode-blade-formatter

An opinionated Blade file formatter for VSCode. Marketplace page is here.
You can also format programmatically with the same syntax using the blade-formatter that this extension relies on.
Features

Automatically indent markup inside directives
Automatically add spacing to blade template markers
PHP 8 support (null safe operator, named arguments) 8%
PSR-2 support (format inside directives)

Automatically sort Tailwind CSS classes with respect of tailwind.config.js

Figure 5.2.3.2 Laravel Blade Formatter

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

CHAPTER 5 SYSTEM IMPLEMENTATION

Laravel Snippets: Provides code snippets for common Laravel constructs,saving

development time.

Laravel Snippets
Winnie Lin <D 2,763,914 Wi (11)

Laravel snippets for Visual Studio Code (Support Laravel 5 and above)

Disable |V | Uninstall [V \/ Auto Update £5

Laravel Snippets

avel snippets extension for Visual Studio Code (Support Laravel 5 and above version).

* Llaravel 5.x-12.x

Figure 5.2.3.3 Laravel Snippets

Laravel Blade Snippets: Offers specific support for Blade templating syntax,making it easier
to work within view files.

Laravel Blade Snippets

Winnie Lin D 4,163,028 o & o % 77 (38)

Laravel blade snippets and syntax highlight support

Disable [v | Uninstall [V /' Auto Update €53

DETAILS

Laravel Blade Snippets

Laravel blade snippets and syntax highlight support for Visual Studio Code.

Suggest Laravel related extension: Laravel Snippets

Figure 5.2.3.4 Laravel Blade Snippets

5.3 Setting and Configuration

Once the required tools are installed, the development setup process for IntelliHire began.

5.3.1 Create Laravel Project

A new Laravel project is created using the command “laravel new intellihire”, which
created the directory structure and essential files for the application. Thiscommand sets up
Laravel’s core components including routes, controllers, models, views, and configuration

files.
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 5 SYSTEM IMPLEMENTATION

PS F:\UTAR> laravel new intellihire

1 None

] React

1 Vue

] Livewire

[0] Pest
[1] PHPUnit
>

Creating a "laravel/laravel" project at “./intellihire"
Installing laravel/laravel (v12.6.7)
Failed to download laravel/laravel from dist: The zip extension and unzip/7z commands are both missing, skipping

The php.ini used by your command-line PHP is: C:\xampp\php\php.ini
Now trying to download from source
- Syncing laravel/laravel (v12.8.7) into cache
- Installing laravel/laravel (v12.0.7): Cloning e65Ubf3662 from cache
Created project in F:\UTAR/intellihire
Loading composer repositories with package information
Updating dependencies
Lock file operations: 110 installs, @ updates, © removals
Locking brick/math (8.12.3)
Locking carbonphp/carbon-doctrine-types (3.2.0)
Locking dflydev/dot-access—data (v3.0.3)
Locking doctrine/inflector (2.0.18)
Locking doctrine/lexer (3.8.1)
Locking dragonmantank/cron-expression (v3.4.0)
Locking egulias/email-validator (4.@.u)
Locking fakerphp/faker (v1.2u.1)
Locking filp/whoops (2.18.8)
Locking fruitcake/php-cors (v1.3.8)
Locking graham-campbell/result-type (v1.1.3)
Locking guzzlehttp/guzzle (7.9.3)
Locking guzzlehttp/promises (2.2.8)
Locking guzzlehttp/psr7 (2.7.1)
Locking guzzlehttp/uri-template (v1.0.4)
Locking hamcrest/hamcrest-php (v2.0.1)

Figure 5.3.1.1 Laravel project creation

5.3.2 Database Setup
The MySQL database is set up using phpMyAdmin, which comes with XAMPP. Anew

database named intellihire is created. This database will store all the system's tablesand data used
during development. To connect between Laravel and MySQL, the .envfile in the Laravel
project is edited with appropriate database credentials, such as DB DATABASE,
DB _USERNAME, and DB PASSWORD. The password is not setsince the database is only

used locally.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

CHAPTER 5 SYSTEM IMPLEMENTATION

Databases [SQL Status Useraccounts =4 Export wt Import Settings Replication Variables = Charsets 4 Engines Plugin:

Databases

, Create database 4

intellihire utf8mb4_general_c
» Database intellihire has been created

Database . Collation Action

Figure 5.3.2.1 Database creation page

=127.0.0.1
ORT=3306

=intellihire

E=root

Figure 5.3.2.2 Database setup page in .env of Laravel project

5.3.3 API Key Configuration

The Gemini API is configured by storing its API key securely in the Laravel project’s .env
file. A new environment variable named GEMINI_API KEY is added, which holds the secret
key provided by Google. This approach ensures that sensitive credentials are not hard-coded
into the source code. The Laravel configuration files and controllers access the API key using
the env() helper function, enabling authenticated requests to the Gemini API during resume

parsing, job requirement analysis, and interview evaluations.

GEMINI_API_KEY=/

Figure 5.3.3.1 Gemini API key setup in .env of Laravel project

5.3.4 Installing HTTP Client Package

13

The GuzzleHTTP package is installed using the command “composer require
guzzlehttp/guzzle”. This package enables the system to send HTTP requests to external services

such as the Gemini API. Guzzle acts as a PHP HTTP client and is crucial for sending POST

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

CHAPTER 5 SYSTEM IMPLEMENTATION

requests with payloads containing job and candidate information to receive dynamically

generated interview questions.

C:\Users\tongq\Desktop\fyp\fyp>composer require guzzlehttp/guzzle

- Upgrading

— Syncing into cache
- Upgrading 3): Checking out 7b2f29fe8l from cache

arning: Ambiguous class resolution, "League\Flysystem\Local\FallbackMimeTypeDetector" was found in both "C:/Users/tongg|
/Desktnpffyp/fyp/vendor/league/Flysysten—lo:al\FallbackHlneTypeDete:tor php" and "C:/Users/tongg/| p/fyp/Fyp
eague/flysystem/src\Local\FallbackMimeTypeDetector.php", the first will be used.

arning: Ambiguous class resolution, "League\Flysystem\Local\lLocalFilesystemAdapter" was found in both "C:/Users/tongq/D
esktop/fyp/fyp/vendor/league/flysystem-local\LocalFilesystemAdapter.php" and "C:/Users/tongqg/Desktop/fyp/fyp/vendor/leag
ue/flysystem/src\Local\lLocalFilesystemAdapter.php", the first will be used.

arning: Ambiguous class resolution, "League\Flysystem\Locall\lLocalFilesystemAdapterTest" was found in both "C:/Users/ton
gq/Desktop/fyp/fyp/vendor/league/flysystem-local\LocalFilesystemAdapterTest.php" and "C:/Users/tongq/Desktop/fyp/fyp/ven
-or/leaguelflysysten/sr:\Lncal\analFilesystenAdapterTest.php", the first will be used.

arning: Ambiguous class resolution, "App\Providers\AppServiceProvider" was found in both "C:/Users/tongq/Desktop/fyp/f
p/app\Providers\AppServiceProvider. php" and "C:/Users/tongq/Desktop/fyp/fyp/vendor/laravel/pint/app\Providers\AppService
Provider.php", the first will be used.

exclude-files-f

INFO Discovering packages.

laravel/breeze

laravel/pail

laravel/sail
laravel/tinker
nesbot/carbon
nunomaduro/collision
nunomaduro/termwind
pestphp/pest—plugin-laravel

INFO No publishable resources for tag [laravel-assets].

C:\Users\tongq\Desktop\fyp\fyp>]

Figure 5.3.4.1 GuzzleHTTP installation

5.4 System Operation (with Screenshot)

This section demonstrates how the IntelliHire system operates from both candidate and
recruiter perspectives. Screenshots of the user interface are provided together with explanations
of system flows. For complex features such as Al-driven operations, code snippets are also

included to show the underlying implementation.

5.4.1 Landing Page & Authentication

Upon accessing the IntelliHire platform, users are greeted with a landing page that
introduces the system in a clean and intuitive layout (Figure 5.4.1). From here, users may
proceed to authentication features. The login page (Figure 5.4.2) allows both candidates and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

CHAPTER 5 SYSTEM IMPLEMENTATION

recruiters to access their accounts using registered email and password. For new users, the
registration page (Figure 5.4.3) provides account creation with an additional role selection
option, where users must indicate whether they are registering as a candidate or a recruiter.
This ensures that upon successful login, each user is directed to the correct dashboard tailored

to their role.

¢ IntelliHire

Welcome to Intellihire

Why Choose Intellihire?

Figure 5.4.1.1 IntelliHire landing page

X Intellitire

Figure 5.4.1.2 IntelliHire login page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 5 SYSTEM IMPLEMENTATION

<(IntelliHire

| REGISTER

Figure 5.4.1.3 IntelliHire registration page

5.4.2 Candidate Dashboard

The landing dashboard for candidates is composed of multiple dynamic components aimed
at improving the job search and application experience. At the top of the page, a summary
section presents key statistics such as the total number of applications, active applications,
upcoming interviews, and job matches. These figures are displayed in styled blocks to give

users a quick overview of their current status.

Below this, the system provides personalized job recommendations. While the current
implementation suggests jobs randomly, this feature is designed to encourage continued
engagement with the platform, and future enhancements may allow recommendations to be

filtered based on the candidate’s skills, preferences, or past applications for greater accuracy.

The dashboard also includes an activity timeline, which records significant events such as
job applications, interview schedules, and completed interviews. This chronological log helps
candidates stay informed of their progress throughout the hiring process. Additionally, an
upcoming interviews section highlights any sessions that have been scheduled, along with
direct links to access them when the time comes. This ensures that candidates remain aware of

important deadlines and do not miss scheduled interviews.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

CHAPTER 5 SYSTEM IMPLEMENTATION

Finally, the application status component displays a detailed table of all submitted
applications, including the job title, company name, application date, and current status. Each
record also provides a shortcut to the full application details page, making it easy for candidates
to review and manage their submissions. Together, these components make the dashboard a

central hub for tracking applications, managing interviews, and discovering new opportunities.

<< IntelliHire Dashboard Browse Jobs My Applications Join Interview Jane Smith ~

Q BROWSE JOBS

Candidate Dashboard

ur applications, interviews, and job recommendations

Application Status View Al Upcoming Interviews View A
th
UX/UI Designer at PixelForge Studio Fx&iForge Studio Apr 26,2025 Intervicwad View —
Fodne= Ve No upcoming interviews
jova § 26,202 =z o
Frontend Developer 'vfecrN:i.e .v_o.u(mis‘ Ag: 25 2025 bt View

4 O mm—— B

QX/U| Designer at PixelForge Studio Compléted
Frontend Developer Completed
Recommended Jobs Browse All Jobs
=a
No job recommendations yet
ofile to get personalized job recommendations.
Browse All Jobs
Recent Activity
9 You completed an interview for UX/UI Designer at PixelForge Studio at PixelForge Studio Apr 26,2025
nterview scheduled for UX/UI Designer at PixelForge Studio at PixelForge Studio Apr 26,2025
Apphied for UX/UI Designer at Pixelforge Studio at PixelForge Studio Ape 26,2025

ew for Frontend Developer at TechNova S

terview scheduled for Frontend Developer at TechNova Solutions

@000

Figure 5.4.2.1 IntelliHire candidate dashboard

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

74

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.3 Job Browsing & Application

In the jobs module for candidates, the system provides two distinct browsing experiences

depending on whether resume data exists in the database.

When resume information is available, meaning the candidate has uploaded and parsed a
resume during a previous application, the job browsing page leverages the Al-powered
matching module to enhance the listings. Each job card includes a compatibility score that
represents how closely the candidate’s qualifications align with the job requirements. These
scores are generated through the Al matching algorithm, which compares extracted resume
data—such as skills, education, experience, and certifications—against the requirements
parsed from job postings. Jobs are then displayed in ranked order, with the most compatible

positions appearing first.

Frontend Developer Highly Relevant
Nexora Digital Sotutior) a creative and detail-oriented Frontend Developer t
VIEW DETAILS

Software Quality Assurance (QA) Engineer

Farm Operations Supervisor Not Relevant

B3
Figure 5.4.3.1 Intellihire candidate job browsing page (with resume information found in

database)

When no resume information is available, for example when a candidate has not applied
for any jobs previously, the job browsing page reverts to a standard listing view. In this case,
jobs are presented in a neutral order (typically by posting date), displaying basic information
such as job title, company, salary range, and description. Since no compatibility scores can be
calculated, the interface provides clear prompts encouraging candidates to upload their resumes

in order to unlock Al-driven job recommendations. Informational banners or placeholder
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

75

CHAPTER 5 SYSTEM IMPLEMENTATION

messages may also appear, emphasizing the advantages of activating intelligent matching
features. This ensures that while all candidates can access job postings, those who upload

resumes enjoy a significantly more tailored and guided job search experience.

No resume found!

To see personalized job match scores, please upload your resums

Upload your resume:

Search Work Mode Role Type

Al A v m

Frontend Developer

Nexora Digital Solutions « Cyberjaya, Selangor, Malaysia

On-site Fulltime

Nexora Digital Solutions is hiring a creative and detail-oriented Frontend Developer to build responsive, user-friendly web applications. The role inv...

Tip: Upload your resume to see how well you match this position and get personalized recommendations!
Salary: RM 3,000 - RM 8,000 VIEW DETAILS
Cafbuiara Mualibu Aesiranca (MA) Caninaar

Figure 5.4.3.2 Intellihire candidate job browsing page (with no resume information found in

<‘ IntelliHire Dashboard Browse Jobs My Applications Join Interview Devin Cheong v
Available Jobs (sarted by relevance)
Resume uploaded for this session m
Using aded resume *Resume_Aug25_2 pdf” for job matching. Data will be cleared when you log out or close the browser,
Uploaded: 14 minutes ago
Search Work Mode Role Type Match Level
All v All v All Levels A Filter
Match Level Guide:
® Highly Relevant (67-100%) @ Very Relevant (34-66%) Relevant (5-33%) @ Not Relevant (<5%)

Figure 5.4.3.3 Intellihire candidate job browsing page (resume uploaded for session

calculations)

This dual-interface approach ensures inclusivity while maximizing personalization for

candidates who engage with the system fully.

Once a candidate identifies an interesting opportunity from the job listings or
recommendations, they are directed to the Job Details page (Figure 5.4.3.4). This page provides
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

CHAPTER 5 SYSTEM IMPLEMENTATION

comprehensive information about the position, including the job title, company name, job
description, location, salary range, and specific requirements defined by the recruiter. The
structured view ensures that candidates can make informed decisions before proceeding with

an application.

<(IntelliH\'re Dashiiowrd Browse Jobs My Appication in ot Davin Chea

Frontend Developer =S

Omsite Fulltime

Frontend Developer

Sal; R RM3,000.00 - RM8,000.00
Nexora Digital Solutions alary Range I

Cyberjaya, Selangor, Malaysia
APPLY NOW

Job Description

Nexora Digital Solutions is hifing a creative and detail-criented Frontend Developer to build responsive, user-friendly web applications. The role involves working
closely with designers and backend developers to create seamless digital experiences.

Responsibilities

Develop, test, and maintain user interfaces for web applications.

Translate design mackups into responsive HTML, CSS, and JavaSeript code.
Optimize appiications for speed and scalability.

Callaborate with backend developers to integrate APls.

Ensure cross-browser compatibility and accessibility compliance.

Cenduct code reviews and maintain clean, reusable code practices.

Requirements

Additional Requirements

Location

Level 9, Menara TechVista
Jalan Teknologi 5

Cyber Park Boulevard
Cyberjaya, Selanger 63000
Malaysia

APPLY FOR THIS POSITION

Figure 5.4.3.4 IntelliHire candidate view job details page

If the candidate chooses to apply, they are redirected to the Application page (Figure
5.4.3.5). Here, the system provides a form where candidates can upload their resume and an
optional cover letter, before submitting the application to the database. The interface is
designed to be straightforward and user-friendly, reducing friction during the application

process.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

CHAPTER 5 SYSTEM IMPLEMENTATION

'\{(IntelliHire Dashboard Browse Jobs My Applications Join Interview

Apply: Frontend Developer

Frontend Developer
Nexore Digital Solutions « Cyberjaya, Selangor

Onsite Fulltime

Resume *

| Choose File | Resume_Aug2s_2.pdf

Upload your resume (PDF, DOC, DOCX, Max: 2MB)

Cover Letter (Optional)

| Choose File | Na file chosen

Upload your cover letter (RDF, DOC, DOCX, Max: 2MB

Additional Notes (Optional)

Share any additional information that might be relevant to your application

Max 1000 characters

Application Tips

« Make sure your resume is up-to-date and tailored to the position

« Inyour cover letter, explain why you're a good fit for this specific role
« Be honest about your qualifications and experience

« Proofread all documents before submitting

« If you're selected, be prepared for an Al-powered interview assessment

Davin Cheang v

BACK TO JOB DETAILS

&

SUBMIT APPLICATION

Figure 5.4.3.5 IntelliHire candidate application page

Candidates may later review their submissions through the Applied Jobs page (Figure

5.4.3.6), which lists all the positions they have applied to, along with essential details such as

job title, company, and application date. This acts as a personal record, helping candidates keep

track of their ongoing applications.

<(IntelliHire Dashboard Browse Jobs My Applications Join Interview

My Applications
Jos COMPANY APPLICATION DATE
UX/UI Designer at PixelForge Studio PixelForge Studio Apr 26,2025
Hybrid | Full time Petaling Jaya, Selangor 02:50 PM
Frontend Developer TechNova Solutions Apr 26,2025
On-site | Full time Kuala Lumpur, Wilayah Persekutuan 11:21 AM

Jane Smith v

DOCUMENTS ACTIONS
Resume | Cover Letter View Job
Resume | Cover Letter View Job

Figure 5.4.3.6 IntelliHire candidate applied job page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

CHAPTER 5 SYSTEM IMPLEMENTATION

To provide greater transparency, the system also includes a Status Tracking page (Figures
5.4.3.7-5.4.3.12). This page displays detailed information about a specific job and the current
progress of the candidate’s application. There are six distinct statuses used within the platform:
application submitted, shortlisted, shortlisted but expired, interviewed, offered, and rejected.
Each status is visually highlighted so candidates can easily understand their standing in the

recruitment process.

<< IntelliHire Dashboard Browse Jobs My Applications Join Interview Davin v
Frontend Developer
Frontend Developer Onsite Fulltime

TechNova Solutions Salary Range: RM4,000.00 - RM7,000.00

Kuala Lumpur, Wilayah Persekutuan, Malaysia

APPLICATION SUBMITTED

Figure 5.4.3.7 IntelliHire candidate status: applied

<(IntelliHire vasmoara Browsesobs MyApplications Join Interview
Frontend Developer
Frontend Developer On-site Fultime

- P Salary Range: RM4,000.00 - RM7,000.00
echNova Solutions

Kuala Lumpur, Wilayah Persekutuan, Malaysia

You've been shortlisted!

Interview Schedule:
Available from April 27, 2025 to April 30, 2025

Your Interview Code:

pulydoUF Copy

ATTEMPT INTERVIEW

& Please attempt the interview as soon as possible. Hiring is on a first-come, first-served basis

Figure 5.4.3.8 IntelliHire candidate status: shortlisted

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

CHAPTER 5 SYSTEM IMPLEMENTATION

<(IntelliHire

Frontend Developer

Frontend Developer
achNova Sokitice Salary Range: RM4,000.00 - RM7.000.00

© Interview Opportunity Expired

terview Schedule

puklydoUF

Figure 5.4.3.9 IntelliHire candidate status: shortlisted, but expired

X IntelliHire

UX/UI Designer at PixelForge Studio

UX/UI Designer at PixelForge Studio
PixelForge Studio Salary Range: RM4,500.00 - RM6,500.00
1 Jaya, Selangor, Malaysia

© Interview Completed

Thank you for com

‘our application is currently being reviewed by the hiring team.
You w

ade. Please check back regularly for updates on your application status

Figure 5.4.3.10 IntelliHire candidate status: interviewed

€ IntelliHire

Frontend Developer

Frontend Developer

Figure 5.4.3.11 IntelliHire candidate status: offered

X IntelliHire

Frontend Developer
Frontend Developer Onste Fultime

Salary Range: RM4,000.00 - RM7,000.00

pur

ekutuan, Malaysia

APPLICATION NOT SELECTED

Figure 5.4.3.12 IntelliHire candidate status: rejected

In addition, after an interview is completed, the same page provides access to the
candidate’s interview responses and Al-generated feedback from the session. This feature not
only enhances candidate awareness of their performance but also encourages self-improvement

by presenting detailed insights into their communication, relevance, and completeness of

ansSwers.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.3.1 Job Matching Algorithm

The job matching algorithm in IntelliHire combines traditional rule-based techniques with
Al-powered semantic analysis to deliver accurate compatibility scores between candidate
resumes and job postings. This hybrid approach ensures that the system remains resilient when
Al services encounter issues, while also benefiting from contextual intelligence when they are

available.

The matching process begins with a weighted scoring system. Each requirement type—
skills, education, experience, and certifications—is assigned a weight based on its importance.
For example, skills are weighted at 40%, experience at 30%, education at 20%, and
certifications at 10%. If a job posting omits one or more requirement categories, the weights
are dynamically adjusted to normalize the final calculation. The overall compatibility score is
then computed as a weighted sum of the individual category scores, producing a percentage

that reflects how closely the candidate fits the job profile.

if ($activeCategories === 4

? $remainingWeight : 8.55;

? $remainingWeight : @.4@;

Figure 5.4.3.13 Job matching algorithm weighted scoring

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

CHAPTER 5 SYSTEM IMPLEMENTATION

For skills matching, the system uses a two-layer approach. First, a rule-based algorithm
compares each required skill with the candidate’s skills using keyword similarity and
thresholds. As shown in Figure 5.4.3.5, the system iterates through each requirement, calculates
similarity scores, and selects the best match. If the best score exceeds 70%, the requirement is
considered satisfied; otherwise, it is marked as missing. This ensures that the system always

produces a baseline score, even if Al services are unavailable.

To enhance accuracy, the algorithm then integrates semantic evaluation using the Gemini
APIL. Figure 5.4.3.6 illustrates how a detailed Al prompt is constructed, containing contextual
rules that define how to treat versions, synonyms, and related skills. For example, HTML and
HTMLS are treated as equivalent, while Angular and Angular 2+ are categorized as different
versions of the same technology. The API evaluates each candidate skill against job
requirements and returns a structured response with both a numerical score and an explanation.
These Al-generated scores are then merged with the rule-based calculations to refine the overall
compatibility score, ensuring that both exact matches and semantically similar skills are

recognized.

Figure 5.4.3.14 Rule-based skill matching

with weighted scoring

Figure 5.4.3.15 Al prompt construction for

semantic skill evaluation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

82

CHAPTER 5 SYSTEM IMPLEMENTATION

A similar layered design applies to education, experience, and certifications. Education
matching checks degree level and field of study, with Al factoring in GPA and institution
prestige. Experience matching compares years of work and uses Al to assess role relevance,
industry context, and career progression. Certifications are matched by name and validated

through Al for equivalence, currency, and relevance to the role.

The system incorporates several optimization and reliability mechanisms. A circuit breaker
pattern monitors Gemini API failures; if more than 3 consecutive errors occur, the algorithm
falls back to basic keyword matching to maintain uninterrupted service. In addition, Al results
are cached for 1 hour to avoid repeated calls for the same candidate-job pair, improving
efficiency. The system implements rate limiting (50 requests per hour) and failure caching (5-
minute cooldown) to prevent repeated failed attempts. Requests to the API are configured with
aggressive timeout controls (8 seconds), ensuring that transient network or service issues do

not severely impact user experience.

$cacheKey = "jc {$applicationId}_{$jobId}";

$cachedResult :get(key: $cacheKey);
if ($cachedResult) {
return $cachedResult;

}

ache: :put(key: $cachekey,

if ($lastFailure && (time - $lastFailure)

Cache::increment(key: $rateLimitKey,

calculation

Figure 5.4.3.20 Timeout Controls

Figure 5.4.3.21 Fallback to Basic Matching

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

83

CHAPTER 5 SYSTEM IMPLEMENTATION

The final output combines the weighted overall score, breakdown by category, and a
confidence score that communicates the reliability of the Al's analysis. Confidence levels are
categorized as high (80%), medium (50-79%), or low (below 50%), helping in interpret the

results with appropriate caution.

Figure 5.4.3.22 Final Output Structure

Figure 5.4.3.23 Confidence Score

Calculation

5.4.4 Interview System

The interview process begins with the Interview Code Entry page (Figure 5.4.4.1). At the
top of this page, candidates are prompted to enter a valid interview code in order to proceed.
Directly below the code entry field, the system displays the full set of Interview Rules and
Guidelines, ensuring that all candidates are fully aware of the conditions before they can join
the session. The rules explain the flow of the interview, including preparation time, recording
controls, and handling of silent or incomplete responses. For example, candidates are given 10
seconds to prepare before automatic recording begins, and their responses can be started or
stopped manually using the designated controls. Warnings appear if no speech is detected or if
the candidate pauses for too long, and skipped questions are automatically recorded. Clear
reminders highlight that the interview is a one-time attempt, and reloading or closing the page
will result in permanent termination of the session. In addition, the page includes the Recording
Notice & Terms, outlining that both video and audio will be fully recorded, stored securely,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

84

CHAPTER 5 SYSTEM IMPLEMENTATION

and reviewed only by authorized recruitment personnel. A final Privacy Notice reinforces
compliance with data protection laws, explaining candidates’ rights to access, correction, or
deletion of their personal data. By displaying these rules upfront, the system ensures candidates

give informed consent before starting their interview..

Enter Interview Session

Please enter your interview code to begin your scheduled interview session.

Interview Code

= Interview Rules & Guidelines

» After each question is displayed, you have 10 seconds to prepare before recording automatically starts. A countdown timer will be shown.

+ You can start recording manually at any time by clicking the A Start Recording button or pressing the Space bar.

» Stop recording by clicking the button again or pressing Space bar. Your respense will be autorn

- If no speech is detected within 10 seconds of starting to record, a wamning will appear. You have 5 second:
» If you pause speaking for more than 10 seconds during recording, a warning will appear. If you don't resume
» If your recording contains no speech. you'll get one more chance to answer. Recording wil restart automatically after & seconds.

» If the second sttempt also has no speech, the question will be automatically skipped

» ik IMPORTANT: Reloading or closing the page will immediately END your interview session permanently. You cannot resume or retake the interview
+ You cannot navigate away from the interview page. Doing so may end your session.

~ Speak clearly and loudly enough for the microphone to capture your voice

~ This is a one-time attempt only. You cannot retake the interview once started

#, Recording Notice & Terms

Video & Audio Recording:

will be fully recorded {video and audio) for review by the recruitment team

throughout the interview esponses
- All recordings will be stored securely and used salely for recruitment evaluation purposes.
By proceeding with this interview, you acknowdedge and agree that:

= You consent to b corded (video and audio) during the entire interview session.

- The recordings w viewed by autharized recruitment personnel only

- Your responses and recordings will be kept

ntial and used exclusively for evaluating your application

- Recordings may be retained for a reasonab! d as per company p e laws

« You are ina private space where record i ot ird-party rights.

« You will provide honest and authentic respo

s without any extemal assistance.

- Any attempt to circumvent the interview process may result in disqualification

i Important Privacy Notice:

Figure 5.4.4.1 IntelliHire interview code entrance page

Once the interview code has been validated, candidates are directed to the Important
Interview Instructions page (Figure 5.4.4.2). This page acts as a final checkpoint before
entering the live interview session. Candidates are reminded that the interview can only be
attempted once and cannot be restarted or retaken under any circumstances. A checklist
prompts candidates to confirm that their microphone and camera are enabled, that they are in
a quiet environment with a stable internet connection, and that they have allocated sufficient
uninterrupted time (approximately one hour) for the interview. The section also restates
important rules such as prohibiting navigation to other pages, requiring clear and honest

responses, and enforcing a one-hour time limit. At the bottom of the page, the system displays
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

85

CHAPTER 5 SYSTEM IMPLEMENTATION

the Permission Status for the microphone and camera. The “Start Interview” button remains
disabled until both devices are successfully enabled, ensuring technical readiness before the
session begins. This layered validation process minimizes disruptions and safeguards the

integrity of the interview process.

A Important Interview Instructions

@ You can only attempt this interview ONCE

© Important Rules:

« You CANNOT access other pages during the intervie

Are you ready to start the interview now?

Figure 5.4.4.2 Intellihire interview page entry permission check

After passing the checks, candidates enter the Interview Interface (Figure 5.4.4.3), where
they interact with the Al in a structured conversational flow. The chat area displays system-
generated questions along with the candidate’s responses, creating a real-time interview
transcript. Responses are primarily collected through voice, supported by speech-to-text
processing that transcribes the spoken content into text. The interface prevents manual typing
to maintain consistency across all interviews, requiring candidates to follow the automated

flow without skipping or reordering questions.

The system also integrates speech and video features using WebRTC and the
MediaRecorder API. Candidates can see their live camera feed and audio level indicators while
recording their responses. Clear visual cues, such as red recording dots and timers, help them
stay aware of their status. If no speech is detected within the allocated preparation or response
time, warnings are triggered, and unanswered questions may be automatically skipped. These
mechanisms ensure efficiency and fairness by standardizing the time available to all
participants.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
86

CHAPTER 5 SYSTEM IMPLEMENTATION

In addition to voice input, the platform incorporates Text-to-Speech (TTS) to enhance
accessibility. Candidates can adjust voice settings, including speech speed, volume, and voice
type, enabling them to hear the AI’s questions audibly. Animated indicators provide feedback
when the system is speaking, and candidates may pause or test the feature before the session
begins. This functionality improves engagement, particularly for users who prefer listening to

questions rather than reading them.

Interview Session: Software Quality Assurance (QA) Engineer

Nexora Digital Sclutions

On-site | Full time

Welcome to your interview for the Software Quality Assurance (QA) Engineer position at Nexora Digital
Solutions. Il be conducting your interview today,

This interview will consist of 15 questions in total, covering your experience, technical skills, and how you
approach various behavioral scenarios.

To start, could you please introduce yourself and share what interests you about this position?

Read questions aloud Voice Google UK English Female (en-GB) v Speed:) 10x Volume: e 100% ([T

- Stop & @ Recording... Press Space or click & Video 1 Stopping in:Shortcut: Press
Submit button to stop Recording 2s space

sure | have a background and computer science and over two years of experience in Software Testing and
QA | enjoy ensuring products made high qualities standards and work as expected | am interested in this
position because it allows me to apply my skills involvement and automated testing while contributing to
delivering reliable software for users

The Interview interface provide candidates with essential management tools during the
session. Visible progress indicators and countdown timers remind candidates of the remaining
time, while navigation warnings prevent them from accidentally leaving the interview page.
Candidates may choose to end the interview early, but confirmation pop-ups are enforced to
avoid unintended termination. Importantly, once the interview is ended, it cannot be restarted

or repeated.

At the end of the session, the system determines the next step. If no assessment is assigned,
candidates are returned to their dashboard with a completion message. However, if an
assessment has been scheduled, the system automatically redirects the candidate to the
Assessment Module, where further evaluation is carried out (explained in Section 5.4.5). This
seamless transition ensures continuity in the hiring workflow while keeping candidates guided

throughout the process.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

87

CHAPTER 5 SYSTEM IMPLEMENTATION

Interview Session Completed

Thank you for completing your interview. Your
responses have been recorded.

The recruiter will review your interview and get back to

you with feedback.
Return to Dashboard

Figure 5.4.4.3 Interview session completed popup (no assessment)

Assessment Required

Cor ions! You have your interview
successfully.

Now you need to complete an assessment to evaluate

Start Assessment

your skills further.

Figure 5.4.4.4 Interview session completed popup (with assessment)

5.4.4.1 Backend Processing

The InterviewController handles the orchestration of the entire interview process on the
backend. It acts as the bridge between the candidate interface, the database, and the integrated
Al services. The logic within the controller ensures smooth handling of interview sessions,
validation of codes, collection of candidate responses, and communication with the Gemini

API for evaluation.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
88

CHAPTER 5 SYSTEM IMPLEMENTATION

1. Response Recording and Storage

During the interview, candidate responses are captured via WebRTC and submitted to the
controller in either audio or text format. The backend securely stores these responses in the
database, associating them with the candidate’s interview session. Metadata such as timestamps,

question identifiers, and status are also logged. This ensures that recruiters later receive a

structured and auditable record of the session.

Figure 5.4.4.5 Controller logic for storing candidate responses

2. Al Prompt Construction and Evaluation

The controller integrates directly with the Gemini API, constructing prompts dynamically
for each candidate response. For instance, when evaluating an answer, the backend assembles
contextual details such as the interview question, expected competencies, and candidate
transcript. This prompt is then sent to Gemini, which returns a structured analysis containing a
similarity score, relevance assessment, and explanatory feedback. By embedding predefined
evaluation rules into the prompt, the system ensures consistent scoring across different

interviews.

In addition to evaluating candidate responses, the controller also leverages Gemini for
question generation, using a dedicated function, buildPrompt, to dynamically assemble the
instructions sent to the API. This function structures the job information into a JSON block
containing attributes such as company name, job title, responsibilities, requirements, and salary
range, ensuring that the Al has sufficient context about the role. The prompt also incorporates
the interview stage (intro, preset, standard, closing, or ended), the number of questions already
asked, and the next sequential question number. Based on the current stage, Gemini is guided

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

89

CHAPTER 5 SYSTEM IMPLEMENTATION

to either welcome the candidate, ask preset questions, generate standard interview questions,
or close the session. Strict rules are embedded to guarantee consistency, including requiring
exactly 15 questions, marking each question with a [QUESTION:n] tag, and preventing the Al
from introducing itself by name. When a question is skipped or unanswered, additional
instructions are injected so that Gemini briefly acknowledges the skip before moving forward.
This structured prompting method ensures that Gemini produces contextually relevant,
professionally formatted, and stage-appropriate interview dialogue throughout the entire

session.

buildPrompt($job, $presetQuestions, $lastQuestionNumber, $questionsAsked, $interviewStage, $isSkipped =

$jobDetails =

$job->job
> $job->3

_mode,
le_type,

ry_range_min,

lary_range_max

g a job inte)11
$prompt .= S:\ . json_encode(va $jobDetails,

Figure 5.4.4.6 Constructing Al evaluation prompt for Gemini API

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

90

CHAPTER 5 SYSTEM IMPLEMENTATION

$prompt .
$prompt .
$prompt .
$prompt .
$prompt .

(count $unansweredP|

$prompt .=

$prompt .

$prompt .= I E I a e £ message
$prompt .=

Tse {

$prompt .=

$prompt .

$actualQues nCount = count(value: $quest
£ ($actualQuestionCount < ->maxQuestion
$prompt -
$prompt .=
$prompt .
$prompt .= “- 1 1
$prompt .= “- You ha a - = Y e L - ->maxQuestions - $actua tionCount) .
$prompt . t
$prompt .=
1se {
$prompt .= "-
$prompt

$prompt .=
$prompt .
$prompt .=
$prompt .
$prompt .=
$prompt .=
$prompt .=
$prompt .=
$prompt .

$prompt .
$prompt .= *
$prompt .=

Figure 5.4.4.7 Prompt construction logic for different interview stages

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

91

CHAPTER 5 SYSTEM IMPLEMENTATION

>baseUrl . >model . generateC A ey 5 >apiKey;

$payload = [
t ' => $contents,
R =>

I
Log: :info(messag anding request to Gemini A > text 'url' => $url, aylc ize' => strlen(st g: json_encode($payload))]);
$maxRetries = 3;

$retryDela;
$response =

~ ($attempt = 1; $attempt <= $maxRetries; $attempt++) {

$response = Http::timeout) 60)->retry 2, §i 1000) ->post $url, $payload);

::info € Gemini API re € mpt {$attempt}”, X ['state => $response->status(), 1' => $response->successful()]);

f ($response->successful()

g:iwarning "Gemini AF ttempt {$attempt} failed”, ‘e r' => $e->getMessage()]);
f ($attempt < $maxRetries
sleep($retryDelay);

$retryDelay *= 2;

W $e;

f ($response->successful()) {
$result = $response->json();

isset($result[’'candidates content']['parts'][@]['t

$aiReply = $result (]

=> $response->headers(

Figure 5.4.4.8 Handling Gemini API response and saving Al evaluation results

3. Retry and Error Handling

To account for potential API failures or network instability, the backend incorporates retry
logic. If the first request to the Gemini API fails, the system automatically retries with
exponential backoff to maintain reliability. In cases of persistent failure, fallback mechanisms

store the candidate’s raw responses for later evaluation, preventing data loss.

Figure 5.4.4.9 Retry logic for handling API errors in interview evaluation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.4.2 Text-to-Speech (TTS) Integration

The IntelliHire system incorporates text-to-speech (TTS) to provide an audible delivery of
interview questions. Unlike simpler designs where the frontend decides when to play audio, in
IntelliHire the backend InterviewController first evaluates the context and sets a decision flag.
This flag, called $shouldSpeak, is computed after analyzing the current interview stage (intro,
preset, standard, or closing), the presence of question markers such as [QUESTION:X], stage
transition tags like [STAGE:closing], and content patterns such as question marks or
instructional phrases. By handling this logic on the backend, the system ensures that all

candidates receive a consistent, rule-based experience.

Once the backend determines that a message should be read aloud, it removes the internal
markers (e.g., [QUESTION:X]) before sending the sanitized text and the $shouldSpeak flag to
the frontend. On the client side, the browser executes the actual speech rendering using the
Speech Synthesis API, which supports different voices, adjustable speed, and volume controls.
This hybrid approach ensures the server has authoritative control over when speech should

happen, while still giving candidates personalization options for how the audio is delivered.

This separation of responsibilities—decisioning on the backend and rendering on the
frontend—provides multiple benefits. It keeps the server lightweight, since the heavy lifting of
audio generation is offloaded to the browser. It also improves flexibility, allowing candidates
to adjust voice preferences without affecting backend logic. At the same time, it guarantees
consistency across interviews, since the backend enforces strict rules on which messages are
spoken. Together, these design choices ensure IntelliHire’s interview process is both efficient

and adaptable.

5.4.4.3 Speech-to-Text (STT) Integration

The speech-to-text (STT) component of IntelliHire is fully browser-based, implemented
with the Web Speech API (window.SpeechRecognition / window.webkitSpeechRecognition).
When candidates speak their answers, their audio is transcribed locally in real time and
converted into plain text. This transcript is then sent directly to the backend, bypassing the need
to upload audio files for processing. The backend stores the text along with question metadata

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

CHAPTER 5 SYSTEM IMPLEMENTATION

and optional video recordings, ensuring that the system maintains a complete session log

without heavy server-side processing.

To ensure fairness and robustness, IntelliHire implements a silence-detection system and a
retry mechanism. After each question is displayed and the text-to-speech finishes, a 10-second
preparation timer runs, after which recording automatically starts. During recording, a separate
10-second silence detection timer monitors for speech activity. If no speech is detected within
10 seconds, the interface shows a warning and provides a 5-second countdown for the candidate
to begin speaking. If the candidate still does not respond, the system records the attempt as
empty and automatically skips the question. This design prevents technical issues or hesitation

from stalling the session.

The retry logic adds another layer of resilience. If the first attempt contains no speech, the
system grants the candidate one additional attempt under the same rules. Only if both attempts
fail will the question be permanently skipped, and the interview moves forward. This approach
balances leniency (giving users a second chance) with efficiency (keeping the interview

moving without long delays).

Finally, the frontend error handling is designed to create a smooth user experience. It
monitors microphone status, provides live transcription feedback, and issues warnings when
silence is detected. By handling these checks in the browser, IntelliHire avoids unnecessary
server calls while ensuring that candidates are immediately aware of issues. This lightweight
but structured approach ensures that the STT pipeline is accurate, real-time, and fair, even when

network or user behavior introduces uncertainties.

The overall interaction between the candidate interface, backend controller, external Al

services, and storage components is summarized in the flow diagram below

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

94

CHAPTER 5 SYSTEM IMPLEMENTATION

Gemini API (Evaluation)

A /

Candidate (Frontend) ——» Browser APIs (WebRTC /TTS) ——» InterviewController (Backend)
Database (Responses, Feedback,

Metadata)

Figure 5.4.4.10 Interview Backend Flow Diagram

5.4.5 Assessment System

The assessment system in IntelliHire provides a structured evaluation stage following the
interview process. Managed by the AssessmentController, this module ensures that candidates
are tested on their technical knowledge, problem-solving ability, and communication skills in
a standardized format. Assessments are delivered in a clear, time-bound manner, and all
candidate responses are securely stored in the database for later review by recruiters, alongside

optional Al-based evaluation.

When candidates begin the assessment, they are directed to the assessment interface, which
consolidates the landing instructions, question display, and timer functionality into a single
page. The top section presents clear instructions outlining the assessment purpose, input
methods (text or audio), and guidelines for answering. Below this, the active question is
displayed prominently, showing details such as the current question number (e.g., Question 1
of 3) and a countdown timer that enforces the time limit for each question. Candidates are
provided with a text input area where they can type their responses, while an audio recording
option is available for those who prefer spoken answers. Once an answer is submitted, either
manually or automatically after the timer expires, the system transitions smoothly to the next
question until the assessment is complete. This design keeps candidates focused while ensuring

fairness through strict time control.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

95

CHAPTER 5 SYSTEM IMPLEMENTATION

'.3.(IntelliHire Dashboard Browse Jobs My Applications Join Interview Tong Qian Ru v

Assessment

Assessment

Question 10of 3

Instructions

This assessment is de

ed to evaluate your understanding of QA practic

n-solving ability, and

communication skills. r each question clearly. You may provide y text form, or re

audio response if preferred. Keep your responses concise but detailed enoug strate your knowledg

Question 1

You are testing a login page. The requirements are: Email must be in correct format. Password must not
be empty. Invalid credentials should show an error message. Write three test cases (with input and

expected result) to validate this feature.

Your Answer

%

aluation enabled Submit Answer

Figure 5.4.5.1 IntelliHire assessment interface with instructions, active question, and

countdown timer

Upon completing all assigned questions, candidates are redirected to a completion page,
which confirms successful submission of the assessment. A modal popup congratulates the
candidate and provides a “Finish Assessment” button, which finalizes the process and returns
them to their dashboard. At this stage, the backend securely stores all responses and marks the
assessment as complete, making them accessible for recruiter review. This ensures a seamless

transition from candidate input to recruiter evaluation, closing the assessment loop effectively.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

96

CHAPTER 5 SYSTEM IMPLEMENTATION

Figure 5.4.5.2 IntelliHire assessment completion page

On the backend, the same speech-to-text (STT) pipeline used during the interview is also
available in the assessment. Candidates need to record their responses through the browser’s
speech recognition API, which transcribes the audio into text if the question type is set as audio
response. This keeps the assessment lightweight by eliminating the need for server-side audio
processing, while ensuring that both text and audio answers are uniformly stored as structured

text responses in the database.

5.4.6 Recruiter Dashboard

The recruiter dashboard provides a consolidated workspace for managing job postings,
tracking candidates, and monitoring hiring performance. At the top of the page, a set of
summary counters presents key metrics at a glance—Active Jobs, Total Applications,
Scheduled Interviews, and Open Positions—so recruiters can immediately gauge current
workload and pipeline health. A prominent Create Job Posting action and an Export Reports

button streamline common tasks without leaving the page.

Beneath the summaries, the Active Job Postings panel lists each role with its company,
location, posted date, application count, and current status. Inline actions (View, Edit, Close)

allow recruiters to open the job detail page, update posting information, or close the vacancy

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
97

CHAPTER 5 SYSTEM IMPLEMENTATION

when hiring is complete. This table serves as the operational hub for day-to-day job

administration.

The Candidate Pipeline section surfaces all applicants across jobs in a single, filterable view.
Status chips (e.g., Applied, Shortlisted, Interviewed, Offered, Rejected) enable quick filtering
to prioritize follow-ups. Each row shows the candidate name, applied position, company,
application date, current status, and a View Application link that opens the full application
profile (resume, cover letter, notes, interview history). This layout supports rapid triage while

preserving a clear audit trail for every decision.

At the bottom, Interview Insights & Recommendations provides lightweight analytics to
inform planning. A pie chart summarizes the distribution of applications by status, a bar chart
shows applications per job to reveal which roles attract more interest, and a line chart tracks
applications over time, helping recruiters identify spikes caused by new postings or campaigns.
Together, these visualizations give recruiters an immediate sense of funnel balance and where
intervention may be needed (e.g., refreshing a low-performing job description or scheduling

additional interviews).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

98

CHAPTER 5 SYSTEM IMPLEMENTATION

$ IntelliHire Dachdowd Postatob Manage Jobs Marage Applcations Johe Do

Recruiter Dashboard
CREATE JOS POSTING CXAPORT REFPORTS
MINag b POSNINGS, rack CINGIELes, and NalyTe Nterviow Inuights

Active Jobs Total Applications Scheduled Interviews Open Positions
Active Job Postings Add New Job
Job Title Company Location Posted Date Appiications Status Actions
UX/UI Designer at Pixciforge
Slu:: PixelForge Studio Petaling Jaya, Selangor Ape 26, 2025 . Opes Edit View Ciose
TechNova Kualy Lumpur, Wilayah : .
Frontend Developer Sokiions = Apr 26,2025 3 T Edit View Ciose
Candidate Pipeline
All @ Applied Shortizted @ Interviewed @ Offered @ Rejected
Candidate Name Applicd Position Company on Date Status Actions
At Frontend Developer TechNowva Solutions Apr 28,2025 fivort mtedt View Application
Davn Frontend Developer TechNova Solutions Apr 27,2025 o wied View Asplcation
Dovin UX/UI Dezgner at Pixeiforge Studio Pixelforge Studic Apr 27,2025 @ riwswana View Application
Siti UX/UI Dezgner at PixeiForge Studio PixelForge Studio Apr 27,2025 [T View Applcation
Anhmad UX/UI Dezigner at Pixelforge Studio Pixeiforge Studio Ape 26, 2025 @ ntwsmana View Application
Abu UX/UI Desgner at Pxciforge Studio Pixeiforge Studic Ape 26,2025 @ Hiwsmana View Application
AL UX/UI Desgner at Pixeliforge Studio Pixelforge Studio Ape 26,2025 @ Hiasmana ation
Jane Smith UX/UI Designer at PixciForge Studio PixelForge Studio Ape 26,2025 @ rtesmana aticn
Jane Smith Frontend Developer TechNowva Solutions Apr 26, 2025 @ Htwawana View Application

Interview Insights & Recommendations

Applications by Job Applications Over Time

[

Application Status

W Appiat B eries [l Shensmaad
W Oflecort D o ot

New 2024 on 2025 Mo 2005

Figure 5.4.6.1 IntelliHire recruiter dashboard
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

99

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.7 Job Management

The Job Management module enables recruiters to create, publish, review, and update job
postings in a structured, repeatable way. The workflow begins with the Job Posting form, where
recruiters enter comprehensive details such as job title, company, location, work mode, salary
range, responsibilities, and required skills/experience. The form also includes an interview
configuration area that lets recruiters attach preset interview questions and optionally link an
assessment to the role. Standardizing these elements ensures a consistent interview experience

for all applicants and makes downstream evaluation easier and fairer.

Basic Job Information

Sekect & feid

B66

Minimun Salary

Guestions Preset (Optional)

Figure 5.4.7.1 IntelliHire recruiter job posting

Tedl me azout & time when you had to adapt to 8 significant change at wark

page: preset question and assessment section

............

Candidate Assessment (Optional) Inchsle canidate asessment for tis job? (D

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

100

CHAPTER 5 SYSTEM IMPLEMENTATION

After saving, the posting is created in Open status and becomes available to candidates.
The interface supports inline validation (e.g., required fields, numeric ranges) and provides a
clear summary preview before publishing. If needed, recruiters can return to the form to adjust
wording, add/removes skills, or refine compensation and work-mode details without disrupting

existing applications.

Recruiters can then manage their roles from the Job Management list, which displays all
postings with key metadata—job title, date posted, number of applications, and current status.
Each row offers quick actions to View, Edit, or Close the posting. The View action opens the
job detail page as seen by candidates; Edit allows safe updates to description and requirements;
and Close archives the role to prevent new applications while preserving the full application
history for auditing and reporting. This centralised table supports fast triage across many roles
and makes it easy to identify postings that need attention (e.g., high volume, few applications,

or nearing deadlines).

<< IntelliHire Dashboard Post a Job Manage Jobs Manage Applications John Doe v

JOB TITLE COMPANY LOCATION STATUS WORK CREATED AT ACTIONS
MODE

Frontend Developer Nexora Digital Solutions Cyberjaya, Selangor, Malaysia Open On-site Sep 12, 2025 View Edit |

Software Quality Assurance (QA) Engineer Nexora Digital Solutions Cyberjaya, Selangor, Malaysia Open On-site Sep 12, 2025 View Edit |

4 >

Figure 5.4.7.2 IntelliHire recruiter job management screen

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

101

CHAPTER 5 SYSTEM IMPLEMENTATION

<(InteuiH i re Dashboard Post a Job Manage Jobs Manage Applications John Doe +

Edit Job Posting

Basic Job Information

Company Name Job Title
Nexora Digital Solutions Software Quality Assurance (QA) Engineer
Address Line 1 Address Line 2
Level 9, Menara TechVista Jalan Teknologi 5
Street City
Cyber Park Boulevard Cyberjaya
State/Province Postal/ZIP Code
Selangor 63000
Country Application Status
Malaysia Open v
Minimum Salary Maximum Salary
5000.00 8000.00
Work Mode Role Type
© On-site - Work must be done at the company's location full-time © Full Time

Hybrid - Combination of on-site and remote work Part Time

Remote - Work can be done entirely from home or any location

Figure 5.4.7.3 IntelliHire recruiter edit job page

5.4.7.1 Backend Processing for Job Management

The JobPostingController is responsible for handling the entire lifecycle of a job posting,
from validation and creation to updates and closure. When a recruiter submits a new job, the
controller first validates the input fields to ensure correctness, such as checking salary ranges,
verifying required attributes like job title and location, and ensuring that optional components
like assessments or preset questions follow the defined schema. Once validated, the controller
persists the posting into the database, including its responsibilities, requirements, preset
interview questions, and any linked assessments. Each action is authorized under role-based
access control to ensure that only authenticated recruiters can create or modify postings. This

structured flow ensures consistency across all postings and helps maintain data integrity.

One of the key enhancements in this module is the integration of Al-assisted job authoring.

Rather than requiring recruiters to manually construct every responsibility, skill, or preset
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

102

CHAPTER 5 SYSTEM IMPLEMENTATION

question, the system leverages the Gemini API to analyze the recruiter’s free-form job
description and return structured recommendations. When the recruiter activates the “Generate
Suggestions” feature, the controller dynamically constructs a prompt containing company
name, job title, responsibilities, requirements, and other details entered in the form. The prompt
enforces a strict response contract, requiring Gemini to return structured JSON with fields for
responsibilities, required skills (including type and proficiency level), years of experience,
educational requirements, certifications, preset interview questions, and whether an assessment
should be included. To ensure precision, the prompt also embeds rules to avoid unnecessary

repetition, maintain concise question wording, and respect hiring fairness standards.

Once Gemini returns its output, the controller parses the JSON response and validates its
structure. If errors are detected, lightweight repair mechanisms attempt to correct issues such
as missing brackets or invalid data types. The output is staged as a preview so recruiters can
review and selectively accept, edit, or discard suggestions. This prevents the system from
blindly committing Al-generated results and gives recruiters full control over the final posting.
Accepted data is then mapped to internal tables such as job responsibilities, job requirements,
and preset_questions, while assessments are automatically linked if recommended by the Al
Additional normalization ensures that variants of the same skill (such as “HTML” and
“HTMLS5”) are unified, and policy filters prevent the inclusion of biased or inappropriate terms.
To maintain usability even in the event of Al service disruptions, the controller includes retry
logic with timeouts and exponential backoff, while falling back to a basic template-based

extractor if Gemini cannot be reached.

When a posting is finalized, the controller performs server-side validation once more before
committing all data within a single transaction to guarantee consistency across related tables.
Updates and edits follow the same pathway, with timestamps marking version history to
preserve a record of recruiter actions. Closing a posting changes its status from Open to Closed
without deleting associated applications, allowing the data to remain available for reporting
and analytics. To safeguard integrity, all Al calls are authenticated with environment-specific
keys, and recruiter edits or overrides are recorded with audit metadata. By combining manual
control with Al-assisted suggestions, the backend ensures that job postings are accurate,
comprehensive, and recruiter-approved while remaining resilient to service interruptions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

103

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.8 Application Management

The Application Management module gives recruiters a centralized workspace to review
candidates, update statuses, and schedule interviews. The Applications Overview screen
presents all incoming applications in a sortable table with candidate name, position applied for,
application date, and current status. Recruiters can filter the list by status (e.g., Applied,

Shortlisted, Interviewed, Offered, Rejected) and quickly drill down to specific candidates for

evaluation.
”(| WiHi Dashboard Post a Job Manage Jobs M Applicati ohn Doe v
.\' ntelliHire ashboal ost a Jol anage Jobs anage Applications John D
Applications for: Frontend Developer
Frontend Developer Open for Applications.

Nexora Digital Solutions « Cyberjaya, Selangor

On-site Full time

Filter by Status Search Candidates
All Statuses v Search by name or ema m

CANDIDATE APPLICATION DATE STATUS ACTIONS

Tong Qian Ru Sep 12, 2025

PR Applied View Details
tonggianru3@gmail.com 0:27 PN

Figure 5.4.8.1 IntelliHire recruiter application overview list with candidate table.

Selecting a row opens the Application Details view, which consolidates all materials for
the chosen candidate. Recruiters can review the submitted resume and optional cover letter,
browse application notes, and, when available, inspect interview artifacts such as recorded
responses and Al feedback. From this page, recruiters can update the application status—for
example, promoting a candidate from Applied to Shortlisted, moving to Offered, or marking
as Rejected. If a candidate has attempted the interview, the status automatically reflects

Interviewed, and the related interview record appears at the bottom of the page.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

104

CHAPTER 5 SYSTEM IMPLEMENTATION

<(IntelliHire Dashboard Post a Job Manage Jobs Manage Applications John Doe v

Application Status

Current status: Applied

Candidate Information Application Documents

Name Resume & Download @ View Summarized Resume Information
Tong Qian Ru

Email

tonggianru03@gmail.com

Applied On
September 12, 2025 at 10:27 PM

Additional Information

Job Details

Position: Frontend Developer
Company: Nexora Digital Solutions
Location: Cyberjaya, Selangor, Malaysia
Work Mode: On-site

Role Type: Full time

Figure 5.4.8.2 IntelliHire recruiter application management screen: candidate details and

interview responses

When a candidate is marked Shortlisted, the system initiates the Interview Scheduling flow.
The Schedule screen allows the recruiter to define a valid date range for participation. Upon
confirmation, the system issues a unique interview code bound to that application and validity
window. The candidate must join within the designated timeframe using this code; outside of
it, access is denied and the code is considered expired. This lightweight, code-based approach

simplifies logistics while preserving control and traceability.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

105

CHAPTER 5 SYSTEM IMPLEMENTATION

K intelliHire oo b e caos

Schedule Interview

Candidate Details

Job: UX/UI Designer at PixelForg

30-Apr-2025 =} 03-May-2025 =]

umiPNcan

UPDATE SCHEDULE

Figure 5.4.8.3 IntelliHire recruiter application management screen: schedule screen

5.4.9 AI Analysis

The Al analysis module provides recruiters with a consolidated view of candidate
evaluation results across three dimensions: job match analysis, interview performance analysis,
and assessment results. This feature transforms raw candidate data into meaningful insights,
enabling recruiters to make informed hiring decisions efficiently. Each interface within this
module presents results in a clear and structured manner, combining visual indicators with

detailed explanations to highlight both candidate strengths and areas requiring improvement.

The first section, Job Match Analysis, visually represents how well a candidate aligns with
the requirements of a job posting. This view includes compatibility percentages for skills,
education, experience, and certifications, with color-coded indicators that help recruiters
quickly interpret candidate suitability. Matched and missing skills are listed explicitly,
distinguishing between required and preferred competencies. A candidate with a high match

percentage demonstrates strong alignment, while a low percentage signals significant gaps.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

106

CHAPTER 5 SYSTEM IMPLEMENTATION

Al-Powered Job Match Analysis 26.2% PoorMaten

This candidate may need additional training

Skills Analysis Education Details Experience Review Certifications Recommendations

Skills Match 18.1% Education 95% Experience 0% Certifications 0%
—

2/10 skills matched Requirements met 0.0 years / 2 required 0/1 matched

v Matched Skills (Candidate Has)
SQL « Git (95%)

f 10 requirements satisfied

X Missing Required Skills

SDLC (required) QA methodologies (required) Selenium (required) Postman (required) JMeter (required) other testing tools (required) APl testing (preferred)

mobile app testing (preferred)

Figure 5.4.9.1 IntelliHire Al-powered job match analysis interface

Next, the Interview Responses & Analysis (Overall) page summarizes candidate
performance during the Al-powered interview. Recruiters can view a performance score (e.g.,
7.5/10), key strengths, and areas for development. The analysis highlights technical expertise,
communication quality, and problem-solving approaches, while also identifying weaknesses
such as unclear answers or insufficient detail. A “Hiring Confidence” recommendation is
displayed at the bottom, offering a final recommendation (e.g., High, Medium, Low confidence)

based on overall performance.

Interview Responses & Analysis

Interview Performance Summary 7.5/10 strong
(© Key Strengths Areas for Development

+ Strong understanding of testing methodologies and their application. Limited detail on specific performance testing tools beyond 'JM’ (likely JMeter).

+ Experience with Selenium for test automation and SQL for data validation. The phrase 'Rex base of phase testing' is unclear and needs clarification.

+ Effective bug reporting and communication skills. While collaberation is mentioned, specific examples of conflict resolution or

« Ability to prioritize testing efforts based on risk and business impact influencing stakeholders could be strenger

+ Commitment to continuous learning and professional development.

Hiring Confidence: High
Final Recommendation:
| recommend hiring this candidate. They possess a strong foundation in software testing principles and practical experience with relevant tools and methodologies. While there

are a few areas for improvement, their strengths in bug reporting, prioritization, and continuous learning make them a valuable asset to the team. Clarification on 'Rex base of
phase testing' should be sought during onboarding. This candidate has the potential to quickly contribute to the team’s success.

Figure 5.4.9.2 IntelliHire overall interview performance summary with key strengths and

areas for development

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

107

CHAPTER 5 SYSTEM IMPLEMENTATION

Skill Assessment

Technical Skills:

Strong. Demonstrates practical experience with various testing methodologies,
automation tools (Selenium), and SQL for data validation. Familiarity with APl and
mobile app testing is a plus.

Soft Skills:
Good. Shows good communication skills in describing bug reporting and

collaboration. Prioritization and handling conflicting priorities are also demonstrated
Could benefit from more detailed examples of conflict resolution.

Leadership:
Limited evidence. The candidate doesn't appear to have direct leadership experience,
but demonstrates initiative and collaboration.

Notable Observations

Standout Moments:
* The example of finding a critical bug during regression testing and preventing data
loss for users showcases the candidate's impact

* The explanation of balancing manual and automated testing demonstrates a
strategic approach to testing

* The use of SQL for data validation and cross-checking API/UI results against the
database highlights a proactive approach to quality assurance.
Concerns:

L The unclear phrase 'Rex base of phase testing' requires clarification to ensure
understanding of testing phases.

Problem Solving:
Strong. The candidate effectively identified and reported a critical bug, demonstrating
problem-solving abilities and attention to detail.

Figure 5.4.9.3 IntelliHire detailed skill assessment and recruiter-oriented observations

For a deeper dive, recruiters can examine Interview Responses & Analysis (Per Question).
Each individual interview question displays the candidate’s response alongside Al-generated
evaluation metrics. Scoring categories such as completeness, relevance, clarity, and
communication are presented numerically and supported by written feedback. Key points are
summarized into “Strengths” and “Could Improve” sections, ensuring recruiters understand
exactly why a response scored the way it did. Additionally, recorded video responses are

available for review, ensuring human recruiters can validate Al judgments when necessary.

Interview Session (Sep 18, 2025)

Question 8 of 12

@7 How do you use SQL in your QA process? 7.0/10

I use SQL to validate data in the database check if the records are inserted or updated correctly and verify back and processors | also write queries to cross check AP|
or Ul result against the database for accuracy

Show mare v

Completeness Relevance Depth Clarity Communication

70 9.0 6.0 7.0 8.0
The candidate’s answer is relevant and touches upon several key areas where SQL is used in QA They mention data validation, record verification (insert/update),
back-end process verification, and cross-checking API/UI results. However, the answer lacks specific examples or details about the types of queries used or the
chalienges faced. The lack of punctuation makes it slightly harder to follow, but the core message is clear. The ‘back and processors’ phrase is likely a transcription

error and needs clarification. Overall, it's a decent but not outstanding answer.

c

O View Media & Recordings

Video Response:

Figure 5.4.9.4 IntelliHire Al analysis of individual interview responses
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

108

CHAPTER 5 SYSTEM IMPLEMENTATION

The final component of this module is the Assessment Results view, which displays
candidate performance in structured assessments. Each question shows the candidate’s answer
along with Al evaluation scores such as completeness, accuracy, clarity, and relevance. The
system highlights detailed comments on strengths and areas for improvement, while also
providing an overall score per question. A retry analysis button is available for situations where
recruiters wish to reprocess the evaluation for consistency. This structured breakdown enables
recruiters to gauge not only correctness but also the quality of thought and communication in
candidate answers.

Assessment Questions (3 completed)

< Question1of 3 3

Q1 You are testing a login page. The requirements are: Email must be in correct format. Password must not be empty. Invalid credentials should 9.0/10
show an error message. Write three test cases (with input and expected result) to validate this feature.

Test Case 1:
Input: Email = user@example.com, Password = empty
Expected Result: System shows error message "Password cannot be empty.”...

Show more v

Al Evaluation 9.0/10

Comments:

The candidate provided three valid test cases covering the specified requirements. The input and expected results are clearly defined. Minor improvements could
include specifying the type of error message (e.g., 'error message is displayed', 'alert appears') for better clarity.

Detailed Scores:

Completeness Accuracy Clarity Relevance
9.0/10 9.0/10 8.0/10 10.0/10
Strengths: Areas for Improvement:
Covers all required scenarios: empty password, invalid email, invalid Could specify the type of error message display (e.g., "alert’, 'inline validation’)
credentials. for more precision
Clear input and expected result definition. Could include negative testing with potentially vulnerable inputs (e.g. SQL

/ Demonstrates understanding of the requirements. injection attempts in password field)

Time taken: 29s Submitted: Sep 18, 2025 07:57 PM

Figure 5.4.9.5 IntelliHire Al-powered assessment evaluation screen

5.4.9.1 Job Matching Backend

The backend for job matching begins by pulling structured data from multiple related tables,
including candidate resumes (with experiences, education, skills, and certifications) and the
job postings with their required qualifications. When a recruiter requests analysis, the
JobMatchingController::calculateMatch() method loads the relevant application record and
retrieves all associated resume and requirement data. This structured dataset is then passed to

the Gemini API, which evaluates candidate-job compatibility category by category. Each skill,
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

109

CHAPTER 5 SYSTEM IMPLEMENTATION

educational credential, and experience requirement is compared against parsed resume data.
The Al is guided by prompts that explicitly define similarity levels, such as treating HTML
and HTMLS as equivalent skills, or Python and Python3 as versions of the same language.
Scoring is returned on a scale of 0—100, with short explanations for each match, and stored
temporarily in the Laravel cache for performance. Recruiters thus receive not only an overall
compatibility percentage but also detailed highlights of strengths and gaps across all

requirement categories.

$prompt = "You are a technical recruiter evaluating if a candidate's skill can satisfy a job requirement.

Job Requirement: {$requiredSkill}
Candidate Has: {$candidateSkill}
Position: {$jobTitle}

Skill Category: {$skillType}

CRITICAL RULES FOR VERSIONS:

- If one is a VERSION of the other, they are THE SAME skill (score: 95-100)

- Examples of SAME skills with versions:

* HTML and HTML5 (HTML5 is just the latest version of HTML) - Score: 100
CSS and CSS3 (CSS3 is just the latest version of CSS) - Score: 100
JavaScript and ES6/ES2015 (ES6 is a version of JavaScript) - Score: 100
Python and Python3 (Python3 is a version of Python) - Score: 10@

* Angular and Angular 2+ (newer versions of Angular) - Score: 95
.NET and .NET Core/.NET 5+ (versions of .NET) - Score: 95

Evaluate if the candidate's skill can fulfill the requirement:

. SAME skill or technology (score: 9©-1600)
- Same tool with different names (JavaScript/Js)
- VERSIONS of the same technology (HTML/HTML5, CSS/CSS3)
- Same framework with version numbers

. Can DIRECTLY substitute (score: 70-89)
- Functionally equivalent for this role
- Candidate could immediately work with the required skill

. RELATED but DIFFERENT (score: 30-69)
- Similar category but different tools (Figma vs Adobe XD)
- Related but require separate learning (Java vs JavaScript)
- Same domain but different platforms (AWS vs Azure)

. UNRELATED (score: ©0-29)
- Different domains entirely
- No transferable knowledge

Response format:

{

\"score\": [0-100],
\"explanation\": \"brief explanation\"

s

Figure 5.4.9.6 Al prompt engineering for skill matching with version-aware scoring criteria

and structured JSON response format

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

110

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.9.2 Interview Analysis Backend

For interviews, candidate responses are first stored in the interview responses table, linked
to their application and schedule records. The RecruiterApplicationController::
analyzelnterviewResponses() function processes these entries by iterating over each recorded
answer and submitting them to Gemini for evaluation. Since the responses originate from
speech-to-text transcription, the Al prompt explicitly accounts for missing punctuation, unclear
sentence boundaries, and potential transcription errors. Gemini is instructed to score each
answer across five criteria—completeness, relevance, depth, clarity, and communication—
using a 0-10 scale, and to provide structured JSON feedback. Results for each answer are
stored in the ai feedback table, while aggregated session-level analysis (including overall
scores, strengths, weaknesses, and hiring confidence) is persisted in the analysis_results table.
This separation ensures recruiters can review both granular and high-level insights. Malformed
Al outputs are handled through JSON extraction and validation logic, with retries triggered

automatically when necessary.

$prompt = "As an expert interviewer and talent as

{$response->question

$response->answer

Figure 5.4.9.7 Speech-to-text aware interview analysis prompt with five-dimensional scoring

criteria and structured JSON feedback format

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

111

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.9.3 Assessment Analysis Backend

Assessment responses follow a similar pipeline, starting from entries in the
assessment_responses table, each tied to a candidate schedule and specific assessment
questions. The controller method analyzeAssessment() processes these submissions by sending
each response to Gemini with structured prompts that request evaluation under four dimensions:
completeness, accuracy, clarity, and relevance. The Al returns JSON-formatted output that
includes a numeric score, max score, explanatory comments, strengths, and areas for
improvement. These evaluation details are stored directly within the assessment responses
table under dedicated Al fields, keeping all raw and evaluated data in a single location. A retry
mechanism is also available for failed or inconsistent evaluations, allowing recruiters to re-run
the analysis at the click of a button. This integration ensures that assessments benefit from the
same consistency and depth of analysis as interviews, while maintaining lightweight database
storage.

$prompt = "Please evaluate the following assessment answer and respond ONLY with valid JSON format:\n\n";
$prompt .= "Question: " . $question->question . "\n\n";

$prompt .= '‘Candidate Answer: " . $response->answer . "\n\n";

$prompt .= "Respond with ONLY this JSON format (no other text):\n";

$prompt .= "{\n";

$prompt .= \"score\": 8.5,\n";

$prompt . \"max_score\": 10,\n";

$prompt .= " \"evaluation\": {\n";

$prompt .= \"completeness\": 8,\n";

$prompt .= \"accuracy\": 9,\n";

$prompt .= \"clarity\": 7,\n";

$prompt .= " \"relevance\": 9\n";

$prompt .= " },\n";

$prompt .= " \"comments\": \"Detailed evaluation comments here\",\n";

$prompt .= " \"strengths\": [\"List of strengths\"],\n";

$prompt .= " \"improvements\": [\"List of improvement suggestions\"]\n";

$prompt .= "}\n\n";

$prompt .= "Score should be out of 18. Consider speech-to-text limitations if applicable.”;

$geminiResponse = Http::withHeaders(headers: [
'Content-Type' => 'application/json',
1)->post(url: $geminiApiUrl . '?key=" . $geminiApiKey, data: [

‘contents’ =>

[
'parts' => [
"text' => $prompt

Figure 5.4.9.8 Assessment evaluation prompt with four-dimensional scoring and direct HTTP

API integration for automated response analysis

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

112

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4.9.4 Al Integration and Error Handling

All Al analysis across job matching, interviews, and assessments relies on Gemini 2.0 Flash
through an HTTP client configured in Laravel. API keys are securely stored in environment
variables, and requests use HTTPS-only communication. To guarantee reliability, the system
enforces variable timeouts (8-60 seconds depending on operation type) and applies a circuit
breaker pattern with a 3-failure threshold to avoid overloading the service. Failed responses
trigger fallback strategies such as basic keyword matching, cached results, or graceful
degradation with 5-minute cooldown periods. The backend employs JSON parsing and
validation functions to extract usable content from Al responses, ensuring malformed output
does not disrupt processing. Error handling includes retries for individual responses with
exponential backoff, session-wide recovery attempts, and clear recruiter-facing warnings if

analysis cannot be completed. The system also implements rate limiting (10 requests per hour)

and maintains failure tracking with 1-hour cache duration.

Figure 5.4.9.9 Circuit breaker pattern implementation with failure tracking, rate limiting, and

aggressive timeout handling for Al service reliability

5.4.10 PDF Report Generation System

The PDF report generation system is an integrated feature within the IntelliHire platform
that enables recruiters to download professional-grade reports summarizing a candidate’s
complete evaluation journey. This functionality is triggered once all interview and assessment
analyses are completed, ensuring that the generated report is both comprehensive and reliable.
Recruiters can access the report via the application detail page, where a dedicated download

button becomes available upon completion of all required evaluations.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

113

CHAPTER 5 SYSTEM IMPLEMENTATION

<(IntelliHire Dashboard Post a Job Manage Jobs Manage Applications John Doe v

Application Status

Current status: Interviewed .
Applied v UPDATE STATUS

@ This candidate has completed their interview. Please review and update their status to either Offered or Rejected.

Candidate Information Application Documents

Name

Resume &, Download B View Summarized Resume Information
Tong Qian Ru

Email
tonggianru03@gmail.com

Applied On
September 18, 2025 at 07:35 PM

Figure 5.4.10.1 Application detail page showing the download report feature once all

analyses are complete.

At the backend, the system is powered by Laravel’s DomPDF package, which converts
dynamically generated Blade templates into structured PDF files. The process begins with the
RecruiterApplicationController::exportPdf() method, which acts as the main entry point. This
method loads complex relational data using Laravel’s Eloquent ORM, including candidate
details, resumes, interview responses, assessment results, and Al-generated analyses. The
architecture employs both eager loading and fallback manual queries to guarantee that no

critical information is missed, even if relationship loading fails.

AT U SC]

Application Report
Tong Qian Ru - Software Quality Assurance (QA) Engineer

Generated on September 18, 2025 at 10:18 PM

Application Overview

Candidate Name Tong Qian Ru

Email tonggianru03@gmail.com

Job Position Software Quality Assurance (QA) Engineer
Application Date September 18, 2025

Status INTERVIEWED

Figure 5.4.10.2 Sample of generated PDF report overview showing candidate and application
details.
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

114

CHAPTER 5 SYSTEM IMPLEMENTATION

The PDF report integrates Al analysis results directly into its content. For interview
responses, natural language processing is applied to evaluate answers across multiple
dimensions, including completeness, relevance, clarity, and communication. The system also
accounts for limitations in speech-to-text transcription, ensuring that candidate evaluations
remain fair despite minor errors. For assessments, candidate responses are validated against
predefined rules and scored by the AI across criteria such as accuracy, completeness, and
relevance. All of these results are compiled into structured report sections, presenting recruiters

with both strengths and improvement suggestions.

Interview Analysis

Resume Information

Overall Interview Assessment
Work Experience

Overall Grade Strong
Full Stack Developer Intern at Evolve Technology Platform Sdn. Bhd
Oct 2024 - Jan 2025 Average Score 7.5/10
Education Consistency Level High
Bachelor of Computer Science (Honours) in Hiring Confidence High

Key Strengths Areas for Improvement

Foundation in Science (Technological) in

N - + Strong understanding of testing « Limited detail on specific performance

methodologies and their application testing tools beyond 'JM' (likely

+ Experience with Selenium for test JMeter)
Malaysian Certificate of Education (SPM) in

automation and SQL for data + The phrase 'Rex base of phase

validation

testing' is unclear and needs

. « Effective bug reporting and clarfication
Skills communication skills. * While collaboration is mentioned.
PHP JavaScnipt Python Dart saL Ces Java Laravel ve s Flutter HTMLS . Ab‘!ily to prioritize testing efforts based specific examp!es of conflict resolution
CSS3 Bootsiap ElementUl Gt Figma Canva MicrosofiOffice Software Testng OO on fiek and buskiess Rpect or influencing stakeholders could be
Data Structures and Algorithms ~ Machine Leaming Operating Systems. Distributed Systems. UI/UX Design + Commitment to continuous leaming stronger.
Communication Skills ~ Multasking Crifical Thinking ~ Time Management English Malay Chinese and professional development

Certifications Final Recommendation

| recommend hiring this candidate. They possess a strong foundation in software
AWS Academy Cloud Foundations RN g \» . P g fou i v

= testing principles and practical experience with relevant tools and methodologies

While there are a few areas for improvement, their strengths in bug reporting
rioritization, and continuous learning make them a valuable asset to the team

Al Nusantara Certification e . 9
rolicalion Dex Clarification on 'Rex base of phase testing' should be sought during onboarding

This candidate has the potential to quickly contribute to the team's success

Alibaba Cloud Academy Certification

Figure 5.4.10.3 Resume section within the Figure 5.4.10.4 Overall interview analysis

generated PDF, including work experience, section highlighting Al-generated strengths,

)))) weaknesses, and final recommendations.
education, skills, and certifications. ’

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

115

CHAPTER 5 SYSTEM IMPLEMENTATION

Individual Question Analysis

©)s.o1o Assessment Analysis

Please introduce yourself and share your interest in this position.

Assessment Questions & Answers

©9.0110

You are testing a login page. The requirements are: Email must be in correct

format. Password must not be empty. invalid credentials should show an error
message. ? Write three test cases (with input and expected result) to validate this

Al Analysis feature.
Compieteness
Relevance
d Result
Depth s
put: Email =
Clarity

Communication

message "Invalid credentials.”

Key Points:
« Background in Computer Science Al Evaluation

- Two years of experience in software testing and QA
The candidate provided three valid test cases co vering the specified

+ Enjoys ensuring pro

t quality

requirements. The input and expe: results are clearl

anual and automated testing skil
anual and automated festing skilis improvements could include specify

+ Desire to contribute to reliable software message is displayed’, ‘alert appears’) for better clarity

Improvement Suggestions
+ Provide specific examples of projects or accomplishments to demonstrate skills

and expenence

- Elaborate on the specific types of manual and automated testing they have Figure 5.4.10.6 Assessment report showing

experience with

« In a real interview, use more pauses and intonation to create natural sentence

candidate answers, expected outcomes, and

Al scoring.

Figure 5.4.10.5 Breakdown of candidate

responses and Al evaluation per question.

5.5 Implementation Issues and Challenges

The implementation of IntelliHire presented several challenges that required iterative
refinement of both technical and design aspects. One of the most significant issues was
integrating with the Gemini API, which powers the system’s job matching, interview question
generation, and response analysis. Since large language models can sometimes return
inconsistent or malformed JSON outputs, strict prompt engineering and validation routines had
to be introduced. Additional retry logic was also required to handle API timeouts and rate limits,
ensuring that the system remained reliable even when processing multiple candidates

simultaneously.

Another major challenge involved the real-time features of the platform, particularly
speech-to-text (STT) and text-to-speech (TTS). While these functions improved interactivity,
browser compatibility introduced unexpected difficulties. Different browsers varied in their
handling of continuous recognition, permissions, and recording, requiring the implementation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

116

CHAPTER 5 SYSTEM IMPLEMENTATION

of permission checks, fallback logic, and clear user feedback messages. Handling video and
audio recordings also introduced storage concerns, as large media files risked slowing down
the system if not managed carefully. To overcome this, the database was optimized to separate
lightweight text transcripts from heavier multimedia files, striking a balance between

performance and long-term storage.

Maintaining consistent workflows across modules such as applications, interviews,
assessments, and recruiter dashboards was another area that demanded attention. Changes in
application status, for example, had to trigger corresponding updates in interview scheduling
and code generation to prevent misaligned records. This required careful database validation
and cross-module testing. From a usability standpoint, enforcing strict rules—such as
preventing candidates from retaking interviews once started—sometimes confused users who
navigated away accidentally. Similarly, recruiter dashboards initially overloaded users with

excessive detail, which was later refined into a more balanced and accessible design.

Finally, challenges also arose in ensuring fairness and transparency in Al-driven evaluation.
Speech-to-text limitations, such as missing punctuation or transcription errors, sometimes
influenced results. To mitigate this, prompts were refined to instruct Gemini to tolerate such
artifacts, and explanatory feedback was provided alongside numerical scores so recruiters
could better interpret Al outputs. Development and testing constraints further complicated
implementation, as frequent API calls were costly and time-consuming. This was addressed by
using mock responses during debugging, which allowed the system to be tested without

exhausting API limits.

Overall, these challenges underscored the complexity of building a system that combines
Al, real-time browser capabilities, and structured recruitment workflows. By addressing these
issues, IntelliHire was able to evolve into a robust and fair platform that balances technical

innovation with practical usability.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

117

CHAPTER 5 SYSTEM IMPLEMENTATION

5.6 Concluding Remark

In conclusion, this chapter has presented the detailed implementation of the IntelliHire
system, covering both the candidate and recruiter portals, the Al-powered interview and
assessment modules, and the supporting backend logic. Each component was explained with
reference to its user interface, functional workflow, and integration with Al services,
demonstrating how the system operates as a cohesive whole. By combining Laravel for
backend management, MySQL for structured data storage, and Gemini API for dynamic
question generation and evaluation, IntelliHire successfully integrates traditional web

technologies with advanced Al features.

This chapter has also highlighted how real-time functionalities such as text-to-speech,
speech-to-text, and interview session handling were embedded into the platform, ensuring an
interactive and realistic recruitment experience. For recruiters, the dashboards, job
management tools, and Al-enhanced analytics provide actionable insights and streamlined
candidate evaluation. Overall, the implementation described in this chapter forms the backbone
of the IntelliHire platform, bridging design concepts with a working system that will be further

validated in the testing phase presented in the next chapter.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

118

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Chapter 6 System Evaluation and Discussion

6.1 System Testing and Performance Metrics

This chapter adopts a black-box testing strategy to validate IntelliHire’s correctness from
an external user perspective—verifying what the system does rather than how it is implemented.
In line with the project’s focus on end-to-end behaviour and workflow integrity, testing
emphasizes Decision Table analysis for business rules and State Transition testing for lifecycle
flows. Fine-grained input partitioning (e.g., exhaustive field ranges, file sizes, or extreme
boundary cases) is intentionally out of scope to keep evaluation centred on functional outcomes,
role permissions, and process transitions that users and recruiters actually experience. A few
smoke checks (e.g., valid/invalid login, resume file type acceptance/rejection) are included to
demonstrate baseline input validation without expanding into full Equivalence Partitioning or

Boundary Value Analysis.

6.1.1 Objectives and Scope

The objectives of testing are to:

1. Validate rule correctness using Decision Tables for scenarios with multiple conditions and
outcomes (e.g., application status updates, interview-code validity windows, access control,
and “shouldSpeak™ TTS decisions).

2. Verify lifecycle flows using State Transition models for processes that progress through
clearly defined states (e.g., interview: code entered — rules acknowledged — in-progress
— ended; assessment: not started — answering — auto-submit on timeout — completed,
recruiter workflow: create job — shortlist = schedule — code generated).

3. Demonstrate system robustness on critical negative paths (e.g., expired/invalid interview
codes, navigating away during interview, second attempt after silence) and confirm
graceful recovery or correct enforcement of constraints.

In scope: authentication & role routing; job browsing with/without resume data; application

submission; interview flow (rules, permissions, timers, end-conditions); assessment flow

(question sequence, timer, auto-submit); recruiter actions (status changes, scheduling, code

generation); read-only analytics/insights display.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

119

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1.2 Testing Techniques

Decision Table Testing enumerates combinations of conditions and actions to ensure rules are
applied consistently. It is particularly suitable for IntelliHire’s branching behaviours—for
example:
e Status transitions (e.g., Applied — Shortlisted — Interviewed — Offered/Rejected)
gated by recruiter role and current state.
e Interview join rules based on code existence, date-time window, and reuse/expiry.
e Ul display rules (e.g., show job-match score only when parsed resume data exists,
otherwise prompt resume upload).
e Backend-driven TTS decision (speak/not speak) based on stage tags, question markers,
and permission readiness.
State Transition Testing models each process as a set of states, events, and guards, then verifies
valid and invalid paths. It is ideal for:
e Interview lifecycle: code entry — rules acknowledged — mic/cam enabled — in-
progress — ended, with negative transitions (refresh/close tab — ended/no resume).
e Assessment lifecycle: not started — in progress — auto-submit on timeout —
completed.
e Recruiter pipeline: create job — shortlist = schedule — code active — expired.
This technique ensures the system responds correctly to events and enforces guards (e.g.,
cannot start interview without permissions; cannot resume once ended).
Out of scope: exhaustive input ranges and low-level device/performance tuning (e.g.,
microphone gain levels, codec differences), model-internal Al accuracy; instead we assert

contractual correctness of outputs (format and presence), not semantic truth of Al judgements.

6.1.3 Acceptance Criteria

A test passes when, for the given inputs and preconditions, the system:
e Reaches the expected state (e.g., Interview = In-Progress, Assessment = Completed,

Application = Shortlisted).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

120

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

e Enforces rule outcomes (allow/deny transitions, show/hide UI components,
enable/disable actions) exactly as specified by the Decision Table.

e Produces contract-compliant outputs, especially for Al-backed views (scores/feedback
present with valid ranges and structure; no requirement to verify semantic correctness
of the Al content).

e Handles negative paths gracefully (clear error messages, disabled actions, safe redirects,
or session termination where required).

A test fails if the observed state, rule application, Ul contract, or error handling deviates from

the specification or any guard condition is bypassed.

6.1.4 Coverage Plan and Test Inventory

To balance rigour and feasibility, testing targets 10 cases total: approximately 5-6 Decision-
Table tests (rules and permissions) and 4-5 State-Transition tests (lifecycles and end-to-end
flows). This level of coverage validates all critical workflows for candidates and recruiters

while avoiding combinatorial explosion.

6.1.5 Test Data and Environment Assumptions

Tests run on a local development stack (Laravel + MySQL, XAMPP) with seeded data: at
least one recruiter account, one candidate account, sample job postings, and sample resumes
(valid PDF/DOCX and an intentionally invalid type). Browser tests are conducted primarily on
Chrome with microphone/camera permissions toggled to verify interview guards. Time-based
tests (e.g., interview-code windows, assessment timers) use controlled server time and short

validity windows to accelerate execution.

6.1.6 Performance Metrics

Performance is tracked at a lightweight SLA level to ensure responsiveness during core flows:

e Page responsiveness: dashboard and job listing pages render < 3s on local dev with
seeded data.

e Interview start latency: from code validation to rules page < 2s; from rules acceptance

to interview Ul < 3s.
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

121

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

e Scheduling operation: generating and saving an interview code < Is.
e Assessment navigation: question load and submit/next transition < 2s.
e Measurements are captured with browser dev tools and Laravel logs; failures trigger

review but do not replace formal load testing.

6.2 Testing Setup and Result
6.2.1 Decision Table Testing

6.2.1.1 Authentication & Registration Rules

This decision table validates the login and registration process for both candidates and
recruiters. It ensures that only valid email/password combinations are accepted, and users are
redirected correctly to their respective dashboards. Invalid input conditions are grouped into a
single case to reduce redundancy, confirming that the system consistently blocks unauthorized
access.

Table 6.2.1 Decision Table: Authentication & Registration Rules

Condition TC1|TC2 | TC3 | TC4 | TCS
Valid email T T T F/-
Valid password T T T F/-
Existing Account T T F F/T
Role = Candidate T — T — —

\
—
\
—
\

Role = Recruiter

Action

Login success

Login fail

Registration success

Redirect to Candidate DB

Z <z Z <
<l Z| Z| Z| <
Z| < < Z Z
<zl < Z Z
Z Z| z| < Z

Redirect to Recruiter DB

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

122

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.2.1.2 Job Browsing (Resume Rules)

This table tests how job listings are displayed depending on whether a candidate has
uploaded and successfully parsed a resume. When resume data exists, Al-powered job-match
scores are shown; otherwise, the system defaults to a generic listing with an “Upload Resume”
button. This confirms that personalization is correctly tied to resume availability.

Table 6.2.2 Decision Table: Job Browsing (Resume Rules)

Condition TC1 | TC2 | TC3 | TC4
Uploaded resume T T F F
Resume Successfully Parsed T F T F
Action

Show Al job-match scores Y N Y N
Show generic listing with “Upload Resume” button | N Y N Y

6.2.1.3 Application Status Transitions

The application management process involves recruiter-controlled transitions between
states such as Applied, Shortlisted, Interviewed, Offered, and Rejected. This table verifies that
only recruiters can initiate transitions, that invalid jumps (e.g., Applied — Interviewed directly)
are blocked, and that final states (Offer/Reject) are enforced. It also confirms that scheduling

is triggered after shortlisting.
Table 6.2.3 Decision Table: Application Status Transitions

Condition TC1 TC2 TC3 TC4 TC5 | TC6
Actor is recruiter T T T T F T
Current = Applied T — — — — T
Current = Shortlisted - T — _ _ _
Current = Interviewed - - T _ _ _

Intended action = Shortlist T — — _ _ _
Intended action = Mark |— T — — — T

Interviewed

Intended action = Offer - - T — _ _

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

123

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Intended action = Reject — — — T — —
Action

Transition allowed Y Y Y Y N N
New status Shortlisted | Interviewed | Offered | Rejected | — | —
Require scheduling form |Y N N N — | —
(after change)

Final state reached | N N Y Y — | —
(Offer/Reject)

6.2.1.4 Interview Code Validation

This table tests the rules for candidate access to interview sessions. The system checks
whether the code exists, is within its validity window, has not been used before, and matches
the candidate’s application. Errors such as “Not Found,” “Expired,” “Already Used,” or
“Unauthorized” are returned when conditions fail. This ensures secure and controlled access to
interviews.

Table 6.2.4 Decision Table: Interview Code Validation

Condition TC1 | TC2 | TC3 | TC4 | TCS
Code exists T F T T T
Within validity window T — F T T
Code already used F — F T F
Candidate matches application | T — T T F
Action

Join interview allowed Y N N N N
Error: Not found N Y N N N
Error: Expired N N Y N N
Error: Already used N N N Y N
Error: Unauthorized N N N N Y

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

124

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.2.1.5 Interview TTS Decision

This decision table reflects the backend shouldSpeak logic, determining when TTS is
triggered. The system speaks when questions are present and permissions are granted, or when
closing announcements must be made. It skips speech when permissions are missing or content
is not a question. This guarantees consistent and context-aware TTS delivery during interviews.

Table 6.2.5 Decision Table: Interview TTS Decision
Condition TC1 | TC2 | TC3 | TC4 | TCS

Stage = intro/preset/standard

Stage = closing
Message contains [QUESTION:X]
Message contains [STAGE:X]

= | 3| T 4
Mo = -
= = | =]
S | = 1
Mo = -

Mic & cam permissions ready

Action

Backend sets shouldSpeak =true | Y N Y N N

6.2.1.6 Assessment Availability Rules

This table validates whether a candidate is redirected to the assessment page or back to the
dashboard after an interview. The outcome depends on whether the recruiter configured an
assessment, whether the candidate completed the interview, and whether the assessment has
already been attempted. A banner is shown if the assessment is already completed. This ensures
candidates follow the correct post-interview flow.

Table 6.2.6 Decision Table: Assessment Availability Rules

Condition TC1 | TC2 | TC3 | TC4
Job has assessment configured T T F

Interview completed T F —
Assessment already completed F — —

Action

<
Z
Z
Z

Redirect to Assessment page

Redirect to Dashboard

z
=
=<
=

Show banner “Assessment already completed” | N N N Y

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

125

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.2.2 State Transition Testing

6.2.2.1 Authentication and Role Routing
This diagram validates the login and registration flow for both candidates and recruiters,
including handling of invalid credentials and post-registration logins. It ensures that only valid

users are routed into their respective authenticated dashboards.

logout .
Authenticated

> (Candidate)
submit login h
[valid email & pwd. role=candidate, account exists]
submit login
[valid email & pwd.
. h 4 role=recruiter, account exists
open site > Authenticated
. . . . uthenticate
*——> Start »{Login/Registration page o
< T (Recruiter)
020

A A

submit login
[invalid email OR
invalid pwd OR
return to login account !exists]

A

submit registration
[valid fields & new account]

Auth Failed

Y

login after registration
[role=recruiter]

Registered (needs login)

login after registration[role=candidate]

Figure 6.2.2.1 State Transition Diagram: Authentication and Role Routing

Test cases:

1. Start + open site = Login/Registration page

2. Login/Registration page + submit login [valid email & pwd, role=candidate, account
exists] = Authenticated (Candidate)

3. Login/Registration page + submit login [valid email & pwd, role=recruiter, account
exists] — Authenticated (Recruiter)

4. Login/Registration page + submit login [invalid email OR invalid pwd OR
account !exists] — Auth Failed

5. Login/Registration page + submit registration [valid fields & new account] —
Registered (needs login)

6. Registered (needs login) + login [role=candidate] — Authenticated (Candidate)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

126

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

7. Registered (needs login) + login [role=recruiter] — Authenticated (Recruiter)

8. Authenticated (Candidate/Recruiter) + logout — Login/Registration page

6.2.2.2 Job Browsing (Resume -Based Display)

This diagram tests the candidate job-browsing flow, covering scenarios with and without a
resume uploaded, and whether parsing succeeds. It ensures that Al-based recommendations are

shown only when resume data is available.

Joad parsing completed open jobs
upload resume 4 o a1a ex1
P | Resume uploaded [success] N Parsed resume [parsed_data exists]
(parsing) d available
Y
Jobs page parsing failed Personalized listing
-—> : aile . p —>®
(no resume data) = (with matching scores)
A
open jobs
N Resume uploaded later
[no parsed_data]
> Generic listing

Resume removed/mvalid

Figure 6.2.2.2 State Transition Diagram: Job Browsing (Resume-Based Display)

Test Cases:
1. Jobs page (no resume data) + upload resume — Resume uploaded (parsing)
2. Resume uploaded (parsing) + parse success — Parsed resume available
3. Resume uploaded (parsing) + parse fail — Generic listing
4. Parsed resume available + [parsed data exists] — Personalized listing (with matching
scores)

5. Jobs page (no resume data) + [no parsed data] — Generic listing
6. Generic listing + Resume uploaded later — Personalized listing (with matching score)
7. Personalized listing (with matching score) + Resume removed/invalid — Generic

listing

6.2.2.3 Interview Flow

This diagram validates the candidate interview process, from entering the access code to
completing the session. It checks that microphone/camera setup is mandatory, and that

responses are recorded and evaluated before progressing to the next stage.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

127

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Teached max questions
>0 Completed

Figure 6.2.2.3 State Transition Diagram: Interview Flow

Test Cases:

1. Code entry + valid code — Rules & consent page

Code entry + invalid/expired code — Terminated

Rules & consent page + accept = Mic/Cam check

Rules & consent page + decline — Terminated

Mic/Cam check + pass — In-Interview (question active)
Mic/Cam check + fail/denied — Rules & consent page
In-Interview + start answering — Recording (speech capture)

In-Interview + user navigates away — Terminated

A e A B S

In-Interview + user click "end interview" button — Terminated

—_
=)

. Recording + stop — Evaluating response

[a—y
[a—y

. Evaluating response + Al evaluation success — Next question / Stage transition

[S—
N

. Next question / Stage transition + more questions remaining— In-Interview (question
active)

13. Next question / Stage transition + reached max questions = Completed

6.2.2.4 Assessment Flow

This diagram tests the written/audio assessment module, including timer-based constraints,

Al evaluation of responses, and transitions between questions until completion.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

128

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

next question available

start ¢ submit . j}:‘_‘[: -
e i assessment esti ive (timer evaluati saluation i
Assessment landing [assessmen > Question ac.tlu (timer answer » Answer submitted > Al evaluation in
Q1) running) progress
timer expired & no answer evaluation stored
A 4
next question available
Expired/Terminated » Next question ready —
last question evaluated
h 4
Completed — Results
page
Figure 6.2.2.4 State Transition Diagram: Assessment Flow
Test Cases:

1. Assessment landing (Q1) + start = Question active (timer running)

™

Question active + submit answer — Answer submitted

Question active + timer expired — Expired/Terminated
Expired/Terminated + next question available — Next question ready
Answer submitted + Al evaluation triggered — Al evaluation in progress
Al evaluation in progress + success — Next question ready

Next question ready + next question available — Question active (timer running)

o N kW

Next question ready + last question = Completed — Results page

6.2.2.5 Application Management Workflow

This diagram tests the recruiter’s management of candidate applications, covering updates

from initial application through interview, offer, or rejection, until closure.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

129

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Offered

A

Y
Closed —>®
A

job closed
iewed %

Pa— Applied recruiter marks shortlisted Shortlisted

Figure 6.2.2.5 State Transition Diagram: Application Management Workflow

Test Cases:

1. Idle + submit application — Applied

N

Applied + reject = Rejected

Applied + recruiter shortlists = Shortlisted
Shortlisted + schedule interview — Scheduled
Shortlisted + reject — Rejected

Scheduled + reject — Rejected

Scheduled + interview completed — Interviewed

Interviewed + recruiter offers — Offered

o x® 2o kW

Interviewed + recruiter rejects — Rejected
10. Interviewed + job closed — Closed

11. Applied + job closed — Closed

12. Shortlisted + job closed — Closed

13. Scheduled + job closed — Closed

6.2.3 Testing Results

The system testing was conducted based on the decision table tests (Section 6.2.1) and state
transition tests (Section 6.2.2). Each decision rule and transition path defined in the test design

was executed systematically to ensure coverage of all functional behaviors.
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

130

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Test Execution Summary:

e Decision Table Testing: All six decision tables (authentication & registration rules, job
browsing rules, application status transitions, interview code validation, interview TTS
decision, and assessment availability rules) were executed. Each rule produced the
expected outcome without deviation.

e State Transition Testing: All state diagrams (authentication & role routing, job
browsing, interview flow, assessment flow, and application management workflow)
were tested along every possible transition path. Each state change was validated

successfully against the defined acceptance criteria.

Results Overview:

e Total Test Cases: 100% of designed test cases were executed.

e Pass Rate: 100% of the test cases passed without critical defects.

e Defects: No blocking or high-severity defects were identified during testing. Minor Ul
inconsistencies and non-functional issues (e.g., alignment of certain front-end elements)
were observed but were resolved immediately during debugging.

e Coverage: Test coverage achieved complete mapping with the system’s functional

requirements, ensuring that all modeled flows (normal and alternate) were validated.

The successful execution of all decision table and state transition test cases confirms that
the IntelliHire system meets the defined functional requirements. The recruitment workflows,
including resume screening, job application, interview execution, assessment, and recruiter
decision-making, were validated to operate correctly under all modeled conditions. The system

is therefore considered stable, reliable, and ready for deployment.

6.3 Project Challenges

While IntelliHire’s testing phase confirmed overall functional correctness, several
challenges emerged during evaluation that required careful handling. One recurring issue was
related to Al evaluation consistency. Since the system relies on Gemini to score candidate
responses, results could vary slightly across runs even with identical inputs. This made it

difficult to establish fixed “expected outputs” for black-box testing. To mitigate this, the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

131

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

evaluation criteria were narrowed to focus on presence of scores, correct response structure,

and logical transitions between states, rather than expecting identical Al wording every time.

Another challenge involved state transition coverage. The system contains multiple
interdependent modules such as authentication, interviews, and assessments. Ensuring that
every state and transition arrow was tested at least once required systematic planning. Some
negative paths, such as expired interview codes, silent microphone input, or incomplete
assessments, were harder to reproduce consistently in a controlled environment. Test scripts

and timers had to be deliberately manipulated to validate these scenarios.

Performance validation also posed difficulties. Although lightweight performance
thresholds (page loads, code validation times, and assessment navigation) were defined,
capturing precise timings during development was inconsistent due to fluctuations in local
machine performance and network conditions. As a result, repeated trials were necessary to
ensure that no SLA breaches occurred and that observed delays were due to environmental

factors rather than system faults.

Finally, black-box testing limitations were evident in evaluating advanced features. For
example, verifying whether Al scoring logic considered specific competencies or whether
resume parsing extracted all attributes accurately could not be fully confirmed without looking
into internal processing. This restricted the evaluation to input—output behavior, which was
sufficient for functional validation but highlighted the need for future white-box or hybrid

testing approaches for more granular assurance.

6.4 Objective Evaluation

The evaluation of IntelliHire was conducted with reference to the three primary objectives
defined in the project proposal. Overall, the system successfully achieved the intended goals
and demonstrated measurable improvements in recruitment efficiency, automation, and user

experience.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

132

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Objective 1: Develop an AI-Powered Resume Screening System

This objective has been met through the integration of Al-based resume parsing and job
matching algorithms. Resumes uploaded by candidates are automatically parsed into structured
data including skills, education, experience, and certifications. The system then compares these
attributes with job requirements, producing compatibility scores and ranked recommendations.
Testing confirmed that parsed data was correctly stored, retrieved, and used to personalize job
browsing. This eliminated the need for recruiters to manually filter resumes, aligning with the

goal of saving time and enforcing a standardized screening process.

Objective 2: Automate the Interviewing Process for Increased Efficiency and Consistency

The interview system incorporated Al-generated question flows, speech-to-text
transcription, text-to-speech delivery, and automated response analysis. Through state
transition testing, the interview lifecycle was validated from code entry through completion,
including both normal and error conditions (e.g., expired codes, silence detection). Al analysis
provided structured feedback across defined criteria such as completeness, relevance, and
clarity. This automation reduced manual interviewer involvement, ensured consistency across

sessions, and achieved the intended objective of streamlining interview management.

Objective 3: Real-Time Scheduling and Feedback System

This objective was also achieved. Recruiters could generate interview schedules with
unique codes and defined time ranges, while candidates received immediate confirmation.
Post-interview, the system delivered timely Al-based evaluations, which were further compiled
into downloadable PDF reports. Black-box testing confirmed that scheduling rules (e.g.,
expired codes, invalid windows) were correctly enforced and that candidates were redirected
seamlessly to assessment modules when required. This provided real-time interaction and
reduced administrative delays, enhancing both recruiter decision-making and candidate

experience.

All three objectives have been satisfied. The Al-powered resume screening module
automated the filtering process, the interview system ensured structured and consistent

evaluations, and the scheduling and feedback components enabled timely decision-making.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

133

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

The testing results confirmed that IntelliHire functions as designed, delivering a reliable and

efficient recruitment platform that addresses the core project goals.

6.5 Concluding Remark

This chapter evaluated IntelliHire through systematic black-box testing, covering both
decision table and state transition techniques. The results confirmed that the system behaves
consistently with the functional requirements, correctly handling positive flows, negative cases,
and edge conditions. Performance checks further validated that the platform remains

responsive within acceptable thresholds.

Although development presented challenges—particularly in Al integration, frontend-
backend synchronization, and performance optimization—these were resolved through
iterative testing and refinement. Overall, IntelliHire has proven to be a reliable and effective

recruitment platform that meets its design objectives.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

134

CHAPTER 7 CONCLUSION AND RECOMMENDATION

Chapter 7 Conclusion and Recommendation

7.1 Conclusion

The development of IntelliHire: An Al-Powered Interviewer for Automated Candidate
Selection has demonstrated the feasibility and potential of integrating artificial intelligence into
recruitment workflows. This project has successfully implemented the core components of a
functional recruitment platform, enabling both recruiters and candidates to interact through a
centralized system. Recruiters can post jobs, manage applications, and schedule interviews,
while candidates can apply for jobs, track their application status, and participate in Al-

conducted interviews.

The system directly addresses the shortcomings of traditional recruitment processes such
as manual resume screening, inconsistent interview evaluations, and delays in scheduling or
feedback. By adopting Laravel as the backend framework, utilizing MySQL for structured data
storage, and integrating Google’s Gemini API for intelligent interview question generation and
response evaluation, IntelliHire showcases how Al can be harnessed to build a scalable, reliable,

and semi-autonomous recruitment tool.

One of the highlights of this system is its automated interview session. The Al dynamically
generates interview questions, manages the flow of interaction, records candidate responses,
and stores transcripts for later review. This approach enhances efficiency, ensures consistency

across candidates, and reduces reliance on human recruiters during the early stages of selection.

Although IntelliHire already demonstrates strong functionality, there remain areas for
improvement. Planned enhancements include enhanced resume screening scoring, structured
assessments, Al-driven feedback on responses, real-time voice interaction, and intelligent job
recommendations. These improvements will ensure that IntelliHire evolves into a more

comprehensive, engaging, and fair recruitment solution.

In summary, the first phase of IntelliHire has laid a solid foundation for revolutionizing the

recruitment process. The project not only proves that Al can streamline hiring but also

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

135

CHAPTER 7 CONCLUSION AND RECOMMENDATION

emphasizes its role in creating a transparent, objective, and scalable system for candidate

evaluation.

7.2 Recommendation

To further strengthen IntelliHire and expand it into a comprehensive Al-assisted
recruitment platform, several enhancements are recommended. First, the system should
incorporate a resume screening and scoring module that automatically evaluates resumes
against job requirements, thereby saving recruiters time and improving the fairness of
shortlisting. In addition, a comprehensive assessment feature is necessary to complement
interviews, allowing candidates to complete structured tests while Al evaluates their answers
objectively. Another important enhancement is the integration of an Al feedback mechanism
that can analyze candidate responses and provide recruiters with insights while also offering
candidates constructive feedback for self-improvement. To make the interview process more
natural, the system should support real-time speech-to-text interaction, enabling candidates to
respond verbally in a way that closely mirrors live interviews. On the candidate side, the job
recommendation engine can be enhanced through intelligent algorithms that personalize
suggestions based on skills, application history, and preferences. Beyond these, two additional
future improvements include an offer letter generator, which can automate the preparation of
hiring documents, and customizable interview prompts, allowing recruiters to tailor interview
flows to specific job roles and contexts. In the long term, features such as advanced recruiter
analytics dashboards and candidate support tools like practice interviews or career tips could
also be incorporated. With these enhancements, IntelliHire has the potential to evolve into a
holistic recruitment ecosystem that not only improves recruiter efficiency and consistency but

also provides candidates with a transparent, supportive, and engaging experience.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

136

REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

“How Al Interviews Are Impacting Hiring Now and Into the Future,” VidCruiter, 2024.
https://vidcruiter.com/interview/intelligence/ai-
interviews/#:~:text=Increased%20Efficiency (accessed Sep. 05, 2024).

“Your Resume Screening Challenges — Fixed,” skima.ai. https://skima.ai/blog/industry-
trends-and-insights/resume-screening-challenges (accessed Sept. 5, 2024).

“Interview Intelligence — Interviewer Bias Examples | Pillar,” Pillar.hr, 2024.
https://www.pillar.hr/info/interviewer-bias-examples (accessed Sept. 5, 2024).

Ben Talks Talent — Interview Advice. Why Does the Job Interview Process Take So Long.
(Sep. 1, 2022). Accessed: Sept. 6, 2024. [Online Video]. Available:
https://youtu.be/CL20w6Z58087si=Z80AJBtvCxgVK9se

Interviewer.ai. “Al-Powered Interview Platform.” Interviewer.ai. https://interviewer.ai/
(accessed Aug. 20, 2024).

Talently.ai. “Interview Scheduling and Assessment Platform.” Talently.ai.
https://interview.talently.ai/ (accessed Aug. 20, 2024).

Apriora.ai. “Al-Powered Interview System.” Apriora.ai. https://www.apriora.ai/
(accessed Aug. 28, 2024).

Braintrust. “Decentralized Talent Network.” Braintrust. https://www.usebraintrust.com/
(accessed Sept. 3, 2024).

Dennis, A., Wixom, B. H., & Tegarden, D. (2021). System Analysis and Design with
UML; An Object-Oriented Approach (6th ed.). Hoboken, NJ: John Wiley & Son
(accessed Sept. 1,2024).

Sommerville, I. (2021). Engineering Software Products: An Introduction to Modern
Software Engineering, 1st Ed., Pearson (accessed Sept. 2, 2024).

JGraph Ltd and draw.io AG, draw.io [Computer software]. Version 26.2.15, Apr. 26,
2025. Available: https://www.drawio.com/

Eraser Inc., Eraser [Computer software]. Version 2.0, Mar. 11, 2025. Available:
https://www.eraser.io/
Apache Friends, XAMPP [Computer software]. Available:

https://www.apachefriends.org/

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

137

REFERENCES

[14] Composer, Dependency Manager for PHP [Computer software]. Available:
https://getcomposer.org/

[15] Microsoft, Visual Studio Code [Computer software]. Available:
https://code.visualstudio.com/

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

138

POSTER

POSTER

FACULTY OF INFORMATION
AND COMMUNICATION
TECHNOLOGY

UT/R

UNIVERSITI TUNKU ABDUL RAHMAN

INTELLIHIRE: AN AI-POWER

CANDIDATE SELECTION

Introduction

INTERVIEWER FOR AUTOMATED

<(IntelliHire

Traditional recruitment is often time-consuming, inconsistent, and resource-intensive. IntelliHire offers an innovative
Al-driven platform to automate the hiring process — from resume screening to conducting interviews and evaluating

candidates.

Objective
J
To develop an Al-powered recruitment
system that:
Automates resume screening
Conducts structured, Al-led interviews
Evaluates candidates consistently
Provides real-time scheduling and feedback

AN NN

Enhances recruitment fairness and efficiency

Proposed Method

Project Efficiency

Uses predefined criteria to assess
and filter resumes automatically.

Al Interviewer

Conducts virtual interviews, asks
job-specific questions & evaluates
answers.

Conclusion

IntelliHire revolutionizes recruitment by automating
repetitive tasks, ensuring fairness through standardization,
and enabling informed decision-making. It empowers
recruiters to focus on strategic hiring while enhancing the
overall candidate experience.

@

Problem Statement

Manual Resume Screening

Time-consuming and prone to oversight.

Inefficient Interviews

Scheduling and conducting interviews
demand high human effort.

Delays in Feedback

Candidates often experience frustration
due to slow responses.

Real-Time Scheduling &
Feedback

Allows candidates to choose time

slots and receive automated
feedback promptly.

Candidate Scoring
System

Generates holistic scores based on
resume + interview performance.

Project Developer
Tong Qian Ru

Project Supervisor

Dr. Jasmina Khaw Yen Min

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

139

