

INTELLIHIRE: AN AI-POWERED INTERVIEWER FOR AUTOMATED

CANDIDATE SELECTION

BY

TONG QIAN RU

Title page

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

 (Kampar Campus)

JUNE 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ii

COPYRIGHT STATEMENT

© 2025 Tong Qian Ru. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Jasmina Khaw

Yen Min, for giving me the invaluable opportunity to work on my final year project titled

"IntelliHire: An AI-Powered Interviewer for Automated Candidate Selection." Her guidance,

support, and encouragement have been crucial in helping me navigate through the challenges

of this project and take my first steps toward a future in AI-driven solutions.

I am also deeply grateful to my parents and family for their endless love, support, and

encouragement throughout this journey.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 iv

ABSTRACT

The recruitment process has gone a long way to determine the success of organisations in

today's highly competitive job market. Traditional interview techniques conducted by human

recruiters can be time-consuming, require a huge number of resources, and often suffer from

scheduling challenges and inconsistent evaluation criteria, which can influence the way

decisions are made. These struggles can cause an inconsistency in the way candidates are

evaluated and ultimately result poor hiring decision making. Artificial intelligence (AI) is the

up-and-coming technological process that addresses these problems in recruitment. IntelliHire:

an AI Interviewer for automated candidate selection is a project that envisions building an

extensive Audio-visual enabled machine understanding engine to automate the shortlisting

from resumes till scoring interview sessions. IntelliHire provides an inexpensive, time-

effective and unbiased way to replace traditional interview methods. This innovation attempts

to minimize the time and resources expected from a recruitment process while improving

precision in selection as well as providing fairness for job applicants. Ultimately, IntelliHire

has the potential to revolutionize the hiring process, providing organizations with a powerful

tool to make more informed and objective hiring decisions.

Area of Study: Artificial Intelligence, Web Application Development

Keywords: AI Interview System, Resume Screening, Job Recommendation, Natural Language

Processing, Candidate Evaluation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 v

TABLE OF CONTENTS

TITLE PAGE ... I

COPYRIGHT STATEMENT ... II

ACKNOWLEDGEMENTS ... III

ABSTRACT ... IV

TABLE OF CONTENTS .. V

LIST OF FIGURES ... IX

LIST OF TABLES .. XIII

LIST OF ABBREVIATIONS ... XIV

CHAPTER 1 INTRODUCTION ... 1

1.1 Problem Statement and Motivation .. 1

1.1.1 Problem Statement ... 1

1.1.2 Motivation .. 2

1.2 Objectives ... 2

1.2.1 Develop an AI-Powered Resume Screening System 2

1.2.2 Automate the Interviewing Process for Increased Efficiency and Consistency

... 3

1.2.3 Real-Time Scheduling and Feedback System .. 3

1.3 Project Scope and Direction .. 3

1.4 Contributions... 3

1.5 Report Organization .. 4

CHAPTER 2 LITERATURE REVIEW .. 5

2.1 Previous Works on AI Interviewers .. 5

2.1.1 Interviewer.ai ... 5

2.1.2 Talently.ai .. 9

2.1.3 Apriora ... 13

2.1.4 Braintrust .. 14

2.2 Limitation of Previous Studies.. 17

2.3 Comparison of Reviewed System ... 20

2.4 Proposed Solutions.. 21

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 vi

2.5 Summary ... 22

CHAPTER 3 SYSTEM METHODOLOGY AND MODEL ... 23

3.1 System Design .. 23

3.1.1 System Design Diagram .. 24

3.2 System Architecture .. 24

3.2.1 User .. 25

3.2.2 Frontend ... 25

3.2.3 Backend Server (Laravel Framework) ... 25

3.2.4 Database layer (MySQL) ... 26

3.2.5 External APIs (Gemini API) .. 27

3.2.6 System Architecture Diagram .. 28

3.3 System Flow.. 28

3.3.1 System Flow Chart ... 29

3.4 System Use Case ... 32

3.4.1 System Use Case Diagram ... 32

3.4.2 Use Case Description ... 33

3.5 System Activity ... 40

3.5.1 System Activity Diagram ... 40

3.6 Methodology of the System .. 42

3.7 Timeline .. 43

CHAPTER 4 SYSTEM DESIGN .. 44

4.1 System Block Diagram ... 44

4.1.1 High-Level System Block Diagram ... 44

4.1.2 Internal Subsystems Block Diagram .. 45

4.2 System Components Specifications .. 45

4.2.1 Frontend Components .. 46

4.2.2 Backend Components .. 48

4.2.3 External Services Integration ... 50

4.2.4 System Integration Patterns ... 51

4.3 Database Design .. 52

4.3.1 Entity-Relationship Diagram (ERD) .. 53

4.4 System Components Interaction Operations ... 55

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 vii

4.4.1 Main Laravel Controllers and Routes .. 55

4.4.2 Background Jobs and Queues .. 56

4.4.3 External API Calls ... 58

4.4.4 Data Persistence ... 59

4.4.5 Real-time Features ... 60

4.4.6 Security and Authentication ... 61

CHAPTER 5 SYSTEM IMPLEMENTATION ... 63

5.1 Hardware Setup ... 63

5.2 Software Setup .. 63

5.2.1 XAMPP (for local server environment) ... 63

5.2.2 Installing Laravel ... 66

5.2.3 Visual Studio Code (IDE) .. 66

5.3 Setting and Configuration ... 68

5.3.1 Create Laravel Project .. 68

5.3.2 Database Setup ... 69

5.3.3 API Key Configuration .. 70

5.3.4 Installing HTTP Client Package .. 70

5.4 System Operation (with Screenshot) .. 71

5.4.1 Landing Page & Authentication ... 71

5.4.2 Candidate Dashboard ... 73

5.4.3 Job Browsing & Application ... 75

5.4.4 Interview System ... 84

5.4.5 Assessment System .. 95

5.4.6 Recruiter Dashboard .. 97

5.4.7 Job Management .. 100

5.4.8 Application Management ... 104

5.4.9 AI Analysis .. 106

5.4.10 PDF Report Generation System ... 113

5.5 Implementation Issues and Challenges ... 116

5.6 Concluding Remark .. 118

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION .. 119

6.1 System Testing and Performance Metrics .. 119

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 viii

6.1.1 Objectives and Scope ... 119

6.1.2 Testing Techniques .. 120

6.1.3 Acceptance Criteria .. 120

6.1.4 Coverage Plan and Test Inventory ... 121

6.1.5 Test Data and Environment Assumptions ... 121

6.1.6 Performance Metrics .. 121

6.2 Testing Setup and Result .. 122

6.2.1 Decision Table Testing .. 122

6.2.2 State Transition Testing ... 126

6.2.3 Testing Results ... 130

6.3 Project Challenges .. 131

6.4 Objective Evaluation ... 132

6.5 Concluding Remark .. 134

CHAPTER 7 CONCLUSION AND RECOMMENDATION .. 135

7.1 Conclusion .. 135

7.2 Recommendation .. 136

REFERENCES .. 137

POSTER ... 139

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ix

LIST OF FIGURES

Figure 2.1.1.1 Overview of interviewer.ai ... 5

Figure 2.1.1.2 Cerate job interview page ... 6

Figure 2.1.1.3 Question bank of interviewer.ai ... 7

Figure 2.1.1.4 Insights page of interviewer.ai ... 7

Figure 2.1.1.5 Overall review of created job interview ... 8

Figure 2.1.1.6 Auto generate email page ... 9

Figure 2.1.2.1 Share screen reminder before interview start ... 10

Figure 2.1.2.2 Shared screen technical test in talently.ai ... 10

Figure 2.1.2.3 Shortlisted candidate overview in talently.ai .. 11

Figure 2.1.2.4 talently.ai interview report .. 12

Figure 2.1.3.1 Apriora interview page ... 13

Figure 2.1.3.2 Interview report of Apriora .. 14

Figure 2.1.4.1 Talent matching algorithm in Braintrust .. 15

Figure 2.1.4.2 AI generate job with user description and the AI interview interface in Braintrust

AIR ... 16

Figure 2.1.4.3 AI filtering feature in Braintrust AIR ... 16

Figure 2.1.4.4 Generated scorecard after interview session in Braintrust AIR 17

Figure 3.1.1.1 System Design Diagram illustrating the interaction between Recruiter Portal,

Candidate Portal, Backend Server, Database, and External APIs in IntelliHire. 24

Figure 3.2.6.1 System architecture diagram .. 28

Figure 3.3.1.1 System flow chart (part 1) .. 30

Figure 3.3.1.2 System flow chart (part 2) .. 31

Figure 3.4.1.1 System use case diagram .. 33

Figure 3.5.1.1 System Activity Diagram ... 41

Figure 3.7.1 Gantt Chart .. 43

Figure 4.1.1.1 High-level system block diagram ... 44

Figure 4.1.2.1 Internal subsystem block diagram .. 45

Figure 4.3.1.1 Entity Relationship Diagram (ERD) .. 53

Figure 5.2.1.1 XAMPP download page ... 64

Figure 5.2.1.2 XAMPP control panel .. 64

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 x

Figure 5.2.1.3 Composer download page .. 65

Figure 5.2.1.4 Composer setup page .. 65

Figure 5.2.1.5 Composer version check ... 66

Figure 5.2.2.1 Laravel installation ... 66

Figure 5.2.3.1 Visual Studio Code download page ... 67

Figure 5.2.3.2 Laravel Blade Formatter ... 67

Figure 5.2.3.3 Laravel Snippets ... 68

Figure 5.2.3.4 Laravel Blade Snippets ... 68

Figure 5.3.1.1 Laravel project creation .. 69

Figure 5.3.2.1 Database creation page ... 70

Figure 5.3.2.2 Database setup page in .env of Laravel project .. 70

Figure 5.3.3.1 Gemini API key setup in .env of Laravel project ... 70

Figure 5.3.4.1 GuzzleHTTP installation .. 71

Figure 5.4.1.1 IntelliHire landing page .. 72

Figure 5.4.1.2 IntelliHire login page .. 72

Figure 5.4.1.3 IntelliHire registration page .. 73

Figure 5.4.2.1 IntelliHire candidate dashboard .. 74

Figure 5.4.3.1 Intellihire candidate job browsing page (with resume information found in

database) .. 75

Figure 5.4.3.2 Intellihire candidate job browsing page (with no resume information found in

database) .. 76

Figure 5.4.3.3 Intellihire candidate job browsing page (resume uploaded for session

calculations) ... 76

Figure 5.4.3.4 IntelliHire candidate view job details page .. 77

Figure 5.4.3.5 IntelliHire candidate application page .. 78

Figure 5.4.3.6 IntelliHire candidate applied job page .. 78

Figure 5.4.3.7 IntelliHire candidate status: applied ... 79

Figure 5.4.3.8 IntelliHire candidate status: shortlisted .. 79

Figure 5.4.3.9 IntelliHire candidate status: shortlisted, but expired .. 80

Figure 5.4.3.10 IntelliHire candidate status: interviewed .. 80

Figure 5.4.3.11 IntelliHire candidate status: offered ... 80

Figure 5.4.3.12 IntelliHire candidate status: rejected .. 80

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xi

Figure 5.4.3.13 Job matching algorithm weighted scoring .. 81

Figure 5.4.3.14 Rule-based skill matching with weighted scoring .. 82

Figure 5.4.3.15 AI prompt construction for semantic skill evaluation 82

Figure 5.4.3.16 Circuit Breaker Pattern ... 83

Figure 5.4.3.17 Caching Implementation .. 83

Figure 5.4.3.18 Rate Limiting .. 83

Figure 5.4.3.19 Failure Caching .. 83

Figure 5.4.3.20 Timeout Controls .. 83

Figure 5.4.3.21 Fallback to Basic Matching .. 83

Figure 5.4.3.22 Final Output Structure .. 84

Figure 5.4.3.23 Confidence Score Calculation .. 84

Figure 5.4.4.1 IntelliHire interview code entrance page .. 85

Figure 5.4.4.2 Intellihire interview page entry permission check .. 86

Figure 5.4.4.3 Interview session completed popup (no assessment) 88

Figure 5.4.4.4 Interview session completed popup (with assessment) 88

Figure 5.4.4.5 Controller logic for storing candidate responses .. 89

Figure 5.4.4.6 Constructing AI evaluation prompt for Gemini API .. 90

Figure 5.4.4.7 Prompt construction logic for different interview stages 91

Figure 5.4.4.8 Handling Gemini API response and saving AI evaluation results 92

Figure 5.4.4.9 Retry logic for handling API errors in interview evaluation 92

Figure 5.4.4.10 Interview Backend Flow Diagram .. 95

Figure 5.4.5.1 IntelliHire assessment interface with instructions, active question, and

countdown timer .. 96

Figure 5.4.5.2 IntelliHire assessment completion page ... 97

Figure 5.4.6.1 IntelliHire recruiter dashboard ... 99

Figure 5.4.7.1 IntelliHire recruiter job posting page: preset question and assessment section

.. 100

Figure 5.4.7.2 IntelliHire recruiter job management screen .. 101

Figure 5.4.7.3 IntelliHire recruiter edit job page ... 102

Figure 5.4.8.1 IntelliHire recruiter application overview list with candidate table. 104

Figure 5.4.8.2 IntelliHire recruiter application management screen: candidate details and

interview responses .. 105

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xii

Figure 5.4.8.3 IntelliHire recruiter application management screen: schedule screen 106

Figure 5.4.9.1 IntelliHire AI-powered job match analysis interface 107

Figure 5.4.9.2 IntelliHire overall interview performance summary with key strengths and areas

for development ... 107

Figure 5.4.9.3 IntelliHire detailed skill assessment and recruiter-oriented observations 108

Figure 5.4.9.4 IntelliHire AI analysis of individual interview responses 108

Figure 5.4.9.5 IntelliHire AI-powered assessment evaluation screen 109

Figure 5.4.9.6 AI prompt engineering for skill matching with version-aware scoring criteria

and structured JSON response format.. 110

Figure 5.4.9.7 Speech-to-text aware interview analysis prompt with five-dimensional scoring

criteria and structured JSON feedback format ... 111

Figure 5.4.9.8 Assessment evaluation prompt with four-dimensional scoring and direct HTTP

API integration for automated response analysis ... 112

Figure 5.4.9.9 Circuit breaker pattern implementation with failure tracking, rate limiting, and

aggressive timeout handling for AI service reliability ... 113

Figure 5.4.10.1 Application detail page showing the download report feature once all analyses

are complete. .. 114

Figure 5.4.10.2 Sample of generated PDF report overview showing candidate and application

details. .. 114

Figure 5.4.10.3 Resume section within the generated PDF, including work experience,

education, skills, and certifications. ... 115

Figure 5.4.10.4 Overall interview analysis section highlighting AI-generated strengths,

weaknesses, and final recommendations. .. 115

Figure 5.4.10.5 Breakdown of candidate responses and AI evaluation per question. 116

Figure 5.4.10.6 Assessment report showing candidate answers, expected outcomes, and AI

scoring. ... 116

Figure 6.2.2.1 State Transition Diagram: Authentication and Role Routing 126

Figure 6.2.2.2 State Transition Diagram: Job Browsing (Resume-Based Display) 127

Figure 6.2.2.3 State Transition Diagram: Interview Flow ... 128

Figure 6.2.2.4 State Transition Diagram: Assessment Flow ... 129

Figure 6.2.2.5 State Transition Diagram: Application Management Workflow 130

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xiii

LIST OF TABLES

Table 2.3.1 Comparison Result .. 20

Table 3.4.1 Use case description for User Registration ... 33

Table 3.4.3 Use case description for Candidate Applies for Job .. 34

Table 3.4.4 Use case description for Candidate Joins Interview .. 36

Table 3.4.5 Use case description for Recruiter Posts Job ... 37

Table 3.4.6 Use case description for Recruiter Manages Application 38

Table 3.4.7 Use case description for Recruiter Reviews Interview Result 39

Table 5.1.1 Specification of laptop .. 63

Table 6.2.1 Decision Table: Authentication & Registration Rules 122

Table 6.2.2 Decision Table: Job Browsing (Resume Rules) ... 123

Table 6.2.3 Decision Table: Application Status Transitions ... 123

Table 6.2.4 Decision Table: Interview Code Validation ... 124

Table 6.2.5 Decision Table: Interview TTS Decision ... 125

Table 6.2.6 Decision Table: Assessment Availability Rules ... 125

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xiv

LIST OF ABBREVIATIONS

AI Artificial Intelligence

RDBMS Relational Database Management System

UI User Interface

GUI Graphical user interface

ERD Entity Relationship Diagram

VS Code Visual Studio Code

IDE Integrated Development Environment

TTS Text-to-Speech

STT Speech-to-Text

TC Test Case

SLA Service-Level Agreement

API Application Programming Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

AJAX Asynchronous JavaScript and XML

WebRTC Web Real-Time Communication

RBAC Role-Based Access Control

CSRF Cross-Site Request Forgery

XSS Cross-Site Scripting

CRUD Create, Read, Update, Delete

MVC Model-View-Controller

ORM Object-Relational Mapping

SQL Structured Query Language

UX User Experience

CDN Content Delivery Network

PDF Portable Document Format

DOCX Office Open XML Document

CHAPTER 1 INTRODUCTION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 1

Chapter 1 Introduction

In this chapter, we present the background and motivation of our research, the contributions

of this project to the field, and the overall organization of this report.

With the rapidly evolving technological landscape nowadays, Artificial Intelligence (AI)

has been widely integrated in various industries and sectors, improving processes compared to

traditional methods. One such industry is recruitment, where conventional practices previously

relied a lot on human interviewers to screen and select suitable candidates. These such outdated

methods would typically be plagued with drawbacks such as high costs, slow processing, and

inconsistent evaluation criteria, which have a tendency to influence the efficiency and

impartiality of candidate screening in a negative manner.

To address these issues, this project introduces IntelliHire: An AI-Powered Interviewer for

Automated Candidate Selection. IntelliHire system uses AI to match candidate resumes,

interview the candidates with a blend of generic and position-specific questions, and generate

evaluation reports that suggest candidate suitability for specific jobs. This approach saves time

and effort compared to traditional methods, eliminates scheduling conflicts, and ensures that

all candidates are assessed on a level playing field [1].

With this work, we demonstrate how the recruitment process can be enhanced by AI to

make the hiring process more consistent, efficient, and fair. The following sections present the

problem statement and motivation, project goals, scope, contributions, and overall organization

of this report.

1.1 Problem Statement and Motivation

1.1.1 Problem Statement

1.1.1.1 Resume Screening Challenges

One of the problems with the recruitment process is screening resumes manually [2], which is

time-consuming and prone to human error. Recruiters may overlook potential candidates due

CHAPTER 1 INTRODUCTION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 2

to exhaustion, heavy workload, or inconsistency in criteria of evaluation. This lack of

standardization creates inefficiencies and possibly overlooks top talent.

1.1.1.2 Inefficient and Resource-Intensive Interview Process

Traditional interview process is always inconsistent and highly reliant on human effort,

requiring much time and human resources to arrange and conduct interviews [3]. Coordinating

multiple candidate interviews manually may be resource-draining, lead to schedule conflicts,

and prolong the overall recruitment process.

1.1.1.3 Delays in Interview Scheduling and Feedback

Manual scheduling of interviews and providing feedback are likely to cause delays, which can

frustrate candidates and result in losing good talent [4]. Lack of an automated scheduling

system and feedback mechanism causes inefficiency, which slows down the hiring process.

1.1.2 Motivation

The main motivation behind developing IntelliHire is to make the hiring process more

efficient and unbiased. Traditional methods are time and cost intensive, especially when

handling a large number of applicants. Moreover, manual evaluations are prone to vary from

interviewer to interviewer, and it may be difficult to maintain consistency while assessing the

candidates, which may eventually lead to less than optimal hiring decisions.

1.2 Objectives

The project objectives of IntelliHire project are:

1.2.1 Develop an AI-Powered Resume Screening System

To make the resume screening process automated using AI that analyses and filters resumes

based on predefined criteria, only the most suitable candidates proceeding to the interview

stage. This will save time and effort required in manual evaluation and create a standardized

process to resume screening.

CHAPTER 1 INTRODUCTION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 3

1.2.2 Automate the Interviewing Process for Increased Efficiency and Consistency

To create an AI-powered interviewer that can conduct structured virtual interviews, generate

relevant questions from the job description and the candidate background, and provide real-

time responses analysis. This will save time and human effort, increase consistency in

candidate assessments, and streamline the entire recruitment process.

1.2.3 Real-Time Scheduling and Feedback System

To develop an automated scheduling module that allows candidates to schedule interviews in

real-time and receive timely, automated feedback after each interview. It would simplify the

recruitment process, enhance the candidate’s experience, and reduce delays in decision-

making.

1.3 Project Scope and Direction

The proposed IntelliHire system is designed to transform the traditional hiring process

through the use of AI in resume screening, interviewing, and even evaluating candidates based

on the same parameters. The scope of the project involves the development of an AI-powered

interviewer that can scan resumes, interview, and render a fair judgement of the candidates.

The system will promote the interersts of various industries with a perspective towards

improving the fairness, objectivity, and efficiency of the recruitment process.

The IntelliHire system will be developed as a web application, which can be accessed by

both recruiters and candidates. It will have support for multiple job roles across different fields

and hence be applicable to any size of company. The system will also include features such as

scheduling interviews in real-time, AI-based question generation, and automated feedback

mechanisms. The project will also involve the development of a user-friendly interface that

ensures ease of use for all users.

1.4 Contributions

The contributions of this project are:

CHAPTER 1 INTRODUCTION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 4

• Development of an AI interviewer: This project will develop an AI-powered system

that is able to conduct candidate interviews autonomously, analyze their responses, and

provide a comprehensive evaluation.

• Resume analysis and interview evaluation integration: The system will combine

resume data with interview performance to provide a full view of a candidate’s

suitability for a job.

• Enhancement of recruitment efficiency: By automating time-consuming tasks, the

system will significantly reduce the time and expense involved in the hiring process.

• Improvement of consistency in candidate evaluation: The AI system is designed to

provide uniform assessments across all candidates, minimizing variability caused by

manual evaluations.

This project represents a significant advancement in the use of AI in human resource

management and providing a more efficient, cost-effective, and fairer means of candidate

screening.

1.5 Report Organization

This report is organized into seven chapters to systematically present the development of

the IntelliHire system. Chapter 1 introduces the background of the project, the problem

statement, objectives, scope, contributions, and the overall structure of the report. Chapter 2

provides a literature review of existing AI-powered recruitment systems, highlighting their

features, limitations, and relevance to this study, followed by a comparative analysis of the

reviewed systems and the proposed solution. Chapter 3 explains the system methodology,

which includes design diagrams, architecture, system flows, use cases, activity diagrams, and

the Agile development approach, before concluding with the project timeline. Chapter 4 details

the system design by presenting the block diagrams, component specifications, database

design, and system interactions. Chapter 5 focuses on the implementation phase, covering

hardware and software setup, configurations, system operations, and the challenges

encountered during implementation. Chapter 6 presents the evaluation and discussion of the

system, including testing objectives, techniques, acceptance criteria, decision table testing,

state transition testing, and project challenges. Finally, Chapter 7 concludes the report with a

summary of findings and recommendations for future improvements to IntelliHire.

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 5

Chapter 2 Literature Review

2.1 Previous Works on AI Interviewers

The use of AI-powered platforms in recruitment has significantly changed the way

companies conduct interviews, offering more efficient and data-driven processes.

Interviewer.ai, Talently.ai, and Apriora are three prominent platforms that have contributed to

this evolution. Each platform offers unique features designed to streamline the interview

process, improve candidate evaluation, and reduce the workload for recruiters.

2.1.1 Interviewer.ai

Interviewer.ai [5] stands out for its well-rounded approach to assessing job candidates. It

doesn’t just screen resumes—it also analyzes interview responses using AI, producing detailed

reports that help recruiters make informed decisions. These reports include scores for key traits

like communication, energy, professionalism, and sociability. Each score is generated by the

platform based on the candidate's video interview performance. One of its strong points is the

report generation system. For every interview, Interviewer.ai creates an Excel file that stores

important candidate details. This includes their name, contact info, application status, interview

date, and their overall and individual scores. This structure is especially helpful for large

recruitment drives, where organizing and comparing candidate data quickly becomes essential.

Figure 2.1.1.1 Overview of interviewer.ai

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 6

Figure 2.1.1.1 shows the overview page of Interviewer.ai, which provides companies with

a comprehensive analysis of the number of candidates applying for various positions in the

organization. This feature offers a centralized view of the recruitment pipeline, enabling

recruiters to quickly assess the volume and distribution of applicants across different job

postings. Such an overview aids in identifying which positions attract the most interest and

may require more attention or adjustment in the recruitment strategy.

Figure 2.1.1.2 Cerate job interview page

Figure 2.1.1.2 depicts the initial stage of the interview process within Interviewer.ai, where

the company creates a job interview profile. This step involves inputting essential details such

as the job title, company location, and specific requirements for the role. Additionally, the

platform allows users to include a detailed job description, ensuring that candidates fully

understand the expectations before proceeding with the interview. A key feature at this stage

is the ability to set interview questions and assign a time limit for each, providing structure to

the interview process and ensuring that all candidates are assessed under consistent conditions.

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 7

Figure 2.1.1.3 Question bank of interviewer.ai

As seen in Figure 2.1.1.3, users can pick questions from the platform’s question banks or

write their own. There are two main sections: the “Additional Form Question Bank,” which

includes community-submitted questions, and the “Video Question Bank,” which is more

structured and organized by category. While the form bank sometimes contains irrelevant or

spam content, the video bank is more reliable and easier to use.

Figure 2.1.1.4 Insights page of interviewer.ai

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 8

After the interview setup is complete, users can access overall insights for that specific

interview, as seen in Figure 2.1.1.4. This page provides detailed demographic and educational

data about the candidates, including their location, gender, and academic background. These

insights are invaluable for recruiters as they offer a quick yet comprehensive overview of the

applicant pool, helping to identify trends or patterns that may influence the hiring decision. For

example, understanding the geographical distribution of candidates could inform future

recruitment strategies, while educational backgrounds might highlight the need for additional

training or support in certain areas.

Figure 2.1.1.5 Overall review of created job interview

Figure 2.1.1.5 presents the overall review page for an individual candidate. Here, recruiters

can evaluate the candidate's interview performance based on Interviewer.ai's automated scoring

and analysis. The platform provides a transcript of the interview alongside the recorded video,

which is conveniently segmented according to each question asked. This feature significantly

enhances the review process, as it allows recruiters to focus on specific responses without

having to sift through the entire interview. After reviewing, recruiters can decide whether to

shortlist the candidate, keep them in view for future opportunities, or reject them.

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 9

Figure 2.1.1.6 Auto generate email page

For candidates who are not selected, Interviewer.ai will send an auto-generated email, as

shown in Figure 2.1.1.6 which allows recruiters to efficiently communicate rejections,

streamlining the process and ensuring that all candidates receive timely feedback. This feature

not only saves time but also maintains a professional and courteous communication flow with

all applicants, enhancing the company's employer brand.

In summary, Interviewer.ai offers a robust platform with a variety of features designed to

streamline and enhance the recruitment process. From creating detailed job profiles and

selecting relevant interview questions to analysing candidate data and automating

communication, the platform addresses many common challenges faced by recruiters. By

providing structured tools and insights, Interviewer.ai enables more informed decision-making

and contributes to a more efficient and effective hiring process. However, improvements in

user-generated content management and further enhancement of candidate interaction could

elevate the platform's utility even further.

2.1.2 Talently.ai

Talently.ai [6] is a platform designed with a strong emphasis on flexibility, integrity, and

efficiency in the interview process. Unlike traditional scheduling systems, Talently.ai allows

candidates to begin their interview sessions at their convenience without needing to set an

appointment. This on-demand approach ensures that the interview process is accessible and

accommodating to candidates from various time zones and with different schedules, thereby

broadening the talent pool. One of Talently.ai's standout features is its rigorous anti-cheating

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 10

mechanism, which requires candidates to share their entire screen before starting the interview,

as shown in Figure 2.1.2.1. This feature is particularly effective in preventing candidates from

browsing unauthorized websites or using external resources during the interview, thereby

maintaining the integrity of the assessment.

Figure 2.1.2.1 Share screen reminder before interview start

Figure 2.1.2.2 Shared screen technical test in talently.ai

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 11

As shown in Figure 2.1.2.2, the platform includes coding or logic-based challenges,

depending on the job role. The AI evaluates answers in real-time, checking syntax, logic flow,

and problem-solving approach.

This method shifts the focus from surface-level responses to real performance. It reduces

bias by prioritizing skill over personality or presentation style. Recruiters can then view the

top-performing candidates through a ranked list, as seen in Figure 2.1.2.3, which simplifies

decision-making.

Figure 2.1.2.3 Shortlisted candidate overview in talently.ai

While Talently.ai excels in testing job-related skills and upholding fairness, it lacks some

of the deeper insights that platforms like Interviewer.ai provide. For example, Interview.ai

breaks down traits such as communication, sociability, and energy. These soft skills are

important in many roles and help recruiters form a complete view of a candidate. Talently.ai,

in contrast, mainly scores based on task responses. This approach works well for technical roles

but may fall short when evaluating interpersonal strengths or leadership potential.

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 12

Figure 2.1.2.4 talently.ai interview report

Another key difference is in how the platforms handle candidate feedback. Unlike

Interviewer.ai, which requires recruiters to manually share interview reports, Feedback in

Talently.ai is instant. As soon as the interview ends, candidates receive a report by email, as

shown in Figure 2.1.2.4. This allows them to reflect on their performance right away, helping

them prepare better for future interviews. However, these reports are not as detailed as those

from Interviewer.ai. Instead of giving scores across multiple traits, Talently.ai either scores

individual questions or gives a general performance summary. This limits how much insight

the recruiters and candidates can gain from the results.

In summary, Talently.ai is a strong platform for roles that require technical accuracy and

independent problem-solving. Its flexible, on-demand interview system and real-time

assessment make it a convenient choice for both recruiters and applicants. Its anti-cheating

measures and fast feedback loop are major advantages. However, for roles that rely on soft

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 13

skills or require a deeper personality analysis, it may not be the most comprehensive option.

Even so, Talently.ai plays an important role in streamlining hiring processes—especially where

technical performance is the top priority.

2.1.3 Apriora

Apriora [7] is an AI-powered interview platform that emphasizes both efficiency and

candidate engagement, offering a range of features designed to streamline the interview process

while maintaining a high level of interaction. This platform aims to create a more dynamic and

responsive interview experience by integrating unique functionalities that distinguish it from

other AI interview platforms such as Interviewer.ai and Talently.ai.

Figure 2.1.3.1 Apriora interview page

One of Apriora’s standout features, as shown in Figure 2.1.3.1, is the convenience it offers

during the interview session. Unlike other platforms, Apriora allows candidates to control the

recording process by simply pressing the space bar to stop recording after they finish answering

a question. This functionality is not available in the other platforms mentioned earlier, where

the system automatically detects when a candidate has finished speaking. By giving candidates

direct control, Apriora not only saves time during the interview process but also reduces the

risk of the system prematurely ending a recording due to misdetection. This small yet

significant feature contributes to a smoother and more efficient interview experience.

In addition to this, Apriora promotes a more interactive interview environment by allowing

candidates to ask questions before the interview concludes. This feature fosters a two-way

communication channel, enabling candidates to seek clarification or express any concerns they

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 14

might have, which can be particularly beneficial for roles that require strong communication

and interpersonal skills.

Figure 2.1.3.2 Interview report of Apriora

Similar to Talently.ai, Apriora provides candidates with their interview report immediately

after the session concludes. This instant feedback mechanism allows candidates to quickly

review their performance and gain insights into areas where they can improve. However,

Apriora goes a step further by delivering a full transcript of the interview session, which makes

it easier for recruiters to review the content in detail. It looks at both job-specific skills and

broader qualities like communication and analytical thinking. This targeted evaluation helps

recruiters focus on the candidates who are most likely to succeed in the role.

In short, Apriora combines smart automation with human-friendly features. It gives

candidates more control, promotes interaction, and offers valuable feedback. These qualities

help set it apart from other AI interview platforms.

2.1.4 Braintrust

Braintrust [8] is a decentralized talent network that uses blockchain technology to connect

freelancers with companies in a transparent, efficient, and user-empowered ecosystem. Unlike

traditional AI interview platforms, Braintrust redefines recruitment by offering a decentralized

model that prioritizes trust, control, and community participation.

One of the standout features of Braintrust is its sophisticated talent-matching algorithm.

The platform uses advanced algorithms to pair freelancers with job opportunities that align

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 15

with their skills and experience. This AI-driven matching process is particularly beneficial for

ensuring that candidates are evaluated based on their fit for the role, streamlining the hiring

process and improving outcomes for both freelancers and companies. The use of AI in this

context could extend to matching candidates with interview questions and assessments that

best evaluate their suitability for the role, further enhancing the efficiency of the recruitment

process.

Braintrust also emphasizes user empowerment, giving freelancers greater control over their

work environment. Freelancers can set their own rates, select projects that resonate with their

interests, and participate in the platform's governance. This level of personalization not only

enhances user satisfaction but could also make the interview process more engaging and

candidate friendly.

However, access to Braintrust's AI-driven interview capabilities is available only through

a subscription to Braintrust AIR. As depicted in Figure 2.1.4.1, hiring managers can utilize

Braintrust AIR to automate the job description creation process, with AI writing the full job

description and posting it to the Braintrust job board. Once applications are received, Braintrust

AIR analyses them to determine which candidates should proceed to the interview stage. It then

schedules and conducts live interviews with the selected applicants.

Figure 2.1.4.1 Talent matching algorithm in Braintrust

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 16

Figure 2.1.4.2 AI generate job with user description and the AI interview interface in

Braintrust AIR

During the interview, Braintrust AIR generates questions tailored to the specific role and

the applicant’s background. This ensures that the interview is not only relevant but also

thorough, covering all necessary aspects of the candidate’s qualifications.

Figure 2.1.4.3 AI filtering feature in Braintrust AIR

After the interview session, Braintrust AIR generates a scorecard for each candidate, as

shown in Figure 2.1.4.4. This scorecard is based on the applicant's performance during the

interview and provides hiring managers with a clear, data- driven assessment of each candidate.

The scorecard includes a grading criterion and a short description of the applicant’s answers,

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 17

helping hiring managers make informed decisions about advancing candidates to the next

round, extending an offer, or rejecting the applicant.

Figure 2.1.4.4 Generated scorecard after interview session in Braintrust AIR

In summary, Braintrust stands out as a forward-thinking platform that leverages blockchain

technology and AI to create a transparent, efficient, and user-centric talent network. Its

decentralized approach and advanced talent-matching algorithms make it a powerful tool for

connecting freelancers with suitable job opportunities. However, its reliance on blockchain,

focus on the tech industry, and subscription-based access to AI- driven features present

challenges that may limit its broader applicability. Despite these limitations, Braintrust's

innovative model offers a glimpse into the future of decentralized talent networks.

2.2 Limitation of Previous Studies

 AI-driven recruitment tools have made major strides, but they still fall short in several

key areas. Each platform brings something useful to the table, but they also carry limitations

that reduce their overall effectiveness. Below is a breakdown of the most common issues found

across some popular platforms.

 Interviewer.ai has several limitations, particularly in its interaction and transparency with

candidates. The platform does not allow candidates to ask questions during the interview,

which could limit the depth of the interaction. Additionally, candidates are not able to view

their interview results, which could lead to a lack of transparency and feedback. Besides, the

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 18

transcript is only available alongside the recorded video, which can make it challenging for

recruiters to review the content thoroughly. Moreover, the platform lacks features to prevent

dishonest practices, such as screen sharing or tab switching checkers.

 Talently.ai does a good job with cheating prevention and flexible scheduling. However,

it falls short in documentation and feedback. Recruiters can't generate detailed reports from the

platform, which makes tracking and comparing candidates harder. It also doesn't assess

resumes—only the interview performance is considered. This limits how well the platform

captures a full picture of the applicant. Candidates also face several limitations. They can't ask

follow-up questions, view their scores, or get any feedback through email. Another issue is that

the platform doesn't allow recruiters to set time limits for individual questions, which could

lead to inconsistencies during evaluations.

 Apriora has limitations in terms of video review and overall candidate analysis. The

platform does not segment video recordings by question, which can make it difficult for

recruiters to navigate and review specific parts of the interview. It also does not offer an overall

analysis of all candidates' results, focusing instead on individual performance without

providing a comprehensive overview. The platform does not support the auto-generation of

emails to inform candidates about their results, nor does it allow for setting time limits on

questions, which might affect the consistency of evaluations.

 While Braintrust offers a decentralized and transparent approach to talent matching, it is

not without its challenges. The complexity of its decentralized system may be intimidating for

users unfamiliar with blockchain technology, potentially deterring them from fully utilizing the

platform. Additionally, Braintrust's current focus on the tech industry limits its applicability

across other sectors, reducing its versatility as a comprehensive talent-matching solution.

Moreover, Braintrust's reliance on user participation in governance is a double-edged sword.

While it empowers users by giving them a voice in platform decisions, the success of this model

depends heavily on active and informed participation. If users are not fully engaged or lack the

necessary knowledge to participate effectively, the platform's governance and decision-making

processes could be hindered. Furthermore, while the AI-powered features of Braintrust AIR

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 19

are impressive, they come at a cost, as access to these advanced tools requires a subscription,

which could be a barrier for smaller companies or independent freelancers.

 These limitations across the platforms underline the importance of a well- rounded, user-

friendly, and transparent AI-powered interview system, which the proposed IntelliHire project

aims to address by integrating and improving upon the strengths of these existing tools.

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 20

2.3 Comparison of Reviewed System

Table 2.3.1 Comparison Result

Feature Interviewer.ai Talently.ai Apriora Braintrust

User-friendly Yes Yes Yes Yes

Free to use No No No No

Avatar N/A N/A N/A N/A

Device Desktop/ Laptop Desktop/ Laptop Desktop/ Laptop Desktop/ Laptop

Effective

Interaction

No (candidates cannot ask

questions)

No (candidates cannot ask

questions)

Yes (candidates can ask

questions)

Yes (user control and

participation)

Strength - Detailed candidate

reports

- Automated data export

- Comprehensive

interview analysis

- Flexible

interview

scheduling

- Anti-cheating measures

- Immediate feedback

- Candidate controls recording

- Interactive interview

environment

- Immediate feedback with

full transcript

- Transparency and

empowerment

- Efficient talent matching

Weakness - Limited interaction

- Transcript only

available with video

- No anti-cheating

measures

- Lack of

comprehensive reports

- No resume scoring

- Limited transparency

for candidates

- No segmented video review

- Focuses on individual

analysis only

- No automated emails

- Complex for non-tech-

savvy user

- Limited industry scope

- User participation required

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 21

2.4 Proposed Solutions

This project introduces a new AI-powered interview platform designed to bring together

the best parts of existing systems—like Interviewer.ai, Talently.ai, Apriora, and Braintrust—

while fixing their weaknesses. The goal is to create a complete, smart, and user-friendly

solution that works better for both recruiters and candidates. Here is how the proposed system

improves upon current tools:

1. Enhanced Candidate Interaction and Transparency: The platform will promote

better interaction between candidates and the system. Like Apriora, candidates will be

allowed to ask questions during the interview. This supports a more engaging, two-way

experience. In addition, candidates will be able to view their results afterward. This

adds transparency and helps them understand how they performed.

2. Detailed Reports and Easy-to-Read Transcripts: To go beyond what Talently.ai and

Braintrust offer, the platform will provide detailed documentation for both resume

screening and interview performance. After each interview, candidates will be able to

view their performance. Transcripts will also be shared in a clear format, separated from

the video files, making it easier for both candidates and recruiters to review them.

3. Improved Video Review Capabilities: Interviewer.ai allows video interviews to be

broken into parts. This makes reviewing easier. This platform takes that idea further.

Recruiters will be able to jump directly to specific questions in the video. They can also

read the full transcript at the same time. By combining video playback with transcript

viewing, Apriora does, recruiters can evaluate candidates more efficiently and with

better focus.

4. Flexible Scoring and Candidate Insights: The scoring system will be fully

customizable. Recruiters can set criteria that match both job-specific skills and broader

qualities like communication or problem-solving. After interviews are complete, the

system will offer an overall analysis of all applicants. This will help recruiters compare

candidates more effectively and make smarter, data-driven hiring decisions.

CHAPTER 2 LITERATURE REVIEW

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 22

By integrating these features, the proposed solution aims to create a more comprehensive,

transparent, and effective AI-powered interview platform that addresses the limitations of

existing tools while leveraging their strengths.

2.5 Summary

The review has passed through four AI interview platforms: Interviewer.ai, Talently.ai,

Apriora, and Braintrust. Each platform has unique features while exposing some limitations.

Interviewer.ai is good at detailed candidate reports and analysis but poor in interactive

elements. Talently.ai is good at anti-cheating features and customizable scheduling but poor in

extensive documentation. Apriora is good at superior candidate control and interaction but

lacking in segmented video reviews. Braintrust employs blockchain technology for truthful

talent matching but exposes complexity issues for non-tech users.

The comparative review also revealed key shortcomings shared by the existing systems,

such as restrictions on candidate communication, limited transparency levels, inadequate

documentation, and insufficient anti-cheating capabilities. Against these background, the

proposed IntelliHire platform aims to complement the functionality of existing platforms by

addressing their flaws through enhanced candidate interaction, extensive reports, advanced

video review functionality, robust anti-cheating capabilities, and flexible score mechanism.

This synergistic approach intends to create an improved, transparent, and easy-to-use AI-

powered interview platform that can both benefit recruiters and candidates.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 23

Chapter 3 System Methodology and Model

3.1 System Design

The architecture employed is a client-server model where the client (web browser) engages

with the server-side application created with Laravel. Within this model, there are two

categories of clients: the Recruiter portal and the Candidate portal. Each portal serves as an

interface that permits users to interact with the system according to their specific roles.

The Recruiter Portal allows recruiters to create job postings, review candidate applications,

set interview schedules, and monitor interview results. The Candidate Portal allows candidates

to browse available jobs, submit applications with uploaded resumes and cover letters, and

attempt interviews once scheduled.

Both portals communicate with a backend server, which processes client requests, applies

the required business logic, and interacts with a local MySQL database (running on XAMPP)

for data storage and retrieval. In addition, the backend server interacts with external APIs,

especially the Gemini API, which is used to generate interview questions based on the provided

job information.

The server-side application uses the Model-View-Controller (MVC) design pattern

internally, which is a fundamental characteristic of the Laravel framework. Models handle data

management and interact with the database, views display information to users via interfaces,

and controllers serve as middlemen, managing user input, executing business logic, and

producing suitable responses.

This separation of concerns improves the maintainability and extensibility of the code and

simplifies the update and debugging process.

By combining the client-server architecture for external communication and the MVC

design pattern for internal code structure, the system ensures a clear, orderly, and efficient

development and operation process.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 24

3.1.1 System Design Diagram

The system design diagram shows the interaction between the recruiter portal, candidate portal,

backend server, database, and external API.

Figure 3.1.1.1 System Design Diagram illustrating the interaction between Recruiter Portal,

Candidate Portal, Backend Server, Database, and External APIs in IntelliHire.

3.2 System Architecture

IntelliHire follows a well-structured client-server architecture with different

responsibilities assigned to various system layers. This approach ensures modularity,

extensibility, and ease of maintenance, which are important for support future upgrades and a

larger user base. Although IntelliHire is built on Laravel, a framework that follows the Model-

View-Controller (MVC) pattern internally, its overall architecture operates on a client-server

model at a broader level, incorporating database management and external API services.

The IntelliHire system is made up of five main components:

• Users

• Frontend

• Backend Server (Laravel Framework)

• Database Layer (MySQL)

• External APIs (Gemini API)

Each component plays different role, working together to support a smooth and efficient

recruitment process. These elements connect users with application logic, storage, and external

services.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 25

3.2.1 User

IntelliHire serves two main types of users: recruiters and candidates. Recruiters are in

charge of the hiring process. They create job listings, review applications, shortlist candidates,

schedule interviews, and update application statuses. Candidates use the system to look for jobs,

submit their applications, attend AI-powered interviews, and track their application results. The

system tailors the experience based on the role of the user so that both groups get tools suitable

to their needs.

3.2.2 Frontend

Frontend layer comprises two distinct portals, each designed to cater the requirements of a

particular set of users:

1. Recruiter Portal

2. Candidate Portal

Both portals are the primary means for users to interact with the IntelliHire system.

In the recruiter portal, users can post jobs, monitor applications, schedule interviews, and

view interview feedback. Recruiters also get insights by way of performance summaries and

analytics.

The candidate portal allows the candidates to register, complete their profiles, search for

jobs, apply for jobs, and attend automated interviews. They can also view the results of their

applications.

The frontend communicates with the backend server using HTTP-based API calls. It sends

data collected from users (e.g., applications and interview responses) and retrieves information

(e.g., job listings and interview scheduling) by securely interacting with the Laravel backend.

Separating the frontend and backend ensures a more responsive and dynamic user experience.

3.2.3 Backend Server (Laravel Framework)

The core of application logic, the Laravel backend server, is used to manage the interaction

between the frontend, database, and external APIs.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 26

Internally, Laravel employs the MVC (Model-View-Controller) pattern, in which the

application logic is divided into three primary layers: data is managed by models, presentation

is managed by views, and logic that binds models and views together is managed by controllers.

This internal structure makes the backend highly organized and manageable.

At the system level, the Laravel backend acts as a middleman, handling client requests from

both portals, applying business logic, and communicating with the database for data storage

and retrieval.

The specific responsibilities of the backend include:

1. Manage job postings created by recruiters, ensuring they are properly stored and

updated in the database.

2. Process candidate applications, record submitted information, and update application

status.

3. Store and retrieve candidate interview responses and feedback data.

4. Manage interview scheduling between recruiters and candidates.

5. Prepare and format data to be sent to the Gemini API in order to generate customized

interview questions based on specific job postings.

The backend ensures that all business rules are enforced, validates data, manages

authentication and authorization, and secure communication. It is the intellectual component

of the system, tasked with directing all the activities to ensure consistency and reliability.

3.2.4 Database layer (MySQL)

The IntelliHire system implements a MySQL database to keep the core data of the system

in the storage. The database is hosted locally using XAMPP during the development phase so

that it's readily accessible along with schema and data management.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 27

Each of the tables gets associated with other tables through structured relationship to ensure

data integrity along with optimizing processes for queries. The database layer plays a major

role in providing real-time facilities for front-end and back-end activities.

3.2.5 External APIs (Gemini API)

One of the standout features of IntelliHire is its deep integration with the Gemini API,

which facilitates multiple stages of the hiring process. The most visible application is in the

generation of interview questions, where Gemini receives job descriptions and returns

customized sets of questions that are match for each role. This automation saves recruiter time,

ensures consistency, and offers a more engaging candidate experience.

Aside from question generation, the Gemini API also powers an interview chat system in

real time. By maintaining conversational context, the system can ask follow-up questions and

provide dynamic responses, making the interview process more natural. Gemini also performs

resume parsing and analysis, extracting text from different file formats and translating it into

structured information such as skills, education, and experience. This makes candidates easier

to compare for recruiters.

On the employer side, the API is used for job requirements parsing, whereby the content of

job postings is parsed to find skills, qualifications, and certifications. The structured data feeds

AI-driven job matching, whereby Gemini goes beyond simple keyword comparisons to align

applicants with jobs based on semantic understanding, context, and skill equivalence.

At the assessment and interview stages, Gemini supports response evaluation via analysis

of candidate answers, completeness assessment, clarity, and communication, followed by the

generation of feedback, scores, and suggestions. It also evaluates answers to assessment

questions and discriminates between content issues and possible speech-to-text processing

transcription errors.

Finally, all the AI insights, like scores from evaluations, feedback, and suggestions—

remains in AI data models within the system. The records maintain structured metrics like

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 28

confidence levels, improvement suggestions, and suggestions for hiring, providing recruiters

with solid decision support throughout the recruitment process.

3.2.6 System Architecture Diagram

The following diagram illustrates how the different system components are connected and

interact with each other.

Figure 3.2.6.1 System architecture diagram

3.3 System Flow

The IntelliHire platform guides users through the recruitment process based on their roles.

When users first enter the system, they log in or register. They also select whether they are a

recruiter or a candidate. Based on this, they are taken to the matching portal.

In the recruiter portal, users can perform a variety of tasks including create job postings by

entering all relevant details and optionally setting preset interview questions and assessment

parameters. Recruiters can also manage existing job listings and review applications for

specific positions. Within the application management module, recruiters can update

application statuses to “shortlisted,” “rejected,” or “offered.” When a candidate is shortlisted,

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 29

the recruiter sets a date range for interviews, which automatically generates a unique interview

code.

On the candidate side, users can browse job listings, submit applications with a resume,

cover letter, and optional notes, and track the status of their applications. If shortlisted,

candidates gain access to a “Join Interview” function, which requires the generated code and

must fall within the recruiter’s scheduled date range. The system then checks for code validity

and interview eligibility before launching the AI-powered interview interface. During the

interview, questions are generated by Gemini API, either solely based on job and candidate

data or with preset questions if configured. After the interview, recruiters review the

candidate’s responses and update the status accordingly. The workflow offers a fully automated,

yet customizable, recruitment process from job posting to final hiring decision.

3.3.1 System Flow Chart

 The system flowchart provides a clear indication of the user interactions with the

platform, categorized into two main user types: candidates and recruiters. Upon entering the

system, the user is prompted to register or log in. Based on the selected user type, users are

redirected to the appropriate portal. Users can search for posted jobs, apply for jobs with

supporting documents, and track the status of their application through the candidate portal. If

shortlisted, they can proceed to an interview session using a unique code within a scheduled

date range. The recruiter portal enables users to post new jobs, define interview questions and

assessments, and manage applications. Recruiters can review applications, update statuses, and

assess interview responses. The interview process is automated using the Gemini API, which

generates interview questions dynamically. If preset questions are provided, these are passed

into the API to guide the question generation; otherwise, the API relies on the job description

and candidate profile to generate appropriate questions. This structured flow ensures seamless

interaction and automation between application submission, interview handling, and final

selection.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 30

Figure 3.3.1.1 System flow chart (part 1)

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 31

Figure 3.3.1.2 System flow chart (part 2)

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 32

3.4 System Use Case

There are two primary actors in the system. Both actors can login and register and select

their user type, which determines the access path.

Candidate Use Cases:

After logging in, candidates can view available jobs, apply for jobs, and upload their resume

and cover letter as part of the application process. They can also join interview sessions, during

which questions may be generated automatically via AI. After the interview, candidates can

view their interview status. Candidate can also receive job recommendations based on jobs

they have not applied for. These features aim to streamline the application and interview

process, while the inclusion of future capabilities like AI feedback and real-time transcription

will further improve the user experience.

Recruiter Use Cases:

Recruiters can post, view the job applications, and view resumes and cover letters of the

applicants. Recruiters can also define the application status and create or preset interview

questions, which are used during interview sessions. These procedures help screen candidates

more efficiently.

3.4.1 System Use Case Diagram

The use case diagram shows the interactions between the two primary actors, Candidate

and Recruiter. Each actor is associated with a range of system functionalities reflecting real-

world hiring workflows.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 33

Figure 3.4.1.1 System use case diagram

3.4.2 Use Case Description

3.4.2.1 Use Case 1 – User Registration

Table 3.4.1 Use case description for User Registration

Use Case ID UC001 Version 1.0

Use Case User Registration

Purpose Allow a new user to create an account and access the

Candidate/Recruiter portal.

Actor User (primary), System (supporting)

Trigger User clicks Register on the landing page.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 34

Precondition User is not logged in and does not already have an account.

Scenario Name Step Action

Main Flow 1 System displays the registration form.

2 User enters name, email, password, and selects role.

3 User submits the form.

4 System validates required fields and formats (email, password

length).

5 System checks for duplicate email/username.

6 System creates the account and initializes default profile.

7 System confirms registration and redirects to Login.

Alternate Flow –

Duplicate email

5.1 Duplicate is found.

5.2 System blocks creation and shows “Email already registered”

message.

5.3 User is prompted to Login or use a different email.

Alternate Flow –

Weak/Invalid

Password

4.1 Password policy fails.

4.2 System highlights the field and shows password rules.

4.3 Candidate re-enters a valid password and resubmits.

Rules - Email must be unique.

- Password must meet minimum policy (length/complexity).

Author Tong Qian Ru

3.4.2.2 Use Case 2 – Candidate Applies for Job

Table 3.4.2 Use case description for Candidate Applies for Job

Use Case ID UC002 Version 1.0

Use Case Candidate Applies for Job

Purpose Enable a candidate to submit an application with supporting documents

for a selected job.

Actor Candidate (primary), Recruiter (secondary reviewer), System

Trigger Candidate selects a job and clicks Apply.

Precondition Candidate is logged in as Candidate; the job is open for applications.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 35

Scenario Name Step Action

Main Flow 1 System shows the application form for the selected job.

2 Candidate uploads resume and (optional) cover letter.

3 Candidate submits the application.

4 System validates file types/sizes and required fields.

5 System stores the application with status Pending.

6 Resume Parsing: System extracts text and structured data

(skills, education, experience).

7 Job Matching: System compares parsed resume with parsed

job requirements and computes a matching score.

8 System records application, parsing output, and matching

score.

9 System notifies the candidate that the application was

submitted successfully.

Alternate Flow –

Duplicate

Application

3.1 System detects an existing application by the same candidate

for the same job.

3.2 System blocks submission and shows “You have already

applied to this job.”

Alternate Flow –

Invalid File

Format

4.1 File format is unsupported.

4.2 System rejects the file and prompts for PDF/DOCX.

4.3 Candidate re-uploads and resubmits.

Alternate Flow –

Parsing/Matching

Fails

6.1/7.1 Parsing/matching temporarily fails.

6.2/7.2 System queues a retry; application is still stored as Pending.

6.3/7.3 System completes parsing/matching asynchronously and

updates the record.

Rules - One active application per candidate per job.

- Resume must be PDF/DOCX within allowed size.

- Applications default to Pending until recruiter action.

Author Tong Qian Ru

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 36

3.4.2.3 Use Case 3 – Candidate Joins Interview

Table 3.4.3 Use case description for Candidate Joins Interview

Use Case ID UC003 Version 1.0

Use Case Candidate Joins Interview

Purpose Allow a shortlisted candidate to join a scheduled interview and

complete the AI-led session (and assessment if configured).

Actor Candidate (primary), System, Gemini API (external service)

Trigger Candidate clicks Join Interview and enters the Interview Code.

Precondition Candidate is Shortlisted for the job; an interview date range and code

have been set by the recruiter; current time is within the range.

Scenario Name Step Action

Main Flow 1 System prompts for Interview Code.

2 Candidate enters the code and submits.

3 System validates the code and checks the scheduled date/time

window.

4 System retrieves job information, any preset questions, and

candidate profile.

5 Question Generation: System calls Gemini to generate

tailored questions (uses preset if present; otherwise job +

candidate data).

6 Interview Chat: System starts the real-time interview;

context is maintained; follow-up questions may be generated

automatically.

7 Candidate provides responses (text/audio; audio may be

transcribed).

8 Evaluation: System sends responses to Gemini for multi-

criteria scoring and feedback.

9 Assessment (if configured): System delivers assessment

questions, collects answers, and evaluates them.

10 System stores the transcript, scores, and feedback in the

database.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 37

11 System shows completion status to the candidate.

Alternate Flow –

Invalid/Expired

Code

3.1 Code is invalid or outside the scheduled range.

3.2 System blocks access and displays the reason; Candidate may

retry or contact recruiter.

Alternate Flow –

Candidate

Abandons

4.1 Candidate closes the interview mid-session.

4.2 System saves partial progress and marks the attempt as

completed.

Rules - Interview can only be started within the scheduled date/time

window.

- Each code is unique per interview session.

- Multiple attempts may be restricted per job (institution policy).

Author Tong Qian Ru

3.4.2.4 Use Case 4 – Recruiter Posts Job

Table 3.4.4 Use case description for Recruiter Posts Job

Use Case ID UC004 Version 1.0

Use Case Recruiter Posts Job

Purpose Allow a recruiter to create and publish a job posting with structured

requirements and optional interview/assessment presets.

Actor Recruiter (primary), System

Trigger Recruiter clicks Post New Job.

Precondition Recruiter is logged in with Recruiter role.

Scenario Name Step Action

Main Flow 1 System displays the job creation form.

2 Recruiter enters job title, description, location, employment

type, and other details.

3 Recruiter defines requirements (skills, education, experience,

certifications).

4 (Optional) Recruiter sets preset interview questions.

5 (Optional) Recruiter sets assessment questions/parameters.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 38

6 Recruiter saves the job.

7 System validates fields and required data.

8 Job Requirements Parsing: System analyzes the job content

and stores a structured requirement profile.

9 System publishes the job, creates a Job ID, and confirms

creation.

Alternate Flow –

Missing Required

Fields

7.1 Validation fails (e.g., title/description missing).

7.2 System highlights errors and prevents publishing until fixed.

Rules - One active application per candidate per job.

- Resume must be PDF/DOCX within allowed size.

- Applications default to Pending until recruiter action.

Author Tong Qian Ru

3.4.2.5 Use Case 5 – Recruiter Manages Application

Table 3.4.5 Use case description for Recruiter Manages Application

Use Case ID UC005 Version 1.0

Use Case Recruiter Manages Application

Purpose Allow a recruiter to review applications, view candidate documents,

shortlist/reject/offer, and schedule interviews.

Actor Recruiter (primary), System

Trigger Recruiter opens Manage Applications for a specific job.

Precondition The job exists and has at least one submitted application.

Scenario Name Step Action

Main Flow 1 System lists all applications for the selected job with key

indicators (matching score, submission time).

2 Recruiter selects an application to review.

3 System displays candidate profile, parsed resume summary,

and cover letter.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 39

4 Recruiter updates Application Status to

Shortlisted/Rejected/Offered.

5 If Shortlisted, recruiter sets an interview date range; System

generates a unique Interview Code and associates it with the

candidate + job.

6 System saves changes and (optionally) notifies the candidate.

Alternate Flow –

No Application

1.1 There are no applications.

1.2 System displays an empty state.

Rules - Interview code must be unique per candidate+job and time-bound.

Author Tong Qian Ru

3.4.2.6 Use Case 6 – Recruiter Reviews Interview Results

Table 3.4.6 Use case description for Recruiter Reviews Interview Result

Use Case ID UC006 Version 1.0

Use Case Recruiter Reviews Interview Results

Purpose Allow a recruiter to view interview transcripts, AI feedback/scores, and

make a hiring decision.

Actor Recruiter (primary), System, Gemini API

Trigger Recruiter opens Application Details for a specific candidate and job.

Precondition The candidate has completed the interview (and assessment if

applicable); evaluation data is available.

Scenario Name Step Action

Main Flow 1 System retrieves the interview transcript, AI feedback, and

scoring breakdown.

2 System shows any assessment results and overall

recommendations.

3 Recruiter reviews results and (optionally) adds notes.

4 Recruiter updates the application status to Rejected,

Shortlisted (next round), or Offered.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 40

5 System stores the final decision and (optionally) notifies the

candidate.

Alternate Flow –

Evaluation

Pending

1.1 AI evaluation is still processing.

1.2 System indicates Pending and offers a refresh option.

Rules - Only authorized recruiters for the job can view results.

- Final status change is audit-logged with timestamp and user.

Author Tong Qian Ru

3.5 System Activity

The IntelliHire system involves various activities performed by the candidates, recruiters,

and system. To better illustrate how these activities work with each other and progress, the

activity diagram is used. While the flowchart is focused on sequential steps, the activity

diagram emphasizes role coordination of activity, decision nodes, and automated activities such

as resume parsing, job requirements analysis, AI-based job matching, and interview assessment.

This provides a clearer picture of how human actions and system work together to streamline

the recruitment process. It maps the interactions between candidates, recruiters, and the system

across different stages of recruitment, from job posting and application submission to interview

handling and AI-driven evaluation.

3.5.1 System Activity Diagram

The system activity diagram below shows the overall workflow of IntelliHire.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 41

Figure 3.5.1.1 System Activity Diagram

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 42

3.6 Methodology of the System

The IntelliHire system will be developed using the Agile methodology [9], which is well-

suited for projects that require flexibility and rapid iterations. Agile methodology emphasizes

continuous feedback, iterative development, and adaptability to change, making it ideal for

developing a complex system like IntelliHire.

The development process will be divided into several sprints, each focusing on a specific

aspect of the system [10]. The sprints will be typically lasting two to four weeks, allowing the

development team to deliver functional components of the system incrementally. This

approach ensures that any issues or changes in requirements can be addressed promptly,

reducing the risk of project delays.

Key Phases of the Agile Methodology for IntelliHire:

1. Sprint Planning: For each sprint, tasks are identified and prioritized based on project

requirements and milestones. Sprint goals are determined by aligning the most

important features with the project timeline and available resources.

2. Design and Prototyping: Before implementation, wireframes and prototypes of the

system interface and components are created. These help in visualizing the workflow

and ensuring the design meets the intended objectives before development begins.

3. Development: Each sprint focuses on implementing the planned features through

coding. As the sole developer, best practices such as modular coding, version tracking,

and consistent documentation are applied to maintain quality and allow for easier

debugging and enhancements.

4. Testing: After development, the implemented features are tested systematically. This

includes unit testing to verify individual functions, integration testing to ensure

components work together, and functional testing to confirm that features perform as

expected.

5. Review and Retrospective: At the end of each sprint, progress is reviewed against the

sprint goals. Reflection is carried out to identify what worked well, challenges faced,

and adjustments that can be made to improve productivity in the next sprint.

CHAPTER 3 SYSTEM METHODOLOGY/ APPROACH

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 43

6. Finalization: Once all sprints are completed, the system will be finalized in a controlled

environment for demonstration and evaluation purposes. Final testing ensures that the

project meets the defined scope and objectives.

7. Maintenance and Updates: Opportunities for improvement or additional features can

be identified after evaluation. Future updates may include refining existing modules or

extending functionality based on project feedback.

3.7 Timeline

Figure 3.7.1 Gantt Chart

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 44

Chapter 4 System Design

4.1 System Block Diagram

The system block diagram provides a high-level description of IntelliHire architecture,

describing how the different components and modules interact with each other to achieve the

system goals. It illustrates the process of data input from users (candidates and recruiters) into

the system, how inputs are routed through the backend and external AI services, how data is

stored inside the database, and finally how outputs are shown back to the users. By concealing

low-level implementation details, the block diagram unveils the main building blocks of

IntelliHire and their relations to each other, which makes the overall system easier to

understand.

4.1.1 High-Level System Block Diagram

The high-level system block diagram depicts the main entities in IntelliHire and how they

relate to one another. The system is accessed by the recruiter and candidate through the frontend

that communicates with the Laravel backend. The authentication, applications, scheduling,

notifications, and file handling and transfer AI-based tasks like resume extraction, job matching,

and interview assessment are delegated to the Gemini API in the backend. The MySQL

database is used to store data persistently, while real-time audio/video recording and text-to-

speech features are dealt with using browser APIs on the client side. Here is a clear indication

of the system boundaries and external interactions.

Figure 4.1.1.1 High-level system block diagram

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 45

4.1.2 Internal Subsystems Block Diagram

The block diagram of internal subsystems is more precise in depicting IntelliHire's structure.

It breaks the backend into distinct modules such as Core Services, AI Orchestrator, and

Persistence Layer. Core Services have application logic (authentication, scheduling, file

management, notifications), while the AI Orchestrator regulates Gemini API operations such

as resume parsing, job requirements extraction, interview question generation, and candidate

response assessment. The MySQL persistence layer stores user, job, resume, interview, and

assessment data. The frontend includes portals for candidates and recruiters, as well as

dedicated interfaces for interviews and assessments. Browser APIs complement the frontend

by enabling real-time multimedia processing. This diagram emphasizes the internal

responsibilities and communication between system modules.

Figure 4.1.2.1 Internal subsystem block diagram

4.2 System Components Specifications

This section outlines the main parts of the IntelliHire system, divided into frontend

interfaces, backend services, external integrations, and system-wide patterns of communication.

Each component plays an essential role in ensuring the smooth communication between

candidates, recruiters, and the platform as the backend's role lies in handling data, AI-driven

analysis, and storage.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 46

4.2.1 Frontend Components

The frontend provides all user-facing interfaces for candidates and recruiters. It has been

designed with responsiveness, usability, and real-time interaction, offering ease of access to

job postings, interviewing procedures, and assessments.

4.2.1.1 Candidate Portal

The frontend provides all user-facing interfaces for candidates and recruiters. It has been

designed with responsiveness, usability, and real-time interaction, offering ease of access to

job postings, interviewing procedures, and assessments.

• Dashboard interface: The dashboard consolidates all essential information such as AI-

generated job recommendations, current application statuses, and scheduled interviews,

allowing candidates to view everything at a glance.

• Job search and application: Candidates can browse and filter available job postings,

then apply by uploading resumes or cover letters directly through the system,

streamlining the application process.

• Profile management: Allows candidates to manage personal information, and keep

track of their application history, ensuring their profile stays updated.

• Interactive job cards with AI matching scores: Each job listing is presented with a

compatibility score, helping candidates quickly gauge suitability based on their skills

and experiences.

4.2.1.2 Recruiter Portal

The recruiter portal enables HR personnel and hiring managers to create, manage, and

monitor job postings, applications, and interviews.

• Job posting management: Recruiters can create, edit, and publish postings with AI-

powered parsing of job requirements, which ensures job descriptions are consistent and

accurate.

• Application management: This interface allows recruiters to review candidate

submissions, update statuses, and manage the overall hiring funnel efficiently.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 47

• Interview scheduling: Recruiters can set up interview sessions and automatically

generate unique interview codes, simplifying session management.

• Analytics dashboard: AI-driven analytics provide recruiters with insights into

candidate performance, evaluation scores, and hiring statistics to support evidence-

based decisions.

• Rich text editor for job descriptions: Recruiters can compose detailed job postings

using an editor that supports formatting and rich content.

• Exportable reports: Candidate data and evaluation reports can be exported for further

review, record-keeping, or sharing with stakeholders.

4.2.1.3 Interview User Interface

The interview interface provides a real-time, AI-enhanced experience for both candidates

and recruiters, incorporating conversational features and multimedia integration.

• Chat-based interview experience: The interface presents questions in a conversational

flow, simulating a natural interview session.

• Speech recognition integration: Candidates can answer using voice input, which is

processed via WebRTC and transcribed for AI evaluation in real time.

• Video recording: The system records interview sessions using camera and microphone,

enabling richer evaluation through video playback.

• AI-generated text-to-speech: Questions are read aloud using text-to-speech, making

the interview more interactive and accessible.

• Real-time conversation flow management: The module ensures seamless

coordination between AI prompts, candidate responses, and evaluation feedback.

4.2.1.4 Assessment User Interface

The assessment interface supports structured evaluations, allowing recruiters to test

candidates with both text and audio-based answers.

• Dynamic question display: The assessment interface supports structured evaluations,

allowing recruiters to test candidates with both text and audio-based answers.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 48

• Multi-modal input: The interface accepts text responses and audio recordings, giving

candidates multiple ways to respond.

• Progress tracking: Candidates are guided with counters and timers, helping them

manage time effectively during assessments.

• Immediate scoring and feedback: The AI system evaluates responses instantly and

provides feedback, speeding up the selection proces.

• Audio recording capabilities: Spoken answers are recorded for later review and cross-

verification of AI scoring.

4.2.2 Backend Components

The backend powers the core business logic, AI orchestration, and data management of

IntelliHire. It is developed on the Laravel framework and designed for scalability, security, and

seamless integration with external services.

4.2.2.1 Core Services Architecture

• Laravel MVC framework: The system is built on the model-view-controller pattern,

which separates concerns and simplifies maintainability.

• Authentication and role-based access: Access rights are controlled based on user type

(candidate or recruiter), ensuring secure role-specific operations.

• File management service: Handles the uploading, processing, and retrieval of

candidate documents such as resumes and cover letters.

• Interview session management: Maintains interview state and session data to ensure

reliability during live assessments.

• RESTful API design: Facilitates structured communication between frontend and

backend using JSON-based APIs.

4.2.2.2 AI Orchestrator

• Resume parser service: Extracts and structures text from candidate resumes in PDF or

DOCX formats for easy analysis.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 49

• Job requirements parser: Identifies and organizes required skills, qualifications, and

experience from job postings.

• Job matching engine: Compares parsed resume data with job requirements to produce

compatibility scores.

• Interview response evaluator: Processes candidate responses (text or speech) and

provides detailed AI-driven feedback.

• Assessment scorer: Automatically grades candidate answers against expected

solutions, ensuring objective evaluation.

• Error handling and retry logic: Protects against API failures by retrying requests with

exponential backoff strategies.

• Caching mechanisms: Improves performance by temporarily storing frequently

accessed results from the AI service.

4.2.2.3 Data Processing Services

• Resume processing pipeline: Automates the sequence from uploading resumes to

extracting text, parsing with AI, and storing in the database.

• Job matching algorithm: Performs semantic analysis across multiple criteria to

recommend best-fit jobs for candidates.

• Response analysis pipeline: Converts spoken responses into text, evaluates with AI,

and formats structured feedback.

• Asynchronous processing queues: Offloads heavy tasks like AI evaluation into

background jobs to improve system responsiveness.

• Error logging and monitoring: Captures system errors with detailed logs for

debugging and continuous improvement.

4.2.2.4 Persistence Layer

• Database design: Employs a normalized schema to represent entities such as users,

jobs, applications, and interviews.

• Eloquent ORM relationships: Maps database entities into Laravel models,

maintaining associations and constraints automatically.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 50

• Migration system: Provides schema version control, allowing updates without

disrupting operations.

• Caching strategy: Uses Redis or memory caching to reduce repeated API requests and

heavy calculations.

• Foreign key constraints and indexing: Safeguards data integrity and speeds up query

performance.

4.2.3 External Services Integration

IntelliHire integrates with several external services to deliver AI-powered analysis, multimedia

processing, and secure file management.

4.2.3.1 Gemini AI API

• Model configuration: Integrates Gemini 2.0 Flash for resume parsing, interview

question generation, and evaluation tasks.

• Integration patterns: Uses structured API requests with formatted payloads to

communicate effectively with the AI service.

• Error handling: Applies retry strategies and fallback options to maintain resilience

when requests fail.

• Performance optimization: Uses batching and caching to minimize costs and reduce

response times.

4.2.3.2 Browser APIs

• WebRTC API: Enables real-time voice and video streaming during interviews and

assessments.

• Speech Synthesis API: Generates spoken versions of text-based interview questions

for natural interaction.

• MediaRecorder API: Captures audio and video from candidate devices for storage and

later review.

• File API: Manages secure file upload and validation directly in the browser.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 51

4.2.3.3 Database Management

• MySQL database: Serves as the main storage solution for all system data, including

users, jobs, and interviews.

• Connection pooling: Enhances performance by reusing database connections

efficiently.

• Backup strategy: Implements regular backups to prevent data loss and ensure recovery.

4.2.3.4 File Storage System

• Laravel storage service: Manages secure file storage for resumes and other documents.

• File validation: Ensures uploaded files meet type, size, and security requirements.

• Storage optimization: Compresses files and integrates with CDN for faster delivery

and scalability.

• Access control: Restricts file access based on user roles and permissions.

4.2.4 System Integration Patterns

This section describes the system-wide mechanisms that connect different components together

and ensure secure, reliable communication.

4.2.4.1 API Communication

• HTTP client implementation: Uses Laravel’s HTTP facade to make structured API

requests.

• Request/response handling: Manages JSON serialization and error mapping

consistently.

• Authentication: Protects API communication with keys and digital signatures.

• Rate limiting: Applies request throttling and quotas to prevent abuse.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 52

4.2.4.2 Real-time Communication

• WebSocket integration: Provides immediate updates during live interviews and

assessments.

• Event broadcasting: Sends notifications and system status updates to connected users.

• Session management: Maintains session state across interview interactions.

• Concurrent user handling: Supports multi-user participation without service

interruption.

4.2.4.3 Security Implementation

• Data encryption: Protects sensitive information both at rest and in transit.

• Access control: Enforces role-based permissions to separate candidate and recruiter

functions.

• Input validation: Prevents malicious input such as XSS or SQL injection.

• Audit logging: Records user activities for accountability and security monitoring.

4.3 Database Design

The entity-relationship diagram (ERD) illustrates the logical structure of the IntelliHire

database. It defines the main entities such as Users, Jobs, Applications, Resumes, Interview

Sessions, and Assessments, along with their attributes and relationships. This diagram provides

a clear overview of how data is organized and linked within the system. For instance, a User

entity can represent either a Candidate or Recruiter, while Applications link Candidates to

specific Jobs. Resumes store parsed information such as education, experience, and skills, and

are associated with Candidates. Assessment entities capture test questions, candidate responses,

and AI evaluation scores. By presenting these relationships, the ERD highlights how IntelliHire

maintains consistency, supports efficient queries, and enables seamless integration between

different functional modules.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 53

4.3.1 Entity-Relationship Diagram (ERD)

Figure 4.3.1.1 Entity Relationship Diagram (ERD)

The following description outlines the purpose of each major table included in the database

design:

• Users: Stores information for all system users, including both candidates and recruiters.

The table also manages role assignments, authentication details, and unique identifiers

such as email addresses.

• Job Postings: Holds data related to job opportunities posted by recruiters. Attributes

include company details, job title, job description, work mode, salary range, and parsed

requirements.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 54

• Job Requirements: Breaks down each posting into structured requirements such as

skills, education, work experience, and certifications, enabling precise candidate-job

matching.

• Applications: Captures candidate submissions for specific job postings. Each record

links a candidate to a job and tracks application status (e.g., applied, shortlisted,

interviewed, offered, rejected).

• Resumes: Stores uploaded resumes and their parsed content in structured format.

Associated tables (resume_skills, resume_education, resume_experiences,

resume_certifications) extend this entity with detailed candidate background

information.

• Schedules: Manages interview time ranges and unique session codes. It ensures that

interviews are securely scheduled, tracked, and linked to the appropriate applications

or assessments.

• Interview Responses: Records candidate answers during interviews, including text,

audio, or video responses. Each response is linked to a session and can be further

evaluated by the AI system.

• AI Feedback: Stores AI-generated evaluation results for each interview response,

including indicators such as completeness, clarity, and communication skills, to support

recruiter decision-making.

• Analysis Results: Summarizes the overall outcome of interview sessions by compiling

feedback into structured evaluation reports and hiring recommendations.

• Assessments: Represents structured tests that recruiters can assign to candidates.

Attributes include assessment configuration, instructions, and links to relevant

questions.

• Assessment Questions: Defines individual questions within each assessment,

including expected answers and time constraints.

• Assessment Responses: Stores candidate responses to assessment questions, together

with AI evaluation results and scoring.

• Preset Questions: Allows recruiters to predefine interview questions tied to a specific

job posting, making interview preparation more efficient.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 55

• Question Bank: A reusable repository of predefined questions that recruiters can select

from when creating job postings or assessments, ensuring consistency across different

recruitment processes.

4.4 System Components Interaction Operations

This section describes how different modules of IntelliHire interact during system operation.

While Chapter 3 introduced the static structure of the system architecture, this section provides

a dynamic perspective of how components work together in real execution. The interaction

operations cover controller responsibilities, request handling, AI communication, persistence

through the database, and feedback to the frontend.

4.4.1 Main Laravel Controllers and Routes

The IntelliHire system follows Laravel’s MVC structure, where controllers manage

requests, invoke services, and return responses to the frontend. Each controller is responsible

for a specific domain of operations:

• JobPostingController (/jobs): Handles CRUD operations for job postings. The store()

method creates job postings and immediately triggers AI-powered parsing of

requirements, while the update() method allows recruiters to modify postings and re-

parse requirements. The toggleStatus() endpoint manages the active/inactive state of

job applications.

• CandidateJobController (/candidate/jobs): Provides candidates with job browsing

and application functionality. The index() method displays available jobs with AI-

calculated matching scores, while show() retrieves job details. The apply() method

manages application submissions, including resume uploads handled by

uploadResume().

• InterviewController (/candidate/interview): Manages interview sessions. The

validateCode() method authenticates session access, startInterview() initializes

interviews, and chat() coordinates AI-driven interview conversations. The clearChat()

function resets a session for a fresh start.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 56

• RecruiterApplicationController (/recruiter/applications): Supports recruiters in

managing candidate applications. The index() method lists applications,

applicationDetails() provides detailed candidate data, and analyzeInterview() invokes

AI evaluation of responses. Recruiters can update statuses through updateStatus() and

arrange sessions via scheduleInterview().

• ResumeParserController (internal): Dedicated to processing uploaded resumes. Its

methods extract text using Gemini AI (extractTextWithGemini()) and save structured

data into the database (parseAndSave()).

• JobRequirementsParserController (internal): Analyzes job postings for structured

requirements. It parses recruiter inputs with Gemini AI and saves results for the job

matching module.

• JobMatchingController (internal): Implements the AI-powered job recommendation

process. The calculateMatch() and calculateSkillsMatchOptimized() methods compute

compatibility scores between candidates and job requirements.

• AssessmentController (/assessment/{schedule}): Handles assessment management.

showAssessment() displays test interfaces, while submitAnswer() records candidate

responses. The evaluateResponse() method integrates with Gemini to automatically

score answers.

• CandidateDashboardController (/candidate/dashboard): Displays personalized

dashboards, including job recommendations, application progress, and upcoming

interviews.

• RecruiterDashboardController (/recruiter/dashboard): Provides recruiters with an

overview of job postings, applications, and analytics in one interface.

• RecruiterResumeController (internal): Allows recruiters to access and review

candidate resumes, complementing the parsing process.

• ProfileController (/profile): Manages user accounts and profile data. Methods include

edit(), update(), and destroy() for profile editing and deletion.

4.4.2 Background Jobs and Queues

Although IntelliHire is built with Laravel’s queue infrastructure enabled, the current

implementation does not actively dispatch background jobs. The system is configured to use

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 57

the database as the queue driver, and tables such as jobs, job_batches, and failed_jobs are

already created in the schema. This ensures that the technical foundation for asynchronous

processing exists, but at present all interactions with the Gemini API, resume parsing, job

requirement analysis, and interview evaluations are executed synchronously. In practice, this

means that whenever a candidate uploads a resume or submits an interview response, the

backend controller immediately calls the Gemini API and waits for a response before sending

feedback back to the frontend. This synchronous design has the advantage of simplicity and

predictability, because candidates and recruiters receive instant responses within the same

request cycle without needing to check back later for results.

However, the synchronous approach also comes with limitations. When large resumes are

uploaded or when many candidates are attempting interviews at the same time, the system may

experience delays while waiting for AI responses to return. For example, parsing a resume may

take several seconds, and during this time the candidate must wait for the server to complete

its interaction with Gemini before receiving confirmation. Similarly, recruiters who attempt to

analyze interview sessions may encounter slower response times because the evaluation is

carried out in real time. In high-traffic scenarios, this synchronous execution could become a

bottleneck, affecting the perceived responsiveness of the platform.

Laravel’s queue system provides a solution to these challenges by allowing certain

workloads to be offloaded into background jobs. If IntelliHire were to adopt asynchronous

queues, operations such as resume parsing, requirement extraction, AI interview evaluations,

and automated notifications could be dispatched into the job queue instead of being executed

directly in the request cycle. The queue worker, running in the background, would process each

job independently and update the database once results are ready. Candidates and recruiters

could then retrieve processed results through dashboard updates or notifications, while the main

application remains responsive. For example, a candidate might upload a resume and receive

immediate confirmation that the file was accepted, while the parsing and AI analysis occur in

the background, with the parsed results made available shortly thereafter.

At present, IntelliHire has chosen not to implement full queue-based processing in order to

keep the system architecture straightforward for deployment and testing. Nevertheless, the

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 58

underlying support for queues is already present, meaning the system can evolve to adopt

asynchronous operations in future iterations. This would allow the platform to handle higher

traffic loads, reduce waiting times during AI-heavy operations, and make better use of system

resources. In particular, enabling queues would be beneficial for scheduled batch operations,

such as nightly job matching calculations across thousands of candidates or sending bulk

interview reminders to applicants. By laying this foundation early, IntelliHire demonstrates

forward compatibility, ensuring that scalability improvements can be introduced when required

without a major redesign of the system.

4.4.3 External API Calls

The IntelliHire system integrates extensively with the Gemini AI API to deliver resume

parsing, job requirement analysis, interview evaluation, and assessment scoring. The

integration pattern is relatively straightforward, relying on Laravel’s built-in Http facade to

construct requests and process responses. Controllers are directly responsible for formatting

the request payloads, sending them to the API, and parsing the returned JSON into structured

data. Although this approach creates a tighter coupling between controllers and the external

API, it simplifies the development process by avoiding additional abstraction layers such as

dedicated service classes. Each request includes candidate or recruiter data prepared in

structured format, and the responses are stored directly in the database for further use.

To enhance reliability, IntelliHire implements a basic retry logic with exponential backoff

whenever Gemini API requests fail. Instead of failing immediately, the system automatically

attempts to resend the request up to three times. Each retry doubles the waiting period, which

allows temporary network delays or service interruptions to resolve before the next attempt.

This mechanism ensures that the system is more resilient against transient errors, improving

the overall reliability of AI-based operations. However, since the system does not currently use

asynchronous queues, all retries still occur within the same user request cycle, which may

occasionally increase response time during heavy operations such as large resume parsing.

The API calls are used in different parts of the system, and the main examples include:

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 59

• InterviewController::chat(): Handles conversational AI during interview sessions by

sending candidate responses and retrieving AI-generated follow-up questions.

• ResumeParserController::parseWithGemini(): Extracts structured data from

resumes uploaded in PDF or DOCX format.

• JobRequirementsParserController::parseWithGemini(): Analyzes job descriptions

to extract standardized requirements.

• JobMatchingController::makeAIRequest(): Computes compatibility scores

between candidates and job postings.

• RecruiterApplicationController::analyzeInterview(): Submits recorded interview

responses to Gemini for structured evaluation and feedback.

• AssessmentController::evaluateResponse(): Automatically grades candidate

assessment responses against expected answers.

4.4.4 Data Persistence

The IntelliHire system relies on Laravel’s Eloquent ORM to manage all data persistence

operations, ensuring a structured and maintainable interaction with the underlying MySQL

database. Each entity in the database is mapped to a corresponding model class, which defines

the relationships between tables and enforces referential integrity at the application level.

For example, a User model is associated with multiple Applications through a hasMany

relationship, while an Application is linked to a specific Job Posting and may also have a one-

to-one relationship with a Resume. These mappings allow the system to express complex

queries in an object-oriented manner without writing raw SQL, thereby improving both

readability and maintainability.

During runtime, controllers interact with the persistence layer by creating, retrieving,

updating, and deleting records through Eloquent models. For instance, when a candidate

submits an application, the Application model automatically stores the job reference,

candidate reference, and status in the database, while linked Resume models handle resume

uploads and parsed data storage. The use of foreign keys and indexed relationships ensures

that database operations remain consistent and efficient, reducing redundancy and preventing

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 60

orphaned records. Additionally, the system implements migrations to manage schema changes

over time, enabling smooth evolution of the database design without disrupting live data.

Caching mechanisms are also integrated into the persistence layer. Frequently accessed

data, such as parsed resume results or AI matching scores, can be temporarily stored in Redis

or in-memory cache. This reduces repetitive API calls to Gemini and minimizes query load on

the database, enhancing the system’s responsiveness under heavy traffic. By combining ORM

abstractions, data integrity enforcement, and caching strategies, IntelliHire achieves a

persistence layer that is both robust and scalable, capable of supporting the complex workflows

of recruitment operations.

4.4.5 Real-time Features

Real-time interactivity is a critical component of IntelliHire, particularly in the AI-driven

interview and assessment modules. Although the system does not currently implement

Laravel Echo or dedicated WebSocket servers, it leverages a combination of AJAX polling

and browser APIs to achieve near real-time communication. In the Interview User Interface,

candidate responses are captured through WebRTC, transcribed into text, and transmitted to

the backend, where they are immediately evaluated by the Gemini API. The backend then

returns AI feedback, which is displayed on the frontend chat interface with minimal delay. This

creates a conversational flow that closely simulates a live interviewer experience, even though

the underlying mechanism relies on request-response cycles rather than persistent connections.

Multimedia integration also contributes to real-time functionality. The MediaRecorder

API enables the capture of candidate video and audio during interviews and assessments, while

the Speech Synthesis API delivers AI-generated questions audibly to candidates. These

browser-native features reduce dependency on external services and ensure that interactions

feel immediate and engaging. Similarly, text-to-speech and speech-to-text capabilities

enhance accessibility by allowing candidates to interact naturally through voice commands and

spoken answers.

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 61

While some updates, such as application status changes or dashboard refreshes, still

require manual page reloads or timed polling, the foundation for more advanced real-time

features has already been established. The architecture is designed to be extensible, meaning

future iterations of IntelliHire could integrate WebSockets or push notifications to replace

polling with true event-driven communication. Nevertheless, even in its current form, the

system demonstrates the ability to support real-time interviews, dynamic assessments, and

instant feedback, which collectively represent one of the most innovative aspects of the

platform.

4.4.6 Security and Authentication

The security architecture of IntelliHire is designed around Laravel’s built-in

authentication framework, which provides a robust foundation for managing user sessions,

role-based access, and data protection. Users authenticate through a standard login system,

where credentials are verified and stored using bcrypt hashing for passwords. Once

authenticated, session tokens maintain persistent access across the application until logout or

expiration. Unlike token-based authentication systems such as Laravel Sanctum or Passport,

IntelliHire employs a session-based model, which is simpler to implement and sufficient for

the scope of a web-based recruitment platform. This design choice prioritizes ease of use while

maintaining a secure boundary between candidate and recruiter roles.

Role management is enforced through the user_type attribute stored in the Users table,

which distinguishes candidates from recruiters. Laravel middleware checks this attribute

before granting access to restricted routes, ensuring that recruiters cannot impersonate

candidates and vice versa. For example, job posting endpoints are protected by recruiter-only

middleware, while application submission endpoints are limited to candidate accounts. This

role-based access control (RBAC) guarantees that users interact only with data and functions

relevant to their role, preventing unauthorized operations.

Additional security layers are applied to protect against common web vulnerabilities.

Cross-Site Request Forgery (CSRF) tokens are automatically embedded in all form

submissions to prevent malicious requests, while input validation rules sanitize user-provided

CHAPTER 4 SYSTEM DESIGN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 62

data before it reaches the database. File uploads, particularly resumes and cover letters, undergo

validation for file type, size, and MIME type to ensure that harmful scripts cannot be

executed through document submissions. Furthermore, resource ownership checks are

consistently enforced in controllers; for example, a candidate can only view or modify their

own applications and resumes, and a recruiter can only access applications associated with their

job postings.

In addition to preventative measures, IntelliHire incorporates audit logging features that

record critical user activities such as logins, application submissions, interview scheduling, and

profile updates. These logs serve as a valuable tool for monitoring suspicious activity, tracing

errors, and ensuring accountability within the system. Combined with the use of HTTPS

encryption for all data transmissions, the platform ensures that sensitive information such as

personal details, resumes, and interview data remain secure both in transit and at rest.

Through this layered approach—spanning authentication, authorization, input

validation, file handling, and audit monitoring—IntelliHire establishes a comprehensive

security model that protects both candidates and recruiters while maintaining system reliability

and trustworthiness.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 63

Chapter 5 System Implementation

5.1 Hardware Setup

The hardware involved in this project includes a laptop computer. The laptop, equipped

with an Intel Core i5-11400H processor, 16GB DDR4 RAM, NVIDIA GeForce RTX 3050

GPU, and a 500GB M.2 PCIe NVMe SSD, is used for system development, UI/UX design,

and implementation of AI integration tasks. It provides the necessary computational power for

building the IntelliHire platform and conducting simulated interview sessions within a

Windows 11 operating environment.

Table 5.1.1 Specification of laptop

Description Specifications

Model Illegear Onyx V series

Processor Intel Core i5-11400H

Operating System Windows 11

Graphic NVIDIA GeForce RTX 3050 Laptop GPU

Memory 16GB DDR4 RAM

Storage 500GB M.2 PCIe NVMe Solid State Drive

5.2 Software Setup

In order to begin the development of the IntelliHire system, several essential software tools

are required to be installed and configured. These tools provided the foundational environment

for local development, database management, package handling, and code editing.

5.2.1 XAMPP (for local server environment)

XAMPP [13] is an open-source cross-platform web server solution stack package

developed by Apache Friends. It includes Apache, MariaDB, PHP, and Perl, which allows

developers to create a local server environment to develop and test PHP applications efficiently.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 64

In this project, XAMPP is utilized to run the Apache server and MySQL database locally,

simulating the functioning of an actual web server without deploying it to the cloud.

Figure 5.2.1.1 XAMPP download page

Figure 5.2.1.2 XAMPP control panel

1. Composer (PHP dependency manager)

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 65

Composer [14] is amongst the most sought-after dependency managers for PHP. With

Composer, one can easily install and run libraries or packages required in PHP projects.

Composer is utilized in managing Laravel dependencies, and so it is required in any Laravel

project. Composer is installed and configured to globally access Laravel installation.

Figure 5.2.1.3 Composer download page

Figure 5.2.1.4 Composer setup page

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 66

Figure 5.2.1.5 Composer version check

5.2.2 Installing Laravel

Laravel is a PHP framework that simplifies web development. It follows the MVC (Model-

View-Controller) structure and offers built-in features like routing, templating, and database

integration. To install Laravel, the command composer global require laravel/installer is used.

This command downloads the Laravel installer, making it easy to create new Laravel projects.

Figure 5.2.2.1 Laravel installation

5.2.3 Visual Studio Code (IDE)

Visual Studio Code (VS Code) [15] is used as the main code editor for IntelliHire. It is

lightweight, fast, and supports many useful extensions. It works well with Laravel projects and

allows developers to customize the environment as needed.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 67

Figure 5.2.3.1 Visual Studio Code download page

Several VS Code extensions are also being installed to enhance development with Laravel:

Laravel Blade Formatter: This extension formats .blade.php files, making the code cleaner

and easier to read.

Figure 5.2.3.2 Laravel Blade Formatter

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 68

Laravel Snippets: Provides code snippets for common Laravel constructs, saving

development time.

Figure 5.2.3.3 Laravel Snippets

Laravel Blade Snippets: Offers specific support for Blade templating syntax, making it easier

to work within view files.

Figure 5.2.3.4 Laravel Blade Snippets

5.3 Setting and Configuration

Once the required tools are installed, the development setup process for IntelliHire began.

5.3.1 Create Laravel Project

A new Laravel project is created using the command “laravel new intellihire”, which

created the directory structure and essential files for the application. This command sets up

Laravel’s core components including routes, controllers, models, views, and configuration

files.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 69

Figure 5.3.1.1 Laravel project creation

5.3.2 Database Setup

The MySQL database is set up using phpMyAdmin, which comes with XAMPP. A new

database named intellihire is created. This database will store all the system's tables and data used

during development. To connect between Laravel and MySQL, the .env file in the Laravel

project is edited with appropriate database credentials, such as DB_DATABASE,

DB_USERNAME, and DB_PASSWORD. The password is not set since the database is only

used locally.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 70

Figure 5.3.2.1 Database creation page

Figure 5.3.2.2 Database setup page in .env of Laravel project

5.3.3 API Key Configuration

The Gemini API is configured by storing its API key securely in the Laravel project’s .env

file. A new environment variable named GEMINI_API_KEY is added, which holds the secret

key provided by Google. This approach ensures that sensitive credentials are not hard-coded

into the source code. The Laravel configuration files and controllers access the API key using

the env() helper function, enabling authenticated requests to the Gemini API during resume

parsing, job requirement analysis, and interview evaluations.

Figure 5.3.3.1 Gemini API key setup in .env of Laravel project

5.3.4 Installing HTTP Client Package

The GuzzleHTTP package is installed using the command “composer require

guzzlehttp/guzzle”. This package enables the system to send HTTP requests to external services

such as the Gemini API. Guzzle acts as a PHP HTTP client and is crucial for sending POST

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 71

requests with payloads containing job and candidate information to receive dynamically

generated interview questions.

Figure 5.3.4.1 GuzzleHTTP installation

5.4 System Operation (with Screenshot)

This section demonstrates how the IntelliHire system operates from both candidate and

recruiter perspectives. Screenshots of the user interface are provided together with explanations

of system flows. For complex features such as AI-driven operations, code snippets are also

included to show the underlying implementation.

5.4.1 Landing Page & Authentication

Upon accessing the IntelliHire platform, users are greeted with a landing page that

introduces the system in a clean and intuitive layout (Figure 5.4.1). From here, users may

proceed to authentication features. The login page (Figure 5.4.2) allows both candidates and

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 72

recruiters to access their accounts using registered email and password. For new users, the

registration page (Figure 5.4.3) provides account creation with an additional role selection

option, where users must indicate whether they are registering as a candidate or a recruiter.

This ensures that upon successful login, each user is directed to the correct dashboard tailored

to their role.

Figure 5.4.1.1 IntelliHire landing page

Figure 5.4.1.2 IntelliHire login page

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 73

Figure 5.4.1.3 IntelliHire registration page

5.4.2 Candidate Dashboard

The landing dashboard for candidates is composed of multiple dynamic components aimed

at improving the job search and application experience. At the top of the page, a summary

section presents key statistics such as the total number of applications, active applications,

upcoming interviews, and job matches. These figures are displayed in styled blocks to give

users a quick overview of their current status.

Below this, the system provides personalized job recommendations. While the current

implementation suggests jobs randomly, this feature is designed to encourage continued

engagement with the platform, and future enhancements may allow recommendations to be

filtered based on the candidate’s skills, preferences, or past applications for greater accuracy.

The dashboard also includes an activity timeline, which records significant events such as

job applications, interview schedules, and completed interviews. This chronological log helps

candidates stay informed of their progress throughout the hiring process. Additionally, an

upcoming interviews section highlights any sessions that have been scheduled, along with

direct links to access them when the time comes. This ensures that candidates remain aware of

important deadlines and do not miss scheduled interviews.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 74

Finally, the application status component displays a detailed table of all submitted

applications, including the job title, company name, application date, and current status. Each

record also provides a shortcut to the full application details page, making it easy for candidates

to review and manage their submissions. Together, these components make the dashboard a

central hub for tracking applications, managing interviews, and discovering new opportunities.

Figure 5.4.2.1 IntelliHire candidate dashboard

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 75

5.4.3 Job Browsing & Application

In the jobs module for candidates, the system provides two distinct browsing experiences

depending on whether resume data exists in the database.

When resume information is available, meaning the candidate has uploaded and parsed a

resume during a previous application, the job browsing page leverages the AI-powered

matching module to enhance the listings. Each job card includes a compatibility score that

represents how closely the candidate’s qualifications align with the job requirements. These

scores are generated through the AI matching algorithm, which compares extracted resume

data—such as skills, education, experience, and certifications—against the requirements

parsed from job postings. Jobs are then displayed in ranked order, with the most compatible

positions appearing first.

Figure 5.4.3.1 Intellihire candidate job browsing page (with resume information found in

database)

When no resume information is available, for example when a candidate has not applied

for any jobs previously, the job browsing page reverts to a standard listing view. In this case,

jobs are presented in a neutral order (typically by posting date), displaying basic information

such as job title, company, salary range, and description. Since no compatibility scores can be

calculated, the interface provides clear prompts encouraging candidates to upload their resumes

in order to unlock AI-driven job recommendations. Informational banners or placeholder

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 76

messages may also appear, emphasizing the advantages of activating intelligent matching

features. This ensures that while all candidates can access job postings, those who upload

resumes enjoy a significantly more tailored and guided job search experience.

Figure 5.4.3.2 Intellihire candidate job browsing page (with no resume information found in

database)

Figure 5.4.3.3 Intellihire candidate job browsing page (resume uploaded for session

calculations)

This dual-interface approach ensures inclusivity while maximizing personalization for

candidates who engage with the system fully.

Once a candidate identifies an interesting opportunity from the job listings or

recommendations, they are directed to the Job Details page (Figure 5.4.3.4). This page provides

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 77

comprehensive information about the position, including the job title, company name, job

description, location, salary range, and specific requirements defined by the recruiter. The

structured view ensures that candidates can make informed decisions before proceeding with

an application.

Figure 5.4.3.4 IntelliHire candidate view job details page

If the candidate chooses to apply, they are redirected to the Application page (Figure

5.4.3.5). Here, the system provides a form where candidates can upload their resume and an

optional cover letter, before submitting the application to the database. The interface is

designed to be straightforward and user-friendly, reducing friction during the application

process.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 78

Figure 5.4.3.5 IntelliHire candidate application page

Candidates may later review their submissions through the Applied Jobs page (Figure

5.4.3.6), which lists all the positions they have applied to, along with essential details such as

job title, company, and application date. This acts as a personal record, helping candidates keep

track of their ongoing applications.

Figure 5.4.3.6 IntelliHire candidate applied job page

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 79

To provide greater transparency, the system also includes a Status Tracking page (Figures

5.4.3.7 - 5.4.3.12). This page displays detailed information about a specific job and the current

progress of the candidate’s application. There are six distinct statuses used within the platform:

application submitted, shortlisted, shortlisted but expired, interviewed, offered, and rejected.

Each status is visually highlighted so candidates can easily understand their standing in the

recruitment process.

Figure 5.4.3.7 IntelliHire candidate status: applied

Figure 5.4.3.8 IntelliHire candidate status: shortlisted

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 80

Figure 5.4.3.9 IntelliHire candidate status: shortlisted, but expired

Figure 5.4.3.10 IntelliHire candidate status: interviewed

Figure 5.4.3.11 IntelliHire candidate status: offered

Figure 5.4.3.12 IntelliHire candidate status: rejected

In addition, after an interview is completed, the same page provides access to the

candidate’s interview responses and AI-generated feedback from the session. This feature not

only enhances candidate awareness of their performance but also encourages self-improvement

by presenting detailed insights into their communication, relevance, and completeness of

answers.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 81

5.4.3.1 Job Matching Algorithm

The job matching algorithm in IntelliHire combines traditional rule-based techniques with

AI-powered semantic analysis to deliver accurate compatibility scores between candidate

resumes and job postings. This hybrid approach ensures that the system remains resilient when

AI services encounter issues, while also benefiting from contextual intelligence when they are

available.

The matching process begins with a weighted scoring system. Each requirement type—

skills, education, experience, and certifications—is assigned a weight based on its importance.

For example, skills are weighted at 40%, experience at 30%, education at 20%, and

certifications at 10%. If a job posting omits one or more requirement categories, the weights

are dynamically adjusted to normalize the final calculation. The overall compatibility score is

then computed as a weighted sum of the individual category scores, producing a percentage

that reflects how closely the candidate fits the job profile.

Figure 5.4.3.13 Job matching algorithm weighted scoring

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 82

For skills matching, the system uses a two-layer approach. First, a rule-based algorithm

compares each required skill with the candidate’s skills using keyword similarity and

thresholds. As shown in Figure 5.4.3.5, the system iterates through each requirement, calculates

similarity scores, and selects the best match. If the best score exceeds 70%, the requirement is

considered satisfied; otherwise, it is marked as missing. This ensures that the system always

produces a baseline score, even if AI services are unavailable.

To enhance accuracy, the algorithm then integrates semantic evaluation using the Gemini

API. Figure 5.4.3.6 illustrates how a detailed AI prompt is constructed, containing contextual

rules that define how to treat versions, synonyms, and related skills. For example, HTML and

HTML5 are treated as equivalent, while Angular and Angular 2+ are categorized as different

versions of the same technology. The API evaluates each candidate skill against job

requirements and returns a structured response with both a numerical score and an explanation.

These AI-generated scores are then merged with the rule-based calculations to refine the overall

compatibility score, ensuring that both exact matches and semantically similar skills are

recognized.

Figure 5.4.3.14 Rule-based skill matching

with weighted scoring

Figure 5.4.3.15 AI prompt construction for

semantic skill evaluation

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 83

A similar layered design applies to education, experience, and certifications. Education

matching checks degree level and field of study, with AI factoring in GPA and institution

prestige. Experience matching compares years of work and uses AI to assess role relevance,

industry context, and career progression. Certifications are matched by name and validated

through AI for equivalence, currency, and relevance to the role.

The system incorporates several optimization and reliability mechanisms. A circuit breaker

pattern monitors Gemini API failures; if more than 3 consecutive errors occur, the algorithm

falls back to basic keyword matching to maintain uninterrupted service. In addition, AI results

are cached for 1 hour to avoid repeated calls for the same candidate-job pair, improving

efficiency. The system implements rate limiting (50 requests per hour) and failure caching (5-

minute cooldown) to prevent repeated failed attempts. Requests to the API are configured with

aggressive timeout controls (8 seconds), ensuring that transient network or service issues do

not severely impact user experience.

Figure 5.4.3.16 Circuit Breaker Pattern

Figure 5.4.3.17 Caching Implementation

Figure 5.4.3.18 Rate Limiting

Figure 5.4.3.19 Failure Caching

Figure 5.4.3.20 Timeout Controls

Figure 5.4.3.21 Fallback to Basic Matching

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 84

The final output combines the weighted overall score, breakdown by category, and a

confidence score that communicates the reliability of the AI's analysis. Confidence levels are

categorized as high (80%+), medium (50-79%), or low (below 50%), helping in interpret the

results with appropriate caution.

Figure 5.4.3.22 Final Output Structure

Figure 5.4.3.23 Confidence Score

Calculation

5.4.4 Interview System

The interview process begins with the Interview Code Entry page (Figure 5.4.4.1). At the

top of this page, candidates are prompted to enter a valid interview code in order to proceed.

Directly below the code entry field, the system displays the full set of Interview Rules and

Guidelines, ensuring that all candidates are fully aware of the conditions before they can join

the session. The rules explain the flow of the interview, including preparation time, recording

controls, and handling of silent or incomplete responses. For example, candidates are given 10

seconds to prepare before automatic recording begins, and their responses can be started or

stopped manually using the designated controls. Warnings appear if no speech is detected or if

the candidate pauses for too long, and skipped questions are automatically recorded. Clear

reminders highlight that the interview is a one-time attempt, and reloading or closing the page

will result in permanent termination of the session. In addition, the page includes the Recording

Notice & Terms, outlining that both video and audio will be fully recorded, stored securely,

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 85

and reviewed only by authorized recruitment personnel. A final Privacy Notice reinforces

compliance with data protection laws, explaining candidates’ rights to access, correction, or

deletion of their personal data. By displaying these rules upfront, the system ensures candidates

give informed consent before starting their interview..

Figure 5.4.4.1 IntelliHire interview code entrance page

Once the interview code has been validated, candidates are directed to the Important

Interview Instructions page (Figure 5.4.4.2). This page acts as a final checkpoint before

entering the live interview session. Candidates are reminded that the interview can only be

attempted once and cannot be restarted or retaken under any circumstances. A checklist

prompts candidates to confirm that their microphone and camera are enabled, that they are in

a quiet environment with a stable internet connection, and that they have allocated sufficient

uninterrupted time (approximately one hour) for the interview. The section also restates

important rules such as prohibiting navigation to other pages, requiring clear and honest

responses, and enforcing a one-hour time limit. At the bottom of the page, the system displays

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 86

the Permission Status for the microphone and camera. The “Start Interview” button remains

disabled until both devices are successfully enabled, ensuring technical readiness before the

session begins. This layered validation process minimizes disruptions and safeguards the

integrity of the interview process.

Figure 5.4.4.2 Intellihire interview page entry permission check

After passing the checks, candidates enter the Interview Interface (Figure 5.4.4.3), where

they interact with the AI in a structured conversational flow. The chat area displays system-

generated questions along with the candidate’s responses, creating a real-time interview

transcript. Responses are primarily collected through voice, supported by speech-to-text

processing that transcribes the spoken content into text. The interface prevents manual typing

to maintain consistency across all interviews, requiring candidates to follow the automated

flow without skipping or reordering questions.

 The system also integrates speech and video features using WebRTC and the

MediaRecorder API. Candidates can see their live camera feed and audio level indicators while

recording their responses. Clear visual cues, such as red recording dots and timers, help them

stay aware of their status. If no speech is detected within the allocated preparation or response

time, warnings are triggered, and unanswered questions may be automatically skipped. These

mechanisms ensure efficiency and fairness by standardizing the time available to all

participants.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 87

In addition to voice input, the platform incorporates Text-to-Speech (TTS) to enhance

accessibility. Candidates can adjust voice settings, including speech speed, volume, and voice

type, enabling them to hear the AI’s questions audibly. Animated indicators provide feedback

when the system is speaking, and candidates may pause or test the feature before the session

begins. This functionality improves engagement, particularly for users who prefer listening to

questions rather than reading them.

The Interview interface provide candidates with essential management tools during the

session. Visible progress indicators and countdown timers remind candidates of the remaining

time, while navigation warnings prevent them from accidentally leaving the interview page.

Candidates may choose to end the interview early, but confirmation pop-ups are enforced to

avoid unintended termination. Importantly, once the interview is ended, it cannot be restarted

or repeated.

At the end of the session, the system determines the next step. If no assessment is assigned,

candidates are returned to their dashboard with a completion message. However, if an

assessment has been scheduled, the system automatically redirects the candidate to the

Assessment Module, where further evaluation is carried out (explained in Section 5.4.5). This

seamless transition ensures continuity in the hiring workflow while keeping candidates guided

throughout the process.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 88

Figure 5.4.4.3 Interview session completed popup (no assessment)

Figure 5.4.4.4 Interview session completed popup (with assessment)

5.4.4.1 Backend Processing

The InterviewController handles the orchestration of the entire interview process on the

backend. It acts as the bridge between the candidate interface, the database, and the integrated

AI services. The logic within the controller ensures smooth handling of interview sessions,

validation of codes, collection of candidate responses, and communication with the Gemini

API for evaluation.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 89

1. Response Recording and Storage

During the interview, candidate responses are captured via WebRTC and submitted to the

controller in either audio or text format. The backend securely stores these responses in the

database, associating them with the candidate’s interview session. Metadata such as timestamps,

question identifiers, and status are also logged. This ensures that recruiters later receive a

structured and auditable record of the session.

Figure 5.4.4.5 Controller logic for storing candidate responses

2. AI Prompt Construction and Evaluation

The controller integrates directly with the Gemini API, constructing prompts dynamically

for each candidate response. For instance, when evaluating an answer, the backend assembles

contextual details such as the interview question, expected competencies, and candidate

transcript. This prompt is then sent to Gemini, which returns a structured analysis containing a

similarity score, relevance assessment, and explanatory feedback. By embedding predefined

evaluation rules into the prompt, the system ensures consistent scoring across different

interviews.

In addition to evaluating candidate responses, the controller also leverages Gemini for

question generation, using a dedicated function, buildPrompt, to dynamically assemble the

instructions sent to the API. This function structures the job information into a JSON block

containing attributes such as company name, job title, responsibilities, requirements, and salary

range, ensuring that the AI has sufficient context about the role. The prompt also incorporates

the interview stage (intro, preset, standard, closing, or ended), the number of questions already

asked, and the next sequential question number. Based on the current stage, Gemini is guided

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 90

to either welcome the candidate, ask preset questions, generate standard interview questions,

or close the session. Strict rules are embedded to guarantee consistency, including requiring

exactly 15 questions, marking each question with a [QUESTION:n] tag, and preventing the AI

from introducing itself by name. When a question is skipped or unanswered, additional

instructions are injected so that Gemini briefly acknowledges the skip before moving forward.

This structured prompting method ensures that Gemini produces contextually relevant,

professionally formatted, and stage-appropriate interview dialogue throughout the entire

session.

Figure 5.4.4.6 Constructing AI evaluation prompt for Gemini API

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 91

Figure 5.4.4.7 Prompt construction logic for different interview stages

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 92

Figure 5.4.4.8 Handling Gemini API response and saving AI evaluation results

3. Retry and Error Handling

To account for potential API failures or network instability, the backend incorporates retry

logic. If the first request to the Gemini API fails, the system automatically retries with

exponential backoff to maintain reliability. In cases of persistent failure, fallback mechanisms

store the candidate’s raw responses for later evaluation, preventing data loss.

Figure 5.4.4.9 Retry logic for handling API errors in interview evaluation

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 93

5.4.4.2 Text-to-Speech (TTS) Integration

The IntelliHire system incorporates text-to-speech (TTS) to provide an audible delivery of

interview questions. Unlike simpler designs where the frontend decides when to play audio, in

IntelliHire the backend InterviewController first evaluates the context and sets a decision flag.

This flag, called $shouldSpeak, is computed after analyzing the current interview stage (intro,

preset, standard, or closing), the presence of question markers such as [QUESTION:X], stage

transition tags like [STAGE:closing], and content patterns such as question marks or

instructional phrases. By handling this logic on the backend, the system ensures that all

candidates receive a consistent, rule-based experience.

Once the backend determines that a message should be read aloud, it removes the internal

markers (e.g., [QUESTION:X]) before sending the sanitized text and the $shouldSpeak flag to

the frontend. On the client side, the browser executes the actual speech rendering using the

Speech Synthesis API, which supports different voices, adjustable speed, and volume controls.

This hybrid approach ensures the server has authoritative control over when speech should

happen, while still giving candidates personalization options for how the audio is delivered.

This separation of responsibilities—decisioning on the backend and rendering on the

frontend—provides multiple benefits. It keeps the server lightweight, since the heavy lifting of

audio generation is offloaded to the browser. It also improves flexibility, allowing candidates

to adjust voice preferences without affecting backend logic. At the same time, it guarantees

consistency across interviews, since the backend enforces strict rules on which messages are

spoken. Together, these design choices ensure IntelliHire’s interview process is both efficient

and adaptable.

5.4.4.3 Speech-to-Text (STT) Integration

The speech-to-text (STT) component of IntelliHire is fully browser-based, implemented

with the Web Speech API (window.SpeechRecognition / window.webkitSpeechRecognition).

When candidates speak their answers, their audio is transcribed locally in real time and

converted into plain text. This transcript is then sent directly to the backend, bypassing the need

to upload audio files for processing. The backend stores the text along with question metadata

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 94

and optional video recordings, ensuring that the system maintains a complete session log

without heavy server-side processing.

To ensure fairness and robustness, IntelliHire implements a silence-detection system and a

retry mechanism. After each question is displayed and the text-to-speech finishes, a 10-second

preparation timer runs, after which recording automatically starts. During recording, a separate

10-second silence detection timer monitors for speech activity. If no speech is detected within

10 seconds, the interface shows a warning and provides a 5-second countdown for the candidate

to begin speaking. If the candidate still does not respond, the system records the attempt as

empty and automatically skips the question. This design prevents technical issues or hesitation

from stalling the session.

The retry logic adds another layer of resilience. If the first attempt contains no speech, the

system grants the candidate one additional attempt under the same rules. Only if both attempts

fail will the question be permanently skipped, and the interview moves forward. This approach

balances leniency (giving users a second chance) with efficiency (keeping the interview

moving without long delays).

Finally, the frontend error handling is designed to create a smooth user experience. It

monitors microphone status, provides live transcription feedback, and issues warnings when

silence is detected. By handling these checks in the browser, IntelliHire avoids unnecessary

server calls while ensuring that candidates are immediately aware of issues. This lightweight

but structured approach ensures that the STT pipeline is accurate, real-time, and fair, even when

network or user behavior introduces uncertainties.

 The overall interaction between the candidate interface, backend controller, external AI

services, and storage components is summarized in the flow diagram below

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 95

Figure 5.4.4.10 Interview Backend Flow Diagram

5.4.5 Assessment System

The assessment system in IntelliHire provides a structured evaluation stage following the

interview process. Managed by the AssessmentController, this module ensures that candidates

are tested on their technical knowledge, problem-solving ability, and communication skills in

a standardized format. Assessments are delivered in a clear, time-bound manner, and all

candidate responses are securely stored in the database for later review by recruiters, alongside

optional AI-based evaluation.

When candidates begin the assessment, they are directed to the assessment interface, which

consolidates the landing instructions, question display, and timer functionality into a single

page. The top section presents clear instructions outlining the assessment purpose, input

methods (text or audio), and guidelines for answering. Below this, the active question is

displayed prominently, showing details such as the current question number (e.g., Question 1

of 3) and a countdown timer that enforces the time limit for each question. Candidates are

provided with a text input area where they can type their responses, while an audio recording

option is available for those who prefer spoken answers. Once an answer is submitted, either

manually or automatically after the timer expires, the system transitions smoothly to the next

question until the assessment is complete. This design keeps candidates focused while ensuring

fairness through strict time control.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 96

Figure 5.4.5.1 IntelliHire assessment interface with instructions, active question, and

countdown timer

Upon completing all assigned questions, candidates are redirected to a completion page,

which confirms successful submission of the assessment. A modal popup congratulates the

candidate and provides a “Finish Assessment” button, which finalizes the process and returns

them to their dashboard. At this stage, the backend securely stores all responses and marks the

assessment as complete, making them accessible for recruiter review. This ensures a seamless

transition from candidate input to recruiter evaluation, closing the assessment loop effectively.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 97

Figure 5.4.5.2 IntelliHire assessment completion page

 On the backend, the same speech-to-text (STT) pipeline used during the interview is also

available in the assessment. Candidates need to record their responses through the browser’s

speech recognition API, which transcribes the audio into text if the question type is set as audio

response. This keeps the assessment lightweight by eliminating the need for server-side audio

processing, while ensuring that both text and audio answers are uniformly stored as structured

text responses in the database.

5.4.6 Recruiter Dashboard

The recruiter dashboard provides a consolidated workspace for managing job postings,

tracking candidates, and monitoring hiring performance. At the top of the page, a set of

summary counters presents key metrics at a glance—Active Jobs, Total Applications,

Scheduled Interviews, and Open Positions—so recruiters can immediately gauge current

workload and pipeline health. A prominent Create Job Posting action and an Export Reports

button streamline common tasks without leaving the page.

Beneath the summaries, the Active Job Postings panel lists each role with its company,

location, posted date, application count, and current status. Inline actions (View, Edit, Close)

allow recruiters to open the job detail page, update posting information, or close the vacancy

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 98

when hiring is complete. This table serves as the operational hub for day-to-day job

administration.

The Candidate Pipeline section surfaces all applicants across jobs in a single, filterable view.

Status chips (e.g., Applied, Shortlisted, Interviewed, Offered, Rejected) enable quick filtering

to prioritize follow-ups. Each row shows the candidate name, applied position, company,

application date, current status, and a View Application link that opens the full application

profile (resume, cover letter, notes, interview history). This layout supports rapid triage while

preserving a clear audit trail for every decision.

At the bottom, Interview Insights & Recommendations provides lightweight analytics to

inform planning. A pie chart summarizes the distribution of applications by status, a bar chart

shows applications per job to reveal which roles attract more interest, and a line chart tracks

applications over time, helping recruiters identify spikes caused by new postings or campaigns.

Together, these visualizations give recruiters an immediate sense of funnel balance and where

intervention may be needed (e.g., refreshing a low-performing job description or scheduling

additional interviews).

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 99

Figure 5.4.6.1 IntelliHire recruiter dashboard

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 100

5.4.7 Job Management

The Job Management module enables recruiters to create, publish, review, and update job

postings in a structured, repeatable way. The workflow begins with the Job Posting form, where

recruiters enter comprehensive details such as job title, company, location, work mode, salary

range, responsibilities, and required skills/experience. The form also includes an interview

configuration area that lets recruiters attach preset interview questions and optionally link an

assessment to the role. Standardizing these elements ensures a consistent interview experience

for all applicants and makes downstream evaluation easier and fairer.

Figure 5.4.7.1 IntelliHire recruiter job posting

page: preset question and assessment section

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 101

After saving, the posting is created in Open status and becomes available to candidates.

The interface supports inline validation (e.g., required fields, numeric ranges) and provides a

clear summary preview before publishing. If needed, recruiters can return to the form to adjust

wording, add/removes skills, or refine compensation and work-mode details without disrupting

existing applications.

Recruiters can then manage their roles from the Job Management list, which displays all

postings with key metadata—job title, date posted, number of applications, and current status.

Each row offers quick actions to View, Edit, or Close the posting. The View action opens the

job detail page as seen by candidates; Edit allows safe updates to description and requirements;

and Close archives the role to prevent new applications while preserving the full application

history for auditing and reporting. This centralised table supports fast triage across many roles

and makes it easy to identify postings that need attention (e.g., high volume, few applications,

or nearing deadlines).

Figure 5.4.7.2 IntelliHire recruiter job management screen

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 102

Figure 5.4.7.3 IntelliHire recruiter edit job page

5.4.7.1 Backend Processing for Job Management

The JobPostingController is responsible for handling the entire lifecycle of a job posting,

from validation and creation to updates and closure. When a recruiter submits a new job, the

controller first validates the input fields to ensure correctness, such as checking salary ranges,

verifying required attributes like job title and location, and ensuring that optional components

like assessments or preset questions follow the defined schema. Once validated, the controller

persists the posting into the database, including its responsibilities, requirements, preset

interview questions, and any linked assessments. Each action is authorized under role-based

access control to ensure that only authenticated recruiters can create or modify postings. This

structured flow ensures consistency across all postings and helps maintain data integrity.

One of the key enhancements in this module is the integration of AI-assisted job authoring.

Rather than requiring recruiters to manually construct every responsibility, skill, or preset

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 103

question, the system leverages the Gemini API to analyze the recruiter’s free-form job

description and return structured recommendations. When the recruiter activates the “Generate

Suggestions” feature, the controller dynamically constructs a prompt containing company

name, job title, responsibilities, requirements, and other details entered in the form. The prompt

enforces a strict response contract, requiring Gemini to return structured JSON with fields for

responsibilities, required skills (including type and proficiency level), years of experience,

educational requirements, certifications, preset interview questions, and whether an assessment

should be included. To ensure precision, the prompt also embeds rules to avoid unnecessary

repetition, maintain concise question wording, and respect hiring fairness standards.

Once Gemini returns its output, the controller parses the JSON response and validates its

structure. If errors are detected, lightweight repair mechanisms attempt to correct issues such

as missing brackets or invalid data types. The output is staged as a preview so recruiters can

review and selectively accept, edit, or discard suggestions. This prevents the system from

blindly committing AI-generated results and gives recruiters full control over the final posting.

Accepted data is then mapped to internal tables such as job_responsibilities, job_requirements,

and preset_questions, while assessments are automatically linked if recommended by the AI.

Additional normalization ensures that variants of the same skill (such as “HTML” and

“HTML5”) are unified, and policy filters prevent the inclusion of biased or inappropriate terms.

To maintain usability even in the event of AI service disruptions, the controller includes retry

logic with timeouts and exponential backoff, while falling back to a basic template-based

extractor if Gemini cannot be reached.

When a posting is finalized, the controller performs server-side validation once more before

committing all data within a single transaction to guarantee consistency across related tables.

Updates and edits follow the same pathway, with timestamps marking version history to

preserve a record of recruiter actions. Closing a posting changes its status from Open to Closed

without deleting associated applications, allowing the data to remain available for reporting

and analytics. To safeguard integrity, all AI calls are authenticated with environment-specific

keys, and recruiter edits or overrides are recorded with audit metadata. By combining manual

control with AI-assisted suggestions, the backend ensures that job postings are accurate,

comprehensive, and recruiter-approved while remaining resilient to service interruptions.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 104

5.4.8 Application Management

The Application Management module gives recruiters a centralized workspace to review

candidates, update statuses, and schedule interviews. The Applications Overview screen

presents all incoming applications in a sortable table with candidate name, position applied for,

application date, and current status. Recruiters can filter the list by status (e.g., Applied,

Shortlisted, Interviewed, Offered, Rejected) and quickly drill down to specific candidates for

evaluation.

Figure 5.4.8.1 IntelliHire recruiter application overview list with candidate table.

Selecting a row opens the Application Details view, which consolidates all materials for

the chosen candidate. Recruiters can review the submitted resume and optional cover letter,

browse application notes, and, when available, inspect interview artifacts such as recorded

responses and AI feedback. From this page, recruiters can update the application status—for

example, promoting a candidate from Applied to Shortlisted, moving to Offered, or marking

as Rejected. If a candidate has attempted the interview, the status automatically reflects

Interviewed, and the related interview record appears at the bottom of the page.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 105

Figure 5.4.8.2 IntelliHire recruiter application management screen: candidate details and

interview responses

When a candidate is marked Shortlisted, the system initiates the Interview Scheduling flow.

The Schedule screen allows the recruiter to define a valid date range for participation. Upon

confirmation, the system issues a unique interview code bound to that application and validity

window. The candidate must join within the designated timeframe using this code; outside of

it, access is denied and the code is considered expired. This lightweight, code-based approach

simplifies logistics while preserving control and traceability.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 106

Figure 5.4.8.3 IntelliHire recruiter application management screen: schedule screen

5.4.9 AI Analysis

The AI analysis module provides recruiters with a consolidated view of candidate

evaluation results across three dimensions: job match analysis, interview performance analysis,

and assessment results. This feature transforms raw candidate data into meaningful insights,

enabling recruiters to make informed hiring decisions efficiently. Each interface within this

module presents results in a clear and structured manner, combining visual indicators with

detailed explanations to highlight both candidate strengths and areas requiring improvement.

The first section, Job Match Analysis, visually represents how well a candidate aligns with

the requirements of a job posting. This view includes compatibility percentages for skills,

education, experience, and certifications, with color-coded indicators that help recruiters

quickly interpret candidate suitability. Matched and missing skills are listed explicitly,

distinguishing between required and preferred competencies. A candidate with a high match

percentage demonstrates strong alignment, while a low percentage signals significant gaps.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 107

Figure 5.4.9.1 IntelliHire AI-powered job match analysis interface

Next, the Interview Responses & Analysis (Overall) page summarizes candidate

performance during the AI-powered interview. Recruiters can view a performance score (e.g.,

7.5/10), key strengths, and areas for development. The analysis highlights technical expertise,

communication quality, and problem-solving approaches, while also identifying weaknesses

such as unclear answers or insufficient detail. A “Hiring Confidence” recommendation is

displayed at the bottom, offering a final recommendation (e.g., High, Medium, Low confidence)

based on overall performance.

Figure 5.4.9.2 IntelliHire overall interview performance summary with key strengths and

areas for development

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 108

Figure 5.4.9.3 IntelliHire detailed skill assessment and recruiter-oriented observations

For a deeper dive, recruiters can examine Interview Responses & Analysis (Per Question).

Each individual interview question displays the candidate’s response alongside AI-generated

evaluation metrics. Scoring categories such as completeness, relevance, clarity, and

communication are presented numerically and supported by written feedback. Key points are

summarized into “Strengths” and “Could Improve” sections, ensuring recruiters understand

exactly why a response scored the way it did. Additionally, recorded video responses are

available for review, ensuring human recruiters can validate AI judgments when necessary.

Figure 5.4.9.4 IntelliHire AI analysis of individual interview responses

(Video Response)

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 109

The final component of this module is the Assessment Results view, which displays

candidate performance in structured assessments. Each question shows the candidate’s answer

along with AI evaluation scores such as completeness, accuracy, clarity, and relevance. The

system highlights detailed comments on strengths and areas for improvement, while also

providing an overall score per question. A retry analysis button is available for situations where

recruiters wish to reprocess the evaluation for consistency. This structured breakdown enables

recruiters to gauge not only correctness but also the quality of thought and communication in

candidate answers.

Figure 5.4.9.5 IntelliHire AI-powered assessment evaluation screen

5.4.9.1 Job Matching Backend

The backend for job matching begins by pulling structured data from multiple related tables,

including candidate resumes (with experiences, education, skills, and certifications) and the

job postings with their required qualifications. When a recruiter requests analysis, the

JobMatchingController::calculateMatch() method loads the relevant application record and

retrieves all associated resume and requirement data. This structured dataset is then passed to

the Gemini API, which evaluates candidate-job compatibility category by category. Each skill,

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 110

educational credential, and experience requirement is compared against parsed resume data.

The AI is guided by prompts that explicitly define similarity levels, such as treating HTML

and HTML5 as equivalent skills, or Python and Python3 as versions of the same language.

Scoring is returned on a scale of 0–100, with short explanations for each match, and stored

temporarily in the Laravel cache for performance. Recruiters thus receive not only an overall

compatibility percentage but also detailed highlights of strengths and gaps across all

requirement categories.

Figure 5.4.9.6 AI prompt engineering for skill matching with version-aware scoring criteria

and structured JSON response format

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 111

5.4.9.2 Interview Analysis Backend

For interviews, candidate responses are first stored in the interview_responses table, linked

to their application and schedule records. The RecruiterApplicationController::

analyzeInterviewResponses() function processes these entries by iterating over each recorded

answer and submitting them to Gemini for evaluation. Since the responses originate from

speech-to-text transcription, the AI prompt explicitly accounts for missing punctuation, unclear

sentence boundaries, and potential transcription errors. Gemini is instructed to score each

answer across five criteria—completeness, relevance, depth, clarity, and communication—

using a 0–10 scale, and to provide structured JSON feedback. Results for each answer are

stored in the ai_feedback table, while aggregated session-level analysis (including overall

scores, strengths, weaknesses, and hiring confidence) is persisted in the analysis_results table.

This separation ensures recruiters can review both granular and high-level insights. Malformed

AI outputs are handled through JSON extraction and validation logic, with retries triggered

automatically when necessary.

Figure 5.4.9.7 Speech-to-text aware interview analysis prompt with five-dimensional scoring

criteria and structured JSON feedback format

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 112

5.4.9.3 Assessment Analysis Backend

Assessment responses follow a similar pipeline, starting from entries in the

assessment_responses table, each tied to a candidate schedule and specific assessment

questions. The controller method analyzeAssessment() processes these submissions by sending

each response to Gemini with structured prompts that request evaluation under four dimensions:

completeness, accuracy, clarity, and relevance. The AI returns JSON-formatted output that

includes a numeric score, max score, explanatory comments, strengths, and areas for

improvement. These evaluation details are stored directly within the assessment_responses

table under dedicated AI fields, keeping all raw and evaluated data in a single location. A retry

mechanism is also available for failed or inconsistent evaluations, allowing recruiters to re-run

the analysis at the click of a button. This integration ensures that assessments benefit from the

same consistency and depth of analysis as interviews, while maintaining lightweight database

storage.

Figure 5.4.9.8 Assessment evaluation prompt with four-dimensional scoring and direct HTTP

API integration for automated response analysis

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 113

5.4.9.4 AI Integration and Error Handling

All AI analysis across job matching, interviews, and assessments relies on Gemini 2.0 Flash

through an HTTP client configured in Laravel. API keys are securely stored in environment

variables, and requests use HTTPS-only communication. To guarantee reliability, the system

enforces variable timeouts (8-60 seconds depending on operation type) and applies a circuit

breaker pattern with a 3-failure threshold to avoid overloading the service. Failed responses

trigger fallback strategies such as basic keyword matching, cached results, or graceful

degradation with 5-minute cooldown periods. The backend employs JSON parsing and

validation functions to extract usable content from AI responses, ensuring malformed output

does not disrupt processing. Error handling includes retries for individual responses with

exponential backoff, session-wide recovery attempts, and clear recruiter-facing warnings if

analysis cannot be completed. The system also implements rate limiting (10 requests per hour)

and maintains failure tracking with 1-hour cache duration.

Figure 5.4.9.9 Circuit breaker pattern implementation with failure tracking, rate limiting, and

aggressive timeout handling for AI service reliability

5.4.10 PDF Report Generation System

The PDF report generation system is an integrated feature within the IntelliHire platform

that enables recruiters to download professional-grade reports summarizing a candidate’s

complete evaluation journey. This functionality is triggered once all interview and assessment

analyses are completed, ensuring that the generated report is both comprehensive and reliable.

Recruiters can access the report via the application detail page, where a dedicated download

button becomes available upon completion of all required evaluations.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 114

Figure 5.4.10.1 Application detail page showing the download report feature once all

analyses are complete.

At the backend, the system is powered by Laravel’s DomPDF package, which converts

dynamically generated Blade templates into structured PDF files. The process begins with the

RecruiterApplicationController::exportPdf() method, which acts as the main entry point. This

method loads complex relational data using Laravel’s Eloquent ORM, including candidate

details, resumes, interview responses, assessment results, and AI-generated analyses. The

architecture employs both eager loading and fallback manual queries to guarantee that no

critical information is missed, even if relationship loading fails.

Figure 5.4.10.2 Sample of generated PDF report overview showing candidate and application

details.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 115

The PDF report integrates AI analysis results directly into its content. For interview

responses, natural language processing is applied to evaluate answers across multiple

dimensions, including completeness, relevance, clarity, and communication. The system also

accounts for limitations in speech-to-text transcription, ensuring that candidate evaluations

remain fair despite minor errors. For assessments, candidate responses are validated against

predefined rules and scored by the AI across criteria such as accuracy, completeness, and

relevance. All of these results are compiled into structured report sections, presenting recruiters

with both strengths and improvement suggestions.

Figure 5.4.10.3 Resume section within the

generated PDF, including work experience,

education, skills, and certifications.

Figure 5.4.10.4 Overall interview analysis

section highlighting AI-generated strengths,

weaknesses, and final recommendations.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 116

Figure 5.4.10.5 Breakdown of candidate

responses and AI evaluation per question.

Figure 5.4.10.6 Assessment report showing

candidate answers, expected outcomes, and

AI scoring.

5.5 Implementation Issues and Challenges

The implementation of IntelliHire presented several challenges that required iterative

refinement of both technical and design aspects. One of the most significant issues was

integrating with the Gemini API, which powers the system’s job matching, interview question

generation, and response analysis. Since large language models can sometimes return

inconsistent or malformed JSON outputs, strict prompt engineering and validation routines had

to be introduced. Additional retry logic was also required to handle API timeouts and rate limits,

ensuring that the system remained reliable even when processing multiple candidates

simultaneously.

Another major challenge involved the real-time features of the platform, particularly

speech-to-text (STT) and text-to-speech (TTS). While these functions improved interactivity,

browser compatibility introduced unexpected difficulties. Different browsers varied in their

handling of continuous recognition, permissions, and recording, requiring the implementation

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 117

of permission checks, fallback logic, and clear user feedback messages. Handling video and

audio recordings also introduced storage concerns, as large media files risked slowing down

the system if not managed carefully. To overcome this, the database was optimized to separate

lightweight text transcripts from heavier multimedia files, striking a balance between

performance and long-term storage.

Maintaining consistent workflows across modules such as applications, interviews,

assessments, and recruiter dashboards was another area that demanded attention. Changes in

application status, for example, had to trigger corresponding updates in interview scheduling

and code generation to prevent misaligned records. This required careful database validation

and cross-module testing. From a usability standpoint, enforcing strict rules—such as

preventing candidates from retaking interviews once started—sometimes confused users who

navigated away accidentally. Similarly, recruiter dashboards initially overloaded users with

excessive detail, which was later refined into a more balanced and accessible design.

Finally, challenges also arose in ensuring fairness and transparency in AI-driven evaluation.

Speech-to-text limitations, such as missing punctuation or transcription errors, sometimes

influenced results. To mitigate this, prompts were refined to instruct Gemini to tolerate such

artifacts, and explanatory feedback was provided alongside numerical scores so recruiters

could better interpret AI outputs. Development and testing constraints further complicated

implementation, as frequent API calls were costly and time-consuming. This was addressed by

using mock responses during debugging, which allowed the system to be tested without

exhausting API limits.

Overall, these challenges underscored the complexity of building a system that combines

AI, real-time browser capabilities, and structured recruitment workflows. By addressing these

issues, IntelliHire was able to evolve into a robust and fair platform that balances technical

innovation with practical usability.

CHAPTER 5 SYSTEM IMPLEMENTATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 118

5.6 Concluding Remark

In conclusion, this chapter has presented the detailed implementation of the IntelliHire

system, covering both the candidate and recruiter portals, the AI-powered interview and

assessment modules, and the supporting backend logic. Each component was explained with

reference to its user interface, functional workflow, and integration with AI services,

demonstrating how the system operates as a cohesive whole. By combining Laravel for

backend management, MySQL for structured data storage, and Gemini API for dynamic

question generation and evaluation, IntelliHire successfully integrates traditional web

technologies with advanced AI features.

This chapter has also highlighted how real-time functionalities such as text-to-speech,

speech-to-text, and interview session handling were embedded into the platform, ensuring an

interactive and realistic recruitment experience. For recruiters, the dashboards, job

management tools, and AI-enhanced analytics provide actionable insights and streamlined

candidate evaluation. Overall, the implementation described in this chapter forms the backbone

of the IntelliHire platform, bridging design concepts with a working system that will be further

validated in the testing phase presented in the next chapter.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 119

Chapter 6 System Evaluation and Discussion

6.1 System Testing and Performance Metrics

This chapter adopts a black-box testing strategy to validate IntelliHire’s correctness from

an external user perspective—verifying what the system does rather than how it is implemented.

In line with the project’s focus on end-to-end behaviour and workflow integrity, testing

emphasizes Decision Table analysis for business rules and State Transition testing for lifecycle

flows. Fine-grained input partitioning (e.g., exhaustive field ranges, file sizes, or extreme

boundary cases) is intentionally out of scope to keep evaluation centred on functional outcomes,

role permissions, and process transitions that users and recruiters actually experience. A few

smoke checks (e.g., valid/invalid login, resume file type acceptance/rejection) are included to

demonstrate baseline input validation without expanding into full Equivalence Partitioning or

Boundary Value Analysis.

6.1.1 Objectives and Scope

The objectives of testing are to:

1. Validate rule correctness using Decision Tables for scenarios with multiple conditions and

outcomes (e.g., application status updates, interview-code validity windows, access control,

and “shouldSpeak” TTS decisions).

2. Verify lifecycle flows using State Transition models for processes that progress through

clearly defined states (e.g., interview: code entered → rules acknowledged → in-progress

→ ended; assessment: not started → answering → auto-submit on timeout → completed;

recruiter workflow: create job → shortlist → schedule → code generated).

3. Demonstrate system robustness on critical negative paths (e.g., expired/invalid interview

codes, navigating away during interview, second attempt after silence) and confirm

graceful recovery or correct enforcement of constraints.

In scope: authentication & role routing; job browsing with/without resume data; application

submission; interview flow (rules, permissions, timers, end-conditions); assessment flow

(question sequence, timer, auto-submit); recruiter actions (status changes, scheduling, code

generation); read-only analytics/insights display.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 120

6.1.2 Testing Techniques

Decision Table Testing enumerates combinations of conditions and actions to ensure rules are

applied consistently. It is particularly suitable for IntelliHire’s branching behaviours—for

example:

• Status transitions (e.g., Applied → Shortlisted → Interviewed → Offered/Rejected)

gated by recruiter role and current state.

• Interview join rules based on code existence, date-time window, and reuse/expiry.

• UI display rules (e.g., show job-match score only when parsed resume data exists,

otherwise prompt resume upload).

• Backend-driven TTS decision (speak/not speak) based on stage tags, question markers,

and permission readiness.

State Transition Testing models each process as a set of states, events, and guards, then verifies

valid and invalid paths. It is ideal for:

• Interview lifecycle: code entry → rules acknowledged → mic/cam enabled → in-

progress → ended, with negative transitions (refresh/close tab → ended/no resume).

• Assessment lifecycle: not started → in progress → auto-submit on timeout →

completed.

• Recruiter pipeline: create job → shortlist → schedule → code active → expired.

This technique ensures the system responds correctly to events and enforces guards (e.g.,

cannot start interview without permissions; cannot resume once ended).

Out of scope: exhaustive input ranges and low-level device/performance tuning (e.g.,

microphone gain levels, codec differences), model-internal AI accuracy; instead we assert

contractual correctness of outputs (format and presence), not semantic truth of AI judgements.

6.1.3 Acceptance Criteria

A test passes when, for the given inputs and preconditions, the system:

• Reaches the expected state (e.g., Interview = In-Progress, Assessment = Completed,

Application = Shortlisted).

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 121

• Enforces rule outcomes (allow/deny transitions, show/hide UI components,

enable/disable actions) exactly as specified by the Decision Table.

• Produces contract-compliant outputs, especially for AI-backed views (scores/feedback

present with valid ranges and structure; no requirement to verify semantic correctness

of the AI content).

• Handles negative paths gracefully (clear error messages, disabled actions, safe redirects,

or session termination where required).

A test fails if the observed state, rule application, UI contract, or error handling deviates from

the specification or any guard condition is bypassed.

6.1.4 Coverage Plan and Test Inventory

To balance rigour and feasibility, testing targets 10 cases total: approximately 5-6 Decision-

Table tests (rules and permissions) and 4-5 State-Transition tests (lifecycles and end-to-end

flows). This level of coverage validates all critical workflows for candidates and recruiters

while avoiding combinatorial explosion.

6.1.5 Test Data and Environment Assumptions

Tests run on a local development stack (Laravel + MySQL, XAMPP) with seeded data: at

least one recruiter account, one candidate account, sample job postings, and sample resumes

(valid PDF/DOCX and an intentionally invalid type). Browser tests are conducted primarily on

Chrome with microphone/camera permissions toggled to verify interview guards. Time-based

tests (e.g., interview-code windows, assessment timers) use controlled server time and short

validity windows to accelerate execution.

6.1.6 Performance Metrics

Performance is tracked at a lightweight SLA level to ensure responsiveness during core flows:

• Page responsiveness: dashboard and job listing pages render < 3s on local dev with

seeded data.

• Interview start latency: from code validation to rules page < 2s; from rules acceptance

to interview UI < 3s.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 122

• Scheduling operation: generating and saving an interview code < 1s.

• Assessment navigation: question load and submit/next transition < 2s.

• Measurements are captured with browser dev tools and Laravel logs; failures trigger

review but do not replace formal load testing.

6.2 Testing Setup and Result

6.2.1 Decision Table Testing

6.2.1.1 Authentication & Registration Rules

This decision table validates the login and registration process for both candidates and

recruiters. It ensures that only valid email/password combinations are accepted, and users are

redirected correctly to their respective dashboards. Invalid input conditions are grouped into a

single case to reduce redundancy, confirming that the system consistently blocks unauthorized

access.

Table 6.2.1 Decision Table: Authentication & Registration Rules

Condition TC 1 TC2 TC3 TC4 TC5

Valid email T T T T F / –

Valid password T T T T F / –

Existing Account T T F F F / T

Role = Candidate T – T – –

Role = Recruiter – T – T –

Action

Login success Y Y N N N

Login fail N N N N Y

Registration success N N Y Y N

Redirect to Candidate DB Y N Y N N

Redirect to Recruiter DB N Y N Y N

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 123

6.2.1.2 Job Browsing (Resume Rules)

This table tests how job listings are displayed depending on whether a candidate has

uploaded and successfully parsed a resume. When resume data exists, AI-powered job-match

scores are shown; otherwise, the system defaults to a generic listing with an “Upload Resume”

button. This confirms that personalization is correctly tied to resume availability.

Table 6.2.2 Decision Table: Job Browsing (Resume Rules)

Condition TC1 TC2 TC3 TC4

Uploaded resume T T F F

Resume Successfully Parsed T F T F

Action

Show AI job-match scores Y N Y N

Show generic listing with “Upload Resume” button N Y N Y

6.2.1.3 Application Status Transitions

The application management process involves recruiter-controlled transitions between

states such as Applied, Shortlisted, Interviewed, Offered, and Rejected. This table verifies that

only recruiters can initiate transitions, that invalid jumps (e.g., Applied → Interviewed directly)

are blocked, and that final states (Offer/Reject) are enforced. It also confirms that scheduling

is triggered after shortlisting.

Table 6.2.3 Decision Table: Application Status Transitions

Condition TC1 TC2 TC3 TC4 TC5 TC6

Actor is recruiter T T T T F T

Current = Applied T – – – – T

Current = Shortlisted – T – – – –

Current = Interviewed – – T – – –

Intended action = Shortlist T – – – – –

Intended action = Mark

Interviewed

– T – – – T

Intended action = Offer – – T – – –

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 124

Intended action = Reject – – – T – –

Action

Transition allowed Y Y Y Y N N

New status Shortlisted Interviewed Offered Rejected — —

Require scheduling form

(after change)

Y N N N — —

Final state reached

(Offer/Reject)

N N Y Y — —

6.2.1.4 Interview Code Validation

This table tests the rules for candidate access to interview sessions. The system checks

whether the code exists, is within its validity window, has not been used before, and matches

the candidate’s application. Errors such as “Not Found,” “Expired,” “Already Used,” or

“Unauthorized” are returned when conditions fail. This ensures secure and controlled access to

interviews.

Table 6.2.4 Decision Table: Interview Code Validation

Condition TC1 TC2 TC3 TC4 TC5

Code exists T F T T T

Within validity window T – F T T

Code already used F – F T F

Candidate matches application T – T T F

Action

Join interview allowed Y N N N N

Error: Not found N Y N N N

Error: Expired N N Y N N

Error: Already used N N N Y N

Error: Unauthorized N N N N Y

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 125

6.2.1.5 Interview TTS Decision

This decision table reflects the backend shouldSpeak logic, determining when TTS is

triggered. The system speaks when questions are present and permissions are granted, or when

closing announcements must be made. It skips speech when permissions are missing or content

is not a question. This guarantees consistent and context-aware TTS delivery during interviews.

Table 6.2.5 Decision Table: Interview TTS Decision

Condition TC1 TC2 TC3 TC4 TC5

Stage = intro/preset/standard T T F T T

Stage = closing F F T F F

Message contains [QUESTION:X] T T F F T

Message contains [STAGE:X] F F T F F

Mic & cam permissions ready T F T T F

Action

Backend sets shouldSpeak = true Y N Y N N

6.2.1.6 Assessment Availability Rules

This table validates whether a candidate is redirected to the assessment page or back to the

dashboard after an interview. The outcome depends on whether the recruiter configured an

assessment, whether the candidate completed the interview, and whether the assessment has

already been attempted. A banner is shown if the assessment is already completed. This ensures

candidates follow the correct post-interview flow.

Table 6.2.6 Decision Table: Assessment Availability Rules

Condition TC1 TC2 TC3 TC4

Job has assessment configured T T F T

Interview completed T F – T

Assessment already completed F – – T

Action

Redirect to Assessment page Y N N N

Redirect to Dashboard N Y Y Y

Show banner “Assessment already completed” N N N Y

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 126

6.2.2 State Transition Testing

6.2.2.1 Authentication and Role Routing

This diagram validates the login and registration flow for both candidates and recruiters,

including handling of invalid credentials and post-registration logins. It ensures that only valid

users are routed into their respective authenticated dashboards.

Figure 6.2.2.1 State Transition Diagram: Authentication and Role Routing

Test cases:

1. Start + open site → Login/Registration page

2. Login/Registration page + submit login [valid email & pwd, role=candidate, account

exists] → Authenticated (Candidate)

3. Login/Registration page + submit login [valid email & pwd, role=recruiter, account

exists] → Authenticated (Recruiter)

4. Login/Registration page + submit login [invalid email OR invalid pwd OR

account !exists] → Auth Failed

5. Login/Registration page + submit registration [valid fields & new account] →

Registered (needs login)

6. Registered (needs login) + login [role=candidate] → Authenticated (Candidate)

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 127

7. Registered (needs login) + login [role=recruiter] → Authenticated (Recruiter)

8. Authenticated (Candidate/Recruiter) + logout → Login/Registration page

6.2.2.2 Job Browsing (Resume -Based Display)

This diagram tests the candidate job-browsing flow, covering scenarios with and without a

resume uploaded, and whether parsing succeeds. It ensures that AI-based recommendations are

shown only when resume data is available.

Figure 6.2.2.2 State Transition Diagram: Job Browsing (Resume-Based Display)

Test Cases:

1. Jobs page (no resume data) + upload resume → Resume uploaded (parsing)

2. Resume uploaded (parsing) + parse success → Parsed resume available

3. Resume uploaded (parsing) + parse fail → Generic listing

4. Parsed resume available + [parsed_data exists] → Personalized listing (with matching

scores)

5. Jobs page (no resume data) + [no parsed_data] → Generic listing

6. Generic listing + Resume uploaded later → Personalized listing (with matching score)

7. Personalized listing (with matching score) + Resume removed/invalid → Generic

listing

6.2.2.3 Interview Flow

This diagram validates the candidate interview process, from entering the access code to

completing the session. It checks that microphone/camera setup is mandatory, and that

responses are recorded and evaluated before progressing to the next stage.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 128

Figure 6.2.2.3 State Transition Diagram: Interview Flow

Test Cases:

1. Code entry + valid code → Rules & consent page

2. Code entry + invalid/expired code → Terminated

3. Rules & consent page + accept → Mic/Cam check

4. Rules & consent page + decline → Terminated

5. Mic/Cam check + pass → In-Interview (question active)

6. Mic/Cam check + fail/denied → Rules & consent page

7. In-Interview + start answering → Recording (speech capture)

8. In-Interview + user navigates away → Terminated

9. In-Interview + user click "end interview" button → Terminated

10. Recording + stop → Evaluating response

11. Evaluating response + AI evaluation success → Next question / Stage transition

12. Next question / Stage transition + more questions remaining→ In-Interview (question

active)

13. Next question / Stage transition + reached max questions → Completed

6.2.2.4 Assessment Flow

This diagram tests the written/audio assessment module, including timer-based constraints,

AI evaluation of responses, and transitions between questions until completion.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 129

Figure 6.2.2.4 State Transition Diagram: Assessment Flow

Test Cases:

1. Assessment landing (Q1) + start → Question active (timer running)

2. Question active + submit answer → Answer submitted

3. Question active + timer expired → Expired/Terminated

4. Expired/Terminated + next question available → Next question ready

5. Answer submitted + AI evaluation triggered → AI evaluation in progress

6. AI evaluation in progress + success → Next question ready

7. Next question ready + next question available → Question active (timer running)

8. Next question ready + last question → Completed → Results page

6.2.2.5 Application Management Workflow

This diagram tests the recruiter’s management of candidate applications, covering updates

from initial application through interview, offer, or rejection, until closure.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 130

Figure 6.2.2.5 State Transition Diagram: Application Management Workflow

Test Cases:

1. Idle + submit application → Applied

2. Applied + reject → Rejected

3. Applied + recruiter shortlists → Shortlisted

4. Shortlisted + schedule interview → Scheduled

5. Shortlisted + reject → Rejected

6. Scheduled + reject → Rejected

7. Scheduled + interview completed → Interviewed

8. Interviewed + recruiter offers → Offered

9. Interviewed + recruiter rejects → Rejected

10. Interviewed + job closed → Closed

11. Applied + job closed → Closed

12. Shortlisted + job closed → Closed

13. Scheduled + job closed → Closed

6.2.3 Testing Results

The system testing was conducted based on the decision table tests (Section 6.2.1) and state

transition tests (Section 6.2.2). Each decision rule and transition path defined in the test design

was executed systematically to ensure coverage of all functional behaviors.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 131

Test Execution Summary:

• Decision Table Testing: All six decision tables (authentication & registration rules, job

browsing rules, application status transitions, interview code validation, interview TTS

decision, and assessment availability rules) were executed. Each rule produced the

expected outcome without deviation.

• State Transition Testing: All state diagrams (authentication & role routing, job

browsing, interview flow, assessment flow, and application management workflow)

were tested along every possible transition path. Each state change was validated

successfully against the defined acceptance criteria.

Results Overview:

• Total Test Cases: 100% of designed test cases were executed.

• Pass Rate: 100% of the test cases passed without critical defects.

• Defects: No blocking or high-severity defects were identified during testing. Minor UI

inconsistencies and non-functional issues (e.g., alignment of certain front-end elements)

were observed but were resolved immediately during debugging.

• Coverage: Test coverage achieved complete mapping with the system’s functional

requirements, ensuring that all modeled flows (normal and alternate) were validated.

The successful execution of all decision table and state transition test cases confirms that

the IntelliHire system meets the defined functional requirements. The recruitment workflows,

including resume screening, job application, interview execution, assessment, and recruiter

decision-making, were validated to operate correctly under all modeled conditions. The system

is therefore considered stable, reliable, and ready for deployment.

6.3 Project Challenges

While IntelliHire’s testing phase confirmed overall functional correctness, several

challenges emerged during evaluation that required careful handling. One recurring issue was

related to AI evaluation consistency. Since the system relies on Gemini to score candidate

responses, results could vary slightly across runs even with identical inputs. This made it

difficult to establish fixed “expected outputs” for black-box testing. To mitigate this, the

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 132

evaluation criteria were narrowed to focus on presence of scores, correct response structure,

and logical transitions between states, rather than expecting identical AI wording every time.

Another challenge involved state transition coverage. The system contains multiple

interdependent modules such as authentication, interviews, and assessments. Ensuring that

every state and transition arrow was tested at least once required systematic planning. Some

negative paths, such as expired interview codes, silent microphone input, or incomplete

assessments, were harder to reproduce consistently in a controlled environment. Test scripts

and timers had to be deliberately manipulated to validate these scenarios.

Performance validation also posed difficulties. Although lightweight performance

thresholds (page loads, code validation times, and assessment navigation) were defined,

capturing precise timings during development was inconsistent due to fluctuations in local

machine performance and network conditions. As a result, repeated trials were necessary to

ensure that no SLA breaches occurred and that observed delays were due to environmental

factors rather than system faults.

Finally, black-box testing limitations were evident in evaluating advanced features. For

example, verifying whether AI scoring logic considered specific competencies or whether

resume parsing extracted all attributes accurately could not be fully confirmed without looking

into internal processing. This restricted the evaluation to input–output behavior, which was

sufficient for functional validation but highlighted the need for future white-box or hybrid

testing approaches for more granular assurance.

6.4 Objective Evaluation

The evaluation of IntelliHire was conducted with reference to the three primary objectives

defined in the project proposal. Overall, the system successfully achieved the intended goals

and demonstrated measurable improvements in recruitment efficiency, automation, and user

experience.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 133

Objective 1: Develop an AI-Powered Resume Screening System

This objective has been met through the integration of AI-based resume parsing and job

matching algorithms. Resumes uploaded by candidates are automatically parsed into structured

data including skills, education, experience, and certifications. The system then compares these

attributes with job requirements, producing compatibility scores and ranked recommendations.

Testing confirmed that parsed data was correctly stored, retrieved, and used to personalize job

browsing. This eliminated the need for recruiters to manually filter resumes, aligning with the

goal of saving time and enforcing a standardized screening process.

Objective 2: Automate the Interviewing Process for Increased Efficiency and Consistency

The interview system incorporated AI-generated question flows, speech-to-text

transcription, text-to-speech delivery, and automated response analysis. Through state

transition testing, the interview lifecycle was validated from code entry through completion,

including both normal and error conditions (e.g., expired codes, silence detection). AI analysis

provided structured feedback across defined criteria such as completeness, relevance, and

clarity. This automation reduced manual interviewer involvement, ensured consistency across

sessions, and achieved the intended objective of streamlining interview management.

Objective 3: Real-Time Scheduling and Feedback System

This objective was also achieved. Recruiters could generate interview schedules with

unique codes and defined time ranges, while candidates received immediate confirmation.

Post-interview, the system delivered timely AI-based evaluations, which were further compiled

into downloadable PDF reports. Black-box testing confirmed that scheduling rules (e.g.,

expired codes, invalid windows) were correctly enforced and that candidates were redirected

seamlessly to assessment modules when required. This provided real-time interaction and

reduced administrative delays, enhancing both recruiter decision-making and candidate

experience.

All three objectives have been satisfied. The AI-powered resume screening module

automated the filtering process, the interview system ensured structured and consistent

evaluations, and the scheduling and feedback components enabled timely decision-making.

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 134

The testing results confirmed that IntelliHire functions as designed, delivering a reliable and

efficient recruitment platform that addresses the core project goals.

6.5 Concluding Remark

This chapter evaluated IntelliHire through systematic black-box testing, covering both

decision table and state transition techniques. The results confirmed that the system behaves

consistently with the functional requirements, correctly handling positive flows, negative cases,

and edge conditions. Performance checks further validated that the platform remains

responsive within acceptable thresholds.

Although development presented challenges—particularly in AI integration, frontend-

backend synchronization, and performance optimization—these were resolved through

iterative testing and refinement. Overall, IntelliHire has proven to be a reliable and effective

recruitment platform that meets its design objectives.

CHAPTER 7 CONCLUSION AND RECOMMENDATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 135

Chapter 7 Conclusion and Recommendation

7.1 Conclusion

The development of IntelliHire: An AI-Powered Interviewer for Automated Candidate

Selection has demonstrated the feasibility and potential of integrating artificial intelligence into

recruitment workflows. This project has successfully implemented the core components of a

functional recruitment platform, enabling both recruiters and candidates to interact through a

centralized system. Recruiters can post jobs, manage applications, and schedule interviews,

while candidates can apply for jobs, track their application status, and participate in AI-

conducted interviews.

The system directly addresses the shortcomings of traditional recruitment processes such

as manual resume screening, inconsistent interview evaluations, and delays in scheduling or

feedback. By adopting Laravel as the backend framework, utilizing MySQL for structured data

storage, and integrating Google’s Gemini API for intelligent interview question generation and

response evaluation, IntelliHire showcases how AI can be harnessed to build a scalable, reliable,

and semi-autonomous recruitment tool.

One of the highlights of this system is its automated interview session. The AI dynamically

generates interview questions, manages the flow of interaction, records candidate responses,

and stores transcripts for later review. This approach enhances efficiency, ensures consistency

across candidates, and reduces reliance on human recruiters during the early stages of selection.

Although IntelliHire already demonstrates strong functionality, there remain areas for

improvement. Planned enhancements include enhanced resume screening scoring, structured

assessments, AI-driven feedback on responses, real-time voice interaction, and intelligent job

recommendations. These improvements will ensure that IntelliHire evolves into a more

comprehensive, engaging, and fair recruitment solution.

In summary, the first phase of IntelliHire has laid a solid foundation for revolutionizing the

recruitment process. The project not only proves that AI can streamline hiring but also

CHAPTER 7 CONCLUSION AND RECOMMENDATION

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 136

emphasizes its role in creating a transparent, objective, and scalable system for candidate

evaluation.

7.2 Recommendation

To further strengthen IntelliHire and expand it into a comprehensive AI-assisted

recruitment platform, several enhancements are recommended. First, the system should

incorporate a resume screening and scoring module that automatically evaluates resumes

against job requirements, thereby saving recruiters time and improving the fairness of

shortlisting. In addition, a comprehensive assessment feature is necessary to complement

interviews, allowing candidates to complete structured tests while AI evaluates their answers

objectively. Another important enhancement is the integration of an AI feedback mechanism

that can analyze candidate responses and provide recruiters with insights while also offering

candidates constructive feedback for self-improvement. To make the interview process more

natural, the system should support real-time speech-to-text interaction, enabling candidates to

respond verbally in a way that closely mirrors live interviews. On the candidate side, the job

recommendation engine can be enhanced through intelligent algorithms that personalize

suggestions based on skills, application history, and preferences. Beyond these, two additional

future improvements include an offer letter generator, which can automate the preparation of

hiring documents, and customizable interview prompts, allowing recruiters to tailor interview

flows to specific job roles and contexts. In the long term, features such as advanced recruiter

analytics dashboards and candidate support tools like practice interviews or career tips could

also be incorporated. With these enhancements, IntelliHire has the potential to evolve into a

holistic recruitment ecosystem that not only improves recruiter efficiency and consistency but

also provides candidates with a transparent, supportive, and engaging experience.

REFERENCES

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 137

REFERENCES

[1] “How AI Interviews Are Impacting Hiring Now and Into the Future,” VidCruiter, 2024.

https://vidcruiter.com/interview/intelligence/ai-

interviews/#:~:text=Increased%20Efficiency (accessed Sep. 05, 2024).

[2] “Your Resume Screening Challenges – Fixed,” skima.ai. https://skima.ai/blog/industry-

trends-and-insights/resume-screening-challenges (accessed Sept. 5, 2024).

[3] “Interview Intelligence – Interviewer Bias Examples | Pillar,” Pillar.hr, 2024.

https://www.pillar.hr/info/interviewer-bias-examples (accessed Sept. 5, 2024).

[4] Ben Talks Talent – Interview Advice. Why Does the Job Interview Process Take So Long.

(Sep. 1, 2022). Accessed: Sept. 6, 2024. [Online Video]. Available:

https://youtu.be/CL2Ow6Z58O8?si=Z80AJBtvCxgVK9se

[5] Interviewer.ai. “AI-Powered Interview Platform.” Interviewer.ai. https://interviewer.ai/

(accessed Aug. 20, 2024).

[6] Talently.ai. “Interview Scheduling and Assessment Platform.” Talently.ai.

https://interview.talently.ai/ (accessed Aug. 20, 2024).

[7] Apriora.ai. “AI-Powered Interview System.” Apriora.ai. https://www.apriora.ai/

(accessed Aug. 28, 2024).

[8] Braintrust. “Decentralized Talent Network.” Braintrust. https://www.usebraintrust.com/

(accessed Sept. 3, 2024).

[9] Dennis, A., Wixom, B. H., & Tegarden, D. (2021). System Analysis and Design with

UML; An Object-Oriented Approach (6th ed.). Hoboken, NJ: John Wiley & Son

(accessed Sept. 1,2024).

[10] Sommerville, I. (2021). Engineering Software Products: An Introduction to Modern

Software Engineering, 1st Ed., Pearson (accessed Sept. 2, 2024).

[11] JGraph Ltd and draw.io AG, draw.io [Computer software]. Version 26.2.15, Apr. 26,

2025. Available: https://www.drawio.com/

[12] Eraser Inc., Eraser [Computer software]. Version 2.0, Mar. 11, 2025. Available:

https://www.eraser.io/

[13] Apache Friends, XAMPP [Computer software]. Available:

https://www.apachefriends.org/

REFERENCES

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 138

[14] Composer, Dependency Manager for PHP [Computer software]. Available:

https://getcomposer.org/

[15] Microsoft, Visual Studio Code [Computer software]. Available:

https://code.visualstudio.com/

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 139

POSTER

