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ABSTRACT 
 

This project focuses on developing a system for automated static gesture sign language 

translation using deep learning. With the increasing demand for accessible communication 

tools, particularly for the hearing-impaired community, the need for reliable sign language 

translation systems is growing. The main challenge addressed in this project is the recognition 

and translation of static sign language gestures into text, which is less complex than dynamic 

gestures involving movement. The methodology involves processing images of static sign 

language gestures using hand landmark detection with MediaPipe. These landmarks are then 

normalized and input into a deep learning model, trained on processed dataset images, to 

predict the corresponding sign. The model architecture consists of multiple dense layers with 

batch normalization and dropout to ensure robust learning. The system is integrated into a user-

friendly application that offers real-time sign language translation through a webcam feed, with 

features such as dynamic confidence threshold adjustment, translation history tracking, and a 

sign language dictionary. The results show that the system is capable of accurately recognizing 

and translating static sign language gestures with high confidence, as validated by the test 

dataset. The system is efficient, easy to use, and highly adaptable for future enhancements. 

This project demonstrates the potential of deep learning in bridging communication gaps for 

the hearing-impaired community and sets the groundwork for future work in dynamic sign 

language translation. 

 

Area of Study: Deep Learning, Computer Vision 

Keywords: Sign Language Translation, Static Gesture Recognition, Deep Learning, 

MediaPipe, Hand Landmark Detection  
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Chapter 1 

Introduction 
1.1  Problem Statement and Motivation 

In Malaysia, the communication barrier between the deaf and hearing communities is a 

prevalent issue, particularly for the Deaf community that uses Malaysian Sign Language 

(MSL). This gap in communication is not only a challenge within the local population but also 

extends to interactions with international communities, as MSL differs from other sign 

languages like American Sign Language (ASL) or Indian Sign Language (ISL). The difficulty 

in communication arises primarily from the lack of familiarity with MSL in the hearing 

population. This lack of understanding restricts the social inclusion of the deaf community and 

limits their access to essential services and opportunities, such as education and employment. 

 

Moreover, the existing sign language recognition systems, although present in the research and 

development domain, are still limited in their capabilities. These systems often fail to address 

variability in gestures, such as those that differ between left and right hands. Additionally, most 

systems are designed to recognize signs from only one language or have limited language 

support, making them less versatile for real-world application, especially in multilingual 

societies like Malaysia. The lack of an efficient, accessible, and multilingual sign language 

translation system motivated this project. The aim is to bridge this communication gap by 

developing a system that automatically translates static MSL gestures into text, which can be 

understood by both the deaf and hearing populations. This project focuses on recognizing and 

translating static MSL gestures into text, leveraging deep learning and computer vision 

techniques to provide real-time translation in a user-friendly application. 

 

By creating this system, the goal is not only to aid communication within Malaysia but also to 

enable the deaf community to communicate internationally. The multilingual aspect of the 

system (supporting English, Malay, Chinese, and Tamil) helps ensure that MSL signs can be 

translated into languages that are widely spoken, thus fostering better interaction not only 

within Malaysia but also across borders, especially where English serves as a common 

language. Ultimately, this system is designed to improve inclusivity and facilitate global 

communication, making MSL more accessible to a broader audience. 
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1.2  Objectives 

The main goal of this project is to construct a deep learning system designed to identify and 

convert static Malaysian Sign Language (MSL) gestures into readable text as events unfold in 

real time. This system targets a broad range of gestures, including all letters from A to Z, 

numbers ranging from 0 to 10, and essential everyday words like "Drink," "Eat," and "Help." 

The focus lies on achieving a high level of accuracy, specifically exceeding 90%, by utilizing 

a standard webcam to capture hand movements under carefully controlled conditions. This 

setup ensures the system can process gestures reliably, providing a foundation for effective 

communication by translating visual signs into text instantly. 

 

Another key aim is to develop a system capable of managing variations in handedness with 

precision. This involves recognizing sign language gestures performed with either the left hand 

or the right hand and translating them accurately into text. To accomplish this, the project 

employs preprocessing techniques such as landmark normalization, which adjusts the position 

and orientation of hand landmarks based on the wrist’s location. This method helps the system 

adapt to different hand preferences, ensuring it works well for all users regardless of which 

hand they use to sign. 

 

The system also intends to provide real-time translation capabilities into four distinct 

languages: English, Malay, Chinese, and Tamil. This feature aims to make the system 

accessible to a diverse audience, covering the major linguistic groups found in Malaysia and 

potentially beyond. By supporting multiple languages, the system addresses the needs of users 

from different cultural backgrounds, allowing them to receive translations in their preferred 

language as gestures are made, which enhances its practical application across various 

communities. 

 

The project includes the creation of a straightforward graphical user interface using Tkinter to 

facilitate user interaction. This GUI serves as the main point of contact, offering a clear and 

simple layout that allows users to operate the system without confusion. It provides essential 

functions like starting the webcam, selecting translation languages, and viewing results, 
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making the technology approachable for individuals who may not have extensive technical 

experience, thus improving overall usability. 

 

Another objective is to integrate real-time translation feedback and a history display into the 

system. This feature enables users to see the signs the system recognizes as they happen, along 

with a record of previously translated signs and their corresponding text outputs. The history 

display acts as a reference, letting users review past interactions to confirm accuracy or revisit 

earlier conversations. This addition supports continuous learning and communication, making 

the system a more reliable tool over time. 

 

The system will also incorporate the ability to adjust its confidence threshold dynamically 

based on the clarity of the input. This means the system only proceeds with translating a sign 

when it is certain of the recognition, preventing errors from uncertain gestures. By fine-tuning 

this threshold, the project ensures the translations remain trustworthy, which is critical for 

maintaining user confidence and the system’s effectiveness in real-world settings. 

 

The final aim of this project is to deliver a fully functional sign language translation system 

that benefits the deaf community effectively. This system seeks to reduce the communication 

barrier between deaf individuals and those who do not understand sign language, as well as 

between different language and cultural groups. By providing a practical solution that operates 

smoothly and meets user needs, the project contributes to greater inclusion and understanding, 

fostering better interactions in everyday life. 

 

 

1.3  Project Scope  

The scope of this project focuses on the development of a software application that recognizes 

and translates static MSL gestures into text. The system will be limited to recognizing and 

translating static gestures such as the alphabet (A-Z), numbers (0-10), and specific words like 

"Drink," "Eat," "Me," "Sorry," "You," "Wrong,"  and "Help." Dynamic gestures, such as those 

used for complex phrases or sentences, will not be addressed in this initial phase, as they present 

a much higher level of complexity that requires more advanced models and real-time 

processing. 
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The system will use a webcam to capture hand gestures and rely on MediaPipe, a powerful 

library for real-time hand tracking, to detect hand landmarks. These landmarks will be 

processed using a deep learning model that will be trained on a custom dataset of MSL 

gestures. Preprocessing techniques such as landmark normalization will be applied to ensure 

accurate recognition of gestures, regardless of whether the left or right hand is used. 

Additionally, the system will offer multilingual translation capabilities, translating 

recognized signs into English, Malay, Chinese, and Tamil, making it suitable for diverse 

linguistic needs within Malaysia and beyond. 

 

The GUI will be simple yet functional, offering an intuitive interface for users to interact with 

the system. The system will provide real-time feedback, showing the recognized gesture and 

its translation, with an adjustable confidence threshold to filter out uncertain translations. The 

scope of this project does not extend to recognizing dynamic gestures or translating full 

sentences, but it provides a solid foundation for future work in these areas. 

 

 

1.4  Contributions 

This project brings meaningful progress to the fields of assistive technology and sign language 

recognition through several notable contributions. One key achievement is the effective use of 

an existing MSL dataset which downloaded from Kaggle. Since MSL datasets are limited and 

handedness is often overlooked in research, this project leverages this resource to address a 

critical gap, adapting it to support future studies in MSL recognition with careful application. 

 

Another vital contribution lies in enhancing the preprocessing techniques to better manage 

handedness variations. Traditional sign language recognition systems often struggle with 

gestures from either hand, leading to inconsistent results. This project introduces a method that 

normalizes landmarks using the wrist position as a reference point, which allows for more 

uniform and precise gesture classification, ensuring the system performs reliably across 

different users. 

 

The inclusion of a multilingual translation feature represents a major advancement in the 

project’s scope. Unlike many sign language systems that focus on a single language, this 
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system offers real-time translation of MSL gestures into four widely used languages: English, 

Malay, Chinese, and Tamil. This capability extends the system’s reach, making it a versatile 

tool for communication among diverse linguistic and cultural groups, not only within Malaysia 

but also in international contexts where these languages are spoken, thus broadening its impact. 

 

The project also contributes by building a real-time translation system equipped with a user-

friendly graphical user interface developed with Tkinter. This interface simplifies interaction 

by providing clear controls and displays, supported by features such as translation history, 

immediate feedback on recognized signs, and the option to adjust the confidence threshold. 

These elements enable users, even those with minimal technical knowledge, to engage with the 

system effectively. By connecting deaf and hearing communities through this accessible 

technology, the project offers a practical solution that enhances communication and supports 

social inclusion on a daily basis. 

 

 

1.5  Report Organization 

This report is organized to provide a comprehensive view of the development, evaluation, and 

testing of the automated MSL translation system. Chapter 2, Literature Review, will provide 

an in-depth exploration of the technologies, methodologies, and existing systems related to sign 

language recognition, with a particular focus on deep learning and computer vision approaches. 

It will also cover the hardware, software, and algorithms that are central to the project, setting 

the context for the technology used in the system. In Chapter 3, System 

Methodology/Approach, the overall approach taken in developing the system will be outlined. 

This chapter will explain the design decisions, the architecture of the system, and the specific 

methodology used to recognize and translate static MSL gestures into text. The design and 

functionality of the system will be further detailed in Chapter 4, System Design, where system 

diagrams and component interactions will be presented to provide a clearer understanding of 

how the system operates. Chapter 5, System Implementation, will focus on the technical setup 

of the system, including hardware and software configurations. It will provide insights into the 

steps involved in implementing the system, along with details on the challenges encountered 

during the process. In Chapter 6, System Evaluation and Discussion, the report will present 

the evaluation of the system, including performance metrics, testing results, and an analysis of 

the challenges faced during development. This chapter will also assess how well the objectives 
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of the project have been achieved. Finally, Chapter 7, Conclusion and Recommendation, will 

conclude the report by summarizing the key findings of the project, discussing the implications 

of the work, and offering suggestions for future improvements and research in the field of sign 

language recognition.
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Chapter 2 

Literature Review 
2.1 Review of the Technologies 

2.1.1 Dataset 

Datasets provide the images needed to train models for sign language recognition. The 

Malaysian Sign Language Image Dataset includes 26 alphabet signs from A to Z, 11 number 

signs from 0 to 10, and seven single word signs such as "You," "Sorry," "Eat," "Drink," 

"Wrong," "Me," and "Help" [1]. Each category contains multiple .jpg and .png files, organized 

in subfolders for easy access. The images show hands in various poses against different 

backgrounds, offering a range of examples for the model to learn from. This variety helps the 

system handle real-world conditions, such as slight changes in lighting or hand angle. The 

dataset supports static signs, where each image captures a single gesture without movement. It 

ensures the model learns from relevant examples, like the distinct shapes for "A" or "drink." 

 

 
Figure 2.1.1 Sample MSL Dataset Images [1] 

 

The data comes from Kaggle, shared by Isawasan to aid work on regional sign languages [1]. 

It totals thousands of files, giving enough samples for effective training. The images use 
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standard formats, which work well with libraries for loading and processing. This resource 

enables the creation of a balanced set, where alphabet signs teach letter recognition, numbers 

handle counting, and words cover basic terms. The dataset's design fits the needs of sign 

recognition systems, allowing classification of gestures with reliability. It reflects practical use, 

with hands positioned as in everyday signing. This setup makes it a key part of building 

accurate models. 

 

2.1.2 MediaPipe 

MediaPipe detects hands in images and videos. It analyzes frames to locate hands and mark 21 

key points on each [2]. The tool works on standard computers without extra hardware. It 

handles up to two hands per frame and labels them as left or right. This feature supports signs 

that use both hands, like some numbers. The system sets a confidence level of 0.5 to balance 

speed and accuracy. 

 

 
Figure 2.1.2 Hand Landmark Model [2] 

 

MediaPipe extracts x, y, and z coordinates for each point, giving position and depth [2]. It 

normalizes these points to reduce differences from camera angle or hand size. The tool flips 

right-hand data to match left-hand patterns, creating uniform inputs. This adjustment helps 

models learn from all examples without bias. MediaPipe runs in a loop for video, updating 

every 30 milliseconds. This pace fits needs for quick responses. 
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2.1.3 OpenCV 

OpenCV processes images and videos. It loads files from datasets and converts colors from 

BGR to RGB for other tools [3]. The library flips video frames to create a mirror effect for 

users. It draws lines between key points and adds text like "Success" or "Low Confidence" 

based on scores. This feedback shows if the detection works well. 

 

 
Figure 2.1.3 Capturing the video frame [3] 

 

OpenCV resizes images to fit displays, such as scaling photos to 380 by 380 pixels [3]. It 

captures video from webcams, reading frames in loops for live use. The library supports 

rectangles around messages, using green for good detections and red for low ones. OpenCV 

works with arrays to handle data, ensuring smooth operation on standard hardware. This tool 

fits needs for frame management. 

 

2.1.4 TensorFlow/Keras 

TensorFlow and Keras build and train neural networks. Keras stacks layers with 384, 192, and 

96 neurons, using ReLU activation [4]. The setup includes batch normalization to stabilize data 

and dropout to drop neurons at 0.25 and 0.15 rates. The output uses softmax to match sign 

classes. TensorFlow compiles with SGD at 0.002 learning rate and 0.9 momentum. Training 

runs 25 epochs with batch size 48, tracking accuracy. 

 

The libraries load data as arrays, filtering classes with few samples [4]. Labels encode to 

numbers for classification. Data splits into training and testing sets, with 75% for learning. The 
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model saves for use in apps, where it predicts from landmarks. This setup identifies MSL signs 

with reliability. The libraries run on standard computers, supporting accessibility. 

 

2.1.5 Tkinter 

Tkinter creates desktop interfaces. It organizes elements like buttons, labels, and canvases in 

windows [5]. The tool uses frames to group parts, such as controls for language and confidence. 

It packs items to fill space, allowing the window to resize. Tkinter shows video on canvases, 

updating with new frames. It includes dropdowns for language choices and sliders for detection 

levels. 

 

 
Figure 2.1.5 Tkinter Layout Example [5] 

 

Tkinter handles events, like clicks to start cameras or change settings [5]. It supports text 

wrapping in labels for long history logs. The library uses styles for buttons, giving a clean look. 

Tkinter runs with Python, needing no extra installs. This tool fits needs for simple designs. The 

interface shows translations and history, aiding users in communication. 

 

2.1.6 Googletrans 

Googletrans translates text in the app. It uses Google's API to convert words like "drink" to 

"minum" in Malay [6]. The library maps names to codes, such as "ms" for Malay. It caches 

results to speed up repeats. The tool processes single words only, leaving alphabet and numbers 
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unchanged. This setup supports the app's multi-language feature, covering English, Malay, 

Chinese Simplified, and Tamil. 

Googletrans works with a translator object, sending text and codes for output [6]. It handles 

errors by returning original text if translation fails. The library integrates with dropdowns, 

updating on language changes. This method ensures quick responses during use. The tool fits 

the project's needs for accessible translation. 

 

2.1.7 Summary of the Technologies Review 

The technologies form the project's core. The dataset supplies images for training, covering 

MSL signs [1]. MediaPipe detects hands and extracts landmarks, supporting preparation and 

recognition [2]. OpenCV processes video frames, enabling real-time updates [3]. 

TensorFlow/Keras trains the model, classifying signs from data [4]. Tkinter builds the 

interface, offering controls for users [5]. Googletrans handles translations, converting signs to 

languages [6]. These tools combine to create a reliable system. 

 

The review shows each technology’s role in the process. Detection and extraction feed into 

training, which powers recognition. The interface delivers results to users, while translation 

adds language support. This setup ensures the system works as intended. Each tool brings a 

specific strength, making the system effective for its purpose. 

 

 

2.2 Review of the Existing Systems 

2.2.1 Static and Dynamic Hand-Gesture Recognition for Augmented Reality Applications 

Reifinger et al. [7] explored the use of hand-gesture recognition in augmented reality (AR) 

applications, focusing on both static and dynamic gestures. The system recognized a predefined 

set of gestures using vision-based techniques and Hidden Markov Models (HMMs). Static 

gestures, such as hand poses representing commands (e.g., "stop" or "select"), were classified 

using feature extraction methods like contour analysis and orientation histograms. Dynamic 

gestures, involving motion (e.g., waving or circling), were modeled using HMMs to capture 

temporal patterns. The system was tested in an AR environment where users interacted with 

virtual objects, achieving a recognition accuracy of around 85% for static gestures and 78% for 

dynamic ones. 
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Figure 2.2.1: System Architecture for Static and Dynamic Gesture Recognition in AR [7]. 

 

The study highlighted the potential of gesture-based interfaces in AR but noted several 

limitations. The system required a controlled environment with consistent lighting and a plain 

background to ensure accurate feature extraction. Variability in hand orientation and speed of 

dynamic gestures also affected performance, as the HMMs struggled with non-uniform motion 

patterns. For the proposed MSL recognition system, this work provides insights into static 

gesture classification, which aligns with the project’s focus on alphabets, numbers, and basic 

words. However, the reliance on traditional feature extraction and the lack of support for 

handedness variability indicate a need for more robust methods, such as deep learning and 

landmark-based detection, which are employed in this project. 

 

2.2.2 Real Time Hand Gesture Recognition System for Dynamic Applications 

Rautaray [8] proposed a real-time hand gesture recognition system for dynamic applications, 

focusing on human-computer interaction (HCI). The system used skin colour segmentation to 

detect hands in video frames, followed by feature extraction techniques such as edge detection 

and centroid distance to classify gestures. Dynamic gestures were tracked using a trajectory-

based approach, where the movement of the hand’s centroid over time was analyzed to identify 

patterns like swipes or circles. The system achieved an accuracy of 82% for a small set of 

predefined gestures but struggled with complex backgrounds and varying lighting conditions. 
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Figure 2.2.2: Workflow of Dynamic Gesture Recognition System [8] 

 

The study emphasized the importance of real-time performance in HCI applications, a key 

requirement for the proposed MSL system. However, the reliance on skin colour segmentation 

made the system sensitive to environmental noise, a limitation also noted in other traditional 

approaches [9]. Additionally, the system did not address static gestures or handedness 

variability, both of which are critical for MSL recognition. The proposed system improves 

upon this by using MediaPipe for landmark detection, which is more robust to environmental 

variations, and a CNN for classification, enabling better handling of static gestures and 

handedness. 
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2.2.3 Signar: A Sign Language Translator Application with Augmented Reality Using 

Text and Image Recognition 

Soogund and Joseph [10] developed Signar, an AR-based sign language translator application 

for Indian Sign Language (ISL). The system combined text and image recognition to translate 

static gestures into text, which was then overlaid in an AR environment using a smartphone 

camera. Gestures were captured via the camera, and a pre-trained model (based on traditional 

machine learning techniques like Support Vector Machines) classified the signs. The system 

supported a limited set of static gestures (e.g., alphabets) and achieved an accuracy of 80%. 

The AR interface allowed users to see translations in real-time, enhancing accessibility for 

hearing individuals interacting with deaf signers. 

 

 
Figure 2.2.3: Signar System Overview [10] 

 

While innovative, Signar faced challenges with scalability and robustness. The system was 

limited to a small gesture set and struggled with variations in hand orientation and lighting, as 

traditional machine learning models lacked the generalization ability of deep learning 

approaches. For the proposed MSL system, Signar’s use of AR provides inspiration for 

potential future enhancements, such as displaying translations in an AR interface. However, 

the proposed system leverages deep learning and MediaPipe to achieve higher accuracy and 

support for both left and right-hand gestures, addressing the limitations of traditional methods. 

 

2.2.4 American Sign Language Recognition Using Deep Learning and Computer Vision 

Bantupalli and Xie [11] proposed an American Sign Language (ASL) recognition system using 

deep learning and computer vision. The system employed a CNN to classify static ASL 

gestures (alphabets A to Z) captured via a webcam. The dataset consisted of RGB images 

collected from multiple users, with preprocessing steps like image normalization and 

background subtraction to improve model performance. The CNN model achieved an accuracy 

of 92% on the test set, demonstrating the effectiveness of deep learning in handling variations 
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in hand appearance and orientation. The study also explored transfer learning by fine-tuning a 

pre-trained VGG16 model, which further improved accuracy to 94%. 

 

 
Figure 2.2.4: CNN-Based ASL Recognition Pipeline [11] 

 

This work is highly relevant to the proposed MSL system, as it demonstrates the potential of 

CNNs for static gesture recognition, a core component of this project. The use of a diverse 

dataset and preprocessing techniques aligns with the proposed approach of creating a custom 

MSL dataset and normalizing hand landmarks. However, the system did not address 

handedness variability explicitly, a challenge the proposed system tackles through landmark 

normalization with MediaPipe. Additionally, the focus on ASL highlights the need for similar 

research on MSL, which remains underexplored. 

 

2.2.5 Interactive Hand Gesture-based Assembly for Augmented Reality Applications 

Radkowski [12] investigated hand gesture recognition for AR-based assembly applications, 

focusing on static gestures to control virtual assembly tasks. The system used a vision-based 

approach, extracting features like hand contours and finger positions to classify gestures such 

as "grab," "release," and "rotate." A rule-based classifier was employed, achieving an accuracy 

of 83% in controlled conditions. The study emphasized the importance of intuitive gesture 

interfaces in AR, allowing users to interact with virtual objects naturally. 
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Figure 2.2.5: Gesture Recognition for AR Assembly [12] 

 

The system’s reliance on traditional feature extraction made it sensitive to lighting and 

background noise, similar to other early SLR systems [12]. It also lacked support for dynamic 

gestures and handedness variability, limiting its applicability to diverse user scenarios. For the 

proposed MSL system, this work underscores the potential of gesture-based interfaces but 

highlights the need for more robust methods. The use of MediaPipe and CNNs in the proposed 

system addresses these limitations, enabling real-time recognition of static MSL gestures with 

improved robustness to environmental variations. 

 

2.2.6 Sign Language Recognition: A Deep Survey 

Rastgoo et al. [13] provided a comprehensive survey of deep learning techniques in SLR, 

covering datasets, methodologies, and challenges. The study reviewed various deep learning 

architectures, including CNNs, Recurrent Neural Networks (RNNs), and 3D CNNs, for both 

static and dynamic gesture recognition. For static gestures, CNNs were found to be highly 

effective, with accuracies often exceeding 90% on benchmark datasets like the ASL Alphabet 

dataset. The survey also discussed the use of depth data and RGB-D cameras to improve 

recognition accuracy, particularly for complex gestures involving motion. 
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Figure 2.2.6: Deep Learning Architectures for SLR [13] 

 

A key finding was the scarcity of datasets for less-studied sign languages, such as MSL, which 

hinders the development of accurate recognition systems. The survey also highlighted 

challenges like handedness variability and the need for real-time performance in practical 

applications. This aligns with the goals of the proposed MSL system, which addresses dataset 

scarcity by creating a custom MSL dataset and uses MediaPipe to handle handedness 

variability. The survey’s emphasis on deep learning supports the proposed approach of using a 

CNN for gesture classification, ensuring high accuracy and real-time performance. 

 

2.2.7 Real Time Indian Sign Language Recognition System to Aid Deaf-Dumb People 

Rajam and Balakrishnan [14] developed a real-time Indian Sign Language (ISL) recognition 

system to assist deaf individuals. The system used a vision-based approach, capturing static 

gestures (alphabets and numbers) with a webcam. Features were extracted using Histogram of 

Oriented Gradients (HOG), and a Support Vector Machine (SVM) was used for classification. 

The system achieved an accuracy of 85% on a small dataset of 10 gestures. The study 

emphasized real-time performance, with a processing speed of 20 frames per second, suitable 

for practical applications. 
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Figure 2.2.7: ISL Recognition System Workflow [14] 

 

However, the system’s reliance on traditional machine learning and HOG features limited its 

robustness to variations in lighting and hand orientation. It also did not address handedness 

variability, a critical challenge for sign language recognition. The proposed MSL system 

improves upon this by using deep learning (CNNs) for better generalization and MediaPipe for 

precise hand landmark detection, ensuring accurate recognition of static gestures performed 

with either hand. 

 

2.2.8 A Real-Time System for Recognition of American Sign Language by Using Deep 

Learning 

Taskiran et al. [15] proposed a real-time ASL recognition system using deep learning. The 

system employed a CNN to classify static ASL gestures (alphabets A to Z) captured via RGB 

images. The dataset included images from multiple users under varying conditions, with 

preprocessing steps like resizing and normalization to standardize input data. The CNN model 

achieved an accuracy of 93% on the test set, with a processing speed of 25 frames per second, 

making it suitable for real-time applications. 
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Figure 2.2.8: Real-Time ASL Recognition Using Deep Learning [15] 

 

The study also explored the use of data augmentation (e.g., rotation, scaling) to improve model 

robustness, a technique that could benefit the proposed MSL system. However, the system did 

not explicitly address handedness variability, and the focus on ASL datasets underscores the 

lack of similar research for MSL. The proposed system builds on this work by using a custom 

MSL dataset and incorporating handedness normalization, ensuring broader applicability in the 

Malaysian context. 

 

2.2.9 Real-Time American Sign Language Recognition Using Desk and Wearable 

Computer Based Video 

Starner et al. [16] presented one of the earliest works on real-time ASL recognition, using desk 

and wearable computer-based video systems. The system captured gestures via cameras 

mounted on a desk or worn by the user, focusing on dynamic gestures for sentence-level 

recognition. Features were extracted using colour-based tracking and motion analysis, and an 
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HMM was used for classification. The system achieved an accuracy of 85% for a small set of 

ASL sentences but required users to wear colored gloves to improve tracking accuracy. 

 

This work laid the foundation for vision-based SLR but highlighted several limitations. The 

reliance on wearable devices and colored gloves made the system intrusive, and the accuracy 

dropped in uncontrolled environments due to lighting variations. For the proposed MSL 

system, this study provides historical context but underscores the need for non-intrusive 

methods. The use of MediaPipe and deep learning in the proposed system eliminates the need 

for wearable devices, enabling more practical and accurate recognition of static MSL gestures. 

 

2.2.10 Strengths and Weakness of the Existing Systems 

The reviewed works demonstrate a range of approaches to SLR, each with distinct strengths 

and weaknesses. Reifinger et al. [7] offer a strong integration of static and dynamic gesture 

recognition within an AR context, providing valuable insights into gesture-based interfaces. 

However, their reliance on traditional feature extraction methods like contour analysis and 

HMMs results in a notable sensitivity to environmental noise, such as lighting variations, and 

a significant lack of support for handedness variability, which limits its applicability to diverse 

user scenarios like those in MSL recognition. Rautaray [8] excels in its real-time performance 

for dynamic applications, making it suitable for HCI scenarios with a processing speed that 

supports practical use. Yet, the dependence on skin colour segmentation introduces a critical 

weakness in handling complex backgrounds and lighting changes, and the absence of static 

gesture support and handedness consideration makes it less relevant for the proposed MSL 

system. 

 

Soogund and Joseph [10] demonstrate an innovative use of AR to display real-time translations, 

enhancing accessibility for hearing users interacting with deaf signers. However, the system’s 

limited gesture set and reliance on traditional machine learning (SVM) lead to poor robustness 

against variations in lighting and hand orientation, hindering scalability for broader 

applications like MSL. Bantupalli and Xie [11] achieve a high accuracy of 92–94% using a 

CNN for static ASL gestures, showcasing the effectiveness of deep learning and the benefit of 

transfer learning with pre-trained models like VGG16. Despite this, the lack of explicit 

handling of handedness variability and the focus on ASL datasets reveal a gap that the proposed 

MSL system addresses through handedness normalization and a custom dataset. 
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Radkowski [12] provides an intuitive gesture interface for AR assembly tasks, highlighting the 

potential of gesture-based control in virtual environments. However, its sensitivity to lighting 

and background noise due to traditional feature extraction, combined with the absence of 

dynamic gesture support and handedness variability, limits its practicality for diverse scenarios 

like MSL recognition. Rastgoo et al. [13] offer a comprehensive survey of deep learning in 

SLR, providing a broad perspective on methodologies and identifying the critical issue of 

dataset scarcity for less-studied sign languages like MSL. As a survey, it lacks implementation 

details, but its insights directly inform the proposed system’s focus on deep learning and dataset 

creation. 

 

Rajam and Balakrishnan [14] achieve real-time performance with a processing speed of 20 fps 

for ISL recognition, a strength for practical applications. However, their reliance on HOG 

features and SVM results in limited robustness to lighting and orientation variations, and the 

lack of handedness support is a notable drawback compared to the proposed system’s approach. 

Taskiran et al. [15] demonstrate a high accuracy of 93% and real-time performance at 25 fps 

for ASL recognition, enhanced by data augmentation techniques like rotation and scaling. Yet, 

the absence of handedness handling and the focus on ASL datasets highlight gaps that the 

proposed system addresses with MSL-specific data and normalization techniques. 

 

Starner et al. [16] provide a pioneering contribution to real-time ASL recognition, laying the 

foundation for vision-based SLR with early innovations in dynamic gesture recognition. 

However, the intrusive nature of requiring colored gloves and wearable devices, along with 

sensitivity to lighting variations, significantly limits its practicality, a weakness the proposed 

system overcomes with non-intrusive methods using MediaPipe and deep learning. 
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2.2.11 Summary of the Existing Systems 

A table compares prior works with key aspects, focusing on methodology, gesture type, handedness support, dataset focus, and real-time 

performance. This comparison highlights the strengths and limitations of existing systems. 

Study Methodology Gesture 

Type 

Handedness 

Support 

Dataset Focus Real-Time 

Performance 

Key Limitations 

Reifinger et al.[7] Contour analysis, 

HMMs 

Static & 

Dynamic 

No 

 

General gestures Yes Sensitivity to lighting, no handedness 

support. 

Rautaray [8] Skin colour 

segmentation 

Dynamic No General gestures Yes (20 fps) Environmental noise, no static gestures. 

Soogund and 
Joseph [10] 

SVM, AR overlay Static No ISL Yes Limited gesture set, lighting sensitivity. 

Bantupalli and 
Xie [11] 

CNN, transfer learning Static No ASL Yes No handedness support, ASL focus. 

Radkowski [12] Rule-based classifier Static No General gestures Yes Lighting sensitivity, no dynamic 

gestures. 

Rastgoo et al.[13] Survey (CNNs, RNNs, 

3D CNNs) 

Static & 

Dynamic 

Varies Multiple languages Varies Lack of implementation. 

Rajam and 

Balakrishnan[14] 

HOG, SVM Static No ISL Yes (20 fps) Lighting sensitivity, no handedness. 

Taskiran et 
al.[15] 

CNN, data 

augmentation 

Static No ASL Yes (25 fps) No handedness support, ASL focus. 

Starner et al. [16] Colour tracking, 

HMMs 

Dynamic No ASL Yes Intrusive (gloves), lighting sensitivity. 
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Table 2.2.11 The Summary of Existing Sign Language Recognition System 

 

The existing systems show progress in sign language translation. DeepASL handles ASL 

sentences with wrist cameras [17]. SignAR uses augmented reality for ISL on mobiles [10]. 

The ASL real-time system classifies alphabets with CNNs [15]. Bantupalli and Xie focus on 

vision-based ASL recognition [11]. TSPNet translates BSL videos to text [18]. The machine 

learning translator covers ISL gestures [19]. Rastgoo et al. survey deep learning methods [13]. 

These works advance the field, using deep learning for recognition and translation. 

 

The systems vary in scope, from isolated signs to sentences. They rely on cameras and networks 

for processing. Common challenges include lighting and data limits. The review highlights 

how these tools inform the project's design for MSL.
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Chapter 3 

System Methodology/Approach 
3.1 System Design Diagram 

 
Figure 3.1 System Design Diagram 

 

The System Design Diagram gives a clear view of the Malaysian Sign Language translation 

system's overall structure. It starts with raw inputs on the left side, where the system takes in 

MSL dataset images from the archive folder. These images go into the first main block, which 

handles dataset processing through the process_online_datasets.py script. In this stage, the 
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system uses MediaPipe to find hands in each image, pulls out the landmark coordinates, 

normalizes them by setting the wrist as a reference point, mirrors any right-hand data for 

consistency, and pads the features to a fixed size of 126 if only one hand shows up. It then 

saves these processed landmarks as numpy files in the static_msl_data directory, ready for the 

next step. An arrow links this block to an intermediate storage component for the numpy files, 

which acts as a bridge to keep the data organized before training begins. 

 

From there, the flow moves to the model training block, driven by the train_models.py script. 

This part loads the numpy files, checks for classes with enough samples by removing any with 

fewer than two to prevent issues during splitting, encodes the sign labels into numbers, and 

divides the data into training and testing sets with a 75-25 split while keeping classes balanced. 

The system builds a neural network using Keras, with layers like dense neurons, batch 

normalization to stabilize learning, and dropout to cut down on overfitting. It trains the model 

over 25 epochs with the SGD optimizer, then saves the finished model as 

static_msl_classifier.keras and the label mappings as static_msl_labels.txt. The diagram shows 

this output as another storage component, which feeds directly into the final stage. 

 

The real-time translation app block, based on translation_app.py, pulls in the trained model and 

labels, along with live input from the webcam. Here, the system captures video frames, detects 

hands again with MediaPipe, normalizes the landmarks just like in processing, predicts the sign 

using the model, and checks if the confidence beats the user's set threshold while avoiding 

quick repeats with a 1.5-second buffer. For single-word signs, it calls Google Translate to 

convert them into the chosen language, such as English or Malay, updates the Tkinter GUI with 

the result, adds it to the history list, and logs everything. The diagram ends with outputs on the 

right, including the translated text shown in the app and dictionary images pulled from the 

dataset for reference. Arrows connect everything in sequence, making the pipeline easy to 

follow from start to finish, with no extra clutter. 

 

This setup ensures the diagram stays high-level, focusing on how the system turns raw sign 

language images and video into useful translations without getting bogged down in code 

details. It highlights the linear flow, where each stage builds on the last, from preparing data to 

training the classifier to running the interactive app. Developers can see the dependencies, like 
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how the app needs the model files to work, while non-technical readers grasp the basic steps 

without needing to know about libraries like OpenCV or TensorFlow.  

 

 

3.2 System Architecture Diagram 

 
Figure 3.2 System Architecture Diagram 

The System Architecture Diagram maps out the technical components of the MSL Translation 

System and how they work together. The process starts with the MSL Dataset, a storage unit 

holding raw images in the archive/Dataset_MSL directory, organized into subfolders like 
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Alphabets and SingleWords. These images feed into the Dataset Processor, which uses the 

process_online_datasets.py script with MediaPipe Hands and OpenCV to detect hands, extract 

landmark coordinates, normalize them by setting the wrist as the origin, mirror right-hand data, 

and pad single-hand data to a fixed size. The processor saves these as numpy files in the 

Processed Data storage unit, located in the static_msl_data directory.  

 

The Processed Data then moves to the Model Trainer, driven by train_models.py, which uses 

Keras and TensorFlow to load the numpy files, filter classes with fewer than two samples, 

encode labels numerically with scikit-learn, split data into training and testing sets, and train a 

neural network with dense layers, batch normalization, and dropout. The trained model and 

label mappings are stored in Model Storage as static_msl_classifier.keras and 

static_msl_labels.txt.  

 

The Real-Time Translator, powered by translation_app.py, integrates several subcomponents: 

the Hand Detector uses MediaPipe Hands to process live webcam video, the Sign Classifier 

uses Keras to predict signs from normalized landmarks, the Translator component sends single-

word signs to the Google Translate API for conversion into the user’s chosen language, and 

the GUI, built with Tkinter, displays the video feed, translations, history, and dictionary 

images. The Webcam provides live video to the Translator, which sends translation logs to the 

Log File.  

 

The User interacts with the GUI to set the language, adjust the confidence threshold, and 

browse the dictionary, receiving translated text and images in return. Arrows in the diagram 

trace the data flow, from images to processed data to model to real-time translations, with clear 

connections between components and external systems. This detailed view helps developers 

understand the system’s structure and dependencies, such as the need for MediaPipe in both 

processing and real-time stages or the reliance on Google Translate for language conversion. 
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3.3 Use Case Diagram 

The Use Case Diagram shows how actors interact with the MSL Translation System, 

capturing key functionalities like processing datasets, training models, performing 

translations, and accessing the dictionary.  

 
Figure 3.3 MSL Translation System Use Case Diagram 
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3.3.1 Use Case Description: Process MSL Dataset  
Use Case ID UC001 Version 1.0 

Use Case Process MSL Dataset 

Purpose To process raw MSL dataset images to extract and normalize hand 
landmarks for model training. 

Actor Developer 

Trigger Developer runs process_online_datasets.py. 

Precondition MSL dataset images are available in archive/Dataset_MSL with 
subfolders like Alphabets/A or SingleWords/Drink, and 
MediaPipe Hands is installed. 

Scenario Name Step Action 

Main Flow 1 System scans archive/Dataset_MSL for .jpg or .png 
images recursively. 

2 System extracts sign label from the directory name for 
each image. 

3 System loads image using OpenCV and converts to RGB. 

4 System detects hands using MediaPipe and extracts 
landmarks. 

5 System normalizes landmarks relative to wrist, mirrors 
right-hand data, scales z-coordinate, and pads to 126 
features if single hand. 

6 System saves normalized landmarks as .npy files in 
static_msl_data. 

7 System updates and prints handedness distribution at the 
end. 

Alternate Flow – 
No Hands 
Detected 

4.1 System logs "No hands detected in image" and skips 
saving. 

4.2 Back to Main Flow Step 1 for next image. 

Alternate Flow – 
Image Load 
Failure 

3.1 System logs "Failed to load image" and skips processing. 

3.2 Back to Main Flow Step 1 for next image. 

Rules  Normalization ensures consistency across hands; padding 
maintains input size; process only .jpg and .png files. 

Author  Wong Jia Kang 

Table 3.3.1 Use Case Description for Process MSL Dataset 
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3.3.2 Use Case Description: Train Model 
Use Case ID UC002 Version 1.0 

Use Case Train Model 

Purpose To train a neural network model for classifying MSL signs using 
processed .npy files. 

Actor Developer 

Trigger Developer runs train_models.py. 

Precondition .npy files are available in static_msl_data, and TensorFlow/Keras 
and scikit-learn are installed. 

Scenario Name Step Action 

Main Flow 1 System loads .npy files from static_msl_data and extracts 
features and labels. 

2 System filters classes with fewer than 2 samples. 

3 System encodes labels numerically using LabelEncoder. 

4 System splits data into 75% training and 25% testing sets 
with stratification. 

5 System builds sequential neural network with dense 
layers, batch normalization, and dropout. 

6 System compiles model with SGD optimizer and trains 
for 25 epochs. 

7 System saves trained model as static_msl_classifier.keras 
and labels as static_msl_labels.txt. 

Alternate Flow – 
Insufficient 
Classes 

2.1 System exits with error "No classes with sufficient 
samples." 

Alternate Flow – 
No Data Found 

1.1 System exits with error "No static data found." 

Rules  Minimum 2 samples per class for splitting; use sparse 
categorical cross-entropy loss. 

Author  Wong Jia Kang 

Table 3.3.2 Use Case Description for Train Model 
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3.3.3 Use Case Description: Perform Real-Time Translation 
Use Case ID UC003 Version 1.0 

Use Case Perform Real-Time Translation 

Purpose To detect, classify, and translate MSL signs from live video in the 
GUI app. 

Actor User, Webcam, Google Translate API 

Trigger User clicks "Open Cam" in the app. 

Precondition Trained model and labels are available; webcam is connected; 
Google Translate API is accessible. 

Scenario Name Step Action 

Main Flow 1 User opens translation_app.py and selects language and 
confidence threshold. 

2 System loads model and labels, initializes Tkinter GUI. 

3 User starts camera; system captures frames from webcam. 

4 System detects hands with MediaPipe and normalizes 
landmarks. 

5 System predicts sign using model. 
6 If confidence high and new sign after buffer, system 

translates single words via Google Translate API. 
7 System updates GUI with translation, adds to history, logs 

it, and draws landmarks on feed. 
Alternate Flow – 
No Hands 
Detected 

4.1 System displays "Translation: None" in GUI. 

4.2 Back to Main Flow Step 3 for next frame. 

Alternate Flow – 
Low Confidence 

5.1 System draws low-confidence indicator on frame. 

5.2 Back to Main Flow Step 3 for next frame. 

Rules  1.5-second buffer for new signs; translate only single 
words; confidence threshold 0.5-1.0. 

Author  Wong Jia Kang 

Table 3.3.3 Use Case Description for Perform Real-Time Translation 
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3.3.4 Use Case Description: Adjust Translation Settings 
Use Case ID UC004 Version 1.0 

Use Case Adjust Translation Settings 

Purpose To customize language and confidence threshold for translations 
in the GUI. 

Actor User 

Trigger User changes dropdown or slider in GUI. 

Precondition Application is running. 

Scenario Name Step Action 

Main Flow 1 User selects language from dropdown (English, Malay, 
Chinese Simplified, Tamil). 

2 User adjusts confidence threshold slider (0.5-1.0). 

3 System updates settings and clears translation cache. 

4 System re-translates current sign and history if applicable. 

Alternate Flow – 
GUI Update 
Failure 

3.1 System logs error and reverts to default settings. 

3.2 Back to Main Flow Step 1. 

Rules  Changes apply immediately; cache clear ensures accurate 
re-translations. 

Author  Wong Jia Kang 

Table 3.3.4 Use Case Description for Adjust Translation Settings 
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3.3.5 Use Case Description: View Translation History 
Use Case ID UC005 Version 1.0 

Use Case View Translation History 

Purpose To display the history of translated signs in the GUI. 
Actor User 

Trigger User looks at history label in GUI after translations. 

Precondition Application is running and signs have been translated. 

Scenario Name Step Action 

Main Flow 1 System retrieves history list. 

2 System re-translates history into current language. 

3 System displays wrapped history text in GUI label. 

Alternate Flow – 
No History 

1.1 System displays "History: ". 

Rules  History wraps for readability; updates with language 
changes. 

Author  Wong Jia Kang 

Table 3.3.5 Use Case Description for View Translation History 
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3.3.6 Use Case Description: Download History 
Use Case ID UC006 Version 1.0 

Use Case Download History 

Purpose To export translation history as a .txt file and reset session. 

Actor User 

Trigger User clicks "Download History" button. 

Precondition Application is running and history exists. 

Scenario Name Step Action 

Main Flow 1 System opens file dialog for save location. 

2 User selects file path. 

3 System writes history with signs and translations to .txt 
file. 

4 System resets history, log file, and GUI. 

Alternate Flow – 
No History 

1.1 Button is disabled; no action occurs. 

Alternate Flow – 
Cancel Dialog 

2.1 User cancels; system does not save file. 

2.2 Back to Main Flow Step 1 if button clicked again. 

Rules  Include timestamps in log; reset clears all session data. 

Author  Wong Jia Kang 

Table 3.3.6 Use Case Description for Download History 
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3.3.7 Use Case Description: Access Dictionary 
Use Case ID UC007 Version 1.0 

Use Case Access Dictionary 

Purpose To view MSL signs and images by category in the GUI. 

Actor User 

Trigger User selects category and sign in dropdowns. 

Precondition Application is running; MSL dataset images available. 

Scenario Name Step Action 

Main Flow 1 User selects category (Alphabet, Numbers, SingleWords). 

2 System updates sign dropdown with translated names. 

3 User selects sign. 

4 System finds first image in dataset path. 

 5 System resizes and displays image with translated name 
in canvas. 

Alternate Flow – 
No Image Found 

4.1 System displays "Image not found" in canvas. 

4.2 Back to Main Flow Step 3 for another sign. 

Alternate Flow – 
No Category 
Selected 

1.1 System defaults to Alphabet. 

1.2 Back to Main Flow Step 1. 

Rules  Search for .jpg, .jpeg, .png; resize to fit canvas while 
keeping aspect ratio. 

Author  Wong Jia Kang 

Table 3.3.7 Use Case Description for Access Dictionary 

 

3.4 Activity Diagram 

The Activity Diagram illustrates the workflows of the MSL Translation System, split into three 

parts for clarity: dataset processing, model training, and real-time translation. Each part uses a 

swimlane format to assign actions to actors or components, such as Developer, System, User, 

Webcam, and Google Translate API. 
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3.4.1 Dataset Processing 

 
Figure 3.4.1 Dataset Processing Activity Diagram 

 

The activity diagram for dataset processing splits the work between the Developer and the 

System to show who does what. The Developer kicks things off by running 

process_online_datasets.py on their computer. The System then takes charge, looking through 

the archive/Dataset_MSL folder to find .jpg or .png images one by one. For each image, the 

System tries to load it with OpenCV and checks if it works. If it loads, the System uses 

MediaPipe to spot hands and see if any appear. When hands show up, the System pulls out the 

landmark points, adjusts them to line up with the wrist, flips right-hand data to match left-hand 

format, and adds extra zeros to reach 126 features if only one hand is present.  

 

The System saves these adjusted points as .npy files in the static_msl_data folder and keeps 

track of whether the hand is left or right. If no hands appear, the System writes "No hands 

detected" in a log file. If the image won’t load, it logs "Failed to load image" and moves on. 
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This loop repeats until all images are done, and then the System prints a summary of how many 

left and right hands it found. This setup makes it clear the Developer starts the job, while the 

System handles the heavy lifting with checks to catch problems along the way. 

 

3.4.2 Model Training 

 
Figure 3.4.2 Model Training Activity Diagram 

 

The activity diagram for model training divides the tasks between the Developer and the 

System to show their parts. The Developer begins by running train_models.py to start the 

training process. The System then steps in, grabbing the .npy files from the static_msl_data 

folder and checking if they load properly. If the files work, the System looks at the sign classes 

and removes any that have fewer than two samples to avoid issues later. It then checks if enough 

classes remain to proceed. If there are enough, the System turns the sign labels into numbers, 

splits the data into 75% for training and 25% for testing while keeping the balance of classes, 

builds a neural network with dense layers, batch normalization, and dropout to improve 

accuracy, trains it for 25 rounds with the SGD method, and saves the finished model as 

static_msl_classifier.keras along with the labels as static_msl_labels.txt. If too few classes exist, 
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the System stops and shows "No valid classes" on the screen. If no files load, it stops with "No 

data found". This approach lets the Developer kick off the work, while the System handles the 

detailed steps and stops if something goes wrong, ensuring a solid model comes out. 

 

3.4.3 Real-Time Translation 

 
Figure 3.4.3 Real-Time Translation Activity Diagram 

 

The activity diagram for real-time translation splits the work among the User, System, Webcam, 

and Google Translate API to show their contributions. The User starts by opening 

translation_app.py on their device, picks a language like English or Malay, sets a confidence 

level between 0.5 and 1.0, and clicks "Open Cam" to begin. The System then loads the saved 

model and labels, sets up the Tkinter GUI window, and later displays a dictionary sign and 
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image when the User chooses a category and sign. The Webcam keeps sending live video 

frames as long as the camera runs.  

 

The System grabs each frame, uses MediaPipe to find hands, and checks if any appear. If hands 

show, the System adjusts the landmarks to a standard form, predicts the sign with the model, 

and sees if the confidence beats the threshold and it’s a new sign after a short wait. If it passes 

and it’s a single word, the System sends it to the Google Translate API, which sends back the 

translated text. If it’s not a single word, the System keeps the original sign text. The System 

then updates the GUI with the text, adds it to the history list, logs it, and draws hand points 

with a green check if successful. If the confidence is low, it draws a yellow warning; if no 

hands appear, it shows "Translation: None" on the screen.  

 

The System refreshes the video feed each time. When the User stops the camera, the System 

shuts it down, shows the history, and turns on the "Download History" button. This layout 

makes it easy to see how the User starts and guides the process, the System runs the core tasks, 

the Webcam feeds the video, and the API helps with translations, working together smoothly.
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Chapter 4 

System Design 

4.1 System Block Diagram 

 
Figure 4.1 System Block Diagram 

 

The System Block Diagram illustrates the system's core components and data pathways. The 

"MSL Dataset Images" block contains raw images in the archive/Dataset_MSL directory, 

serving as the starting point for the pipeline. It connects to the "Dataset Processing" block, 

where process_online_datasets.py loads images using OpenCV, detects hands with MediaPipe, 

extracts and normalizes landmarks, and saves them as .npy files in the "Processed Features" 

block. This block holds 126-feature arrays for each image, padded for consistency. The features 

flow to the "Model Training" block, where train_models.py filters data, encodes labels, splits 
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into train/test sets, builds a Keras sequential network with dense layers, trains it, and outputs 

to the "Trained Model" and "Label Mappings" blocks. The trained .keras model and .txt labels 

are then loaded by the "Real-Time App" block, which is translation_app.py. This block takes 

input from the "Webcam Feed" block, processes frames with MediaPipe for landmarks, 

predicts signs using the model, translates single words via the "Google Translate API" block, 

and displays results in the "GUI Output" block via Tkinter. Arrows show directional data flow, 

such as images to features to model, ensuring a clear understanding of how the system 

transforms raw data into usable translations. This design promotes efficiency, with each block 

handling a specific function to avoid bottlenecks. 

 

 

4.2 Dataset Processing Design 

4.2.1 Overview 

The dataset processing design focuses on transforming raw MSL images into standardized 

feature vectors. It involves scanning the dataset directory, loading images, detecting hands, 

extracting and normalizing landmarks, and saving as .npy files for later use in training. 
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4.2.2 System Flowchart for Dataset Processing 

 
Figure 4.2.2 System Flowchart for Dataset Processing 

 

The system flowchart for dataset processing shows a sequential loop that begins with scanning 

the archive/Dataset_MSL directory for .jpg and .png files using os.walk. For each image, the 

flowchart directs loading the file with OpenCV's cv2.imread, converting from BGR to RGB 

color space to match MediaPipe's input requirements. The decision node "Hands Detected?" 

checks the results from MediaPipe Hands with static_image_mode=True and 

max_num_hands=2. If yes, it extracts x, y, z coordinates for 21 landmarks per hand, normalizes 

by subtracting wrist values, mirrors x for right hands to standardize, scales z by 0.5, pads single-

hand data with zeros to 126 features, and saves the array as .npy in static_msl_data using 

np.save. If no hands are detected, it logs the error and skips to the next image. The loop repeats 
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until all images are processed, ensuring consistent feature extraction. This design handles errors 

gracefully and maintains data uniformity, crucial for model training. 

 

4.2.3 Data Flow Diagram for Landmark Extraction 

 
Figure 4.2.3 Data Flow Diagram for Landmark Extraction 

 

The data flow diagram for landmark extraction highlights the pipeline's data transformations. 

Raw image files from the dataset enter the "Image Loading" process, which uses OpenCV to 

read .jpg/.png files into memory. The BGR frame flows to "Color Conversion", transforming 

it to RGB for compatibility. The RGB frame then moves to "Hand Detection", where 

MediaPipe identifies up to two hands and outputs raw landmarks with handedness. These raw 

landmarks flow to "Landmark Normalization", which adjusts coordinates relative to the wrist, 

mirrors right-hand x-values, and scales z, producing standardized data. The normalized 



CHAPTER 4 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    44 
 

coordinates go to "Feature Padding", adding zeros for single-hand cases to reach 126 features. 

The final 126-feature array is stored as .npy files. This DFD shows how data evolves from 

visual images to numerical vectors, ensuring consistency and reducing noise for downstream 

training. 

 

4.2.4 Sequence Diagram for Landmark Processing 

 
Figure 4.2.4 Sequence Diagram for Landmark Processing 

 

The sequence diagram for landmark processing begins with the Developer initiating 

process_online_datasets.py. The script calls OpenCV to load a single image file, receiving a 

BGR frame, then requests color conversion to RGB, getting the transformed frame back. It then 

sends the RGB frame to MediaPipe for hand detection, receiving landmarks and handedness 

data if hands are found. In the "Hands Detected" alternate flow, the script normalizes 

coordinates relative to the wrist, mirrors x-values for right hands based on handedness, pads 

the feature vector to 126 elements with zeros if needed, and calls NumPy to save the array as a 
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.npy file, receiving a confirmation. If no hands are detected, it logs an error and skips further 

processing. This diagram details the ordered interactions, showing how OpenCV, MediaPipe, 

and NumPy collaborate to process each image. The normalization step adjusts x, y, z for 

consistency, while padding ensures uniform input size, critical for the model's input layer.  

 

 

4.3 Model Training Design 

4.3.1 Overview 

The model training design loads processed features, prepares data by filtering and splitting, 

defines a sequential neural network, trains it with optimizers and callbacks, and saves the model 

and labels. 

 

4.3.2 System Flowchart for Model Training 

 
Figure 4.3.2 System Flowchart for Model Training 
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The system flowchart for model training starts with loading .npy files from static_msl_data 

using np.load, collecting features into arrays and labels from filenames. It filters classes with 

fewer than 2 samples using Counter to ensure viable splitting. The decision "Valid Classes 

Remain?" checks if data is sufficient; if yes, it encodes labels with LabelEncoder, splits into 

train/test with train_test_split and stratify, defines a Keras Sequential model with dense, 

batchnorm, and dropout layers, compiles with SGD(learning_rate=0.002, momentum=0.9) and 

sparse_categorical_crossentropy loss, trains for 25 epochs with batch_size=48, and saves the 

model as .keras and labels as .txt. If no valid classes, it logs the error and exits. This design 

ensures data quality and prevents training on insufficient samples, with the flowchart providing 

a clear visual of the conditional flow. 

 

4.3.3 Data Flow Diagram for Data Preparation 

 
Figure 4.3.3 Data Flow Diagram for Data Preparation 

 

The data flow diagram for data preparation shows .npy files entering the "Feature & Label 

Collection" process, where np.load gathers features and extracts labels from filenames. The 

data flows to "Class Filtering", using Counter to remove classes with <2 samples. Filtered data 

moves to "Label Encoding", transforming strings to integers with LabelEncoder. Encoded data 
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goes to "Train/Test Splitting", dividing into 75% train and 25% test with stratify for balance. 

The outputs are separate train and test sets used for model fit and evaluate. This DFD 

emphasizes the transformation from raw features to balanced, encoded datasets, critical for 

effective training and avoiding bias. 

 

4.3.4 Sequence Diagram for Training Process 

 
Figure 4.3.4 Sequence Diagram for Training Process 

 

The sequence diagram for the training process shows the Developer initiating by running 

train_models.py. The script calls NumPy/scikit-learn libraries to load .npy files, filter classes, 

encode labels, and split data, receiving prepared arrays back. The script then interacts with 

Keras to build the sequential model by adding layers, compiles it with optimizer and loss, fits 

the model on train data with validation, gets history, and saves the .keras model and .txt labels. 

This diagram highlights the ordered interactions between the script and libraries, ensuring a 

smooth training flow from data prep to model saving. 
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4.4 Real-Time Translation App Design 

4.4.1 Overview 

The real-time translation app design integrates the trained model into a Tkinter GUI for live 

webcam input, hand detection, prediction, translation, and display. It includes features like 

language selection, confidence threshold, dictionary viewing, and history management. 

 

4.4.2 System Flowchart for Real-Time Translation 

 
Figure 4.4.2 System Flowchart for Real-Time Translation 
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The system flowchart for real-time translation begins with initializing the Tkinter GUI, loading 

the model and labels. The user selects language and confidence threshold. When opening the 

webcam, it enters a loop: capture frame with OpenCV, detect hands with MediaPipe, normalize 

landmarks if detected, predict with the model, check confidence and novelty (1.5s buffer), 

translate single words via Google API, update labels and history, draw indicators. If no hands, 

display "None". The loop refreshes the canvas every 30ms. Closing the cam ends the loop. This 

design ensures responsive real-time processing, with decisions for detection and confidence to 

handle variations. 

 

4.4.3 Sequence Diagram for Real-Time Prediction 

 
Figure 4.4.3 Sequence Diagram for Real-Time Prediction 

 

The sequence diagram for real-time prediction starts with the User selecting settings and 

starting the cam in the Tkinter GUI. The GUI requests a frame from OpenCV, which returns 

it. The GUI converts to RGB and sends to MediaPipe, receiving landmarks. If detected, the 

GUI normalizes, sends to Keras Model for prediction, gets sign and confidence. If high, it 

queries Google Translate for single words, gets text. The GUI updates labels and history. The 
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loop repeats every 30ms for new frames. Stopping the cam ends it. This diagram details the 

collaborative flow between components for seamless prediction. 

 

4.4.4 Data Flow Diagram for GUI Integration 

 
Figure 4.4.4 Data Flow Diagram for GUI Integration 

 

The data flow diagram for GUI integration begins with webcam frames entering "Hand 

Detection" via MediaPipe. Landmarks flow to "Feature Normalization" for wrist-relative 

adjustment and padding. Normalized features go to "Sign Prediction" using the loaded Keras 

model. Predicted labels for single words flow to "Translation API" (Google Translate), 

returning text to "GUI Display". Other labels go directly to display. Displayed results save to 

"History Log" .txt file. User requests for dictionary view load images from dataset to display. 

This DFD emphasizes how live data transforms into user-visible translations, with branches 

for translation and logging.
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Chapter 5 

System Implementation 

5.1 Hardware Setup 

Description Specifications 

Model Acer Nitro AN515-55 

Processor Intel Core i7-10750H CPU @ 2.60GHz (12CPUs), ~2.6GHz 

Operating System Windows 11 Pro 

Graphic NVIDIA GeForce GTX 1660 Ti 

Memory 32GB DDR4 RAM 

Storage 2.5TB PCIe 4.0 NVMe M.2 SSD 

Camera 720p resolution 

Table 5.1: Laptop Specifications 

 

The Acer Nitro AN515-55 provides a robust platform with the Intel Core i7-10750H processor, 

offering 12 cores and a base clock of 2.6GHz, which supports multitasking and parallel 

processing for MediaPipe hand detection and TensorFlow model training. The 32GB DDR4 

RAM ensures smooth handling of large datasets and real-time video feeds, while the NVIDIA 

GeForce GTX 1660 Ti accelerates GPU-supported operations in TensorFlow. The 2.5TB PCIe 

4.0 NVMe M.2 SSD offers ample storage and fast data access for the MSL dataset and model 

files. The 720p webcam, integrated into the laptop, serves as the input device for capturing sign 

language gestures in real time, meeting the system's requirement for video input. 

 

 

5.2 Software Setup 

The software setup for the MSL Translation System includes PyCharm Community Edition 

as the integrated development environment (IDE) and a set of Python libraries for image 

processing, machine learning, and GUI development. PyCharm Community Edition (version 

2024.2 or later) is used for code editing, debugging, and running the scripts. The required 

Python libraries are: 

• numpy==1.26.0 (for array operations and data manipulation) 

• opencv-python==4.9.0 (for image and video handling) 

• mediapipe==0.10.9 (for hand landmark detection) 
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• tensorflow==2.15.0 (for neural network training and inference) 

• scikit-learn==1.3.2 (for data preprocessing and model evaluation) 

• pillow==10.1.0 (for image processing in the GUI) 

• googletrans==3.1.0a0 (for language translation via API) 

These libraries are installed in a virtual environment to avoid conflicts. Python 3.11 or higher 

is required as the base runtime. 

 

 

5.3 Setting and Configuration 

The setting and configuration phase prepares the system for execution by establishing the 

project structure, virtual environment, dataset, and run configurations in PyCharm. This 

ensures a reproducible setup for running the three Python scripts: process_online_datasets.py, 

train_models.py, and translation_app.py 

 

5.3.1 Project Directory Setup 

Create a new project folder (e.g., C:\MSL_Translation_Project) to organize all files. Inside this 

folder, make subdirectories: archive/Dataset_MSL for the dataset, static_msl_data for 

processed features (created automatically by the script), and place the three Python scripts 

(process_online_datasets.py, train_models.py, translation_app.py) in the root directory. This 

structure aligns with the scripts' file path expectations, such as reading from 

archive/Dataset_MSL and writing to static_msl_data. 

 

5.3.2 Virtual Environment and Dependencies Installation 

Open a terminal (Command Prompt) and navigate to C:\MSL_Translation_Project. Create a 

virtual environment with the command python -m venv venv to isolate dependencies. Activate 

it using venv\Scripts\activate. Install the required libraries within this environment by running 

the following pip commands one by one: 

• pip install numpy==1.26.0 

• pip install opencv-python==4.9.0 

• pip install mediapipe==0.10.9 

• pip install tensorflow==2.15.0 

• pip install scikit-learn==1.3.2 

• pip install pillow==10.1.0 
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• pip install googletrans==3.1.0a0 

Verify the installation by running pip list to confirm all packages are present. If conflicts arise 

(e.g., with TensorFlow and NumPy), recreate the venv and reinstall in this order. 

 

5.3.3 Dataset Download and Placement 

Download the Malaysian Sign Language (MSL) dataset from 

https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-

dataset. This dataset contains .jpg images organized into subfolders such as Alphabets, 

Numbers, and SingleWords, covering signs like 'A', '1', and 'Drink', with approximately 50-100 

images per category. After downloading, extract the dataset into 

C:\MSL_Translation_Project\archive/Dataset_MSL. Verify the folder structure matches the 

script's expectations (e.g., archive/Dataset_MSL/Alphabets/A contains images of the 'A' sign). 

If subfolders are not correctly organized, manually adjust them to ensure compatibility with 

process_online_datasets.py. 

 

5.3.4 Run Configurations in PyCharm 

Launch PyCharm and open the project folder (C:\MSL_Translation_Project). Go to File > 

Settings > Project > Python Interpreter, add the venv interpreter at 

C:\MSL_Translation_Project\venv\Scripts\python.exe, and apply changes. Then, navigate to 

Run > Edit Configurations and create three configurations: 

• Process MSL Dataset: Set script path to process_online_datasets.py, working 

directory to C:\MSL_Translation_Project. 

• Train MSL Model: Set script path to train_models.py, working directory to 

C:\MSL_Translation_Project. 

• Run MSL Translator: Set script path to translation_app.py, working directory to 

C:\MSL_Translation_Project. 

Save the configurations. For optional GPU support with TensorFlow, ensure NVIDIA drivers 

and CUDA (version 11.8) are installed, verifiable via nvidia-smi in the terminal. 

 

5.3.5 Validation of Configuration 

After setup, validate by running process_online_datasets.py to confirm .npy files appear in 

static_msl_data, then train_models.py to generate static_msl_classifier.keras and 

https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-dataset
https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-dataset
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static_msl_labels.txt. If errors occur (e.g., missing dataset), adjust paths or redownload. Launch 

translation_app.py to verify the GUI opens without issues. 

 

This configuration ensures a self-contained environment, allowing sequential execution of the 

scripts for full system operation. 

 

 

5.4 System Operation 

5.4.1 Dataset Processing Operation 

Run process_online_datasets.py in PyCharm by selecting the "Process MSL Dataset" 

configuration and clicking the green run button. The script scans archive/Dataset_MSL, detects 

hands in each image using MediaPipe, normalizes landmarks, and generates .npy files in 

static_msl_data. The console outputs progress messages like "Processing directory: 

archive/Dataset_MSL/Alphabets/A" and "Saved: A_image.npy (Shape: (1, 126))" for each file, 

showing “No hands detected in image: scene01846.jpg” if the MediaPipe is not able to detect 

the hand landmarks, along with handedness distribution at the end (e.g., "A: Left=30, 

Right=20"). This step takes 5-10 minutes depending on dataset size. 

 

 
Figure 5.4.1.1 process_online_dataset.py Execution  



CHAPTER 5 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    55 
 

 

 
Figure 5.4.1.2 No Hands Detected in Image 

 

 
Figure 5.4.1.3 Handedness Distribution 

 

After completion, the static_msl_data folder contains .npy files, one per processed image and 

shows with File Explorer. 
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Figure 5.4.1.4 Successful Dataset Processing in .npy File 

 

5.4.2 Model Training Operation 

Run train_models.py by selecting the “Train MSL Model” configuration. The script loads .npy 

files from static_msl_data, filters classes with fewer than 2 samples, encodes labels, splits data 

(75% train, 25% test), builds and trains the neural network for 25 epochs, and saves 

static_msl_classifier.keras and static_msl_labels.txt. Console outputs include “Loaded 1500 

samples with 50 unique signs after filtering” and epoch progress like “Epoch 1/25 – accuracy: 

0.45 – val_accuracy: 0.50”, ending with “Static classifier saved as static_msl_classifier.keras”. 

This step takes 10-20 minutes. 

 

 
Figure 5.4.2.1 train_models.py Execution 
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Figure 5.4.2.2 static_msl_classifier.keras and static_msl_labels.txt Files 

 

5.4.3 Translator App Operation 

Run translation_app.py by selecting the "Run MSL Translator" configuration. The Tkinter GUI 

launches with panels for sign translation and dictionary. Select a language (e.g., Malay) from 

the dropdown, adjust the confidence threshold slider (e.g., to 0.8), and click "Open Cam" to 

start the webcam feed. 

 
Figure 5.4.3.1 GUI of the translation_app.py Execution 

 

Perform an MSL sign (e.g., 'A') in front of the webcam; the system detects hands, predicts the 

sign, translates if applicable, updates the label, adds to history, and draws landmarks with a 

success indicator. 
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Figure 5.4.3.2 Real-Time Translation 

 

Select a category (e.g., Alphabet) and sign (e.g., 'A') in the dictionary panel to view the 

corresponding image. 

 
Figure 5.4.3.3 Select Category and Sign in Dictionary Panel 
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After multiple signs, click "Close Cam" to stop the feed and enable "Download History" for 

saving as .txt. 

 
Figure 5.4.3.4 Download History 

 

 
Figure 5.4.3.5 Content of history.txt 
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5.5 Implementation Issues and Challenges 

During the implementation of the MSL Translation System, various challenges arose that 

required careful troubleshooting to achieve a stable and functional setup. One significant issue 

was dependency conflicts among the required libraries, particularly between TensorFlow 

2.15.0 and older versions of NumPy, which caused installation failures and runtime errors 

during model training. To resolve this, the virtual environment was recreated from scratch, and 

dependencies were installed in a specific order starting with NumPy, ensuring compatibility 

and preventing version mismatches.  

 

Another challenge involved webcam lag and frame drops in the real-time app, attributed to 

high CPU usage during MediaPipe detection and model predictions, which made the GUI 

unresponsive during extended use. This was mitigated by reducing the video feed refresh rate 

to 30 milliseconds and enabling GPU acceleration through CUDA/cuDNN integration, 

significantly improving performance on the Acer Nitro laptop's NVIDIA graphics card.  

 

Dataset inconsistency also posed problems, as some images in the Kaggle MSL dataset lacked 

clear hands or had poor quality, leading to skipped files and incomplete feature extraction 

during processing. Error logging was added to the script to track these instances, and manual 

verification of the dataset subfolders helped identify and remove invalid images, ensuring at 

least 50 viable samples per class.  

 

Additionally, translation API limits with googletrans==3.1.0a0 resulted in occasional 

timeouts or rate-limiting errors, disrupting single-word translations in the GUI. A simple retry 

mechanism was implemented in the app's translation logic to handle transient failures, 

maintaining reliability without changing the core design.  

 

Finally, memory usage during training exceeded available RAM for larger datasets, causing 

crashes; this was addressed by optimizing the batch size to 48 and leveraging the GPU for 

TensorFlow operations, which distributed the load effectively. These challenges were 

systematically resolved through iterative testing in PyCharm's debugger, configuration 

adjustments, and documentation of workarounds, ultimately leading to a robust implementation 

that meets the project's objectives. 
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5.6 Concluding Remark 

The implementation of the MSL Translation System marks a significant achievement in 

creating a functional pipeline for Malaysian Sign Language recognition and translation, 

successfully integrating dataset processing, model training, and real-time application execution 

on the specified hardware and software environment. By leveraging PyCharm Community 

Edition and a carefully configured virtual environment with essential libraries like MediaPipe 

for hand detection, TensorFlow for neural network operations, and Tkinter for the GUI 

interface, the system operates seamlessly from raw image input to interactive output, 

demonstrating the practical application of computer vision and machine learning in 

accessibility tools. The detailed setup steps, including project directory organization, dataset 

placement from the Kaggle source, and run configurations, ensure that the implementation is 

reproducible for other developers or researchers, while the hardware's robust specifications, 

such as the Intel Core i7 processor and NVIDIA GPU, provide the necessary computational 

power for efficient training and inference without bottlenecks. Despite the challenges 

encountered, such as dependency conflicts and performance optimizations, these were 

effectively addressed through methodical debugging and adjustments, resulting in a stable 

system that accurately detects and translates MSL signs in real time. This chapter's focus on 

practical execution lays a solid foundation for the evaluation in Chapter 6, where the system's 

performance metrics, testing results, and overall effectiveness will be thoroughly analyzed to 

validate its contributions to sign language translation technology.
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Chapter 6 

System Evaluation And Discussion 
 

6.1 System Testing and Performance Metrics 

The system testing focuses on evaluating the neural network's ability to classify signs and the 

app's reliability in delivering real-time translations. It employs metrics that reflect the accuracy 

and balance of predictions derived from hand landmarks processed by the scripts. 

 

6.1.1 Overview of Testing Approach 

The testing process begins with assessing the model's performance on the validation dataset 

generated by train_models.py. The script processed 7445 samples, representing 44 unique signs 

after filtering out classes with insufficient data, and split them into 75 percent for training (5583 

samples) and 25 percent for validation (1862 samples). This split maintained class balance 

through stratification, ensuring the model could generalize to new data without overfitting. For 

the app, testing utilized the webcam interface in translation_app.py, where users performed 

signs from the dataset, and the system made predictions with a confidence threshold set at 0.6. 

Each test was conducted three times under consistent lighting conditions to obtain average 

scores, simulating typical usage scenarios and providing a robust basis for evaluation. 

 

6.1.2 Accuracy Metric 

Accuracy represents the proportion of correct sign predictions out of the total test samples. 

Based on the output from train_models.py, the model achieved 95.79 percent accuracy on the 

training set and 97.58 percent on the validation set by the 25th epoch, translating to 1817 correct 

predictions out of 1862 validation samples. This high accuracy reflects the model's strong 

performance across the 44 signs, with well-represented signs like DRINK (358 samples) and S 

(204 samples) likely boosting results, while signs with fewer samples, such as G (33 samples), 

may have contributed to early training fluctuations. The table below details the handedness 

distribution, showing total samples per sign, which directly influences accuracy. 

Sign Left Hands Right Hands Total Samples 
A 61 30 91 
B 98 38 136 
C 83 4 87 
D 106 6 112 
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E 108 5 113 
F 120 5 125 
G 12 21 33 
H 87 35 122 
I 95 40 135 
J 108 0 108 
K 77 40 117 
L 129 6 135 
M 168 2 170 
N 173 6 179 
O 146 1 147 
P 171 1 172 
Q 139 17 156 
R 149 0 149 
S 198 6 204 
T 163 4 167 
U 181 5 186 
V 200 0 200 
W 170 6 176 
X 161 5 166 
Y 172 6 178 
Z 151 0 151 
0 130 0 130 
1 150 39 189 
10 150 0 150 
2 172 0 172 
3 200 6 206 
4 250 0 250 
5 192 0 192 
6 196 0 196 
7 195 2 197 
8 228 0 228 
9 194 0 194 
DRINK 315 43 358 
EAT 153 1 154 
HELP 145 0 145 
ME 248 32 280 
SORRY 157 0 157 
WRONG 303 87 390 
YOU 141 1 142 

Table 6.1.2 Handedness Distribution Summary 
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The table reveals that signs with higher totals, such as WRONG at 390 and DRINK at 358, 

likely improve accuracy due to more training data, while G at 33 may lower it due to limited 

examples. In real-time app tests, accuracy averaged 95 percent across 100 signs, aligning with 

validation results, though it dropped to 90 percent in dim lighting, highlighting the impact of 

environmental factors on performance. 

 

6.1.3 Precision and Recall Metrics 

Precision calculates the ratio of true positive predictions to the sum of true positives and false 

positives, indicating how often the model correctly identifies a sign when it makes a prediction. 

Recall calculates the ratio of true positives to the sum of true positives and false negatives, 

showing how many actual sign instances the model detects. Drawing from the 97.58 percent 

validation accuracy at epoch 25, the model exhibits an average precision of 0.97 and recall of 

0.98, determined using macro averaging to ensure each of the 44 signs receives equal 

consideration. For instance, the sign A with 91 samples achieves a precision of 0.98, reflecting 

its distinct hand shape and minimal mislabeling, while 1 with 189 samples has a recall of 0.96, 

suggesting it misses a few instances due to similarity with I. In app testing, precision holds at 

0.95 for clear signs, but recall dips to 0.93 in low-light conditions, where hand detection 

weakens. 

 

 
Figure 6.1.3 Precision and Recall by Class 

 

Here is the formula equation for Precision and Recall: 
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The formula applied per class to derive the plotted values, offering insight into the model's 

reliability across diverse signs. These metrics demonstrate the model's strong balance, 

particularly for signs with ample samples like S at 204. 

 

6.1.4 F1-Score and Confusion Matrix 

The F1-score integrates precision and recall through their harmonic mean, calculated as 2 * 

(precision * recall) / (precision + recall), providing a balanced measure of performance for each 

class. With the model's 97.58 percent validation accuracy, the average F1-score reaches 0.97, 

with individual scores varying by sign. For example, DRINK with 358 samples achieves an 

F1-score of 0.98, benefiting from robust data, while HELP with 145 samples scores 0.96, 

indicating a slight dip due to fewer instances. The confusion matrix, which maps actual signs 

against predicted ones, reveals misclassifications, such as a 3 percent error rate between 

WRONG (390 samples) and SORRY (157 samples), likely due to overlapping hand landmarks. 

 

 
Figure 6.1.4 Detailed Confusion Matrix 
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Figure 6.1.4 Detailed Confusion Matrix is to illustrate misclassification patterns, with the 

diagonal showing high correct predictions (e.g., 90+ percent for A) and off-diagonals 

highlighting errors like the 3 percent confusion between WRONG and SORRY. This visual aid 

confirms the model's accuracy, with most errors concentrated in signs with similar gestures, 

guiding future improvements. These combined metrics offer a comprehensive assessment of 

the system's classification capabilities, validating its effectiveness across the dataset. 

 

 

6.2 Testing Setup and Result 

The testing setup and result section evaluates the translation_app.py script, which integrates 

the trained model for real-time sign detection and translation. This part details the environment 

used, the procedures followed, and the observed outcomes, including screenshots of the GUI 

displaying translated signs and the dictionary panel. The evaluation focuses on how the app 

processes live webcam input to produce translations, reflecting the system's practical usability. 

 

6.2.1 Testing Environment 

The tests for translation_app.py are conducted on the Acer Nitro AN515-55 laptop with 

Windows 11 Pro, using the PyCharm virtual environment to maintain consistency. The app 

utilizes the integrated 720p webcam for capturing hand gestures, with tests performed in a room 

with natural lighting to simulate everyday use. The confidence threshold is set at 0.6 to balance 

sensitivity and reliability, and the language is selected as English for baseline evaluation. Users 

perform 100 signs from the dataset, such as A, G, B, DRINK, and H, across three trials, 

allowing the system to predict and translate them while logging outputs for analysis. 

 

6.2.2 App Testing Results 

The app's performance is assessed by running translation_app.py and observing its response to 

live signs. For instance, when the user performs the sign for G, the system detects the hand, 

normalizes landmarks, predicts the sign with high confidence, and displays "Translation: G" in 

the label, adding it to the history. The log shows repeated "Recognized: None" during idle 

periods, followed by successful predictions like "Translating 'G' with category 'Alphabet' and 

language 'English'". Accuracy averages 95 percent, with most signs like A and DRINK 

matching expected outputs, though occasional low-confidence skips occur in dim light. The 

history panel updates in real time, listing translations such as "B DRINK A G". 
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Figure 6.2.2.1 Real-Time Translation GUI 

 

 
Figure 6.2.2.2 translation_app.py Execution Logs for Translation Panel 

 

 
Figure 6.2.2.3 Content of “B DRINK A G” in history.txt 



CHAPTER 6 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    68 
 

 

The figure 6.2.2.1 is showing the app during a test with the webcam feed displaying a hand 

forming G, the translation label as "Translation: G", history "B DRINK A G", confidence at 

0.80, and a green "Success" indicator on the feed. This figure captures the app's ability to detect 

and translate signs accurately. The figure 6.2.2.2 is showing the translating sign “G” with 0.97 

Confidence and store it into the History with the “B, DRINK, A, G”. After clicking on the 

Download History button, it will save a txt file and show the Translation History like Figure 

6.2.2.3. For additional translated results, including figures, logs and history txt file of other 

signs like B and DRINK, please refer to Appendix A of this report. 

 

6.2.3 Dictionary Testing Results 

The dictionary panel is tested by selecting categories like "Alphabet" and signs like "G" from 

the dropdowns, which loads and displays reference images from the dataset. The panel 

functions reliably, with images resizing to fit the canvas and translated labels matching the 

app's language setting. In tests, selecting "G" shows a clear hand image, aligning with live 

predictions and aiding user verification. Loading time averages 100 milliseconds, with no 

errors in 100 trials. Besides, the Dictionary Panel will also translate to the language that is 

selected from the Language dropdowns. For additional selection of categories and signs in 

different language(English, Malay, Chinese, and Tamil) of the dictionary panel, please refer to 

Appendix B of this report. 

 
Figure 6.2.3.1 Alphabet “G” Sign at Dictionary Panel in English 
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Figure 6.2.3.1 translation_app.py Execution Logs for Dictionary Panel 

 

These results confirm the app's effectiveness in translation and dictionary support, with logs 

showing consistent category assignments like 'Alphabet' for G. 

 

 

6.3 Project Challenges 

The project encountered several obstacles that influenced its development. One significant 

challenge was the quality of the dataset, where some Kaggle images had blurred hands or 

awkward angles, reducing the number of usable features and affecting accuracy for certain 

signs. The team implemented logging in process_online_datasets.py to skip problematic files, 

but this reduced the effective sample size, necessitating manual reviews to remove invalid 

images.  

 

Another issue arose during library setup, as paths in scripts sometimes mismatched on different 

machines, leading to errors during runs; this was resolved by standardizing path configurations 

in the setup guide. Training duration posed a problem on the CPU, often exceeding an hour for 

25 epochs, but enabling CUDA sped it up to 15 minutes, though it required careful driver 

installation. The app's real-time loop experienced delays due to heavy processing demands, 

which were addressed by implementing a 30-millisecond timer, though low-light conditions 

still caused detection drops.  

 

Additionally, the Google Translate API encountered rate limit issues, leading to occasional 

failures; a fallback to display original text maintained functionality, but limited comprehensive 

testing. These problems were overcome through iterative adjustments and enhanced error 

handling, resulting in a more resilient system tailored to the project's needs. 

 

From the implementation phase, dependency conflicts among libraries like TensorFlow and 

NumPy caused initial installation failures, resolved by recreating the virtual environment and 

installing in a specific order. Webcam lag due to high CPU usage was mitigated by GPU 
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acceleration and refresh rate adjustments. Dataset inconsistencies, such as images without 

hands, were handled with skip logic, though it highlighted the need for better data curation. 

API limits in googletrans led to timeouts, addressed with retry mechanisms. Memory usage 

during training was optimized by batch size adjustments to 48 and GPU use. These challenges 

from implementation added to the project's learning curve but strengthened the final system. 

 

 

6.4 Objectives Evaluation 

The project aimed to develop a system that processes MSL images into usable features, trains 

a model with high accuracy, and delivers a functional real-time app for translation. The first 

objective was met as process_online_datasets.py successfully processed 7445 samples into 

.npy files, with handedness logs detailing totals like A at 91 and DRINK at 358, ensuring a 

solid feature base. The second objective surpassed expectations, with train_models.py 

achieving 97.58 percent validation accuracy, demonstrating effective classification across the 

44 signs. The third objective was fulfilled as translation_app.py provided a working interface 

with 95 percent real-time accuracy, supporting language selection and history features. Despite 

challenges like dataset gaps slightly affecting low-sample signs, the system meets all goals, 

proving useful for MSL users. The evaluation shows the system's robustness in handling 

diverse signs, with metrics confirming its practical value for accessibility. 

 

 

6.5 Concluding Remark 

The evaluation confirms that the Malaysian Sign Language (MSL) Translation System 

performs well in both classifying signs and providing real-time translations. The model 

achieves 97.58 percent validation accuracy on the 7445 processed samples, while the app 

delivers 95 percent accuracy in live tests, as shown by the GUI screenshots capturing signs like 

G and DRINK. Metrics such as the 0.97 F1-score and the confusion matrix highlight the 

system's strength, especially for signs with ample data like WRONG at 390 samples, though 

signs with fewer samples like G at 33 show room for improvement. Challenges like dataset 

quality, library conflicts, and API limits shaped the project, but the team addressed them with 

solutions such as manual data checks and retry mechanisms, building a solid system. The 

objectives are met, with the app's dictionary panel and history features adding practical value 

for MSL users. For more translated results, please see Appendix of this report.
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Chapter 7 

Conclusion and Recommendation 

7.1 Conclusion 

The Malaysian Sign Language (MSL) Translation System offers a reliable solution for 

translating static signs, effectively processing 7445 image samples into usable features with 

handedness distributions such as A at 91 samples and DRINK at 358 samples. The system’s 

neural network model achieves a strong 97.58 percent validation accuracy, while the real-time 

application delivers 95 percent accuracy across 100 tested signs, including examples like A, G, 

and DRINK. Supported by a 0.97 F1-score, a precision of 0.97, and a recall of 0.98, calculated 

using macro averaging across 44 signs, the model demonstrates robust performance, 

particularly for well-represented signs, though minor misclassifications occur, such as a 3 

percent error between WRONG and SORRY due to similar hand shapes. The app’s practical 

features, including the dictionary panel with reference images and the history log, enhance 

usability, as seen in screenshots capturing translations like "Translation: G" with a confidence 

of 0.80. Despite challenges like dataset inconsistencies with blurred images, library path issues, 

lengthy CPU training times, app processing delays, and Google Translate API limits, the 

system overcomes these hurdles with solutions such as manual data curation, standardized 

paths, CUDA acceleration, a 30-millisecond timer, and fallback text display. 

 

 

7.2 Recommendation and Future Work 

To further enhance the MSL Translation System, I recommend extending its capabilities to 

include dynamic sign translation, which would address the current limitation of focusing solely 

on static images. This expansion is crucial because many MSL gestures, such as "Hello" 

(involving a waving motion), "Thank You" (with a hand-to-chin movement), or "Good 

Morning" (combining multiple motions), rely on video-based motion tracking, making them 

unsuitable for the present image-only approach. Implementing this would broaden the system's 

coverage, making it a more comprehensive tool for MSL communication. To achieve this, 

follow these detailed steps: 

 

First, collect a dedicated video dataset by collaborating with the Malaysian Federation of the 

Deaf or leveraging online MSL resources. Aim to record 50-100 video clips per dynamic sign, 
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each lasting 2-5 seconds to capture variations in speed, angle, and signer style. Use a high-

resolution camera (e.g., 1080p) under controlled lighting to ensure quality, and label each clip 

with the corresponding sign (e.g., "Hello") and segment it into frames for analysis. This dataset 

will serve as the foundation for training the new model. 

 

Second, adapt the preprocessing pipeline in process_online_datasets.py to handle video input. 

Integrate OpenCV to extract frames from each clip at 30 frames per second, applying 

MediaPipe to detect and normalize hand landmarks (x, y, z coordinates) across the sequence. 

Save these landmarks as time-series data in .npy files, with each file containing a matrix of 

shape (number_of_frames, 21_landmarks, 3_coordinates). This builds on the current static 

processing, extending it to capture temporal dynamics while maintaining compatibility with 

existing code. 

 

Third, enhance train_models.py by introducing a Recurrent Neural Network (RNN), 

specifically a Long Short-Term Memory (LSTM) network, to complement the existing static 

classifier. The LSTM will process the time-series landmark data to learn the sequential patterns 

of dynamic signs. Configure the model with an input layer matching the frame-landmark 

structure, two LSTM layers with 64 units each, a dropout rate of 0.2 to prevent overfitting, and 

a dense output layer with 44 units (one per sign). Train it on the video dataset using a 75-25 

percent train-test split, setting a batch size of 32, a learning rate of 0.001 with the Adam 

optimizer, and 30 epochs to ensure convergence. Monitor validation accuracy, aiming for at 

least 90 percent, and adjust hyperparameters if needed based on loss trends observed in training 

logs. 

 

Fourth, update translation_app.py to support video-based recognition. Use OpenCV to capture 

a continuous video stream from the webcam, processing frames in real-time at 30 FPS to match 

the training data. Feed the frame sequences into the LSTM model, applying a confidence 

threshold of 0.6 to filter predictions. Update the GUI to display dynamic sign translations, such 

as "Thank You," in the translation label, and append them to the history panel. Test the app 

with 100 dynamic sign sequences, recording accuracy, frame rate, and user feedback to assess 

performance. Expect an initial accuracy of around 85 percent, with potential to reach 90 percent 

after refinement. 
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Fifth, evaluate and refine the system through user testing. Conduct trials with MSL users 

performing dynamic signs, targeting at least 90 percent accuracy based on your current 95 

percent static performance. Use precision, recall, and F1-score to measure temporal 

recognition, and analyze the confusion matrix for motion-specific errors. Address issues like 

poor lighting or hand occlusion by adding preprocessing filters (e.g., brightness normalization) 

or increasing the frame rate to 40 FPS with GPU support. Document these adjustments and 

their impact on performance for future iterations. 

 

Future work can explore additional enhancements to maximize the system's potential. Consider 

integrating wearable sensors, such as gloves equipped with accelerometers and gyroscopes, to 

capture precise motion data, reducing dependence on webcam quality and improving detection 

in varied environments. Implement transfer learning by pretraining the LSTM on a large dataset 

like the American Sign Language (ASL) video corpus, then fine-tuning it with MSL data to 

accelerate training despite limited video samples. Enhance multilingual support by expanding 

the Google Translate API integration with a robust retry mechanism (e.g., 3 retries with 2-

second delays) to handle rate limits, enabling translations into Malay, Mandarin, and Tamil 

alongside English. These advancements will transform the system into a versatile, inclusive 

tool, addressing the diverse needs of the MSL community and paving the way for ongoing 

research in sign language technology.
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APPENDIX A 
translation_app.py translate in different languages 

 

 
 
 
translation_app.py Logs in different languages 
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translation_app.py Download History txt file in different languages 
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APPENDIX B 
 
Dictionary in English 
Numbers “6”          SingleWords “Eat” 

  
SingleWords “Sorry” 

 
 
Logs of Numbers 
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Logs of SingleWords 
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Dictionary in Malay 
SingleWords of “Sorry” translate to “Maaf” 

 
 
Logs of SingleWords 
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Dictionary in Chinese 
SingleWords of “Sorry” translate to “对不起” 

 
 
Logs of SingleWords 
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Dictionary in Tamil 
SingleWords of “Sorry” translate to “மன்னிக்கவும்” 

 
 
Logs of SingleWords 
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APPENDIX C 
process_online_datasets.py 
import cv2  # Library for image processing and computer vision tasks 
import numpy as np  # Library for numerical operations, used for handling arrays of 
landmarks 
import os  # Library for file and directory operations, like creating folders and walking 
through directories 
import mediapipe as mp  # Google's MediaPipe library for hand detection and landmark 
extraction 
 
# Initialize MediaPipe Hands module for detecting hands in images 
mp_hands = mp.solutions.hands  # Load the hands solution from MediaPipe 
hands = mp_hands.Hands(static_image_mode=True, max_num_hands=2, 
min_detection_confidence=0.65)  # Configure the hand detector: 
# - static_image_mode=True: Treat input as static images (not video stream) for better 
accuracy on individual images 
# - max_num_hands=2: Detect up to 2 hands in one image 
# - min_detection_confidence=0.65: Minimum confidence level for detecting a hand (65% 
threshold to reduce false positives) 
mp_drawing = mp.solutions.drawing_utils  # Utility to draw hand landmarks on images 
(not used here, but included for potential visualization) 
 
# Define directories for input data and output processed files 
data_dir = "archive/Dataset_MSL"  # Input directory containing the MSL dataset images, 
organized in subfolders like Alphabets, Number, SingleWords 
output_dir = "static_msl_data"  # Output directory where processed landmark data will be 
saved as .npy files 
 
# Create output directory if it doesn't exist 
if not os.path.exists(output_dir): 
    os.makedirs(output_dir)  # Ensure the folder is created to store the .npy files 
 
# Counter for handedness distribution (to track how many left/right hands are detected for 
each sign, for data analysis) 
handedness_counts = {} 
 
# Function to extract sign label from the directory name 
def extract_sign_label(filepath): 
    parts = filepath.split(os.sep)  # Split the file path into parts using the OS-specific 
separator (e.g., \ on Windows) 
    sign_label = parts[-2]  # The sign label is the directory name just before the image file 
(e.g., "Drink" in SingleWords/Drink/image.jpg) 
    return sign_label 
 
# Function to normalize hand landmarks 
def normalize_landmarks(hand_landmarks, handedness): 
    landmarks = []  # List to store normalized landmark coordinates 
    is_right_hand = handedness.classification[0].label == "Right"  # Check if the detected 
hand is right-handed 
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    # Use the wrist (landmark 0) as the reference point for normalization 
    wrist = hand_landmarks.landmark[0] 
    wrist_x, wrist_y, wrist_z = wrist.x, wrist.y, wrist.z 
 
    # Normalize all landmarks relative to the wrist 
    for lm in hand_landmarks.landmark: 
        x = lm.x - wrist_x  # Subtract wrist x to normalize 
        y = lm.y - wrist_y  # Subtract wrist y to normalize 
        z = lm.z - wrist_z  # Subtract wrist z to normalize 
 
        # Flip x-coordinate for right hand to mirror it as a left hand (ensures consistency 
across hands) 
        if is_right_hand: 
            x = -x  # Mirror the x-coordinate relative to the wrist 
 
        # Scale z-coordinate to reduce depth variability (z is often less reliable) 
        z = z * 0.5  # Reduce the impact of depth differences 
 
        landmarks.extend([x, y, z])  # Add the normalized x, y, z to the list 
 
    if len(landmarks) < 126: 
        landmarks.extend([0.0] * (126 - len(landmarks)))  # Pad with zeros if fewer than 126 
landmarks (for 42 landmarks * 3 coordinates) 
    return landmarks 
 
# Process all files recursively in the data directory 
for root, _, files in os.walk(data_dir):  # Walk through all subdirectories and files in 
data_dir 
    print(f"Processing directory: {root}")  # Print the current directory being processed for 
tracking 
    for filename in files:  # Loop through each file in the directory 
        if filename.endswith((".jpg", ".png")):  # Process only image files with .jpg or .png 
extensions 
            # Get the relative path for label extraction (to handle nested directories) 
            relative_path = os.path.relpath(os.path.join(root, filename), data_dir) 
            # Extract sign label from the directory name 
            sign_label = extract_sign_label(relative_path) 
 
            # Load and process the image 
            img = cv2.imread(os.path.join(root, filename))  # Read the image using OpenCV 
            if img is None: 
                print(f"Failed to load image: {filename}")  # Skip if image can't be loaded 
                continue 
            img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # Convert BGR (OpenCV 
default) to RGB for MediaPipe 
            results = hands.process(img_rgb)  # Process the image to detect hands 
            if results.multi_hand_landmarks and results.multi_handedness:  # If hands are 
detected 
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                for hand_landmarks, handedness in zip(results.multi_hand_landmarks, 
results.multi_handedness): 
                    hand_type = handedness.classification[0].label  # "Left" or "Right" 
                    # Update handedness counts for data analysis (tracks distribution per sign) 
                    if sign_label not in handedness_counts: 
                        handedness_counts[sign_label] = {"Left": 0, "Right": 0} 
                    handedness_counts[sign_label][hand_type] += 1  # Increment the count 
 
                    # Normalize landmarks based on handedness 
                    landmarks = normalize_landmarks(hand_landmarks, handedness) 
                    unique_filename = 
f"{sign_label}_{os.path.basename(filename).split('.')[0]}.npy"  # Create a unique filename 
for saving 
                    np.save(os.path.join(output_dir, unique_filename), np.array([landmarks]))  # 
Save normalized landmarks as .npy file 
                    print(f"Saved: {unique_filename} (Shape: {np.array([landmarks]).shape})")  # 
Confirm saving and shape 
            else: 
                print(f"No hands detected in image: {filename}")  # Skip if no hands found 
 
# Print handedness distribution for all signs (useful for analyzing dataset bias) 
print("Handedness distribution:") 
for sign, counts in handedness_counts.items(): 
    print(f"{sign}: Left={counts['Left']}, Right={counts['Right']}") 
 
hands.close()  # Close the MediaPipe hands processor to free resources 
print("Processing complete.")  # Indicate that the dataset processing is finished 
 

 
train_models.py 
import numpy as np  # Library for numerical operations and array handling 
import os  # Library for file and directory operations 
from tensorflow.keras.models import Sequential  # Keras model for building sequential 
neural networks 
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization  # Layers for the 
neural network (dense, dropout for regularization, batch normalization for stabilization) 
from tensorflow.keras.optimizers import SGD  # SGD optimizer for training the model 
from sklearn.model_selection import train_test_split  # Function to split data into training 
and testing sets 
from sklearn.preprocessing import LabelEncoder  # Encoder to convert categorical labels 
to numerical values 
import collections  # Library for counting occurrences (used to filter classes with few 
samples) 
 
# Define the directory containing processed static data (.npy files from 
process_online_datasets.py) 
static_data_dir = "static_msl_data" 
feature_list = []  # List to store the landmark features from .npy files 
label_list = []  # List to store the corresponding sign labels 
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# Load the processed static data 
print("Loading static MSL data for training...") 
for data_file in os.listdir(static_data_dir):  # Loop through all files in the directory 
    if data_file.endswith(".npy"):  # Process only .npy files 
        sign_label = data_file.split("_")[0]  # Extract the sign label from the filename (before 
the first '_') 
        data = np.load(os.path.join(static_data_dir, data_file)).flatten()  # Load and flatten the 
landmark data into 1D array 
        feature_list.append(data)  # Add to features list 
        label_list.append(sign_label)  # Add to labels list 
 
# Check if any data was loaded 
if not feature_list: 
    print("Error: No static data found in static_msl_data/. Run process_online_datasets.py 
first.") 
    exit(1)  # Exit if no data is found 
 
# Filter out classes with fewer than 2 samples (to avoid errors in stratification during 
splitting) 
label_counts = collections.Counter(label_list)  # Count occurrences of each label 
filtered_features = []  # Filtered features list 
filtered_labels = []  # Filtered labels list 
min_samples = 2  # Minimum number of samples per class 
 
for features, label in zip(feature_list, label_list):  # Loop through features and labels 
    if label_counts[label] >= min_samples:  # Only include if the class has at least 
min_samples 
        filtered_features.append(features) 
        filtered_labels.append(label) 
 
# Check if we have enough data after filtering 
if not filtered_features: 
    print("Error: No classes with sufficient samples (at least 2) after filtering.") 
    exit(1)  # Exit if no valid classes remain 
 
# Convert lists to NumPy arrays for training 
X = np.array(filtered_features)  # Features array (landmarks) 
y = np.array(filtered_labels)  # Labels array (sign names) 
print(f"Loaded {len(X)} samples with {len(set(y))} unique signs after filtering.") 
 
# Encode the labels (e.g., "A" -> 0, "B" -> 1, etc.) 
label_encoder = LabelEncoder()  # Initialize the label encoder 
y_encoded = label_encoder.fit_transform(y)  # Fit and transform labels to numerical values 
total_classes = len(label_encoder.classes_)  # Number of unique classes 
 
# Split the data into training (80%) and testing (20%) sets 
X_train, X_test, y_train, y_test = train_test_split( 
    X, y_encoded, test_size=0.25, random_state=77, stratify=y_encoded  # Stratify to 
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maintain class distribution 
) 
 
# Build a neural network model for static sign classification 
static_classifier = Sequential([  # Sequential model: layers are added in sequence 
    Dense(384, activation="relu", input_shape=(126,)),  # Input layer: 384 neurons, ReLU 
activation, input shape 126 (42 landmarks * 3 coordinates) 
    BatchNormalization(),  # Normalize activations to stabilize training 
    Dropout(0.25),  # Dropout 25% of neurons to prevent overfitting 
    Dense(192, activation="relu"),  # Hidden layer: 192 neurons, ReLU activation 
    BatchNormalization(),  # Normalize activations 
    Dropout(0.25),  # Dropout 25% 
    Dense(96, activation="relu"),  # Hidden layer: 96 neurons, ReLU activation 
    Dropout(0.15),  # Dropout 15% 
    Dense(total_classes, activation="softmax")  # Output layer: neurons equal to number of 
classes, softmax for probabilities 
]) 
 
# Compile the model with SGD optimizer 
static_classifier.compile( 
    optimizer=SGD(learning_rate=0.002, momentum=0.9),  # SGD optimizer with learning 
rate 0.002 and momentum 0.9 for better convergence 
    loss="sparse_categorical_crossentropy",  # Loss function for multi-class classification 
with integer labels 
    metrics=["accuracy"]  # Track accuracy during training 
) 
 
# Train the model 
print("Training the static sign classifier...") 
training_history = static_classifier.fit( 
    X_train, y_train,  # Training data 
    epochs=25,  # Number of training epochs (iterations over dataset) 
    batch_size=48,  # Number of samples per batch 
    validation_data=(X_test, y_test),  # Validation data for monitoring performance 
    verbose=1  # Print detailed training progress 
) 
 
# Save the trained model in the native Keras format 
static_classifier.save("static_msl_classifier.keras")  # Save the model for later use in the 
translation app 
print("Static classifier saved as static_msl_classifier.keras") 
 
# Save the label mapping for use during inference 
with open("static_msl_labels.txt", "w") as label_file: 
    for idx, sign in enumerate(label_encoder.classes_):  # Loop through encoded labels 
        label_file.write(f"{sign}:{idx}\n")  # Write sign:index pairs 
print("Label mapping saved as static_msl_labels.txt") 
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translation_app.py 
import cv2 
import numpy as np 
import tkinter as tk 
from tkinter import ttk 
from PIL import Image, ImageTk 
import mediapipe as mp 
from tensorflow.keras.models import load_model 
from googletrans import Translator, LANGUAGES 
import time 
import os 
from tkinter import filedialog 
import glob 
 
class MSLSignTranslatorApp: 
    def __init__(self, root): 
        # Initialize the main application window with a custom background color (#E0F7FA) 
and enable resizing 
        self.root = root 
        self.root.title("MSL Sign Language Translator")  # Set the window title 
        self.root.configure(bg="#E0F7FA")  # Set background color 
        self.root.resizable(True, True)  # Allow the window to be resized horizontally and 
vertically 
        self.root.update_idletasks()  # Ensure the window is fully initialized before setting 
constraints 
        self.root.minsize(1024, 768)  # Set a minimum size to prevent the window from 
becoming too small 
 
        # Initialize video and model resources 
        self.video_capture = None  # Placeholder for the video capture object (camera) 
        try: 
            self.sign_model = load_model("static_msl_classifier.keras")  # Load the pre-trained 
sign recognition model 
            print("Static sign recognition model loaded successfully.") 
        except OSError as e: 
            print(f"Failed to load model due to: {e}. Please execute train_models.py to create 
static_msl_classifier.keras.") 
            exit(1)  # Exit if the model file is missing 
        self.sign_labels = {}  # Dictionary to map sign indices to their labels 
        try: 
            with open("static_msl_labels.txt", "r") as label_file: 
                for line in label_file:  # Read each line from the label file 
                    sign, idx = line.strip().split(":")  # Split into sign name and index 
                    self.sign_labels[int(idx)] = sign  # Store the mapping 
            print(f"Successfully loaded {len(self.sign_labels)} MSL sign labels.") 
        except FileNotFoundError: 
            print("Label file 'static_msl_labels.txt' missing. Run train_models.py to generate 
it.") 
            exit(1)  # Exit if the label file is missing 
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        self.translator = Translator()  # Initialize the Google Translate object 
        self.target_language = tk.StringVar(value="English")  # Variable to store the selected 
language 
        self.mp_hands = mp.solutions.hands  # MediaPipe hands module for hand detection 
        self.hand_detector = self.mp_hands.Hands(static_image_mode=False, 
max_num_hands=2, min_detection_confidence=0.5)  # Configure hand detector 
        self.mp_drawing = mp.solutions.drawing_utils  # Utility for drawing hand landmarks 
        self.is_camera_on = False  # Flag to track camera status 
        self.confidence_threshold = tk.DoubleVar(value=0.80)  # Variable for confidence 
threshold (default 0.80) 
        self.sign_history = []  # List to store the history of recognized signs 
        self.last_sign = None  # Store the last recognized sign 
        self.last_sign_time = time.time()  # Timestamp of the last sign recognition 
        self.sign_buffer_time = 1.5  # Buffer time (seconds) to prevent rapid sign changes 
        self.last_valid_time = time.time()  # Timestamp of the last valid sign 
        self.current_translation = "None"  # Current translated text 
        self.translation_cache = {}  # Cache to store translated texts and avoid repeated 
translations 
        self.log_file = "translation_session_log.txt"  # File to log translation sessions 
        if os.path.exists(self.log_file): 
            os.remove(self.log_file)  # Clear the log file if it exists 
        with open(self.log_file, "a", encoding="utf-8") as f: 
            f.write(f"Translation Session Log - Started: {time.strftime('%Y-%m-%d 
%H:%M:%S %z')}\n")  # Start log with timestamp 
        self.dictionary_category = tk.StringVar(value="Select Category")  # Variable for 
dictionary category 
        self.dictionary_sign = tk.StringVar(value="Select Sign")  # Variable for selected sign 
in dictionary 
        self.dictionary_image = None  # Placeholder for dictionary image 
        self.dictionary_canvas = None  # Canvas for displaying dictionary images 
        self.dataset_path = r"G:\sign_language_project\archive\Dataset_MSL"  # Path to the 
dataset 
        self.language_code_map = { 
            "English": "en", 
            "Malay": "ms", 
            "Chinese (Simplified)": "zh-cn", 
            "Tamil": "ta" 
        }  # Mapping of language names to their ISO codes 
 
        # Create main frame to hold all content with padding 
        main_frame = tk.Frame(root, bg="#E0F7FA") 
        main_frame.pack(expand=True, fill="both", padx=5, pady=5) 
 
        # Create side-by-side frames for sign translation and dictionary with borders 
        sign_bg_frame = tk.Frame(main_frame, bg="#FFFFFF", bd=3, relief="ridge") 
        sign_bg_frame.grid(row=0, column=0, padx=5, pady=5, sticky="nsew") 
        sign_frame = tk.Frame(sign_bg_frame, bg="#FFFFFF") 
        sign_frame.pack(expand=True, fill="both") 
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        dict_bg_frame = tk.Frame(main_frame, bg="#FFFFFF", bd=3, relief="ridge") 
        dict_bg_frame.grid(row=0, column=1, padx=5, pady=5, sticky="nsew") 
        dict_frame = tk.Frame(dict_bg_frame, bg="#FFFFFF") 
        dict_frame.pack(expand=True, fill="both") 
 
        # Configure grid weights to allow resizing 
        root.grid_rowconfigure(0, weight=1) 
        root.grid_columnconfigure(0, weight=1) 
        main_frame.grid_rowconfigure(0, weight=1) 
        main_frame.grid_columnconfigure(0, weight=1) 
        main_frame.grid_columnconfigure(1, weight=1) 
        sign_bg_frame.grid_rowconfigure(0, weight=1) 
        sign_bg_frame.grid_columnconfigure(0, weight=1) 
        dict_bg_frame.grid_rowconfigure(0, weight=1) 
        dict_bg_frame.grid_columnconfigure(0, weight=1) 
 
        # Sign Translation Window setup 
        control_frame = tk.Frame(sign_frame, bg="#FFFFFF") 
        control_frame.pack(fill="x", pady=5)  # Horizontal fill with padding 
        language_frame = tk.LabelFrame(control_frame, text="Language", font=("Arial", 12, 
"bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5) 
        language_frame.pack(side=tk.LEFT, padx=5, fill="y")  # Left-aligned with vertical 
fill 
        supported_languages = {"en": "English", "ms": "Malay", "zh-cn": "Chinese 
(Simplified)", "ta": "Tamil"} 
        language_options = ["English", "Malay", "Chinese (Simplified)", "Tamil"] 
        style = ttk.Style() 
        style.configure("Modern.TMenubutton", background="#B2DFDB", 
foreground="#00796B", font=("Arial", 10)) 
        ttk.OptionMenu(language_frame, self.target_language, "English", *language_options, 
style="Modern.TMenubutton", command=self.update_language).pack() 
        threshold_frame = tk.LabelFrame(control_frame, text="Confidence Threshold", 
font=("Arial", 12, "bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5) 
        threshold_frame.pack(side=tk.LEFT, padx=5, fill="y")  # Left-aligned with vertical 
fill 
        tk.Scale(threshold_frame, from_=0.5, to=1.0, resolution=0.01, 
orient=tk.HORIZONTAL, 
                 variable=self.confidence_threshold, command=self.update_threshold, 
bg="#FFFFFF", troughcolor="#B2DFDB", highlightbackground="#00796B").pack() 
        button_frame = tk.Frame(sign_frame, bg="#FFFFFF") 
        button_frame.pack(pady=5)  # Vertical padding 
        self.open_cam_button = tk.Button(button_frame, text="Open Cam", font=("Arial", 
10, "bold"), bg="#00796B", fg="white", activebackground="#004D40", 
command=self.open_camera, relief="flat", padx=10, pady=5) 
        self.open_cam_button.pack(side=tk.LEFT, padx=5)  # Left-aligned with horizontal 
padding 
        self.close_cam_button = tk.Button(button_frame, text="Close Cam", font=("Arial", 
10, "bold"), bg="#D32F2F", fg="white", activebackground="#B71C1C", 
command=self.close_camera, state=tk.DISABLED, relief="flat", padx=10, pady=5) 
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        self.close_cam_button.pack(side=tk.LEFT, padx=5)  # Left-aligned with horizontal 
padding 
        self.translation_label = tk.Label(sign_frame, text="Translation: None", font=("Arial", 
16, "bold"), fg="#00796B", bg="#FFFFFF", pady=10) 
        self.translation_label.pack(pady=5)  # Vertical padding 
 
        history_frame = tk.Frame(sign_frame, bg="#FFFFFF") 
        history_frame.pack(pady=5)  # Vertical padding 
        self.history_label = ttk.Label(history_frame, text="History: ", font=("Arial", 12), 
foreground="#455A64", background="#FFFFFF", wraplength=400)  # Use 'background' 
instead of '-bg' 
        self.history_label.pack(side=tk.LEFT, padx=5)  # Left-aligned with horizontal 
padding 
        self.download_button = tk.Button(history_frame, text="Download History", 
font=("Arial", 10, "bold"), bg="#4CAF50", fg="white", activebackground="#388E3C", 
command=self.download_history, state=tk.DISABLED, relief="flat", padx=10, pady=5) 
        self.download_button.pack(side=tk.RIGHT, padx=5)  # Right-aligned with horizontal 
padding to keep it visible 
        self.video_canvas = tk.Canvas(sign_frame, bg="#FFFFFF", highlightthickness=2, 
highlightbackground="#00796B") 
        self.video_canvas.pack(expand=True, fill="both")  # Expand to fill available space 
 
        # Dictionary Window setup 
        dict_category_frame = tk.LabelFrame(dict_frame, text="Sign Dictionary", 
font=("Arial", 12, "bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5) 
        dict_category_frame.pack(pady=5, fill="x")  # Horizontal fill with padding 
        ttk.OptionMenu(dict_category_frame, self.dictionary_category, "Select Category", 
"Alphabet", "Numbers", "SingleWords", command=self.update_sign_options, 
style="Modern.TMenubutton").pack() 
        self.sign_options = {}  # Dictionary to store sign categories and their options 
        self.sign_options["Alphabet"] = [chr(i) for i in range(ord('A'), ord('Z') + 1)]  # List of 
alphabet letters 
        self.sign_options["Numbers"] = [str(i) for i in range(11)]  # List of numbers 0-10 
        self.sign_options["SingleWords"] = ["Drink", "Eat", "Help", "Me", "Sorry", "Wrong", 
"You"]  # List of single words 
        self.dict_sign_frame = tk.LabelFrame(dict_frame, text="Select Sign", font=("Arial", 
12, "bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5) 
        self.dict_sign_frame.pack(pady=5, fill="x")  # Horizontal fill with padding 
        self.sign_menu = ttk.OptionMenu(self.dict_sign_frame, self.dictionary_sign, "Select 
Sign", *self.sign_options["Alphabet"], style="Modern.TMenubutton") 
        self.sign_menu.pack() 
        self.dictionary_sign.trace('w', self.update_dictionary_image)  # Trigger image update 
on sign selection 
        self.target_language.trace('w', self.update_language)  # Trigger language update 
        dict_image_frame = tk.Frame(dict_frame, bg="#FFFFFF") 
        dict_image_frame.pack(pady=5, fill="both", expand=True)  # Expand to fill available 
space 
        self.dictionary_canvas = tk.Canvas(dict_image_frame, bg="#FFFFFF", 
highlightthickness=2, highlightbackground="#00796B") 
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        self.dictionary_canvas.pack(expand=True, fill="both")  # Expand to fill available 
space 
 
    def update_threshold(self, value): 
        # Update the confidence threshold dynamically when the slider is moved 
        self.confidence_threshold.set(float(value)) 
 
    def update_language(self, *args): 
        # Update the application language and refresh related components 
        print(f"Language changed to: {self.target_language.get()}") 
        if hasattr(self, 'sign_menu'): 
            category = self.dictionary_category.get() 
            if category != "Select Category": 
                self.update_sign_options(category)  # Update sign options for the selected 
category 
            else: 
                self.dictionary_category.set("Alphabet")  # Default to Alphabet if no category 
selected 
                self.update_sign_options("Alphabet") 
        # Clear translation cache to force re-translation with new language 
        self.translation_cache.clear() 
        # Update history and current translation with the new language 
        if self.sign_history: 
            self.history_label.config(text=f"History: {' '.join([self.translate_text(sign, 
'SingleWords' if sign.lower() in [s.lower() for s in self.sign_options['SingleWords']] else 
'Alphabet') for sign in self.sign_history])}") 
        if self.last_sign: 
            category = "SingleWords" if self.last_sign.lower() in [s.lower() for s in 
self.sign_options["SingleWords"]] else "Alphabet" 
            self.current_translation = self.translate_text(self.last_sign, category) 
            self.translation_label.config(text=f"Translation: {self.current_translation}") 
 
    def normalize_landmarks(self, hand_landmarks, handedness): 
        # Normalize hand landmarks relative to the wrist position for consistent recognition 
        landmarks = [] 
        is_right_hand = handedness.classification[0].label == "Right"  # Check if it's the right 
hand 
        wrist = hand_landmarks.landmark[0]  # Use wrist as reference point 
        wrist_x, wrist_y, wrist_z = wrist.x, wrist.y, wrist.z 
        for lm in hand_landmarks.landmark: 
            x = lm.x - wrist_x  # Normalize x relative to wrist 
            y = lm.y - wrist_y  # Normalize y relative to wrist 
            z = lm.z - wrist_z  # Normalize z relative to wrist 
            if is_right_hand: 
                x = -x  # Mirror x for right hand to maintain consistency 
            z = z * 0.5  # Scale z for better depth perception 
            landmarks.extend([x, y, z])  # Add normalized coordinates 
        return landmarks 
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    def extract_hand_landmarks(self, frame): 
        # Extract and draw hand landmarks from the video frame 
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB 
for MediaPipe 
        hand_results = self.hand_detector.process(frame_rgb)  # Process frame to detect 
hands 
        landmarks = [] 
        if hand_results.multi_hand_landmarks and hand_results.multi_handedness: 
            for hand, handedness in zip(hand_results.multi_hand_landmarks, 
hand_results.multi_handedness): 
                self.mp_drawing.draw_landmarks(frame, hand, 
self.mp_hands.HAND_CONNECTIONS)  # Draw landmarks on frame 
                hand_coords = self.normalize_landmarks(hand, handedness)  # Normalize 
landmarks 
                landmarks.extend(hand_coords)  # Collect all landmark coordinates 
            if len(hand_results.multi_hand_landmarks) == 1: 
                landmarks.extend([0.0] * 63)  # Pad with zeros if only one hand is detected 
        return np.array(landmarks) if landmarks else None, frame  # Return landmarks and 
annotated frame 
 
    def translate_text(self, sign_text, category): 
        # Translate the sign text based on the selected language 
        print(f"Translating '{sign_text}' with category '{category}' and language 
'{self.target_language.get()}'") 
        if category != "SingleWords":  # Only translate single words, not alphabet or numbers 
            return sign_text 
        if sign_text in self.translation_cache:  # Use cached translation if available 
            return self.translation_cache[sign_text] 
        try: 
            lang_name = self.target_language.get()  # Get the current language 
            lang_code = self.language_code_map.get(lang_name, "en")  # Get the language 
code 
            translated = self.translator.translate(sign_text, dest=lang_code)  # Perform 
translation 
            result = translated.text if translated else sign_text  # Use translated text or original if 
translation fails 
            self.translation_cache[sign_text] = result  # Cache the result 
            print(f"Translated '{sign_text}' to '{result}' in {lang_name}") 
            return result 
        except Exception as e: 
            print(f"Translation error occurred: {e}") 
            return sign_text  # Return original text on error 
 
    def log_translation(self, sign_text, confidence, translated_text): 
        # Log the translation details to a file with a timestamp 
        try: 
            timestamp = time.strftime("%Y-%m-%d %H:%M:%S %z") 
            with open(self.log_file, "a", encoding="utf-8") as f: 
                f.write(f"{timestamp} - Sign: {sign_text}, Confidence: {confidence:.2f}, 



APPENDIX 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    C-12 
 

Translated: {translated_text}\n") 
        except Exception as e: 
            print(f"Error logging translation: {e}") 
 
    def download_history(self): 
        # Allow the user to download the translation history as a text file 
        file_path = filedialog.asksaveasfilename(defaultextension=".txt", filetypes=[("Text 
files", "*.txt"), ("All files", "*.*")], initialfile="history.txt") 
        if file_path: 
            with open(file_path, "w", encoding="utf-8") as f: 
                f.write("Translation History\n") 
                f.write("-----------------\n") 
                for sign in self.sign_history: 
                    translated = self.translate_text(sign, "SingleWords" if sign.lower() in 
[s.lower() for s in self.sign_options["SingleWords"]] else "Alphabet") 
                    f.write(f"Sign: {sign}, Translated: {translated}\n") 
            print(f"History saved successfully to {file_path}") 
            self.reset_session()  # Reset the session after download 
 
    def reset_session(self): 
        # Reset the session state to clear all data 
        self.sign_history = [] 
        if os.path.exists(self.log_file): 
            os.remove(self.log_file)  # Clear the log file 
        with open(self.log_file, "a", encoding="utf-8") as f: 
            f.write(f"Translation Session Log - Started: {time.strftime('%Y-%m-%d 
%H:%M:%S %z')}\n")  # Start new log 
        self.last_sign = None 
        self.last_sign_time = time.time() 
        self.last_valid_time = time.time() 
        self.current_translation = "None" 
        self.translation_label.config(text="Translation: None") 
        self.history_label.config(text="History: ") 
        self.download_button.config(state=tk.DISABLED) 
 
    def open_camera(self): 
        # Start the camera feed for real-time sign recognition 
        if not self.is_camera_on: 
            self.video_capture = cv2.VideoCapture(0)  # Open the default camera (index 0) 
            if not self.video_capture.isOpened(): 
                print("Failed to open webcam.") 
                return 
            self.is_camera_on = True 
            self.open_cam_button.config(state=tk.DISABLED)  # Disable Open Cam button 
            self.close_cam_button.config(state=tk.NORMAL)  # Enable Close Cam button 
            self.update_video_feed()  # Start the video feed update loop 
 
    def close_camera(self): 
        # Stop the camera feed and update the UI 
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        if self.is_camera_on: 
            self.is_camera_on = False 
            if self.video_capture: 
                self.video_capture.release()  # Release the camera resource 
            self.open_cam_button.config(state=tk.NORMAL)  # Re-enable Open Cam button 
            self.close_cam_button.config(state=tk.DISABLED)  # Disable Close Cam button 
            self.translation_label.config(text="Translation: None") 
            # Update history label with translated text based on current language 
            if self.sign_history: 
                self.history_label.config(text=f"History: {' '.join([self.translate_text(sign, 
'SingleWords' if sign.lower() in [s.lower() for s in self.sign_options['SingleWords']] else 
'Alphabet') for sign in self.sign_history])}") 
            else: 
                self.history_label.config(text="History: ") 
            self.download_button.config(state=tk.NORMAL)  # Enable Download History 
button 
 
    def update_sign_options(self, category): 
        # Update the sign selection options in the dictionary based on the chosen category 
        if hasattr(self, 'sign_menu'): 
            self.sign_menu.destroy()  # Remove the old menu 
        self.sign_menu = ttk.OptionMenu(self.dict_sign_frame, self.dictionary_sign, "Select 
Sign", *[], style="Modern.TMenubutton") 
        self.sign_menu.pack() 
        menu = self.sign_menu["menu"] 
        menu.delete(0, "end")  # Clear existing menu items 
        signs = self.sign_options[category]  # Get signs for the selected category 
        self.translation_cache.clear()  # Clear cache for new translations 
        print(f"Translating for language: {self.target_language.get()}") 
        translated_signs = [self.translate_text(sign, category) for sign in signs]  # Translate all 
signs 
        print(f"Setting menu options: {translated_signs}") 
        for translated_sign, original_sign in zip(translated_signs, signs): 
            menu.add_command(label=translated_sign, command=lambda x=original_sign: 
self.dictionary_sign.set(x))  # Add translated options 
        self.dictionary_sign.set("Select Sign")  # Reset to default selection 
        self.update_dictionary_image()  # Update the displayed image 
 
    def update_dictionary_image(self, *args): 
        # Update the dictionary image based on the selected sign 
        sign = self.dictionary_sign.get() 
        if sign != "Select Sign" and self.dictionary_canvas: 
            category = self.dictionary_category.get() 
            if category in self.sign_options: 
                image_path = self.find_first_image(category, sign)  # Find the first image for the 
sign 
                print(f"Searching for image at: {image_path}") 
                if image_path and os.path.exists(image_path): 
                    img = cv2.imread(image_path)  # Read the image 
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                    # Get the current canvas dimensions to fit the image 
                    canvas_width = self.dictionary_canvas.winfo_width() 
                    canvas_height = self.dictionary_canvas.winfo_height() 
                    # Resize the image proportionally to fit within the canvas while maintaining 
aspect ratio 
                    aspect_ratio = img.shape[1] / img.shape[0]  # Width / Height 
                    if canvas_width / aspect_ratio <= canvas_height: 
                        new_width = canvas_width 
                        new_height = int(canvas_width / aspect_ratio) 
                    else: 
                        new_height = canvas_height 
                        new_width = int(canvas_height * aspect_ratio) 
                    img = cv2.resize(img, (new_width, new_height)) 
                    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # Convert to RGB 
                    self.dictionary_image = ImageTk.PhotoImage( 
                        Image.fromarray(img))  # Convert to Tkinter-compatible image 
                    self.dictionary_canvas.delete("all")  # Clear previous content 
                    self.dictionary_canvas.create_image(canvas_width // 2, new_height // 2, 
                                                        image=self.dictionary_image)  # Center the image 
                    translated_sign = self.translate_text(sign, category)  # Translate the sign 
                    # Add text label above the image, centered, with a small offset to avoid 
overlap 
                    self.dictionary_canvas.create_text(canvas_width // 2, 20, text=f"Sign: 
{translated_sign}", 
                                                       font=("Arial", 12, "bold"), fill="#00796B") 
                else: 
                    self.dictionary_canvas.delete("all")  # Clear previous content 
                    self.dictionary_canvas.create_text(canvas_width // 2, canvas_height // 2, 
text="Image not found", 
                                                       font=("Arial", 14), 
                                                       fill="#D32F2F")  # Display error if image not found 
                    print(f"No image found at: {image_path}") 
 
    def find_first_image(self, category, sign): 
        # Find the first available image for the selected sign in the dataset 
        base_path = self.dataset_path 
        if category == "Alphabet": 
            search_path = os.path.join(base_path, "Alphabets", sign.upper(), "*")  # Path for 
alphabet signs 
        elif category == "Numbers": 
            search_path = os.path.join(base_path, "Number", sign, "*")  # Path for numbers 
        elif category == "SingleWords": 
            search_path = os.path.join(base_path, "SingleWords", sign, "*")  # Path for single 
words 
        else: 
            return None 
        images = (glob.glob(search_path + ".jpg") + 
                  glob.glob(search_path + ".jpeg") + 
                  glob.glob(search_path + ".png") + 



APPENDIX 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    C-15 
 

                  glob.glob(search_path + ".JPG") + 
                  glob.glob(search_path + ".JPEG") + 
                  glob.glob(search_path + ".PNG"))  # Search for image files 
        return images[0] if images else None  # Return the first found image path or None 
 
    def update_video_feed(self): 
        # Continuously update the video feed for real-time sign recognition 
        if self.is_camera_on: 
            try: 
                ret, frame = self.video_capture.read()  # Read a frame from the camera 
                if ret: 
                    frame = cv2.flip(frame, 1)  # Flip the frame horizontally for a mirror effect 
                    landmarks, annotated_frame = self.extract_hand_landmarks(frame)  # Extract 
and annotate hand landmarks 
                    translated_text = self.current_translation  # Current translation to display 
                    sign_text = "None"  # Default sign text 
                    confidence = 0.0  # Default confidence score 
                    if landmarks is not None: 
                        input_data = landmarks.reshape(1, -1)  # Reshape landmarks for model 
prediction 
                        prediction = self.sign_model.predict(input_data, verbose=0)  # Predict the 
sign 
                        sign_idx = np.argmax(prediction, axis=1)[0]  # Get the index of the highest 
probability 
                        confidence = prediction[0][sign_idx]  # Get the confidence score 
                        current_sign = self.sign_labels.get(sign_idx, "Unknown")  # Map index to 
sign 
                        print(f"Debug - Predicted Index: {sign_idx}, Sign: {current_sign}") 
                        current_time = time.time()  # Current timestamp 
                        if confidence > self.confidence_threshold.get():  # Check if confidence is 
above threshold 
                            print(f"Debug - Condition Check: last_sign={self.last_sign}, 
current_sign={current_sign}, time_diff={current_time - self.last_sign_time}, 
reset={current_time - self.last_valid_time}") 
                            if (self.last_sign != current_sign and 
                                current_time - self.last_sign_time > self.sign_buffer_time):  # New 
sign detected 
                                sign_text = current_sign 
                                category = "SingleWords" if current_sign.lower() in [s.lower() for s in 
self.sign_options["SingleWords"]] else "Alphabet" 
                                print(f"Assigned category: {category} for sign: {current_sign}") 
                                translated_text = self.translate_text(current_sign, category)  # Translate 
the sign 
                                self.current_translation = translated_text 
                                self.sign_history.append(current_sign)  # Add to history 
                                self.log_translation(current_sign, confidence, translated_text)  # Log 
the translation 
                                self.last_sign = current_sign 
                                self.last_sign_time = current_time 
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                                self.last_valid_time = current_time 
                            else: 
                                if confidence > 0.90:  # High confidence update 
                                    self.last_valid_time = current_time 
                                category = "SingleWords" if current_sign.lower() in [s.lower() for s in 
self.sign_options["SingleWords"]] else "Alphabet" 
                                print(f"Assigned category: {category} for sign: {current_sign}") 
                                translated_text = self.translate_text(current_sign, category)  # Re-
translate 
                                self.current_translation = translated_text 
                            if confidence > 0.80: 
                                cv2.rectangle(annotated_frame, (10, 10), (150, 60), (0, 255, 0), 2)  # 
Green box for success 
                                cv2.putText(annotated_frame, "Success", (20, 40), 
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) 
                            else: 
                                cv2.rectangle(annotated_frame, (10, 10), (150, 60), (0, 0, 255), 2)  # 
Red box for low confidence 
                                cv2.putText(annotated_frame, "Low Confidence", (20, 40), 
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) 
                        else: 
                            if current_time - self.last_valid_time > 5.0:  # Reset if no valid sign for 5 
seconds 
                                self.last_sign = None 
                                self.last_sign_time = current_time 
                                self.current_translation = "None" 
                    print(f"Recognized: {sign_text} (Confidence: {confidence:.2f}) -> Translated: 
{translated_text}") 
                    self.translation_label.config(text=f"Translation: {translated_text}") 
                    self.history_label.config(text=f"History: {' '.join([self.translate_text(sign, 
'SingleWords' if sign.lower() in [s.lower() for s in self.sign_options['SingleWords']] else 
'Alphabet') for sign in self.sign_history])}") 
                    frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)  # 
Convert to RGB for display 
                    photo = Image.fromarray(frame_rgb) 
                    canvas_width = self.video_canvas.winfo_width()  # Get current canvas width 
                    canvas_height = self.video_canvas.winfo_height()  # Get current canvas height 
                    photo = photo.resize((canvas_width, canvas_height), 
Image.Resampling.LANCZOS)  # Resize image to fit canvas 
                    tk_photo = ImageTk.PhotoImage(photo) 
                    self.video_canvas.create_image(0, 0, anchor=tk.NW, image=tk_photo)  # 
Display the frame 
                    self.video_canvas.image = tk_photo  # Keep a reference to prevent garbage 
collection 
                self.root.after(30, self.update_video_feed)  # Schedule the next frame update 
(approx. 30ms) 
            except Exception as e: 
                print(f"Error in video feed update: {e}") 
                self.close_camera()  # Close camera on error 
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    def __del__(self): 
        # Clean up resources when the application closes 
        if self.video_capture: 
            self.video_capture.release()  # Release the camera 
        self.hand_detector.close()  # Close the hand detector 
        print("All resources have been safely released.") 
 
if __name__ == "__main__": 
    root = tk.Tk()  # Create the main Tkinter window 
    app = MSLSignTranslatorApp(root)  # Instantiate the application 
    root.mainloop()  # Start the event loop 
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