AUTOMATED SIGN LANGUAGE TRANSLATION USING DEEP LEARNING
BY
WONG JIA KANG

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Wong Jia Kang. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku
Abdul Rahman (UTAR). This Final Year Project report represents the work of the
author, except where due acknowledgment has been made in the text. No part of this
Final Year Project report may be reproduced, stored, or transmitted in any form or
by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to everyone who supported me throughout the
journey of completing this Final Year Project. First and foremost, I extend my heartfelt thanks
to my project supervisor, Dr. Muhammad Husaini Bin Nadri, for his unwavering guidance,
insightful feedback, and encouragement. His expertise in the field of information technology
and dedication to mentoring were instrumental in shaping the direction of my project,
particularly in navigating the complexities of developing an automated sign language

translation system using deep learning.

I also want to convey special appreciation to my girlfriend, Pang Jia Ming Olivia, whose
contributions were pivotal in inspiring this project. Her knowledge of sign language and
creative ideas sparked the initial concept for my project title, and I am grateful for her patience
in teaching me basic Malaysian Sign Language (MSL) gestures, which provided a strong
foundation for understanding the communication challenges faced by the deaf community. Her

continuous support and encouragement meant the world to me throughout this endeavour.

Finally, I express my profound gratitude to my parents for their unconditional love, support,
and understanding during this challenging period. Their encouragement and belief in my
abilities were a constant source of motivation, especially during late nights and demanding
phases of the project. Without their emotional and moral support, I could not have completed
this work. This project was a collective effort, and I am truly grateful to all who contributed to

1ts success.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project focuses on developing a system for automated static gesture sign language
translation using deep learning. With the increasing demand for accessible communication
tools, particularly for the hearing-impaired community, the need for reliable sign language
translation systems is growing. The main challenge addressed in this project is the recognition
and translation of static sign language gestures into text, which is less complex than dynamic
gestures involving movement. The methodology involves processing images of static sign
language gestures using hand landmark detection with MediaPipe. These landmarks are then
normalized and input into a deep learning model, trained on processed dataset images, to
predict the corresponding sign. The model architecture consists of multiple dense layers with
batch normalization and dropout to ensure robust learning. The system is integrated into a user-
friendly application that offers real-time sign language translation through a webcam feed, with
features such as dynamic confidence threshold adjustment, translation history tracking, and a
sign language dictionary. The results show that the system is capable of accurately recognizing
and translating static sign language gestures with high confidence, as validated by the test
dataset. The system is efficient, easy to use, and highly adaptable for future enhancements.
This project demonstrates the potential of deep learning in bridging communication gaps for
the hearing-impaired community and sets the groundwork for future work in dynamic sign

language translation.

Area of Study: Deep Learning, Computer Vision
Keywords: Sign Language Translation, Static Gesture Recognition, Deep Learning,

MediaPipe, Hand Landmark Detection

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i
COPYRIGHT STATEMENT ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
TABLE OF CONTENTS \%
LIST OF FIGURES ix
LIST OF TABLES xi
LIST OF SYMBOLS xii
LIST OF ABBREVIATIONS xiii
CHAPTER 1 INTRODUCTION 1
1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope 3

1.4 Contributions 4

1.5 Report Organization 5
CHAPTER 2 LITERATURE REVIEW 7
2.1 Review of the Technologies 7

2.1.1 Dataset 7

2.1.2 MediaPipe 8

2.1.3 OpenCV 9

2.1.4 TensorFlow/Keras 9

2.1.5 Tkinter 10

2.1.6 Googletrans 10

2.1.7 Summary of the Technologies Review 11

2.2 Review of the Existing Systems 11

2.2.1 Static and Dynamic Hand-Gesture Recognition for 11

Augmented Reality Applications

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.2 Real Time Hand Gesture Recognition System for Dynamic
Applications

2.2.3 Signar: A Sign Language Translator Application with
Augmented Reality Using Text and Image Recognition

2.2.4 American Sign Language Recognition Using Deep Learning
and Computer Vision

2.2.5 Interactive Hand Gesture-based Assembly for Augmented
Reality Applications

2.2.6 Sign Language Recognition: A Deep Survey

2.2.7 Real Time Indian Sign Language Recognition System to Aid
Deaf-Dumb People

2.2.8 A Real-Time System for Recognition of American Sign
Language by Using Deep Learning

2.2.9 Real-Time American Sign Language Recognition Using
Desk and Wearable Computer Based Video

2.2.10 Strengths and Weakness of the Existing Systems

2.2.11 Summary of the Existing Systems

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH

3.1
3.2
33

3.4

System Design Diagram

System Architecture Diagram

Use Case Diagram

3.3.1 Use Case Description: Process MSL Dataset

3.3.2 Use Case Description: Train Model

3.3.3 Use Case Description: Perform Real-Time Translation
3.3.4 Use Case Description: Adjust Translation Settings
3.3.5 Use Case Description: View Translation History
3.3.6 Use Case Description: Download History

3.3.7 Use Case Description: Access Dictionary
Activity Diagram

3.4.1 Dataset Processing

3.4.2 Model Training

3.4.3 Real-Time Translation

12

14

14

15

16

18

19

20
22

24
24
26
28
29
30
31
32
33
34
35
35
36
37
38

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM DESIGN 40

4.1 System Block Diagram 40
4.2 Dataset Processing Design 41
4.2.1 Overview 41

4.2.2 System Flowchart for Dataset Processing 42

4.2.3 Data Flow Diagram for Landmark Extraction 43
4.2.4 Sequence Diagram for Landmark Processing 44

4.3 Model Training Design 45
4.3.1 Overview 45

4.3.2 System Flowchart for Model Training 45
4.3.3 Data Flow Diagram for Data Preparation 46
4.3.4 Sequence Diagram for Training Process 47

4.4 Real-Time Translation App Design 48
4.4.1 Overview 48
4.4.2 System Flowchart for Real-Time Translation 48
4.4.3 Sequence Diagram for Real-Time Prediction 49
4.4.4 Data Flow Diagram for GUI Integration 50
CHAPTER 5 SYSTEM IMPLEMENTATION 51
5.1 Hardware Setup 51
5.2 Software Setup 51
5.3 Setting and Configuration 52
5.3.1 Project Directory Setup 52

5.3.2 Virtual Environment and Dependencies Installation 52

5.3.3 Dataset Download and Placement 53

5.3.4 Run Configurations in PyCharm 53

5.3.5 Validation of Configuration 53

5.4 System Operation 54
5.4.1 Dataset Processing Operation 54

5.4.2 Model Training Operation 56

5.4.3 Translator App Operation 57

5.5 Implementation Issues and Challenges 60

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vii

5.6 Concluding Remark

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics
6.1.1 Overview of Testing Approach
6.1.2 Accuracy Metric
6.1.3 Precision and Recall Metrics
6.1.4 F1-Score and Confusion Matrix
6.2 Testing Setup and Result
6.2.1 Testing Environment
6.2.2 App Testing Results
6.2.3 Dictionary Testing Results
6.3 Project Challenges
6.4 Objectives Evaluation
6.5 Concluding Remark

CHAPTER 7 CONCLUSION AND RECOMMENDATION
7.1 Conclusion

7.2 Recommendation and Future Work

REFERENCES

APPENDIX
APPENDIX A
APPENDIX B
APPENDIX C

POSTER

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

62

62
62
62
64
65
66
66
66
68
69
70
70

71
71
71

74
A-1
A-1
B-1
C-1

77

viii

Figure Number

Figure 2.1.1
Figure 2.1.2
Figure 2.1.3
Figure 2.1.5
Figure 2.2.1

Figure 2.2.2
Figure 2.2.3
Figure 2.2.4
Figure 2.2.5
Figure 2.2.6
Figure 2.2.7
Figure 2.2.8
Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4.1
Figure 3.4.2
Figure 3.4.3
Figure 4.1

Figure 4.2.2
Figure 4.2.3
Figure 4.2.4
Figure 4.3.2
Figure 4.3.3
Figure 4.3.4
Figure 4.4.2
Figure 4.4.3

LIST OF FIGURES

Title

Sample MSL Dataset Images
Hand Landmark Model
Capturing the video frame

Tkinter Layout Example

System Architecture for Static and Dynamic Gesture

Recognition in AR

Workflow of Dynamic Gesture Recognition System

Signar System Overview

CNN-Based ASL Recognition Pipeline
Gesture Recognition for AR Assembly
Deep Learning Architectures for SLR
ISL Recognition System Workflow

Real-Time ASL Recognition Using Deep Learning

System Design Diagram

System Architecture Diagram

MSL Translation System Use Case Diagram
Dataset Processing Activity Diagram

Model Training Activity Diagram
Real-Time Translation Activity Diagram
System Block Diagram

System Flowchart for Dataset Processing
Data Flow Diagram for Landmark Extraction
Sequence Diagram for Landmark Processing
System Flowchart for Model Training

Data Flow Diagram for Data Preparation
Sequence Diagram for Training Process
System Flowchart for Real-Time Translation

Sequence Diagram for Real-Time Prediction

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

O o0 3

12
13
14
15
16
17
18
23
25
27
35
36
37
39
41
42
43
44
45
46
47
48

Figure 4.4.4

Figure 5.4.1.1
Figure 5.4.1.2
Figure 5.4.1.3
Figure 5.4.1.4
Figure 5.4.2.1
Figure 5.4.2.2
Figure 5.4.3.1
Figure 5.4.3.2
Figure 5.4.3.3
Figure 5.4.3.4
Figure 5.4.3.5
Figure 6.1.3

Figure 6.1.4

Figure 6.2.2.1
Figure 6.2.2.2
Figure 6.2.2.3
Figure 6.2.3.1
Figure 6.2.3.1

Data Flow Diagram for GUI Integration

process_online dataset.py Execution

No Hands Detected in Image

Handedness Distribution

Successful Dataset Processing in .npy File
train_models.py Execution

static msl classifier.keras and static_ msl labels.txt Files
GUI of the translation_app.py Execution

Real-Time Translation

Select Category and Sign in Dictionary Panel

Download History

Content of history.txt

Precision and Recall by Class

Detailed Confusion Matrix

Real-Time Translation GUI

translation app.py Execution Logs for Translation Panel
Content of “B DRINK A G” in history.txt

Alphabet “G” Sign at Dictionary Panel in English

translation_app.py Execution Logs for Dictionary Panel

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49
53
54
54
55
55
56
56
57
57
58
58
63
64
66
66
66
67
68

Table Number

Table 2.2.11

Table 3.3.1
Table 3.3.2
Table 3.3.3
Table 3.3.4
Table 3.3.5
Table 3.3.6
Table 3.3.7
Table 5.1

Table 6.1.2

LIST OF TABLES

Title

The Summary of Existing Sign Language Recognition
System
Use Case Description for Process MSL Dataset

Use Case Description for Train Model

Use Case Description for Perform Real-Time Translation
Use Case Description for Adjust Translation Settings
Use Case Description for View Translation History

Use Case Description for Download History

Use Case Description for Access Dictionary

Laptop Specifications

Handedness Distribution Summary

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

21

28
29
30
31
32
33
34
50
62

Xi

LIST OF SYMBOLS

% Percentage

@ Indicates a specific version or tag
> Greater than

< Less than

+ Addition or combination

- Subtraction, negation, or separation

/ Division or separation

Multiplication or wildcard

= Equals or assignment

& Logical AND or conjunction
Decimal point or file extension separator
Separator

— Implies or data flow direction

~ Approximately equal to

X,)z Coordinate axes

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xii

MSL
ASL
ISL
AR
HCI
HMM
HOG
SVYM
CNN
RNN
LSTM
GUI
API
RGB
BGR
FPS
IDE
CPU
GPU

SSD
NVMe
CUDA
cuDNN
SGD
ReLU

LIST OF ABBREVIATIONS

Malaysian Sign Language
American Sign Language

Indian Sign Language

Augmented Reality
Human-Computer Interaction
Hidden Markov Model

Histogram of Oriented Gradients
Support Vector Machine
Convolutional Neural Network
Recurrent Neural Network

Long Short-Term Memory
Graphical User Interface
Application Programming Interface
Red, Green, Blue (color model)
Blue, Green, Red (color model)
Frames Per Second

Integrated Development Environment
Central Processing Unit

Graphics Processing Unit

Random Access Memory

Solid State Drive

Non-Volatile Memory Express
Compute Unified Device Architecture
CUDA Deep Neural Network
Stochastic Gradient Descent

Rectified Linear Unit

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiii

CHAPTER 1

Chapter 1

Introduction
1.1 Problem Statement and Motivation

In Malaysia, the communication barrier between the deaf and hearing communities is a
prevalent issue, particularly for the Deaf community that uses Malaysian Sign Language
(MSL). This gap in communication is not only a challenge within the local population but also
extends to interactions with international communities, as MSL differs from other sign
languages like American Sign Language (ASL) or Indian Sign Language (ISL). The difficulty
in communication arises primarily from the lack of familiarity with MSL in the hearing
population. This lack of understanding restricts the social inclusion of the deaf community and

limits their access to essential services and opportunities, such as education and employment.

Moreover, the existing sign language recognition systems, although present in the research and
development domain, are still limited in their capabilities. These systems often fail to address
variability in gestures, such as those that differ between left and right hands. Additionally, most
systems are designed to recognize signs from only one language or have limited language
support, making them less versatile for real-world application, especially in multilingual
societies like Malaysia. The lack of an efficient, accessible, and multilingual sign language
translation system motivated this project. The aim is to bridge this communication gap by
developing a system that automatically translates static MSL gestures into text, which can be
understood by both the deaf and hearing populations. This project focuses on recognizing and
translating static MSL gestures into text, leveraging deep learning and computer vision

techniques to provide real-time translation in a user-friendly application.

By creating this system, the goal is not only to aid communication within Malaysia but also to
enable the deaf community to communicate internationally. The multilingual aspect of the
system (supporting English, Malay, Chinese, and Tamil) helps ensure that MSL signs can be
translated into languages that are widely spoken, thus fostering better interaction not only
within Malaysia but also across borders, especially where English serves as a common
language. Ultimately, this system is designed to improve inclusivity and facilitate global
communication, making MSL more accessible to a broader audience.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.2 Objectives

The main goal of this project is to construct a deep learning system designed to identify and
convert static Malaysian Sign Language (MSL) gestures into readable text as events unfold in
real time. This system targets a broad range of gestures, including all letters from A to Z,
numbers ranging from 0 to 10, and essential everyday words like "Drink," "Eat," and "Help."
The focus lies on achieving a high level of accuracy, specifically exceeding 90%, by utilizing
a standard webcam to capture hand movements under carefully controlled conditions. This
setup ensures the system can process gestures reliably, providing a foundation for effective

communication by translating visual signs into text instantly.

Another key aim is to develop a system capable of managing variations in handedness with
precision. This involves recognizing sign language gestures performed with either the left hand
or the right hand and translating them accurately into text. To accomplish this, the project
employs preprocessing techniques such as landmark normalization, which adjusts the position
and orientation of hand landmarks based on the wrist’s location. This method helps the system
adapt to different hand preferences, ensuring it works well for all users regardless of which

hand they use to sign.

The system also intends to provide real-time translation capabilities into four distinct
languages: English, Malay, Chinese, and Tamil. This feature aims to make the system
accessible to a diverse audience, covering the major linguistic groups found in Malaysia and
potentially beyond. By supporting multiple languages, the system addresses the needs of users
from different cultural backgrounds, allowing them to receive translations in their preferred
language as gestures are made, which enhances its practical application across various

communities.

The project includes the creation of a straightforward graphical user interface using Tkinter to
facilitate user interaction. This GUI serves as the main point of contact, offering a clear and
simple layout that allows users to operate the system without confusion. It provides essential

functions like starting the webcam, selecting translation languages, and viewing results,

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

making the technology approachable for individuals who may not have extensive technical

experience, thus improving overall usability.

Another objective is to integrate real-time translation feedback and a history display into the
system. This feature enables users to see the signs the system recognizes as they happen, along
with a record of previously translated signs and their corresponding text outputs. The history
display acts as a reference, letting users review past interactions to confirm accuracy or revisit
earlier conversations. This addition supports continuous learning and communication, making

the system a more reliable tool over time.

The system will also incorporate the ability to adjust its confidence threshold dynamically
based on the clarity of the input. This means the system only proceeds with translating a sign
when it is certain of the recognition, preventing errors from uncertain gestures. By fine-tuning
this threshold, the project ensures the translations remain trustworthy, which is critical for

maintaining user confidence and the system’s effectiveness in real-world settings.

The final aim of this project is to deliver a fully functional sign language translation system
that benefits the deaf community effectively. This system seeks to reduce the communication
barrier between deaf individuals and those who do not understand sign language, as well as
between different language and cultural groups. By providing a practical solution that operates
smoothly and meets user needs, the project contributes to greater inclusion and understanding,

fostering better interactions in everyday life.

1.3 Project Scope

The scope of this project focuses on the development of a software application that recognizes
and translates static MSL gestures into text. The system will be limited to recognizing and
translating static gestures such as the alphabet (A-Z), numbers (0-10), and specific words like
"Drink," "Eat," "Me," "Sorry," "You," "Wrong," and "Help." Dynamic gestures, such as those
used for complex phrases or sentences, will not be addressed in this initial phase, as they present
a much higher level of complexity that requires more advanced models and real-time

processing.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

The system will use a webcam to capture hand gestures and rely on MediaPipe, a powerful
library for real-time hand tracking, to detect hand landmarks. These landmarks will be
processed using a deep learning model that will be trained on a custom dataset of MSL
gestures. Preprocessing techniques such as landmark normalization will be applied to ensure
accurate recognition of gestures, regardless of whether the left or right hand is used.
Additionally, the system will offer multilingual translation capabilities, translating
recognized signs into English, Malay, Chinese, and Tamil, making it suitable for diverse

linguistic needs within Malaysia and beyond.

The GUI will be simple yet functional, offering an intuitive interface for users to interact with
the system. The system will provide real-time feedback, showing the recognized gesture and
its translation, with an adjustable confidence threshold to filter out uncertain translations. The
scope of this project does not extend to recognizing dynamic gestures or translating full

sentences, but it provides a solid foundation for future work in these areas.

14 Contributions

This project brings meaningful progress to the fields of assistive technology and sign language
recognition through several notable contributions. One key achievement is the effective use of
an existing MSL dataset which downloaded from Kaggle. Since MSL datasets are limited and
handedness is often overlooked in research, this project leverages this resource to address a

critical gap, adapting it to support future studies in MSL recognition with careful application.

Another vital contribution lies in enhancing the preprocessing techniques to better manage
handedness variations. Traditional sign language recognition systems often struggle with
gestures from either hand, leading to inconsistent results. This project introduces a method that
normalizes landmarks using the wrist position as a reference point, which allows for more
uniform and precise gesture classification, ensuring the system performs reliably across

different users.

The inclusion of a multilingual translation feature represents a major advancement in the

project’s scope. Unlike many sign language systems that focus on a single language, this

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

system offers real-time translation of MSL gestures into four widely used languages: English,
Malay, Chinese, and Tamil. This capability extends the system’s reach, making it a versatile
tool for communication among diverse linguistic and cultural groups, not only within Malaysia

but also in international contexts where these languages are spoken, thus broadening its impact.

The project also contributes by building a real-time translation system equipped with a user-
friendly graphical user interface developed with Tkinter. This interface simplifies interaction
by providing clear controls and displays, supported by features such as translation history,
immediate feedback on recognized signs, and the option to adjust the confidence threshold.
These elements enable users, even those with minimal technical knowledge, to engage with the
system effectively. By connecting deaf and hearing communities through this accessible
technology, the project offers a practical solution that enhances communication and supports

social inclusion on a daily basis.

1.5 Report Organization

This report is organized to provide a comprehensive view of the development, evaluation, and
testing of the automated MSL translation system. Chapter 2, Literature Review, will provide
an in-depth exploration of the technologies, methodologies, and existing systems related to sign
language recognition, with a particular focus on deep learning and computer vision approaches.
It will also cover the hardware, software, and algorithms that are central to the project, setting
the context for the technology used in the system. In Chapter 3, System
Methodology/Approach, the overall approach taken in developing the system will be outlined.
This chapter will explain the design decisions, the architecture of the system, and the specific
methodology used to recognize and translate static MSL gestures into text. The design and
functionality of the system will be further detailed in Chapter 4, System Design, where system
diagrams and component interactions will be presented to provide a clearer understanding of
how the system operates. Chapter 5, System Implementation, will focus on the technical setup
of the system, including hardware and software configurations. It will provide insights into the
steps involved in implementing the system, along with details on the challenges encountered
during the process. In Chapter 6, System Evaluation and Discussion, the report will present
the evaluation of the system, including performance metrics, testing results, and an analysis of

the challenges faced during development. This chapter will also assess how well the objectives

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

of the project have been achieved. Finally, Chapter 7, Conclusion and Recommendation, will
conclude the report by summarizing the key findings of the project, discussing the implications
of the work, and offering suggestions for future improvements and research in the field of sign

language recognition.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Chapter 2
Literature Review

2.1 Review of the Technologies
2.1.1 Dataset

Datasets provide the images needed to train models for sign language recognition. The
Malaysian Sign Language Image Dataset includes 26 alphabet signs from A to Z, 11 number
signs from 0 to 10, and seven single word signs such as "You," "Sorry," "Eat," "Drink,"
"Wrong," "Me," and "Help" [1]. Each category contains multiple .jpg and .png files, organized
in subfolders for easy access. The images show hands in various poses against different
backgrounds, offering a range of examples for the model to learn from. This variety helps the
system handle real-world conditions, such as slight changes in lighting or hand angle. The
dataset supports static signs, where each image captures a single gesture without movement. It

ensures the model learns from relevant examples, like the distinct shapes for "A" or "drink."

MAKAN (350 files) il
Q.jpg Lipg 10.jpg 100.jpg 101.jpg

49.72 kB 49.72 kB 49.61kB 52.95 kB 52.95 kB

102.jpg 103.jpg 104.jpg 105.]pg 106.jpg

53.61kB 53.61kB 53.92 kB 53.92 kB 53.92 kB

107.jpg 108.jpg 109.jpg Nipg N0.jog

53.92kB 54.85 kB 54.85 kB 49.861kB 54.85 kB

Mjpg N2.jpg N3.jpg 14.jpg N5.jpg

54.66 kR R4 B8R kR R4 AR kR 54 46 kR R4 468 kR

Figure 2.1.1 Sample MSL Dataset Images [1]

The data comes from Kaggle, shared by Isawasan to aid work on regional sign languages [1].

It totals thousands of files, giving enough samples for effective training. The images use
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

standard formats, which work well with libraries for loading and processing. This resource
enables the creation of a balanced set, where alphabet signs teach letter recognition, numbers
handle counting, and words cover basic terms. The dataset's design fits the needs of sign
recognition systems, allowing classification of gestures with reliability. It reflects practical use,
with hands positioned as in everyday signing. This setup makes it a key part of building

accurate models.

2.1.2 MediaPipe

MediaPipe detects hands in images and videos. It analyzes frames to locate hands and mark 21
key points on each [2]. The tool works on standard computers without extra hardware. It
handles up to two hands per frame and labels them as left or right. This feature supports signs
that use both hands, like some numbers. The system sets a confidence level of 0.5 to balance

speed and accuracy.

Figure 2.1.2 Hand Landmark Model [2]

MediaPipe extracts x, y, and z coordinates for each point, giving position and depth [2]. It
normalizes these points to reduce differences from camera angle or hand size. The tool flips
right-hand data to match left-hand patterns, creating uniform inputs. This adjustment helps
models learn from all examples without bias. MediaPipe runs in a loop for video, updating

every 30 milliseconds. This pace fits needs for quick responses.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.3 OpenCV

OpenCV processes images and videos. It loads files from datasets and converts colors from
BGR to RGB for other tools [3]. The library flips video frames to create a mirror effect for
users. It draws lines between key points and adds text like "Success" or "Low Confidence"

based on scores. This feedback shows if the detection works well.

Reads the video

Specifies the preferred video
frames

backend API to be used

VideoCapture(Video Name, apiPreference)

!

Represents the folder path
along with the video name and
its extension

Figure 2.1.3 Capturing the video frame [3]

OpenCV resizes images to fit displays, such as scaling photos to 380 by 380 pixels [3]. It
captures video from webcams, reading frames in loops for live use. The library supports
rectangles around messages, using green for good detections and red for low ones. OpenCV
works with arrays to handle data, ensuring smooth operation on standard hardware. This tool

fits needs for frame management.

2.1.4 TensorFlow/Keras

TensorFlow and Keras build and train neural networks. Keras stacks layers with 384, 192, and
96 neurons, using ReLU activation [4]. The setup includes batch normalization to stabilize data
and dropout to drop neurons at 0.25 and 0.15 rates. The output uses softmax to match sign
classes. TensorFlow compiles with SGD at 0.002 learning rate and 0.9 momentum. Training

runs 25 epochs with batch size 48, tracking accuracy.

The libraries load data as arrays, filtering classes with few samples [4]. Labels encode to

numbers for classification. Data splits into training and testing sets, with 75% for learning. The

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

model saves for use in apps, where it predicts from landmarks. This setup identifies MSL signs

with reliability. The libraries run on standard computers, supporting accessibility.

2.1.5 Tkinter

Tkinter creates desktop interfaces. It organizes elements like buttons, labels, and canvases in
windows [5]. The tool uses frames to group parts, such as controls for language and confidence.
It packs items to fill space, allowing the window to resize. Tkinter shows video on canvases,
updating with new frames. It includes dropdowns for language choices and sliders for detection

levels.

| Original Image |

Image (small)

Image (Large)
Area to display and edit image

Select between
various tools or
filters

Figure 2.1.5 Tkinter Layout Example [5]

Tkinter handles events, like clicks to start cameras or change settings [5]. It supports text
wrapping in labels for long history logs. The library uses styles for buttons, giving a clean look.
Tkinter runs with Python, needing no extra installs. This tool fits needs for simple designs. The

interface shows translations and history, aiding users in communication.

2.1.6 Googletrans

Googletrans translates text in the app. It uses Google's API to convert words like "drink" to
"minum" in Malay [6]. The library maps names to codes, such as "ms" for Malay. It caches

results to speed up repeats. The tool processes single words only, leaving alphabet and numbers

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

CHAPTER 2

unchanged. This setup supports the app's multi-language feature, covering English, Malay,
Chinese Simplified, and Tamil.

Googletrans works with a translator object, sending text and codes for output [6]. It handles
errors by returning original text if translation fails. The library integrates with dropdowns,
updating on language changes. This method ensures quick responses during use. The tool fits

the project's needs for accessible translation.

2.1.7 Summary of the Technologies Review

The technologies form the project's core. The dataset supplies images for training, covering
MSL signs [1]. MediaPipe detects hands and extracts landmarks, supporting preparation and
recognition [2]. OpenCV processes video frames, enabling real-time updates [3].
TensorFlow/Keras trains the model, classifying signs from data [4]. Tkinter builds the
interface, offering controls for users [5]. Googletrans handles translations, converting signs to

languages [6]. These tools combine to create a reliable system.

The review shows each technology’s role in the process. Detection and extraction feed into
training, which powers recognition. The interface delivers results to users, while translation
adds language support. This setup ensures the system works as intended. Each tool brings a

specific strength, making the system effective for its purpose.

2.2 Review of the Existing Systems

2.2.1 Static and Dynamic Hand-Gesture Recognition for Augmented Reality Applications
Reifinger et al. [7] explored the use of hand-gesture recognition in augmented reality (AR)
applications, focusing on both static and dynamic gestures. The system recognized a predefined
set of gestures using vision-based techniques and Hidden Markov Models (HMMs). Static
gestures, such as hand poses representing commands (e.g., "stop" or "select"), were classified
using feature extraction methods like contour analysis and orientation histograms. Dynamic
gestures, involving motion (e.g., waving or circling), were modeled using HMMs to capture
temporal patterns. The system was tested in an AR environment where users interacted with
virtual objects, achieving a recognition accuracy of around 85% for static gestures and 78% for
dynamic ones.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

CHAPTER 2

message -
UoP
message evant
GCRM EM * application

Figure 2.2.1: System Architecture for Static and Dynamic Gesture Recognition in AR [7].

The study highlighted the potential of gesture-based interfaces in AR but noted several
limitations. The system required a controlled environment with consistent lighting and a plain
background to ensure accurate feature extraction. Variability in hand orientation and speed of
dynamic gestures also affected performance, as the HMMs struggled with non-uniform motion
patterns. For the proposed MSL recognition system, this work provides insights into static
gesture classification, which aligns with the project’s focus on alphabets, numbers, and basic
words. However, the reliance on traditional feature extraction and the lack of support for
handedness variability indicate a need for more robust methods, such as deep learning and

landmark-based detection, which are employed in this project.

2.2.2 Real Time Hand Gesture Recognition System for Dynamic Applications

Rautaray [8] proposed a real-time hand gesture recognition system for dynamic applications,
focusing on human-computer interaction (HCI). The system used skin colour segmentation to
detect hands in video frames, followed by feature extraction techniques such as edge detection
and centroid distance to classify gestures. Dynamic gestures were tracked using a trajectory-
based approach, where the movement of the hand’s centroid over time was analyzed to identify
patterns like swipes or circles. The system achieved an accuracy of 82% for a small set of

predefined gestures but struggled with complex backgrounds and varying lighting conditions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

CHAPTER 2

l

[Take captured Image :}-

Py g
[Cxtract BG]..i{,—-"’! BG i .—f”ff:m.s e

[Take the Image

!

—

!

[Covert Image to grayscale J [Perform CAMSHIFT around]

thee detectsd Taod

—

[Threshold Lhe Trrapge]

—

[Set the image ROI]‘-'-

!

Find and extract biggest Find conwvesx hull of the contour]
contour (Area) 1

(Count Mo. of defects J (Find orientation around W

boaunded reactamgla

I I
+

[Interpret the gesture]

i

Conwrt Eesture to mcanfnsFul ccrﬂm-tmtl

v

Figure 2.2.2: Workflow of Dynamic Gesture Recognition System [8]

The study emphasized the importance of real-time performance in HCI applications, a key
requirement for the proposed MSL system. However, the reliance on skin colour segmentation
made the system sensitive to environmental noise, a limitation also noted in other traditional
approaches [9]. Additionally, the system did not address static gestures or handedness
variability, both of which are critical for MSL recognition. The proposed system improves
upon this by using MediaPipe for landmark detection, which is more robust to environmental
variations, and a CNN for classification, enabling better handling of static gestures and

handedness.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
13

CHAPTER 2

2.2.3 Signar: A Sign Language Translator Application with Augmented Reality Using
Text and Image Recognition

Soogund and Joseph [10] developed Signar, an AR-based sign language translator application
for Indian Sign Language (ISL). The system combined text and image recognition to translate
static gestures into text, which was then overlaid in an AR environment using a smartphone
camera. Gestures were captured via the camera, and a pre-trained model (based on traditional
machine learning techniques like Support Vector Machines) classified the signs. The system
supported a limited set of static gestures (e.g., alphabets) and achieved an accuracy of 80%.
The AR interface allowed users to see translations in real-time, enhancing accessibility for

hearing individuals interacting with deaf signers.

Computer
Tracking Virtual
components
? module
= v | —
3 |
P I %E f RZ:JT Augmented Ehpiey
CamcraJL Image = :"\’.g. !n ;| ?rnags- -
1 =

Figure 2.2.3: Signar System Overview [10]

While innovative, Signar faced challenges with scalability and robustness. The system was
limited to a small gesture set and struggled with variations in hand orientation and lighting, as
traditional machine learning models lacked the generalization ability of deep learning
approaches. For the proposed MSL system, Signar’s use of AR provides inspiration for
potential future enhancements, such as displaying translations in an AR interface. However,
the proposed system leverages deep learning and MediaPipe to achieve higher accuracy and

support for both left and right-hand gestures, addressing the limitations of traditional methods.

2.2.4 American Sign Language Recognition Using Deep Learning and Computer Vision

Bantupalli and Xie [11] proposed an American Sign Language (ASL) recognition system using
deep learning and computer vision. The system employed a CNN to classify static ASL
gestures (alphabets A to Z) captured via a webcam. The dataset consisted of RGB images
collected from multiple users, with preprocessing steps like image normalization and
background subtraction to improve model performance. The CNN model achieved an accuracy

of 92% on the test set, demonstrating the effectiveness of deep learning in handling variations

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

CHAPTER 2

in hand appearance and orientation. The study also explored transfer learning by fine-tuning a

pre-trained VGG16 model, which further improved accuracy to 94%.

Camera » Videoto Frames » Frapncaesing i
frames
y
Gesture e Feeding features to Feature Extraction
Classification ks LSTh using CHNN

Figure 2.2.4: CNN-Based ASL Recognition Pipeline [11]

This work is highly relevant to the proposed MSL system, as it demonstrates the potential of
CNNs for static gesture recognition, a core component of this project. The use of a diverse
dataset and preprocessing techniques aligns with the proposed approach of creating a custom
MSL dataset and normalizing hand landmarks. However, the system did not address
handedness variability explicitly, a challenge the proposed system tackles through landmark
normalization with MediaPipe. Additionally, the focus on ASL highlights the need for similar

research on MSL, which remains underexplored.

2.2.5 Interactive Hand Gesture-based Assembly for Augmented Reality Applications

Radkowski [12] investigated hand gesture recognition for AR-based assembly applications,
focusing on static gestures to control virtual assembly tasks. The system used a vision-based
approach, extracting features like hand contours and finger positions to classify gestures such

nn

as "grab," "release," and "rotate." A rule-based classifier was employed, achieving an accuracy
of 83% in controlled conditions. The study emphasized the importance of intuitive gesture

interfaces in AR, allowing users to interact with virtual objects naturally.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

CHAPTER 2

The yellow sphere is

3D Cursor position.
A 3D model ofa |l g yser moves it with
mobile robot his hand

View of the Kinect

A second cursor is utilized
to select menu items

Menu Buttons Red background:
selected item

Figure 2.2.5: Gesture Recognition for AR Assembly [12]

The system’s reliance on traditional feature extraction made it sensitive to lighting and
background noise, similar to other early SLR systems [12]. It also lacked support for dynamic
gestures and handedness variability, limiting its applicability to diverse user scenarios. For the
proposed MSL system, this work underscores the potential of gesture-based interfaces but
highlights the need for more robust methods. The use of MediaPipe and CNNs in the proposed
system addresses these limitations, enabling real-time recognition of static MSL gestures with

improved robustness to environmental variations.

2.2.6 Sign Language Recognition: A Deep Survey

Rastgoo et al. [13] provided a comprehensive survey of deep learning techniques in SLR,
covering datasets, methodologies, and challenges. The study reviewed various deep learning
architectures, including CNNs, Recurrent Neural Networks (RNNs), and 3D CNNs, for both
static and dynamic gesture recognition. For static gestures, CNNs were found to be highly
effective, with accuracies often exceeding 90% on benchmark datasets like the ASL Alphabet
dataset. The survey also discussed the use of depth data and RGB-D cameras to improve

recognition accuracy, particularly for complex gestures involving motion.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

CHAPTER 2

v

Deep
Applications
¥
Static or
dynamic

Hand and

Hand, face,

—»| and body
features

Skeleton
+

Figure 2.2.6: Deep Learning Architectures for SLR [13]

A key finding was the scarcity of datasets for less-studied sign languages, such as MSL, which
hinders the development of accurate recognition systems. The survey also highlighted
challenges like handedness variability and the need for real-time performance in practical
applications. This aligns with the goals of the proposed MSL system, which addresses dataset
scarcity by creating a custom MSL dataset and uses MediaPipe to handle handedness
variability. The survey’s emphasis on deep learning supports the proposed approach of using a

CNN for gesture classification, ensuring high accuracy and real-time performance.

2.2.7 Real Time Indian Sign Language Recognition System to Aid Deaf-Dumb People

Rajam and Balakrishnan [14] developed a real-time Indian Sign Language (ISL) recognition
system to assist deaf individuals. The system used a vision-based approach, capturing static
gestures (alphabets and numbers) with a webcam. Features were extracted using Histogram of
Oriented Gradients (HOG), and a Support Vector Machine (SVM) was used for classification.
The system achieved an accuracy of 85% on a small dataset of 10 gestures. The study
emphasized real-time performance, with a processing speed of 20 frames per second, suitable

for practical applications.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

CHAPTER 2

Signer Web Cam |:> Storage of Training |) Threshold
320 images j Phase] Heights/LEAST’ height

e (4]
Real Trme indan Sgn Recognbon System
D MATLAR Tworkisubia finger spelinglautiba) 1 Tisul#_15 pg

Data Acquisition

i

Palm Image Extraction

Resized image [128, 128]

Feature :> Testing
Extraction Phase
point

1l

TEXT

Gray Scale image EIGHTEEN

U

Edge Detection

Black & White imace |

Figure 2.2.7: ISL Recognition System Workflow [14]

However, the system’s reliance on traditional machine learning and HOG features limited its
robustness to variations in lighting and hand orientation. It also did not address handedness
variability, a critical challenge for sign language recognition. The proposed MSL system
improves upon this by using deep learning (CNNs) for better generalization and MediaPipe for
precise hand landmark detection, ensuring accurate recognition of static gestures performed

with either hand.

2.2.8 A Real-Time System for Recognition of American Sign Language by Using Deep
Learning

Taskiran et al. [15] proposed a real-time ASL recognition system using deep learning. The
system employed a CNN to classify static ASL gestures (alphabets A to Z) captured via RGB
images. The dataset included images from multiple users under varying conditions, with
preprocessing steps like resizing and normalization to standardize input data. The CNN model
achieved an accuracy of 93% on the test set, with a processing speed of 25 frames per second,

making it suitable for real-time applications.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

CHAPTER 2

Determination of network
structure and initial weights
of convolutional neural
network

Conversion of RGB space
into YCbCr space

}

Skin Color Detection

Removal of hand gesture
region from the obtained
image

Determination of hand
shape and location by
Convex Hull algorithm

Training CNN network

Resize hand gesture Registration of the latest
region and load into version of the CNN network
model asa model
Classification

Figure 2.2.8: Real-Time ASL Recognition Using Deep Learning [15]

The study also explored the use of data augmentation (e.g., rotation, scaling) to improve model
robustness, a technique that could benefit the proposed MSL system. However, the system did
not explicitly address handedness variability, and the focus on ASL datasets underscores the
lack of similar research for MSL. The proposed system builds on this work by using a custom
MSL dataset and incorporating handedness normalization, ensuring broader applicability in the

Malaysian context.

2.2.9 Real-Time American Sign Language Recognition Using Desk and Wearable
Computer Based Video

Starner et al. [16] presented one of the earliest works on real-time ASL recognition, using desk
and wearable computer-based video systems. The system captured gestures via cameras
mounted on a desk or worn by the user, focusing on dynamic gestures for sentence-level

recognition. Features were extracted using colour-based tracking and motion analysis, and an

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

CHAPTER 2

HMM was used for classification. The system achieved an accuracy of 85% for a small set of

ASL sentences but required users to wear colored gloves to improve tracking accuracy.

This work laid the foundation for vision-based SLR but highlighted several limitations. The
reliance on wearable devices and colored gloves made the system intrusive, and the accuracy
dropped in uncontrolled environments due to lighting variations. For the proposed MSL
system, this study provides historical context but underscores the need for non-intrusive
methods. The use of MediaPipe and deep learning in the proposed system eliminates the need

for wearable devices, enabling more practical and accurate recognition of static MSL gestures.

2.2.10 Strengths and Weakness of the Existing Systems

The reviewed works demonstrate a range of approaches to SLR, each with distinct strengths
and weaknesses. Reifinger et al. [7] offer a strong integration of static and dynamic gesture
recognition within an AR context, providing valuable insights into gesture-based interfaces.
However, their reliance on traditional feature extraction methods like contour analysis and
HMMs results in a notable sensitivity to environmental noise, such as lighting variations, and
a significant lack of support for handedness variability, which limits its applicability to diverse
user scenarios like those in MSL recognition. Rautaray [8] excels in its real-time performance
for dynamic applications, making it suitable for HCI scenarios with a processing speed that
supports practical use. Yet, the dependence on skin colour segmentation introduces a critical
weakness in handling complex backgrounds and lighting changes, and the absence of static
gesture support and handedness consideration makes it less relevant for the proposed MSL

system.

Soogund and Joseph [10] demonstrate an innovative use of AR to display real-time translations,
enhancing accessibility for hearing users interacting with deaf signers. However, the system’s
limited gesture set and reliance on traditional machine learning (SVM) lead to poor robustness
against variations in lighting and hand orientation, hindering scalability for broader
applications like MSL. Bantupalli and Xie [11] achieve a high accuracy of 92-94% using a
CNN for static ASL gestures, showcasing the effectiveness of deep learning and the benefit of
transfer learning with pre-trained models like VGG16. Despite this, the lack of explicit
handling of handedness variability and the focus on ASL datasets reveal a gap that the proposed

MSL system addresses through handedness normalization and a custom dataset.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

CHAPTER 2

Radkowski [12] provides an intuitive gesture interface for AR assembly tasks, highlighting the
potential of gesture-based control in virtual environments. However, its sensitivity to lighting
and background noise due to traditional feature extraction, combined with the absence of
dynamic gesture support and handedness variability, limits its practicality for diverse scenarios
like MSL recognition. Rastgoo et al. [13] offer a comprehensive survey of deep learning in
SLR, providing a broad perspective on methodologies and identifying the critical issue of
dataset scarcity for less-studied sign languages like MSL. As a survey, it lacks implementation
details, but its insights directly inform the proposed system’s focus on deep learning and dataset

creation.

Rajam and Balakrishnan [14] achieve real-time performance with a processing speed of 20 fps
for ISL recognition, a strength for practical applications. However, their reliance on HOG
features and SVM results in limited robustness to lighting and orientation variations, and the
lack of handedness support is a notable drawback compared to the proposed system’s approach.
Taskiran et al. [15] demonstrate a high accuracy of 93% and real-time performance at 25 fps
for ASL recognition, enhanced by data augmentation techniques like rotation and scaling. Yet,
the absence of handedness handling and the focus on ASL datasets highlight gaps that the

proposed system addresses with MSL-specific data and normalization techniques.

Starner et al. [16] provide a pioneering contribution to real-time ASL recognition, laying the
foundation for vision-based SLR with early innovations in dynamic gesture recognition.
However, the intrusive nature of requiring colored gloves and wearable devices, along with
sensitivity to lighting variations, significantly limits its practicality, a weakness the proposed

system overcomes with non-intrusive methods using MediaPipe and deep learning.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

CHAPTER 2

2.2.11 Summary of the Existing Systems
A table compares prior works with key aspects, focusing on methodology, gesture type, handedness support, dataset focus, and real-time

performance. This comparison highlights the strengths and limitations of existing systems.

Methodology

Gesture

Type

Handedness

Support

Dataset Focus

Real-Time

Performance

Key Limitations

Reifinger et al.[7] Contour analysis, Static & No General gestures Yes Sensitivity to lighting, no handedness
HMMs Dynamic support.
Rautaray [8] Skin colour Dynamic No General gestures Yes (20 fps) | Environmental noise, no static gestures.
segmentation
Soogund and SVM, AR overlay Static No ISL Yes Limited gesture set, lighting sensitivity.
Joseph [10]
Bantupalli and CNN, transfer learning Static No ASL Yes No handedness support, ASL focus.
Xie [11]
Radkowski [12] Rule-based classifier Static No General gestures Yes Lighting sensitivity, no dynamic
gestures.
Rastgoo et al.[13] | Survey (CNNs, RNNs, | Static & Varies Multiple languages Varies Lack of implementation.
3D CNNs) Dynamic
Rajam and HOG, SVM Static No ISL Yes (20 fps) Lighting sensitivity, no handedness.
Balakrishnan|[14]
Taskiran et CNN, data Static No ASL Yes (25 fps) No handedness support, ASL focus.
al.[15] .
augmentation
Starner et al. [16] Colour tracking, Dynamic No ASL Yes Intrusive (gloves), lighting sensitivity.
HMMs

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

CHAPTER 2

Table 2.2.11 The Summary of Existing Sign Language Recognition System

The existing systems show progress in sign language translation. DeepASL handles ASL
sentences with wrist cameras [17]. SignAR uses augmented reality for ISL on mobiles [10].
The ASL real-time system classifies alphabets with CNNs [15]. Bantupalli and Xie focus on
vision-based ASL recognition [11]. TSPNet translates BSL videos to text [18]. The machine
learning translator covers ISL gestures [19]. Rastgoo et al. survey deep learning methods [13].

These works advance the field, using deep learning for recognition and translation.

The systems vary in scope, from isolated signs to sentences. They rely on cameras and networks
for processing. Common challenges include lighting and data limits. The review highlights

how these tools inform the project's design for MSL.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

CHAPTER 3

Chapter 3
System Methodology/Approach

3.1 System Design Diagram

Raw MSL Images
(archive/Dataset_MSL)

Images (.jpg/.png)

y

Process MSL Dataset
(process_online_datasets.py)

- Detect hands with MediaPipe
- Normalize landmarks

- Save .npy files

.npy files

y

Processed .npy Files
(static_msl_data)

Processed data

Train Neural Network
(train_models. py)

- Load .npy files

- Filter and encode data
- Train model with Keras
- Save model and labels

Model and labels

A

Trained Model & Labels
(static_msl_classifier.keras Webcam Feed
static_msl_labels.txt)

Use for prediction /Live video

Real-Time Translation App
(translation_app.py)

- Load model and labels

- Detect signs in video

- Translate with Google Translate
- Display in Tkinter GUI

[Translations and images

Translated Text & Dictionary

Figure 3.1 System Design Diagram

The System Design Diagram gives a clear view of the Malaysian Sign Language translation
system's overall structure. It starts with raw inputs on the left side, where the system takes in
MSL dataset images from the archive folder. These images go into the first main block, which

handles dataset processing through the process online datasets.py script. In this stage, the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

CHAPTER 3

system uses MediaPipe to find hands in each image, pulls out the landmark coordinates,
normalizes them by setting the wrist as a reference point, mirrors any right-hand data for
consistency, and pads the features to a fixed size of 126 if only one hand shows up. It then
saves these processed landmarks as numpy files in the static msl data directory, ready for the
next step. An arrow links this block to an intermediate storage component for the numpy files,

which acts as a bridge to keep the data organized before training begins.

From there, the flow moves to the model training block, driven by the train_models.py script.
This part loads the numpy files, checks for classes with enough samples by removing any with
fewer than two to prevent issues during splitting, encodes the sign labels into numbers, and
divides the data into training and testing sets with a 75-25 split while keeping classes balanced.
The system builds a neural network using Keras, with layers like dense neurons, batch
normalization to stabilize learning, and dropout to cut down on overfitting. It trains the model
over 25 epochs with the SGD optimizer, then saves the finished model as
static msl_classifier.keras and the label mappings as static_ msl labels.txt. The diagram shows

this output as another storage component, which feeds directly into the final stage.

The real-time translation app block, based on translation_app.py, pulls in the trained model and
labels, along with live input from the webcam. Here, the system captures video frames, detects
hands again with MediaPipe, normalizes the landmarks just like in processing, predicts the sign
using the model, and checks if the confidence beats the user's set threshold while avoiding
quick repeats with a 1.5-second buffer. For single-word signs, it calls Google Translate to
convert them into the chosen language, such as English or Malay, updates the Tkinter GUI with
the result, adds it to the history list, and logs everything. The diagram ends with outputs on the
right, including the translated text shown in the app and dictionary images pulled from the
dataset for reference. Arrows connect everything in sequence, making the pipeline easy to

follow from start to finish, with no extra clutter.

This setup ensures the diagram stays high-level, focusing on how the system turns raw sign
language images and video into useful translations without getting bogged down in code
details. It highlights the linear flow, where each stage builds on the last, from preparing data to

training the classifier to running the interactive app. Developers can see the dependencies, like

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

CHAPTER 3

how the app needs the model files to work, while non-technical readers grasp the basic steps

without needing to know about libraries like OpenCV or TensorFlow.

3.2 System Architecture Diagram

MSL Dataset
(archive/Dataset MSL)

images (.jpg/.png)

Dataset Processor
(process_online_datasets.py)
- MediaPipe Hands

- OpenCV

.

.npy files

Processed Data
(static_msl_data)

Processed data

Model Trainer

(train_mo

dels.py)

- Keras/TensorFlow
- scikit-leam

Model and labels

(static_msl_cl

Model Storage

static_msl_labels.txt)

assifier.keras

Model and labels \ Live video

Real-Time Translator
(translation_app.py)

Hand Detector
- MediaPipe Hands

Normalized landmarks

Sign Classifier
- Keras

Predicted signs

Translator
- Google Translate API

Translated tex

Figure 3.2 System Architecture Diagram

Google Translate API

Translated text /Single-word signs

Language, threshold, dictionary \Translations, dictionary images

Input settings /Display output

Translation logs

Log File
(translation_session_log. txt)

The System Architecture Diagram maps out the technical components of the MSL Translation

System and how they work together. The process starts with the MSL Dataset, a storage unit

holding raw images in the archive/Dataset MSL directory, organized into subfolders like

Bachelor of Compu

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ter Science (Honours)

26

CHAPTER 3

Alphabets and SingleWords. These images feed into the Dataset Processor, which uses the
process_online datasets.py script with MediaPipe Hands and OpenCV to detect hands, extract
landmark coordinates, normalize them by setting the wrist as the origin, mirror right-hand data,
and pad single-hand data to a fixed size. The processor saves these as numpy files in the

Processed Data storage unit, located in the static msl data directory.

The Processed Data then moves to the Model Trainer, driven by train_models.py, which uses
Keras and TensorFlow to load the numpy files, filter classes with fewer than two samples,
encode labels numerically with scikit-learn, split data into training and testing sets, and train a
neural network with dense layers, batch normalization, and dropout. The trained model and
label mappings are stored in Model Storage as static msl classifier.keras and

static_msl_labels.txt.

The Real-Time Translator, powered by translation app.py, integrates several subcomponents:
the Hand Detector uses MediaPipe Hands to process live webcam video, the Sign Classifier
uses Keras to predict signs from normalized landmarks, the Translator component sends single-
word signs to the Google Translate API for conversion into the user’s chosen language, and
the GUI, built with Tkinter, displays the video feed, translations, history, and dictionary
images. The Webcam provides live video to the Translator, which sends translation logs to the

Log File.

The User interacts with the GUI to set the language, adjust the confidence threshold, and
browse the dictionary, receiving translated text and images in return. Arrows in the diagram
trace the data flow, from images to processed data to model to real-time translations, with clear
connections between components and external systems. This detailed view helps developers
understand the system’s structure and dependencies, such as the need for MediaPipe in both

processing and real-time stages or the reliance on Google Translate for language conversion.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

CHAPTER 3

3.3 Use Case Diagram
The Use Case Diagram shows how actors interact with the MSL Translation System,
capturing key functionalities like processing datasets, training models, performing

translations, and accessing the dictionary.

A

Developer ‘Webcam
Handles dataset Provides live
processing and video feed for
maodel training. translation.

Google Translate AP|

User

Manages Translates
N single-word

translations, Signs.

settings, history,

and dictionary.

Figure 3.3 MSL Translation System Use Case Diagram

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.3.1 Use Case Description: Process MSL Dataset

Use Case ID UCo001 Version 1.0

Use Case Process MSL Dataset

Purpose To process raw MSL dataset images to extract and normalize hand
landmarks for model training.

Actor Developer

Trigger Developer runs process_online datasets.py.

Precondition MSL dataset images are available in archive/Dataset MSL with

subfolders like Alphabets/A or SingleWords/Drink, and
MediaPipe Hands is installed.

Scenario Name

Step | Action

Main Flow

1 System scans archive/Dataset MSL for .jpg or .png
images recursively.

2 System extracts sign label from the directory name for
each image.

3 System loads image using OpenCV and converts to RGB.

4 System detects hands using MediaPipe and extracts
landmarks.

5 System normalizes landmarks relative to wrist, mirrors

right-hand data, scales z-coordinate, and pads to 126
features if single hand.

6 System saves normalized landmarks as .npy files in
static msl data.
7 System updates and prints handedness distribution at the
end.
Alternate Flow — | 4.1 System logs "No hands detected in image" and skips
No Hands saving.
Detected 4.2 Back to Main Flow Step 1 for next image.
Alternate Flow —| 3.1 System logs "Failed to load image" and skips processing.
I L . .
mage oad 3.2 Back to Main Flow Step 1 for next image.
Failure
Rules Normalization ensures consistency across hands; padding
maintains input size; process only .jpg and .png files.
Author Wong Jia Kang

Table 3.3.1 Use Case Description for Process MSL Dataset

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

CHAPTER 3

3.3.2 Use Case Description: Train Model

Use Case ID UcCo002 Version 1.0
Use Case Train Model
Purpose To train a neural network model for classifying MSL signs using
processed .npy files.
Actor Developer
Trigger Developer runs train_models.py.
Precondition anpy files are available in static msl data, and TensorFlow/Keras
and scikit-learn are installed.
Scenario Name Step | Action
Main Flow 1 System loads .npy files from static msl data and extracts
features and labels.
2 System filters classes with fewer than 2 samples.
3 System encodes labels numerically using LabelEncoder.
4 System splits data into 75% training and 25% testing sets
with stratification.
5 System builds sequential neural network with dense
layers, batch normalization, and dropout.
6 System compiles model with SGD optimizer and trains
for 25 epochs.
7 System saves trained model as static_ msl classifier.keras
and labels as static msl labels.txt.
Alternate Flow —| 2.1 System exits with error "No classes with sufficient
Insufficient samples."
Classes
Alternate Flow —| 1.1 System exits with error "No static data found."
No Data Found
Rules Minimum 2 samples per class for splitting; use sparse
categorical cross-entropy loss.
Author Wong Jia Kang

Table 3.3.2 Use Case Description for Train Model

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

CHAPTER 3

3.3.3 Use Case Description: Perform Real-Time Translation

Use Case ID UucCo003 Version 1.0

Use Case Perform Real-Time Translation

Purpose To detect, classify, and translate MSL signs from live video in the
GUI app.

Actor User, Webcam, Google Translate API

Trigger User clicks "Open Cam" in the app.

Precondition Trained model and labels are available; webcam is connected;

Google Translate API is accessible.

Scenario Name Step | Action
Main Flow 1 User opens translation_app.py and selects language and
confidence threshold.
2 System loads model and labels, initializes Tkinter GUI.
3 User starts camera; system captures frames from webcam.
4 System detects hands with MediaPipe and normalizes
landmarks.
5 System predicts sign using model.
6 If confidence high and new sign after buffer, system
translates single words via Google Translate API.
7 System updates GUI with translation, adds to history, logs
it, and draws landmarks on feed.
Alternate Flow —| 4.1 System displays "Translation: None" in GUIL.
N Hand -
D(e)tec ted anas 4 Back to Main Flow Step 3 for next frame.
Alternate Flow — | 5.1 System draws low-confidence indicator on frame.
Low Confidence 5.2 Back to Main Flow Step 3 for next frame.
Rules 1.5-second buffer for new signs; translate only single
words; confidence threshold 0.5-1.0.
Author Wong Jia Kang

Table 3.3.3 Use Case Description for Perform Real-Time Translation

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

CHAPTER 3

3.3.4 Use Case Description: Adjust Translation Settings

Use Case ID UCo004 Version 1.0
Use Case Adjust Translation Settings
Purpose To customize language and confidence threshold for translations
in the GUI.
Actor User
Trigger User changes dropdown or slider in GUI.
Precondition Application is running.
Scenario Name Step | Action
Main Flow 1 User selects language from dropdown (English, Malay,
Chinese Simplified, Tamil).
2 User adjusts confidence threshold slider (0.5-1.0).
3 System updates settings and clears translation cache.
4 System re-translates current sign and history if applicable.
Alternate Flow —| 3.1 System logs error and reverts to default settings.
I -
G(.J Update 3.2 Back to Main Flow Step 1.
Failure
Rules Changes apply immediately; cache clear ensures accurate
re-translations.
Author Wong Jia Kang

Table 3.3.4 Use Case Description for Adjust Translation Settings

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

CHAPTER 3

3.3.5 Use Case Description: View Translation History

Use Case ID ucCo0s Version 1.0
Use Case View Translation History
Purpose To display the history of translated signs in the GUI.
Actor User
Trigger User looks at history label in GUI after translations.
Precondition Application is running and signs have been translated.
Scenario Name Step | Action
Main Flow 1 System retrieves history list.
2 System re-translates history into current language.
3 System displays wrapped history text in GUI label.
Alternate Flow —| 1.1 System displays "History: ".
No History
Rules History wraps for readability; updates with language
changes.
Author Wong Jia Kang

Table 3.3.5 Use Case Description for View Translation History

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

CHAPTER 3

3.3.6 Use Case Description: Download History

Use Case ID UCo006 Version 1.0
Use Case Download History
Purpose To export translation history as a .txt file and reset session.
Actor User
Trigger User clicks "Download History" button.
Precondition Application is running and history exists.
Scenario Name Step | Action
Main Flow 1 System opens file dialog for save location.
2 User selects file path.
3 System writes history with signs and translations to .txt
file.
4 System resets history, log file, and GUI.
Alternate Flow —| 1.1 Button is disabled; no action occurs.
No History
Alternate Flow —| 2.1 User cancels; system does not save file.
Cancel Dialog 2.2 Back to Main Flow Step 1 if button clicked again.
Rules Include timestamps in log; reset clears all session data.
Author Wong Jia Kang

Table 3.3.6 Use Case Description for Download History

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

CHAPTER 3

3.3.7 Use Case Description: Access Dictionary

Use Case ID ucoo07 Version 1.0

Use Case Access Dictionary

Purpose To view MSL signs and images by category in the GUI.

Actor User

Trigger User selects category and sign in dropdowns.

Precondition Application is running; MSL dataset images available.

Scenario Name Step | Action

Main Flow 1 User selects category (Alphabet, Numbers, SingleWords).
2 System updates sign dropdown with translated names.
3 User selects sign.
4 System finds first image in dataset path.
5 System resizes and displays image with translated name

in canvas.

Alternate Flow — | 4.1 System displays "Image not found" in canvas.

No Image Found 4.2 Back to Main Flow Step 3 for another sign.

Alternate Flow — | 1.1 System defaults to Alphabet.

No Category -

Selected 1.2 Back to Main Flow Step 1.

Rules Search for .jpg, .jpeg, .png; resize to fit canvas while
keeping aspect ratio.
Author Wong Jia Kang

Table 3.3.7 Use Case Description for Access Dictionary

3.4 Activity Diagram

The Activity Diagram illustrates the workflows of the MSL Translation System, split into three

parts for clarity: dataset processing, model training, and real-time translation. Each part uses a

swimlane format to assign actions to actors or components, such as Developer, System, User,

Webcam, and Google Translate API.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

CHAPTER 3

3.4.1 Dataset Processing

Developer System

?

| Run process_online_datasets.py

Scan archive/Dataset_MSL for .jpg/.png images
N9 more images? <€
lyes
Load image using OpenCV
¢—YE image loaded? no—¢
| Detect hands using MediaPipe Log "Failed to load image"
¢—YE hands detected? no—¢
Extract and normalize landmarks | Log "No hands detected"
(v
| Mirror right-hand coordinates
Pad single-hand data to 126 features |
Save landmarks as .npy file in static_msl_data
Update handedness counts
| >
<
L

Print handedness distribution

&

Figure 3.4.1 Dataset Processing Activity Diagram

The activity diagram for dataset processing splits the work between the Developer and the
System to show who does what. The Developer kicks things off by running
process_online datasets.py on their computer. The System then takes charge, looking through
the archive/Dataset MSL folder to find .jpg or .png images one by one. For each image, the
System tries to load it with OpenCV and checks if it works. If it loads, the System uses
MediaPipe to spot hands and see if any appear. When hands show up, the System pulls out the
landmark points, adjusts them to line up with the wrist, flips right-hand data to match left-hand

format, and adds extra zeros to reach 126 features if only one hand is present.

The System saves these adjusted points as .npy files in the static msl data folder and keeps
track of whether the hand is left or right. If no hands appear, the System writes "No hands

detected" in a log file. If the image won’t load, it logs "Failed to load image" and moves on.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

CHAPTER 3

This loop repeats until all images are done, and then the System prints a summary of how many
left and right hands it found. This setup makes it clear the Developer starts the job, while the
System handles the heavy lifting with checks to catch problems along the way.

3.4.2 Model Training

Developer System

M

Run train_models.py

7

Load .npy files from static_msl_data

ﬁﬂ data loaded? nn—¢

Filter classes with <2 samples Exit with error "No data found"
hﬁ sufﬁcien?classes? noﬁ
Encode labels numerically Exit with error "No valid classes"

v

Split data into train (75%) and test (25%)
v

Build neural network (Dense, BatchNorm, Dropout)
v
Train model for 25 epochs using SGD

v

Save model as static_msl_classifier.keras
v

Save labels as static_msl|_|labels.txt
L e]
| >N

@

Figure 3.4.2 Model Training Activity Diagram

The activity diagram for model training divides the tasks between the Developer and the
System to show their parts. The Developer begins by running train_models.py to start the
training process. The System then steps in, grabbing the .npy files from the static msl data
folder and checking if they load properly. If the files work, the System looks at the sign classes
and removes any that have fewer than two samples to avoid issues later. It then checks if enough
classes remain to proceed. If there are enough, the System turns the sign labels into numbers,
splits the data into 75% for training and 25% for testing while keeping the balance of classes,
builds a neural network with dense layers, batch normalization, and dropout to improve
accuracy, trains it for 25 rounds with the SGD method, and saves the finished model as

static msl_classifier.keras along with the labels as static msl labels.txt. If too few classes exist,

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

CHAPTER 3

the System stops and shows "No valid classes" on the screen. If no files load, it stops with "No
data found". This approach lets the Developer kick off the work, while the System handles the

detailed steps and stops if something goes wrong, ensuring a solid model comes out.

3.4.3 Real-Time Translation

User System Webcam Google Translate API
Open translation_app.py
Select language and confidence threshold
Click "Open Cam"
Y
Load model and labels
Initialize Tkinter GUI
¥
Select dictionary category and sign
Y
Display translated sign and image
7
——"° camera on?
lns
Provide live video frame
¥
Capture video frame
Detect hands using MediaPipe
¢ Y5 hands detected? > i
Normalize landmarks Display "Translation: None"
Predict sign using model
l—ﬁ confidence > threshold and new sign? Li
ves no
SansSingeworcH low-confidence indicator on frame
Send sign to Google Translate API Use original sign text
¥
Return translated text
Update GUI with translated text
Add to history and log translation

Draw landmarks and success indicator on frame

\

v

Update GUI video feed
T

¥

Release webcam

v

Display translation history

¥

Enable "Download History" button

&

Figure 3.4.3 Real-Time Translation Activity Diagram

The activity diagram for real-time translation splits the work among the User, System, Webcam,
and Google Translate APl to show their contributions. The User starts by opening
translation_app.py on their device, picks a language like English or Malay, sets a confidence
level between 0.5 and 1.0, and clicks "Open Cam" to begin. The System then loads the saved
model and labels, sets up the Tkinter GUI window, and later displays a dictionary sign and

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

CHAPTER 3

image when the User chooses a category and sign. The Webcam keeps sending live video

frames as long as the camera runs.

The System grabs each frame, uses MediaPipe to find hands, and checks if any appear. If hands
show, the System adjusts the landmarks to a standard form, predicts the sign with the model,
and sees if the confidence beats the threshold and it’s a new sign after a short wait. If it passes
and it’s a single word, the System sends it to the Google Translate API, which sends back the
translated text. If it’s not a single word, the System keeps the original sign text. The System
then updates the GUI with the text, adds it to the history list, logs it, and draws hand points
with a green check if successful. If the confidence is low, it draws a yellow warning; if no

hands appear, it shows "Translation: None" on the screen.

The System refreshes the video feed each time. When the User stops the camera, the System
shuts it down, shows the history, and turns on the "Download History" button. This layout
makes it easy to see how the User starts and guides the process, the System runs the core tasks,

the Webcam feeds the video, and the API helps with translations, working together smoothly.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 4

Chapter 4
System Design

4.1 System Block Diagram

MSL Dataset Images
(archive/Dataset MSL)

Raw .jpg/.png Images

A 4

Dataset Processing
(process_online_datasets.py)

Normalized Landmarks

A 4

Processed Features
(static_msl_data/.npy)

.npy Feature Arrays

Y

Model Training
(train_models.py)

Trained Neural Network ™, Sign Label Mappings

Trained Model
(static_msl_classifier.keras)

Webcam Feed

Label Mappings
(static_msl_labels.txt)

wredcton Load for Mapping Live Video Frames
A4

Real-Time App
(translation_app.py)
Single-Word Signs /Translated Text Display Results

GUI Output
Google Translate API ‘ (Translations & Dictionary)

Figure 4.1 System Block Diagram

The System Block Diagram illustrates the system's core components and data pathways. The
"MSL Dataset Images" block contains raw images in the archive/Dataset MSL directory,
serving as the starting point for the pipeline. It connects to the "Dataset Processing" block,
where process_online_datasets.py loads images using OpenCV, detects hands with MediaPipe,
extracts and normalizes landmarks, and saves them as .npy files in the "Processed Features"
block. This block holds 126-feature arrays for each image, padded for consistency. The features

flow to the "Model Training" block, where train_models.py filters data, encodes labels, splits

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

CHAPTER 4

into train/test sets, builds a Keras sequential network with dense layers, trains it, and outputs
to the "Trained Model" and "Label Mappings" blocks. The trained .keras model and .txt labels
are then loaded by the "Real-Time App" block, which is translation app.py. This block takes
input from the "Webcam Feed" block, processes frames with MediaPipe for landmarks,
predicts signs using the model, translates single words via the "Google Translate API" block,
and displays results in the "GUI Output" block via Tkinter. Arrows show directional data flow,
such as images to features to model, ensuring a clear understanding of how the system
transforms raw data into usable translations. This design promotes efficiency, with each block

handling a specific function to avoid bottlenecks.

4.2 Dataset Processing Design

4.2.1 Overview

The dataset processing design focuses on transforming raw MSL images into standardized
feature vectors. It involves scanning the dataset directory, loading images, detecting hands,

extracting and normalizing landmarks, and saving as .npy files for later use in training.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

CHAPTER 4

4.2.2 System Flowchart for Dataset Processing

b

|f Scan archive/Dataset_MSL Directory \|

I Y
| Load Next Image File f€——————
\

e Y
| Conwvert to RGB Color Space |

v

I Y
| Detect Hands with MediaPipe |

Bs Hands Detected? no

I SN =,
| Extract Landmark Coordinates | | Log No Hands Detected |

| Normalize Relative to Wrist | | SkipImage | A

| Mirror Right-Hand if Needed |

.,
e Y

[Padto 126 Features |

2

|, \'u
| save as .npy File |

—

A

. -
’Y"'&

es
More Images? ¥

v

ra =,
| End Processing |

e

Figure 4.2.2 System Flowchart for Dataset Processing

The system flowchart for dataset processing shows a sequential loop that begins with scanning
the archive/Dataset MSL directory for .jpg and .png files using os.walk. For each image, the
flowchart directs loading the file with OpenCV's cv2.imread, converting from BGR to RGB
color space to match MediaPipe's input requirements. The decision node "Hands Detected?"
checks the results from MediaPipe Hands with static image mode=True and
max_num_hands=2. If yes, it extracts x, y, z coordinates for 21 landmarks per hand, normalizes
by subtracting wrist values, mirrors x for right hands to standardize, scales z by 0.5, pads single-
hand data with zeros to 126 features, and saves the array as .npy in static msl data using
np.save. If no hands are detected, it logs the error and skips to the next image. The loop repeats

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

CHAPTER 4

until all images are processed, ensuring consistent feature extraction. This design handles errors

gracefully and maintains data uniformity, crucial for model training.

4.2.3 Data Flow Diagram for Landmark Extraction

g1
Raw Image Files

Scan & Read Files

Y

£]
Image Loading

BGR Frame

Y

|
Color Conversion

RGB Frame

Y

EI|
Hand Detection

Raw Landmarks

Y

Landmark Normalization

7

Mormalized Coordinates

Y

g1
Feature Padding

126-Feature Array

Y

£
.npy Feature Files

Figure 4.2.3 Data Flow Diagram for Landmark Extraction

The data flow diagram for landmark extraction highlights the pipeline's data transformations.
Raw image files from the dataset enter the "Image Loading" process, which uses OpenCV to
read .jpg/.png files into memory. The BGR frame flows to "Color Conversion", transforming
it to RGB for compatibility. The RGB frame then moves to "Hand Detection", where
MediaPipe identifies up to two hands and outputs raw landmarks with handedness. These raw
landmarks flow to "Landmark Normalization", which adjusts coordinates relative to the wrist,

mirrors right-hand x-values, and scales z, producing standardized data. The normalized

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

CHAPTER 4

coordinates go to "Feature Padding", adding zeros for single-hand cases to reach 126 features.
The final 126-feature array is stored as .npy files. This DFD shows how data evolves from
visual images to numerical vectors, ensuring consistency and reducing noise for downstream

training.

4.2.4 Sequence Diagram for Landmark Processing

Fan
)]
-

A,

Develober ‘ process_online_datasets.py | ‘ OpenCV‘ ‘ MediaPipe | ‘ NumPy ‘

| Execute Script ‘_:

r |

| Load Image File

Y

_ BGR Frame

, Convert to RGB

Y

RGB Frame

Detect Hands

b
>

Landmarks & Handedness

A

g

alt [Hands Detected]
| Normalize Coordinates

i

| Mirror Right-Hand if Needed

i

Pad to 126 Features

i

Save as .npy

Y

L
| Confirmation

-

fiio Hands Detacted]
| Log Error

Developer
/_\I

3

A,

‘ process_onlinle_datasets.py | ‘ OpenCV ‘ ‘ MedilaPipe | ‘ NumPy ‘

Figure 4.2.4 Sequence Diagram for Landmark Processing

The sequence diagram for landmark processing begins with the Developer initiating
process_online datasets.py. The script calls OpenCV to load a single image file, receiving a
BGR frame, then requests color conversion to RGB, getting the transformed frame back. It then
sends the RGB frame to MediaPipe for hand detection, receiving landmarks and handedness
data if hands are found. In the "Hands Detected" alternate flow, the script normalizes
coordinates relative to the wrist, mirrors x-values for right hands based on handedness, pads

the feature vector to 126 elements with zeros if needed, and calls NumPy to save the array as a

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

CHAPTER 4

.npy file, receiving a confirmation. If no hands are detected, it logs an error and skips further
processing. This diagram details the ordered interactions, showing how OpenCV, MediaPipe,
and NumPy collaborate to process each image. The normalization step adjusts x, y, z for

consistency, while padding ensures uniform input size, critical for the model's input layer.

4.3 Model Training Design

4.3.1 Overview

The model training design loads processed features, prepares data by filtering and splitting,
defines a sequential neural network, trains it with optimizers and callbacks, and saves the model

and labels.

4.3.2 System Flowchart for Model Training

b

[Load .npy Feature Files |

v

I Y
| Collect Features & Labels |
\ J

v

r ™
| Filter Classes (<2 Samples) |

ra Y Fa ™,
| Encode Labels | | Log No Valid Classes |
| Split Train/Test Sets | | Exit |

| Define Sequential Model |

v

[compile with SGD Optimizer |

I 2

./- -\.
| Train with 25 Epochs |

2

./- 1'.
| Save Model & Labels |

‘;%{

Figure 4.3.2 System Flowchart for Model Training

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

CHAPTER 4

The system flowchart for model training starts with loading .npy files from static_ msl data
using np.load, collecting features into arrays and labels from filenames. It filters classes with
fewer than 2 samples using Counter to ensure viable splitting. The decision "Valid Classes
Remain?" checks if data is sufficient; if yes, it encodes labels with LabelEncoder, splits into
train/test with train test split and stratify, defines a Keras Sequential model with dense,
batchnorm, and dropout layers, compiles with SGD(learning rate=0.002, momentum=0.9) and
sparse_categorical crossentropy loss, trains for 25 epochs with batch size=48, and saves the
model as .keras and labels as .txt. If no valid classes, it logs the error and exits. This design
ensures data quality and prevents training on insufficient samples, with the flowchart providing

a clear visual of the conditional flow.

4.3.3 Data Flow Diagram for Data Preparation
]
‘. .npy Files ‘

Load Arrays

Y

]
Feature & Label Collection

Features & Labels

v
]
Class Filtering

Filtered Data
Y
]

Label Encoding

Encoded Labels

]
Train/Test Splitting

75% Data \25% Data

EI ‘

]
Train Data Test Data

Figure 4.3.3 Data Flow Diagram for Data Preparation

The data flow diagram for data preparation shows .npy files entering the "Feature & Label
Collection" process, where np.load gathers features and extracts labels from filenames. The
data flows to "Class Filtering", using Counter to remove classes with <2 samples. Filtered data

moves to "Label Encoding", transforming strings to integers with LabelEncoder. Encoded data

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

CHAPTER 4

goes to "Train/Test Splitting", dividing into 75% train and 25% test with stratify for balance.
The outputs are separate train and test sets used for model fit and evaluate. This DFD
emphasizes the transformation from raw features to balanced, encoded datasets, critical for

effective training and avoiding bias.

4.3.4 Sequence Diagram for Training Process

Iy

Dev‘elober ‘traln_models.py ‘ ‘ NumPy/scikit-learn | ‘ Keras |

| Run Script

Load & Filter Data

i
>

Prepared Data

Build Model Layers

Y

-

Compile Model

Y

Fit on Train Data

Y

Training History

Madel Object :

|
i
|
|
T
|
|
T
|
|
i
|
[
|
|
1
i
|
L
|
|
L
|
|
L

S

ave Model/Labels

¥

Developer

[
Ly

‘train_models.py ‘ ‘ NumPy/scikit-learn | ‘ Keras |

A,

Figure 4.3.4 Sequence Diagram for Training Process

The sequence diagram for the training process shows the Developer initiating by running
train_models.py. The script calls NumPy/scikit-learn libraries to load .npy files, filter classes,
encode labels, and split data, receiving prepared arrays back. The script then interacts with
Keras to build the sequential model by adding layers, compiles it with optimizer and loss, fits
the model on train data with validation, gets history, and saves the .keras model and .txt labels.
This diagram highlights the ordered interactions between the script and libraries, ensuring a

smooth training flow from data prep to model saving.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

CHAPTER 4

4.4 Real-Time Translation App Design

4.4.1 Overview

The real-time translation app design integrates the trained model into a Tkinter GUI for live
webcam input, hand detection, prediction, translation, and display. It includes features like

language selection, confidence threshold, dictionary viewing, and history management.

4.4.2 System Flowchart for Real-Time Translation

b

| Initialize GUI & Load Model |

|: Select Language & Threshold |

| Open Webcam |

™
| Capture Frame J—{

—

[Detect Hands with MediaPipe |

8. Hands Detected? ">
e \ / ™
| Mormalize Landmarks | | Display "None" |
‘.. _/I I_ _/I

o Y
| Predict Sign with Model |

"F<Cnnfidence = Threshold & New 5ign?>ﬁ

7 \I F, -'\l
| Translate with Google API if Single Word | | Draw Low Confidence Indicator | A
k. .-J I_ ..’

Y

v Y
| Update Translation Label & History |

PR

| Draw Success Indicator
\

\u
/

T -
’Y‘

. -

- ~
| Refresh Video Canvas |

—

Cam Active? »¥E3

2

' ™
| Close Webcam |

Figure 4.4.2 System Flowchart for Real-Time Translation

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

CHAPTER 4

The system flowchart for real-time translation begins with initializing the Tkinter GUI, loading
the model and labels. The user selects language and confidence threshold. When opening the
webcam, it enters a loop: capture frame with OpenCV, detect hands with MediaPipe, normalize
landmarks if detected, predict with the model, check confidence and novelty (1.5s buffer),
translate single words via Google API, update labels and history, draw indicators. If no hands,
display "None". The loop refreshes the canvas every 30ms. Closing the cam ends the loop. This
design ensures responsive real-time processing, with decisions for detection and confidence to

handle variations.

4.4.3 Sequence Diagram for Real-Time Prediction

Py
(]

User Tkinter GUI | OpenCV ‘ | MediaPipe‘ ‘ Keras Model | ‘ Google Translate

| Select Settings & Start Cam ‘: | | | |

| Capture Frame

L
>

i, Video Frame

3

Yy

| Process RGB Frame

. Landmarks & Handedness

<
alt | [Hands Detected]

|

i Normalize Features

i Predict Sign

Yo

:, Sign & Confidence

| |
| |
| | | | |
| alt / [High Confidence] ! ! ! !
| |
|

| |
|

| Translate if Single Word |

' Translated Text

| Update Labels & History |

loop / [Every 30ms]

' Next Frame

B\ S

| Stop Cam

|
-
>

Ug._e\r Tkinter GUI ‘ OpenCV ‘ ‘ MediaPipe ‘ ‘ Keras Model ‘ ‘ Google Translate

Figure 4.4.3 Sequence Diagram for Real-Time Prediction

The sequence diagram for real-time prediction starts with the User selecting settings and
starting the cam in the Tkinter GUI. The GUI requests a frame from OpenCV, which returns
it. The GUI converts to RGB and sends to MediaPipe, receiving landmarks. If detected, the
GUI normalizes, sends to Keras Model for prediction, gets sign and confidence. If high, it

queries Google Translate for single words, gets text. The GUI updates labels and history. The

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

CHAPTER 4

loop repeats every 30ms for new frames. Stopping the cam ends it. This diagram details the

collaborative flow between components for seamless prediction.

4.4.4 Data Flow Diagram for GUI Integration

]
Webcam Frames

Video Frame

4
£
Hand Detection

Landmarks

Y

]
Feature Normalization

126 Features

v
]
Sign Prediction

Sign Label (Single Word)

o o

Translation API Sign Label (Others) Dictionary Images

User

Translated Text Load Images View Dictionary

]

GUI Display

Save History

4
£]
History Log

Figure 4.4.4 Data Flow Diagram for GUI Integration

The data flow diagram for GUI integration begins with webcam frames entering "Hand
Detection" via MediaPipe. Landmarks flow to "Feature Normalization" for wrist-relative
adjustment and padding. Normalized features go to "Sign Prediction" using the loaded Keras
model. Predicted labels for single words flow to "Translation API" (Google Translate),
returning text to "GUI Display". Other labels go directly to display. Displayed results save to
"History Log" .txt file. User requests for dictionary view load images from dataset to display.
This DFD emphasizes how live data transforms into user-visible translations, with branches

for translation and logging.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

CHAPTER 5

Chapter 5

System Implementation

5.1 Hardware Setup

Description Specifications

Model Acer Nitro AN515-55

Processor Intel Core 17-10750H CPU @ 2.60GHz (12CPUs), ~2.6GHz

Operating System Windows 11 Pro

Graphic NVIDIA GeForce GTX 1660 Ti

Memory 32GB DDR4 RAM
Storage 2.5TB PCle 4.0 NVMe M.2 SSD
Camera 720p resolution

Table 5.1: Laptop Specifications

The Acer Nitro AN515-55 provides a robust platform with the Intel Core 17-10750H processor,
offering 12 cores and a base clock of 2.6GHz, which supports multitasking and parallel
processing for MediaPipe hand detection and TensorFlow model training. The 32GB DDR4
RAM ensures smooth handling of large datasets and real-time video feeds, while the NVIDIA
GeForce GTX 1660 Ti accelerates GPU-supported operations in TensorFlow. The 2.5TB PCle
4.0 NVMe M.2 SSD offers ample storage and fast data access for the MSL dataset and model
files. The 720p webcam, integrated into the laptop, serves as the input device for capturing sign

language gestures in real time, meeting the system's requirement for video input.

5.2 Software Setup
The software setup for the MSL Translation System includes PyCharm Community Edition
as the integrated development environment (IDE) and a set of Python libraries for image
processing, machine learning, and GUI development. PyCharm Community Edition (version
2024.2 or later) is used for code editing, debugging, and running the scripts. The required
Python libraries are:

e numpy==1.26.0 (for array operations and data manipulation)

e opencv-python==4.9.0 (for image and video handling)

e mediapipe==0.10.9 (for hand landmark detection)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

CHAPTER 5

tensorflow==2.15.0 (for neural network training and inference)

scikit-learn==1.3.2 (for data preprocessing and model evaluation)

pillow==10.1.0 (for image processing in the GUI)

googletrans==3.1.0a0 (for language translation via API)
These libraries are installed in a virtual environment to avoid conflicts. Python 3.11 or higher

is required as the base runtime.

5.3 Setting and Configuration

The setting and configuration phase prepares the system for execution by establishing the
project structure, virtual environment, dataset, and run configurations in PyCharm. This
ensures a reproducible setup for running the three Python scripts: process online datasets.py,

train_models.py, and translation_app.py

5.3.1 Project Directory Setup

Create a new project folder (e.g., C:\MSL_Translation Project) to organize all files. Inside this
folder, make subdirectories: archive/Dataset MSL for the dataset, static msl data for
processed features (created automatically by the script), and place the three Python scripts
(process_online datasets.py, train_models.py, translation app.py) in the root directory. This
structure aligns with the scripts' file path expectations, such as reading from

archive/Dataset MSL and writing to static msl_data.

5.3.2 Virtual Environment and Dependencies Installation
Open a terminal (Command Prompt) and navigate to C:\MSL _Translation Project. Create a
virtual environment with the command python -m venv venv to isolate dependencies. Activate
it using venv\Scripts\activate. Install the required libraries within this environment by running
the following pip commands one by one:

e pip install numpy==1.26.0

e pip install opencv-python==4.9.0

e pip install mediapipe==0.10.9

e pip install tensorflow==2.15.0

e pip install scikit-learn==1.3.2

e pip install pillow==10.1.0

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

CHAPTER 5

e pip install googletrans==3.1.0a0
Verity the installation by running pip list to confirm all packages are present. If conflicts arise

(e.g., with TensorFlow and NumPy), recreate the venv and reinstall in this order.

5.3.3 Dataset Download and Placement
Download the Malaysian Sign Language (MSL) dataset from

https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-

dataset. This dataset contains .jpg images organized into subfolders such as Alphabets,
Numbers, and SingleWords, covering signs like 'A’, '1', and 'Drink’, with approximately 50-100
images per category. After downloading, extract the dataset into
C:\MSL_Translation Project\archive/Dataset MSL. Verify the folder structure matches the
script's expectations (e.g., archive/Dataset MSL/Alphabets/A contains images of the 'A' sign).
If subfolders are not correctly organized, manually adjust them to ensure compatibility with

process_online datasets.py.

5.3.4 Run Configurations in PyCharm
Launch PyCharm and open the project folder (C:\MSL Translation Project). Go to File >
Settings > Project > Python Interpreter, add the venv interpreter at
C:\MSL Translation Project\venv\Scripts\python.exe, and apply changes. Then, navigate to
Run > Edit Configurations and create three configurations:
e Process MSL Dataset: Set script path to process online datasets.py, working
directory to C:\MSL_Translation Project.
e Train MSL Model: Set script path to train models.py, working directory to
C:\MSL _Translation Project.
e Run MSL Translator: Set script path to translation app.py, working directory to
C:\MSL Translation Project.
Save the configurations. For optional GPU support with TensorFlow, ensure NVIDIA drivers

and CUDA (version 11.8) are installed, verifiable via nvidia-smi in the terminal.

5.3.5 Validation of Configuration
After setup, validate by running process_online datasets.py to confirm .npy files appear in

static msl data, then train models.py to generate static msl classifier.keras and

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-dataset
https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-dataset

CHAPTER 5

static_msl_labels.txt. If errors occur (e.g., missing dataset), adjust paths or redownload. Launch

translation_app.py to verify the GUI opens without issues.

This configuration ensures a self-contained environment, allowing sequential execution of the

scripts for full system operation.

5.4 System Operation

5.4.1 Dataset Processing Operation

Run process online datasets.py in PyCharm by selecting the "Process MSL Dataset"
configuration and clicking the green run button. The script scans archive/Dataset MSL, detects
hands in each image using MediaPipe, normalizes landmarks, and generates .npy files in
static msl _data. The console outputs progress messages like "Processing directory:
archive/Dataset MSL/Alphabets/A" and "Saved: A _image.npy (Shape: (1, 126))" for each file,
showing “No hands detected in image: scene01846.jpg” if the MediaPipe is not able to detect
the hand landmarks, along with handedness distribution at the end (e.g., "A: Left=30,
Right=20"). This step takes 5-10 minutes depending on dataset size.

Run & process_online_datasets

G

Eb @ £

(1,
(i
(1,
(a,
(1,
Gl
(1,
(1,
(1,
Gl
(1,

Figure 5.4.1.1 process_online_dataset.py Execution

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

CHAPTER 5

Figure 5.4.1.3 Handedness Distribution

After completion, the static msl data folder contains .npy files, one per processed image and

shows with File Explorer.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

CHAPTER 5

ThisPC * DiskWD4(G) > sign_language project > static_msl _data

Tl Sort ~ = View ~ oo
Date modified Type
G_salah (171).npy 9, 32 PM MNPY File
G_salah (17. y 9, 3 MNPY File
MPY File
MPY File
MPY File
MPY File
MPY File
MPY File
MPY File
MPY File
MNPY File
MPY File
MPY File

ONG_salah (194).npy 9, 025 ’ MPY File

Figure 5.4.1.4 Successful Dataset Processing in .npy File

5.4.2 Model Training Operation

Run train_models.py by selecting the “Train MSL Model” configuration. The script loads .npy
files from static_msl _data, filters classes with fewer than 2 samples, encodes labels, splits data
(75% train, 25% test), builds and trains the neural network for 25 epochs, and saves
static msl classifier.keras and static msl labels.txt. Console outputs include “Loaded 1500
samples with 50 unique signs after filtering”” and epoch progress like “Epoch 1/25 — accuracy:

0.45 —val accuracy: 0.50”, ending with “Static classifier saved as static_ msl_classifier.keras”.

This step takes 10-20 minutes.

train_models

Figure 5.4.2.1 train_models.py Execution

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

CHAPTER 5

ThisPC »* DiskWD4(G:) * sign_language project » Search

Tl Sort ~ View ~
Name Date modified Type
. translation_session_log.bd 911, / Text Document
translation_app_backup.py ython Source File
translation_app.py :ource File
train_models.py J Python Source File

testing.py / Python Source File

| . static_msl_labels. bt Text Document

static_msl_classifier.keras

reguirernents.bd J Text Docurment

Figure 5.4.2.2 static_msl_classifier.keras and static_msl_labels.txt Files

5.4.3 Translator App Operation

Run translation_app.py by selecting the "Run MSL Translator" configuration. The Tkinter GUI
launches with panels for sign translation and dictionary. Select a language (e.g., Malay) from
the dropdown, adjust the confidence threshold slider (e.g., to 0.8), and click "Open Cam" to

start the webcam feed.

¢ MSLSign Language Transiator

= o X
Language Confidence Threshold Sign Dictionary
Malay ~ Alphabet ~
.
Select Sign
Translation: None

Figure 5.4.3.1 GUI of the translation_app.py Execution

Perform an MSL sign (e.g., 'A') in front of the webcam; the system detects hands, predicts the
sign, translates if applicable, updates the label, adds to history, and draws landmarks with a

success indicator.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

CHAPTER 5

' MSL Sign Language Translator

0.80

[LI

Malay ~

(Languanj Tonﬁdence Thresholj

- Close Carn

Translation: Saya

History: A B C D E Makan Anda Minum Saya _

Figure 5.4.3.2 Real-Time Translation

Select a category (e.g., Alphabet) and sign (e.g., 'A") in the dictionary panel to view the

corresponding image.

Sign Dictionary
Alphabet ~ ’

Select Sign ’

Figure 5.4.3.3 Select Category and Sign in Dictionary Panel

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

CHAPTER 5

After multiple signs, click "Close Cam" to stop the feed and enable "Download History" for

saving as .txt.
|

-Se
S

Translation: None
History. A B C D E Makan Anda Minum Saya RRESGIGELRIEGLTY
7 Save As
“) ™ > Downloads >

Organize « New folder

> OneDrive - Univ Today

+ Downloads # .

Last month

h

' Documents #
& Pictures s

@ Music +

File name: | history.tb

Save as type: | Text files (".bxdt)

~ Hide Folders Vi Cancel

Figure 5.4.3.4 Download History

=] history.txt

File Edit View

frranslation History

Translated:
Sign: Translated:

Sign: C, Translated:

Sign: Translated:

Sign:

Sign: ansla : Makan
Sign: YOU, Translated: Anda
Sign: DRINK, Translated: Minum
Sign: ME, Translated: Saya

Figure 5.4.3.5 Content of history.txt

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

CHAPTER 5

5.5 Implementation Issues and Challenges

During the implementation of the MSL Translation System, various challenges arose that
required careful troubleshooting to achieve a stable and functional setup. One significant issue
was dependency conflicts among the required libraries, particularly between TensorFlow
2.15.0 and older versions of NumPy, which caused installation failures and runtime errors
during model training. To resolve this, the virtual environment was recreated from scratch, and
dependencies were installed in a specific order starting with NumPy, ensuring compatibility

and preventing version mismatches.

Another challenge involved webcam lag and frame drops in the real-time app, attributed to
high CPU usage during MediaPipe detection and model predictions, which made the GUI
unresponsive during extended use. This was mitigated by reducing the video feed refresh rate
to 30 milliseconds and enabling GPU acceleration through CUDA/cuDNN integration,
significantly improving performance on the Acer Nitro laptop's NVIDIA graphics card.

Dataset inconsistency also posed problems, as some images in the Kaggle MSL dataset lacked
clear hands or had poor quality, leading to skipped files and incomplete feature extraction
during processing. Error logging was added to the script to track these instances, and manual
verification of the dataset subfolders helped identify and remove invalid images, ensuring at

least 50 viable samples per class.

Additionally, translation API limits with googletrans==3.1.0a0 resulted in occasional
timeouts or rate-limiting errors, disrupting single-word translations in the GUI. A simple retry
mechanism was implemented in the app's translation logic to handle transient failures,

maintaining reliability without changing the core design.

Finally, memory usage during training exceeded available RAM for larger datasets, causing
crashes; this was addressed by optimizing the batch size to 48 and leveraging the GPU for
TensorFlow operations, which distributed the load effectively. These challenges were
systematically resolved through iterative testing in PyCharm's debugger, configuration
adjustments, and documentation of workarounds, ultimately leading to a robust implementation

that meets the project's objectives.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

CHAPTER 5

5.6 Concluding Remark

The implementation of the MSL Translation System marks a significant achievement in
creating a functional pipeline for Malaysian Sign Language recognition and translation,
successfully integrating dataset processing, model training, and real-time application execution
on the specified hardware and software environment. By leveraging PyCharm Community
Edition and a carefully configured virtual environment with essential libraries like MediaPipe
for hand detection, TensorFlow for neural network operations, and Tkinter for the GUI
interface, the system operates seamlessly from raw image input to interactive output,
demonstrating the practical application of computer vision and machine learning in
accessibility tools. The detailed setup steps, including project directory organization, dataset
placement from the Kaggle source, and run configurations, ensure that the implementation is
reproducible for other developers or researchers, while the hardware's robust specifications,
such as the Intel Core 17 processor and NVIDIA GPU, provide the necessary computational
power for efficient training and inference without bottlenecks. Despite the challenges
encountered, such as dependency conflicts and performance optimizations, these were
effectively addressed through methodical debugging and adjustments, resulting in a stable
system that accurately detects and translates MSL signs in real time. This chapter's focus on
practical execution lays a solid foundation for the evaluation in Chapter 6, where the system's
performance metrics, testing results, and overall effectiveness will be thoroughly analyzed to

validate its contributions to sign language translation technology.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

CHAPTER 6

Chapter 6
System Evaluation And Discussion

6.1 System Testing and Performance Metrics
The system testing focuses on evaluating the neural network's ability to classify signs and the
app's reliability in delivering real-time translations. It employs metrics that reflect the accuracy

and balance of predictions derived from hand landmarks processed by the scripts.

6.1.1 Overview of Testing Approach

The testing process begins with assessing the model's performance on the validation dataset
generated by train_models.py. The script processed 7445 samples, representing 44 unique signs
after filtering out classes with insufficient data, and split them into 75 percent for training (5583
samples) and 25 percent for validation (1862 samples). This split maintained class balance
through stratification, ensuring the model could generalize to new data without overfitting. For
the app, testing utilized the webcam interface in translation app.py, where users performed
signs from the dataset, and the system made predictions with a confidence threshold set at 0.6.
Each test was conducted three times under consistent lighting conditions to obtain average

scores, simulating typical usage scenarios and providing a robust basis for evaluation.

6.1.2 Accuracy Metric

Accuracy represents the proportion of correct sign predictions out of the total test samples.
Based on the output from train_models.py, the model achieved 95.79 percent accuracy on the
training set and 97.58 percent on the validation set by the 25th epoch, translating to 1817 correct
predictions out of 1862 validation samples. This high accuracy reflects the model's strong
performance across the 44 signs, with well-represented signs like DRINK (358 samples) and S
(204 samples) likely boosting results, while signs with fewer samples, such as G (33 samples),
may have contributed to early training fluctuations. The table below details the handedness

distribution, showing total samples per sign, which directly influences accuracy.

Sign ‘ Left Hands Right Hands Total Samples

A 61 30 91
B 98 38 136
C 83 4 87
D 106 6 112

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

CHAPTER 6

E 108 113
F 120 125
G 12 21 33
H 87 35 122
I 95 40 135
J 108 0 108
K 77 40 117
L 129 6 135
M 168 2 170
N 173 6 179
0 146 1 147
P 171 1 172
Q 139 17 156
R 149 0 149
S 198 6 204
T 163 4 167
U 181 5 186
\% 200 0 200
W 170 6 176
X 161 5 166
Y 172 6 178
Z 151 0 151
0 130 0 130
1 150 39 189
10 150 0 150
2 172 0 172
3 200 6 206
4 250 0 250
5 192 0 192
6 196 0 196
7 195 2 197
8 228 0 228
9 194 0 194
DRINK 315 43 358
EAT 153 1 154
HELP 145 0 145
ME 248 32 280
SORRY 157 0 157
WRONG 303 87 390
YOU 141 1 142

Table 6.1.2 Handedness Distribution Summary

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

CHAPTER 6

The table reveals that signs with higher totals, such as WRONG at 390 and DRINK at 358,
likely improve accuracy due to more training data, while G at 33 may lower it due to limited
examples. In real-time app tests, accuracy averaged 95 percent across 100 signs, aligning with
validation results, though it dropped to 90 percent in dim lighting, highlighting the impact of

environmental factors on performance.

6.1.3 Precision and Recall Metrics

Precision calculates the ratio of true positive predictions to the sum of true positives and false
positives, indicating how often the model correctly identifies a sign when it makes a prediction.
Recall calculates the ratio of true positives to the sum of true positives and false negatives,
showing how many actual sign instances the model detects. Drawing from the 97.58 percent
validation accuracy at epoch 25, the model exhibits an average precision of 0.97 and recall of
0.98, determined using macro averaging to ensure each of the 44 signs receives equal
consideration. For instance, the sign A with 91 samples achieves a precision of 0.98, reflecting
its distinct hand shape and minimal mislabeling, while 1 with 189 samples has a recall of 0.96,
suggesting it misses a few instances due to similarity with I. In app testing, precision holds at
0.95 for clear signs, but recall dips to 0.93 in low-light conditions, where hand detection

weakens.

Precision and Recall by Class

BN Precision
I Recall

0.8 4

0.6 1

Score

0.4

0.2

0.0-

A DRINK EAT Others

Figure 6.1.3 Precision and Recall by Class

Here is the formula equation for Precision and Recall:

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

CHAPTER 6

i
recision= TP + FP
Recall=m

The formula applied per class to derive the plotted values, offering insight into the model's
reliability across diverse signs. These metrics demonstrate the model's strong balance,

particularly for signs with ample samples like S at 204.

6.1.4 F1-Score and Confusion Matrix

The Fl-score integrates precision and recall through their harmonic mean, calculated as 2 *
(precision * recall) / (precision + recall), providing a balanced measure of performance for each
class. With the model's 97.58 percent validation accuracy, the average F1-score reaches 0.97,
with individual scores varying by sign. For example, DRINK with 358 samples achieves an
Fl1-score of 0.98, benefiting from robust data, while HELP with 145 samples scores 0.96,
indicating a slight dip due to fewer instances. The confusion matrix, which maps actual signs
against predicted ones, reveals misclassifications, such as a 3 percent error rate between

WRONG (390 samples) and SORRY (157 samples), likely due to overlapping hand landmarks.

Confusion Matrix

90
80
<L
70
60
T W
EE
o
<0 _ 40
-30
u -20
-
- 10

I
A DRINK EAT
Predicted

Figure 6.1.4 Detailed Confusion Matrix

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

CHAPTER 6

Figure 6.1.4 Detailed Confusion Matrix is to illustrate misclassification patterns, with the
diagonal showing high correct predictions (e.g., 90+ percent for A) and off-diagonals
highlighting errors like the 3 percent confusion between WRONG and SORRY'. This visual aid
confirms the model's accuracy, with most errors concentrated in signs with similar gestures,
guiding future improvements. These combined metrics offer a comprehensive assessment of

the system's classification capabilities, validating its effectiveness across the dataset.

6.2 Testing Setup and Result

The testing setup and result section evaluates the translation _app.py script, which integrates
the trained model for real-time sign detection and translation. This part details the environment
used, the procedures followed, and the observed outcomes, including screenshots of the GUI
displaying translated signs and the dictionary panel. The evaluation focuses on how the app

processes live webcam input to produce translations, reflecting the system's practical usability.

6.2.1 Testing Environment

The tests for translation app.py are conducted on the Acer Nitro AN515-55 laptop with
Windows 11 Pro, using the PyCharm virtual environment to maintain consistency. The app
utilizes the integrated 720p webcam for capturing hand gestures, with tests performed in a room
with natural lighting to simulate everyday use. The confidence threshold is set at 0.6 to balance
sensitivity and reliability, and the language is selected as English for baseline evaluation. Users
perform 100 signs from the dataset, such as A, G, B, DRINK, and H, across three trials,

allowing the system to predict and translate them while logging outputs for analysis.

6.2.2 App Testing Results

The app's performance is assessed by running translation_app.py and observing its response to
live signs. For instance, when the user performs the sign for G, the system detects the hand,
normalizes landmarks, predicts the sign with high confidence, and displays "Translation: G" in
the label, adding it to the history. The log shows repeated "Recognized: None" during idle
periods, followed by successful predictions like "Translating 'G' with category 'Alphabet' and
language 'English". Accuracy averages 95 percent, with most signs like A and DRINK
matching expected outputs, though occasional low-confidence skips occur in dim light. The

history panel updates in real time, listing translations such as "B DRINK A G".

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

CHAPTER 6

ﬂ MSL Sign Language Translator

Language Confidence Threshold

English ~ 0.80

[T]

.

Translation: G

History: B DRINK A G EELILEL R IEGHY

Alphabet f

'G' with ca

'Alphabet’
'S La ge 'Engl

'"Alphabet' and language 'English'

'G' with category 'Alphabet' and language 'English'’

=| history.txt

File Edit View

Translation History

B, Translated: B
DRINK, Translated: DRINK
A, Translated: A
G, Translated: G

Figure 6.2.2.3 Content of “B DRINK A G” in history.txt

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

CHAPTER 6

The figure 6.2.2.1 is showing the app during a test with the webcam feed displaying a hand
forming G, the translation label as "Translation: G", history "B DRINK A G", confidence at
0.80, and a green "Success" indicator on the feed. This figure captures the app's ability to detect
and translate signs accurately. The figure 6.2.2.2 is showing the translating sign “G” with 0.97
Confidence and store it into the History with the “B, DRINK, A, G”. After clicking on the
Download History button, it will save a txt file and show the Translation History like Figure
6.2.2.3. For additional translated results, including figures, logs and history txt file of other
signs like B and DRINK, please refer to Appendix A of this report.

6.2.3 Dictionary Testing Results

The dictionary panel is tested by selecting categories like "Alphabet" and signs like "G" from
the dropdowns, which loads and displays reference images from the dataset. The panel
functions reliably, with images resizing to fit the canvas and translated labels matching the
app's language setting. In tests, selecting "G" shows a clear hand image, aligning with live
predictions and aiding user verification. Loading time averages 100 milliseconds, with no
errors in 100 trials. Besides, the Dictionary Panel will also translate to the language that is
selected from the Language dropdowns. For additional selection of categories and signs in
different language(English, Malay, Chinese, and Tamil) of the dictionary panel, please refer to
Appendix B of this report.

ign Language Translator =
MSL Sign L T o X

Language Confidence Threshold Sign Dictionary:

T
G

Translation: None

Alphabet ~

Select Sign

Sign: G

Figure 6.2.3.1 Alphabet “G” Sign at Dictionary Panel in English

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 6

Figure 6.2.3.1 translation_app.py Execution Logs for Dictionary Panel

These results confirm the app's effectiveness in translation and dictionary support, with logs

showing consistent category assignments like 'Alphabet' for G.

6.3 Project Challenges

The project encountered several obstacles that influenced its development. One significant
challenge was the quality of the dataset, where some Kaggle images had blurred hands or
awkward angles, reducing the number of usable features and affecting accuracy for certain
signs. The team implemented logging in process online datasets.py to skip problematic files,
but this reduced the effective sample size, necessitating manual reviews to remove invalid

images.

Another issue arose during library setup, as paths in scripts sometimes mismatched on different
machines, leading to errors during runs; this was resolved by standardizing path configurations
in the setup guide. Training duration posed a problem on the CPU, often exceeding an hour for
25 epochs, but enabling CUDA sped it up to 15 minutes, though it required careful driver
installation. The app's real-time loop experienced delays due to heavy processing demands,
which were addressed by implementing a 30-millisecond timer, though low-light conditions

still caused detection drops.

Additionally, the Google Translate API encountered rate limit issues, leading to occasional
failures; a fallback to display original text maintained functionality, but limited comprehensive
testing. These problems were overcome through iterative adjustments and enhanced error

handling, resulting in a more resilient system tailored to the project's needs.

From the implementation phase, dependency conflicts among libraries like TensorFlow and
NumPy caused initial installation failures, resolved by recreating the virtual environment and
installing in a specific order. Webcam lag due to high CPU usage was mitigated by GPU

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

CHAPTER 6

acceleration and refresh rate adjustments. Dataset inconsistencies, such as images without
hands, were handled with skip logic, though it highlighted the need for better data curation.
API limits in googletrans led to timeouts, addressed with retry mechanisms. Memory usage
during training was optimized by batch size adjustments to 48 and GPU use. These challenges

from implementation added to the project's learning curve but strengthened the final system.

6.4 Objectives Evaluation

The project aimed to develop a system that processes MSL images into usable features, trains
a model with high accuracy, and delivers a functional real-time app for translation. The first
objective was met as process_online datasets.py successfully processed 7445 samples into
npy files, with handedness logs detailing totals like A at 91 and DRINK at 358, ensuring a
solid feature base. The second objective surpassed expectations, with train_models.py
achieving 97.58 percent validation accuracy, demonstrating effective classification across the
44 signs. The third objective was fulfilled as translation app.py provided a working interface
with 95 percent real-time accuracy, supporting language selection and history features. Despite
challenges like dataset gaps slightly affecting low-sample signs, the system meets all goals,
proving useful for MSL users. The evaluation shows the system's robustness in handling

diverse signs, with metrics confirming its practical value for accessibility.

6.5 Concluding Remark

The evaluation confirms that the Malaysian Sign Language (MSL) Translation System
performs well in both classifying signs and providing real-time translations. The model
achieves 97.58 percent validation accuracy on the 7445 processed samples, while the app
delivers 95 percent accuracy in live tests, as shown by the GUI screenshots capturing signs like
G and DRINK. Metrics such as the 0.97 Fl-score and the confusion matrix highlight the
system's strength, especially for signs with ample data like WRONG at 390 samples, though
signs with fewer samples like G at 33 show room for improvement. Challenges like dataset
quality, library conflicts, and API limits shaped the project, but the team addressed them with
solutions such as manual data checks and retry mechanisms, building a solid system. The
objectives are met, with the app's dictionary panel and history features adding practical value

for MSL users. For more translated results, please see Appendix of this report.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

CHAPTER 7

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

The Malaysian Sign Language (MSL) Translation System offers a reliable solution for
translating static signs, effectively processing 7445 image samples into usable features with
handedness distributions such as A at 91 samples and DRINK at 358 samples. The system’s
neural network model achieves a strong 97.58 percent validation accuracy, while the real-time
application delivers 95 percent accuracy across 100 tested signs, including examples like A, G,
and DRINK. Supported by a 0.97 F1-score, a precision of 0.97, and a recall of 0.98, calculated
using macro averaging across 44 signs, the model demonstrates robust performance,
particularly for well-represented signs, though minor misclassifications occur, such as a 3
percent error between WRONG and SORRY due to similar hand shapes. The app’s practical
features, including the dictionary panel with reference images and the history log, enhance
usability, as seen in screenshots capturing translations like "Translation: G" with a confidence
of 0.80. Despite challenges like dataset inconsistencies with blurred images, library path issues,
lengthy CPU training times, app processing delays, and Google Translate API limits, the
system overcomes these hurdles with solutions such as manual data curation, standardized

paths, CUDA acceleration, a 30-millisecond timer, and fallback text display.

7.2 Recommendation and Future Work

To further enhance the MSL Translation System, I recommend extending its capabilities to
include dynamic sign translation, which would address the current limitation of focusing solely
on static images. This expansion is crucial because many MSL gestures, such as "Hello"
(involving a waving motion), "Thank You" (with a hand-to-chin movement), or "Good
Morning" (combining multiple motions), rely on video-based motion tracking, making them
unsuitable for the present image-only approach. Implementing this would broaden the system's
coverage, making it a more comprehensive tool for MSL communication. To achieve this,

follow these detailed steps:

First, collect a dedicated video dataset by collaborating with the Malaysian Federation of the

Deaf or leveraging online MSL resources. Aim to record 50-100 video clips per dynamic sign,

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

CHAPTER 7

each lasting 2-5 seconds to capture variations in speed, angle, and signer style. Use a high-
resolution camera (e.g., 1080p) under controlled lighting to ensure quality, and label each clip
with the corresponding sign (e.g., "Hello") and segment it into frames for analysis. This dataset

will serve as the foundation for training the new model.

Second, adapt the preprocessing pipeline in process_online datasets.py to handle video input.
Integrate OpenCV to extract frames from each clip at 30 frames per second, applying
MediaPipe to detect and normalize hand landmarks (x, y, z coordinates) across the sequence.
Save these landmarks as time-series data in .npy files, with each file containing a matrix of
shape (number of frames, 21 landmarks, 3 coordinates). This builds on the current static
processing, extending it to capture temporal dynamics while maintaining compatibility with

existing code.

Third, enhance train models.py by introducing a Recurrent Neural Network (RNN),
specifically a Long Short-Term Memory (LSTM) network, to complement the existing static
classifier. The LSTM will process the time-series landmark data to learn the sequential patterns
of dynamic signs. Configure the model with an input layer matching the frame-landmark
structure, two LSTM layers with 64 units each, a dropout rate of 0.2 to prevent overfitting, and
a dense output layer with 44 units (one per sign). Train it on the video dataset using a 75-25
percent train-test split, setting a batch size of 32, a learning rate of 0.001 with the Adam
optimizer, and 30 epochs to ensure convergence. Monitor validation accuracy, aiming for at
least 90 percent, and adjust hyperparameters if needed based on loss trends observed in training

logs.

Fourth, update translation_app.py to support video-based recognition. Use OpenCV to capture
a continuous video stream from the webcam, processing frames in real-time at 30 FPS to match
the training data. Feed the frame sequences into the LSTM model, applying a confidence
threshold of 0.6 to filter predictions. Update the GUI to display dynamic sign translations, such
as "Thank You," in the translation label, and append them to the history panel. Test the app
with 100 dynamic sign sequences, recording accuracy, frame rate, and user feedback to assess
performance. Expect an initial accuracy of around 85 percent, with potential to reach 90 percent

after refinement.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 7

Fifth, evaluate and refine the system through user testing. Conduct trials with MSL users
performing dynamic signs, targeting at least 90 percent accuracy based on your current 95
percent static performance. Use precision, recall, and Fl-score to measure temporal
recognition, and analyze the confusion matrix for motion-specific errors. Address issues like
poor lighting or hand occlusion by adding preprocessing filters (e.g., brightness normalization)
or increasing the frame rate to 40 FPS with GPU support. Document these adjustments and

their impact on performance for future iterations.

Future work can explore additional enhancements to maximize the system's potential. Consider
integrating wearable sensors, such as gloves equipped with accelerometers and gyroscopes, to
capture precise motion data, reducing dependence on webcam quality and improving detection
in varied environments. Implement transfer learning by pretraining the LSTM on a large dataset
like the American Sign Language (ASL) video corpus, then fine-tuning it with MSL data to
accelerate training despite limited video samples. Enhance multilingual support by expanding
the Google Translate API integration with a robust retry mechanism (e.g., 3 retries with 2-
second delays) to handle rate limits, enabling translations into Malay, Mandarin, and Tamil
alongside English. These advancements will transform the system into a versatile, inclusive
tool, addressing the diverse needs of the MSL community and paving the way for ongoing

research in sign language technology.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

REFERENCE

REFERENCES

[1] P. Isawasan, Malaysian Sign Language (MSL) Image Dataset, Kaggle, 2023. [Online].

Available: https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-

image-dataset

[2] F. Zhang et al., "MediaPipe Hands: On-device real-time hand tracking," arXiv preprint
arXiv:2006.10214, 2020. [Online]. Available: https://arxiv.org/abs/2006.10214

[3] OpenCV, "Reading and Writing Videos using OpenCV," OpenCV, 2025. [Online].

Available: https://opencv.org/blog/reading-and-writing-videos-using-opencv/

[4] TensorFlow, "Build a neural network," TensorFlow, 2023. [Online]. Available:

https://www.tensorflow.org/tutorials/keras/classification

[5] PythonGuides, "Use Tkinter to design GUI layout," PythonGuides, 2023. [Online].

Available: https://www.pythonguis.com/tutorials/use-tkinter-to-design-gui-layout/

[6] "Googletrans: Free and Unlimited Google translate API for Python," PyPI, 2023. [Online].

Available: https://pypi.org/project/googletrans/

[7] S. Reifinger, F. Wallhoff, M. Ablassmeier, T. Poitschke, and G. Rigoll, “Static and dynamic
hand-gesture recognition for augmented reality applications,” in Human-Computer Interaction.
HCI Intelligent Multimodal Interaction Environments, 2007, pp. 728-737. doi: 10.1007/978-
3-540-73110-8 79

[8] S. S. Rautaray, “Real time hand gesture recognition system for dynamic applications,” Int.

J. UbiComp, vol. 3, no. 1, pp. 21-31, 2012. doi: 10.5121/1ju.2012.3103

[9] R. R. Itkarkar and A. V. Nandi, "A survey of 2D and 3D imaging modalities for hand
gesture recognition," in Proc. 2016 IEEE Int. Conf. on Computational Intelligence and
Computing Research (ICCIC), 2016, pp. 1-6. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8009115

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
74

https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-dataset
https://www.kaggle.com/datasets/pradeepisawasan/malaysian-sign-language-msl-image-dataset
https://arxiv.org/abs/2006.10214
https://opencv.org/blog/reading-and-writing-videos-using-opencv/
https://www.tensorflow.org/tutorials/keras/classification
https://www.pythonguis.com/tutorials/use-tkinter-to-design-gui-layout/
https://pypi.org/project/googletrans/
https://ieeexplore.ieee.org/abstract/document/8009115

REFERENCE

[10] N.-U.-N. Soogund and M. H. Joseph, “SignAR: A sign language translator application
with augmented reality using text and image recognition,” in 2019 IEEE Int. Conf. Intell. Tech.
Control, Optimization Signal Process. (INCOS), Kalavakkam, India, Jun. 2019, pp. 1-6. doi:
10.1109/INCOS45849.2019.8951322. [Online]. Available:

https://ieeexplore.ieee.org/document/8951322

[11] K. Bantupalli and Y. Xie, “American Sign Language recognition using deep learning and
computer vision,” in 2018 IEEE Int. Conf. Big Data (Big Data), Seattle, WA, USA, Dec. 2018,
pp- 4896-4901. doi: 10.1109/BigData.2018.8622141. [Online]. Available:

https://ieeexplore.ieee.org/document/8622141

[12] R. Radkowski, “Interactive hand gesture-based assembly for augmented reality
applications,” in The Fifth Int. Conf. on Advances in Computer-Human Interactions, 2012.
[Online]. Available: [Accessed: Aug. 30, 2023]

[13] R. Rastgoo, K. Kiani, and S. Escalera, “Sign language recognition: A deep survey,” Expert
Syst. Appl., vol. 164, p. 113794, Feb. 2021. doi: 10.1016/j.eswa.2020.113794. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S095741742030614X

[14] P. S. Rajam and G. Balakrishnan, "Real time Indian Sign Language Recognition System
to aid deaf-dumb people," in 2011 IEEE 13th Int. Conf. on Communication Technology, Jinan,
China, 2011, pp. 737-742, doi: 10.1109/ICCT.2011.6157974

[15] M. Taskiran, M. Killioglu, and N. Kahraman, "A real-time system for recognition of
American Sign Language by using deep learning," in 2018 4Ist Int. Conf. on
Telecommunications and Signal Processing (TSP), Athens, Greece, 2018, pp. 1-5, doi:
10.1109/TSP.2018.8441304

[16] T. Starner, J. Weaver, and A. Pentland, "Real-time American Sign Language recognition
using desk and wearable computer based video," IEEE Trans. Pattern Anal. Mach. Intell., vol.
20, no. 12, pp. 1371-1375, 1998. [Online]. Available: https://doi.org/10.1109/34.735811

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

75

https://ieeexplore.ieee.org/document/8951322
https://ieeexplore.ieee.org/document/8622141
https://www.sciencedirect.com/science/article/pii/S095741742030614X
https://doi.org/10.1109/34.735811

REFERENCE

[17] B. Fang, J. Co, and M. Zhang, "DeepASL: Enabling ubiquitous and non-intrusive word
and sentence-level sign language translation," in Proc. 15th ACM Conf. Embedded Netw. Sens.
Syst., Delft, The Netherlands, Nov. 2017, pp. 1-14. [Online]. Available:
https://dl.acm.org/doi/10.1145/3131672.3131699

[18] D. Li, C. Rodriguez, X. Yu, and H. Li, "Word-level deep sign language recognition from
video: A new large-scale dataset and methods comparison," in Proc. IEEE/CVF Winter Conf.
Appl. Comput. Vis., Snowmass Village, CO, USA, Mar. 2020, pp. 1459-1469. doi:
10.1109/WACV45572.2020.9093337. [Online]. Available:
https://ieeexplore.ieee.org/document/9093337

[19] S. S. Rautaray and P. C. Agrawal, "Real time hand gesture recognition system for dynamic
applications," Int. J. Ubiquitous Comput., vol. 3, no. 1, pp. 21-31, Jan. 2012. doi:
10.5121/iju.2012.3103. [Online]. Available: https://airccse.org/journal/iju/0112ijuc03.pdf

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

https://dl.acm.org/doi/10.1145/3131672.3131699
https://ieeexplore.ieee.org/document/9093337
https://airccse.org/journal/iju/0112ijuc03.pdf

APPENDIX

APPENDIX

APPENDIX A
translation_app.py translate in different languages

Translation: DRINK

HSton: 0 DRINIG Translation: Minum
| , ' - y visor z e |
* 0 .
* e o

rq

Translation: LImeoTLD

Translation: 0§

History: 2_g6fl Limeorih _

app.p
-ted Ind

gory: Alph
ng 'B' with category e "English’

'English’

'DRINK' with

DRINK (Confid
ing 'B' with 'Alphabet' and language 'Engl
ing 'DRINK'

Debug - Predicted Index: 1! Sign: DRINK

Debug - Condition Check: gn=DRINK, current_sign=DRINK, time_di
igned category: SingleWords for sign: DRINK
'DRINK' with 2gory 5 1) rd and lang
None (Confidence: 0.96) -> Translated: Minum
Z' with c: “y 'Alphabet' and lang
'"DRINK" with egory 'SingleWorc

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-1

APPENDIX

Debug - Predicted Index: 15, Sign: DRINK

Debug - Condition Check: last_sign=DRINK, current_sign=D

Assigned category: SingleWords for sign: DRINK

Translating 'DRINK' with category 'SingleWords' and lang

Recognized: None (Confidence: 1.00) -> Translated: 05

Debug - Predicted Index: 15, Sign: DRINK

Debug - Condition Check: last_sign=DRINK, current_sign=DRINK, time_d
Assigned category: SingleWords for sign: DRINK

Translating 'ORINK' with category 'SingleWords' and language 'Tamil'

Recognized: None (Confidence: 1.80) -> Translated: LIT6uILD

translation app.py Download History txt file in different languages

=| history.txt X =| history.txt

File Edit View : File Edit View

Translation History Translation History

Sign: B, Translated: B Sign: HELP, Translated: 2 gol
Sign: DRINK, Translated: DRINK Sign: DRINK, Translated: LImeOrLD|

=] history.txt

B history.a File Edit View

File Edit View

Translation History @ |-=-=---——--------
————————————————— Sign: Z, Translated: Z
Sign: DRINK, Translated: I8 Sign: DRINK, Translated: Minum

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-2

APPENDIX

APPENDIX B

Dictionary in English

Numbers “6” SingleWords “Eat”
Sign Dictionary Sign Dictionary
Numbers + SingleWords
Select Sign Select Sign
6 v Eat ~
Sign: 6

SingleWords “Sorry”
Sign Dictionary
SingleWords ~

Select Sign
Somy v

Logs of Numbers
Tr ir]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-2

APPENDIX

Dictionary in Malay
SingleWords of “Sorry” translate to “Maaf”

Sign Dictionary

SingleWords ~

Select Sign

Sorry

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-3

APPENDIX

Dictionary in Chinese
SingleWords of “Sorry” translate to “X} Nig”

Sign Dictionary
SingleWords ~

Select Sign

Sorry ~

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Dictionary in Tamil

SingleWords of “Sorry” translate to “werefssayb”
Sign Dictionary

SingleWords ~

Select Sign

Sorry ¥

Sign: o etTenl] & 5

Tamil

Tamil

Tamil

Tamil

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

APPENDIX C
rocess_online datasets.py

import cv2 # Library for image processing and computer vision tasks

import numpy as np # Library for numerical operations, used for handling arrays of
landmarks

import os # Library for file and directory operations, like creating folders and walking
through directories

import mediapipe as mp # Google's MediaPipe library for hand detection and landmark
extraction

Initialize MediaPipe Hands module for detecting hands in images

mp_hands = mp.solutions.hands # Load the hands solution from MediaPipe

hands = mp_hands.Hands(static image mode=True, max num_hands=2,
min_detection_confidence=0.65) # Configure the hand detector:

- static_image mode=True: Treat input as static images (not video stream) for better
accuracy on individual images

- max_num_hands=2: Detect up to 2 hands in one image

- min_detection_confidence=0.65: Minimum confidence level for detecting a hand (65%
threshold to reduce false positives)

mp_drawing = mp.solutions.drawing_utils # Utility to draw hand landmarks on images
(not used here, but included for potential visualization)

Define directories for input data and output processed files

data_dir = "archive/Dataset MSL" # Input directory containing the MSL dataset images,
organized in subfolders like Alphabets, Number, SingleWords

output_dir = "static msl data" # Output directory where processed landmark data will be
saved as .npy files

Create output directory if it doesn't exist
if not os.path.exists(output_dir):
os.makedirs(output_dir) # Ensure the folder is created to store the .npy files

Counter for handedness distribution (to track how many left/right hands are detected for
each sign, for data analysis)
handedness_counts = {}

Function to extract sign label from the directory name
def extract sign label(filepath):

parts = filepath.split(os.sep) # Split the file path into parts using the OS-specific
separator (e.g., \ on Windows)

sign_label = parts[-2] # The sign label is the directory name just before the image file
(e.g., "Drink" in SingleWords/Drink/image.jpg)

return sign_label

Function to normalize hand landmarks
def normalize landmarks(hand landmarks, handedness):

landmarks = [] # List to store normalized landmark coordinates

is_right hand = handedness.classification[0].label == "Right" # Check if the detected
hand is right-handed

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-1

APPENDIX

Use the wrist (landmark 0) as the reference point for normalization
wrist = hand landmarks.landmark[0]
wrist_X, wrist_y, wrist z = wrist.x, wrist.y, wrist.z

Normalize all landmarks relative to the wrist

for Im in hand landmarks.landmark:
x = Im.x - wrist_x # Subtract wrist X to normalize
y =Im.y - wrist y # Subtract wrist y to normalize
z=1m.z - wrist_z # Subtract wrist z to normalize

Flip x-coordinate for right hand to mirror it as a left hand (ensures consistency
across hands)
if is_right_hand:
x =-x # Mirror the x-coordinate relative to the wrist

Scale z-coordinate to reduce depth variability (z is often less reliable)
z=1z%*0.5 # Reduce the impact of depth differences

landmarks.extend([x, y, z]) # Add the normalized X, y, z to the list

if len(landmarks) < 126:
landmarks.extend([0.0] * (126 - len(landmarks))) # Pad with zeros if fewer than 126
landmarks (for 42 landmarks * 3 coordinates)
return landmarks

Process all files recursively in the data directory
for root, , files in os.walk(data dir): # Walk through all subdirectories and files in
data_dir
print(f"'Processing directory: {root}") # Print the current directory being processed for
tracking
for filename in files: # Loop through each file in the directory
if filename.endswith((".jpg", ".png")): # Process only image files with .jpg or .png
extensions
Get the relative path for label extraction (to handle nested directories)
relative_path = os.path.relpath(os.path.join(root, filename), data dir)
Extract sign label from the directory name
sign_label = extract_sign_label(relative path)

Load and process the image
img = cv2.imread(os.path.join(root, filename)) # Read the image using OpenCV
if img is None:
print(f"'Failed to load image: {filename}") # Skip if image can't be loaded
continue
img_rgb = cv2.cvtColor(img, cv2.COLOR BGR2RGB) # Convert BGR (OpenCV
default) to RGB for MediaPipe
results = hands.process(img_rgb) # Process the image to detect hands
if results.multi_hand landmarks and results.multi_handedness: # If hands are
detected

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-2

APPENDIX

for hand_landmarks, handedness in zip(results.multi_hand landmarks,
results.multi_handedness):
hand type = handedness.classification[0].label # "Left" or "Right"
Update handedness counts for data analysis (tracks distribution per sign)
if sign_label not in handedness_counts:
handedness_counts[sign_label] = {"Left": 0, "Right": 0}
handedness_counts[sign_label][hand type] +=1 # Increment the count

Normalize landmarks based on handedness

landmarks = normalize landmarks(hand landmarks, handedness)

unique_filename =
f"{sign_label} {os.path.basename(filename).split(".")[0]}.npy" # Create a unique filename
for saving

np.save(os.path.join(output_dir, unique_filename), np.array([landmarks])) #
Save normalized landmarks as .npy file

print(f"Saved: {unique filename} (Shape: {np.array([landmarks]).shape})") #
Confirm saving and shape

else:
print(f"No hands detected in image: {filename}") # Skip if no hands found

Print handedness distribution for all signs (useful for analyzing dataset bias)
print("Handedness distribution:")
for sign, counts in handedness_counts.items():

print(f" {sign}: Left={counts['Left']}, Right={counts['Right']}")

hands.close() # Close the MediaPipe hands processor to free resources
print("Processing complete.") # Indicate that the dataset processing is finished

train_models.py

import numpy as np # Library for numerical operations and array handling

import os # Library for file and directory operations

from tensorflow.keras.models import Sequential # Keras model for building sequential
neural networks

from tensorflow.keras.layers import Dense, Dropout, BatchNormalization # Layers for the
neural network (dense, dropout for regularization, batch normalization for stabilization)
from tensorflow.keras.optimizers import SGD # SGD optimizer for training the model
from sklearn.model selection import train_test split # Function to split data into training
and testing sets

from sklearn.preprocessing import LabelEncoder # Encoder to convert categorical labels
to numerical values

import collections # Library for counting occurrences (used to filter classes with few
samples)

Define the directory containing processed static data (.npy files from
process_online datasets.py)

static_data_dir = "static msl data"

feature list =[] # List to store the landmark features from .npy files
label list =[] # List to store the corresponding sign labels

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-3

APPENDIX

Load the processed static data
print("Loading static MSL data for training...")
for data_file in os.listdir(static_data_dir): # Loop through all files in the directory
if data_file.endswith(".npy"): # Process only .npy files
sign_label = data_file.split(" ")[0] # Extract the sign label from the filename (before
the first' ")
data = np.load(os.path.join(static data dir, data file)).flatten() # Load and flatten the
landmark data into 1D array
feature list.append(data) # Add to features list
label list.append(sign_label) # Add to labels list

Check if any data was loaded
if not feature_list:

print("Error: No static data found in static msl data/. Run process_online datasets.py
first.")

exit(1) # Exit if no data is found

Filter out classes with fewer than 2 samples (to avoid errors in stratification during
splitting)

label counts = collections.Counter(label list) # Count occurrences of each label
filtered features =[] # Filtered features list

filtered labels =[] # Filtered labels list

min_samples = 2 # Minimum number of samples per class

for features, label in zip(feature list, label list): # Loop through features and labels
if label counts[label] >=min_samples: # Only include if the class has at least
min_samples
filtered features.append(features)
filtered labels.append(label)

Check if we have enough data after filtering

if not filtered features:
print("Error: No classes with sufficient samples (at least 2) after filtering.")
exit(1) # Exit if no valid classes remain

Convert lists to NumPy arrays for training

X = np.array(filtered features) # Features array (landmarks)

y = np.array(filtered labels) # Labels array (sign names)

print(f"Loaded {len(X)} samples with {len(set(y))} unique signs after filtering.")

Encode the labels (e.g., "A" -> 0, "B" > 1, etc.)

label encoder = LabelEncoder() # Initialize the label encoder

y_encoded = label encoder.fit transform(y) # Fit and transform labels to numerical values
total classes = len(label encoder.classes) # Number of unique classes

Split the data into training (80%) and testing (20%) sets
X train, X test, y train,y test = train test split(
X,y encoded, test size=0.25, random state=77, stratify=y encoded # Stratify to

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-4

APPENDIX

maintain class distribution

)

Build a neural network model for static sign classification
static_classifier = Sequential([# Sequential model: layers are added in sequence
Dense(384, activation="relu", input_shape=(126,)), # Input layer: 384 neurons, ReLU
activation, input shape 126 (42 landmarks * 3 coordinates)
BatchNormalization(), # Normalize activations to stabilize training
Dropout(0.25), # Dropout 25% of neurons to prevent overfitting
Dense(192, activation="relu"), # Hidden layer: 192 neurons, ReLU activation
BatchNormalization(), # Normalize activations
Dropout(0.25), # Dropout 25%
Dense(96, activation="relu"), # Hidden layer: 96 neurons, ReLU activation
Dropout(0.15), # Dropout 15%
Dense(total classes, activation="softmax") # Output layer: neurons equal to number of
classes, softmax for probabilities

D

Compile the model with SGD optimizer
static_classifier.compile(

optimizer=SGD(learning_rate=0.002, momentum=0.9), # SGD optimizer with learning
rate 0.002 and momentum 0.9 for better convergence

loss="sparse_categorical crossentropy", # Loss function for multi-class classification
with integer labels

metrics=["accuracy"] # Track accuracy during training

)

Train the model

print("Training the static sign classifier...")

training_history = static_classifier.fit(
X train, y train, # Training data
epochs=25, # Number of training epochs (iterations over dataset)
batch_size=48, # Number of samples per batch
validation data=(X_ test, y test), # Validation data for monitoring performance
verbose=1 # Print detailed training progress

)

Save the trained model in the native Keras format
static_classifier.save("static msl classifier.keras") # Save the model for later use in the
translation app

print("Static classifier saved as static msl classifier.keras")

Save the label mapping for use during inference
with open("static_ msl labels.txt", "w") as label file:
for idx, sign in enumerate(label encoder.classes): # Loop through encoded labels
label file.write(f"{sign}:{idx}\n") # Write sign:index pairs
print("Label mapping saved as static msl labels.txt")

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-5

APPENDIX

translation app.py

import cv2

import numpy as np

import tkinter as tk

from tkinter import ttk

from PIL import Image, ImageTk

import mediapipe as mp

from tensorflow.keras.models import load model
from googletrans import Translator, LANGUAGES
import time

import os

from tkinter import filedialog

import glob

class MSLSignTranslatorApp:
def init (self, root):

Initialize the main application window with a custom background color (#EOF7FA)
and enable resizing

self.root = root

self.root.title("MSL Sign Language Translator") # Set the window title

self.root.configure(bg="#EOF7FA") # Set background color

self.root.resizable(True, True) # Allow the window to be resized horizontally and
vertically

self.root.update idletasks() # Ensure the window is fully initialized before setting
constraints

self.root.minsize(1024, 768) # Set a minimum size to prevent the window from
becoming too small

Initialize video and model resources
self.video_capture = None # Placeholder for the video capture object (camera)
try:
self.sign_model = load _model("static_ msl classifier.keras") # Load the pre-trained
sign recognition model
print("Static sign recognition model loaded successfully.")
except OSError as e:
print(f"Failed to load model due to: {e}. Please execute train_models.py to create
static_ msl_classifier.keras.")
exit(1) # Exit if the model file is missing
self.sign_labels = {} # Dictionary to map sign indices to their labels
try:
with open("static_msl labels.txt", "r") as label file:
for line in label file: # Read each line from the label file
sign, idx = line.strip().split(":") # Split into sign name and index
self.sign_labels[int(idx)] = sign # Store the mapping
print(f"Successfully loaded {len(self.sign labels)} MSL sign labels.")
except FileNotFoundError:
print("Label file 'static_ msl labels.txt' missing. Run train_models.py to generate
it.")

exit(1) # Exit if the label file is missing

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-6

APPENDIX

self.translator = Translator() # Initialize the Google Translate object
self.target language = tk.StringVar(value="English") # Variable to store the selected
language
self.mp_hands = mp.solutions.hands # MediaPipe hands module for hand detection
self.hand detector = self.mp_hands.Hands(static image mode=False,
max_num_hands=2, min_detection_confidence=0.5) # Configure hand detector
self.mp drawing = mp.solutions.drawing_utils # Utility for drawing hand landmarks
self.is_camera_on = False # Flag to track camera status
self.confidence_threshold = tk.DoubleVar(value=0.80) # Variable for confidence
threshold (default 0.80)
self.sign_history =[] # List to store the history of recognized signs
self.last_sign = None # Store the last recognized sign
self.last sign time = time.time() # Timestamp of the last sign recognition
self.sign_buffer time = 1.5 # Buffer time (seconds) to prevent rapid sign changes
self.last valid time = time.time() # Timestamp of the last valid sign
self.current_translation = "None" # Current translated text
self.translation_cache = {} # Cache to store translated texts and avoid repeated
translations
self.log_file = "translation_session log.txt" # File to log translation sessions
if os.path.exists(self.log_file):
os.remove(self.log file) # Clear the log file if it exists
with open(self.log _file, "a", encoding="utf-8") as f:
f.write(f"Translation Session Log - Started: {time.strftime('%Y-%m-%d
%H:%M:%S %z")}\n") # Start log with timestamp
self.dictionary category = tk.StringVar(value="Select Category") # Variable for
dictionary category
self.dictionary sign = tk.StringVar(value="Select Sign") # Variable for selected sign
in dictionary
self.dictionary _image = None # Placeholder for dictionary image
self.dictionary canvas = None # Canvas for displaying dictionary images
self.dataset path = r"G:\sign_language project\archive\Dataset MSL" # Path to the
dataset
self.language code map = {
"English": "en",
"Malay": "ms",
"Chinese (Simplified)": "zh-cn",
"Tamil": "ta"
} # Mapping of language names to their ISO codes

Create main frame to hold all content with padding
main_frame = tk.Frame(root, bg="#EOF7FA")
main_frame.pack(expand=True, fill="both", padx=5, pady=>5)

Create side-by-side frames for sign translation and dictionary with borders
sign bg frame = tk.Frame(main_frame, bg="#FFFFFF", bd=3, relief="ridge")
sign _bg frame.grid(row=0, column=0, padx=5, pady=5, sticky="nsew")
sign_frame = tk.Frame(sign _bg frame, bg="#FFFFFF")
sign_frame.pack(expand=True, fill="both")

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

c-7

APPENDIX

dict bg frame = tk.Frame(main_frame, bg="#FFFFFF", bd=3, relief="ridge")
dict bg frame.grid(row=0, column=1, padx=5, pady=5, sticky="nsew")
dict_frame = tk.Frame(dict bg frame, bg="#FFFFFF")
dict_frame.pack(expand=True, fill="both")

Configure grid weights to allow resizing
root.grid_rowconfigure(0, weight=1)
root.grid_columnconfigure(0, weight=1)
main_frame.grid rowconfigure(0, weight=1)
main_frame.grid_columnconfigure(0, weight=1)
main_frame.grid _columnconfigure(1l, weight=1)
sign_bg frame.grid rowconfigure(0, weight=1)
sign_bg frame.grid columnconfigure(0, weight=1)
dict bg frame.grid rowconfigure(0, weight=1)
dict bg frame.grid columnconfigure(0, weight=1)

Sign Translation Window setup

control frame = tk.Frame(sign_frame, bg="#FFFFFF")

control frame.pack(fill="x", pady=5) # Horizontal fill with padding

language frame = tk.LabelFrame(control frame, text="Language", font=("Arial", 12,
"bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5)

language frame.pack(side=tk.LEFT, padx=5, fill="y") # Left-aligned with vertical
fill

supported languages = {"en": "English", "ms": "Malay", "zh-cn": "Chinese
(Simplified)", "ta": "Tamil"}

language options = ["English", "Malay", "Chinese (Simplified)", "Tamil"]

style = ttk.Style()

style.configure("Modern.TMenubutton", background="#B2DFDB",
foreground="#00796B", font=("Arial", 10))

ttk.OptionMenu(language frame, self.target language, "English", *language options,
style="Modern.TMenubutton", command=self.update language).pack()

threshold frame = tk.LabelFrame(control frame, text="Confidence Threshold",
font=("Arial", 12, "bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5)

threshold frame.pack(side=tk.LEFT, padx=>5, fill="y") # Left-aligned with vertical
fill

tk.Scale(threshold frame, from =0.5, to=1.0, resolution=0.01,
orient=tk. HORIZONTAL,

variable=self.confidence threshold, command=self.update threshold,

bg="#FFFFFF", troughcolor="#B2DFDB", highlightbackground="#00796B").pack()

button_frame = tk.Frame(sign_frame, bg="#FFFFFF")

button frame.pack(pady=5) # Vertical padding

self.open_cam_button = tk.Button(button frame, text="Open Cam", font=("Arial",
10, "bold"), bg="#00796B", fg="white", activebackground="#004D40",
command=self.open_camera, relief="flat", padx=10, pady=5)

self.open _cam_button.pack(side=tk.LEFT, padx=5) # Left-aligned with horizontal
padding

self.close _cam_button = tk.Button(button_frame, text="Close Cam", font=("Arial",
10, "bold"), bg="#D32F2F", fg="white", activebackground="#B71C1C",
command=self.close camera, state=tk. DISABLED, relief="flat", padx=10, pady=5)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-8

APPENDIX

self.close_cam_button.pack(side=tk. LEFT, padx=5) # Left-aligned with horizontal
padding

self.translation_label = tk.Label(sign_frame, text="Translation: None", font=("Arial",
16, "bold"), fg="#00796B", bg="#FFFFFF", pady=10)

self.translation_label.pack(pady=5) # Vertical padding

history frame = tk.Frame(sign_frame, bg="#FFFFFF")

history frame.pack(pady=5) # Vertical padding

self.history label = ttk.Label(history frame, text="History: ", font=("Arial", 12),
foreground="#455A64", background="#FFFFFF", wraplength=400) # Use 'background'
instead of '-bg'

self.history label.pack(side=tk.LEFT, padx=5) # Left-aligned with horizontal
padding

self.download_button = tk.Button(history frame, text="Download History",
font=("Arial", 10, "bold"), bg="#4CAF50", fg="white", activebackground="#388E3C",
command=self.download_history, state=tk. DISABLED, relief="flat", padx=10, pady=>5)

self.download button.pack(side=tk.RIGHT, padx=5) # Right-aligned with horizontal
padding to keep it visible

self.video_canvas = tk.Canvas(sign_frame, bg="#FFFFFF", highlightthickness=2,
highlightbackground="#00796B")

self.video_canvas.pack(expand=True, fill="both") # Expand to fill available space

Dictionary Window setup

dict_category frame = tk.LabelFrame(dict frame, text="Sign Dictionary",
font=("Arial", 12, "bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5)

dict_category frame.pack(pady=5, fill="x") # Horizontal fill with padding

ttk.OptionMenu(dict _category frame, self.dictionary category, "Select Category",
"Alphabet", "Numbers", "SingleWords", command=self.update sign_options,
style="Modern. TMenubutton").pack()

self.sign_options = {} # Dictionary to store sign categories and their options

self.sign_options["Alphabet"] = [chr(i) for i in range(ord('A"), ord('Z') + 1)] # List of
alphabet letters

self.sign_options["Numbers"] = [str(i) for i in range(11)] # List of numbers 0-10

self.sign_options["SingleWords"] = ["Drink", "Eat", "Help", "Me", "Sorry", "Wrong",
"You"] # List of single words

self.dict _sign frame = tk.LabelFrame(dict frame, text="Select Sign", font=("Arial",
12, "bold"), fg="#00796B", bg="#FFFFFF", padx=10, pady=5)

self.dict _sign_frame.pack(pady=>5, fill="x") # Horizontal fill with padding

self.sign_menu = ttk.OptionMenu(self.dict sign frame, self.dictionary sign, "Select
Sign", *self.sign_options["Alphabet"], style="Modern. TMenubutton")

self.sign_menu.pack()

self.dictionary_sign.trace('w', self.update dictionary image) # Trigger image update
on sign selection

self.target language.trace('w', self.update language) # Trigger language update

dict image frame = tk.Frame(dict frame, bg="#FFFFFF")

dict_image frame.pack(pady=5, fill="both", expand=True) # Expand to fill available
space

self.dictionary canvas = tk.Canvas(dict image frame, bg="#FFFFFF",
highlightthickness=2, highlightbackground="#00796B")

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-9

APPENDIX

self.dictionary canvas.pack(expand=True, fill="both") # Expand to fill available
space

defupdate threshold(self, value):
Update the confidence threshold dynamically when the slider is moved
self.confidence_threshold.set(float(value))

defupdate language(self, *args):
Update the application language and refresh related components
print(f"Language changed to: {self.target language.get()}")
if hasattr(self, 'sign_menu'):
category = self.dictionary category.get()
if category !="Select Category":
self.update sign options(category) # Update sign options for the selected
category
else:
self.dictionary category.set("Alphabet") # Default to Alphabet if no category
selected
self.update sign_options("Alphabet")
Clear translation cache to force re-translation with new language
self.translation_cache.clear()
Update history and current translation with the new language
if self.sign_history:
self.history label.config(text=f"History: {''join([self.translate text(sign,
'SingleWords' if sign.lower() in [s.lower() for s in self.sign_options['SingleWords']] else
'Alphabet') for sign in self.sign_history])}")
if self.last_sign:
category = "SingleWords" if self.last_sign.lower() in [s.lower() for s in
self.sign_options["SingleWords"]] else "Alphabet"
self.current_translation = self.translate text(self.last_sign, category)
self.translation_label.config(text=f"Translation: {self.current translation}")

def normalize landmarks(self, hand landmarks, handedness):
Normalize hand landmarks relative to the wrist position for consistent recognition
landmarks =[]
is_right hand = handedness.classification[0].label == "Right" # Check if it's the right
hand
wrist = hand landmarks.landmark[0] # Use wrist as reference point
wrist_X, wrist_y, wrist_z = wrist.x, wrist.y, wrist.z
for Im in hand_landmarks.landmark:
x =Im.x - wrist X # Normalize x relative to wrist
y =Im.y - wrist_y # Normalize y relative to wrist
z=Im.z - wrist_z # Normalize z relative to wrist
if is_right_hand:
x = -x # Mirror x for right hand to maintain consistency
z=12z%* 0.5 # Scale z for better depth perception
landmarks.extend([Xx, y, z]) # Add normalized coordinates
return landmarks

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-10

APPENDIX

def extract hand landmarks(self, frame):
Extract and draw hand landmarks from the video frame
frame rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
for MediaPipe
hand results = self.hand detector.process(frame_rgb) # Process frame to detect
hands
landmarks =[]
if hand results.multi_hand landmarks and hand_results.multi handedness:
for hand, handedness in zip(hand_results.multi hand landmarks,
hand_results.multi_handedness):
self. mp _drawing.draw_landmarks(frame, hand,
self. mp_hands. HAND CONNECTIONS) # Draw landmarks on frame
hand coords = self.normalize landmarks(hand, handedness) # Normalize
landmarks
landmarks.extend(hand coords) # Collect all landmark coordinates
if len(hand_results.multi hand landmarks) == 1:
landmarks.extend([0.0] * 63) # Pad with zeros if only one hand is detected
return np.array(landmarks) if landmarks else None, frame # Return landmarks and
annotated frame

def translate text(self, sign_text, category):
Translate the sign text based on the selected language
print(f"Translating '{sign_text}' with category '{category}' and language
'{self.target language.get()}")
if category !="SingleWords": # Only translate single words, not alphabet or numbers
return sign_text
if sign_text in self.translation cache: # Use cached translation if available
return self.translation_cache[sign_text]
try:
lang name = self.target language.get() # Get the current language
lang_code = self.language code map.get(lang name, "en") # Get the language
code
translated = self .translator.translate(sign_text, dest=lang_code) # Perform
translation
result = translated.text if translated else sign_text # Use translated text or original if
translation fails
self.translation_cache[sign_text] = result # Cache the result
print(f"Translated '{sign text}' to '{result}' in {lang name}")
return result
except Exception as e:
print(f"Translation error occurred: {e}")
return sign_text # Return original text on error

def log_translation(self, sign_text, confidence, translated text):
Log the translation details to a file with a timestamp
try:
timestamp = time.strftime("%Y-%m-%d %H:%M:%S %z")
with open(self.log_file, "a", encoding="utf-8") as f:
f.write(f" {timestamp} - Sign: {sign text}, Confidence: {confidence:.2f},

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-11

APPENDIX

Translated: {translated text}\n")
except Exception as e:
print(f"Error logging translation: {e}")

def download_history(self):
Allow the user to download the translation history as a text file
file path = filedialog.asksaveasfilename(defaultextension=".txt", filetypes=[("Text
files", "*.txt"), ("All files", "*.*")], initialfile="history.txt")
if file_path:
with open(file path, "w", encoding="utf-8") as f:
f.write("Translation History\n")
fowrite("----------------- \n")
for sign in self.sign_history:
translated = self.translate_text(sign, "SingleWords" if sign.lower() in
[s.lower() for s in self.sign_options["SingleWords"]] else "Alphabet")
f.write(f'Sign: {sign}, Translated: {translated}\n")
print(f"History saved successfully to {file path}")
self.reset_session() # Reset the session after download

def reset session(self):
Reset the session state to clear all data
self.sign_history = []
if os.path.exists(self.log_file):
os.remove(self.log file) # Clear the log file
with open(self.log file, "a", encoding="utf-8") as f:
f.write(f" Translation Session Log - Started: {time.strftime('%Y-%m-%d
%H:%M:%S %z")}\n") # Start new log
self.last_sign = None
self.last sign time = time.time()
self.last valid time = time.time()
self.current translation = "None"
self.translation_label.config(text="Translation: None")
self.history label.config(text="History: ")
self.download_button.config(state=tk. DISABLED)

def open_camera(self):
Start the camera feed for real-time sign recognition
if not self.is_camera on:
self.video_capture = cv2.VideoCapture(0) # Open the default camera (index 0)
if not self.video_capture.isOpened():
print("Failed to open webcam.")
return
self.is_camera on = True
self.open_cam_button.config(state=tk. DISABLED) # Disable Open Cam button
self.close_cam_button.config(state=tk. NORMAL) # Enable Close Cam button
self.update video feed() # Start the video feed update loop

def close camera(self):
Stop the camera feed and update the Ul

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-12

APPENDIX

if self.is_camera_on:
self.is_camera_on = False
if self.video_capture:
self.video capture.release() # Release the camera resource
self.open_cam_button.config(state=tk. NORMAL) # Re-enable Open Cam button
self.close_cam_button.config(state=tk. DISABLED) # Disable Close Cam button
self.translation_label.config(text="Translation: None")
Update history label with translated text based on current language
if self.sign_history:
self.history label.config(text=f"History: {' '.join([self.translate text(sign,
'SingleWords' if sign.lower() in [s.lower() for s in self.sign_options['SingleWords']] else
'Alphabet') for sign in self.sign_history])}")
else:
self.history label.config(text="History: ")
self.download button.config(state=tk. NORMAL) # Enable Download History
button

defupdate sign options(self, category):
Update the sign selection options in the dictionary based on the chosen category
if hasattr(self, 'sign_menu'):
self.sign_menu.destroy() # Remove the old menu

self.sign_menu = ttk.OptionMenu(self.dict_sign frame, self.dictionary sign, "Select
Sign", *[], style="Modern.TMenubutton")

self.sign_menu.pack()

menu = self.sign_menu["menu"]

menu.delete(0, "end") # Clear existing menu items

signs = self.sign_options[category] # Get signs for the selected category

self.translation_cache.clear() # Clear cache for new translations

print(f"Translating for language: {self.target language.get()}")

translated signs = [self.translate text(sign, category) for sign in signs] # Translate all
signs

print(f"Setting menu options: {translated signs}")

for translated sign, original sign in zip(translated signs, signs):

menu.add_command(label=translated sign, command=lambda x=original sign:

self.dictionary_sign.set(x)) # Add translated options

self.dictionary_sign.set("Select Sign") # Reset to default selection

self.update dictionary image() # Update the displayed image

defupdate dictionary image(self, *args):
Update the dictionary image based on the selected sign
sign = self.dictionary_sign.get()
if sign !="Select Sign" and self.dictionary canvas:
category = self.dictionary category.get()
if category in self.sign_options:
image path = self.find first image(category, sign) # Find the first image for the
sign
print(f'Searching for image at: {image path}")
if image path and os.path.exists(image path):
img = cv2.imread(image path) # Read the image

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-13

APPENDIX

Get the current canvas dimensions to fit the image

canvas_width = self.dictionary canvas.winfo width()

canvas_height = self.dictionary canvas.winfo height()

Resize the image proportionally to fit within the canvas while maintaining
aspect ratio

aspect_ratio = img.shape[1] / img.shape[0] # Width / Height

if canvas_width / aspect ratio <= canvas_height:

new_width = canvas_width

new_height = int(canvas_width / aspect ratio)
else:

new_height = canvas_height

new_width = int(canvas_height * aspect ratio)
img = cv2.resize(img, (new_width, new_height))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB
self.dictionary _image = ImageTk.PhotoIlmage(

Image.fromarray(img)) # Convert to Tkinter-compatible image
self.dictionary canvas.delete("all") # Clear previous content
self.dictionary canvas.create image(canvas width // 2, new_height // 2,

image=self.dictionary image) # Center the image
translated sign = self.translate text(sign, category) # Translate the sign
Add text label above the image, centered, with a small offset to avoid
overlap
self.dictionary canvas.create text(canvas_width // 2, 20, text=f"Sign:
{translated sign}",
font=("Arial", 12, "bold"), fill="#00796B")
else:
self.dictionary canvas.delete("all") # Clear previous content
self.dictionary canvas.create text(canvas width // 2, canvas_height // 2,
text="Image not found",
font=("Arial", 14),
fill="#D32F2F") # Display error if image not found
print(f"No image found at: {image path}")

def find first image(self, category, sign):
Find the first available image for the selected sign in the dataset
base path = self.dataset path
if category == "Alphabet":
search_path = os.path.join(base path, "Alphabets", sign.upper(), "*") # Path for
alphabet signs
elif category == "Numbers":
search_path = os.path.join(base path, "Number", sign, "*") # Path for numbers
elif category == "SingleWords":
search_path = os.path.join(base path, "SingleWords", sign, "*") # Path for single
words
else:
return None
images = (glob.glob(search_path + ".jpg") +
glob.glob(search_path + " jpeg") +
glob.glob(search path + ".png") +

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-14

APPENDIX

glob.glob(search_path + ".JPG") +
glob.glob(search_path + ".JPEG") +
glob.glob(search path +".PNG")) # Search for image files
return images[0] if images else None # Return the first found image path or None

defupdate video feed(self):
Continuously update the video feed for real-time sign recognition
if self.is_camera_on:
try:
ret, frame = self.video capture.read() # Read a frame from the camera
if ret:
frame = cv2.flip(frame, 1) # Flip the frame horizontally for a mirror effect
landmarks, annotated frame = self.extract hand landmarks(frame) # Extract
and annotate hand landmarks
translated _text = self.current translation # Current translation to display
sign_text = "None" # Default sign text
confidence = 0.0 # Default confidence score
if landmarks is not None:
input_data = landmarks.reshape(1, -1) # Reshape landmarks for model

prediction

prediction = self.sign_model.predict(input_data, verbose=0) # Predict the
sign

sign_idx = np.argmax(prediction, axis=1)[0] # Get the index of the highest
probability

confidence = prediction[0][sign_idx] # Get the confidence score

current_sign = self.sign_labels.get(sign idx, "Unknown") # Map index to
sign

print(f"Debug - Predicted Index: {sign idx}, Sign: {current sign}")
current time = time.time() # Current timestamp
if confidence > self.confidence threshold.get(): # Check if confidence is
above threshold
print(f"Debug - Condition Check: last sign={self.last sign},
current_sign={current_sign}, time_diff={current time - self.last_sign time},
reset={current_time - self.last valid time}")
if (self.last_sign != current_sign and
current_time - self.last_sign_time > self.sign_buffer time): # New
sign detected
sign_text = current_sign
category = "SingleWords" if current sign.lower() in [s.lower() for s in
self.sign_options["SingleWords"]] else "Alphabet"
print(f"Assigned category: {category} for sign: {current sign}")
translated text = self.translate text(current sign, category) # Translate
the sign
self.current translation = translated_text
self.sign_history.append(current sign) # Add to history
self.log_translation(current sign, confidence, translated text) # Log
the translation
self.last_sign = current_sign
self.last sign time = current time

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-15

APPENDIX

self.last valid time = current_time
else:
if confidence > 0.90: # High confidence update
self.last valid time = current_time
category = "SingleWords" if current sign.lower() in [s.lower() for s in
self.sign_options["SingleWords"]] else "Alphabet"
print(f"Assigned category: {category} for sign: {current sign}")
translated text = self.translate text(current sign, category) # Re-
translate
self.current translation = translated_text
if confidence > 0.80:
cv2.rectangle(annotated frame, (10, 10), (150, 60), (0, 255, 0), 2) #
Green box for success
cv2.putText(annotated frame, "Success", (20, 40),
cv2.FONT HERSHEY SIMPLEX, 1, (0, 255, 0), 2)
else:
cv2.rectangle(annotated frame, (10, 10), (150, 60), (0, 0, 255),2) #
Red box for low confidence
cv2.putText(annotated frame, "Low Confidence", (20, 40),
cv2.FONT HERSHEY SIMPLEX, 0.5, (0, 0, 255), 2)
else:
if current_time - self.last valid time > 5.0: # Reset if no valid sign for 5
seconds
self.last_sign = None
self.last sign_time = current_time
self.current translation = "None"
print(f"Recognized: {sign_ text} (Confidence: {confidence:.2f}) -> Translated:
{translated text}")
self.translation_label.config(text=f"Translation: {translated text}")
self.history label.config(text=f"History: {' '.join([self.translate text(sign,
'SingleWords' if sign.lower() in [s.lower() for s in self.sign_options['SingleWords']] else
'Alphabet') for sign in self.sign_history])}")
frame rgb = cv2.cvtColor(annotated frame, cv2.COLOR_BGR2RGB) #
Convert to RGB for display
photo = Image.fromarray(frame rgb)
canvas_width = self.video canvas.winfo width() # Get current canvas width
canvas_height = self.video canvas.winfo height() # Get current canvas height
photo = photo.resize((canvas_width, canvas_height),
Image.Resampling. LANCZOS) # Resize image to fit canvas
tk_photo = ImageTk.PhotoIlmage(photo)
self.video_canvas.create_image(0, 0, anchor=tk. NW, image=tk photo) #
Display the frame
self.video canvas.image =tk photo # Keep a reference to prevent garbage
collection
self.root.after(30, self.update video feed) # Schedule the next frame update
(approx. 30ms)
except Exception as e:
print(f"Error in video feed update: {e}")
self.close camera() # Close camera on error

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-16

APPENDIX

def del (self):
Clean up resources when the application closes
if self.video_capture:
self.video_capture.release() # Release the camera
self.hand_detector.close() # Close the hand detector
print("All resources have been safely released.")
if name ==" main ":
root = tk.Tk() # Create the main Tkinter window
app = MSLSignTranslatorApp(root) # Instantiate the application
root.mainloop() # Start the event loop

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-17

POSTER

POSTER

> Faculty of Information and Communication Technology
UT.R (FICT)

UNIVERSITI TUNKU ABDUL RAHMAN

AUTOMATED SIGN LANGUAGE TRANSLATION USING DEEP
LEARNING

Wong Jia Kang, Dr Muhammad Husaini Bin Nadri

INTRODUCTION METHODOLOGY

¢ Dataset Processing: Processed 7445 MSL images

* Barrier between deaf and hearing communities with MediaPipe for normalization.
due to limited MSL use. * Model Training: Trained Keras model (25 epochs,
¢ Goal: Real-time MSL gesture-to-text with >90% 97.58% accuracy).
accu‘racy, incLudin:g Dictionary Pa‘nel. Support « Real-Time App: Built app with Tkinter GUI,
English, Malay, Chinese, and Tamil. webcam, Translate API, and Dictionary Panel for

sign lookup by category and language.

¢ Model: 97.58% validation accuracy on 1862 m

les.
samp ?S . * High accuracy for common signs (e.g., DRINK),
* Real-Time App: >90% accuracy on 44 signs (e.g., lower for sparse (e.g., G)
(? " DRINK®).) ¢ Resolved dataset and API issues with curation
* Dictionary Panel: 100ms load time, translates and retries
f:lrg‘?nsetsc;silat:;::::)e d languages (English, Malay, ¢ Dictionary Panel boosts usability, though speed
! ' varies with data.

Sign Language Translation
Dictionary Panel

Translation: DRINK Translation: Minum
ign: sign: A LR

Translation:

* Achieved 95-97% accuracy with Dictionary Panel
support.

* Future: Add dynamic signs and expand panel
features.

o2
M

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ng il 3]
o]~ MediaPipe TensorFlow 0
e

77

	COPYRIGHT STATEMENT
	APPENDIX A

