SMART STUDENT TIMETABLE PLANNER
BY
WONG XIN TONG

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Wong Xin Tong. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku
Abdul Rahman (UTAR). This Final Year Project report represents the work of the
author, except where due acknowledgment has been made in the text. No part of this
Final Year Project report may be reproduced, stored, or transmitted in any form or
by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my FYP supervisor, Dr Tan Joi San, and my
FYP moderator, Ts Dr Ku Chin Soon, for their invaluable guidance, constructive feedback, and
continuous support throughout the development of Smart Student Timetable Planner. Their
expertise and encouragement have been instrumental in the successful completion of this
project. I would also like to extend my gratitude to the lecturers and staff of UTAR for
providing the necessary resources and facilities that greatly assisted my work. Lastly, I am
sincerely thankful to my family and friends for their unwavering support, understanding, and

motivation during the FYP.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Timetable planning is a crucial yet challenging task for university students, as traditional
manual methods are often time-consuming, prone to errors, and lack collaborative support.
Students frequently face difficulties in avoiding timetable clashes, managing personal
preferences, and coordinating with peers, which can lead to inefficiencies and added stress. To
address these issues, this project introduces the Smart Student Timetable Planner, a system
developed to streamline academic scheduling by providing both automated and manual
timetable management options. The objectives of this project are to generate conflict-free and
customizable schedules, enable real-time collaboration among students, and offer
administrative tools for maintaining course information. The project scope encompasses
features such as secure login, course selection with conflict detection, timetable history,
comparison between auto-generated and manual schedules, collaboration modules, and export
functionality. To achieve these objectives, the system adopts the Rapid Application
Development (RAD) methodology, ensuring iterative design, prototyping, and user feedback
integration throughout the process. The system is implemented using Node.js with Express for
server-side development, HTML, CSS, and JavaScript for the frontend, and Socket.IO for real-
time collaboration. Course data is managed in CSV format, parsed into JSON for fast
processing, while sessionStorage and localStorage handle user data within active sessions. A
Genetic Algorithm forms the core scheduling engine, generating optimized timetables that
respect both hard constraints, such as avoiding clashes, and soft constraints, such as personal
preferences.The final output of this project is a functional web-based timetable planner that
successfully enhances scheduling efficiency, reduces the likelihood of errors, and improves the
overall academic planning experience. With its flexible design, collaborative features, and
administrative integration, the Smart Student Timetable Planner demonstrates significant

potential as a scalable solution for modern university scheduling needs.

Area of Study (Minimum 1 and Maximum 2): Genetic Algorithm, Web-based application

Keywords (Minimum 5 and Maximum 10): Smart Timetable Planner, Academic Scheduling,
Real-Time Collaboration, Conflict-Free Timetable, Student-Centered System, Automated

Scheduling.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE

COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Problem Statement and Motivation
1.2 Research Objectives
1.3 Project Scope and Direction
1.4 Contributions

1.5 Report Organization

CHAPTER 2 LITERATURE REVIEW
2.1 Similar Projects

2.1.1 Personal Course Timetabling for University Students based on
Genetic Algorithm

2.1.2 Web-Based Personalized University Timetable for U'TM
Students Using Genetic Algorithm

2.1.3 Heuristic Algorithm for a Personalized Student Timetable

2.2 Existing Systems
2.2.1 University Timetabling System (UniTime)
2.2.2 Timetable Arranging Problem (TTAP)
2.2.3 TimeEdit

2.3 Summary

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH
3.1 Methodology
3.1.1 Requirements Planning

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii
iii

iv

viii
ix

xi

DN DN W W N =

10
12
12
15
19
24

26
26
26

3.1.2

3.1.3 Construction and Feedback Phase
3.1.4 Finalize Product and Implementation Phase
3.1.5 Maintenance and Evaluation
3.2 System Design Diagram
3.2.1 System Design Flowchart
3.2.2 Use Case Diagram
3.2.3 Use Case Description
3.3 Timeline
3.3.1 Overview
3.3.2 Gantt Chart
3.4 Summary

User Design

CHAPTER 4 SYSTEM DESIGN

4.1 Program Development

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15

Server-side Development

Login Function Development

Manual Scheduling Development
Auto Scheduling Development
Genetic Algorithm Development
Timetable Comparison Development
PDF Parser Development

Real-time Collaborative Development
View Timetable History Development
User Feedback Development

Upload Course Development

Upload Course History Development
Preview Courses Development

View Created Session Development

Admin Feedback Development

4.2 Summary

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vi

27
27
28
28
29
29
30
31
49
49
50
50

51
51
51
53
56
61
64
66
69
70
79
81
83
85
86
87
88
90

CHAPTER 5 SYSTEM IMPLEMENTATION
5.1 Hardware Setup
5.2 Software Setup
5.3 User Interface
5.3.1 Login Page
5.3.2 Main Page
5.3.3 Manual Scheduling Page
5.3.4 Auto Scheduling Page
5.3.5 Timetable Comparison Page
5.3.6 Merging Page
5.3.7 Timetable History Page
5.3.8 User Feedback Page
5.3.9 Admin Dashboard Page
5.3.10 Admin Upload Course Page
5.3.11 Admin Upload Course Page
5.3.12 Preview Courses Page
5.3.13 View Created Session Page
5.3.14 Admin Feedback Page
5.4 Implementation Issues and Challenges

5.5 Summary

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1 Experiment on Genetic Algorithm
6.1.1 Overview
6.1.2 Code Structure and Functionality
6.1.3 Genetic Algorithm Design
6.1.4 Experimental Results and Graph Analysis
6.1.5 Interpretation of GA Parameters

6.2 Comparison of Real-World Timetable and Generated Timetable
6.2.1 Overview

6.2.2 Test Environment and Methodology

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vii

92
92
92
62
93
93
94
97
99
101
104
105
106
107
108
109
110
111
113
114

115

115
115
115
116
118
120

121
121
121

6.2.3 Test Data
6.2.4 Testing Results

6.2.5 Overview

CHAPTER 7 CONCLUSION AND RECOMMENDATION
7.1 Conclusion

7.2 Recommendation

REFERENCES
POSTER

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

viii

122
124
126

126
126
127

129
130

Figure Number

Figure 2.2.1.1

Figure 2.2.1.2
Figure 2.2.1.3
Figure 2.2.1.4
Figure 2.2.2.1
Figure 2.2.2.2

Figure 2.2.2.3
Figure 2.2.2.4
Figure 2.2.2.5
Figure 2.2.3.1
Figure 2.2.3.2
Figure 2.2.3.3
Figure 2.2.3.4
Figure 2.2.3.5
Figure 2.2.3.6
Figure 3.1.1

Figure 3.2.1

Figure 3.2.2

Figure 3.3.2.1
Figure 4.1.1.1
Figure 4.1.1.2
Figure 4.1.1.3
Figure 4.1.2.1
Figure 4.1.2.2
Figure 4.1.2.3
Figure 4.1.3.1

LIST OF FIGURES

Title

A list of different identity for user to choose from which

interface they wish to refer.
Sample demo of student schedule
Lookup Classes Page

Lookup Examination Page

Login page for students

Subjects are listed for the students to choose from, and

selected subjects will be shown after choosing.
Set the time constraints

Choose preferable timeslots

Choose preferable combination timetable
Users must search out the organization

Login page for students, staff and administrators
Welcome page of the timetabling system
Search module page

Student timetable

Details to show in the timetable

RAD Methodology

System Overview Design Flowchart

Use Case Diagram of Smart Student Timetable Planner

Gantt Chart of the Project Timeline
package.json

server.js

Server.js

Login.html

Login.html

Login and Logout endpoint in server.js

Loading courses from API

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

13

14
14
15
17
17

18
18
19
21
21
22
22
23
23
27
30
31
52
54
55
55
57
57
58
59

Figure 4.1.3.2
Figure 4.1.3.4
Figure 4.1.3.4
Figure 4.1.3.5
Figure 4.1.3.6
Figure 4.1.3.7
Figure 4.1.4.1
Figure 4.1.4.2
Figure 4.1.4.3
Figure 4.1.4.4
Figure 4.1.4.5
Figure 4.1.5.1

Figure 4.1.5.2
Figure 4.1.5.3
Figure 4.1.6.1
Figure 4.1.6.2
Figure 4.1.6.3
Figure 4.1.6.4
Figure 4.1.7.1
Figure 4.1.7.2
Figure 4.1.8.1
Figure 4.1.8.2
Figure 4.1.8.3
Figure 4.1.8.4
Figure 4.1.8.5
Figure 4.1.8.6
Figure 4.1.8.7
Figure 4.1.8.8
Figure 4.1.8.9

Figure 4.1.8.10

Figure 4.1.8.11

Figure 4.1.8.12

Update Trimester function

Render Sessions function

Check Clashes Function

Delete Session and View Timetable Function
Export Timetable

Save Timetable to History

Update Trimester and Fetch Courses from API
Render Course and Render Time Constraints function
Get Selected Sessions Function

Export Timetable

Save Timetable to History

Generate Initial Population and Generate Random
Schedule function

Evolve Population and Crossover function
Mutate function

Normalize Getters Function

Render Manual Timetable

Render Auto Generated Timetable

Update Pagination and Load Comparison functions
PDF Parser in parser.py

PDF Parser in parser.py

Architecture and Main Data Structures
Architecture and Main Data Structures
Architecture and Main Data Structures
Architecture and Main Data Structures
Timetable rendering & interaction model.
Timetable rendering & interaction model.
Timetable rendering & interaction model.
Finding and highlighting available slots
Finding and highlighting available slots
Submission and synthesis flow.

Previews, selection Ul and mini rendering.

Save to History.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59
60
61
62
63
64
65
66
66
67
68
69

70
70
72
72
72
73
74
74
76
76
77
77
78
79
79
80
81
82
83
83

Figure 4.1.9.1
Figure 4.1.9.2
Figure 4.1.9.3
Figure 4.1.9.4
Figure 4.1.10.1
Figure 4.1.10.2
Figure 4.1.10.3
Figure 4.1.11.1
Figure 4.1.11.2
Figure 4.1.12.1
Figure 4.1.13.1
Figure 4.1.13.2
Figure 4.1.14.1
Figure 4.1.14.2
Figure 4.1.15.1
Figure 4.1.15.2
Figure 4.1.15.3
Figure 5.3.1.1
Figure 5.3.2.1
Figure 5.3.3.1
Figure 5.3.3.2
Figure 5.3.3.3
Figure 5.3.3.4
Figure 5.3.4.1
Figure 5.3.4.2
Figure 5.3.4.3

Figure 5.3.4.4
Figure 5.3.5.1
Figure 5.3.5.2
Figure 5.3.6.1
Figure 5.3.6.2
Figure 5.3.6.3

Load History function

Toggle Collapse function

View Timetable function

View Timetable function

Alert Float Box

Get Request

Real-Time Updates

upload.html

upload.html

history.html

preview.html

preview.html

admin-session.html

admin-session.html

feedback-admin.html

feedback-admin.html

feedback-admin.html

Login Page

Main Page

Select Intake, Trimester and Course List Available
Session Available for the Selected Course
Schedule for Selected Course

Timetable View, Export and Save Timetable Button
Select Intake, Trimester, and Course Available
Select Time Constraints

Generate Schedule, Export and Save buttons and
Generated Timetables

Generated Timetables

Timetable Comparison Page

Timetable Comparison Page

Join Collaborative Session

Create Collaborative Session

Preview Selected Timetable

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xi

84
85
86
86
87
88
89
90
90
91
92
92
94
94
96
96
97
100
101
103
103
104
104
105
106
106

107
108
108
110
111
111

Figure 5.3.6.4
Figure 5.3.6.5
Figure 5.3.7.1
Figure 5.3.8.1
Figure 5.3.9.1
Figure 5.3.10.1
Figure 5.3.11.1
Figure 5.3.12.1
Figure 5.3.12.2
Figure 5.3.13.1
Figure 5.3.14.1
Figure 5.3.14.2
Figure 6.1.2.1
Figure 6.1.2.2
Figure 6.1.3.1
Figure 6.1.3.2
Figure 6.1.3.3
Figure 6.1.3.4
Figure 6.1.3.5
Figure 6.1.4.1
Figure 6.1.4.2
Figure 6.2.3.1

Figure 6.2.3.2

Figure 6.2.3.3

Figure 6.2.3.2

Preview Merged Timetable

Session Chat

Timetable History Page

User Feedback Page

Admin Dashboard Page

Admin Upload Course Page

Upload History Page

Preview Courses Page

Pagination Button in Preview Courses Page

View Created Sessions Page

Pending and Read section in Admin Feedback Page
Replied section in Admin Feedback Page
Experiment Settings and Filter Trimester

Fitness function for constraints

Tournament Selection function

Crossover function

Mutate function

Evolve function

GA with stopping criteria

Graph of Best Fitness vs Generation

Graph of Fitness vs Generation

Wong Xin Tong’s real-world timetable from official
university portal

Wong Xin Tong’s generated timetable from Smart
Student Timetable Planner

Elaine’s real-world timetable from official university
portal

Elaine’s generated timetable from Smart Student

Timetable Planner

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

134

Xii

112
112
113
114
115
116
117
118
119
120
121
121
125
126
126
126
126
127
127
128
129
132

133

133

Table Number

Table 2.3.1

Table 3.2.3.1
Table 3.2.3.2
Table 3.2.3.3
Table 3.2.3.4
Table 3.2.3.5
Table 3.2.3.6
Table 3.2.3.7
Table 3.2.3.8
Table 3.2.3.9
Table 3.2.3.10
Table 3.2.3.11
Table 3.2.3.12
Table 3.2.3.13
Table 3.2.3.14
Table 3.2.3.15
Table 3.2.3.16
Table 3.2.3.17
Table 3.2.3.18
Table 3.2.3.19
Table 3.2.3.20
Table 3.2.3.21
Table 3.2.3.22
Table 3.2.3.23
Table 3.2.3.24
Table 5.1.1
Table 5.2.1
Table 6.1.5.1

LIST OF TABLES

Title

Comparison of Strengths and Weaknesses of Existing

Systems
Login Use Case Description

Logout Use Case Description

Select Intake Use Case Description

Select Trimester Use Case Description

Add Course Use Case Description

Delete Course Use Case Description

View Timetable Use Case Description

Export Timetable Use Case Description

Save Timetable Use Case Description

Select Time Constraints Use Case Description
Generate Schedules Use Case Description
Compare Timetable Use Case Description

Join Collaborative Session Use Case Description
Create Collaborative Session Use Case Description
Real-Time Collaboration Use Case Description
Select Timetable Use Case Description

Session Chat Use Case Description

View History Use Case Description

Submit Feedback Use Case Description
Upload Course Use Case Description

View Upload History Use Case Description
Preview Courses Use Case Description

View Created Sessions Use Case Description
Reply to Feedback Use Case Description
Hardware Components and Requirements
Software Components and Requirements

Summary of the Experimental Results

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiii

Page

26

32
32
33
33
34
35
36
36
37
38
39
39
40
41
42
43
44
45
45
46
47
48
49
50
99
99
130

Table 6.2.4.1 Wong Xin Tong’s Comparison Timetable’s Results 134
Table 6.2.4.2 Elaine’s Comparison Timetable’s Results 135

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiv

GAs
UCT
SHO

SA
UniTime
TTAP
GUI

LIST OF ABBREVIATIONS

Genetic Algorithms

University Course Timetable
Spotted Hyena Optimizer
Simulated Annealing
University Timetabling System
Timetable Arranging Program
Graphic User Interface

Rapid Application Development

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XV

Chapter 1

Introduction

In this chapter, the project presents the background and motivation of the work, the
contributions to the field, and the outline of the project. This project aims to develop an
effective Smart Student Timetable Planner that enables students to arrange their own personal
timetables according to the courses and timeslots offered by the university. Unlike a static
timetable, this planner allows students to select and organize their classes in a way that best fits
their preferences and constraints, while still adhering to the university’s assigned classrooms

and available timeslots.

The Smart Student Timetable Planner is designed to support students in building their academic
schedules by ensuring that selected courses do not overlap in time and that all required sessions
are included. The main objective is to provide students with a clear and manageable timetable
that reflects their chosen courses without conflicts, helping them attend all necessary lectures,
tutorials, and practicals within the semester. This approach shifts the focus to the student’s
individual planning process, where convenience and flexibility play an important role in

timetable management.

Timetable planning is an essential part of a student’s academic journey, as every semester
presents different course offerings and unique scheduling constraints. Traditionally, students
rely on manual methods, such as checking course lists and cross-referencing timeslots, which
can be time-consuming and prone to mistakes. By introducing a smart planner, the process
becomes more efficient, reducing the likelihood of clashes and saving students from the stress

of repeated rescheduling.

The project highlights the importance of a Smart Student Timetable Planner as a personal
academic management tool. By leveraging automated features and conflict-checking
mechanisms, the planner enhances the scheduling process and helps students’ overall
university experience by ensuring clarity, convenience, and grater satisfaction in managing

their study schedules.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.1 Problem Statement and Motivation

I Difficulty in Course Selection and Scheduling
Students often face significant challenges in selecting and scheduling their courses for
a new academic term. The process of manually arranging a timetable that fits all
required courses, elective options, and personal commitments can be overwhelming.
Students struggle to avoid conflicts, such as overlapping class times or courses
scheduled back-to-back in distant locations, which can make it impossible to attend all
desired classes. These difficulties can lead to suboptimal course selections, delays in
academic progress, and increased stress as students try to balance their academic and

personal lives.

IT Lack of Real-Time Collaboration in Schedule Planning
Students often face difficulties when trying to collaborate with peers, advisors, or
faculty members in real-time while planning their schedules. The current system
typically does not support real-time updates and collaborative decision-making, which
are essential for group projects, study groups, or coordinated course selections. This
lack of collaboration tools can lead to miscommunication, scheduling conflicts, and
missed opportunities for joint learning experiences. As a result, students may find it
challenging to align their schedules with those of their peers, hindering group work and

reducing the overall effectiveness of their academic planning.

The motivation behind addressing the lack of real-time collaboration in schedule planning and
the difficulties in course selection stems from the need to improve students’ academic planning
efficiency and effectiveness. Traditional scheduling systems often fall short in providing
dynamic and collaborative tools, leading to scheduling conflicts, inefficiencies, and academic
delays. By developing a system that supports real-time collaboration, students will be able to
coordinate schedules with peers, advisors, and faculty, reducing conflicts and enhancing
collaborative learning. Additionally, the introduction of a Smart Student Timetable Planner
will offer personalized recommendations and flexible scheduling options, helping students
avoid overlapping classes and manage their workloads more effectively. Integration with
existing university systems will ensure consistency and streamline academic management,
ultimately contributing to a more user-centered, efficient, and stress-free scheduling experience

for students.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Research Objectives

e To develop a tool that streamlines course selection and resolves scheduling
conflicts for students.
The system will incorporate features for automatic conflict detection and resolution,
identifying issues such as overlapping class times or class scheduled in distant locations
and providing solutions to avoid these conflicts. It will offer dynamic scheduling
options, allowing students to easily modify their course selections and adjust their
schedules as needed. A visual timetable representation will be included in present
schedules intuitively. These enhancements aim to reduce scheduling challenges, lower

stress levels, and improve overall academic efficiency.

e To facilitate real-time collaboration and communication among users.
Real-time collaboration features will allow multiple users to work on the timetable
concurrently, with changes being instantly visible to all collaborators. This will enhance
teamwork and ensure that all modifications are synchronized. Real-time
communication will play a crucial role in keeping all users in the same session updated
about schedule changes, new bookings, or cancellations, thereby reducing

miscommunications and enhancing overall efficiency.

1.3 Project Scope and Direction

The project aims to develop a comprehensive Smart Student Timetable Planner with the

following key aspects:

I. Login and Logout Module
This module provides secure access to the timetable system, where students log in using
their credentials. It manages authentication, ensuring that only authorized users can
access the platform. Personalized features such as saved timetables, course preferences,

and collaboration sessions are tied to the student’s profile.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

II.

I11.

IVv.

VI

Course Selection and Scheduling Module
Students can select their intake, trimester, and courses for the semester. The system
assists in building schedules by:

e Automatically detecting and preventing class conflicts.

e Allowing students to set personal time constraints.

e Enabling the selection of preferred class groups and timeslots when multiple

options are available.

View Timetable Module
This module enables students to view their finalized timetable after scheduling. The
timetable will show the details of the courses such as the course code, course name,

days, time, room allocated and preferred groups according to students’ preferences.

Real-Time Collaboration Module
This feature enables students to collaborate with peers while planning schedules. It
supports:
e Real-time updates when timetable changes occur.
e Shared editing of timetable slots in a collaborative workspace.
e Built-in chat for discussion and decision-making.
This module is particularly useful for group project planning or ensuring friends share

compatible schedules.

Save and History Module
Students can save their timetables into a history log for later reference. This allows
them to revisit previous scheduling attempts, compare alternatives, and restore

timetables without redoing the process.

Comparison Module
This module enables students to compare manually created timetables with
automatically generated ones. By presenting both side-by-side, students can evaluate

the efficiency, conflict resolution, and flexibility of different scheduling approaches.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

VII. Export and Feedback Module
The system allows students to export their finalized timetables in IMG or CSV formats
for offline access and sharing. In addition, a feedback feature is included where users
can provide comments and suggestions. This input supports continuous system

improvement and bug fixing.

VIII. Administrative Module
Administrators are responsible for maintaining up-to-date course information each
semester. They can:
e Upload new course schedules and classroom allocations.
e Update the timeslot or make corrections when changes occur.
e Review student feedback to enhance system reliability and address issues

promptly.

14 Contributions

The Smart Student Timetable Planner contributes by developing an intelligent platform that
assists students in generating valid and personalized course schedules based on selected courses
and individual time constraints. By integrating a Genetic Algorithm, the system optimizes the
generation timetable to avoid clashes and maximize scheduling flexibility. It enhances the
course registration experience through a user-friendly interface, real-time data handling, and
storage using sessionStorage. Additionally, it offers both manual and automatic scheduling
modes to suit different user preferences. This project also establishes a strong foundation for
future enhancements such as exporting timetable, improving students’ academic planning

efficiency.

1.5 Report Organization

This report is organized into seven chapters. Chapter 1 provides an introduction and
background to the Smart Student Timetable Planner project. Chapter 2 presents a literature
review, discussing similar projects and existing systems to highlight their strengths and
limitations. Chapter 3 describes the system methodology and approaches, explaining the
methodology used and presenting the system design through activity diagrams, flowcharts, use-
case diagrams, and detailed use-case descriptions. Chapter 4 explains the system design in

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

greater detail, including program development aspects. Chapter 5 focuses on system
implementation, covering the hardware and software setup, user interface design with
screenshots, and the issues and challenges encountered during implementation. Chapter 6
presents system evaluation and discussion, including the experimental results of the GA and a
comparison between the generated timetables and the real-world timetables. Finally, Chapter
7 concludes the report by summarizing the project achievements and outlining directions for

future work.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

In this chapter, similar projects and existing systems related to Smart Student Timetable
Planner are reviewed. The reviews aim to provide an overview of the objectives behind these
systems, the development processes involved, and to identify their achievements, limitations,
and suggestions for future enhancements. Additionally, existing solutions are analyzed,
summarizing their strengths and weaknesses for comparative purposes, thereby highlighting

opportunities for improvement and innovation in the field of course timetabling.

2.1 Similar Projects
2.1.1 Personal Course Timetabling for University Students based on Genetic

Algorithm
In this paper, the author presents a solution to the Personal University Course Timetabling
(PUCT) problem, which is framed as an individual-oriented variation of the more widely
studied course timetable problem. Unlike institutional scheduling, which must consider room
capacities, lecturer availability, and global optimization across an entire university, PUCT
focuses on generating a feasible and optimized timetable for a single student. The system
accepts as input the official university course catalog, where times and course offerings are
predetermined, and produces personalized timetables that satisfy both academic requirements
and student preferences. The core objective is to provide students with a smart timetable
planner that relieves them of the manual burden of arranging courses and ensures that their
chosen schedule is both conflict-free and academically sound. By applying a genetic algorithm,
the author demonstrates how evolutionary computations can effectively search the large
solution space of possible course combinations, yielding timetables that align with students’

curricular progression and workload preferences.

The system is designed around a Genetic Algorithm (GA), chosen for its suitability in solving
combinatorial optimization problems such as timetabling. Each candidate timetable is encoded
as a binary chromosome, where each gene corresponds to a course offering from the catalog.

A gene value of 1 signifies inclusion of the course in the student’s timetable, while 0 indicates

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

exclusion. This representation is straightforward yet effective, as the catalog already specifies
the day and time of each course, allowing the system to directly detect conflicts between
selected courses. The GA employs classical operators including tournament selection, n-point
crossover, bit-flip mutation, and elitism to evolve populations of candidate solutions. The
fitness function evaluates each timetable based on both hard constraints, such as avoiding
overlapping class times, meeting minimum and maximum credit requirements, and not
exceeding weekly workload; and soft constraints, such as adhering to suggested curricular
progression and allowing students to advance in preferred courses. By adjusting the weights
assigned to these criteria, the system can balance feasibility with personalized optimization,

ensuring that students receive timetables that are both valid and tailored to their academic needs.

A significant strength of this project lies in its student-centric approach. By narrowing the focus
to individual timetables rather than institutional allocation, the system provides immediate
practical utility to students seeking efficient ways to plan their courses. The use of binary
encoding ensures computational efficiency, enabling the GA to scale to catalogs with many
offerings while remaining simple enough to be implemented in student-facing applications.
Another notable strength is the flexibility of the fitness function, which allows for the
incorporation of both institutional academic requirements and subjective student preferences.
Furthermore, empirical evaluation with 25 students demonstrated high levels of satisfaction,
with the majority rating the automatically generated timetables as superior to or least equivalent

to manually designed schedules.

Despite these contributions, the project is not without limitations. The binary encoding assumes
that each course offers a fixed and unique timeslot, which restricts flexibility when courses
provide multiple tutorial or laboratory sections. The dataset used for evaluation was relatively
small and drawn from a single academic program, which raises concerns regarding the
generalizability of results to larger and more complex institutions. Additionally, the weighted-
sum approach adopted for multi-criteria optimization, while straightforward, can observe trade-
offs between competing objectives; a Pareto-based evolutionary algorithm might offer students
a richer set of timetable options that balance different preferences. Finally, the system does not
explicitly address the dynamic nature of course catalogs, where sections may be added,
removed, or rescheduled during registration periods, limiting its applicability in real-time

environments.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.2 Web-Based Personalized University Timetable for UiTM Students Using Genetic
Algorithm
The UiTM project presents a web-based personalized timetable generator developed to assist
students in creating their own schedules from the university’s published course lists and
timeslots. The motivation behind the system arises from the difficulty students face during
course registration, particularly repeat students who often struggle to fit required subjects into
their timetables without overlaps. Unlike institutional-level timetabling, which attempts to
allocate courses, lecturers, and room across the entire university, this system is tailored to the
student’s perspective. By leveraging GA, the system automatically generates feasible schedules
based on the courses chosen by an individual student. The objective is to eliminate timetable
clashes, reduce the manual trial-and-error process, and provide students with a faster and
smarter way to plan their semester. The project therefore directly contributes to the
development of a personalized student timetable planner rather than a university-wide

scheduling tool.

The system architecture integrates GA into a web application interface, providing students with
an accessible platform to generate timetables. Students first select the courses they wish to
register for from the course catalog. Each course has several groups (lectures, tutorials, or labs)
with predefined timeslots already determined by the university. The GA represents potential
solutions as chromosomes, where each gene corresponds to a selected course and its assigned
group. The algorithm evaluates candidate solutions through a fitness function that prioritizes
conflict-free scheduling and adherence to university-imposed rules such as credit limits. GA
applies standard operators, crossover, mutation, and selection, to evolve a population of
candidate timetables, eventually converging towards valid solutions. Importantly, the system
also allows students to “lock™ certain courses or groups they prefer, giving them some control
while the GA optimizes the rest of the schedule. The final timetable is displayed to the student

in a clear and structured format, ready to be used for registration.

One of the primary strengths of this project is its student-centered orientation. Instead of
tackling the highly complex institutional timetable, which involves balancing multiple global
constraints, the system narrows its scope to the individual student’s needs, making it both

practical and computationally feasible. This focus ensures that the GA runs efficiently,

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

producing personalized timetables within reasonable time frames. Another strength is the
integration of user preferences; by allowing students to lock specific courses or groups, the
system combines the flexibility of manual planning with the efficiency of algorithmic
optimization. The web-based interface is also an advantage, as it improves accessibility for
students and eliminates the need for specialized software. Finally, the project is validated with
real use cases, showing that it can reduce the stress and inefficiency students often experience

during registration periods.

Despite its advantages, the project has some limitations. The most notable limitation is its
reliance on static course lists and timeslots provided by the university. If the catalog changes,
such as when classes are canceled, timeslots are updated, or new sections are added. The system
does not incorporate real-time adjustments, which could reduce its practicality in dynamic
registration environments. Another limitation is the binary representation of course groups,
which assumes that each course offering is pre-defined and fixed; the design may restrict
flexibility when students wish to choose among multiple tutorial or practical groups, or when
group availability changes suddenly. Additionally, the fitness function primarily focuses on
clash detection and basic workload balance but does not fully incorporate more nuanced student
preferences, such as avoiding early morning classes, reducing long gaps between sessions, or
creating compact daily schedules. Lastly, while the GA approach is effective for small to
medium sized, its performance and scalability in handling very large course catalogs or

thousands of students simultaneously remains untested in this project.

2.1.3 Heuristic Algorithm for a Personalized Student Timetable

The paper presents a system for generating personalized student timetables using a heuristic
algorithm. Unlike institutional timetabling, where the university must assign courses, rooms,
and lectures across the entire institution, this project focuses on the individual student’s
perspective. The university first produces a raw timetable in which all lectures and practical
sessions are predefined and assigned times and locations. The challenge for students arises
when courses offer multiple seminars or practical groups, often leading to overlapping sessions
and inefficient use of their weekly schedules. The system therefore aims to optimize the
student’s timetable by eliminating conflicts and arranging sessions in a way that reduces idle

time on campus. This makes the project highly relevant as a personal student timetable planner,

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

supporting flexibility for students with part-time jobs, extracurricular activities, or preferences

for compact schedules.

The system applies to a heuristic algorithm that balances efficiency with practicality. Each
student’s set of courses is treated as input, with multiple possible session groups available for
selection. The heuristic works by incrementally building a conflict-free timetable, giving
priority to non-overlapping sessions and compact arrangements that minimize the number of
separate campus visits. This approach is computationally lightweight compared to methods
such as GA, enabling fast generation of timetables even for large datasets. Importantly, the
design assumes that all lectures are compulsory and already fixed by the university; the
heuristic therefore primarily selects alternative tutorials, seminars, or practical sessions to tailor
the schedule for each individual student. This simplified but effective model ensures that the
algorithm focuses only on personal student optimization, without being burdened by

institutional resource allocation.

A major strength of this project is its student-centric scope. By limiting the problem to personal
timetable, the system avoids the extreme complexity of university-wide scheduling while
directly addressing the challenges students face during course registration. The use of a
heuristic algorithm provides speed and practically, generating near-optimal timetables in real-
time. Another strength is its explicit consideration of student lifestyle needs, particularly
reducing campus idle hours and improving schedule compactness, which directly improves
satisfaction. The algorithm also scales well, since it does not require global optimization across

thousands of students but only needs to handle one student’s dataset at a time.

The project also has limitations that restrict its broader applicability. First, the reliance on a
pre-existing raw timetable means it cannot adapt if the university makes frequent changes to a
course schedule during registration periods. Second, the heuristic focuses mainly on avoiding
conflicts and reducing idle time but does not incorporate softer preferences, such as avoiding
morning classes, preferring specific days off, or prioritizing certain instructors. Compared to
multi-objective approaches like GA, the heuristic may also produce fewer diverse timetable
options, limiting student choice. Furthermore, because evaluation was not tested extensively
across different institutions or datasets, questions remain about its generalizability beyond the

specific case studied.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

2.2 Existing Systems

2.2.1 University Timetabling System (UniTime) [2]

The UniTime system, as detailed on its official website, aims to provide comprehensive
solutions for academic scheduling challenges, including course timetabling, examination
scheduling, and student scheduling. The primary objective of UniTime is to streamline and
optimize the scheduling process for educational institutions, ensuring efficient use of resources
while meeting the diverse needs of students, faculty, and administrative staff. This is achieved
through a flexible and extensible scheduling platform that accommodates various institutional

constraints and preferences.

The development process of UniTime involves several key stages. Initially, a thorough
requirements analysis is conducted to understand the specific scheduling needs and constraint-
based and optimization techniques, to generate feasible schedules. These algorithms are
designed to handle complex constraints such as room capacities, time preferences, and course
conflicts. The development process also includes extensive testing and validation to ensure the
generated schedules are practical and efficient. UniTime’s modular architecture allows for
customization and integration with other institutional systems, enhancing its adaptability and

functionality.

UniTime has achieved significant success in providing robust scheduling solutions to
numerous educational institutions worldwide. Its achievements include the ability to generate
conflict-free schedules that optimize the use of available resources, such as classrooms and
faculty time, while accommodating a wide range of constraints and preferences. The system’s
user-friendly interface and comprehensive reporting tools facilitate easy management and
adjustment of schedules. Moreover, UniTime’s open-source nature encourages community
collaboration and continuous improvement, leading to a highly adaptable and evolving

platform.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

1 he tollowing oniine demo of the L y Course | contains a v’
College test suite. This is a small test problem very similar to the one described in lhns
[presentation] that was created to be able to student i
examination timetabling problems on an easily manageable example. However, many o{ |ls
properties were carefully derived from real-life and vastly larger course timetabling and student
sectioning problems.

You can enter the online demo as one of the following users:

« guest ... Aview only user role. This user can see all the course data (for all the departments)

and all the committed timetabling solutions, however, he/she cannot change anything. The

password for this user is guest.

dept ... A schedule manager user role. This user can edit course data of his/her department

and work with the appropriate timetabling solutions. Classes that are externally managed

(e.g., large lecture rooms classes are timetabled centrally, i.e., by another department) are

only editable by this user in the input data entry phase (aﬂer that, the ownership is transfered

to the app). The p for this user is dept. In the current example, all

subject areas are managed by the same department.

IIr ... Alarge lecture room manager user role. This user can edit all classes that are marked

as large lecture room classes and work with large lecture room timetables. The password for

this user is lir.

exam ... An examination manager user role. This user is able to edit all the examination data

and solutions. The password is exam.

event ... An event manager user role. This user is able to edit, approve or reject all special

and course events. The password is event.

« admin ... An administrative user role. This user is able to edit all the course data and
timetabling solutions. Many administrative pages are also only available to the users with this
role. The password is admin.

doe, newman, smith ... These users are associated with appropriate instructors within the
system. Such users can see their personalized instructor schedules and existing events.
They can also request a new (special) event (which may need to be approved by event

). The p are doe, smith
student .. ThlS user is associated with one of the students within the system. Such user can
see his/her personalized student schedule and existing events. He/she can also request a
new (special) event (which may need to be app by event or).
The password is student.

Figure 2.2.1.1 A list of different identity for user to choose from which interface they wish to

refer.
Student Schedule
. Fal 2010 (woebegon)
UniTime
Monday Tuesday Wednesday Thursday Friday
7am
8am
9am

ALG 101 Lec ALG 101 Lec

10am | |EX EDUC 103, J Do

GER 101 Lab
EDUC 108
Tam 0824 - 12107

12pm

GER 101 Lec GER 101 Lec GER 101 Lec
P EDUC 102 EDUCTOZ EDUC 102
L 5123 - 12/

PSY 101 Lec PSY 101 Lec
EDUC 101 EDUC 10

2pm 06723 - 1210 08123 - 12110

3pm

4pm

5pm

Figure 2.2.1.2 Sample demo of student schedule

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

% Lookup Classes @

U T Student, Brian
NILIME

Filter Search

Academic Session: Fal 2010 (woebegon)

Subject: cs
Computer Science events for Fal 2010 (woebegon) Print Export More v
All Matching Rooms All Matching Weeks

Name Section Type Title Date Published Time Location Capacity Enroliment Instructor / Sponsor
CS101 1 Lecture Introductory Computing MF 08/23 - 09/03, 2010 1:30p - 2:20p EDUC 102 2 2 Doe, J

MF 09/10 - 10/08, 2010 1:30p - 2:20p EDUC 102 2

MF 10/15 - 11/22, 2010 1:30p - 2:20p EDUC 102 2

MF 11/29 - 12/10, 2010 1:30p - 2:20p EDUC 102 2
CS101 2 Lecture Introductory Computing MW 08/23 - 09/01, 2010 12:30p- 1:20p EDUC 103 2 1 Doe, J

MW 09/08 - 10/06, 2010 12:30p - 1:20p EDUC 103 2

MW 10/13 - 11/22, 2010 12:30p - 1:20p EDUC 103 2

MW 11/29 - 12/08, 2010 12:30p - 1:20p EDUC 103 2
CSs101 1 Laboratory Introductory Computing Tue 08/24 - 10/05, 2010 11:30a- 1:20p EDUC 108 1 1

Tue 10/19 - 12/07, 2010 11:30a- 1:20p EDUC 108 1
CS101 2 Laboratory Introductory Computing Tue 08/24 - 10/05, 2010 7:30a - 9:20a EDUC 108 1 1

Tue 10/19 - 12/07, 2010 7:30a - 9:20a EDUC 108 1
C S 101 3 Laboratory Introductory Computing Wed 08/25 - 11/17, 2010 9:30a - 11:20a EDUC 108 1 1

Wed 12/01 - 12/08, 2010 9:30a - 11:20a EDUC 108 1
C S 101 4 Laboratory Introductory Computing Mon 08/23 - 08/30, 2010 1:30p - 3:20p EDUC 108 1 0

Mon 09/13 - 10/04, 2010 1:30p - 3:20p EDUC 108 1

Mon 10/18 - 12/06, 2010 1:30p - 3:20p EDUC 108 1

Print ‘ Export More v

Figure 2.2.1.3 Lookup Classes Page

@ Lookup Examinations @

Student, Brian
UniTime

Filter Search

Academic Session Fal 2010 (woebegon)

Subject cs

Computer Science meetings for Fal 2010 (woebegon) Prin Export Mare v
All Matching Rooms All Matching Weeks

Name Section Type Title Date Published Time Location Capacity Enroliment Instructor / Sponsor

C S 101 Course Final Examination Introductory Computing Mon 12/13, 2010 11:30a - 12:30p THTR 101 4 3 Doe, J

Print Export More v

Figure 2.2.1.4 Lookup Examination Page
The UniTime website showcases several strengths and weaknesses in its design and
functionality. One of the key strengths is its comprehensive and user-friendly interface, which
provides detailed information about the system’s features, capabilities, and use cases. This
makes it easy for potential users to understand how UniTime can meet their scheduling needs.
The website also offers extensive documentation, tutorials, and community support which are
invaluable resources for new users and institutions looking to implement the system.
Additionally, the open-source nature of UniTime is prominently highlighted, encouraging

collaboration and continuous improvement within the user community.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

However, the website has some weaknesses, including a somewhat cluttered layout that can
make navigation challenging for first-time visitors. Important information may be buried under
multiple layers of menus, making it less accessible. Furthermore, while the technical
documentation is comprehensive, it might be overwhelming for users without a strong technical
background, potentially deterring them from fully engagement with the platform. Overall,
while the UniTime website is a valuable resource with extensive information and support,

improvements in layout and accessibility could enhance user experience and engagement.

In conclusion, UniTime offers a sophisticated and flexible solution to the challenges of
academic scheduling. Its development process integrates advanced optimization techniques
and extensive testing to produce high-quality schedules. While the system has notable
achievements in resource optimization and user adaptability, it also faces limitations related to
complexity and initial setup requirements. Nonetheless, UniTime’s ongoing development and

open-source nature position it as a leading tool in the field of academic scheduling.

2.2.2 Timetable Arranging Program (TTAP) — UTAR [6]

The Timetable Arranging Program (TTAP) is a timetable scheduling program that was
designed by a student named Wong Jia Hau which is a Faculty of Information Communication
and Technology student from Universiti Tunku Abdul Rahman (UTAR). The objective of this
program is to help the UTAR students to arrange timetables smoothly and easily by

implementing automated scheduling concepts to the timetable.

This system represents a significant advancement in university course-scheduling through its
comprehensive suite of features and user-centric design. One of the system’s most notable
features is its user-friendly interface, which is designed to simplify the complex task of
scheduling. The graphical user interface (GUI), as illustrated in the tutorial GIF, enables users
to interact intuitively with the system. The design approach minimizes the learning curve and
facilitates ease of data entry, schedule visualization, and adjustment, making the scheduling

process more accessible to users regardless of their technical proficiency.

Another feature of the TTAP-UTAR system is its automated timetable generation capability.
By employing sophisticated algorithms, the system automates the creation of timetables,

effectively reducing the manual effort involved in scheduling. This automation ensures that

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

timetables are generated with optimal consideration for various constraints such as room
availability, instructor schedules, and course requirements. The system’s ability to handle these
constraints and generate conflict-free timetables enhances the efficiency of resource utilization
within the university, thereby addressing one of the key challenges in academic scheduling.
Conflict detection and resolution is another integral feature of the TTAP-UTAR system. During
the timetable generation process, the system actively identifies potential scheduling conflicts
and provides solutions or alternatives to resolve them. This proactive approach not only
improves the overall quality of the timetable but also reduces the likelihood of disruptions

caused by scheduling conflicts, ensuring a smoother ad more effective scheduling process.

The system’s customizable constraints further contribute to its flexibility and adaptability.
Users can define and adjust constraints based on their specific institutional requirements, such
as room capacities, course prerequisites, and instructor availability. This customization allows

the system to accommodate diverse scheduling needs and adapt to changing conditions, making

it a versatile tool for various educational environments.

Timetable Arranging Program (TTAP)

Please log in to your account.

Login| Reset
o—' C REFRESH

Add slots manually Load test data

Figure 2.2.2.1 Login page for students

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

Search

Basic E A
UKMM1043 [BEAAM]

0 Engineering Thermodynamics I
UEMELLL2 [ET-]) English For Engineering ’
) . MPU32043 [EFE]
English For Engineering >
MPU32043 [EFE] Fluid Mechanics Il
Finite Element Method In Structural Engineering HEMEIHZ [l

UEMX4293 [FEMISE]
If 1 Geotechnical Engineering ’

- - UEMX2423 [GE]
a Fluid Mechanics |
UEME2123 [FM-]] Hubungan Etnik (for Local Students)

MPU3113 [HE]
Fluid Mechanics I

UEME3L12 [FM-T]

| Fundamentals Of Programming
UECS1643 [FOP)

Geotechnical Engineering
UEMX2423 [GE]

[] Mighway And Transportation
UEMX3813 [HAT]

Hubungan Etnik (for Local Students)

MPU3113 [HE]
S g
Show selected subjects Show all subjec +/ DONE

Figure 2.2.2.2 Subjects are listed for the students to choose from, and selected subjects will

be shown after choosing.

- = - = -

limetable Arranging Program (TTAP)

e m w0 1o 1100 1200 100 o 100 ado =00 &l 0 BO0 o 00
80D %00 1000 1100 1240 1300 200 100 440 500 w00 7400 840 900 10400 1190
I TL? GE LYy GE (T CHF] EFE(T1)
oM - 14 - M 134
. w1
& P BEAAM (T3
E - 114
AN I
WD 114
PR
GE 1L L2 BEAAM L2}
™ 114 14 114
(L] kRI7 KiilG
- PLALA2)
BRI -
SAT
SUM

ym— T [|

Figure 2.2.2.3 Set the time constraints

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

(@© Set time constraint ©

L
Il Ocfinitely have class
Click e If youd £ant want to have class hers

O I R N T I N AP T N A I B A =

A e e 1nae 1440 1 +a0 (0 480 R Al a0 o = e 10

om X

TUE x

wep

™ X X
PRI X[X XX X

sat

sun

Raremc 1057 urantalicnn towaches 7 irvekim s

- ETH

Figure 2.2.2.4 Choose preferable timeslots

Timetable Arranging Program (TTAP)

= Select subjects

| 700 I B:00 | °:00 10:00 | 11:00 | 12:00 | 1:00 | 200 | 3:00 400 5:00 | 6:00 I 700 | 8:00 I 900 ‘ 10:00
| oo | e00 | w000 | weo | 120 w00 | 400 500 w00 | 00 | so0 [seo | ieeo [1noo
GE (L1} BEAAM (L1) GE(T3/4)
MON 114 114 -
KB207
HELZ)
TuE 114

KB520
GE (P3/4) FM-I (791 FM-I LY
WED - - 114
= = KB209
GE(L1) ‘BEAAM (T3) FM-IL (P3/9)
THU 114 114 -
KB20E KES16 -

Figure 2.2.2.5 Choose preferable combination timetable
In terms of strengths, the TTAP-UTAR system excels in enhancing usability through its
intuitive GUI design. This user-centric approach improves efficiency by making the scheduling
process more manageable for users with varying levels of technical expertise. Additionally, the
system’s ability to optimize resource utilization through automated timetable generation and
conflict resolution leads to more efficient scheduling and better management of university
resources. The flexibility and customization offered by the system further enhances its value,

as institutions can tailor the system to their unique needs and policies.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

However, the TTAP-UTAR system is not without its challenges. The complexity of constraints
management can be a significant drawback, especially when dealing with many constraints.
Balancing various constraints requires careful consideration and may become time-consuming,
potentially complicating the scheduling process. Additionally, the system may face scalability
issues as the number of courses and constraints increases, which could impact its performance
and efficiency in large institutions. Lastly, the system’s dependencies on accurate data are a
critical factor for its effectiveness. Inaccurate or incomplete input data can lead to suboptimal
scheduling outcomes, necessitating manual adjustments to correct any errors and ensure the

timetables meet institutional requirements.

In conclusion, the TTAP-UTAR system offers a robust solution for university course
scheduling, with its user-friendly interface, automated timetable generation, and customizable
constraints. Its strengths in usability, resource optimization, and flexibility make it a valuable
tool for educational institutions. Nevertheless, addressing challenges related to constraints
management, scalability, and data accuracy is essential for enhancing the system’s overall

effectiveness and ensuring its continued success in academic scheduling.

2.2.3 TimeEdit [7]

TimeEdit is a feature-rich scheduling and resource management system tailored for educational
institutions and organizations. Its intuitive simplifies the creation, management, and viewing
of schedules, featuring drag-and-drop functionality for easy modifications. The system’s
advanced scheduling algorithms automate the process, ensuring conflict free timetables by
considering constraints like room availability, course requirements, and instructor preferences.
Real-time updates ensure that any changes are immediately reflected across the system,

maintaining up-to-date information and preventing scheduling conflicts.

Additionally, TimeEdit offers robust reporting tools, allowing users to generate detailed reports
on resource utilization, scheduling conflicts, and other key metrics, aiding informed decision-
making and resource optimization. Its integration capabilities with other institutional systems,
such as Student Information Systems (SIS) and Learning Management Systems (LMS), ensure

seamless data exchange and enhance operational efficiency. The system’s high level of

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

customization enables institutions to tailor it to their specific needs, accommodating unique

scheduling requirements, room layout, and its institutional policies.

TimeEdit excels in resource management, ensuring optimal allocation of rooms, equipment,
and personnel, reducing downtime, and improving utilization. The system is accessible from
various devices, including desktops, tablets, and smartphones, providing users the flexibility to
manage and view schedules on the go. User roles and permissions allow administrators to
control access levels, ensuring data security and efficient task delegation. Automated
notifications keep users informed about schedule changes, upcoming events, or resource
bookings, reducing the likelihood of missed appointments or double bookings. Through these
comprehensive features, TimeEdit aims to streamline scheduling and resource management,

making the process more efficient and less error prone.

v @ uUntitled ®X @ schoolExperient X @ MicrosoftWord X @ U2103836.00iC X @ PeubshanPend x [HERS - X @ LEVELDEVIL-F X ® Login x o+ - [=] X

€ € % timeeditnet/client/indexhtm r @

i Gmail B VouTube Q Maps W Mysic & Mays R Faculty of Science [SPeCTRUM V3 g Web of Science Mas.. ‘% iLovePDF | Online ... W 2=FIfM Scheduler W My Citation list 11/9 » 3 Al Bookmarks

TE TimeEdit Knowledge base | Support [Nota TimeEdit customer? |
-"-c

Find your organization

universiti malay|

Universiti Malaya [cloud]

Universiti Malaya Demo [cloud

Figure 2.2.3.1 Users must search out the organization

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

v @ uUmted X @ Scheolbr X @ Microsoft X @ U2103626 X @ Perubaher X B pnaLeoc % [Memeng X W Pemamsur X v KPMKazjii X TE Unnersit X+ - a X
¢ 3 € % doudtimeeditnet/my um/web T @

M Gmail @ YouTube @ N

W s i Mas @ facuiyofscence 5] SPCTRUMYE g Web of Science bas.. % iovepOF |Onine P W e [E schecuier W} by Citation Ist 1175 » | [Al Bookmarks

Admin Language: Automatic v

UNIVERSITI
MALAYA

Universiti Malaya

B Staff For academic staff access only
@ Students

@ Administration For authoriz

t 22 Bio Bio Bio

Figure 2.2.3.2 Login page for students, staff and administrators

v @ untited X @ schoolbxperien X @ MicrosoftWord X @ U210363600iC X @ PerbshanPen: X (@ BEFS -4 x @ LEVELDEVIL-F X T UnierstiMals X 4 - a x

L3 C % cloudtimeeditnet/my_um/web/students/ T &

M Gmal B YouTube P Maps N Mysis S Mava N Facuiy of Science

Universiti Malaya / Students

[&] SPeCTRUM V3 @ Web of Science Mas.. & iLovePDF [Online .. W 1=Hpv Y scheduler W My Citation list 11/9. » [Al Bookmarks

Universiti Malaya /! T

Students

Welcome to the Universiti Malaya Timetabling System

SEARCH FOR A MODULE TIMETABLE
Use the options below ta search for a timetable
Timetable Search
To retrieve information with a standard
graphical calendar view
Timetable Search Alternative

To retrieve information with a more
comprehensive view

For any inquiries, please contact:
a] Teaching Timetable, Admission and Registration Centre (ARC): bikp_assd@um.edu.my
b] Exam Timetable, Examination and Graduation Centre (E6C): bpp._sasd@um.edu.my

Figure 2.2.3.3 Welcome page of the timetabling system

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

v @ Untitled X @ schoolExperien X @ MicrosoftWord X @ U2103636.00iC X @ PerubahanPend X M X @ LEVELOEVIL-9 X T x e - a 5
€ C % doudtimeedit.net/my_um/web/students/ri1Q8 html * @
Gmail @B YouTube @ Maps W Mysis & Maya @ Faculty of Science g SPeCTRUM V3 g Web of Science Mas... @ iLovePDF | Online P. Y scheduler Wb My Citation st 11/9, » [All Bookmarks

§ universiti Malaya KR 1t
Universiti Malaya / Students / Timetable Search
Today ¢ Semester124/25 with Exam~ > 07/10/2024 - 15/02/2025 Q Search 3 Customize

Search

Vodule | [SearchHodule

[Add: Module] [Separator +] [Filter &&] Reset

Result My criteria Sort Clear

Nothing selected yet

Show schedule

N Favorites
y3s1

Aaxm UM o

024

]

v @ Untitled X @ SchoolExperien X @ MicrosoftWord X @ U2103636.00iC X & PerubahanPend X ELDEVIL-P X T UniversitiMalay X + =0 X
€ c cloud.timeedit.net/my_um/web/students/ri10¥899052Z53Q61967Y645yX076W1X59Y66Q0Q00886; 77X8979XX7Y42X79Z4QpQc htm & & @
™ Gmail @B VouTube @ Maps W Mysis = Maya W@ Faculty of Science | SPeCTRUM V3 @@ Web of Science Mas.. % iLovePDF | Online P. Wz EY Scheduler W My Citation fist 11/9. » 3 ANl Bookmarks
@V Universiti Malaya R
Universiti Malaya / Students / Timetable Search
Today < Semester 124/25 withExam~ > 07/10/2024 - 16/02/2025 Q Search $iL2002, SITOGENETIK, SIL2009, TEKNOLOGI DNA REK: NaN, +6 Module [Save favorite g Subscribe 8 Download Y Filter 3£ Customize
Monday Tuesday Wednesday Thursday Friday
8 |14x18,7-13,14-17,19-20 14x7-13,14-17,18-20
KONSEP KEJURUTERAAN KONSEP KEJURUTERAAN
23 e 23 23)
KONSEP KEJURUTERARN sy PENGANTAR
- HE oo | GENETIK 150 | BIOINFORMATIK SEKITAR SIXI011/2024/51/1
9 TEKNOLOGI DNA' SI1V2001/2024/51/1 ICAL)
EXAM(PHYSICAL)
Exam Hold Room $ Exam Hold Room S
SIR1004/2024/51/1
(PHYSICAL)
Exam Hold Room G
0 Ho% 1
10 | 14x18,7-13,14-17, 19-20| 13, 14-17,19-20 14x7-13, 14-17,18-20 14x7-13, 14-17, 18-20
PENGANTAR AN ALAM SEKITAR PENGANTAR PENCEMARAN ALSM
BIOINFORN ol M ST BIOINFORMATIK SEKITAR o3|
1 h LECTURE /2 S1/1 Si 4/2024/51/1
ECTURE BILIK ALSA1ISBFS (54) LECTURE LECTURE
MAKMAL KOMPUTER 158 FS MAKMAL KOMPUTER ISE FS BILIK TUTORIAL SA.1ISB FS.
1 14x18,7-13, 14-17,19-20 14x7-13,14-17, 18-20
SITOGENETIK SITOGENETIK
SITOGENETIK SITOGENETIK
4
SITOGENETIK
s 00| SIOGENETIK
12 S1L2002/2024/51/1
s11
EXAM(PHYSICAL)
Exam Hold Room G

15:41:56 [JLAB LECTURE [JONLINE [@JEXAM(PHYSICAL)

Figure 2.2.3.5 Student timetable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

v @ Untited X @ school Experie Microsoft Wore 2 x

L C 2% doudtimeeditnet 6645 XX Bt @
M Gmal @B YouTube @ Maps W Mysis W Maya vePDF | » | [AlBookm
WU universiti Malaya R T

Universiti Malaya / Students / Timetable Search
5= Layout #, Reservations
Today < Semester 124/25 with Exam~ > 07/10/2024 - 16/02/2025 Q_ search TOGENETIK EKNOLC N KOMBINAN, +6 M N Savefa

Monday Tuesday Wednesday Thl 5
age

23

PENGANTAR

23
KONSEP KEJURUTERAAN
BIOINFORMATIK General page layout

GENETIK = il
TEKNOLOGI DNA SIV2001/2024/51/1

REXOMBINAN EXAMPHYSICALY Weekday view v
S1L2009/2024/S3/1 Exam Hold Room §

SIRI004/2024/S1/1

EAMPHYSICAL) i

Exam Hold Room G Hoed

13,14-17,19-20 Show clock

[One schedule for every searched item

SMPUTER 158 F Row header
Hours v

Column header

[[weewaay 5

Fit width to screen

[Horizontal scroll

Row height 100 v
15:43:48 [[JLAB | |LECTURE [EJONLINE [JEXAM(PHYSICAL

& sailing

Figure 2.2.3.6 Details to show in the timetable

One of the primary strengths of TimeEdit is its user-friendly interface, which simplifies the
complex process of scheduling for both administrators and users. Its advanced algorithms and
automation capabilities significantly reduce the time and effort required to create and manage
schedules, making it a valuable tool for instituions with diverse and dynamic scheduling needs.
Additionally, the system’s ability to integrate with other institutional software ensyres a
seamless flow of information and enhances overall oeprational efficiency. The customizable
nature of TimeEdit allows instituions to tailor the system to their specific requirements,

ensuring that it meets unique scheduling challenges effectively.

However, TimeEdit also has its weaknesses. Despite its robust features, the initial setup and
customization process can be complex and time-consuming, requiring a significant investment
of time and resources. Additionally, while the system is designed to be user-friendly, some
users may still face a learning curve, particularly those who are not tech-savvy. Furthermore,
the reliance on internet connectivity for real-time updates may pose challenges in areas with

unstable or limited internet access.

In conclusion, TimeEdit stands out as a powerful and versatile scheduling and resource
management system, designed to meet the complex needs of educational institutions and other
organizations. Its user-friendly interface, adavanced scheduling algorithms, and real-time

updates streamline the scheduling process, ensuring efficiency and accuracy. The robust

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

reporting tools, integration capabilities, and high customization options allow institutions to
optimize their resources and tailor the system to teir specific requirements. Despite some initial
setup challenges and a learning curve for non-tech-savvy users, TimeEdit’s comprehensive
features, including effective resource management, accesibility, user roles, and automated
notifications, make it an invaluable tool for improving operational efficiency and reducing
scheduling conflicts. Overall, TimeEdit’s strengths significantly outweigh its weaknesses,
making it a highly recommend solution for any institution seeking to enhance its scheduling

and resource management process.

2.3 Summary

In this chapter, three similar projects named “Personal Course Timetabling for University
Students based on Genetic Algorithm”, "Web-Based Personalized University Timetable for
UiTM Students Using Genetic Algorithm" and "Heuristic Algorithm for a Personalized Student
Timetable" has been reviewed. For the first paper models personal timetabling as a
combinatorial optimization problem and applies a GA to produce conflict-free schedules that
balance hard constraints such as credit limits with soft preferences like compactness and
academic progression. The second paper builds on similar GA principles but delivers a
practical, web-based system integrated with UiTM’s course catalog, enabling students to lock
preferred groups, save and export timetables, and benefit from administrative updates. In
contrast, the last paper emphasizes speed and efficiency, using a lightweight method to select
non-conflicting seminar and practical groups while reducing idle time on campus, though with
less flexibility for incorporating diverse student preferences. Together, these works
demonstrate complementary strengths in accuracy, usability, and efficiency, contirbuting

significantly to the development of smart, student-centered timetable planners.

Three exisitng systems, including University Timetabling, Timetable Arrangement Program —
UTAR and TimeEdit are reviewed, and the strengths and weaknesses are listed out. Their

strengths and weaknesses are then summarized and concluded in Table 2.3.1.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

Table 2.3.1 Comparison of Strengths and Weaknesses of Existing Systems

Feature

University

Timetabling

TTAP - UTAR

TimeEdit

User Interface

Often user-friendly,

Intuitive and user-

User-friendly

but varies freindly interface with drag-
and-drop
Optimization | Advanced, handles | Efficient algorithms | Advanced
Algorithms complex constraints | for diverse algorithms for
constraints conflict-free-
scheduling
Resource Optimizes use of Effective conflict Optimal allocation
Management | resources detection and of rooms,
resolution equipment,
personnel
Flexibility Open-source, Customizable to Highly
encourages institution needs customizable to
collaboration specific
requirements

Initial Setup

Time consuming,

requires expertise

Time-consuming,

requiring technical

Complex and time-

consuming setup

knowledge
Computational | High for large Significant Requires
Complexity datasets computational significant
resources needed computational
resources
Usability Can vary, some Complexity of Learning curve for
systems complex features might non-tech-savvy
overwhelm users users
Customization | Often requires Needs substantial High level of
extensive customization and customization
adjustments fine-tuning required

Training and

support

May require

significant training

Subtantial training

and support needed

Significant training

and support needed

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

Chapter 3
System Methodology/Approach OR System Model

In this chapter, the technologies and methodology to develop the project are implemented.
The activity diagram, flowchart, use case diagram and descriptions are done in this chapter to
show the overview of the system. The timeline of the project is also planned to deliver the

project on time.
3.1 Methodology

The methodology proposed for the project is Rapid Application Development (RAD). RAD
adopts traditional Software Development Life Cycle (SDLC) phases to accelerate program
development. This approach enables the project to be iterated and updated continuously
throughout the development process, emphasizing rapid prototyping and incorporating user

feedback. [8]

Rapid Application Development (RAD)

Prototype

I User Design Construction Cutover

Refine Test

Figure 3.1.1 RAD Methodology

3.1.1 Requirements Planning

The Requirements Planning phase is the initial stage of the development process for the Smart

Student Timetable Planner. This phase begins with the identification of key problem statements

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

related to the current timetable system. The objective of the project is clearly outlined, focusing

on developing a robust timetable system that addresses identified issues.

During this phase, a comprehensive review of existing literature and systems is conducted. This
review aims to analyze the strengths and weaknesses of current solutions and to identify the
potential requirements needed for the new system. This phase also includes defining the
project’s objectives, specifying hardware and software requirements, and creating a detailed
project timeline. By setting clear requirements and understanding existing solutions, this phase

lays the groundwork for a well-informed and structured development process.

3.1.2 User Design

The User design phase focuses on developing prototypes to visualize and refine the system’s
user interface and functionality. HTML and CSS are used to build structural and visual
elements, while JavaScript and jQuery bring interactivity for dynamic course selection and
timetable management. JSON, localStorage and sessionStorage are applied to manage course
data and user choices, ensuring that timetable information is stored and easily retrievable
during active sessions. Socket.IO is integrated into the prototypes to demonstrate real-time
collaboration, enabling users to view updates and communicate instantly while arranging

timetables.

At this stage, the main modules are represented through interactive prototypes. These include
login or logout, course selection with conflict detection and time constraints, timetable viewing,
collaboration with session chat, saving timetables to history, comparing manual and auto-
generated schedules, exporting timetables, and administrative course management. Prototypes
are tested with sample users to gather feedback on usability and functionality. Based on this
feedback, the designs are iteratively improved to ensure a user-friendly, intuitive, and

functional system before progressing to full implementation.

3.1.3 Construction and Feedback Phase

The Construction and Feedback phase transforms the prototypes into a fully working timetable
system. In this stage, the system modules are implemented and integrated using HTML, CSS,
and JavaScript for the frontend, while JSON, sessionStorage, localStorage are used to manage
timetable data. Socket.IO is applied to handle synchronization and broadcasting of timetable

updates during collaborative sessions. All modules, from secure login and conflict-free

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

scheduling to exporting timetables and managing administrative updates, are developed and

linked together into a cohesive system.

Testing and feedback are crucial elements of this phase. Functionality testing ensures that
modules perform as intended, usability testing checks that the system is intuitive for students,
interface testing evaluates design consistency, and compatibility testing validates performance
across devices and browsers. Feedback collected from test users is used to iteratively improve
the system, refining features, fixing issues, and enhancing overall reliability. By the end of this
phase, the timetable system is stable, accurate, and aligned with user expectations, ready to

support students in managing their personal schedules efficiently.

3.1.4 Finalize Product and Implementation Phase

During the Finalize Product and Implementation phase, it focuses on ensuring the system is
fully operational and ready for deployment. This involves comprehensive testing to verify that
all modules function correctly, with a particular emphasis on functionality, usability, interface

consistency, and cross-browser compatibility.

Once testing is complete, detailed documentation is prepared, covering system design,
operation, database structure, functionalities, and testing results. This phase culminates in the
system’s deployment, marking the transition from development to active use, with the project

now complete and ready for launch.

3.1.5 Maintenance and Evaluation

This phase ensures that the system remains functional and continues to meet users’ needs for

post-deployment. This phase involves ongoing activities to support and improve the system.

System performance and user feedback are continuously monitored to identify any issues or
areas for improvement. Support teams address reported problems and help as needed. Regular
updates are made to fix bugs, enhance performance, and introduce new features based on user
feedback. Additionally, post-deployment evaluations are conducted to assess the system’s
effectiveness and gather insights into future improvements. The outcome of this phase is a well-
maintained system that evolves to meet the university’s needs and maintains high performance

and relevance.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

3.2 System Design Diagram
3.2.1 System Design Flowchart

]

User Admin
h 4 h 4
[Manual Scheduling] [Auto Scheduling Upload Courses
L
v v
g ™ g
View Timetable Upload History
- S A
A h 4
' N (
Comparison Preview Courses
g h 4 . g h 4
Real-Time View Created
Collaboration L Sessions
A § A
[Save Timetable [Feedback
h 4 .
[View History

Y

'S ™
Export Timetable
" S
\ 4
P
Feedback
A J

4
[Logout]

Figure 3.2.1 System Overview Design Flowchart

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2 Use Case Diagram

Smart Student Timetable Planner

:

<

> Login

<€

Upload Course }«

> Select Intake

»{(Select Trimester

> Add Course

»{ Delete Course

>

schedule

000000

View Timetable

Export Timetable

Save Timetable

e

+/ Real-Time

I

"\ Collaboration

- Compare

Timetable

I

in Ci

»

Session

reate

»{_ Collaborative

> Select Timetable

Voo

Chat

g

> View History

1,

> omit Feedback)

Admin

Upload History)}«

Preview Course)}«

View Created ™

Sessions

Reply Feedback }«

19000

Figure 3.2.2 Use Case Diagram of Smart Student Timetable Planner

> Logout €

(

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

3.2.3 Use Case Description

Table 3.2.3.1 Login Use Case Description

Use Case ID

00001

Use Case Name

Login

Brief Description Users and administrators are allowed to access the platform by
logging into their account with valid credentials.
Actor User, Administrator
Trigger Go to the login page of the platform.
Precondition 1. Accounts must exist in the system and have not logged in.
Normal flow of 1. User navigates to a login page and inputs username and
events password.
2. The system sends a POST request to /login with the
credentials.
3. Backend verifies if the credentials are valid.
4. If valid, the system stores the session in sessionStorage and
redirects to the main page.
5. User is redirected to their dashboard according to their role
(student/admin).
Sub Flows -

Alternate Flows

2a. If credentials are invalid, error is displayed, and user is asked to

try again.

Table 3.2.3.2 Logout Use Case Description

Use Case ID

00002

Use Case Name

Logout

Brief Description Allows a logged-in user to securely exit the system, ending their
current session and preventing unauthorized access to personal data.

Actor User, Administrator

Trigger The user selects the “Logout” option from the navigation menu.

Precondition 1. The user must be logged into the system.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

Normal flow of 1. User clicks on the “Logout” button.

events 2. The system terminates the current session.
3. The system clears session data from storage.
4. The user is redirected to the login page.

Sub Flows

Alternate Flows

Table 3.2.3.3 Select Intake Use Case Description

Use Case ID

00003

Use Case Name

Select Intake

Brief Description User selects their academic intake in the system. The selected intake
determines the courses and timeslots available for that student.
Actor User
Trigger User chooses to begin the course scheduling process.
Precondition 1. The user is logged into the system.
2. The system has intake and course data uploaded by the
administrator.
Normal flow of 1. The system displays a list of available intakes.
events 2. The user selects their intake from the dropdown.
3. The system retrieves and displays the course offered for the
selected intake.
4. The user proceeds to select their trimester and courses.
Sub Flows -

Alternate Flows

Table 3.2.3.4 Select Trimester Use Case Description

Use Case ID

00004

Use Case Name

Select Trimester

Brief Description User selects the trimester in which they are registering for courses.
The system will then filter and display only the courses and timeslots
available for the chosen trimester.

Actor User

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

Trigger The user logs into the system and proceeds to schedule their
timetable, requiring trimester selection before course registration.
Precondition 1. The user is logged into the system.

2. The system has intake and course data uploaded by the

administrator.

Normal flow of 1. The user navigates to the course scheduling module.
events 2. The system prompts the students to select a trimester.
3. The user selects the desired trimester from the dropdown list.
4. The system retrieves and displays all courses offered in that
trimester.
5. The user proceeds to course selection.
Sub Flows 3a. Ifthe user changes their trimester selection, the system refreshes

the available courses accordingly.

Alternate Flows

2a. If no trimester data isa available, the system displays an error

message.

Table 3.2.3.5 Add Course Use Case Description

Use Case ID

00005

Use Case Name

Add Course

Brief Description Allows user to add a course into their timetable for the selected
trimester. The system ensures that the chosen course does not conflict
with other registered courses and meets the trimester’s requirements.

Actor User

Trigger User clicks “Add Course” on a listed course.

Precondition 1. The user must be logged into the system.

2. The user must have selected a trimester.
3. The course must be available in selected trimester and not

already added.

Normal flow

events

of

1. User clicks “Add Course” button after choosing lectures and
desired practical/tutorial slot.

2. The system checks for duplicates.

3. Ifwvalid, the course is added to the selected course list.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

4. The Ul updates to show the course in the selected list.

Sub Flows

2a. If the course requires compulsory sessions, the system prompts
the user to select a preferred group.
3a. If the course has multiple groups, the system prompts the user to

select a preferred group.

Alternate Flows

2a. If the course is already added, a warning message is displayed.

Table 3.2.3.6 Delete Course Use Case Description

Use Case ID

00006

Use Case Name

Delete Course

Brief Description Allows user to remove a previously added course from their personal
timetable for the selected trimester. The system updates the timetable
and ensures that all related sessions for that course are removed.

Actor User

Trigger User clicks “Delete” on a course from their timetable.

Precondition 1. The user must be logged into the system.

2. The user must have selected a trimester.
3. At least one course must be present in the user’s timetable.

Normal flow of 1. The user navigates to their timetable view.

events 2. The system displays all courses currently added to the

timetable.
3. The user selects a course to delete.
4. The system prompts the student to confirm the deletion.
5. The user confirms the deletion.
6. The system removes the selected course from the timetable.
7. The updated timetable is displayed to the student.
Sub Flows -

Alternate Flows

4a. If the user cancels the confirmation, the course remains in the

timetable.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

Table 3.2.3.7 View Timetable Use Case Description

Use Case ID

00007

Use Case Name

View Timetable

Brief Description Allows user to view their current timetable for the selected trimester.
The timetable displays all registered courses with details such as
course code, course name, day, time, allocated room, and selected
group.

Actor User

Trigger The user selects the option to view their timetable by clicking “View
Timetable” button.

Precondition 1. The user must be logged into the system.

2. The user must have selected a trimester.
3. At least one course should be registered in the timetable.

Normal flow of 1. The user clicks the “View Timetable” button.

events 2. The system retrieves the user’s timetable data for the selected

trimester.
3. The system generates and displays the timetable in a
structured format.
4. The user reviews the timetable.
Sub Flows -

Alternate Flows

2a. If no courses are registered, the system displays alert message.
2b. If timetable data cannot be retrieved due to a system error, the

system display error message.

Table 3.2.3.8 Export Timetable Use Case Description

Use Case ID

00008

Use Case Name

Export Timetable

Brief Description Allows user to export their finalized timetable into different formats
(IMG, CSV) for offline use, printing, or sharing.

Actor User

Trigger The user selects the “Export Timetable” button from the system.

Precondition 1. The user must be logged into the system.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

2. The user must have already generated a timetable.

Normal flow of 1. The user navigates to the “Export Timetable” button.

events 2. The system prompts the user to choose a file format.
3. The user selects the desired format.
4. The system generates the timetable file in the selected format.
5. The system prompts the students to download or save the file.
6. The student successfully saves or downloads the file.

Sub Flows -

Alternate Flows

2b. If no timetable is available, the system displays: “No timetable
found to export.”
4a. If the file generation fails, the system displays an error message:

“Export failed. Please try again.”

Table 3.2.3.9 Save Timetable Use Case Description

Use Case ID

00009

Use Case Name

Save Timetable

Brief Description Allows the user to save a generated or manually created timetable
into their personal history for future reference, comparison, or
retrieval after logging in again.

Actor User

Trigger Users click on “Save Timetable” button.

Precondition 1. The user must be logged into the system.

2. The user must have a valid timetable generated or created.

Normal flow

of

1. The user views their generated or created timetable.

events 2. The user clicks on the “Save Timetable” button.
3. The system stores the timetable in the student’s history with
the given label and timestamp.
4. The system stores the timetable in the user’s history with the
intake, trimester and timestamp.
5. The system displays a confirmation message: “Timetable
saved successfully.”
Sub Flows -

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

Alternate Flows

2a. If no timetable is available, the system displays: “No timetable
available to save.”
4a. If the saving process fails, the system displays: “Unable to save

timetable. Please try again.”

Table 3.2.3.10 Select Time Constraints Use Case Description

Use Case ID

000010

Use Case Name

Select Time Constraints

Brief Description User selects unavailable time slots to avoid conflicts in auto-
scheduling.
Actor User
Trigger 1. Students click on unavailable time in the input section in the
auto-scheduling page.
Precondition 1. The user must be logged into the system.
2. User must be in auto-scheduling mode.
Normal flow of 1. User marks unavailable time slots on the timetable interface.
events 2. System saves these constraints locally in sessionStorage.
3. During auto-scheduling, GA filers out sessions that overlap
with constraints.
Sub Flows -

Alternate Flows

2a. If no constraints are added, all-time slots are considered available.

Table 3.2.3.11 Generate Schedules Use Case Description

Use Case ID

000011

Use Case Name

Generate Schedules

Brief Description User uses Genetic Algorithm to generate valid timetables.
Actor User

Trigger Click on “Generate Schedule” button.

Precondition 1. At least one course is selected.

Normal flow of 1. User clicks “Generate Schedule”.

events 2. GA runs through a population of potential schedules.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

3. Valid timetables are checked against constraints (availability,
no clash).

4. The system displays a paginated list of valid schedules.

Sub Flows

Alternate Flows

Table 3.2.3.12 Compare Timetable Use Case Description

Use Case ID

000012

Use Case Name

Compare Timetable

Brief Description Enables the user to compare a manually created timetable with one
generated automatically by the system’s Genetic Algorithm. The
comparison highlights differences in course session allocation,
conflicts, and timetable efficiency to help the user decide which
option suits them best.

Actor User

Trigger Click on “Comparison” tab.

Precondition 1. The user must be logged into the system.

2. At least one manual timetable and one auto-generated
timetable must be available in the system.

Normal flow of 1. The user navigates to the timetable comparison feature.

events 2. The system prompts the students to select one manual

timetable and one auto-generated timetable.
3. The system displays timetable up-and-down.
4. The user reviews the comparison results.
Sub Flows -

Alternate Flows

2a. If only one type of timetable is available, the system shows: “No

available timetable.”

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

Table 3.2.3.13 Join Collaborative Session Use Case Description

Use Case ID

00013

Use Case Name

Join Collaborative Session

Brief Description Allows a user joins an existing collaboration session to work with
peers on merging and adjusting timetable in real time. Once joined,
the user can view the shared timetable, submit their own, and
participate in collaborative decision-making.

Actor User

Trigger User selects the option to join a collaborative session and enters a
valid session ID and username.

Precondition 1. The user is logged into the system.

2. A collaboration session must exist.
3. The user has at least one generated timetable available to
submit.

Normal flow of 1. The user navigates to the “Merging” section.

events 2. The user enters a session ID, password and username.

3. The system validates the session ID and confirms availability.

4. The user successfully joins the session.

5. The system displays the list of participants currently in the
session.

6. The shared timetable is displayed to the user.

7. The user can now submit their timetable and edit the merged
timetable.

Sub Flows 2a. If the session requires a password or authentication, the system

prompts the user to enter the credentials.
S5a. When a new user is joined, the system notifies all other

participants: “[Username] has joined the session.”

Alternate Flows

3a. If the session ID is invalid, the system notifies the student:
“Invalid session ID, please try again.”

4a. If connection to the session fails due to a network error, the
student is prompted to retry joining.

6a. If no timetable has been merged yet, the system displays a

message: “Waiting for users to submit timetables.”

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

Table 3.2.3.14 Create Collaborative Session Use Case Description

Use Case ID

00014

Use Case Name

Create Collaborative Session

Brief Description User initiates a new collaborative session that allows multiple users
to join, submit their timetables, and work together on merging and
editing timetables in real time.

Actor User

Trigger The user selects the option to create a new collaboration session.

Precondition 1. The user is logged into the system.

2. The user has access to the collaboration feature.
Normal flow of 1. The user navigates to the “Merging” section.
events 2. The user selects “Create Session”.
3. The system generated a unique session ID.
4. The session is initialized and made available for other users
to join.
Sub Flows 3a. If required, the student may set a password or session name before

creation.

Alternate Flows

Table 3.2.3.15 Real-Time Collaboration Use Case Description

Use Case ID

00015

Use Case Name

Real-Time Collaboration

Brief Description Allow multiple users to collaborate on timetable planning within a
shared session. Users can submit their generated timetables to be
merged, adjust tutorial/practical slots, and see updates broadcast in
real time. The system ensures synchronized views across all
participants, supporting interactive decision-making and conflict
resolution.

Actor User

Trigger A user joins a collaborative session and submits timetable to merge.

Precondition 1. The user must be logged into the system.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

2. A collaboration must be created or joined.
3. At least one timetable must be selected or generated before

merging.

Normal flow

of

1. The user enters a collaboration session.

events 2. The user selects their generated timetable and submits it to
merge with others.
3. The system merges submitted timetables using the GA and
displays the shared timetable.
4. The user clicks on tutorial/practical slot in the shared
timetable.
5. The system highlights available slot to shift the
tutorial/practical.
6. The wuser selects an alternative slot to shift the
tutorial/practical.
7. The updated timetable is broadcast simultaneously to all
users in the same session.
8. All users see the synchronized timetable updates in real time.
Sub Flows Sa. If the user only wants to check available slots without shifting,

they can click outside the highlighted area to close the options.
6a. If multiple students propose edits simultaneously, the system

manages conflicts by applying a “last change wins”.

Alternate Flows

2a. If no timetable is selected/generated, the system notifies the
student: “Please generate or select a timetable before submitting to
the session.”

3a. If the merge fails due to incomplete submissions, the system
prompts: “Waiting for other users to submit their timetables.”

7a. If network or synchronization issues occur, the system retries

broadcasting updates until all participants are synchronized.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

Table 3.2.3.16 Select Timetable Use Case Description

Use Case ID

00016

Use Case Name

Select Timetable

Brief Description Allows user to select one of their generated timetables to submit for
merging in a collaborative session. The selected timetable becomes
the student’s contribution to the shared merged timetable.

Actor User

Trigger The user clicks on a generated timetable and chooses the option to
submit it for merging.

Precondition 1. The user is logged into the system.

2. The user has generated at least one timetable.
3. The user has joined or created a collaborative session.

Normal flow of 1. The system displays a list of generated timetables for the user.

events 2. The user selects one timetable from the dropdown.

3. The system previews the selected timetable.

4. The user submits the selection.

5. The system stores the selected timetable as the student’s
submission for merging.

Sub Flows 2a. User can preview each timetable before selecting.

4a. If user changes their mind, they can change the selection.

Alternate Flows

la. If no timetable has been generated, the system notifies: “No
timetables available.”
5a. If submission fails due to a system error, the system displays:

“Submission failed, please try again.”

Table 3.2.3.17 Session Chat Use Case Description

Use Case ID

00017

Use Case Name

Session Chat

Brief Description Allows user within the same collaborative session to exchange
messages in real time. The chat supports coordination, discussion of
timetable adjustments, and decision-making among participants.

Actor User

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

Trigger

The user types a message in the chat box and clicks “Send”.

Precondition

1. The user is logged into the system.

2. The user has joined a collaborative session.

Normal flow

of

1. The user enters a collaborative session.

events 2. The system displays a chat box linked to the session.
3. The user types a message into the chat input box.
4. The user clicks Send.
5. The system broadcasts the message to all users in the same
session.
6. Other participants see the message in their chat box instantly.
Sub Flows 5a. The system timestamps each message and displays the sender’s

name.

Alternate Flows

4a. If the message is empty and Send is clicked, the system ignores

the action.

Table 3.2.3.18 View History Use Case Description

Use Case ID

00018

Use Case Name

View History

Brief Description Enables user to access previously saved timetables. They can filter
and view timetables by mode (manual, auto, merged), intake, and
trimester.

Actor User

Trigger User navigates to the My History section.

Precondition 1. The user is logged into the system.

2. At least one timetable has been saved to history.

Normal flow

events

of

1. The user opens the My History section.

2. The system displays all saved timetables with metadata
(mode, intake, trimester, timestamp, label).

The user applies filters if needed.

The system updates the displayed list accordingly.

The user selects a timetable to view.

A

The system displays the timetable details.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

Sub Flows

2a. The system provides sorting options.

Alternate Flows

2b. If no timetable is saved, the system displays: “No saved
timetables found.”
Sa. If the selected timetable file is corrupted or unavailable, the

system notifies: “Unable to load timetable.”

Table 3.2.3.19 Submit Feedback Use Case Description

Use Case ID

00019

Use Case Name

Submit Feedback

Brief Description Allows user to submit feedback to the administrator regarding the
timetable system. Users can also view responses from the admin and
mark the feedback as read once reviewed.

Actor User

Trigger User navigates to the Feedback section and chooses to submit new
feedback or view existing feedback.

Precondition 1. The user is logged into the system.

2. The feedback feature is enabled in the system.
Normal flow of 1. The user navigates to the Feedback section.
events 2. The user clicks Submit Feedback.
3. The user writes a message and submits it.
4. The system saves the feedback and notifies the admin.
5. The user can later return to the Feedback section to see the
admin’s reply.
6. The user clicks Mark as Read after reviewing the reply.
7. The system updates the feedback status to Read.
Sub Flows 5a. The system displays both pending feedback and replied feedback

in separate sections.

Alternate Flows

3b. If the feedback message is empty, the system prevents
submission.
4a. If the system fails to save due to server error, system displays:

“Unable to submit feedback.”

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

Table 3.2.3.20 Upload Course Use Case Description

Use Case ID

00020

Use Case Name

Upload Course

Brief Description

Admin uploads course details in the system for a new semester. The
uploaded file ensures that students have the latest course offerings

available when planning their timetables.

Actor

Administrator

Trigger

Admin navigates to the admin site dashboard and selects upload

course.

Precondition

1. The admin is logged into the system.
2. A valid course file is prepared according to the required

format.

Normal flow

events

of

The admin navigates to the dashboard section.

The admin clicks the Upload Course.

The system prompts the admin to select a course file.
The admin selects the file and uploads it.

The system validates the file format and contents.

If the file is valid, the system saves the course details.

The system confirms: “Course upload successful!”

e A e R e

The courses are now parsed and available for students in the

timetable planner.

Sub Flows

5a. The system displays a preview of the uploaded courses for admin

confirmation.

Alternate Flows

4a, If no file is selected, the system cancels the upload and prompts:
“Please select a file to upload.”

5c. If the format is invalid, the system displays: “Invalid file format.”
6a. If the validation fails, the system displays an error message with

details for correction.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

Table 3.2.3.21 View Upload History Use Case Description

Use Case ID 00021

Use Case Name View Upload History

Brief Description Admin can view the history of previously uploaded course files,
including the timestamp of each upload and the corresponding

filename. This allows tracking and verification of past course

updates.
Actor Administrator
Trigger Admin navigates to the Upload History section from the dashboard.
Precondition 1. The admin is logged into the system.

2. Atleast one course file has been uploaded previously.

Normal flow of 1. The admin navigates to the Upload History page.
events 2. The system retrieves all past upload records from the
database.
3. The system displays the records on a table, showing:
e Upload timestamp (date and time).
e Filename of uploaded course file.

4. The admin reviews the history for verification.

Sub Flows -

Alternate Flows 2a. If no history exists, the system displays: “No course uploads
found.”

Table 3.2.3.22 Preview Courses Use Case Description

Use Case ID 00022

Use Case Name Preview Courses

Brief Description Admin can preview uploaded course details before finalizing them
into the system. This ensures correctness and completeness of course
data.

Actor Administrator

Trigger The admin selects the Preview Courses option after uploading a
course file.

Precondition 1. The admin is logged into the system.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

2. A course file has been uploaded successfully.
Normal flow of 1. The admin uploads a course file.
events 2. The system processes and parses the uploaded file.
3. The admin clicks Preview Courses.
4. The system displays the list of parsed courses with details.
5. The admin reviews the course details for accuracy.
Sub Flows -

Alternate Flows

2a. If uploaded file is invalid or corrupted, the system shows an error
message: “Invalid file format. Please upload a valid course file.”
4c. If no course data is found in the uploaded file, the system shows:

“No course details available for preview.”

Table 3.2.3.23 View Created Sessions Use Case Description

Use Case ID

00023

Use Case Name

View Created Sessions

Brief Description Admin can view all collaborative sessions created by users, including
session details such as creation date and time, and the number of
participants currently in each session.

Actor Administrator

Trigger The admin selects the View Created Sessions option in the admin
panel.

Precondition 1. The admin is logged into the system.

2. Atleast one session has been created by users.
Normal flow of 1. The admin navigates to the Created Sessions page in the
events admin panel.
2. The system retrieves all existing collaborative session records
from the database.
3. The admin reviews the list of sessions.
Sub Flows -

Alternate Flows

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

Table 3.2.3.24 Reply to Feedback Use Case Description

Use Case ID 00024
Use Case Name Reply to Feedback
Brief Description Admin can manage and reply to student feedback. The admin site
provides three sections (Pending, Read, Replied) to help organize
feedback and ensure timely responses.
Actor Administrator
Trigger The admin selects the Feedback from the dashboard.
Precondition 1. The admin is logged into the system.
2. At least one feedback has been submitted.
Normal flow of 1. The admin navigates to the Feedback page.
events 2. The system displays feedback organized into three sections:
e Pending: New feedback that has not yet been replied.
e Read: Feedback that has been opened and read.
e Replied: Feedback that has been responded to.
3. The system displays feedback details (username, message).
4. The admin types a reply and submits it.
5. The system sends the reply to the respective users and moves
the feedback to the Replied section.
Sub Flows -

Alternate Flows

2b. If no feedback exists, the system show: “No feedback available.”

3.3 Timeline

3.3.1 Overview

The timeline of the Smart Student Timetable Planner project is planned in accordance with the

selected development methodology, and it spans several structural phases to ensure systematic

completion.

In this initial phase, the proposal for the project was reviewed thoroughly. The problem

statement and project objectives were clearly identified, followed by defining the project scope

to ensure all goals can be achieved efficiently. A literature review of similar systems and

websites was conducted to analyze their strengths and weaknesses. Based on this research, the

tools and technologies for development were chosen. Furthermore, the project timeline was

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

outlined, system use cases were written, and the initial database scheme was designed and

created. This phase served as the foundational stage for the rest of the development process.

This phase focused on the construction of the system’s core functionalities. It began with the
development of the login module, for the authentication of students and administrators.
Following this, modules such as the Manual and Auto Scheduling Modules, the Genetic
Algorithm and the Comparison Module were developed and completed. In parallel, FYP 1

documentation and presentation preparation were carried out.

In the User Design phase also includes future development in FYP 2 of advanced features like
the Real-Time Collaboration Module, Export Timetable Module, and Administrative Module,

which are scheduled for completion by mid-August.

In the final stage, the entire system will undergo thorough software testing to ensure all features
function correctly and the system is free of major bugs or performance issues. During this time,
the FYP 2 Report will be written and refined for submission. The project will conclude with

the FYP 2 Presentation to both the supervisor and the moderator.

3.3.2 Gantt Chart

Smart University Timetable System B Instagantt

Feb 2025 Mar 2025 Apr 2025 May 2025 Jun 2025 Jul 2025 Aug 2025 Sep 2025 Oct 2025

Figure 3.3.2.1 Gantt Chart of the Project Timeline

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

3.4 Summary

This project utilizes the Rapid Application Development (RAD) methodology, enabling
flexible, iterative development with ongoing testing and easy adaptation of features throughout
the process. The tools and technologies used for both front-end and back-end development are
clearly outlined. Diagrams such as the activity and use case diagrams, along with detailed
descriptions, illustrate the functionalities available to students and administrators. The system’s
development is described based on the implemented functions in the code. A Gantt chart is
used to organize the project timeline, ensuring efficient time management and smooth progress

without delays.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

Chapter 4
System Design

In this chapter focuses on the program development which includes the server-side
development, login and logout function development, manual scheduling, auto scheduling,
timetable comparison, real-time collaboration, view timetable history, feedback, and for
administrative module, which includes upload courses, view upload history, preview courses,

view created sessions and managing feedback module.

2.1 Program Development

4.1.1 Server-side Development

The backend of the Smart Student Timetable Planner is implemented using Node.js with the
Express framework, offering a lightweight and modular server architecture. The package.json
file defines project metadata and dependencies such as express for routing, cors for cross-origin
requests, and papaparse/csv-parser for reading and parsing CSV files. These modules enable
the server to deliver static files, handle API requests, and process course data efficiently. The
project is configured with a start script that launches server.js, which serves as the entry point

of the application.

The core server logic in server.js begins by reading a master course list (masterlist.csv) that
contains detailed course session information. This data is parsed with papaparse, transformed
into structured JSON, and stored in memory to allow rapid API access. Each course entry
includes lecture and tutorial/practical sessions, with lectures treated as compulsory components.
Several REST API endpoints are provided to support timetable construction and data access.
For instance, /api/courses returns the parsed course dataset, /api/update-session allows updates
to session details such as timing or group allocation, and /generateTimetable runs a simplified

Genetic Algorithm (GA) to generate non-conflicting timetables based on selected courses.

The GA implementation on the server initializes a random population of candidate timetables
and applies basic evaluation rules to avoid conflicts. While currently simplified, the framework
is designed to be extended with mutation, crossover, and fitness evaluation functions for more

sophisticated optimization of scheduling. Static resources such as login.html and auto-

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

scheduling.html are served directly via Express middleware, integrating backend logic with the

client-side interface.

Overall, the backend of the Smart Student Timetable Planner demonstrates a modular and
extensible design. By combining structured CSV parsing, efficient API delivery, and a
foundation for GA-based scheduling, it provides a robust backbone for supporting intelligent

academic timetable generation and management.

File Edit Select

i8]

TIMETABLE2

TERMINAL

Figure 4.1.1.1 package.json

Figure 4.1.1.2 server.js

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

Figure 4.1.1.3 server.js

4.1.2. Login Function Development

The login functionality of the Smart Student Timetable Planner was developed to provide a
secure yet seamless user authentication process. The interface is designed using HTML and
CSS, ensuring a clean and responsive layout across devices. It features input fields for the
username and password, role selection buttons, and a login button, all styled with padding,
shadows, and rounded corners for clarity and usability. A consistent colour scheme and sticky
navigation bar enhance the overall user experience, while the form is centrally aligned for

accessibility on both desktop and mobile screens.

From a functional perspective, the login process is powered by a JavaScript script that manages
form submission through an event listener. When a user submits the form, the script prevents
the default page reload and instead collects the entered credentials together with the selected
role. These details are sent via a POST request to the /login endpoint using the Fetch API. The
server responds with a JSON object that indicates whether authentication was successful. Upon
success, the username and role are stored in sessionStorage, and the user is redirected to either
the main student page (main.html) or the admin page (admin.html) depending on their role. If
the login fails, an error message is dynamically displayed, providing immediate feedback

without requiring a page refresh.

On the server side, the login logic is implemented using Node.js and the Express framework.

The /login endpoint verifies the submitted username, password, and role against predefined

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

credentials. For successful logins, a JSON response is returned containing the username and
role, allowing the client to manage access control on the frontend. Logout functionality is also
provided through a /logout endpoint, which destroys the user’s session and clears the
authentication cookie before redirecting back to the login page. Middleware functions such as
isAuthenticated and isLoggedIn are implemented to demonstrate session-based access control,
ensuring that only authenticated users can access protected routes like main.html or other

secure resources.

Overall, the login and logout modules combine a responsive client-side design with a
lightweight server-side authentication mechanism. This structure provides a solid and
extensible foundation for secure user access management, while maintaining ease of use for

both students and administrators.

loginhtml X

2 powesshet +~ [@ -

Figure 4.1.2.1 Login.html

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

Go Run Terminal Help < £ timetable2

loginhtml X

TIMETABLEZ

ntListener(

TERMINAL +~ 0 @

> TIMELINE
X @0A0 £ LiveShare Ln160,Col 8 Spaces:2 UTF-8 CRIF {J HTML 8 @Golive 0Q

Figure 4.1.2.2 Login.html

File Edit S View Go Run Terminal - P timetable?

TIMETABLE2

TERMINAL

> OUTLINE

> TIMELINE

Figure 4.1.2.3 Login and Logout endpoint in server.js

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

4.1.3 Manual Scheduling Development

The manual scheduling module in the Smart Student Timetable Planner provides students with
an interactive way to manage their course schedules. This system allows students to manually
select courses choose specific sessions (lectures, tutorials, and practicals) and ensure that their
schedule is free from conflicts. The design of the module ensure flexibility, while also

maintaining academic rules and guidelines, making it a robust tool for course management.

When the page is first loaded, the script checks if the student has a previously saved schedule
in their browser’s sessionStorage. If a saved schedule exists, it retrieves the data and displays
it in the schedule table, allowing the student to pick up where they left off. If there is no saved
schedule, the student starts with an empty schedule. After checking for a saved schedule, the
script fetches all available course data from an API endpoint (/api/courses). The list of courses

is stored locally, allowing it to be filtered based on the trimester selected by the student.

Figure 4.1.3.1 Loading courses from API

The system works based on trimesters, so the first step is for the student to select a trimester.
This is done using the updateTrimester function. Once a trimester is selected, the system
updates the course list to only show the courses that are offered in the chosen trimester. The
list is displayed in a table format, where each course is shown with a “Select” button. When
the student clicks on “Select” course, the system displays the different sessions (lectures,

tutorials, and practicals) available for that course.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

currentTrimester);

courseTableBody . appendchild(row);

Figure 4.1.3.2 Update Trimester function

Upon selecting a course, the renderSessions function is called to display the available
sessions for that course. Each session is displayed in a table with important information like
the group, day, time, venue, and session type (lecture, tutorial, or practical). The student can
then choose the session(s) they wish to add for by checking a checkbox next to the session.
This interactive session selection allows students to pick and choose their preferred time

slots.

s

OUTLINE

TIMELINE

Figure 4.1.3.4 Render Sessions function

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

Once the student has selected their desired sessions, they can click the “Add Course” button to
add the sessions to their schedule. However, before the registration is finalized, several
important checks are performed:

1. Clash Detection: The system checks whether the newly selected sessions conflict with any
existing sessions in the student’s schedule. This is done by comparing the start and end times
of the selected sessions with those already scheduled, ensuring there are no overlaps.

2. Lecture Session Validation: The system checks that the student has selected the required
number of lecture sessions for the course. If a course requires multiple lectures, the student
must select all of them; Otherwise, they will not be able to add for that course.

3. Practical/Tutorial Validation: The system ensures that the student selects only one practical
or tutorial session for a given course. This rule is enforced to ensure that the student does not

register for multiple overlapping practicals or tutorials.

If all checks pass, the selected sessions are added to the studentSchedule array, which stores
the student’s current timetable. This updated schedule is then displayed in the scheduled table,

and the session data is saved in sessionStorage for future use.

The system also offers a “View Timetable” feature, which allows the student to see their entire
schedule in a grid format. The timetable span from 8:00AM to 7:00PM, with time slots in 30-
minute intervals. The system dynamically generates rows and columns for each time slot,
representing the days of the week (Monday to Friday). As sessions are added to the timetable,
they are placed in the corresponding time slots, with the length of the session determining how
many rows it will span. For example. A 2-hour session will occupy 4 rows in the timetable,
and the system merges these cells to visually represent continuous sessions. The timetable is
sorted by day and time, ensuring a clear and easy-to-read display. Any overlapping sessions

are handled by removing redundant cells. Providing a clean, uncluttered view.

Each session that the student has registered for is displayed in the schedule table with a “Delete”
button next to it. If the student wishes to remove a session, they can click this button, which
prompts a confirmation message. If confirmed, the session is removed from the
studentSchedule array, and the updated schedule is saved back to sessionStorage. The schedule
table is then re-rendered to reflect the changes, allowing the student to manage their course

load flexibly.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

TIMETABLE2
de_module

Figure 4.1.3.5 Delete Session and View Timetable Function

The Export Timetable feature was developed to allow students to generate portable copies of
their manually created schedules for external use and reference. Two export formats are
supported: PNG images and CSV files. The PNG export is implemented using the html2canvas
library, which captures the rendered timetable grid as an image. This enables students to
download a visually identical copy of their timetable, which can be stored on devices, shared
with peers, or printed for offline reference. The CSV export option, on the other hand, provides
a structured text-based representation of the timetable. By converting the schedule into comma-
separated values, students can open and further process their timetables in spreadsheet
applications such as Microsoft Excel or Google Sheets. This ensures compatibility for students
who may prefer to analyse or reorganize their timetable data in tabular form. Both export
options are accessible through a dropdown menu integrated into the interface, providing

flexibility in how students preserve and share their schedules.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

indexhtml X

TERMINAL

top\timetable2>

OUTLINE

Figure 4.1.3.6 Export Timetable

The Save to History functionality extends the system’s usability by maintaining a personal
record of previously generated timetables. When students choose to save a timetable, the
timetable grid is first captured as an image using html2canvas. The resulting image, along with
metadata such as the timetable label, intake, and trimester, is sent to the backend through the
/api/user/history/save endpoint. The server then stores this information in a user-specific
history structure, which is retrievable even after the user logs out and logs back in. This feature
ensures continuity, as students can revisit and review their past schedules without having to
recreate them from scratch. It also provides a mechanism for comparison between multiple
timetable versions, supporting better decision-making in course and session selection. By
combining image-based storage with contextual metadata, the Save to History feature offers

both visual clarity and organizational efficiency in timetable management.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

sionstorage.getItem

TERMINAL

op\timetable2>

> OUTLINE
> TIMELINE
X @0A0 & Live Share Ln 1017, Col 1 Spaces:2 UTF-8 CRIF {} HIML &8 ®Golve 0

Figure 4.1.3.7 Save Timetable to History

4.1.4 Auto Scheduling Development

In the auto scheduling section, it is designed to provide students with an automated way to
generate valid and personalized course schedules based on selected courses and individual time
constraints. This file forms the user interface where students can interact with the scheduling
system, input their preferences, and visualize the generated timetables. The system is tailored
to address common student needs such as avoiding scheduling conflicts, respecting unavailable

time slots, and ensuring complete course registration within a given academic trimester.

Upon loading, the HTML page retrieves various data stored in the browser’s sessionStorage,
which may include the selected courses, the current trimester, and the student’s unavailable
time slots. This data is used to render course options dynamically for the selected trimester,
allowing students to mark the courses they wish to enrol in. Each course selection is captured
and stored to maintain consistency across user sessions and page refreshes. Moreover, the page
incorporates a time constraint selection interface, implemented as a grid of checkboxes that
represent time slots across weekdays and working hours. This grid allows students to specify
their unavailable periods during the week, such as when they may have part-time jobs or
personal commitments.

A critical feature of this page is the “Generate Schedule” button, which initiates the scheduling

process. When clicked, the system collects all the relevant data, selected courses and

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

unavailable times, and processes it through a Genetic Algorithm (GA). The algorithm then
generates multiple valid timetable combinations that meet all defined constraints. These
schedules are displayed to the user in a structured timetable format, with course session visually
arranged in a grid representing days and times. Each session is color-coded and labelled to

indicate the course code, session type (lecture, tutorial, or practical), and location details.

OUTLINE
> TIMELINE

[sl =i}

auto-schedulinghtml X

Figure 4.1.4.2 Render Course and Render Time Constraints function

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

Figure 4.1.4.3 Get Selected Sessions Function

The Export Timetable feature allows students to preserve their generated timetables in two
different formats: PNG images and CSV files. When the export as image option is chosen, the
timetable grid is first cloned and placed in an off-screen container to ensure a clean layout. The
html2canvas library is then used to capture the table and render it into a high-resolution canvas.
This canvas is converted into a downloadable PNG file, enabling students to save, print, or
share their timetable in its original visual form. In contrast, the CSV export option provides a
structured representation of the data timetable. The timetable is processed into a grid covering
all hours and weekdays, with each session represented by its course code and type. The grid is
converted into comma-separated values and packaged as a downloadable file that can be
opened in applications such as Microsoft Excel or Google Sheets. By offering both visual and
data-driven exports, the system ensures flexibility, catering to students who prefer either a

quick visual reference or a structured dataset for further analysis.

Ln 86, Col 26 Spacesi2 UTF-8 GRUF () HTML 8 @ Golie 0

Figure 4.1.4.4 Export Timetable

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

The Save to History feature enhances the planner by maintaining a record of timetables within
the system itself. When students choose to save a timetable, the application checks for a valid
user session before processing each generated schedule. For every timetable, the grid is cloned
and captured into a high-quality image using html2canvas. This image, together with metadata
such as username, label, intake, trimester, and mode, is transmitted to the backend via the
/api/user/history/save endpoint. The server then stores the data in a user-specific history record,
ensuring timetables are linked to the correct account. Saved timetables remain accessible even
after the user logs out and logs back in, allowing students to revisit or compare multiple
versions without having to regenerate them. By combining visual accuracy with contextual
metadata, this feature provides both continuity and organization, supporting better decision-

making in timetable management.

File Edit ew Go Run O timetable2 8-

In) XPLOREF . auta-scheduling html X

~ TIMETAI

] powesshen 4~ [0 @

UTUIN
> TIMELINE
¥ @0A0 & LiveShare Ln865 Col 26 Spacess2 UTF-8 CRIF (I HTML &8 @ colve 0O

Figure 4.1.4.5 Save Timetable to History

4.1.5 Genetic Algorithm Development

The core logic for timetable generation relies on a Genetic Algorithm (GA), a search heuristic
inspired by the process of natural selection. The GA operates by iteratively improving a
population of candidate solutions. In this case, course schedules, based on fitness criteria that
reflects the validity of a schedule. This evolutionary approach is well-suited to complex

scheduling problems, where the solution space is vast and includes numerous constraints.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

The process begins with the generation of an initial population of random schedules. Each
schedule is a combination of lecture sessions (which are mandatory for each course) and either
one tutorial or one practical session. The function generatelnitialPopulation() is responsible for
creating these candidate schedules. It ensures that each schedule includes all required lecture
sessions and exactly one non-lecture session for each course, provided there is no conflict with

the student’s unavailable time or with other sessions in the schedule.

The fitness of each schedule is evaluated using the isValidSchedule() function. This function
ensures that no two sessions in a schedule overlap and that none of the sessions conflict with
the student’s declared unavailable slots. Unlike traditional GAs that assign a numeric fitness
score, this implementation uses a binary evaluation where a schedule is either valid or invalid.
This simplification is effective in pruning the search space and focusing only on feasible

timetables.

The evolution of the population occurs through a combination of crossover and mutation
operations, implemented within te evolvePopulation () function. In each generation, the
algorithm selects pairs of valid parent schedules and produces offspring by combining their
session lists at a randomly selected crossover point. This recombination helps in exploring new
combinations of session arrangements. To introduce diversity and avoid premature
convergence, the algorithm also applies mutations to some schedules. The mutate () function
randomly replaces a session with an alternative option of the same type, provided the change

maintains schedule validity.

The evolution process continues for a fixed number of generations, during which new valid
schedules are produced and stored. At the end of the evolution process, a pool of valid and
optimized schedules is available. These schedules are then stored in sessionStorage and
rendered on the interface using the renderAllSchedules() function. The visual representation
includes up to five valid schedules displayed as weekly timetables, each showing course
sessions in their appropriate time slots. Each session is clearly labelled with its code, type,

group, and venue, allowing students to make informed decisions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

File Edit

“ TIMETAS

Figure 4.1.5.3 Mutate function

4.1.6 Timetable Comparison Development

This module serves the specific function of visually comparing a student’s manually registered
timetable against a set of auto-generated timetables. This page acts as a decision-support tool
for students by allowing them to evaluate and compare different scheduling options before

finalizing their course registration. It is an integral component of the Smart University

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

Timetable System, which offers both manual and Genetic Algorithm (GA)-based scheduling

modes.

Several utility functions are defined to support time parsing and data normalization across
different session formats. These functions ensure compatibility between manual and auto-
generated session data, as two types may use slightly different field names. Function such as
getSessionDay, getSessionStart, getSessionEnd, and getSessionCourseCode abstract away
these differences, providing a unified interface for retrieving session attributes. Additionally,
time-handling utilities like toMinutes and formatHour are employed to calculate durations and

display time ranges in a readable format.

This page loads both the manual and aut-generated schedules from sessionStorage, where they
were previously stored during the scheduling processes in other parts of the system. The
loadComaprison() function serves as the entry point when the page is loaded, retrieving and

parsing these stored schedule arrays for further processing and rendering.

The core rendering logic is encapsulated in the renderTimetableGrid() function, which
constructs a visual timetable in HTML table format based on a given schedule array. The
function generated a grid where each row represents an hourly time slot, and each column
corresponds to a weekday. For each cell in the grid, it checks whether a course session is
scheduled to start at that day and hour. If so, the session is inserted into the grid with appropriate

rowSpan values to reflect its duration in hours.

To handle overlapping sessions and avoid duplicate rendering, the script maintains an internal
cellOccupied map. This structure tracks cells that are already occupied by longer sessions and
ensures that merged cells spanning multiple rows are rendered correctly without interference.
Each session is labelled with details including the course code, session type, group number,
start and end times, and venue. These details are styled with varied font sizes to maintain clarity

and compactness within each cell.

Two distinct rendering pathways are defined for manual and auto-generated timetables. The

renderManualTimetable() function specifically loads the student’s registered schedule from

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

sessionStorage under the key “studentSchedule” and renders it using the timetable grid function.

If no such data is found, a fallback message “No registered timetable found” is displayed.

On the other hand, auto-generated schedules are handled by the renderAutoTimetables()
function. This function introduces pagination logic to support the display of multiple valid
schedules generated by the Genetic Algorithm. Only a maximum of five timetables is rendered,
and the user can navigate through them using “Next” and “Previous” buttons. The currently
displayed timetable is labelled to distinguish it from others. Each time a new schedule is
rendered, the pagination status is updated using updatePagination() to reflect the current page

number and enable or disable the navigation buttons as needed.

Figure 4.1.6.2 Render Manual Timetable

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

Figure 4.1.6.3 Render Auto Generated Timetable

x

Figure 4.1.6.4 Update Pagination and Load Comparison functions

4.1.7 PDF Parser Development

This program was developed to automate the conversion of timetable data from PDF format
into a structured CSV file that can be easily processed by the Smart Student Timetable Planner
system. It begins by handling command-line arguments to ensure that both the input PDF and
output CSV file paths are provided. Using the pdfplumber library, the program opens the PDF
file and scans each page for tables. Every table is then broken down into rows, and only non-
empty rows are collected. During this process, empty cells are replaced with blank strings, and
extra whitespace is trimmed to keep the data clean and consistent. This ensures that only

meaningful data is extracted while avoiding formatting issues caused by messy PDF structures.

Once the data has been gathered, the program assumes the first row of the extracted table is the
header, while the remaining rows are treated as the dataset. A pandas DataFrame is created
from this structure, which provides a reliable way to handle tabular data. Finally, the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

DataFrame is exported to a CSV file without including row indices, making the output ready
for integration into the timetable system. This approach not only simplifies the process of
converting complex PDFs into usable data but also ensures that the information is standardized,
clean, and accessible for further operations such as scheduling, searching, and conflict checking

in the application.

v TIMETAI

B powershent +~ [0 & ---

all row:
print(” er Error] No table data found™)
sys.exit(1)

df = pd.DataFrame(jall rows[1:], cclunms:allirmvs[0])|

df.to_csv(csv_path, index=

Figure 4.1.7.2 PDF Parser in parser.py

4.1.8 Real-time Collaborative Development

This client-side script implements the real-time collaboration UI for the merged timetable
feature. It connects to the backend via Socket.IO, lets users create/join collaborative sessions,
submit their personal timetables, preview others’ timetables, and participate in an interactive
merge process where users (or the admin) can click to assign alternative timeslots for
tutorial/practical sessions. The script keeps a local copy of course/session data, maintains
session state in sessionStorage, renders both full merged grids and compact mini-previews, and

provides export / save-to-history capabilities (image snapshot via html2canvas).

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

When the page loads the script opens a persistent socket with const socket = i0(). User and

session identity are retrieved from sessionStorage (username, collabSessionld). Global datasets

include window.courses (the unified course/session masterlist fetched from /api/courses),

allSessions (the server-provided list of merged/updated sessions), mergedTimetable (the

timetable currently displayed), and window.allUserTimetables for storing each user’s

submitted timetables. sessionSubmissions (a Map) and some small state variables (mode,

validSchedules, userTimetables) are used to track submission status and ephemeral Ul state.

This layout favors client-side rendering and immediate feedback while relying on the server

for authoritative session synchronization and synthesis.

The client both listens for and emits events. Important inbound events include:

sessionState — server sends full session state (allSessions + submissions) so the client
can do a full sync and render the timetable and submission list.
sessionSubmissionsUpdated — updates the per-user submission indicator UL
allUserSubmissions — provides all users’ submitted timetables; used to build the
preview gallery.

updateUserSubmission and updateTimetable — incremental events when a single user
submits or when the synthesized timetable is updated; the client updates mini-previews
and re-renders the merged grid respectively.

userJoined, selectedTimetable, chatMessage — Ul notifications for presence, selection

announcements, and chat.

Outbound events emitted by the client include:

userJoined — announces the client has joined a session (username + sessionld).
updateSessionCell — when a user chooses a new slot for a session, the client sends the
updated session object to the server so it can persist and broadcast it.

submitTimetable and API POST to /api/saveTimetable — when a user submits their
chosen timetable; the client both POSTs to the REST endpoint (persistence) and emits
a socket message so the session can be notified immediately.

selectedTimetable — the user notifies peers which auto-schedule index they selected

as “their timetable.”

This combination of REST + socket usage provides both reliable persistence (HTTP) and

low-latency notifications (Socket.1O).

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

Go Run Terminal Help

merge-timetable.html X

lang

Go Run Terminal Help =

etable.html X

~ TIMETABLEZ

submitted ?

OUTLINE
» TIMELINE

Figure 4.1.8.2 Architecture and Main Data Structures

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

merge-timetable html X

OUTLINE

TIMELINE

¥ @0A0 & £ LiveShare 1n248,Col1 Spaces2 UTF-8 CRIF {) HIML 8 @Golve 0O

Go Run Terminal Help

@ XPLOREF merge-timetable html X

~ TIMETABLEZ

> OUTLINE
> TIMELINE >
X @O0A0 & P LiveShare n248,Col1 Spaces2 UTF-8 CRIF {)HIML & ®Golve 0O

Figure 4.1.8.4 Architecture and Main Data Structures

renderGridTimetable(sessions, masterlist) builds a visual grid weekly calendar (Mon—Fri,
08:00—18:00). Sessions are placed into hour rows, and exact vertical positioning and sizing are
computed using the helper timeToMinutes() so fractional starts (e.g., 08:30) and durations are
reflected visually. Cells are marked occupied in cellOccupied to prevent overlapping DOM

cells. Each session block is colored by status (merged, exclusive, conflict) to visually

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

communicate which items were agreed on, exclusive to a single user, or conflicted. Non-lecture
sessions are interactive: clicking a tutorial/practical open highlights of available slots where

that session can be moved.

merge-timetable htm! ®

TIMETABLE2

publi lang

, tim

rGridTimetable(timetable

masterlist) {

push(i);

lement

ouTLINE
TIMELINE >
X @O0A0 & & LiveShare In258,Col22 Spaces2 UTF-8 CRUF (JHTML 8 @Golive 0Q

Figure 4.1.8.5 Timetable rendering & interaction model.

o Run Terminal Help = tim (i ol =ni]

merge-timetable htm| ®
ang

rend

hour's . forEach(hour

* rowHeight;

* rowHeight;

reateElement

{} se
1) usert

OUTLINE
TIMELINE

X @0A0 S

Figure 4.1.8.6 Timetable rendering & interaction model.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

74

TIMETABLE2

OUTUINE
TIMELINE

X @0A0 & £ LiveShare In256,Col22 Spacess2 UTF-8 CRF {} HIML & ®Golive 0Q

Figure 4.1.8.7 Timetable rendering & interaction model.

When a user clicks a non-lecture session, the script calls getAvailableSlots(session) to compute
candidate slots and then highlightAvailableSlots(session, container, sessionsArr) to render
clickable highlight overlays. getAvailableSlots searches window.courses for sessions matching
courseCode and type, deduplicates by day-start-group, and filters out slots that clash with any
compulsory lecture for that course — ensuring a tutorial/practical is never placed overlapping
a lecture. The highlight overlays are positioned precisely in the timetable grid (using top offsets
and heights derived from minute arithmetic) and have click handlers that: update the local
sessionsArr with the newly chosen day/start/end; emit updateSessionCell to the server to save
and broadcast the change; and re-render the timetable locally for immediate feedback. An

outside-click listener removes highlight overlays when the user clicks away.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

75

n Terminal Help

merge-timetable.htm| ®

TIMETABLE2

lang

DEBUG CONSOLE

OUTLINE
TIMELINE

X @A &

Ln 258, Col 22

Figure 4.1.8.8 Finding and highlighting available slots

TIMETABLE2

OUTLINE

TIMELINE >

X @0A0 $ & LveShare In719,Col33 Spaces2 UTF-8 CRIF () HIML & @Golive Q

Figure 4.1.8.9 Finding and highlighting available slots

Users save/submit their chosen timetable by calling submitActualTimetable() which pulls a
selected timetable from sessionStorage and POSTs it to /api/saveTimetable. After the server
persists the timetable, it emits updateUserSubmission to all clients; the client adds a submitted
flag and shows mini previews. The server keeps track of which users have submitted and (when
all required submissions are present) synthesizes a merged timetable and broadcasts it with

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

updateTimetable (or via the /api/synthesizeTimetable endpoint). The client’s
socket.on('updateTimetable') handler receives the authoritative merged result and calls

renderGridTimetable so all participants see the same merged calendar.

TIMETABLE2

|1 document.getElementById

TIMELINE

X ®0A0 & @ LiveShae In719,Col33 Spacess2 UTF-8 CRIF {} HIML & @ Golve 0O

Figure 4.1.8.10 Submission and synthesis flow.

The script populates a user timetable selector (populateUserTimetableSelect) from
sessionStorage (auto schedules) so a user can pick which auto-schedule they want to submit.
The preview system (renderAllUserPreviews, renderMiniTimetable, renderMiniPreview)
displays compact visual summaries of each user’s submitted timetable. The preview code
handles both array-of-sessions and array-of-arrays shapes, and it keeps the preview Ul in sync

when allUserSubmissions or updateUserSubmission arrives.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

minal Help € t BO0Em -

etable.html ®

{} usert

OUTLINE
TIMELINE >
X @0A0 & @ Liveshare 1n719,Col33 Spaces:2 UTF8 CRIF (JHIML & @Golve 0O

Figure 4.1.8.11 Previews, selection Ul and mini rendering.

The merged timetable Ul can be exported as PNG or CSV. For PNG exports and history
saves the script uses html2canvas to capture the gridContainer into an image (high resolution
on save flows), then either triggers a download (export) or POSTs the data URL to
/api/user/history/save with metadata (username, label, mode: "merge", intake/trimester) to
persist the snapshot in the user’s history. Saving to history is protected by checks (session

joined + non-empty grid) and returns user feedback on success/failure.

@

TIMETABLE2

ouTuNE

TIMELINE >
X @0MA0 O @ LweShare In719.Col33 Specess2 U8 CRF () WMt @ @Gotve O

Figure 4.1.8.12 Save to History.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

4.1.9 View Timetable History

The Timetable History module was developed to allow students to manage their previously
saved timetables in a structured and interactive way. This functionality integrates both client-
side rendering and server-side data management to provide features such as filtering, grouping,
viewing, and deleting saved schedules. When the page loads, the loadHistory() function is
executed, retrieving the logged-in username from session storage and sending a request to the
backend API endpoint (/api/user/history/:username). The response is parsed into JSON, and
timetables are dynamically rendered inside the historyContainer. If no timetables exist, the

system displays a user-friendly message to indicate that no records are available.

OUTLINE

TIMELINE >
¥ @0A0 & & LiveShare Ln359,Col 1 Spaces? UTF-8 CRIF {}HIML & @Golve 0

Figure 4.1.9.1 Load History function

A key part of the development involved grouping saved timetables by mode, intake, and
trimester to make browsing intuitive. This grouping ensures that students can easily distinguish
between timetables generated using manual or auto scheduling modes, across different intakes
and trimesters. For example, the script dynamically creates expandable sections using
collapsible panels (toggleCollapse() function), enabling a hierarchical view. At the lowest level,
each timetable is displayed inside a table containing metadata such as its label and save

timestamp, along with action buttons for viewing and deletion.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

- B =R

netable-historyhtml X {} [0

TIMETABLE2
public

OUTLINE
TIMELINE

Figure 4.1.9.2 Toggle Collapse function

The view timetable feature was designed for quick preview without navigating away from the
history page. This is achieved through the viewTimetable() function, which displays the saved
timetable image inside a modal overlay. The modal is styled with semi-transparent background
shading and a centered preview box, providing a focused display of the timetable. The image
is retrieved directly from the saved data (item.image) and scaled appropriately to fit different
screen sizes. A close button allows students to dismiss the preview, reinforcing usability across

both desktop and mobile platforms.

TIMETABLEZ

OUTUNE

TIMELINE

X @OA0 & £ lveshue 1n359.Col1 Spaces2 UTF8 CRE () ML 8 @Golve Q

Figure 4.1.9.3 View Timetable function

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

Additionally, the delete timetable function (deleteTimetable()) enhances user control over
saved data. When triggered, the system confirms the deletion action for safety before sending
a DELETE request to /api/user/history/:username/:index. The backend processes the request,
removes the timetable entry, and returns a JSON response. If successful, the history view is
reloaded to reflect the updated state in real time. This development choice ensures that students

always see an up-to-date view of their saved timetables without needing a manual page refresh.

X @0A0 & & LiveShare - In359,Col1 Spaces2 UTF-8 CRIF {(J HIML 8 @Golve 0

Figure 4.1.9.4 View Timetable function

4.1.10 User Feedback

The User Feedback module was developed to allow students to communicate directly with
administrators by submitting feedback, reporting issues, or suggesting improvements for the
Smart Student Timetable Planner. The frontend is built with HTML, CSS, and JavaScript,
styled to maintain a consistent theme with the rest of the system. The interface contains two
key sections: a feedback submission form and a feedback history section where users can view
administrator replies. The submission form includes fields for username, feedback type
(general, bug report, or suggestion), and a text area for the message. Once submitted, the
feedback is sent to the backend using a POST request (/api/feedback). To enhance user
experience, the system displays a floating “Thanks for your feedback!” box using CSS

animations, confirming successful submission without requiring a page refresh.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

.getElementByTd

OUTLINE
> TIMELINE >
X @0A0 & £ LiveShare In267,Col 1 Spacess2 UTF-8 CRIF (} HTML & @Golie 0

Figure 4.1.10.1 Alert Float Box

To provide users with continuous engagement, the module also retrieves previously replied
feedback through a GET request (/api/feedback/:username). The replies are dynamically
rendered within the history section, showing both the user’s original message and the
administrator’s response. A red notification dot appears on the navigation bar whenever unread
replies exist, ensuring users are aware of new updates. Each feedback entry includes an option
to mark replies as read, which sends a request (/api/user/feedback/:id/read) to the server and
updates both the history view and the notification indicator. This interaction enhances usability

by helping students manage and track their communication history with administrators.

> OUTLINE

TIMELINE

X @oAL S B L

Figure 4.1.10.2 Get Request
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

82

The module also integrates real-time updates using Socket.IO, enabling immediate
synchronization when administrators reply to feedback. This eliminates the need for users to
manually refresh the page. When an admin posts a reply, the feedbackReplied socket event
automatically triggers an update of the user’s feedback history and reactivates the red
notification dot. Similarly, when a user marks a feedback reply as read, a feedbackUserRead
event ensures the Ul is updated across connected clients. This design ensures responsive,
interactive, and collaborative communication between students and administrators,

strengthening system reliability and transparency.

OUTLINE

TIMELINE >
X @0A0 & £ Liveshare Ln178,Col29 Spacess2 UTF-8 CRIF {} HTML & @Golve 0

Figure 4.1.10.3 Real-Time Updates

4.1.11 Upload Course

The Upload Course module was developed to streamline the process of importing course data
into the Smart Student Timetable Planner. Instead of requiring manual entry of courses,
administrators can upload an official course timetable in PDF format. The frontend was
implemented using HTML, CSS, and JavaScript to maintain a consistent design with the rest
of the platform. The interface provides a custom file upload selector styled with a drag-and-
drop appearance, alongside a dynamic progress bar that tracks each stage of the upload process.
Once a file is selected, the chosen filename is displayed, and upon submission, the file is sent

to the server using an XMLHttpRequest POST request to the /upload route.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83

To enhance user experience, the module includes visual feedback mechanisms that guide the

administrator through the entire process. The progress bar is updated in real time, showing the

percentage of the file uploaded. Once the upload is complete, the status automatically switches

to Processing, and upon successful parsing by the backend, it changes to Upload & Parsing

Complete! with a green highlight. In the event of errors—such as invalid files or connection

failures—the system provides clear alerts and a red failure status, ensuring administrators

understand the problem and can retry immediately.

OUTLINE
TIMELINE

X @0A0 S Bl

TIMETABLE2

;

document . get€lementBy1d(

(i

oUTUNE
TIMELINE >
X @0A0 & £ LiveShare

Ln213,Col44 Spaces2 UTF-8 CRIF () HML &8 @Golve O

Figure 4.1.11.2 upload.html

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

84

4.1.12 Upload Course History

The Admin Upload History module was designed to provide administrators with a clear and
organized record of all course files that have been uploaded into the Smart Student Timetable
Planner. This feature ensures transparency and accountability by allowing admins to track the
details of every upload, including the file name and the exact time it was submitted. The
interface is structured with HTML and styled using CSS to align with the system’s overall
dashboard layout, ensuring consistency across all administrative modules. A responsive design
approach was used so that the history table adapts seamlessly to various screen sizes, enabling

administrators to review records on both desktop and mobile devices.

The upload history is dynamically populated by fetching data from the backend through a GET
request to the /api/history endpoint. Once the data is retrieved, JavaScript generates table rows
containing each file’s name and upload timestamp, which are displayed in a user-friendly
format using toLocaleString() for readability. This automated retrieval removes the need for
manual record-keeping, ensuring that every upload event is captured and displayed in real time.
By storing and presenting this information, the system ensures that administrators can easily
verify past uploads, identify errors, and confirm that course data has been successfully parsed

into the system.

In265,Col 27 Spaces? UTF-8 CRIF {} HIML & @Golive 0

Figure 4.1.12.1 history.html

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

85

4.1.13 Preview Courses

The script begins by fetching course data from the backend using the /api/courses endpoint,
and it also retrieves the latest upload information through /api/history. Once the data is
successfully fetched, the script dynamically populates the table body with course records,
ensuring only a subset of rows (30 per page) is displayed at a time. Pagination is managed
through renderTable() and updatePagination(), which allow administrators to navigate between

pages efficiently without overloading the interface with large amounts of data. This ensures

smooth performance and readability when previewing potentially extensive course datasets.

OUTLINE

TIMELINE

Figure 4.1.13.1 preview.html

Figure 4.1.13.2 preview.html

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

86

4.1.14 View Created Sessions

The Created Sessions module was developed to provide administrators with an overview of all
collaborative sessions created within the Smart Student Timetable Planner. The interface is
structured with a navigation bar, a sidebar menu, and a main content area. The sidebar organizes
key admin functions such as course uploads, history tracking, feedback, and session
management, ensuring a consistent and intuitive navigation experience. The main content area
displays a dynamically populated table that lists session details, including the session name,
unique ID, creation time, and participant list with count. The table is generated through a
JavaScript function (loadSessions()), which retrieves session data via the /api/sessions endpoint.
This ensures that the administrator always has access to the most up-to-date information stored

on the server.

In addition to static retrieval, the script integrates real-time updates using Socket.1O, allowing
the session table to refresh dynamically without requiring a page reload. When a new session
is created, the "sessionCreated" event immediately inserts the session record into the table,
while the "participantJoined" event updates the participant count and list when new users join
a session. This real-time synchronization ensures administrators maintain an accurate view of
ongoing collaborations. Moreover, the module incorporates a feedback notification system,
where the script fetches pending feedback from /api/admin/feedback and toggles a red dot
indicator to alert administrators of unread or unreplied messages. The notification state is
further kept in sync with "newFeedback" and "feedbackReplied" socket events, ensuring
administrators can respond promptly to user concerns. Together, these features enable seamless
monitoring of system activity, providing both visibility and responsiveness within the

administrative workflow.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

87

OUTLINE
TIMELINE

X @A &

eoDdm -

admin-sessionhtml X {} [0

DEBUG CONSOLE

OUTLINE

TIMELINE

Figure 4.1.14.2 admin-session.html

4.1.15 Admin Feedback

The Feedback module was developed to enable administrators to efficiently review, respond,
and organize user feedback within the Smart Student Timetable Planner. The layout consists
of a sidebar navigation for accessing other admin functions, a filter bar for narrowing feedback
by type or status, and a structured feedback table grouped into Pending, Read, and Replied

sections. The table is dynamically populated by fetching records from the server through the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

88

/api/admin/feedback endpoint. Feedback entries include details such as the user, feedback type,
message content, status, and available actions. Pending feedback provides administrators with
Reply and Mark as Read options, while read and replied entries are displayed for reference. A
badge indicator is also included in the sidebar, showing the number of pending items so

administrators always remain aware of unresolved feedback.

It also enhances interactivity by integrating modal-based reply handling and real-time updates
via Socket.]O. When administrator clicks “Reply,” a modal window is triggered, allowing the
reply to be composed and submitted through POST request (/api/admin/feedback/:id/reply).
Replies are then immediately reflected in the table and broadcast to connected clients using the
"feedbackReplied" socket event. Similarly, marking feedback as read triggers POST request
(/api/admin/feedback/:id/read) and synchronizes updates across clients with a "feedbackRead"
event. Socket listeners ("newFeedback", "feedbackReplied", "feedbackRead") ensure that
changes made by one administrator are instantly reflected on all connected sessions,
maintaining a consistent and collaborative view. Filters further allow administrators to refine
results based on feedback type or status, improving searchability in large datasets. This modular
approach to design ensures scalability, responsiveness, and clear communication flow between

users and administrators, significantly strengthening the system’s support and feedback loop.

E

X ®0A0 § 2 LiveShare In339,Col49 Spacess2 UTF-8 CRIF {(} HIML & @Golve Q

Figure 4.1.15.1 feedback-admin.html

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

89

ateElement

ppendchild(tr);

¥ @0A0 & & LiveShare 8 Ln339,Col49 Spacess2 UTF8 CRIF {}HIML &8 @ Golve 0Q

nhtml X =

nding. length;

> OUTLINE
> TIMELINE
¥ @0A0 & £ LiveShare In339,Col49 Spaces2 UTF-8 CRIF (I HIML & @PGolve 0

Figure 4.1.15.3 feedback-admin.html

4.2 Summary

The overall program development of the Smart Student Timetable Planner integrates multiple
modules—login, scheduling, feedback, and collaboration—designed to provide a seamless and
interactive user experience. The front end was implemented using HTML, CSS, and JavaScript

for intuitive interfaces, while the backend relied on Node.js, Express, and Socket.IO to manage

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

90

real-time updates, data storage, and communication between clients and the server. Key
modules such as the Genetic Algorithm-based auto-scheduling ensure conflict-free timetable
generation, the collaborative merging feature supports real-time session sharing, and the
feedback system enables structured communication between students and administrators.
Together, these developments emphasize usability, reliability, and responsiveness, resulting in

a robust system that simplifies course planning and enhances student—admin engagement.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

91

Chapter 5

System Implementation

In this chapter, it covers the hardware and software setup, user interfaces, and challenges faced
during development. The system runs in a client-server environment using Node,js, Express,
and Socket.IO for real-time processing, with data handled through CSV and JSON integration.
User interfaces were designed to be clear and responsive, featuring student modules for
scheduling, merging and feedback, and an admin dashboard for course and feedback
management. Key challenges included developing the GA in Auto Scheduling and ensuring
real-time synchronization in timetable merging, preventing conflicts, and managing

highlighted modifiable slots.
5.1 Hardware Setup

Table 5.1.1 Hardware Components and Requirements

Description Specifications
Model HP Pavilion Laptop 15-eg2xxx
Processor 12" Gen Intel ® Core™ i7-1255U
Graphic NVIDIA GeForce MX550
Memory 8.00 GB (7.68 GB usable)

5.2 Software Setup

Table 5.2.1 Software Components and Requirements

Description Specifications

Source Code Editor | Visual Studio Code, Google Colab

Programming Python, Java, Nodejs, HTML, CSS, JavaScript,
Language JSON,Express, Socket.IO, papaparse
Database MySQL

Operating System Windows 11 Home Single Language

Documentation Microsoft Office

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

5.3 User Interface

5.3.1 Login Page

When a user accesses the URL of the website, it will redirect them to this page with a modern
login interface for the Smart Student Timetable Planner. The user interface of this login page
is designed to be simple, clean, and user-friendly, with a focus on clarity and ease of navigation.
At the top, a sticky navbar with the system’s name, “SMART STUDENT TIMETABLE
PLANNER?”, provides consistent branding and remains visible as the user scrolls. The login
form itself'is presented inside a centered card with rounded corners and a subtle shadow, giving
it a modern and professional look. Users can select their role, either Student or Admin, through
clearly styled toggle buttons at the top of the card, with the active role highlighted in orange
for quick recognition. Below, the login form features neatly spaced input fields for username
and password, styled with rounded edges in a bright orange that matches the theme, with hover
effects for interactivity. Overall, the interface emphasizes accessibility, role clarity, and a

visually appealing layout that guides users smoothly through the login process.

SMART STUDENT TIMETABLE PLANNER

Login

Figure 5.3.1.1 Login Page

5.3.2 Main Page

The user interface of this main page is designed to be modern, clean, and welcoming, providing
users with quick access to the main features of the Smart Student Timetable Planner. At the
top, a sticky navigation ban spans the full width of the page with the system’s name on the left
and neatly arranged links on the right, allowing users to move easily between pages such as

Home, Auto Scheduling, Manual Scheduling, Comparison, Merging, History, Feedback, and

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

Logout. The hero section dominates the page with a bright gradient background and a split
layout: on the left, bold headings and descriptive text introduce the platform, while two
prominent orange buttons guide users directly to either Manual or Auto Scheduling. On the
right, a large illustrative image of a timetable ensuring that on smaller screens the navbar and
hero section stack vertically for readability and accessibility. Overall, the interface is intuitive,

visually engaging, and structured to highlight the platform’s core scheduling features.

SMART STUDENT TIMETABLE PLANNER Home AutoScheduling Manual Scheduling Comparison Merging My History Feedback Logout

TIMETABLE

Figure 5.3.2.1 Main Page

5.3.3 Manual Scheduling Page

This page is designed to provide students with a structured and interactive way to register and
organize their courses. At the top, a navigation bar spans across the screen, displaying the
system’s title on the left and quick links on the right to different sections such as Home, Auto
Scheduling, Manual Scheduling, Comparison, Merging, History, Feedback, and Logout. This

ensures consistency and allows users to easily switch between different features in the system.

The main content is arranged into card-based sections, each guiding the student through the
registration process step by step. The first section allows students to select their intake month
using a dropdown menu, ensuring that course availability is filtered based on the correct
academic intake. Below that, another dropdown enables users to select their trimester, further
narrowing down the list of courses to those relevant for that period. The layered filtering design

minimizes confusion and keeps the selection process straightforward.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

94

Once the trimester is chosen, the interface presents a course table listing available courses with
their codes and names, along with an action button to select a course. After a course is selected,
a session selection table appears, displaying details such as group, day, time, venue, and type
of session. Each session includes a checkbox, allowing students to choose the required lectures
and either one tutorial or practical session. A clearly styled “Add Course” button enables
students to confirm their choices, which then get added to their personal schedule.

The selected sessions are displayed in the schedule table, which lists all registered courses with
full details including trimester, course code, session type, group, day, time, and venue. Each
entry includes a modify option, giving users flexibility to remove or adjust sessions if
necessary. To provide a visual overview, a weekly timetable grid is displayed below, where all
registered sessions are mapped according to their times and days. This dual representation,
detailed table and visual grid, helps students cross-check for potential clashes and view their

timetable in a familiar calendar-like format.

Finally, below the timetable, the interface includes a button group for exporting and saving
schedules. The export button provides a dropdown menu to export the timetable as an image
or Excel file, while a dedicated save button allows students to save their timetable to their
history for future reference. These features are styled consistently with the overall theme,
ensuring that students can not only build their schedules but also store and share them
conveniently. Overall, the manual scheduling interface combines clarity, step-by-step
guidance, and flexibility to give students full control over constructing their academic

timetable.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

95

SMART STUDENT TIMETABLE PLANNER Home AutoScheduling Manual Scheduling Comparison Merging MyHistory Feedback Lagout

Select Intake Month:

Junuary v
Select Trimester
¥is1 v

Choose a Course

Course Code Course Name

Action
UBMMIOT SUN ZI'S ART OF WAR AND BUSINESS STRATEGIES Setect
uceoI004 PROGRAMMING CONCEPTS AND PRACTICES Seiect
uccoma: PROBABILITY AND STATISTICS FOR COMPUTING Seiect
UCeD2003 OBJECT-QRIENTED SYSTEM ANALYSIS AND DESIGN eect
UCCDNS3 INTRODUCTION TO CALCULUS AND APPLICATIONIL) Setect
UCCNI004 DATA COMMUNICATIONS AND NETWORKINGIL) Beect

Choose a Session

Figure 5.3.3.1 Select Intake, Trimester and Course List Available

SMART STUDENT TIMETABLE PLANNER Home.

Merging MyHistory Feedback Logout

Choose a Session

Group Day Start Time End Time Venue Session Type Select
fonday 1 LOK3 ecture
800 10:00
10:00 1 N0O3 tutoral
1 120 N tutoria
13 1200 NOO3 ttorial

Figure 5.3.3.2 Session Available for the Selected Course

-
SMART STUDENT TIMETABLE PLANNER Home AutoScheduling ManualScheduling Comparison Merging My History Feedback Logout

Your Schedule

Timester C0r* Course Nama 0S5O0 Group Day Srt - Edyenue Modity

Figure 5.3.3.3 Schedule for Selected Course
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

96

a

SMART STUDENT TIMETABLE PLANNER Home Auke fcnaduiog MaeslScheduiiog Compurmen Mergioq My Halory Fesdback Logoul

Your Scheduled Timetable

Figure 5.3.3.4 Timetable View, Export and Save Timetable Button

5.3.4 Auto Scheduling Page

The Auto Scheduling Page is designed to provide students with an automated and efficient way
of generating valid timetables using a GA. The interface maintains a consistent navigation bar
at the top, offering quick access to all main sections of the platform such as Home, Manual
Scheduling, Comparison, Merging, History, Feedback, and Logout. This ensures users can
easily navigate across different features without confusion. The main content is structured
within card-based sections, each clearly labeled with headers to guide the user step by step

through the scheduling process.

The interface begins with intake month selection and trimester selection, both provided in
neatly styled dropdown menus. Once chosen, the system dynamically updates the course list to
display only the relevant options. The course selection section presents a list of available
courses for the chosen trimester, while the time constraints section allows users to specify
unavailable slots, ensuring the generated timetable respects personal preferences. A prominent

“Generate Schedule” button is provided to initiate the timetable generation process.

After schedules are generated, the results are displayed in the Generated Schedule section,
which includes a detailed timetable table along with a set of functional controls. Users can
choose from multiple generated schedules using a dropdown menu, and then either export the
timetable in image or Excel format or save it directly to their history for later use. The export

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

97

button includes a dropdown design for clear and accessible output options, while the save
button is highlighted in green to emphasize successful storage. Overall, the Auto Scheduling
page provides a structured, interactive, and user-friendly interface that simplifies complex

timetable generation into an accessible step-by-step workflow.

SMART STUDENT TIMETABLE PLANNER Home Auto Scheduling Manual Scheduling Comparison Merging My History Feedback Logout

Select Intake Month

January -

Select Trimester

¥is1 -

Choose Courses

EBUBMMIOT - SUN 2I' ART OF WAR AND BUSINESS STRATEGIES

EAUCCNI004 - DATA COMMUNICATIONS AND NETWORKING (L)

Select Time Constraints

8:00- ©:00- 10:00- 100- 12:00- 1300- 4:00- 15:00- 1600- 17:00-
2:00 10:00 100 1z:00 13:00 14:00 15:00 16:00 7:00 18:00

Figure 5.3.4.1 Select Intake, Trimester, and Course Available

SMART STUDENT TIMETABLE PLANNER Home 2 Morging My History Feodback Logout

EBUCCN1004 - DATA COMMUNICATIONS AND NETWORKINGI(L)

Select Time Constraints

8:00- 9:00- 10:00- T00- 12:00- 13:00- 14:00- 15:00- 16:00- 17:00-
9:00 10:00 100 12:00 13:00 14:00 15:00 16:00 17:00 18:00

.

<]

(<)

1<}

<]

Figure 5.3.4.2 Select Time Constraints

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

98

SMART STUDENT TIMETABLE PLANNER Home Auto Scheduling Manual Scheduling Comparison Merging My History Feedback Lagout

Generated Schedule (GA)

Select Timstable toExport: Timetstlel m ﬂ

Figure 5.3.4.3 Generate Schedule, Export and Save buttons and Generated Timetables

SMART STUDENT TIMETABLE PLANNER Home AutoScheduling Manual Scheduling Comparison Merging My History Feedback Logout

00 - 17:00 uccn0on ucconss

Figure 5.3.4.4 Generated Timetables

5.3.5 Timetable Comparison Page

The Timetable Comparison page is structured to allow students to directly evaluate the
differences between their manually created timetable and the automatically generated
alternatives. At the top, the navigation bar provides consistently with the rest of the system,
ensuring quick access to other key features such as Home, Manual Scheduling, Auto
Scheduling, Merging, History, Feedback, and Logout. Below the navigation bar, a clear page
header titled “Timetable Comparison” introduces the purpose of the page, reinforcing its role

in helping students make informed scheduling decisions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

99

The main content is divided into two clearly defined sections, displayed within a card-based
layout for readability. On the left, the Manual Scheduling Timetable section presents the
students manually registered timetable, allowing them to review their chosen courses and
timeslots. On the tight, the Auto-Generated Timetable section displays timetables produced
through the system’s Genetic Algorithm, offering alternatives valid scheduling options. To
manage multiple possible schedules, a pagination feature is included at the bottom of the auto-
generated section, allowing users to navigate between pages using Previous and Next buttons

while the current page number is displayed for reference.

The timetables themselves are rendered in neatly bordered tables with colored headers and
clear labeling, ensuring that session details are easy to compare immediately. The use of
consistent formatting between the manual and auto-generated schedules supports
straightforward side-by-side evaluation. Overall, the interface is designed for clarity,
efficiency, and direct comparison, helping students determine whether to retain their manually

created schedule or adopt an optimized alternative generated by the system.

SMART STUDENT TIMETABLE PLANNER Moms AutoSchodulion M Schocuing Comparion Margea Myitary Fescinck loget

Timetable Comparison

Manual Scheduling Timetable

Figure 5.3.5.1 Timetable Comparison Page

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

100

SMART STUDENT TIMETABLE PLANNER Mome AuiDScnesuing MamuolScheduing Comparson Merging Mylstory Feeabock Logout

"""""""

Figure 5.3.5.2 Timetable Comparison Page

5.3.6 Merging Timetable Page

The Merging Timetable Page is designed to provide students with a collaborative platform
where multiple users can combine their individual timetables into a shared schedule. At the top
of the page, a responsive navigation bar is included to ensure consistency with the rest of the
system. It features the system’s logo on the left and quick links to key pages such as Home,
Auto Scheduling, Manual Scheduling, Comparison, Merging, History, and Feedback on the

right. This keeps navigation intuitive and accessible.

The main container adopts a clean, card-style layout with rounded edges and subtle shadows
to maintain readability and separation from the background. Within the container, the session
management section is prominently placed, giving users options to join an existing
collaborative session or create a new session. The session status panel beneath these buttons
provides real-time feedback on whether the user is currently connected to a session. This
interaction is supported by a floating modal box that appears for session creation or joining,

featuring input fields for session name, password, and participants limits.

The timetable visualization itself is structured in a grid layout that organizes days and timeslots
clearly. Each cell uses color-coded highlights to indicate the type of entry: green for merged
sessions, pink for conflicts, and blur for exclusive sessions. A legend is provided above the
grid to ensure users can easily interpret the meaning of each color. Beyond this static

visualization, the design also introduces highlighted slots that can be shifted interactively.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

101

When users click on a practical or tutorial session, the system highlights alternative available
timeslots where the session could be moved. This provides participants with direct control over
resolving clashes by selecting alternative slots without needing to regenerate the timetable

entirely.

Additional interaction elements further enhance collaboration. Users can select their personal
timetable from a dropdown list, preview it in a compact mini-grid format, and submit it to the
session. A participants list is shown in real-time, reflecting who has joined the session and
which timetables have been submitted. Notifications and submission status are displayed to

keep all users updated on progress.

To support teamwork and communication, a session chat panel is integrated at the bottom of
the page. This live chat allows participants to coordinate decisions and resolve conflicts while
merging. Export functionality is also included, allowing the finalized timetable to be
downloaded either as an image or Excel file for personal use or sharing. Finally, a “Save”
button enables students to store their merged timetable into the system’s history for later

reference.

SMART STUDENT TIMETABLE PLANNER Home AutoScheduling Manual Scheduling ~Comparison Merging MyHistory Feedback Logout

Notin any session
Merged Timetable for Year/intake: January, Ti- = =
[0 werges (=)
Join § io

o .

I 1
Preview
(

Figure 5.3.6.1 Join Collaborative Session

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

102

SMART STUDENT TIMETABLE PLANNER Home.

Collaborative Session
=

Notin any session

Merged Timetable for Year/Intake: January, Tr

(D Merged [T Contict [T Exciusive Create Session

Create Session
Select Timetable to Merge

...

Preview

e=

Participants

(

Submissions
Export ¥

Session Chat

Figure 5.3.6.2 Create Collaborative Session

Merging My History Feedback Logout

SMART STUDENT TIMETABLE PLANNER Home Auto Scheduling Manual Scheduling Comparison Merging My History Feedback Logout

Select Timetable to Merge

Em—]

Preview
Monday | Tuesday Wednesday Thursday Friday
00~ 500
| ucconas ecwoos,
p— 5 mcunn | Grpd pracicn | Grvep 3
o | G 3
. ueeonas
e nere | G 1 uocwons
cturs | G |
o8- 1290
uccowes
z uccwios wecozoes
e ectars | o | ner | G 1 vocuoss
o | G
199 woe [
ucconas. ucconss.
el =
— vecozoey ummwon
ectere |G | tmcire | Groep 1
w00 w00
uccozoas ucconss.
ectars| G 1 cture | Groun 1
00 - 500

Figure 5.3.6.3 Preview Selected Timetable

SMART STUDENT TIMETABLE PLANNER Home

Collaborative Session

You are in session dsff3tee as 123

Merged Timetable for Year/Intake: January, Trimester: Y151

(D mergea (@) Contict ([0 Exciusive
Time Monday Tuesday Wodnesday Thursd
800 UCCOM3 (Groun UCCH008 (G0,
900 wcturs £)
#00-1000 practca
9:00. [TOReOmIGEST #0000
o

10:00 900° 500
10:00 - UCcTa3 (G) VN4 (e
%00 wiors perey

00 100 005" 1200
100 0CC004 (Group 41
g no0-13%0
12:00 Do) LCCD1008 (Grewy

wctus wcare
13:00 200300 2003800
13:00 - | 9eCO004 Groug ¥
14:00 101600
14:00 - | Uoconas iaeie s ecoss Gous)
15:00 405" 500 3400- 00 i
15:00 - GEE02003 (G
et .

16:00 a0 #3163
16:00 - [UCC03003 o Ueconss (Greus
17:00 500~ oo 60 - w0
17:00 -
18:00

Select Timetable to Merge

Timetatle & .m

Figure 5.3.6.4 Preview Merged Timetable

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Merging MyHistory Feedback Logout

103

SMART STUDENT TIMETABLE PLANNER Home AutoScheduling Manual Scheduling Comparison Merging My History ~ Feedback Logout

&

Figure 5.3.6.5 Session Chat
5.3.7 Timetable History Page
The Timetable History Page provides students with a structured and user-friendly interface to
manage their previously saved timetables. A consistent navigation bar at the top ensures
seamless movement across modules such as Auto Scheduling, Manual Scheduling,
Comparison, and Merging, while clearly highlighting the active page. This consistent design

enhances usability and creates a smooth transition across different features of the platform.

The main content area is organized into collapsible sections that group timetables by mode
(manual, auto, or merged), then further by intake and trimester. Each timetable entry displays
key details such as its label and the date and time it was saved. Color-coded badges help
distinguish between timetable types, allowing users to identify schedules immediately. A filter
option above the list also enables users to refine their view based on scheduling mode,

improving efficiency in locating specific timetables.

To support quick interaction, each timetable entry includes action buttons for viewing or
deleting. Viewing opens a model overlay that displays a high-quality preview of the timetable,
while the delete option allows users to remove unnecessary entries with confirmation. This
combination of grouping, filtering, and previewing ensures the page balances clarity with

interactivity, giving students full control over their scheduling history.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

104

SMART STUDENT TIMETABLE PLANNER Home AutoScheduling Manual Scheduling Comparison Merging MyHistory Feadback Logout

Label Saved AL Actions.

Manus Timeatle w1202, 50955 oM [o

/512025, 25744 M [o |
[oo |

9/5/2025, 3:00:55 PM

Figure 5.3.7.1 Timetable History Page

5.3.8 User Feedback Page

The User Feedback Page is designed to provide students with an intuitive and interactive
navigation bar at the top, ensuring easy access to other modules such as scheduling, merging,
comparison, and history, while clearly highlighting the active feedback section. The layout
follows a card-based structure, giving the page a clean and organized look. The first card
contains the feedback submission form, where users can enter their username, select a feedback
type (general, bug, or suggestion), and input their message in a text area. A clearly styled
submission button completes the form, supported by a floating “thanks” box that briefly

appears after successful submission to reinforce user acknowledgment.

Below the submission form, the page displays the Replied Feedback section, which organizes
admin responses into Unread and Read categories. Unread feedback entries are highlighted
with a light background to draw attention, and each entry includes the original message, the
admin’s reply, and a “Mark as Read” button for managing visibility. Once marked as read,
entries automatically shift into the collapsible Read section, which can be expanded or
collapsed on demand. A red notification dot in the navigation bar provides a real-time visual
cue for users when new replies are received, improving responsiveness and ensuring students

do not miss updates.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

105

The interface also integrates real-time interactivity through Socket.IO, allowing admin replies
and user actions such as marking messages as read, to update the page instantly without
requiring a refresh. This design choice enhances engagement and streamlines communication

between students and administrators.

SMART STUDENT TIMETABLE PLANNER Home Auto Scheduling Manual Scheduling Comparison Merging My History Feedback ® Logout

Submit Your Feedback

Replied Feedback
Unread

You: Timetable is good!

Read ¥

You: a wrang timetable, view after
You: Something wrang in the manual timetable, | cannat view my timetable!

You: Manual Timetable is not coming out! Please fix this

Figure 5.3.8.1 User Feedback Page

5.3.9 Admin Dashboard

The Admin Dashboard Page provides administrators with a centralized and intuitive interface
to manage the Smart Student Timetable Planner. The page adopts a clean, card-based layout
with a navigation bar at the top and left-aligned sidebar for quick access to core features,
including course uploads, history, previews, created sessions, and feedback. Visual consistency
is maintained through a warm orange theme, rounded cards, and responsive design, ensuring
usability across devices. Quick-action cards in the main content area allow admins to instantly
access key functions such as uploading courses, viewing upload history, and previewing parsed

data, with supporting statistics to provide context.

To enhance system monitoring, the dashboard integrates a bar chart using Chart.js to visualize
uploads per month, helping administrators track activity trends over time. Below, a recent
uploads table lists the latest course files with timestamps, ensuring transparency and easy
verification of updates. Real-time interactivity is incorporated through Socket.IO, enabling

instant notification for new or pending feedback, indicated by a dynamic red dot in the sidebar.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

106

Crestod Sessioms Uploads per Month

;;;;;;;;;

Fite Hame [r——

Figure 5.3.9.1 Admin Dashboard Page

5.3.10 Admin Upload Course Page

The Admin Upload Course Page provides a simple and efficient interface for administrators to
upload PDF files containing course schedules. The page adopts a consistent layout with the
main navigation bar at the top and a sidebar on the left for quick access to dashboard functions
such as course uploads, history, previews, sessions, and feedback. The main content area
highlights the upload functionality, featuring a custom file selection box with a dashed border
design that emphasized drag-and-drop or click-to-select interactions. Once a file is selected,

the filename is displayed for confirmation, ensuring transparency before submission.

To enhance user experience, the interface integrates a progress bar that visually tracks the
upload and parsing process. The bar dynamically updates from initial upload to processing and
completion, with clear color-coded states for progress, success, or error. This feedback
mechanism ensures that administrators remain informed about the status of their uploads in
real time. Additionally, real-time notification indicators in the sidebar alert admins of pending

feedback, ensuring that while managing uploads, they can also stay responsive to student input.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

107

SMART STUDENT TIMETABLE PLANNER Logout

Feedback

Figure 5.3.10.1 Admin Upload Course Page

5.3.11 Admin Upload Course Page

The Upload History Page provides administrators with a structured and user-friendly interface
to review past course uploads. The page follows the same consistent layout as other admin
pages, with a top navigation bar for logout access and a left-hand sidebar offering quick
navigation to dashboard functions such as uploading, previewing courses, viewing sessions,
and managing feedback. A notification indicator is also embedded in the feedback menu item,
ensuring that pending student feedback remains visible while administrators manage upload

records.

At the center of the interface, the main content area displays a clear table listing uploaded
course file alongside their upload timestamps. This tabular design allows administrators to
quickly verify successful uploads and track submission timelines. The table is styled with
alternating rows, borders, and responsive behaviors to ensure readability across devices. For
smaller screens, the layout adapts by transforming rows into block displays with labels,
preserving clarity on mobile. Overall, the design emphasized accessibility, consistency,

efficiency, enabling administrators to manage and verify uploaded course data with ease.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

108

SMART STUDENT TIMETABLE PLANNER Logout

Dashboard Fila Name

Upload Caurses

Upload History

Created Sessions

Foedback #

Figure 5.3.11.1 Upload History Page

5.3.12 Preview Courses Page

The Preview Courses Page provides administrators with a structured and efficient interface for
reviewing uploaded course data. The design follows a consistent layout used across the admin
panel, featuring a top navigation bar for system-wide access and a sidebar for quick navigation
to modules such as dashboard, upload, history, sessions, and feedback. A notification indicator
in the feedback menu item ensures that pending student responses remain visible while the
admin is managing course data. The main content area displays the most recently uploaded file

information at the top, ensuring clarity on the source of the previewed data.

The core of the interface is a tabular course preview, where course details such as trimester,
intake, code, name, group, day, start and end time, venue, and session type are displayed in a
clean, column-based layout. To improve usability, the table integrates pagination controls at
the bottom, allowing administrators to navigate through large datasets in batches of 30 rows.
The pagination includes both “Prev” and “Next” buttons with state-based enabling and

disabling, as well as a page info label for clarity.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

109

SMART STUDENT TIMETABLE PLANNER Logout.
Admin Panel Preview Courses
Previewing courses from file “masterlist.pdf* uploaded on 8/12/2025, 1:1:42 PM
Dashbeard
e S S T
Upload History ¥is1 UCCD004 RO IG CONCEPTS AND PRACTICES. 1200 14:00 LD
Preview Courses.
S - S —— -
Feedback o s INCEPTS AND PRACTICES s 0
- -
L T —— . [| [
.
Figure 5.3.12.1 Preview Courses Page
X
SMART STUDENT TIMETABLE PLANNER Logout
e
. ; ot
ol
:

Figure 5.3.12.2 Pagination Button in Preview Courses Page

5.3.13 View Created Sessions Page

The View Created Sessions page provides administrators with a clear interface to monitor
collaborative scheduling sessions within the system. The layout follows the admin panel’s
consistent design, beginning with a navigation bar at the top for logout access and a sidebar for
quick navigation to core features such as dashboard, upload, history, preview, and feedback,
with a notification indicator highlighting pending feedback. The main content area focuses on
displaying all active and past sessions, beginning with a header and brief description for context,

followed by a structured sessions table.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

110

The table presents essential session details in a simple, column-based format, including session
name, session ID, creation time, and the list of participants with a count. Dynamic updates are
integrated through real-time Socket.IO events: newly created sessions appear instantly, while
participants count update automatically as users join. This ensures that administrators can
monitor session activity without manual refresh, keeping the interface responsive, transparent,

and efficient for managing collaborative timetable sessions.

SMART STUDENT TIMETABLE PLANNER Logout.

Dashboard

Upload Courses
Session Name Session ID

Upload History 123 d5fi3tee

Figure 5.3.13.1 View Created Sessions Page

5.3.14 Admin Feedback Page

The Admin Feedback Page is designed to streamline the management of user feedback within
the Smart Student Timetable Planner. The layout follows the standard admin dashboard design,
with a top navigation bar for logout and a sidebar for quick access to different features. A
notification badge on the sidebar highlights the number of pending feedback items, ensuring
administrators are alerted to new or unresolved issues. The main content area is centered around
a feedback management table, where feedback is organized into sections, Pending, Read, and

Replied, each visually differentiated with colored headers for quick recognition.

Administrators are provided with interactive controls to handle feedback efficiently. A filter
bar at the top allows sorting by type (general, bug, suggestion) and status, enabling focused
management. Pending feedback items include action buttons to mark as read or open a modal

for direct replies, where responses can be typed and sent back to users. Once replied, the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

111

feedback is updated dynamically in the table and tracked in real time using Socket.1O, keeping
the interface responsive and up to date. This design ensures feedback is systematically

categorized, easily traceable, and manageable in a clear, user-friendly environment.

SMART STUDENT TIMETABLE PLANNER Logout 2
o User Feedback Management
Dashboard AnTypes ArStatus v n
Upload Courses. User Type Message Status Reply Action
Upload History e

S —— Pending [ety) vtrk oz s |
Preview Courses

Read Feedback
Created Sessions user general 123

user bug Why i cannot choose timetable?

Figure 5.3.14.1 Pending and Read section in Admin Feedback Page

:

SMART STUDENT TIMETABLE PLANNER Lagout
Created Sessions user general 173
m mimi general 123

user suggestion haha

user general hi

user general hi

user general Good!

[Replied Feadback

user general Something wrong in the manual timetable, | cannat view my timetable! Replied The issue is fixed!

.

Figure 5.3.14.2 Replied section in Admin Feedback Page

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

112

5.4 Implementation Issues and Challenges
There are some issues and challenges faced during the development of the Smart Student

Timetable Planner.

e Challenges in Developing the Genetic Algorithm for Auto Scheduling
Implementing a Genetic Algorithm (GA) for course scheduling presents several
technical and logical challenges. One major issue involves defining a suitable
chromosome structure that accurately represents possible timetable configurations,
including lectures, tutorials, and practicals. Designing a fitness function that balances
multiple constraints, such as session conflicts, time availability, and course type
requirements, is another complexity. Additionally, ensuring that the selection,
crossover, and mutation processes maintain timetable validity without introducing
conflicts or incomplete schedules requires careful algorithm tuning. The random nature
of GAs can also lead to inconsistent results or excessive computation time when dealing
with large course datasets, requiring optimization strategies such as elitism, constraint

filtering, or population pruning.

e Challenges in Implementing the Merging Timetable Page
Another issue faced during the implementation of the merging timetable page is
ensuring real-time synchronization and consistency across all users in a session. When
multiple users submit or adjust their timetables simultaneously, conflicts may arise in
merging sessions, especially when handling overlapping slots or choosing between
tutorial and practical alternatives. Another challenge is designing a clear and interactive
interface that highlights modifiable slots while preventing accidental shifts of fixed
lecture sessions. Additionally, maintaining efficient performance of the genetic
algorithm for schedule synthesis while ensuring smooth updates on the client side posed
difficulties, particularly in managing state transitions and reflecting changes instantly

across all connected users.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

113

5.5 Summary

In summary, the system implementation chapter details the setup and execution of the Smart
Student Timetable Planner, highlighting its client-server architecture, responsive user
interfaces, and real-time collaboration features. It emphasizes how hardware and software
components were integrated to support both student and admin functionalities, while also
addressing challenges such as synchronization, conflict management, and optimization of the
genetic algorithm. This implementation ensures the system is practical, user-friendly, and

capable of handling dynamic scheduling requirements effectively.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

114

Chapter 6

System Evaluation and Discussion

In this chapter focused on two main aspects: the experimentation with the Genetic Algorithm
(GA) and the comparison between real-world timetables and system-generated timetables. The
GA experiments examined how parameters such as population size, crossover, and mutation
rates influenced the quality and diversity of valid schedules, ensuring compulsory lectures were
included and practical/tutorial sessions were optimally allocated without conflicts. In parallel,
the comparison with actual university timetables confirmed the system’s accuracy and
reliability, showing that generated schedules closely matched real-world arrangements while

offering greater flexibility and efficiency.

6.1 Experiment on Genetic Algorithm

6.1.1 Overview

This experiment investigated the use of a Genetic Algorithm (GA) to optimize student
timetable scheduling for a set of Year 1 Semester 1 (Y1S1) university courses. The goal is to
automatically generate feasible combinations of course sessions that minimize schedule
conflicts and adhere to student-defined preferences. GA evolves a population of candidate
timetables using biologically inspired operations such as crossover, mutation, and selection, to

iteratively improve solution quality.

A fitness function is used to evaluate each timetable in the population based on the number of
conflicts and violations of constraints. The system also employs early stopping criteria, either
when a desired fitness level is reached or when improvement stagnates over several

generations.

6.1.2 Code Structure and Functionality

The system begins by uploading a sample dataset from the masterlist.csv which contains course
offerings. It filters the data for the target trimester (Y1S1) and selected courses. Lecture
sessions are fixed and treated as compulsory, whereas tutorial or practical sessions are variable

and subject to scheduling.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

115

(& Experiment for GA ipynb % & B @ 2 share 4 Gemini 0

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text Connect v A
;= @ |mport pandas as pd + + o B0 0D
= matplotlib.pyplot as plt

inport. random
Bl from google. colab inport files

<y # 1) upload & load ma ist.csv
ist.csv now")
) 2
daf = pd.read_c iter (uploaded.keys())))
& # 2) Filter for Y151 & selected courses
TRIM = "v151°
[am} SELECTED = ['UCCD18@4", 'UBMMIE11", 'LCCD1143", "UCCDI153", 'UCCD2003°, "UCCN16@4']

df = df[df["trimester’].eq(TRIM) & df['co

- code"].isin(SELECTED)]

lectures = dF[df]
optionals = |
ci dFL(df[" co
for ¢ in SELES

1.to_dict(records’)

== ¢) & (df['session_type'] 1= 'Lecture’)].to_dict(’records’

Figure 6.1.2.1 Experiment Settings and Filter Trimester

Each GA individual is a list of integers, each indicating the selected index of an optional session
for one of the courses. For example, an individual [0,1,2,0,1,0] represents one specific
combination of tutorial or practical sessions for the six selected courses. The fitness function
evaluates the quality of a timetable by applying penalties for:

e C(Class overlaps: Sessions that occur at overlapping times on the same day.

e Friday sessions: Student prefers a free Friday.

e C(lasses before 9:00 AM: Early classes are undesirable.

These constraints are incorporated by converting session times to minutes and calculating
overlaps. The function returns a fitness score inversely proportional to total penalties. This
means the fitness ranges from near 0 (worst case with many conflicts) to near 1 (ideal schedule).

However, due to the fixed nature of lecture sessions, some penalties may be unavoidable.

< o
def
x}
oy sched = build_schedule(genes)
conf = 0
o penalty = 0
for 1, s1 erate(sched):
o F
s strip().lower() == "friday':
) <
ty
in sched[is1:]:
‘day'] == s2['day']:
s1s, sle = to_min(s1['start_time']), to_min(s1[en
s2s, s2e = to_min(s2['start time']), to_min(s2[er
if not (sle <= s2s or s2e <= s1s):
conf 4= 1
0 1.0 / (1 + conf + penalty)
=]

Figure 6.1.2.2 Fitness function for constraints

6.1.3 Genetic Algorithm Design

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

116

An initial population of 20 individuals is randomly generated using available optional sessions

for each course.

The tournament selection method chooses the best individual out of a randomly sampled group
size of 3. This method balance exploration and exploitation by favouring fitter individuals

while allowing weaker ones a chance.

def tournament_select(pop, fits, k=3):
out = []
for _ in pop:
aspirants = random.sample(list(zip(pop, fits)), k)
out.append(max(aspirants, key=lambda x: x[1])[@].copy())
return out

Figure 6.1.3.1 Tournament Selection function
Crossover involves selecting a random point in the genome and swapping gene segments
between two parents to produce two offspring. The operation introduces new combinations of
session choices, which helps the algorithm explore the solution space.
def crossover(a, b):

pt = random.randint(1, len(a) - 1)
return a[:pt] + b[pt:], b[:pt] + a[pt:]

Figure 6.1.3.2 Crossover function
Mutation randomly alters genes (session selections) with a given probability (mut rate). This

introduced diversity and helps prevent the population from getting stuck in local optima.

def mutate(gen, rate):
for i in range(len(gen)):
if random.random() < rate and optionals[SELECTED[i]]:
gen[i]
eturn gen

- random. randrange(len(optionals[SELECTED[1]]))

Figure 6.1.3.3 Mutate function

evolve
pop = tournament_select(pop, fits)
next_pop = []
for i in range(®, len(pop), 2):
pl, p2 = pop[i], pop[(i+1) % len(pop)]
if random.random() < cx_rate:
cl, c2 = crossover(pl, p2)
else:

€1, €2 = pl.copy(), p2.copy()
next_pop += [c1, c2]
pop = [mutate(ind, mut_rate) for ind in next_pop]

Figure 6.1.3.4 Evolve function

There are two stopping criteria are used to terminate the GA:
e Fitness Threshold: If the best fitness in a generation exceeds 0.95, the algorithm stops
early, indicating a near-optimal timetable.
e Stagnation: If there is no improvement in the best fitness for 15 consecutive

generations, the algorithm halts to save computation time.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

117

4) GA runner with early stopping
def run_ga(pop_size=20, gens=10@, cx_rate=0.7, mut_rate=0.1,
threshold=0.95, patience=15):
pop = init_pop(pop_size)
best_hist, avg hist = [], []
best_so_far, stagnant = @, @

for g in range(gens):
fits = [fitness(ind) for ind in pop]
best, avg = max(fits), sum(fits)/len(fits)
best_hist.append(best)
avg_hist.append(avg)

threshold stopping
if best »>= threshold:
print(f"v Reached threshold {threshold} at gen {g}")
break
stagnation stopping
if best » best_so_far:
best_so_far, stagnant = best, @
else:
stagnant += 1
if stagnant »= patience:
print(f"0) Stopped—no improvement for ({patience} gens at gen {g}")
break

Figure 6.1.3.5 GA with stopping criteria

6.1.4 Experimental Results and Graph Analysis
The algorithm was executed with five different crossover and mutation configurations, where
cx = crossover rate and mu = mutation rate:
e SetA:cx=0.7, mu=0.01
e SetB:cx=0.7, mu=0.1
e SetC:cx=0.9 mu=0.1
e SetD:cx=09 mu=0.3
e SetE:cx=0.9, mu=0.5
Each configuration was run with a population of 20 for a maximum of 100 generation. The

results are visualized in two plots:

Best Fitness vs Generation

0.9

0.8 1

0.7 4 —— ¢x=0.7, mu=0.01
§ cx=0.7, mu=0.1
‘g 06 — ¢x=0.9, mu=0.1
;] — x=0.9, mu=0.3
g —— ¢x=0.9, mu=0.5

0.5 4 === Threshold=0.95

0.4

> M

T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Generation

Figure 6.1.4.1 Graph of Best Fitness vs Generation

The graph depicting best fitness versus generation illustrates the highest fitness score achieved

in each generation for various configurations of crossover and mutation rates. A key

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
118

observation is that none of the Genetic Algorithm (GA) runs reached the preset threshold
fitness value of 0.95, which was defined as a desirable quality benchmark for an optimal
timetable. Instead, most configurations plateaued between 0.25 and 0.35, indicating a

premature convergence to suboptimal solutions.

This stagnation in fitness can be attributed largely to hard constraints imposed by fixed lecture
sessions. Lecture slots are not subject to the GA’s evolutionary operators, such as mutation and
crossover and therefore remain unchanged throughout the optimization process. These sessions
may inherently contain conflicts such as overlapping with one another or with available
practical/tutorial sessions, or they may occur during undesirable times, such as Fridays or
before 9:00AM, both of which incur penalties in the fitness evaluation. As a result, even the
best possible combination of optimal sessions cannot entirely offset these penalties, effectively

capping the maximum achievable fitness.

Furthermore, configurations involving higher mutation rates exhibit greater fluctuations in best
fitness values across generations. This indicates instability in solution quality, where beneficial
traits discovered in earlier generations may be frequently disrupted due to excessive mutation.
Consequently, while high mutation promotes exploration, it also increases the risk of the

population diverging from promising regions of the search space.

Average Fitness vs Generation

0.9 1

0.8

0.7 —— x=0.7, mu=0.01

cx=0.7, mu=0.1

0.6 — x=0.9, mu=0.1
— x=0.9, mu=0.3
0.5 4 €x=0.9, mu=0.5

Average Fitness

=== Threshold=0.95

0.4 4

0.3 1

0.2 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Generation

Figure 6.1.4.2 Graph of Fitness vs Generation

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

119

The graph showing average fitness across generation offers insights into the overall
performance and evolutionary stability of the population under each configuration. In general,
all tested parameter sets demonstrate incremental improvements in the early generations,

suggesting that the GA can initially identify and propagate advantageous genes.

Configuration employing moderate mutation rates (mu = 0.1) tend to yield smoother and more
consistent improvements in average fitness. This balance allows for controlled exploration of
the solution space while preserving good solutions over generations. In contrast, high mutation
rates introduce significant randomness into the population, resulting in erratic fitness
trajectories and an overall failure to converge toward optimal or even moderately good
solutions. The inconsistency is especially problematic in this context due to the small solution

space constrained by fixed sessions.

In summary, lower to moderate mutation rates strike a better balance between exploration and
exploitation, encouraging the algorithm to gradually refine solutions without discarding
valuable traits. Excessive mutation, while theoretically increasing diversity, ultimately hinders

convergence by constantly altering promising genes and destabilizing the population.

6.1.5 Interpretation of GA Parameters

Crossover Rate (cx) enables recombination of potentially beneficial traits (session selections)
between individuals. High crossover rate (0.9) promotes exploration but relies on the presence
of good genes to mix effectively. Without diverse or high-quality genes in the population,

crossover alone is insufficient for fitness improvement.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

120

Table 6.1.5.1 Summary of the Experimental Results

Set Crossover Rate = Mutation Rate Best Average Stability
(cx) (mu) Fitness Fitness

A 0.7 0.01 Low Very slow Stable but
increase suboptimal

B 0.7 0.1 Moderate | Steady Stable
upward trend

C 0.9 0.1 Good Fast Stable
improvement
early

D 0.9 0.3 Moderate | Fluctuating Slightly
gains unstable

E 0.9 0.5 Poor Random Unstable
fluctuations

6.2 Comparison of Real-World Timetable and Generated Timetable

6.2.1 Overview

In this section, the generated timetable using Smart Student Timetable Planner system was
compared directly with the official timetable using university system. The primary purpose of
this comparison was to verify the accuracy and reliability of the system in replicating actual

schedules without errors, mismatches, or missing sessions.

The main objective of this testing was to determine whether the Smart Student Timetable
Planner can produce a timetable identical to the official real-world timetable. This involved
verifying that the courses, session types such as lectures, tutorials, and praticals, and their
corresponding time slots were all consistent with the university’s published schedule. The test

also aimed to confirm that no extra classes or shortened sessions were generated by the system.

6.2.2 Test Environment and Methodology
The testing was conducted on a standard laptop with 8GB of RAM and an intel i7 processor,
using the web-based Smart Student Timetable Planner application. The test was performed on

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

121

the Google Chrome browser, while the reference timetable was obtained from the university’s
official academic portal. This ensured a consistent and reliable environment for testing and

comparison.

The testing procedure began by logging into the Smart Student Timetable Planner and
generating a timetable for the chosen trimester using the auto-scheduling function. The official
timetable for the same trimester was retrieved using the auto-scheduling function. The official
timetable for the same trimester was retrieved from the university portal. Both timetables were
carefully compared by examining course codes, session types, allocated days and times, session
durations. Any potential differences, such as missing or additional sessions, incorrect time
slots, or mismatched durations, were noted. Screenshots of both timetables were captured to

provide supporting evidence for the analysis.

6.2.3 Test Data

The data used for testing included two sources: the timetable generated by Smart Student
Timetable Planner system and the official real-world timetable from the university portal. Both
contained the same set of courses for the selected trimester, which allowed a direct one-to-one
comparison. Two official real-world timetables from the university portal were collected from
two respondents, which are: Wong Xin Tong, Y3S3, and Elaine Chung Hui Lin, Y3S3. From
these two respondents’ timetables, the system has generated two timetables using the Smart

Student Timetable Planner as below:

My Timetable

NOO3 LDK2 N1128 (Lab) Naot
UCCDIN3T) | UALJ2013(L)1) UCCD3074(F)2) UALI2013(T)
Mon) Physical Physical @)
Physical 1-14 14 Physical
1-14 1-14
LDK2
UCCD3074{L)1)
Physical
114
LDK2 LDK1
UCCO3074(L) UCCDIM3L)1)
Wed m Physical
Physical 14
1-14

LDK1
UCCD3N3(L)
Fri (1)
Physical
14

Figure 6.2.3.1 Wong Xin Tong’s real-world timetable from official university portal

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

122

SMART STUDENT TIMETABLE PLANNER Home Merging My History Feedback Logout
VENEraEU SCnNeaue (oA

SRS ... | - |

Timetable 1

Time Mon Tue Wed Tha Fi
8:00-9:00 uecons
.....

ecoam oz

Tt
9:00-10:00 S

o3
10:00 - 1:00 e

Loctum

oot

TEe vecosm

. Lacture
M00 - 12:00 g ¥
wom

wecosan wecoaon

Fracacar oo
1200 - 13:00 o .

wizs oz
1300 - 14:00
1400 - 1500 vecoim

Locture

su L

15:00 - 16:00 .

Gruun &

16:00 - 17:00

17:00 - 18:00

Figure 6.2.3.2 Wong Xin Tong’s generated timetable from Smart Student Timetable Planner

12:00 01:00 5 . < 06:00 07:00 08:00 09:00 10:00
01:00 02:00 07:00 08:00 09:00 10:00 11:00
UCCD3064(L)
Tue (1)
Physical
1-14

! i i LDK1 LDK1
wed | i UCCD3113(L)(1) = UALB1003(L)(3)

H Physical Physical

{ 1-14 1-14
N112A (Lab) N002

UCCD3064(P)(2) UALB1003(T)

Thu Physical)
1-14 Physical
1-14
LDK1 i
UCCD3113(L)
Fri 1
{ Physical
1-14

Sat
Sun

Figure 6.2.3.3 Elaine’s real-world timetable from official university portal

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

123

Timetable 2

Time

8:00 - 8:00

9:00 - 10:00

10:00 - 11:00

11:00 - 12:00

uccoD3ans

Group 4

uCCD3064

Tue Wed

UCCD3064
Leclure
Group 1
NODE

uccoans
Lecture
Group 1
LDK1

UALBE1003
Lecture
Group 1
LDK1

Thu Fri

uccD3064
Practical
Group 2
N11ZA

UALB1003
Tutorial
Group 2
NOO2

uccoan3
Lecture
Group 1
LDK1

Figure 6.2.3.2 Elaine’s generated timetable from Smart Student Timetable Planner

6.2.4 Testing Results

The results showed that the system-generated timetable was similar to the real-world timetable.

All courses were correctly placed at the expected times, with no missing or extra sessions

detected. The lectures, tutorials, and practical sessions matched perfectly in terms of course

codes, session types, allocated days, and time durations. This demonstrated the system’s ability

to reproduce accurate timetables that are consistent with official schedules.

Table 6.2.4.1 Wong Xin Tong’s Comparison Timetable’s Results

Course Code Session Type Real-World Generated Match
Timetable Timetable
(Day/Time) (Day/Time)

UCCD3113 Lecture Thu 14:00- Thu 14:00- v
16:00 16:00

UCCD3113 Lecture Fri 11:00-12:00 | Fri 11:00-12:00 v

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

124

UCCD3113 Tutorial Mon 9:00-10:00 ' Mon 9:00-10:00 v

UCCD3074 Lecture Tue 8:00-10:00 | Tue 8:00-10:00 Vv

UCCD3074 Lecture Wed 12:00- Wed 12:00- v
13:00 13:00

UCCD3074 Practical Mon 12:00- | Mon 12:00- v
14:00 14:00

UALJ2013 Lecture Mon 10:00- | Mon 10:00- v
12:00 12:00

UALJ2013 Tutorial Mon 15:00- ' Mon 15:00- v
16:00 16:00

Table 6.2.4.2 Elaine’s Comparison Timetable’s Results

Course Code Session Type Real-World Generated Match
Timetable Timetable
(Day/Time) (Day/Time)

UCCD3113 Lecture Thu 14:00- | Thu 14:00- v
16:00 16:00

UCCD3113 Lecture Fri 11:00-12:00 | Fri 11:00-12:00 v

UCCD3113 Tutorial Mon 9:00-10:00 ' Mon 9:00-10:00 v

UCCD3064 Lecture Mon 16:00- | Mon 16:00- v
18:00 18:00

UCCD3064 Lecture Tue 8:00-10:00 | Tue 8:00-10:00 v

UCCD3064 Practical Thu 8:00-10:00 | Thu 8:00-10:00 v

UALB1003 Lecture Wed 16:00- | Wed 16:00- v
18:00 18:00

UALB1003 Tutorial Thu 10:00- | Thu 10:00- v
11:00 11:00

6.2.5 Summary

In summary, the system testing confirmed that the Smart Student Timetable Planner accurately
generates timetables that are identical to the real-world schedules. The comparison revealed no
mismatches, ensuring that the system’s scheduling logic, session mapping, and conflict

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

125

handling are working correctly. This outcome validates the system’s capability to deliver
reliable and precise timetables, demonstrating that it meets the functional requirements and can

be trusted as a dependable scheduling tool for students.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

126

Chapter 7

Conclusion and Recommendation

71 Conclusion

The Smart Student Timetable Planner has successfully addressed the challenges students face
in planning their academic schedules. Using Genetic Algorithm, the system ensures that
students are provided with conflict-free timetables that align with their personal preferences
and academic requirements. This not only reduces the time and effort required for manual

scheduling but also minimizes the risk of errors such as overlapping classes or missed sessions.

In addition to conflict resolution, the system supports both manual and automated scheduling,
giving students the flexibility to customize their timetables according to individual needs. The
collaborative module further enhances the planning experience by enabling real-time
coordination among students, which is particularly useful for group projects or shared study
plans. These features demonstrate the project’s effectiveness in combining technical innovation

with practical usability.

The project also contributes to academic management by incorporating features such as
timetable history, comparison between auto-generated and manuals schedules, and export
functions. These modules provide long-term benefits by ensuring students can keep records of
past schedules and evaluate alternative planning strategies. The inclusion of administrative
tools, such as uploading course data and responding to feedback, ensures the system remains

relevant and sustainable within a university environment.

Overall, the system meets its primary objectives and provides a strong foundation for future
enhancements. It proves that integration optimization algorithms with user-friendly interfaces
can significantly improve academic planning, reducing stress for students while also supporting

institutional efficiency.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

127

7.2 Recommendations

Although the Smart Student Timetable Planner has achieved its goals, there are several areas
where improvements can be made. One key recommendation is to enhance the Genetic
Algorithm to handle larger datasets more efficiently. As student intakes and course offerings
expand, optimizing the algorithm will ensure that timetable generation remains fast and

accurate without compromising system performance.

Another area for improvement lies in collaborative scheduling. While the current module
enables students to work together in real time, it could be extended with intelligent conflict-
resolution suggestions. For instance, the system could recommend optimal adjustment when
two or more students encounter scheduling clashes, thereby simplifying decision-making

during group planning.

Integration with official university systems is also highly recommended. By linking the planner
directly with the student portal and course registration database, data consistency would be
improved, and administrative workloads would be reduced. This would create a seamless
experience for students, eliminating the need for duplicate data entry and ensuring that

timetables remain aligned with official course offerings.

Furthermore, expanding the platform to mobile applications would greatly improve
accessibility. Students could check, update, and share their timetable on-the-go, making the
system a more convenient part of their daily academic routines. Regular updates driven by
student feedback should also be incorporated to ensure the system evolves alongside user

expectations and technological trends.

By implementing these recommendations, the Smart Student Timetable Planner can transition
from a prototype-level project into a fully integrated academic scheduling ecosystem. This
evolution will not only maximize its value to students but also contribute meaningfully to

efficiency of the institution’s academic management processes.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

128

[5]

[6]

[8]

[9]

REFERENCES

Mohd Asyraf Ruslaan, Zalmitah Zakaria, "Univeristy Course Timetabling System
For Part-Time Students," Research Gate, September 2019. [Online]. Available:
https://www.researchgate.net/publication/337601679 University Course Timet
abling System For Part-Time Students. [Accessed 19 July 2024].

T. Miiller, "UniTime : Course Timetabling & Management," [Online]. Available:
https://www.unitime.org/uct _courses.php#:~:text=The%20primary%20objective
%20behind%20course,with%20the%20course%200t%?20interest.. [Accessed 19
July 2024].

B. Sunuami, René Arnulfo Garcia-Hernandez, and Yulia Ledeneva, “Personal
Course Timetabling for University Students based on Genetic Algorithm,”
International Journal of Combinatorial Optimization Problems and Informatics.,
vol. 12, no. 3, pp- 32-49, Sep. 2021, doi:
https://doi.org/10.61467/2007.1558.2021.v12i3.237. [Accessed 1 September
2025].

J. Mohd and A. Fadzil, “Web based personalized university timetable for Ui'TM
students using genetic algorithm / Mohd Radhi Fauzan Jamli and Ahmad Firdaus
Ahmad Fadzil - UiTM Institutional Repository,” Uitm.edu.my, Oct. 2024, doi:
https://ir.uitm.edu.my/id/eprint/106030/1/106030.pdf. [Accessed 1 September
2025].

D. Cimr and J. Hynek, “Heuristic Algorithm for a Personalised Student
Timetable,” Lecture Notes in Computer Science, pp. 79-88, 2018, doi:
https://doi.org/10.1007/978-3-319-98446-9 8. [Accessed 1 September 2025].

J.H. Wong, "TTAP-UTAR : Timetable Arranging Problem - UTAR," GitHub, 30
August 2017. [Online]. Available: https://github.com/wongjiahau/TTAP-UTAR.
[Accessed 06 August 2024].

"TimeEdit.net,2024," [Online]. Available: https://www.timeedit.net/ . [Accessed
04 August 2024].

T. Kissflow, "RAD Methodology | Rapid Application Development Phases,"
Kissflow, 05 April 2024. [Online]. Available: https://kissflow.com/application-
development/rad/rapid-application-development-methodology-essentials/.
[Accessed 06 August 2024].

Hayat Alghamdi, Tahani Alsubait, Hosam Alhakami, Abullah Baz, "A Review of
Optimization Algorithms for University Timetable Scheduling," December 2020.
[Online]. Available: https://etasr.com/index.php/ETASR/article/view/3832/2387.
[Accessed 05 August 2024].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

129

https://doi.org/10.61467/2007.1558.2021.v12i3.237
https://ir.uitm.edu.my/id/eprint/106030/1/106030.pdf
https://doi.org/10.1007/978-3-319-98446-9_8

POSTER

SMART STUDENT TIMETABLE PLANNER

S ~

Timetable Scheduling is a critical process for students to ensure they
can enroll in their required courses without conflicts. This project
introduces a Smart Student Timetable Planner that automates the
scheduling process, helping students generate optimized, clash-free
timetables quickly and efficiently.

OBJECTIVES MOTIVATION

. " . RAD Methodolo
Improve academic planning by addresing) o

o Requirements Planning

» Develop a smart tool to the challenges of course selection and o User Design
streamline course selection lack of real-time collaboration. o 'c::ggsg:ccltive and
and automatically resolve o Finalise and
scheduling conflicts, offering Implementation
dynamic schedule adjustments « Nodejs, HTML CSS,
and intuitive visual timetables. JavaScript and Python for

main development.

Facilitate real-time PROBLEMS « Visual Studio Code as IDE to

collaboration and develop the website
communication, enabling « Difficulty in Course Selection and
synchronized timetable Scheduling

planning with instant updates

. . e | ack of Real-Time Collaboration
and notifications for all users.

in Schedule Planning

C
" »

The Smart Student Timetable Planner
successfully streamlines course selection,
¢ Login e resolves scheduling conflicts, and
¢ Manual Scheduling —_— enhances real-time collaboration among
« Auto Scheduling students, advisors, and faculty. By offering

« Timetable Comparison dynamic scheduling tools, personalized

. — recommendations, and a user-friendly
* Timetable Export — interface, the system improves academic
* Real-Time Collaboration = planning efficiency and reduces stress,
¢ View Timetable History) creating a more seamless and effective
« Administration Modules scheduling experience.

Done By: Wong Xin Tong
Supervised By: Dr. Tan Joi San

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

130

