

SMART STUDENT TIMETABLE PLANNER

BY

WONG XIN TONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Wong Xin Tong. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my FYP supervisor, Dr Tan Joi San, and my

FYP moderator, Ts Dr Ku Chin Soon, for their invaluable guidance, constructive feedback, and

continuous support throughout the development of Smart Student Timetable Planner. Their

expertise and encouragement have been instrumental in the successful completion of this

project. I would also like to extend my gratitude to the lecturers and staff of UTAR for

providing the necessary resources and facilities that greatly assisted my work. Lastly, I am

sincerely thankful to my family and friends for their unwavering support, understanding, and

motivation during the FYP.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

Timetable planning is a crucial yet challenging task for university students, as traditional

manual methods are often time-consuming, prone to errors, and lack collaborative support.

Students frequently face difficulties in avoiding timetable clashes, managing personal

preferences, and coordinating with peers, which can lead to inefficiencies and added stress. To

address these issues, this project introduces the Smart Student Timetable Planner, a system

developed to streamline academic scheduling by providing both automated and manual

timetable management options. The objectives of this project are to generate conflict-free and

customizable schedules, enable real-time collaboration among students, and offer

administrative tools for maintaining course information. The project scope encompasses

features such as secure login, course selection with conflict detection, timetable history,

comparison between auto-generated and manual schedules, collaboration modules, and export

functionality. To achieve these objectives, the system adopts the Rapid Application

Development (RAD) methodology, ensuring iterative design, prototyping, and user feedback

integration throughout the process. The system is implemented using Node.js with Express for

server-side development, HTML, CSS, and JavaScript for the frontend, and Socket.IO for real-

time collaboration. Course data is managed in CSV format, parsed into JSON for fast

processing, while sessionStorage and localStorage handle user data within active sessions. A

Genetic Algorithm forms the core scheduling engine, generating optimized timetables that

respect both hard constraints, such as avoiding clashes, and soft constraints, such as personal

preferences.The final output of this project is a functional web-based timetable planner that

successfully enhances scheduling efficiency, reduces the likelihood of errors, and improves the

overall academic planning experience. With its flexible design, collaborative features, and

administrative integration, the Smart Student Timetable Planner demonstrates significant

potential as a scalable solution for modern university scheduling needs.

Area of Study (Minimum 1 and Maximum 2): Genetic Algorithm, Web-based application

Keywords (Minimum 5 and Maximum 10): Smart Timetable Planner, Academic Scheduling,

Real-Time Collaboration, Conflict-Free Timetable, Student-Centered System, Automated

Scheduling.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Research Objectives 3

1.3 Project Scope and Direction 3

1.4 Contributions 5

1.5 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Similar Projects 7

 2.1.1 Personal Course Timetabling for University Students based on

Genetic Algorithm
7

 2.1.2 Web-Based Personalized University Timetable for UiTM

Students Using Genetic Algorithm

9

 2.1.3 Heuristic Algorithm for a Personalized Student Timetable 10

2.2 Existing Systems 12

 2.2.1 University Timetabling System (UniTime) 12

 2.2.2 Timetable Arranging Problem (TTAP) 15

 2.2.3 TimeEdit 19

 2.3 Summary 24

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 26

3.1 Methodology 26

3.1.1 Requirements Planning 26

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

3.1.2 User Design 27

3.1.3 Construction and Feedback Phase 27

3.1.4 Finalize Product and Implementation Phase 28

3.1.5 Maintenance and Evaluation 28

 3.2 System Design Diagram 29

3.2.1 System Design Flowchart 29

3.2.2 Use Case Diagram 30

3.2.3 Use Case Description 31

 3.3 Timeline 49

3.3.1 Overview 49

3.3.2 Gantt Chart 50

 3.4 Summary 50

CHAPTER 4 SYSTEM DESIGN 51

 4.1 Program Development 51

 4.1.1 Server-side Development 51

 4.1.2 Login Function Development 53

 4.1.3 Manual Scheduling Development 56

 4.1.4 Auto Scheduling Development 61

 4.1.5 Genetic Algorithm Development 64

 4.1.6 Timetable Comparison Development 66

 4.1.7 PDF Parser Development 69

 4.1.8 Real-time Collaborative Development 70

 4.1.9 View Timetable History Development 79

 4.1.10 User Feedback Development 81

 4.1.11 Upload Course Development 83

 4.1.12 Upload Course History Development 85

 4.1.13 Preview Courses Development 86

 4.1.14 View Created Session Development 87

 4.1.15 Admin Feedback Development 88

 4.2 Summary 90

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 5 SYSTEM IMPLEMENTATION 92

 5.1 Hardware Setup 92

5.2 Software Setup 92

5.3 User Interface 62

 5.3.1 Login Page 93

 5.3.2 Main Page 93

 5.3.3 Manual Scheduling Page 94

 5.3.4 Auto Scheduling Page 97

 5.3.5 Timetable Comparison Page 99

 5.3.6 Merging Page 101

 5.3.7 Timetable History Page 104

 5.3.8 User Feedback Page 105

 5.3.9 Admin Dashboard Page 106

 5.3.10 Admin Upload Course Page 107

 5.3.11 Admin Upload Course Page 108

 5.3.12 Preview Courses Page 109

 5.3.13 View Created Session Page 110

 5.3.14 Admin Feedback Page 111

5.4 Implementation Issues and Challenges 113

5.5 Summary 114

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 115

6.1 Experiment on Genetic Algorithm

115

 6.1.1 Overview 115

 6.1.2 Code Structure and Functionality 115

 6.1.3 Genetic Algorithm Design 116

 6.1.4 Experimental Results and Graph Analysis 118

 6.1.5 Interpretation of GA Parameters 120

6.2 Comparison of Real-World Timetable and Generated Timetable

121

 6.2.1 Overview 121

 6.2.2 Test Environment and Methodology 121

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

 6.2.3 Test Data 122

 6.2.4 Testing Results 124

 6.2.5 Overview 126

CHAPTER 7 CONCLUSION AND RECOMMENDATION 126

7.1 Conclusion 126

7.2 Recommendation 127

REFERENCES 129

POSTER 130

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.2.1.1 A list of different identity for user to choose from which

interface they wish to refer.

13

Figure 2.2.1.2 Sample demo of student schedule 14

Figure 2.2.1.3 Lookup Classes Page 14

Figure 2.2.1.4 Lookup Examination Page 15

Figure 2.2.2.1 Login page for students 17

Figure 2.2.2.2 Subjects are listed for the students to choose from, and

selected subjects will be shown after choosing.

17

Figure 2.2.2.3 Set the time constraints 18

Figure 2.2.2.4 Choose preferable timeslots 18

Figure 2.2.2.5 Choose preferable combination timetable 19

Figure 2.2.3.1 Users must search out the organization 21

Figure 2.2.3.2 Login page for students, staff and administrators 21

Figure 2.2.3.3 Welcome page of the timetabling system 22

Figure 2.2.3.4 Search module page 22

Figure 2.2.3.5 Student timetable 23

Figure 2.2.3.6 Details to show in the timetable 23

Figure 3.1.1 RAD Methodology 27

Figure 3.2.1 System Overview Design Flowchart 30

Figure 3.2.2 Use Case Diagram of Smart Student Timetable Planner 31

Figure 3.3.2.1 Gantt Chart of the Project Timeline 52

Figure 4.1.1.1 package.json 54

Figure 4.1.1.2 server.js 55

Figure 4.1.1.3 server.js 55

Figure 4.1.2.1 Login.html 57

Figure 4.1.2.2 Login.html 57

Figure 4.1.2.3 Login and Logout endpoint in server.js 58

Figure 4.1.3.1 Loading courses from API 59

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 4.1.3.2 Update Trimester function 59

Figure 4.1.3.4 Render Sessions function 60

Figure 4.1.3.4 Check Clashes Function 61

Figure 4.1.3.5 Delete Session and View Timetable Function 62

Figure 4.1.3.6 Export Timetable 63

Figure 4.1.3.7 Save Timetable to History 64

Figure 4.1.4.1 Update Trimester and Fetch Courses from API 65

Figure 4.1.4.2 Render Course and Render Time Constraints function 66

Figure 4.1.4.3 Get Selected Sessions Function 66

Figure 4.1.4.4 Export Timetable 67

Figure 4.1.4.5 Save Timetable to History 68

Figure 4.1.5.1 Generate Initial Population and Generate Random

Schedule function

69

Figure 4.1.5.2 Evolve Population and Crossover function 70

Figure 4.1.5.3 Mutate function 70

Figure 4.1.6.1 Normalize Getters Function 72

Figure 4.1.6.2 Render Manual Timetable 72

Figure 4.1.6.3 Render Auto Generated Timetable 72

Figure 4.1.6.4 Update Pagination and Load Comparison functions 73

Figure 4.1.7.1 PDF Parser in parser.py 74

Figure 4.1.7.2 PDF Parser in parser.py 74

Figure 4.1.8.1 Architecture and Main Data Structures 76

Figure 4.1.8.2 Architecture and Main Data Structures 76

Figure 4.1.8.3 Architecture and Main Data Structures 77

Figure 4.1.8.4 Architecture and Main Data Structures 77

Figure 4.1.8.5 Timetable rendering & interaction model. 78

Figure 4.1.8.6 Timetable rendering & interaction model. 79

Figure 4.1.8.7 Timetable rendering & interaction model. 79

Figure 4.1.8.8 Finding and highlighting available slots 80

Figure 4.1.8.9 Finding and highlighting available slots 81

Figure 4.1.8.10 Submission and synthesis flow. 82

Figure 4.1.8.11 Previews, selection UI and mini rendering. 83

Figure 4.1.8.12 Save to History. 83

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 4.1.9.1 Load History function 84

Figure 4.1.9.2 Toggle Collapse function 85

Figure 4.1.9.3 View Timetable function 86

Figure 4.1.9.4 View Timetable function 86

Figure 4.1.10.1 Alert Float Box 87

Figure 4.1.10.2 Get Request 88

Figure 4.1.10.3 Real-Time Updates 89

Figure 4.1.11.1 upload.html 90

Figure 4.1.11.2 upload.html 90

Figure 4.1.12.1 history.html 91

Figure 4.1.13.1 preview.html 92

Figure 4.1.13.2 preview.html 92

Figure 4.1.14.1 admin-session.html 94

Figure 4.1.14.2 admin-session.html 94

Figure 4.1.15.1 feedback-admin.html 96

Figure 4.1.15.2 feedback-admin.html 96

Figure 4.1.15.3 feedback-admin.html 97

Figure 5.3.1.1 Login Page 100

Figure 5.3.2.1 Main Page 101

Figure 5.3.3.1 Select Intake, Trimester and Course List Available 103

Figure 5.3.3.2 Session Available for the Selected Course 103

Figure 5.3.3.3 Schedule for Selected Course 104

Figure 5.3.3.4 Timetable View, Export and Save Timetable Button 104

Figure 5.3.4.1 Select Intake, Trimester, and Course Available 105

Figure 5.3.4.2 Select Time Constraints 106

Figure 5.3.4.3 Generate Schedule, Export and Save buttons and

Generated Timetables

106

Figure 5.3.4.4 Generated Timetables 107

Figure 5.3.5.1 Timetable Comparison Page 108

Figure 5.3.5.2 Timetable Comparison Page 108

Figure 5.3.6.1 Join Collaborative Session 110

Figure 5.3.6.2 Create Collaborative Session 111

Figure 5.3.6.3 Preview Selected Timetable 111

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

Figure 5.3.6.4 Preview Merged Timetable 112

Figure 5.3.6.5 Session Chat 112

Figure 5.3.7.1 Timetable History Page 113

Figure 5.3.8.1 User Feedback Page 114

Figure 5.3.9.1 Admin Dashboard Page 115

Figure 5.3.10.1 Admin Upload Course Page 116

Figure 5.3.11.1 Upload History Page 117

Figure 5.3.12.1 Preview Courses Page 118

Figure 5.3.12.2 Pagination Button in Preview Courses Page 119

Figure 5.3.13.1 View Created Sessions Page 120

Figure 5.3.14.1 Pending and Read section in Admin Feedback Page 121

Figure 5.3.14.2 Replied section in Admin Feedback Page 121

Figure 6.1.2.1 Experiment Settings and Filter Trimester 125

Figure 6.1.2.2 Fitness function for constraints 126

Figure 6.1.3.1 Tournament Selection function 126

Figure 6.1.3.2 Crossover function 126

Figure 6.1.3.3 Mutate function 126

Figure 6.1.3.4 Evolve function 127

Figure 6.1.3.5 GA with stopping criteria 127

Figure 6.1.4.1 Graph of Best Fitness vs Generation 128

Figure 6.1.4.2 Graph of Fitness vs Generation 129

Figure 6.2.3.1 Wong Xin Tong’s real-world timetable from official

university portal

132

Figure 6.2.3.2 Wong Xin Tong’s generated timetable from Smart

Student Timetable Planner

133

Figure 6.2.3.3 Elaine’s real-world timetable from official university

portal

133

Figure 6.2.3.2 Elaine’s generated timetable from Smart Student

Timetable Planner

 134

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF TABLES

Table Number Title Page

Table 2.3.1 Comparison of Strengths and Weaknesses of Existing

Systems

26

Table 3.2.3.1 Login Use Case Description 32

Table 3.2.3.2 Logout Use Case Description 32

Table 3.2.3.3 Select Intake Use Case Description 33

Table 3.2.3.4 Select Trimester Use Case Description 33

Table 3.2.3.5 Add Course Use Case Description 34

Table 3.2.3.6 Delete Course Use Case Description 35

Table 3.2.3.7 View Timetable Use Case Description 36

Table 3.2.3.8 Export Timetable Use Case Description 36

Table 3.2.3.9 Save Timetable Use Case Description 37

Table 3.2.3.10 Select Time Constraints Use Case Description 38

Table 3.2.3.11 Generate Schedules Use Case Description 39

Table 3.2.3.12 Compare Timetable Use Case Description 39

Table 3.2.3.13 Join Collaborative Session Use Case Description 40

Table 3.2.3.14 Create Collaborative Session Use Case Description 41

Table 3.2.3.15 Real-Time Collaboration Use Case Description 42

Table 3.2.3.16 Select Timetable Use Case Description 43

Table 3.2.3.17 Session Chat Use Case Description 44

Table 3.2.3.18 View History Use Case Description 45

Table 3.2.3.19 Submit Feedback Use Case Description 45

Table 3.2.3.20 Upload Course Use Case Description 46

Table 3.2.3.21 View Upload History Use Case Description 47

Table 3.2.3.22 Preview Courses Use Case Description 48

Table 3.2.3.23 View Created Sessions Use Case Description 49

Table 3.2.3.24 Reply to Feedback Use Case Description 50

Table 5.1.1 Hardware Components and Requirements 99

Table 5.2.1 Software Components and Requirements 99

Table 6.1.5.1 Summary of the Experimental Results 130

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

Table 6.2.4.1 Wong Xin Tong’s Comparison Timetable’s Results 134

Table 6.2.4.2 Elaine’s Comparison Timetable’s Results 135

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xv

LIST OF ABBREVIATIONS

GAs Genetic Algorithms

UCT University Course Timetable

SHO Spotted Hyena Optimizer

SA Simulated Annealing

UniTime University Timetabling System

TTAP

GUI

Timetable Arranging Program

Graphic User Interface

RAD Rapid Application Development

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

In this chapter, the project presents the background and motivation of the work, the

contributions to the field, and the outline of the project. This project aims to develop an

effective Smart Student Timetable Planner that enables students to arrange their own personal

timetables according to the courses and timeslots offered by the university. Unlike a static

timetable, this planner allows students to select and organize their classes in a way that best fits

their preferences and constraints, while still adhering to the university’s assigned classrooms

and available timeslots.

The Smart Student Timetable Planner is designed to support students in building their academic

schedules by ensuring that selected courses do not overlap in time and that all required sessions

are included. The main objective is to provide students with a clear and manageable timetable

that reflects their chosen courses without conflicts, helping them attend all necessary lectures,

tutorials, and practicals within the semester. This approach shifts the focus to the student’s

individual planning process, where convenience and flexibility play an important role in

timetable management.

Timetable planning is an essential part of a student’s academic journey, as every semester

presents different course offerings and unique scheduling constraints. Traditionally, students

rely on manual methods, such as checking course lists and cross-referencing timeslots, which

can be time-consuming and prone to mistakes. By introducing a smart planner, the process

becomes more efficient, reducing the likelihood of clashes and saving students from the stress

of repeated rescheduling.

The project highlights the importance of a Smart Student Timetable Planner as a personal

academic management tool. By leveraging automated features and conflict-checking

mechanisms, the planner enhances the scheduling process and helps students’ overall

university experience by ensuring clarity, convenience, and grater satisfaction in managing

their study schedules.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.1 Problem Statement and Motivation

I Difficulty in Course Selection and Scheduling

Students often face significant challenges in selecting and scheduling their courses for

a new academic term. The process of manually arranging a timetable that fits all

required courses, elective options, and personal commitments can be overwhelming.

Students struggle to avoid conflicts, such as overlapping class times or courses

scheduled back-to-back in distant locations, which can make it impossible to attend all

desired classes. These difficulties can lead to suboptimal course selections, delays in

academic progress, and increased stress as students try to balance their academic and

personal lives.

II Lack of Real-Time Collaboration in Schedule Planning

Students often face difficulties when trying to collaborate with peers, advisors, or

faculty members in real-time while planning their schedules. The current system

typically does not support real-time updates and collaborative decision-making, which

are essential for group projects, study groups, or coordinated course selections. This

lack of collaboration tools can lead to miscommunication, scheduling conflicts, and

missed opportunities for joint learning experiences. As a result, students may find it

challenging to align their schedules with those of their peers, hindering group work and

reducing the overall effectiveness of their academic planning.

The motivation behind addressing the lack of real-time collaboration in schedule planning and

the difficulties in course selection stems from the need to improve students’ academic planning

efficiency and effectiveness. Traditional scheduling systems often fall short in providing

dynamic and collaborative tools, leading to scheduling conflicts, inefficiencies, and academic

delays. By developing a system that supports real-time collaboration, students will be able to

coordinate schedules with peers, advisors, and faculty, reducing conflicts and enhancing

collaborative learning. Additionally, the introduction of a Smart Student Timetable Planner

will offer personalized recommendations and flexible scheduling options, helping students

avoid overlapping classes and manage their workloads more effectively. Integration with

existing university systems will ensure consistency and streamline academic management,

ultimately contributing to a more user-centered, efficient, and stress-free scheduling experience

for students.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

1.2 Research Objectives

• To develop a tool that streamlines course selection and resolves scheduling

conflicts for students.

The system will incorporate features for automatic conflict detection and resolution,

identifying issues such as overlapping class times or class scheduled in distant locations

and providing solutions to avoid these conflicts. It will offer dynamic scheduling

options, allowing students to easily modify their course selections and adjust their

schedules as needed. A visual timetable representation will be included in present

schedules intuitively. These enhancements aim to reduce scheduling challenges, lower

stress levels, and improve overall academic efficiency.

• To facilitate real-time collaboration and communication among users.

Real-time collaboration features will allow multiple users to work on the timetable

concurrently, with changes being instantly visible to all collaborators. This will enhance

teamwork and ensure that all modifications are synchronized. Real-time

communication will play a crucial role in keeping all users in the same session updated

about schedule changes, new bookings, or cancellations, thereby reducing

miscommunications and enhancing overall efficiency.

1.3 Project Scope and Direction

The project aims to develop a comprehensive Smart Student Timetable Planner with the

following key aspects:

I. Login and Logout Module

This module provides secure access to the timetable system, where students log in using

their credentials. It manages authentication, ensuring that only authorized users can

access the platform. Personalized features such as saved timetables, course preferences,

and collaboration sessions are tied to the student’s profile.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

II. Course Selection and Scheduling Module

Students can select their intake, trimester, and courses for the semester. The system

assists in building schedules by:

• Automatically detecting and preventing class conflicts.

• Allowing students to set personal time constraints.

• Enabling the selection of preferred class groups and timeslots when multiple

options are available.

III. View Timetable Module

This module enables students to view their finalized timetable after scheduling. The

timetable will show the details of the courses such as the course code, course name,

days, time, room allocated and preferred groups according to students’ preferences.

IV. Real-Time Collaboration Module

This feature enables students to collaborate with peers while planning schedules. It

supports:

• Real-time updates when timetable changes occur.

• Shared editing of timetable slots in a collaborative workspace.

• Built-in chat for discussion and decision-making.

 This module is particularly useful for group project planning or ensuring friends share

 compatible schedules.

V. Save and History Module

Students can save their timetables into a history log for later reference. This allows

them to revisit previous scheduling attempts, compare alternatives, and restore

timetables without redoing the process.

VI. Comparison Module

This module enables students to compare manually created timetables with

automatically generated ones. By presenting both side-by-side, students can evaluate

the efficiency, conflict resolution, and flexibility of different scheduling approaches.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

VII. Export and Feedback Module

The system allows students to export their finalized timetables in IMG or CSV formats

for offline access and sharing. In addition, a feedback feature is included where users

can provide comments and suggestions. This input supports continuous system

improvement and bug fixing.

VIII. Administrative Module

Administrators are responsible for maintaining up-to-date course information each

semester. They can:

• Upload new course schedules and classroom allocations.

• Update the timeslot or make corrections when changes occur.

• Review student feedback to enhance system reliability and address issues

promptly.

1.4 Contributions

The Smart Student Timetable Planner contributes by developing an intelligent platform that

assists students in generating valid and personalized course schedules based on selected courses

and individual time constraints. By integrating a Genetic Algorithm, the system optimizes the

generation timetable to avoid clashes and maximize scheduling flexibility. It enhances the

course registration experience through a user-friendly interface, real-time data handling, and

storage using sessionStorage. Additionally, it offers both manual and automatic scheduling

modes to suit different user preferences. This project also establishes a strong foundation for

future enhancements such as exporting timetable, improving students’ academic planning

efficiency.

1.5 Report Organization

This report is organized into seven chapters. Chapter 1 provides an introduction and

background to the Smart Student Timetable Planner project. Chapter 2 presents a literature

review, discussing similar projects and existing systems to highlight their strengths and

limitations. Chapter 3 describes the system methodology and approaches, explaining the

methodology used and presenting the system design through activity diagrams, flowcharts, use-

case diagrams, and detailed use-case descriptions. Chapter 4 explains the system design in

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

greater detail, including program development aspects. Chapter 5 focuses on system

implementation, covering the hardware and software setup, user interface design with

screenshots, and the issues and challenges encountered during implementation. Chapter 6

presents system evaluation and discussion, including the experimental results of the GA and a

comparison between the generated timetables and the real-world timetables. Finally, Chapter

7 concludes the report by summarizing the project achievements and outlining directions for

future work.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Chapter 2

Literature Review

In this chapter, similar projects and existing systems related to Smart Student Timetable

Planner are reviewed. The reviews aim to provide an overview of the objectives behind these

systems, the development processes involved, and to identify their achievements, limitations,

and suggestions for future enhancements. Additionally, existing solutions are analyzed,

summarizing their strengths and weaknesses for comparative purposes, thereby highlighting

opportunities for improvement and innovation in the field of course timetabling.

2.1 Similar Projects

2.1.1 Personal Course Timetabling for University Students based on Genetic

Algorithm

In this paper, the author presents a solution to the Personal University Course Timetabling

(PUCT) problem, which is framed as an individual-oriented variation of the more widely

studied course timetable problem. Unlike institutional scheduling, which must consider room

capacities, lecturer availability, and global optimization across an entire university, PUCT

focuses on generating a feasible and optimized timetable for a single student. The system

accepts as input the official university course catalog, where times and course offerings are

predetermined, and produces personalized timetables that satisfy both academic requirements

and student preferences. The core objective is to provide students with a smart timetable

planner that relieves them of the manual burden of arranging courses and ensures that their

chosen schedule is both conflict-free and academically sound. By applying a genetic algorithm,

the author demonstrates how evolutionary computations can effectively search the large

solution space of possible course combinations, yielding timetables that align with students’

curricular progression and workload preferences.

The system is designed around a Genetic Algorithm (GA), chosen for its suitability in solving

combinatorial optimization problems such as timetabling. Each candidate timetable is encoded

as a binary chromosome, where each gene corresponds to a course offering from the catalog.

A gene value of 1 signifies inclusion of the course in the student’s timetable, while 0 indicates

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

exclusion. This representation is straightforward yet effective, as the catalog already specifies

the day and time of each course, allowing the system to directly detect conflicts between

selected courses. The GA employs classical operators including tournament selection, n-point

crossover, bit-flip mutation, and elitism to evolve populations of candidate solutions. The

fitness function evaluates each timetable based on both hard constraints, such as avoiding

overlapping class times, meeting minimum and maximum credit requirements, and not

exceeding weekly workload; and soft constraints, such as adhering to suggested curricular

progression and allowing students to advance in preferred courses. By adjusting the weights

assigned to these criteria, the system can balance feasibility with personalized optimization,

ensuring that students receive timetables that are both valid and tailored to their academic needs.

A significant strength of this project lies in its student-centric approach. By narrowing the focus

to individual timetables rather than institutional allocation, the system provides immediate

practical utility to students seeking efficient ways to plan their courses. The use of binary

encoding ensures computational efficiency, enabling the GA to scale to catalogs with many

offerings while remaining simple enough to be implemented in student-facing applications.

Another notable strength is the flexibility of the fitness function, which allows for the

incorporation of both institutional academic requirements and subjective student preferences.

Furthermore, empirical evaluation with 25 students demonstrated high levels of satisfaction,

with the majority rating the automatically generated timetables as superior to or least equivalent

to manually designed schedules.

Despite these contributions, the project is not without limitations. The binary encoding assumes

that each course offers a fixed and unique timeslot, which restricts flexibility when courses

provide multiple tutorial or laboratory sections. The dataset used for evaluation was relatively

small and drawn from a single academic program, which raises concerns regarding the

generalizability of results to larger and more complex institutions. Additionally, the weighted-

sum approach adopted for multi-criteria optimization, while straightforward, can observe trade-

offs between competing objectives; a Pareto-based evolutionary algorithm might offer students

a richer set of timetable options that balance different preferences. Finally, the system does not

explicitly address the dynamic nature of course catalogs, where sections may be added,

removed, or rescheduled during registration periods, limiting its applicability in real-time

environments.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

2.1.2 Web-Based Personalized University Timetable for UiTM Students Using Genetic

Algorithm

The UiTM project presents a web-based personalized timetable generator developed to assist

students in creating their own schedules from the university’s published course lists and

timeslots. The motivation behind the system arises from the difficulty students face during

course registration, particularly repeat students who often struggle to fit required subjects into

their timetables without overlaps. Unlike institutional-level timetabling, which attempts to

allocate courses, lecturers, and room across the entire university, this system is tailored to the

student’s perspective. By leveraging GA, the system automatically generates feasible schedules

based on the courses chosen by an individual student. The objective is to eliminate timetable

clashes, reduce the manual trial-and-error process, and provide students with a faster and

smarter way to plan their semester. The project therefore directly contributes to the

development of a personalized student timetable planner rather than a university-wide

scheduling tool.

The system architecture integrates GA into a web application interface, providing students with

an accessible platform to generate timetables. Students first select the courses they wish to

register for from the course catalog. Each course has several groups (lectures, tutorials, or labs)

with predefined timeslots already determined by the university. The GA represents potential

solutions as chromosomes, where each gene corresponds to a selected course and its assigned

group. The algorithm evaluates candidate solutions through a fitness function that prioritizes

conflict-free scheduling and adherence to university-imposed rules such as credit limits. GA

applies standard operators, crossover, mutation, and selection, to evolve a population of

candidate timetables, eventually converging towards valid solutions. Importantly, the system

also allows students to “lock” certain courses or groups they prefer, giving them some control

while the GA optimizes the rest of the schedule. The final timetable is displayed to the student

in a clear and structured format, ready to be used for registration.

One of the primary strengths of this project is its student-centered orientation. Instead of

tackling the highly complex institutional timetable, which involves balancing multiple global

constraints, the system narrows its scope to the individual student’s needs, making it both

practical and computationally feasible. This focus ensures that the GA runs efficiently,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

producing personalized timetables within reasonable time frames. Another strength is the

integration of user preferences; by allowing students to lock specific courses or groups, the

system combines the flexibility of manual planning with the efficiency of algorithmic

optimization. The web-based interface is also an advantage, as it improves accessibility for

students and eliminates the need for specialized software. Finally, the project is validated with

real use cases, showing that it can reduce the stress and inefficiency students often experience

during registration periods.

Despite its advantages, the project has some limitations. The most notable limitation is its

reliance on static course lists and timeslots provided by the university. If the catalog changes,

such as when classes are canceled, timeslots are updated, or new sections are added. The system

does not incorporate real-time adjustments, which could reduce its practicality in dynamic

registration environments. Another limitation is the binary representation of course groups,

which assumes that each course offering is pre-defined and fixed; the design may restrict

flexibility when students wish to choose among multiple tutorial or practical groups, or when

group availability changes suddenly. Additionally, the fitness function primarily focuses on

clash detection and basic workload balance but does not fully incorporate more nuanced student

preferences, such as avoiding early morning classes, reducing long gaps between sessions, or

creating compact daily schedules. Lastly, while the GA approach is effective for small to

medium sized, its performance and scalability in handling very large course catalogs or

thousands of students simultaneously remains untested in this project.

2.1.3 Heuristic Algorithm for a Personalized Student Timetable

The paper presents a system for generating personalized student timetables using a heuristic

algorithm. Unlike institutional timetabling, where the university must assign courses, rooms,

and lectures across the entire institution, this project focuses on the individual student’s

perspective. The university first produces a raw timetable in which all lectures and practical

sessions are predefined and assigned times and locations. The challenge for students arises

when courses offer multiple seminars or practical groups, often leading to overlapping sessions

and inefficient use of their weekly schedules. The system therefore aims to optimize the

student’s timetable by eliminating conflicts and arranging sessions in a way that reduces idle

time on campus. This makes the project highly relevant as a personal student timetable planner,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

supporting flexibility for students with part-time jobs, extracurricular activities, or preferences

for compact schedules.

The system applies to a heuristic algorithm that balances efficiency with practicality. Each

student’s set of courses is treated as input, with multiple possible session groups available for

selection. The heuristic works by incrementally building a conflict-free timetable, giving

priority to non-overlapping sessions and compact arrangements that minimize the number of

separate campus visits. This approach is computationally lightweight compared to methods

such as GA, enabling fast generation of timetables even for large datasets. Importantly, the

design assumes that all lectures are compulsory and already fixed by the university; the

heuristic therefore primarily selects alternative tutorials, seminars, or practical sessions to tailor

the schedule for each individual student. This simplified but effective model ensures that the

algorithm focuses only on personal student optimization, without being burdened by

institutional resource allocation.

A major strength of this project is its student-centric scope. By limiting the problem to personal

timetable, the system avoids the extreme complexity of university-wide scheduling while

directly addressing the challenges students face during course registration. The use of a

heuristic algorithm provides speed and practically, generating near-optimal timetables in real-

time. Another strength is its explicit consideration of student lifestyle needs, particularly

reducing campus idle hours and improving schedule compactness, which directly improves

satisfaction. The algorithm also scales well, since it does not require global optimization across

thousands of students but only needs to handle one student’s dataset at a time.

The project also has limitations that restrict its broader applicability. First, the reliance on a

pre-existing raw timetable means it cannot adapt if the university makes frequent changes to a

course schedule during registration periods. Second, the heuristic focuses mainly on avoiding

conflicts and reducing idle time but does not incorporate softer preferences, such as avoiding

morning classes, preferring specific days off, or prioritizing certain instructors. Compared to

multi-objective approaches like GA, the heuristic may also produce fewer diverse timetable

options, limiting student choice. Furthermore, because evaluation was not tested extensively

across different institutions or datasets, questions remain about its generalizability beyond the

specific case studied.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

2.2 Existing Systems

2.2.1 University Timetabling System (UniTime) [2]

The UniTime system, as detailed on its official website, aims to provide comprehensive

solutions for academic scheduling challenges, including course timetabling, examination

scheduling, and student scheduling. The primary objective of UniTime is to streamline and

optimize the scheduling process for educational institutions, ensuring efficient use of resources

while meeting the diverse needs of students, faculty, and administrative staff. This is achieved

through a flexible and extensible scheduling platform that accommodates various institutional

constraints and preferences.

The development process of UniTime involves several key stages. Initially, a thorough

requirements analysis is conducted to understand the specific scheduling needs and constraint-

based and optimization techniques, to generate feasible schedules. These algorithms are

designed to handle complex constraints such as room capacities, time preferences, and course

conflicts. The development process also includes extensive testing and validation to ensure the

generated schedules are practical and efficient. UniTime’s modular architecture allows for

customization and integration with other institutional systems, enhancing its adaptability and

functionality.

UniTime has achieved significant success in providing robust scheduling solutions to

numerous educational institutions worldwide. Its achievements include the ability to generate

conflict-free schedules that optimize the use of available resources, such as classrooms and

faculty time, while accommodating a wide range of constraints and preferences. The system’s

user-friendly interface and comprehensive reporting tools facilitate easy management and

adjustment of schedules. Moreover, UniTime’s open-source nature encourages community

collaboration and continuous improvement, leading to a highly adaptable and evolving

platform.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Figure 2.2.1.1 A list of different identity for user to choose from which interface they wish to

refer.

Figure 2.2.1.2 Sample demo of student schedule

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Figure 2.2.1.3 Lookup Classes Page

Figure 2.2.1.4 Lookup Examination Page

The UniTime website showcases several strengths and weaknesses in its design and

functionality. One of the key strengths is its comprehensive and user-friendly interface, which

provides detailed information about the system’s features, capabilities, and use cases. This

makes it easy for potential users to understand how UniTime can meet their scheduling needs.

The website also offers extensive documentation, tutorials, and community support which are

invaluable resources for new users and institutions looking to implement the system.

Additionally, the open-source nature of UniTime is prominently highlighted, encouraging

collaboration and continuous improvement within the user community.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

However, the website has some weaknesses, including a somewhat cluttered layout that can

make navigation challenging for first-time visitors. Important information may be buried under

multiple layers of menus, making it less accessible. Furthermore, while the technical

documentation is comprehensive, it might be overwhelming for users without a strong technical

background, potentially deterring them from fully engagement with the platform. Overall,

while the UniTime website is a valuable resource with extensive information and support,

improvements in layout and accessibility could enhance user experience and engagement.

In conclusion, UniTime offers a sophisticated and flexible solution to the challenges of

academic scheduling. Its development process integrates advanced optimization techniques

and extensive testing to produce high-quality schedules. While the system has notable

achievements in resource optimization and user adaptability, it also faces limitations related to

complexity and initial setup requirements. Nonetheless, UniTime’s ongoing development and

open-source nature position it as a leading tool in the field of academic scheduling.

2.2.2 Timetable Arranging Program (TTAP) – UTAR [6]

The Timetable Arranging Program (TTAP) is a timetable scheduling program that was

designed by a student named Wong Jia Hau which is a Faculty of Information Communication

and Technology student from Universiti Tunku Abdul Rahman (UTAR). The objective of this

program is to help the UTAR students to arrange timetables smoothly and easily by

implementing automated scheduling concepts to the timetable.

This system represents a significant advancement in university course-scheduling through its

comprehensive suite of features and user-centric design. One of the system’s most notable

features is its user-friendly interface, which is designed to simplify the complex task of

scheduling. The graphical user interface (GUI), as illustrated in the tutorial GIF, enables users

to interact intuitively with the system. The design approach minimizes the learning curve and

facilitates ease of data entry, schedule visualization, and adjustment, making the scheduling

process more accessible to users regardless of their technical proficiency.

Another feature of the TTAP-UTAR system is its automated timetable generation capability.

By employing sophisticated algorithms, the system automates the creation of timetables,

effectively reducing the manual effort involved in scheduling. This automation ensures that

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

timetables are generated with optimal consideration for various constraints such as room

availability, instructor schedules, and course requirements. The system’s ability to handle these

constraints and generate conflict-free timetables enhances the efficiency of resource utilization

within the university, thereby addressing one of the key challenges in academic scheduling.

Conflict detection and resolution is another integral feature of the TTAP-UTAR system. During

the timetable generation process, the system actively identifies potential scheduling conflicts

and provides solutions or alternatives to resolve them. This proactive approach not only

improves the overall quality of the timetable but also reduces the likelihood of disruptions

caused by scheduling conflicts, ensuring a smoother ad more effective scheduling process.

The system’s customizable constraints further contribute to its flexibility and adaptability.

Users can define and adjust constraints based on their specific institutional requirements, such

as room capacities, course prerequisites, and instructor availability. This customization allows

the system to accommodate diverse scheduling needs and adapt to changing conditions, making

it a versatile tool for various educational environments.

Figure 2.2.2.1 Login page for students

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Figure 2.2.2.2 Subjects are listed for the students to choose from, and selected subjects will

be shown after choosing.

Figure 2.2.2.3 Set the time constraints

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Figure 2.2.2.4 Choose preferable timeslots

Figure 2.2.2.5 Choose preferable combination timetable

In terms of strengths, the TTAP-UTAR system excels in enhancing usability through its

intuitive GUI design. This user-centric approach improves efficiency by making the scheduling

process more manageable for users with varying levels of technical expertise. Additionally, the

system’s ability to optimize resource utilization through automated timetable generation and

conflict resolution leads to more efficient scheduling and better management of university

resources. The flexibility and customization offered by the system further enhances its value,

as institutions can tailor the system to their unique needs and policies.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

However, the TTAP-UTAR system is not without its challenges. The complexity of constraints

management can be a significant drawback, especially when dealing with many constraints.

Balancing various constraints requires careful consideration and may become time-consuming,

potentially complicating the scheduling process. Additionally, the system may face scalability

issues as the number of courses and constraints increases, which could impact its performance

and efficiency in large institutions. Lastly, the system’s dependencies on accurate data are a

critical factor for its effectiveness. Inaccurate or incomplete input data can lead to suboptimal

scheduling outcomes, necessitating manual adjustments to correct any errors and ensure the

timetables meet institutional requirements.

In conclusion, the TTAP-UTAR system offers a robust solution for university course

scheduling, with its user-friendly interface, automated timetable generation, and customizable

constraints. Its strengths in usability, resource optimization, and flexibility make it a valuable

tool for educational institutions. Nevertheless, addressing challenges related to constraints

management, scalability, and data accuracy is essential for enhancing the system’s overall

effectiveness and ensuring its continued success in academic scheduling.

2.2.3 TimeEdit [7]

TimeEdit is a feature-rich scheduling and resource management system tailored for educational

institutions and organizations. Its intuitive simplifies the creation, management, and viewing

of schedules, featuring drag-and-drop functionality for easy modifications. The system’s

advanced scheduling algorithms automate the process, ensuring conflict free timetables by

considering constraints like room availability, course requirements, and instructor preferences.

Real-time updates ensure that any changes are immediately reflected across the system,

maintaining up-to-date information and preventing scheduling conflicts.

Additionally, TimeEdit offers robust reporting tools, allowing users to generate detailed reports

on resource utilization, scheduling conflicts, and other key metrics, aiding informed decision-

making and resource optimization. Its integration capabilities with other institutional systems,

such as Student Information Systems (SIS) and Learning Management Systems (LMS), ensure

seamless data exchange and enhance operational efficiency. The system’s high level of

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

customization enables institutions to tailor it to their specific needs, accommodating unique

scheduling requirements, room layout, and its institutional policies.

TimeEdit excels in resource management, ensuring optimal allocation of rooms, equipment,

and personnel, reducing downtime, and improving utilization. The system is accessible from

various devices, including desktops, tablets, and smartphones, providing users the flexibility to

manage and view schedules on the go. User roles and permissions allow administrators to

control access levels, ensuring data security and efficient task delegation. Automated

notifications keep users informed about schedule changes, upcoming events, or resource

bookings, reducing the likelihood of missed appointments or double bookings. Through these

comprehensive features, TimeEdit aims to streamline scheduling and resource management,

making the process more efficient and less error prone.

Figure 2.2.3.1 Users must search out the organization

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Figure 2.2.3.2 Login page for students, staff and administrators

Figure 2.2.3.3 Welcome page of the timetabling system

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Figure 2.2.3.4 Search module page

Figure 2.2.3.5 Student timetable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Figure 2.2.3.6 Details to show in the timetable

One of the primary strengths of TimeEdit is its user-friendly interface, which simplifies the

complex process of scheduling for both administrators and users. Its advanced algorithms and

automation capabilities significantly reduce the time and effort required to create and manage

schedules, making it a valuable tool for instituions with diverse and dynamic scheduling needs.

Additionally, the system’s ability to integrate with other institutional software ensyres a

seamless flow of information and enhances overall oeprational efficiency. The customizable

nature of TimeEdit allows instituions to tailor the system to their specific requirements,

ensuring that it meets unique scheduling challenges effectively.

However, TimeEdit also has its weaknesses. Despite its robust features, the initial setup and

customization process can be complex and time-consuming, requiring a significant investment

of time and resources. Additionally, while the system is designed to be user-friendly, some

users may still face a learning curve, particularly those who are not tech-savvy. Furthermore,

the reliance on internet connectivity for real-time updates may pose challenges in areas with

unstable or limited internet access.

In conclusion, TimeEdit stands out as a powerful and versatile scheduling and resource

management system, designed to meet the complex needs of educational institutions and other

organizations. Its user-friendly interface, adavanced scheduling algorithms, and real-time

updates streamline the scheduling process, ensuring efficiency and accuracy. The robust

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

reporting tools, integration capabilities, and high customization options allow institutions to

optimize their resources and tailor the system to teir specific requirements. Despite some initial

setup challenges and a learning curve for non-tech-savvy users, TimeEdit’s comprehensive

features, including effective resource management, accesibility, user roles, and automated

notifications, make it an invaluable tool for improving operational efficiency and reducing

scheduling conflicts. Overall, TimeEdit’s strengths significantly outweigh its weaknesses,

making it a highly recommend solution for any institution seeking to enhance its scheduling

and resource management process.

2.3 Summary

In this chapter, three similar projects named “Personal Course Timetabling for University

Students based on Genetic Algorithm”, "Web-Based Personalized University Timetable for

UiTM Students Using Genetic Algorithm" and "Heuristic Algorithm for a Personalized Student

Timetable" has been reviewed. For the first paper models personal timetabling as a

combinatorial optimization problem and applies a GA to produce conflict-free schedules that

balance hard constraints such as credit limits with soft preferences like compactness and

academic progression. The second paper builds on similar GA principles but delivers a

practical, web-based system integrated with UiTM’s course catalog, enabling students to lock

preferred groups, save and export timetables, and benefit from administrative updates. In

contrast, the last paper emphasizes speed and efficiency, using a lightweight method to select

non-conflicting seminar and practical groups while reducing idle time on campus, though with

less flexibility for incorporating diverse student preferences. Together, these works

demonstrate complementary strengths in accuracy, usability, and efficiency, contirbuting

significantly to the development of smart, student-centered timetable planners.

Three exisitng systems, including University Timetabling, Timetable Arrangement Program –

UTAR and TimeEdit are reviewed, and the strengths and weaknesses are listed out. Their

strengths and weaknesses are then summarized and concluded in Table 2.3.1.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Table 2.3.1 Comparison of Strengths and Weaknesses of Existing Systems

Feature University

Timetabling

TTAP - UTAR TimeEdit

User Interface Often user-friendly,

but varies

Intuitive and user-

freindly

User-friendly

interface with drag-

and-drop

Optimization

Algorithms

Advanced, handles

complex constraints

Efficient algorithms

for diverse

constraints

Advanced

algorithms for

conflict-free-

scheduling

Resource

Management

Optimizes use of

resources

Effective conflict

detection and

resolution

Optimal allocation

of rooms,

equipment,

personnel

Flexibility Open-source,

encourages

collaboration

Customizable to

institution needs

Highly

customizable to

specific

requirements

Initial Setup Time consuming,

requires expertise

Time-consuming,

requiring technical

knowledge

Complex and time-

consuming setup

Computational

Complexity

High for large

datasets

Significant

computational

resources needed

Requires

significant

computational

resources

Usability Can vary, some

systems complex

Complexity of

features might

overwhelm users

Learning curve for

non-tech-savvy

users

Customization Often requires

extensive

adjustments

Needs substantial

customization and

fine-tuning

High level of

customization

required

Training and

support

May require

significant training

Subtantial training

and support needed

Significant training

and support needed

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Chapter 3

System Methodology/Approach OR System Model

In this chapter, the technologies and methodology to develop the project are implemented.

The activity diagram, flowchart, use case diagram and descriptions are done in this chapter to

show the overview of the system. The timeline of the project is also planned to deliver the

project on time.

3.1 Methodology

The methodology proposed for the project is Rapid Application Development (RAD). RAD

adopts traditional Software Development Life Cycle (SDLC) phases to accelerate program

development. This approach enables the project to be iterated and updated continuously

throughout the development process, emphasizing rapid prototyping and incorporating user

feedback. [8]

Figure 3.1.1 RAD Methodology

3.1.1 Requirements Planning

The Requirements Planning phase is the initial stage of the development process for the Smart

Student Timetable Planner. This phase begins with the identification of key problem statements

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

related to the current timetable system. The objective of the project is clearly outlined, focusing

on developing a robust timetable system that addresses identified issues.

During this phase, a comprehensive review of existing literature and systems is conducted. This

review aims to analyze the strengths and weaknesses of current solutions and to identify the

potential requirements needed for the new system. This phase also includes defining the

project’s objectives, specifying hardware and software requirements, and creating a detailed

project timeline. By setting clear requirements and understanding existing solutions, this phase

lays the groundwork for a well-informed and structured development process.

3.1.2 User Design

The User design phase focuses on developing prototypes to visualize and refine the system’s

user interface and functionality. HTML and CSS are used to build structural and visual

elements, while JavaScript and jQuery bring interactivity for dynamic course selection and

timetable management. JSON, localStorage and sessionStorage are applied to manage course

data and user choices, ensuring that timetable information is stored and easily retrievable

during active sessions. Socket.IO is integrated into the prototypes to demonstrate real-time

collaboration, enabling users to view updates and communicate instantly while arranging

timetables.

At this stage, the main modules are represented through interactive prototypes. These include

login or logout, course selection with conflict detection and time constraints, timetable viewing,

collaboration with session chat, saving timetables to history, comparing manual and auto-

generated schedules, exporting timetables, and administrative course management. Prototypes

are tested with sample users to gather feedback on usability and functionality. Based on this

feedback, the designs are iteratively improved to ensure a user-friendly, intuitive, and

functional system before progressing to full implementation.

3.1.3 Construction and Feedback Phase

The Construction and Feedback phase transforms the prototypes into a fully working timetable

system. In this stage, the system modules are implemented and integrated using HTML, CSS,

and JavaScript for the frontend, while JSON, sessionStorage, localStorage are used to manage

timetable data. Socket.IO is applied to handle synchronization and broadcasting of timetable

updates during collaborative sessions. All modules, from secure login and conflict-free

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

scheduling to exporting timetables and managing administrative updates, are developed and

linked together into a cohesive system.

Testing and feedback are crucial elements of this phase. Functionality testing ensures that

modules perform as intended, usability testing checks that the system is intuitive for students,

interface testing evaluates design consistency, and compatibility testing validates performance

across devices and browsers. Feedback collected from test users is used to iteratively improve

the system, refining features, fixing issues, and enhancing overall reliability. By the end of this

phase, the timetable system is stable, accurate, and aligned with user expectations, ready to

support students in managing their personal schedules efficiently.

3.1.4 Finalize Product and Implementation Phase

During the Finalize Product and Implementation phase, it focuses on ensuring the system is

fully operational and ready for deployment. This involves comprehensive testing to verify that

all modules function correctly, with a particular emphasis on functionality, usability, interface

consistency, and cross-browser compatibility.

Once testing is complete, detailed documentation is prepared, covering system design,

operation, database structure, functionalities, and testing results. This phase culminates in the

system’s deployment, marking the transition from development to active use, with the project

now complete and ready for launch.

3.1.5 Maintenance and Evaluation

This phase ensures that the system remains functional and continues to meet users’ needs for

post-deployment. This phase involves ongoing activities to support and improve the system.

System performance and user feedback are continuously monitored to identify any issues or

areas for improvement. Support teams address reported problems and help as needed. Regular

updates are made to fix bugs, enhance performance, and introduce new features based on user

feedback. Additionally, post-deployment evaluations are conducted to assess the system’s

effectiveness and gather insights into future improvements. The outcome of this phase is a well-

maintained system that evolves to meet the university’s needs and maintains high performance

and relevance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

3.2 System Design Diagram

3.2.1 System Design Flowchart

Figure 3.2.1 System Overview Design Flowchart

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

3.2.2 Use Case Diagram

Figure 3.2.2 Use Case Diagram of Smart Student Timetable Planner

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

3.2.3 Use Case Description

Table 3.2.3.1 Login Use Case Description

Use Case ID 00001

Use Case Name Login

Brief Description Users and administrators are allowed to access the platform by

logging into their account with valid credentials.

Actor User, Administrator

Trigger Go to the login page of the platform.

Precondition 1. Accounts must exist in the system and have not logged in.

Normal flow of

events

1. User navigates to a login page and inputs username and

password.

2. The system sends a POST request to /login with the

credentials.

3. Backend verifies if the credentials are valid.

4. If valid, the system stores the session in sessionStorage and

redirects to the main page.

5. User is redirected to their dashboard according to their role

(student/admin).

Sub Flows -

Alternate Flows 2a. If credentials are invalid, error is displayed, and user is asked to

try again.

Table 3.2.3.2 Logout Use Case Description

Use Case ID 00002

Use Case Name Logout

Brief Description Allows a logged-in user to securely exit the system, ending their

current session and preventing unauthorized access to personal data.

Actor User, Administrator

Trigger The user selects the “Logout” option from the navigation menu.

Precondition 1. The user must be logged into the system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Normal flow of

events

1. User clicks on the “Logout” button.

2. The system terminates the current session.

3. The system clears session data from storage.

4. The user is redirected to the login page.

Sub Flows -

Alternate Flows -

Table 3.2.3.3 Select Intake Use Case Description

Use Case ID 00003

Use Case Name Select Intake

Brief Description User selects their academic intake in the system. The selected intake

determines the courses and timeslots available for that student.

Actor User

Trigger User chooses to begin the course scheduling process.

Precondition 1. The user is logged into the system.

2. The system has intake and course data uploaded by the

administrator.

Normal flow of

events

1. The system displays a list of available intakes.

2. The user selects their intake from the dropdown.

3. The system retrieves and displays the course offered for the

selected intake.

4. The user proceeds to select their trimester and courses.

Sub Flows -

Alternate Flows -

Table 3.2.3.4 Select Trimester Use Case Description

Use Case ID 00004

Use Case Name Select Trimester

Brief Description User selects the trimester in which they are registering for courses.

The system will then filter and display only the courses and timeslots

available for the chosen trimester.

Actor User

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Trigger The user logs into the system and proceeds to schedule their

timetable, requiring trimester selection before course registration.

Precondition 1. The user is logged into the system.

2. The system has intake and course data uploaded by the

administrator.

Normal flow of

events

1. The user navigates to the course scheduling module.

2. The system prompts the students to select a trimester.

3. The user selects the desired trimester from the dropdown list.

4. The system retrieves and displays all courses offered in that

trimester.

5. The user proceeds to course selection.

Sub Flows 3a. If the user changes their trimester selection, the system refreshes

the available courses accordingly.

Alternate Flows 2a. If no trimester data isa available, the system displays an error

message.

Table 3.2.3.5 Add Course Use Case Description

Use Case ID 00005

Use Case Name Add Course

Brief Description Allows user to add a course into their timetable for the selected

trimester. The system ensures that the chosen course does not conflict

with other registered courses and meets the trimester’s requirements.

Actor User

Trigger User clicks “Add Course” on a listed course.

Precondition 1. The user must be logged into the system.

2. The user must have selected a trimester.

3. The course must be available in selected trimester and not

already added.

Normal flow of

events

1. User clicks “Add Course” button after choosing lectures and

desired practical/tutorial slot.

2. The system checks for duplicates.

3. If valid, the course is added to the selected course list.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

4. The UI updates to show the course in the selected list.

Sub Flows 2a. If the course requires compulsory sessions, the system prompts

the user to select a preferred group.

3a. If the course has multiple groups, the system prompts the user to

select a preferred group.

Alternate Flows 2a. If the course is already added, a warning message is displayed.

Table 3.2.3.6 Delete Course Use Case Description

Use Case ID 00006

Use Case Name Delete Course

Brief Description Allows user to remove a previously added course from their personal

timetable for the selected trimester. The system updates the timetable

and ensures that all related sessions for that course are removed.

Actor User

Trigger User clicks “Delete” on a course from their timetable.

Precondition 1. The user must be logged into the system.

2. The user must have selected a trimester.

3. At least one course must be present in the user’s timetable.

Normal flow of

events

1. The user navigates to their timetable view.

2. The system displays all courses currently added to the

timetable.

3. The user selects a course to delete.

4. The system prompts the student to confirm the deletion.

5. The user confirms the deletion.

6. The system removes the selected course from the timetable.

7. The updated timetable is displayed to the student.

Sub Flows -

Alternate Flows 4a. If the user cancels the confirmation, the course remains in the

timetable.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Table 3.2.3.7 View Timetable Use Case Description

Use Case ID 00007

Use Case Name View Timetable

Brief Description Allows user to view their current timetable for the selected trimester.

The timetable displays all registered courses with details such as

course code, course name, day, time, allocated room, and selected

group.

Actor User

Trigger The user selects the option to view their timetable by clicking “View

Timetable” button.

Precondition 1. The user must be logged into the system.

2. The user must have selected a trimester.

3. At least one course should be registered in the timetable.

Normal flow of

events

1. The user clicks the “View Timetable” button.

2. The system retrieves the user’s timetable data for the selected

trimester.

3. The system generates and displays the timetable in a

structured format.

4. The user reviews the timetable.

Sub Flows -

Alternate Flows 2a. If no courses are registered, the system displays alert message.

2b. If timetable data cannot be retrieved due to a system error, the

system display error message.

Table 3.2.3.8 Export Timetable Use Case Description

Use Case ID 00008

Use Case Name Export Timetable

Brief Description Allows user to export their finalized timetable into different formats

(IMG, CSV) for offline use, printing, or sharing.

Actor User

Trigger The user selects the “Export Timetable” button from the system.

Precondition 1. The user must be logged into the system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

2. The user must have already generated a timetable.

Normal flow of

events

1. The user navigates to the “Export Timetable” button.

2. The system prompts the user to choose a file format.

3. The user selects the desired format.

4. The system generates the timetable file in the selected format.

5. The system prompts the students to download or save the file.

6. The student successfully saves or downloads the file.

Sub Flows -

Alternate Flows 2b. If no timetable is available, the system displays: “No timetable

found to export.”

4a. If the file generation fails, the system displays an error message:

“Export failed. Please try again.”

Table 3.2.3.9 Save Timetable Use Case Description

Use Case ID 00009

Use Case Name Save Timetable

Brief Description Allows the user to save a generated or manually created timetable

into their personal history for future reference, comparison, or

retrieval after logging in again.

Actor User

Trigger Users click on “Save Timetable” button.

Precondition 1. The user must be logged into the system.

2. The user must have a valid timetable generated or created.

Normal flow of

events

1. The user views their generated or created timetable.

2. The user clicks on the “Save Timetable” button.

3. The system stores the timetable in the student’s history with

the given label and timestamp.

4. The system stores the timetable in the user’s history with the

intake, trimester and timestamp.

5. The system displays a confirmation message: “Timetable

saved successfully.”

Sub Flows -

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

Alternate Flows 2a. If no timetable is available, the system displays: “No timetable

available to save.”

4a. If the saving process fails, the system displays: “Unable to save

timetable. Please try again.”

Table 3.2.3.10 Select Time Constraints Use Case Description

Use Case ID 000010

Use Case Name Select Time Constraints

Brief Description User selects unavailable time slots to avoid conflicts in auto-

scheduling.

Actor User

Trigger 1. Students click on unavailable time in the input section in the

auto-scheduling page.

Precondition 1. The user must be logged into the system.

2. User must be in auto-scheduling mode.

Normal flow of

events

1. User marks unavailable time slots on the timetable interface.

2. System saves these constraints locally in sessionStorage.

3. During auto-scheduling, GA filers out sessions that overlap

with constraints.

Sub Flows -

Alternate Flows 2a. If no constraints are added, all-time slots are considered available.

Table 3.2.3.11 Generate Schedules Use Case Description

Use Case ID 000011

Use Case Name Generate Schedules

Brief Description User uses Genetic Algorithm to generate valid timetables.

Actor User

Trigger Click on “Generate Schedule” button.

Precondition 1. At least one course is selected.

Normal flow of

events

1. User clicks “Generate Schedule”.

2. GA runs through a population of potential schedules.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

3. Valid timetables are checked against constraints (availability,

no clash).

4. The system displays a paginated list of valid schedules.

Sub Flows -

Alternate Flows -

Table 3.2.3.12 Compare Timetable Use Case Description

Use Case ID 000012

Use Case Name Compare Timetable

Brief Description Enables the user to compare a manually created timetable with one

generated automatically by the system’s Genetic Algorithm. The

comparison highlights differences in course session allocation,

conflicts, and timetable efficiency to help the user decide which

option suits them best.

Actor User

Trigger Click on “Comparison” tab.

Precondition 1. The user must be logged into the system.

2. At least one manual timetable and one auto-generated

timetable must be available in the system.

Normal flow of

events

1. The user navigates to the timetable comparison feature.

2. The system prompts the students to select one manual

timetable and one auto-generated timetable.

3. The system displays timetable up-and-down.

4. The user reviews the comparison results.

Sub Flows -

Alternate Flows 2a. If only one type of timetable is available, the system shows: “No

available timetable.”

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

Table 3.2.3.13 Join Collaborative Session Use Case Description

Use Case ID 00013

Use Case Name Join Collaborative Session

Brief Description Allows a user joins an existing collaboration session to work with

peers on merging and adjusting timetable in real time. Once joined,

the user can view the shared timetable, submit their own, and

participate in collaborative decision-making.

Actor User

Trigger User selects the option to join a collaborative session and enters a

valid session ID and username.

Precondition 1. The user is logged into the system.

2. A collaboration session must exist.

3. The user has at least one generated timetable available to

submit.

Normal flow of

events

1. The user navigates to the “Merging” section.

2. The user enters a session ID, password and username.

3. The system validates the session ID and confirms availability.

4. The user successfully joins the session.

5. The system displays the list of participants currently in the

session.

6. The shared timetable is displayed to the user.

7. The user can now submit their timetable and edit the merged

timetable.

Sub Flows 2a. If the session requires a password or authentication, the system

prompts the user to enter the credentials.

5a. When a new user is joined, the system notifies all other

participants: “[Username] has joined the session.”

Alternate Flows 3a. If the session ID is invalid, the system notifies the student:

“Invalid session ID, please try again.”

4a. If connection to the session fails due to a network error, the

student is prompted to retry joining.

6a. If no timetable has been merged yet, the system displays a

message: “Waiting for users to submit timetables.”

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

Table 3.2.3.14 Create Collaborative Session Use Case Description

Use Case ID 00014

Use Case Name Create Collaborative Session

Brief Description User initiates a new collaborative session that allows multiple users

to join, submit their timetables, and work together on merging and

editing timetables in real time.

Actor User

Trigger The user selects the option to create a new collaboration session.

Precondition 1. The user is logged into the system.

2. The user has access to the collaboration feature.

Normal flow of

events

1. The user navigates to the “Merging” section.

2. The user selects “Create Session”.

3. The system generated a unique session ID.

4. The session is initialized and made available for other users

to join.

Sub Flows 3a. If required, the student may set a password or session name before

creation.

Alternate Flows -

Table 3.2.3.15 Real-Time Collaboration Use Case Description

Use Case ID 00015

Use Case Name Real-Time Collaboration

Brief Description Allow multiple users to collaborate on timetable planning within a

shared session. Users can submit their generated timetables to be

merged, adjust tutorial/practical slots, and see updates broadcast in

real time. The system ensures synchronized views across all

participants, supporting interactive decision-making and conflict

resolution.

Actor User

Trigger A user joins a collaborative session and submits timetable to merge.

Precondition 1. The user must be logged into the system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

2. A collaboration must be created or joined.

3. At least one timetable must be selected or generated before

merging.

Normal flow of

events

1. The user enters a collaboration session.

2. The user selects their generated timetable and submits it to

merge with others.

3. The system merges submitted timetables using the GA and

displays the shared timetable.

4. The user clicks on tutorial/practical slot in the shared

timetable.

5. The system highlights available slot to shift the

tutorial/practical.

6. The user selects an alternative slot to shift the

tutorial/practical.

7. The updated timetable is broadcast simultaneously to all

users in the same session.

8. All users see the synchronized timetable updates in real time.

Sub Flows 5a. If the user only wants to check available slots without shifting,

they can click outside the highlighted area to close the options.

6a. If multiple students propose edits simultaneously, the system

manages conflicts by applying a “last change wins”.

Alternate Flows 2a. If no timetable is selected/generated, the system notifies the

student: “Please generate or select a timetable before submitting to

the session.”

3a. If the merge fails due to incomplete submissions, the system

prompts: “Waiting for other users to submit their timetables.”

7a. If network or synchronization issues occur, the system retries

broadcasting updates until all participants are synchronized.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Table 3.2.3.16 Select Timetable Use Case Description

Use Case ID 00016

Use Case Name Select Timetable

Brief Description Allows user to select one of their generated timetables to submit for

merging in a collaborative session. The selected timetable becomes

the student’s contribution to the shared merged timetable.

Actor User

Trigger The user clicks on a generated timetable and chooses the option to

submit it for merging.

Precondition 1. The user is logged into the system.

2. The user has generated at least one timetable.

3. The user has joined or created a collaborative session.

Normal flow of

events

1. The system displays a list of generated timetables for the user.

2. The user selects one timetable from the dropdown.

3. The system previews the selected timetable.

4. The user submits the selection.

5. The system stores the selected timetable as the student’s

submission for merging.

Sub Flows 2a. User can preview each timetable before selecting.

4a. If user changes their mind, they can change the selection.

Alternate Flows 1a. If no timetable has been generated, the system notifies: “No

timetables available.”

5a. If submission fails due to a system error, the system displays:

“Submission failed, please try again.”

Table 3.2.3.17 Session Chat Use Case Description

Use Case ID 00017

Use Case Name Session Chat

Brief Description Allows user within the same collaborative session to exchange

messages in real time. The chat supports coordination, discussion of

timetable adjustments, and decision-making among participants.

Actor User

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Trigger The user types a message in the chat box and clicks “Send”.

Precondition 1. The user is logged into the system.

2. The user has joined a collaborative session.

Normal flow of

events

1. The user enters a collaborative session.

2. The system displays a chat box linked to the session.

3. The user types a message into the chat input box.

4. The user clicks Send.

5. The system broadcasts the message to all users in the same

session.

6. Other participants see the message in their chat box instantly.

Sub Flows 5a. The system timestamps each message and displays the sender’s

name.

Alternate Flows 4a. If the message is empty and Send is clicked, the system ignores

the action.

Table 3.2.3.18 View History Use Case Description

Use Case ID 00018

Use Case Name View History

Brief Description Enables user to access previously saved timetables. They can filter

and view timetables by mode (manual, auto, merged), intake, and

trimester.

Actor User

Trigger User navigates to the My History section.

Precondition 1. The user is logged into the system.

2. At least one timetable has been saved to history.

Normal flow of

events

1. The user opens the My History section.

2. The system displays all saved timetables with metadata

(mode, intake, trimester, timestamp, label).

3. The user applies filters if needed.

4. The system updates the displayed list accordingly.

5. The user selects a timetable to view.

6. The system displays the timetable details.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Sub Flows 2a. The system provides sorting options.

Alternate Flows 2b. If no timetable is saved, the system displays: “No saved

timetables found.”

5a. If the selected timetable file is corrupted or unavailable, the

system notifies: “Unable to load timetable.”

Table 3.2.3.19 Submit Feedback Use Case Description

Use Case ID 00019

Use Case Name Submit Feedback

Brief Description Allows user to submit feedback to the administrator regarding the

timetable system. Users can also view responses from the admin and

mark the feedback as read once reviewed.

Actor User

Trigger User navigates to the Feedback section and chooses to submit new

feedback or view existing feedback.

Precondition 1. The user is logged into the system.

2. The feedback feature is enabled in the system.

Normal flow of

events

1. The user navigates to the Feedback section.

2. The user clicks Submit Feedback.

3. The user writes a message and submits it.

4. The system saves the feedback and notifies the admin.

5. The user can later return to the Feedback section to see the

admin’s reply.

6. The user clicks Mark as Read after reviewing the reply.

7. The system updates the feedback status to Read.

Sub Flows 5a. The system displays both pending feedback and replied feedback

in separate sections.

Alternate Flows 3b. If the feedback message is empty, the system prevents

submission.

4a. If the system fails to save due to server error, system displays:

“Unable to submit feedback.”

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Table 3.2.3.20 Upload Course Use Case Description

Use Case ID 00020

Use Case Name Upload Course

Brief Description Admin uploads course details in the system for a new semester. The

uploaded file ensures that students have the latest course offerings

available when planning their timetables.

Actor Administrator

Trigger Admin navigates to the admin site dashboard and selects upload

course.

Precondition 1. The admin is logged into the system.

2. A valid course file is prepared according to the required

format.

Normal flow of

events

1. The admin navigates to the dashboard section.

2. The admin clicks the Upload Course.

3. The system prompts the admin to select a course file.

4. The admin selects the file and uploads it.

5. The system validates the file format and contents.

6. If the file is valid, the system saves the course details.

7. The system confirms: “Course upload successful!”

8. The courses are now parsed and available for students in the

timetable planner.

Sub Flows 5a. The system displays a preview of the uploaded courses for admin

confirmation.

Alternate Flows 4a, If no file is selected, the system cancels the upload and prompts:

“Please select a file to upload.”

5c. If the format is invalid, the system displays: “Invalid file format.”

6a. If the validation fails, the system displays an error message with

details for correction.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Table 3.2.3.21 View Upload History Use Case Description

Use Case ID 00021

Use Case Name View Upload History

Brief Description Admin can view the history of previously uploaded course files,

including the timestamp of each upload and the corresponding

filename. This allows tracking and verification of past course

updates.

Actor Administrator

Trigger Admin navigates to the Upload History section from the dashboard.

Precondition 1. The admin is logged into the system.

2. At least one course file has been uploaded previously.

Normal flow of

events

1. The admin navigates to the Upload History page.

2. The system retrieves all past upload records from the

database.

3. The system displays the records on a table, showing:

• Upload timestamp (date and time).

• Filename of uploaded course file.

4. The admin reviews the history for verification.

Sub Flows -

Alternate Flows 2a. If no history exists, the system displays: “No course uploads

found.”

Table 3.2.3.22 Preview Courses Use Case Description

Use Case ID 00022

Use Case Name Preview Courses

Brief Description Admin can preview uploaded course details before finalizing them

into the system. This ensures correctness and completeness of course

data.

Actor Administrator

Trigger The admin selects the Preview Courses option after uploading a

course file.

Precondition 1. The admin is logged into the system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

2. A course file has been uploaded successfully.

Normal flow of

events

1. The admin uploads a course file.

2. The system processes and parses the uploaded file.

3. The admin clicks Preview Courses.

4. The system displays the list of parsed courses with details.

5. The admin reviews the course details for accuracy.

Sub Flows -

Alternate Flows 2a. If uploaded file is invalid or corrupted, the system shows an error

message: “Invalid file format. Please upload a valid course file.”

4c. If no course data is found in the uploaded file, the system shows:

“No course details available for preview.”

Table 3.2.3.23 View Created Sessions Use Case Description

Use Case ID 00023

Use Case Name View Created Sessions

Brief Description Admin can view all collaborative sessions created by users, including

session details such as creation date and time, and the number of

participants currently in each session.

Actor Administrator

Trigger The admin selects the View Created Sessions option in the admin

panel.

Precondition 1. The admin is logged into the system.

2. At least one session has been created by users.

Normal flow of

events

1. The admin navigates to the Created Sessions page in the

admin panel.

2. The system retrieves all existing collaborative session records

from the database.

3. The admin reviews the list of sessions.

Sub Flows -

Alternate Flows -

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Table 3.2.3.24 Reply to Feedback Use Case Description

Use Case ID 00024

Use Case Name Reply to Feedback

Brief Description Admin can manage and reply to student feedback. The admin site

provides three sections (Pending, Read, Replied) to help organize

feedback and ensure timely responses.

Actor Administrator

Trigger The admin selects the Feedback from the dashboard.

Precondition 1. The admin is logged into the system.

2. At least one feedback has been submitted.

Normal flow of

events

1. The admin navigates to the Feedback page.

2. The system displays feedback organized into three sections:

• Pending: New feedback that has not yet been replied.

• Read: Feedback that has been opened and read.

• Replied: Feedback that has been responded to.

3. The system displays feedback details (username, message).

4. The admin types a reply and submits it.

5. The system sends the reply to the respective users and moves

the feedback to the Replied section.

Sub Flows -

Alternate Flows 2b. If no feedback exists, the system show: “No feedback available.”

3.3 Timeline

3.3.1 Overview

The timeline of the Smart Student Timetable Planner project is planned in accordance with the

selected development methodology, and it spans several structural phases to ensure systematic

completion.

In this initial phase, the proposal for the project was reviewed thoroughly. The problem

statement and project objectives were clearly identified, followed by defining the project scope

to ensure all goals can be achieved efficiently. A literature review of similar systems and

websites was conducted to analyze their strengths and weaknesses. Based on this research, the

tools and technologies for development were chosen. Furthermore, the project timeline was

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

outlined, system use cases were written, and the initial database scheme was designed and

created. This phase served as the foundational stage for the rest of the development process.

This phase focused on the construction of the system’s core functionalities. It began with the

development of the login module, for the authentication of students and administrators.

Following this, modules such as the Manual and Auto Scheduling Modules, the Genetic

Algorithm and the Comparison Module were developed and completed. In parallel, FYP 1

documentation and presentation preparation were carried out.

In the User Design phase also includes future development in FYP 2 of advanced features like

the Real-Time Collaboration Module, Export Timetable Module, and Administrative Module,

which are scheduled for completion by mid-August.

In the final stage, the entire system will undergo thorough software testing to ensure all features

function correctly and the system is free of major bugs or performance issues. During this time,

the FYP 2 Report will be written and refined for submission. The project will conclude with

the FYP 2 Presentation to both the supervisor and the moderator.

3.3.2 Gantt Chart

Figure 3.3.2.1 Gantt Chart of the Project Timeline

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

3.4 Summary

This project utilizes the Rapid Application Development (RAD) methodology, enabling

flexible, iterative development with ongoing testing and easy adaptation of features throughout

the process. The tools and technologies used for both front-end and back-end development are

clearly outlined. Diagrams such as the activity and use case diagrams, along with detailed

descriptions, illustrate the functionalities available to students and administrators. The system’s

development is described based on the implemented functions in the code. A Gantt chart is

used to organize the project timeline, ensuring efficient time management and smooth progress

without delays.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Chapter 4

System Design

In this chapter focuses on the program development which includes the server-side

development, login and logout function development, manual scheduling, auto scheduling,

timetable comparison, real-time collaboration, view timetable history, feedback, and for

administrative module, which includes upload courses, view upload history, preview courses,

view created sessions and managing feedback module.

2.1 Program Development

4.1.1 Server-side Development

The backend of the Smart Student Timetable Planner is implemented using Node.js with the

Express framework, offering a lightweight and modular server architecture. The package.json

file defines project metadata and dependencies such as express for routing, cors for cross-origin

requests, and papaparse/csv-parser for reading and parsing CSV files. These modules enable

the server to deliver static files, handle API requests, and process course data efficiently. The

project is configured with a start script that launches server.js, which serves as the entry point

of the application.

The core server logic in server.js begins by reading a master course list (masterlist.csv) that

contains detailed course session information. This data is parsed with papaparse, transformed

into structured JSON, and stored in memory to allow rapid API access. Each course entry

includes lecture and tutorial/practical sessions, with lectures treated as compulsory components.

Several REST API endpoints are provided to support timetable construction and data access.

For instance, /api/courses returns the parsed course dataset, /api/update-session allows updates

to session details such as timing or group allocation, and /generateTimetable runs a simplified

Genetic Algorithm (GA) to generate non-conflicting timetables based on selected courses.

The GA implementation on the server initializes a random population of candidate timetables

and applies basic evaluation rules to avoid conflicts. While currently simplified, the framework

is designed to be extended with mutation, crossover, and fitness evaluation functions for more

sophisticated optimization of scheduling. Static resources such as login.html and auto-

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

scheduling.html are served directly via Express middleware, integrating backend logic with the

client-side interface.

Overall, the backend of the Smart Student Timetable Planner demonstrates a modular and

extensible design. By combining structured CSV parsing, efficient API delivery, and a

foundation for GA-based scheduling, it provides a robust backbone for supporting intelligent

academic timetable generation and management.

Figure 4.1.1.1 package.json

Figure 4.1.1.2 server.js

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Figure 4.1.1.3 server.js

4.1.2. Login Function Development

The login functionality of the Smart Student Timetable Planner was developed to provide a

secure yet seamless user authentication process. The interface is designed using HTML and

CSS, ensuring a clean and responsive layout across devices. It features input fields for the

username and password, role selection buttons, and a login button, all styled with padding,

shadows, and rounded corners for clarity and usability. A consistent colour scheme and sticky

navigation bar enhance the overall user experience, while the form is centrally aligned for

accessibility on both desktop and mobile screens.

From a functional perspective, the login process is powered by a JavaScript script that manages

form submission through an event listener. When a user submits the form, the script prevents

the default page reload and instead collects the entered credentials together with the selected

role. These details are sent via a POST request to the /login endpoint using the Fetch API. The

server responds with a JSON object that indicates whether authentication was successful. Upon

success, the username and role are stored in sessionStorage, and the user is redirected to either

the main student page (main.html) or the admin page (admin.html) depending on their role. If

the login fails, an error message is dynamically displayed, providing immediate feedback

without requiring a page refresh.

On the server side, the login logic is implemented using Node.js and the Express framework.

The /login endpoint verifies the submitted username, password, and role against predefined

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

credentials. For successful logins, a JSON response is returned containing the username and

role, allowing the client to manage access control on the frontend. Logout functionality is also

provided through a /logout endpoint, which destroys the user’s session and clears the

authentication cookie before redirecting back to the login page. Middleware functions such as

isAuthenticated and isLoggedIn are implemented to demonstrate session-based access control,

ensuring that only authenticated users can access protected routes like main.html or other

secure resources.

Overall, the login and logout modules combine a responsive client-side design with a

lightweight server-side authentication mechanism. This structure provides a solid and

extensible foundation for secure user access management, while maintaining ease of use for

both students and administrators.

Figure 4.1.2.1 Login.html

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

Figure 4.1.2.2 Login.html

Figure 4.1.2.3 Login and Logout endpoint in server.js

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

4.1.3 Manual Scheduling Development

The manual scheduling module in the Smart Student Timetable Planner provides students with

an interactive way to manage their course schedules. This system allows students to manually

select courses choose specific sessions (lectures, tutorials, and practicals) and ensure that their

schedule is free from conflicts. The design of the module ensure flexibility, while also

maintaining academic rules and guidelines, making it a robust tool for course management.

When the page is first loaded, the script checks if the student has a previously saved schedule

in their browser’s sessionStorage. If a saved schedule exists, it retrieves the data and displays

it in the schedule table, allowing the student to pick up where they left off. If there is no saved

schedule, the student starts with an empty schedule. After checking for a saved schedule, the

script fetches all available course data from an API endpoint (/api/courses). The list of courses

is stored locally, allowing it to be filtered based on the trimester selected by the student.

Figure 4.1.3.1 Loading courses from API

The system works based on trimesters, so the first step is for the student to select a trimester.

This is done using the updateTrimester function. Once a trimester is selected, the system

updates the course list to only show the courses that are offered in the chosen trimester. The

list is displayed in a table format, where each course is shown with a “Select” button. When

the student clicks on “Select” course, the system displays the different sessions (lectures,

tutorials, and practicals) available for that course.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Figure 4.1.3.2 Update Trimester function

Upon selecting a course, the renderSessions function is called to display the available

sessions for that course. Each session is displayed in a table with important information like

the group, day, time, venue, and session type (lecture, tutorial, or practical). The student can

then choose the session(s) they wish to add for by checking a checkbox next to the session.

This interactive session selection allows students to pick and choose their preferred time

slots.

Figure 4.1.3.4 Render Sessions function

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Once the student has selected their desired sessions, they can click the “Add Course” button to

add the sessions to their schedule. However, before the registration is finalized, several

important checks are performed:

1. Clash Detection: The system checks whether the newly selected sessions conflict with any

existing sessions in the student’s schedule. This is done by comparing the start and end times

of the selected sessions with those already scheduled, ensuring there are no overlaps.

2. Lecture Session Validation: The system checks that the student has selected the required

number of lecture sessions for the course. If a course requires multiple lectures, the student

must select all of them; Otherwise, they will not be able to add for that course.

3. Practical/Tutorial Validation: The system ensures that the student selects only one practical

or tutorial session for a given course. This rule is enforced to ensure that the student does not

register for multiple overlapping practicals or tutorials.

If all checks pass, the selected sessions are added to the studentSchedule array, which stores

the student’s current timetable. This updated schedule is then displayed in the scheduled table,

and the session data is saved in sessionStorage for future use.

The system also offers a “View Timetable” feature, which allows the student to see their entire

schedule in a grid format. The timetable span from 8:00AM to 7:00PM, with time slots in 30-

minute intervals. The system dynamically generates rows and columns for each time slot,

representing the days of the week (Monday to Friday). As sessions are added to the timetable,

they are placed in the corresponding time slots, with the length of the session determining how

many rows it will span. For example. A 2-hour session will occupy 4 rows in the timetable,

and the system merges these cells to visually represent continuous sessions. The timetable is

sorted by day and time, ensuring a clear and easy-to-read display. Any overlapping sessions

are handled by removing redundant cells. Providing a clean, uncluttered view.

Each session that the student has registered for is displayed in the schedule table with a “Delete”

button next to it. If the student wishes to remove a session, they can click this button, which

prompts a confirmation message. If confirmed, the session is removed from the

studentSchedule array, and the updated schedule is saved back to sessionStorage. The schedule

table is then re-rendered to reflect the changes, allowing the student to manage their course

load flexibly.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Figure 4.1.3.4 Check Clashes Function

Figure 4.1.3.5 Delete Session and View Timetable Function

The Export Timetable feature was developed to allow students to generate portable copies of

their manually created schedules for external use and reference. Two export formats are

supported: PNG images and CSV files. The PNG export is implemented using the html2canvas

library, which captures the rendered timetable grid as an image. This enables students to

download a visually identical copy of their timetable, which can be stored on devices, shared

with peers, or printed for offline reference. The CSV export option, on the other hand, provides

a structured text-based representation of the timetable. By converting the schedule into comma-

separated values, students can open and further process their timetables in spreadsheet

applications such as Microsoft Excel or Google Sheets. This ensures compatibility for students

who may prefer to analyse or reorganize their timetable data in tabular form. Both export

options are accessible through a dropdown menu integrated into the interface, providing

flexibility in how students preserve and share their schedules.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Figure 4.1.3.6 Export Timetable

The Save to History functionality extends the system’s usability by maintaining a personal

record of previously generated timetables. When students choose to save a timetable, the

timetable grid is first captured as an image using html2canvas. The resulting image, along with

metadata such as the timetable label, intake, and trimester, is sent to the backend through the

/api/user/history/save endpoint. The server then stores this information in a user-specific

history structure, which is retrievable even after the user logs out and logs back in. This feature

ensures continuity, as students can revisit and review their past schedules without having to

recreate them from scratch. It also provides a mechanism for comparison between multiple

timetable versions, supporting better decision-making in course and session selection. By

combining image-based storage with contextual metadata, the Save to History feature offers

both visual clarity and organizational efficiency in timetable management.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Figure 4.1.3.7 Save Timetable to History

4.1.4 Auto Scheduling Development

In the auto scheduling section, it is designed to provide students with an automated way to

generate valid and personalized course schedules based on selected courses and individual time

constraints. This file forms the user interface where students can interact with the scheduling

system, input their preferences, and visualize the generated timetables. The system is tailored

to address common student needs such as avoiding scheduling conflicts, respecting unavailable

time slots, and ensuring complete course registration within a given academic trimester.

Upon loading, the HTML page retrieves various data stored in the browser’s sessionStorage,

which may include the selected courses, the current trimester, and the student’s unavailable

time slots. This data is used to render course options dynamically for the selected trimester,

allowing students to mark the courses they wish to enrol in. Each course selection is captured

and stored to maintain consistency across user sessions and page refreshes. Moreover, the page

incorporates a time constraint selection interface, implemented as a grid of checkboxes that

represent time slots across weekdays and working hours. This grid allows students to specify

their unavailable periods during the week, such as when they may have part-time jobs or

personal commitments.

A critical feature of this page is the “Generate Schedule” button, which initiates the scheduling

process. When clicked, the system collects all the relevant data, selected courses and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

unavailable times, and processes it through a Genetic Algorithm (GA). The algorithm then

generates multiple valid timetable combinations that meet all defined constraints. These

schedules are displayed to the user in a structured timetable format, with course session visually

arranged in a grid representing days and times. Each session is color-coded and labelled to

indicate the course code, session type (lecture, tutorial, or practical), and location details.

Figure 4.1.4.1 Update Trimester and Fetch Courses from API

Figure 4.1.4.2 Render Course and Render Time Constraints function

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

Figure 4.1.4.3 Get Selected Sessions Function

The Export Timetable feature allows students to preserve their generated timetables in two

different formats: PNG images and CSV files. When the export as image option is chosen, the

timetable grid is first cloned and placed in an off-screen container to ensure a clean layout. The

html2canvas library is then used to capture the table and render it into a high-resolution canvas.

This canvas is converted into a downloadable PNG file, enabling students to save, print, or

share their timetable in its original visual form. In contrast, the CSV export option provides a

structured representation of the data timetable. The timetable is processed into a grid covering

all hours and weekdays, with each session represented by its course code and type. The grid is

converted into comma-separated values and packaged as a downloadable file that can be

opened in applications such as Microsoft Excel or Google Sheets. By offering both visual and

data-driven exports, the system ensures flexibility, catering to students who prefer either a

quick visual reference or a structured dataset for further analysis.

Figure 4.1.4.4 Export Timetable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

The Save to History feature enhances the planner by maintaining a record of timetables within

the system itself. When students choose to save a timetable, the application checks for a valid

user session before processing each generated schedule. For every timetable, the grid is cloned

and captured into a high-quality image using html2canvas. This image, together with metadata

such as username, label, intake, trimester, and mode, is transmitted to the backend via the

/api/user/history/save endpoint. The server then stores the data in a user-specific history record,

ensuring timetables are linked to the correct account. Saved timetables remain accessible even

after the user logs out and logs back in, allowing students to revisit or compare multiple

versions without having to regenerate them. By combining visual accuracy with contextual

metadata, this feature provides both continuity and organization, supporting better decision-

making in timetable management.

Figure 4.1.4.5 Save Timetable to History

4.1.5 Genetic Algorithm Development

The core logic for timetable generation relies on a Genetic Algorithm (GA), a search heuristic

inspired by the process of natural selection. The GA operates by iteratively improving a

population of candidate solutions. In this case, course schedules, based on fitness criteria that

reflects the validity of a schedule. This evolutionary approach is well-suited to complex

scheduling problems, where the solution space is vast and includes numerous constraints.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

The process begins with the generation of an initial population of random schedules. Each

schedule is a combination of lecture sessions (which are mandatory for each course) and either

one tutorial or one practical session. The function generateInitialPopulation() is responsible for

creating these candidate schedules. It ensures that each schedule includes all required lecture

sessions and exactly one non-lecture session for each course, provided there is no conflict with

the student’s unavailable time or with other sessions in the schedule.

The fitness of each schedule is evaluated using the isValidSchedule() function. This function

ensures that no two sessions in a schedule overlap and that none of the sessions conflict with

the student’s declared unavailable slots. Unlike traditional GAs that assign a numeric fitness

score, this implementation uses a binary evaluation where a schedule is either valid or invalid.

This simplification is effective in pruning the search space and focusing only on feasible

timetables.

The evolution of the population occurs through a combination of crossover and mutation

operations, implemented within te evolvePopulation () function. In each generation, the

algorithm selects pairs of valid parent schedules and produces offspring by combining their

session lists at a randomly selected crossover point. This recombination helps in exploring new

combinations of session arrangements. To introduce diversity and avoid premature

convergence, the algorithm also applies mutations to some schedules. The mutate () function

randomly replaces a session with an alternative option of the same type, provided the change

maintains schedule validity.

The evolution process continues for a fixed number of generations, during which new valid

schedules are produced and stored. At the end of the evolution process, a pool of valid and

optimized schedules is available. These schedules are then stored in sessionStorage and

rendered on the interface using the renderAllSchedules() function. The visual representation

includes up to five valid schedules displayed as weekly timetables, each showing course

sessions in their appropriate time slots. Each session is clearly labelled with its code, type,

group, and venue, allowing students to make informed decisions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

Figure 4.1.5.1 Generate Initial Population and Generate Random Schedule function

Figure 4.1.5.2 Evolve Population and Crossover function

Figure 4.1.5.3 Mutate function

4.1.6 Timetable Comparison Development

This module serves the specific function of visually comparing a student’s manually registered

timetable against a set of auto-generated timetables. This page acts as a decision-support tool

for students by allowing them to evaluate and compare different scheduling options before

finalizing their course registration. It is an integral component of the Smart University

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Timetable System, which offers both manual and Genetic Algorithm (GA)-based scheduling

modes.

Several utility functions are defined to support time parsing and data normalization across

different session formats. These functions ensure compatibility between manual and auto-

generated session data, as two types may use slightly different field names. Function such as

getSessionDay, getSessionStart, getSessionEnd, and getSessionCourseCode abstract away

these differences, providing a unified interface for retrieving session attributes. Additionally,

time-handling utilities like toMinutes and formatHour are employed to calculate durations and

display time ranges in a readable format.

This page loads both the manual and aut-generated schedules from sessionStorage, where they

were previously stored during the scheduling processes in other parts of the system. The

loadComaprison() function serves as the entry point when the page is loaded, retrieving and

parsing these stored schedule arrays for further processing and rendering.

The core rendering logic is encapsulated in the renderTimetableGrid() function, which

constructs a visual timetable in HTML table format based on a given schedule array. The

function generated a grid where each row represents an hourly time slot, and each column

corresponds to a weekday. For each cell in the grid, it checks whether a course session is

scheduled to start at that day and hour. If so, the session is inserted into the grid with appropriate

rowSpan values to reflect its duration in hours.

To handle overlapping sessions and avoid duplicate rendering, the script maintains an internal

cellOccupied map. This structure tracks cells that are already occupied by longer sessions and

ensures that merged cells spanning multiple rows are rendered correctly without interference.

Each session is labelled with details including the course code, session type, group number,

start and end times, and venue. These details are styled with varied font sizes to maintain clarity

and compactness within each cell.

Two distinct rendering pathways are defined for manual and auto-generated timetables. The

renderManualTimetable() function specifically loads the student’s registered schedule from

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

sessionStorage under the key “studentSchedule” and renders it using the timetable grid function.

If no such data is found, a fallback message “No registered timetable found” is displayed.

On the other hand, auto-generated schedules are handled by the renderAutoTimetables()

function. This function introduces pagination logic to support the display of multiple valid

schedules generated by the Genetic Algorithm. Only a maximum of five timetables is rendered,

and the user can navigate through them using “Next” and “Previous” buttons. The currently

displayed timetable is labelled to distinguish it from others. Each time a new schedule is

rendered, the pagination status is updated using updatePagination() to reflect the current page

number and enable or disable the navigation buttons as needed.

Figure 4.1.6.1 Normalize Getters Function

Figure 4.1.6.2 Render Manual Timetable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

Figure 4.1.6.3 Render Auto Generated Timetable

Figure 4.1.6.4 Update Pagination and Load Comparison functions

4.1.7 PDF Parser Development

This program was developed to automate the conversion of timetable data from PDF format

into a structured CSV file that can be easily processed by the Smart Student Timetable Planner

system. It begins by handling command-line arguments to ensure that both the input PDF and

output CSV file paths are provided. Using the pdfplumber library, the program opens the PDF

file and scans each page for tables. Every table is then broken down into rows, and only non-

empty rows are collected. During this process, empty cells are replaced with blank strings, and

extra whitespace is trimmed to keep the data clean and consistent. This ensures that only

meaningful data is extracted while avoiding formatting issues caused by messy PDF structures.

Once the data has been gathered, the program assumes the first row of the extracted table is the

header, while the remaining rows are treated as the dataset. A pandas DataFrame is created

from this structure, which provides a reliable way to handle tabular data. Finally, the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

DataFrame is exported to a CSV file without including row indices, making the output ready

for integration into the timetable system. This approach not only simplifies the process of

converting complex PDFs into usable data but also ensures that the information is standardized,

clean, and accessible for further operations such as scheduling, searching, and conflict checking

in the application.

Figure 4.1.7.1 PDF Parser in parser.py

Figure 4.1.7.2 PDF Parser in parser.py

4.1.8 Real-time Collaborative Development

This client-side script implements the real-time collaboration UI for the merged timetable

feature. It connects to the backend via Socket.IO, lets users create/join collaborative sessions,

submit their personal timetables, preview others’ timetables, and participate in an interactive

merge process where users (or the admin) can click to assign alternative timeslots for

tutorial/practical sessions. The script keeps a local copy of course/session data, maintains

session state in sessionStorage, renders both full merged grids and compact mini-previews, and

provides export / save-to-history capabilities (image snapshot via html2canvas).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

When the page loads the script opens a persistent socket with const socket = io(). User and

session identity are retrieved from sessionStorage (username, collabSessionId). Global datasets

include window.courses (the unified course/session masterlist fetched from /api/courses),

allSessions (the server-provided list of merged/updated sessions), mergedTimetable (the

timetable currently displayed), and window.allUserTimetables for storing each user’s

submitted timetables. sessionSubmissions (a Map) and some small state variables (mode,

validSchedules, userTimetables) are used to track submission status and ephemeral UI state.

This layout favors client-side rendering and immediate feedback while relying on the server

for authoritative session synchronization and synthesis.

The client both listens for and emits events. Important inbound events include:

• sessionState — server sends full session state (allSessions + submissions) so the client

can do a full sync and render the timetable and submission list.

• sessionSubmissionsUpdated — updates the per-user submission indicator UI.

• allUserSubmissions — provides all users’ submitted timetables; used to build the

preview gallery.

• updateUserSubmission and updateTimetable — incremental events when a single user

submits or when the synthesized timetable is updated; the client updates mini-previews

and re-renders the merged grid respectively.

• userJoined, selectedTimetable, chatMessage — UI notifications for presence, selection

announcements, and chat.

Outbound events emitted by the client include:

• userJoined — announces the client has joined a session (username + sessionId).

• updateSessionCell — when a user chooses a new slot for a session, the client sends the

updated session object to the server so it can persist and broadcast it.

• submitTimetable and API POST to /api/saveTimetable — when a user submits their

chosen timetable; the client both POSTs to the REST endpoint (persistence) and emits

a socket message so the session can be notified immediately.

• selectedTimetable — the user notifies peers which auto-schedule index they selected

as “their timetable.”

This combination of REST + socket usage provides both reliable persistence (HTTP) and

low-latency notifications (Socket.IO).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Figure 4.1.8.1 Architecture and Main Data Structures

Figure 4.1.8.2 Architecture and Main Data Structures

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Figure 4.1.8.3 Architecture and Main Data Structures

Figure 4.1.8.4 Architecture and Main Data Structures

renderGridTimetable(sessions, masterlist) builds a visual grid weekly calendar (Mon–Fri,

08:00–18:00). Sessions are placed into hour rows, and exact vertical positioning and sizing are

computed using the helper timeToMinutes() so fractional starts (e.g., 08:30) and durations are

reflected visually. Cells are marked occupied in cellOccupied to prevent overlapping DOM

cells. Each session block is colored by status (merged, exclusive, conflict) to visually

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

communicate which items were agreed on, exclusive to a single user, or conflicted. Non-lecture

sessions are interactive: clicking a tutorial/practical open highlights of available slots where

that session can be moved.

Figure 4.1.8.5 Timetable rendering & interaction model.

Figure 4.1.8.6 Timetable rendering & interaction model.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Figure 4.1.8.7 Timetable rendering & interaction model.

When a user clicks a non-lecture session, the script calls getAvailableSlots(session) to compute

candidate slots and then highlightAvailableSlots(session, container, sessionsArr) to render

clickable highlight overlays. getAvailableSlots searches window.courses for sessions matching

courseCode and type, deduplicates by day-start-group, and filters out slots that clash with any

compulsory lecture for that course — ensuring a tutorial/practical is never placed overlapping

a lecture. The highlight overlays are positioned precisely in the timetable grid (using top offsets

and heights derived from minute arithmetic) and have click handlers that: update the local

sessionsArr with the newly chosen day/start/end; emit updateSessionCell to the server to save

and broadcast the change; and re-render the timetable locally for immediate feedback. An

outside-click listener removes highlight overlays when the user clicks away.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Figure 4.1.8.8 Finding and highlighting available slots

Figure 4.1.8.9 Finding and highlighting available slots

Users save/submit their chosen timetable by calling submitActualTimetable() which pulls a

selected timetable from sessionStorage and POSTs it to /api/saveTimetable. After the server

persists the timetable, it emits updateUserSubmission to all clients; the client adds a submitted

flag and shows mini previews. The server keeps track of which users have submitted and (when

all required submissions are present) synthesizes a merged timetable and broadcasts it with

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

updateTimetable (or via the /api/synthesizeTimetable endpoint). The client’s

socket.on('updateTimetable') handler receives the authoritative merged result and calls

renderGridTimetable so all participants see the same merged calendar.

Figure 4.1.8.10 Submission and synthesis flow.

The script populates a user timetable selector (populateUserTimetableSelect) from

sessionStorage (auto schedules) so a user can pick which auto-schedule they want to submit.

The preview system (renderAllUserPreviews, renderMiniTimetable, renderMiniPreview)

displays compact visual summaries of each user’s submitted timetable. The preview code

handles both array-of-sessions and array-of-arrays shapes, and it keeps the preview UI in sync

when allUserSubmissions or updateUserSubmission arrives.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Figure 4.1.8.11 Previews, selection UI and mini rendering.

The merged timetable UI can be exported as PNG or CSV. For PNG exports and history

saves the script uses html2canvas to capture the gridContainer into an image (high resolution

on save flows), then either triggers a download (export) or POSTs the data URL to

/api/user/history/save with metadata (username, label, mode: "merge", intake/trimester) to

persist the snapshot in the user’s history. Saving to history is protected by checks (session

joined + non-empty grid) and returns user feedback on success/failure.

Figure 4.1.8.12 Save to History.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

4.1.9 View Timetable History

The Timetable History module was developed to allow students to manage their previously

saved timetables in a structured and interactive way. This functionality integrates both client-

side rendering and server-side data management to provide features such as filtering, grouping,

viewing, and deleting saved schedules. When the page loads, the loadHistory() function is

executed, retrieving the logged-in username from session storage and sending a request to the

backend API endpoint (/api/user/history/:username). The response is parsed into JSON, and

timetables are dynamically rendered inside the historyContainer. If no timetables exist, the

system displays a user-friendly message to indicate that no records are available.

Figure 4.1.9.1 Load History function

A key part of the development involved grouping saved timetables by mode, intake, and

trimester to make browsing intuitive. This grouping ensures that students can easily distinguish

between timetables generated using manual or auto scheduling modes, across different intakes

and trimesters. For example, the script dynamically creates expandable sections using

collapsible panels (toggleCollapse() function), enabling a hierarchical view. At the lowest level,

each timetable is displayed inside a table containing metadata such as its label and save

timestamp, along with action buttons for viewing and deletion.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Figure 4.1.9.2 Toggle Collapse function

The view timetable feature was designed for quick preview without navigating away from the

history page. This is achieved through the viewTimetable() function, which displays the saved

timetable image inside a modal overlay. The modal is styled with semi-transparent background

shading and a centered preview box, providing a focused display of the timetable. The image

is retrieved directly from the saved data (item.image) and scaled appropriately to fit different

screen sizes. A close button allows students to dismiss the preview, reinforcing usability across

both desktop and mobile platforms.

Figure 4.1.9.3 View Timetable function

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Additionally, the delete timetable function (deleteTimetable()) enhances user control over

saved data. When triggered, the system confirms the deletion action for safety before sending

a DELETE request to /api/user/history/:username/:index. The backend processes the request,

removes the timetable entry, and returns a JSON response. If successful, the history view is

reloaded to reflect the updated state in real time. This development choice ensures that students

always see an up-to-date view of their saved timetables without needing a manual page refresh.

Figure 4.1.9.4 View Timetable function

4.1.10 User Feedback

The User Feedback module was developed to allow students to communicate directly with

administrators by submitting feedback, reporting issues, or suggesting improvements for the

Smart Student Timetable Planner. The frontend is built with HTML, CSS, and JavaScript,

styled to maintain a consistent theme with the rest of the system. The interface contains two

key sections: a feedback submission form and a feedback history section where users can view

administrator replies. The submission form includes fields for username, feedback type

(general, bug report, or suggestion), and a text area for the message. Once submitted, the

feedback is sent to the backend using a POST request (/api/feedback). To enhance user

experience, the system displays a floating “Thanks for your feedback!” box using CSS

animations, confirming successful submission without requiring a page refresh.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

Figure 4.1.10.1 Alert Float Box

To provide users with continuous engagement, the module also retrieves previously replied

feedback through a GET request (/api/feedback/:username). The replies are dynamically

rendered within the history section, showing both the user’s original message and the

administrator’s response. A red notification dot appears on the navigation bar whenever unread

replies exist, ensuring users are aware of new updates. Each feedback entry includes an option

to mark replies as read, which sends a request (/api/user/feedback/:id/read) to the server and

updates both the history view and the notification indicator. This interaction enhances usability

by helping students manage and track their communication history with administrators.

Figure 4.1.10.2 Get Request

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

The module also integrates real-time updates using Socket.IO, enabling immediate

synchronization when administrators reply to feedback. This eliminates the need for users to

manually refresh the page. When an admin posts a reply, the feedbackReplied socket event

automatically triggers an update of the user’s feedback history and reactivates the red

notification dot. Similarly, when a user marks a feedback reply as read, a feedbackUserRead

event ensures the UI is updated across connected clients. This design ensures responsive,

interactive, and collaborative communication between students and administrators,

strengthening system reliability and transparency.

Figure 4.1.10.3 Real-Time Updates

4.1.11 Upload Course

The Upload Course module was developed to streamline the process of importing course data

into the Smart Student Timetable Planner. Instead of requiring manual entry of courses,

administrators can upload an official course timetable in PDF format. The frontend was

implemented using HTML, CSS, and JavaScript to maintain a consistent design with the rest

of the platform. The interface provides a custom file upload selector styled with a drag-and-

drop appearance, alongside a dynamic progress bar that tracks each stage of the upload process.

Once a file is selected, the chosen filename is displayed, and upon submission, the file is sent

to the server using an XMLHttpRequest POST request to the /upload route.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

To enhance user experience, the module includes visual feedback mechanisms that guide the

administrator through the entire process. The progress bar is updated in real time, showing the

percentage of the file uploaded. Once the upload is complete, the status automatically switches

to Processing, and upon successful parsing by the backend, it changes to Upload & Parsing

Complete! with a green highlight. In the event of errors—such as invalid files or connection

failures—the system provides clear alerts and a red failure status, ensuring administrators

understand the problem and can retry immediately.

Figure 4.1.11.1 upload.html

Figure 4.1.11.2 upload.html

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

4.1.12 Upload Course History

The Admin Upload History module was designed to provide administrators with a clear and

organized record of all course files that have been uploaded into the Smart Student Timetable

Planner. This feature ensures transparency and accountability by allowing admins to track the

details of every upload, including the file name and the exact time it was submitted. The

interface is structured with HTML and styled using CSS to align with the system’s overall

dashboard layout, ensuring consistency across all administrative modules. A responsive design

approach was used so that the history table adapts seamlessly to various screen sizes, enabling

administrators to review records on both desktop and mobile devices.

The upload history is dynamically populated by fetching data from the backend through a GET

request to the /api/history endpoint. Once the data is retrieved, JavaScript generates table rows

containing each file’s name and upload timestamp, which are displayed in a user-friendly

format using toLocaleString() for readability. This automated retrieval removes the need for

manual record-keeping, ensuring that every upload event is captured and displayed in real time.

By storing and presenting this information, the system ensures that administrators can easily

verify past uploads, identify errors, and confirm that course data has been successfully parsed

into the system.

Figure 4.1.12.1 history.html

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

4.1.13 Preview Courses

The script begins by fetching course data from the backend using the /api/courses endpoint,

and it also retrieves the latest upload information through /api/history. Once the data is

successfully fetched, the script dynamically populates the table body with course records,

ensuring only a subset of rows (30 per page) is displayed at a time. Pagination is managed

through renderTable() and updatePagination(), which allow administrators to navigate between

pages efficiently without overloading the interface with large amounts of data. This ensures

smooth performance and readability when previewing potentially extensive course datasets.

Figure 4.1.13.1 preview.html

Figure 4.1.13.2 preview.html

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

4.1.14 View Created Sessions

The Created Sessions module was developed to provide administrators with an overview of all

collaborative sessions created within the Smart Student Timetable Planner. The interface is

structured with a navigation bar, a sidebar menu, and a main content area. The sidebar organizes

key admin functions such as course uploads, history tracking, feedback, and session

management, ensuring a consistent and intuitive navigation experience. The main content area

displays a dynamically populated table that lists session details, including the session name,

unique ID, creation time, and participant list with count. The table is generated through a

JavaScript function (loadSessions()), which retrieves session data via the /api/sessions endpoint.

This ensures that the administrator always has access to the most up-to-date information stored

on the server.

In addition to static retrieval, the script integrates real-time updates using Socket.IO, allowing

the session table to refresh dynamically without requiring a page reload. When a new session

is created, the "sessionCreated" event immediately inserts the session record into the table,

while the "participantJoined" event updates the participant count and list when new users join

a session. This real-time synchronization ensures administrators maintain an accurate view of

ongoing collaborations. Moreover, the module incorporates a feedback notification system,

where the script fetches pending feedback from /api/admin/feedback and toggles a red dot

indicator to alert administrators of unread or unreplied messages. The notification state is

further kept in sync with "newFeedback" and "feedbackReplied" socket events, ensuring

administrators can respond promptly to user concerns. Together, these features enable seamless

monitoring of system activity, providing both visibility and responsiveness within the

administrative workflow.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Figure 4.1.14.1 admin-session.html

Figure 4.1.14.2 admin-session.html

4.1.15 Admin Feedback

The Feedback module was developed to enable administrators to efficiently review, respond,

and organize user feedback within the Smart Student Timetable Planner. The layout consists

of a sidebar navigation for accessing other admin functions, a filter bar for narrowing feedback

by type or status, and a structured feedback table grouped into Pending, Read, and Replied

sections. The table is dynamically populated by fetching records from the server through the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

/api/admin/feedback endpoint. Feedback entries include details such as the user, feedback type,

message content, status, and available actions. Pending feedback provides administrators with

Reply and Mark as Read options, while read and replied entries are displayed for reference. A

badge indicator is also included in the sidebar, showing the number of pending items so

administrators always remain aware of unresolved feedback.

It also enhances interactivity by integrating modal-based reply handling and real-time updates

via Socket.IO. When administrator clicks “Reply,” a modal window is triggered, allowing the

reply to be composed and submitted through POST request (/api/admin/feedback/:id/reply).

Replies are then immediately reflected in the table and broadcast to connected clients using the

"feedbackReplied" socket event. Similarly, marking feedback as read triggers POST request

(/api/admin/feedback/:id/read) and synchronizes updates across clients with a "feedbackRead"

event. Socket listeners ("newFeedback", "feedbackReplied", "feedbackRead") ensure that

changes made by one administrator are instantly reflected on all connected sessions,

maintaining a consistent and collaborative view. Filters further allow administrators to refine

results based on feedback type or status, improving searchability in large datasets. This modular

approach to design ensures scalability, responsiveness, and clear communication flow between

users and administrators, significantly strengthening the system’s support and feedback loop.

Figure 4.1.15.1 feedback-admin.html

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

Figure 4.1.15.2 feedback-admin.html

Figure 4.1.15.3 feedback-admin.html

4.2 Summary

The overall program development of the Smart Student Timetable Planner integrates multiple

modules—login, scheduling, feedback, and collaboration—designed to provide a seamless and

interactive user experience. The front end was implemented using HTML, CSS, and JavaScript

for intuitive interfaces, while the backend relied on Node.js, Express, and Socket.IO to manage

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

real-time updates, data storage, and communication between clients and the server. Key

modules such as the Genetic Algorithm-based auto-scheduling ensure conflict-free timetable

generation, the collaborative merging feature supports real-time session sharing, and the

feedback system enables structured communication between students and administrators.

Together, these developments emphasize usability, reliability, and responsiveness, resulting in

a robust system that simplifies course planning and enhances student–admin engagement.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

Chapter 5

System Implementation

In this chapter, it covers the hardware and software setup, user interfaces, and challenges faced

during development. The system runs in a client-server environment using Node,js, Express,

and Socket.IO for real-time processing, with data handled through CSV and JSON integration.

User interfaces were designed to be clear and responsive, featuring student modules for

scheduling, merging and feedback, and an admin dashboard for course and feedback

management. Key challenges included developing the GA in Auto Scheduling and ensuring

real-time synchronization in timetable merging, preventing conflicts, and managing

highlighted modifiable slots.

5.1 Hardware Setup

Table 5.1.1 Hardware Components and Requirements

Description Specifications

Model HP Pavilion Laptop 15-eg2xxx

Processor 12th Gen Intel ® Core™ i7-1255U

Graphic NVIDIA GeForce MX550

Memory 8.00 GB (7.68 GB usable)

5.2 Software Setup

Table 5.2.1 Software Components and Requirements

Description Specifications

Source Code Editor Visual Studio Code, Google Colab

Programming

Language

Python, Java, Node.js, HTML, CSS, JavaScript,

JSON,Express, Socket.IO, papaparse

Database MySQL

Operating System Windows 11 Home Single Language

Documentation Microsoft Office

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

5.3 User Interface

5.3.1 Login Page

When a user accesses the URL of the website, it will redirect them to this page with a modern

login interface for the Smart Student Timetable Planner. The user interface of this login page

is designed to be simple, clean, and user-friendly, with a focus on clarity and ease of navigation.

At the top, a sticky navbar with the system’s name, “SMART STUDENT TIMETABLE

PLANNER”, provides consistent branding and remains visible as the user scrolls. The login

form itself is presented inside a centered card with rounded corners and a subtle shadow, giving

it a modern and professional look. Users can select their role, either Student or Admin, through

clearly styled toggle buttons at the top of the card, with the active role highlighted in orange

for quick recognition. Below, the login form features neatly spaced input fields for username

and password, styled with rounded edges in a bright orange that matches the theme, with hover

effects for interactivity. Overall, the interface emphasizes accessibility, role clarity, and a

visually appealing layout that guides users smoothly through the login process.

Figure 5.3.1.1 Login Page

5.3.2 Main Page

The user interface of this main page is designed to be modern, clean, and welcoming, providing

users with quick access to the main features of the Smart Student Timetable Planner. At the

top, a sticky navigation ban spans the full width of the page with the system’s name on the left

and neatly arranged links on the right, allowing users to move easily between pages such as

Home, Auto Scheduling, Manual Scheduling, Comparison, Merging, History, Feedback, and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

Logout. The hero section dominates the page with a bright gradient background and a split

layout: on the left, bold headings and descriptive text introduce the platform, while two

prominent orange buttons guide users directly to either Manual or Auto Scheduling. On the

right, a large illustrative image of a timetable ensuring that on smaller screens the navbar and

hero section stack vertically for readability and accessibility. Overall, the interface is intuitive,

visually engaging, and structured to highlight the platform’s core scheduling features.

Figure 5.3.2.1 Main Page

5.3.3 Manual Scheduling Page

This page is designed to provide students with a structured and interactive way to register and

organize their courses. At the top, a navigation bar spans across the screen, displaying the

system’s title on the left and quick links on the right to different sections such as Home, Auto

Scheduling, Manual Scheduling, Comparison, Merging, History, Feedback, and Logout. This

ensures consistency and allows users to easily switch between different features in the system.

The main content is arranged into card-based sections, each guiding the student through the

registration process step by step. The first section allows students to select their intake month

using a dropdown menu, ensuring that course availability is filtered based on the correct

academic intake. Below that, another dropdown enables users to select their trimester, further

narrowing down the list of courses to those relevant for that period. The layered filtering design

minimizes confusion and keeps the selection process straightforward.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

Once the trimester is chosen, the interface presents a course table listing available courses with

their codes and names, along with an action button to select a course. After a course is selected,

a session selection table appears, displaying details such as group, day, time, venue, and type

of session. Each session includes a checkbox, allowing students to choose the required lectures

and either one tutorial or practical session. A clearly styled “Add Course” button enables

students to confirm their choices, which then get added to their personal schedule.

The selected sessions are displayed in the schedule table, which lists all registered courses with

full details including trimester, course code, session type, group, day, time, and venue. Each

entry includes a modify option, giving users flexibility to remove or adjust sessions if

necessary. To provide a visual overview, a weekly timetable grid is displayed below, where all

registered sessions are mapped according to their times and days. This dual representation,

detailed table and visual grid, helps students cross-check for potential clashes and view their

timetable in a familiar calendar-like format.

Finally, below the timetable, the interface includes a button group for exporting and saving

schedules. The export button provides a dropdown menu to export the timetable as an image

or Excel file, while a dedicated save button allows students to save their timetable to their

history for future reference. These features are styled consistently with the overall theme,

ensuring that students can not only build their schedules but also store and share them

conveniently. Overall, the manual scheduling interface combines clarity, step-by-step

guidance, and flexibility to give students full control over constructing their academic

timetable.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

Figure 5.3.3.1 Select Intake, Trimester and Course List Available

Figure 5.3.3.2 Session Available for the Selected Course

Figure 5.3.3.3 Schedule for Selected Course

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

Figure 5.3.3.4 Timetable View, Export and Save Timetable Button

5.3.4 Auto Scheduling Page

The Auto Scheduling Page is designed to provide students with an automated and efficient way

of generating valid timetables using a GA. The interface maintains a consistent navigation bar

at the top, offering quick access to all main sections of the platform such as Home, Manual

Scheduling, Comparison, Merging, History, Feedback, and Logout. This ensures users can

easily navigate across different features without confusion. The main content is structured

within card-based sections, each clearly labeled with headers to guide the user step by step

through the scheduling process.

The interface begins with intake month selection and trimester selection, both provided in

neatly styled dropdown menus. Once chosen, the system dynamically updates the course list to

display only the relevant options. The course selection section presents a list of available

courses for the chosen trimester, while the time constraints section allows users to specify

unavailable slots, ensuring the generated timetable respects personal preferences. A prominent

“Generate Schedule” button is provided to initiate the timetable generation process.

After schedules are generated, the results are displayed in the Generated Schedule section,

which includes a detailed timetable table along with a set of functional controls. Users can

choose from multiple generated schedules using a dropdown menu, and then either export the

timetable in image or Excel format or save it directly to their history for later use. The export

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

button includes a dropdown design for clear and accessible output options, while the save

button is highlighted in green to emphasize successful storage. Overall, the Auto Scheduling

page provides a structured, interactive, and user-friendly interface that simplifies complex

timetable generation into an accessible step-by-step workflow.

Figure 5.3.4.1 Select Intake, Trimester, and Course Available

Figure 5.3.4.2 Select Time Constraints

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

Figure 5.3.4.3 Generate Schedule, Export and Save buttons and Generated Timetables

Figure 5.3.4.4 Generated Timetables

5.3.5 Timetable Comparison Page

The Timetable Comparison page is structured to allow students to directly evaluate the

differences between their manually created timetable and the automatically generated

alternatives. At the top, the navigation bar provides consistently with the rest of the system,

ensuring quick access to other key features such as Home, Manual Scheduling, Auto

Scheduling, Merging, History, Feedback, and Logout. Below the navigation bar, a clear page

header titled “Timetable Comparison” introduces the purpose of the page, reinforcing its role

in helping students make informed scheduling decisions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

The main content is divided into two clearly defined sections, displayed within a card-based

layout for readability. On the left, the Manual Scheduling Timetable section presents the

students manually registered timetable, allowing them to review their chosen courses and

timeslots. On the tight, the Auto-Generated Timetable section displays timetables produced

through the system’s Genetic Algorithm, offering alternatives valid scheduling options. To

manage multiple possible schedules, a pagination feature is included at the bottom of the auto-

generated section, allowing users to navigate between pages using Previous and Next buttons

while the current page number is displayed for reference.

The timetables themselves are rendered in neatly bordered tables with colored headers and

clear labeling, ensuring that session details are easy to compare immediately. The use of

consistent formatting between the manual and auto-generated schedules supports

straightforward side-by-side evaluation. Overall, the interface is designed for clarity,

efficiency, and direct comparison, helping students determine whether to retain their manually

created schedule or adopt an optimized alternative generated by the system.

Figure 5.3.5.1 Timetable Comparison Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

Figure 5.3.5.2 Timetable Comparison Page

5.3.6 Merging Timetable Page

The Merging Timetable Page is designed to provide students with a collaborative platform

where multiple users can combine their individual timetables into a shared schedule. At the top

of the page, a responsive navigation bar is included to ensure consistency with the rest of the

system. It features the system’s logo on the left and quick links to key pages such as Home,

Auto Scheduling, Manual Scheduling, Comparison, Merging, History, and Feedback on the

right. This keeps navigation intuitive and accessible.

The main container adopts a clean, card-style layout with rounded edges and subtle shadows

to maintain readability and separation from the background. Within the container, the session

management section is prominently placed, giving users options to join an existing

collaborative session or create a new session. The session status panel beneath these buttons

provides real-time feedback on whether the user is currently connected to a session. This

interaction is supported by a floating modal box that appears for session creation or joining,

featuring input fields for session name, password, and participants limits.

The timetable visualization itself is structured in a grid layout that organizes days and timeslots

clearly. Each cell uses color-coded highlights to indicate the type of entry: green for merged

sessions, pink for conflicts, and blur for exclusive sessions. A legend is provided above the

grid to ensure users can easily interpret the meaning of each color. Beyond this static

visualization, the design also introduces highlighted slots that can be shifted interactively.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

When users click on a practical or tutorial session, the system highlights alternative available

timeslots where the session could be moved. This provides participants with direct control over

resolving clashes by selecting alternative slots without needing to regenerate the timetable

entirely.

Additional interaction elements further enhance collaboration. Users can select their personal

timetable from a dropdown list, preview it in a compact mini-grid format, and submit it to the

session. A participants list is shown in real-time, reflecting who has joined the session and

which timetables have been submitted. Notifications and submission status are displayed to

keep all users updated on progress.

To support teamwork and communication, a session chat panel is integrated at the bottom of

the page. This live chat allows participants to coordinate decisions and resolve conflicts while

merging. Export functionality is also included, allowing the finalized timetable to be

downloaded either as an image or Excel file for personal use or sharing. Finally, a “Save”

button enables students to store their merged timetable into the system’s history for later

reference.

Figure 5.3.6.1 Join Collaborative Session

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 103

Figure 5.3.6.2 Create Collaborative Session

Figure 5.3.6.3 Preview Selected Timetable

Figure 5.3.6.4 Preview Merged Timetable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 104

Figure 5.3.6.5 Session Chat

5.3.7 Timetable History Page

The Timetable History Page provides students with a structured and user-friendly interface to

manage their previously saved timetables. A consistent navigation bar at the top ensures

seamless movement across modules such as Auto Scheduling, Manual Scheduling,

Comparison, and Merging, while clearly highlighting the active page. This consistent design

enhances usability and creates a smooth transition across different features of the platform.

The main content area is organized into collapsible sections that group timetables by mode

(manual, auto, or merged), then further by intake and trimester. Each timetable entry displays

key details such as its label and the date and time it was saved. Color-coded badges help

distinguish between timetable types, allowing users to identify schedules immediately. A filter

option above the list also enables users to refine their view based on scheduling mode,

improving efficiency in locating specific timetables.

To support quick interaction, each timetable entry includes action buttons for viewing or

deleting. Viewing opens a model overlay that displays a high-quality preview of the timetable,

while the delete option allows users to remove unnecessary entries with confirmation. This

combination of grouping, filtering, and previewing ensures the page balances clarity with

interactivity, giving students full control over their scheduling history.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 105

Figure 5.3.7.1 Timetable History Page

5.3.8 User Feedback Page

The User Feedback Page is designed to provide students with an intuitive and interactive

navigation bar at the top, ensuring easy access to other modules such as scheduling, merging,

comparison, and history, while clearly highlighting the active feedback section. The layout

follows a card-based structure, giving the page a clean and organized look. The first card

contains the feedback submission form, where users can enter their username, select a feedback

type (general, bug, or suggestion), and input their message in a text area. A clearly styled

submission button completes the form, supported by a floating “thanks” box that briefly

appears after successful submission to reinforce user acknowledgment.

Below the submission form, the page displays the Replied Feedback section, which organizes

admin responses into Unread and Read categories. Unread feedback entries are highlighted

with a light background to draw attention, and each entry includes the original message, the

admin’s reply, and a “Mark as Read” button for managing visibility. Once marked as read,

entries automatically shift into the collapsible Read section, which can be expanded or

collapsed on demand. A red notification dot in the navigation bar provides a real-time visual

cue for users when new replies are received, improving responsiveness and ensuring students

do not miss updates.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 106

The interface also integrates real-time interactivity through Socket.IO, allowing admin replies

and user actions such as marking messages as read, to update the page instantly without

requiring a refresh. This design choice enhances engagement and streamlines communication

between students and administrators.

Figure 5.3.8.1 User Feedback Page

5.3.9 Admin Dashboard

The Admin Dashboard Page provides administrators with a centralized and intuitive interface

to manage the Smart Student Timetable Planner. The page adopts a clean, card-based layout

with a navigation bar at the top and left-aligned sidebar for quick access to core features,

including course uploads, history, previews, created sessions, and feedback. Visual consistency

is maintained through a warm orange theme, rounded cards, and responsive design, ensuring

usability across devices. Quick-action cards in the main content area allow admins to instantly

access key functions such as uploading courses, viewing upload history, and previewing parsed

data, with supporting statistics to provide context.

To enhance system monitoring, the dashboard integrates a bar chart using Chart.js to visualize

uploads per month, helping administrators track activity trends over time. Below, a recent

uploads table lists the latest course files with timestamps, ensuring transparency and easy

verification of updates. Real-time interactivity is incorporated through Socket.IO, enabling

instant notification for new or pending feedback, indicated by a dynamic red dot in the sidebar.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 107

Figure 5.3.9.1 Admin Dashboard Page

5.3.10 Admin Upload Course Page

The Admin Upload Course Page provides a simple and efficient interface for administrators to

upload PDF files containing course schedules. The page adopts a consistent layout with the

main navigation bar at the top and a sidebar on the left for quick access to dashboard functions

such as course uploads, history, previews, sessions, and feedback. The main content area

highlights the upload functionality, featuring a custom file selection box with a dashed border

design that emphasized drag-and-drop or click-to-select interactions. Once a file is selected,

the filename is displayed for confirmation, ensuring transparency before submission.

To enhance user experience, the interface integrates a progress bar that visually tracks the

upload and parsing process. The bar dynamically updates from initial upload to processing and

completion, with clear color-coded states for progress, success, or error. This feedback

mechanism ensures that administrators remain informed about the status of their uploads in

real time. Additionally, real-time notification indicators in the sidebar alert admins of pending

feedback, ensuring that while managing uploads, they can also stay responsive to student input.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 108

Figure 5.3.10.1 Admin Upload Course Page

5.3.11 Admin Upload Course Page

The Upload History Page provides administrators with a structured and user-friendly interface

to review past course uploads. The page follows the same consistent layout as other admin

pages, with a top navigation bar for logout access and a left-hand sidebar offering quick

navigation to dashboard functions such as uploading, previewing courses, viewing sessions,

and managing feedback. A notification indicator is also embedded in the feedback menu item,

ensuring that pending student feedback remains visible while administrators manage upload

records.

At the center of the interface, the main content area displays a clear table listing uploaded

course file alongside their upload timestamps. This tabular design allows administrators to

quickly verify successful uploads and track submission timelines. The table is styled with

alternating rows, borders, and responsive behaviors to ensure readability across devices. For

smaller screens, the layout adapts by transforming rows into block displays with labels,

preserving clarity on mobile. Overall, the design emphasized accessibility, consistency,

efficiency, enabling administrators to manage and verify uploaded course data with ease.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 109

Figure 5.3.11.1 Upload History Page

5.3.12 Preview Courses Page

The Preview Courses Page provides administrators with a structured and efficient interface for

reviewing uploaded course data. The design follows a consistent layout used across the admin

panel, featuring a top navigation bar for system-wide access and a sidebar for quick navigation

to modules such as dashboard, upload, history, sessions, and feedback. A notification indicator

in the feedback menu item ensures that pending student responses remain visible while the

admin is managing course data. The main content area displays the most recently uploaded file

information at the top, ensuring clarity on the source of the previewed data.

The core of the interface is a tabular course preview, where course details such as trimester,

intake, code, name, group, day, start and end time, venue, and session type are displayed in a

clean, column-based layout. To improve usability, the table integrates pagination controls at

the bottom, allowing administrators to navigate through large datasets in batches of 30 rows.

The pagination includes both “Prev” and “Next” buttons with state-based enabling and

disabling, as well as a page info label for clarity.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 110

Figure 5.3.12.1 Preview Courses Page

Figure 5.3.12.2 Pagination Button in Preview Courses Page

5.3.13 View Created Sessions Page

The View Created Sessions page provides administrators with a clear interface to monitor

collaborative scheduling sessions within the system. The layout follows the admin panel’s

consistent design, beginning with a navigation bar at the top for logout access and a sidebar for

quick navigation to core features such as dashboard, upload, history, preview, and feedback,

with a notification indicator highlighting pending feedback. The main content area focuses on

displaying all active and past sessions, beginning with a header and brief description for context,

followed by a structured sessions table.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 111

The table presents essential session details in a simple, column-based format, including session

name, session ID, creation time, and the list of participants with a count. Dynamic updates are

integrated through real-time Socket.IO events: newly created sessions appear instantly, while

participants count update automatically as users join. This ensures that administrators can

monitor session activity without manual refresh, keeping the interface responsive, transparent,

and efficient for managing collaborative timetable sessions.

Figure 5.3.13.1 View Created Sessions Page

5.3.14 Admin Feedback Page

The Admin Feedback Page is designed to streamline the management of user feedback within

the Smart Student Timetable Planner. The layout follows the standard admin dashboard design,

with a top navigation bar for logout and a sidebar for quick access to different features. A

notification badge on the sidebar highlights the number of pending feedback items, ensuring

administrators are alerted to new or unresolved issues. The main content area is centered around

a feedback management table, where feedback is organized into sections, Pending, Read, and

Replied, each visually differentiated with colored headers for quick recognition.

Administrators are provided with interactive controls to handle feedback efficiently. A filter

bar at the top allows sorting by type (general, bug, suggestion) and status, enabling focused

management. Pending feedback items include action buttons to mark as read or open a modal

for direct replies, where responses can be typed and sent back to users. Once replied, the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 112

feedback is updated dynamically in the table and tracked in real time using Socket.IO, keeping

the interface responsive and up to date. This design ensures feedback is systematically

categorized, easily traceable, and manageable in a clear, user-friendly environment.

Figure 5.3.14.1 Pending and Read section in Admin Feedback Page

Figure 5.3.14.2 Replied section in Admin Feedback Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 113

5.4 Implementation Issues and Challenges

There are some issues and challenges faced during the development of the Smart Student

Timetable Planner.

• Challenges in Developing the Genetic Algorithm for Auto Scheduling

Implementing a Genetic Algorithm (GA) for course scheduling presents several

technical and logical challenges. One major issue involves defining a suitable

chromosome structure that accurately represents possible timetable configurations,

including lectures, tutorials, and practicals. Designing a fitness function that balances

multiple constraints, such as session conflicts, time availability, and course type

requirements, is another complexity. Additionally, ensuring that the selection,

crossover, and mutation processes maintain timetable validity without introducing

conflicts or incomplete schedules requires careful algorithm tuning. The random nature

of GAs can also lead to inconsistent results or excessive computation time when dealing

with large course datasets, requiring optimization strategies such as elitism, constraint

filtering, or population pruning.

• Challenges in Implementing the Merging Timetable Page

Another issue faced during the implementation of the merging timetable page is

ensuring real-time synchronization and consistency across all users in a session. When

multiple users submit or adjust their timetables simultaneously, conflicts may arise in

merging sessions, especially when handling overlapping slots or choosing between

tutorial and practical alternatives. Another challenge is designing a clear and interactive

interface that highlights modifiable slots while preventing accidental shifts of fixed

lecture sessions. Additionally, maintaining efficient performance of the genetic

algorithm for schedule synthesis while ensuring smooth updates on the client side posed

difficulties, particularly in managing state transitions and reflecting changes instantly

across all connected users.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 114

5.5 Summary

In summary, the system implementation chapter details the setup and execution of the Smart

Student Timetable Planner, highlighting its client-server architecture, responsive user

interfaces, and real-time collaboration features. It emphasizes how hardware and software

components were integrated to support both student and admin functionalities, while also

addressing challenges such as synchronization, conflict management, and optimization of the

genetic algorithm. This implementation ensures the system is practical, user-friendly, and

capable of handling dynamic scheduling requirements effectively.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 115

Chapter 6

System Evaluation and Discussion

In this chapter focused on two main aspects: the experimentation with the Genetic Algorithm

(GA) and the comparison between real-world timetables and system-generated timetables. The

GA experiments examined how parameters such as population size, crossover, and mutation

rates influenced the quality and diversity of valid schedules, ensuring compulsory lectures were

included and practical/tutorial sessions were optimally allocated without conflicts. In parallel,

the comparison with actual university timetables confirmed the system’s accuracy and

reliability, showing that generated schedules closely matched real-world arrangements while

offering greater flexibility and efficiency.

6.1 Experiment on Genetic Algorithm

6.1.1 Overview

This experiment investigated the use of a Genetic Algorithm (GA) to optimize student

timetable scheduling for a set of Year 1 Semester 1 (Y1S1) university courses. The goal is to

automatically generate feasible combinations of course sessions that minimize schedule

conflicts and adhere to student-defined preferences. GA evolves a population of candidate

timetables using biologically inspired operations such as crossover, mutation, and selection, to

iteratively improve solution quality.

A fitness function is used to evaluate each timetable in the population based on the number of

conflicts and violations of constraints. The system also employs early stopping criteria, either

when a desired fitness level is reached or when improvement stagnates over several

generations.

6.1.2 Code Structure and Functionality

The system begins by uploading a sample dataset from the masterlist.csv which contains course

offerings. It filters the data for the target trimester (Y1S1) and selected courses. Lecture

sessions are fixed and treated as compulsory, whereas tutorial or practical sessions are variable

and subject to scheduling.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 116

Figure 6.1.2.1 Experiment Settings and Filter Trimester

Each GA individual is a list of integers, each indicating the selected index of an optional session

for one of the courses. For example, an individual [0,1,2,0,1,0] represents one specific

combination of tutorial or practical sessions for the six selected courses. The fitness function

evaluates the quality of a timetable by applying penalties for:

• Class overlaps: Sessions that occur at overlapping times on the same day.

• Friday sessions: Student prefers a free Friday.

• Classes before 9:00 AM: Early classes are undesirable.

These constraints are incorporated by converting session times to minutes and calculating

overlaps. The function returns a fitness score inversely proportional to total penalties. This

means the fitness ranges from near 0 (worst case with many conflicts) to near 1 (ideal schedule).

However, due to the fixed nature of lecture sessions, some penalties may be unavoidable.

Figure 6.1.2.2 Fitness function for constraints

6.1.3 Genetic Algorithm Design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 117

An initial population of 20 individuals is randomly generated using available optional sessions

for each course.

The tournament selection method chooses the best individual out of a randomly sampled group

size of 3. This method balance exploration and exploitation by favouring fitter individuals

while allowing weaker ones a chance.

Figure 6.1.3.1 Tournament Selection function

Crossover involves selecting a random point in the genome and swapping gene segments

between two parents to produce two offspring. The operation introduces new combinations of

session choices, which helps the algorithm explore the solution space.

Figure 6.1.3.2 Crossover function

Mutation randomly alters genes (session selections) with a given probability (mut_rate). This

introduced diversity and helps prevent the population from getting stuck in local optima.

Figure 6.1.3.3 Mutate function

Figure 6.1.3.4 Evolve function

There are two stopping criteria are used to terminate the GA:

• Fitness Threshold: If the best fitness in a generation exceeds 0.95, the algorithm stops

early, indicating a near-optimal timetable.

• Stagnation: If there is no improvement in the best fitness for 15 consecutive

generations, the algorithm halts to save computation time.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 118

Figure 6.1.3.5 GA with stopping criteria

6.1.4 Experimental Results and Graph Analysis

The algorithm was executed with five different crossover and mutation configurations, where

cx = crossover rate and mu = mutation rate:

• Set A: cx = 0.7, mu = 0.01

• Set B: cx = 0.7, mu = 0.1

• Set C: cx = 0.9, mu = 0.1

• Set D: cx = 0.9, mu = 0.3

• Set E: cx = 0.9, mu = 0.5

Each configuration was run with a population of 20 for a maximum of 100 generation. The

results are visualized in two plots:

Figure 6.1.4.1 Graph of Best Fitness vs Generation

The graph depicting best fitness versus generation illustrates the highest fitness score achieved

in each generation for various configurations of crossover and mutation rates. A key

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 119

observation is that none of the Genetic Algorithm (GA) runs reached the preset threshold

fitness value of 0.95, which was defined as a desirable quality benchmark for an optimal

timetable. Instead, most configurations plateaued between 0.25 and 0.35, indicating a

premature convergence to suboptimal solutions.

This stagnation in fitness can be attributed largely to hard constraints imposed by fixed lecture

sessions. Lecture slots are not subject to the GA’s evolutionary operators, such as mutation and

crossover and therefore remain unchanged throughout the optimization process. These sessions

may inherently contain conflicts such as overlapping with one another or with available

practical/tutorial sessions, or they may occur during undesirable times, such as Fridays or

before 9:00AM, both of which incur penalties in the fitness evaluation. As a result, even the

best possible combination of optimal sessions cannot entirely offset these penalties, effectively

capping the maximum achievable fitness.

Furthermore, configurations involving higher mutation rates exhibit greater fluctuations in best

fitness values across generations. This indicates instability in solution quality, where beneficial

traits discovered in earlier generations may be frequently disrupted due to excessive mutation.

Consequently, while high mutation promotes exploration, it also increases the risk of the

population diverging from promising regions of the search space.

Figure 6.1.4.2 Graph of Fitness vs Generation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 120

The graph showing average fitness across generation offers insights into the overall

performance and evolutionary stability of the population under each configuration. In general,

all tested parameter sets demonstrate incremental improvements in the early generations,

suggesting that the GA can initially identify and propagate advantageous genes.

Configuration employing moderate mutation rates (mu = 0.1) tend to yield smoother and more

consistent improvements in average fitness. This balance allows for controlled exploration of

the solution space while preserving good solutions over generations. In contrast, high mutation

rates introduce significant randomness into the population, resulting in erratic fitness

trajectories and an overall failure to converge toward optimal or even moderately good

solutions. The inconsistency is especially problematic in this context due to the small solution

space constrained by fixed sessions.

In summary, lower to moderate mutation rates strike a better balance between exploration and

exploitation, encouraging the algorithm to gradually refine solutions without discarding

valuable traits. Excessive mutation, while theoretically increasing diversity, ultimately hinders

convergence by constantly altering promising genes and destabilizing the population.

6.1.5 Interpretation of GA Parameters

Crossover Rate (cx) enables recombination of potentially beneficial traits (session selections)

between individuals. High crossover rate (0.9) promotes exploration but relies on the presence

of good genes to mix effectively. Without diverse or high-quality genes in the population,

crossover alone is insufficient for fitness improvement.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 121

Table 6.1.5.1 Summary of the Experimental Results

6.2 Comparison of Real-World Timetable and Generated Timetable

6.2.1 Overview

In this section, the generated timetable using Smart Student Timetable Planner system was

compared directly with the official timetable using university system. The primary purpose of

this comparison was to verify the accuracy and reliability of the system in replicating actual

schedules without errors, mismatches, or missing sessions.

The main objective of this testing was to determine whether the Smart Student Timetable

Planner can produce a timetable identical to the official real-world timetable. This involved

verifying that the courses, session types such as lectures, tutorials, and praticals, and their

corresponding time slots were all consistent with the university’s published schedule. The test

also aimed to confirm that no extra classes or shortened sessions were generated by the system.

6.2.2 Test Environment and Methodology

The testing was conducted on a standard laptop with 8GB of RAM and an intel i7 processor,

using the web-based Smart Student Timetable Planner application. The test was performed on

Set Crossover Rate

(cx)

Mutation Rate

(mu)

Best

Fitness

Average

Fitness

Stability

A 0.7 0.01 Low Very slow

increase

Stable but

suboptimal

B 0.7 0.1 Moderate Steady

upward trend

Stable

C 0.9 0.1 Good Fast

improvement

early

Stable

D 0.9 0.3 Moderate Fluctuating

gains

Slightly

unstable

E 0.9 0.5 Poor Random

fluctuations

Unstable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 122

the Google Chrome browser, while the reference timetable was obtained from the university’s

official academic portal. This ensured a consistent and reliable environment for testing and

comparison.

The testing procedure began by logging into the Smart Student Timetable Planner and

generating a timetable for the chosen trimester using the auto-scheduling function. The official

timetable for the same trimester was retrieved using the auto-scheduling function. The official

timetable for the same trimester was retrieved from the university portal. Both timetables were

carefully compared by examining course codes, session types, allocated days and times, session

durations. Any potential differences, such as missing or additional sessions, incorrect time

slots, or mismatched durations, were noted. Screenshots of both timetables were captured to

provide supporting evidence for the analysis.

6.2.3 Test Data

The data used for testing included two sources: the timetable generated by Smart Student

Timetable Planner system and the official real-world timetable from the university portal. Both

contained the same set of courses for the selected trimester, which allowed a direct one-to-one

comparison. Two official real-world timetables from the university portal were collected from

two respondents, which are: Wong Xin Tong, Y3S3, and Elaine Chung Hui Lin, Y3S3. From

these two respondents’ timetables, the system has generated two timetables using the Smart

Student Timetable Planner as below:

Figure 6.2.3.1 Wong Xin Tong’s real-world timetable from official university portal

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 123

Figure 6.2.3.2 Wong Xin Tong’s generated timetable from Smart Student Timetable Planner

Figure 6.2.3.3 Elaine’s real-world timetable from official university portal

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 124

Figure 6.2.3.2 Elaine’s generated timetable from Smart Student Timetable Planner

6.2.4 Testing Results

The results showed that the system-generated timetable was similar to the real-world timetable.

All courses were correctly placed at the expected times, with no missing or extra sessions

detected. The lectures, tutorials, and practical sessions matched perfectly in terms of course

codes, session types, allocated days, and time durations. This demonstrated the system’s ability

to reproduce accurate timetables that are consistent with official schedules.

Table 6.2.4.1 Wong Xin Tong’s Comparison Timetable’s Results

Course Code Session Type Real-World

Timetable

(Day/Time)

Generated

Timetable

(Day/Time)

Match

UCCD3113 Lecture Thu 14:00-

16:00

Thu 14:00-

16:00

UCCD3113 Lecture Fri 11:00-12:00 Fri 11:00-12:00

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 125

UCCD3113 Tutorial Mon 9:00-10:00 Mon 9:00-10:00

UCCD3074 Lecture Tue 8:00-10:00 Tue 8:00-10:00

UCCD3074 Lecture Wed 12:00-

13:00

Wed 12:00-

13:00

UCCD3074 Practical Mon 12:00-

14:00

Mon 12:00-

14:00

UALJ2013 Lecture Mon 10:00-

12:00

Mon 10:00-

12:00

UALJ2013 Tutorial Mon 15:00-

16:00

Mon 15:00-

16:00

Table 6.2.4.2 Elaine’s Comparison Timetable’s Results

Course Code Session Type Real-World

Timetable

(Day/Time)

Generated

Timetable

(Day/Time)

Match

UCCD3113 Lecture Thu 14:00-

16:00

Thu 14:00-

16:00

UCCD3113 Lecture Fri 11:00-12:00 Fri 11:00-12:00

UCCD3113 Tutorial Mon 9:00-10:00 Mon 9:00-10:00

UCCD3064 Lecture Mon 16:00-

18:00

Mon 16:00-

18:00

UCCD3064 Lecture Tue 8:00-10:00 Tue 8:00-10:00

UCCD3064 Practical Thu 8:00-10:00 Thu 8:00-10:00

UALB1003 Lecture Wed 16:00-

18:00

Wed 16:00-

18:00

UALB1003 Tutorial Thu 10:00-

11:00

Thu 10:00-

11:00

6.2.5 Summary

In summary, the system testing confirmed that the Smart Student Timetable Planner accurately

generates timetables that are identical to the real-world schedules. The comparison revealed no

mismatches, ensuring that the system’s scheduling logic, session mapping, and conflict

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 126

handling are working correctly. This outcome validates the system’s capability to deliver

reliable and precise timetables, demonstrating that it meets the functional requirements and can

be trusted as a dependable scheduling tool for students.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 127

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

The Smart Student Timetable Planner has successfully addressed the challenges students face

in planning their academic schedules. Using Genetic Algorithm, the system ensures that

students are provided with conflict-free timetables that align with their personal preferences

and academic requirements. This not only reduces the time and effort required for manual

scheduling but also minimizes the risk of errors such as overlapping classes or missed sessions.

In addition to conflict resolution, the system supports both manual and automated scheduling,

giving students the flexibility to customize their timetables according to individual needs. The

collaborative module further enhances the planning experience by enabling real-time

coordination among students, which is particularly useful for group projects or shared study

plans. These features demonstrate the project’s effectiveness in combining technical innovation

with practical usability.

The project also contributes to academic management by incorporating features such as

timetable history, comparison between auto-generated and manuals schedules, and export

functions. These modules provide long-term benefits by ensuring students can keep records of

past schedules and evaluate alternative planning strategies. The inclusion of administrative

tools, such as uploading course data and responding to feedback, ensures the system remains

relevant and sustainable within a university environment.

Overall, the system meets its primary objectives and provides a strong foundation for future

enhancements. It proves that integration optimization algorithms with user-friendly interfaces

can significantly improve academic planning, reducing stress for students while also supporting

institutional efficiency.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 128

7.2 Recommendations

Although the Smart Student Timetable Planner has achieved its goals, there are several areas

where improvements can be made. One key recommendation is to enhance the Genetic

Algorithm to handle larger datasets more efficiently. As student intakes and course offerings

expand, optimizing the algorithm will ensure that timetable generation remains fast and

accurate without compromising system performance.

Another area for improvement lies in collaborative scheduling. While the current module

enables students to work together in real time, it could be extended with intelligent conflict-

resolution suggestions. For instance, the system could recommend optimal adjustment when

two or more students encounter scheduling clashes, thereby simplifying decision-making

during group planning.

Integration with official university systems is also highly recommended. By linking the planner

directly with the student portal and course registration database, data consistency would be

improved, and administrative workloads would be reduced. This would create a seamless

experience for students, eliminating the need for duplicate data entry and ensuring that

timetables remain aligned with official course offerings.

Furthermore, expanding the platform to mobile applications would greatly improve

accessibility. Students could check, update, and share their timetable on-the-go, making the

system a more convenient part of their daily academic routines. Regular updates driven by

student feedback should also be incorporated to ensure the system evolves alongside user

expectations and technological trends.

By implementing these recommendations, the Smart Student Timetable Planner can transition

from a prototype-level project into a fully integrated academic scheduling ecosystem. This

evolution will not only maximize its value to students but also contribute meaningfully to

efficiency of the institution’s academic management processes.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 129

REFERENCES

[1] Mohd Asyraf Ruslaan, Zalmitah Zakaria, "Univeristy Course Timetabling System

For Part-Time Students," Research Gate, September 2019. [Online]. Available:

https://www.researchgate.net/publication/337601679_University_Course_Timet

abling_System_For_Part-Time_Students. [Accessed 19 July 2024].

[2] T. Müller, "UniTime : Course Timetabling & Management," [Online]. Available:

https://www.unitime.org/uct_courses.php#:~:text=The%20primary%20objective

%20behind%20course,with%20the%20course%20of%20interest.. [Accessed 19

July 2024].

[3] B. Sunuami, René Arnulfo García-Hernández, and Yulia Ledeneva, “Personal

Course Timetabling for University Students based on Genetic Algorithm,”

International Journal of Combinatorial Optimization Problems and Informatics.,

vol. 12, no. 3, pp. 32–49, Sep. 2021, doi:

https://doi.org/10.61467/2007.1558.2021.v12i3.237. [Accessed 1 September

2025].

[4] J. Mohd and A. Fadzil, “Web based personalized university timetable for UiTM

students using genetic algorithm / Mohd Radhi Fauzan Jamli and Ahmad Firdaus

Ahmad Fadzil - UiTM Institutional Repository,” Uitm.edu.my, Oct. 2024, doi:

https://ir.uitm.edu.my/id/eprint/106030/1/106030.pdf. [Accessed 1 September

2025].

[5] D. Cimr and J. Hynek, “Heuristic Algorithm for a Personalised Student

Timetable,” Lecture Notes in Computer Science, pp. 79–88, 2018, doi:

https://doi.org/10.1007/978-3-319-98446-9_8. [Accessed 1 September 2025].

[6] J. H. Wong, "TTAP-UTAR : Timetable Arranging Problem - UTAR," GitHub, 30

August 2017. [Online]. Available: https://github.com/wongjiahau/TTAP-UTAR.

[Accessed 06 August 2024].

[7] "TimeEdit.net,2024," [Online]. Available: https://www.timeedit.net/ . [Accessed

04 August 2024].

[8] T. Kissflow, "RAD Methodology | Rapid Application Development Phases,"

Kissflow, 05 April 2024. [Online]. Available: https://kissflow.com/application-

development/rad/rapid-application-development-methodology-essentials/.

[Accessed 06 August 2024].

[9] Hayat Alghamdi, Tahani Alsubait, Hosam Alhakami, Abullah Baz, "A Review of

Optimization Algorithms for University Timetable Scheduling," December 2020.

[Online]. Available: https://etasr.com/index.php/ETASR/article/view/3832/2387.

[Accessed 05 August 2024].

https://doi.org/10.61467/2007.1558.2021.v12i3.237
https://ir.uitm.edu.my/id/eprint/106030/1/106030.pdf
https://doi.org/10.1007/978-3-319-98446-9_8

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 130

POSTER

