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ABSTRACT 

 

The growing demand for data centre services has led to significant increases in data 

centre power consumption, highlighting the need for efficient power management 

strategies to ensure sustainable and energy-efficient operations. Virtualisation 

technology enables multiple virtual machines (VMs) to run on a single physical server, 

improving resource sharing and utilisation. However, it also introduces challenges in 

optimising VM placement and migration to minimise power consumption while 

maintaining performance. This project proposes and evaluates three bio-inspired and 

evolutionary algorithms for VM allocation and migration: Ant Colony Optimisation 

(ACO), Particle Swarm Optimisation (PSO), and a Modified Genetic Algorithm 

(MGA). These algorithms aim to reduce power consumption, improve resource 

utilisation, and enhance overall data centre efficiency. The system is implemented and 

simulated using the CloudSim Plus framework under both homogeneous and 

heterogeneous data centre environments. Four different workload scenarios were 

tested, and the performance of the three algorithms was compared against the data 

centre’s baseline VM allocation policy. Each scenario was executed 30 times to ensure 

the reliability and consistency of results. Simulation results demonstrate that all three 

proposed algorithms consistently achieved lower total power consumption across all 

servers compared to the baseline policy. These findings highlight the potential of bio-

inspired VM allocation and migration strategies for improving energy efficiency and 

resource optimisation in modern data centres. 

 

Area of Study (Minimum 1 and Maximum 2): Cloud Computing, Power Management 

 

Keywords (Minimum 5 and Maximum 10): Data Centre, Cloud Computing, Virtual 

Machine Placement, Virtual Machine Migration, Ant Colony Optimisation (ACO), 

Particle Swarm Optimisation (PSO), Modified Genetic Algorithm (MGA), Bio-inspired 

Algorithms, Power Consumption, Resource Utilisation  
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Chapter 1 

Introduction 

 

This chapter provides an overview of the project, including its background, motivation, 

and objectives. It is structured as follows: Section 1.1 presents the project background, 

Section 1.2 describes the problem statement and motivation, Section 1.3 outlines the 

research objectives, Section 1.4 defines the project scope and directions, and Section 

1.5 highlights the key contributions of this project. 

 

1.1  Project Background 

Data centres are specialized facilities designed to house computer systems and 

associated components such as telecommunications and storage systems. They provide 

the essential infrastructure required for storing, managing and processing vast amounts 

of data, which is essential for businesses, government agencies and cloud service 

providers. To ensure uninterrupted and optimal operations, data centres are equipped 

with sophisticated cooling systems, redundant power supplies and physical security 

measures such as biometric access controls and video surveillance [1]. These facilities 

can vary in size, from small server rooms to extensive complexes. 

Data centres play a crucial role in supporting various online services, including 

cloud computing, big data analytics, and the hosting of websites and applications. Since 

the 2020s, data centres have rapidly evolved to meet the demands of modern businesses. 

With the rise of big data, large language models, GPT and the Internet of Things (IoT), 

larger, more efficient and scalable data centres are needed to handle real-time data 

processing demands [1]. Data centres are required to offer high speed connectivity, 

greater storage capacity, and improved computational power to support these 

innovations. However, this rapid expansion of data centres has also led to higher energy 

consumption. 

Data centre energy consumption is a significant concern due to the high-power 

demands of its cooling systems, servers, and other infrastructure to keep operations 

running smoothly. Electricity consumption in data centres primarily stems from two 

processes, namely the computing process which represents about 40% of the total 
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electricity demand, and the cooling process which accounts for another 40% to maintain 

stable processing efficiency [2]. The remaining 20% of electricity is used by other 

related IT equipment [2]. As data centres evolve in size and capacity to handle more 

data, their energy consumption has also increased, making them one of largest 

consumers of electricity globally. A report by the International Energy Agency (IEA) 

revealed that data centres, cryptocurrencies and artificial intelligence (AI) consumed 

460TWh of  electricity worldwide in the year 2022, which is almost 2% of total global 

electricity demand [2]. Moreover, it is estimated that electricity demand from data 

centres could double in many countries by 2026. This includes the United States, which 

represents 33% of global data centres, and China, which accounts for 10% [2]. Figure 

1-1 below shows the trend of global electricity demands from data centres, AI and 

cryptocurrencies from 2019 to 2026.  

 

 

Figure 1-1: Global electricity demands from data centres, AI and cryptocurrencies 

from 2019 to 2026 [2]. 

 

The same situation also applies to ASEAN countries, including Malaysia, where 

a considerable number of data centres are either under construction or planned, with 

additional new deployments anticipated in the coming years as shown in Figure 1-2 

below. The fast-growing data centre market in Southeast Asia not only brings 
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opportunities such as increased employment and economic growth, but also various 

challenges related to energy consumption, operational efficiency, and sustainability. 

Tackling these challenges will require creating advanced power management solutions 

and embracing more sustainable technologies to ensure that the growth of data centres 

is both economically beneficial and environmentally sustainable. 

 

 

Figure 1-2: Data centre capacity (in Megawatts) in selected ASEAN countries for the 

year 2024 [1]. 

 

 To drive energy efficiency in data centres, virtualisation technology is adopted as 

the main strategy to optimise resource utilisation and reduce energy consumption. It 

involves creating Virtual Machines (VMs) based on the user’s chosen operating system 

and specified resource needs and running on physical servers to host applications [3]. 

The advantage of virtualisation is improved utilization of hardware as it allows the 

dynamic sharing of physical resources and resource pools such as CPU, memory and 

storage [4]. This sharing of resources enables the consolidation of VMs, where VMs 

are migrated or allocated into the minimum number of physical servers. With this, 

inactive servers with no workload can be switched off to help lower the energy 

consumption of data centres. 

 The consolidation of VMs from underutilised servers to others with higher 

utilisation enables the underutilised server to be shut down, thereby efficiently reducing 

the power consumption in data centres. However, it also introduced a computational 

problem called the Virtual Machine Placement (VMP) problem. As the name suggests, 

the VMP problem is concerned with optimising the placement of VMs into physical 
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servers to improve energy efficiency [5]. The main objective of this optimisation is to 

find a best solution which places all the VMs into a minimum number of physical 

servers. The VMP problem is known to be an NP-hard problem, which means that 

computationally complex and hard to solve efficiently [3], [6], [5]. Traditional 

algorithms are often impractical and consume high computational time when it comes 

to solving complex problems like the VMP problem. As a result, various bio-inspired 

algorithms have been introduced to tackle these NP-hard problems. 

 In addition to consolidation, another strategy used to address the VMP problem is 

load balancing. It focuses on distributing workloads evenly across available physical 

servers to avoid the overloading or underloading of any single server [7]. A balanced 

resource usage across servers not only improves performance but also contributes to 

energy efficiency by minimising resource wastage and reducing the number of idle 

servers that remain powered on without doing useful work. Like server consolidation, 

bio-inspired algorithms have been applied to load balancing strategies due to their 

ability to handle complex and dynamic environments effectively.  

 In this paper, three bio-inspired algorithms based on Ant Colony Optimisation 

(ACO), Particle Swarm Optimisation (PSO) and Modified Genetic Algorithm (MGA) 

are proposed to allocate and migrate VMs to minimum number of physical servers to 

reduce the energy consumption of data centres. The proposed algorithms mainly 

perform server consolidation based on CPU utilisation. The algorithms are compared 

to the data centre’s baseline VM allocation policy to evaluate their effectiveness in 

reducing power consumption. 

 

 

1.2  Problem Statement and Motivation 

The rapid growth in data centre demands has led to a significant increase in 

energy consumption. The increase in energy consumption of data centres can cause 

several key challenges.  From an economic perspective, the energy consumption of an 

average data centre is as much as 25,000 households and it is expected to double every 

five years [8]. This increase in energy consumption has resulted in escalating 

operational costs, with power bills becoming one of the significant expenses for data 

centre operators [8]. Furthermore, high data centre energy consumption also leads to 

several environmental challenges. The International Energy Agency has estimated that 
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data centres and data transmission networks are responsible for around 1% of energy-

related greenhouse gas (GHG) emissions [9]. On the other hand, Google has revealed 

in their 2024 environmental report that their total GHG emissions have increased by 

48% over 5 years, mainly due to increases in data centre energy consumption [10].  

Lastly, data centre servers consume a considerable amount of energy even when 

operating in idle mode. Significant energy savings can be achieved by shutting down 

these idle servers [8]. While virtualisation has allowed for better resource sharing 

through Virtual Machines (VMs), the optimal placement of VMs across physical 

servers remains a significant challenge. This issue is known as the Virtual Machine 

placement (VMP) problem, which is a computationally complex NP-hard problem. The 

problem becomes increasingly difficult as the scale of data centres increases.  

There are many past studies that have tried to tackle the issue of high power 

consumption of data centres. Various methods have been proposed to manage power 

consumption in data centres. They can be broadly classified into server-consolidation-

based approaches, workload management or task scheduling techniques, and thermal-

aware power management techniques [11]. However, several gaps remain in existing 

approaches. Many fail to evaluate their effectiveness under varying workload 

conditions, limiting their real-world applicability. Others focus on optimising a single 

resource, typically CPU while overlooking other critical resources such as RAM. 

Additionally, some methods are not context-aware and fail to consider how resource 

demands change and depend on each other. As a result, these systems struggle to adapt 

efficiently to real-time fluctuations in workload and resource availability. 

To address these limitations, this project explores three context-aware bio-

inspired algorithms based on Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and Modified Genetic Algorithm (MGA), designed to optimise 

power consumption through efficient VM placement and migration. Unlike traditional 

approaches, these methods dynamically adapt to varying workload intensities by 

considering both CPU and RAM requirements simultaneously. By combining these 

diverse optimisation strategies, the project aims to enhance resource utilisation and 

minimise energy consumption in data centres. 
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1.3  Research Objectives 

1. Design a simulation platform for data centre environments. 

• Develop a simulation platform to evaluate power management strategies in 

cloud data centres, leveraging the CloudSim Plus framework for modelling 

components and metrics. 

• Utilise built-in CloudSim Plus classes for simulating physical servers, VMs, 

workloads, and network environments, while configuring them to suit both 

homogeneous and heterogeneous setups. 

• Integrate essential performance metrics such as CPU utilisation, RAM 

utilisation, and power consumption to enable detailed evaluation. 

• Incorporate multiple workload scenarios with progressively increasing numbers 

of VMs and cloudlets to evaluate algorithm adaptability under low, medium, 

and high resource demands. 

 

2. Deploy Bio-Inspired Algorithms to Optimise Power Management 

• Deploy and evaluate three bio-inspired metaheuristic algorithms: Ant Colony 

Optimisation (ACO), Particle Swarm Optimisation (PSO), and a Modified 

Genetic Algorithm (MGA) for VM allocation and migration in both 

homogeneous and heterogeneous data centre environments. 

• Apply these algorithms across multiple workload scenarios to optimise power 

consumption by consolidating VMs, balancing workloads, and reducing idle 

energy waste. 

• Assess algorithm performance against the data centre’s baseline VM allocation 

policy, focusing on improvements in energy efficiency, resource utilisation, and 

overall operational performance. 
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1.4  Project Scope and Directions 

This project focuses on the development of novel power management methods 

that involve server consolidation to enhance pod-to-pod power delivery in data centres 

to reduce power consumption. The solution involves designing and evaluating bio-

inspired algorithms, such as Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and Modified Genetic Algorithm (MGA), to optimise Virtual 

Machine Placement (VMP) and migration. The reason bio-inspired algorithms are 

chosen for this project is due to their effectiveness in solving optimisation problems, 

which is also encountered in server consolidation. By consolidating workloads onto a 

minimum number of active servers, the approach seeks to maximise resource utilisation 

while minimising overall energy usage. 

The proposed methods consider two key resource dimensions: CPU and 

memory utilisation. ACO and PSO dynamically adapt to varying workload intensities 

by optimising VM allocation based on both CPU and RAM, whereas MGA focuses 

primarily on CPU utilisation to detect underutilised and overutilised hosts. This 

combined optimisation strategy ensures efficient workload distribution, balanced 

resource usage, and improved VM consolidation, ultimately reducing the number of 

active servers. 

 To evaluate the effectiveness of these algorithms, the project uses simulation-based 

testing to measure improvements in power consumption, resource utilisation, and 

overall system performance. The evaluation is conducted across two data centre setups: 

a homogeneous environment, where all servers share identical configurations, and a 

heterogeneous environment, where servers have diverse hardware capabilities. Within 

each setup, the algorithms are tested under four distinct scenarios that vary in the 

number of virtual machines (VMs) and cloudlets (workloads) to assess performance 

under different resource demand levels. 

For both setups, the proposed algorithms (ACO, PSO, and MGA) are 

benchmarked against the data centre’s baseline VM allocation method to evaluate their 

effectiveness. Key performance metrics include total power consumption, average 

power consumption and resource (CPU and RAM) utilisation. By testing across 

multiple configurations and workload intensities, the evaluation provides a 

comprehensive assessment of the algorithms’ robustness, adaptability, and energy-

saving capabilities in diverse operational environments. 
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1.5  Contributions 

The main contributions of this project are highlighted as follows: 

• Integration of bio-inspired algorithms for power management: The project 

implements and evaluates Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and a Modified Genetic Algorithm (MGA) to optimise VM 

placement and server consolidation in data centres. 

• Energy-efficient and context-aware VM allocation: The proposed methods 

dynamically allocate and migrate VMs by considering CPU and RAM utilisation 

(for ACO and PSO) and CPU-based host status (for MGA), aiming to reduce power 

consumption while improving resource utilisation. 

• Comprehensive evaluation across multiple scenarios: The algorithms are tested 

on both homogeneous and heterogeneous data centre setups under four different 

workload scenarios, and their performance is benchmarked against the baseline VM 

allocation policy to validate effectiveness in diverse operational conditions. 

 

 

1.6  Report Organization 

The report is structured into five chapter. Chapter 2 reviews related work on bio-

inspired algorithms and data centre power management methods. Chapter 3 describes 

the proposed Ant Colony Optimisation (ACO)-based VM allocation and migration 

approach. Chapter 4 presents the preliminary work and simulation results. Chapter 5 

concludes the report and provide directions for future research.
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Chapter 2 

Literature Review 

This chapter will present a comprehensive review of existing works and literatures 

related to methods to reduce power consumption in data centres that involve bio-

inspired algorithms. It is structured as follows: Section 2.1 presents the concept of bio-

inspired algorithms, Section 2.2 discusses existing methods for Server Consolidation, 

Section 2.3 reviews existing Workload Balancing/Task Scheduling methods, Section 

2.4  reviews existing Thermal-aware Power Management Techniques. 

 

2.1  Bio-inspired Algorithms  

As we move further into the digital age, the surge in data volume has made it 

increasingly difficult to extract valuable insights and knowledge using conventional 

algorithms due to the growing complexity of analysis. Identifying the best solutions has 

become increasingly difficult, if not impossible, given the vast and dynamic range of 

potential solutions and the computational complexity involved [12]. This is especially 

true for NP-hard problems, where identifying the optimal solution is computationally 

expensive or even infeasible within a limited timeframe [12], as there are no efficient 

algorithms to solve them [13]. Therefore, many of the problems have to be solved using 

trial-by-error approach using different optimisation techniques [13]. This is where bio-

inspired algorithms offer a promising and innovative approach to address these 

challenges. 

 Bio-inspired algorithms are computational methods that draw inspiration from 

natural processes and biological systems to solve complex problems. In general, bio-

inspired algorithms are widely classified into few categories, with the two most widely 

recognised categories being evolutionary-based algorithms inspired by the natural 

evolution process and swarm-based/swarm-intelligence algorithms inspired by 

animals’ collective behaviour [14]. Other categories include ecology-based [14], multi-

objective [14], and physics and chemistry-based [13] algorithms. 

 Evolutionary-based algorithms are optimisation techniques inspired by the principle 

of natural evolution and biological processes. They imitate the mechanisms of 

biological evolution to find optimal or near-optimal solutions to complex problems. 

Example of evolutionary-based algorithms include artificial neural network, genetic 
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algorithm, evolution strategies, differential evolution and paddy field algorithm [14]. 

Among them, one of the most popular method used to address data centres’ energy 

consumption problem is the genetic algorithm (GA). GA is inspired by Darwin’s theory 

of natural selection, whereby it uses several nature-inspired operators to evolve a 

population of potential solutions over generations [12]. Its key components involve a 

fitness function, which evaluates how well a solution solves the problem to guide the 

selection process, and multiple operators such as inheritance, crossover, reproduction 

and mutation [12]. These operators are used to develop “child” solutions from a selected 

pair of pre-optimised “parent” solutions that retain positive characteristics of the 

“parent” while reducing the less positive characteristics [12].  

 On the other hand, swarm-based/swarm-intelligence algorithms are inspired by the 

collective behaviour of social insects and animals, which uses multiple agents to solve 

optimisation problems. Some popular example of swarm-based/swarm-intelligence 

algorithms are the Ant Colony Optimisation (ACO) algorithm that uses social 

interactions of ants, Particle Swarm Optimisation (PSO) algorithm that mimics 

swarming behaviour of fish and birds, Cuckoo Search algorithm (CSA) models the 

brooding paratism of cuckoo species, Firefly algorithm inspired by the flashing 

behaviour of swarming fireflies and so on [13]. These swarm-based/swarm-intelligence 

algorithms are highly popular and widely adopted due to several key reasons. One such 

reason is that they involve multiple agents sharing information, which fosters self-

organisation, co-evolution and learning over iterations, thereby enhancing their 

efficiency [13].  Another reason is that these algorithms can easily be parallelized, 

which makes them suitable for large-scale optimisation tasks to solve complex 

problems [13]. 

 In short, bio-inspired algorithms provide innovative and adaptive strategies for 

addressing the energy consumption problem in data centres. Their ability to adaptively 

search for near-optimal solutions in complex and dynamic environments make them 

particularly suitable for solving NP-hard problems, where traditional algorithms may 

fall short. This makes them an invaluable tool for creating more sustainable and 

efficient data centres. Table 2-1 summarises Section 2.1. 
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Algorithm Inspiration Source Key Features Common Use in 

Data Centres 

Genetic 

Algorithm 

(GA) 

Natural Evolution 

(Darwin’s Theory) 

Selection, crossover and 

mutation 

Server 

consolidation, 

resource 

optimisation 

Ant Colony 

Optimisation 

(ACO) 

Ant foraging 

behaviour 

Pheromone trails, heuristic 

search, shortest path finding 

Server 

consolidation, load 

balancing 

Cuckoo 

Search 

Algorithm 

(CSA) 

Cuckoo brood 

parasitism 

Levy flights, random nest 

selection, host nest 

replacement 

VM placement, 

resource allocation 

Particle 

Swarm 

Optimisation 

(PSO) 

Swarming of 

bird/fish 

Velocity and position 

update, global and local 

variants 

VM placement, 

resource 

optimisation 

Firefly 

Algorithm 

(FA) 

Firefly light 

attraction 

Attractiveness is 

proportional to brightness 

Resource allocation 

and scheduling 

Table 2-1: Summary of Section 2.1. 

 

2.2  Server consolidation Methods 

Server consolidation refers to the process of reducing the number of active 

physical servers in a data centre by running multiple applications on fewer servers. At 

the heart of server consolidation is virtualisation technology, which has become 

increasingly important in enhancing the energy efficiency of data centres [15]. 

Virtualisation technology enables multiple Virtual Machines (VM) to run on a single 

physical server, allowing for shared use of hardware resources. As a result, VMs can 

be consolidated to run on the fewest physical servers required, while unused servers 

can be shut down to reduce energy consumption and save energy costs [3]. Most 

methods employing server consolidation involves solving the VM placement (VMP) 

problem, which is a computational problem that aims to determine the most optimal 

allocation of VMs onto physical servers [3]. Figure 2-1 and 2-2 shows how server 
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consolidation can optimize server utilization by allocating VMs to the minimum 

number of servers required, while shutting down the servers that are unused. 

 

 

Figure 2-1: Servers utilisation without server consolidation [16]. 

 

 

Figure 2-2: Server utilisation with server consolidation [16]. 
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In recent years, researchers have proposed various algorithms to enhance the 

efficiency of server consolidation. For example, Liu et al. [3] proposed an efficient Ant 

Colony System (ACS) to solve the VMP problem in cloud computing. ACS is based on 

Ant Colony Optimisation (ACO) algorithm, which mimics the behaviour of real ants. 

The ACS in [3] is inspired by real ants' ability to find the shortest paths to food source 

using pheromones and applies this concept to the VMP problem. By using pheromones 

to record historical search information and heuristic information to guide decisions, 

ACS can sequentially assign virtual machines to the most suitable servers, making it an 

effective method for solving VMP challenges. Moreover, the ACS in [3] is paired with 

the Order Exchange and Migration (OEM) local search techniques, and the resulting 

algorithm is termed as an OEMACS. The OEM local search plays a crucial role in 

converting an infeasible solution into a feasible one. It is applied when the current best 

solution is found to be infeasible and it involves two steps, an ordering exchange 

operation followed by a migration operation. These steps aim to adjust the VM 

assignments to alleviate or eliminate server overloads. The experiment results showed 

that the OEMACS outperforms conventional heuristic and evolutionary-based 

approaches such as First-fit Decreasing (FFD), reordering grouping Genetic Algorithm 

(RGGA) and ACO-based method in minimising the number of active servers and 

energy consumption and maximising resource utilisation [3]. However, this approach 

only considers two dimensions of resource usage, which is CPU and RAM 

requirements. Consequently, the potential energy savings are limited to the power 

consumed by these two resources alone. 

 Other than that, Tang and Pan [17] proposed a hybrid genetic algorithm (HGA) to 

solve the VMP problem in data centres. Unlike other existing VMP approaches, which 

often overlook power consumption associated with the communication networks within 

data centres, this method recognises this significant energy usage and factors it into 

VMP strategies to enhance the overall energy efficiency of data centres. In Genetic 

Algorithm (GA), potential solutions to a specific problem are encoded as chromosomes 

within a data structure, and recombination operators are then applied to these 

chromosomes to evolve towards better solutions over time [16]. The HGA proposed by 

[17] is based on a previous GA proposed by the Wu et al. [15]. It makes use of the same 

encoding scheme, fitness function, selection strategy and genetic operators as the 

original GA. However, it improves the original GA by adding an infeasible solution 
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repairing procedure and a local optimisation procedure, both of which aim to improve 

the algorithm’s exploitation capacity and ability to converge more effectively. The 

approach in [17] starts by generating solutions with a Genetic Algorithm (GA). If the 

solution violates VMP constraints, it undergoes a repair procedure where VMs are 

reassigned to other physical machines (PMs) until constraints are satisfied. Feasible 

solutions are then optimized using the local optimisation procedure to reassign all VMs 

from a PM to other PMs, allowing the initial PM to be turned off, thereby reducing 

power consumption. In the evaluations, the HGA in [17] significantly outperforms the 

original GA in [15] that already have a better performance when compared to the FFD 

algorithm. However, while the HGA also has a lower mean computation time compared 

to the original GA, its computation time is still significantly larger compared to other 

heuristic algorithms.  

 On the other hand, Kurdi et al. [18] proposed a scheduling algorithm inspired by 

the behaviour of locusts, known as Locust-inspired scheduling Algorithm to reduce 

energy consumption in Cloud datacenters (LACE). Locusts demonstrate flexible 

behaviours that transitions between two phases, the solitary phase and gregarious phase. 

The LACE algorithm in [18] emulates these behaviours with two phases of its own, the 

mapping phase and the consolidation/migration phase. During the mapping phase, 

servers behave like solitary locusts, accepting only unallocated VMs. In contrast, during 

the consolidation/migration phase, the servers mimic the gregarious behaviour of 

locusts and aggressively search for VMs, including those on other servers. The 

algorithm in [18] also classifies servers into heavily-loaded servers and lightly-loaded 

servers based on their processor utilisation level. It then applies global and local 

migration rules to always migrate VMs from lightly-loaded servers to heavily-loaded 

servers. The LACE algorithm is compared against three well-established benchmarks, 

namely Dynamic Voltage Frequency Scaling (DVFS), Energy aware Scheduling using 

the Workload-aware Consolidation Technique (ESWCT) and the static Threshold with 

Minimum Utilization policy (ThrMu) [18]. The LACE algorithm outperforms latter two 

in resource utilization and energy consumption and performs similarly to DVFS. It 

excels in energy efficiency across most data center scales, though ThrMu is more 

efficient in large-scale centers but less reliable. LACE also improves Service Level 

Agreement (SLA) response times compared to latter two benchmarks, while matching 

DVFS's performance. However, initial VM allocation in [18] is done in a First-Come-
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First-Serve (FCFS) basis to all available servers, which results in inefficient resource 

usage as the VMs will eventually have to be reallocated to suitable servers afterwards. 

This can be solved by achieving full utilisation of servers in the mapping phase before 

progressing to the next phase [19]. 

 Furthermore, Salami et al. [6] tackled the VMP problem by proposing a new 

Cuckoo Search Algorithm (CSA) termed newCSA. This newCSA is based on the 

modified CSA of Walton et al. [20]. The CSA, as the name suggests, is inspired by the 

brood parasitism behaviour of cuckoos, where they lay eggs in other birds’ nests. This 

requires the cuckoos’ eggs to evolve to avoid being detected and discarded by the host 

birds [20]. Generally, the CSA is based on three idealised rules [21]: (1) Each cuckoo 

lays a single egg at a time and deposits it in a randomly selected nest. (2) The nests with 

the highest quality eggs are retained for the next generation. (3) The number of available 

host nests remains constant, and there is a probability pa ∈ [0,1] that the host bird will 

discover the cuckoo's egg. If that is the case, the host bird can either discard the egg or 

abandon its nest to build an entirely new nest. The newCSA algorithm proposed in [6] 

introduced a novel cost function for the placement solution, three new perturbation 

functions used to search the design space and a new, computationally cheap method for 

updating the cost of solutions. In the CSA, each nest represents a solution that indicates 

which server host which VM and the best net will be chosen. The newCSA algorithm 

is tested against the RGGA, FFD, best-fit decreasing (BFD) and a prior CSA-based 

method termed multiCSA and the results showed that newCSA is better in terms of 

number of servers required for VM placement, power consumption, and execution time 

[6]. Nevertheless, one limitation of this method is that it only considers two 

dimensions/resources, namely memory and CPU. There is an improvement that can be 

made by including more dimensions/resources in the method. 

 Moreover, Singh et al. [22] proposed a bio-inspired VMP framework that aims to 

maximise resource utilisation and minimise power consumption and carbon emissions. 

It proposes a novel FP-NSO algorithm that combines the concepts of Nondominated 

Sorting technique-based Genetic Algorithm (NSGA-II) and Flower Pollination 

Optimisation (FPO). The FPO in [22] generates an initial population of solutions by 

randomly allocating VMs. Each individual solution, which represents a VM allocation 

is considered as a flower or pollen. In [22], Random-Fit (RF) and First-Fit (FF) 

algorithms is used to perform the VM-PM mapping process. After the mapping process, 
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the FP-NSO utilises the modules in NSGA-II to generate the optimal VM allocations 

and FPO algorithm to achieve optimal assignment of VMs.  In the end, the best flower 

which is the optimal solution is obtained. The FP-NSO algorithm is evaluated against 

nine existing approaches, including the original NGSA-II, GA, FF, RF and more. The 

algorithms are tested on two different scenarios, static VMP and dynamic VMP. In the 

static VMP scenario, FP-NSO enables resource utilisation up to 69%, surpassing other 

algorithms by a margin of 9.29% to 67.08% [22]. Evaluation also shows that FP-NSO 

can significantly reduce the number of active PMs and is one of the best performers in 

reducing power consumption and carbon emissions among the algorithms. On other 

hand, FP-NSO achieved a significant reduction in power consumption, execution time, 

and carbon emission over other algorithms in the dynamic VMP scenario, which is up 

to 16.69%, 75.87% and 48.60% respectively [22]. It also improves resource utilisation 

up by 78.18% compared to other algorithms [22]. However, there is still some reliability 

concern with the FP-NSO algorithm. Further refinements can be made to improve its 

reliability. 

Additionally, Liu et al. [5] proposed a Multi-population Ant Colony System 

(ACS) Algorithm with the Extreme Learning Machine (ELM) prediction called 

ELM_MPACS. As the name suggests, the ELM_MPACS uses ELM, which is a single 

hidden layer feed-forward neural network to predict the state of each host in the data 

centre. On the other hand, the multi-population ACS algorithm is employed to 

determine the destination host for VM migration based on the prediction of the ELM. 

Each population’s migration scheme is evaluated using an objective function that 

considers both power consumption and number of migrations, and the best solution is 

selected. Like other ACS-based algorithms like [3], the ELM_MPACS in [5] also rely 

on pheromones and heuristic information to select destination hosts for VMs. 

Furthermore, the ELM_MPACS utilises local search strategy to improve the migration 

plan and prevent SLA violations. The VM migration process of the ELM_MPACS is 

also quite different from other server consolidation algorithms. In ELM_MPACS, VMs 

on overloaded hosts are moved to normal hosts, while VMs on underloaded hosts are 

moved to other underloaded hosts with higher utilisation. A constraint is set whereby 

destination hosts’ utilisation must be lower than source hosts’ after migration and VMs 

from underloaded hosts can only be moved to destination hosts with higher utilisation 

than the source [5]. This approach minimises unnecessary migration and speeds up the 
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migration process. ELM_MPACS is evaluated against four benchmark algorithms in 

the CloudSim simulator. Experimental results demonstrate that ELM_MPACS is more 

effective than those algorithms in reducing data centre power consumption, VM 

migration time and SLA violations [5]. However, ELM_MPACS only considers CPU 

utilization during VM migration. The effectiveness of the consolidation technique can 

be enhanced by incorporating multiple resources in the VM integration process. Table 

2-2 summarises Section 2.2. 

 

Work Objective Method Results Limitation 

Liu et 

al. [3] 

Efficiently 

allocate VMs 

across the 

fewest 

number of 

PMs to 

minimise 

energy 

consumption 

for cloud 

computing. 

Ant Colony System 

(ACS)-based approach 

paired with Order 

Exchange and 

Migration (OEM) local 

search techniques. 

(OEMACS) 

OEMACS 

outperforms 

FFD, RGGA 

and ACO-based 

algorithms in 

terms of average 

energy 

consumption 

and server 

utilisation. 

Only consider two 

dimensions of 

resource usage, 

CPU and RAM 

requirements. 

Tang 

and 

Pan 

[17] 

Enhance 

energy 

efficiency of 

data centres 

by 

considering 

the network 

power 

consumption 

in VMP. 

Hybrid Genetic 

Algorithm (HGA) that 

incorporates infeasible 

solution repair and 

local optimisation 

procedure. 

HGA 

significantly 

outperforms the 

original GA and 

FFD approach 

in reducing 

energy 

consumption. 

HGA has a 

significantly larger 

computation time 

compared to other 

heuristic 

algorithms. 

Kurdi 

et al. 

[18] 

Reduce 

energy 

consumption 

in cloud data 

centres. 

Locust-inspired 

scheduling algorithm 

called LACE with 

mapping phase and 

LACE 

outperforms 

ESCWT and 

ThrMu, while 

matching DVFS 

Initial VM 

allocation in FCFS 

basis results in 

resource wastage as 
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consolidation/migration 

phase. 

in resource 

utilisation and 

energy 

consumption, 

and excels in 

energy 

efficiency across 

different data 

centre scales. 

VMs will have to 

be reallocated. 

Salami 

et al. 

[6] 

Solve the 

VMP problem 

by developing 

a new Cuckoo 

Search 

Algorithm 

(newCSA). 

newCSA algorithm that 

introduced a novel cost 

function, three new 

perturbation functions 

and an efficient method 

to update the cost of 

solutions in VM 

placement. 

newCSA 

performs better 

than compared 

methods in 

terms of number 

of servers 

required, power 

consumption 

and execution 

time. 

Only considers two 

dimensions of 

resource usage, 

CPU and memory. 

Singh 

et al. 

[22] 

Maximise 

resource 

utilisation, 

minimise 

power 

consumption 

and carbon 

emission of 

data centres. 

 

 

 

 

 

Bio-inspired VMP 

framework that uses 

FP-NSO algorithm that 

combines Flower 

Pollination 

Optimisation (FPO) 

and Nondominated 

Sorting technique-

based Genetic 

Algorithm (NSGA-II). 

FP-NSO 

significantly 

reduces power 

consumption 

and carbon 

emission and 

improves 

resource 

utilisation 

compared to 

other 

algorithms. 

The proposed 

framework has 

some reliability 

concerns. 

Liu et 

al. [5] 

Improve VM 

consolidation 

efficiency and 

ELM_MPACS 

algorithm combining 

Multi-population Ant 

ELM_MPACS 

algorithm is 

more effective 

Only considers one 

resource/dimension, 

which is CPU 
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achieve 

balance 

between 

reducing 

energy 

consumption 

and SLA 

violations. 

Colony system (ACS) 

for VM 

migration/consolidation 

with Extreme Learning 

Machine (ELM) for 

predicting host states. 

in reducing 

energy 

consumption, 

VM migration 

time, and SLA 

violations 

compared to 

four other 

benchmark 

algorithms 

utilisation during 

VM migration 

Table 2-2: Summary of Section 2.2. 

 

2.3  Workload Balancing/Task Scheduling Methods 

 A considerable amount of energy is wasted when energy is distributed across 

computing nodes and when these nodes handle application workloads [23]. As a result, 

it is necessary to efficiently distribute workloads between the computing nodes. Load 

balancing is one of the key methods employed to reduce energy consumption in data 

centres. It involves distributing the workload evenly between participating nodes and 

ensuring all nodes share the load equally [23]. Load balancing aims to prevent any 

single node from being overloaded or underutilised . By redistributing tasks effectively, 

load balancing not only optimises resource utilisation, but also minimises energy 

consumption, ultimately leading to lower operational costs and improved system 

performance.  

Load balancing algorithms are techniques used to distribute workloads evenly 

across multiple computing resources. Some traditional load balancing algorithms 

include round-robin, least connection, weighted round-robin, IP hash and least response 

time [7]. Although load balancing shares some similarities with server consolidation 

such as making real-time decisions on where to place workloads, they are quite different 

in nature. Load balancing distributes the workloads/tasks evenly among available 

servers or VMs to ensure optimal performance, while server consolidation involves 

reallocating workloads/tasks to the fewest possible servers to reduce energy 

consumption. There have been several studies that implemented bio-inspired 

algorithms to enhance load balancing strategies. 
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 For instance, Gupta and Deshpande [24] introduced a load balancing technique for 

cloud data centres that is based on Ant Colony Optimisation (ACO). As mentioned 

above, ACO is inspired by ants’ foraging behaviour. In this technique, servers are 

treated as nodes and artificial ants utilise two types of pheromones to guide their 

movements, foraging pheromones (FP) and trailing pheromones (TP). The pheromones 

are updated depending on the direction of the ants’ search. Foraging pheromone is 

updated when the ants move from an underloaded node to an overloaded node, and 

trailing pheromone is updated when the opposite occurs. The technique in [24] involves 

artificial ants that move between nodes to balance the load, guided by pheromone 

levels. If a node is overloaded, they look for an underloaded neighbor and update the 

Trailing Pheromone (TP). If the node is underloaded, they search for an overloaded 

neighbor, updating the Foraging Pheromone (FP). Load balancing only happens when 

the conditions match; otherwise, the search continues. The load redistribution is carried 

out based on the proposed redistribution policy, which determines how many requests 

each node involved should handle. Figure 2-3 below shows the load balancing process 

when the ant found an overloaded node first.  

 

Figure 2-3: ACO load balancing process in [24]. 

 

Experimental results showed that the ACO load balancing technique improves the 

resource utilisation of the nodes and decreases the number of underloaded and 

overloaded nodes [24]. However, the study did not compare its results with other load 
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balancing algorithms, which limit the ability to evaluate its effectiveness relative to 

existing methods. At the same time, the experiment did not address the energy savings 

achieved by the ACO load balancing technique, which is crucial for evaluating its 

overall efficiency and effectiveness in reducing energy consumption in data centres. 

Furthermore, Das et al. [25] proposed a novel load balancing algorithm by 

combining Weighted Round Robin algorithm with the Honeybee Inspired load 

balancing approach. The approach is used to remove and migrate tasks between VMs 

by considering the priority. It begins by checking for underloaded and overloaded VMs 

and then removes tasks from VMs with excessive load and checks for priority. The 

Honeybee inspired load balancing algorithm is responsible for assigning weight to VMs 

and reallocating non-pre-emptive tasks to underloaded VMs when priority exists. On 

the other hand, if priority does not exist, Weighted Round Robin algorithm is used to 

allocate tasks. The hybrid algorithm in [25] assigns weights to VMs based on their 

capacity and evaluates the load on each machine. If load imbalance is detected, it 

identifies underloaded and overloaded VMs. High-priority tasks are assigned to 

appropriate VMs, while lower-priority tasks use a Round Robin policy. Finally, the load 

on each VM is updated. The algorithm is compared with the Honeybee Inspired 

algorithm and Weighted Round Robin algorithm using a cloud analyst simulator. The 

results showed that the average response time and data centre processing time of the 

hybrid algorithm is faster than both the individual Honeybee Inspired and Weighted 

Round Robin algorithm [25]. However, the approach does not consider other Quality 

of Service (QoS) factors such as waiting time, migration time costs and so on. 

Moreover, like [24], the approach did not measure the energy saved by using the hybrid 

algorithm. 

Additionally, Lawanya Shri et al. [26] developed a load balancing model using 

a Firefly algorithm to maximise resource utilisation and ensure even distribution of load 

across all resources in cloud servers. The three idealised rules of the Firefly algorithm 

include [26]: (1) Any firefly can be attracted to another as they are unisexual. (2) 

Attractiveness of a firefly is directly proportional to its brightness, where a dimmer 

firefly is attracted to a brighter one, but the attraction diminishes as distance between 

them increases. (3) If a firefly cannot find any other firefly brighter than itself, it moves 

randomly. The brightness of a firefly is determined by the objective function of the 

algorithm. The proposed approach in [26] is termed as Fuzzy Hybrid Firefly Algorithm 
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based on Simulated Annealing (FFA-SA). It combines Firefly algorithm with 

Simulated Annealing optimisation algorithm to enhance optimisation accuracy and 

convergence speed. During the selection process of VMs, a fuzzy approach is applied 

to allocate tasks effectively by using fuzzy rules to define control policies for fireflies. 

In [26], dominant fireflies represent VMs in the data centre, while submissive fireflies 

represent jobs or tasks assigned to these VMs. If a particular dominant firefly (VM) is 

overwhelmed with submissive fireflies (tasks),  submissive fireflies will be redirected 

to another dominant firefly to ensure balanced distribution. The FFA-SA is compared 

against existing algorithms such as Honeybee Behaviour Load Balancing algorithm 

(HBB-LB), Particle Swarm Optimisation (PSO) and Energy-aware Fruit Fly algorithm 

(EFOA-LB). FFA-SA outperformed other algorithms in reducing makespan and energy 

consumption in data centers through effective load balancing [26]. However, the 

approach did not consider other factors such as resource utilisation and number of 

overloaded or underloaded servers, which could further enhance the efficiency and 

performance of the approach. 

Moreover, Gamal et al. [27] proposed a hybrid artificial bee and ant colony load 

balancing algorithm for cloud computing environments named OH_BAC. The 

algorithm is based on osmotic behaviour, which refers to the way cells or systems 

respond to the process of osmosis. In [27], VMs migrate from heavily loaded PMs to 

lightly loaded PMs like water moving from a region of lower solute concentration to 

higher solute concentration in the osmosis process. The OH_BAC combines key 

behaviours of Ant Colony Optimisation (ACO) and Artificial Bee Colony (ABC) 

algorithms, where ACO’s rapid solution discovery at diversity systems and ABC’s 

waggle dance for information sharing are integrated. A knowledge base, which is a 

central resource is used to guide the ABC and ACO in the VM migration process. The 

process in [27] begins with the ABC component, where a scout bee calculates the 

standard deviation to identify underutilized and overutilized hosts. Once identified, the 

employed bee selects a suitable VM for migration, which is then executed by the 

onlooker bee to a suitable Physical Machine (PM). Concurrently, the ACO component 

generates a list of osmotic PMs using a knowledge base enhanced with osmosis 

techniques. The ACO then calculates the fitness function to find the best PM for the 

selected VM migration. The final migration step ensures that the selected PM is 

compatible with the osmotic list of hosts from the knowledge base before executing the 
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migration. The performance OH_BAC is compared in two experiments with fixed and 

variable loads against ACO, ABC, H_BAC and other host overloading detection 

algorithms. OH_BAC significantly improved energy consumption, SLA violations, 

VM migrations, and host shutdowns compared to other algorithms under both fixed and 

variable loads, although it has a higher Service Level Agreement Time per Active Host 

(SLATAH) [27]. Table 2-3 summarises Section 2.3. 

 

Work Objective Method Result Limitation 

Gupta and 

Deshpande 

[24] 

 

 

 

 

 

 

Develop a load 

balancing 

technique that 

improves 

performance in 

cloud data  

centres. 

Load balancing 

technique based 

on Ant Colony 

Optimisation 

(ACO). 

ACO-based load 

balancing improves 

resource utilisation 

of servers and 

decreases the 

number of 

overloaded and 

underloaded 

servers. 

Did not compare 

performance with 

other algorithm to 

evaluate 

effectiveness. Did 

not address power 

savings achieved 

by the algorithm. 

Das et al. 

[25] 

Enhance load 

balancing in 

cloud 

environment. 

Hybrid 

algorithm that 

combines 

Honeybee 

algorithm and 

Weighted 

Round Robin 

algorithm. 

Hybrid algorithm 

demonstrates faster 

average response 

time and data 

centre processing 

time than both the 

individual 

algorithms. 

Did not consider 

other QoS factors 

such as waiting 

time and migration 

time costs. Did not 

measure energy 

saved by hybrid 

algorithm. 

Lawanya 

Shri et al. 

[26] 

Maximise 

resource 

utilisation and 

ensure even 

distribution of 

load across all 

resources in 

cloud servers. 

Fuzzy Hybrid 

Firefly 

Algorithm based 

on Simulated 

Annealing 

(FFA-SA) 

FFA-SA reduced 

makespan and 

energy 

consumption, 

outperforming 

HBB-LB, PSO, 

and EFOA-LB 

algorithms. 

Did not consider 

other factors such 

as resource 

utilisation and 

number of 

overloaded or 

underloaded 

servers. 

Gamal et 

al. [27] 

Develop a load 

balancing 

Hybrid 

Artificial Bee 

OH_BAC 

improved energy 

OH_BAC 

algorithm has a 
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algorithm to 

optimize 

energy usage 

and system 

performance in 

cloud 

environments. 

Colony (ABC) 

and Ant Colony 

Optimization 

(ACO) 

algorithm based 

on osmotic 

behavior 

(OH_BAC). 

consumption, SLA 

violations, VM 

migrations, and 

host shutdowns 

compared to other 

methods under 

fixed and variable 

loads. 

higher Service 

Level Agreement 

Time per Active 

Host (SLATAH) 

than the compared 

algorithms. 

Table 2-3: Summary for Section 2.3. 

 

2.4  Thermal-aware Power Management Techniques 

 As mentioned above, much of the energy costs of data centres are associated with 

the cooling process [2]. Therefore, an effective way to reduce power consumption in 

data centres is by minimizing the burden placed on cooling systems to maintain the 

temperature of the computing infrastructure [28]. Thermal-aware power management 

methods, as the name suggests, are power management methods designed to manage 

power consumptions in systems while considering their thermal behaviour. These 

methods are crucial in environments like data centres, where maintaining optimal 

temperature is essential for the longevity and reliability of hardware components. 

 For example, Chen et al. [29] proposed a power and thermal-aware VM placement 

scheme to reduce the power consumptions of data centres. This VM placement scheme, 

also known as power and thermal-aware VM dynamic scheduling scheme (PTDS) 

includes a new host load detection algorithm termed Average Median Deviation 

(AMD), Minimisation Algorithm (MM) for migrating VMs during the VM selection 

phase and VM placement algorithm based on enhanced Ant Colony Optimisation 

(ACO) called PTOACO. Unlike other VM placement schemes, PTDS’s objective is not 

only to minimise the energy consumption of computing equipment but also to maintain 

the temperature control of the hosts to prevent host damage due to high temperature. 

The system model of PTDS consists of three sub-models [29]: (1) the linear computing 

system power model, which explains the linear relationship between host’s power 

consumption and change in time. (2) the cooling system power model, which examines 

the utilisation of cooling energy. (3) the server temperature model that utilises CPU 

temperature to evaluate the connection between server utilisation, computer room air 

conditioning (CRAC) cooling capacity and thermal characteristics. These models work 
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together to define the power and thermal management strategies in PTDS. The PTDS 

scheme is compared with seven benchmark scheduling schemes to evaluate its 

effectiveness. They are evaluated on four standard metrics including energy 

consumption, hotspots, SLA violation, and active hosts. The PTDS scheme achieved 

the second-lowest average energy consumption and hotspots, ranked fourth in average 

SLA violations, and had the lowest number of active hosts per hour compared to seven 

other scheduling schemes [29].  However, the PTACO algorithm is prone to local 

optimsation, where it converges on suboptimal solutions while potentially ignoring the 

globally optimal solution. 

 Furthermore, Yang et al. [30] presented a novel power model to link task 

assignment, heat recirculation, inlet temperature and cooling costs in homogenous and 

heterogenous data centres with under-floor air supply. The model comprises four 

stages. The first stage connects cold air temperature to the power consumption in the 

data centre, while the second stage represents inlet temperature using power 

consumption by using an abstract heat recirculation model. The third stage relates inlet 

temperature to task placement and power profile and the final stage uses peak inlet 

temperature to determine the maximum temperature of supplied cold air. This model, 

along with a Genetic Simulated Annealing (GSA) algorithm is used to assign tasks in 

the data centre. The GSA algorithm in [30] is an enhancement of the traditional Genetic 

Algorithm (GA), incorporating simulated annealing. Like the approach in [26], 

simulated annealing conducts single point search using solution transformation and is 

included in the GSA algorithm to improve the performance of the solution searching 

process. By combining the parallelization capabilities of GA with the solution 

transformation and selection mechanisms of simulated annealing, the GSA algorithm 

significantly lowers the risk of getting trapped in a local optimum during the search 

process. In the experiments, the proposed approach is compared with the traditional GA 

and the Ant Colony (AC) algorithm. Results demonstrated that it outperforms GA and 

AC algorithms in decreasing the temperature requirement of supplied cold air and 

reducing the power consumption of cooling systems [30]. However, the approach 

primarily focuses on reducing cooling costs in data centres, overlooking the computing 

costs. To achieve a more comprehensive solution, both cooling and computing costs 

should be considered. Table 2-4 summarises Section 2.4. 
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Work Objective Method Result Limitation 

Chen 

et al. 

[29] 

Reduce 

power 

consumption 

of data 

centres and 

SLA 

violation rate 

while 

preventing 

hotspots. 

Power and thermal-

aware VM dynamic 

scheduling scheme 

(PTDS) combining 

Average Median 

Deviation (AMD), 

Minimisation Algorithm 

(MM), and PTOACO 

(enhanced ACO 

algorithm). 

PTDS achieved 

second lowest energy 

consumption and 

hotspots, ranked 

fourth in SLA 

violations, and had the 

lowest number of 

active hosts per hour 

compared to seven 

other benchmark 

schemes. 

PTACO 

algorithm is 

prone to 

local 

optimisation, 

potentially 

overlooking 

the global 

optimal 

solution. 

Yang 

et al. 

[30] 

Reduce 

power 

consumption 

of cooling 

systems in 

data centre 

by intelligent 

task 

assignment. 

Power model linking 

task assignment, heat 

recirculation, inlet 

temperature, and cooling 

costs in homogenous 

and heterogeneous data 

centers with under-floor 

air supply combined 

with Genetic Simulated 

Annealing (GSA) 

algorithm. 

GSA algorithm 

outperformed GA and 

Ant Colony based 

algorithm in reducing 

cooling system power 

consumption and 

lower the temperature 

of cold air. 

Approach 

primarily 

focused on 

reducing 

cooling 

costs, 

overlooking 

computing 

costs. 

Table 2-4: Summary of Section 2.4.
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Chapter 3 

System Method/Approach 

 

This chapter outlines the methodology used to design and evaluate VM allocation and 

migration methods in data centres. It begins with the overall design specifications, 

including the workflow and tools used, followed by the system model that simulates 

both homogeneous and heterogeneous data centre setups under varying workload 

scenarios. The chapter then details the implementation of three bio-inspired 

optimisation algorithms, explains their core principles and demonstrating the complete 

VM allocation and migration processes aimed at improving power efficiency and 

resource utilisation. 

 

3.1  Design Specifications 

3.1.1 General Work Procedure 

This project employs a simulation-based development methodology to design and 

evaluate the Virtual Machine (VM) allocation and migration algorithms based on Ant 

Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), and Modified 

Genetic Algorithm (MGA). This approach involves using CloudSim Plus, a cloud 

simulation framework, to model and simulate data centre behaviour under different 

workloads. The general work procedure includes problem formulation, development 

environment setup, system modelling, algorithm implementation, testing through 

simulation, performance evaluation, and documentation. 

 

 

Figure 3-1: General Work Procedure of the Project. 

 

Problem formulation phase defines the research problem and objectives. It involves 

identifying issues related to VM allocation and migration in data centre environments 
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and establishing key performance indicators such as power consumption and resource 

utilisation. Next, the development environment is set up by installing and configuring 

CloudSim Plus within Eclipse Integrated Development Environment (IDE), along with 

the required dependencies using Apache Maven. Once the environment is ready, system 

modelling is carried out by designing a simulated cloud infrastructure that includes a 

data centre, a data centre broker, physical hosts/servers, VMs and cloudlets that 

represent user workloads. Following this, the implementation phase involves 

developing three custom VM allocation and migration algorithms. They are the ACO-

based algorithm that mimics the foraging behaviour of ants using pheromone trails and 

heuristic information to make VM placement and migration decisions, the PSO-based 

algorithm inspired by swarm intelligence and uses particles to explore the solution 

space and iteratively adjust VM placement based on personal best and global best 

positions and Modified Genetic Algorithm (MGA) which applies evolutionary 

principles with a problem-specific crossover strategy to optimise VM placement by 

migrating VMs from overutilised or underutilised hosts while prioritising resource 

efficiency. After that, simulation and testing are carried out to verify and evaluate the 

performance of the algorithm. After implementation, simulation and testing are 

conducted to verify and evaluate the performance of the algorithms. Multiple test cases 

are created with varying workloads, VM sizes, and server configurations under both 

homogeneous and heterogeneous data centre setups. Finally, all aspects of the project 

will be compiled into a report to conclude the project work. 

 

 

3.1.2 Tools to use 

This section shows the tools/software used for this project. 

• CloudSim Plus 8.5.5:  

CloudSim Plus is a Java-based cloud simulation framework that enables the modelling 

and simulation of data centre and cloud computing environments [31]. It is a modified 

version derived from the original CloudSim simulation tool. It is selected as the 

simulation tool for this project because it offers powerful, flexible and modern features 

beyond the original CloudSim framework. For example, CloudSim Plus provides 

interfaces and classes for implementing heuristic algorithms such as Ant Colony 

Systems, Simulated Annealing and Tabu Search [31]. It also features precise power 
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consumption calculations as well as built-in calculations of CPU utilisation history and 

energy consumptions for both VMs and hosts [31]. The CloudSim Plus framework also 

supports dynamic and realistic workloads. It enables the dynamic creation of VM and 

cloudlets at runtime, along with the delayed submission of created VMs and cloudlets 

[31]. This allows realistic and dynamic workload modelling in data centre 

environments. Given these features, CloudSim Plus provides a powerful platform for 

developing and validating the proposed power management methods. 

 

• Eclipse IDE: 

Eclipse IDE is a free, open-source Java-based integrated development environment 

(IDE) primarily used for Java development. It offers a platform for creating, debugging 

and testing applications by offering a wide range of tools and plugins. Since CloudSim 

Plus framework is Java-based, Eclipse is chosen to develop and simulate cloud-

computing scenarios using the framework. Furthermore, Eclipse also offers robust 

support for Maven projects, which simplifies dependency management and project 

configuration. Therefore, it makes it easier to integrate and manage the CloudSim Plus 

libraries and other required components in the simulation environment. 

 

• Apache Maven: 

Maven is a software project management and build automation tool. It is mainly used 

in Java-based development. It automates tasks such as compilation, testing, packaging 

and dependency management. In this project, Maven is used to efficiently manage 

CloudSim Plus framework and its related libraries. Maven simplifies the setup of 

CloudSim Plus by automatically downloading and integrating its dependencies through 

the pom.xml configuration file. 

 

• Visual Studio Code (VS Code): 

Visual Studio Code (VS Code) is a lightweight, open-source code editor developed by 

Microsoft. It supports multiple programming languages and offers different features 

like syntax highlighting and intelligent code completion. It is a convenient tool for 

quick development and debugging. Although Eclipse is the main IDE used to build and 

run the CloudSim Plus simulations, VS Code is occasionally used for writing and 
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editing parts of the code. Its speed and simplicity make it a handy alternative for writing 

and debugging code. 

 
 
3.2  System Model 

The system model represents the interaction between the main system components 

within the simulated data centre environment. It is designed to evaluate the performance 

of the proposed VM allocation and migration policies using CloudSim Plus as the 

simulation framework. Figure 3-2 shows the system model for this project. 

 

 

Figure 3-2: System Model for this Project. 

 

At the core of the model lies the data centre, which consists of a set of physical hosts 

capable of hosting multiple VMs. A data centre broker act as an intermediary between 

simulated users and the data centre and is responsible for VM management steps such 

as VM and cloudlet creation, submission and destruction. Initially, the system receives 

a set of VMs, V = {VM1, VM2, VM3, …, VM|V|} and a set of cloudlets (user workloads), 
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C = {C1, C2, C3, …, C|c|}. Next, the set of VMs and cloudlets are submitted to the data 

centre broker. The data centre broker will then allocate the set of VMs, V across a set 

of physical servers/hosts, P = {PM1, PM2, PM3, …, PM|P|}. The initial allocation 

allocates VMs to active hosts with the minimum number of free processing elements 

(CPU cores). At this stage, no migration occurs and VMs are statically mapped to hosts 

to provide a starting point for execution. 

As the simulation progresses and cloudlets begin executing, certain hosts may become 

overloaded or underloaded. To address this, the custom VM allocation policy (based on 

ACO, PSO or MGA) is triggered to determine whether reallocation or migration of 

VMs is necessary. The goal is to balance the load across hosts or consolidate VMs onto 

fewer hosts, thereby improving resource utilisation and reducing overall power 

consumption. During this process, the algorithm identifies the potential source hosts 

(underloaded and overloaded hosts), VMs eligible for migration, and suitable target 

hosts based on pre-defined criteria. The objective is to construct an optimal migration 

plan by selecting the best combination of these migration options that results in the 

most efficient utilisation of resources and minimises power consumption. 

 

3.3  Algorithms 

Efficient virtual machine (VM) allocation and migration are critical for optimizing 

resource utilization and reducing power consumption in modern data centres. 

Traditional static or rule-based approaches often fail to adapt effectively under dynamic 

workloads. To address these limitations, this project leverages bio-inspired algorithms 

to intelligently determine optimal VM placement and migration strategies. 

In this study, three distinct algorithms are implemented and evaluated within a 

simulated CloudSim Plus environment: Ant Colony Optimisation (ACO) algorithm, 

Particle Swarm Optimisation (PSO) algorithm and Modified Genetic Algorithm 

(MGA). 

 

3.3.1 Ant Colony Optimisation (ACO) Algorithm 

3.3.1.1 Overview of Ant Colony Optimisation (ACO) Algorithm 

Ant Colony Optimisation (ACO) draws its inspiration from the natural foraging 

behaviour observed in real ant colonies [24]. In nature, ants find the shortest path 

between their nest and a food source by laying down pheromone trails along the paths 
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they travel. Other ants would follow these pheromone trails, and the shortest paths 

accumulate stronger pheromone levels as time goes on, which makes them more 

attractive for other ants. This concept can be adapted to solve the Virtual Machine 

Placement (VMP) problem. Ants would iteratively build a solution by choosing a VM 

to be assigned to a server based on the combination of pheromone levels as well as 

heuristic values, until all VMs have been assigned to servers. The approach places each 

VM on the most appropriate server, thus ensuring efficient resource utilisation. 

In this project, the ACO algorithm is adapted to address the VM placement and 

migration problem within data centres. The focus is to optimise resource utilisation and 

reduce power consumption by balancing workload and consolidating VMs onto fewer 

active servers. The algorithm operates in iteration, with artificial ants constructing 

feasible migration plans based on current system state. Each ant builds a solution by 

selecting a sequence of migration tuples, where a tuple consists of a source host, VM 

to migrate and a target host. These tuples are selected based on pheromone value, which 

represents learned experience from previous iterations, and heuristic information that 

reflects the current desirability of each tuple. Over successive iterations, the algorithm 

gradually converges towards an optimal or near-optimal migration plan, which is then 

used to migrate VMs to their designated target hosts for improved resource utilisation 

and energy efficiency. 

 

 

3.3.1.2 Initialisation of parameters of ACO algorithm 

In the ACO-based VM allocation and migration algorithm, there are several key 

parameters that influence the behaviour and performance of the solution construction 

process. These parameters are 32nderutiliz at the beginning of the algorithm. Table 3-

1 shows the main parameters in this algorithm: 

 

Parameters Value Description 

α 1.0 This parameter represents the influence of the pheromone 

value (τ) in the selection of migration tuples. A larger α 

places more emphasis on the learned experience of 

previous ants, which promotes the exploitation of known 

good solutions 
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β 2.0 This parameter represents the influence of the heuristic 

information (η), which is the problem-specific knowledge 

that guides ants towards more promising solutions. A 

larger β increases the impact of heuristics and encourages 

more informed exploration. 

q0 0.7 This parameter represents the exploitation parameter, and 

it determines whether an ant will exploit the best-known 

path or explore new path probabilistically. A higher q0 

encourages exploitation, while a smaller q0 encourages 

exploration. 

ρ 0.1 This parameter represents the pheromone evaporation rate, 

where ρ ∈ (0,1). It determines how quickly the pheromone 

trail fades over time. A small ρ value is favoured to prevent 

pheromones from evaporating too quickly so that past 

experiences can be retained in the pheromone values. 

τ0 1.0 This parameter represents the initial pheromone value 

deposited on all migration tuples. It helps initialise the 

search space and prevents any bias towards specific 

solutions in early stages of the algorithm. 

Number of ants 5 This parameter defines how many ants are used per 

iteration. Each ant will construct a local migration plan 

which will then be evaluated based on the objective 

functions. A larger number can improve the solution 

quality but may increase computational time. 

Number of iterations 5 This parameter defines how many times the ant colony will 

repeat the solution construction process. More iterations 

improve the chances of finding optimal or near-optimal 

plans. However, this also increases computational time 

and resource consumption, so a balanced approach is 

favoured. 
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Ki 0.5 This parameter represents the fraction of a host’s 

maximum power that is consumed when the host is idle 

(not hosting any VMs but still powered on). An idle but 

powered-on server can consume approximately 50% to 

70% of the power used by a fully loaded server. Therefore, 

the fraction parameter is set to 0.5, representing idle or 

static power as 50% of the server’s maximum power 

consumption. 

Table 3-1: Parameters of the ACO-based Algorithm. 

 

3.3.1.3 Heuristic Information 

In the ACO-based VM allocation and migration algorithm, heuristic information is 

denoted as ηijk and plays a crucial role in guiding the decision-making process of ants 

during the solution construction phase. It provides the estimate of the desirability or 

suitability of migrating a virtual machine VMj from a source host PMi to a target host 

PMk, based on resource availability and balance. The equation (1) represents the 

formula to calculate heuristic information for each migration tuple and it is based on 

the heuristic calculation in [3]. 

Ηijk =  

1.0 − |
𝑃𝑀𝑘

𝑐 − 𝑃𝑀𝑘
𝑐𝑢 − 𝑉𝑀𝑗

𝑐

𝑃𝑀𝑘
𝑐 −

𝑃𝑀𝑘
𝑚 − 𝑃𝑀𝑘

𝑚𝑢 − 𝑉𝑀𝑗
𝑚

𝑃𝑀𝑘
𝑚 |

|
𝑃𝑀𝑘

𝑐 − 𝑃𝑀𝑘
𝑐𝑢 − 𝑉𝑀𝑗

𝑐

𝑃𝑀𝑘
𝑐 | + |

𝑃𝑀𝑘
𝑚 − 𝑃𝑀𝑘

𝑚𝑢 − 𝑉𝑀𝑗
𝑚

𝑃𝑀𝑘
𝑚 | + 1.0

 (1) 

Where PMk
c and PMk

m represents the total CPU capacity and memory/RAM capacity 

of the target host respectively, while PMk
cu and PMk

mu is the currently used CPU and 

memory/RAM of the target host. VMj
c is the CPU requirement of the VM to be 

migrated and VMj
m is the memory/RAM requirement of the VM to be migrated. The 

denominator indicates how much of the host’s resources including CPU and memory 

are being used [3]. It captures the extent to which resources are utilised after placing 

the VM to the target host. On the other hand, the numerator represents how evenly the 

remaining resources are distributed within that host [3]. A balanced distribution across 

different resources avoids creating bottlenecks and ensures more efficient usage of the 

target host. 
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3.3.1.4 Solution Construction 

The solution construction process is the core mechanism of the ACO-based VM 

allocation and migration algorithm. It involves generating and evaluating potential VM 

migration plan to achieve better resource utilisation and lower power consumption 

within data centre. The process begins by identifying whether hosts are overutilised or 

underutilised based on the pre-defined thresholds. Any hosts with CPU utilisation, µ𝑖 

greater than 0.8 will be categorized as overloaded hosts, while hosts with µ𝑖 less than 

0.2 will be categorized as underloaded hosts. These thresholds help us to identify 

candidates for source and target hosts for VM migration. Once the overloaded and 

underloaded hosts are identified, the algorithm proceeds to construct a set of migration 

candidates. Each candidate is represented as a tuple as shown in equation (2) where PMi 

is the source host, VMj is the VM selected for migration PMk is the target host, and T 

is the set of all migration tuples 

𝑇𝑖𝑗𝑘 = (𝑃𝑀𝑖 , 𝑉𝑀𝑗 , 𝑃𝑀𝑘)  | 𝑃𝑀𝑖 , 𝑃𝑀𝑗  ∈ 𝑃, 𝑉𝑀𝑗  ∈ 𝑉, 𝑥𝑖𝑗 = 1 (2) 

The source host, PMi is chosen from the underloaded hosts and overloaded hosts, with 

the aim to balance the workload (from overloaded hosts) or consolidate VMs onto fewer 

servers (from underloaded hosts). The VMj is the virtual machine currently running on 

the source host, while the targe host PMk is selected from a set of non-overloaded active 

servers. Once the set of migration tuples Tijk is generated, the ACO algorithm begins 

its iterative process to construct a migration plan. In each iteration, artificial ants 

traverse the solution space by probabilistically selecting migration tuples based on two 

factors, pheromone trail (τijk) and heuristic information (ηijk). The probability of 

selecting a tuple Tijk is computed using equation (3). 

𝑝(𝑇𝑖𝑗𝑘) =  
(𝜏𝑖𝑗𝑘)𝛼(𝜂𝑖𝑗𝑘)𝛽

∑ (𝜏𝑖𝑗𝑘)𝛼(𝜂𝑖𝑗𝑘)𝛽
(𝑖,𝑗,𝑘)∈𝑇

  (3) 

Another key mechanism in the solution construction phase is the balance between 

exploration and exploitation. Exploration involves trying new migration options 

regardless of the selection weight, while exploitation involves reinforcing the best-

known options. The key to constructing high-quality VM migration plans is to find a 

balance between exploration and exploitation. To achieve this, an exploitation 

parameter (q0) is set to control whether the ants perform exploration or exploitation. 

Equation (4) below shows the exploration vs exploitation rule: 
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𝑇𝑖𝑗𝑘
∗ =  {

arg 𝑚𝑎𝑥𝑖,𝑗,𝑘𝜖𝑇[(𝜏𝑖𝑗𝑘)𝛼(𝜂𝑖𝑗𝑘)𝛽] 𝑖𝑓 𝑞 ≤ 𝑞0 (𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

𝑆𝑒𝑙𝑒𝑐𝑡 𝑇𝑖𝑗𝑘 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝(𝑇𝑖𝑗𝑘), 𝑖𝑓 𝑞 > 𝑞0 (𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)
 (4)  

A random number q is generated to determine the ant’s behaviour, whereby the ant will 

choose the tuple whose product of pheromone value τ and heuristic information η are 

maximal when the q value is less than or equal to the exploitation parameter, q0 – this 

is the exploitation behaviour. Otherwise, the ant will select tuple Tijk based on the 

probability computed in equation (2) – this is the exploration behaviour. 

Each ant builds a complete migration plan by selecting a sequence of feasible migration 

tuples. These plans are known as the local migration plan, Ma. Once a feasible migration 

tuple is added to the local migration plan Ma, a local pheromone update is immediately 

applied to the pheromone trail associated with that tuple. The construction of the local 

migration plan continues until all migratable VMs have migrated or if there are no more 

feasible migration candidates. Each constructed local migration plan is then evaluated 

using the objective function that evaluates the score of the plan. The best performing 

plan among all ants in an iteration is designated as the iteration-best migration plan, 

denoted as M*
. If this iteration-best plan outperforms the current global-best plan MB, 

it replaces it as the new global best. At the end, the globally best migration plan MB is 

translated into a VM-host mapping to server as the execution plan for the actual 

migration process. The mapping specifies which VM to migrate from its current host 

to a new target host that it is mapped with. This global best migration plan is also used 

in the global pheromone update phase of the algorithm. Figure 3-3 shows a simple 

flowchart of one iteration cycle of the ACO algorithm. 
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Figure 3-3: Flowchart of one iteration cycle of the ACO algorithm. 

  

 

3.3.1.5 Objective Function 

To evaluate the quality of each migration plan generated by artificial ants in the 

algorithm, two objective functions – f1 score and f2 score is used. The equations for 

calculating both scores are adopted from [3]. The f1 score aims to minimising the 

number of active hosts by consolidating VMs onto fewer servers. It counts the number 

of active physical servers required to host all VMs under the given migration plan, Ma. 

A host is considered active if it hosts at least one VM. Equation (5) and (6) show the 

calculation of f1 score: 

𝑦𝑖 = {
1, 𝑖𝑓 ∑ 𝑥𝑖𝑗 ≥ 1

𝑗 ∈ 𝑉

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑖 ∈  𝑃  (5) 

𝑓1(𝑀𝑎) =  ∑ 𝑦𝑖

𝑖 ∈ 𝑃 

 (6) 
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Here yi is a binary indicator that shows whether host I is active. Unlike in [3], where 

the f1 score is assigned a value equal to the total number of physical servers plus one 

for infeasible migration plans (to distinguish them from feasible ones), the algorithm in 

this project takes a different approach by filtering out infeasible tuples from the plan, 

specifically those where the target host cannot accommodate the VM. The migration 

plan with the lower f1 score is considered to perform better and is selected as the best 

local migration plan. The best local migration plan will then be compared to the best 

global migration plan, and it replaces the global one if it performs better. 

In case where there are two migration plans with the same f1 score, the algorithm 

calculates the f2 score to measure how well the resources are utilised across all active 

servers.  A smaller f2 score indicates a more balanced resource utilisation across servers. 

Equation (7) shows the formula for calculating f2 score: 

𝑓2(𝑀𝑎) = ∑ ((
|𝑃𝑀𝑖

𝑐 − 𝑃𝑀𝑖
𝑐𝑢|

𝑃𝑀𝑖
𝑐 +

|𝑃𝑀𝑖
𝑚 − 𝑃𝑀𝑖

𝑚𝑢|

𝑃𝑀𝑖
𝑚 ) 𝑦𝑖)

𝑖 ∈ 𝑃 

  (7) 

Together, the two scores guide the algorithm towards migration plans that have fewer 

active servers and better resource utilisation. 

 

 

3.3.1.6 Pheromone Update Rule 

The pheromone update rule is another critical component of the ACO-based VM 

allocation and migration algorithm. It guides the collective learning behaviour of ants 

by reinforcing good solutions and gradually letting poorer ones fade away. The 

pheromone trail/value of each migration tuple, τijk is updated through two processes: 

local pheromone update and global pheromone update. 

 

Local Pheromone Update 

Each ant updates the pheromone value of the tuples it has selected during the 

construction of its local migration plan. This process helps promote exploration by 

slightly reducing the pheromone intensity of frequently chosen tuples by the last ant, 

which encourages other ants to explore alternative paths. The local pheromone update 

rule is defined in equation (8): 

𝜏𝑖𝑗𝑘 = (1 −  𝜌) . 𝜏𝑖𝑗𝑘 +  𝜌 . 𝜏0 (8) 
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Where ρ represents the pheromone decay parameter and 0 < ρ < 1. Τijk represents the 

pheromone value of the tuple Tijk while τ0
 is the initial pheromone value. 

 

Global Pheromone Update 

After all the ants have constructed their local migration plans in one iteration, the 

algorithm will identify the best-performing plan M* based on the objective functions. 

This plan is then compared with the current global best migration plan (Mb) and 

replaces it if it performs better in overall objectives. The global pheromone update rule 

in this algorithm is a modified version of the one described in [3]. The pheromone 

values for the tuples in the global best plan are updated using the equations (9) and (10) 

defined for global pheromone updates. 

𝜏𝑖𝑗𝑘 = (1 −  𝜌) . 𝜏𝑖𝑗𝑘 +  𝜌 . 𝛥 𝜏𝑖𝑗𝑘 (9)  

𝛥𝜏𝑖𝑗𝑘 =  
1

𝑓1(𝑀𝑏)
+

1

𝑃𝑀𝑘
𝑐 − 𝑃𝑀𝑘

𝑐𝑢

𝑃𝑀𝑘
𝑐 +

𝑃𝑀𝑘
𝑚 − 𝑃𝑀𝑘

𝑚𝑢

𝑃𝑀𝑘
𝑚 + 1

  (10)
 

Δ τijk represents the delta pheromone value. The first component of Δ τijk ensures that 

better solutions with a lower f1 score receive a higher pheromone increment. The f1 

score measures the number of active hosts, so migration plans the involve fewer active 

servers are favoured. On the other hand, the second component of Δ τijk promotes the 

consolidation of VMs onto fewer active servers by rewarding target hosts with less 

remaining CPU and memory capacity. In other words, it encourages the selection of 

target hosts that are more fully utilised. 
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3.3.1.7 Complete ACO-based VM Allocation and Migration Algorithm  

This section presents the complete flow of the proposed ACO-based VM Allocation 

and Migration Algorithm. The following flowchart in Figure 3-4 illustrates the step-by-

step process of the complete algorithm. 

 

Figure 3-4: Complete ACO-based Algorithm Flowchart. 
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3.3.2 Particle Swarm Optimisation (PSO) Algorithm 

 

3.3.2.1 Overview of Particle Swarm Optimisation (PSO) Algorithm 

Particle Swarm Optimisation (PSO) is an optimisation technique inspired by the 

collective behaviour of bird flocking and fish schooling [32]. In the context of this 

algorithm, a particle represents a single VM-to-host mapping, while a swarm consists 

of multiple particles, collectively forming a candidate migration plan. Multiple swarms 

are maintained simultaneously, allowing the algorithm to explore several alternative 

migration strategies in parallel. 

The algorithm begins by identifying VMs that need to be migrated from both 

overloaded and underloaded hosts. Once the set of migratable VMs and available target 

hosts is determined, the PSO process is initialised by generating multiple swarms. 

Within each swarm, the position of a particle represents the selected host for a particular 

VM, while its velocity determines how the mapping changes between iterations. 

During each iteration, the algorithm evaluates the fitness of each swarm based on how 

effectively its overall migration plan balances CPU and RAM utilisation across the 

available hosts. Each swarm maintains a personal best migration plan, which is the most 

efficient configuration it has discovered so far, while the global best migration plan is 

tracked across all swarms. Using these best-known solutions, combined with 

randomised exploration factors, the particles within each swarm update their velocities 

and positions to refine the VM-to-host mappings, progressively improving the quality 

of their migration plans. 

After completing the specified number of iterations, the global best swarm is selected, 

and its corresponding migration plan is applied to produce the final VM allocation 

strategy, optimising resource utilisation and improving overall data centre performance. 

 

3.3.2.2 Initialisation of parameters of PSO algorithm 

In the PSO-based VM allocation and migration algorithm, there are several key 

parameters that influence the behaviour and performance of the solution construction 

process. Table 3-2 shows the main parameters in this algorithm: 
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Parameter

s 

Value Description 

iterations 10 Number of optimisation cycles, represents the 

total number of velocity and position updates 

to refine solutions. 

swarmNo 10 Number of swarms (solutions) 

c1 2.0 Parameter c1 is known as the cognitive 

acceleration coefficient. It controls how much 

a particle is influenced by its own best-known 

position 

c2 2.0 Parameter c2 is known as the social 

acceleration coefficient. It controls how much 

a particle is influenced by the global best-

known position. 

w 0.5 Inertia weight w scales the particle’s current 

velocity to maintain momentum from the 

previous step. 

r1, r2 random.nextDouble() Parameters r1 and r2 are random scalars in [0, 

1], Parameter r1 adds stochasticity to the 

cognitive component to promote exploration, 

while parameter r2 adds stochasticity to the 

social component to diversify movement. 

Table 3-2: Parameters of the PSO-based Algorithm. 

 

 

3.3.2.3 VM allocation and migration rule (PSO algorithm) 

 

A. Swarm Initialisation 

In this PSO-based VM allocation approach, multiple swarms are created. Each swarm 

represents a potential solution space and consists of multiple particles, with the number 

of particles in each swarm determined by the number of migratable VMs. For each 

swarm, every particle corresponds to a VM and has two key attributes: position and 

velocity. The position represents the index of the host to which a particular VM is 
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assigned. On the other hand, the velocity defines the rate and direction of change for 

the particle’s position in subsequent iterations, influencing how the particle explores 

the solution space. 

During initialization, each particle’s position is randomly assigned to a host from the 

available host list, ensuring diversity in the initial solutions. Similarly, each particle’s 

velocity is randomly initialized between 0 and 1, allowing different particles to move 

with varying dynamics. Finally, the global best swarm is initialized to store the best 

overall solution discovered across all swarms during the optimization process. This 

setup ensures a broad and diverse exploration of the search space, improving the 

chances of finding an optimal VM allocation strategy. 

 

B. Fitness Function (PSO algorithm) and Personal/Global Best Update 

In the Particle Swarm Optimization (PSO) algorithm for VM allocation, the fitness 

function evaluates how optimal a given VM-to-host mapping is for each swarm. The 

goal is to minimize resource imbalance and ensure that VM allocations are feasible 

based on host capacities. Additionally, the algorithm updates each swarm’s personal 

best and the overall global best solutions to guide future particle movements. 

The fitness function plays a key role in evaluating how well a given solution maps VMs 

to available hosts. Each VM is assigned to a host based on the particle’s position, which 

represents a candidate solution. For every allocation, the algorithm checks whether the 

selected host has sufficient available resources to accommodate the VM’s 

requirements. If any of the resource constraints (CPU, memory, bandwidth, or storage) 

are violated, the solution is marked as infeasible and is penalized with a very high 

fitness value. For feasible solutions, the fitness value of the particle is calculated based 

on how balanced the workload is across all hosts. This is done by measuring the 

variance in CPU and RAM usage relative to their averages across the data center. A 

lower variance indicates a more balanced and efficient allocation, resulting in a lower 

fitness value, which the algorithm seeks to minimize. Equation (11) below shows the 

fitness function: 

𝐹 =  ∑
𝑃𝑀𝑖

𝑐𝑢 − 𝐴𝑣𝑔𝐶𝑃𝑈

𝑃𝑀𝑖
𝑐𝑢

𝑛

𝑖=1
−

𝑃𝑀𝑖
𝑚𝑢 − 𝐴𝑣𝑔𝑅𝐴𝑀

𝑃𝑀𝑖
𝑚𝑢 (11) 
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Where PMi
cu and PMi

mu is the currently used CPU and memory/RAM of ith host, while 

AvgCPU and AvgRAM represents the average CPU and memory/RAM usage of all 

available hosts.  

Once the fitness value is computed, the PSO algorithm updates two key metrics: the 

personal best and the global best. Each particle, representing a specific VM-to-host 

mapping within a swarm, maintains its own personal best position, which reflects the 

most efficient allocation it has achieved so far. If the particle’s current allocation yields 

a better fitness value than its historical best, it updates its personal best accordingly. At 

the same time, the algorithm evaluates all particles across all swarms to identify the 

global best solution, which represents the most optimal allocation discovered so far.  

 

C. Velocity and Position Update Rule 

In the PSO algorithm, the velocity and position update rule govern how particles (each 

representing a VM-to-host mapping) move through the search space to explore better 

allocation strategies. The equations involved in the update rule are adopted from [32]. 

Each particle’s position X and velocity V at time (t) is represented as shown in equation 

(12) and (13) below: 

𝑋𝑖(𝑡) = 𝑥1, 𝑥2, … … 𝑥𝑛 (12) 

𝑉𝑖(𝑡) = 𝑣1, 𝑣2, … … 𝑣𝑛 (13)  

Each swarm consists of n particles, which is equivalent to the number of migratable 

VMs. Each particle’s personal best position and global best position is represented as 

pBest and gBest. For each swarm, the algorithm iterates through all particles and 

updates their velocities based on three key components: 

1. Inertia Component (w) – This term controls the particle’s tendency to continue 

moving in its current direction. A higher inertia weight encourages exploration of 

the search space, while a lower weight promotes exploitation around known good 

solutions. 

2. Cognitive Component (c1 * r1(t) * (pBest – currentPosition)) – This factor 

represents the particle’s personal learning. It pulls the particle toward its own 

personal best position, guiding it based on its individual experience. 

3. Social Component (c2 * r2(t) * (gBest – currentPosition)) – This factor reflects 

collective learning. It attracts the particle toward the global best position found 
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across all swarms, encouraging collaboration among particles to converge on the 

most promising solutions. 

The updated velocity is calculated as shown in equation (14): 

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡))𝑐1𝑟1(𝑡) + (𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡))𝑐2𝑟2(𝑡) (14) 

Where vi, xi, pBesti and gBesti is the velocity, the current position, the personal best 

position and the global best position of particle I respectively. Parameters r1(t) and r2(t) 

are random numbers in the range [0, 1], while c1, and c2 are acceleration coefficient as 

mentioned in the parameters section. 

After updating the velocity, the particle’s position is adjusted as shown in equation (15): 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (15) 

Through repeated updates over multiple iterations, the PSO algorithm balances 

exploration (searching for new solutions) and exploitation (refining around the best-

known solutions), gradually converging toward an optimal VM-to-host allocation 

strategy. 

 

3.3.2.4 Single Iteration of PSO Algorithm 

In a single iteration of PSO, each swarm is evaluated to determine how effectively it 

balances VM placement across the available hosts. The algorithm first computes the 

fitness of each swarm based on resource utilisation, then updates the personal best 

migration plan for each swarm if its current configuration outperforms previous 

attempts. Next, the global best migration plan is updated by comparing all swarms to 

identify the most optimal solution found so far. Finally, the velocity and position of 

each particle within the swarms are adjusted based on their personal best, the global 

best, and random exploration factors. Figure 3-5 shows the flowchart of one iteration 

cycle of the PSO algorithm. 

 

 

Figure 3-5: Flowchart of one iteration cycle of the PSO algorithm. 
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3.3.2.5 Complete PSO-based VM Allocation and Migration Algorithm 

This section presents the complete flow of the proposed PSO-based VM Allocation and 

Migration Algorithm. The following flowchart in Figure 3-6 illustrates the step-by-step 

process of the complete algorithm. 

 

 

Figure 3-6: Complete PSO-based Algorithm Flowchart. 
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3.3.3 Modified Genetic Algorithm (MGA) 

 
3.3.3.1 Overview of Modified Genetic Algorithm (MGA) 

The Modified Genetic Algorithm (MGA) is inspired by Darwin’s theory of natural 

selection, where the fittest individuals are selected for reproduction to produce 

offspring of the next generation [33]. In the context of Virtual Machine Placement 

(VMP), MGA evolves a population of candidate solutions to find an optimal or near-

optimal mapping of VMs to physical hosts in a data center. Each solution is called a 

chromosome, and it represents a specific VM placement configuration.  

The algorithm operates over multip”e ge’erations, where each generation evolves 

through the core genetic operations: selection, crossover, and mutation. In each 

generation, parent chromosomes are selected based on their fitness scores, which aims 

to minimise the number of overutilised and underutilised. The crossover operation then 

combines two parent solutions to create new offspring by exchanging VM placement 

segments. To maintain diversity and prevent premature convergence, mutation 

introduces small random changes in the offspring’s VM assignments. After generating 

a new population, all individuals are re-evaluated, and the process continues for a 

predefined number of generations. Ultimately, the best chromosome from the final 

generation is decoded into an optimal or near-optimal VM-to-host mapping. 

 

 

3.3.3.2 Initialisation of parameters of MGA 

In the MGA-based VM allocation and migration algorithm, there are several key 

parameters that influence the behaviour and performance of the solution construction 

process. Table 3-3 shows the main parameters in this algorithm: 

 

Parameters Value Description 

iterations/generations 100 Number of generations the MGA algorithm 

runs. 

populationSize 10 Number of chromosomes (solutions) in each 

generations. 

W1 0.5 Weight assigned to the number of underutilized 

hosts in the fitness function. 
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W2 0.5 Weight assigned to the number of overutilized 

hosts in the fitness function. 

ε 0.2 ε controls how strictly hosts are classified as 

over- or underutilized by shrinking the 

utilization thresholds toward the average. 

mutationRate 0.1 Probability of applying mutation to a 

chromosome. 

hasMigratedOnce false Flag to restrict migration to once per simulation. 

Table 3-3: Parameters of the MGA-based Algorithm. 

 

 

3.3.3.3 VM allocation and migration rule (MGA) 

 
A. Identification and Classification of Overutilised and Underutilised Hosts 

Unlike the other two algorithms (ACO and PSO), where overutilisation and 

underutilisation thresholds are set from the beginning, MGA performs dynamic 

identification and classification of overutilized and underutilized hosts using a 

statistical approach based on the Moving Range (MR) technique. First, it computes the 

average utilization and standard deviation from the collected CPU utilisation of each 

physical hosts to capture the central tendency and variability of resource usage. After 

that, the Upper Control Limit (UCL) and Lower Control Limit (LCL) are determined 

using the 3-sigma rule as shown in equation (16) and (17), where μ represents the 

average utilisation and σ represents the standard deviation: 

𝑈𝐶𝐿 = 𝜇 + 3𝜎 (16) 

𝐿𝐶𝐿 = 𝜇 − 3𝜎 (17) 

These limits represent the natural operating bounds for host utilization under normal 

conditions. The limits are further adjusted using an epsilon (ε) factor, which is used to 

increase or reduce the sensitivity to workload changes. The thresholds are calculated as 

shown in equation (18) and (19): 

𝑂𝑣𝑒𝑟𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  (1 −  𝜀) ×  𝑈𝐶𝐿 (18)  

𝑈𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  (1 −  𝜀) ×  𝐿𝐶𝐿 (19)  
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Finally, hosts with utilization above the upper threshold are classified as overutilized, 

while those below the lower threshold are classified as underutilized. Hosts within the 

thresholds are considered fairly loaded. 

B. Encoding and Initialisation of Population 

In the MGA, the VM placement solution is encoded as chromosomes. A chromosome 

consists of multiple genes, each representing the physical host assigned to a specific 

VM, directly mapping all VMs to their allocated hosts. The Initial Population 

Generation Strategy initializes the chromosome population by dividing VMs into two 

groups: those hosted on underutilized or overutilized hosts, and those on normally 

utilized hosts. Those in the second group retain their original placement to preserve 

high-fitness individuals, while the first group undergoes a random search to maintain 

diversity. 

 

C. Fitness Function (MGA algorithm) 

The fitness function in the MGA is designed to reduce energy consumption and improve 

resource utilization. This is achieved using a weighted sum of two key metrics: the 

number of underutilised physical hosts (NUU) and the number of overutilised physical 

hosts (NOU). For each chromosome, the algorithm calculates the total CPU utilisation 

per host based on the VM-to-host mapping. It then compares each host’s utilisation 

against predefined thresholds to count underutilised and over-utilised hosts. The 

objective value is computed as shown in equation (20): 

𝐹𝑜𝑏𝑗(𝑥) = 𝑊1 ∗ 𝑁𝑈𝑈(𝑥) + 𝑊2 ∗ 𝑁𝑂𝑈(𝑥) (20) 

In the equation, W1 and W2 are the weights assigned to NUU and NOU respectively, 

while x represents a chromosome in the population. The final fitness score is inversely 

proportional to the objective value, ensuring that solutions with fewer underutilised and 

overutilised hosts receive higher fitness values. 

 

D. Parent Selection 

Parent selection in the Modified Genetic Algorithm (MGA) is performed using the 

roulette wheel selection method, where the probability of selecting an individual as a 

parent is proportional to its fitness value. This ensures that fitter chromosomes have a 

higher likelihood of being chosen for reproduction, thereby promoting the propagation 

of high-quality solutions in subsequent generations. The selection process calculates 
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the cumulative fitness across the population and chooses a parent when the cumulative 

value surpasses a randomly generated threshold. This probabilistic mechanism 

maintains diversity while guiding the search toward optimal or near-optimal solutions. 

 

E. VM Placement Crossover 

Crossover is performed in MGA to improve VM distribution by combining allocation 

patterns from two parent solutions. The process begins by identifying the high-fitness 

parent (better solution) and the low-fitness parent (worse solution) between the two 

chosen parents. From the low-fitness parent, physical hosts in the underutilized and 

overutilized categories are selected, along with the VMs hosted on them. The selected 

VMs are then migrated to the corresponding hosts of the high-fitness parent, provided 

that the resource constraints are satisfied. This targeted reassignment ensures that 

poorly placed VMs from the low-fitness parent benefit from the better allocation 

decisions in the high-fitness parent, leading to improved offspring quality. 

 

F. VM Placement Mutation 

In Genetic Algorithms (Gas), mutation introduces small random changes to candidate 

solutions to maintain diversity and prevent premature convergence. The mutation 

approach in the MGA targets physical hosts classified as underutilised or overutilised 

and relocates their VMs to the most suitable host in the fair group that meets the VM’s 

resource constraints. During this process, each VM on underutilized or overutilized 

hosts is considered for mutation with a fixed mutation rate. Candidate PMs from the 

fair group are evaluated based on available resources, and the VM is migrated to the 

one with the highest free CPU capacity while ensuring feasibility. This strategy helps 

maintain population diversity while improving VM placement efficiency in subsequent 

generations. 
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3.3.3.4 Single Iteration of MGA 

A single iteration of the Modified Genetic Algorithm (MGA) begins with a population 

of candidate solutions, each represented as a chromosome encoding a VM-to-host 

placement. The process starts by generating an initial population and evaluating the 

fitness of each chromosome according to the defined objective function. Within each 

generation, two parent chromosomes are selected using a selection method that favours 

higher-fitness solutions. These parents undergo the problem-specific crossover 

operation, where VM placements from underutilized and overutilized PMs in the lower-

fitness parent are reassigned to corresponding PMs in the higher-fitness parent. The 

resulting offspring chromosome is then subjected to mutation, which may relocate 

selected VMs from overloaded or underloaded PMs to suitable PMs in the fair group to 

maintain diversity. After all offspring for the new generation are created, their fitness 

values are recalculated, and the population is replaced by this new set of solutions. This 

process is repeated for a predefined number of generations. At the end of the iterations, 

the best-performing chromosome is decoded to produce the final VM-to-PM allocation 

map. Figure 3-7 below shows the flowchart of one iteration cycle of the MGA. 

 

 

Figure 3-7: Flowchart of one iteration cycle of the MGA. 
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3.3.3.5 Complete MGA-based VM Allocation and Migration Algorithm 

This section presents the complete flow of the proposed MGA-based VM Allocation 

and Migration Algorithm. The following flowchart in Figure 3-8 illustrates the step-by-

step process of the complete algorithm. 

 

 

Figure 3-8: Complete MGA-based Algorithm Flowchart. 
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Chapter 4 

System Design 

 

This chapter presents the overall design of the proposed system for energy-efficient 

VM allocation and migration in data centres. It begins with the problem formulation, 

outlining the optimisation objectives and constraints. The main system components are 

then described, followed by a system block diagram to illustrate the data flow and 

interactions. Finally, the chapter provides a visualisation of algorithm behaviour, 

showcasing the ideal behaviour of the implemented bio-inspired algorithms. 

 

4.1  Problem Formulation 

The core problem addressed in this project is the efficient allocation and migration of 

Virtual Machines (VMs) to physical servers within a data centre environment. The goal 

is to optimise resource utilisation while minimising power consumption of physical 

servers. To achieve this, the problem is formulated as an optimisation task where a set 

of VMs, each with specific resource requirements (CPU, memory, storage, bandwidth), 

must be assigned to a set of available physical servers/hosts in a way such that the 

resource utilisation (CPU, memory utilisation) is optimised, and power consumption is 

minimised. 

 

Inputs: 

1. A list of physical servers/hosts P, where P = {PMi | 1 ≤ i ≤ |P|}. Each physical 

server/host is represented as PMi and its CPU, memory, storage and bandwidth 

capacity is represented as PMi
c, PMi

m, PMi
s, and PMi

b respectively. The current 

CPU, memory, storage and bandwidth usage of PMi is represented as PMi
cu, 

PMi
mu, PMi

su, and PMi
bu. 

2. A list of Virtual Machines V, where V = {VMj | 1 ≤ j ≤ |V|}. Each VM is 

represented as VMi and its CPU, memory, storage and bandwidth capacity is 

represented as VMi
c, VMi

m, VMi
s, and VMi

b respectively. 

3. A list of Cloudlets C, where C = {Ct | 1 ≤ t ≤ |C|}. 

 



CHAPTER 4 

54 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Objectives: 

The main objective is to determine an optimal virtual machine (VM) placement plan 

where the power consumption across all physical servers are minimised. Thus, a power 

model to measure power consumption is constructed. The total power consumption of 

all physical servers is defined in equation (21): 

∑ 𝐸(𝑃𝑀𝑖)

|𝑃|

𝑖=1

     (21) 

 

where 𝐸(𝑃𝑀𝑖) is the power consumed by PMi as shown by the power model in equation 

(22). 

𝐸(𝑃𝑀𝑖) = 𝑘𝑖 ∗ 𝑒𝑖
𝑚𝑎𝑥 + (1 − 𝑘𝑖) ∗  𝑒𝑖

𝑚𝑎𝑥 ∗ µ𝑖       (22) 

where 𝑒𝑖
𝑚𝑎𝑥 is the maximum power consumed by PMi when the server’s utilisation is 

maximum; ki is the fraction of power consumption when the server is in idle or static 

mode, whereas µ𝑖  is the CPU utilisation of PMi. The CPU utilisation of PMi, µ𝑖  is 

defined as shown in equation (23): 

µ𝑖 =  
𝑃𝑀𝑖

𝑐𝑢

𝑃𝑀𝑖
𝑐 , 0 ≤  µ𝑖  ≤ 1 (23)  

An overutilisation and underutilisation threshold is set to identify physical servers that 

are either overloaded/overutilised or underloaded/underutilised. A host is considered 

overutilised if its CPU utilisation is over 80%, while a host is considered underutilised 

if its CPU utilisation falls below 20% as shown in equation (24). 

𝑃𝑀𝑖  𝑖𝑠 𝑜𝑣𝑒𝑟𝑢𝑡𝑖𝑙𝑖𝑠𝑒𝑑 𝑖𝑓 µ𝑖  > 0.8 𝑎𝑛𝑑 𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙𝑖𝑠𝑒𝑑 𝑖𝑓 µ𝑖 < 0.2 (24) 

In this project, the average power consumption, CPU utilisation and RAM utilisation is 

used as key metrics to measure the performance of the proposed method. They are 

computed using equation (25), (26) and (27). 

𝐴𝑣𝑔𝑃𝑜𝑤𝑒𝑟 =
1

|𝑃|
∑ 𝐸(𝑃𝑀𝑖)

|𝑃|

𝑖=1

 (25) 

𝐴𝑣𝑔𝐶𝑃𝑈 =  
1

|𝑃|
∑ µ𝑖

|𝑃|

𝑖=1

 (26) 

𝐴𝑣𝑔𝑅𝐴𝑀 =
1

|𝑃|
∑

𝑃𝑀𝑖
𝑚𝑢

𝑃𝑀𝑖
𝑚

|𝑃|

𝑖=1

  (27) 
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Constraints: 

VMj can only be placed in PMi if and only if PMi satisfies the resource requirements 

(CPU, memory, storage and bandwidth) of VMj as shown in equation (29), (30), (31) 

and (32). The total usage, including the assigned VM, must not exceed the PM’s 

resource capacity. Additionally, each VM can only be placed in one and only one 

physical server (PM) as shown in equation (28). 

𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑉𝑀𝑗  𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝑃𝑀𝑖

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ∀𝑖 ∈  𝑃 𝑎𝑛𝑑 ∀𝑗 ∈  𝑉 (28) 

∑ 𝑉𝑀𝑗
𝑐

|𝑉|

𝑗=1

. 𝑥𝑖𝑗 + 𝑃𝑀𝑖
𝑐𝑢 ≤ 𝑃𝑀𝑖

𝑐  (29) 

∑ 𝑉𝑀𝑗
𝑚

|𝑉|

𝑗=1

. 𝑥𝑖𝑗 + 𝑃𝑀𝑖
𝑚𝑢 ≤ 𝑃𝑀𝑖

𝑚 (30) 

∑ 𝑉𝑀𝑗
𝑠

|𝑉|

𝑗=1

. 𝑥𝑖𝑗 + 𝑃𝑀𝑖
𝑠𝑢 ≤ 𝑃𝑀𝑖

𝑠  (31) 

∑ 𝑉𝑀𝑗
𝑏

|𝑉|

𝑗=1

. 𝑥𝑖𝑗 + 𝑃𝑀𝑖
𝑏𝑢 ≤ 𝑃𝑀𝑖

𝑏 (32) 

 

 

4.2  Main System Components 

This project simulates a data centre environment to evaluate the performance of the 

proposed VM allocation and migration algorithms based on ACO, PSO and MGA. The 

system consists of the following core components: 

 

1. Data Centre 

The data centre is the central component of the simulation environment and represents 

the physical infrastructure in a data centre environment. It is responsible for hosting 

multiple physical servers (hosts) and managing the allocation and execution of VMs 

and cloudlets (user workloads). In this project, CloudSim Plus provides a built-in 

Datacenter class, which is used to model the data centre. This class supports the 

configuration of the data centre, including the lists of hosts and the VM allocation 

policy that defines how VMs are distributed across the available hosts.  
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2. Data Centre Broker 

The data centre broker act as the intermediary between users and the data centre/cloud 

infrastructure. Its main role is to manage the submission and scheduling of VMs and 

cloudlets on behalf of the users. In this project, the responsibility of broker is to receive 

a list of VMs and cloudlets and decide where to place them based on the allocation 

policy. The DataCenterBroker class in CloudSim Plus is used to represent this 

component. 

 

3. Hosts (Physical Servers) 

In CloudSim Plus, hosts represent the physical servers in a data centre. These hosts are 

responsible for providing VMs with necessary computational resources such as CPU, 

memory, bandwidth and storage. Each host can be configured using the Host class in 

CloudSim Plus. Possible configurations include the number of CPU cores, the Million 

instructions per second (MIPS) capacity of each core, memory (RAM) capacity, storage 

capacity and network bandwidth. The power model of the hosts can also be configured 

by extending the PowerModelHostAbstract class. Multiple VMs can run concurrently 

on a single host if the VmScheduler attribute of the host is set to 

VmSchedulerTimeShared(). The scheduler allows for time-sharing where each VM is 

allocated a slice of the host’s CPU resources. 

 

4. Virtual Machines (VMs) 

Virtual Machines (VMs) represent the logical abstraction of computing resources 

within a physical host. A VM provides a platform for running user workloads, such as 

cloudlets (tasks or jobs). In CloudSim Plus, VMs are configured using the Vm class 

and can be configured with specific attributes such as number of CPU cores, MIPS 

capacity per core, RAM capacity, storage capacity and network bandwidth. After they 

are configured, the list of VMs is submitted to the data centre broker to be allocated to 

physical hosts. A VM can only be allocated to a host if the host has sufficient resources 

to host the VM. Like the VmScheduler attribute of hosts, if the CloudletScheduler 

attribute of the VM is set to CloudletSchedulerTimeShared(), multiple cloudlets can 

run concurrently on a single VM. 
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5. Cloudlets (Tasks/User Workloads) 

A cloudlet in CloudSim Plus represents a unit of workload or task that is submitted by 

a user to be executed on a VM. Like a real-world application or computational job, 

cloudlets consume resources such as CPU time, memory, and bandwidth. In this 

project, cloudlets are used to simulate user jobs running on VMs hosted in a data centre. 

CloudSim Plus provides a Cloudlet class which allows users to configure cloudlet 

attributes such as cloudlet length in MIPS, number of Processing Elements which is the 

number of CPU cores required to execute the task, and input and output sizes in bytes. 

Cloudlets are submitted to the broker and assigned to VMs by the broker after they are 

configured. 

 

6. VM Allocation Policy 

The VM allocation policy in CloudSim Plus defines the strategy used to allocate and 

migrate VMs to physical hosts within the data centre. In this project, three custom VM 

allocation and migration policy is implemented by extending CloudSim Plus’s 

VmAllocationPolicyMigrationAbstract class. 

 

4.3  System Block Diagram 

The block diagram in Figure 4-1 illustrates the architecture of a cloud data centre 

system configured in CloudSim Plus. The system includes multiple layers, including 

user interaction, VM management and physical infrastructure. 

 

Figure 4-1: Block Diagram of System Configuration in CloudSim Plus. 
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1. User layer 

• Users interact with the cloud data centre by submitting cloudlets (tasks) 

• The Data Centre Broker acts as the intermediary, managing user requests and 

assigning cloudlets to appropriate VMs. 

2. VM management 

• The system employs a bio-inspired algorithm (ACO, PSO or MGA) to optimise 

VM allocation and migration. The algorithm receives hosts’ and VMs’ 

information such as CPU utilisation, memory utilisation, bandwidth and storage 

requirements, and computes an optimal migration plan to reduce power 

consumption. 

3. Physical infrastructure 

• The physical infrastructure consists of a data centre that consists of multiple 

hosts/physical servers. Each server can host multiple VMs and each VMs can 

execute multiple cloudlets/tasks. 

 

 

4.4  Visualisation of algorithm behaviour  

Figures 4-2 and 4-3 illustrate the VM placement and behaviour of the ACO-, PSO- and 

MGA-based VM allocation and migration algorithms before and after the migration 

process. Although each algorithm follows a different optimisation strategy, all three 

share the same goal: to balance resource utilisation, reduce number of active hosts and 

reduce overall data center power consumption. 

 

 

Figure 4-2: VM placement before migration process. 
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• Before migration: 

The data centre consists of five hosts with the following utilisation levels: Host 1 (85%), 

Host 2 (40%), Host 3 (15%), Host 4 (20%), Host 5 (15%). Here, Host 1 is considered 

overloaded (utilisation > 80%), while Host 3 and Host 4 are considered underloaded 

(utilisation < 20%). These source hosts are candidates for VM migration to improve 

overall resource balance and energy efficiency. 

 

 

Figure 4-3: VM placement after migration process. 

• After migration: 

After applying the ACO-based VM allocation and migration algorithm, the new 

utilisation values are: Host 1 (60%), Host 2 (65%), Host 3 (0%), Host 4 (50%), Host 5 

(0%). The algorithm migrated VMs from the overloaded Host 1 and underloaded Hosts 

3 and 5 to more suitable target hosts (e.g., Host 2), which had moderate utilisation and 

could absorb additional workloads without becoming overloaded. 
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Chapter 5 

Experiment/Simulation 

 

This chapter discusses the experimental setup and simulation process used to evaluate 

the performance of the proposed bio-inspired VM allocation and migration algorithms. 

It begins with the initial setup and configuration, followed by the verification plan, 

detailing server specifications, VM configurations, and cloudlet workloads. Two main 

test cases are considered: a homogeneous data centre setup and a heterogeneous data 

centre setup, each designed to assess the algorithms under different infrastructure 

conditions and workload scenarios. Finally, the chapter highlights implementation 

issues and challenges encountered during the simulation process. 

 

5.1  Initial Setup and Configuration 

The preliminary work of this project begins with the initial setup and configuration of 

the development environment. The project uses Java as the primary programming 

language and is built using Apache Maven, a widely used project management and 

build automation tool for Java-based projects. Eclipse IDE was selected as the 

development platform as it supports Maven integration. The initial setup involves 

creating a Maven-based project in Eclipse and installing the necessary dependencies 

through the pom.xml file. This setup ensures that the project structure follows standard 

conventions, and all required libraries are automatically managed. 

• Creating a Maven Project in Eclipse: Create a Maven project in Eclipse, 

specifying details like Group Id, Artifact Id, and Version. 

• Libraries and Dependencies Required for Project: This project utilises several 

essential libraries and dependencies and manages them through Maven. The 

dependencies are CloudSim Plus 8.5.5, org.json version 20220320, and SLF4J 

(Simple Logging Facade for Java) version 2.0.17. These dependencies are declared 

in the pom.xml file as shown in Figure 5-1. 
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Figure 5-1: Dependencies of the Project. 

 

5.2  Verification Plan 

A comprehensive verification plan is established to ensure that proposed VM allocation 

and migration algorithm functions correctly under different conditions and 

configurations. The test plan is designed to evaluate the algorithm’s behaviour with 

different server specifications, VM types and cloudlet workloads. The primary 

objective is to verify the effectiveness of the algorithm in terms of power consumption 

and resource utilisation across varying scenarios. 

 

5.2.1 Server Specification 

Three types of servers are simulated in the CloudSim Plus framework to represent a 

realistic data centre environment. Each server model is based on currently popular 

server models in the data centre space and has different specifications in terms of CPU 

cores, Million instructions per second (MIPS), memory and power characteristics. 

Table 5-1 below shows the server specifications. 

 

Server Model Dell PowerEdge R740 HPE ProLiant DL380 

Gen10 

Supermicro SuperServer 

1029U-TR4 

Processor Xeon Gold 6248R – 2 x 

24 cores (48 total) 

Intel Xeon Platinum 

8280M – 2 x 28 cores 

(56 total) 

Xeon Silver 4214R – 2 x 

12 cores (24 total) 
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RAM 256 GB 256 GB 256 GB 

Storage 15TB SSD 15TB SSD 20TB SSD 

Bandwidth 100 Gbps 100 Gbps 100 Gbps 

MIPS/Core ~3000 MIPS/Core 

(3.0GHz) 

~2700 MIPS/Core 

(2.7GHz) 

~2400 MIPS/Core 

(2.4GHz) 

Power 

Characteristics 

• Static Power: 300 W 

• Max Power: 600 W 

• Startup Power: 400 

W 

• Shutdown Power: 50 

W 

 

• Static Power: 350 W 

• Max Power: 700 W 

• Startup Power: 450 

W 

• Shutdown Power: 50 

W 

 

• Static Power: 200 W 

• Max Power: 400 W 

• Startup Power: 300 

W 

• Shutdown Power: 50 

W 

Table 5-1: Server Specifications. 

 

5.2.2 Virtual Machine Specifications and Cloudlet Configuration 

To evaluate the performance of the proposed VM allocation and migration algorithms, 

three distinct types of VMs, each representing different workload intensities are 

configured. They are categorized into three VM types – LIGHT, MEDIUM and HIGH 

and they are designed with varying computational and memory demands. The user 

workloads in CloudSim Plus are represented as cloudlets and each cloudlet has its own 

characteristics such as instruction length (in MIPS), processing elements (number of 

cores), input file size and output file size. In this simulation, cloudlets are also 

categorized into three types – LIGHT, MEDIUM and HIGH to represent its resource 

demands. Table 5-2 shows the VM specifications and cloudlet requirements. 

 

Component Attribute LIGHT MEDIUM HIGH 

VM 

Number of Processing Elements 

(Cores) 
1 2 4 

MIPS/Core 1000 2000 2400 

RAM (GB) 2 4 8 

Storage (GB) 50 100 200 

Bandwidth (Mbps) 500 1000 2000 
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Cloudlet 

Instruction Length (MIPS) 100000 500000 1000000 

Number of Processing Elements 

(Cores) 
1 2 4 

Input File Size (Bytes) 10000 25000 50000 

Output File Size (Bytes) 2500 5000 10000 

Table 5-2: Virtual Machine Specifications and Cloudlet Requirements. 

 

5.2.3 Test Case 1: Homogeneous Data Centre Setup 

To evaluate the performance and behaviour of the proposed VM allocation and 

migration algorithms, a homogeneous data centre configuration is used. This setup 

ensures that all physical servers/hosts are of the same type, with the same specifications 

to provide a controlled environment for testing algorithm behaviour under consistent 

hardware conditions. To assess the system under varying workload intensities, four 

separate scenarios are defined, each introducing a combination of LIGHT, MEDIUM, 

and HIGH cloudlets and corresponding VMs. The number of VMs and cloudlets 

increases progressively across scenarios to simulate different load levels. This test case 

will be tested on the data centre’s baseline VM allocation policy and the three proposed 

VM allocation and migration algorithms. Table 5-3 shows the parameters and details 

of Test Case 1. 

 

Parameters Details 

Data Centre Type Homogeneous 

Number of physical hosts 20 (To simulate a data centre pod) 

Host Model Dell PowerEdge R740 

Host Specifications (Refer to Server Specifications section) 

Number of VMs 

 

• Scenario 1: 100 LIGHT VMs, 50 

MEDIUM VMs, 10 HIGH VMs 

• Scenario 2: 250 LIGHT VMs, 100 

MEDIUM VMs, 30 HIGH VMs 

• Scenario 3: 500 LIGHT VMs, 200 

MEDIUM VMs, 60 HIGH VMs 

• Scenario 4: 700 LIGHT VMs, 250 

MEDIUM VMs, 60 HIGH VMs 

VM Specifications (Refer to VM Specifications section) 
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Number of Cloudlets • Scenario 1: 100 LIGHT Cloudlets, 100 

MEDIUM Cloudlets, 100 HIGH 

Cloudlets 

• Scenario 2: 250 LIGHT Cloudlets, 250 

MEDIUM Cloudlets, 250 HIGH 

Cloudlets 

• Scenario 3: 500 LIGHT Cloudlets, 500 

MEDIUM Cloudlets, 500 HIGH 

Cloudlets 

• Scenario 4: 800 LIGHT Cloudlets, 600 

MEDIUM Cloudlets, 600 HIGH 

Cloudlets 

Cloudlet Specifications (Refer to Cloudlet Specifications section) 

Evaluation Algorithms 

 

• Baseline VM Allocation Policy 

• Proposed ACO-based Policy 

• Proposed PSO-based Policy 

• Proposed MGA-based policy 

Table 5-3: Homogeneous Data Centre Test Case. 

 

5.2.4 Test Case 2: Heterogeneous Data Centre Setup 

To evaluate the performance and behaviour of the proposed VM allocation and 

migration algorithms, a heterogeneous data centre configuration is used. In this setup, 

physical servers are of different models and specifications, including Dell PowerEdge 

R740, HPE ProLiant DL380 Gen10, and Supermicro SuperServer 1029U-TR4. This 

reflects a more realistic data centre environment where hardware diversity exists. The 

same four scenarios in Test Case 1 are reused in Test Case 2. Similarly, this test case 

will be tested on the data centre’s baseline VM allocation policy and the three proposed 

VM allocation and migration algorithms. Table 5-4 shows the parameters and details 

of Test Case 2. 

 

Parameters Details 

Data Centre Type Heterogeneous 

Number of physical hosts 20 (To simulate a data centre pod) 

Host Model • Dell PowerEdge R740 (8 hosts) 
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• HPE ProLiant DL380 Gen10 (6 

hosts) 

• Supermicro SuperServer 1029U-

TR4 (6 hosts) 

 

Host Specifications (Refer to Server Specifications section) 

Number of VMs (per scenario) 

 

• Scenario 1: 100 LIGHT VMs, 50 

MEDIUM VMs, 10 HIGH VMs 

• Scenario 2: 250 LIGHT VMs, 100 

MEDIUM VMs, 30 HIGH VMs 

• Scenario 3: 500 LIGHT VMs, 200 

MEDIUM VMs, 60 HIGH VMs 

• Scenario 4: 700 LIGHT VMs, 250 

MEDIUM VMs, 60 HIGH VMs 

VM Specifications (Refer to VM Specifications section) 

Number of Cloudlets • Scenario 1: 100 LIGHT Cloudlets, 100 

MEDIUM Cloudlets, 100 HIGH 

Cloudlets 

• Scenario 2: 250 LIGHT Cloudlets, 250 

MEDIUM Cloudlets, 250 HIGH 

Cloudlets 

• Scenario 3: 500 LIGHT Cloudlets, 500 

MEDIUM Cloudlets, 500 HIGH 

Cloudlets 

• Scenario 4: 800 LIGHT Cloudlets, 600 

MEDIUM Cloudlets, 600 HIGH 

Cloudlets 

Cloudlet Specifications (Refer to Cloudlet Specifications section) 

Evaluation Algorithms 

 

• Baseline VM Allocation Policy 

• Proposed ACO-based Policy 

• Proposed PSO-based Policy 

• Proposed MGA-based policy 

Table 5-4: Heterogeneous Data Centre Test Case. 
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5.3  Implementation issues and Challenges 

Implementing ACO, PSO, and MGA-based VM allocation and migration algorithms in 

a simulated data centre environment presents several implementation issues and 

challenges. One of the primary challenges is the simulation complexity. Simulating a 

realistic data centre environment using CloudSim Plus requires a deep understanding 

of its architecture, classes, and event-driven simulation model. Misconfigurations in 

essential components such as hosts, VMs, or cloudlets can lead to inaccurate results, 

unexpected behaviour, or even simulation failures. Since the three algorithms are tested 

under both homogeneous and heterogeneous data centre environments, achieving 

accurate modelling becomes even more demanding. 

Another significant challenge lies in the validation and benchmarking process. 

Evaluating the effectiveness of the ACO, PSO, and MGA algorithms requires extensive 

testing and comparison against the baseline VM allocation policy provided by 

CloudSim Plus. To ensure fair and meaningful comparisons, all simulations must be 

conducted under identical conditions with consistent workloads, VM configurations, 

and server setups. Designing, running, and analysing these benchmarks is a time-

consuming and complex process. 

Additionally, the abundance of migration possibilities poses a critical challenge. All 

three algorithms need to evaluate numerous potential migration plans by considering 

every possible combination of source hosts, VMs, and target hosts. As the number of 

VMs and hosts increases, the number of possible solutions grows exponentially, which 

significantly impacts execution time and scalability. ACO relies on pheromone trails to 

guide optimal migration, PSO continuously adjusts positions based on personal and 

global bests, and MGA explores multiple crossover-based combinations. Despite their 

unique approaches, all three algorithms face computational challenges when handling 

large-scale data centre environments.
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Chapter 6 

System Evaluation and Discussion 

 

This chapter presents the evaluation and discussion of the proposed bio-inspired VM 

allocation and migration algorithms. It begins by defining the system performance 

metrics used for assessment and then analyses the simulation results across both 

homogeneous and heterogeneous data centre setups under various workload scenarios. 

Detailed comparisons are made for CPU utilisation, RAM utilisation, average power 

consumption, and total power consumption across different scenarios. The chapter 

further summarises the energy savings achieved by the ACO, PSO, and MGA policies 

compared to the baseline. Finally, it highlights the limitations of the simulation, 

evaluates the achievement of the project objectives, and discusses the novel 

contributions introduced by this work. 

 

6.1  System Performance Definition 

System performance in this project is evaluated based on key metrics such as resource 

utilisation and power consumption in data centre. 

 

• Resource Utilisation: 

Resource utilisation measures how efficiently resources such as CPU, memory and 

bandwidth are used in the physical servers, also known as hosts. These metrics are 

important in data centre/cloud computing environments as they directly impact the 

performance and energy consumption of data centres. In this project, resource 

utilisation is measured using the built-in features of the CloudSim Plus framework. The 

framework provides the utilisation statistics of the CPU usage and memory allocation 

of each host and virtual machine in the data centre. This enables continuous monitoring 

and assessment of how well the proposed algorithm in improving resource utilisation 

across physical servers to ensure better energy efficiency and performance. 

 

• Power consumption: 

Power consumption is a key metric for this project as the project’s main objective is to 

reduce power consumption and improve energy efficiency in data centres. In this 
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project, a linear power model is developed to measure the power consumption of each 

physical servers/hosts in the data centre simulation environment. The study in [3] 

pointed out that power consumption of servers can be assumed to increase linearly with 

its CPU utilization while an idle but powered on server can consume around 50-70% 

of the energy used when operating at maximum capacity. Thus, a power model based 

on the above information is implemented within the CloudSim Plus framework to 

estimate the mean power consumption by each host based on its mean CPU utilisation. 

This analysis helps determine the feasibility of the proposed algorithm in reducing the 

overall power consumption in data centres. 

 

6.2  Simulation results 

To evaluate the effectiveness of the proposed metaheuristic-based VM allocation and 

migration algorithms: Ant Colony Optimisation (ACO), Particle Swarm Optimisation 

(PSO), and Modified Genetic Algorithm (MGA), a series of simulations were 

conducted across two test cases: a homogeneous data centre configuration and a 

heterogeneous data centre configuration. For each test case, four scenarios were defined 

with progressively increasing numbers of VMs and cloudlets to simulate varying 

workload intensities (as detailed in Section 5.2.3: Test Case 1 and Section 5.2.4: Test 

Case 2). In each scenario, simulations utilised 20 physical servers and were repeated 30 

times to ensure statistical reliability. The performance of the three algorithms was 

compared against the baseline data centre VM allocation policy across key evaluation 

metrics, including: Average CPU utilisation and Average RAM utilisation of all active 

servers, Average power consumption of all active servers and Total power consumption 

of all servers. The results presented in this section provide insights into how each 

algorithm performs under different workload intensities. 

 

 

6.2.1 Simulation Results for Homogeneous Data Centre Test Case 

This section presents the simulation results for the homogeneous data centre test case, 

where all physical servers have identical hardware configurations. The performance of 

the proposed ACO, PSO, and MGA-based VM allocation and migration policies is 

compared against the baseline VM allocation policy across four workload scenarios. 

Key metrics such as average CPU and RAM utilisation, average power consumption 
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and total power consumption are analysed to evaluate the effectiveness of each 

algorithm in optimising resource usage and improving energy efficiency. 

 

 

6.2.1.1 Average CPU utilisation of all active servers across different scenarios 

The simulation results for average CPU utilisation across all active servers show that 

two bio-inspired policies (PSO and MGA) consistently outperform the baseline VM 

allocation policy in all scenarios. The baseline policy records the highest CPU 

utilisation, reaching 37.85% in Scenario 4, indicating inefficient resource distribution 

under heavy workloads. Among the proposed algorithms, MGA achieves the lowest 

CPU utilisation across most scenarios, closely followed by PSO. The ACO-based 

policy shows comparatively higher utilisation in lighter workload scenarios because it 

consolidates VMs onto fewer active servers, allowing underutilised hosts to shut down 

and thereby saving power. Despite this, ACO still demonstrates significant 

improvements over the baseline in heavier workload scenarios. Overall, all three 

algorithms enhance resource efficiency, with MGA and PSO achieving the most 

substantial reductions in CPU utilisation. Table 6-1 and Figure 6-1 show the Average 

CPU Utilisation (%) of all active servers across different scenarios in Homogeneous 

Data Centre Setup. 

 

Policy Scenario 
Average CPU Utilisation (%) of all active servers 

± stdev 

Baseline VM 

allocation policy 

Scenario 1 6.88 

Scenario 2 16.29 

Scenario 3 32.57 

Scenario 4 37.85 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 20.98 ± 7.63 

Scenario 2 17.80 ± 6.55 

Scenario 3 10.95 ± 3.90 

Scenario 4 9.36 ± 2.93 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 3.16 ± 2.68 

Scenario 2 4.76 ± 1.94 

Scenario 3 9.44 ± 2.97 

Scenario 4 7.53 ± 2.78 
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MGA-based VM 

allocation and 

migration policy 

Scenario 1 2.26 ± 0.17 

Scenario 2 10.88 ± 1.71E-15 

Scenario 3 7.69 ± 4.38E-15 

Scenario 4 6.32 ± 4.10E-15 

Table 6-1: Average CPU Utilisation (%) of all active servers across different 

scenarios in Homogeneous Data Centre Setup. 

 

 

Figure 6-1: Average CPU Utilisation (%) of all active servers across different 

scenarios in Homogeneous Data Centre Setup. 

 

6.2.1.2 Average RAM utilisation of all active servers across different scenarios 

The results for average RAM utilisation across all active servers indicate that the three 

proposed algorithms (ACO, PSO, and MGA) exhibit distinct behaviours compared to 

the baseline policy. The baseline VM allocation policy shows steadily increasing RAM 

usage, reaching 55.56% in Scenario 4, suggesting less efficient resource balancing 

under heavy workloads. The ACO-based policy maintains relatively high but stable 

RAM utilisation across all scenarios (53–56%), primarily because it consolidates VMs 

onto fewer active servers to shut down underutilised hosts and save power. Similarly, 

PSO achieves higher RAM usage under lighter workloads due to VM consolidation but 

approaches the baseline levels in higher workload scenarios. MGA shows the lowest 

utilisation in Scenario 1 but records the highest RAM usage in Scenarios 2–4, indicating 
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that it prioritises VM consolidation and CPU optimisation over memory efficiency. 

Overall, while all three algorithms outperform the baseline in CPU optimisation, ACO 

leverages high RAM utilisation for energy savings, PSO balances both CPU and RAM, 

and MGA focuses primarily on CPU efficiency. Table 6-2 and Figure 6-2 show the 

Average RAM Utilisation (%) of all active servers across different scenarios in 

Homogeneous Data Centre Setup. 

 

Policy Scenario 
Average RAM Utilisation (%) of all active 

servers ± stdev 

Baseline VM 

allocation policy 

Scenario 1 9.26 

Scenario 2 22.00 

Scenario 3 43.99 

Scenario 4 55.56 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 55.53 ± 1.12 

Scenario 2 53.82 ± 2.84 

Scenario 3 53.41 ± 1.22 

Scenario 4 55.81 ± 1.09 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 13.68 ± 2.65 

Scenario 2 22.88 ± 1.60 

Scenario 3 41.02 ± 0.76 

Scenario 4 54.21 ± 0.35 

MGA-based VM 

allocation and 

migration policy 

Scenario 1 12.33 ± 0.82 

Scenario 2 62.88 ± 2.46E-14 

Scenario 3 62.96 ± 3.67E-14 

Scenario 4 65.51 ± 1.69E-14 

Table 6-2: Average RAM Utilisation (%) of all active servers across different 

scenarios in Homogeneous Data Centre Setup. 
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Figure 6-2: Average RAM Utilisation (%) of all active servers across different 

scenarios in Homogeneous Data Centre Setup. 

 

6.2.1.3 Average power consumption of all active servers across different 

scenarios 

The average power consumption results reflect the direct relationship between CPU 

utilisation and server energy usage, where higher CPU utilisation translates to higher 

dynamic power consumption. The baseline policy records the highest overall power 

usage, peaking at 413.55 W in Scenario 4 due to inefficient VM distribution and a larger 

number of active servers. The ACO-based policy shows a clear downward trend in 

power consumption across scenarios (From 362.95 W in Scenario 1 to 328.09 W in 

Scenario 4), driven by its strategy of consolidating VMs and shutting down 

underutilised hosts. PSO consistently maintains lower power usage than both the 

baseline and ACO, achieving balanced CPU loads while keeping energy consumption 

stable. MGA records the lowest power usage in light workloads (306.79 W in Scenario 

1) and remains energy-efficient in heavier scenarios. Table 6-3 and Figure 6-3 below 

demonstrate the Average Power Consumption (Watts) of all active servers across 

different scenarios in Homogeneous Data Centre Setup. 
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Policy Scenario 
Average Power Consumption (Watts) of all 

active servers ± stdev 

Baseline VM 

allocation policy 

Scenario 1 320.63 

Scenario 2 348.86 

Scenario 3 397.71 

Scenario 4 413.55 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 362.95 ± 22.90 

Scenario 2 353.41 ± 19.66 

Scenario 3 332.85 ± 11.71 

Scenario 4 328.09 ± 8.80 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 309.49 ± 8.03 

Scenario 2 314.27 ± 5.82 

Scenario 3 328.33 ± 8.90 

Scenario 4 322.58 ± 8.34 

MGA-based VM 

allocation and 

migration policy 

Scenario 1 306.79 ± 0.52 

Scenario 2 332.65 ± 6.76E-14 

Scenario 3 323.08 ± 1.49E-14 

Scenario 4 318.96 ± 1.05E-13 

Table 6-3: Average Power Consumption (Watts) of all active servers across different 

scenarios in Homogeneous Data Centre Setup. 

 

 

Figure 6-3: Average Power Consumption (Watts) of all active servers across different 

scenarios in Homogeneous Data Centre Setup. 
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6.2.1.4 Total power consumption of all servers across different scenarios 

The total power consumption results highlight the overall energy efficiency of each 

policy across increasing workload scenarios. The baseline policy consistently records 

the highest total power consumption, rising from 788.82 MW in Scenario 1 to 1017.43 

MW in Scenario 4, due to inefficient VM allocation and limited host consolidation. The 

ACO-based policy demonstrates the largest energy savings, especially under light to 

moderate workloads, starting at just 166.32 MW in Scenario 1 and maintaining lower 

consumption in Scenarios 2 (346.99 MW) and 3 (620.71 MW). However, in Scenario 

4, its consumption rises sharply (851.22 MW) as more servers remain active to handle 

the heavier workload. PSO shows a balanced trend, consuming moderately across all 

scenarios by maintaining stable CPU utilisation and avoiding excessive server 

activation. MGA, meanwhile, performs inconsistently: it consumes high power in 

Scenario 1 due to less aggressive host consolidation, but achieves significant energy 

savings in Scenarios 2 and 3 (350.71 MW and 680.42 MW), before increasing again in 

Scenario 4 (815.50 MW). Table 6-4 and Figure 6-4 demonstrate the Total Power 

Consumption (MegaWatts) of all servers across different scenarios in Homogeneous 

Data Centre Setup. 

 

Policy Scenario Total Power Consumption (MegaWatts) 

Baseline VM 

allocation policy 

Scenario 1 788.82 

Scenario 2 858.28 

Scenario 3 978.47 

Scenario 4 1017.43 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 166.32 

Scenario 2 346.99 

Scenario 3 620.71 

Scenario 4 851.22 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 410.68 

Scenario 2 688.05 

Scenario 3 781.77 

Scenario 4 790.92 

Scenario 1 764.44 

Scenario 2 350.71 
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MGA-based VM 

allocation and 

migration policy 

Scenario 3 680.42 

Scenario 4 
815.50 

Table 6-4: Total Power Consumption (MegaWatts) of all servers across different 

scenarios in Homogeneous Data Centre Setup. 

 

 

Figure 6-4: Total Power Consumption (MegaWatts) of all servers across different 

scenarios in Homogeneous Data Centre Setup. 

 

6.2.2 Simulation Results for Heterogeneous Data Centre Test Case 

This section presents the simulation results for the heterogeneous data centre test case, 

where physical servers have different hardware configurations, including varying 

processing capacities, memory sizes, and power characteristics. The performance of the 

proposed ACO, PSO, and MGA-based VM allocation and migration policies is 

compared against the baseline VM allocation policy across four workload scenarios. 

Key performance metrics, including average CPU and RAM utilisation, average power 

consumption and total power consumption, are analysed to evaluate the effectiveness 

of each algorithm in optimising resource allocation, balancing workloads across diverse 

server types, and improving overall energy efficiency in a heterogeneous environment. 
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6.2.2.1 Average CPU utilisation of all active servers across different scenarios 

In the heterogeneous data centre configuration, where servers differ in terms of 

processing capacity, memory, and power profiles, the average CPU utilisation patterns 

vary significantly across the four workload scenarios. The baseline policy shows a 

steady increase in utilisation as workloads grow, peaking at 45.18% in Scenario 4. In 

contrast, the ACO-based policy maintains moderate utilisation levels between 7.82% 

and 12.23%, primarily due to shutting down underutilised servers and migrating VMs 

more aggressively to fewer active hosts. The PSO-based policy demonstrates better 

balancing under light workloads (Scenarios 1 and 2) but maintains relatively low 

utilisation in Scenarios 3 and 4. Meanwhile, the MGA-based policy achieves the lowest 

CPU utilisation across most scenarios, especially under higher workloads. Table 6-5 

and Figure 6-5 below show the Average CPU Utilisation (%) of all active servers across 

different scenarios in Heterogeneous Data Centre Setup. 

 

Policy Scenario 
Average CPU Utilisation (%) of all active 

servers ± stdev 

Baseline VM 

allocation policy 

Scenario 1 6.70 

Scenario 2 17.33 

Scenario 3 34.18 

Scenario 4 45.18 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 12.23 ± 4.32 

Scenario 2 12.05 ± 4.18 

Scenario 3 7.82 ± 2.34 

Scenario 4 11.70 ± 3.74 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 5.76 ± 2.51 

Scenario 2 8.72 ± 3.08 

Scenario 3 19.89 ± 5.32 

Scenario 4 6.99 ± 0.15 

MGA-based VM 

allocation and 

migration policy 

Scenario 1 14.08 ± 8.88E-15 

Scenario 2 7.28 ± 8.88E-16 

Scenario 3 5.56 ± 9.76E-16 

Scenario 4 4.06 ± 1.78E-15 

Table 6-5: Average CPU Utilisation (%) of all active servers across different 

scenarios in Heterogeneous Data Centre Setup. 
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Figure 6-5: Average CPU Utilisation (%) of all active servers across different 

scenarios in Heterogeneous Data Centre Setup. 

 

6.2.2.2 Average RAM utilisation of all active servers across different scenarios 

In the heterogeneous data centre scenario, where servers vary in hardware 

specifications, the average RAM utilisation trends differ significantly across the four 

workload levels. The baseline policy shows a steady rise in RAM usage, starting at 

9.28% in Scenario 1 and reaching 55.57% in Scenario 4. This reflects its static VM 

placement strategy, which fails to consolidate workloads efficiently, resulting in higher 

active server counts under heavy demand. The ACO-based policy achieves higher and 

more balanced RAM utilisation in lighter workloads (24.12% in Scenario 1 and 35.23% 

in Scenario 2) by migrating VMs aggressively and shutting down underutilised servers. 

As workloads increase, RAM usage remains controlled (42.82% in Scenario 3 and 

45.79% in Scenario 4), showing its ability to maintain efficiency even under heavier 

loads. The PSO-based policy demonstrates stable and moderate RAM utilisation across 

all scenarios. It performs close to the baseline under higher workloads (39.51% and 

45.22% in Scenarios 3 and 4) but shows higher RAM usage in lighter workloads 

(11.10% in Scenario 1 vs. 9.28% baseline, and 22.14% vs 22.04% in Scenario 2) due 

to VM consolidation. The MGA-based policy exhibits a more adaptive behaviour. It 

achieves the lowest RAM utilisation in Scenario 2 (8.49%). However, under heavier 

workloads, it utilises more available memory than other policies (51.86% in Scenario 
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3 and 55.69% in Scenario 4). Table 6-6 and Figure 6-6 show the Average RAM 

Utilisation (%) of all active servers across different scenarios in Heterogeneous Data 

Centre Setup. 

 

Policy Scenario 
Average RAM Utilisation (%) of all active 

servers ± stdev 

Baseline VM 

allocation policy 

Scenario 1 9.28 

Scenario 2 22.04 

Scenario 3 44.08 

Scenario 4 55.57 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 24.12 ± 2.12 

Scenario 2 35.23 ± 2.01 

Scenario 3 42.82 ± 1.03 

Scenario 4 45.79 ± 0.56 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 11.10 ± 1.07 

Scenario 2 22.14 ± 0.71 

Scenario 3 39.51 ± 1.93 

Scenario 4 45.22 ± 0.34 

MGA-based VM 

allocation and 

migration policy 

Scenario 1 26.41 ± 1.39E-14 

Scenario 2 8.49 ± 7.11E-15 

Scenario 3 51.86 ± 1.40E-14 

Scenario 4 55.69 ± 2.34E-14 

Table 6-6: Average RAM Utilisation (%) of all active servers across different 

scenarios in Heterogeneous Data Centre Setup. 
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Figure 6-6: Average RAM Utilisation (%) of all active servers across different 

scenarios in Heterogeneous Data Centre Setup. 

 

6.2.2.3 Average power consumption of all active servers across different 

scenarios 

While the servers in the Heterogeneous Data Centre have different specifications and 

configurations, the average power consumption is still largely related to the average 

CPU utilisation. Thus, the baseline policy consistently exhibits the highest energy usage, 

rising from 306.82 W in Scenario 1 to 417.18 W in Scenario 4. This is primarily due to 

its static allocation approach, which keeps more servers active even under lighter 

workloads, leading to unnecessary energy overheads. The ACO-based policy achieves 

the lowest and most stable average power consumption among all strategies. By 

aggressively consolidating VMs and shutting down underutilised hosts, it reduces the 

average power usage to 242.10 W in Scenario 1 and maintains energy efficiency as 

workloads grow. This demonstrates ACO’s strong capability to balance workload 

placement with power savings. The PSO-based policy achieves moderate energy 

savings compared to the baseline, with 282.55 W in Scenario 1 and 302.70 W in 

Scenario 2. However, it shows less consistent optimisation at higher workloads, 

consuming 325.69 W in Scenario 3 before slightly dropping to 305.16 W in Scenario 

4. The MGA-based policy performs competitively with ACO in light workloads but 

demonstrates a more adaptive approach under increasing demand. While its energy 
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consumption rises moderately (298.64 W in Scenario 2 and 299.21 W in Scenario 4), it 

remains lower than both the baseline and PSO. The Average Power Consumption 

(Watts) of all active servers across different scenarios in Heterogeneous Data Centre 

Setup is shown in Table 6-7 and Figure 6-7 below. 

 

Policy Scenario 
Average Power Consumption (Watts) of all 

active servers ± stdev 

Baseline VM 

allocation policy 

Scenario 1 306.82 

Scenario 2 336.66 

Scenario 3 385.99 

Scenario 4 417.18 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 242.10 ± 8.69 

Scenario 2 276.28 ± 12.24 

Scenario 3 299.04 ± 7.32 

Scenario 4 319.93 ± 9.61 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 282.55 ± 8.42 

Scenario 2 302.70 ± 8.71 

Scenario 3 325.69 ± 14.68 

Scenario 4 305.16 ± 0.98 

MGA-based VM 

allocation and 

migration policy 

Scenario 1 242.66 ± 1.36E-13 

Scenario 2 298.64 ± 1.71E-13 

Scenario 3 290.22 ± 1.14E-13 

Scenario 4 299.21 ± 3.66E-14 

Table 6-7: Average Power Consumption (Watts) of all active servers across different 

scenarios in Heterogeneous Data Centre Setup. 
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Figure 6-7: Average Power Consumption (Watts) of all active servers across different 

scenarios in Heterogeneous Data Centre Setup. 

 

6.2.2.4 Total power consumption of all servers across different scenarios 

In the heterogeneous data centre, the total power consumption across all servers 

highlights how each policy manages energy efficiency under increasing workloads. The 

baseline policy consistently records the highest overall energy usage, rising from 

922.79 MW in Scenario 1 to 1,160.88 MW in Scenario 3, before slightly dropping to 

1,026.38 MW in Scenario 4. Its static VM allocation approach keeps many servers 

active even during low demand, leading to significant energy inefficiency. The ACO-

based policy delivers the most efficient energy utilisation across all scenarios. It 

consumes only 211.31 MW in Scenario 1 and 389.83 MW in Scenario 2, which 

represents a reduction of over 60% compared to the baseline. Even under heavier 

workloads, ACO maintains lower consumption (791.89 MW in Scenario 3 and 724.87 

MW in Scenario 4) by consolidating VMs effectively and shutting down underutilised 

hosts. 

The PSO-based policy achieves moderate savings compared to the baseline across all 

scenarios, demonstrating stable performance under varying workloads. The MGA-

based policy demonstrates competitive performance in light workloads (209.35 MW in 

Scenario 1, nearly matching ACO) but shows less stability under heavier demand, 

where its total power consumption spikes to 712.80 MW in Scenario 2 and 899.87 MW 

in Scenario 4. The Total Power Consumption (MegaWatts) of all servers across 
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different scenarios in Heterogeneous Data Centre Setup are recorded in Table 6-8 and 

Figure 6-8 below. 

 

Policy Scenario Total Power Consumption (MegaWatts) 

Baseline VM 

allocation policy 

Scenario 1 922.79 

Scenario 2 1012.51 

Scenario 3 1160.88 

Scenario 4 1026.38 

ACO-based VM 

allocation and 

migration policy 

Scenario 1 211.31 

Scenario 2 389.83 

Scenario 3 791.89 

Scenario 4 724.87 

PSO-based VM 

allocation and 

migration policy 

Scenario 1 496.42 

Scenario 2 709.01 

Scenario 3 693.90 

Scenario 4 741.39 

MGA-based VM 

allocation and 

migration policy 

Scenario 1 209.35 

Scenario 2 712.80 

Scenario 3 742.03 

Scenario 4 899.87 

Table 6-8: Total Power Consumption (MegaWatts) of all servers across different 

scenarios in Heterogeneous Data Centre Setup. 
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Figure 6-8: Total Power Consumption (MegaWatts) of all servers across different 

scenarios in Heterogeneous Data Centre Setup. 

 

6.2.3 Summary of Simulation Results 

This section summarises the energy savings achieved by the proposed ACO, PSO, and 

MGA-based VM allocation and migration policies compared to the baseline policy 

across both homogeneous and heterogeneous data centre setups. The results highlight 

the extent to which each algorithm reduces total power consumption under varying 

workload scenarios. 

 

6.2.3.1 Energy Savings Achieved by ACO Policy 

In the homogeneous data centre, the ACO policy consistently demonstrates significant 

reductions in total power consumption across all scenarios. Under light workloads 

(Scenario 1), power usage drops from 788.82 MW in the baseline to 166.32 MW with 

ACO, resulting in a savings of 622.50 MW or 78.92%. Similarly, under moderate 

workloads (Scenario 2), the policy achieves a 59.57% reduction, consuming only 

346.99 MW compared to the baseline’s 858.28 MW. Although the energy savings 

gradually decrease as workloads increase, ACO still delivers substantial reductions of 

36.56% and 16.34% in Scenarios 3 and 4, respectively. On average, ACO achieves a 

47.85% reduction in total energy consumption compared to the baseline, highlighting 
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its efficiency in homogeneous environments. The results are shown in Table 6-9 and 

Figure 6-9. 

 

Scenario Total power 

consumption of all 

servers for baseline 

policy (MW) 

Total power 

consumption of all 

servers for ACO 

policy (MW) 

Energy 

Saved 

(MW) 

Percent 

of energy 

saved (%) 

1 788.82 166.32 622.50 78.92 

2 858.28 346.99 511.28 59.57 

3 978.47 620.71 357.76 36.56 

4 1017.43 851.22 166.21 16.34 

Average 910.75 496.31 414.44 47.85 

Table 6-9: Energy savings achieved by ACO Policy compared to baseline policy in 

homogeneous data centre setup. 

 

 

Figure 6-9: Energy Savings with ACO policy in homogeneous data centre setup. 
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of 49.94% compared to the baseline. Table 6-10 and Figure 6-10 below demonstrates 

the results. 

 

Scenario Total power 

consumption of all 

servers for baseline 

policy (MW) 

Total power 

consumption of all 

servers for ACO 

policy (MW) 

Energy 

Saved 

(MW) 

Percent of 

energy 

saved (%) 

1 922.79 211.31 711.48 77.10 

2 1012.51 389.83 622.68 61.50 

3 1160.88 791.89 368.99 31.79 

4 1026.38 724.87 301.51 29.38 

Average 1030.64 529.47 501.17 49.94 

Table 6-10: Energy savings achieved by ACO Policy compared to baseline policy in 

heterogeneous data centre setup. 

 

 

Figure 6-10: Energy Savings with ACO policy in heterogeneous data centre setup. 

 

Overall, these results confirm that the ACO-based VM allocation and migration policy 

is highly effective in improving energy efficiency by consolidating workloads and 

shutting down underutilised hosts. While both environments benefit significantly, 

heterogeneous data centres allow ACO to achieve slightly greater average energy 

savings because high-power servers can be selectively turned off when underutilised, 

amplifying the overall reduction in energy consumption. 
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6.2.3.2 Energy Savings Achieved by PSO Policy 

In the homogeneous data centre, the PSO policy achieves moderate energy reductions 

across all workload scenarios. Under light workloads (Scenario 1), power consumption 

drops from 788.82 MW in the baseline to 410.68 MW with PSO, resulting in savings 

of 378.15 MW or 47.94%. However, under medium to heavy workloads (Scenarios 2, 

3, and 4), the savings are significantly lower, at 19.83%, 20.10%, and 22.26%, 

respectively. This reduction occurs because fewer servers can be consolidated and shut 

down when utilisation levels increase. On average, the PSO policy achieves 27.53% 

energy savings compared to the baseline in homogeneous environments. Table 6-11 

and Figure 6-11 demonstrate the energy savings achieved by PSO Policy compared to 

baseline policy in homogeneous data centre setup. 

 

Scenario Total power 

consumption of all 

servers for baseline 

policy (MW) 

Total power 

consumption of all 

servers for PSO policy 

(MW) 

Energy 

Saved 

(MW) 

Percent of 

energy 

saved (%) 

1 788.82 410.68 378.15 47.94 

2 858.28 688.05 170.23 19.83 

3 978.47 781.77 196.70 20.10 

4 1017.43 790.92 226.51 22.26 

Average 910.75 667.85 242.90 27.53 

Table 6-11: Energy savings achieved by PSO Policy compared to baseline policy in 

homogeneous data centre setup. 

 

 

Figure 6-11: Energy Savings with PSO policy in homogeneous data centre setup. 
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In the heterogeneous data centre setup, the PSO policy performs better overall, 

benefiting from the ability to leverage differences in server power ratings. Under light 

workloads (Scenario 1), energy consumption reduces from 922.79 MW to 496.42 MW, 

saving 426.37 MW or 46.20%. For Scenario 2, the savings are 29.98%, while in 

Scenario 3, PSO achieves its highest reduction of 40.23%, lowering energy use from 

1,160.88 MW to 693.90 MW. In Scenario 4, the savings drop slightly to 27.77% due to 

high utilisation limiting consolidation opportunities. On average, the PSO policy 

delivers 36.04% energy savings in heterogeneous setups, which is a notable 

improvement compared to the homogeneous configuration. Table 6-12 and Figure 6-

12 shows the energy savings achieved by PSO Policy compared to baseline policy in 

heterogeneous data centre setup. 

 

Scenario Total power 

consumption of all 

servers for baseline 

policy (MW) 

Total power 

consumption of all 

servers for PSO policy 

(MW) 

Energy 

Saved 

(MW) 

Percent 

of energy 

saved (%) 

1 922.79 496.42 426.37 46.20 

2 1012.51 709.01 303.50 29.98 

3 1160.88 693.90 466.98 40.23 

4 1026.38 741.39 284.99 27.77 

Average 1030.64 660.18 370.46 36.04 

Table 6-12: Energy savings achieved by PSO Policy compared to baseline policy in 

heterogeneous data centre setup. 

 

 

Figure 6-12: Energy Savings with PSO policy in heterogeneous data centre setup. 
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6.2.3.3 Energy Savings Achieved by MGA Policy 

In the homogeneous data centre, MGA exhibits inconsistent energy savings across the 

four workload scenarios. Under Scenario 1 (light workload), the savings are minimal at 

just 3.09%, with power consumption dropping slightly from 788.82 MW to 764.44 

MW. However, in Scenario 2 (moderate workload), MGA achieves its highest 

reduction, lowering consumption from 858.28 MW to 350.71 MW, a saving of 59.14%. 

In Scenario 3, savings stand at 30.46%, while Scenario 4 achieves only 19.85% due to 

higher utilisation levels limiting VM consolidation. On average, the MGA policy 

delivers 28.13% energy savings in homogeneous environments, comparable to PSO’s 

performance but significantly lower than ACO’s. 

 

Scenario Total power 

consumption of all 

servers for baseline 

policy (MW) 

Total power 

consumption of all 

servers for MGA 

policy (MW) 

Energy 

Saved 

(MW) 

Percent 

of energy 

saved (%) 

1 788.82 764.44 24.38 3.09 

2 858.28 350.71 507.57 59.14 

3 978.47 680.42 298.04 30.46 

4 1017.43 815.50 201.93 19.85 

Average 910.75 652.77 257.98 28.13 

Table 6-13: Energy savings achieved by MGA Policy compared to baseline policy in 

homogeneous data centre setup. 

 

 

Figure 6-13: Energy Savings with MGA policy in homogeneous data centre setup. 
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In the heterogeneous data centre (Table 6-14), MGA performs better overall, benefiting 

from the availability of servers with diverse power ratings. In Scenario 1, energy 

consumption is reduced drastically from 922.79 MW to just 209.35 MW, resulting in 

77.31% savings, which is the highest across all policies and setups. However, the gains 

are less dramatic under higher workloads: 29.60% savings in Scenario 2, 36.08% in 

Scenario 3, and only 12.33% in Scenario 4 due to limited consolidation opportunities 

under heavy utilisation. On average, MGA achieves 38.83% energy savings in 

heterogeneous setups, an improvement over the homogeneous case and slightly higher 

than PSO’s 36.04%, but still trailing ACO’s performance. 

 

Scenario Total power 

consumption of all 

servers for baseline 

policy (MW) 

Total power 

consumption of all 

servers for MGA 

policy (MW) 

Energy 

Saved 

(MW) 

Percent of 

energy 

saved (%) 

1 922.79 209.35 713.44 77.31 

2 1012.51 712.80 299.72 29.60 

3 1160.88 742.03 418.85 36.08 

4 1026.38 899.87 126.51 12.33 

Average 1030.64 641.01 389.63 38.83 

Table 6-14: Energy savings achieved by MGA Policy compared to baseline policy in 

heterogeneous data centre setup. 

 

 

Figure 6-14: Energy Savings with MGA policy in heterogeneous data centre setup. 
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6.3  Limitations of Simulation 

This project faces several limitations that may affect the accuracy and generalizability 

of its results. Firstly, the data centre topology is simplified by assuming a flat server 

placement, where all servers are positioned side-by-side without considering the 

hierarchical structure of real-world architectures. This abstraction overlooks important 

network-related constraints like latency, bandwidth bottlenecks, and inter-rack 

communication overheads, which can significantly influence VM migration costs and 

energy efficiency. Secondly, simulation inaccuracies arise from CloudSim Plus’s 

abstractions. While it is flexible, it may fail to fully capture real-world complexities. 

Key factors such as hardware heterogeneity, I/O delays, and network congestion are 

either simplified or ignored, potentially leading to overestimated energy savings and 

underestimated migration costs. Lastly, the energy models used in the simulations 

account only for server power consumption, neglecting significant contributors such as 

cooling systems, power distribution losses, and support infrastructure. Consequently, 

the reported energy savings may not fully represent the total operational power 

efficiency achievable in real data centres. 
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6.4  Objectives Evaluation 

The objectives of this project were successfully achieved through the design, 

deployment, and evaluation of a comprehensive simulation platform and bio-inspired 

optimisation algorithms for energy-efficient data centre management. For the first 

objective, a simulation platform was designed and implemented using the CloudSim 

Plus framework, where its extensive libraries and classes are used to model data centre 

components and performance metrics. The platform was configured to simulate both 

homogeneous and heterogeneous data centre setups, allowing for a thorough evaluation 

of algorithms under environments with identical and diverse server configurations. 

Additionally, four distinct workload scenarios were created to represent varying levels 

of resource demand. The platform enabled accurate modelling of physical hosts, VMs, 

workloads, and VM migration events, while tracking critical metrics such as CPU 

utilisation, RAM utilisation, and power consumption. By providing a scalable and 

flexible simulation environment, the first objective was fully accomplished, enabling 

the evaluation of power management methods without the need for costly physical 

infrastructure. 

For the second objective, three bio-inspired optimisation algorithms were successfully 

implemented and deployed as custom VM allocation and migration policies within the 

simulation platform. They are based on Ant Colony Optimisation (ACO), Particle 

Swarm Optimisation (PSO), and Modified Genetic Algorithm (MGA) respectively. 

Through comprehensive testing across homogeneous and heterogeneous data centre 

setups under various workload scenarios, all three algorithms demonstrated substantial 

improvements in energy efficiency and resource utilisation compared to the baseline 

static allocation policy. Among them, ACO consistently achieved the most significant 

power savings, particularly under high-load conditions, making it highly suitable for 

large-scale and energy-conscious environments. MGA delivered strong and balanced 

performance, proving effective across both homogeneous and heterogeneous 

infrastructures, while PSO offered competitive results in specific scenarios despite 

being slightly less efficient overall. These findings confirm that the objective of 

deploying bio-inspired algorithms to enhance power management and resource 

allocation in data centres has been successfully achieved. 

Overall, the project successfully achieved its objectives by developing a robust 

simulation platform and deploying multiple bio-inspired optimisation algorithms to 
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evaluate their effectiveness in optimising power consumption and resource allocation. 

The comparative results highlight the strengths of each algorithm, demonstrating their 

potential applicability to different types of data centre environments and workload 

conditions. 

 

6.5  Novel Aspects of this project 

The novelty of this project lies in the application and comparison of three bio-inspired 

algorithms: Ant Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), and 

a Modified Genetic Algorithm (MGA), for intelligent VM allocation and migration 

within a simulated data centre environment. Unlike conventional static or rule-based 

heuristic approaches, these algorithms dynamically explore, evaluate, and select 

optimal migration plans in response to fluctuating workloads and resource demands. 

The ACO-based VM allocation and migration introduces a bio-inspired mechanism 

where artificial “ants” construct migration plans by considering combinations of source 

hosts, VMs, and target hosts. The decision-making process is guided by pheromone 

trails and heuristic information, enabling the system to balance workload distribution 

or consolidate VMs to minimise power consumption while optimising resource 

utilisation. The PSO-based optimisation mimics the swarm intelligence observed in 

bird flocking or fish schooling. Each “particle” represents a VM-to-host mapping, and 

particles iteratively update their positions based on both their personal best and the 

global best solution. This behaviour allows PSO to efficiently search and converge 

toward near-optimal VM placement strategies, adapting effectively to dynamic 

workload variations. The MGA-based VM allocation introduces a problem-specific 

crossover strategy that enhances traditional genetic algorithms. The algorithm 

selectively migrates VMs from over-utilised or under-utilised hosts in the low-fitness 

parent solution to the high-fitness parent configuration, resulting in improved offspring 

solutions. This modified crossover mechanism accelerates convergence and improves 

exploration while maintaining solution diversity. 

By testing and comparing these three algorithms in the same simulation environment, 

this project provides a new comparative analysis of VM allocation and migration 

strategies. The goal is to find out which approach works best for reducing power 

consumption, improving resource usage, and making the data centre more efficient 

when workloads keep changing. 
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Chapter 7 

Conclusion and Recommendation 
 

This chapter concludes the project by summarising the key findings, outcomes, and 

contributions made throughout the study. It highlights how the proposed ACO, PSO, 

and MGA-based VM allocation and migration algorithms were evaluated across 

homogeneous and heterogeneous data centre setups under various workload scenarios, 

demonstrating significant improvements in energy efficiency and resource utilisation 

compared to baseline policies. Furthermore, the chapter provides recommendations for 

future work, including potential enhancements to the algorithms, integration with 

predictive and hybrid techniques, and the adoption of more realistic data centre models 

to further improve performance and applicability in real-world environments. 

 

7.1  Summary of the project 

The rapid growth in demand for data centre services has significantly increased power 

consumption, resulting in substantial economic, environmental, and operational 

challenges. While virtualisation has enabled efficient resource sharing through Virtual 

Machines (VMs), determining the optimal placement and migration of VMs across 

physical servers remains an NP-hard problem. Traditional techniques such as static 

server consolidation and workload balancing have provided improvements but struggle 

to cope with the scale, heterogeneity, and dynamic resource demands of modern data 

centres. Therefore, there is a pressing need for adaptive, intelligent, and energy-aware 

VM allocation strategies. 

This project investigates and evaluates three bio-inspired optimisation algorithms: Ant 

Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), and Modified 

Genetic Algorithm (MGA), to address VM allocation and migration challenges in 

homogeneous and heterogeneous data centre environments. The ACO-based VM 

allocation and migration policy leverages the foraging behaviour of ants to explore 

efficient migration paths, identifying overloaded and underloaded hosts and selecting 

optimal VMs for migration to minimise idle server usage and improve overall energy 

efficiency. The PSO-based policy models the social behaviour of swarms, where 

candidate solutions (particles) iteratively converge towards optimal VM placement by 
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balancing exploration and exploitation of the solution space. The MGA-based policy 

incorporates a problem-specific crossover mechanism called VM placement, where 

VMs from under- or over-utilised hosts in low-fitness solutions are migrated to higher-

fitness configurations, enabling more effective resource utilisation while reducing 

power consumption. 

 

Key Findings of the project: 

• The ACO-based policy achieved the highest energy savings, reducing total power 

consumption by an average of 47.85% in homogeneous setups and 49.94% in 

heterogeneous setups compared to the baseline. 

• The MGA-based policy delivered significant improvements as well, achieving 

average energy savings of 28.13% in homogeneous and 38.83% in heterogeneous 

environments, demonstrating its suitability across varying infrastructure types.  

However, it displayed inconsistencies in certain workload scenarios, such as the 

notable spike in energy consumption observed in Scenario 1 of the homogeneous 

data centre setup. 

• The PSO-based policy provided moderate energy reductions (27.53% in 

homogeneous and 36.04% in heterogeneous environments), showing competitive 

performance in specific scenarios but was generally outperformed by ACO in both 

data centre setups. 

 

Overall, this project demonstrates that bio-inspired optimisation algorithms are highly 

effective in reducing energy consumption while maintaining efficient VM placement 

across diverse data centre environments. Among the three, the ACO-based policy 

proved to be the most effective, making it a promising approach for large-scale, 

heterogeneous, and energy-conscious cloud infrastructures. 
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7.2  Recommendations 

While the implementation of ACO, PSO, and MGA-based VM allocation and migration 

algorithms has demonstrated significant improvements in energy efficiency and 

resource utilisation, there are still several directions for future enhancement. 

First, algorithmic optimisation can be explored to further improve power savings and 

adaptability under more complex and dynamic environments. This includes advanced 

parameter tuning strategies, adaptive control of exploration–exploitation balance, and 

the integration of machine learning techniques to enhance decision-making during VM 

placement and migration. 

Second, the simulation environment can be made more realistic by incorporating 

complex data centre topologies, multi-tier network structures, and realistic server 

placement models. Considering these factors would provide a more accurate 

assessment of migration costs and overall power consumption, improving the real-

world applicability of the proposed solutions. 

Third, future work can investigate hybrid bio-inspired approaches by combining the 

strengths of different algorithms. For example, integrating ACO’s adaptability with 

PSO’s faster convergence or MGA’s strong exploration capabilities could yield more 

robust and scalable solutions. Additionally, exploring multi-objective optimisation 

techniques would allow balancing between energy savings, migration overheads, and 

SLA compliance. 

Finally, predictive workload management represents a promising direction. Leveraging 

Large Language Models (LLMs) or other AI-based predictors could enable proactive 

VM allocation by forecasting workload spikes and minimising unnecessary migrations. 

Furthermore, request pre-filtering mechanisms could reduce data centre workloads and 

optimise energy usage. 

By addressing these directions, future work can significantly enhance the scalability, 

adaptability, and efficiency of VM allocation and migration strategies in modern cloud 

data centres.
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