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ABSTRACT

The growing demand for data centre services has led to significant increases in data
centre power consumption, highlighting the need for efficient power management
strategies to ensure sustainable and energy-efficient operations. Virtualisation
technology enables multiple virtual machines (VMs) to run on a single physical server,
improving resource sharing and utilisation. However, it also introduces challenges in
optimising VM placement and migration to minimise power consumption while
maintaining performance. This project proposes and evaluates three bio-inspired and
evolutionary algorithms for VM allocation and migration: Ant Colony Optimisation
(ACO), Particle Swarm Optimisation (PSO), and a Modified Genetic Algorithm
(MGA). These algorithms aim to reduce power consumption, improve resource
utilisation, and enhance overall data centre efficiency. The system is implemented and
simulated using the CloudSim Plus framework under both homogeneous and
heterogeneous data centre environments. Four different workload scenarios were
tested, and the performance of the three algorithms was compared against the data
centre’s baseline VM allocation policy. Each scenario was executed 30 times to ensure
the reliability and consistency of results. Simulation results demonstrate that all three
proposed algorithms consistently achieved lower total power consumption across all
servers compared to the baseline policy. These findings highlight the potential of bio-
inspired VM allocation and migration strategies for improving energy efficiency and

resource optimisation in modern data centres.

Area of Study (Minimum 1 and Maximum 2): Cloud Computing, Power Management

Keywords (Minimum 5 and Maximum 10): Data Centre, Cloud Computing, Virtual
Machine Placement, Virtual Machine Migration, Ant Colony Optimisation (ACO),
Particle Swarm Optimisation (PSO), Modified Genetic Algorithm (MGA), Bio-inspired

Algorithms, Power Consumption, Resource Utilisation
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CHAPTER 1

Chapter 1

Introduction

This chapter provides an overview of the project, including its background, motivation,
and objectives. It is structured as follows: Section 1.1 presents the project background,
Section 1.2 describes the problem statement and motivation, Section 1.3 outlines the
research objectives, Section 1.4 defines the project scope and directions, and Section

1.5 highlights the key contributions of this project.

1.1 Project Background

Data centres are specialized facilities designed to house computer systems and
associated components such as telecommunications and storage systems. They provide
the essential infrastructure required for storing, managing and processing vast amounts
of data, which is essential for businesses, government agencies and cloud service
providers. To ensure uninterrupted and optimal operations, data centres are equipped
with sophisticated cooling systems, redundant power supplies and physical security
measures such as biometric access controls and video surveillance [1]. These facilities
can vary in size, from small server rooms to extensive complexes.

Data centres play a crucial role in supporting various online services, including
cloud computing, big data analytics, and the hosting of websites and applications. Since
the 2020s, data centres have rapidly evolved to meet the demands of modern businesses.
With the rise of big data, large language models, GPT and the Internet of Things (IoT),
larger, more efficient and scalable data centres are needed to handle real-time data
processing demands [1]. Data centres are required to offer high speed connectivity,
greater storage capacity, and improved computational power to support these
innovations. However, this rapid expansion of data centres has also led to higher energy
consumption.

Data centre energy consumption is a significant concern due to the high-power
demands of its cooling systems, servers, and other infrastructure to keep operations
running smoothly. Electricity consumption in data centres primarily stems from two

processes, namely the computing process which represents about 40% of the total
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CHAPTER 1

electricity demand, and the cooling process which accounts for another 40% to maintain
stable processing efficiency [2]. The remaining 20% of electricity is used by other
related IT equipment [2]. As data centres evolve in size and capacity to handle more
data, their energy consumption has also increased, making them one of largest
consumers of electricity globally. A report by the International Energy Agency (IEA)
revealed that data centres, cryptocurrencies and artificial intelligence (AI) consumed
460TWh of electricity worldwide in the year 2022, which is almost 2% of total global
electricity demand [2]. Moreover, it is estimated that electricity demand from data
centres could double in many countries by 2026. This includes the United States, which
represents 33% of global data centres, and China, which accounts for 10% [2]. Figure
1-1 below shows the trend of global electricity demands from data centres, Al and

cryptocurrencies from 2019 to 2026.

Global electricity demand from data centres, Al, and cryptocurrencies, 2019-2026
= 1200
1000 o
800 NE -
600 -

400 //

200

2019 2020 2021 2022 2023 2024 2025 2026
Low case - - Base case - = High case

Notes: Includes traditional data centres, dedicated Al data centres, and cryptocurrency consumption; excludes demand
from data transmission networks. The base case scenario has been used in the overall forecast in this report. Low and high
case scenaros reflect the uncertainties in the pace of deployment and efficiency gains amid future technological
developments

Figure 1-1: Global electricity demands from data centres, Al and cryptocurrencies

from 2019 to 2026 [2].

The same situation also applies to ASEAN countries, including Malaysia, where
a considerable number of data centres are either under construction or planned, with
additional new deployments anticipated in the coming years as shown in Figure 1-2

below. The fast-growing data centre market in Southeast Asia not only brings
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CHAPTER 1

opportunities such as increased employment and economic growth, but also various
challenges related to energy consumption, operational efficiency, and sustainability.
Tackling these challenges will require creating advanced power management solutions
and embracing more sustainable technologies to ensure that the growth of data centres

is both economically beneficial and environmentally sustainable.

951 973
482
287 031
222 224

147 189

60 74 48 45 65 77 45 .- 41
l 15

L I — m . - .

Indonesia Malaysia Philippines Singapore Thailand Vietnam

m In Operation (MW)  m Under Construction (MW)  m Planned (MW)

Figure 1-2: Data centre capacity (in Megawatts) in selected ASEAN countries for the
year 2024 [1].

To drive energy efficiency in data centres, virtualisation technology is adopted as
the main strategy to optimise resource utilisation and reduce energy consumption. It
involves creating Virtual Machines (VMs) based on the user’s chosen operating system
and specified resource needs and running on physical servers to host applications [3].
The advantage of virtualisation is improved utilization of hardware as it allows the
dynamic sharing of physical resources and resource pools such as CPU, memory and
storage [4]. This sharing of resources enables the consolidation of VMs, where VMs
are migrated or allocated into the minimum number of physical servers. With this,
inactive servers with no workload can be switched off to help lower the energy
consumption of data centres.

The consolidation of VMs from underutilised servers to others with higher
utilisation enables the underutilised server to be shut down, thereby efficiently reducing
the power consumption in data centres. However, it also introduced a computational
problem called the Virtual Machine Placement (VMP) problem. As the name suggests,
the VMP problem is concerned with optimising the placement of VMs into physical

3
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servers to improve energy efficiency [5]. The main objective of this optimisation is to
find a best solution which places all the VMs into a minimum number of physical
servers. The VMP problem is known to be an NP-hard problem, which means that
computationally complex and hard to solve efficiently [3], [6], [5]. Traditional
algorithms are often impractical and consume high computational time when it comes
to solving complex problems like the VMP problem. As a result, various bio-inspired
algorithms have been introduced to tackle these NP-hard problems.

In addition to consolidation, another strategy used to address the VMP problem is
load balancing. It focuses on distributing workloads evenly across available physical
servers to avoid the overloading or underloading of any single server [7]. A balanced
resource usage across servers not only improves performance but also contributes to
energy efficiency by minimising resource wastage and reducing the number of idle
servers that remain powered on without doing useful work. Like server consolidation,
bio-inspired algorithms have been applied to load balancing strategies due to their
ability to handle complex and dynamic environments effectively.

In this paper, three bio-inspired algorithms based on Ant Colony Optimisation
(ACO), Particle Swarm Optimisation (PSO) and Modified Genetic Algorithm (MGA)
are proposed to allocate and migrate VMs to minimum number of physical servers to
reduce the energy consumption of data centres. The proposed algorithms mainly
perform server consolidation based on CPU utilisation. The algorithms are compared
to the data centre’s baseline VM allocation policy to evaluate their effectiveness in

reducing power consumption.

1.2 Problem Statement and Motivation

The rapid growth in data centre demands has led to a significant increase in
energy consumption. The increase in energy consumption of data centres can cause
several key challenges. From an economic perspective, the energy consumption of an
average data centre is as much as 25,000 households and it is expected to double every
five years [8]. This increase in energy consumption has resulted in escalating
operational costs, with power bills becoming one of the significant expenses for data
centre operators [8]. Furthermore, high data centre energy consumption also leads to

several environmental challenges. The International Energy Agency has estimated that

4
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data centres and data transmission networks are responsible for around 1% of energy-
related greenhouse gas (GHG) emissions [9]. On the other hand, Google has revealed
in their 2024 environmental report that their total GHG emissions have increased by
48% over 5 years, mainly due to increases in data centre energy consumption [10].
Lastly, data centre servers consume a considerable amount of energy even when
operating in idle mode. Significant energy savings can be achieved by shutting down
these idle servers [8]. While virtualisation has allowed for better resource sharing
through Virtual Machines (VMs), the optimal placement of VMs across physical
servers remains a significant challenge. This issue is known as the Virtual Machine
placement (VMP) problem, which is a computationally complex NP-hard problem. The
problem becomes increasingly difficult as the scale of data centres increases.

There are many past studies that have tried to tackle the issue of high power
consumption of data centres. Various methods have been proposed to manage power
consumption in data centres. They can be broadly classified into server-consolidation-
based approaches, workload management or task scheduling techniques, and thermal-
aware power management techniques [11]. However, several gaps remain in existing
approaches. Many fail to evaluate their effectiveness under varying workload
conditions, limiting their real-world applicability. Others focus on optimising a single
resource, typically CPU while overlooking other critical resources such as RAM.
Additionally, some methods are not context-aware and fail to consider how resource
demands change and depend on each other. As a result, these systems struggle to adapt
efficiently to real-time fluctuations in workload and resource availability.

To address these limitations, this project explores three context-aware bio-
inspired algorithms based on Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO), and Modified Genetic Algorithm (MGA), designed to optimise
power consumption through efficient VM placement and migration. Unlike traditional
approaches, these methods dynamically adapt to varying workload intensities by
considering both CPU and RAM requirements simultaneously. By combining these
diverse optimisation strategies, the project aims to enhance resource utilisation and

minimise energy consumption in data centres.
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1.3

Research Objectives

1. Design a simulation platform for data centre environments.

Develop a simulation platform to evaluate power management strategies in
cloud data centres, leveraging the CloudSim Plus framework for modelling
components and metrics.

Utilise built-in CloudSim Plus classes for simulating physical servers, VMs,
workloads, and network environments, while configuring them to suit both
homogeneous and heterogeneous setups.

Integrate essential performance metrics such as CPU utilisation, RAM
utilisation, and power consumption to enable detailed evaluation.

Incorporate multiple workload scenarios with progressively increasing numbers
of VMs and cloudlets to evaluate algorithm adaptability under low, medium,

and high resource demands.

2. Deploy Bio-Inspired Algorithms to Optimise Power Management

Deploy and evaluate three bio-inspired metaheuristic algorithms: Ant Colony
Optimisation (ACO), Particle Swarm Optimisation (PSO), and a Modified
Genetic Algorithm (MGA) for VM allocation and migration in both
homogeneous and heterogeneous data centre environments.

Apply these algorithms across multiple workload scenarios to optimise power
consumption by consolidating VMs, balancing workloads, and reducing idle
energy waste.

Assess algorithm performance against the data centre’s baseline VM allocation
policy, focusing on improvements in energy efficiency, resource utilisation, and

overall operational performance.
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1.4 Project Scope and Directions

This project focuses on the development of novel power management methods
that involve server consolidation to enhance pod-to-pod power delivery in data centres
to reduce power consumption. The solution involves designing and evaluating bio-
inspired algorithms, such as Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO), and Modified Genetic Algorithm (MGA), to optimise Virtual
Machine Placement (VMP) and migration. The reason bio-inspired algorithms are
chosen for this project is due to their effectiveness in solving optimisation problems,
which is also encountered in server consolidation. By consolidating workloads onto a
minimum number of active servers, the approach seeks to maximise resource utilisation
while minimising overall energy usage.

The proposed methods consider two key resource dimensions: CPU and
memory utilisation. ACO and PSO dynamically adapt to varying workload intensities
by optimising VM allocation based on both CPU and RAM, whereas MGA focuses
primarily on CPU utilisation to detect underutilised and overutilised hosts. This
combined optimisation strategy ensures efficient workload distribution, balanced
resource usage, and improved VM consolidation, ultimately reducing the number of
active servers.

To evaluate the effectiveness of these algorithms, the project uses simulation-based
testing to measure improvements in power consumption, resource utilisation, and
overall system performance. The evaluation is conducted across two data centre setups:
a homogeneous environment, where all servers share identical configurations, and a
heterogeneous environment, where servers have diverse hardware capabilities. Within
each setup, the algorithms are tested under four distinct scenarios that vary in the
number of virtual machines (VMs) and cloudlets (workloads) to assess performance
under different resource demand levels.

For both setups, the proposed algorithms (ACO, PSO, and MGA) are
benchmarked against the data centre’s baseline VM allocation method to evaluate their
effectiveness. Key performance metrics include total power consumption, average
power consumption and resource (CPU and RAM) utilisation. By testing across
multiple configurations and workload intensities, the evaluation provides a
comprehensive assessment of the algorithms’ robustness, adaptability, and energy-

saving capabilities in diverse operational environments.
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1.5

Contributions

The main contributions of this project are highlighted as follows:

1.6

Integration of bio-inspired algorithms for power management: The project
implements and evaluates Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO), and a Modified Genetic Algorithm (MGA) to optimise VM
placement and server consolidation in data centres.

Energy-efficient and context-aware VM allocation: The proposed methods
dynamically allocate and migrate VMs by considering CPU and RAM utilisation
(for ACO and PSO) and CPU-based host status (for MGA), aiming to reduce power
consumption while improving resource utilisation.

Comprehensive evaluation across multiple scenarios: The algorithms are tested
on both homogeneous and heterogeneous data centre setups under four different
workload scenarios, and their performance is benchmarked against the baseline VM

allocation policy to validate effectiveness in diverse operational conditions.

Report Organization

The report is structured into five chapter. Chapter 2 reviews related work on bio-

inspired algorithms and data centre power management methods. Chapter 3 describes

the proposed Ant Colony Optimisation (ACO)-based VM allocation and migration

approach. Chapter 4 presents the preliminary work and simulation results. Chapter 5

concludes the report and provide directions for future research.
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Chapter 2

Literature Review

This chapter will present a comprehensive review of existing works and literatures
related to methods to reduce power consumption in data centres that involve bio-
inspired algorithms. It is structured as follows: Section 2.1 presents the concept of bio-
inspired algorithms, Section 2.2 discusses existing methods for Server Consolidation,
Section 2.3 reviews existing Workload Balancing/Task Scheduling methods, Section

2.4 reviews existing Thermal-aware Power Management Techniques.

2.1 Bio-inspired Algorithms

As we move further into the digital age, the surge in data volume has made it
increasingly difficult to extract valuable insights and knowledge using conventional
algorithms due to the growing complexity of analysis. Identifying the best solutions has
become increasingly difficult, if not impossible, given the vast and dynamic range of
potential solutions and the computational complexity involved [12]. This is especially
true for NP-hard problems, where identifying the optimal solution is computationally
expensive or even infeasible within a limited timeframe [12], as there are no efficient
algorithms to solve them [13]. Therefore, many of the problems have to be solved using
trial-by-error approach using different optimisation techniques [13]. This is where bio-
inspired algorithms offer a promising and innovative approach to address these
challenges.

Bio-inspired algorithms are computational methods that draw inspiration from
natural processes and biological systems to solve complex problems. In general, bio-
inspired algorithms are widely classified into few categories, with the two most widely
recognised categories being evolutionary-based algorithms inspired by the natural
evolution process and swarm-based/swarm-intelligence algorithms inspired by
animals’ collective behaviour [14]. Other categories include ecology-based [14], multi-
objective [14], and physics and chemistry-based [13] algorithms.

Evolutionary-based algorithms are optimisation techniques inspired by the principle
of natural evolution and biological processes. They imitate the mechanisms of
biological evolution to find optimal or near-optimal solutions to complex problems.
Example of evolutionary-based algorithms include artificial neural network, genetic
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algorithm, evolution strategies, differential evolution and paddy field algorithm [14].
Among them, one of the most popular method used to address data centres’ energy
consumption problem is the genetic algorithm (GA). GA is inspired by Darwin’s theory
of natural selection, whereby it uses several nature-inspired operators to evolve a
population of potential solutions over generations [12]. Its key components involve a
fitness function, which evaluates how well a solution solves the problem to guide the
selection process, and multiple operators such as inheritance, crossover, reproduction
and mutation [12]. These operators are used to develop “child” solutions from a selected
pair of pre-optimised “parent” solutions that retain positive characteristics of the
“parent” while reducing the less positive characteristics [12].

On the other hand, swarm-based/swarm-intelligence algorithms are inspired by the
collective behaviour of social insects and animals, which uses multiple agents to solve
optimisation problems. Some popular example of swarm-based/swarm-intelligence
algorithms are the Ant Colony Optimisation (ACO) algorithm that uses social
interactions of ants, Particle Swarm Optimisation (PSO) algorithm that mimics
swarming behaviour of fish and birds, Cuckoo Search algorithm (CSA) models the
brooding paratism of cuckoo species, Firefly algorithm inspired by the flashing
behaviour of swarming fireflies and so on [13]. These swarm-based/swarm-intelligence
algorithms are highly popular and widely adopted due to several key reasons. One such
reason is that they involve multiple agents sharing information, which fosters self-
organisation, co-evolution and learning over iterations, thereby enhancing their
efficiency [13]. Another reason is that these algorithms can easily be parallelized,
which makes them suitable for large-scale optimisation tasks to solve complex
problems [13].

In short, bio-inspired algorithms provide innovative and adaptive strategies for
addressing the energy consumption problem in data centres. Their ability to adaptively
search for near-optimal solutions in complex and dynamic environments make them
particularly suitable for solving NP-hard problems, where traditional algorithms may
fall short. This makes them an invaluable tool for creating more sustainable and

efficient data centres. Table 2-1 summarises Section 2.1.
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Algorithm | Inspiration Source Key Features Common Use in
Data Centres
Genetic Natural Evolution Selection, crossover and Server
Algorithm (Darwin’s Theory) mutation consolidation,
(GA) resource
optimisation
Ant Colony Ant foraging Pheromone trails, heuristic Server
Optimisation behaviour search, shortest path finding | consolidation, load
(ACO) balancing
Cuckoo Cuckoo brood Levy flights, random nest VM placement,
Search parasitism selection, host nest resource allocation
Algorithm replacement
(CSA)
Particle Swarming of Velocity and position VM placement,
Swarm bird/fish update, global and local resource
Optimisation variants optimisation
(PSO)
Firefly Firefly light Attractiveness is Resource allocation
Algorithm attraction proportional to brightness and scheduling
(FA)

Table 2-1: Summary of Section 2.1.

2.2 Server consolidation Methods

Server consolidation refers to the process of reducing the number of active
physical servers in a data centre by running multiple applications on fewer servers. At
the heart of server consolidation is virtualisation technology, which has become
increasingly important in enhancing the energy efficiency of data centres [15].
Virtualisation technology enables multiple Virtual Machines (VM) to run on a single
physical server, allowing for shared use of hardware resources. As a result, VMs can
be consolidated to run on the fewest physical servers required, while unused servers
can be shut down to reduce energy consumption and save energy costs [3]. Most
methods employing server consolidation involves solving the VM placement (VMP)
problem, which is a computational problem that aims to determine the most optimal

allocation of VMs onto physical servers [3]. Figure 2-1 and 2-2 shows how server
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consolidation can optimize server utilization by allocating VMs to the minimum

number of servers required, while shutting down the servers that are unused.
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Figure 2-1: Servers utilisation without server consolidation [16].
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Figure 2-2: Server utilisation with server consolidation [16].
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In recent years, researchers have proposed various algorithms to enhance the
efficiency of server consolidation. For example, Liu et al. [3] proposed an efficient Ant
Colony System (ACS) to solve the VMP problem in cloud computing. ACS is based on
Ant Colony Optimisation (ACO) algorithm, which mimics the behaviour of real ants.
The ACS in [3] is inspired by real ants' ability to find the shortest paths to food source
using pheromones and applies this concept to the VMP problem. By using pheromones
to record historical search information and heuristic information to guide decisions,
ACS can sequentially assign virtual machines to the most suitable servers, making it an
effective method for solving VMP challenges. Moreover, the ACS in [3] is paired with
the Order Exchange and Migration (OEM) local search techniques, and the resulting
algorithm is termed as an OEMACS. The OEM local search plays a crucial role in
converting an infeasible solution into a feasible one. It is applied when the current best
solution is found to be infeasible and it involves two steps, an ordering exchange
operation followed by a migration operation. These steps aim to adjust the VM
assignments to alleviate or eliminate server overloads. The experiment results showed
that the OEMACS outperforms conventional heuristic and evolutionary-based
approaches such as First-fit Decreasing (FFD), reordering grouping Genetic Algorithm
(RGGA) and ACO-based method in minimising the number of active servers and
energy consumption and maximising resource utilisation [3]. However, this approach
only considers two dimensions of resource usage, which is CPU and RAM
requirements. Consequently, the potential energy savings are limited to the power
consumed by these two resources alone.

Other than that, Tang and Pan [17] proposed a hybrid genetic algorithm (HGA) to
solve the VMP problem in data centres. Unlike other existing VMP approaches, which
often overlook power consumption associated with the communication networks within
data centres, this method recognises this significant energy usage and factors it into
VMP strategies to enhance the overall energy efficiency of data centres. In Genetic
Algorithm (GA), potential solutions to a specific problem are encoded as chromosomes
within a data structure, and recombination operators are then applied to these
chromosomes to evolve towards better solutions over time [16]. The HGA proposed by
[17] is based on a previous GA proposed by the Wu et al. [15]. It makes use of the same
encoding scheme, fitness function, selection strategy and genetic operators as the
original GA. However, it improves the original GA by adding an infeasible solution
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repairing procedure and a local optimisation procedure, both of which aim to improve
the algorithm’s exploitation capacity and ability to converge more effectively. The
approach in [17] starts by generating solutions with a Genetic Algorithm (GA). If the
solution violates VMP constraints, it undergoes a repair procedure where VMs are
reassigned to other physical machines (PMs) until constraints are satisfied. Feasible
solutions are then optimized using the local optimisation procedure to reassign all VMs
from a PM to other PMs, allowing the initial PM to be turned off, thereby reducing
power consumption. In the evaluations, the HGA in [17] significantly outperforms the
original GA in [15] that already have a better performance when compared to the FFD
algorithm. However, while the HGA also has a lower mean computation time compared
to the original GA, its computation time is still significantly larger compared to other
heuristic algorithms.

On the other hand, Kurdi et al. [18] proposed a scheduling algorithm inspired by
the behaviour of locusts, known as Locust-inspired scheduling Algorithm to reduce
energy consumption in Cloud datacenters (LACE). Locusts demonstrate flexible
behaviours that transitions between two phases, the solitary phase and gregarious phase.
The LACE algorithm in [ 18] emulates these behaviours with two phases of its own, the
mapping phase and the consolidation/migration phase. During the mapping phase,
servers behave like solitary locusts, accepting only unallocated VMs. In contrast, during
the consolidation/migration phase, the servers mimic the gregarious behaviour of
locusts and aggressively search for VMs, including those on other servers. The
algorithm in [18] also classifies servers into heavily-loaded servers and lightly-loaded
servers based on their processor utilisation level. It then applies global and local
migration rules to always migrate VMs from lightly-loaded servers to heavily-loaded
servers. The LACE algorithm is compared against three well-established benchmarks,
namely Dynamic Voltage Frequency Scaling (DVFS), Energy aware Scheduling using
the Workload-aware Consolidation Technique (ESWCT) and the static Threshold with
Minimum Utilization policy (ThrMu) [18]. The LACE algorithm outperforms latter two
in resource utilization and energy consumption and performs similarly to DVFS. It
excels in energy efficiency across most data center scales, though ThrMu is more
efficient in large-scale centers but less reliable. LACE also improves Service Level
Agreement (SLA) response times compared to latter two benchmarks, while matching

DVFS's performance. However, initial VM allocation in [18] is done in a First-Come-
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First-Serve (FCFS) basis to all available servers, which results in inefficient resource
usage as the VMs will eventually have to be reallocated to suitable servers afterwards.
This can be solved by achieving full utilisation of servers in the mapping phase before
progressing to the next phase [19].

Furthermore, Salami et al. [6] tackled the VMP problem by proposing a new
Cuckoo Search Algorithm (CSA) termed newCSA. This newCSA is based on the
modified CSA of Walton et al. [20]. The CSA, as the name suggests, is inspired by the
brood parasitism behaviour of cuckoos, where they lay eggs in other birds’ nests. This
requires the cuckoos’ eggs to evolve to avoid being detected and discarded by the host
birds [20]. Generally, the CSA is based on three idealised rules [21]: (1) Each cuckoo
lays a single egg at a time and deposits it in a randomly selected nest. (2) The nests with
the highest quality eggs are retained for the next generation. (3) The number of available
host nests remains constant, and there is a probability p, € [0,1] that the host bird will
discover the cuckoo's egg. If that is the case, the host bird can either discard the egg or
abandon its nest to build an entirely new nest. The newCSA algorithm proposed in [6]
introduced a novel cost function for the placement solution, three new perturbation
functions used to search the design space and a new, computationally cheap method for
updating the cost of solutions. In the CSA, each nest represents a solution that indicates
which server host which VM and the best net will be chosen. The newCSA algorithm
is tested against the RGGA, FFD, best-fit decreasing (BFD) and a prior CSA-based
method termed multiCSA and the results showed that newCSA is better in terms of
number of servers required for VM placement, power consumption, and execution time
[6]. Nevertheless, one limitation of this method is that it only considers two
dimensions/resources, namely memory and CPU. There is an improvement that can be
made by including more dimensions/resources in the method.

Moreover, Singh et al. [22] proposed a bio-inspired VMP framework that aims to
maximise resource utilisation and minimise power consumption and carbon emissions.
It proposes a novel FP-NSO algorithm that combines the concepts of Nondominated
Sorting technique-based Genetic Algorithm (NSGA-II) and Flower Pollination
Optimisation (FPO). The FPO in [22] generates an initial population of solutions by
randomly allocating VMs. Each individual solution, which represents a VM allocation
is considered as a flower or pollen. In [22], Random-Fit (RF) and First-Fit (FF)
algorithms is used to perform the VM-PM mapping process. After the mapping process,
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the FP-NSO utilises the modules in NSGA-II to generate the optimal VM allocations
and FPO algorithm to achieve optimal assignment of VMs. In the end, the best flower
which is the optimal solution is obtained. The FP-NSO algorithm is evaluated against
nine existing approaches, including the original NGSA-II, GA, FF, RF and more. The
algorithms are tested on two different scenarios, static VMP and dynamic VMP. In the
static VMP scenario, FP-NSO enables resource utilisation up to 69%, surpassing other
algorithms by a margin of 9.29% to 67.08% [22]. Evaluation also shows that FP-NSO
can significantly reduce the number of active PMs and is one of the best performers in
reducing power consumption and carbon emissions among the algorithms. On other
hand, FP-NSO achieved a significant reduction in power consumption, execution time,
and carbon emission over other algorithms in the dynamic VMP scenario, which is up
to 16.69%, 75.87% and 48.60% respectively [22]. It also improves resource utilisation
up by 78.18% compared to other algorithms [22]. However, there is still some reliability
concern with the FP-NSO algorithm. Further refinements can be made to improve its
reliability.

Additionally, Liu et al. [5] proposed a Multi-population Ant Colony System
(ACS) Algorithm with the Extreme Learning Machine (ELM) prediction called
ELM MPACS. As the name suggests, the ELM_MPACS uses ELM, which is a single
hidden layer feed-forward neural network to predict the state of each host in the data
centre. On the other hand, the multi-population ACS algorithm is employed to
determine the destination host for VM migration based on the prediction of the ELM.
Each population’s migration scheme is evaluated using an objective function that
considers both power consumption and number of migrations, and the best solution is
selected. Like other ACS-based algorithms like [3], the ELM_MPACS in [5] also rely
on pheromones and heuristic information to select destination hosts for VMs.
Furthermore, the ELM_MPACS utilises local search strategy to improve the migration
plan and prevent SLA violations. The VM migration process of the ELM_MPACS is
also quite different from other server consolidation algorithms. In ELM_MPACS, VMs
on overloaded hosts are moved to normal hosts, while VMs on underloaded hosts are
moved to other underloaded hosts with higher utilisation. A constraint is set whereby
destination hosts’ utilisation must be lower than source hosts’ after migration and VMs
from underloaded hosts can only be moved to destination hosts with higher utilisation

than the source [5]. This approach minimises unnecessary migration and speeds up the
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migration process. ELM_ MPACS is evaluated against four benchmark algorithms in
the CloudSim simulator. Experimental results demonstrate that ELM_MPACS is more
effective than those algorithms in reducing data centre power consumption, VM
migration time and SLA violations [5]. However, ELM_MPACS only considers CPU
utilization during VM migration. The effectiveness of the consolidation technique can

be enhanced by incorporating multiple resources in the VM integration process. Table

2-2 summarises Section 2.2.

Work Objective Method Results Limitation
Liu et Efficiently Ant Colony System OEMACS Only consider two
al. [3] | allocate VMs | (ACS)-based approach outperforms dimensions of
across the paired with Order FFD, RGGA resource usage,
fewest Exchange and and ACO-based CPU and RAM
number of Migration (OEM) local algorithms in requirements.
PMs to search techniques. terms of average
minimise (OEMACS) energy
energy consumption
consumption and server
for cloud utilisation.
computing.

Tang Enhance Hybrid Genetic HGA HGA has a
and energy Algorithm (HGA) that significantly significantly larger
Pan efficiency of | incorporates infeasible | outperformsthe | computation time
[17] data centres solution repair and original GA and | compared to other

by local optimisation FFD approach heuristic
considering procedure. in reducing algorithms.
the network energy
power consumption.
consumption
in VMP.

Kurdi Reduce Locust-inspired LACE Initial VM
et al. energy scheduling algorithm outperforms allocation in FCFS
[18] consumption called LACE with ESCWT and basis results in

in cloud data mapping phase and ThrMu, while | resource wastage as
centres. matching DVFS
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consolidation/migration in resource VMs will have to
phase. utilisation and be reallocated.
energy
consumption,
and excels in
energy
efficiency across
different data
centre scales.
Salami Solve the newCSA algorithm that newCSA Only considers two
etal. | VMP problem | introduced a novel cost | performs better dimensions of
[6] by developing function, three new than compared resource usage,
anew Cuckoo | perturbation functions methods in CPU and memory.
Search and an efficient method | terms of number
Algorithm to update the cost of of servers
(newCSA). solutions in VM required, power
placement. consumption
and execution
time.
Singh Maximise Bio-inspired VMP FP-NSO The proposed
et al. resource framework that uses significantly framework has
[22] utilisation, FP-NSO algorithm that | reduces power some reliability
minimise combines Flower consumption concerns.
power Pollination and carbon
consumption Optimisation (FPO) emission and
and carbon and Nondominated improves
emission of Sorting technique- resource
data centres. based Genetic utilisation
Algorithm (NSGA-II). compared to
other
algorithms.
Liuet | Improve VM ELM_MPACS ELM_MPACS | Only considers one
al. [5] | consolidation algorithm combining algorithm is resource/dimension,
efficiency and | Multi-population Ant more effective which is CPU
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achieve Colony system (ACS) in reducing utilisation during
balance for VM energy VM migration
between migration/consolidation | consumption,
reducing with Extreme Learning | VM migration
energy Machine (ELM) for time, and SLA
consumption | predicting host states. violations
and SLA compared to
violations. four other
benchmark
algorithms

Table 2-2: Summary of Section 2.2.

2.3  Workload Balancing/Task Scheduling Methods

A considerable amount of energy is wasted when energy is distributed across
computing nodes and when these nodes handle application workloads [23]. As a result,
it is necessary to efficiently distribute workloads between the computing nodes. Load
balancing is one of the key methods employed to reduce energy consumption in data
centres. It involves distributing the workload evenly between participating nodes and
ensuring all nodes share the load equally [23]. Load balancing aims to prevent any
single node from being overloaded or underutilised . By redistributing tasks effectively,
load balancing not only optimises resource utilisation, but also minimises energy
consumption, ultimately leading to lower operational costs and improved system
performance.

Load balancing algorithms are techniques used to distribute workloads evenly
across multiple computing resources. Some traditional load balancing algorithms
include round-robin, least connection, weighted round-robin, IP hash and least response
time [7]. Although load balancing shares some similarities with server consolidation
such as making real-time decisions on where to place workloads, they are quite different
in nature. Load balancing distributes the workloads/tasks evenly among available
servers or VMs to ensure optimal performance, while server consolidation involves
reallocating workloads/tasks to the fewest possible servers to reduce energy
consumption. There have been several studies that implemented bio-inspired

algorithms to enhance load balancing strategies.
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For instance, Gupta and Deshpande [24] introduced a load balancing technique for
cloud data centres that is based on Ant Colony Optimisation (ACO). As mentioned
above, ACO is inspired by ants’ foraging behaviour. In this technique, servers are
treated as nodes and artificial ants utilise two types of pheromones to guide their
movements, foraging pheromones (FP) and trailing pheromones (TP). The pheromones
are updated depending on the direction of the ants’ search. Foraging pheromone is
updated when the ants move from an underloaded node to an overloaded node, and
trailing pheromone is updated when the opposite occurs. The technique in [24] involves
artificial ants that move between nodes to balance the load, guided by pheromone
levels. If a node is overloaded, they look for an underloaded neighbor and update the
Trailing Pheromone (TP). If the node is underloaded, they search for an overloaded
neighbor, updating the Foraging Pheromone (FP). Load balancing only happens when
the conditions match; otherwise, the search continues. The load redistribution is carried
out based on the proposed redistribution policy, which determines how many requests

each node involved should handle. Figure 2-3 below shows the load balancing process
when the ant found an overloaded node first.

Update Trailing
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Load Balancing Update TP

Continue until
underloaded host is
found

Update Foraging
Pheromone (FP)

Move to
neighbour with
minimum TP
+

Update TP

Figure 2-3: ACO load balancing process in [24].

Experimental results showed that the ACO load balancing technique improves the
resource utilisation of the nodes and decreases the number of underloaded and
overloaded nodes [24]. However, the study did not compare its results with other load
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balancing algorithms, which limit the ability to evaluate its effectiveness relative to
existing methods. At the same time, the experiment did not address the energy savings
achieved by the ACO load balancing technique, which is crucial for evaluating its
overall efficiency and effectiveness in reducing energy consumption in data centres.

Furthermore, Das et al. [25] proposed a novel load balancing algorithm by
combining Weighted Round Robin algorithm with the Honeybee Inspired load
balancing approach. The approach is used to remove and migrate tasks between VMs
by considering the priority. It begins by checking for underloaded and overloaded VMs
and then removes tasks from VMs with excessive load and checks for priority. The
Honeybee inspired load balancing algorithm is responsible for assigning weight to VMs
and reallocating non-pre-emptive tasks to underloaded VMs when priority exists. On
the other hand, if priority does not exist, Weighted Round Robin algorithm is used to
allocate tasks. The hybrid algorithm in [25] assigns weights to VMs based on their
capacity and evaluates the load on each machine. If load imbalance is detected, it
identifies underloaded and overloaded VMs. High-priority tasks are assigned to
appropriate VMs, while lower-priority tasks use a Round Robin policy. Finally, the load
on each VM is updated. The algorithm is compared with the Honeybee Inspired
algorithm and Weighted Round Robin algorithm using a cloud analyst simulator. The
results showed that the average response time and data centre processing time of the
hybrid algorithm is faster than both the individual Honeybee Inspired and Weighted
Round Robin algorithm [25]. However, the approach does not consider other Quality
of Service (QoS) factors such as waiting time, migration time costs and so on.
Moreover, like [24], the approach did not measure the energy saved by using the hybrid
algorithm.

Additionally, Lawanya Shri et al. [26] developed a load balancing model using
a Firefly algorithm to maximise resource utilisation and ensure even distribution of load
across all resources in cloud servers. The three idealised rules of the Firefly algorithm
include [26]: (1) Any firefly can be attracted to another as they are unisexual. (2)
Attractiveness of a firefly is directly proportional to its brightness, where a dimmer
firefly is attracted to a brighter one, but the attraction diminishes as distance between
them increases. (3) If a firefly cannot find any other firefly brighter than itself, it moves
randomly. The brightness of a firefly is determined by the objective function of the
algorithm. The proposed approach in [26] is termed as Fuzzy Hybrid Firefly Algorithm
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based on Simulated Annealing (FFA-SA). It combines Firefly algorithm with
Simulated Annealing optimisation algorithm to enhance optimisation accuracy and
convergence speed. During the selection process of VMs, a fuzzy approach is applied
to allocate tasks effectively by using fuzzy rules to define control policies for fireflies.
In [26], dominant fireflies represent VMs in the data centre, while submissive fireflies
represent jobs or tasks assigned to these VMs. If a particular dominant firefly (VM) is
overwhelmed with submissive fireflies (tasks), submissive fireflies will be redirected
to another dominant firefly to ensure balanced distribution. The FFA-SA is compared
against existing algorithms such as Honeybee Behaviour Load Balancing algorithm
(HBB-LB), Particle Swarm Optimisation (PSO) and Energy-aware Fruit Fly algorithm
(EFOA-LB). FFA-SA outperformed other algorithms in reducing makespan and energy
consumption in data centers through effective load balancing [26]. However, the
approach did not consider other factors such as resource utilisation and number of
overloaded or underloaded servers, which could further enhance the efficiency and
performance of the approach.

Moreover, Gamal et al. [27] proposed a hybrid artificial bee and ant colony load
balancing algorithm for cloud computing environments named OH BAC. The
algorithm is based on osmotic behaviour, which refers to the way cells or systems
respond to the process of osmosis. In [27], VMs migrate from heavily loaded PMs to
lightly loaded PMs like water moving from a region of lower solute concentration to
higher solute concentration in the osmosis process. The OH BAC combines key
behaviours of Ant Colony Optimisation (ACO) and Artificial Bee Colony (ABC)
algorithms, where ACO’s rapid solution discovery at diversity systems and ABC’s
waggle dance for information sharing are integrated. A knowledge base, which is a
central resource is used to guide the ABC and ACO in the VM migration process. The
process in [27] begins with the ABC component, where a scout bee calculates the
standard deviation to identify underutilized and overutilized hosts. Once identified, the
employed bee selects a suitable VM for migration, which is then executed by the
onlooker bee to a suitable Physical Machine (PM). Concurrently, the ACO component
generates a list of osmotic PMs using a knowledge base enhanced with osmosis
techniques. The ACO then calculates the fitness function to find the best PM for the
selected VM migration. The final migration step ensures that the selected PM is

compatible with the osmotic list of hosts from the knowledge base before executing the
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migration. The performance OH_BAC is compared in two experiments with fixed and
variable loads against ACO, ABC, H BAC and other host overloading detection
algorithms. OH_BAC significantly improved energy consumption, SLA violations,
VM migrations, and host shutdowns compared to other algorithms under both fixed and

variable loads, although it has a higher Service Level Agreement Time per Active Host

(SLATAH) [27]. Table 2-3 summarises Section 2.3.

Work Objective Method Result Limitation
Gupta and | Develop a load | Load balancing ACO-based load Did not compare
Deshpande balancing technique based | balancing improves | performance with

[24] technique that | on Ant Colony | resource utilisation | other algorithm to
improves Optimisation of servers and evaluate
performance in (ACO). decreases the effectiveness. Did
cloud data number of not address power
centres. overloaded and savings achieved
underloaded by the algorithm.
servers.
Dasetal. | Enhance load Hybrid Hybrid algorithm Did not consider
[25] balancing in algorithm that | demonstrates faster | other QoS factors
cloud combines average response such as waiting
environment. Honeybee time and data time and migration
algorithm and centre processing | time costs. Did not
Weighted time than both the measure energy
Round Robin individual saved by hybrid
algorithm. algorithms. algorithm.
Lawanya Maximise Fuzzy Hybrid FFA-SA reduced Did not consider
Shri et al. resource Firefly makespan and other factors such
[26] utilisation and | Algorithm based energy as resource
ensure even on Simulated consumption, utilisation and
distribution of Annealing outperforming number of
load across all (FFA-SA) HBB-LB, PSO, overloaded or
resources in and EFOA-LB underloaded
cloud servers. algorithms. servers.
Gamal et | Develop a load Hybrid OH_BAC OH_BAC
al. [27] balancing Artificial Bee improved energy algorithm has a
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algorithm to Colony (ABC) | consumption, SLA higher Service
optimize and Ant Colony violations, VM Level Agreement
energy usage Optimization migrations, and Time per Active
and system (ACO) host shutdowns Host (SLATAH)
performance in | algorithm based | compared to other | than the compared
cloud on osmotic methods under algorithms.
environments. behavior fixed and variable
(OH_BAC). loads.

Table 2-3: Summary for Section 2.3.
2.4  Thermal-aware Power Management Techniques
As mentioned above, much of the energy costs of data centres are associated with
the cooling process [2]. Therefore, an effective way to reduce power consumption in
data centres is by minimizing the burden placed on cooling systems to maintain the
temperature of the computing infrastructure [28]. Thermal-aware power management
methods, as the name suggests, are power management methods designed to manage
power consumptions in systems while considering their thermal behaviour. These
methods are crucial in environments like data centres, where maintaining optimal
temperature is essential for the longevity and reliability of hardware components.

For example, Chen et al. [29] proposed a power and thermal-aware VM placement
scheme to reduce the power consumptions of data centres. This VM placement scheme,
also known as power and thermal-aware VM dynamic scheduling scheme (PTDS)
includes a new host load detection algorithm termed Average Median Deviation
(AMD), Minimisation Algorithm (MM) for migrating VMs during the VM selection
phase and VM placement algorithm based on enhanced Ant Colony Optimisation
(ACO) called PTOACO. Unlike other VM placement schemes, PTDS’s objective is not
only to minimise the energy consumption of computing equipment but also to maintain
the temperature control of the hosts to prevent host damage due to high temperature.
The system model of PTDS consists of three sub-models [29]: (1) the linear computing
system power model, which explains the linear relationship between host’s power
consumption and change in time. (2) the cooling system power model, which examines
the utilisation of cooling energy. (3) the server temperature model that utilises CPU
temperature to evaluate the connection between server utilisation, computer room air

conditioning (CRAC) cooling capacity and thermal characteristics. These models work
24

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 2

together to define the power and thermal management strategies in PTDS. The PTDS
scheme is compared with seven benchmark scheduling schemes to evaluate its
effectiveness. They are evaluated on four standard metrics including energy
consumption, hotspots, SLA violation, and active hosts. The PTDS scheme achieved
the second-lowest average energy consumption and hotspots, ranked fourth in average
SLA violations, and had the lowest number of active hosts per hour compared to seven
other scheduling schemes [29]. However, the PTACO algorithm is prone to local
optimsation, where it converges on suboptimal solutions while potentially ignoring the
globally optimal solution.

Furthermore, Yang et al. [30] presented a novel power model to link task
assignment, heat recirculation, inlet temperature and cooling costs in homogenous and
heterogenous data centres with under-floor air supply. The model comprises four
stages. The first stage connects cold air temperature to the power consumption in the
data centre, while the second stage represents inlet temperature using power
consumption by using an abstract heat recirculation model. The third stage relates inlet
temperature to task placement and power profile and the final stage uses peak inlet
temperature to determine the maximum temperature of supplied cold air. This model,
along with a Genetic Simulated Annealing (GSA) algorithm is used to assign tasks in
the data centre. The GSA algorithm in [30] is an enhancement of the traditional Genetic
Algorithm (GA), incorporating simulated annealing. Like the approach in [26],
simulated annealing conducts single point search using solution transformation and is
included in the GSA algorithm to improve the performance of the solution searching
process. By combining the parallelization capabilities of GA with the solution
transformation and selection mechanisms of simulated annealing, the GSA algorithm
significantly lowers the risk of getting trapped in a local optimum during the search
process. In the experiments, the proposed approach is compared with the traditional GA
and the Ant Colony (AC) algorithm. Results demonstrated that it outperforms GA and
AC algorithms in decreasing the temperature requirement of supplied cold air and
reducing the power consumption of cooling systems [30]. However, the approach
primarily focuses on reducing cooling costs in data centres, overlooking the computing
costs. To achieve a more comprehensive solution, both cooling and computing costs

should be considered. Table 2-4 summarises Section 2.4.
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Work Objective Method Result Limitation
Chen Reduce Power and thermal- PTDS achieved PTACO
et al. power aware VM dynamic second lowest energy | algorithm is
[29] | consumption scheduling scheme consumption and prone to

of data (PTDS) combining hotspots, ranked local
centres and Average Median fourth in SLA optimisation,
SLA Deviation (AMD), violations, and had the | potentially
violation rate | Minimisation Algorithm lowest number of overlooking
while (MM), and PTOACO active hosts per hour the global
preventing (enhanced ACO compared to seven optimal
hotspots. algorithm). other benchmark solution.
schemes.

Yang Reduce Power model linking GSA algorithm Approach
et al. power task assignment, heat outperformed GA and primarily

[30] | consumption recirculation, inlet Ant Colony based focused on
of cooling | temperature, and cooling | algorithm in reducing reducing
systems in costs in homogenous cooling system power cooling
data centre and heterogeneous data consumption and costs,

by intelligent | centers with under-floor | lower the temperature | overlooking
task air supply combined of cold air. computing
assignment. | with Genetic Simulated costs.
Annealing (GSA)
algorithm.

Table 2-4: Summary of Section 2.4.
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Chapter 3
System Method/Approach

This chapter outlines the methodology used to design and evaluate VM allocation and
migration methods in data centres. It begins with the overall design specifications,
including the workflow and tools used, followed by the system model that simulates
both homogeneous and heterogeneous data centre setups under varying workload
scenarios. The chapter then details the implementation of three bio-inspired
optimisation algorithms, explains their core principles and demonstrating the complete
VM allocation and migration processes aimed at improving power efficiency and

resource utilisation.

3.1 Design Specifications

3.1.1 General Work Procedure

This project employs a simulation-based development methodology to design and
evaluate the Virtual Machine (VM) allocation and migration algorithms based on Ant
Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), and Modified
Genetic Algorithm (MGA). This approach involves using CloudSim Plus, a cloud
simulation framework, to model and simulate data centre behaviour under different
workloads. The general work procedure includes problem formulation, development
environment setup, system modelling, algorithm implementation, testing through

simulation, performance evaluation, and documentation.

Problem o Development
Formulation "1 Environment Setup

Algorithm
Implementation

h 4
h 4

System Modelling

A 4

Performance " Testing Through
Evaluation E Simulation

FY

Documentation

Figure 3-1: General Work Procedure of the Project.

Problem formulation phase defines the research problem and objectives. It involves

identifying issues related to VM allocation and migration in data centre environments
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and establishing key performance indicators such as power consumption and resource
utilisation. Next, the development environment is set up by installing and configuring
CloudSim Plus within Eclipse Integrated Development Environment (IDE), along with
the required dependencies using Apache Maven. Once the environment is ready, system
modelling is carried out by designing a simulated cloud infrastructure that includes a
data centre, a data centre broker, physical hosts/servers, VMs and cloudlets that
represent user workloads. Following this, the implementation phase involves
developing three custom VM allocation and migration algorithms. They are the ACO-
based algorithm that mimics the foraging behaviour of ants using pheromone trails and
heuristic information to make VM placement and migration decisions, the PSO-based
algorithm inspired by swarm intelligence and uses particles to explore the solution
space and iteratively adjust VM placement based on personal best and global best
positions and Modified Genetic Algorithm (MGA) which applies evolutionary
principles with a problem-specific crossover strategy to optimise VM placement by
migrating VMs from overutilised or underutilised hosts while prioritising resource
efficiency. After that, simulation and testing are carried out to verify and evaluate the
performance of the algorithm. After implementation, simulation and testing are
conducted to verify and evaluate the performance of the algorithms. Multiple test cases
are created with varying workloads, VM sizes, and server configurations under both
homogeneous and heterogeneous data centre setups. Finally, all aspects of the project

will be compiled into a report to conclude the project work.

3.1.2 Tools to use

This section shows the tools/software used for this project.

e CloudSim Plus 8.5.5:

CloudSim Plus is a Java-based cloud simulation framework that enables the modelling
and simulation of data centre and cloud computing environments [31]. It is a modified
version derived from the original CloudSim simulation tool. It is selected as the
simulation tool for this project because it offers powerful, flexible and modern features
beyond the original CloudSim framework. For example, CloudSim Plus provides
interfaces and classes for implementing heuristic algorithms such as Ant Colony

Systems, Simulated Annealing and Tabu Search [31]. It also features precise power
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consumption calculations as well as built-in calculations of CPU utilisation history and
energy consumptions for both VMs and hosts [31]. The CloudSim Plus framework also
supports dynamic and realistic workloads. It enables the dynamic creation of VM and
cloudlets at runtime, along with the delayed submission of created VMs and cloudlets
[31]. This allows realistic and dynamic workload modelling in data centre
environments. Given these features, CloudSim Plus provides a powerful platform for

developing and validating the proposed power management methods.

e Eclipse IDE:

Eclipse IDE is a free, open-source Java-based integrated development environment
(IDE) primarily used for Java development. It offers a platform for creating, debugging
and testing applications by offering a wide range of tools and plugins. Since CloudSim
Plus framework is Java-based, Eclipse is chosen to develop and simulate cloud-
computing scenarios using the framework. Furthermore, Eclipse also offers robust
support for Maven projects, which simplifies dependency management and project
configuration. Therefore, it makes it easier to integrate and manage the CloudSim Plus

libraries and other required components in the simulation environment.

e Apache Maven:

Maven is a software project management and build automation tool. It is mainly used
in Java-based development. It automates tasks such as compilation, testing, packaging
and dependency management. In this project, Maven is used to efficiently manage
CloudSim Plus framework and its related libraries. Maven simplifies the setup of
CloudSim Plus by automatically downloading and integrating its dependencies through

the pom.xml configuration file.

e Visual Studio Code (VS Code):

Visual Studio Code (VS Code) is a lightweight, open-source code editor developed by
Microsoft. It supports multiple programming languages and offers different features
like syntax highlighting and intelligent code completion. It is a convenient tool for
quick development and debugging. Although Eclipse is the main IDE used to build and

run the CloudSim Plus simulations, VS Code is occasionally used for writing and
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editing parts of the code. Its speed and simplicity make it a handy alternative for writing

and debugging code.

3.2 System Model

The system model represents the interaction between the main system components
within the simulated data centre environment. It is designed to evaluate the performance
of the proposed VM allocation and migration policies using CloudSim Plus as the

simulation framework. Figure 3-2 shows the system model for this project.
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Figure 3-2: System Model for this Project.

At the core of the model lies the data centre, which consists of a set of physical hosts
capable of hosting multiple VMs. A data centre broker act as an intermediary between
simulated users and the data centre and is responsible for VM management steps such
as VM and cloudlet creation, submission and destruction. Initially, the system receives

asetof VMs, V= {VM;, VM2, VM3, ..., VMy} and a set of cloudlets (user workloads),
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C={Cy, Cy, Cs, ..., C¢}. Next, the set of VMs and cloudlets are submitted to the data
centre broker. The data centre broker will then allocate the set of VMs, V across a set
of physical servers/hosts, P = {PMi, PM2, PM3s, ..., PMp}. The initial allocation
allocates VMs to active hosts with the minimum number of free processing elements
(CPU cores). At this stage, no migration occurs and VMs are statically mapped to hosts
to provide a starting point for execution.

As the simulation progresses and cloudlets begin executing, certain hosts may become
overloaded or underloaded. To address this, the custom VM allocation policy (based on
ACO, PSO or MGA) is triggered to determine whether reallocation or migration of
VMs is necessary. The goal is to balance the load across hosts or consolidate VMs onto
fewer hosts, thereby improving resource utilisation and reducing overall power
consumption. During this process, the algorithm identifies the potential source hosts
(underloaded and overloaded hosts), VMs eligible for migration, and suitable target
hosts based on pre-defined criteria. The objective is to construct an optimal migration
plan by selecting the best combination of these migration options that results in the

most efficient utilisation of resources and minimises power consumption.

3.3  Algorithms

Efficient virtual machine (VM) allocation and migration are critical for optimizing
resource utilization and reducing power consumption in modern data centres.
Traditional static or rule-based approaches often fail to adapt effectively under dynamic
workloads. To address these limitations, this project leverages bio-inspired algorithms
to intelligently determine optimal VM placement and migration strategies.

In this study, three distinct algorithms are implemented and evaluated within a
simulated CloudSim Plus environment: Ant Colony Optimisation (ACO) algorithm,
Particle Swarm Optimisation (PSO) algorithm and Modified Genetic Algorithm
(MGA).

3.3.1 Ant Colony Optimisation (ACO) Algorithm

3.3.1.1 Overview of Ant Colony Optimisation (ACO) Algorithm

Ant Colony Optimisation (ACO) draws its inspiration from the natural foraging

behaviour observed in real ant colonies [24]. In nature, ants find the shortest path

between their nest and a food source by laying down pheromone trails along the paths
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they travel. Other ants would follow these pheromone trails, and the shortest paths
accumulate stronger pheromone levels as time goes on, which makes them more
attractive for other ants. This concept can be adapted to solve the Virtual Machine
Placement (VMP) problem. Ants would iteratively build a solution by choosing a VM
to be assigned to a server based on the combination of pheromone levels as well as
heuristic values, until all VMs have been assigned to servers. The approach places each
VM on the most appropriate server, thus ensuring efficient resource utilisation.

In this project, the ACO algorithm is adapted to address the VM placement and
migration problem within data centres. The focus is to optimise resource utilisation and
reduce power consumption by balancing workload and consolidating VMs onto fewer
active servers. The algorithm operates in iteration, with artificial ants constructing
feasible migration plans based on current system state. Each ant builds a solution by
selecting a sequence of migration tuples, where a tuple consists of a source host, VM
to migrate and a target host. These tuples are selected based on pheromone value, which
represents learned experience from previous iterations, and heuristic information that
reflects the current desirability of each tuple. Over successive iterations, the algorithm
gradually converges towards an optimal or near-optimal migration plan, which is then
used to migrate VMs to their designated target hosts for improved resource utilisation

and energy efficiency.

3.3.1.2 Initialisation of parameters of ACO algorithm

In the ACO-based VM allocation and migration algorithm, there are several key
parameters that influence the behaviour and performance of the solution construction
process. These parameters are 32nderutiliz at the beginning of the algorithm. Table 3-

1 shows the main parameters in this algorithm:

Parameters Value Description

a 1.0 | This parameter represents the influence of the pheromone
value (1) in the selection of migration tuples. A larger o
places more emphasis on the learned experience of
previous ants, which promotes the exploitation of known

good solutions
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2.0

This parameter represents the influence of the heuristic
information (1), which is the problem-specific knowledge
that guides ants towards more promising solutions. A
larger B increases the impact of heuristics and encourages

more informed exploration.

Jo

0.7

This parameter represents the exploitation parameter, and
it determines whether an ant will exploit the best-known
path or explore new path probabilistically. A higher qo
encourages exploitation, while a smaller qo encourages

exploration.

0.1

This parameter represents the pheromone evaporation rate,
where p € (0,1). It determines how quickly the pheromone
trail fades over time. A small p value is favoured to prevent
pheromones from evaporating too quickly so that past

experiences can be retained in the pheromone values.

To

1.0

This parameter represents the initial pheromone value
deposited on all migration tuples. It helps initialise the
search space and prevents any bias towards specific

solutions in early stages of the algorithm.

Number of ants

This parameter defines how many ants are used per
iteration. Each ant will construct a local migration plan
which will then be evaluated based on the objective
functions. A larger number can improve the solution

quality but may increase computational time.

Number of iterations

This parameter defines how many times the ant colony will
repeat the solution construction process. More iterations
improve the chances of finding optimal or near-optimal
plans. However, this also increases computational time
and resource consumption, so a balanced approach is

favoured.
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K 0.5 This parameter represents the fraction of a host’s
maximum power that is consumed when the host is idle
(not hosting any VMs but still powered on). An idle but
powered-on server can consume approximately 50% to
70% of the power used by a fully loaded server. Therefore,
the fraction parameter is set to 0.5, representing idle or
static power as 50% of the server’s maximum power

consumption.

Table 3-1: Parameters of the ACO-based Algorithm.

3.3.1.3 Heuristic Information
In the ACO-based VM allocation and migration algorithm, heuristic information is
denoted as njjkx and plays a crucial role in guiding the decision-making process of ants
during the solution construction phase. It provides the estimate of the desirability or
suitability of migrating a virtual machine VM; from a source host PM; to a target host
PMy, based on resource availability and balance. The equation (1) represents the
formula to calculate heuristic information for each migration tuple and it is based on
the heuristic calculation in [3].

PMg — PM* —VMj  PM* — PM™ — VM"

PM; PM*
‘PM,i — PM" — VM7 ‘PM,T - PM™ — VM
PMy PM

1.0 —

(1)

Hijk =
+ 1.0

Where PM® and PM\™ represents the total CPU capacity and memory/RAM capacity
of the target host respectively, while PM®™ and PM™ is the currently used CPU and
memory/RAM of the target host. VM;® is the CPU requirement of the VM to be
migrated and VM;™ is the memory/RAM requirement of the VM to be migrated. The
denominator indicates how much of the host’s resources including CPU and memory
are being used [3]. It captures the extent to which resources are utilised after placing
the VM to the target host. On the other hand, the numerator represents how evenly the
remaining resources are distributed within that host [3]. A balanced distribution across
different resources avoids creating bottlenecks and ensures more efficient usage of the

target host.
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3.3.1.4 Solution Construction
The solution construction process is the core mechanism of the ACO-based VM
allocation and migration algorithm. It involves generating and evaluating potential VM
migration plan to achieve better resource utilisation and lower power consumption
within data centre. The process begins by identifying whether hosts are overutilised or
underutilised based on the pre-defined thresholds. Any hosts with CPU utilisation, y;
greater than 0.8 will be categorized as overloaded hosts, while hosts with p; less than
0.2 will be categorized as underloaded hosts. These thresholds help us to identify
candidates for source and target hosts for VM migration. Once the overloaded and
underloaded hosts are identified, the algorithm proceeds to construct a set of migration
candidates. Each candidate is represented as a tuple as shown in equation (2) where PM;
is the source host, VM;j is the VM selected for migration PM is the target host, and T
is the set of all migration tuples

Tij = (PM;,VM;, PM,) | PM;,PM; € P,VM; €V,x;; =1 (2)
The source host, PM; is chosen from the underloaded hosts and overloaded hosts, with
the aim to balance the workload (from overloaded hosts) or consolidate VMs onto fewer
servers (from underloaded hosts). The VM,; is the virtual machine currently running on
the source host, while the targe host PMy is selected from a set of non-overloaded active
servers. Once the set of migration tuples Tijjk is generated, the ACO algorithm begins
its iterative process to construct a migration plan. In each iteration, artificial ants
traverse the solution space by probabilistically selecting migration tuples based on two
factors, pheromone trail (tijk) and heuristic information (k). The probability of
selecting a tuple Tijk 1s computed using equation (3).

(Tiji)* (i) P

Yjoer(Tij) *Mijr)?

Another key mechanism in the solution construction phase is the balance between

p(Tijk) = (3)

exploration and exploitation. Exploration involves trying new migration options
regardless of the selection weight, while exploitation involves reinforcing the best-
known options. The key to constructing high-quality VM migration plans is to find a
balance between exploration and exploitation. To achieve this, an exploitation
parameter (qo) is set to control whether the ants perform exploration or exploitation.

Equation (4) below shows the exploration vs exploitation rule:

35

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

T;}k _ { arg maxi,]:,keT[(rijk)“.(ﬁijk)ﬁ] if q .S 90 (Exploitation). @
Select Tj, with probability p(Tij),if g > qo (Exploration)

A random number q is generated to determine the ant’s behaviour, whereby the ant will
choose the tuple whose product of pheromone value t and heuristic information 1 are
maximal when the q value is less than or equal to the exploitation parameter, qo — this
is the exploitation behaviour. Otherwise, the ant will select tuple Tijx based on the
probability computed in equation (2) — this is the exploration behaviour.

Each ant builds a complete migration plan by selecting a sequence of feasible migration
tuples. These plans are known as the local migration plan, M?. Once a feasible migration
tuple is added to the local migration plan M?, a local pheromone update is immediately
applied to the pheromone trail associated with that tuple. The construction of the local
migration plan continues until all migratable VMs have migrated or if there are no more
feasible migration candidates. Each constructed local migration plan is then evaluated
using the objective function that evaluates the score of the plan. The best performing
plan among all ants in an iteration is designated as the iteration-best migration plan,
denoted as M"_If this iteration-best plan outperforms the current global-best plan ME,
it replaces it as the new global best. At the end, the globally best migration plan M® is
translated into a VM-host mapping to server as the execution plan for the actual
migration process. The mapping specifies which VM to migrate from its current host
to a new target host that it is mapped with. This global best migration plan is also used
in the global pheromone update phase of the algorithm. Figure 3-3 shows a simple

flowchart of one iteration cycle of the ACO algorithm.

36

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Compare the bestLocalPlan with the current
bestGlobalPlan and select the one with the better
score as new bestGlobalPlan;,

Apply global pheromone update on tuples in the
besiGlobalPlan;

Initialise best local

plan best local f1 and a < Number of ants?

2 score
Calculate f1 and f2 score of localPlan;
Compare localFlan with the current bestLocalPlan and
select the one with the better score as new bestLocalPlan;
ar+;
No =
I;'::":i;ggg {?,;il re there a\raila‘t;fé
; <
and migration tuples luples and VMs
Yes
\Add migration tuple to
eck if cumrent loc: local plan. Map VM to heck if target host is 3:5105:;?;:;;}'53
plan is feasible source and target suitable for VM g explor
exploitation
host
No Yes
Remove migration tuple from Perform local

migration plan and unmap
VM from source and target
hosts.

pheromone update on|
selected tuple

'

Remave VM and tuple
from list of available VM
and tuples

A

\ﬁ

Figure 3-3: Flowchart of one iteration cycle of the ACO algorithm.

3.3.1.5 Objective Function

To evaluate the quality of each migration plan generated by artificial ants in the
algorithm, two objective functions — fi score and f> score is used. The equations for
calculating both scores are adopted from [3]. The f| score aims to minimising the
number of active hosts by consolidating VMs onto fewer servers. It counts the number
of active physical servers required to host all VMs under the given migration plan, M?.
A host is considered active if it hosts at least one VM. Equation (5) and (6) show the

calculation of fi score:

1, ifo--Zl
VAT Vi € P (5)

Vi = jev ’
0, otherwise
A = >y, (6)
i€EP

37
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Here yi is a binary indicator that shows whether host I is active. Unlike in [3], where
the f1 score is assigned a value equal to the total number of physical servers plus one
for infeasible migration plans (to distinguish them from feasible ones), the algorithm in
this project takes a different approach by filtering out infeasible tuples from the plan,
specifically those where the target host cannot accommodate the VM. The migration
plan with the lower f; score is considered to perform better and is selected as the best
local migration plan. The best local migration plan will then be compared to the best
global migration plan, and it replaces the global one if it performs better.

In case where there are two migration plans with the same fi score, the algorithm
calculates the f> score to measure how well the resources are utilised across all active
servers. A smaller f2 score indicates a more balanced resource utilisation across servers.
Equation (7) shows the formula for calculating f> score:

a |PM{ — PM{Y|  |PM™ — PM[™|
LM = Y (e e — ™
i€eP t

l

Together, the two scores guide the algorithm towards migration plans that have fewer

active servers and better resource utilisation.

3.3.1.6 Pheromone Update Rule

The pheromone update rule is another critical component of the ACO-based VM
allocation and migration algorithm. It guides the collective learning behaviour of ants
by reinforcing good solutions and gradually letting poorer ones fade away. The
pheromone trail/value of each migration tuple, 7k is updated through two processes:

local pheromone update and global pheromone update.

Local Pheromone Update

Each ant updates the pheromone value of the tuples it has selected during the
construction of its local migration plan. This process helps promote exploration by
slightly reducing the pheromone intensity of frequently chosen tuples by the last ant,
which encourages other ants to explore alternative paths. The local pheromone update

rule is defined in equation (8):

Tk =1 — p) Ty + P To (8)
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Where p represents the pheromone decay parameter and 0 < p < 1. Tjjx represents the

pheromone value of the tuple Tjjx while 1o is the initial pheromone value.

Global Pheromone Update

After all the ants have constructed their local migration plans in one iteration, the
algorithm will identify the best-performing plan M" based on the objective functions.
This plan is then compared with the current global best migration plan (M®) and
replaces it if it performs better in overall objectives. The global pheromone update rule
in this algorithm is a modified version of the one described in [3]. The pheromone
values for the tuples in the global best plan are updated using the equations (9) and (10)

defined for global pheromone updates.

Tijk = A — p) . Tij + p. AT 9)
A ! + ! (10)
Tii, =
Ve fi(MP) T PME - PME®  PM — PM
PMC PMT

A i represents the delta pheromone value. The first component of A tjj ensures that
better solutions with a lower f; score receive a higher pheromone increment. The fi
score measures the number of active hosts, so migration plans the involve fewer active
servers are favoured. On the other hand, the second component of A 1ijx promotes the
consolidation of VMs onto fewer active servers by rewarding target hosts with less
remaining CPU and memory capacity. In other words, it encourages the selection of

target hosts that are more fully utilised.
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3.3.1.7 Complete ACO-based VM Allocation and Migration Algorithm
This section presents the complete flow of the proposed ACO-based VM Allocation
and Migration Algorithm. The following flowchart in Figure 3-4 illustrates the step-by-

step process of the complete algorithm.
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Figure 3-4: Complete ACO-based Algorithm Flowchart.
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3.3.2 Particle Swarm Optimisation (PSO) Algorithm

3.3.2.1 Overview of Particle Swarm Optimisation (PSO) Algorithm

Particle Swarm Optimisation (PSO) is an optimisation technique inspired by the
collective behaviour of bird flocking and fish schooling [32]. In the context of this
algorithm, a particle represents a single VM-to-host mapping, while a swarm consists
of multiple particles, collectively forming a candidate migration plan. Multiple swarms
are maintained simultaneously, allowing the algorithm to explore several alternative
migration strategies in parallel.

The algorithm begins by identifying VMs that need to be migrated from both
overloaded and underloaded hosts. Once the set of migratable VMs and available target
hosts is determined, the PSO process is initialised by generating multiple swarms.
Within each swarm, the position of a particle represents the selected host for a particular
VM, while its velocity determines how the mapping changes between iterations.
During each iteration, the algorithm evaluates the fitness of each swarm based on how
effectively its overall migration plan balances CPU and RAM utilisation across the
available hosts. Each swarm maintains a personal best migration plan, which is the most
efficient configuration it has discovered so far, while the global best migration plan is
tracked across all swarms. Using these best-known solutions, combined with
randomised exploration factors, the particles within each swarm update their velocities
and positions to refine the VM-to-host mappings, progressively improving the quality
of their migration plans.

After completing the specified number of iterations, the global best swarm is selected,
and its corresponding migration plan is applied to produce the final VM allocation

strategy, optimising resource utilisation and improving overall data centre performance.

3.3.2.2 Initialisation of parameters of PSO algorithm
In the PSO-based VM allocation and migration algorithm, there are several key
parameters that influence the behaviour and performance of the solution construction

process. Table 3-2 shows the main parameters in this algorithm:
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Parameter

S

Value

Description

iterations

10

Number of optimisation cycles, represents the
total number of velocity and position updates

to refine solutions.

swarmNo

10

Number of swarms (solutions)

C1

2.0

Parameter cl is known as the cognitive
acceleration coefficient. It controls how much
a particle is influenced by its own best-known

position

C2

2.0

Parameter ¢2 1s known as the social
acceleration coefficient. It controls how much
a particle is influenced by the global best-

known position.

0.5

Inertia weight w scales the particle’s current
velocity to maintain momentum from the

previous step.

I, 12

random.nextDouble()

Parameters rl and r2 are random scalars in [0,
1], Parameter rl adds stochasticity to the
cognitive component to promote exploration,
while parameter r2 adds stochasticity to the

social component to diversify movement.

Table 3-2: Parameters of the PSO-based Algorithm.

3.3.2.3 VM allocation and migration rule (PSO algorithm)

A. Swarm Initialisation

In this PSO-based VM allocation approach, multiple swarms are created. Each swarm

represents a potential solution space and consists of multiple particles, with the number

of particles in each swarm determined by the number of migratable VMs. For each

swarm, every particle corresponds to a VM and has two key attributes: position and

velocity. The position represents the index of the host to which a particular VM is
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assigned. On the other hand, the velocity defines the rate and direction of change for
the particle’s position in subsequent iterations, influencing how the particle explores
the solution space.

During initialization, each particle’s position is randomly assigned to a host from the
available host list, ensuring diversity in the initial solutions. Similarly, each particle’s
velocity is randomly initialized between 0 and 1, allowing different particles to move
with varying dynamics. Finally, the global best swarm is initialized to store the best
overall solution discovered across all swarms during the optimization process. This
setup ensures a broad and diverse exploration of the search space, improving the

chances of finding an optimal VM allocation strategy.

B. Fitness Function (PSO algorithm) and Personal/Global Best Update
In the Particle Swarm Optimization (PSO) algorithm for VM allocation, the fitness
function evaluates how optimal a given VM-to-host mapping is for each swarm. The
goal is to minimize resource imbalance and ensure that VM allocations are feasible
based on host capacities. Additionally, the algorithm updates each swarm’s personal
best and the overall global best solutions to guide future particle movements.
The fitness function plays a key role in evaluating how well a given solution maps VMs
to available hosts. Each VM is assigned to a host based on the particle’s position, which
represents a candidate solution. For every allocation, the algorithm checks whether the
selected host has sufficient available resources to accommodate the VM’s
requirements. If any of the resource constraints (CPU, memory, bandwidth, or storage)
are violated, the solution is marked as infeasible and is penalized with a very high
fitness value. For feasible solutions, the fitness value of the particle is calculated based
on how balanced the workload is across all hosts. This is done by measuring the
variance in CPU and RAM usage relative to their averages across the data center. A
lower variance indicates a more balanced and efficient allocation, resulting in a lower
fitness value, which the algorithm seeks to minimize. Equation (11) below shows the
fitness function:

P Zn PM{* — AvgCPU B PM™ — AvgRAM

i=1 PM;* pPMm™

(11)

43

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

Where PM* and PM;™ is the currently used CPU and memory/RAM of i host, while
AvgCPU and AvgRAM represents the average CPU and memory/RAM usage of all
available hosts.

Once the fitness value is computed, the PSO algorithm updates two key metrics: the
personal best and the global best. Each particle, representing a specific VM-to-host
mapping within a swarm, maintains its own personal best position, which reflects the
most efficient allocation it has achieved so far. If the particle’s current allocation yields
a better fitness value than its historical best, it updates its personal best accordingly. At
the same time, the algorithm evaluates all particles across all swarms to identify the

global best solution, which represents the most optimal allocation discovered so far.

C. Velocity and Position Update Rule

In the PSO algorithm, the velocity and position update rule govern how particles (each

representing a VM-to-host mapping) move through the search space to explore better

allocation strategies. The equations involved in the update rule are adopted from [32].

Each particle’s position X and velocity V at time (t) is represented as shown in equation

(12) and (13) below:

X;(t) = xq, x5, wen ... Xn (12)
Vi(t) = vy, V9, e . vy (13)

Each swarm consists of n particles, which is equivalent to the number of migratable

VMs. Each particle’s personal best position and global best position is represented as

pBest and gBest. For each swarm, the algorithm iterates through all particles and

updates their velocities based on three key components:

1. Inertia Component (w) — This term controls the particle’s tendency to continue
moving in its current direction. A higher inertia weight encourages exploration of
the search space, while a lower weight promotes exploitation around known good
solutions.

2. Cognitive Component (ci * ri(t) * (pBest — currentPosition)) — This factor
represents the particle’s personal learning. It pulls the particle toward its own
personal best position, guiding it based on its individual experience.

3. Social Component (c2 * r(t) * (gBest — currentPosition)) — This factor reflects

collective learning. It attracts the particle toward the global best position found
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across all swarms, encouraging collaboration among particles to converge on the

most promising solutions.

The updated velocity is calculated as shown in equation (14):

Vit + 1) = wV;(t) + (pBest; — X;(£))eyri (£) + (gBest; — X;(t))cora(t)  (14)
Where v;, xi, pBest; and gBest; is the velocity, the current position, the personal best
position and the global best position of particle I respectively. Parameters ri(t) and ra(t)
are random numbers in the range [0, 1], while c1, and ¢» are acceleration coefficient as
mentioned in the parameters section.

After updating the velocity, the particle’s position is adjusted as shown in equation (15):

Xi(t+1D)=X;)+V,(t+1) (15)
Through repeated updates over multiple iterations, the PSO algorithm balances
exploration (searching for new solutions) and exploitation (refining around the best-
known solutions), gradually converging toward an optimal VM-to-host allocation

strategy.

3.3.2.4 Single Iteration of PSO Algorithm

In a single iteration of PSO, each swarm is evaluated to determine how effectively it
balances VM placement across the available hosts. The algorithm first computes the
fitness of each swarm based on resource utilisation, then updates the personal best
migration plan for each swarm if its current configuration outperforms previous
attempts. Next, the global best migration plan is updated by comparing all swarms to
identify the most optimal solution found so far. Finally, the velocity and position of
each particle within the swarms are adjusted based on their personal best, the global
best, and random exploration factors. Figure 3-5 shows the flowchart of one iteration

cycle of the PSO algorithm.

Update the global

best position of all

particles across all
SWarms;

-~

Update velocity and
position of all particles
based on the current,

personal best and global
best positions;

Update personal best
position of all particles
in the swarm;

Evaluate fitness of
the swarm;

For each swarm
in swarmList;

End of ist Each swarm

Figure 3-5: Flowchart of one iteration cycle of the PSO algorithm.
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3.3.2.5 Complete PSO-based VM Allocation and Migration Algorithm

This section presents the complete flow of the proposed PSO-based VM Allocation and

Migration Algorithm. The following flowchart in Figure 3-6 illustrates the step-by-step

process of the complete algorithm.

RETURN
migration map;

Fy

Convert the global
best swarm into VM-
host mapping;

RETURN
emply map;

physical hosts;

Initial allocation of VMs to

¥

Initialise parameters (Number of

swarm list);

iterations, Number of swarms, empty

Identify overloaded and
underloaded hosts;

¥
Derive target hosts and
VMs to migrate from
overloaded and
underloaded hosts;

Is target host
list emply?

Update velocity and
position of all particles
based on the current,

personal best and global
best positions;

f

Generate random
scalars, r and r2;

in swarmList,

Each swarm

End of list

Initialise cognitive
acceleration
coefficient, c1;

l

Initialise social
acceleration
coefficient, ¢3;

l

Initialise inertia
weight, w;

End of list

in swarmlList;

iter = iterations;

or each swarnm

No

RETURN
| empty map;

Save initial host VM count;

¥

Initialise swarms using
target hosts and VM= to
migrate;

Evaluate fitness of
the swarm;

Y

in the swarm;

Update personal best
position of all particles

h

Assign swarm with

best solution;

best fitness as global

Figure 3-6: Complete PSO-based Algorithm Flowchart.
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3.3.3 Modified Genetic Algorithm (MGA)

3.3.3.1 Overview of Modified Genetic Algorithm (MGA)

The Modified Genetic Algorithm (MGA) is inspired by Darwin’s theory of natural
selection, where the fittest individuals are selected for reproduction to produce
offspring of the next generation [33]. In the context of Virtual Machine Placement
(VMP), MGA evolves a population of candidate solutions to find an optimal or near-
optimal mapping of VMs to physical hosts in a data center. Each solution is called a
chromosome, and it represents a specific VM placement configuration.

The algorithm operates over multip”’e ge’erations, where each generation evolves
through the core genetic operations: selection, crossover, and mutation. In each
generation, parent chromosomes are selected based on their fitness scores, which aims
to minimise the number of overutilised and underutilised. The crossover operation then
combines two parent solutions to create new offspring by exchanging VM placement
segments. To maintain diversity and prevent premature convergence, mutation
introduces small random changes in the offspring’s VM assignments. After generating
a new population, all individuals are re-evaluated, and the process continues for a
predefined number of generations. Ultimately, the best chromosome from the final

generation is decoded into an optimal or near-optimal VM-to-host mapping.

3.3.3.2 Initialisation of parameters of MGA
In the MGA-based VM allocation and migration algorithm, there are several key
parameters that influence the behaviour and performance of the solution construction

process. Table 3-3 shows the main parameters in this algorithm:

Parameters Value Description
iterations/generations 100 | Number of generations the MGA algorithm
runs.
populationSize 10 Number of chromosomes (solutions) in each
generations.
Wi 0.5 Weight assigned to the number of underutilized
hosts in the fitness function.
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W» 0.5 Weight assigned to the number of overutilized

hosts in the fitness function.

€ 0.2 € controls how strictly hosts are classified as
over- or underutilized by shrinking the

utilization thresholds toward the average.

mutationRate 0.1 Probability of applying mutation to a
chromosome.
hasMigratedOnce false | Flag to restrict migration to once per simulation.

Table 3-3: Parameters of the MGA-based Algorithm.

3.3.3.3 VM allocation and migration rule (MGA)

A. Identification and Classification of Overutilised and Underutilised Hosts
Unlike the other two algorithms (ACO and PSO), where overutilisation and
underutilisation thresholds are set from the beginning, MGA performs dynamic
identification and classification of overutilized and underutilized hosts using a
statistical approach based on the Moving Range (MR) technique. First, it computes the
average utilization and standard deviation from the collected CPU utilisation of each
physical hosts to capture the central tendency and variability of resource usage. After
that, the Upper Control Limit (UCL) and Lower Control Limit (LCL) are determined
using the 3-sigma rule as shown in equation (16) and (17), where p represents the
average utilisation and ¢ represents the standard deviation:

UCL=p+ 30 (16)

LCL=u—-30 17)
These limits represent the natural operating bounds for host utilization under normal
conditions. The limits are further adjusted using an epsilon (€) factor, which is used to
increase or reduce the sensitivity to workload changes. The thresholds are calculated as

shown in equation (18) and (19):

Overutilisation Threshold = (1 — ) X UCL (18)
Underutilisation Threshold = (1 — &) X LCL (19)
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Finally, hosts with utilization above the upper threshold are classified as overutilized,
while those below the lower threshold are classified as underutilized. Hosts within the
thresholds are considered fairly loaded.

B. Encoding and Initialisation of Population

In the MGA, the VM placement solution is encoded as chromosomes. A chromosome
consists of multiple genes, each representing the physical host assigned to a specific
VM, directly mapping all VMs to their allocated hosts. The Initial Population
Generation Strategy initializes the chromosome population by dividing VMs into two
groups: those hosted on underutilized or overutilized hosts, and those on normally
utilized hosts. Those in the second group retain their original placement to preserve
high-fitness individuals, while the first group undergoes a random search to maintain

diversity.

C. Fitness Function (MGA algorithm)
The fitness function in the MGA is designed to reduce energy consumption and improve
resource utilization. This is achieved using a weighted sum of two key metrics: the
number of underutilised physical hosts (NUU) and the number of overutilised physical
hosts (NOU). For each chromosome, the algorithm calculates the total CPU utilisation
per host based on the VM-to-host mapping. It then compares each host’s utilisation
against predefined thresholds to count underutilised and over-utilised hosts. The
objective value is computed as shown in equation (20):

Fopj(x) = Wy x NUU(x) + W, * NOU(x) (20)
In the equation, Wi and W» are the weights assigned to NUU and NOU respectively,
while x represents a chromosome in the population. The final fitness score is inversely
proportional to the objective value, ensuring that solutions with fewer underutilised and

overutilised hosts receive higher fitness values.

D. Parent Selection

Parent selection in the Modified Genetic Algorithm (MGA) is performed using the
roulette wheel selection method, where the probability of selecting an individual as a
parent is proportional to its fitness value. This ensures that fitter chromosomes have a
higher likelihood of being chosen for reproduction, thereby promoting the propagation

of high-quality solutions in subsequent generations. The selection process calculates
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the cumulative fitness across the population and chooses a parent when the cumulative
value surpasses a randomly generated threshold. This probabilistic mechanism

maintains diversity while guiding the search toward optimal or near-optimal solutions.

E. VM Placement Crossover

Crossover is performed in MGA to improve VM distribution by combining allocation
patterns from two parent solutions. The process begins by identifying the high-fitness
parent (better solution) and the low-fitness parent (worse solution) between the two
chosen parents. From the low-fitness parent, physical hosts in the underutilized and
overutilized categories are selected, along with the VMs hosted on them. The selected
VMs are then migrated to the corresponding hosts of the high-fitness parent, provided
that the resource constraints are satisfied. This targeted reassignment ensures that
poorly placed VMs from the low-fitness parent benefit from the better allocation

decisions in the high-fitness parent, leading to improved offspring quality.

F. VM Placement Mutation

In Genetic Algorithms (Gas), mutation introduces small random changes to candidate
solutions to maintain diversity and prevent premature convergence. The mutation
approach in the MGA targets physical hosts classified as underutilised or overutilised
and relocates their VMs to the most suitable host in the fair group that meets the VM’s
resource constraints. During this process, each VM on underutilized or overutilized
hosts is considered for mutation with a fixed mutation rate. Candidate PMs from the
fair group are evaluated based on available resources, and the VM is migrated to the
one with the highest free CPU capacity while ensuring feasibility. This strategy helps
maintain population diversity while improving VM placement efficiency in subsequent

generations.
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3.3.3.4 Single Iteration of MGA

A single iteration of the Modified Genetic Algorithm (MGA) begins with a population
of candidate solutions, each represented as a chromosome encoding a VM-to-host
placement. The process starts by generating an initial population and evaluating the
fitness of each chromosome according to the defined objective function. Within each
generation, two parent chromosomes are selected using a selection method that favours
higher-fitness solutions. These parents undergo the problem-specific crossover
operation, where VM placements from underutilized and overutilized PMs in the lower-
fitness parent are reassigned to corresponding PMs in the higher-fitness parent. The
resulting offspring chromosome is then subjected to mutation, which may relocate
selected VMs from overloaded or underloaded PMs to suitable PMs in the fair group to
maintain diversity. After all offspring for the new generation are created, their fitness
values are recalculated, and the population is replaced by this new set of solutions. This
process is repeated for a predefined number of generations. At the end of the iterations,
the best-performing chromosome is decoded to produce the final VM-to-PM allocation

map. Figure 3-7 below shows the flowchart of one iteration cycle of the MGA.

Generate initial Carry out mutafion on
population of offspring
chromosomes; chromosome;

h 4

Evaluate fitness of
initial population;

Math.random() <
mutationRate?

Y
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Initialize empty operation between Assign offspring to

Replace population arra;élist na?ed Tt Salantag newGenEr;ition
i ion: newGeneration; arraylist;
with newGeneration; chromosomes: Y

Y

Y

Evaluate the fitness
value of
chromosomes in the
newGeneration;

Select two parent
chromosomes;

newGeneration size() <
population.size();

Figure 3-7: Flowchart of one iteration cycle of the MGA.
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3.3.3.5 Complete MGA-based VM Allocation and Migration Algorithm

This section presents the complete flow of the proposed MGA-based VM Allocation

and Migration Algorithm. The following flowchart in Figure 3-8 illustrates the step-by-

step process of the complete algorithm.
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Figure 3-8: Complete MGA-based Algorithm Flowchart.
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Chapter 4
System Design

This chapter presents the overall design of the proposed system for energy-efficient
VM allocation and migration in data centres. It begins with the problem formulation,
outlining the optimisation objectives and constraints. The main system components are
then described, followed by a system block diagram to illustrate the data flow and
interactions. Finally, the chapter provides a visualisation of algorithm behaviour,

showcasing the ideal behaviour of the implemented bio-inspired algorithms.

4.1 Problem Formulation

The core problem addressed in this project is the efficient allocation and migration of
Virtual Machines (VMs) to physical servers within a data centre environment. The goal
is to optimise resource utilisation while minimising power consumption of physical
servers. To achieve this, the problem is formulated as an optimisation task where a set
of VMs, each with specific resource requirements (CPU, memory, storage, bandwidth),
must be assigned to a set of available physical servers/hosts in a way such that the
resource utilisation (CPU, memory utilisation) is optimised, and power consumption is

minimised.

Inputs:

1. A list of physical servers/hosts P, where P = {PM;| 1 <1 < |P|}. Each physical
server/host 1s represented as PM; and its CPU, memory, storage and bandwidth
capacity is represented as PM;¢, PM;™, PM, and PM:® respectively. The current
CPU, memory, storage and bandwidth usage of PM; is represented as PM;,
PM™, PM;*, and PM;™.

2. A list of Virtual Machines V, where V = {VM;| 1 <j < |V|}. Each VM is
represented as VM; and its CPU, memory, storage and bandwidth capacity is
represented as VM;¢, VM;™, VM3, and VM respectively.

3. Alist of Cloudlets C, where C = {C¢| 1 <t <|C|}.
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Objectives:

The main objective is to determine an optimal virtual machine (VM) placement plan
where the power consumption across all physical servers are minimised. Thus, a power
model to measure power consumption is constructed. The total power consumption of

all physical servers is defined in equation (21):

z E(PM)) (21)

where E (PM;) is the power consumed by PM; as shown by the power model in equation
(22).

E(PM;) = k; = "™ + (1 — k;) = "™ * (22)
where e/*** is the maximum power consumed by PM; when the server’s utilisation is
maximum; kj is the fraction of power consumption when the server is in idle or static
mode, whereas ; is the CPU utilisation of PM;. The CPU utilisation of PM;j, ; is

defined as shown in equation (23):
B PM*
M= pme

0< <1 (23)

An overutilisation and underutilisation threshold is set to identify physical servers that
are either overloaded/overutilised or underloaded/underutilised. A host is considered
overutilised if its CPU utilisation is over 80%, while a host is considered underutilised
if its CPU utilisation falls below 20% as shown in equation (24).

PM,; is overutilised if y; > 0.8 and underutilised if p; < 0.2 (24)
In this project, the average power consumption, CPU utilisation and RAM utilisation is
used as key metrics to measure the performance of the proposed method. They are

computed using equation (25), (26) and (27).

|P|
AvgPower = %Z E(PM;) (25)
i=1
1 1P|
AvgCPU = WZ W (26)
i=1
|P|
1~ PM™
AvgRAM = WZ PM (27)
i=
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Constraints:

VM, can only be placed in PM; if and only if PM; satisfies the resource requirements
(CPU, memory, storage and bandwidth) of VM; as shown in equation (29), (30), (31)
and (32). The total usage, including the assigned VM, must not exceed the PM’s
resource capacity. Additionally, each VM can only be placed in one and only one

physical server (PM) as shown in equation (28).

1, if VM; is placed in PM; _ . .
= Vi € PandVj € V 28
Xij {0, Otherwise : ane v (28)
14
Z VMS .x;; + PMS < PM§ (29)
=1
vl
=1
vl
Z VM .x;j + PM* < PM; (31)
=1
14!
Z VM? . x;; + PMP < PM? (32)
=1

4.2 Main System Components
This project simulates a data centre environment to evaluate the performance of the
proposed VM allocation and migration algorithms based on ACO, PSO and MGA. The

system consists of the following core components:

1. Data Centre

The data centre is the central component of the simulation environment and represents
the physical infrastructure in a data centre environment. It is responsible for hosting
multiple physical servers (hosts) and managing the allocation and execution of VMs
and cloudlets (user workloads). In this project, CloudSim Plus provides a built-in
Datacenter class, which is used to model the data centre. This class supports the
configuration of the data centre, including the lists of hosts and the VM allocation

policy that defines how VMs are distributed across the available hosts.
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2. Data Centre Broker

The data centre broker act as the intermediary between users and the data centre/cloud
infrastructure. Its main role is to manage the submission and scheduling of VMs and
cloudlets on behalf of the users. In this project, the responsibility of broker is to receive
a list of VMs and cloudlets and decide where to place them based on the allocation
policy. The DataCenterBroker class in CloudSim Plus is used to represent this

component.

3. Hosts (Physical Servers)

In CloudSim Plus, hosts represent the physical servers in a data centre. These hosts are
responsible for providing VMs with necessary computational resources such as CPU,
memory, bandwidth and storage. Each host can be configured using the Host class in
CloudSim Plus. Possible configurations include the number of CPU cores, the Million
instructions per second (MIPS) capacity of each core, memory (RAM) capacity, storage
capacity and network bandwidth. The power model of the hosts can also be configured
by extending the PowerModelHostAbstract class. Multiple VMs can run concurrently
on a single host if the VmScheduler attribute of the host is set to
VmSchedulerTimeShared(). The scheduler allows for time-sharing where each VM is

allocated a slice of the host’s CPU resources.

4. Virtual Machines (VMs)

Virtual Machines (VMs) represent the logical abstraction of computing resources
within a physical host. A VM provides a platform for running user workloads, such as
cloudlets (tasks or jobs). In CloudSim Plus, VMs are configured using the Vm class
and can be configured with specific attributes such as number of CPU cores, MIPS
capacity per core, RAM capacity, storage capacity and network bandwidth. After they
are configured, the list of VMs is submitted to the data centre broker to be allocated to
physical hosts. A VM can only be allocated to a host if the host has sufficient resources
to host the VM. Like the VmScheduler attribute of hosts, if the CloudletScheduler
attribute of the VM is set to CloudletSchedulerTimeShared(), multiple cloudlets can

run concurrently on a single VM.
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5. Cloudlets (Tasks/User Workloads)

A cloudlet in CloudSim Plus represents a unit of workload or task that is submitted by
a user to be executed on a VM. Like a real-world application or computational job,
cloudlets consume resources such as CPU time, memory, and bandwidth. In this
project, cloudlets are used to simulate user jobs running on VMs hosted in a data centre.
CloudSim Plus provides a Cloudlet class which allows users to configure cloudlet
attributes such as cloudlet length in MIPS, number of Processing Elements which is the
number of CPU cores required to execute the task, and input and output sizes in bytes.
Cloudlets are submitted to the broker and assigned to VMs by the broker after they are

configured.

6. VM Allocation Policy

The VM allocation policy in CloudSim Plus defines the strategy used to allocate and
migrate VMs to physical hosts within the data centre. In this project, three custom VM
allocation and migration policy is implemented by extending CloudSim Plus’s

VmAllocationPolicyMigrationAbstract class.

4.3 System Block Diagram
The block diagram in Figure 4-1 illustrates the architecture of a cloud data centre
system configured in CloudSim Plus. The system includes multiple layers, including

user interaction, VM management and physical infrastructure.

DATA CENTRE

VM ALLOCATION AND MIGRATION ALGORITHM

VMs Allocation VMs Migration

USER I

VM Migraion |

HOST1 HOST 2 HOST 3
DATA CENTRE H
U3Ek BROKER ¢ Mo
VM 1 VM 3 VM3

Cloudlet 1

USER : Cloudlet 3 Cloudlet 3

VM 2
VM 4

Cloudlet 2

Cloudlet 4 Cloudlet 5

Figure 4-1: Block Diagram of System Configuration in CloudSim Plus.
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1. User layer
e Users interact with the cloud data centre by submitting cloudlets (tasks)
e The Data Centre Broker acts as the intermediary, managing user requests and
assigning cloudlets to appropriate VMs.
2. VM management
e The system employs a bio-inspired algorithm (ACO, PSO or MGA) to optimise
VM allocation and migration. The algorithm receives hosts’ and VMs’
information such as CPU utilisation, memory utilisation, bandwidth and storage
requirements, and computes an optimal migration plan to reduce power
consumption.
3. Physical infrastructure
e The physical infrastructure consists of a data centre that consists of multiple
hosts/physical servers. Each server can host multiple VMs and each VMs can

execute multiple cloudlets/tasks.

4.4  Visualisation of algorithm behaviour

Figures 4-2 and 4-3 illustrate the VM placement and behaviour of the ACO-, PSO- and
MGA-based VM allocation and migration algorithms before and after the migration
process. Although each algorithm follows a different optimisation strategy, all three
share the same goal: to balance resource utilisation, reduce number of active hosts and

reduce overall data center power consumption.

HOST1 HOST 2 HOST 3 HOST 4 HOST 5
VM1 VM 5 VM7 VM 8 VM 9
VM 2 VM &

VM 3
VM 4

Utilisation: Utilisation: Utilisation: Utilisation: Utilisation:
85% 40% 15% 20% 15%

Figure 4-2: VM placement before migration process.
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e Before migration:

The data centre consists of five hosts with the following utilisation levels: Host 1 (85%),
Host 2 (40%), Host 3 (15%), Host 4 (20%), Host 5 (15%). Here, Host 1 is considered
overloaded (utilisation > 80%), while Host 3 and Host 4 are considered underloaded
(utilisation < 20%). These source hosts are candidates for VM migration to improve

overall resource balance and energy efficiency.

HOST 1 HOST 2 HOST 3 HOST 4 HOST 5
i 1 ]
VM1 VM 5 i M7 : VM 8 /. VM 9
VM 2 VM 6 K vm7
VM 3 n VM 4 VM 9
VM 4
Utilisation: Utilisation: Utilisation: Utilisation: Utilisation:
60% 65% 0% 50% 0%
_—
VM Migration

Figure 4-3: VM placement after migration process.
e After migration:
After applying the ACO-based VM allocation and migration algorithm, the new
utilisation values are: Host 1 (60%), Host 2 (65%), Host 3 (0%), Host 4 (50%), Host 5
(0%). The algorithm migrated VMs from the overloaded Host 1 and underloaded Hosts
3 and 5 to more suitable target hosts (e.g., Host 2), which had moderate utilisation and

could absorb additional workloads without becoming overloaded.
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Chapter 5

Experiment/Simulation

This chapter discusses the experimental setup and simulation process used to evaluate
the performance of the proposed bio-inspired VM allocation and migration algorithms.
It begins with the initial setup and configuration, followed by the verification plan,
detailing server specifications, VM configurations, and cloudlet workloads. Two main
test cases are considered: a homogeneous data centre setup and a heterogeneous data
centre setup, each designed to assess the algorithms under different infrastructure
conditions and workload scenarios. Finally, the chapter highlights implementation

issues and challenges encountered during the simulation process.

5.1 Initial Setup and Configuration
The preliminary work of this project begins with the initial setup and configuration of
the development environment. The project uses Java as the primary programming
language and is built using Apache Maven, a widely used project management and
build automation tool for Java-based projects. Eclipse IDE was selected as the
development platform as it supports Maven integration. The initial setup involves
creating a Maven-based project in Eclipse and installing the necessary dependencies
through the pom.xml file. This setup ensures that the project structure follows standard
conventions, and all required libraries are automatically managed.

e Creating a Maven Project in Eclipse: Create a Maven project in Eclipse,
specifying details like Group Id, Artifact Id, and Version.

e Libraries and Dependencies Required for Project: This project utilises several
essential libraries and dependencies and manages them through Maven. The
dependencies are CloudSim Plus 8.5.5, org.json version 20220320, and SLF4J
(Simple Logging Facade for Java) version 2.0.17. These dependencies are declared

in the pom.xml file as shown in Figure 5-1.
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Figure 5-1: Dependencies of the Project.

5.2 Verification Plan

org.cloudsimplus
cloudsimplus
8.5.5

org.json

json
20220320

org.slf4j
slf4j-api
2l =)ok

A comprehensive verification plan is established to ensure that proposed VM allocation

and migration algorithm functions correctly under different conditions and

configurations. The test plan is designed to evaluate the algorithm’s behaviour with

different server specifications, VM types and cloudlet workloads. The primary

objective is to verify the effectiveness of the algorithm in terms of power consumption

and resource utilisation across varying scenarios.

5.2.1 Server Specification

Three types of servers are simulated in the CloudSim Plus framework to represent a

realistic data centre environment. Each server model is based on currently popular

server models in the data centre space and has different specifications in terms of CPU

cores, Million instructions per second (MIPS), memory and power characteristics.

Table 5-1 below shows the server specifications.

Server Model Dell PowerEdge R740 HPE ProLiant DL380 Supermicro SuperServer
Genl0 1029U-TR4
Processor Xeon Gold 6248R —2 x Intel Xeon Platinum Xeon Silver 4214R -2 x
24 cores (48 total) 8280M — 2 x 28 cores 12 cores (24 total)
(56 total)
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RAM 256 GB 256 GB 256 GB
Storage 15TB SSD 15TB SSD 20TB SSD
Bandwidth 100 Gbps 100 Gbps 100 Gbps
MIPS/Core ~3000 MIPS/Core ~2700 MIPS/Core ~2400 MIPS/Core
(3.0GHz) (2.7GHz) (2.4GHz)
Power e Static Power: 300 W | e  Static Power: 350 W | e  Static Power: 200 W
Characteristics | e Max Power: 600 W | o Max Power: 700 W | e Max Power: 400 W

Startup Power: 400
Y
Shutdown Power: 50
Y

Startup Power: 450
Y
Shutdown Power: 50
W

Startup Power: 300
Y
Shutdown Power: 50
W

Table 5-1: Server Specifications.

5.2.2 Virtual Machine Specifications and Cloudlet Configuration

To evaluate the performance of the proposed VM allocation and migration algorithms,

three distinct types of VMs, each representing different workload intensities are

configured. They are categorized into three VM types — LIGHT, MEDIUM and HIGH

and they are designed with varying computational and memory demands. The user

workloads in CloudSim Plus are represented as cloudlets and each cloudlet has its own

characteristics such as instruction length (in MIPS), processing elements (number of

cores), input file size and output file size. In this simulation, cloudlets are also

categorized into three types — LIGHT, MEDIUM and HIGH to represent its resource

demands. Table 5-2 shows the VM specifications and cloudlet requirements.

Bachelor of Computer Science (Honours)
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Component Attribute LIGHT | MEDIUM | HIGH
Number of Processing Elements | 5 A
(Cores)

MIPS/Core 1000 2000 2400
VM RAM (GB) 2 4 8

Storage (GB) 50 100 200

Bandwidth (Mbps) 500 1000 2000
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Instruction Length (MIPS) 100000 500000 1000000
Number of Processing Elements . 5 A
Cloudlet (Cores)
Input File Size (Bytes) 10000 25000 50000
Output File Size (Bytes) 2500 5000 10000

Table 5-2: Virtual Machine Specifications and Cloudlet Requirements.

5.2.3 Test Case 1: Homogeneous Data Centre Setup

To evaluate the performance and behaviour of the proposed VM allocation and
migration algorithms, a homogeneous data centre configuration is used. This setup
ensures that all physical servers/hosts are of the same type, with the same specifications
to provide a controlled environment for testing algorithm behaviour under consistent
hardware conditions. To assess the system under varying workload intensities, four
separate scenarios are defined, each introducing a combination of LIGHT, MEDIUM,
and HIGH cloudlets and corresponding VMs. The number of VMs and cloudlets
increases progressively across scenarios to simulate different load levels. This test case
will be tested on the data centre’s baseline VM allocation policy and the three proposed
VM allocation and migration algorithms. Table 5-3 shows the parameters and details

of Test Case 1.

Parameters Details
Data Centre Type Homogeneous
Number of physical hosts 20 (To simulate a data centre pod)
Host Model Dell PowerEdge R740
Host Specifications (Refer to Server Specifications section)
Number of VMs e Scenario 1: 100 LIGHT VMs, 50

MEDIUM VMs, 10 HIGH VMs
e Scenario 2: 250 LIGHT VMs, 100
MEDIUM VMs, 30 HIGH VMs
e Scenario 3: 500 LIGHT VMs, 200
MEDIUM VMs, 60 HIGH VMs
e Scenario 4: 700 LIGHT VMs, 250
MEDIUM VMs, 60 HIGH VMs

VM Specifications (Refer to VM Specifications section)
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Number of Cloudlets

e Scenario 1: 100 LIGHT Cloudlets, 100

e Scenario 2: 250 LIGHT Cloudlets, 250

e Scenario 3: 500 LIGHT Cloudlets, 500

e Scenario 4: 800 LIGHT Cloudlets, 600

MEDIUM Cloudlets, 100 HIGH
Cloudlets

MEDIUM Cloudlets, 250 HIGH
Cloudlets

MEDIUM Cloudlets, 500 HIGH
Cloudlets

MEDIUM Cloudlets, 600 HIGH
Cloudlets

Cloudlet Specifications

(Refer to Cloudlet Specifications section)

Evaluation Algorithms

e Baseline VM Allocation Policy
e Proposed ACO-based Policy
e Proposed PSO-based Policy
e Proposed MGA-based policy

Table 5-3: Homogeneous Data Centre Test Case.

5.2.4 Test Case 2: Heterogeneous Data Centre Setup

To evaluate the performance and behaviour of the proposed VM allocation and

migration algorithms, a heterogeneous data centre configuration is used. In this setup,

physical servers are of different models and specifications, including Dell PowerEdge

R740, HPE ProLiant DL380 Genl0, and Supermicro SuperServer 1029U-TR4. This

reflects a more realistic data centre environment where hardware diversity exists. The

same four scenarios in Test Case 1 are reused in Test Case 2. Similarly, this test case

will be tested on the data centre’s baseline VM allocation policy and the three proposed

VM allocation and migration algorithms. Table 5-4 shows the parameters and details

of Test Case 2.

Parameters

Details

Data Centre Type

Heterogeneous

Number of physical hosts

20 (To simulate a data centre pod)

Host Model

e Dell PowerEdge R740 (8 hosts)
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e HPE ProLiant DL.380 Gen10 (6
hosts)

e Supermicro SuperServer 1029U-

TR4 (6 hosts)

Host Specifications

(Refer to Server Specifications section)

Number of VMs (per scenario)

e Scenario 1: 100 LIGHT VMs, 50
MEDIUM VMs, 10 HIGH VMs
e Scenario 2: 250 LIGHT VMs, 100
MEDIUM VMs, 30 HIGH VMs
e Scenario 3: 500 LIGHT VMs, 200
MEDIUM VMs, 60 HIGH VMs
e Scenario 4: 700 LIGHT VMs, 250
MEDIUM VMs, 60 HIGH VMs

VM Specifications

(Refer to VM Specifications section)

Number of Cloudlets

e Scenario 1: 100 LIGHT Cloudlets, 100

MEDIUM Cloudlets, 100 HIGH
Cloudlets

e Scenario 2: 250 LIGHT Cloudlets, 250

MEDIUM Cloudlets, 250 HIGH
Cloudlets

e Scenario 3: 500 LIGHT Cloudlets, 500

MEDIUM Cloudlets, 500 HIGH
Cloudlets

e Scenario 4: 800 LIGHT Cloudlets, 600

MEDIUM Cloudlets, 600 HIGH
Cloudlets

Cloudlet Specifications

(Refer to Cloudlet Specifications section)

Evaluation Algorithms

e Baseline VM Allocation Policy
e Proposed ACO-based Policy
e Proposed PSO-based Policy
e Proposed MGA-based policy

Table 5-4: Heterogeneous Data Centre Test Case.
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53 Implementation issues and Challenges

Implementing ACO, PSO, and MGA-based VM allocation and migration algorithms in
a simulated data centre environment presents several implementation issues and
challenges. One of the primary challenges is the simulation complexity. Simulating a
realistic data centre environment using CloudSim Plus requires a deep understanding
of its architecture, classes, and event-driven simulation model. Misconfigurations in
essential components such as hosts, VMs, or cloudlets can lead to inaccurate results,
unexpected behaviour, or even simulation failures. Since the three algorithms are tested
under both homogeneous and heterogeneous data centre environments, achieving
accurate modelling becomes even more demanding.

Another significant challenge lies in the validation and benchmarking process.
Evaluating the effectiveness of the ACO, PSO, and MGA algorithms requires extensive
testing and comparison against the baseline VM allocation policy provided by
CloudSim Plus. To ensure fair and meaningful comparisons, all simulations must be
conducted under identical conditions with consistent workloads, VM configurations,
and server setups. Designing, running, and analysing these benchmarks is a time-
consuming and complex process.

Additionally, the abundance of migration possibilities poses a critical challenge. All
three algorithms need to evaluate numerous potential migration plans by considering
every possible combination of source hosts, VMs, and target hosts. As the number of
VMs and hosts increases, the number of possible solutions grows exponentially, which
significantly impacts execution time and scalability. ACO relies on pheromone trails to
guide optimal migration, PSO continuously adjusts positions based on personal and
global bests, and MGA explores multiple crossover-based combinations. Despite their
unique approaches, all three algorithms face computational challenges when handling

large-scale data centre environments.
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Chapter 6

System Evaluation and Discussion

This chapter presents the evaluation and discussion of the proposed bio-inspired VM
allocation and migration algorithms. It begins by defining the system performance
metrics used for assessment and then analyses the simulation results across both
homogeneous and heterogeneous data centre setups under various workload scenarios.
Detailed comparisons are made for CPU utilisation, RAM utilisation, average power
consumption, and total power consumption across different scenarios. The chapter
further summarises the energy savings achieved by the ACO, PSO, and MGA policies
compared to the baseline. Finally, it highlights the limitations of the simulation,
evaluates the achievement of the project objectives, and discusses the novel

contributions introduced by this work.

6.1 System Performance Definition
System performance in this project is evaluated based on key metrics such as resource

utilisation and power consumption in data centre.

e Resource Utilisation:

Resource utilisation measures how efficiently resources such as CPU, memory and
bandwidth are used in the physical servers, also known as hosts. These metrics are
important in data centre/cloud computing environments as they directly impact the
performance and energy consumption of data centres. In this project, resource
utilisation is measured using the built-in features of the CloudSim Plus framework. The
framework provides the utilisation statistics of the CPU usage and memory allocation
of each host and virtual machine in the data centre. This enables continuous monitoring
and assessment of how well the proposed algorithm in improving resource utilisation

across physical servers to ensure better energy efficiency and performance.

e Power consumption:
Power consumption is a key metric for this project as the project’s main objective is to

reduce power consumption and improve energy efficiency in data centres. In this
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project, a linear power model is developed to measure the power consumption of each
physical servers/hosts in the data centre simulation environment. The study in [3]
pointed out that power consumption of servers can be assumed to increase linearly with
its CPU utilization while an idle but powered on server can consume around 50-70%
of the energy used when operating at maximum capacity. Thus, a power model based
on the above information is implemented within the CloudSim Plus framework to
estimate the mean power consumption by each host based on its mean CPU utilisation.
This analysis helps determine the feasibility of the proposed algorithm in reducing the

overall power consumption in data centres.

6.2 Simulation results

To evaluate the effectiveness of the proposed metaheuristic-based VM allocation and
migration algorithms: Ant Colony Optimisation (ACO), Particle Swarm Optimisation
(PSO), and Modified Genetic Algorithm (MGA), a series of simulations were
conducted across two test cases: a homogeneous data centre configuration and a
heterogeneous data centre configuration. For each test case, four scenarios were defined
with progressively increasing numbers of VMs and cloudlets to simulate varying
workload intensities (as detailed in Section 5.2.3: Test Case 1 and Section 5.2.4: Test
Case 2). In each scenario, simulations utilised 20 physical servers and were repeated 30
times to ensure statistical reliability. The performance of the three algorithms was
compared against the baseline data centre VM allocation policy across key evaluation
metrics, including: Average CPU utilisation and Average RAM utilisation of all active
servers, Average power consumption of all active servers and Total power consumption
of all servers. The results presented in this section provide insights into how each

algorithm performs under different workload intensities.

6.2.1 Simulation Results for Homogeneous Data Centre Test Case

This section presents the simulation results for the homogeneous data centre test case,

where all physical servers have identical hardware configurations. The performance of

the proposed ACO, PSO, and MGA-based VM allocation and migration policies is

compared against the baseline VM allocation policy across four workload scenarios.

Key metrics such as average CPU and RAM utilisation, average power consumption
68

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 6

and total power consumption are analysed to evaluate the effectiveness of each

algorithm in optimising resource usage and improving energy efficiency.

6.2.1.1 Average CPU utilisation of all active servers across different scenarios

The simulation results for average CPU utilisation across all active servers show that
two bio-inspired policies (PSO and MGA) consistently outperform the baseline VM
allocation policy in all scenarios. The baseline policy records the highest CPU
utilisation, reaching 37.85% in Scenario 4, indicating inefficient resource distribution
under heavy workloads. Among the proposed algorithms, MGA achieves the lowest
CPU utilisation across most scenarios, closely followed by PSO. The ACO-based
policy shows comparatively higher utilisation in lighter workload scenarios because it
consolidates VMs onto fewer active servers, allowing underutilised hosts to shut down
and thereby saving power. Despite this, ACO still demonstrates significant
improvements over the baseline in heavier workload scenarios. Overall, all three
algorithms enhance resource efficiency, with MGA and PSO achieving the most
substantial reductions in CPU utilisation. Table 6-1 and Figure 6-1 show the Average
CPU Utilisation (%) of all active servers across different scenarios in Homogeneous

Data Centre Setup.

Average CPU Utilisation (%) of all active servers
Policy Scenario
+ stdev
Scenario 1 6.88
Baseline VM Scenario 2 16.29
allocation policy Scenario 3 32.57
Scenario 4 37.85
Scenario 1 20.98 + 7.63
ACO-based VM :
Scenario 2 17.80 £ 6.55
allocation and
o . Scenario 3 10.95+3.90
migration policy
Scenario 4 9.36 £2.93
Scenario 1 3.16 £2.68
PSO-based VM
Scenario 2 476 £1.94
allocation and
o _ Scenario 3 9.44+2.97
migration policy
Scenario 4 7.53+2.78
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Scenario 1 226 +0.17
MGA-based VM
Scenario 2 10.88 + 1.71E-15
allocation and
Scenario 3 7.69 + 4.38E-15
migration policy
Scenario 4 6.32 +4.10E-15

Table 6-1: Average CPU Utilisation (%) of all active servers across different

scenarios in Homogeneous Data Centre Setup.

Average CPU Utilisation (%) of all active servers across
different scenarios in Homogeneous Data Centre Setup
< 40
S
g
T
N 30
E
; 25
A ==@=Baseline
z 20
o ACO
5 ——PS0
< 10 —=@=)MGA
5
0
1 2 3 4
Scenario

Figure 6-1: Average CPU Utilisation (%) of all active servers across different

scenarios in Homogeneous Data Centre Setup.

6.2.1.2 Average RAM utilisation of all active servers across different scenarios

The results for average RAM utilisation across all active servers indicate that the three
proposed algorithms (ACO, PSO, and MGA) exhibit distinct behaviours compared to
the baseline policy. The baseline VM allocation policy shows steadily increasing RAM
usage, reaching 55.56% in Scenario 4, suggesting less efficient resource balancing
under heavy workloads. The ACO-based policy maintains relatively high but stable
RAM utilisation across all scenarios (53—56%), primarily because it consolidates VMs
onto fewer active servers to shut down underutilised hosts and save power. Similarly,
PSO achieves higher RAM usage under lighter workloads due to VM consolidation but
approaches the baseline levels in higher workload scenarios. MGA shows the lowest

utilisation in Scenario 1 but records the highest RAM usage in Scenarios 2—4, indicating
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that it prioritises VM consolidation and CPU optimisation over memory efficiency.

Overall, while all three algorithms outperform the baseline in CPU optimisation, ACO

leverages high RAM utilisation for energy savings, PSO balances both CPU and RAM,

and MGA focuses primarily on CPU efficiency. Table 6-2 and Figure 6-2 show the

Average RAM Utilisation (%) of all active servers across different scenarios in

Homogeneous Data Centre Setup.

Average RAM Ultilisation (%) of all active
Policy Scenario
servers = stdev
Scenario 1 9.26
Baseline VM Scenario 2 22.00
allocation policy Scenario 3 43.99
Scenario 4 55.56
Scenario 1 55.53+1.12
ACO-based VM :
Scenario 2 53.82 +2.84
allocation and
o ) Scenario 3 5341+£1.22
migration policy
Scenario 4 55.81+1.09
Scenario 1 13.68 +£2.65
PSO-based VM :
Scenario 2 22.88 +£1.60
allocation and
o ) Scenario 3 41.02+0.76
migration policy
Scenario 4 5421 £0.35
Scenario 1 12.33+£0.82
MGA-based VM :
Scenario 2 62.88 £ 2.46E-14
allocation and
o ) Scenario 3 62.96 £ 3.67E-14
migration policy
Scenario 4 65.51 + 1.69E-14

Table 6-2: Average RAM Utilisation (%) of all active servers across different
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Average RAM Utilisation (%) of all active servers across
different scenarios in Homogeneous Data Centre Setup.
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Figure 6-2: Average RAM Ultilisation (%) of all active servers across different

scenarios in Homogeneous Data Centre Setup.

6.2.1.3 Average power consumption of all active servers across different
scenarios

The average power consumption results reflect the direct relationship between CPU
utilisation and server energy usage, where higher CPU utilisation translates to higher
dynamic power consumption. The baseline policy records the highest overall power
usage, peaking at 413.55 W in Scenario 4 due to inefficient VM distribution and a larger
number of active servers. The ACO-based policy shows a clear downward trend in
power consumption across scenarios (From 362.95 W in Scenario 1 to 328.09 W in
Scenario 4), driven by its strategy of consolidating VMs and shutting down
underutilised hosts. PSO consistently maintains lower power usage than both the
baseline and ACO, achieving balanced CPU loads while keeping energy consumption
stable. MGA records the lowest power usage in light workloads (306.79 W in Scenario
1) and remains energy-efficient in heavier scenarios. Table 6-3 and Figure 6-3 below
demonstrate the Average Power Consumption (Watts) of all active servers across

different scenarios in Homogeneous Data Centre Setup.
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Average Power Consumption (Watts) of all
Policy Scenario
active servers = stdev
Scenario 1 320.63
Baseline VM Scenario 2 348.86
allocation policy Scenario 3 397.71
Scenario 4 413.55
Scenario 1 362.95+22.90
ACO-based VM .
Scenario 2 35341 +£19.66
allocation and
o ) Scenario 3 33285+ 11.71
migration policy
Scenario 4 328.09 + 8.80
Scenario 1 309.49 + 8.03
PSO-based VM
Scenario 2 31427 +£5.82
allocation and
o ] Scenario 3 328.33+8.90
migration policy
Scenario 4 322.58 £ 8.34
Scenario 1 306.79 £ 0.52
MGA-based VM
Scenario 2 332.65+ 6.76E-14
allocation and
o ) Scenario 3 323.08 + 1.49E-14
migration policy
Scenario 4 318.96 + 1.05E-13

Table 6-3: Average Power Consumption (Watts) of all active servers across different

scenarios in Homogeneous Data Centre Setup.

440
420
400
380
360
340
320

Average Power Consumption (Watts)

300
280

Average Power Consumption (Watts) of all active servers
across different scenarios in Homogeneous Data Centre

/ ——PS0
—8—MGA

Setup.

=@==Baseline
ACO

Scenario

Figure 6-3: Average Power Consumption (Watts) of all active servers across different
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6.2.1.4 Total power consumption of all servers across different scenarios

The total power consumption results highlight the overall energy efficiency of each
policy across increasing workload scenarios. The baseline policy consistently records
the highest total power consumption, rising from 788.82 MW in Scenario 1 to 1017.43
MW in Scenario 4, due to inefficient VM allocation and limited host consolidation. The
ACO-based policy demonstrates the largest energy savings, especially under light to
moderate workloads, starting at just 166.32 MW in Scenario 1 and maintaining lower
consumption in Scenarios 2 (346.99 MW) and 3 (620.71 MW). However, in Scenario
4, its consumption rises sharply (851.22 MW) as more servers remain active to handle
the heavier workload. PSO shows a balanced trend, consuming moderately across all
scenarios by maintaining stable CPU utilisation and avoiding excessive server
activation. MGA, meanwhile, performs inconsistently: it consumes high power in
Scenario 1 due to less aggressive host consolidation, but achieves significant energy
savings in Scenarios 2 and 3 (350.71 MW and 680.42 MW), before increasing again in
Scenario 4 (815.50 MW). Table 6-4 and Figure 6-4 demonstrate the Total Power
Consumption (MegaWatts) of all servers across different scenarios in Homogeneous

Data Centre Setup.

Policy Scenario Total Power Consumption (MegaWatts)
Scenario 1 788.82
Baseline VM Scenario 2 858.28
allocation policy Scenario 3 978.47
Scenario 4 1017.43
Scenario 1 166.32
ACO-based VM .
Scenario 2 346.99
allocation and
o ) Scenario 3 620.71
migration policy
Scenario 4 851.22
Scenario 1 410.68
PSO-based VM .
Scenario 2 688.05
allocation and
o ) Scenario 3 781.77
migration policy
Scenario 4 790.92
Scenario 1 764.44
Scenario 2 350.71
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MGA-based VM Scenario 3 680.42
allocation and
Scenario 4
migration policy 815.50

Table 6-4: Total Power Consumption (MegaWatts) of all servers across different

scenarios in Homogeneous Data Centre Setup.

Total Power Consumption (MegaWatts) of all servers across
different scenarios in Homogeneous Data Centre Setup.
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Figure 6-4: Total Power Consumption (MegaWatts) of all servers across different

scenarios in Homogeneous Data Centre Setup.

6.2.2  Simulation Results for Heterogeneous Data Centre Test Case

This section presents the simulation results for the heterogeneous data centre test case,
where physical servers have different hardware configurations, including varying
processing capacities, memory sizes, and power characteristics. The performance of the
proposed ACO, PSO, and MGA-based VM allocation and migration policies is
compared against the baseline VM allocation policy across four workload scenarios.
Key performance metrics, including average CPU and RAM utilisation, average power
consumption and total power consumption, are analysed to evaluate the effectiveness
of each algorithm in optimising resource allocation, balancing workloads across diverse

server types, and improving overall energy efficiency in a heterogeneous environment.
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6.2.2.1 Average CPU utilisation of all active servers across different scenarios

In the heterogeneous data centre configuration, where servers differ in terms of
processing capacity, memory, and power profiles, the average CPU utilisation patterns
vary significantly across the four workload scenarios. The baseline policy shows a
steady increase in utilisation as workloads grow, peaking at 45.18% in Scenario 4. In
contrast, the ACO-based policy maintains moderate utilisation levels between 7.82%
and 12.23%, primarily due to shutting down underutilised servers and migrating VMs
more aggressively to fewer active hosts. The PSO-based policy demonstrates better
balancing under light workloads (Scenarios 1 and 2) but maintains relatively low
utilisation in Scenarios 3 and 4. Meanwhile, the MGA-based policy achieves the lowest
CPU utilisation across most scenarios, especially under higher workloads. Table 6-5
and Figure 6-5 below show the Average CPU Utilisation (%) of all active servers across

different scenarios in Heterogeneous Data Centre Setup.

Average CPU Utilisation (%) of all active

Policy Scenario
servers + stdev
Scenario 1 6.70
Baseline VM Scenario 2 17.33
allocation policy Scenario 3 34.18
Scenario 4 45.18
Scenario 1 12.23 +£4.32
ACO-based VM :
Scenario 2 12.05+4.18
allocation and
o ) Scenario 3 7.82£2.34
migration policy
Scenario 4 11.70 £ 3.74
Scenario 1 5.76 £2.51
PSO-based VM :
Scenario 2 8.72 £3.08
allocation and
o ) Scenario 3 19.89 £5.32
migration policy
Scenario 4 6.99 £0.15
Scenario 1 14.08 + 8.88E-15
MGA-based VM
Scenario 2 7.28 £ 8.88E-16
allocation and
o ] Scenario 3 5.56 £ 9.76E-16
migration policy
Scenario 4 4.06 £ 1.78E-15

Table 6-5: Average CPU Utilisation (%) of all active servers across different
scenarios in Heterogeneous Data Centre Setup.
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Average CPU Utilisation (%) of all active servers across
different scenarios in Heterogeneous Data Centre Setup.
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Figure 6-5: Average CPU Utilisation (%) of all active servers across different

scenarios in Heterogeneous Data Centre Setup.

6.2.2.2 Average RAM utilisation of all active servers across different scenarios

In the heterogeneous data centre scenario, where servers vary in hardware
specifications, the average RAM utilisation trends differ significantly across the four
workload levels. The baseline policy shows a steady rise in RAM usage, starting at
9.28% in Scenario 1 and reaching 55.57% in Scenario 4. This reflects its static VM
placement strategy, which fails to consolidate workloads efficiently, resulting in higher
active server counts under heavy demand. The ACO-based policy achieves higher and
more balanced RAM utilisation in lighter workloads (24.12% in Scenario 1 and 35.23%
in Scenario 2) by migrating VMs aggressively and shutting down underutilised servers.
As workloads increase, RAM usage remains controlled (42.82% in Scenario 3 and
45.79% in Scenario 4), showing its ability to maintain efficiency even under heavier
loads. The PSO-based policy demonstrates stable and moderate RAM utilisation across
all scenarios. It performs close to the baseline under higher workloads (39.51% and
45.22% in Scenarios 3 and 4) but shows higher RAM usage in lighter workloads
(11.10% in Scenario 1 vs. 9.28% baseline, and 22.14% vs 22.04% in Scenario 2) due
to VM consolidation. The MGA-based policy exhibits a more adaptive behaviour. It
achieves the lowest RAM utilisation in Scenario 2 (8.49%). However, under heavier

workloads, it utilises more available memory than other policies (51.86% in Scenario
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3 and 55.69% in Scenario 4). Table 6-6 and Figure 6-6 show the Average RAM
Utilisation (%) of all active servers across different scenarios in Heterogeneous Data

Centre Setup.

Average RAM Ultilisation (%) of all active

Policy Scenario
servers = stdev
Scenario 1 9.28
Baseline VM Scenario 2 22.04
allocation policy Scenario 3 44.08
Scenario 4 55.57
Scenario 1 2412 +£2.12
ACO-based VM .
Scenario 2 35.23+2.01
allocation and
o ) Scenario 3 42.82 +1.03
migration policy
Scenario 4 45.79 £ 0.56
Scenario 1 11.10+1.07
PSO-based VM i
Scenario 2 22.14+0.71
allocation and
o ) Scenario 3 39.51+1.93
migration policy
Scenario 4 4522 +0.34
Scenario 1 26.41 +£ 1.39E-14
MGA-based VM
Scenario 2 8.49 +7.11E-15
allocation and
o ) Scenario 3 51.86 + 1.40E-14
migration policy
Scenario 4 55.69 + 2.34E-14

Table 6-6: Average RAM Utilisation (%) of all active servers across different

scenarios in Heterogeneous Data Centre Setup.
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Average RAM Utilisation (%) of all active servers across
different scenarios in Heterogeneous Data Centre Setup.
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Figure 6-6: Average RAM Ultilisation (%) of all active servers across different

scenarios in Heterogeneous Data Centre Setup.

6.2.2.3 Average power consumption of all active servers across different
scenarios

While the servers in the Heterogeneous Data Centre have different specifications and
configurations, the average power consumption is still largely related to the average
CPU utilisation. Thus, the baseline policy consistently exhibits the highest energy usage,
rising from 306.82 W in Scenario 1 to 417.18 W in Scenario 4. This is primarily due to
its static allocation approach, which keeps more servers active even under lighter
workloads, leading to unnecessary energy overheads. The ACO-based policy achieves
the lowest and most stable average power consumption among all strategies. By
aggressively consolidating VMs and shutting down underutilised hosts, it reduces the
average power usage to 242.10 W in Scenario 1 and maintains energy efficiency as
workloads grow. This demonstrates ACO’s strong capability to balance workload
placement with power savings. The PSO-based policy achieves moderate energy
savings compared to the baseline, with 282.55 W in Scenario 1 and 302.70 W in
Scenario 2. However, it shows less consistent optimisation at higher workloads,
consuming 325.69 W in Scenario 3 before slightly dropping to 305.16 W in Scenario
4. The MGA-based policy performs competitively with ACO in light workloads but

demonstrates a more adaptive approach under increasing demand. While its energy

79

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 6

consumption rises moderately (298.64 W in Scenario 2 and 299.21 W in Scenario 4), it
remains lower than both the baseline and PSO. The Average Power Consumption

(Watts) of all active servers across different scenarios in Heterogeneous Data Centre

Setup is shown in Table 6-7 and Figure 6-7 below.

Average Power Consumption (Watts) of all
Policy Scenario
active servers + stdev
Scenario 1 306.82
Baseline VM Scenario 2 336.66
allocation policy Scenario 3 385.99
Scenario 4 417.18
Scenario 1 242.10 + 8.69
ACO-based VM
Scenario 2 27628 +12.24
allocation and
o ] Scenario 3 299.04 +7.32
migration policy
Scenario 4 319.93+9.61
Scenario 1 282.55+8.42
PSO-based VM
Scenario 2 302.70 £ 8.71
allocation and
o ) Scenario 3 325.69 = 14.68
migration policy
Scenario 4 305.16 £ 0.98
Scenario 1 242.66 + 1.36E-13
MGA-based VM :
Scenario 2 298.64 + 1.71E-13
allocation and
o ) Scenario 3 290.22 + 1.14E-13
migration policy
Scenario 4 299.21 + 3.66E-14

Table 6-7: Average Power Consumption (Watts) of all active servers across different

scenarios in Heterogeneous Data Centre Setup.
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Average Power Consumption (Watts) of all active
servers across different scenarios in Heterogeneous
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Figure 6-7: Average Power Consumption (Watts) of all active servers across different

scenarios in Heterogeneous Data Centre Setup.

6.2.2.4 Total power consumption of all servers across different scenarios

In the heterogeneous data centre, the total power consumption across all servers
highlights how each policy manages energy efficiency under increasing workloads. The
baseline policy consistently records the highest overall energy usage, rising from
922.79 MW in Scenario 1 to 1,160.88 MW in Scenario 3, before slightly dropping to
1,026.38 MW in Scenario 4. Its static VM allocation approach keeps many servers
active even during low demand, leading to significant energy inefficiency. The ACO-
based policy delivers the most efficient energy utilisation across all scenarios. It
consumes only 211.31 MW in Scenario 1 and 389.83 MW in Scenario 2, which
represents a reduction of over 60% compared to the baseline. Even under heavier
workloads, ACO maintains lower consumption (791.89 MW in Scenario 3 and 724.87
MW in Scenario 4) by consolidating VMs effectively and shutting down underutilised
hosts.

The PSO-based policy achieves moderate savings compared to the baseline across all
scenarios, demonstrating stable performance under varying workloads. The MGA-
based policy demonstrates competitive performance in light workloads (209.35 MW in
Scenario 1, nearly matching ACO) but shows less stability under heavier demand,
where its total power consumption spikes to 712.80 MW in Scenario 2 and 8§99.87 MW

in Scenario 4. The Total Power Consumption (MegaWatts) of all servers across
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different scenarios in Heterogeneous Data Centre Setup are recorded in Table 6-8 and

Figure 6-8 below.

Policy Scenario Total Power Consumption (MegaWatts)
Scenario 1 922.79
Baseline VM Scenario 2 1012.51
allocation policy Scenario 3 1160.88
Scenario 4 1026.38
Scenario 1 211.31
ACO-based VM :
Scenario 2 389.83
allocation and
o _ Scenario 3 791.89
migration policy
Scenario 4 724.87
Scenario 1 496.42
PSO-based VM :
Scenario 2 709.01
allocation and
o ) Scenario 3 693.90
migration policy
Scenario 4 741.39
Scenario 1 209.35
MGA-based VM :
Scenario 2 712.80
allocation and
o . Scenario 3 742.03
migration policy
Scenario 4 899.87

Table 6-8: Total Power Consumption (MegaWatts) of all servers across different

scenarios in Heterogeneous Data Centre Setup.
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Total Power Consumption (MegaWatts) of all servers across
different scenarios in Heterogeneous Data Centre Setup.
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Figure 6-8: Total Power Consumption (MegaWatts) of all servers across different

scenarios in Heterogeneous Data Centre Setup.

6.2.3 Summary of Simulation Results

This section summarises the energy savings achieved by the proposed ACO, PSO, and
MGA-based VM allocation and migration policies compared to the baseline policy
across both homogeneous and heterogeneous data centre setups. The results highlight
the extent to which each algorithm reduces total power consumption under varying

workload scenarios.

6.2.3.1 Energy Savings Achieved by ACO Policy

In the homogeneous data centre, the ACO policy consistently demonstrates significant
reductions in total power consumption across all scenarios. Under light workloads
(Scenario 1), power usage drops from 788.82 MW in the baseline to 166.32 MW with
ACO, resulting in a savings of 622.50 MW or 78.92%. Similarly, under moderate
workloads (Scenario 2), the policy achieves a 59.57% reduction, consuming only
346.99 MW compared to the baseline’s 858.28 MW. Although the energy savings
gradually decrease as workloads increase, ACO still delivers substantial reductions of
36.56% and 16.34% in Scenarios 3 and 4, respectively. On average, ACO achieves a
47.85% reduction in total energy consumption compared to the baseline, highlighting
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its efficiency in homogeneous environments. The results are shown in Table 6-9 and

Figure 6-9.

Scenario Total power Total power Energy Percent
consumption of all consumption of all Saved of energy
servers for baseline servers for ACO (MW) saved (%)

policy (MW) policy (MW)
1 788.82 166.32 622.50 78.92
2 858.28 346.99 511.28 59.57
3 978.47 620.71 357.76 36.56
4 1017.43 851.22 166.21 16.34
Average 910.75 496.31 414.44 47.85

Table 6-9: Energy savings achieved by ACO Policy compared to baseline policy in

homogeneous data centre setup.

Energy Savings with ACO policy in homogeneous
data centre setup.
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Figure 6-9: Energy Savings with ACO policy in homogeneous data centre setup.

In the heterogeneous data centre, a similar trend is observed. Under light workloads
(Scenario 1), ACO reduces consumption from 922.79 MW to just 211.31 MW,
achieving a savings of 711.48 MW or 77.10%. In Scenario 2, the savings remain strong
at 61.50%, dropping from 1,012.51 MW to 389.83 MW. However, as workloads
intensify, the percentage of energy saved decreases: 31.79% in Scenario 3 and 29.38%

in Scenario 4. Across all scenarios, the ACO policy achieves an average energy saving
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0f 49.94% compared to the baseline. Table 6-10 and Figure 6-10 below demonstrates

the results.

Scenario Total power Total power Energy | Percent of
consumption of all consumption of all Saved energy
servers for baseline servers for ACO (MW) saved (%)

policy (MW) policy (MW)
1 922.79 211.31 711.48 77.10
2 1012.51 389.83 622.68 61.50
3 1160.88 791.89 368.99 31.79
4 1026.38 724.87 301.51 29.38
Average 1030.64 529.47 501.17 49.94

Table 6-10: Energy savings achieved by ACO Policy compared to baseline policy in

heterogeneous data centre setup.

Energy Savings with ACO policy in
heterogeneous data centre setup.
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Figure 6-10: Energy Savings with ACO policy in heterogeneous data centre setup.

Overall, these results confirm that the ACO-based VM allocation and migration policy
is highly effective in improving energy efficiency by consolidating workloads and
shutting down underutilised hosts. While both environments benefit significantly,
heterogeneous data centres allow ACO to achieve slightly greater average energy
savings because high-power servers can be selectively turned off when underutilised,

amplifying the overall reduction in energy consumption.

85
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 6

6.2.3.2 Energy Savings Achieved by PSO Policy

In the homogeneous data centre, the PSO policy achieves moderate energy reductions
across all workload scenarios. Under light workloads (Scenario 1), power consumption
drops from 788.82 MW in the baseline to 410.68 MW with PSO, resulting in savings
of 378.15 MW or 47.94%. However, under medium to heavy workloads (Scenarios 2,
3, and 4), the savings are significantly lower, at 19.83%, 20.10%, and 22.26%,
respectively. This reduction occurs because fewer servers can be consolidated and shut
down when utilisation levels increase. On average, the PSO policy achieves 27.53%
energy savings compared to the baseline in homogeneous environments. Table 6-11
and Figure 6-11 demonstrate the energy savings achieved by PSO Policy compared to

baseline policy in homogeneous data centre setup.

Scenario Total power Total power Energy | Percent of
consumption of all consumption of all Saved energy
servers for baseline servers for PSO policy (MW) saved (%)

policy (MW) MW)
1 788.82 410.68 378.15 47.94
2 858.28 688.05 170.23 19.83
3 978.47 781.77 196.70 20.10
4 1017.43 790.92 226.51 22.26
Average 910.75 667.85 242.90 27.53

Table 6-11: Energy savings achieved by PSO Policy compared to baseline policy in

homogeneous data centre setup.

Energy Savings with PSO policy in homogeneous

s data centre setup.
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Figure 6-11: Energy Savings with PSO policy in homogeneous data centre setup.
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In the heterogeneous data centre setup, the PSO policy performs better overall,
benefiting from the ability to leverage differences in server power ratings. Under light
workloads (Scenario 1), energy consumption reduces from 922.79 MW to 496.42 MW,
saving 426.37 MW or 46.20%. For Scenario 2, the savings are 29.98%, while in
Scenario 3, PSO achieves its highest reduction of 40.23%, lowering energy use from
1,160.88 MW to 693.90 MW. In Scenario 4, the savings drop slightly to 27.77% due to
high utilisation limiting consolidation opportunities. On average, the PSO policy
delivers 36.04% energy savings in heterogeneous setups, which is a notable
improvement compared to the homogeneous configuration. Table 6-12 and Figure 6-
12 shows the energy savings achieved by PSO Policy compared to baseline policy in

heterogeneous data centre setup.

Scenario Total power Total power Energy Percent
consumption of all consumption of all Saved of energy
servers for baseline servers for PSO policy (MW) saved (%)

policy (MW) (MW)
1 922.79 496.42 426.37 46.20
2 1012.51 709.01 303.50 29.98
3 1160.88 693.90 466.98 40.23
4 1026.38 741.39 284.99 27.77
Average 1030.64 660.18 370.46 36.04

Table 6-12: Energy savings achieved by PSO Policy compared to baseline policy in

heterogeneous data centre setup.

Energy Savings with PSO policy in
heterogeneous data centre setup.
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Figure 6-12: Energy Savings with PSO policy in heterogeneous data centre setup.
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6.2.3.3 Energy Savings Achieved by MGA Policy

In the homogeneous data centre, MGA exhibits inconsistent energy savings across the
four workload scenarios. Under Scenario 1 (light workload), the savings are minimal at
just 3.09%, with power consumption dropping slightly from 788.82 MW to 764.44
MW. However, in Scenario 2 (moderate workload), MGA achieves its highest
reduction, lowering consumption from 858.28 MW to 350.71 MW, a saving of 59.14%.
In Scenario 3, savings stand at 30.46%, while Scenario 4 achieves only 19.85% due to
higher utilisation levels limiting VM consolidation. On average, the MGA policy
delivers 28.13% energy savings in homogeneous environments, comparable to PSO’s

performance but significantly lower than ACO’s.

Scenario Total power Total power Energy Percent
consumption of all consumption of all Saved of energy
servers for baseline servers for MGA (MW) saved (%)

policy (MW) policy (MW)
1 788.82 764.44 24.38 3.09
2 858.28 350.71 507.57 59.14
3 978.47 680.42 298.04 30.46
4 1017.43 815.50 201.93 19.85
Average 910.75 652.77 257.98 28.13

Table 6-13: Energy savings achieved by MGA Policy compared to baseline policy in

homogeneous data centre setup.

Energy Savings with MGA policy in
homogeneous data centre setup.
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Figure 6-13: Energy Savings with MGA policy in homogeneous data centre setup.
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In the heterogeneous data centre (Table 6-14), MGA performs better overall, benefiting

from the availability of servers with diverse power ratings. In Scenario 1, energy

consumption is reduced drastically from 922.79 MW to just 209.35 MW, resulting in

77.31% savings, which is the highest across all policies and setups. However, the gains

are less dramatic under higher workloads: 29.60% savings in Scenario 2, 36.08% in

Scenario 3, and only 12.33% in Scenario 4 due to limited consolidation opportunities

under heavy utilisation. On average, MGA achieves 38.83% energy savings in

heterogeneous setups, an improvement over the homogeneous case and slightly higher

than PSO’s 36.04%, but still trailing ACO’s performance.

Scenario Total power Total power Energy Percent of
consumption of all consumption of all Saved energy
servers for baseline servers for MGA MW) saved (%)

policy (MW) policy (MW)
1 922.79 209.35 713.44 77.31
2 1012.51 712.80 299.72 29.60
3 1160.88 742.03 418.85 36.08
4 1026.38 899.87 126.51 12.33
Average 1030.64 641.01 389.63 38.83

Table 6-14: Energy savings achieved by MGA Policy compared to baseline policy in

heterogeneous data centre setup.
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Figure 6-14: Energy Savings with MGA policy in heterogeneous data centre setup.
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6.3 Limitations of Simulation

This project faces several limitations that may affect the accuracy and generalizability
of its results. Firstly, the data centre topology is simplified by assuming a flat server
placement, where all servers are positioned side-by-side without considering the
hierarchical structure of real-world architectures. This abstraction overlooks important
network-related constraints like latency, bandwidth bottlenecks, and inter-rack
communication overheads, which can significantly influence VM migration costs and
energy efficiency. Secondly, simulation inaccuracies arise from CloudSim Plus’s
abstractions. While it is flexible, it may fail to fully capture real-world complexities.
Key factors such as hardware heterogeneity, I/O delays, and network congestion are
either simplified or ignored, potentially leading to overestimated energy savings and
underestimated migration costs. Lastly, the energy models used in the simulations
account only for server power consumption, neglecting significant contributors such as
cooling systems, power distribution losses, and support infrastructure. Consequently,
the reported energy savings may not fully represent the total operational power

efficiency achievable in real data centres.
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6.4 Objectives Evaluation

The objectives of this project were successfully achieved through the design,
deployment, and evaluation of a comprehensive simulation platform and bio-inspired
optimisation algorithms for energy-efficient data centre management. For the first
objective, a simulation platform was designed and implemented using the CloudSim
Plus framework, where its extensive libraries and classes are used to model data centre
components and performance metrics. The platform was configured to simulate both
homogeneous and heterogeneous data centre setups, allowing for a thorough evaluation
of algorithms under environments with identical and diverse server configurations.
Additionally, four distinct workload scenarios were created to represent varying levels
of resource demand. The platform enabled accurate modelling of physical hosts, VMs,
workloads, and VM migration events, while tracking critical metrics such as CPU
utilisation, RAM utilisation, and power consumption. By providing a scalable and
flexible simulation environment, the first objective was fully accomplished, enabling
the evaluation of power management methods without the need for costly physical
infrastructure.

For the second objective, three bio-inspired optimisation algorithms were successfully
implemented and deployed as custom VM allocation and migration policies within the
simulation platform. They are based on Ant Colony Optimisation (ACO), Particle
Swarm Optimisation (PSO), and Modified Genetic Algorithm (MGA) respectively.
Through comprehensive testing across homogeneous and heterogeneous data centre
setups under various workload scenarios, all three algorithms demonstrated substantial
improvements in energy efficiency and resource utilisation compared to the baseline
static allocation policy. Among them, ACO consistently achieved the most significant
power savings, particularly under high-load conditions, making it highly suitable for
large-scale and energy-conscious environments. MGA delivered strong and balanced
performance, proving effective across both homogeneous and heterogeneous
infrastructures, while PSO offered competitive results in specific scenarios despite
being slightly less efficient overall. These findings confirm that the objective of
deploying bio-inspired algorithms to enhance power management and resource
allocation in data centres has been successfully achieved.

Overall, the project successfully achieved its objectives by developing a robust

simulation platform and deploying multiple bio-inspired optimisation algorithms to
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evaluate their effectiveness in optimising power consumption and resource allocation.
The comparative results highlight the strengths of each algorithm, demonstrating their
potential applicability to different types of data centre environments and workload

conditions.

6.5 Novel Aspects of this project
The novelty of this project lies in the application and comparison of three bio-inspired
algorithms: Ant Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), and
a Modified Genetic Algorithm (MGA), for intelligent VM allocation and migration
within a simulated data centre environment. Unlike conventional static or rule-based
heuristic approaches, these algorithms dynamically explore, evaluate, and select
optimal migration plans in response to fluctuating workloads and resource demands.
The ACO-based VM allocation and migration introduces a bio-inspired mechanism
where artificial “ants” construct migration plans by considering combinations of source
hosts, VMs, and target hosts. The decision-making process is guided by pheromone
trails and heuristic information, enabling the system to balance workload distribution
or consolidate VMs to minimise power consumption while optimising resource
utilisation. The PSO-based optimisation mimics the swarm intelligence observed in
bird flocking or fish schooling. Each “particle” represents a VM-to-host mapping, and
particles iteratively update their positions based on both their personal best and the
global best solution. This behaviour allows PSO to efficiently search and converge
toward near-optimal VM placement strategies, adapting effectively to dynamic
workload variations. The MGA-based VM allocation introduces a problem-specific
crossover strategy that enhances traditional genetic algorithms. The algorithm
selectively migrates VMs from over-utilised or under-utilised hosts in the low-fitness
parent solution to the high-fitness parent configuration, resulting in improved offspring
solutions. This modified crossover mechanism accelerates convergence and improves
exploration while maintaining solution diversity.
By testing and comparing these three algorithms in the same simulation environment,
this project provides a new comparative analysis of VM allocation and migration
strategies. The goal is to find out which approach works best for reducing power
consumption, improving resource usage, and making the data centre more efficient
when workloads keep changing.
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Chapter 7

Conclusion and Recommendation

This chapter concludes the project by summarising the key findings, outcomes, and
contributions made throughout the study. It highlights how the proposed ACO, PSO,
and MGA-based VM allocation and migration algorithms were evaluated across
homogeneous and heterogeneous data centre setups under various workload scenarios,
demonstrating significant improvements in energy efficiency and resource utilisation
compared to baseline policies. Furthermore, the chapter provides recommendations for
future work, including potential enhancements to the algorithms, integration with
predictive and hybrid techniques, and the adoption of more realistic data centre models

to further improve performance and applicability in real-world environments.

7.1 Summary of the project
The rapid growth in demand for data centre services has significantly increased power
consumption, resulting in substantial economic, environmental, and operational
challenges. While virtualisation has enabled efficient resource sharing through Virtual
Machines (VMs), determining the optimal placement and migration of VMs across
physical servers remains an NP-hard problem. Traditional techniques such as static
server consolidation and workload balancing have provided improvements but struggle
to cope with the scale, heterogeneity, and dynamic resource demands of modern data
centres. Therefore, there is a pressing need for adaptive, intelligent, and energy-aware
VM allocation strategies.
This project investigates and evaluates three bio-inspired optimisation algorithms: Ant
Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), and Modified
Genetic Algorithm (MGA), to address VM allocation and migration challenges in
homogeneous and heterogeneous data centre environments. The ACO-based VM
allocation and migration policy leverages the foraging behaviour of ants to explore
efficient migration paths, identifying overloaded and underloaded hosts and selecting
optimal VMs for migration to minimise idle server usage and improve overall energy
efficiency. The PSO-based policy models the social behaviour of swarms, where
candidate solutions (particles) iteratively converge towards optimal VM placement by
93

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 7

balancing exploration and exploitation of the solution space. The MGA-based policy

incorporates a problem-specific crossover mechanism called VM placement, where

VMs from under- or over-utilised hosts in low-fitness solutions are migrated to higher-

fitness configurations, enabling more effective resource utilisation while reducing

power consumption.

Key Findings of the project:

The ACO-based policy achieved the highest energy savings, reducing total power
consumption by an average of 47.85% in homogeneous setups and 49.94% in
heterogeneous setups compared to the baseline.

The MGA-based policy delivered significant improvements as well, achieving
average energy savings of 28.13% in homogeneous and 38.83% in heterogeneous
environments, demonstrating its suitability across varying infrastructure types.
However, it displayed inconsistencies in certain workload scenarios, such as the
notable spike in energy consumption observed in Scenario 1 of the homogeneous
data centre setup.

The PSO-based policy provided moderate energy reductions (27.53% in
homogeneous and 36.04% in heterogeneous environments), showing competitive
performance in specific scenarios but was generally outperformed by ACO in both

data centre setups.

Overall, this project demonstrates that bio-inspired optimisation algorithms are highly

effective in reducing energy consumption while maintaining efficient VM placement

across diverse data centre environments. Among the three, the ACO-based policy

proved to be the most effective, making it a promising approach for large-scale,

heterogeneous, and energy-conscious cloud infrastructures.
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CHAPTER 7

7.2  Recommendations

While the implementation of ACO, PSO, and MGA-based VM allocation and migration
algorithms has demonstrated significant improvements in energy efficiency and
resource utilisation, there are still several directions for future enhancement.

First, algorithmic optimisation can be explored to further improve power savings and
adaptability under more complex and dynamic environments. This includes advanced
parameter tuning strategies, adaptive control of exploration—exploitation balance, and
the integration of machine learning techniques to enhance decision-making during VM
placement and migration.

Second, the simulation environment can be made more realistic by incorporating
complex data centre topologies, multi-tier network structures, and realistic server
placement models. Considering these factors would provide a more accurate
assessment of migration costs and overall power consumption, improving the real-
world applicability of the proposed solutions.

Third, future work can investigate hybrid bio-inspired approaches by combining the
strengths of different algorithms. For example, integrating ACO’s adaptability with
PSO’s faster convergence or MGA'’s strong exploration capabilities could yield more
robust and scalable solutions. Additionally, exploring multi-objective optimisation
techniques would allow balancing between energy savings, migration overheads, and
SLA compliance.

Finally, predictive workload management represents a promising direction. Leveraging
Large Language Models (LLMs) or other Al-based predictors could enable proactive
VM allocation by forecasting workload spikes and minimising unnecessary migrations.
Furthermore, request pre-filtering mechanisms could reduce data centre workloads and
optimise energy usage.

By addressing these directions, future work can significantly enhance the scalability,
adaptability, and efficiency of VM allocation and migration strategies in modern cloud

data centres.
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APPENDIX

APPENDIX

A.1 POSTER

SMART GRID: BIO-INSPIRED ALGORITHMS

ENERGY DISTRIBUTIONS FOR DATA CENTERQ ot éoeninovio

INTRODUCTION:

* Data centre services are growing rapidly, leading to increased energy consumption.

» Virtualization allows multiple VMs to share a server's resources, but it also introduces the NP-
hard Virtual Machine Placement (VMP) problem.

* This project proposes three bio-inspired algorithms for VM allocation and migration to
address the VMP problem and reduce data centre power consumption.
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RESEARCH OBJECTIVES:

* Design a simulation platform using CloudSim Plus for homogeneous and
heterogeneous data centres under various workloads.

¢ Deploy bio-inspired algorithms (ACO, PSO, MGA) for VM allocation and migration to

improve power management and resource utilisation.

PROPOSED METHODOLOGY:

e Simulation Environment
Built using CloudSim Plus.
Configured homogeneous &
heterogeneous data centre setups.
Tested under four workload scenarios
with varying VMs & cloudlets.
Compared against baseline static
allocation policy.
* Bio-inspired Algorithms )
Ant Colony Optimisation (ACO) ™®
> Particle Swarm Optimisation (PSO)
Modified Genetic Algorithm (MGA) ¢~
* VM Allocation and Migration Strategy
Detects overloaded and underloaded
hosts dynamically.
Selects candidate VMs for migration
based on resource demand and host
utilisation.
> Allocates VMs to suitable target hosts to
minimise active server count.
¢ Evaluation Metrics
> Average CPU utilisation, Average RAM
utilisation, Average power consumption
per active server, Total power
consumption, Energy savings (%)
compared to baseline
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Energy savings achieved by ACO, PSO, and MGA policies under
homogeneous and heterogeneous data centre setups.

CONCLUSION:

* This project explored bio-inspired VM allocation and migration algorithms (ACO, PSO, and
MGA) to improve energy efficiency and resource utilisation in data centre.
¢ The results demonstrate that these algorithms significantly reduce energy consumption
compared to baseline policies:
> ACO achieved the highest savings (47.85% in homogeneous, 49.94% in

heterogeneous).

MGA delivered strong performance (28.13% and 38.83%). (o]

PSO provided moderate improvements (27.53% and 36.04%). U
BY: WOO YU HANG PROJECT SUPERVISOR: DR AUN YICHIET
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