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ABSTRACT

Tongue diagnosis is a fundamental component of Traditional and Complementary Medicine
(TCM), yet manual inspection remains subjective and inconsistent. This study proposes a deep
learning framework to enhance tongue image analysis through segmentation, classification,
and explainable artificial intelligence (XAI). A Mobile U-Net model was proposed and
developed for efficient and accurate tongue region segmentation. Classification tasks were
conducted for both binary (stained vs. non-stained) and multi-class pathological coatings,
covering clinically relevant categories. Lightweight architectures, including the proposed
Efficient-ResNet, achieved competitive accuracy with minimal computational cost,
demonstrating strong potential for deployment in resource-constrained environments. Grad-
CAM was integrated to provide visual explanations of model decisions, improving
transparency and clinical trust. Experimental results show that ResNet50 and LECA-
EfficientNetV2-S achieved the highest accuracy of 99% in binary classification, while
EfficientNetV2-B3 and -S excelled in multi-class tasks. Efficient-ResNet maintained strong
accuracy (98.5%) with only 0.31M parameters. The findings highlight the framework’s balance
of efficiency, accuracy, and interpretability, offering a practical solution to standardize and

modernize tongue diagnosis in TCM for both clinical and telemedicine applications.

Area of Study (Minimum 1 and Maximum 2): Medical Image Analysis, Deep Learning

Keywords (Minimum 5 and Maximum 10): Tongue Diagnosis, Traditional and
Complementary Medicine (TCM), Image Segmentation, Classification, Explainable Al,
Mobile U-Net, Efficient-ResNet
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CHAPTER 1

Chapter 1

Introduction

The problem statement, motivation and objectives of research, project scopes, contributions to
the tongue image classification fields and the overall report organization will be discussed in

this chapter.

1.1 Problem Statement and Motivation

Tongue diagnosis is a noninvasive and visual method for assessing human health status. It
forms a fundamental part of syndrome identification and treatment in Traditional and
Complementary Medicine diagnosis [1]. Therefore, the practitioners commonly examine the
features of the tongue to identify early signs of internal imbalances or diseases as a routine
component for health check-ups [2]. According to [3], studies show that characteristics such as
tongue colour, coating colour and thickness, moisture level, fissures and stains can all serve as
the key indicators in evaluating a person’s health status. However, the visual tongue diagnosis
done by practitioners is subjective and prone to inconsistencies due to external factors such as
lighting, tongue staining and experience of the practitioner. A recent study demonstrated that
even experienced TCM practitioners achieved only 69% accuracy in distinguishing stained
from pathological tongue coatings, highlighting the variability and inaccuracy of manual visual

tongue assessments [4].

The challenge is further compounded by the lack of publicly available and annotated datasets
that comprehensively represent stained tongue images. Researchers frequently use self-
collected tongue images for model training, which is a time-consuming and tedious procedure
that yields relatively small training and validation datasets [5]. Besides that, severe class
imbalance in existing datasets is also a frequent challenge in medical imaging applications [6].
For example, white coating tongues may dominate while yellow coating tongues are rare in the
datasets. The imbalance will skew the model training and lead to bias classifiers that favor the
majority class and fail to generalize across underrepresented but clinically significant

categories.

The growing integration of artificial intelligence into medical diagnostics presents a significant

opportunity to advance the field of TCM in assisting the practitioners. Although the existing
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deep learning models have demonstrated promising results, many of the models are
computationally intensive and complex in classifying tongue coatings [7]. This limitation
motivates the need to develop lightweight models that maintain high diagnostic accuracy while
significantly reducing the computational cost so that it is suitable for real world clinical

adoption.

Besides that, deep learning models are often treated as black boxes due to the model offering
little transparency into how the decisions are made [8]. The lack of explainability is a barrier
to trust in the healthcare industry where the practitioner insight and interpretive reasoning are
integral to diagnosis. Therefore, there is a strong motivation to incorporate explainable Al
(XAI) techniques into the model pipeline to visualize the key decision-making features. The
practitioners can have a better understanding of Al outputs so that it bridges the gap between

traditional diagnostic expertise and modern machine learning tools.

In summary, this study is motivated by the ambition to apply and improve upon the current
state-of-the-art technology in tongue classification by addressing challenges such as class
imbalance, limited datasets and the need for robust generalization. The focus is on building a
lightweight and efficient deep learning model that is suitable for real-world deployment and
integrating explainable Al techniques to enhance transparency and clinical interpretability of

the model’s predictions.

1.2 Objectives

The main objective of the thesis is to develop a deep learning framework that integrates tongue
image segmentation, classification and explainable AI to support Traditional and
Complementary Medicine diagnostic processes. The main objective is achieved by first

achieving the sub-objective as stated below:

1. Todevelop a Mobile U-Net model that leverages U-Net’s spatial localization capability
with MobileNet’s lightweight and efficient feature extraction to enable fast and accurate
tongue region segmentation.

2. To develop deep learning models for binary classification to distinguish stained and
non-stained tongue coatings as well as multi-class classification to categorize

pathological tongue coatings into specific types.
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3. To design a lightweight model that balances diagnostic accuracy with computational
efficiency, thus improving applicability in real-world clinical workflows.
4. To incorporate explainable Al methods for both classification tasks, providing visual

interpretability to enhance the transparency and trust of the model.

1.3 Project Scope and Direction
1.3.1 Segmentation

The segmentation component of this research is focused on developing an efficient deep
learning model to accurately segment tongue regions from clinical images. A Mobile U-Net
architecture will be implemented, which integrates the spatial localization capability of U-Net
with the lightweight and computationally efficient backbone of MobileNet. The model is
expected to provide precise segmentation results while maintaining low computational
complexity so that it is suitable for practical use in clinical settings where efficiency is as
important as accuracy. The dataset used for this work consists of tongue images paired with
manually annotated ground truth masks and will be divided into training, validation and testing
subsets. Preprocessing steps such as normalization will be applied to improve model

generalization and robustness given the limited dataset size.

The scope also encompasses model training and evaluation using segmentation-specific loss
functions such as Dice loss. Model performance will be measured using well-established
metrics including Dice Coefficient, Intersection-over-Union, precision, recall and
segmentation accuracy. In addition, the Mobile U-Net will be bench against conventional
segmentation architecture such as U-Net and DeepLabV3+ in order to validate the accuracy
and efficiency. However, the scope of this work will not focus on hardware-based real time
deployment. The study will remain within the boundaries of deep learning-based tongue

segmentation, emphasizing accuracy, efficiency and robustness as the primary objectives.

1.3.2 Classification

The primary objective of the classification component of this project is to develop deep
learning models that are capable of classifying tongue images for diagnosis purposes in
Traditional and Complementary Medicine. The study focuses on two related tasks: (1) binary
classification of tongue coatings into stained and non-stained categories, (2) multi-class

classification of pathological tongue coatings into clinically relevant subtypes such as white,
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yellow-greasy and grey-black. These classification tasks are critical in supporting accurate and
objective tongue diagnosis so that the limitations of conventional visual inspection by TCM

practitioners are addressed.

Firstly, separate convolutional neural network models will be constructed for each task. The
binary classification model will distinguish food or drug-induced staining from pathological
coatings while the multi-class model will categorize the non-stained coatings into distinct
disease-indicative types. The models will be trained using a supervised learning approach with
a curated dataset of annotated tongue images. Preprocessing techniques such as image

segmentation and normalization will also be applied to ensure consistency in input quality.

The performance of the model will be evaluated using standard metrics such as accuracy,
precision, recall, F1-Score and confusion matrices. In addition, explainable Al tools such as
Grad-CAM will be integrated to visualize the regions of the tongue image that are influencing

the model’s decision so that the practitioner can trust and interpret the model’s decision.

The project will be conducted in two phases. In the first phase, baseline models will be trained
and evaluated to establish benchmarks for both classification tasks. In the second phase, the
CNN variants will be tested and hyperparameter tuning will be performed to identify the most
effective model configuration. The final models aim to be both accurate and lightweight which

enable real-world deployment in clinical settings or mobile health applications.

14 Contributions

This study contributes to the advancement of intelligent diagnostic systems in TCM by
introducing deep learning models tailored for tongue image classification. The study proposes
two separate deep learning models for binary classification to differentiate stained from non-
stained tongue coatings and also multi-class classification to categorize pathological coatings
into clinically relevant classes. This separation of tasks ensures specialized learning and

improved accuracy for both simpler and more granular diagnostic needs.

A significant contribution for this work is the development of lightweight and computationally
efficient CNN architecture that is optimized for real-world applications. The solution is
designed to operate effectively in resource-constrained environments. Besides that, one of the

major challenges in medical image classification which is class imbalance is also addressed by
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applying data augmentation and applying weightage to the standard loss function based on the

class in the imbalance dataset.

Furthermore, integration of explainable Al tools such as Grad-CAM is integrated into the
model’s pipeline. By visualizing the regions of tongue images that influence the model’s
decision, the system is able to provide greater transparency and interpretability to the TCM

practitioners and healthcare professionals.

Finally, the study benchmarks the performance of the models against the state-of-the-art deep
learning models and human expert evaluations. This comparative analysis not only validates
the effectiveness of the models but also demonstrates the potential to outperform traditional
manual diagnosis in certain cases. In overall, the research presents a practical and interpretable
solution for enhancing the diagnostic process in TCM and contributes to the field of Al in

healthcare.

1.5  Report Organization

The details of the reports are shown in the following chapters. In Chapter 2, a summary of
existing research and knowledge on tongue image classification using deep learning
approaches are conducted. Then, the design phase of the system is explained in detail in
Chapter 3. Chapter 4 focuses on the system architecture and implementation. It explains the
overall architecture of the proposed models for both binary and multi-class tasks which include
architecture diagrams and technical frameworks. Chapter 5 shows the findings from the
experiments conducted so that discussion and analysis can be carried out. Finally, Chapter 6

summarizes the research as a conclusion.
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Chapter 2

Literature Review

2.1 Tongue Image Segmentation

According to [9], TongueNet was proposed by utilizing U-Net with morphological processing
layer to segment the tongue images. The morphological processing layer is a post-processing
step to refine U-Net’s output using hole-filling, open/close operations, and morphological
reconstruction. This addresses common raw predictions challenges such as noise, boundary
irregularities, and internal holes. By leveraging this approach, TongueNet outperforms the
other state-of-the-art segmentation methods such as Snake and Flood Fill by achieving 98.45%
mean pixel accuracy and 93.11% mean Intersection-over-Union. However, the pixel prediction
accuracy requires further refinement. This is because sample 11 demonstrated a lower recall
value from TongueNet (97.94%) as compared to Region-based and Edge-based fusion (REF)
approach (99.77%). This discrepancy indicates that TongueNet cannot consistently capture all

pixels belonging to tongue regions.

64 64 64 1 1

576x768

288x384
288x 384

I~
é [ Max pooling + dropout
128 256256 Max poolin
l 512 512 512 512 I ~ B <
g a
256 l I 512 ~— Conv 3x3 + RelU
o = Conv 1x1 + RelU
Zﬁ"l ol 7 Morphological processing

512 1024 1024

Figure 2.1 TongueNet Architecture [9]

Besides that, L. Yao et al. [10] introduced HPA-UNet model, which builds upon the U-Net
architecture by incorporating a Hybrid Post-Processing Attention mechanism and an edge
refinement strategy to improve segmentation performance. HPA-UNet enhances the standard
U-Net by integrating Convolutional Block Attention Module (CBAM) that consists of both
channel and spatial attention mechanisms. This design helps the model focus on important

regions of the tongue while filtering out unnecessary background information. The spatial
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attention mechanism is applied in the downsampling path, while channel attention is used in
the upsampling path, ensuring an optimal balance between feature representation and
segmentation precision. On the post-processing side, the authors use a modified Sobel operator
that extracts edge features from RGB channels instead of grayscale images. A lightweight
segmentation model called Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP) is then
trained separately on these enhanced edge features. The results from the secondary network are

then merged with the initial model predictions.

Results showed that HPA-UNet outperformed baseline models such as U-Net, U-Net++,
ResUNet, and ResUNet++. With data augmentation and post-processing, HPA-UNet achieved
a Mean IoU of 99.3% on the BioHit dataset and 98.4% on the HanYue-TongueSeg dataset.
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I:IIU I -ﬂﬁ Pos'processmg“
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Shallow Network i

. Boundary Feature Extraction Branch
Flgure 2.2 General Architecture of HPA UNet [10]

Qu et al. [11] proposed tongue segmentation using SegNet and incorporate with an image
quality evaluation method based on brightness statistics to determine whether an input image
should be segmented. The model outperformed the traditional tongue image segmentation
methods by achieving mean IoU scores 0f 95.89% and 90.72% respectively on TongueDataset1
and TongueDataset2. However, the segmentation performance declines when applied to
images from open environments with uncontrolled lighting conditions as observed in
TongueDataset2. This suggests that the model’s robustness to extreme lighting variations needs

improvement.
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According to the research [12], the researchers propose an improved tongue image
segmentation algorithm based on the DeeplabV3+ framework. The enhancements focus on
three key areas: network structure optimization, a contour-based weighted cross-entropy
(CBWCE) loss function, and a post-processing module. The network structure is refined by
adjusting the atrous convolution scales in the ASPP module to better extract multi-scale
information. Additionally, low-level features at different resolutions are incorporated to
improve edge detection. To address segmentation errors, the CBWCE loss function assigns
greater weight to pixels near tongue edges, ensuring the model prioritizes accurate boundary
delineation. Lastly, a post-processing module leverages prior knowledge of tongue shape and

connectivity to eliminate small, misclassified regions.

The experimental results demonstrate the effectiveness of these improvements. The proposed
model achieves a mean intersection over union (MIOU) of 99.13%, surpassing baseline deep
learning methods such as U-Net, SegNet, and PSPNet. The introduction of CBWCE and post-
processing steps significantly reduces segmentation errors especially in complex cases that

involves unclear tongue-lip boundaries or small background misclassifications.
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Figure 2.3 Enhanced DeeplabV3+ Structure [12]

Cao et al. [13] proposed TongueSAM, a universal tongue segmentation model that integrates

Segment Anything Model (SAM) with a Prompt Generator based on object detection. This
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integration automates the generation of bounding box prompts so that the system able to deliver
end-to-end segmentation without manual input. The study demonstrated that TongueSAM not
only preserved SAM’s generalization strengths but also optimized it for tongue-specific tasks
by achieving robust performance even under challenging background. TongueSAM
outperformed traditional deep learning methods and maintained superior segmentation

accuracy under zero-shot conditions with mean Intersection over Union scores exceeding 95%.

Tang et al. [14] proposed a significant improvement to the DeepLabV3+ frameworkby
integrating three key innovations. First, the backbone is replaced with MobileNet, which is a
lightweight network that reduces parameter size and floating-point operation. Second, the
authors enhance the ASPP module by embedding a Convolutional Block Attention Module
(CBAM) into the branches so that better channel and spatial attention for richer semantic
information extraction. Third, incorporate PointRend module to refine segmentation output.
The experiment results demonstrate that the improved model not only outperforms classical
architectures such as FCN, U-Net, PSPNet and standard DeepLab variants but also achieves

substantial reductions of approximately 90% in parameter size.

2.2 Critical Remarks of Previous Works

Previous studies on tongue image segmentation have explored the deep learning-based
approaches with its own strengths and limitations. Deep learning-based approaches have
significantly improved segmentation performance by automatically learning hierarchical
features from tongue images. Models such as U-Net are widely adopted due to their encoder-
decoder structure, which enhances spatial localization and enables pixel-level segmentation.
However, many of these models rely heavily on post-processing techniques, such as
morphological processing layer and contour refinement algorithms to enhance segmentation
accuracy. This dependency increases computational costs and training time, limiting the

feasibility of real-time applications.

To address these limitations, this study proposes a hybrid Mobile U-Net model that reduces
dependency on post-processing while improving segmentation accuracy. By leveraging U-
Net’s spatial localization strength and integrating MobileNet’s lightweight efficient backbone,
the proposed model enhances feature propagation and captures complex tongue patterns more
effectively. The hybrid approach ensures end-to-end learning, optimizing both segmentation

precision and computational efficiency.
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2.3 Comparison of Previous Work (Segmentation)

Table 2.1 Comparison of Previous Work (Segmentation)

[12]

function, and a post-processing

module

edges, thus reducing segmentation

errors near the lips and teeth.

Author Segmentation Approaches Performance Strength Limitation
J. Zhou | U-Net with morphological | 98.45% MPA and 93.11% | The model requires only 0.267 | The model occasionally struggles with
et  al. | processing layer mloU seconds per image to segment. precise boundary delineation, leading to
[9] slight misclassification of edge pixels.
L. Yao | U-Net with Hybrid Post- | 99.3% mloU on the BioHit | The post-processing edge | The post-processing step relies on
et al. | Processing Attention | dataset and 98.4% on the | refinement module is independent, | accurately labeled edge features.
[10] mechanism and edge | HanYue-TongueSeg dataset | it can be applied to other
refinement strategy segmentation networks beyond
HPA-UNet.
P. Qu et | SegNet with an image quality | mloU of 95.89% and 90.72% | Use of a large and diverse dataset | Performance declines when applied to
al. [11] | evaluation method based on | respectively on | ensures robustness, making the | images from open environments with
brightness statistics TongueDataset1 and | model more adaptable to real- | uncontrolled lighting conditions.
TongueDataset2 world variations in image quality,
illumination, and tongue
morphology.
X. DeeplabV3+ with enhanced: | 99.13% mloU Contour-Based Weighted Cross- | It cannot completely eliminate errors
Zhang network structure, Entropy (CBWCE) Loss Function | when tongue edges have significant
et al. | optimization, CBWCE loss places higher emphasis on tongue | distortions or irregularities.
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Cao et | TongueSAM 98.06% mloU on BioHit | Zero-shot capability that can | Heavy computational resources
al. [13] while 97.85% on | achieve high accuracy even on | required due to SAM is a large
PaddlePaddle Dataset unseen dataset without additional | Transformer-based model that is

training. pretrained on massive datasets.
Tang et | DeepLabV3+ with MobileNet | 96.24 mlou on BioHit Dataset | Lightweight and efficient that have | Performance on the self-built dataset

al. [14] | backbone, CBAM in ASPP

module, PointRend

90%

parameter size compared to SOTA

approximately smaller

models.

was weaker than on the public BioHit
dataset, largely due to lower image
resolution and cropping issues in

clinical data acquisition.
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2.4 Tongue Feature Recognition

Tiryaki et al. [3] introduced an objective and automated deep convolutional neural networks
(DCNN) framework to distinguish between heathy tongues and four types of tongue lesions
which are fissured tongue, coated tongue, geographic tongue and median rhomboid glossitis.
Given the moderate size of the dataset and imbalance class nature, the researchers utilized
transfer learning strategies where pre-trained models such as VGG19, ResNet50, ResNet101
and GoogleNet, are employed as the backbone for classification tasks. A unique feature of the
study is the application of Fusion Based Majority Voting (FBMV) approach that was
introduced. This method aggregates predictions from multiple DCNN to enhance overall
classification robustness. In the binary classification task, ResNet101 achieved the highest
individual accuracy of 93.53% which improved to 95.15% with FBMYV approach. On the other
hand, VGG19 led with an accuracy of 83.93% and was elevated to 88.76% using the FBMV

method in the five-class classification task.

Zhong et al. [4] presents a novel application of deep learning to distinguish stained from non-
stained tongue coatings. The researchers processed the tongue images by using GCYTD
algorithm for tongue detection and DeeplLabV3+ for segmentation to ensure clean tongue
regions were analyzed. Then, ResNet50 architecture was employed for image classification
due to its strong feature extraction capabilities and efficiency in training. The results
demonstrated outstanding performance with an accuracy of 92%, 91% recall, and F1 score of
92%. The model also achieved high area under the curve (AUC) scores for both ROC (0.97)
and PR (0.95) curves, indicating excellent classification capabilities. Most notably, the model
outperformed three experienced TCM practitioners, who achieved an average diagnostic

accuracy of only 69% when evaluating the same images.

Zhuang et al. [15] proposed a portable and human-computer interaction-based tongue
diagnostic instrument in the study. The researchers used ResNet34, a residual neural network
that was known for its depth and ability to avoid vanishing gradient, for classifying tongue
features specifically teeth-printed tongues. The architecture outperforms the classical VGG16
model that is used as a baseline comparator by achieving the performance of 91.67% accuracy,
87.59% sensitivity and 95.39% specificity. The study also introduces a visual question
answering component that merges computer vision with natural language processing. This
multimodal approach allows the model to provide interpretable answers to user’s health-related

questions, therefore enhancing human-computer interaction and user experience.
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Jiang et al. [16] leverage Faster Region-Based Convolutional Neural Network (Faster R-CNN)
which is capable of simultaneously recognizing multiple tongue features within a single image
in the research. The researchers utilized ResNet101 as the backbone network and trained the
model on a large dataset of 8,676 expertly labeled tongue images that cover seven diagnostic
categories. The proposed model achieved impressive performance with an average accuracy of
90.67%, precision of 99.28%, recall of 91.25%, and F1-score of 95.00%. Beyond the model
development, the authors extended their work to real-world clinical application by analyzing
3,601 tongue images from individuals undergoing routine medical checkups. The analysis
revealed gender and age-related differences in the prevalence of tongue features and
established associations between specific tongue features and common metabolic disorders.
For instance, fissured and tooth-marked tongues along with greasy coatings showed strong
correlations with hypertension, dyslipidemia, overweight, and nonalcoholic fatty liver disease
(NAFLD), which support traditional diagnostic claims in TCM with modern statistical

validation.

The study by Wang et al. [17] addresses the need for an objective and automated system to
evaluate greasy tongue coatings that were clinically significant in diagnosing various diseases
such as gastroenteropathy and COVID-19. The authors developed and validated a deep learning
model named GreasyCoatNet, that was built on ResNet architecture. The study evaluated three
versions of GreasyCoatNet, which are GreasyCoatNet18, GreasyCoatNet34, GreasyCoatNet50
and identified that GreasyCoatNet34 as the most balanced and effective model. The model
achieved 88.0% classification accuracy and 0.947 AUC in distinguishing among non-greasy,
greasy and thick greasy coatings. The pretrained GreasyCoatNet was fine-tuned using a smaller
set of tongue images from COVID-19 patients and healthy controls. The fine-tuned model
outperformed randomly initialized networks in classifying COVID-related tongue features,

achieving higher scores in accuracy, F1, and AUC.

2.5 Explainable Artificial Intelligence

Recent advancements in medical image classification using Convolutional Neural Networks
have brough about high-performance diagnostic tools. However, the black box nature of deep
learning models remains a significant barrier to clinical acceptance. Therefore, the literature on
explainable Al (XAI) in medical imaging emphasizes the need for transparency in model
decision-making.
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The study by Cui et al. [18] employed techniques such as Grad-CAM, Grad-CAM++, Eigen-
CAM, and Ablation-CAM to generate heatmaps that identify influential regions in input
images. However, these methods are often qualitative and subject to subjective interpretation.
The researchers address the gap by applying quantitative interpretability metrics which is the
Heatmap Assisted Accuracy Score (HAAS) to evaluate the effectiveness of the heatmaps that
were generated by CNN-based models’ predictions. HAAS stands out as a robust and
automated metric that evaluates the consistency of model predictions after adjusting images
based on attribution maps and offering a model-centric alternative to annotation-dependent

evaluations.

Wau et al. [19] integrates the explainable artificial intelligence with TCM tongue diagnosis to
address a significant gap in the interpretability on existing deep learning-based diagnostic tools.
The research compares and evaluates three types of diagnostic models which are convolutional
neural networks, Transformer-based networks and feature-fusion approach that integrates
colour, morphology and texture features of the tongue. Among the models, the feature-fusion
model and ResNet-based CNN demonstrated superior classification performance on a dataset
that categorized into four TCM syndromes. The authors employed ProtoPNet and Grad-CAM
visualization techniques so that the identification of syndrome-specific tongue features and
neural network attention areas is enhanced. The study found that ResNet yielded more
clinically meaningful attention maps compared to VGG, which often misfocused on irrelevant
image regions. Besides that, the study also revealed that neural networks can identify
prototypical tongue images that align with traditional descriptions of TCM syndromes such as

thin coating and pale colour for liver depression and spleen deficiency.

Musthafa et al. [20] integrate ResNet50 with Grad-CAM to both optimize detection
performance and provide visual explanations for brain tumors prediction. The authors report a
significant advancement over previous work by achieving testing accuracy of 98.52% and F1-
score exceeding 98%. The model’s performance surpasses that of several baseline studies,
which generally report accuracies in the range of 91-97%. Importantly, the Grad-CAM
visualizations enabled clinicians to confirm that the model was focusing on clinically relevant

tumor regions.

The research by Umair et al. [21] studied on Al-assisted diagnostic methods for COVID-19
detection using medical imaging, specifically chest X-rays. The authors implemented a transfer
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learning approach with fine-tuning on four pretrained CNN models which are VGG16,
ResNet50, MobileNet and DenseNet121 to classify chest X-ray images into COVID-19
positive and normal categories. Besides that, a significant methodological feature of the study
is the application of the Grad-CAM visualization techniques which highlight the image regions
of most influential to the model’s decision-making. Among the tested models, DenseNet121
achieved the highest accuracy of 96.49%, followed closely by MobileNet (96.48%) and
outperformed the popular COVID-Net benchmark (93.3%). The study further explores the
impact of optimizers and hyperparameters such as batch size and learning rate. The findings
show that RMSprop and a batch size of 32 is the optimal choice for the training

hyperparameters.

2.6 Critical Remarks of Previous Work

Although previous studies have made notable contributions to automated tongue diagnosis
using deep learning, several limitations remain when compared to the need of a more
generalizable and clinically relevant solution. Tiryaki et al. [3] utilized fusion-based ensemble
techniques to classify health versus diseased tongues, yet the reliance on majority voting will
increase computational overhead. Besides that, Jiang et al. [16] developed a strong detection-
based model that is capable of recognizing multiple tongue features with high accuracy, but
the model’s complexity and lack of explainability tools such as heatmaps or visual rationales
limit its clinical transparency. Furthermore, only a few studies have prioritized model
efficiency or suitability for deployment in settings with limited computational resources across
these works. In comparison, our study introduces a lightweight model that requires low
computational cost while maintaining strong classification performance. It also emphasizes
model interpretability using explainable AI techniques such as Grad-CAM, therefore

supporting transparent decision-making for TCM applications.
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2.7 Comparison of Previous Work (Classification and Explainable AI)

Table 2.2 Comparison of Previous Work (Classification and Explainable Al)

Author

Network Architecture

XAI Techniques

Strength

Limitation

Tiryaki et al. [3]

VGG19, ResNet50,

ResNet101, GoogleNet

Fusion Based Majority Voting that

combines the strengths of multiple

Small dataset size in each class,

which may limit the model’s

Visual Question Answering to
allow users to interact and receive
health

suggestions from the

system.

networks. generalizability.

Zhong et al. [4] ResNet50 - Include comparison between | Lack of model comparison, only
model and experienced TCM | ResNet50 was used in the study.
practitioners as a real-world
benchmark.

Zhuang et al. [15] | ResNet34 - Combining deep learning with | Limited tongue feature categories,

features such as tongue fissures

were not explored in detail.
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Jiang et al. [16]

Faster R-CNN with ResNet101

Multi-label classification which

Did not compare the results to other

backbone enables multiple tongue features | deep learning architecture such as
classification in one image. YOLO.
Wang et al. [17] GreasyCoatNet18, Grad-CAM Effective use of transfer learning | Imbalance distribution of classes in
GreasyCoatNet34, by fine-tuning pretrained | training data, only 85 for non-
GreasyCoatNet50 GreasyCoatNet on a smaller | greasy class while 759 for greasy
COVID-19 dataset. class.
Cui et al. [18] ResNetl8, ResNet50, VGG19, | Grad-CAM, Grad- | Integration of quantitative | Binary classification scope where
AlexNet CAM++, Eigen-CAM, | interpretability = (HAAS) that | the task was limited to distinguish
and Ablation-CAM quantifies the alignment between | stained from non-stained tongue
model attention and predictive | coatings.
accuracy.
Wu et al. [19] AlexNet, DenseNet, | ProtoPNet, Grad-CAM Comparative model analysis that | The  overall accuracy and
EfficientNet, EfficientNetV2, compares CNNs, Transformer- | robustness may still be insufficient
MobileNet, GoogleNet, based and fusion model. for clinical deployment.
RegNet, ResNet, VGG,
ShuffleNet, Vision
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Transformer, Swin

Transformer, Fusion Diagnosis

DenseNet121, ResNet50

Musthafa et al. | EfficientNetB0, DenseNet201, | Grad-CAM The use of epoch-wise Grad-CAM | The high accuracy on the validation
[20] Inception, Xception, visualizations offer deeper insights | set (100%) suggests a possible risk
MobileNet, ResNet50 into the model’s learning | of overfitting.

progression.
Umair et al. [21] | MobileNet, VGGL16, | Grad-CAM A systematic evaluation of | Did not include other lung diseases

learning rates, batch sizes and

optimizers were conducted.

such as pneumonia which are often
visually similar to COVID-19 in X-

rays
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Chapter 3
System Methodology/Approach

3.1 Design Specification
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Figure 3.1 Model Development Flowchart

Figure 3.1 describes the model development flowchart to create and optimize the deep learning
models. First, the dataset will be collected for image classification task. It is important to collect
a good quality tongue image with high resolution, minimal noise and relevant content. This is
because the quality of images will affect the performance of the models by having poor
generalization and difficulty in learning meaningful features. Data preprocessing is carried out
after dataset acquisition. The purpose of data preprocessing is to eliminate unwanted parts,
normalize and convert the image into same size of arrays so that it can be used during the model
training. After that, data augmentation techniques are applied to enhance the model
generalization. The dataset diversity is increased by introducing the transformations such as

rotation, flipping, scaling and shearing to the original dataset.

During the model training phase, the model will learn to segment the training data by adjusting
the parameters such as weights using optimization techniques iteratively and validate the
performance with validation dataset. Then, the model is being tested on the testing dataset
which is unseen during the model training phase. Performance metrics such as accuracy and
F1-Score will be used to evaluate the performance of the model. Furthermore, hyperparameter
tuning such as learning rate and batch size is performed to further refine the model’s
performance. The iterative cycle for model training, testing and evaluation is conducted until

the model achieves optimal performance.
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Finally, visual outputs such as heatmaps that highlight the important regions in the input image
that contributed to the model’s prediction will be generated. These generated heatmap will then
be evaluated and compared using visualization benchmarks to assess the quality and

effectiveness of the explanation provided.

3.2 System Requirements
3.2.1 Hardware

Table 3.1 Laptop Specifications

Description Specifications
Processor Intel Core 17-7700HQ
Operating System System Windows 10
Graphic Card NVIDIA GeForce GTX 1050 4GB GDDRS
Memory 12GB DDR4 RAM

3.2.2 Software
Table 3.2 Software Specifications

Description Software
Programming Language Pyhton 3.11.11
Library TensorFlow 2.18.0, Keras 3.8.0
IDE Google Colab with T4 GPU

Python is used as the main programming language in this project because it offers various built-
in libraries such as TensorFlow or PyTorch library for developing deep learning models and
image processing. Besides that, the syntax from Python is also easier to read and understand

thus easing the development process.

TensorFlow is an open-source platform developed by Google for building machine learning
and deep learning models while Keras is a high-level neural networks API that is written in
Python and is capable to run on top of TensorFlow. It simplifies the model building process
and therefore allows quick development and experimentation for deep learning models in this

project.
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Google Colab are the main integrated development environment (IDE) used in the development
phase. Google Colab is a web-based IDE hosted by Google where Python code can be written
on it in a Jupyter Notebook format. It does not require any setup and provide free access to

GPU and TPU to train the deep learning model.
3.3 Dataset
3.3.1 Segmentation

BioHit Dataset

The dataset used in this research is BioHit Tongue Dataset, which was developed by the Harbin
Institute of Technology [22]. It is a publicly available and widely utilized dataset for tongue
segmentation. The dataset consists of 300 RGB tongue images with a resolution of 768x576
pixels and paired with manually annotated masks as the ground truth. The images were
captured in a semi-enclosed setting under consistent lighting conditions. In this study, the

dataset is being split into training, validation and testing set with the ratio of 7:2:1 respectively.

Image Ground Truth

Figure 3.2 Sample Image and Its Ground Truth from BioHit Dataset

Roboflow Dataset

The second dataset was obtained from [23] which consists of 2,500 tongue images. There are
around 500 images were captured under consistent lighting conditions while the remaining
images were taken in open environments with unstable lighting. The images are 640x640
resolution and are provided in JPG format while the masks are in PNG format. The ground
truth masks are labeled with binary labeling convention which is 0 for the background and 1
for the region of interest. The sample of the image and its preprocessed ground truth from the

dataset is shown in Figure 3.3 and 3.4.
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Ground Truth

Figure 3.3 Sample of Consistent Lighting Tongue Image

Image Ground Truth

Figure 3.4 Sample of Open Environment Tongue Image

PaddlePaddle Dataset

The third dataset is a dataset that consists of 1,000 images selected from [24] with manual
segmentation performed sing the Labelme tool by the author referenced in [13]. This collection
includes a diverse array of tongue images captured various conditions including mobile devices
and unconventional angles. The original images were resized to 400x400 resolution by the
author to maintain uniform input size as the original images vary in resolution. The ground
truth mask also appears as entirely black as the second dataset but however the pixel labeled
[1,1,1] as tongue regions while [0,0,0] denotes the background. Figure 3.5 shows the sample

of the tongue images from the third dataset.
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Ground Truth

Original Image

Figure 3.5 Sample of Tongue Image

3.3.2 Binary Classification

The dataset used for binary classification task is an open-source tongue dataset [25]. It consists

of a total of 2,008 tongues images, which are divided into two balance categories:

Table 3.3 Distribution of Tongue Images in Binary Classification

Class Total Proportion (%)
Stained tongue coating 1,001 49.85
Non-stained tongue coating 1,007 50.15

The stained tongue coating images are collected from healthy student volunteers and the non-
stained tongue coating images are collected from hospitalized patients that are diagnosed with
conditions such as lung cancer, diabetes, and hypertension. The stained tongue images were
captured at 5, 10, and 30 minutes after the participants consumed stained foods such as milk,

mango and coffee in a fasting condition to control the confounding factors.

The dataset is split into training, validation and testing set with the ratio of 7:2:1 respectively
during the model development. Furthermore, all images were uniformly resized to 384 x 384

pixels to ensure consistency throughout the study.
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Stained Tongue Coating Non-Stained Tongue Coating

Figure 3.6 Sample of Tongue Image in Each Class (Binary)

3.3.3 Multi-Class Classification

The dataset used for multi-class classification is a proprietary dataset that was obtained via a
commercial vendor at Taobao. It consists of a total of 1,501 images that are divided into 5
classes which are mirror-approximated, white-greasy, thin-white, yellow-greasy and grey-

black tongue. The distribution of the tongue images for each class is shown at Table 3.4.

Table 3.4 Distribution of Tongue Images in Multi-Class Classification

Class Total Proportion (%)
Mirror-Approximated 122 8.13%
White-Greasy 698 46.50%
Thin-White 534 35.58%
Yellow-Greasy 91 6.06%
Grey-Black 56 3.73%

According to the study [26], the coating appearance of the tongue can be described as:

Table 3.5 Description of Tongue Coatings

Class Description
Mirror-Approximated No coating at tongue and appear as smooth, pink
tongue surface.
White-Greasy White in colour with thick, sticky and greasy
coating.
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Thin-White A thin white layer of tongue, considered normal
in healthy individuals.
Yellow-Greasy Yellow-coloured coating with thick and greasy
appearance.
Grey-Black Dark grey to black tongue coating.

The dataset is split into training, validation and testing set with the ratio of 7:2:1 respectively
during the model development. Furthermore, all images were uniformly resized to 384 x 384

pixels to ensure consistency throughout the study.

Mirror-Approximated White-Greasy Thin-White Yellow-Greasy Grey-Black

Figure 3.7 Sample of Tongue Image in Each Class (Multi-Class)

3.4 Model Architecture

3.4.1 LECA-EfficientNetV2

LECA-EfficientNetV2 is a lightweight deep learning model that was proposed in [27]. It is
built upon the EfficientNetV2 architecture which is known for its optimized balance between
performance and computational efficiency. The model incorporates a novel channel attention
mechanism called Lightweight Efficient Channel Attention (LECA) module, that was designed
to enhance feature extraction without increasing the computational burden. Unlike traditional
attention modules like Squeeze-and-Excitation (SE) that use dimensionality reduction and can
weaken feature learning, LECA avoids dimensionality reduction by leveraging a local cross-
channel interaction strategy based on 1D convolutions. This allows it to preserve detailed
information while adaptively weighting feature channels. The architecture of LECA-
EfficientNetV2 closely follows the original structure of EfficientNetV2. The primary
modification lies in the replacement of the SE modules with LECA module. Figure 3.8 shows

the details of LECA module and Figure 3.9 shows the architecture of LECA-EfficientNetV2.
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Figure 3.9 LECA-EfficientNetV2 Architecture [27]

3.4.2 Proposed Mobile U-Net

The model is a lightweight segmentation framework that combines the U-Net architecture [28]
with MobileNetV2 [29] as its encoder backbone. The encoder utilizes a pretrained
MobileNetV2 network to capture hierarchical image features while maintaining computational

efficiency.

In the encoder, hierarchical features are extracted from different stages of MobileNetV2. These
multi-scale features are then passed to the decoder through skip connections to preserve spatial
details that are often lost during downsampling. The decoder progressively reconstructs the
image resolution by psalming the encoded features and fusing them with the corresponding
encoder features. This design enables the model to combine both high-level semantic

information and fine-grained spatial details that are critical for accurate tongue segmentation.
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In the decoder, the feature maps are progressively upsampled to reconstruct the spatial
resolution of the input. An attention block is applied before concatenation at each skip
connection to enhance the fusion of encoder and decoder features. The attention mechanism
adaptively weights the encoder features to allow the network to emphasize the most relevant
regions while suppressing irrelevant background information. This selective focus improves
segmentation accuracy where boundaries may be ambiguous or corrupted by noise. Figure 3.10

shows the architecture of the Mobile U-Net with attention gate module.
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Figure 3.10 Mobile U-Net with Attention Gate Module

3.4.3 Proposed Mobile U-Net with Transformer

The second model enhances Mobile U-Net with Attention Gate model in section 3.4.1 by
integrating a transformer module into the bottleneck stage. The original design relies primarily
on convolutional operations, which are effective at capturing local spatial dependencies bt
however these operations are limited in the ability to model long-range relationships. To
address the limitation, a transformer bottleneck inspired by Vision Transformer (ViT)
architectures [30] is introduced. This component enables the network to capture global
contextual information across the entire feature map, which is beneficial for tongue
segmentation tasks where local textures and global shape patterns must be considered

simultaneously. Figure 3.11 shows the architecture of the model.
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Figure 3.11 Mobile U-Net with Attention Gate and Transformer

3.4.4 Proposed Efficient-ResNet

The proposed model is a hybrid network that combines ResNet-style lightweight residual
blocks with EfficientNetV2-inspired MBConv blocks for efficient feature extraction. To
further improve channel-wise feature recalibration, the Lightweight Efficient Channel
Attention (LECA) module in [27] is integrated within selected blocks. This hybrid design
leverages the robust skip connections of ResNet and the parameter-efficient inverted bottleneck
structure of EfficientNet so that the model is able to achieve a balance between accuracy and
computational efficiency. Figure 3.12 shows the architecture along with the structure of the

Reslite and MBConv block.
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Figure 3.12 Architecture of Efficient-ResNet and Structure of Reslite and MBConv Block

3.5 Explainable Artificial Intelligence Techniques

3.5.1 Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM is a popular visualization technique used to interpret the decision-making process
of convolutional neural networks particularly in image classification tasks [31]. Grad-CAM
works by computing the gradients of the output class with respect to the feature maps in the
final convolutional layer. These gradients are used to produce a heatmap that highlights the
spatial regions in the input image that contributes most significantly to the model’s prediction.
By overlapping the heatmap onto the original image, Grad-CAM provides a visual explanation
that helps researchers and practitioners understand which areas of the image the model is

focusing on.

In the Grad-CAM heatmap, colours represent the importance or relevance of different regions
of the input image. Red or yellow regions indicate high activation, which means the parts of
the image are strongly influencing the model’s prediction for the chosen class. On the other
hand, blue or dark areas represent low or no activation that suggests the regions had little to no
contribution to the decision. By providing intuitive visual feedback, Grad-CAM enhances

transparency and trust in deep learning models.
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Figure 3.13 Visualization of Grad-CAM with Predicted Class [31]

3.6 Model Evaluation Techniques

3.6.1 Segmentation

The objective of the performance metrics is to evaluate the performance of the segmentation
models by assessing the similarity between the predicted and ground truth segmentations.
Several common evaluation metrics that are commonly used in medical image segmentation

are referred from [32, 33] and are used in this study.

Mean Intersection over Union (MlIoU)
The Mean Intersection over Union measures the average ratio of overlap between predicted

and ground truth segmentations. It is commonly used to measure the accuracy of the model in

image segmentation field.

MIU—lgk r 3.1
0 " kL TP+FP+FN 3.1
i=

where:
k : Number of images segmented
TP : The overlapping area between the ground truth and predicted segmentation mask

FP : The area of predicted segmentation that extends beyond the ground truth
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FN : The number of pixels in the ground truth that failed to predict

Mean Pixel Accuracy (MPA)
Pixel Accuracy represents the ratio of correctly predicted pixels to the total number of pixels.
Mean Pixel Accuracy extends it by calculating the accuracy for average value across the

segmentation.

o L - TP + TN 32)
_kllTP+TN+FP+FN '
=

where:

k : Number of images segmented

TP : The overlapping area between the ground truth and predicted segmentation mask
TN : The area that is correctly predicted that not belong to the region of interest

FP : The area of predicted segmentation that extends beyond the ground truth

FN : The number of pixels in the ground truth that failed to predict

Mean Dice Similarity Coefficient (MDSC)
The Dice Similarity Coefficient is defined as the harmonic mean between the sensitivity and
precision. The difference between MDSC and MIoU is that MIoU imposes a stronger penalty

on under-segmentation and over segmentation towards the images.

MDSC = ! Ek 2P (3.3)
_k.12TP+FP+FN '
=

where:

k : Number of images segmented

TP : The overlapping area between the ground truth and predicted segmentation mask
FP : The area of predicted segmentation that extends beyond the ground truth

FN : The number of pixels in the ground truth that failed to predict

3.6.2 Classification
The objective of performance metrics is to objectively evaluate how well a model can correctly
identify and categorize images into their respective classes. These metrics provide insight into

different aspects of the model’s behavior. The performance metrics that are commonly used in
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medical image classification and benchmark for evaluating visual explanations are referred

from [34, 35, 36] and are used in this study.

Accuracy

Accuracy is a fundamental performance metric that measures the overall correctness of the
model by calculating the proportion of correctly classified images out of the total number of
predictions. In tongue classification tasks, accuracy indicates how frequently the model

correctly identifies the tongue type regardless of the specific class.

TP+TN
TP+ FP+TN+FN

Accuracy = (3.4)

where:

True Positive (TP): The model correctly predicts the image that belongs to a specific class and
in actual the image also belongs to the class. For example, the model predicts an image is

“yellow-greasy” and the actual label is also “yellow-greasy”.

True Negative (TN): The model correctly predicts the image that does not belong to a specific
class and it indeed does not belong to the class. For example, the model predicts an image is

not “yellow-greasy” and the actual label is also not “yellow-greasy”.

False Positive (FP): The model incorrectly predicts that an image belongs to a class when it
actually does not. For example, the model predicts an image is “yellow-greasy” but the actual

label is not “yellow-greasy”.

False Negative (FN): The model incorrectly predicts the image does not belong to a specific
class when it actually does. For example, the model predicts an image is not “yellow-greasy”

but the actual label is “yellow-greasy”.

Precision

Precision measures the proportion of true positive predictions among all instances that the
model predicted as a specific tongue type. In the context of tongue classification, high precision
indicates that when the model classifies an image as a particular tongue category, it is likely to

be correct.
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Precision = e (3.5)
recision = o :

Recall

Recall is also known as sensitivity or the true positive rate. It refers to the proportion of actual
positive cases that the model correctly identifies. In tongue classification, recall assess the
model’s ability to detect all images that truly belong to a given tongue type. A high recall value
means that the model is effective in identifying most instances of that tongue category so that
the risk of false negative is minimized. A high recall is important in medical diagnostics as a

false negative will lead to untreated conditions.

TP

Recall = TP-F—FN (36)

F1-Score

F1-Score is the harmonic means of precision and recall that provides a balance trade-off
between false positive and false negative. In tongue classification, the F1-Score is particularly
valuable when dealing with imbalanced datasets where certain tongue types may have fewer
samples than others.

Precision X Recall _ 2XTP
Precision + Recall ~ 2 xTP + FP + FN

F1=2x (3.7)

Confusion Matrix

Confusion matrix is a tabular representation of the classification results that summarizes the
number of true positives, true negatives, false positives and false negatives for each class. This
helps in identifying specific weaknesses in the model and guides further refinement in model

training or data preparation.
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Predicted Values

Positive Negative

TP

Positive

TN

Actual Values

Negative

Figure 3.14 Confusion Matrix [31]

Pointing Game

Pointing Game is a metric used to evaluate the accuracy of visual explanations by assessing
whether the most activated point in a Grad-CAM heatmap falls within the ground truth region
of interest. If the pixel with the highest activation value in the Grad-CAM lies inside the ground
truth mask, then the prediction is counted as “hit” otherwise “miss”. The final score is
calculated as the ratio of hits to the total number of evaluated images. This method provides a
simple yet effective way to measure whether the model is focusing on the most relevant part

of the image even if it does not highlight the entire region.

YN 1[MaxLoc(E;) € A;]
N

Pointing Game = (3.6)

where:
N: Number of samples.

MaxLoc(E;): The location of the highest activation in the Grad-CAM saliency map for the i-th

image.

Ai: Ground truth mask for the i-th image.
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Chapter 4

System Implementation

4.1 Segmentation

4.1.1 Data Preprocessing

create train_val test generators(train input dir, train_target dir,
val input dir, val target dir,
img_size=(384, 384), batch size=2)

input_datagen 2 aGenerator(rescale=1./255)

target_datagen = ImageDataGenerator(rescale=1./255)

train_input_generator = input_datagen.flow_from directory(
train_input dir,

)

train_target generator = target datagen.flow from directory(
train_target_dir,
target_size=img_size,

Figure 4.1 Data Pipeline for Segmentation

val_input_generator = input_datagen.flow_from directory(
val input dir,
target_si img_size,
batch_size=batch_size,
class_mode=
color mode="
shuffle=
seed=42

val_target_generator = target_datagen.flow from_directory(
val target_dir,
target_ img_size,
batch size=batch size,
class_mode= »
color _mode:
shuffle=
seed=42

train_generato zip(train_input generator, train target generator)

val_generator = zip(val_input_generator, val_target_generator)

numi r
train_samples train_input_generator.samples
val_samples = val_input_generator.samples

urn train_generator, val generator, train_samples, val samples

Figure 4.2 Data Pipeline for Segmentation
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Figure 4.1 and Figure 4.2 shows the function of the data pipeline. This function prepares
training and validation data generators for image segmentation tasks using Keras’
ImageDataGenerator. Both input images (RGB) and target masks (grayscale) are normalized
to a [0,1] range. To maintain alignment between inputs and targets, the same random seed is
applied during shuffling. The generators are combined using zip so that each batch yields paired
(input, target) samples. Additionally, the function returns the total number of samples in the

training and validation sets, which are required to define training steps during model fitting.

4.1.2 Modelling

def build_small_mobilenetv2_unet(input_shape=(256, 256, 3)):
inputs = layers.Input(shape=input_shape)

ileNet) der
fobileNetV2(include top= , weights="1 ', input_tensor=inputs)

") .output
base_model.get_laye .output
base _model.get_layer( ) -output

skip4 = base model.get layer( le ") .output
bottleneck = base_model.get_layer 1 -output

on (fewer fi
oder_block(bottleneck,
decoder_block(up4, skip3,
decoder_block(up3, skip2,
decoder_block(up2, skipil,

ayers.UpSampling2D( (2, 2))(upl)
conv_block(x, 16)

x = layers.Dropout(9.3)(x)

outputs = layers._Conv2D(1, 1, activation="

return Model(inputs, outputs)

Figure 4.3 Mobile U-Net Modelling

Figure 4.3 shows the function to model Mobile U-Net. The function uses pretrained
MobileNetV2 as its encoder. It is initialized with pretrained ImageNet weights and the
intermediate feature maps from selected layers are extracted as skip connection. The
“block 16 project”, which is the deepest feature representation serves as the bottleneck of the

model so that it helps the network to learn abstract features from the tongue image.

The decoder reconstructs the segmentation map through a series of upsampling operations that
are combined with skip connections. After the final upsampling, the output is passed through
a convolutional block, a dropout layer for regularization and a final convolution layer with a

sigmoid activation to generate the segmentation mask.
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4.1.3 Early Stopping and Model Checkpoint Callbacks

checkpoint_callback = keras.callbacks.ModelCheckpoint(checkpoint path, save best only=True, monitor="val

1(checkpoint_path, custom_objects={ ss": dice_loss, "iou": iou, "dic icient": dice_coefficient})

oint...")

Figure 4.4 Early Stopping and Model Checkpoint Callbacks

In Figure 4.4, the code configures a training strategy that includes early stopping and
checkpointing across all segmentation models to improve model training efficiency and
reliability. The early stopping callback monitors the validation loss and stops the training if it
does not improve for three consecutive epochs. Besides that, the Model Checkpoint callback
saves the model whenever a new minimum validation loss is reached. Before the training starts,
the script will check whether a saved model already exists. If found, the model will be loaded
so the training can resume from the last best state rather than starting the training from scratch

again.
4.1.4 Model Training

history = model.fit(
combined_generator(train_generator), # Pass the combined generator function here
steps_per_epoch=train_steps,

validation data=combined_generator(val generator), # Pass the combined generator function here as well

validation_steps=val_steps,
epochs=epochs,

callbacks=[checkpoint_callback, early_stopping]

Figure 4.5 Model Training

Figure 4.5 shows the method to train the model. The code uses fit method with combined
generators for both training and validation data. The batch size is set to 8 while the training is
set to run for 10 epochs maximum. Two callbacks are included during the training process
which are Model Checkpoint and Early Stopping that were described in 4.1.3. This setup

ensures efficient training by preventing overfitting and preserving the best model weights.
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4.2 Classification
4.2.1 Data Preprocessing
Binary Classification Preprocessing

import os
from sklearn.model selection import train_test split

dataset_dir 3
stained dir = .path.join(dataset dir,

non_stained_dir = os.path.join(dataset_

paths
[os.path.join(stained_dir, f) for f in os.listdir(stained _dir) if f.lo

non_stained images = [os.path.join(non_stained dir, f) for f in os.listdir(non_stained d f f.low ) -endswith(

nt
[1] * len(stained_images)
non_stained_labels = [@] * len(non_stained_images)

stained_images + non_stained images
stained_labels + non_stained_labels

# Firs lit: train vs temp
X_train, X temp, y_train, y temp ain_test_sp (

all images, all labels, test si 8.3, random state=42, stratify=all labels
)

# plit: va [ 1, 1e from original d

X val, X test, y val, y test = train_ _split(
X _temp, y temp, test_size=1/3, random_state=42, stratify=y_temp

)
Figure 4.6 Binary Classification Dataset Splitting

To prepare the dataset for model training and evaluation, a structured data splitting approach
was implemented as shown in Figure 4.6. The dataset was initially stored in separate directories
within the root folder. Then, each image was retrieved using the “os” module from Python and
every image was labelled according to its respective category where stained images were
assigned label 1 and non-stained images were label 0. The complete dataset is split with 7:2:1
ratio for training, validation and testing dataset with a stratified sampling strategy to maintain

the original class distribution across all subsets.
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IMG_SIZE = (384, 384)
def load and preprocess_image(path, label):

.read_file(path)
tf.image.decode_jpeg(image, channels=3)

and p
image = tf.image.resize(image, IMG_SIZE)

image = preprocess_input(image) #
return image, label

f create dataset(image paths, labels, batch size=32, shuffle=
o rt
path_ds = tf.data.Dataset.from tensor_slices((image_paths, labels))
ds = path_ds.map(load_and preprocess_image, num_parallel calls=tf.data.AUTOTUNE)

if shuffle:
ds = ds.shuffle(buffer size=1088)

return ds.batch(batch_size).prefetch(tf.data.AUTOTUNE)

ts
tra create_dataset(X_train, y_train)
val_ds = create_dataset(X_val, y val, shuffle= )
test_ds = create dataset(X_test, y test, shuffle= )

Figure 4.7 Image Preprocessing

After the dataset was split into training, validation and testing subsets, the create dataset
function converts the image paths and the corresponding labels into TensorFlow tensors. Each
image was then resized to a fixed dimension of 384 x 384 pixels to ensure consistency input.
ResNet50 preprocessing steps was applied to normalize the image according to the
requirements of the pre-trained model. The dataset is then batched with a batch size of 32 and
shuffling was applied to the training set to enhance generalization and avoid learning order-

specific patterns during the training process.

Multi-Class Classification Preprocessing

import pandas as pd

def load label file(path):
df = pd.read csv(path)
df[ 1'] = df['label'].astype(str) # fo
R -
return df

train_df = load label file(
val df load label file(
test df load label file(

Figure 4.8 Reading CSV Files

Due to the different methods of data storage, the image metadata for the multi-class
classification task was organized and stored in CSV files. Each CSV file contained the
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filenames of the images along with their corresponding class labels. Both columns were

explicitly cast to string format to ensure compatibility with TensorFlow’s data pipeline.

on
ImageDataGenerator(
preprocessing function=preprocess_input

class_mod
shuffle=
)

test_gen = datagen.flow from_ dataframe(
dataframe
directory="

s hu‘FfEe:

Figure 4.9 Data Generator

Image processing was managed using the ImageDataGenerator class from Keras that facilitated
the normalization and efficient loading of image data. The flow from dataframe method was
used to generate batches of images directly from the labeled dataframes and their corresponding
directories. Besides that, each image was also resized to a fixed resolution of 384 x 384 pixels
to ensure consistent input size. Finally, the class labels were one-hot encoded using the

categorical mode for the five-class classification task.
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image_root =
outpt

img_size = (38
image format =

df.columns = [

STEP 2
label_counts = Counter(df[
max_count - max(label counts
augment_plan = {label: max_count - count for label, count in label counts.items())}

needed in augment_plan.items():

{label}: {label counts[label]} - needed)

utput_dir, exist_ol
label in label counts:
os.makedirs (os.path.join(output_dir, label)), exist ok-

# = TEP 4: Initi
augmentor = ImageDataGenerator(
rotation_range=28,
zoom_ra o
width_shift_range=0.1,
height shift ra

fill mode
cval=8.8

Figure 4.10 Data Augmentation

s.path.join{output_dir,
shutil.copy(src, dst)
3 : label})

needed > @:

num_images = len(filenames)

aug_counter = @

augment_per_image (needed + num_images - 1) // num_images #

original_file in enumerate(filenames):

img_path = os.path.join(image root, original_file)
img =

1))re]

r(label)}, aug_name)

aug_counter += 1

Figure 4.11 Data Augmentation
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balanced df.to_csv('/content/c Irive/ ata lanced_train_label.csv", index=

Figure 4.12 Saving CSV File

Figure 4.10 to Figure 4.12 shows the process of data augmentation. First, the class distribution
was analyzed to determine the number of additional images required for each class to achieve
a balance dataset. The image augmentation techniques were configured with a combination of
geometric transformations such as rotation, zoom, width, height shifts, shear transformations
and horizontal flipping. The fill mode parameter was set constantly with a black padding value
to preserve image consistency after transformations. Finally, the augmented images were saved
into respective class-specific subdirectories and a new CSV file containing the filenames of the

augmented images along with their class labels was generated.

4.2.2 Modelling

def conv_bn_act(x, filters, kernel size, stride=1, groups=1, name_prefix=
x = layers.Conv2D(
filters,
kernel_size,
strides=strid

groups=groups,
name=f"{name_prefix} ',

Y(x)

x = layers.BatchNormalization(name=f"{name prefix]

x = layers.Activation( h", name=f"{name_prefi

return x

def leca(inputs, reduction_ratio=2, name_prefix="leca'):|
channels = inputs.shape[-1]
reduced_channels = max(1, channels // reduction_ratio)

, name=f'{name_pref: *)Y(inputs)
, name=f'{name_prefix] ) (inputs)

< pooled], axis=-1, name=f'{name_prefix} concat')

kernel
stride

>
nams {name_prefix

)(concat_pooled)

', name=f’ gmoid" ) (attention weights)

return output

Figure 4.14 LECA Module
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reslite block(x, out_channels, stride=1, name prefix="r , apply_leca=
in_channels = x.shape[-1]

identity = x
y = conv_bn_act(x, out_channels, 3, stride=stride, name_prefix=f"{name_prefix]}

# LECA
if apply_leca:

y = leca(y, name_pref fname_pref

y = layers_Conv2D(out_channels, 3, strides=1, padding - bi e=f"{name_prefix} .
y = layers.BatchNormalization(name=f"{name_prefix}

if stride != 1 or in_channels out_channels:
identity = layers.Conv2D(out_channels, 1, stride i i » name=f"{name_prefix}

identity = layers.BatchNormalization {name_prefix}_p

= layers.Add(name="{name_prefix )([identity, y
= Teyare At e e e

turn y

f mbconv_block(x, out_channels, stride=1, expansion=2, kernel_s
in_channels = x.shape[-1]

int(in_channels * expansion)
= conv_bn_act(y, hidden, 1, stride=1, name prefix=

{name_pref:

layers.DepthwiseConv2D(
Pl _simelemrreil_cime,
strides=stride,

ayers .BatchNormalization(nam (name_pref
ayers.Activation|(| i , name=f"{name_prefix

if apply leca:
y = leca(y, name_prefix {name_pref

layers.Conv2D(out_channels, 1, strides=1, padding | (name_prefix}_

= layers.BatchNormalization(name=F"{name_prefix)

nd stride==1
if stride 1 and in_channels out_channels:
y = layers.Add(name=f"{name_pref: d")([x, y1)
return y

build eff resnet(input_shape=(384, 384, 3), num_classes=1000, dropout_rate=0.2, mb_expansion=2, name="Hy
inputs = layers.Input(shape=input_shape)

conv_bn_act(inputs, 32, 3, stride=2, name_prefix

reslite block(x, 32, stride=1, name prefix="s1 bl", apply_leca=
reslite_block(x, 32, stride=1, name_prefi:

reslite_block(x, 48, stride=2, name_prefix=
reslite_block(x, 48, stride=1, name_prefi:

mbconv_block(x, 64, stride=2, expansion=2, name prefix=" apply_leca=

mbeonyv_block(x, 64, strid pansior name_prefi:
(M 5
mbeonv_block(x, 128, stride=2, expansion=3, name_prefix= b1", apply leca=
mbeonv_block(x, 128, strid. i name_pref: ")
i P -
x = layers.GlobalAveragePooling2D(name=" P (x)
if dropout_rate and dropout_rate > 0:
% = layers.Dropout(dropout_rate, name= st™) (x)

outputs = layers.Dense(num_classes, activation=

model = models.Model(inputs, outputs, name=name)
return model

Figure 4.17 Efficient-ResNet Model Creation
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Figure 4.13 to Figure 4.17 shows the creation of Efficient-ResNet Model. The model combines
ResNet-style residual connections, EfficientNetV2-inspired MBConv blocks and a
Lightweight Efficient Channel Attention mechanism. The core building units are modularized
for flexibility. The conv_bn act utility applies a convolutional layer followed by batch
normalization and a Swish activation, serving as the basic operation for feature extraction. The
LECA module performs global average pooling and global max pooling in parallel to capture
complementary global context, concatenates the pooled descriptors, and applies a pointwise
convolution with hard-sigmoid activation to generate channel-wise attention weights. These
weights are used to re-scale the feature maps, thereby enhancing informative channels while

suppressing redundant ones.

The ResLite block is a lightweight residual unit composed of two consecutive convolutional
operations with batch normalization and non-linear activation which then connected through
an identity mapping. When spatial resolution or channel dimension changes, a projection
shortcut with a 1x1 convolution is used to align dimensions. LECA can optionally be integrated
within the block to improve channel recalibration. The MBConv block employs an expansion
phase via a pointwise convolution, followed by depthwise convolution to capture spatial
information with reduced complexity, and a projection phase that restores channel
dimensionality. Residual connections are maintained when input and output dimensions match

and stride equal one.

The complete model begins with a stem convolution for low-level feature extraction and
progresses through sequential stages of ResLite and MBConv blocks with increasing channel
depth and downsampling at each stage. The feature extraction backbone is terminated with a
global average pooling layer, followed by dropout for regularization, and a dense softmax
classifier for multi-class prediction. This architectural design strategically combines the
efficiency of MBConv operations, the stability of residual learning, and the representational
enhancement of lightweight channel attention, resulting in a computationally efficient yet

expressive deep learning model suitable for resource-constrained environments.
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4.2.3 Early Stopping and Model Checkpoint Callbacks

t Ez
early stopping = EarlyStopping(
monitor= =",

patience=3,
restore_best weights=

i oint

checkpoint_callback = ModelCheckpoint(
filepath=checkpoint_path,
save_best_only=

Figure 4.18 Early Stopping and Model Checkpoint Callbacks

To optimize training efficiency and prevent overfitting, two callback strategies were developed
as shown in Figure 4.18. Early stopping was configured to monitor the validation loss during
training and terminate the training process when there is no improvement was observed for
three consecutive epochs. Additionally, the final model will retain the weights from the epoch
with the lowest validation loss. Model checkpoint was implemented to save the best-
performing model throughout the training based on the minimum validation loss observed. It
stored the model weights in the predefined checkpoint path and updated the saved file only

when a new performance improvement was detected.

4.2.4 Model Training

# Train t

history = model.fit(
train_gen,
validation data=val gen,

[ checkpoint_callback, early stopping]

759ms /step - accuracy: ©.4590 g val_accuracy: 8. val_loss:
447ms fstep - accuracy: 0.5976 H val accuracy: 6. val loss:
473ms[step - accuracy: ©.6455 8. val_accuracy: 8. val_loss:
446ms [step - accuracy: ©0.6593 : 0. val accuracy: 6. val loss:
446ms [step - accuracy: ©.6829 8. val_accuracy: 8. val_loss:
439ms/step - accuracy: 0.7163 : 0. val accuracy: 6. val loss:
414ms[step - accuracy: ©.7642 8. val_accuracy: 8. val_loss:

421ms/step - accuracy: ©0.7462 : 0. val accuracy: 6. val loss:

457ms[step - accuracy: ©.6988 : ©.743 val_accuracy: 8. val_loss:

442ms/step - accuracy: 0.7416 : 9. val accuracy: 0. val loss:

Figure 4.19 Model Training
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The model training process was conducted using the fit method with the training dataset serving

as the input and validation dataset used for performance monitoring. The training was

scheduled for a maximum of 50 epochs. However, the actual number of training iterations

could be reduced due to the early stopping mechanism. Both the early stopping and model

checkpoint callbacks were integrated into the training loop to ensure that the model retain its

optimal weights and avoid overfitting.

4.2.5 Visualization

e C in the
in range(len(test_gen)):
images, labels = test gen[i]

for j in range(len(imag
= images[

image_t r .convert_to_tensor(image, dtype-=tf.float32)

true_class = int(np.argmax(label))
true_class_name = class_names[true_class]

test_gen.batch_size + j + 1

: {true_class_name}

tape:

({true_cla

conv_outputs, predictions = grad_model(image tensor)

class_index = tf.argmax(predictions[8])

loss = predictions[:, class_index]

radients
gra e.gradient(loss, conv_outputs)
if grads is :

continue

pooled_ = tf.reduce_mean(grads, axi
conv_outputs = conv_outputs[@]
pooled_grads = pooled_grads[@]
heatmap
heatmap

tf.squeeze(heatmap)

conv_outputs @ pooled_grads|[...,

tf.newaxis]

heatmap = tf.maximum({heatmap, @) / tf.reduce_max(heatmap)

heatmap = heatmap.numpy()

Figure 4.20 Grad-CAM Visualization
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import matplotlib.pyplot as plt
heatmap = cv2.resize(heatmap, (image.shape[2], image.shape[1]))
heatmap_colored cv2.applyColorMap(np.uint: * heatmap), cv2.COLORMAP JET)

img_np = image[@]
if img np.max() <= 1.8:

img_np = (img_np * 255).astype( uinta")
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)

heatmap_colored = np.uint8(heatmap_colored)
superim cv2.addweighted(img_bgr, ©.6, heatmap_colored, @.4, 8)

superim b - cv2.cvtColor(superimposed, cv2.COLOR_BGR2RGB)

nt{class_index.numpy())
_names[predicted class]
)

: {true_class_name} | Pred: {predicted_name}")

* test_gen.batch_size + j])

lename_wo_ext

5 * heatmap))

. n(save dir, f"{filename wo_ext)
 vis_path, heatmap_colored)

th.join(save dir, lename_wo_ext
cv2.imwrite(superimposed_path, cv2.cvtColor rimposed_r COLOR_RGB2!

Figure 4.21 Display and Save Generated Visualization

Figure 4.20 and Figure 4.21 shows the Grad-CAM visualization process. For each image in the
test dataset, a forward pass was performed to obtain predictions and the gradient of the
predicted class score with respect to the convolutional feature maps was computed. The
gradients were global average pooled to obtain channel importance weights, which were then
combined with the feature maps to generate a class localization heatmap. The heatmap was
then normalized and colour-mapped using OpenCV’s COLORMAP_JET. A weighted overlay
of the heatmap on the original image was created to highlight salient regions that influencing
the model’s decision. Finally, the grayscale heatmap, colour heatmap and the superimposed

visualization were saved for each image for further analysis.
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Chapter 5

System Evaluation and Discussion

5.1 Segmentation Experimental Results
5.1.1 Quantitative Evaluation

In this study, four baseline deep learning models which are U-Net, SegNet, PSPNet and
DeepLabv3+ were evaluated for tongue segmentation based on the MIoU, MPA, MDSC as
discussed in Chapter 3 along with the number of parameters. BioHit and Roboflow datasets
were collected under consistent lighting environments while PaddlePaddle dataset was
captured using a mobile phone with inconsistent lighting conditions. This setup allows a

realistic assessment of each model’s robustness and generalizability in practical scenarios.

Table 5.1 Performance Results of the Models (MIoU)

Model BioHit Roboflow PaddlePaddle Average
U-Net [27] 0.9468 0.9631 0.8838 0.9312
SegNet [37] 0.9601 0.9578 0.9177 0.9452
PSPNet [38] 0.9674 0.9702 0.9573 0.9650
DeepLabv3+ [39] 0.9710 0.9712 0.9589 0.9670
Mobile U-Net - Small 0.9614 0.9432 0.9321 0.9456
Mobile U-Net - Large 0.9740 0.9617 0.9644 0.9667
Mobile U-Net - Transformer 0.9522 0.9513 0.9390 0.9475

Table 5,1 presents the mean Intersection over Union performance of seven segmentation
models evaluated on the three benchmark datasets. On the BioHit dataset, Mobile U-Net Large
achieved the highest mloU (0.9740), slightly outperforming DeepLabv3+ (0.9710) and PSPNet
(0.9674). Traditional models such as SegNet (0.9601) and U-Net (0.9468) demonstrated
competitive but relatively lower scores, indicating that while classical encoder—decoder
designs remain effective while enhancements in deeper or more optimized architectures

contribute to incremental improvements.

In the Roboflow dataset, DeepLabv3+ obtained the best score (0.9712), closely followed by
PSPNet (0.9702) and Mobile U-Net Large (0.9617). Despite its relative simplicity, U-Net still
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demonstrated robust performance (0.9631) and outperforming the Mobile U-Net Small variant
(0.9432), which showed a decline likely due to reduced model capacity. The results suggest
that while lightweight models are attractive for efficiency, they may not capture sufficient

feature richness when applied to more complex data.

For the PaddlePaddle dataset, Mobile U-Net Large once again delivered the best performance
(0.9644), followed by DeepLabv3+ (0.9589) and PSPNet (0.9573). Notably, U-Net dropped
significantly to 0.8838, indicating sensitivity to variations in lighting and image quality. The
Mobile U-Net Transformer variant (0.9390) performed better than the small configuration but
did not surpass the large version, suggesting that simply adding transformer layers does not

fully mitigate the challenges posed by inconsistent imaging environments.

The performance gap between Mobile U-Net Small and Mobile U-Net Transformer illustrates
the specific impact of transformer integration. Both models share the same convolutional filter
configurations with the only difference being the inclusion of a ViT-style transformer block at
the bottleneck. On the controlled BioHit and Roboflow datasets, the transformer variant
achieved slightly higher mloU values than the small configuration (0.9522 vs. 0.9614 on
BioHit, 0.9513 vs. 0.9432 on Roboflow), suggesting that the attention mechanism improved
global feature modeling under consistent imaging conditions. However, on the more
challenging PaddlePaddle dataset, the transformer model (0.9390) did not surpass the large
variant (0.9644) and only modestly outperformed the small version (0.9321). This indicates
that while transformer integration can enhance contextual feature extraction, it is not sufficient
on its own to fully address domain shifts caused by inconsistent lighting or lower image quality.
Instead, increasing network capacity, as in Mobile U-Net Large, appears more effective for

achieving robust performance across varied imaging conditions.

In summary, Mobile U-Net Large consistently ranked among the top performers,
demonstrating strong adaptability even under challenging conditions. DeepLabv3+ and
PSPNet also showed stable and competitive performance across datasets, confirming their
reliability in different settings. In contrast, U-Net and Mobile U-Net Small were more
vulnerable to performance degradation especially in the PaddlePaddle dataset, underscoring
their limited generalization capacity. These findings indicate that models with higher

representational power or more sophisticated feature extraction strategies are better equipped
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to handle the variability introduced by uncontrolled imaging conditions, whereas lighter
architectures may sacrifice accuracy for efficiency.

Table 5.2 Performance Results of the Models (MPA)

Model BioHit Roboflow PaddlePaddle Average
U-Net [27] 0.9788 0.9909 0.9542 0.9746
SegNet [37] 0.9820 0.9901 0.9630 0.9784
PSPNet [38] 0.9848 0.9921 0.9828 0.9866
DeepLabv3+ [39] 0.9860 0.9927 0.9826 0.9871
Mobile U-Net - Small 0.9789 0.9866 0.9693 0.9783
Mobile U-Net - Large 0.9847 0.9902 0.9823 0.9857
Mobile U-Net - Transformer 0.9790 0.9889 0.9744 0.9808

Table 5.2 shows the mean pixel accuracy of the seven segmentation models across the datasets.
On the BioHit dataset, DeepLabv3+ achieved the highest mPA (0.9860), followed closely by
PSPNet (0.9848) and Mobile U-Net Large (0.9847). SegNet (0.9820) and U-Net (0.9788)
performed slightly lower but still demonstrated strong reliability in controlled imaging
conditions. Both Mobile U-Net Small (0.9789) and Transformer (0.9790) attained similar
performance to the baseline U-Net, indicating that lightweight or transformer-enhanced

variants were less advantageous when the dataset posed fewer challenges.

In the Roboflow dataset, DeepLabv3+ again achieved the top performance (0.9927), with
PSPNet (0.9921) and U-Net (0.9909) following closely. Mobile U-Net Large (0.9902)
remained competitive, while Mobile U-Net Small dropped slightly to 0.9866. Interestingly,
SegNet (0.9901) was also among the strongest performers, highlighting that classical

architectures remain effective under consistent lighting conditions.

For the PaddlePaddle dataset, which was captured under inconsistent lighting conditions, the
differences between models became more apparent. PSPNet (0.9828) obtained the highest
mPA, with DeepLabv3+ (0.9826) and Mobile U-Net Large (0.9823) performing almost equally
well. SegNet and Mobile U-Net Transformer achieved moderate scores (0.9630 and 0.9744,
respectively), while U-Net recorded the lowest value (0.9542). These results suggest that larger
and more advanced architectures are more resilient to variability in imaging conditions,

whereas lightweight or classical designs exhibit greater sensitivity to noise and inconsistencies.
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When averaged across datasets, DeepLabv3+ (0.9871) and PSPNet (0.9866) delivered the best
overall mPA, followed by Mobile U-Net Large (0.9857). The transformer-enhanced Mobile U-
Net (0.9808) achieved modest improvements over the small variant (0.9783) but did not
approach the performance of the larger configuration, confirming that increased model capacity
plays a more critical role than transformer integration alone in achieving robust segmentation

performance.

In summary, the mPA results demonstrate that all models performed strongly under controlled
conditions, with modern architectures such as DeepLabv3+ and PSPNet consistently
outperforming U-Net and SegNet, especially in the more challenging PaddlePaddle dataset.
While Mobile U-Net variants strike a balance between efficiency and accuracy, only the large
configuration consistently matched the performance of state-of-the-art models, underscoring

the importance of model capacity for handling complex real-world data variability.

Table 5.3 Performance Results of the Models (MDSC)

Model BioHit Roboflow PaddlePaddle Average
U-Net [27] 0.9763 0.9783 0.9356 0.9634
SegNet [37] 0.9808 0.9760 0.9527 0.9698
PSPNet [38] 0.9865 0.9825 0.9793 0.9828
DeepLabv3+ [39] 0.9886 0.9842 0.9806 0.9845
Mobile U-Net - Small 0.9759 0.9649 0.9603 0.9670
Mobile U-Net - Large 0.9862 0.9760 0.9807 0.9810
Mobile U-Net - 0.9767 0.9724 0.9642 0.9711
Transformer

Table 5.3 summarizes the mean Dice Similarity Coefficient of the evaluated segmentation
model across the BioHit, Roboflow and PaddlePaddle datasets. On the BioHit dataset,
DeepLabv3+ achieved the best performance (0.9886), marginally outperforming PSPNet
(0.9865) and Mobile U-Net Large (0.9862). SegNet (0.9808) and U-Net (0.9763) produced
competitive but lower scores, while Mobile U-Net Small (0.9759) and Transformer (0.9767)
trailed close to the baseline U-Net, indicating that lightweight variants and bottleneck-level

transformer integration provided limited benefits under consistent imaging conditions.

For the Roboflow dataset, DeepLabv3+ again achieved the highest mDSC (0.9842), followed
by PSPNet (0.9825). U-Net (0.9783) remained reliable, though Mobile U-Net Small dropped
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to 0.9649, the lowest score on this dataset. Interestingly, both Mobile U-Net Large (0.9760)
and SegNet (0.9760) produced identical results, reinforcing the stability of encoder—decoder
structures under controlled conditions but also showing that deeper feature extraction in

PSPNet and DeepLabv3+ leads to consistently higher overlap accuracy.

In the PaddlePaddle dataset, which posed greater challenges due to inconsistent lighting and
capture conditions, Mobile U-Net Large and DeepLabv3+ performed nearly equally well
(0.9807 and 0.9806, respectively), with PSPNet close behind (0.9793). These three models
significantly outperformed U-Net (0.9356), highlighting the wvulnerability of simpler
architectures to domain shifts. The transformer variant (0.9642) slightly improved over the
small model (0.9603), but neither approached the accuracy of the larger or state-of-the-art

architecture.

In summary, the results reinforce the trends observed in mloU and mPA. DeepLabv3+ and
PSPNet consistently achieved the strongest performance, followed closely by Mobile U-Net
Large, particularly in challenging datasets such as PaddlePaddle. By contrast, U-Net and
Mobile U-Net Small showed more significant performance degradation under uncontrolled
imaging conditions. These findings highlight that advanced feature extraction strategies and
larger model capacity are crucial for achieving robust and reliable segmentation performance

across diverse real-world environments.

Table 5.4 Number of Parameters of the Models

Model Number of Parameters (10%)
U-Net [27] 31.04
SegNet [37] 29.44
PSPNet [38] 24.82
DeepLabv3+ [39] 17.86
Mobile U-Net - Small 2.54
Mobile U-Net - Large 4.38
Mobile U-Net - Transformer 3.80

An important aspect of this analysis is the computational efficiency of each model. The number
of trainable parameters provides insights into the complexity and potential computational cost
of each architecture. In Table 5.4, the results shows that the Mobile U-Net variants were by far
the most parameter-efficient. The small configuration used only 2.54M parameters, nearly an
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order of magnitude smaller than DeepLabv3+ and more than ten times smaller than U-Net. The
large configuration required 4.38M parameters, striking a balance between compactness and
representational capacity, while the transformer-enhanced variant used 3.80M parameters,
falling between the small and large designs. Despite their drastically reduced size, the Mobile
U-Net models delivered competitive segmentation accuracy which closely matched or
exceeded state-of-the-art architectures in several datasets especially the large version of Mobile

U-Net.
5.1.2 Performance Comparison with Previous Researchers

Table 5.5 Segmentation Performance Comparison with Previous Researchers

Model Dataset mloU Number of Source
Parameters
(10°)
U-Net & Attention & BioHit 0.9930 7.90 L. Yao etal.
Edge Refinement [10]
TongueSAM BioHit / 0. 9862/ 641.09 S. Cao, Q.
PaddlePaddle 0.9785 Wu, and L.
Ma [13]
DeepLabV3+(Mobilenet) & BioHit 0.9624 5.87 Y. Tang et al.
CBAM & PointRend [14]
Mobile U-Net - Small BioHit / 0.9614/ 2.54 This study
PaddlePaddle 0.9321
Mobile U-Net - Large BioHit / 0.9740/ 4.38 This study
PaddlePaddle 0.9644
Mobile U-Net - BioHit / 0.9522/ 3.80 This study
Transformer PaddlePaddle 0.9390

Table 5.5 presents a comparison of segmentation performance in mloU and model complexity
between the proposed Mobile U-Net variants and prior research. The results highlight the trade-
offs between segmentation accuracy and model efficiency, as well as the contributions of this

study in advancing lightweight tongue segmentation models.

The highest mloU was reported by U-Net with Attention and Edge Refinement on the BioHit
dataset (0.9930) as presented by Yao et al. [10]. However, the number of parameters was not
reported, and the use of multiple refinements suggests a considerably higher model complexity
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than standard U-Net. Similarly, TongueSAM achieved very high accuracy (0.9862 on BioHit
and 0.9785 on PaddlePaddle) but required 641.09M parameters, making it computationally
prohibitive for practical clinical or mobile deployment. Other prior work, such as
DeepLabv3+(MobileNet) combined with CBAM and PointRend, demonstrated strong
performance on BioHit (0.9624 mloU) with a parameter count of 5.87M [14], striking a

reasonable balance between accuracy and efficiency.

In comparison, the Mobile U-Net variants developed in this study achieved competitive
accuracy while requiring significantly fewer parameters. Specifically, Mobile U-Net Large
obtained 0.9740 mloU on BioHit and 0.9644 on PaddlePaddle with only 4.38M parameters,
closely approaching TongueSAM’s accuracy on PaddlePaddle while being more than 146
times smaller in parameter count. The Mobile U-Net Small and Transformer-enhanced variants
also produced respectable results (0.9614/0.9321 and 0.9522/0.9390, respectively), further
demonstrating that efficient architectures can deliver strong performance under controlled and

uncontrolled imaging conditions.

These findings indicate that while state-of-the-art models such as TongueSAM or attention-
refined U-Nets achieve slightly higher accuracy, the Mobile U-Net family offers a far superior
balance between performance and computational cost. This efficiency makes the proposed
models particularly suitable for deployment in real-world clinical applications where hardware
resources may be limited, such as mobile health platforms and point-of-care diagnostic

systems.
5.1.3 Qualitative Evaluation

To further assess the performance of the segmentation models, a qualitative comparison was
conducted using selected test images inspired by the challenge as mentioned in [9] and the
results are shown in Figure 5.1, 5.2 and 5.3. The selected images represent various challenging
tongue conditions and are split across 3 datasets, including:

(a) Tongue in irregular poses

(b) Tongue that are not fully protruded

(c) Tongue with imprints from teeth along the edges

(d) Tongue with visible gaps in the mouth

(e) Tongue exhibiting abnormal colour

(f) Tongue where teeth are visible
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(g) Tongues closely surrounded by the lips

(h) Tongue with abnormal texture

Mobile U-Net Mobile U-Net Mobile U-Net
Small Large Transformer
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Figure 5.1 Comparison of Segmentation Results in BioHit dataset
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Figure 5.2 Comparison of Segmentation Results in Roboflow dataset
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Figure 5.3 Comparison of Segmentation Results in PaddlePaddle dataset
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For the BioHit and Roboflow datasets which were captured under stable lighting and
standardized acquisition, most models achieve accurate tongue delineation. Architectures such
as PSPNet and DeepLabv3+ consistently preserve smooth contours and avoid over-
segmentation into non-tongue regions. The Mobile U-Net (Large) shows comparable

performance with boundaries that are visually indistinguishable from the ground truth in many
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cases despite using far fewer parameters. In contrast, U-Net occasionally produces irregular
borders or incomplete segmentations especially around the tongue tip and lateral edges,

therefore suggesting weaker robustness to subtle variations in texture.

In PaddlePaddle dataset, more complex challenges are presented as the lighting conditions are
uncontrolled. This includes lips closely encircling the tongue and the presence of abnormal
tongue textures such as black coatings. U-Net generally performs more prone to false positives
in other scenarios but however performs comparatively well by effective segmenting abnormal
tongue texture image. Its ability to preserve texture information allows it to highlight coated
region better than other models. SegNet and PSPNet struggle in delineating the tongue
boundary due to the red shirt of the patient which has a similar colour to the tongue. The Mobile
U-Net with Transformer shows improved attention to global tongue shape but sometimes

sacrifices fine-grained edge sharpness compared to the large variant.

Across all datasets, the qualitative findings align well with the quantitative results reported
earlier. DeepLabv3+ provides the most consistent segmentation quality, while Mobile U-Net
(Large) achieves a favorable balance between accuracy and efficiency. Notably, Mobile U-Net
(Small) demonstrates its potential for lightweight deployment as it remains visually

competitive although its boundaries appear slightly less smooth.
5.2 Binary Classification Experimental Results
5.2.1 Quantitative Evaluation

Table 5.6 Binary Classification Experiment Results

Model Number of | Accuracy (%) | Precision Recall F1-Score
Parameter
(10°)

ResNet18 11.18 97.01 0.9701 0.9701 0.9701
ResNet20 0.28 89.05 0.8946 0.8903 0.8902
ResNet50 23.85 99.00 0.9903 0.9900 0.9900
VGGI19 20.09 96.52 0.9652 0.9652 0.9652
AlexNet 16.86 95.52 0.9557 0.9551 0.9552
EfficientNetV2-B0 6.08 96.52 0.9652 0.9651 0.9652
EfficientNetV2-S 20.50 97.51 0.9751 0.9751 0.9751
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LECA-EfficientNetV2- 1.72 98.51 0.9856 0.9850 0.9851
BO

LECA-EfficientNetV2-S 5.97 99.00 0.9900 0.9900 0.9900

Efficient-ResNet 0.31 98.51 0.9856 0.9850 0.9851

Table 5.6 shows the experiment results of the binary classification task. Among the
conventional backbones, ResNet50 achieved the highest performance by reaching an accuracy
01 99.00% with precision, recall, and F1-score values of 0.99. This confirms its strong feature
extraction capability but comes at the cost of a relatively high parameter count (23.85M).
ResNetl8 and VGG19 also produced strong results (97.01% and 96.52% accuracy,
respectively), though their efficiency-to-accuracy trade-off is less favourable compared to
newer architectures. AlexNet despite being historically significant, showed lower accuracy
(95.52%) and demonstrates limitations in handling complex tongue image features due to its

shallower design.

The EfficientNet family displayed strong balance between accuracy and model size.
EfficientNetV2-B0 achieved 96.52% accuracy with only 6.08M parameters, while
EfficientNetV2-S reached 97.51% with 20.50M parameters, which the results are comparable
with the deeper ResNet variants. The introduction of LECA (Lightweight Efficient Channel
Attention) further enhanced performance. LECA-EfficientNetV2-B0O improved to 98.51%
accuracy with just 1.72M parameters, while LECA-EfficientNetV2-S matched ResNet50’s
99.00% accuracy but with only uses 25% of the parameters compared to ResNet50 (5.97M vs.
23.85M). These results demonstrate the effectiveness of channel attention in improving

discriminative power without substantially increasing complexity.

The Efficient-ResNet also proved highly competitive, achieving 98.51% accuracy with only
0.31M parameters, making it the most parameter-efficient model in this experiment. This
suggests that combining residual learning with efficient scaling strategies provides a promising
direction for lightweight tongue image classification, especially for mobile or resource-

constrained clinical applications.

In overall, the results highlight three key findings. First, deeper conventional CNNs such as
ResNet50 remain strong performers but are computationally expensive. Second, EfficientNet-
based models offer superior efficiency-accuracy trade-offs, particularly when enhanced with
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LECA. Third, hybrid lightweight models (Efficient-ResNet, LECA-EfficientNetV2-B0)
achieve near state-of-the-art accuracy with minimal parameter counts, making them well-suited

for deployment in real-time or embedded diagnostic systems.

ResNet18 ResNet 20 ResNet50 EfficientNetV2-B0 EfficientNetv2-S

I.I I-I I.I I-I

Figure 5.4 Normalized Confusion Matrix for Each Model

Figure 5.4 shows the normalized confusion matrix for each model. The normalized confusion
matrix provides additional insight into the classification behaviour of each model in terms of

false positive and false negative tendencies.

Among classical networks, VGG19 maintained solid performance, with 96% and 97% correct
predictions for non-stained and stained tongues respectively. On the other hand, AlexNet
showed weaker performance particularly for stained tongues, where the accuracy dropped to
94%, with 6% misclassified. This reflects the limitations of early CNN designs in capturing

subtle tongue coating features compared to deeper or more efficient networks.

ResNetl8 demonstrated a balanced outcome, with both non-stained and stained classes
achieving a high recognition rate of 97%, and only 3% misclassification for each class. This
indicates that the network was able to generalize well without strong bias toward either
category. In contrast, ResNet20 exhibited clear limitations, particularly in classifying stained
samples. While non-stained tongues were correctly identified 95% of the time, the accuracy
for stained tongues dropped to 77%, with 23% being misclassified as non-stained. This
imbalance suggests that ResNet20 struggled to capture the distinctive features of stained

tongues, potentially due to its relatively shallow depth compared to other models. In addition,
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ResNet50 outperformed its smaller counterparts, achieving nearly perfect recognition with

100% accuracy for non-stained tongues and 98% for stained tongues.

The EfficientNet family, including the standard EfficientNetV2 models, the LECA-enhanced
variants and the hybrid Efficient-ResNet, consistently demonstrated strong performance in the
tongue classification task. The baseline EfficientNetV2-B0 achieved 97% accuracy for non-
stained and 96% for stained tongues which offer balanced and reliable classification. Building
on this, EfficientNetV2-S improved stained tongue recognition to 98% while maintaining 97%
accuracy for non-stained samples. These findings emphasize the strength of the EfficientNet

scaling strategy which achieves efficient yet powerful feature extraction.

The LECA-enhanced EfficientNetV2 models further advanced performance by incorporating
local enhancement modules. LECA-EfficientNetV2-B0 matched the strongest ResNet and
hybrid networks, achieving 100% accuracy for non-stained tongues and 97% for stained
tongues. Most notably, LECA-EfficientNetV2-S achieved the highest accuracy overall, with
99% recognition for both classes and only 1% misclassification. This demonstrates that local
enhancement strategies significantly strengthen the network’s capacity to capture subtle

coating variations, providing superior robustness and generalization.

The hybrid Efficient-ResNet also produced highly competitive results, achieving perfect
recognition of non-stained tongues (100%) and 97% accuracy for stained samples. Its
performance was comparable to ResNet50, suggesting that the integration of EfficientNet

scaling with ResNet residual connections enhances both accuracy and generalization.

In overall, grouping the models highlights clear trends. Classical architectures like VGG19
provided stable but slightly lower results compared to modern designs. In contrast, deeper and
more advanced models particularly ResNet50 and the EfficientNet family, consistently
achieved high accuracy with minimal misclassification. The LECA-EfficientNetV2-S stood
out as the best overall performer, demonstrating near-perfect classification across both classes.
These findings underscore the importance of network depth, architectural refinements, and
feature enhancement modules in achieving reliable tongue diagnosis, with modern

EfficientNet-based designs offering the greatest potential for clinical applications.
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5.2.2 Performance Comparison with Previous Researchers

Table 5.7 Performance Comparison with Previous Researchers in Binary Classification

Model Number of Accuracy (%) Recall (%) F1-Score (%)
Parameter (10°)
ResNet50 [4] 25.64 92.00 91.00 92.00
ResNet18 [12] 11.70 95.50 91.20 94.90
ResNet50 [12] 25.64 95.00 92.30 94.40
VGG19 [12] 144.00 92.50 94.50 92.00
AlexNet [12] 62.38 95.50 93.40 95.00
Efficient-ResNet 0.31 98.51 98.56 98.50

The results in Table 5.7 demonstrate that the proposed Efficient-ResNet model significantly
outperforms previous state-of-the-art architectures in binary classification tasks. While
traditional deep learning models such as ResNet50 [4], ResNetl8 [12], and VGG19 [12]
achieved strong performance with accuracies ranging from 92.00% to 95.50%, their parameter
sizes remain relatively large, ranging between 11.70M and 144.00M. Similarly, AlexNet [12]
achieved an accuracy of 95.50% with 62.38M parameters. In contrast, the Efficient-ResNet
achieves the highest accuracy of 98.51%, recall of 98.56%, and F1-score of 98.50% with only
0.31M parameters. This highlights a substantial improvement in both predictive performance
and computational efficiency. The reduction in model complexity without compromising
accuracy demonstrates the advantage of integrating efficiency-oriented architectural design,
making Efficient-ResNet highly suitable for resource-constrained environments and real-time

clinical applications.
5.2.3 Visualization and Benchmark

To investigate the specific visual features emphasized by each CNN model during the tongue
classification task, a total of 4 tongue images (2 stained and 2 non-stained coating samples)

were randomly selected. The Grad-CAM visualizations for these samples reveal notable
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differences in the attention distribution across models. Figure 5.5 shows the stained tongue

coating samples generated by each CNN model.

ResNet18 produces broad and diffuse activations that span most of the tongue surface, often

LECA- LECA- Effi t
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ResNet18 ResNet20 ResNet50 VGG19 AlexNet ResNet
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Figure 5.5 Stained Tongue Coatings
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&

extending into non-relevant areas. While this indicates sensitivity to overall colour and texture
variations, the lack of precise localization reduces its interpretability. ResNet20, despite its
lightweight design, shows even weaker and noisier activations, with scattered attention maps
that fail to consistently highlight stained regions. This suggests that while the smaller
architecture reduces computational cost, it compromises the model’s ability to capture
discriminative pathological features. ResNet50 exhibits more concentrated activations within
central tongue regions, therefore effectively reducing background interference compared to

ResNetl18, although it occasionally neglects diagnostically relevant peripheral coating areas.

VGG19 demonstrates sharply localized hotspots, suggesting strong attention to specific coating
regions. However, this narrow focus may fail to capture the broader spatial patterns necessary
for accurate classification. AlexNet displays widespread activations with prominent hotspots
in the central and upper tongue regions, capturing general shape and texture differences but

with less selective targeting as it often includes large non-critical areas.

The EfficientNetV2-B0 model achieves a balanced activation pattern by attending to multiple
coating areas without excessive background interference, indicating that it effectively
integrates local detail with broader context, though occasional edge activations persist.
EfficientNetV2-S improves upon this by producing more precise and smaller hotspots while
still preserving adequate contextual coverage, offering a strong compromise between

localization accuracy and completeness.

The LECA-modified models exhibit higher selectivity. LECA-EfficientNetV2-B0 concentrates

attention on small and well-defined patches, potentially enhancing fine-grained texture analysis
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but risking the omission of diffuse coating regions. LECA-EfficientNetV2-S maintains this
selectivity while distributing activations more coherently across the tongue, resulting in better
coverage than its BO counterpart. This combination of sharpness and coherence demonstrates
the interpretability advantage of LECA integration, particularly when analyzing clinically

subtle coating patterns.

The Efficient-ResNet hybrid shows moderate activations that capture the coated regions more
reliably than classical CNNs, but its attention tends to be broader and less sharply defined
compared to EfficientNetV2, indicating a trade-off between efficiency and localization

precision.

Overall, these findings demonstrate that the LECA-enhanced models not only achieve
parameter efficiency but also offer superior interpretability in the context of tongue coating
recognition. Their ability to specifically highlight pathological coatings rather than broadly
activating across the tongue surface, thus aligns with clinical expectations and strengthens their

potential applicability in real-world diagnostic settings.
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EfficientNetv2- EfficientNetv2- EfficientNetv2- EfficientNetv2-
B0

Efficient-
ResNet

S
-

For non-stained tongues, the Grad-CAM visualizations show clear differences in how each

ResNet18 ResNet20 ResNet50 VGG19 AlexNet
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Figure 5.6 Non-Stained Tongue Coatings

model allocates attention when no pathological coating is present. ResNet18 again produces
broad activations and often extending beyond the tongue surface into irrelevant background
areas. This overgeneralization suggests that the model relies on overall shape and edge cues
rather than subtle texture absence which reducing its interpretability in negative cases. Besides
that, ResNet20 generates activations that cover almost the entire tongue surface, indicating a
tendency to capture global shape and textural patterns rather than selectively attending to
diagnostically important coating areas. ResNet50 also exhibits considerable attention outside
the tongue region, suggesting suboptimal localization and possible reliance on peripheral

artifacts instead of true diagnostic areas. VGG19 shows more confined activation within the
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tongue boundary, but the hotspots are narrowly concentrated in small regions, potentially

missing distributed non-stained patterns.

AlexNet generates sparse activations with inconsistent focus, occasionally highlighting
irrelevant peripheral zones. EfficientNetV2-B0 also demonstrates poor localization with its
most intense activations extending outside the tongue surface and along image borders, thus
reducing its interpretability. Besides that, EfficientNetV2-S performs similarly poorly in this

context with strong activations largely outside the tongue region.

The LECA-modified EfficientNetV2 models achieve the most precise localization. LECA-
EfficientNetV2-B0O produces small, well-defined activations primarily within the tongue
boundary, and LECA-EfficientNetV2-S maintains coherent attention across the tongue body

with minimal background influence.

On the other hand, Efficient-ResNet consistently demonstrates activations that extend beyond
the tongue into background areas. This suggests reduced robustness, as the model may depend
on external image artefacts rather than medically relevant tongue features, limiting its

interpretability in non-stained cases as well.

Table 5.8 Visualization Benchmark for Binary Classification

Model Pointing Game
ResNet18 0.4579
ResNet20 0.9801
ResNet50 0.5670

VGG19 0.8756

AlexNet 0.5771
EfficientNetV2-B0 0.6318
EfficientNetV2-S 0.5821
LECA-EfficientNetV2-B0 0.7662
LECA-EfficientNetV2-S 0.7622
Efficient-ResNet 0.6135

The pointing game results provide a quantitative measure of the alignment between Grad-CAM
activations and clinically relevant tongue regions. Interestingly, ResNet20 achieves the highest
score (0.9801), far surpassing both shallow and deeper ResNet variants. This suggests that
although the qualitative Grad-CAM inspection revealed diffuse activation across the entire
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tongue, the model consistently covers the ground-truth annotated region, leading to a strong
pointing game score. However, this highlights a limitation of the metric: high coverage does
not necessarily imply precise or selective localization but rather that the relevant region is

encompassed within the broad activations.

VGG19 also performs strongly (0.8756), which aligns with its sharply localized Grad-CAM
hotspots that tend to fall within stained or diagnostically relevant regions. AlexNet (0.5771)
and ResNet50 (0.5670) show more modest scores, reflecting their tendency to generate broader

or less focused activations that do not consistently overlap with annotated areas.

EfficientNetV2 models achieve moderate scores, with EfficientNetV2-BO (0.6318)
outperforming EfficientNetV2-S (0.5821) despite the latter showing better quantitative
classification performance. This indicates that while EfficientNetV2-S is more accurate for
classification, its attention maps are less well aligned with annotated regions, pointing to a

potential trade-off between predictive accuracy and interpretability.

The LECA-modified models improve alignment, with LECA-EfficientNetV2-B0 and LECA-
EfficientNetV2-S achieving 0.7662 and 0.7622, respectively. The improved scores correspond
with qualitative observations that these models exhibit more selective and coherent activations
across relevant tongue coating regions, demonstrating that lightweight channel attention

enhances interpretability without sacrificing performance.

Efficient-ResNet achieves a moderate pointing game score (0.6135). While this indicates some
ability to capture relevant regions, its Grad-CAM results frequently highlight background

areas, which reduces interpretability despite the high classification accuracy observed earlier.

Overall, these results reveal that pointing game scores can complement but also contrast with
qualitative interpretations. Models like ResNet20 achieve very high pointing game accuracy
due to their extensive coverage of the tongue region, even though their interpretability is
reduced by diffuse activations. In contrast, models such as VGG19 and LECA variants strike
a better balance between precise localization and consistent region coverage, offering stronger

evidence of clinically meaningful attention behavior.
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5.2.4 Discussion

The binary classification experiments reveal important insights into the trade-offs between
accuracy, efficiency, and interpretability across the tested architectures. ResNet50 and LECA-
EfficientNetV2-S achieve the highest classification accuracy (99.00%), with consistently
strong precision, recall, and F1-scores. These results demonstrate that deeper networks and
models enhanced with lightweight channel attention can capture highly discriminative features
for tongue coating classification. In comparison, ResNet18, AlexNet, and VGG19 deliver
slightly lower accuracies (95-97%), reflecting the limitations of shallower or older
architectures in modeling complex texture variations. ResNet20, despite its small parameter
size, performs notably worse (89.05%), highlighting that excessive downsizing compromises

feature extraction capacity and generalization.

Model efficiency also plays a significant role in practical applicability. Efficient-ResNet
achieves high performance (98.51% accuracy) with only 0.31M parameters, while LECA-
EfficientNetV2-BO0 offers 98.51% accuracy at 1.72M parameters. These results indicate that
lightweight models can approach the accuracy of larger architectures while remaining
computationally efficient, making them well suited for mobile or resource-constrained
diagnostic applications. By contrast, conventional models such as ResNet50 (23.85M
parameters) or VGG19 (20.09M parameters) incur high computational costs, limiting their

deployment in real-world point-of-care settings.

The visualization analysis through Grad-CAM highlights differences in model interpretability.
ResNet18 and ResNet20 exhibit diffuse activations that spread across the entire tongue surface,
capturing global shape and texture but failing to consistently isolate diagnostically relevant
regions. ResNet50 and EfficientNetV2 variants provide more localized focus on coating
regions, improving interpretability while maintaining classification accuracy. The LECA-
modified EfficientNetV2 models further enhance attention selectivity, generating coherent and
clinically meaningful activations across the tongue surface. However, Efficient-ResNet,
despite its excellent efficiency, shows attention leakage into background regions, which raises

concerns about robustness and reliance on artefactual cues.

The pointing game results (Table 5.8) complement these findings by quantitatively evaluating
localization. ResNet20 achieves the highest score (0.9801), indicating that its broad coverage
consistently overlaps with annotated regions, even though its qualitative interpretability
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remains limited. VGGI19 also performs strongly (0.8756), reflecting its sharply localized
hotspots within relevant regions. LECA-modified models outperform their baseline
counterparts, confirming that lightweight attention improves the alignment of activations with
clinically significant areas. Meanwhile, Efficient-ResNet and EfficientNetV2 variants achieve
moderate scores (0.58—0.63), reflecting their tendency to balance classification accuracy with

only partial localization fidelity.

Overall, the binary classification experiments demonstrate that while deeper or attention-
enhanced models achieve the best performance, lightweight architectures can offer competitive
accuracy with far fewer parameters, making them suitable for mobile diagnostic tools. At the
same time, the visualization analysis underscores that interpretability does not always correlate
directly with predictive performance, as models like ResNet20 achieve excellent pointing game
accuracy despite poor classification results. This highlights the need to consider both

quantitative and qualitative metrics when selecting models for clinically oriented applications.
5.3 Multi-Class Classification Experimental Results
5.3.1 Quantitative Evaluation

Table 5.9 Multi-Class Classification Experiment Results

Model Number of Accuracy Precision Recall F1-Score
Parameter (%)
(10°)
ResNet18 11.19 57.50% 0.7241 0.6253 0.5855
Resnet20 0.32 60.83% 0.6500 0.5155 0.5627
ResNet50 23.85 77.50% 0.8741 0.6431 0.7126
VGG19 20.09 76.67% 0.8587 0.6904 0.7528
AlexNet 16.86 65.83% 0.6196 0.6310 0.6147
EfficientNetV2-B0 6.08 83.33% 0.8317 0.7868 0.7990
EfficientNetV2-B3 13.13 85.00% 0.8889 0.7806 0.8127
EfficientNetV2-S 20.50 80.83% 0.8406 0.7957 0.8157
LECA- 1.72 75.83% 0.7748 0.6622 0.7048
EfficientNetV2-B0
LECA- 3.51 75.83% 0.7678 0.7264 0.7441
EfficientNetV2-B3
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LECA- 5.97 79.17% 0.8035 0.7555 0.7738
EfficientNetV2-S
Efficient-ResNet - 0.30 73.33% 0.7800 0.6841 0.7219
Small
Efficient-ResNet - 0.83 76.67% 0.7433 0.7775 0.7522
Medium
Efficient-ResNet - 1.16 79.17% 0.7594 0.7736 0.7658
Large

The multi-class classification experiment reveals a clear performance gradient across different
architectures, reflecting the trade-offs between model complexity, parameter count, and
generalization ability. Among the classical convolutional backbones, ResNet18 and ResNet20
achieved relatively modest performance, with accuracies of 57.50% and 60.83% respectively.
Despite ResNet20 being significantly smaller in size (0.32M parameters), its recall dropped to
0.5155, suggesting that while the lightweight design reduces computation, it also struggles to
capture the diverse feature variations across multiple tongue categories. ResNet50 improved
substantially, achieving 77.50% accuracy and a balanced F1-score of 0.7126 but its 23.85M
parameters make it computationally expensive. Similarly, VGG19 reached 76.67% accuracy
with a stronger Fl-score of 0.7528 but its heavy parameter load (20.09M) limits efficiency.
AlexNet despite having a moderate parameter size (16.86M), achieved only 65.83% accuracy,

which reflects the limitations of early CNN architectures in capturing complex tongue features.

By contrast, the EfficientNetV2 family consistently outperformed the traditional baselines.
EfficientNetV2-B0 and B3 achieved accuracies of 83.33% and 85.00%, with high F1-scores of
0.7990 and 0.8127 respectively, while requiring far fewer parameters than VGGI19 or
ResNet50. EfficientNetV2-S also demonstrated competitive performance (80.83%, F1-score
0.8157), showing that compound scaling effectively balances depth, width, and resolution for

multi-class classification.

The LECA-modified EfficientNet variants displayed competitive but slightly reduced
performance compared to their vanilla counterparts. LECA-EfficientNetV2-B0, B3, and S
achieved accuracies between 75-79%, with Fl-scores ranging from 0.7048 to 0.7738.

Although their performance was lower than the standard EfficeintNetV2, their significantly
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reduced parameter sizes (1.72M-5.97M) highlight the benefit of lightweight adaptation,

especially for deployment scenarios requiring efficiency.

The Efficient-ResNet models further confirmed the effectiveness of lightweight architectures.
The small variant (0.30M parameters) achieved 73.33% accuracy with an F1-score of 0.7219,
while the medium and large versions scaled performance to 76.67% and 79.17%, respectively.
Notably, even the Efficient-ResNet-Large (1.16M parameters) outperformed ResNetlS§,
ResNet20, and AlexNet by a large margin, despite being substantially smaller. This
underscores the advantage of hybrid design principles that integrate EfficientNet’s scaling with

ResNet’s residual learning.

Overall, the results suggest that EfficientNetV2-B3 provides the best trade-off between
accuracy and reliability, achieving the highest classification performance (85.00%, F1 =
0.8127). However, the Efficient-ResNet demonstrates strong potential as compact alternatives
which delivers competitive performance with dramatically fewer parameters. This indicates
that lightweight models may be more suitable for real-world clinical applications where
computational resources are limited, while larger EfficientNetV2 variants remain advantageous

in research settings prioritizing accuracy.

ResNet18 ResNet20 ResNet50
Confusion Matrix Confusion Matrix Confusion Matrix
Mirror-Approximated X 0.00 0.00 0.00 08 Mirror-Approximated - 0. Mirror-Approximated 000 [ o8
White-Greasy - 0.23 0.04 004 0.00 o6 White-Greasy - White-Greasy - 0.00 o6
Thin-White: 026 0.00 0.00 Thin-White - Thin-White - 0.00

True Label
True Label
True Label

wellow-Greasy - 012 012  ooo [ECEEEN 000 ellow-Greasy -

GreyBlack m 000 000 000 m Grey-Black -
: ' -00
g ]
g
5

Vellow-Greasy -

Grey-Black -

Thin-White -
Yellow-Greasy -
White-Greasy -
Thin-White -
ellow-Greasy -
Grey-Black
Thin-white -
ellow-Greasy -
Grey-Black

Mirror-Approximated -
Wihite-Greasy

Mirror-Approximated -
Wihite-Greasy

Predicted Label Predicted Label Predicted Label

AlexNet VGG19 Efficient-ResNet - Small

Confusion Matrix Confusion Matrix Confusion Matrix

Mirror-Approximated - 0.25 Mirror-Approximated

White-Greasy - 0.00 White-Greasy - White-Greasy -

- 08
07
06
- 05

- 04

Thin-White - 0.13 Thin-White - Thin-white -

True Label
True Label
True Label

Yellow-Greasy - 0.00 Wellow-Greasy - Yellow-Greasy - "e3

-02

GreyBlack - 0.17 Grey-Black - Grey-Black - o1

-00

Mirror-Approximated -
Grey-glack -
Mirror-Approximated -
Vihite-Greasy -
Thin-White -
ellow-Greasy -
Grey-lack
Mirror-Approximated -
Vihite-Greasy
Thin-white -
ellow-Greasy -
Grey-Black

Predicted Label Predicted Label Predicted Label

Figure 5.7 Normalized Confusion Matrix for Each Model
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Figure 5.8 Normalized Confusion Matrix for Each Model
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Figure 5.9 Normalized Confusion Matrix for Each Model

Predicted Label

Figure 5.7 to Figure 5.9 show the normalized confusion matrix for each model. The traditional
convolutional neural networks, comprising the ResNet family, VGG19, and AlexNet,
demonstrated varied capabilities in handling the tongue coating classification task. Among the
ResNet variants, ResNet18 achieved strong recognition in Mirror-Approximated (0.92) and

Yellow-Greasy (0.75) but exhibited frequent misclassification in Thin-White and Grey-Black,
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often confusing them with Mirror-Approximated. ResNet20 maintained moderate performance
in White-Greasy (0.79) and Yellow-Greasy (0.62), though substantial confusion remained
between Mirror-Approximated and Thin-White. The deeper ResNet50 improved stability
across classes, performing particularly well in White-Greasy (0.91) and Thin-White (0.76),

while still showing some overlap between visually similar categories.

In contrast, AlexNet, despite being a shallower network, delivered strong recognition of Grey-
Black (0.83) and White-Greasy (0.82). However, its performance in Mirror-Approximated was
limited with predictions heavily distributed across other categories. VGG19 performed reliably
in White-Greasy (0.89) and Thin-White (0.68) but struggled with Mirror-Approximated (0.58),
where frequent confusion with Thin-White suggested challenges in separating reflective from
light-colored coating textures. Collectively, these traditional CNNs highlighted the trade-off
between network depth and classification consistency, with deeper models like ResNet50 and
VGG19 offering more stable performance, while AlexNet showed notable limitations in feature

discrimination.

The EfficientNetV2 models consistently outperformed the traditional CNNs, showing higher
accuracy across most coating categories. EfficientNetV2-B0 delivered strong recognition in
Thin-White (0.87) and Yellow-Greasy (0.88), while EfficientNetV2-B3 further improved
Thin-White classification (0.92), reflecting the advantages of compound scaling.
EfficientNetV2-S maintained balanced accuracy across all classes, excelling in Grey-Black
(0.83) compared to earlier networks. The LECA wvariants introduced slight shifts in
performance. While LECA-EfficientNetV2-B0 maintained high performance in Thin-White
(0.76), its Yellow-Greasy recognition dropped due to misclassifications. Conversely, LECA-
EfficientNetV2-S provided more balanced results, achieving higher performance in Mirror-
Approximated (0.75) and strong consistency across other categories. These results confirm the
strength of EfficientNet architectures in capturing fine-grained coating variations, particularly

for Thin-White and Yellow-Greasy.

In the Efficient-ResNet family, Efficient-ResNet-Small achieved robust performance in White-
Greasy (0.86) and Grey-Black (0.67), though some confusion persisted between Thin-White
and White-Greasy. Efficient-ResNet-Medium improved recognition for Mirror-Approximated
(0.83) and Grey-Black (0.83), showing balanced performance across categories but slightly
weaker accuracy in Thin-White (0.63). The Efficient-ResNet-Large produced the most
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consistent results within this group, excelling in Yellow-Greasy (0.88) and White-Greasy
(0.84), while maintaining good recognition across the other categories. Overall, the Efficient-
ResNet family provided a reliable balance between efficiency and accuracy, outperforming
traditional CNNss in stability while showing slightly less fine-grained sensitivity compared to

EfficientNetV?2 models.

5.3.2 Visualization and Benchmark
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Figure 5.10 Grad-CAM Heatmaps for Multi-Class Tongue Coatings

B3 S

esNet18 ResNet20 ResNet50 VGG19

‘

3

AlexNet

Mirror- - .
Approxiamted

1

White-

h l

Thin-
White

V

From the full-class visualization as shown in Figure 5.10, it is evident that the models exhibit
substantial variation in their focus regions. ResNetl8 and ResNet20 frequently highlight
peripheral or irrelevant areas, particularly in Thin-White and Grey-Black samples which
reflecting unstable localization. In contrast, ResNet50 demonstrates stronger focus with
heatmaps concentrated on the central coating textures, suggesting improved discriminative
ability. On the other hand, AlexNet produces more diffuse activations which indicates weaker

capability in isolating class-specific cues.

The VGG19 model demonstrates more structured attention compared to the ResNet family. Its
activations are especially well aligned with coating patterns in White-Greasy and Yellow-

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71



CHAPTER 5

Greasy categories, where heatmaps highlight the defining surface textures. However, VGG19
often extends its focus beyond the gloss features in Mirror-Approximated samples , this shows
that VGG19 had limited robustness when handling reflective surfaces. The EfficientNetV2
family (BO, B3, and S) performs consistently well, with compact and centralized activations
across all classes. These models excel at capturing fine discriminative details such as the subtle

surface patterns of Thin-White and Yellow-Greasy coatings.

In contrast, the LECA-EfficientNetV2 variants display more distributed attention patterns, with
heatmaps often covering broader regions of the tongue surface. This suggests an emphasis on
contextual information, which improves coverage but sometimes reduces pinpoint localization.
The effect is especially visible in Mirror-Approximated samples, where activations spread
across the entire surface instead of isolating gloss regions. The Efficient-ResNet family (Small,
Medium, and Large) shows intermediate behavior, balancing between the scattered focus of

ResNets and the sharp localization of EfficientNets.

Correct Classifcation (Thin White) False Classification
LECA- Medium-
Small- EfficientNetv2-  Efficient-
ResNet20  ResNet50 Efficlent- ResNet18 AlexNet B3 ResNet
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Mirror- Mirror- Mirror- Mirror-
Approximated ~Approximated Approximated Approximated

LECA- LECA- -
Effi CIentNetVZ- EfficientNetV2- Effi C|entNetV2 EffqemNetvz EfficientNetV2- Original
B3 BO Image

. | . .

Figure 5.11 Grad-CAM Visualization by Prediction

Figure 5.11 shows Grad-CAM visualization by categorising the prediction of Thin-White
tongue so that the comparison between correct and misclassified samples provides additional
understanding of model behaviour. In correctly classified Thin-White samples, models such as
ResNet50, EfficientNetV2-B0, focus strongly on the lighter central surface of the tongue. Their

sharp and localized activations indicate reliable detection of Thin-White’s defining coating
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features. Conversely, misclassified cases reveal systematic weaknesses. ResNet18, AlexNet,
and LECA-EfficientNetV2-B3 frequently confuse Thin-White with Mirror-Approximated, as
their attention shifts toward glossy edges rather than coating density. Similarly, VGG19 and
LECA-EfficientNetV2-B0O sometimes misinterpret Thin-White as Yellow-Greasy, with
activations extending into peripheral color variations instead of focusing on central whiteness.
Medium-Efficient-ResNet also displays scattered activations, which contributes to frequent

confusion with Mirror-Approximated.

Table 5.10 Visualization Benchmark for Multi-Class Classification

Model Pointing Game
ResNet18 0.8273
ResNet20 0.8000
ResNet50 0.9455

VGG19 0.9545

AlexNet 0.8818
EfficientNetV2-B0 0.9545
EfficientNetV2-B3 0.9545

EfficientNetV2-S 0.9727
LECA-EfficientNetV2-B0 0.8364
LECA-EfficientNetV2-B3 0.9000
LECA-EfficientNetV2-S 0.9000
Efficient-ResNet - Small 0.8091
Efficient-ResNet - Medium 0.8273
Efficient-ResNet - Large 0.7818

Table 5.10 shows the visualization benchmark for multi-class classification. Among the
ResNet family, ResNet50 achieved the highest pointing game score (0.9455), reflecting
improved localization compared to ResNet18 (0.8273) and ResNet20 (0.8000). This suggests
that deeper residual connections enhance the capacity to capture discriminative features
relevant to tongue coatings. In contrast, shallower variants tended to spread activations across

broader, less specific regions, limiting interpretability.

VGG19 and EfficientNetV2 models demonstrated the strongest interpretability, with scores
exceeding 0.95 in most cases. In particular, EfficientNetV2-S achieved the highest score
(0.9727), indicating consistently precise localization of diagnostically relevant regions. This
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highlights the benefit of compound scaling in EfficientNet, which balances depth, width, and

resolution to improve both performance and explainability.

The LECA-enhanced EfficientNetV2 variants produced competitive results, though their
scores (0.8364—0.9000) were slightly lower than the EfficientNetV2 variants. This outcome
suggests that while LECA modifications reduce parameter count and preserve predictive

accuracy, they may trade off some localization precision in the visualization benchmark.

The Efficient-ResNet family showed mixed results with pointing game scores ranging between
0.7818 and 0.8273. Although efficient in parameter usage, these models did not achieve the
same interpretability level as deeper conventional CNNs or EfficientNetV2 variants. Their
moderate scores reflect a balance between efficiency and localization but indicate room for

improvement in attention alignment with clinically relevant coating areas.

In summary, the visualization metrics highlight a trade-off between precision and coverage.
Models such as EfficientNetV2-BO and EfficientNetV2-S excel in pinpoint accuracy,
effectively localizing key coating regions, but may underrepresent peripheral yet clinically
relevant features. Conversely, the LECA variants provide broader coverage at the expense of
fine-grained precision. ResNet50 and VGG19 achieve a balanced performance, maintaining
both strong localization and comprehensive region coverage. These findings suggest that model
selection should be guided by the intended clinical application, particularly whether exact

localization of a focal feature or more expansive coverage of the coating region is prioritized.
5.3.3 Multi-Class Classification with Segmentation Preprocessing

Table 5.11 Experiment Results of Multi-Class Classification with Segmentation

Segment Classification Accuracy Precision Recall F1-Score
ResNet50 72.50 0.8760 0.5999 0.6802
EfficientNetV2- 79.17 0.7983 0.7571 0.7750
Mobile U- BO
Net - Small
LECA- 70.83 0.7093 0.6173 0.6449
EfficientNetV2-
BO
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LECA- 76.67 0.7757 0.6905 0.7234
EfficientNetV2-S
Efficient-ResNet 61.67 0.7177 0.5271 0.5880
- Small
Efficient-ResNet 67.50 0.6913 0.6706 0.6771
- Medium
Efficient-ResNet 60.00 0.5220 0.5315 0.5223
- Large
ResNet50 73.33 0.8856 0.5821 0.6582
EfficientNetV2- 78.33 0.7757 0.7683 0.7703
B0
LECA- 73.33 0.7872 0.6675 0.6934
EfficientNetV2-
BO
Mobile U-
LECA- 75.83 0.7602 0.7019 0.7234
Net with
EfficientNetV2-S
Transformer
Efficient-ResNet 66.67 0.6989 0.6146 0.6496
- Small
Efficient-ResNet 70.00 0.6481 0.7211 0.6714
- Medium
Efficient-ResNet 64.17 0.6337 0.6164 0.6052
- Large

The results in Table 5.11 show distinct trends when combining segmentation models with
different classifiers. Under the Mobile U-Net — Small configuration, EfficientNetV2-B0
achieved the highest overall accuracy (79.17%) and the most balanced performance across all
metrics, with an Fl-score of 0.7750. Although ResNet50 delivers the highest precision
(0.8760), the model suffered from low recall (0.5999) and resulting in a lower F1-score of

0.6802. The LECA variants under this segmentation backbone showed moderate results;
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LECA-EfficientNetV2-S performed better (accuracy 76.67%, F1-score 0.7234) than LECA-
EfficientNetV2-B0O (accuracy 70.83%, Fl-score 0.6449). In contrast, the Efficient-ResNet
family demonstrated varying effectiveness. The medium variant achieved a fair balance with

an Fl-score of 0.6771, outperforming both the small and large variants, which showed lower

accuracies (61.67% and 60.00%) and weaker F1-scores (0.5880 and 0.5223).

When using Mobile U-Net with Transformer, performance patterns were largely consistent.
EfficientNetV2-B0 again produced strong and balanced results, with 78.33% accuracy and an
Fl-score of 0.7703, slightly lower than the U-Net—Small case but still stable. ResNet50 once
more achieved the highest precision (0.8856) but was limited by low recall (0.5821), giving an
F1-score of 0.6582. LECA-EfficientNetV2 models maintained moderate performance; LECA-
EfficientNetV2-S achieved 75.83% accuracy and an Fl-score of 0.7234, matching its
performance under U-Net—Small, while LECA-EfficientNetV2-B0 scored slightly lower at
73.33% accuracy and 0.6934 F1. The Efficient-ResNet family again displayed similar trends,
where the medium variant outperformed the small and large versions. The medium variant
achieved 70.00% accuracy with an Fl-score of 0.6714, compared to the small (66.67%
accuracy, 0.6496 F1) and large variants (64.17% accuracy, 0.6052 F1).

In overall, the analysis indicates that EfficientNetV2-B0 consistently delivered the best balance
of accuracy, precision, recall, and F1-score across both segmentation backbones. ResNet50
showed recall limitations although excelling in precision and the Efficient-ResNet family
demonstrated more reliable performance in the medium variant compared to its small and large

counterparts.
5.3.4 Discussion

The multi-class classification experiments highlight important trade-offs between model
accuracy, efficiency, and interpretability. EfficientNetV2-B3 achieved the highest accuracy
(85.00%) with strong precision and F1-score, which demonstrates its effectiveness in handling
fine-grained tongue coating categories. EfficientNetV2-B0 and EfficientNetV2-S also
delivered robust results (83.33% and 80.83% accuracy), confirming the scalability of this
family of models. Traditional CNNs such as ResNet50 (77.50%) and VGG19 (76.67%)
performed competitively but required substantially more parameters, while AlexNet and
shallow ResNets (ResNet18 and ResNet20) underperformed, reflecting their limited ability to
capture complex coating variations.
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Model efficiency was also an important factor. The proposed Efficient-ResNet family offered
competitive accuracies (73-79%) with extremely low parameter counts (0.30-1.16M),
significantly reducing computational overhead compared to larger models. Notably, Efficient-
ResNet-Large achieved 79.17% accuracy with only 1.16M parameters, outperforming LECA-
EfficientNetV2-B0 (75.83% at 1.72M parameters). This demonstrates that Efficient-ResNet
can deliver superior accuracy at a smaller computational footprint, making it a strong candidate
for mobile or resource-constrained applications. However, compared to EfficientNetV2-B3,
these lightweight variants showed a modest drop in performance, suggesting that efficiency

gains still come at the cost of representational depth.

The visualization analysis provided additional insights into interpretability. VGG19 and
EfficientNetV2-S achieved the highest pointing game scores (0.9545 and 0.9727), reflecting
their ability to attend to diagnostically relevant coating regions. In contrast, Efficient-ResNet
models obtained lower scores between 0.7818 to 0.8273, suggesting weaker spatial focus
despite their strong efficiency profile. These findings indicate that while Efficient-ResNet is
competitive in predictive accuracy, further refinement of its attention mechanisms may be

required to improve clinical interpretability.

In addition, segmentation-assisted experiments revealed mixed outcomes. When paired with
Mobile U-Net or Mobile U-Net with Transformer, EfficientNetV2-B0 consistently maintained
high accuracy (79.17% and 78.33%), while Efficient-ResNet models experienced notable
performance degradation particularly in the large variant. This suggests that EfficientNetV?2 is
more robust to pre-processed segmentation inputs, whereas Efficient-ResNet may be more

sensitive to variations in input feature quality.

Overall, the multi-class classification results demonstrate that EfficientNetV2 models remain
the strongest choice for accurate and interpretable tongue coating categorization. At the same
time, Efficient-ResNet provides a lightweight alternative with favorable efficiency—accuracy
trade-offs, and importantly, shows superiority over LECA-based models at similar parameter
sizes. These findings highlight the potential of Efficient-ResNet as a practical model for

deployment in real-world diagnostic workflows.
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5.4 Project Challenges

During the implementation of the deep learning-based tongue classification model, several
challenges and limitations arise due to the constraints of using the free-tier Google Colab
environment. The primary issues were out-of-memory (OOM) errors and limited computing
resources. The available hardware consisted of 12.7 GB of system memory and 15.0 GB of
GPU memory, which posed a significant limitation when training memory-intensive deep
architectures such as the VGG19 model. The architecture requires substantial memory when
increasing the batch size to accelerate convergence and improve generalization. To avoid OOM
errors, the batch size had to be restricted to 16-32, which not only prolonged training time but

also introduced potential instability in model performance due to smaller gradient estimates.

In addition, the free-tier Google Colab service imposes session timeouts and daily GPU usage
limits. The T4 GPU allocation was limited to approximately 4 hours per day. Although a
checkpointing mechanism was implemented in this study to allow resumption of interrupted
sessions, the restricted runtime still limit the ability to perform extensive hyperparameter tuning

experiments, thereby constraining the exploration of optimal model configurations.

Finally, a technical limitation was encountered when applying the Heatmap Assisted Accuracy
Score (HAAS) for model’s visualization evaluation. According to [12], the tongue coating
images should be normalized to the range of [-1,1] before computing HAAS values for the
Class Activation Map (CAM) algorithms on the test dataset. However, because of the generated
heatmaps often contained substantial blue regions, the normalization process caused these areas
to appear greyish when overlaid onto the original images. This colour distortion reduced the
visibility of important coating features such as subtle colour and texture variations, which in
turn misled the model’s feature recognition and introduced a bias toward coating categories
with less distinct boundaries such as thin-white and white-greasy. Figure 5.12 shows the

example of Heatmap-Assisted Image for model prediction.
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Figure 5.12 Example of Heatmap-Assisted Image

5.5 Objective Evaluation

The main objective of this study was to develop and evaluate deep learning-based framework
for tongue image analysis to assist Traditional and Complementary Medicine diagnosis and
improve diagnostic accuracy. This was accomplished through the achievement of four sub-

objectives as evaluated below.

First, a Mobile U-Net architecture was developed to perform tongue image segmentation. By
combining U-Net’s spatial localization strength with MobileNet’s lightweight and efficient
feature extraction, the model achieved fast and accurate segmentation of tongue regions. This
step ensured that subsequent classification was performed on well-isolated tongue areas,

reducing the influence of irrelevant background features.

Second, development of binary and multi-class classification models for tongue coatings. Deep
learning models were successfully developed for both binary classification (distinguishing
stained from non-stained tongue coatings) and multi-class classification (categorizing
pathological tongue coatings into specific types). The implemented architectures included
ResNetl8, ResNet50, VGG19, AlexNet, EfficientNetV2 variants, LECA-based
EfficientNetV2 variants as well as Efficient-ResNet family. Results showed that
EfficientNetV2-B3 and EfficientNetV2-S achieved the strongest overall accuracy in multi-
class classification, while Efficient-ResNet demonstrated competitive recognition with far

fewer parameters.

Third, lightweight architectures were designed to balance diagnostic accuracy with

computational efficiency. Unlike the traditional architectures, Efficient-ResNet achieved
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strong classification accuracy while requiring less than 1M parameters in binary classification
task, thus making it significantly smaller than ResNet50 (23.85M) and VGG19 (20.09M). The
medium Efficient-ResNet variant in particular demonstrated a favorable trade-off, maintaining
robust accuracy across multiple coating types while remaining computationally efficient. These
results show that Efficient-ResNet provides a scalable, lightweight solution well-suited for

clinical applications where resource efficiency is critical.

Finally, incorporating explainable Al for interpretability and trust. Explainable Al methods
were integrated into the workflow specifically Grad-CAM for visual saliency mapping. These
methods provided insight into the regions of the tongue images most influential in model
decision making. Grad-CAM visualizations revealed that Efficient-ResNet produced coherent
activation patterns that often emphasized broader tongue regions, although occasionally
extending to background areas. While Efficient-ResNet did not achieve the highest Pointing
Game score compared to larger models such as EfficientNetV2-S or VGG19, it demonstrated
competitive localization ability considering its compact size. These results suggest that
Efficient-ResNet can provide interpretable outputs while maintaining efficiency, making it

more suitable for resource-constrained clinical settings.

In summary, all four sub-objectives were successfully achieved. This study delivered
segmentation and classification models for tongue coatings, introducing the Efficient-ResNet
family as a lightweight yet accurate architecture and demonstrated the importance of
explainable AI for clinical transparency. By combining accuracy, efficiency, and
interpretability, the proposed framework provides a practical and trustworthy tool to support

diagnostic decision-making in Traditional and Complementary Medicine.
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Chapter 6

Conclusion and Recommendations

6.1 Conclusion

Tongue diagnosis plays a crucial role in Traditional and Complementary Medicine, offering
valuable insights into a patient’s health status through visual inspection of tongue
characteristics. However, the process remains subjective and highly dependent on practitioner
experience, thus leading to inconsistencies and potential diagnostic inaccuracies. This
subjectivity is further compound the challenges of limited annotated tongue datasets which
hinder the development of robust and generalizable automated diagnostic systems. Motivated
by the need to standardize and enhance the reliability of tongue diagnosis, this study aims to
develop efficient and interpretable deep learning models capable of accurately classifying

tongue coating conditions.

To address these challenges, deep learning-based classification models were developed for
both binary and multi-class tongue coating classification tasks. In the binary task, the models
distinguished between stained and non-stained tongue coatings while in the multi-class task,
the models categorized pathological coatings into specific types. To overcome the limitations
of small datasets and computational constraints, lightweight architectures such as Efficient-
ResNet were introduced and achieved a balance between high classification accuracy and
reduced computational complexity. Furthermore, explainable Al techniques including Grad-
CAM was incorporated to provide visual interpretability, thereby enhancing transparency and

the potential for integration into clinical decision support systems.

Experimental results demonstrated that the proposed Efficient-ResNet architecture achieved
superior performance compared to baseline models by offering a better balance between
accuracy and efficiency. While LECA-EfficientNetV2-S showed strong results, Efficient-
ResNet consistently delivered robust outcomes across multiple evaluation metrics, making it a
more reliable candidate for practical deployment. These findings contribute to the development
of reliable, interpretable and efficient Al tools for TCM tongue diagnosis that pave the way for
standardize objective and accessible diagnostic practices in both clinical and telemedicine

settings.
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6.2 Future Work

One of the key directions for future work is the expansion of the dataset to improve model
robustness and generalization. The current study was conducted using a limited number of
annotated tongue images captured under relatively controlled conditions. To address this,
future studies could focus on collecting a larger and more diverse dataset by including images
from individuals of different ages, ethnicities and health conditions. Collaborating with UTAR
Hospital would be a valuable approach to achieve this as it would provide access to a broader
patient base and allow data collection under varying clinical settings. This increased diversity
would help the models adapt better to real-world scenarios where environmental factors and

patient variability are inevitable.

Besides that, another promising direction is the integration of multi-modal data to enhance
diagnostic performance. While this research focused solely on tongue image analysis,
incorporating additional patient information such as pulse diagnosis, medical history and
laboratory test results could allow for a more holistic approach to TCM diagnosis. Multi-modal
deep learning architectures could be explored to combine visual and non-visual features, thus

potentially leading to more accurate and clinically relevant predictions.

Furthermore, the development of real-time mobile or web applications could bring the models
closer to clinical practice and public use. By leveraging the lightweight architecture developed
in this study, the models could be deployed on resource-constrained devices such as
smartphones or embedded systems. This would enable practitioners and patients to perform
quick and standardized tongue assessments remotely. Collaborating with UTAR Hospital
during the application development stage would also allow for user acceptance testing and
feedback collection in a real clinical environment, therefore ensuring the solution meets

practical needs.
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Introduction

Tongue diagnosis is a key component of Traditional Chinese Medicine (TCM), but manual visual
inspection is subjective and inconsistent. This study develops deep learning-based tongue
image analysis to improve accuracy and reliability. The research integrates three components:
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Results

Segmentation: Mobile U-Net achieved 97.40% accuracy with 40% smaller size.
Binary Classification: Efficient-ResNet achieved 98.51% accuracy with just 0.31M

parameters.
Multi-Class Classification: EfficientNetV2 variants performed best results (85.00%

accracy), while Efficient-ResNet delivered competitive results with 10x fewer
parameters (79.17% in 1.16M parameters) .

Discussion
Accuracy vs. Efficiency: Larger models are accurate but computationally expensive.

Lightweight models deliver near state-of-the-art accuracy at a fraction of the size,
making them ideal for mobile and real-time applications .

Conclusion

Mobile U-Net and Efficient-ResNet deliver lightweight and efficient performance,
achieving high diagnostic accuracy while Grad-CAM ensures interpretability. Together,
these contributions provide a practical and trustworthy solution for tongue diagnosis in

clinical and telemedicine settings.
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