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ABSTRACT 

 

Tongue diagnosis is a fundamental component of Traditional and Complementary Medicine 

(TCM), yet manual inspection remains subjective and inconsistent. This study proposes a deep 

learning framework to enhance tongue image analysis through segmentation, classification, 

and explainable artificial intelligence (XAI). A Mobile U-Net model was proposed and 

developed for efficient and accurate tongue region segmentation. Classification tasks were 

conducted for both binary (stained vs. non-stained) and multi-class pathological coatings, 

covering clinically relevant categories. Lightweight architectures, including the proposed 

Efficient-ResNet, achieved competitive accuracy with minimal computational cost, 

demonstrating strong potential for deployment in resource-constrained environments. Grad-

CAM was integrated to provide visual explanations of model decisions, improving 

transparency and clinical trust. Experimental results show that ResNet50 and LECA-

EfficientNetV2-S achieved the highest accuracy of 99% in binary classification, while 

EfficientNetV2-B3 and -S excelled in multi-class tasks. Efficient-ResNet maintained strong 

accuracy (98.5%) with only 0.31M parameters. The findings highlight the framework’s balance 

of efficiency, accuracy, and interpretability, offering a practical solution to standardize and 

modernize tongue diagnosis in TCM for both clinical and telemedicine applications. 

 

Area of Study (Minimum 1 and Maximum 2): Medical Image Analysis, Deep Learning 

 

Keywords (Minimum 5 and Maximum 10): Tongue Diagnosis, Traditional and 

Complementary Medicine (TCM), Image Segmentation, Classification, Explainable AI, 

Mobile U-Net, Efficient-ResNet   
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Chapter 1 

Introduction 

 

The problem statement, motivation and objectives of research, project scopes, contributions to 

the tongue image classification fields and the overall report organization will be discussed in 

this chapter. 

1.1  Problem Statement and Motivation 

Tongue diagnosis is a noninvasive and visual method for assessing human health status. It 

forms a fundamental part of syndrome identification and treatment in Traditional and 

Complementary Medicine diagnosis [1]. Therefore, the practitioners commonly examine the 

features of the tongue to identify early signs of internal imbalances or diseases as a routine 

component for health check-ups [2]. According to [3], studies show that characteristics such as 

tongue colour, coating colour and thickness, moisture level, fissures and stains can all serve as 

the key indicators in evaluating a person’s health status. However, the visual tongue diagnosis 

done by practitioners is subjective and prone to inconsistencies due to external factors such as 

lighting, tongue staining and experience of the practitioner. A recent study demonstrated that 

even experienced TCM practitioners achieved only 69% accuracy in distinguishing stained 

from pathological tongue coatings, highlighting the variability and inaccuracy of manual visual 

tongue assessments [4]. 

The challenge is further compounded by the lack of publicly available and annotated datasets 

that comprehensively represent stained tongue images. Researchers frequently use self-

collected tongue images for model training, which is a time-consuming and tedious procedure 

that yields relatively small training and validation datasets [5]. Besides that, severe class 

imbalance in existing datasets is also a frequent challenge in medical imaging applications [6]. 

For example, white coating tongues may dominate while yellow coating tongues are rare in the 

datasets. The imbalance will skew the model training and lead to bias classifiers that favor the 

majority class and fail to generalize across underrepresented but clinically significant 

categories. 

The growing integration of artificial intelligence into medical diagnostics presents a significant 

opportunity to advance the field of TCM in assisting the practitioners. Although the existing 
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deep learning models have demonstrated promising results, many of the models are 

computationally intensive and complex in classifying tongue coatings [7]. This limitation 

motivates the need to develop lightweight models that maintain high diagnostic accuracy while 

significantly reducing the computational cost so that it is suitable for real world clinical 

adoption. 

Besides that, deep learning models are often treated as black boxes due to the model offering 

little transparency into how the decisions are made [8]. The lack of explainability is a barrier 

to trust in the healthcare industry where the practitioner insight and interpretive reasoning are 

integral to diagnosis. Therefore, there is a strong motivation to incorporate explainable AI 

(XAI) techniques into the model pipeline to visualize the key decision-making features. The 

practitioners can have a better understanding of AI outputs so that it bridges the gap between 

traditional diagnostic expertise and modern machine learning tools. 

In summary, this study is motivated by the ambition to apply and improve upon the current 

state-of-the-art technology in tongue classification by addressing challenges such as class 

imbalance, limited datasets and the need for robust generalization. The focus is on building a 

lightweight and efficient deep learning model that is suitable for real-world deployment and 

integrating explainable AI techniques to enhance transparency and clinical interpretability of 

the model’s predictions. 

 

1.2  Objectives 

The main objective of the thesis is to develop a deep learning framework that integrates tongue 

image segmentation, classification and explainable AI to support Traditional and 

Complementary Medicine diagnostic processes. The main objective is achieved by first 

achieving the sub-objective as stated below: 

1. To develop a Mobile U-Net model that leverages U-Net’s spatial localization capability 

with MobileNet’s lightweight and efficient feature extraction to enable fast and accurate 

tongue region segmentation. 

2. To develop deep learning models for binary classification to distinguish stained and 

non-stained tongue coatings as well as multi-class classification to categorize 

pathological tongue coatings into specific types. 
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3. To design a lightweight model that balances diagnostic accuracy with computational 

efficiency, thus improving applicability in real-world clinical workflows. 

4. To incorporate explainable AI methods for both classification tasks, providing visual 

interpretability to enhance the transparency and trust of the model. 

1.3  Project Scope and Direction  

1.3.1 Segmentation 

The segmentation component of this research is focused on developing an efficient deep 

learning model to accurately segment tongue regions from clinical images. A Mobile U-Net 

architecture will be implemented, which integrates the spatial localization capability of U-Net 

with the lightweight and computationally efficient backbone of MobileNet. The model is 

expected to provide precise segmentation results while maintaining low computational 

complexity so that it is suitable for practical use in clinical settings where efficiency is as 

important as accuracy. The dataset used for this work consists of tongue images paired with 

manually annotated ground truth masks and will be divided into training, validation and testing 

subsets. Preprocessing steps such as normalization will be applied to improve model 

generalization and robustness given the limited dataset size. 

The scope also encompasses model training and evaluation using segmentation-specific loss 

functions such as Dice loss. Model performance will be measured using well-established 

metrics including Dice Coefficient, Intersection-over-Union, precision, recall and 

segmentation accuracy. In addition, the Mobile U-Net will be bench against conventional 

segmentation architecture such as U-Net and DeepLabV3+ in order to validate the accuracy 

and efficiency. However, the scope of this work will not focus on hardware-based real time 

deployment. The study will remain within the boundaries of deep learning-based tongue 

segmentation, emphasizing accuracy, efficiency and robustness as the primary objectives. 

 

1.3.2 Classification 

The primary objective of the classification component of this project is to develop deep 

learning models that are capable of classifying tongue images for diagnosis purposes in 

Traditional and Complementary Medicine. The study focuses on two related tasks: (1) binary 

classification of tongue coatings into stained and non-stained categories, (2) multi-class 

classification of pathological tongue coatings into clinically relevant subtypes such as white, 
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yellow-greasy and grey-black. These classification tasks are critical in supporting accurate and 

objective tongue diagnosis so that the limitations of conventional visual inspection by TCM 

practitioners are addressed. 

Firstly, separate convolutional neural network models will be constructed for each task. The 

binary classification model will distinguish food or drug-induced staining from pathological 

coatings while the multi-class model will categorize the non-stained coatings into distinct 

disease-indicative types. The models will be trained using a supervised learning approach with 

a curated dataset of annotated tongue images. Preprocessing techniques such as image 

segmentation and normalization will also be applied to ensure consistency in input quality. 

The performance of the model will be evaluated using standard metrics such as accuracy, 

precision, recall, F1-Score and confusion matrices. In addition, explainable AI tools such as 

Grad-CAM will be integrated to visualize the regions of the tongue image that are influencing 

the model’s decision so that the practitioner can trust and interpret the model’s decision. 

The project will be conducted in two phases. In the first phase, baseline models will be trained 

and evaluated to establish benchmarks for both classification tasks. In the second phase, the 

CNN variants will be tested and hyperparameter tuning will be performed to identify the most 

effective model configuration. The final models aim to be both accurate and lightweight which 

enable real-world deployment in clinical settings or mobile health applications. 

 

1.4  Contributions 

This study contributes to the advancement of intelligent diagnostic systems in TCM by 

introducing deep learning models tailored for tongue image classification. The study proposes 

two separate deep learning models for binary classification to differentiate stained from non-

stained tongue coatings and also multi-class classification to categorize pathological coatings 

into clinically relevant classes. This separation of tasks ensures specialized learning and 

improved accuracy for both simpler and more granular diagnostic needs. 

A significant contribution for this work is the development of lightweight and computationally 

efficient CNN architecture that is optimized for real-world applications. The solution is 

designed to operate effectively in resource-constrained environments. Besides that, one of the 

major challenges in medical image classification which is class imbalance is also addressed by 
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applying data augmentation and applying weightage to the standard loss function based on the 

class in the imbalance dataset. 

Furthermore, integration of explainable AI tools such as Grad-CAM is integrated into the 

model’s pipeline. By visualizing the regions of tongue images that influence the model’s 

decision, the system is able to provide greater transparency and interpretability to the TCM 

practitioners and healthcare professionals. 

 Finally, the study benchmarks the performance of the models against the state-of-the-art deep 

learning models and human expert evaluations. This comparative analysis not only validates 

the effectiveness of the models but also demonstrates the potential to outperform traditional 

manual diagnosis in certain cases. In overall, the research presents a practical and interpretable 

solution for enhancing the diagnostic process in TCM and contributes to the field of AI in 

healthcare. 

 

1.5  Report Organization 

The details of the reports are shown in the following chapters. In Chapter 2, a summary of 

existing research and knowledge on tongue image classification using deep learning 

approaches are conducted. Then, the design phase of the system is explained in detail in 

Chapter 3. Chapter 4 focuses on the system architecture and implementation. It explains the 

overall architecture of the proposed models for both binary and multi-class tasks which include 

architecture diagrams and technical frameworks. Chapter 5 shows the findings from the 

experiments conducted so that discussion and analysis can be carried out. Finally, Chapter 6 

summarizes the research as a conclusion. 
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Chapter 2 

Literature Review 

2.1 Tongue Image Segmentation 

According to [9], TongueNet was proposed by utilizing U-Net with morphological processing 

layer to segment the tongue images. The morphological processing layer is a post-processing 

step to refine U-Net’s output using hole-filling, open/close operations, and morphological 

reconstruction. This addresses common raw predictions challenges such as noise, boundary 

irregularities, and internal holes. By leveraging this approach, TongueNet outperforms the 

other state-of-the-art segmentation methods such as Snake and Flood Fill by achieving 98.45% 

mean pixel accuracy and 93.11% mean Intersection-over-Union. However, the pixel prediction 

accuracy requires further refinement. This is because sample 11 demonstrated a lower recall 

value from TongueNet (97.94%) as compared to Region-based and Edge-based fusion (REF) 

approach (99.77%). This discrepancy indicates that TongueNet cannot consistently capture all 

pixels belonging to tongue regions. 

 

Figure 2.1 TongueNet Architecture [9] 

Besides that, L. Yao et al. [10] introduced HPA-UNet model, which builds upon the U-Net 

architecture by incorporating a Hybrid Post-Processing Attention mechanism and an edge 

refinement strategy to improve segmentation performance. HPA-UNet enhances the standard 

U-Net by integrating Convolutional Block Attention Module (CBAM) that consists of both 

channel and spatial attention mechanisms. This design helps the model focus on important 

regions of the tongue while filtering out unnecessary background information. The spatial 
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attention mechanism is applied in the downsampling path, while channel attention is used in 

the upsampling path, ensuring an optimal balance between feature representation and 

segmentation precision. On the post-processing side, the authors use a modified Sobel operator 

that extracts edge features from RGB channels instead of grayscale images. A lightweight 

segmentation model called Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP) is then 

trained separately on these enhanced edge features. The results from the secondary network are 

then merged with the initial model predictions. 

Results showed that HPA-UNet outperformed baseline models such as U-Net, U-Net++, 

ResUNet, and ResUNet++. With data augmentation and post-processing, HPA-UNet achieved 

a Mean IoU of 99.3% on the BioHit dataset and 98.4% on the HanYue-TongueSeg dataset. 

 
Figure 2.2 General Architecture of HPA-UNet [10] 

 

Qu et al. [11] proposed tongue segmentation using SegNet and incorporate with an image 

quality evaluation method based on brightness statistics to determine whether an input image 

should be segmented. The model outperformed the traditional tongue image segmentation 

methods by achieving mean IoU scores of 95.89% and 90.72% respectively on TongueDataset1 

and TongueDataset2. However, the segmentation performance declines when applied to 

images from open environments with uncontrolled lighting conditions as observed in 

TongueDataset2. This suggests that the model’s robustness to extreme lighting variations needs 

improvement. 
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According to the research [12], the researchers propose an improved tongue image 

segmentation algorithm based on the DeeplabV3+ framework. The enhancements focus on 

three key areas: network structure optimization, a contour-based weighted cross-entropy 

(CBWCE) loss function, and a post-processing module. The network structure is refined by 

adjusting the atrous convolution scales in the ASPP module to better extract multi-scale 

information. Additionally, low-level features at different resolutions are incorporated to 

improve edge detection. To address segmentation errors, the CBWCE loss function assigns 

greater weight to pixels near tongue edges, ensuring the model prioritizes accurate boundary 

delineation. Lastly, a post-processing module leverages prior knowledge of tongue shape and 

connectivity to eliminate small, misclassified regions.  

The experimental results demonstrate the effectiveness of these improvements. The proposed 

model achieves a mean intersection over union (MIOU) of 99.13%, surpassing baseline deep 

learning methods such as U-Net, SegNet, and PSPNet. The introduction of CBWCE and post-

processing steps significantly reduces segmentation errors especially in complex cases that 

involves unclear tongue-lip boundaries or small background misclassifications. 

 

Figure 2.3 Enhanced DeeplabV3+ Structure [12] 

Cao et al. [13] proposed TongueSAM, a universal tongue segmentation model that integrates 

Segment Anything Model (SAM) with a Prompt Generator based on object detection. This 
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integration automates the generation of bounding box prompts so that the system able to deliver 

end-to-end segmentation without manual input. The study demonstrated that TongueSAM not 

only preserved SAM’s generalization strengths but also optimized it for tongue-specific tasks 

by achieving robust performance even under challenging background. TongueSAM 

outperformed traditional deep learning methods and maintained superior segmentation 

accuracy under zero-shot conditions with mean Intersection over Union scores exceeding 95%. 

Tang et al. [14] proposed a significant improvement to the DeepLabV3+ frameworkby 

integrating three key innovations. First, the backbone is replaced with MobileNet, which is a 

lightweight network that reduces parameter size and floating-point operation. Second, the 

authors enhance the ASPP module by embedding a Convolutional Block Attention Module 

(CBAM) into the branches so that better channel and spatial attention for richer semantic 

information extraction. Third, incorporate PointRend module to refine segmentation output. 

The experiment results demonstrate that the improved model not only outperforms classical 

architectures such as FCN, U-Net, PSPNet and standard DeepLab variants but also achieves 

substantial reductions of approximately 90% in parameter size. 

 

2.2 Critical Remarks of Previous Works 

Previous studies on tongue image segmentation have explored the deep learning-based 

approaches with its own strengths and limitations. Deep learning-based approaches have 

significantly improved segmentation performance by automatically learning hierarchical 

features from tongue images. Models such as U-Net are widely adopted due to their encoder-

decoder structure, which enhances spatial localization and enables pixel-level segmentation. 

However, many of these models rely heavily on post-processing techniques, such as 

morphological processing layer and contour refinement algorithms to enhance segmentation 

accuracy. This dependency increases computational costs and training time, limiting the 

feasibility of real-time applications. 

To address these limitations, this study proposes a hybrid Mobile U-Net model that reduces 

dependency on post-processing while improving segmentation accuracy. By leveraging U-

Net’s spatial localization strength and integrating MobileNet’s lightweight efficient backbone, 

the proposed model enhances feature propagation and captures complex tongue patterns more 

effectively. The hybrid approach ensures end-to-end learning, optimizing both segmentation 

precision and computational efficiency.  



CHAPTER 2 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR                                              
10 

 

2.3 Comparison of Previous Work (Segmentation) 

Table 2.1 Comparison of Previous Work (Segmentation) 

Author Segmentation Approaches Performance Strength Limitation 

J. Zhou 

et al.  

[9] 

U-Net with morphological 

processing layer 

98.45% MPA and 93.11% 

mIoU 

The model requires only 0.267 

seconds per image to segment. 

The model occasionally struggles with 

precise boundary delineation, leading to 

slight misclassification of edge pixels. 

L. Yao 

et al. 

[10] 

U-Net with Hybrid Post-

Processing Attention 

mechanism and edge 

refinement strategy 

99.3% mIoU on the BioHit 

dataset and 98.4% on the 

HanYue-TongueSeg dataset 

The post-processing edge 

refinement module is independent, 

it can be applied to other 

segmentation networks beyond 

HPA-UNet. 

The post-processing step relies on 

accurately labeled edge features. 

P. Qu et 

al. [11] 

SegNet with an image quality 

evaluation method based on 

brightness statistics 

mIoU of 95.89% and 90.72% 

respectively on 

TongueDataset1 and 

TongueDataset2 

Use of a large and diverse dataset 

ensures robustness, making the 

model more adaptable to real-

world variations in image quality, 

illumination, and tongue 

morphology. 

Performance declines when applied to 

images from open environments with 

uncontrolled lighting conditions. 

X. 

Zhang 

et al.  

[12] 

DeeplabV3+ with enhanced: 

network structure, 

optimization, CBWCE loss 

function, and a post-processing 

module 

99.13% mIoU Contour-Based Weighted Cross-

Entropy (CBWCE) Loss Function 

places higher emphasis on tongue 

edges, thus reducing segmentation 

errors near the lips and teeth. 

It cannot completely eliminate errors 

when tongue edges have significant 

distortions or irregularities. 
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Cao et 

al. [13] 

TongueSAM 98.06% mIoU on BioHit 

while 97.85% on 

PaddlePaddle Dataset 

Zero-shot capability that can 

achieve high accuracy even on 

unseen dataset without additional 

training. 

Heavy computational resources 

required due to SAM is a large 

Transformer-based model that is 

pretrained on massive datasets. 

Tang et 

al. [14] 

DeepLabV3+ with MobileNet 

backbone, CBAM in ASPP 

module, PointRend 

96.24 mIou on BioHit Dataset Lightweight and efficient that have 

approximately 90% smaller 

parameter size compared to SOTA 

models. 

Performance on the self-built dataset 

was weaker than on the public BioHit 

dataset, largely due to lower image 

resolution and cropping issues in 

clinical data acquisition. 
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2.4 Tongue Feature Recognition 

Tiryaki et al. [3] introduced an objective and automated deep convolutional neural networks 

(DCNN) framework to distinguish between heathy tongues and four types of tongue lesions 

which are fissured tongue, coated tongue, geographic tongue and median rhomboid glossitis. 

Given the moderate size of the dataset and imbalance class nature, the researchers utilized 

transfer learning strategies where pre-trained models such as VGG19, ResNet50, ResNet101 

and GoogleNet, are employed as the backbone for classification tasks. A unique feature of the 

study is the application of Fusion Based Majority Voting (FBMV) approach that was 

introduced. This method aggregates predictions from multiple DCNN to enhance overall 

classification robustness. In the binary classification task, ResNet101 achieved the highest 

individual accuracy of 93.53% which improved to 95.15% with FBMV approach. On the other 

hand, VGG19 led with an accuracy of 83.93% and was elevated to 88.76% using the FBMV 

method in the five-class classification task.  

Zhong et al. [4] presents a novel application of deep learning to distinguish stained from non-

stained tongue coatings. The researchers processed the tongue images by using GCYTD 

algorithm for tongue detection and DeepLabV3+ for segmentation to ensure clean tongue 

regions were analyzed. Then, ResNet50 architecture was employed for image classification 

due to its strong feature extraction capabilities and efficiency in training. The results 

demonstrated outstanding performance with an accuracy of 92%, 91% recall, and F1 score of 

92%. The model also achieved high area under the curve (AUC) scores for both ROC (0.97) 

and PR (0.95) curves, indicating excellent classification capabilities. Most notably, the model 

outperformed three experienced TCM practitioners, who achieved an average diagnostic 

accuracy of only 69% when evaluating the same images. 

Zhuang et al. [15] proposed a portable and human-computer interaction-based tongue 

diagnostic instrument in the study. The researchers used ResNet34, a residual neural network 

that was known for its depth and ability to avoid vanishing gradient, for classifying tongue 

features specifically teeth-printed tongues. The architecture outperforms the classical VGG16 

model that is used as a baseline comparator by achieving the performance of 91.67% accuracy, 

87.59% sensitivity and 95.39% specificity. The study also introduces a visual question 

answering component that merges computer vision with natural language processing. This 

multimodal approach allows the model to provide interpretable answers to user’s health-related 

questions, therefore enhancing human-computer interaction and user experience. 
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Jiang et al. [16] leverage Faster Region-Based Convolutional Neural Network (Faster R-CNN) 

which is capable of simultaneously recognizing multiple tongue features within a single image 

in the research. The researchers utilized ResNet101 as the backbone network and trained the 

model on a large dataset of 8,676 expertly labeled tongue images that cover seven diagnostic 

categories. The proposed model achieved impressive performance with an average accuracy of 

90.67%, precision of 99.28%, recall of 91.25%, and F1-score of 95.00%. Beyond the model 

development, the authors extended their work to real-world clinical application by analyzing 

3,601 tongue images from individuals undergoing routine medical checkups. The analysis 

revealed gender and age-related differences in the prevalence of tongue features and 

established associations between specific tongue features and common metabolic disorders. 

For instance, fissured and tooth-marked tongues along with greasy coatings showed strong 

correlations with hypertension, dyslipidemia, overweight, and nonalcoholic fatty liver disease 

(NAFLD), which support traditional diagnostic claims in TCM with modern statistical 

validation. 

The study by Wang et al. [17] addresses the need for an objective and automated system to 

evaluate greasy tongue coatings that were clinically significant in diagnosing various diseases 

such as gastroenteropathy and COVID-19. The authors developed and validated a deep learning 

model named GreasyCoatNet, that was built on ResNet architecture. The study evaluated three 

versions of GreasyCoatNet, which are GreasyCoatNet18, GreasyCoatNet34, GreasyCoatNet50 

and identified that GreasyCoatNet34 as the most balanced and effective model. The model 

achieved 88.0% classification accuracy and 0.947 AUC in distinguishing among non-greasy, 

greasy and thick greasy coatings. The pretrained GreasyCoatNet was fine-tuned using a smaller 

set of tongue images from COVID-19 patients and healthy controls. The fine-tuned model 

outperformed randomly initialized networks in classifying COVID-related tongue features, 

achieving higher scores in accuracy, F1, and AUC. 

 

2.5 Explainable Artificial Intelligence 

Recent advancements in medical image classification using Convolutional Neural Networks 

have brough about high-performance diagnostic tools. However, the black box nature of deep 

learning models remains a significant barrier to clinical acceptance. Therefore, the literature on 

explainable AI (XAI) in medical imaging emphasizes the need for transparency in model 

decision-making. 
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The study by Cui et al. [18] employed techniques such as Grad-CAM, Grad-CAM++, Eigen-

CAM, and Ablation-CAM to generate heatmaps that identify influential regions in input 

images. However, these methods are often qualitative and subject to subjective interpretation. 

The researchers address the gap by applying quantitative interpretability metrics which is the 

Heatmap Assisted Accuracy Score (HAAS) to evaluate the effectiveness of the heatmaps that 

were generated by CNN-based models’ predictions. HAAS stands out as a robust and 

automated metric that evaluates the consistency of model predictions after adjusting images 

based on attribution maps and offering a model-centric alternative to annotation-dependent 

evaluations. 

Wu et al. [19] integrates the explainable artificial intelligence with TCM tongue diagnosis to 

address a significant gap in the interpretability on existing deep learning-based diagnostic tools. 

The research compares and evaluates three types of diagnostic models which are convolutional 

neural networks, Transformer-based networks and feature-fusion approach that integrates 

colour, morphology and texture features of the tongue. Among the models, the feature-fusion 

model and ResNet-based CNN demonstrated superior classification performance on a dataset 

that categorized into four TCM syndromes. The authors employed ProtoPNet and Grad-CAM 

visualization techniques so that the identification of syndrome-specific tongue features and 

neural network attention areas is enhanced. The study found that ResNet yielded more 

clinically meaningful attention maps compared to VGG, which often misfocused on irrelevant 

image regions. Besides that, the study also revealed that neural networks can identify 

prototypical tongue images that align with traditional descriptions of TCM syndromes such as 

thin coating and pale colour for liver depression and spleen deficiency. 

Musthafa et al. [20] integrate ResNet50 with Grad-CAM to both optimize detection 

performance and provide visual explanations for brain tumors prediction. The authors report a 

significant advancement over previous work by achieving testing accuracy of 98.52% and F1-

score exceeding 98%. The model’s performance surpasses that of several baseline studies, 

which generally report accuracies in the range of 91-97%. Importantly, the Grad-CAM 

visualizations enabled clinicians to confirm that the model was focusing on clinically relevant 

tumor regions. 

The research by Umair et al. [21] studied on AI-assisted diagnostic methods for COVID-19 

detection using medical imaging, specifically chest X-rays. The authors implemented a transfer 
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learning approach with fine-tuning on four pretrained CNN models which are VGG16, 

ResNet50, MobileNet and DenseNet121 to classify chest X-ray images into COVID-19 

positive and normal categories. Besides that, a significant methodological feature of the study 

is the application of the Grad-CAM visualization techniques which highlight the image regions 

of most influential to the model’s decision-making. Among the tested models, DenseNet121 

achieved the highest accuracy of 96.49%, followed closely by MobileNet (96.48%) and 

outperformed the popular COVID-Net benchmark (93.3%). The study further explores the 

impact of optimizers and hyperparameters such as batch size and learning rate. The findings 

show that RMSprop and a batch size of 32 is the optimal choice for the training 

hyperparameters. 

 

2.6 Critical Remarks of Previous Work 

Although previous studies have made notable contributions to automated tongue diagnosis 

using deep learning, several limitations remain when compared to the need of a more 

generalizable and clinically relevant solution. Tiryaki et al. [3] utilized fusion-based ensemble 

techniques to classify health versus diseased tongues, yet the reliance on majority voting will 

increase computational overhead. Besides that, Jiang et al. [16] developed a strong detection-

based model that is capable of recognizing multiple tongue features with high accuracy, but 

the model’s complexity and lack of explainability tools such as heatmaps or visual rationales 

limit its clinical transparency. Furthermore, only a few studies have prioritized model 

efficiency or suitability for deployment in settings with limited computational resources across 

these works. In comparison, our study introduces a lightweight model that requires low 

computational cost while maintaining strong classification performance. It also emphasizes 

model interpretability using explainable AI techniques such as Grad-CAM, therefore 

supporting transparent decision-making for TCM applications. 
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2.7 Comparison of Previous Work (Classification and Explainable AI) 

 

Table 2.2 Comparison of Previous Work (Classification and Explainable AI) 

Author Network Architecture XAI Techniques Strength Limitation 

Tiryaki et al. [3] VGG19, ResNet50, 

ResNet101, GoogleNet 

- Fusion Based Majority Voting that 

combines the strengths of multiple 

networks. 

Small dataset size in each class, 

which may limit the model’s 

generalizability.  

Zhong et al. [4]  ResNet50 - Include comparison between 

model and experienced TCM 

practitioners as a real-world 

benchmark. 

Lack of model comparison, only 

ResNet50 was used in the study. 

Zhuang et al. [15]  ResNet34 - Combining deep learning with 

Visual Question Answering to 

allow users to interact and receive 

health suggestions from the 

system. 

Limited tongue feature categories, 

features such as tongue fissures 

were not explored in detail. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR                                              
17 

 

Jiang et al. [16]  Faster R-CNN with ResNet101 

backbone 

- Multi-label classification which 

enables multiple tongue features 

classification in one image. 

Did not compare the results to other 

deep learning architecture such as 

YOLO. 

Wang et al. [17]  GreasyCoatNet18, 

GreasyCoatNet34, 

GreasyCoatNet50 

Grad-CAM Effective use of transfer learning 

by fine-tuning pretrained 

GreasyCoatNet on a smaller 

COVID-19 dataset. 

Imbalance distribution of classes in 

training data, only 85 for non-

greasy class while 759 for greasy 

class. 

Cui et al. [18] ResNet18, ResNet50, VGG19, 

AlexNet 

Grad-CAM, Grad-

CAM++, Eigen-CAM, 

and Ablation-CAM 

Integration of quantitative 

interpretability (HAAS) that 

quantifies the alignment between 

model attention and predictive 

accuracy. 

Binary classification scope where 

the task was limited to distinguish 

stained from non-stained tongue 

coatings. 

Wu et al. [19]  AlexNet, DenseNet, 

EfficientNet, EfficientNetV2, 

MobileNet, GoogleNet, 

RegNet, ResNet, VGG, 

ShuffleNet, Vision 

ProtoPNet, Grad-CAM Comparative model analysis that 

compares CNNs, Transformer-

based and fusion model. 

The overall accuracy and 

robustness may still be insufficient 

for clinical deployment. 
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Transformer, Swin 

Transformer, Fusion Diagnosis 

Musthafa et al. 

[20]  

EfficientNetB0, DenseNet201, 

Inception, Xception, 

MobileNet, ResNet50 

Grad-CAM The use of epoch-wise Grad-CAM 

visualizations offer deeper insights 

into the model’s learning 

progression. 

The high accuracy on the validation 

set (100%) suggests a possible risk 

of overfitting. 

Umair et al. [21]  MobileNet, VGG16, 

DenseNet121, ResNet50 

Grad-CAM A systematic evaluation of 

learning rates, batch sizes and 

optimizers were conducted. 

Did not include other lung diseases 

such as pneumonia which are often 

visually similar to COVID-19 in X-

rays 
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Chapter 3 

System Methodology/Approach 

 

3.1 Design Specification 

 

Figure 3.1 Model Development Flowchart 

Figure 3.1 describes the model development flowchart to create and optimize the deep learning 

models. First, the dataset will be collected for image classification task. It is important to collect 

a good quality tongue image with high resolution, minimal noise and relevant content. This is 

because the quality of images will affect the performance of the models by having poor 

generalization and difficulty in learning meaningful features. Data preprocessing is carried out 

after dataset acquisition. The purpose of data preprocessing is to eliminate unwanted parts, 

normalize and convert the image into same size of arrays so that it can be used during the model 

training. After that, data augmentation techniques are applied to enhance the model 

generalization. The dataset diversity is increased by introducing the transformations such as 

rotation, flipping, scaling and shearing to the original dataset. 

During the model training phase, the model will learn to segment the training data by adjusting 

the parameters such as weights using optimization techniques iteratively and validate the 

performance with validation dataset. Then, the model is being tested on the testing dataset 

which is unseen during the model training phase. Performance metrics such as accuracy and 

F1-Score will be used to evaluate the performance of the model. Furthermore, hyperparameter 

tuning such as learning rate and batch size is performed to further refine the model’s 

performance. The iterative cycle for model training, testing and evaluation is conducted until 

the model achieves optimal performance. 
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Finally, visual outputs such as heatmaps that highlight the important regions in the input image 

that contributed to the model’s prediction will be generated. These generated heatmap will then 

be evaluated and compared using visualization benchmarks to assess the quality and 

effectiveness of the explanation provided. 

 

3.2 System Requirements 

3.2.1 Hardware 

Table 3.1 Laptop Specifications 

Description Specifications 

Processor Intel Core i7-7700HQ 

Operating System System Windows 10 

Graphic Card NVIDIA GeForce GTX 1050 4GB GDDR5 

Memory 12GB DDR4 RAM 

 

3.2.2 Software 

Table 3.2 Software Specifications 

Description Software 

Programming Language Pyhton 3.11.11 

Library TensorFlow 2.18.0, Keras 3.8.0 

IDE Google Colab with T4 GPU 

 

Python is used as the main programming language in this project because it offers various built-

in libraries such as TensorFlow or PyTorch library for developing deep learning models and 

image processing. Besides that, the syntax from Python is also easier to read and understand 

thus easing the development process. 

TensorFlow is an open-source platform developed by Google for building machine learning 

and deep learning models while Keras is a high-level neural networks API that is written in 

Python and is capable to run on top of TensorFlow. It simplifies the model building process 

and therefore allows quick development and experimentation for deep learning models in this 

project. 
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Google Colab are the main integrated development environment (IDE) used in the development 

phase. Google Colab is a web-based IDE hosted by Google where Python code can be written 

on it in a Jupyter Notebook format. It does not require any setup and provide free access to 

GPU and TPU to train the deep learning model. 

3.3 Dataset 

3.3.1 Segmentation 

BioHit Dataset 

The dataset used in this research is BioHit Tongue Dataset, which was developed by the Harbin 

Institute of Technology [22]. It is a publicly available and widely utilized dataset for tongue 

segmentation. The dataset consists of 300 RGB tongue images with a resolution of 768x576 

pixels and paired with manually annotated masks as the ground truth. The images were 

captured in a semi-enclosed setting under consistent lighting conditions. In this study, the 

dataset is being split into training, validation and testing set with the ratio of 7:2:1 respectively. 

 

Figure 3.2 Sample Image and Its Ground Truth from BioHit Dataset 

 

Roboflow Dataset 

The second dataset was obtained from [23] which consists of 2,500 tongue images. There are 

around 500 images were captured under consistent lighting conditions while the remaining 

images were taken in open environments with unstable lighting. The images are 640x640 

resolution and are provided in JPG format while the masks are in PNG format. The ground 

truth masks are labeled with binary labeling convention which is 0 for the background and 1 

for the region of interest. The sample of the image and its preprocessed ground truth from the 

dataset is shown in Figure 3.3 and 3.4. 
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Figure 3.3 Sample of Consistent Lighting Tongue Image 

 

Figure 3.4 Sample of Open Environment Tongue Image 

 

PaddlePaddle Dataset 

The third dataset is a dataset that consists of 1,000 images selected from [24] with manual 

segmentation performed sing the Labelme tool by the author referenced in [13]. This collection 

includes a diverse array of tongue images captured various conditions including mobile devices 

and unconventional angles. The original images were resized to 400x400 resolution by the 

author to maintain uniform input size as the original images vary in resolution. The ground 

truth mask also appears as entirely black as the second dataset but however the pixel labeled 

[1,1,1] as tongue regions while [0,0,0] denotes the background. Figure 3.5 shows the sample 

of the tongue images from the third dataset. 
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Figure 3.5 Sample of Tongue Image 

3.3.2 Binary Classification 

The dataset used for binary classification task is an open-source tongue dataset [25]. It consists 

of a total of 2,008 tongues images, which are divided into two balance categories: 

Table 3.3 Distribution of Tongue Images in Binary Classification 

Class Total Proportion (%) 

Stained tongue coating 1,001 49.85 

Non-stained tongue coating 1,007 50.15 

The stained tongue coating images are collected from healthy student volunteers and the non-

stained tongue coating images are collected from hospitalized patients that are diagnosed with 

conditions such as lung cancer, diabetes, and hypertension. The stained tongue images were 

captured at 5, 10, and 30 minutes after the participants consumed stained foods such as milk, 

mango and coffee in a fasting condition to control the confounding factors. 

The dataset is split into training, validation and testing set with the ratio of 7:2:1 respectively 

during the model development. Furthermore, all images were uniformly resized to 384 x 384 

pixels to ensure consistency throughout the study. 
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Figure 3.6 Sample of Tongue Image in Each Class (Binary) 

 

3.3.3 Multi-Class Classification 

The dataset used for multi-class classification is a proprietary dataset that was obtained via a 

commercial vendor at Taobao. It consists of a total of 1,501 images that are divided into 5 

classes which are mirror-approximated, white-greasy, thin-white, yellow-greasy and grey-

black tongue. The distribution of the tongue images for each class is shown at Table 3.4. 

Table 3.4 Distribution of Tongue Images in Multi-Class Classification 

Class Total Proportion (%) 

Mirror-Approximated 122 8.13% 

White-Greasy 698 46.50% 

Thin-White 534 35.58% 

Yellow-Greasy 91 6.06% 

Grey-Black 56 3.73% 

 

According to the study [26], the coating appearance of the tongue can be described as: 

Table 3.5 Description of Tongue Coatings 

Class Description 

Mirror-Approximated No coating at tongue and appear as smooth, pink 

tongue surface. 

White-Greasy White in colour with thick, sticky and greasy 

coating. 
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Thin-White A thin white layer of tongue, considered normal 

in healthy individuals. 

Yellow-Greasy Yellow-coloured coating with thick and greasy 

appearance. 

Grey-Black Dark grey to black tongue coating. 

The dataset is split into training, validation and testing set with the ratio of 7:2:1 respectively 

during the model development. Furthermore, all images were uniformly resized to 384 x 384 

pixels to ensure consistency throughout the study. 

 

Figure 3.7 Sample of Tongue Image in Each Class (Multi-Class) 

 

3.4 Model Architecture 

3.4.1 LECA-EfficientNetV2 

LECA-EfficientNetV2 is a lightweight deep learning model that was proposed in [27]. It is 

built upon the EfficientNetV2 architecture which is known for its optimized balance between 

performance and computational efficiency. The model incorporates a novel channel attention 

mechanism called Lightweight Efficient Channel Attention (LECA) module, that was designed 

to enhance feature extraction without increasing the computational burden. Unlike traditional 

attention modules like Squeeze-and-Excitation (SE) that use dimensionality reduction and can 

weaken feature learning, LECA avoids dimensionality reduction by leveraging a local cross-

channel interaction strategy based on 1D convolutions. This allows it to preserve detailed 

information while adaptively weighting feature channels. The architecture of LECA-

EfficientNetV2 closely follows the original structure of EfficientNetV2. The primary 

modification lies in the replacement of the SE modules with LECA module. Figure 3.8 shows 

the details of LECA module and Figure 3.9 shows the architecture of LECA-EfficientNetV2. 
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Figure 3.8 Details of LECA Module [27] 

 

Figure 3.9 LECA-EfficientNetV2 Architecture [27] 

 

3.4.2 Proposed Mobile U-Net 

The model is a lightweight segmentation framework that combines the U-Net architecture [28] 

with MobileNetV2 [29] as its encoder backbone. The encoder utilizes a pretrained 

MobileNetV2 network to capture hierarchical image features while maintaining computational 

efficiency. 

In the encoder, hierarchical features are extracted from different stages of MobileNetV2. These 

multi-scale features are then passed to the decoder through skip connections to preserve spatial 

details that are often lost during downsampling. The decoder progressively reconstructs the 

image resolution by psalming the encoded features and fusing them with the corresponding 

encoder features. This design enables the model to combine both high-level semantic 

information and fine-grained spatial details that are critical for accurate tongue segmentation. 
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In the decoder, the feature maps are progressively upsampled to reconstruct the spatial 

resolution of the input. An attention block is applied before concatenation at each skip 

connection to enhance the fusion of encoder and decoder features. The attention mechanism 

adaptively weights the encoder features to allow the network to emphasize the most relevant 

regions while suppressing irrelevant background information. This selective focus improves 

segmentation accuracy where boundaries may be ambiguous or corrupted by noise. Figure 3.10 

shows the architecture of the Mobile U-Net with attention gate module. 

 

Figure 3.10 Mobile U-Net with Attention Gate Module 

 

3.4.3 Proposed Mobile U-Net with Transformer 

The second model enhances Mobile U-Net with Attention Gate model in section 3.4.1 by 

integrating a transformer module into the bottleneck stage. The original design relies primarily 

on convolutional operations, which are effective at capturing local spatial dependencies bt 

however these operations are limited in the ability to model long-range relationships. To 

address the limitation, a transformer bottleneck inspired by Vision Transformer (ViT) 

architectures [30] is introduced. This component enables the network to capture global 

contextual information across the entire feature map, which is beneficial for tongue 

segmentation tasks where local textures and global shape patterns must be considered 

simultaneously. Figure 3.11 shows the architecture of the model. 
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Figure 3.11 Mobile U-Net with Attention Gate and Transformer 

 

3.4.4 Proposed Efficient-ResNet 

The proposed model is a hybrid network that combines ResNet-style lightweight residual 

blocks with EfficientNetV2-inspired MBConv blocks for efficient feature extraction. To 

further improve channel-wise feature recalibration, the Lightweight Efficient Channel 

Attention (LECA) module in [27] is integrated within selected blocks. This hybrid design 

leverages the robust skip connections of ResNet and the parameter-efficient inverted bottleneck 

structure of EfficientNet so that the model is able to achieve a balance between accuracy and 

computational efficiency. Figure 3.12 shows the architecture along with the structure of the 

Reslite and MBConv block. 
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Figure 3.12 Architecture of Efficient-ResNet and Structure of Reslite and MBConv Block 

 

3.5 Explainable Artificial Intelligence Techniques 

3.5.1 Gradient-weighted Class Activation Mapping (Grad-CAM) 

Grad-CAM is a popular visualization technique used to interpret the decision-making process 

of convolutional neural networks particularly in image classification tasks [31]. Grad-CAM 

works by computing the gradients of the output class with respect to the feature maps in the 

final convolutional layer. These gradients are used to produce a heatmap that highlights the 

spatial regions in the input image that contributes most significantly to the model’s prediction. 

By overlapping the heatmap onto the original image, Grad-CAM provides a visual explanation 

that helps researchers and practitioners understand which areas of the image the model is 

focusing on. 

In the Grad-CAM heatmap, colours represent the importance or relevance of different regions 

of the input image. Red or yellow regions indicate high activation, which means the parts of 

the image are strongly influencing the model’s prediction for the chosen class. On the other 

hand, blue or dark areas represent low or no activation that suggests the regions had little to no 

contribution to the decision. By providing intuitive visual feedback, Grad-CAM enhances 

transparency and trust in deep learning models. 
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Figure 3.13 Visualization of Grad-CAM with Predicted Class [31] 

 

3.6 Model Evaluation Techniques 

3.6.1 Segmentation 

The objective of the performance metrics is to evaluate the performance of the segmentation 

models by assessing the similarity between the predicted and ground truth segmentations. 

Several common evaluation metrics that are commonly used in medical image segmentation 

are referred from [32, 33] and are used in this study. 

 

Mean Intersection over Union (MIoU) 

The Mean Intersection over Union measures the average ratio of overlap between predicted 

and ground truth segmentations. It is commonly used to measure the accuracy of the model in 

image segmentation field. 

𝑀𝐼𝑜𝑈 =
1

𝑘
∑

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑘

𝑖=1

(3.1) 

where: 

k : Number of images segmented 

TP : The overlapping area between the ground truth and predicted segmentation mask 

FP : The area of predicted segmentation that extends beyond the ground truth 
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FN : The number of pixels in the ground truth that failed to predict 

 

Mean Pixel Accuracy (MPA) 

Pixel Accuracy represents the ratio of correctly predicted pixels to the total number of pixels. 

Mean Pixel Accuracy extends it by calculating the accuracy for average value across the 

segmentation. 

𝑀𝑃𝐴 =  
1

𝑘
∑

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑘

𝑖=1

(3.2) 

where: 

k : Number of images segmented 

TP  : The overlapping area between the ground truth and predicted segmentation mask 

TN : The area that is correctly predicted that not belong to the region of interest 

FP : The area of predicted segmentation that extends beyond the ground truth 

FN : The number of pixels in the ground truth that failed to predict 

 

Mean Dice Similarity Coefficient (MDSC) 

The Dice Similarity Coefficient is defined as the harmonic mean between the sensitivity and 

precision. The difference between MDSC and MIoU is that MIoU imposes a stronger penalty 

on under-segmentation and over segmentation towards the images. 

𝑀𝐷𝑆𝐶 =  
1

𝑘
∑

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑘

𝑖=1

(3.3) 

where: 

k : Number of images segmented 

TP : The overlapping area between the ground truth and predicted segmentation mask 

FP : The area of predicted segmentation that extends beyond the ground truth 

FN : The number of pixels in the ground truth that failed to predict 

 

3.6.2 Classification 

The objective of performance metrics is to objectively evaluate how well a model can correctly 

identify and categorize images into their respective classes. These metrics provide insight into 

different aspects of the model’s behavior. The performance metrics that are commonly used in 
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medical image classification and benchmark for evaluating visual explanations are referred 

from [34, 35, 36] and are used in this study. 

 

Accuracy 

Accuracy is a fundamental performance metric that measures the overall correctness of the 

model by calculating the proportion of correctly classified images out of the total number of 

predictions. In tongue classification tasks, accuracy indicates how frequently the model 

correctly identifies the tongue type regardless of the specific class. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3.4) 

where: 

True Positive (TP): The model correctly predicts the image that belongs to a specific class and 

in actual the image also belongs to the class. For example, the model predicts an image is 

“yellow-greasy” and the actual label is also “yellow-greasy”. 

True Negative (TN): The model correctly predicts the image that does not belong to a specific 

class and it indeed does not belong to the class. For example, the model predicts an image is 

not “yellow-greasy” and the actual label is also not “yellow-greasy”. 

False Positive (FP): The model incorrectly predicts that an image belongs to a class when it 

actually does not. For example, the model predicts an image is “yellow-greasy” but the actual 

label is not “yellow-greasy”. 

False Negative (FN): The model incorrectly predicts the image does not belong to a specific 

class when it actually does. For example, the model predicts an image is not “yellow-greasy” 

but the actual label is “yellow-greasy”. 

 

Precision 

Precision measures the proportion of true positive predictions among all instances that the 

model predicted as a specific tongue type. In the context of tongue classification, high precision 

indicates that when the model classifies an image as a particular tongue category, it is likely to 

be correct. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.5) 

 

Recall 

Recall is also known as sensitivity or the true positive rate. It refers to the proportion of actual 

positive cases that the model correctly identifies. In tongue classification, recall assess the 

model’s ability to detect all images that truly belong to a given tongue type. A high recall value 

means that the model is effective in identifying most instances of that tongue category so that 

the risk of false negative is minimized. A high recall is important in medical diagnostics as a 

false negative will lead to untreated conditions. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.6) 

 

 

F1-Score 

F1-Score is the harmonic means of precision and recall that provides a balance trade-off 

between false positive and false negative. In tongue classification, the F1-Score is particularly 

valuable when dealing with imbalanced datasets where certain tongue types may have fewer 

samples than others. 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3.7) 

 

Confusion Matrix 

Confusion matrix is a tabular representation of the classification results that summarizes the 

number of true positives, true negatives, false positives and false negatives for each class. This 

helps in identifying specific weaknesses in the model and guides further refinement in model 

training or data preparation. 
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 Figure 3.14 Confusion Matrix [31] 

 

Pointing Game 

Pointing Game is a metric used to evaluate the accuracy of visual explanations by assessing 

whether the most activated point in a Grad-CAM heatmap falls within the ground truth region 

of interest. If the pixel with the highest activation value in the Grad-CAM lies inside the ground 

truth mask, then the prediction is counted as “hit” otherwise “miss”. The final score is 

calculated as the ratio of hits to the total number of evaluated images. This method provides a 

simple yet effective way to measure whether the model is focusing on the most relevant part 

of the image even if it does not highlight the entire region. 

𝑃𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝐺𝑎𝑚𝑒 =
∑ 1[𝑀𝑎𝑥𝐿𝑜𝑐(𝐸𝑖) ∈ 𝐴𝑖]

𝑁
𝑖=1

𝑁
 (3.6) 

where: 

N: Number of samples. 

MaxLoc(Ei): The location of the highest activation in the Grad-CAM saliency map for the i-th 

image. 

Ai: Ground truth mask for the i-th image. 
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Chapter 4 

System Implementation 

 

4.1 Segmentation 

4.1.1 Data Preprocessing 

 

Figure 4.1 Data Pipeline for Segmentation 

 

Figure 4.2 Data Pipeline for Segmentation 
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Figure 4.1 and Figure 4.2 shows the function of the data pipeline. This function prepares 

training and validation data generators for image segmentation tasks using Keras’ 

ImageDataGenerator. Both input images (RGB) and target masks (grayscale) are normalized 

to a [0,1] range. To maintain alignment between inputs and targets, the same random seed is 

applied during shuffling. The generators are combined using zip so that each batch yields paired 

(input, target) samples. Additionally, the function returns the total number of samples in the 

training and validation sets, which are required to define training steps during model fitting. 

4.1.2 Modelling 

 

Figure 4.3 Mobile U-Net Modelling 

Figure 4.3 shows the function to model Mobile U-Net. The function uses pretrained 

MobileNetV2 as its encoder. It is initialized with pretrained ImageNet weights and the 

intermediate feature maps from selected layers are extracted as skip connection. The 

“block_16_project”, which is the deepest feature representation serves as the bottleneck of the 

model so that it helps the network to learn abstract features from the tongue image. 

The decoder reconstructs the segmentation map through a series of upsampling operations that 

are combined with skip connections. After the final upsampling, the output is passed through 

a convolutional block, a dropout layer for regularization and a final convolution layer with a 

sigmoid activation to generate the segmentation mask. 
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4.1.3 Early Stopping and Model Checkpoint Callbacks 

 

Figure 4.4 Early Stopping and Model Checkpoint Callbacks 

In Figure 4.4, the code configures a training strategy that includes early stopping and 

checkpointing across all segmentation models to improve model training efficiency and 

reliability. The early stopping callback monitors the validation loss and stops the training if it 

does not improve for three consecutive epochs. Besides that, the Model Checkpoint callback 

saves the model whenever a new minimum validation loss is reached. Before the training starts, 

the script will check whether a saved model already exists. If found, the model will be loaded 

so the training can resume from the last best state rather than starting the training from scratch 

again. 

4.1.4 Model Training 

 

Figure 4.5 Model Training 

Figure 4.5 shows the method to train the model. The code uses fit method with combined 

generators for both training and validation data. The batch size is set to 8 while the training is 

set to run for 10 epochs maximum. Two callbacks are included during the training process 

which are Model Checkpoint and Early Stopping that were described in 4.1.3. This setup 

ensures efficient training by preventing overfitting and preserving the best model weights. 
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4.2 Classification 

4.2.1 Data Preprocessing 

Binary Classification Preprocessing 

 

Figure 4.6 Binary Classification Dataset Splitting 

To prepare the dataset for model training and evaluation, a structured data splitting approach 

was implemented as shown in Figure 4.6. The dataset was initially stored in separate directories 

within the root folder. Then, each image was retrieved using the “os” module from Python and 

every image was labelled according to its respective category where stained images were 

assigned label 1 and non-stained images were label 0. The complete dataset is split with 7:2:1 

ratio for training, validation and testing dataset with a stratified sampling strategy to maintain 

the original class distribution across all subsets. 
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Figure 4.7 Image Preprocessing 

After the dataset was split into training, validation and testing subsets, the create_dataset 

function converts the image paths and the corresponding labels into TensorFlow tensors. Each 

image was then resized to a fixed dimension of 384 x 384 pixels to ensure consistency input. 

ResNet50 preprocessing steps was applied to normalize the image according to the 

requirements of the pre-trained model. The dataset is then batched with a batch size of 32 and 

shuffling was applied to the training set to enhance generalization and avoid learning order-

specific patterns during the training process. 

Multi-Class Classification Preprocessing 

 

Figure 4.8 Reading CSV Files 

Due to the different methods of data storage, the image metadata for the multi-class 

classification task was organized and stored in CSV files. Each CSV file contained the 
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filenames of the images along with their corresponding class labels. Both columns were 

explicitly cast to string format to ensure compatibility with TensorFlow’s data pipeline. 

 

Figure 4.9 Data Generator 

Image processing was managed using the ImageDataGenerator class from Keras that facilitated 

the normalization and efficient loading of image data. The flow_from_dataframe method was 

used to generate batches of images directly from the labeled dataframes and their corresponding 

directories. Besides that, each image was also resized to a fixed resolution of 384 x 384 pixels 

to ensure consistent input size. Finally, the class labels were one-hot encoded using the 

categorical mode for the five-class classification task. 
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Figure 4.10 Data Augmentation 

 

 

Figure 4.11 Data Augmentation 
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Figure 4.12 Saving CSV File 

Figure 4.10 to Figure 4.12 shows the process of data augmentation. First, the class distribution 

was analyzed to determine the number of additional images required for each class to achieve 

a balance dataset. The image augmentation techniques were configured with a combination of 

geometric transformations such as rotation, zoom, width, height shifts, shear transformations 

and horizontal flipping. The fill_mode parameter was set constantly with a black padding value 

to preserve image consistency after transformations. Finally, the augmented images were saved 

into respective class-specific subdirectories and a new CSV file containing the filenames of the 

augmented images along with their class labels was generated. 

4.2.2 Modelling 

 

Figure 4.13 Convolution, Batch Normalization and Activation Layer 

 

Figure 4.14 LECA Module 
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Figure 4.15 ResLite Block 

 

Figure 4.16 MBConv Block 

 

Figure 4.17 Efficient-ResNet Model Creation 
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Figure 4.13 to Figure 4.17 shows the creation of Efficient-ResNet Model. The model combines 

ResNet-style residual connections, EfficientNetV2-inspired MBConv blocks and a 

Lightweight Efficient Channel Attention mechanism. The core building units are modularized 

for flexibility. The conv_bn_act utility applies a convolutional layer followed by batch 

normalization and a Swish activation, serving as the basic operation for feature extraction. The 

LECA module performs global average pooling and global max pooling in parallel to capture 

complementary global context, concatenates the pooled descriptors, and applies a pointwise 

convolution with hard-sigmoid activation to generate channel-wise attention weights. These 

weights are used to re-scale the feature maps, thereby enhancing informative channels while 

suppressing redundant ones. 

The ResLite block is a lightweight residual unit composed of two consecutive convolutional 

operations with batch normalization and non-linear activation which then connected through 

an identity mapping. When spatial resolution or channel dimension changes, a projection 

shortcut with a 1×1 convolution is used to align dimensions. LECA can optionally be integrated 

within the block to improve channel recalibration. The MBConv block employs an expansion 

phase via a pointwise convolution, followed by depthwise convolution to capture spatial 

information with reduced complexity, and a projection phase that restores channel 

dimensionality. Residual connections are maintained when input and output dimensions match 

and stride equal one. 

The complete model begins with a stem convolution for low-level feature extraction and 

progresses through sequential stages of ResLite and MBConv blocks with increasing channel 

depth and downsampling at each stage. The feature extraction backbone is terminated with a 

global average pooling layer, followed by dropout for regularization, and a dense softmax 

classifier for multi-class prediction. This architectural design strategically combines the 

efficiency of MBConv operations, the stability of residual learning, and the representational 

enhancement of lightweight channel attention, resulting in a computationally efficient yet 

expressive deep learning model suitable for resource-constrained environments. 
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4.2.3 Early Stopping and Model Checkpoint Callbacks 

 

Figure 4.18 Early Stopping and Model Checkpoint Callbacks 

To optimize training efficiency and prevent overfitting, two callback strategies were developed 

as shown in Figure 4.18. Early stopping was configured to monitor the validation loss during 

training and terminate the training process when there is no improvement was observed for 

three consecutive epochs. Additionally, the final model will retain the weights from the epoch 

with the lowest validation loss. Model checkpoint was implemented to save the best-

performing model throughout the training based on the minimum validation loss observed. It 

stored the model weights in the predefined checkpoint path and updated the saved file only 

when a new performance improvement was detected. 

4.2.4 Model Training 

 

Figure 4.19 Model Training 
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The model training process was conducted using the fit method with the training dataset serving 

as the input and validation dataset used for performance monitoring. The training was 

scheduled for a maximum of 50 epochs. However, the actual number of training iterations 

could be reduced due to the early stopping mechanism. Both the early stopping and model 

checkpoint callbacks were integrated into the training loop to ensure that the model retain its 

optimal weights and avoid overfitting. 

4.2.5 Visualization 

 

Figure 4.20 Grad-CAM Visualization 
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Figure 4.21 Display and Save Generated Visualization 

Figure 4.20 and Figure 4.21 shows the Grad-CAM visualization process. For each image in the 

test dataset, a forward pass was performed to obtain predictions and the gradient of the 

predicted class score with respect to the convolutional feature maps was computed. The 

gradients were global average pooled to obtain channel importance weights, which were then 

combined with the feature maps to generate a class localization heatmap. The heatmap was 

then normalized and colour-mapped using OpenCV’s COLORMAP_JET. A weighted overlay 

of the heatmap on the original image was created to highlight salient regions that influencing 

the model’s decision. Finally, the grayscale heatmap, colour heatmap and the superimposed 

visualization were saved for each image for further analysis.  



CHAPTER 5 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR                                              
48 

 

Chapter 5 

System Evaluation and Discussion 

 

5.1 Segmentation Experimental Results 

5.1.1 Quantitative Evaluation 

In this study, four baseline deep learning models which are U-Net, SegNet, PSPNet and 

DeepLabv3+ were evaluated for tongue segmentation based on the MIoU, MPA, MDSC as 

discussed in Chapter 3 along with the number of parameters. BioHit and Roboflow datasets 

were collected under consistent lighting environments while PaddlePaddle dataset was 

captured using a mobile phone with inconsistent lighting conditions. This setup allows a 

realistic assessment of each model’s robustness and generalizability in practical scenarios. 

Table 5.1 Performance Results of the Models (MIoU) 

Model BioHit Roboflow PaddlePaddle Average 

U-Net [27] 0.9468 0.9631  0.8838  0.9312 

SegNet [37] 0.9601 0.9578 0.9177 0.9452 

PSPNet [38] 0.9674 0.9702 0.9573 0.9650 

DeepLabv3+ [39]  0.9710 0.9712 0.9589 0.9670 

Mobile U-Net - Small 0.9614 0.9432 0.9321 0.9456 

Mobile U-Net - Large 0.9740 0.9617 0.9644 0.9667 

Mobile U-Net - Transformer 0.9522 0.9513 0.9390 0.9475 

Table 5,1 presents the mean Intersection over Union performance of seven segmentation 

models evaluated on the three benchmark datasets. On the BioHit dataset, Mobile U-Net Large 

achieved the highest mIoU (0.9740), slightly outperforming DeepLabv3+ (0.9710) and PSPNet 

(0.9674). Traditional models such as SegNet (0.9601) and U-Net (0.9468) demonstrated 

competitive but relatively lower scores, indicating that while classical encoder–decoder 

designs remain effective while enhancements in deeper or more optimized architectures 

contribute to incremental improvements. 

In the Roboflow dataset, DeepLabv3+ obtained the best score (0.9712), closely followed by 

PSPNet (0.9702) and Mobile U-Net Large (0.9617). Despite its relative simplicity, U-Net still 
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demonstrated robust performance (0.9631) and outperforming the Mobile U-Net Small variant 

(0.9432), which showed a decline likely due to reduced model capacity. The results suggest 

that while lightweight models are attractive for efficiency, they may not capture sufficient 

feature richness when applied to more complex data. 

For the PaddlePaddle dataset, Mobile U-Net Large once again delivered the best performance 

(0.9644), followed by DeepLabv3+ (0.9589) and PSPNet (0.9573). Notably, U-Net dropped 

significantly to 0.8838, indicating sensitivity to variations in lighting and image quality. The 

Mobile U-Net Transformer variant (0.9390) performed better than the small configuration but 

did not surpass the large version, suggesting that simply adding transformer layers does not 

fully mitigate the challenges posed by inconsistent imaging environments. 

The performance gap between Mobile U-Net Small and Mobile U-Net Transformer illustrates 

the specific impact of transformer integration. Both models share the same convolutional filter 

configurations with the only difference being the inclusion of a ViT-style transformer block at 

the bottleneck. On the controlled BioHit and Roboflow datasets, the transformer variant 

achieved slightly higher mIoU values than the small configuration (0.9522 vs. 0.9614 on 

BioHit, 0.9513 vs. 0.9432 on Roboflow), suggesting that the attention mechanism improved 

global feature modeling under consistent imaging conditions. However, on the more 

challenging PaddlePaddle dataset, the transformer model (0.9390) did not surpass the large 

variant (0.9644) and only modestly outperformed the small version (0.9321). This indicates 

that while transformer integration can enhance contextual feature extraction, it is not sufficient 

on its own to fully address domain shifts caused by inconsistent lighting or lower image quality. 

Instead, increasing network capacity, as in Mobile U-Net Large, appears more effective for 

achieving robust performance across varied imaging conditions. 

In summary, Mobile U-Net Large consistently ranked among the top performers, 

demonstrating strong adaptability even under challenging conditions. DeepLabv3+ and 

PSPNet also showed stable and competitive performance across datasets, confirming their 

reliability in different settings. In contrast, U-Net and Mobile U-Net Small were more 

vulnerable to performance degradation especially in the PaddlePaddle dataset, underscoring 

their limited generalization capacity. These findings indicate that models with higher 

representational power or more sophisticated feature extraction strategies are better equipped 
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to handle the variability introduced by uncontrolled imaging conditions, whereas lighter 

architectures may sacrifice accuracy for efficiency. 

Table 5.2 Performance Results of the Models (MPA) 

Model BioHit Roboflow PaddlePaddle Average 

U-Net [27] 0.9788 0.9909  0.9542  0.9746 

SegNet [37] 0.9820 0.9901 0.9630 0.9784 

PSPNet [38] 0.9848 0.9921 0.9828 0.9866 

DeepLabv3+ [39]  0.9860 0.9927 0.9826 0.9871 

Mobile U-Net - Small 0.9789 0.9866 0.9693 0.9783 

Mobile U-Net - Large 0.9847 0.9902 0.9823 0.9857 

Mobile U-Net - Transformer 0.9790 0.9889 0.9744 0.9808 

Table 5.2 shows the mean pixel accuracy of the seven segmentation models across the datasets. 

On the BioHit dataset, DeepLabv3+ achieved the highest mPA (0.9860), followed closely by 

PSPNet (0.9848) and Mobile U-Net Large (0.9847). SegNet (0.9820) and U-Net (0.9788) 

performed slightly lower but still demonstrated strong reliability in controlled imaging 

conditions. Both Mobile U-Net Small (0.9789) and Transformer (0.9790) attained similar 

performance to the baseline U-Net, indicating that lightweight or transformer-enhanced 

variants were less advantageous when the dataset posed fewer challenges. 

In the Roboflow dataset, DeepLabv3+ again achieved the top performance (0.9927), with 

PSPNet (0.9921) and U-Net (0.9909) following closely. Mobile U-Net Large (0.9902) 

remained competitive, while Mobile U-Net Small dropped slightly to 0.9866. Interestingly, 

SegNet (0.9901) was also among the strongest performers, highlighting that classical 

architectures remain effective under consistent lighting conditions. 

For the PaddlePaddle dataset, which was captured under inconsistent lighting conditions, the 

differences between models became more apparent. PSPNet (0.9828) obtained the highest 

mPA, with DeepLabv3+ (0.9826) and Mobile U-Net Large (0.9823) performing almost equally 

well. SegNet and Mobile U-Net Transformer achieved moderate scores (0.9630 and 0.9744, 

respectively), while U-Net recorded the lowest value (0.9542). These results suggest that larger 

and more advanced architectures are more resilient to variability in imaging conditions, 

whereas lightweight or classical designs exhibit greater sensitivity to noise and inconsistencies. 
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When averaged across datasets, DeepLabv3+ (0.9871) and PSPNet (0.9866) delivered the best 

overall mPA, followed by Mobile U-Net Large (0.9857). The transformer-enhanced Mobile U-

Net (0.9808) achieved modest improvements over the small variant (0.9783) but did not 

approach the performance of the larger configuration, confirming that increased model capacity 

plays a more critical role than transformer integration alone in achieving robust segmentation 

performance. 

In summary, the mPA results demonstrate that all models performed strongly under controlled 

conditions, with modern architectures such as DeepLabv3+ and PSPNet consistently 

outperforming U-Net and SegNet, especially in the more challenging PaddlePaddle dataset. 

While Mobile U-Net variants strike a balance between efficiency and accuracy, only the large 

configuration consistently matched the performance of state-of-the-art models, underscoring 

the importance of model capacity for handling complex real-world data variability. 

Table 5.3 Performance Results of the Models (MDSC) 

Model BioHit Roboflow PaddlePaddle Average 

U-Net [27] 0.9763 0.9783  0.9356  0.9634 

SegNet [37] 0.9808 0.9760 0.9527 0.9698 

PSPNet [38] 0.9865 0.9825 0.9793 0.9828 

DeepLabv3+ [39]  0.9886 0.9842 0.9806 0.9845 

Mobile U-Net - Small 0.9759 0.9649 0.9603 0.9670 

Mobile U-Net - Large 0.9862 0.9760 0.9807 0.9810 

Mobile U-Net - 

Transformer 

0.9767 0.9724 0.9642 0.9711 

Table 5.3 summarizes the mean Dice Similarity Coefficient of the evaluated segmentation 

model across the BioHit, Roboflow and PaddlePaddle datasets. On the BioHit dataset, 

DeepLabv3+ achieved the best performance (0.9886), marginally outperforming PSPNet 

(0.9865) and Mobile U-Net Large (0.9862). SegNet (0.9808) and U-Net (0.9763) produced 

competitive but lower scores, while Mobile U-Net Small (0.9759) and Transformer (0.9767) 

trailed close to the baseline U-Net, indicating that lightweight variants and bottleneck-level 

transformer integration provided limited benefits under consistent imaging conditions. 

For the Roboflow dataset, DeepLabv3+ again achieved the highest mDSC (0.9842), followed 

by PSPNet (0.9825). U-Net (0.9783) remained reliable, though Mobile U-Net Small dropped 
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to 0.9649, the lowest score on this dataset. Interestingly, both Mobile U-Net Large (0.9760) 

and SegNet (0.9760) produced identical results, reinforcing the stability of encoder–decoder 

structures under controlled conditions but also showing that deeper feature extraction in 

PSPNet and DeepLabv3+ leads to consistently higher overlap accuracy. 

In the PaddlePaddle dataset, which posed greater challenges due to inconsistent lighting and 

capture conditions, Mobile U-Net Large and DeepLabv3+ performed nearly equally well 

(0.9807 and 0.9806, respectively), with PSPNet close behind (0.9793). These three models 

significantly outperformed U-Net (0.9356), highlighting the vulnerability of simpler 

architectures to domain shifts. The transformer variant (0.9642) slightly improved over the 

small model (0.9603), but neither approached the accuracy of the larger or state-of-the-art 

architecture. 

In summary, the results reinforce the trends observed in mIoU and mPA. DeepLabv3+ and 

PSPNet consistently achieved the strongest performance, followed closely by Mobile U-Net 

Large, particularly in challenging datasets such as PaddlePaddle. By contrast, U-Net and 

Mobile U-Net Small showed more significant performance degradation under uncontrolled 

imaging conditions. These findings highlight that advanced feature extraction strategies and 

larger model capacity are crucial for achieving robust and reliable segmentation performance 

across diverse real-world environments. 

Table 5.4 Number of Parameters of the Models 

Model Number of Parameters (106) 

U-Net [27] 31.04  

SegNet [37] 29.44  

PSPNet [38] 24.82  

DeepLabv3+ [39]  17.86  

Mobile U-Net - Small 2.54 

Mobile U-Net - Large 4.38 

Mobile U-Net - Transformer 3.80 

An important aspect of this analysis is the computational efficiency of each model. The number 

of trainable parameters provides insights into the complexity and potential computational cost 

of each architecture. In Table 5.4, the results shows that the Mobile U-Net variants were by far 

the most parameter-efficient. The small configuration used only 2.54M parameters, nearly an 
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order of magnitude smaller than DeepLabv3+ and more than ten times smaller than U-Net. The 

large configuration required 4.38M parameters, striking a balance between compactness and 

representational capacity, while the transformer-enhanced variant used 3.80M parameters, 

falling between the small and large designs. Despite their drastically reduced size, the Mobile 

U-Net models delivered competitive segmentation accuracy which closely matched or 

exceeded state-of-the-art architectures in several datasets especially the large version of Mobile 

U-Net. 

5.1.2 Performance Comparison with Previous Researchers 

Table 5.5 Segmentation Performance Comparison with Previous Researchers 

Model Dataset  mIoU Number of 

Parameters 

(106) 

Source 

U-Net & Attention & 

Edge Refinement 

BioHit 0.9930 7.90 L. Yao et al. 

[10] 

TongueSAM BioHit / 

PaddlePaddle 

0. 9862/  

0.9785 

641.09 S. Cao, Q. 

Wu, and L. 

Ma [13] 

DeepLabV3+(Mobilenet) & 

CBAM & PointRend 

BioHit 0.9624 5.87 Y. Tang et al. 

[14] 

Mobile U-Net - Small BioHit / 

PaddlePaddle 

0.9614 /  

0.9321 

2.54 This study 

Mobile U-Net - Large BioHit / 

PaddlePaddle 

0.9740 /  

0.9644 

4.38 This study 

Mobile U-Net - 

Transformer 

BioHit / 

PaddlePaddle 

0.9522 /  

0.9390 

3.80 This study 

Table 5.5 presents a comparison of segmentation performance in mIoU and model complexity 

between the proposed Mobile U-Net variants and prior research. The results highlight the trade-

offs between segmentation accuracy and model efficiency, as well as the contributions of this 

study in advancing lightweight tongue segmentation models. 

The highest mIoU was reported by U-Net with Attention and Edge Refinement on the BioHit 

dataset (0.9930) as presented by Yao et al. [10]. However, the number of parameters was not 

reported, and the use of multiple refinements suggests a considerably higher model complexity 
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than standard U-Net. Similarly, TongueSAM achieved very high accuracy (0.9862 on BioHit 

and 0.9785 on PaddlePaddle) but required 641.09M parameters, making it computationally 

prohibitive for practical clinical or mobile deployment. Other prior work, such as 

DeepLabv3+(MobileNet) combined with CBAM and PointRend, demonstrated strong 

performance on BioHit (0.9624 mIoU) with a parameter count of 5.87M [14], striking a 

reasonable balance between accuracy and efficiency. 

In comparison, the Mobile U-Net variants developed in this study achieved competitive 

accuracy while requiring significantly fewer parameters. Specifically, Mobile U-Net Large 

obtained 0.9740 mIoU on BioHit and 0.9644 on PaddlePaddle with only 4.38M parameters, 

closely approaching TongueSAM’s accuracy on PaddlePaddle while being more than 146 

times smaller in parameter count. The Mobile U-Net Small and Transformer-enhanced variants 

also produced respectable results (0.9614/0.9321 and 0.9522/0.9390, respectively), further 

demonstrating that efficient architectures can deliver strong performance under controlled and 

uncontrolled imaging conditions. 

These findings indicate that while state-of-the-art models such as TongueSAM or attention-

refined U-Nets achieve slightly higher accuracy, the Mobile U-Net family offers a far superior 

balance between performance and computational cost. This efficiency makes the proposed 

models particularly suitable for deployment in real-world clinical applications where hardware 

resources may be limited, such as mobile health platforms and point-of-care diagnostic 

systems. 

5.1.3 Qualitative Evaluation 

To further assess the performance of the segmentation models, a qualitative comparison was 

conducted using selected test images inspired by the challenge as mentioned in [9] and the 

results are shown in Figure 5.1, 5.2 and 5.3. The selected images represent various challenging 

tongue conditions and are split across 3 datasets, including: 

(a) Tongue in irregular poses 

(b) Tongue that are not fully protruded 

(c) Tongue with imprints from teeth along the edges 

(d) Tongue with visible gaps in the mouth 

(e) Tongue exhibiting abnormal colour 

(f) Tongue where teeth are visible 



CHAPTER 5 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR                                              
55 

 

(g) Tongues closely surrounded by the lips 

(h) Tongue with abnormal texture 

 

Figure 5.1 Comparison of Segmentation Results in BioHit dataset 

 

Figure 5.2 Comparison of Segmentation Results in Roboflow dataset 

 

Figure 5.3 Comparison of Segmentation Results in PaddlePaddle dataset 

For the BioHit and Roboflow datasets which were captured under stable lighting and 

standardized acquisition, most models achieve accurate tongue delineation. Architectures such 

as PSPNet and DeepLabv3+ consistently preserve smooth contours and avoid over-

segmentation into non-tongue regions. The Mobile U-Net (Large) shows comparable 

performance with boundaries that are visually indistinguishable from the ground truth in many 
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cases despite using far fewer parameters. In contrast, U-Net occasionally produces irregular 

borders or incomplete segmentations especially around the tongue tip and lateral edges, 

therefore suggesting weaker robustness to subtle variations in texture. 

In PaddlePaddle dataset, more complex challenges are presented as the lighting conditions are 

uncontrolled. This includes lips closely encircling the tongue and the presence of abnormal 

tongue textures such as black coatings. U-Net generally performs more prone to false positives 

in other scenarios but however performs comparatively well by effective segmenting abnormal 

tongue texture image. Its ability to preserve texture information allows it to highlight coated 

region better than other models. SegNet and PSPNet struggle in delineating the tongue 

boundary due to the red shirt of the patient which has a similar colour to the tongue. The Mobile 

U-Net with Transformer shows improved attention to global tongue shape but sometimes 

sacrifices fine-grained edge sharpness compared to the large variant. 

Across all datasets, the qualitative findings align well with the quantitative results reported 

earlier. DeepLabv3+ provides the most consistent segmentation quality, while Mobile U-Net 

(Large) achieves a favorable balance between accuracy and efficiency. Notably, Mobile U-Net 

(Small) demonstrates its potential for lightweight deployment as it remains visually 

competitive although its boundaries appear slightly less smooth. 

5.2 Binary Classification Experimental Results 

5.2.1 Quantitative Evaluation 

Table 5.6 Binary Classification Experiment Results  

Model Number of 

Parameter 

(106) 

Accuracy (%) Precision Recall F1-Score 

ResNet18 11.18 97.01 0.9701 0.9701 0.9701 

ResNet20 0.28 89.05 0.8946 0.8903 0.8902 

ResNet50 23.85 99.00 0.9903 0.9900 0.9900 

VGG19 20.09 96.52 0.9652 0.9652 0.9652 

AlexNet 16.86 95.52 0.9557 0.9551 0.9552 

EfficientNetV2-B0 6.08 96.52 0.9652 0.9651 0.9652 

EfficientNetV2-S 20.50 97.51 0.9751 0.9751 0.9751 
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LECA-EfficientNetV2-

B0 

1.72 98.51 0.9856 0.9850 0.9851 

LECA-EfficientNetV2-S 5.97 99.00 0.9900 0.9900 0.9900 

Efficient-ResNet 0.31 98.51 0.9856 0.9850 0.9851 

 

Table 5.6 shows the experiment results of the binary classification task. Among the 

conventional backbones, ResNet50 achieved the highest performance by reaching an accuracy 

of 99.00% with precision, recall, and F1-score values of 0.99. This confirms its strong feature 

extraction capability but comes at the cost of a relatively high parameter count (23.85M). 

ResNet18 and VGG19 also produced strong results (97.01% and 96.52% accuracy, 

respectively), though their efficiency-to-accuracy trade-off is less favourable compared to 

newer architectures. AlexNet despite being historically significant, showed lower accuracy 

(95.52%) and demonstrates limitations in handling complex tongue image features due to its 

shallower design. 

The EfficientNet family displayed strong balance between accuracy and model size. 

EfficientNetV2-B0 achieved 96.52% accuracy with only 6.08M parameters, while 

EfficientNetV2-S reached 97.51% with 20.50M parameters, which the results are comparable 

with the deeper ResNet variants. The introduction of LECA (Lightweight Efficient Channel 

Attention) further enhanced performance. LECA-EfficientNetV2-B0 improved to 98.51% 

accuracy with just 1.72M parameters, while LECA-EfficientNetV2-S matched ResNet50’s 

99.00% accuracy but with only uses 25% of the parameters compared to ResNet50 (5.97M vs. 

23.85M). These results demonstrate the effectiveness of channel attention in improving 

discriminative power without substantially increasing complexity. 

The Efficient-ResNet also proved highly competitive, achieving 98.51% accuracy with only 

0.31M parameters, making it the most parameter-efficient model in this experiment. This 

suggests that combining residual learning with efficient scaling strategies provides a promising 

direction for lightweight tongue image classification, especially for mobile or resource-

constrained clinical applications. 

In overall, the results highlight three key findings. First, deeper conventional CNNs such as 

ResNet50 remain strong performers but are computationally expensive. Second, EfficientNet-

based models offer superior efficiency-accuracy trade-offs, particularly when enhanced with 
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LECA. Third, hybrid lightweight models (Efficient-ResNet, LECA-EfficientNetV2-B0) 

achieve near state-of-the-art accuracy with minimal parameter counts, making them well-suited 

for deployment in real-time or embedded diagnostic systems. 

 

 
 

Figure 5.4 Normalized Confusion Matrix for Each Model 

 

 

Figure 5.4 shows the normalized confusion matrix for each model. The normalized confusion 

matrix provides additional insight into the classification behaviour of each model in terms of 

false positive and false negative tendencies.  

Among classical networks, VGG19 maintained solid performance, with 96% and 97% correct 

predictions for non-stained and stained tongues respectively. On the other hand, AlexNet  

showed weaker performance particularly for stained tongues, where the accuracy dropped to 

94%, with 6% misclassified. This reflects the limitations of early CNN designs in capturing 

subtle tongue coating features compared to deeper or more efficient networks. 

ResNet18 demonstrated a balanced outcome, with both non-stained and stained classes 

achieving a high recognition rate of 97%, and only 3% misclassification for each class. This 

indicates that the network was able to generalize well without strong bias toward either 

category. In contrast, ResNet20 exhibited clear limitations, particularly in classifying stained 

samples. While non-stained tongues were correctly identified 95% of the time, the accuracy 

for stained tongues dropped to 77%, with 23% being misclassified as non-stained. This 

imbalance suggests that ResNet20 struggled to capture the distinctive features of stained 

tongues, potentially due to its relatively shallow depth compared to other models. In addition, 
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ResNet50 outperformed its smaller counterparts, achieving nearly perfect recognition with 

100% accuracy for non-stained tongues and 98% for stained tongues. 

The EfficientNet family, including the standard EfficientNetV2 models, the LECA-enhanced 

variants and the hybrid Efficient-ResNet, consistently demonstrated strong performance in the 

tongue classification task. The baseline EfficientNetV2-B0 achieved 97% accuracy for non-

stained and 96% for stained tongues which offer balanced and reliable classification. Building 

on this, EfficientNetV2-S improved stained tongue recognition to 98% while maintaining 97% 

accuracy for non-stained samples. These findings emphasize the strength of the EfficientNet 

scaling strategy which achieves efficient yet powerful feature extraction. 

The LECA-enhanced EfficientNetV2 models further advanced performance by incorporating 

local enhancement modules. LECA-EfficientNetV2-B0 matched the strongest ResNet and 

hybrid networks, achieving 100% accuracy for non-stained tongues and 97% for stained 

tongues. Most notably, LECA-EfficientNetV2-S achieved the highest accuracy overall, with 

99% recognition for both classes and only 1% misclassification. This demonstrates that local 

enhancement strategies significantly strengthen the network’s capacity to capture subtle 

coating variations, providing superior robustness and generalization. 

The hybrid Efficient-ResNet also produced highly competitive results, achieving perfect 

recognition of non-stained tongues (100%) and 97% accuracy for stained samples. Its 

performance was comparable to ResNet50, suggesting that the integration of EfficientNet 

scaling with ResNet residual connections enhances both accuracy and generalization. 

In overall, grouping the models highlights clear trends. Classical architectures like VGG19 

provided stable but slightly lower results compared to modern designs. In contrast, deeper and 

more advanced models particularly ResNet50 and the EfficientNet family, consistently 

achieved high accuracy with minimal misclassification. The LECA-EfficientNetV2-S stood 

out as the best overall performer, demonstrating near-perfect classification across both classes. 

These findings underscore the importance of network depth, architectural refinements, and 

feature enhancement modules in achieving reliable tongue diagnosis, with modern 

EfficientNet-based designs offering the greatest potential for clinical applications. 
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5.2.2 Performance Comparison with Previous Researchers 

Table 5.7 Performance Comparison with Previous Researchers in Binary Classification 

Model Number of 

Parameter (106) 

Accuracy (%) Recall (%) F1-Score (%) 

ResNet50 [4] 25.64 92.00 91.00 92.00 

ResNet18 [12] 11.70 95.50 91.20 94.90 

ResNet50 [12] 25.64 95.00 92.30 94.40 

VGG19 [12] 144.00 92.50 94.50 92.00 

AlexNet [12] 62.38 95.50 93.40 95.00 

Efficient-ResNet 0.31 98.51 98.56 98.50 

The results in Table 5.7 demonstrate that the proposed Efficient-ResNet model significantly 

outperforms previous state-of-the-art architectures in binary classification tasks. While 

traditional deep learning models such as ResNet50 [4], ResNet18 [12], and VGG19 [12] 

achieved strong performance with accuracies ranging from 92.00% to 95.50%, their parameter 

sizes remain relatively large, ranging between 11.70M and 144.00M. Similarly, AlexNet [12] 

achieved an accuracy of 95.50% with 62.38M parameters. In contrast, the Efficient-ResNet 

achieves the highest accuracy of 98.51%, recall of 98.56%, and F1-score of 98.50% with only 

0.31M parameters. This highlights a substantial improvement in both predictive performance 

and computational efficiency. The reduction in model complexity without compromising 

accuracy demonstrates the advantage of integrating efficiency-oriented architectural design, 

making Efficient-ResNet highly suitable for resource-constrained environments and real-time 

clinical applications. 

5.2.3 Visualization and Benchmark 

To investigate the specific visual features emphasized by each CNN model during the tongue 

classification task, a total of 4 tongue images (2 stained and 2 non-stained coating samples) 

were randomly selected. The Grad-CAM visualizations for these samples reveal notable 
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differences in the attention distribution across models. Figure 5.5 shows the stained tongue 

coating samples generated by each CNN model. 

 

Figure 5.5 Stained Tongue Coatings 

ResNet18 produces broad and diffuse activations that span most of the tongue surface, often 

extending into non-relevant areas. While this indicates sensitivity to overall colour and texture 

variations, the lack of precise localization reduces its interpretability. ResNet20, despite its 

lightweight design, shows even weaker and noisier activations, with scattered attention maps 

that fail to consistently highlight stained regions. This suggests that while the smaller 

architecture reduces computational cost, it compromises the model’s ability to capture 

discriminative pathological features. ResNet50 exhibits more concentrated activations within 

central tongue regions, therefore effectively reducing background interference compared to 

ResNet18, although it occasionally neglects diagnostically relevant peripheral coating areas. 

VGG19 demonstrates sharply localized hotspots, suggesting strong attention to specific coating 

regions. However, this narrow focus may fail to capture the broader spatial patterns necessary 

for accurate classification. AlexNet displays widespread activations with prominent hotspots 

in the central and upper tongue regions, capturing general shape and texture differences but 

with less selective targeting as it often includes large non-critical areas. 

The EfficientNetV2-B0 model achieves a balanced activation pattern by attending to multiple 

coating areas without excessive background interference, indicating that it effectively 

integrates local detail with broader context, though occasional edge activations persist. 

EfficientNetV2-S improves upon this by producing more precise and smaller hotspots while 

still preserving adequate contextual coverage, offering a strong compromise between 

localization accuracy and completeness.  

The LECA-modified models exhibit higher selectivity. LECA-EfficientNetV2-B0 concentrates 

attention on small and well-defined patches, potentially enhancing fine-grained texture analysis 
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but risking the omission of diffuse coating regions. LECA-EfficientNetV2-S maintains this 

selectivity while distributing activations more coherently across the tongue, resulting in better 

coverage than its B0 counterpart. This combination of sharpness and coherence demonstrates 

the interpretability advantage of LECA integration, particularly when analyzing clinically 

subtle coating patterns. 

The Efficient-ResNet hybrid shows moderate activations that capture the coated regions more 

reliably than classical CNNs, but its attention tends to be broader and less sharply defined 

compared to EfficientNetV2, indicating a trade-off between efficiency and localization 

precision. 

Overall, these findings demonstrate that the LECA-enhanced models not only achieve 

parameter efficiency but also offer superior interpretability in the context of tongue coating 

recognition. Their ability to specifically highlight pathological coatings rather than broadly 

activating across the tongue surface, thus aligns with clinical expectations and strengthens their 

potential applicability in real-world diagnostic settings. 

 

Figure 5.6 Non-Stained Tongue Coatings 

For non-stained tongues, the Grad-CAM visualizations show clear differences in how each 

model allocates attention when no pathological coating is present. ResNet18 again produces 

broad activations and often extending beyond the tongue surface into irrelevant background 

areas. This overgeneralization suggests that the model relies on overall shape and edge cues 

rather than subtle texture absence which reducing its interpretability in negative cases. Besides 

that, ResNet20 generates activations that cover almost the entire tongue surface, indicating a 

tendency to capture global shape and textural patterns rather than selectively attending to 

diagnostically important coating areas. ResNet50 also exhibits considerable attention outside 

the tongue region, suggesting suboptimal localization and possible reliance on peripheral 

artifacts instead of true diagnostic areas. VGG19 shows more confined activation within the 
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tongue boundary, but the hotspots are narrowly concentrated in small regions, potentially 

missing distributed non-stained patterns. 

AlexNet generates sparse activations with inconsistent focus, occasionally highlighting 

irrelevant peripheral zones. EfficientNetV2-B0 also demonstrates poor localization with its 

most intense activations extending outside the tongue surface and along image borders, thus 

reducing its interpretability. Besides that, EfficientNetV2-S performs similarly poorly in this 

context with strong activations largely outside the tongue region. 

The LECA-modified EfficientNetV2 models achieve the most precise localization. LECA-

EfficientNetV2-B0 produces small, well-defined activations primarily within the tongue 

boundary, and LECA-EfficientNetV2-S maintains coherent attention across the tongue body 

with minimal background influence. 

On the other hand, Efficient-ResNet consistently demonstrates activations that extend beyond 

the tongue into background areas. This suggests reduced robustness, as the model may depend 

on external image artefacts rather than medically relevant tongue features, limiting its 

interpretability in non-stained cases as well. 

Table 5.8 Visualization Benchmark for Binary Classification 

Model Pointing Game 

ResNet18 0.4579 

ResNet20 0.9801 

ResNet50 0.5670 

VGG19 0.8756 

AlexNet 0.5771 

EfficientNetV2-B0 0.6318 

EfficientNetV2-S 0.5821 

LECA-EfficientNetV2-B0 0.7662 

LECA-EfficientNetV2-S 0.7622 

Efficient-ResNet 0.6135 

The pointing game results provide a quantitative measure of the alignment between Grad-CAM 

activations and clinically relevant tongue regions. Interestingly, ResNet20 achieves the highest 

score (0.9801), far surpassing both shallow and deeper ResNet variants. This suggests that 

although the qualitative Grad-CAM inspection revealed diffuse activation across the entire 
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tongue, the model consistently covers the ground-truth annotated region, leading to a strong 

pointing game score. However, this highlights a limitation of the metric: high coverage does 

not necessarily imply precise or selective localization but rather that the relevant region is 

encompassed within the broad activations. 

VGG19 also performs strongly (0.8756), which aligns with its sharply localized Grad-CAM 

hotspots that tend to fall within stained or diagnostically relevant regions. AlexNet (0.5771) 

and ResNet50 (0.5670) show more modest scores, reflecting their tendency to generate broader 

or less focused activations that do not consistently overlap with annotated areas. 

EfficientNetV2 models achieve moderate scores, with EfficientNetV2-B0 (0.6318) 

outperforming EfficientNetV2-S (0.5821) despite the latter showing better quantitative 

classification performance. This indicates that while EfficientNetV2-S is more accurate for 

classification, its attention maps are less well aligned with annotated regions, pointing to a 

potential trade-off between predictive accuracy and interpretability. 

The LECA-modified models improve alignment, with LECA-EfficientNetV2-B0 and LECA-

EfficientNetV2-S achieving 0.7662 and 0.7622, respectively. The improved scores correspond 

with qualitative observations that these models exhibit more selective and coherent activations 

across relevant tongue coating regions, demonstrating that lightweight channel attention 

enhances interpretability without sacrificing performance. 

Efficient-ResNet achieves a moderate pointing game score (0.6135). While this indicates some 

ability to capture relevant regions, its Grad-CAM results frequently highlight background 

areas, which reduces interpretability despite the high classification accuracy observed earlier. 

Overall, these results reveal that pointing game scores can complement but also contrast with 

qualitative interpretations. Models like ResNet20 achieve very high pointing game accuracy 

due to their extensive coverage of the tongue region, even though their interpretability is 

reduced by diffuse activations. In contrast, models such as VGG19 and LECA variants strike 

a better balance between precise localization and consistent region coverage, offering stronger 

evidence of clinically meaningful attention behavior. 
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5.2.4 Discussion 

The binary classification experiments reveal important insights into the trade-offs between 

accuracy, efficiency, and interpretability across the tested architectures. ResNet50 and LECA-

EfficientNetV2-S achieve the highest classification accuracy (99.00%), with consistently 

strong precision, recall, and F1-scores. These results demonstrate that deeper networks and 

models enhanced with lightweight channel attention can capture highly discriminative features 

for tongue coating classification. In comparison, ResNet18, AlexNet, and VGG19 deliver 

slightly lower accuracies (95–97%), reflecting the limitations of shallower or older 

architectures in modeling complex texture variations. ResNet20, despite its small parameter 

size, performs notably worse (89.05%), highlighting that excessive downsizing compromises 

feature extraction capacity and generalization. 

Model efficiency also plays a significant role in practical applicability. Efficient-ResNet 

achieves high performance (98.51% accuracy) with only 0.31M parameters, while LECA-

EfficientNetV2-B0 offers 98.51% accuracy at 1.72M parameters. These results indicate that 

lightweight models can approach the accuracy of larger architectures while remaining 

computationally efficient, making them well suited for mobile or resource-constrained 

diagnostic applications. By contrast, conventional models such as ResNet50 (23.85M 

parameters) or VGG19 (20.09M parameters) incur high computational costs, limiting their 

deployment in real-world point-of-care settings. 

The visualization analysis through Grad-CAM highlights differences in model interpretability. 

ResNet18 and ResNet20 exhibit diffuse activations that spread across the entire tongue surface, 

capturing global shape and texture but failing to consistently isolate diagnostically relevant 

regions. ResNet50 and EfficientNetV2 variants provide more localized focus on coating 

regions, improving interpretability while maintaining classification accuracy. The LECA-

modified EfficientNetV2 models further enhance attention selectivity, generating coherent and 

clinically meaningful activations across the tongue surface. However, Efficient-ResNet, 

despite its excellent efficiency, shows attention leakage into background regions, which raises 

concerns about robustness and reliance on artefactual cues. 

The pointing game results (Table 5.8) complement these findings by quantitatively evaluating 

localization. ResNet20 achieves the highest score (0.9801), indicating that its broad coverage 

consistently overlaps with annotated regions, even though its qualitative interpretability 
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remains limited. VGG19 also performs strongly (0.8756), reflecting its sharply localized 

hotspots within relevant regions. LECA-modified models outperform their baseline 

counterparts, confirming that lightweight attention improves the alignment of activations with 

clinically significant areas. Meanwhile, Efficient-ResNet and EfficientNetV2 variants achieve 

moderate scores (0.58–0.63), reflecting their tendency to balance classification accuracy with 

only partial localization fidelity. 

Overall, the binary classification experiments demonstrate that while deeper or attention-

enhanced models achieve the best performance, lightweight architectures can offer competitive 

accuracy with far fewer parameters, making them suitable for mobile diagnostic tools. At the 

same time, the visualization analysis underscores that interpretability does not always correlate 

directly with predictive performance, as models like ResNet20 achieve excellent pointing game 

accuracy despite poor classification results. This highlights the need to consider both 

quantitative and qualitative metrics when selecting models for clinically oriented applications. 

5.3 Multi-Class Classification Experimental Results 

5.3.1 Quantitative Evaluation 

Table 5.9 Multi-Class Classification Experiment Results 

Model Number of 

Parameter 

(106) 

Accuracy 

(%) 

Precision Recall F1-Score 

ResNet18 11.19 57.50% 0.7241 0.6253 0.5855 

Resnet20 0.32 60.83% 0.6500 0.5155 0.5627 

ResNet50 23.85 77.50% 0.8741 0.6431 0.7126 

VGG19 20.09 76.67% 0.8587 0.6904 0.7528 

AlexNet 16.86 65.83% 0.6196 0.6310 0.6147 

EfficientNetV2-B0 6.08 83.33% 0.8317 0.7868 0.7990 

EfficientNetV2-B3 13.13 85.00% 0.8889 0.7806 0.8127 

EfficientNetV2-S 20.50 80.83% 0.8406 0.7957 0.8157 

LECA-

EfficientNetV2-B0 

1.72 75.83% 0.7748 0.6622 0.7048 

LECA-

EfficientNetV2-B3 

3.51 75.83% 0.7678 0.7264 0.7441 
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LECA-

EfficientNetV2-S 

5.97 79.17% 0.8035 0.7555 0.7738 

Efficient-ResNet - 

Small 

0.30 73.33% 0.7800 0.6841 0.7219 

Efficient-ResNet - 

Medium 

0.83 76.67% 0.7433 0.7775 0.7522 

Efficient-ResNet - 

Large 

1.16 79.17% 0.7594 0.7736 0.7658 

The multi-class classification experiment reveals a clear performance gradient across different 

architectures, reflecting the trade-offs between model complexity, parameter count, and 

generalization ability. Among the classical convolutional backbones, ResNet18 and ResNet20 

achieved relatively modest performance, with accuracies of 57.50% and 60.83% respectively. 

Despite ResNet20 being significantly smaller in size (0.32M parameters), its recall dropped to 

0.5155, suggesting that while the lightweight design reduces computation, it also struggles to 

capture the diverse feature variations across multiple tongue categories. ResNet50 improved 

substantially, achieving 77.50% accuracy and a balanced F1-score of 0.7126 but its 23.85M 

parameters make it computationally expensive. Similarly, VGG19 reached 76.67% accuracy 

with a stronger F1-score of 0.7528 but its heavy parameter load (20.09M) limits efficiency. 

AlexNet despite having a moderate parameter size (16.86M), achieved only 65.83% accuracy, 

which reflects the limitations of early CNN architectures in capturing complex tongue features.  

By contrast, the EfficientNetV2 family consistently outperformed the traditional baselines. 

EfficientNetV2-B0 and B3 achieved accuracies of 83.33% and 85.00%, with high F1-scores of 

0.7990 and 0.8127 respectively, while requiring far fewer parameters than VGG19 or 

ResNet50. EfficientNetV2-S also demonstrated competitive performance (80.83%, F1-score 

0.8157), showing that compound scaling effectively balances depth, width, and resolution for 

multi-class classification. 

The LECA-modified EfficientNet variants displayed competitive but slightly reduced 

performance compared to their vanilla counterparts. LECA-EfficientNetV2-B0, B3, and S 

achieved accuracies between 75–79%, with F1-scores ranging from 0.7048 to 0.7738. 

Although their performance was lower than the standard EfficeintNetV2, their significantly 
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reduced parameter sizes (1.72M–5.97M) highlight the benefit of lightweight adaptation, 

especially for deployment scenarios requiring efficiency. 

The Efficient-ResNet models further confirmed the effectiveness of lightweight architectures. 

The small variant (0.30M parameters) achieved 73.33% accuracy with an F1-score of 0.7219, 

while the medium and large versions scaled performance to 76.67% and 79.17%, respectively. 

Notably, even the Efficient-ResNet-Large (1.16M parameters) outperformed ResNet18, 

ResNet20, and AlexNet by a large margin, despite being substantially smaller. This 

underscores the advantage of hybrid design principles that integrate EfficientNet’s scaling with 

ResNet’s residual learning. 

Overall, the results suggest that EfficientNetV2-B3 provides the best trade-off between 

accuracy and reliability, achieving the highest classification performance (85.00%, F1 = 

0.8127). However, the Efficient-ResNet demonstrates strong potential as compact alternatives 

which delivers competitive performance with dramatically fewer parameters. This indicates 

that lightweight models may be more suitable for real-world clinical applications where 

computational resources are limited, while larger EfficientNetV2 variants remain advantageous 

in research settings prioritizing accuracy. 

 

 

Figure 5.7 Normalized Confusion Matrix for Each Model 
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Figure 5.8 Normalized Confusion Matrix for Each Model 

 

 

Figure 5.9 Normalized Confusion Matrix for Each Model 

Figure 5.7 to Figure 5.9 show the normalized confusion matrix for each model. The traditional 

convolutional neural networks, comprising the ResNet family, VGG19, and AlexNet, 

demonstrated varied capabilities in handling the tongue coating classification task. Among the 

ResNet variants, ResNet18 achieved strong recognition in Mirror-Approximated (0.92) and 

Yellow-Greasy (0.75) but exhibited frequent misclassification in Thin-White and Grey-Black, 
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often confusing them with Mirror-Approximated. ResNet20 maintained moderate performance 

in White-Greasy (0.79) and Yellow-Greasy (0.62), though substantial confusion remained 

between Mirror-Approximated and Thin-White. The deeper ResNet50 improved stability 

across classes, performing particularly well in White-Greasy (0.91) and Thin-White (0.76), 

while still showing some overlap between visually similar categories. 

In contrast, AlexNet, despite being a shallower network, delivered strong recognition of Grey-

Black (0.83) and White-Greasy (0.82). However, its performance in Mirror-Approximated was 

limited with predictions heavily distributed across other categories. VGG19 performed reliably 

in White-Greasy (0.89) and Thin-White (0.68) but struggled with Mirror-Approximated (0.58), 

where frequent confusion with Thin-White suggested challenges in separating reflective from 

light-colored coating textures. Collectively, these traditional CNNs highlighted the trade-off 

between network depth and classification consistency, with deeper models like ResNet50 and 

VGG19 offering more stable performance, while AlexNet showed notable limitations in feature 

discrimination. 

The EfficientNetV2 models consistently outperformed the traditional CNNs, showing higher 

accuracy across most coating categories. EfficientNetV2-B0 delivered strong recognition in 

Thin-White (0.87) and Yellow-Greasy (0.88), while EfficientNetV2-B3 further improved 

Thin-White classification (0.92), reflecting the advantages of compound scaling. 

EfficientNetV2-S maintained balanced accuracy across all classes, excelling in Grey-Black 

(0.83) compared to earlier networks. The LECA variants introduced slight shifts in 

performance. While LECA-EfficientNetV2-B0 maintained high performance in Thin-White 

(0.76), its Yellow-Greasy recognition dropped due to misclassifications. Conversely, LECA-

EfficientNetV2-S provided more balanced results, achieving higher performance in Mirror-

Approximated (0.75) and strong consistency across other categories. These results confirm the 

strength of EfficientNet architectures in capturing fine-grained coating variations, particularly 

for Thin-White and Yellow-Greasy. 

In the Efficient-ResNet family, Efficient-ResNet-Small achieved robust performance in White-

Greasy (0.86) and Grey-Black (0.67), though some confusion persisted between Thin-White 

and White-Greasy. Efficient-ResNet-Medium improved recognition for Mirror-Approximated 

(0.83) and Grey-Black (0.83), showing balanced performance across categories but slightly 

weaker accuracy in Thin-White (0.63). The Efficient-ResNet-Large produced the most 
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consistent results within this group, excelling in Yellow-Greasy (0.88) and White-Greasy 

(0.84), while maintaining good recognition across the other categories. Overall, the Efficient-

ResNet family provided a reliable balance between efficiency and accuracy, outperforming 

traditional CNNs in stability while showing slightly less fine-grained sensitivity compared to 

EfficientNetV2 models. 

5.3.2 Visualization and Benchmark 

 

Figure 5.10 Grad-CAM Heatmaps for Multi-Class Tongue Coatings 

From the full-class visualization as shown in Figure 5.10, it is evident that the models exhibit 

substantial variation in their focus regions. ResNet18 and ResNet20 frequently highlight 

peripheral or irrelevant areas, particularly in Thin-White and Grey-Black samples which 

reflecting unstable localization. In contrast, ResNet50 demonstrates stronger focus with 

heatmaps concentrated on the central coating textures, suggesting improved discriminative 

ability. On the other hand, AlexNet produces more diffuse activations which indicates weaker 

capability in isolating class-specific cues. 

The VGG19 model demonstrates more structured attention compared to the ResNet family. Its 

activations are especially well aligned with coating patterns in White-Greasy and Yellow-
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Greasy categories, where heatmaps highlight the defining surface textures. However, VGG19 

often extends its focus beyond the gloss features in Mirror-Approximated samples , this shows 

that VGG19 had limited robustness when handling reflective surfaces. The EfficientNetV2 

family (B0, B3, and S) performs consistently well, with compact and centralized activations 

across all classes. These models excel at capturing fine discriminative details such as the subtle 

surface patterns of Thin-White and Yellow-Greasy coatings. 

In contrast, the LECA-EfficientNetV2 variants display more distributed attention patterns, with 

heatmaps often covering broader regions of the tongue surface. This suggests an emphasis on 

contextual information, which improves coverage but sometimes reduces pinpoint localization. 

The effect is especially visible in Mirror-Approximated samples, where activations spread 

across the entire surface instead of isolating gloss regions. The Efficient-ResNet family (Small, 

Medium, and Large) shows intermediate behavior, balancing between the scattered focus of 

ResNets and the sharp localization of EfficientNets.  

 
Figure 5.11 Grad-CAM Visualization by Prediction 

 

 

Figure 5.11 shows Grad-CAM visualization by categorising the prediction of Thin-White 

tongue so that the comparison between correct and misclassified samples provides additional 

understanding of model behaviour. In correctly classified Thin-White samples, models such as 

ResNet50, EfficientNetV2-B0, focus strongly on the lighter central surface of the tongue. Their 

sharp and localized activations indicate reliable detection of Thin-White’s defining coating 
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features. Conversely, misclassified cases reveal systematic weaknesses. ResNet18, AlexNet, 

and LECA-EfficientNetV2-B3 frequently confuse Thin-White with Mirror-Approximated, as 

their attention shifts toward glossy edges rather than coating density. Similarly, VGG19 and 

LECA-EfficientNetV2-B0 sometimes misinterpret Thin-White as Yellow-Greasy, with 

activations extending into peripheral color variations instead of focusing on central whiteness. 

Medium-Efficient-ResNet also displays scattered activations, which contributes to frequent 

confusion with Mirror-Approximated. 

Table 5.10 Visualization Benchmark for Multi-Class Classification 

Model Pointing Game 

ResNet18 0.8273 

ResNet20 0.8000 

ResNet50 0.9455 

VGG19 0.9545 

AlexNet 0.8818 

EfficientNetV2-B0 0.9545 

EfficientNetV2-B3 0.9545 

EfficientNetV2-S 0.9727 

LECA-EfficientNetV2-B0 0.8364 

LECA-EfficientNetV2-B3 0.9000 

LECA-EfficientNetV2-S 0.9000 

Efficient-ResNet - Small 0.8091 

Efficient-ResNet - Medium 0.8273 

Efficient-ResNet - Large 0.7818 

Table 5.10 shows the visualization benchmark for multi-class classification. Among the 

ResNet family, ResNet50 achieved the highest pointing game score (0.9455), reflecting 

improved localization compared to ResNet18 (0.8273) and ResNet20 (0.8000). This suggests 

that deeper residual connections enhance the capacity to capture discriminative features 

relevant to tongue coatings. In contrast, shallower variants tended to spread activations across 

broader, less specific regions, limiting interpretability. 

VGG19 and EfficientNetV2 models demonstrated the strongest interpretability, with scores 

exceeding 0.95 in most cases. In particular, EfficientNetV2-S achieved the highest score 

(0.9727), indicating consistently precise localization of diagnostically relevant regions. This 
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highlights the benefit of compound scaling in EfficientNet, which balances depth, width, and 

resolution to improve both performance and explainability. 

The LECA-enhanced EfficientNetV2 variants produced competitive results, though their 

scores (0.8364–0.9000) were slightly lower than the EfficientNetV2 variants. This outcome 

suggests that while LECA modifications reduce parameter count and preserve predictive 

accuracy, they may trade off some localization precision in the visualization benchmark. 

The Efficient-ResNet family showed mixed results with pointing game scores ranging between 

0.7818 and 0.8273. Although efficient in parameter usage, these models did not achieve the 

same interpretability level as deeper conventional CNNs or EfficientNetV2 variants. Their 

moderate scores reflect a balance between efficiency and localization but indicate room for 

improvement in attention alignment with clinically relevant coating areas. 

In summary, the visualization metrics highlight a trade-off between precision and coverage. 

Models such as EfficientNetV2-B0 and EfficientNetV2-S excel in pinpoint accuracy, 

effectively localizing key coating regions, but may underrepresent peripheral yet clinically 

relevant features. Conversely, the LECA variants provide broader coverage at the expense of 

fine-grained precision. ResNet50 and VGG19 achieve a balanced performance, maintaining 

both strong localization and comprehensive region coverage. These findings suggest that model 

selection should be guided by the intended clinical application, particularly whether exact 

localization of a focal feature or more expansive coverage of the coating region is prioritized. 

5.3.3 Multi-Class Classification with Segmentation Preprocessing 

Table 5.11 Experiment Results of Multi-Class Classification with Segmentation  

Segment Classification Accuracy Precision Recall F1-Score 

Mobile U-

Net - Small 

ResNet50 72.50 0.8760 0.5999 0.6802 

EfficientNetV2-

B0 

79.17 0.7983 0.7571 0.7750 

LECA-

EfficientNetV2-

B0 

70.83 0.7093 0.6173 0.6449 
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LECA-

EfficientNetV2-S 

76.67 0.7757 0.6905 0.7234 

Efficient-ResNet 

- Small 

61.67 0.7177 0.5271 0.5880 

Efficient-ResNet 

- Medium 

67.50 0.6913 0.6706 0.6771 

Efficient-ResNet 

- Large 

60.00 0.5220 0.5315 0.5223 

Mobile U-

Net with 

Transformer 

ResNet50 73.33 0.8856 0.5821 0.6582 

EfficientNetV2-

B0 

78.33 0.7757 0.7683 0.7703 

LECA-

EfficientNetV2-

B0 

73.33 0.7872 0.6675 0.6934 

LECA-

EfficientNetV2-S 

75.83 0.7602 0.7019 0.7234 

Efficient-ResNet 

- Small 

66.67 0.6989 0.6146 0.6496 

Efficient-ResNet 

- Medium 

70.00 0.6481 0.7211 0.6714 

Efficient-ResNet 

- Large 

64.17 0.6337 0.6164 0.6052 

The results in Table 5.11 show distinct trends when combining segmentation models with 

different classifiers. Under the Mobile U-Net – Small configuration, EfficientNetV2-B0 

achieved the highest overall accuracy (79.17%) and the most balanced performance across all 

metrics, with an F1-score of 0.7750. Although ResNet50 delivers the highest precision 

(0.8760), the model suffered from low recall (0.5999) and resulting in a lower F1-score of 

0.6802. The LECA variants under this segmentation backbone showed moderate results; 
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LECA-EfficientNetV2-S performed better (accuracy 76.67%, F1-score 0.7234) than LECA-

EfficientNetV2-B0 (accuracy 70.83%, F1-score 0.6449). In contrast, the Efficient-ResNet 

family demonstrated varying effectiveness. The medium variant achieved a fair balance with 

an F1-score of 0.6771, outperforming both the small and large variants, which showed lower 

accuracies (61.67% and 60.00%) and weaker F1-scores (0.5880 and 0.5223). 

When using Mobile U-Net with Transformer, performance patterns were largely consistent. 

EfficientNetV2-B0 again produced strong and balanced results, with 78.33% accuracy and an 

F1-score of 0.7703, slightly lower than the U-Net–Small case but still stable. ResNet50 once 

more achieved the highest precision (0.8856) but was limited by low recall (0.5821), giving an 

F1-score of 0.6582. LECA-EfficientNetV2 models maintained moderate performance; LECA-

EfficientNetV2-S achieved 75.83% accuracy and an F1-score of 0.7234, matching its 

performance under U-Net–Small, while LECA-EfficientNetV2-B0 scored slightly lower at 

73.33% accuracy and 0.6934 F1. The Efficient-ResNet family again displayed similar trends, 

where the medium variant outperformed the small and large versions. The medium variant 

achieved 70.00% accuracy with an F1-score of 0.6714, compared to the small (66.67% 

accuracy, 0.6496 F1) and large variants (64.17% accuracy, 0.6052 F1). 

In overall, the analysis indicates that EfficientNetV2-B0 consistently delivered the best balance 

of accuracy, precision, recall, and F1-score across both segmentation backbones. ResNet50 

showed recall limitations although excelling in precision and the Efficient-ResNet family 

demonstrated more reliable performance in the medium variant compared to its small and large 

counterparts. 

5.3.4 Discussion 

The multi-class classification experiments highlight important trade-offs between model 

accuracy, efficiency, and interpretability. EfficientNetV2-B3 achieved the highest accuracy 

(85.00%) with strong precision and F1-score, which demonstrates its effectiveness in handling 

fine-grained tongue coating categories. EfficientNetV2-B0 and EfficientNetV2-S also 

delivered robust results (83.33% and 80.83% accuracy), confirming the scalability of this 

family of models. Traditional CNNs such as ResNet50 (77.50%) and VGG19 (76.67%) 

performed competitively but required substantially more parameters, while AlexNet and 

shallow ResNets (ResNet18 and ResNet20) underperformed, reflecting their limited ability to 

capture complex coating variations. 
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Model efficiency was also an important factor. The proposed Efficient-ResNet family offered 

competitive accuracies (73–79%) with extremely low parameter counts (0.30–1.16M), 

significantly reducing computational overhead compared to larger models. Notably, Efficient-

ResNet-Large achieved 79.17% accuracy with only 1.16M parameters, outperforming LECA-

EfficientNetV2-B0 (75.83% at 1.72M parameters). This demonstrates that Efficient-ResNet 

can deliver superior accuracy at a smaller computational footprint, making it a strong candidate 

for mobile or resource-constrained applications. However, compared to EfficientNetV2-B3, 

these lightweight variants showed a modest drop in performance, suggesting that efficiency 

gains still come at the cost of representational depth. 

The visualization analysis provided additional insights into interpretability. VGG19 and 

EfficientNetV2-S achieved the highest pointing game scores (0.9545 and 0.9727), reflecting 

their ability to attend to diagnostically relevant coating regions. In contrast, Efficient-ResNet 

models obtained lower scores between 0.7818 to 0.8273, suggesting weaker spatial focus 

despite their strong efficiency profile. These findings indicate that while Efficient-ResNet is 

competitive in predictive accuracy, further refinement of its attention mechanisms may be 

required to improve clinical interpretability. 

In addition, segmentation-assisted experiments revealed mixed outcomes. When paired with 

Mobile U-Net or Mobile U-Net with Transformer, EfficientNetV2-B0 consistently maintained 

high accuracy (79.17% and 78.33%), while Efficient-ResNet models experienced notable 

performance degradation particularly in the large variant. This suggests that EfficientNetV2 is 

more robust to pre-processed segmentation inputs, whereas Efficient-ResNet may be more 

sensitive to variations in input feature quality. 

Overall, the multi-class classification results demonstrate that EfficientNetV2 models remain 

the strongest choice for accurate and interpretable tongue coating categorization. At the same 

time, Efficient-ResNet provides a lightweight alternative with favorable efficiency–accuracy 

trade-offs, and importantly, shows superiority over LECA-based models at similar parameter 

sizes. These findings highlight the potential of Efficient-ResNet as a practical model for 

deployment in real-world diagnostic workflows. 
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5.4 Project Challenges 

During the implementation of the deep learning-based tongue classification model, several 

challenges and limitations arise due to the constraints of using the free-tier Google Colab 

environment. The primary issues were out-of-memory (OOM) errors and limited computing 

resources. The available hardware consisted of 12.7 GB of system memory and 15.0 GB of 

GPU memory, which posed a significant limitation when training memory-intensive deep 

architectures such as the VGG19 model. The architecture requires substantial memory when 

increasing the batch size to accelerate convergence and improve generalization. To avoid OOM 

errors, the batch size had to be restricted to 16-32, which not only prolonged training time but 

also introduced potential instability in model performance due to smaller gradient estimates. 

In addition, the free-tier Google Colab service imposes session timeouts and daily GPU usage 

limits. The T4 GPU allocation was limited to approximately 4 hours per day. Although a 

checkpointing mechanism was implemented in this study to allow resumption of interrupted 

sessions, the restricted runtime still limit the ability to perform extensive hyperparameter tuning 

experiments, thereby constraining the exploration of optimal model configurations. 

Finally, a technical limitation was encountered when applying the Heatmap Assisted Accuracy 

Score (HAAS) for model’s visualization evaluation. According to [12], the tongue coating 

images should be normalized to the range of [-1,1] before computing HAAS values for the 

Class Activation Map (CAM) algorithms on the test dataset. However, because of the generated 

heatmaps often contained substantial blue regions, the normalization process caused these areas 

to appear greyish when overlaid onto the original images. This colour distortion reduced the 

visibility of important coating features such as subtle colour and texture variations, which in 

turn misled the model’s feature recognition and introduced a bias toward coating categories 

with less distinct boundaries such as thin-white and white-greasy. Figure 5.12 shows the 

example of Heatmap-Assisted Image for model prediction. 
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Figure 5.12 Example of Heatmap-Assisted Image 

5.5 Objective Evaluation 

The main objective of this study was to develop and evaluate deep learning-based framework 

for tongue image analysis to assist Traditional and Complementary Medicine diagnosis and 

improve diagnostic accuracy. This was accomplished through the achievement of four sub-

objectives as evaluated below. 

First, a Mobile U-Net architecture was developed to perform tongue image segmentation. By 

combining U-Net’s spatial localization strength with MobileNet’s lightweight and efficient 

feature extraction, the model achieved fast and accurate segmentation of tongue regions. This 

step ensured that subsequent classification was performed on well-isolated tongue areas, 

reducing the influence of irrelevant background features. 

Second, development of binary and multi-class classification models for tongue coatings. Deep 

learning models were successfully developed for both binary classification (distinguishing 

stained from non-stained tongue coatings) and multi-class classification (categorizing 

pathological tongue coatings into specific types). The implemented architectures included 

ResNet18, ResNet50, VGG19, AlexNet, EfficientNetV2 variants, LECA-based 

EfficientNetV2 variants as well as Efficient-ResNet family. Results showed that 

EfficientNetV2-B3 and EfficientNetV2-S achieved the strongest overall accuracy in multi-

class classification, while Efficient-ResNet demonstrated competitive recognition with far 

fewer parameters. 

Third, lightweight architectures were designed to balance diagnostic accuracy with 

computational efficiency. Unlike the traditional architectures, Efficient-ResNet achieved 
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strong classification accuracy while requiring less than 1M parameters in binary classification 

task, thus making it significantly smaller than ResNet50 (23.85M) and VGG19 (20.09M). The 

medium Efficient-ResNet variant in particular demonstrated a favorable trade-off, maintaining 

robust accuracy across multiple coating types while remaining computationally efficient. These 

results show that Efficient-ResNet provides a scalable, lightweight solution well-suited for 

clinical applications where resource efficiency is critical. 

Finally, incorporating explainable AI for interpretability and trust. Explainable AI methods 

were integrated into the workflow specifically Grad-CAM for visual saliency mapping. These 

methods provided insight into the regions of the tongue images most influential in model 

decision making. Grad-CAM visualizations revealed that Efficient-ResNet produced coherent 

activation patterns that often emphasized broader tongue regions, although occasionally 

extending to background areas. While Efficient-ResNet did not achieve the highest Pointing 

Game score compared to larger models such as EfficientNetV2-S or VGG19, it demonstrated 

competitive localization ability considering its compact size. These results suggest that 

Efficient-ResNet can provide interpretable outputs while maintaining efficiency, making it 

more suitable for resource-constrained clinical settings. 

In summary, all four sub-objectives were successfully achieved. This study delivered 

segmentation and classification models for tongue coatings, introducing the Efficient-ResNet 

family as a lightweight yet accurate architecture and demonstrated the importance of 

explainable AI for clinical transparency. By combining accuracy, efficiency, and 

interpretability, the proposed framework provides a practical and trustworthy tool to support 

diagnostic decision-making in Traditional and Complementary Medicine.  
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Chapter 6 

Conclusion and Recommendations 

 

6.1 Conclusion 

Tongue diagnosis plays a crucial role in Traditional and Complementary Medicine, offering 

valuable insights into a patient’s health status through visual inspection of tongue 

characteristics. However, the process remains subjective and highly dependent on practitioner 

experience, thus leading to inconsistencies and potential diagnostic inaccuracies. This 

subjectivity is further compound the challenges of limited annotated tongue datasets which 

hinder the development of robust and generalizable automated diagnostic systems. Motivated 

by the need to standardize and enhance the reliability of tongue diagnosis, this study aims to 

develop efficient and interpretable deep learning models capable of accurately classifying 

tongue coating conditions. 

To address these challenges, deep learning-based classification models were developed for 

both binary and multi-class tongue coating classification tasks. In the binary task, the models 

distinguished between stained and non-stained tongue coatings while in the multi-class task, 

the models categorized pathological coatings into specific types. To overcome the limitations 

of small datasets and computational constraints, lightweight architectures such as Efficient-

ResNet were introduced and achieved a balance between high classification accuracy and 

reduced computational complexity. Furthermore, explainable AI techniques including Grad-

CAM was incorporated to provide visual interpretability, thereby enhancing transparency and 

the potential for integration into clinical decision support systems. 

Experimental results demonstrated that the proposed Efficient-ResNet architecture achieved 

superior performance compared to baseline models by offering a better balance between 

accuracy and efficiency. While LECA-EfficientNetV2-S showed strong results, Efficient-

ResNet consistently delivered robust outcomes across multiple evaluation metrics, making it a 

more reliable candidate for practical deployment. These findings contribute to the development 

of reliable, interpretable and efficient AI tools for TCM tongue diagnosis that pave the way for 

standardize objective and accessible diagnostic practices in both clinical and telemedicine 

settings. 
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6.2 Future Work 

One of the key directions for future work is the expansion of the dataset to improve model 

robustness and generalization. The current study was conducted using a limited number of 

annotated tongue images captured under relatively controlled conditions. To address this, 

future studies could focus on collecting a larger and more diverse dataset by including images 

from individuals of different ages, ethnicities and health conditions. Collaborating with UTAR 

Hospital would be a valuable approach to achieve this as it would provide access to a broader 

patient base and allow data collection under varying clinical settings. This increased diversity 

would help the models adapt better to real-world scenarios where environmental factors and 

patient variability are inevitable. 

Besides that, another promising direction is the integration of multi-modal data to enhance 

diagnostic performance. While this research focused solely on tongue image analysis, 

incorporating additional patient information such as pulse diagnosis, medical history and 

laboratory test results could allow for a more holistic approach to TCM diagnosis. Multi-modal 

deep learning architecture s could be explored to combine visual and non-visual features, thus 

potentially leading to more accurate and clinically relevant predictions. 

Furthermore, the development of  real-time mobile or web applications could bring the models 

closer to clinical practice and public use. By leveraging the lightweight architecture developed 

in this study, the models could be deployed on resource-constrained devices such as 

smartphones or embedded systems. This would enable practitioners and patients to perform 

quick and standardized tongue assessments remotely. Collaborating with UTAR Hospital 

during the application development stage would also allow for user acceptance testing and 

feedback collection in a real clinical environment, therefore ensuring the solution meets 

practical needs. 
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