

Virtual Try-on Platform

By

Yeaw Wooi Tong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

ii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ms Tong

Dong Ling who has given me this bright opportunity to engage in virtual try on project.

It is my first step to establish a career in VTO field. A million thanks to you.

Finally, I must say thanks to my parents and my family for their love, support, and

continuous encouragement throughout the course.

iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Yeaw Wooi Tong. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Computer Science (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal

represents the work of the author, except where due acknowledgment has

been made in the text. No part of this Final Year Project proposal may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Example

iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

The project focuses on developing a comprehensive Virtual Try-On (VTO) application

that integrates Deep learning (DL) technologies. The aim is to provide users with an

immersive experience to visualize and customize their full-body look, including

clothing, makeup. This solution addresses the limitations of existing virtual try-on

systems, which are often constrained to specific categories and reliant on in-store

systems. The proposed VTO app is designed to offer a complete styling experience,

allowing users to experiment with their entire look within one platform. The use of DL

enhances effectiveness and realism of the Virtual Try-On (VTO) system. The app also

tackles challenges related to hygiene and time consumption by eliminating the need for

physical try-ons in stores, making it a timely solution in the post-pandemic digital

shopping era. The project employs Android as the development platform to ensure

accessibility across a wide range of devices, particularly in emerging markets. By

leveraging advanced technologies, the app promises a more convenient, and engaging

shopping and styling experience.

Area of Study (Minimum 1 and Maximum 2): Deep Learning

Keywords (Minimum 5 and Maximum 10): Mobile Application, Deep Learning,

Virtual Try-On System, Segmentation, AI-Driven Image Synthesis

v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

ACKNOWLEDGEMENTS ii

COPYRIGHT STATEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES Xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Objectives 3

1.3 Project Scope and Direction 3

1.4 Contributions 3

1.5 Report Organization

5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Existing VTO Application

2.1.1 YouCam Makeup App

2.1.2 Smart Mirrors in Retail

2.1.3 Closet Organization Apps (Pureple, Cladwell,

Closet+)

2.1.4 Style.me: AR-Based Virtual Fashion Try-On

6

6

8

10

12

2.2 Previous work on VTO

2.2.1 VITON: An Image-based Virtual Try-on Network

2.2.2 SieveNet: A Unified Framework for Robust Image-

Based Virtual Try-On

13

13

15

2.3 Summary of Strengths and Limitations of Existing VTO

Solutions

20

2.4 Proposed Solution 21

vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 System Methodology/Approach 23

3.1 System Methodology 23

3.2 System Design Diagram 26

3.2.1 System Architecture Diagram

 3.2.2 Use Case Diagram

 3.2.3 Activity Diagram

 3.2.4 AI Model Workflow and Performance

26

27

29

30

3.3 Timeline 33

 3.3.1 FYP1 33

 3.3.2 FYP2 34

CHAPTER 4 System Design 35

 4.1 System Block Diagram 35

4.2 Module Design 37

4.3 Database Design and Firebase Schema 39

 4.3.1 Firestore Data Structure Overview 39

 4.3.2 Firebase Storage Data Structure Overview 40

 4.3.3 Firestore Path and Field Design 41

4.4 Model Selection and Architecture 47

 4.4.1 GroundingDINO + SAM2 (Segmentation Pipeline)

 4.4.2 KolorVTO (Virtual Try-On Model)

 4.4.3 Banuba SDK (Makeup Try-On Module)

 4.4.4 Google Gemini (AI Categorization Model)

47

47

47

48

CHAPTER 5 System Implementation 49

 5.1 Hardware Setup 49

 5.2 Software Setup 50

 5.3 Settings and Configuration 53

 5.4 System operation 58

 5.4.1 User Authentication System 58

 5.4.2Wardrobe Management and Clothing Segmentation 61

 5.4.3 Try-On Image Generation with KolorVTO 63

 5.4.4 Makeup Try-On 66

 5.4.5 Outfit Management 69

vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 5.4.6 Event Screen 71

 5.4.7 Profile Screen 73

 5.5 Implementation Issues and Challenges 74

CHAPTER 6 System Evaluation and Discussion 76

 6.1 System Testing and Performance Metrics 76

 6.1.1 Black-Box Testing 76

 6.2 Testing Setup and Result 77

 6.2.1 Testing Setup

77

 6.2.2 Testing Results 78

 6.3 Objective Evaluation 79

CHAPTER 7 Conclusion and Recommendation 81

 7.1 Conclusion 81

 7.2 Recommendation 82

REFERENCES 83

APPENDIX A

A.1 Code Sample A-1

A.2 Poster A-19

viii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 YouCam Interface 7

Figure 2.2 AI Fashion 7

Figure 2.3 AI Tools 8

Figure 2.4 Smart Mirrors 9

Figure 2.5 Pureple 10

Figure 2.6 Cladwell 11

Figure 2.7 Closet+ 11

Figure 2.8 Style.me 12

Figure 2.9 two-stage pipeline comprising 14

Figure 2.10 side-by-side comparisons 15

Figure 2.11 Inference Pipeline of the SieveNet framework 16

Figure 2.12 Coarse-to-Fine Warping Module 17

Figure 2.13 Conditional Segmentation Mask Prediction module 17

Figure 2.14 Segmentation-Assisted Texture Translation module 18

Figure 2.15 Quantitative comparison of Proposed vs CP-VTON.

GMM, TOM

18

Figure 2.16 Side-by-side comparison images 19

Figure 3.1 Agile Methodology 23

Figure 3.2 System Architecture Diagram 26

Figure 3.3 Use Case Diagram 27

Figure 3.4 Activity Diagram 29

Figure 3.5 Workflow of SAM2 31

Figure 3.6 Workflow of KolorVTO 32

Figure 3.7 FYP1 Timeline 33

Figure 3.8 FYP2 Timeline 34

Figure 4.1 System Block Diagram

35

ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2 Firebase Storage 40

Figure 4.3 User collection 41

Figure 4.4 Wardrobe collection 42

Figure 4.5 Outfit collection 43

Figure 4.6 Makeup collection 45

Figure 4.7 Event collection 46

Figure 5.1 Android Studio setup 50

Figure 5.2 Integration of Firebase 51

Figure 5.3 Integration of Banuba SDK 51

Figure 5.4 Anaconda environment (env1) for Grounded Sam2 52

Figure 5.5 Gemini AI categorization backend (.venv) with

Firebase

53

Figure 5.6 Gradle dependencies for Firebase and Banuba SDK. 54

Figure 5.7 Firebase Authentication 54

Figure 5.8 Firestore 55

Figure 5.9 Firebase Storage 55

Figure 5.10 Dependency installation in Anaconda env1 56

Figure 5.11 Gemini backend environment configuration 56

Figure 5.12 Configuration of KolorVTO API 57

Figure 5.13 Banuba SDK configuration 57

Figure 5.14 Ngrok configuration with the generated forwarding

URL

58

Figure 5.15 Login Screen 59

Figure 5.16 Registration Screen 59

Figure 5.17 Onboarding Redirection Screen 60

Figure 5.18 Main Screen 60

Figure 5.19 Add Clothes 62

Figure 5.20 Clothes to be segment 62

Figure 5.21 Confirm segmented clothes 62

Figure 5.22 Clothing item 62

Figure 5.23 Segmented clothing item displayed in the wardrobe 63

Figure 5.24 Try on page 64

x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.25 clothing try on page 64

Figure 5.26 Choose a clothes 64

Figure 5.27 Try on screen 64

Figure 5.28 Try on result 65

Figure 5.29 Combine mode 65

Figure 5.30 Try on result 65

Figure 5.31 Saving result 65

Figure 5.32 Successfully save 66

Figure 5.33 Selection 67

Figure 5.34 Select outfit 67

Figure 5.35 Before makeup 67

Figure 5.36 After makeup 67

Figure 5.37 Before makeup 68

Figure 5.38 After makeup 68

Figure 5.39 Saving Look 68

Figure 5.40 Outfit page 69

Figure 5.41 Outfit detail 69

Figure 5.42 Outfit information 70

Figure 5.43 Makeup Storage Page 70

Figure 5.44 Look detail 70

Figure 5.45 Event Page 72

Figure 5.46 Event page 72

Figure 5.47 Create event 72

Figure 5.48 Event Detail 72

Figure 5.49 Notifications 73

Figure 5.50 Profile page 74

Figure 5.51 Edit Profile 75

xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.1 Summary of Strengths and Limitations 20

Table 4.1 Data sturcture 40

Table 4.2 User collection 41

Table 4.3 Wardrobe collection 42

Table 4.4 Outfit collection 43

Table 4.5 Makeup collection 44

Table 4.6 Event collection 45

Table 5.1 Specifications of laptop 49

Table 5.2 Specifications of mobile device 49

Table 6.1 Testing Results 79

xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

VTO Virtual Try-On

SDM

AI

DL

Supervised Descent Method

Artificial Intelligence

Deep Learning

SAM 2 Segment Anything 2

AR Augmented Reality

TPS thin-plate spline

CHAPTER 1

1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Introduction

The rapid advancements in digital technology have significantly transformed

industries, including the fashion sector. Traditionally, personal styling and fashion

decisions required physical interactions, such as trying on clothes, applying makeup,

and selecting accessories. These activities, typically done in physical stores, involved

consumers trying on multiple outfits to find the right combination for events or social

gatherings. This process of repeatedly changing and adjusting outfits to achieve the

desired look is time-consuming and often exhausting. Virtual try-on (VTO) systems,

which allow users to visualize clothing and accessories on their bodies before making

a purchase, have become an integral part of the fashion industry's digital evolution [1].

In response to the COVID-19 pandemic, the retail landscape, especially in non-

essential sectors like fashion, witnessed significant changes as consumers shifted from

in-store shopping to online platforms. With the pandemic exacerbating hygiene

concerns, VTO systems have gained even more importance, providing a safer,

contactless shopping experience [2]. The growing demand for online shopping has

made VTO systems crucial for consumers who seek convenience and flexibility in their

shopping experience.

This project seeks to address these inefficiencies by developing a Virtual Try-

On Application that offers full-body customization. The app allows users to virtually

simulate their entire look, including clothes, makeup before stepping out or attending

an event. Unlike existing applications, which tend to focus on specific aspects of styling

(such as makeup or clothing), this app integrates several styling elements, offering users

a complete and immersive customization experience. Moreover, the application

enhances the online shopping experience by providing a realistic preview of how

products will look on the user’s body. This feature reduces the need for physical try-

ons, lowering the likelihood of returns. Additionally, some current virtual try-on

systems are only available in physical stores, limiting their convenience and

accessibility. The Virtual Try-On App solves this issue by allowing users to style

themselves from anywhere, providing engaging experience. According to Kavin et al.

CHAPTER 1

2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(2024), such applications, using tools like OpenCV and Unity3D, reduce the need for

physical try-ons, making the shopping process more efficient and user-friendly.

The project will implement Deep learning technologies, enable users to

visualize their selected products in real-time. By generating accurate simulations, users

can confidently make styling decisions without physically interacting with the items,

thus creating a seamless, efficient, and convenient shopping and styling experience.

The ability to interact with virtual garments enhances the shopping experience by

making it more immersive and realistic [4].

1.1 Problem Statement and Motivation

The current landscape of virtual fashion and styling tools often lacks an all-

encompassing solution that allows users to fully visualize and customize their

appearance. Most digital fashion tools are either limited to specific categories, such as

makeup or clothing, or confined to physical store systems that require users to be on-

site. This creates a fragmented and inconvenient experience for consumers who want

to coordinate their entire look for an event or occasion.

Additionally, physically trying on clothes and makeup in stores is not only time-

consuming but also a source of fatigue for many consumers. The repetitive process of

changing outfits to find the perfect combination often leads to dissatisfaction with the

shopping experience. The COVID-19 pandemic has further exacerbated this issue, with

growing concerns about hygiene when using shared fitting rooms or makeup testers in

stores. As Ghodhbani et al. (2022) suggest, the pandemic has increased consumer

demand for contact-free shopping solutions, further highlighting the need for virtual

try-on systems that offer a comprehensive and user-friendly experience.

The Virtual Try-On App aims to solve these problems by offering a single

platform where users can visualize their entire look in one go. By using Deep learning,

the app provides accurate simulations of products, allowing users to make informed

decisions about their styling choices without the need for physical interactions. This not

only enhances convenience but also addresses consumer concerns about hygiene and

time efficiency.

The motivation for developing the Virtual Try-On App stems from the desire to

improve both the user experience in personal styling and the online shopping process.

Traditionally, achieving the perfect look for events or daily wear requires significant

CHAPTER 1

3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

time spent trying on multiple outfits. This is often a frustrating and exhausting process,

particularly when consumers are uncertain about how the different elements of their

look will come together. The Virtual Try-On App seeks to eliminate this issue by

allowing users to experiment with their entire look virtually, reducing the time and

effort involved in achieving their desired appearance.

In the digital age, consumers are increasingly turning to online shopping for

convenience, but the inability to physically try on items remains a significant barrier.

This project aims to bridge the gap between the physical and virtual shopping

experience by providing users with a reliable and realistic simulation of how clothes,

makeup will fit and look on them. The use of advanced technologies, such as Deep

learning, further enhances the user experience by offering accurate visualizations that

mimic real-world outcomes.

The app is also driven by the need to offer a more hygienic and time-efficient

alternative to traditional in-store experiences. By enabling users to virtually customize

their look from the comfort of their own home, the app eliminates the need for physical

try-ons, reducing potential health risks and saving time. This shift to a virtual solution

offers consumers a greater level of convenience, allowing them to style themselves

without the constraints of physical locations.

1.2 Project Objectives

1. To develop an Android-based Virtual Try-On (VTO) application:

The core objective of this project is to build a mobile app that functions on the

Android platform, making use of the operating system's flexibility and broad user

base. By targeting Android, the app will be accessible to a wide range of devices,

from high-end smartphones to budget-friendly options, thus increasing its reach.

2. To integrate Deep learning technologies :

The app leverages deep learning models for clothing segmentation and try-on image

generation. These technologies enhance the user experience by accurately

combining clothing items with user photos and enabling real-time virtual try-ons.

CHAPTER 1

4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. To enable full-body customization:

The app will allow users to try on clothing, makeup in real time, offering a full-

body customization experience. This will enable users to visualize their entire look

in one seamless experience, eliminating the need for physical try-ons in stores.

1.3 Project Scope and Direction

The scope of this project is to develop an Android-based Virtual Try-On (VTO)

application that integrates Deep Learning (DL) technologies to provide users with an

seamless virtual styling experience. The app will allow users to virtually try on clothing,

makeup. A key feature of the project is its focus on full-body customization, enabling

users to visualize a cohesive look by trying on multiple fashion items within a single

platform. The app is designed as a mobile application, ensuring users can conveniently

use the app from anywhere and at any time, making it a flexible solution for modern

lifestyles. By optimizing the app for a broad range of Android devices, the project

ensures wide accessibility across various smartphones, catering to a diverse audience.

The final product will be a fully functional, scalable, and versatile VTO app that

delivers an accessible and accurate virtual styling solution to meet modern consumer

needs.

1.4 Contributions

The Virtual Try-On App introduces several important contributions that have

the potential to transform the way users interact with fashion and personal styling. One

of the most significant contributions of the app is its ability to offer a complete and

cohesive full-body customization experience. Unlike existing apps that focus on

individual aspects of styling, such as makeup or clothing, this app brings together all

the necessary elements such as clothing and makeup into one integrated platform. Users

can experiment with their entire look within a single app, allowing for a smoother and

more enjoyable styling process.

Another major contribution of the app is the use of deeo learning technologies

to deliver a realistic user experience. By leveraging DL, the app enables users to

CHAPTER 1

5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

visualize their chosen products in real time. The incorporation of deep learning allows

the app to refine these simulations ensuring a more accurate and customized experience.

Additionally, the app offers a convenient, store-free experience that

significantly enhances the online shopping process. Users no longer need to visit

physical stores to try on items or rely on store-based virtual try-on systems. Instead, the

app allows them to experiment with their look anytime and anywhere, making the

process of personal styling more accessible and flexible. The app’s ability to provide

realistic visual try-on previews, reduces the chances of purchasing clothes that do not

suit them, ultimately lowering return rates and improving overall user satisfaction. As

noted by Ghodhbani et al. (2022), such advancements can significantly improve the

user experience by reducing the need for physical store visits and minimizing the

likelihood of returns due to poor fit.

1.5 Report Organization

This report is structured into several chapters to comprehensively present the

development of the Virtual Try-On (VTO) mobile application. Chapter 1 introduces

the project by outlining the background, motivation, objectives, scope, and

contributions. Chapter 2 provides a literature review of existing VTO applications and

related research, highlighting their strengths, weaknesses, and the research gaps this

project aims to address. Chapter 3 details the proposed methodology, including system

design specifications, architecture, tools and technologies, AI model workflows, and

performance requirements. Chapter 4 presents the system design, covering

authentication, wardrobe management, clothing segmentation, and try-on image

generation. Chapter 5 discusses system implementation, including hardware and

software setup, module integration, and operational workflows. Chapter 6 focuses on

system testing and evaluation, outlining the testing strategies, setup, and results.

Finally, Chapter 7 concludes the report by summarizing the project’s outcomes and

proposing future directions for enhancement.

CHAPTER 2

6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Literature Reviews

2.1 Existing VTO Application

The rapid development of deep learning technologies has revolutionized the

fashion and beauty industries. Virtual Try-On (VTO) systems allow users to visualize

clothing, makeup, in a virtual environment, offering a more interactive and engaging

shopping experience. However, existing VTO solutions have limitations in terms of

usability, accessibility, and completeness, which often hinder their adoption and

effectiveness.

2.1.1 YouCam Makeup App

The YouCam Makeup app, developed by Perfect Corp., is a leading example of

beauty tech that leverages AR and machine learning to provide users with a

comprehensive virtual try-on experience for makeup. Launched with the aim of

enhancing the digital beauty shopping experience, YouCam allows users to apply

virtual makeup, analyze their skin, and receive personalized product recommendations

based on their unique features. The app combines elements of social commerce with

beauty tech, making it not only a VTO platform but also a tool for AI-powered skincare

analysis, livestream tutorials, and personalized beauty consultations.

A standout feature of the app is its ability to map over 200 facial landmarks

using patented AgileFace technology, which allows for the precise application of virtual

makeup and real-time facial retouching. The skin analysis tool evaluates factors such

as wrinkles, dark circles, and moisture levels, generating a "skin age" score for users,

which can prompt purchases from partnering beauty brands to "improve" the user's skin.

This personalization and integration with beauty brands have led to increased

engagement and higher conversion rates during the pandemic, with brand partners’

conversion rates increasing by up to two and a half times[5].

CHAPTER 2

7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1 YouCam Interface

Figure 2.2 AI Fashion

CHAPTER 2

8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.3 AI Tools

Limitations

YouCam Makeup delivers a solid virtual makeup experience through AR and AI, yet

its capability is focused on beauty aspects such as makeup application, skin analysis,

and facial retouching. It has no feature for clothing try-on or fashion styling. Hence,

users looking for a complete styling experience including clothes must rely on other

apps. The lack of clothing integration renders it less convenient for full-body virtual

try-on or fashion coordination.

2.1.2 Smart Mirrors in Retail

The integration of smart mirrors in retail stores has brought a transformative

change to the shopping experience. Smart mirrors, equipped with augmented reality

(AR) and artificial intelligence (AI), allow customers to virtually try on outfits without

physically changing clothes. As Daiani (2024) explains, smart mirrors offer users

contextually relevant environments, such as a beach or wedding setting, enabling them

to visualize how an outfit would look in a particular situation. The use of these

CHAPTER 2

9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

contextual features enhances both customer satisfaction and decision-making, as users

can better assess the suitability of their attire for specific events.

Smart mirrors have also been shown to improve customer engagement by

offering interactive features such as gesture recognition, voice commands, and

personalized recommendations based on previous shopping behavior [6]. These

technologies create a more immersive and convenient shopping experience, enabling

users to make informed purchase decisions without the need to physically try on

multiple outfits. For instance, interactive lighting controls allow customers to visualize

how an outfit looks in different lighting environments, such as outdoor or indoor

settings, enhancing the realism of the virtual try-on experience.

Figure 2.4 Smart Mirrors

Limitations

Smart mirrors provide interactive in-store experiences by enabling users to try clothes

virtually with AR and contextual environments. However, they are meant for physical

stores and thus not accessible to users shopping online or at home. In addition, they

usually come with expensive hardware and upkeep, limiting them to high-end stores.

Most smart mirrors also lack makeup try-on capability, so they are unable to offer an

end-to-end styling experience that includes both fashion and beauty.

CHAPTER 2

10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.3 Closet Organization Apps (Pureple, Cladwell, Closet+)

Closet organization apps such as Pureple, Cladwell, and Closet+ provide users

with the ability to digitally catalog and manage their clothing, helping them better

visualize, plan, and organize outfits [7]. While these apps serve as virtual wardrobe

managers, they focus exclusively on clothing.

• Pureple: Offers features like cataloging clothes, planning outfits, and a

community-driven outfit suggestion system, but focuses solely on clothing. It

suffers from an ineffective outfit suggestion algorithm, frequent advertisements,

and a poor user interface.

Figure 2.5 Pureple

• Cladwell: Provides weather-appropriate outfit suggestions and allows users to

track their wardrobe utilization. However, it only focuses on clothing

management and do not offer try-on capabilities.

CHAPTER 2

11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.6 Cladwell

• Closet+: A simpler app focused on organizing clothes, creating outfits, and

planning what to wear for future events. It requires manual uploads of clothing

photos and do not offer try-on capabilities.

Figure 2.7 Closet+

CHAPTER 2

12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Limitations

These apps are largely virtual closet organizers. While they help users manage,

plan, and sort through their outfits, they don't include virtual try-on simulation. The

users cannot view dynamic pictures of themselves wearing the clothes; all they get is

static pictures of the clothing, with no capability to view the clothing on them. Further,

they also do not permit makeup styling and facial beauty, and most don't include AI-

based outfit suggestions. This restricts their use to simple wardrobe management

instead of an active, interactive fashion experience.

2.1.4 Style.me: AR-Based Virtual Fashion Try-On

Style.me is an advanced virtual try-on platform that integrates AR and AI to provide

users with an immersive experience in trying on clothing items virtually. The app

allows users to visualize clothing on realistic 3D avatars generated based on their body

measurements. Style.me uses deep learning algorithms and computer vision to enhance

the precision of fit and garment simulation, ensuring that users can visualize how

clothes will fit and drape on their bodies. A standout feature of Style.me is its focus on

offering a comprehensive virtual shopping experience. Unlike other apps that focus

solely on a single product category, Style.me integrates various types of clothing,

including tops, bottoms, dresses, and outerwear. It offers retailers and brands the ability

to showcase their collections in virtual form, enhancing the online shopping experience

and increasing engagement[8].

Figure 2.8 Style.me

CHAPTER 2

13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Limitations

Style.me uses AI and 3D avatars to mimic clothing try-ons with a virtual

dressing room experience that feels real. It does this only for individual pieces of

clothing that are already in the app through partnerships with fashion brands, however.

Users can't upload their own images of clothing they'd like to try on, which limits

personalization. Style.me is solely for clothing, too, and doesn't allow makeup or

accessories, so it can't offer a complete head-to-toe styling option.

2.2 Previous work on VTO

2.2.1 VITON: An Image-based Virtual Try-on Network

Overview and Strength

VITON (Virtual Try-On Network) is the very first image-based virtual try-on

system that was designed to clothe an individual in a target photo with an outfit from a

product image without relying on 3D body modeling (Han et al., 2018). This was a

departure from the conventional approaches that relied on costly and complex 3D scans

or mesh reconstructions. VITON also utilizes a two-stage coarse-to-fine generation

pipeline. During the first phase, a coarse image of the person with the target clothing is

generated by an encoder-decoder network based on a clothing-agnostic representation

such as pose heatmaps, body shape masks, and facial areas in order to retain important

visual information. The second stage continues to enhance the output by warping the

garment through thin-plate spline (TPS) transformation and blending it with the image

using a learned alpha mask, which helps in enhancing texture alignment and visual

realism [9].

One of the most potent arguments for VITON is that it is easily available, as it

functions solely on 2D RGB data and does not need depth data or 3D input. The

clothing-agnostic design allows successful preservation of pose and identity, and

renders the try-on result more realistic in appearance. Two-stage architecture enhances

visual quality in general, especially in depicting folds of clothes, texture, and garment

arrangement. Its input requirement compatibility also makes it extremely scalable and

CHAPTER 2

14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

deployable to actual online e-commerce platforms. VITON also employs perceptual

loss and L1 loss to further improve convergence at training and image realism.

Trained on the Zalando dataset that is image-diverse and richly annotated,

VITON has the ability to generalize to a diverse range of garments and body types, a

feature that adds to its real-world usability. In spite of all its weaknesses, VITON set

the baseline blueprint for most later try-on networks (Han et al., 2018). To show the

VITON architecture, Figure 2.8 can be used to demonstrate the two-stage pipeline

comprising: (1) the coarse try-on image generation via a U-Net architecture from pose

and segmentation maps, and (2) the refinement module with TPS warping and alpha

composition. Figure 2.9 can show side-by-side comparisons of the original image,

warped garment, and VITON's synthesized output, showing both its effectiveness and

limitations [9].

Figure 2.9 two-stage pipeline comprising

CHAPTER 2

15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.10 side-by-side comparisons

Limitations

Despite its pioneering contributions, VITON has several notable limitations. Firstly, the

model generates low-resolution outputs restricted to 256×192 pixels, which limits its

applicability in high-resolution contexts such as digital advertising or fashion catalog

production. Additionally, although VITON includes a refinement stage, it often

struggles to maintain high fidelity in garment textures—details like logos, text, or

embroidery are sometimes lost or blurred, especially under challenging conditions like

occlusion or inconsistent lighting. The model also exhibits sensitivity to body poses and

occlusions; it performs poorly when body parts overlap (e.g., crossed arms) or when

poses deviate significantly from the norm, leading to unrealistic overlaps or distortions

in the synthesized image. Moreover, VITON is primarily tailored for upper-body

garments and lacks the generalizability needed to handle full-body outfits or accessories

without significant reengineering. Lastly, the TPS-based warping used in VITON,

though effective to a degree, lacks the adaptability of newer deep learning-based spatial

transformation techniques, which limits its performance on more complex or layered

clothing items.

2.2.2 SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On

SieveNet is a remarkable enhancement of image-based virtual try-on (VTO)

systems that seeks to enhance the limitations of garment misalignment, artifact

generation, and poor pose adaptation typical of earlier models like CP-VTON. It is

CHAPTER 2

16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

designed with three separate modules: the Coarse-to-Fine Warping module, the

Conditional Segmentation Mask Prediction module, and the Segmentation-Assisted

Texture Translation module. These are combined through the utilization of novel loss

functions, such as a perceptual geometric matching loss and a duelling triplet loss, in

order to enhance both the photorealism and alignment of the eventual synthesized

result.

The overall framework, illustrated in Figure 2.10, starts with a target garment

and model input image. This pair is fed into the Coarse-to-Fine Warping module, which

conducts a two-stage warping of the garment to match the model pose. The Conditional

Segmentation module then produces a garment-conditioned semantic map, which

guides the ultimate Segmentation-Assisted Texture Translation module to synthesize a

coherent, artifact-free composite image.

Figure 2.11 Inference Pipeline of the SieveNet framework

The Coarse-to-Fine Warping module applies Thin-Plate Spline (TPS)

transformation hierarchically. In step one, a coarse warp roughly aligns the garment

with the model's silhouette through a 19-channel person representation. In step two, a

perceptual geometric matching loss further aligns the result by matching deep feature

distances in a VGG feature space. This two-stage strategy is demonstrated to boost the

accuracy of warping significantly, depicted in Figure 2.11, alongside comparing coarse

and fine warping results [10].

CHAPTER 2

17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.12 Coarse-to-Fine Warping Module

Second, the Conditional Segmentation Mask Prediction module plays a

significant role in avoiding classic VTO pitfalls such as bleeding textures or incorrect

clothing placement under occlusion or complex poses. A UNet architecture is employed

to generate an "expected" segmentation mask to guide the final composition. Examples

of its effect, especially on challenging occluded instances, are demonstrated in Figure

2.12 [10].

Figure 2.13 Conditional Segmentation Mask Prediction module

The final Segmentation-Assisted Texture Translation module merges the

warped clothing and segmentation map to compose the ultimate try-on image. It blends

texture from unchanged areas of the original model image and creates the final

composition through a learned composition mask. Enhanced by a duelling triplet loss,

this module improves image realism by encouraging proximity to ground-truth images

and distance from previous-stage outputs. Figure 2.13 shows the heightened fidelity

and texture legibility afforded by this strategy [10].

CHAPTER 2

18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.14 Segmentation-Assisted Texture Translation module

Performance metrics reveal SieveNet's superiority over CP-VTON in structural

similarity (SSIM), multiscale SSIM, Frechet Inception Distance (FID), and Peak

Signal-to-Noise Ratio (PSNR). These are listed in Figure 2.13, which validates the

combined strength of every module within the architecture.Qualitatively speaking,

SieveNet is able to produce significantly more realistic outputs than CP-VTON [10].

Figure 2.15 Quantitative comparison of Proposed vs CP-VTON. GMM, TOM

The system demonstrates strong warping on diverse body poses and clothing types due

to the utilization of a two-stage transformation plan. The conditional segmentation

mask is especially effective at maintaining garment outlines and eliminating undesired

artifacts. In addition to this, duelling triplet loss encourages texture details and general

visual quality, even under occlusion. Side-by-side comparison images in Figure 2.14

CHAPTER 2

19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

illustrate these enhancements, where CP-VTON and SieveNet results are presented

comparatively.

Figure 2.16 Side-by-side comparison images

Overall, SieveNet is a high-quality standard of VTO research that combines

architectural novelty with specifically crafted loss functions, thereby yielding a flexible

and high-quality solution well-suited for practical fashion application.

Limitations

SieveNet faces several limitations in its current approach. One major challenge is its

limited occlusion handling, where it struggles with complex occlusions such as hair or

folded limbs. This results in artifacts and errors in the final try-on image, reducing

overall quality. Another limitation is its fixed input representation; SieveNet relies on

a fixed 19-channel person representation and handcrafted priors, which limits its

adaptability across datasets with different formats or image qualities, making it less

flexible in diverse scenarios. Additionally, SieveNet operates in a 2D framework

CHAPTER 2

20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

without 3D or depth awareness, which reduces its ability to represent garments

realistically, particularly for items that require contour adaptation, such as loose or

draping clothing. Without an understanding of spatial depth, SieveNet cannot provide

a fully realistic depiction of how clothes fit and move in three-dimensional space.

2.3 Summary of Strengths and Limitations of Existing VTO Solutions

Table 2.1 Summary of Strengths and Limitations

System/App Strengths Limitations

YouCam

Makeup

- Accurate virtual makeup with

AR- Facial landmark detection

(AgileFace)- Skin analysis and

beauty suggestions

- Only focuses on makeup and

skincare

- No clothing or full-body

styling features

Smart Mirrors - Real-time AR clothing try-on-

Context-aware environments

(e.g., lighting)- Gesture and voice

interaction

- Confined to physical retail

environments

- Expensive hardware and

maintenance- No makeup or

complete look styling

Pureple/

Cladwell/

Closet+

- Effective wardrobe

organization- Outfit planning and

suggestions- Weather-based

recommendations (Cladwell)

- No virtual try-on or image

simulation

- No makeup or face styling-

Mostly static and manual input

Style.me - High-quality 3D avatars for try-

on- Realistic fit and draping using

AI- Supports multiple clothing

types

- Only supports pre-loaded

clothing from brand partners

- No user-uploaded clothing

- No makeup or accessories

integration

CHAPTER 2

21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

VITON - Image-based VTO without 3D

data- Clothing-agnostic person

representation- Two-stage

refinement with TPS warping-

Scalable using 2D RGB data

- Low-resolution outputs

(256×192)

- Poor texture preservation

(logos, embroidery)

- Sensitive to occlusion and

body pose

- Focuses only on upper-body

garments

- TPS warping lacks deep

adaptability

SieveNet - Coarse-to-fine warping

improves alignment- Conditional

segmentation helps avoid

artifacts- Superior texture

translation with triplet loss

- Limited occlusion handling

(e.g., folded arms, hair)

- Uses fixed handcrafted priors

- No 3D/depth awareness

- Lacks adaptability to varied

datasets or image quality

2.4 Proposed Solution

The proposed comprehensive mobile-based solution addresses past virtual try-

on system limitations by introducing an adaptive platform which improves device

accessibility through personalization and increased reality levels.

The current VTO systems face two crucial limitations including low-resolution

output generation and poor texture retention in clothing appearance. This system

resolves such constraints through its implementation of state-of-the-art image synthesis

methods which create detailed high-resolution outputs. The algorithm maintains

detailed fabric components such as text together with embroidery details and patterns

despite changing lighting conditions or partial light exposures. The system employs

contemporary deep learning-based spatial transformations instead of using problematic

Thin Plate Spline (TPS) warping procedures because TPS functions poorly with

CHAPTER 2

22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

complex poses and layered clothing situations. The methodology provides optimal

alignment while retaining visual clarity when dealing with crossed body parts and

irregular poses thus lowering the appearance of distortions and artifacts.

The system improves its simulation ability by implementing pseudo-depth

understanding capabilities to duplicate 3D knowledge in a two-dimensional display.

Such an approach enables the model to better simulate garment draping over the body

specifically for loose-fitting garments and multi-layered outfits which results in

heightened reality during try-on sessions.

Users can now improve existing garment selection through the proposed

solution because it enables the uploading of personal clothing images. Users can

integrate their clothing into the virtual wardrobe through segmentation before adding

them to the try-on feature. The solution improves user personalization while enlarging

the selection of styles available through an app beyond its pre-defined fashion

collections.

The VTO mobile application proposal creates a single platform that merges

clothing and makeup features to overcome both the single-product focus and the

restricted full-body customization. Users benefit from whole-app integration which

creates a more convenient and enjoyable process to create their desired look. Users now

experience a consistent design flow because they can avoid application switching to

test various fashion and beauty products without requiring continuous interface

changes.A mobile application development of the VTO system removes users' need to

visit physical stores because it fulfills all their styling needs in one platform. Through

the application's interface users can test clothing items as well as apply cosmetics and

accessories regardless of their present location in a manner that reflects increasing

digital shopping trends. The new approach enhances user convenience since it enables

remote shopping and styling preferences which are gaining value following the

pandemic.

The proposed solution through its mobile platform delivers a comprehensive

user-focused approach for addressing existing VTO challenges by delivering enhanced

realism and universal compatibility in one convenient mobile platform.

CHAPTER 3

23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

System Methodology/Approach

3.1Methodology

The development of the Virtual Try-On (VTO) mobile application followed an

Agile software development methodology. Agile was selected because it supports

flexibility, incremental delivery, and iterative refinement of features, which is well

suited for combining mobile app development with AI-driven functionality. Through

short development cycles (sprints), each feature was designed, implemented, tested, and

reviewed before integration into the full system. This ensured that user requirements

were continuously addressed while allowing the system to evolve based on testing

feedback.

Figure 3.1 Agile Methodology

CHAPTER 3

24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

According to Figure 3.1, the planning phase is the first. During this stage, needs

analysis of the application Virtual Try-On was carried out to develop an efficient and

convenient system. The idea was to create an application giving the user the ability to

upload clothes and personal photos, categorize the clothing items, virtually try on

clothes, add makeup effects, and manage what is in the wardrobe. Functional

requirements were user authentication, wardrobe management, the usage of the

Grounded-SAM2 model to segment clothes, the use of the KolorVTO to generate

realistic try-on photos, the use of the Banuba to generate makeup try-on photos and to

store the data in Firebase. Non-functional requirements were centered on low-latency

response of the AI server, the ability to get a 85 or more image accuracy to ensure try-

on realism, and a clean responsive UI that was built in Jetpack Compose.

The second stage is the design phase, which incorporated the system

architecture that defines the interplay between the mobile application, AI backend and

Firebase cloud services. The architecture was composed of a frontend, which is an

Android application based on Jetpack Compose, a backend, which is an application

hosted on FastAPI to execute AI models (Grounded-SAM2 to segment an image and

KolorVTO to generate an image), and Firebase services to handle user authentication,

data, and media storage. SDK to live try-on was also provided in Banuba. This step also

included the creation of diagrams like use case diagrams, activity diagrams and system

architecture diagram to show the interaction between modules.

The development phase was aimed at the implementation of the modules that

were planned. The authentication was developed using Firebase Authentication where

users are free to register with email. The management of the wardrobe allowed users to

provide pictures of clothes that were forwarded to the backend to be segmented by the

Grounded-SAM2 model. The images were segmented and sent back to the app where

the user was expected to confirm before classification into Firebase. KolorVTO was

also built in to create try-on photos, which gave realistic previews. Banuba SDK was

used to allow real-time makeup trial using the camera or uploading a static image. Outfit

planning and event management functions were introduced to enable one to save the

outfit on a certain date. The modular development process was done so that every

individual component was tested to be integrated.

CHAPTER 3

25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The testing stage consisted in testing the back-end and front-end. In the case of

the backend, Grounded-SAM2 segmented the uploaded clothes and the results were

compared to determine the level of accuracy. The KolorVTO model has been tested by

creating results of try-on and comparing it with the expected behavior in terms of

realism. Regarding the frontend, UI/UX items like wardrobe navigation, outfit planner

and makeup panel were tested in black-box testing to ensure they acted accordingly.

Performance testing was also aimed at testing the response times under varying network

conditions as poor connectivity led to more time in processing and lower accuracy of

output in other cases.

Deployment stage entailed that the system was packaged into a working

prototype used in Android gadgets. AI backend was deployed using Fast API, and it

allowed real-time API requests to be made by the app and integrate Firebase services

to do the authentication, storage, and data synchronization. The Android devices were

launched with the mobile application and tested to make sure the application is

compatible with various Android hardware, both high-end and mid-range.

Lastly, the review process assessed the project results with respect to the initial

goals. The system managed to deliver clothing segmentation, realistic try-on

generation, wardrobe management, event planning and makeup try-on features

successfully. The system had strengths such as modular integration of various AI

models and scalability on a cloud basis.

CHAPTER 3

26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 System Design Diagram

3.2.1 System Architecture Diagram

Figure 3.2 System Architecture Diagram

The system architecture of the Virtual Try-On Mobile Application is designed

to integrate the mobile app, backend server, AI models, and Firebase cloud services

into a seamless workflow. The mobile application, built using Jetpack Compose, serves

as the user-facing interface and provides core features such as login and registration,

wardrobe management, virtual try-on, outfit page, event planner, and user profile. All

requests and user actions initiated from the mobile app are sent to the Backend Server

through an API layer.

The Backend Server acts as the central controller, receiving requests from the

mobile application and coordinating them with the AI models and Firebase services. It

manages three key AI models: Grounded SAM2, which performs clothing

segmentation to extract apparel from uploaded user images; KolorVTO, which

generates photorealistic try-on images by overlaying segmented clothes on the user’s

body; and Banuba SDK, which provides virtual makeup simulation including lipstick,

foundation, and eyeshadow effects. The outputs from these AI models are not directly

stored. Instead, they first pass through the AI Categorization Module, which

CHAPTER 3

27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

automatically labels and classifies results with metadata such as clothing type, color,

and style.

The AI Categorization Module ensures that both segmented images and try-on

results are properly organized before storage. Once categorized, the data is sent to

Firebase Storage for storing image files such as segmented clothes, generated try-on

previews, and makeup results, while Firebase Firestore stores structured metadata

including clothing categories, user wardrobe details, and event-linked outfit

information. Additionally, Firebase Authentication handles secure user login and

registration. Both Firestore and Storage communicate back to the mobile application,

allowing users to view their saved wardrobe items, outfits, and events within the app.

This architecture demonstrates a modular and layered design where the mobile

app handles user interaction, the backend server coordinates AI and cloud services, and

Firebase ensures secure authentication, scalable data storage, and retrieval. The

integration of AI Categorization as an intermediate layer adds intelligence to the system

by organizing and labeling outputs, which not only improves wardrobe management

but also provides a foundation for future recommendation and personalization features.

3.2.2 Use Case Diagram

Figure 3.3 Use Case Diagram

CHAPTER 3

28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The use case diagram of the Virtual Try-On mobile application illustrates the

main interactions between the customer and the system. The customer is the primary

actor who can access different features after authentication. Through Firebase

Authentication, the customer is able to sign in and sign out of the app securely. Once

logged in, the customer can manage their wardrobe by uploading clothing images,

which are first processed by the segmentaion system to segment and send to AI

categorization server classify the items before storing the images and metadata in

Firebase services. The customer can also browse and view their wardrobe items.

Another major functionality is the Virtual Try-On feature, where the customer can

select clothing items from the wardrobe and generate realistic try-on results using the

KolorVTO model. This feature also extends to makeup try-on through the Banuba SDK,

allowing the customer to visualize full-body styling, with the option to view saved or

recommended makeup looks. In addition, the system provides outfit and event planning

functions, where the customer can create events, assign outfits to them, and view

planned outfits for specific occasions. The customer can also view and edit their

personal profile, which includes details such as name, measurements, and style

preferences. Overall, the use case diagram demonstrates how the system integrates

authentication, wardrobe management, AI-powered categorization, virtual try-on, event

planning, and profile management into a cohesive experience for the user.

CHAPTER 3

29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.3 Activity Diagram

Figure 3.4 Activity Diagram

This system activity diagram illustrates the complete flow of how a user interacts with

the Virtual Try-On App. It starts from the moment the user logs into the system and then

branches into the different features provided by the app. Once inside, the user can navigate to

various sections such as the wardrobe, outfit management, event scheduling, profile

management, and the virtual try-on feature.

In the wardrobe, the user is able to upload and manage clothing items that can

later be used for styling. The outfit section allows the user to manage the outfit item.

The event section supports planning by letting users assign specific outfits to occasions,

ensuring that their styling is ready in advance. The profile area allows users to maintain

CHAPTER 3

30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

their personal details and preferences, which influence the overall personalization of

the app.

The virtual try-on process is a core part of the diagram, where users can choose

to experiment with clothing or makeup. For clothing, the app generates realistic images

of the user wearing selected items, while for makeup, the app provides a way to preview

different looks. In both cases, the results can be saved for future use.

Overall, the activity diagram shows how the system is designed to give users

full flexibility: they can freely move between wardrobe, outfits, events, profiles, and

try-on activities, repeating actions as needed until they are satisfied. It emphasizes the

interactive and iterative experience the app provides, enabling users to continuously

experiment with and refine their personal style.

3.2.4 AI Model Workflow and Performance

SAM2 Model (Clothing Segmentation)

• Functionality: The SAM2 model segments clothing items from uploaded user

images. Below is a diagram showing the process from image upload to

segmentation and storage.

CHAPTER 3

31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.5 Workflow of SAM2

1. User Uploads Clothing Image: The user uploads an image containing clothing

to the app.

2. API Request: The app sends a request to the backend for segmentation.

3. SAM2 Model Processes Image: The backend calls the SAM2 model to

segment the clothing from the background.

4. SAM2 encode image: Cannot send file, so need to encode the image.

5. When send it back, the app need to decode

CHAPTER 3

32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6. Result Storage: The segmented image and metadata are saved to Firebase

Storage and Firestore for future retrieval.

KolorVTO Model (Try-On Image Generation)

• Functionality: The KolorVTO model generates try-on images by mapping the

segmented clothing onto the user’s photo. Below is a diagram showing how this

works.

Figure 3.6 Workflow of KolorVTO

1. User Selects Clothing and Uploads Photo: The user selects a clothing item

and uploads a full-body image.

CHAPTER 3

33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. API Request: The app sends the full-body image and the segmented clothing

image to the backend.

3. KolorVTO Model Processes Images: The backend calls the KolorVTO model

to generate a try-on image.

4. Try-On Image Returned: The generated try-on image is sent back to the app

and displayed to the user.

5. Result Storage: The try-on image and metadata are saved to Firebase Storage

and Firestore.

3.3 Timeline

3.3.1 FYP 1

Figure 3.7 FYP1 Timeline

CHAPTER 3

34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.2 FYP 2

Figure 3.8 FYP2 Timeline

CHAPTER 4

35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

System Design

4.1 System Block Diagram

Figure 4.1 System Block Diagram

The block diagram illustrates the modular architecture and end-to-end data flow

of the Virtual Try-On mobile application. The process begins with the Authentication

Module, which manages secure login and registration using Firebase Authentication.

Once authenticated, new users are guided through the Onboarding Flow, where

personal details such as full name, date of birth, and style preferences are collected.

These details are stored in Firebase Firestore, forming the basis for a personalized

experience. Existing users can later access this information through the Profile

Management Module, which retrieves data from Firestore, displays it within the app,

and allows users to make edits that are automatically updated in real time.

The Wardrobe Module enables users to upload raw images of clothing items. These

images are processed through the Segmentation Pipeline, which integrates

GroundingDINO for clothing region detection and SAM2 for precise segmentation.

Postprocessing ensures clean, user-confirmed outputs, which are then transmitted to the

AI Categorization Server. This server performs feature extraction to classify the

clothing based on attributes such as type, color, and style. The processed images are

CHAPTER 4

36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

stored in Firebase Storage, while the categorized metadata is stored in Firestore,

ensuring synchronization between visual and structured information.

The Try-On Module supports both Clothing Try-On and Makeup Try-On. For

clothing, users select items from their wardrobe, and the system retrieves the

corresponding segmented images from Firebase Storage. These, along with the user’s

photo, are sent to the KolorVTO pipeline, which generates photorealistic try-on

previews. The generated results are passed to the AI Categorization Server, which

extracts additional metadata and stored the data and the result to the Firebase. The

results are then displayed on the Outfit Storage Page, where users can view, manage,

and reuse their try-on outcomes. For makeup, the Banuba SDK applies real-time AR

effects such as lipstick, foundation, or eyeshadow directly to the user’s face. The

generated outputs are saved to Firebase Storage and displayed in the Makeup Storage

Page, where they can be retrieved with corresponding details.

The Event Planner extends this functionality by letting users assign saved outfits

to upcoming events. Event details, including linked outfits, are stored in Firestore, while

reminders are triggered through the Notification Worker to ensure timely user

engagement.

From a data flow perspective, the system follows a structured cycle:

1. User inputs (login, personal info, clothing uploads, makeup selections).

2. Processing (segmentation via GroundingDINO + SAM2, try-on generation via

KolorVTO, AR makeup via Banuba, and categorization via the AI server).

3. Storage and retrieval through Firebase (Firestore for structured metadata and

scheduling, Storage for images and try-on results).

4. Presentation through a Jetpack Compose-based UI, which displays personalized

content across wardrobe, outfit, makeup, and event modules.

The backend integration ensures that Firebase functions as the central hub for both

structured and unstructured data, while AI servers handle heavy computational tasks

like segmentation, categorization, and try-on generation. This modular and

interconnected design guarantees stability, scalability, and a seamless user experience

across all components of the system.

CHAPTER 4

37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Module Design

Authentication Module

The Authentication Module handles secure user registration and login. It supports

email/password, authentication via Firebase Authentication. This module manages user

sessions, validates login states, and interacts with Firestore to maintain user account

records. Key classes include LoginActivity, RegisterActivity, and corresponding

ViewModel classes, which coordinate with Firebase methods such as

signInWithEmailAndPassword() and signInWithCredential(). The module provides

input validation, error handling, and redirects users upon successful login.

Wardrobe Management Module

The Wardrobe Management Module allows users to upload clothing images from their

device or camera. Uploaded images trigger the Image Segmentation Pipeline. The

module uses WardrobeViewModel and WardrobeScreen (Jetpack Compose UI) to

display wardrobe contents. Confirmed segmented images, along with metadata

generated by the AI Categorization Server, are stored in Firebase Storage and Firestore

to form the user’s digital wardrobe.

Image Segmentation Pipeline Module

This module processes uploaded clothing images through multiple stages:

1. Preprocessing: resizing, normalization.

2. GroundingDINO: detects clothing regions with bounding boxes.

3. SAM2: generates precise segmentation masks for each clothing item.

4. Postprocessing: refines masks and creates transparent PNGs.

Users confirm the segmented images before they are forwarded to the AI

Categorization Module.

4.2.4 AI Categorization Module

The AI Categorization Module analyzes segmented clothing and AI-generated outfit

images to extract structured metadata. Attributes include clothing type, category, color,

pattern, style tags, and additional properties such as sleeve length or collar type. The

module receives inputs through REST APIs, processes images using Python scripts,

and outputs JSON documents stored in Firestore along with the corresponding images

CHAPTER 4

38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

in Firebase Storage. This ensures all items are searchable, filterable, and consistently

organized.

Clothing Try-On Module (KolorVTO)

The Clothing Try-On Module allows users to select wardrobe items and upload their

photos to generate photorealistic try-on images using KolorVTO. Results are stored in

Outfit Storage, and metadata is sent to the AI Categorization Server for consistency.

The module integrates with TryOnScreen and TryOnViewModel to manage image

display and user interactions.

Makeup Module (Banuba SDK)

The Makeup Module uses the Banuba SDK to provide real-time AR makeup

application. Users can try lipstick, eyeshadow, eyeliner, and preset looks. Makeup

results are saved in Makeup Storage, and associated metadata, such as applied effects

and base skin tone, is stored in Firestore. This allows users to reapply or edit makeup

results independently of clothing try-ons.

Outfit Management Module

The Outfit Management Module provides an interface to view, edit, delete, rename, and

combine saved outfits. Metadata from AI Categorization is used to enable searching

and filtering. Users can mark favorites and reuse previously generated try-on images.

The module interacts with Outfit Storage for image management.

Makeup Storage Module

The Makeup Storage Module stores saved makeup looks separately from outfits. It

allows users to quickly reapply, edit, or share previously saved makeup results.

Metadata is synchronized with Firestore to maintain consistency and enable

search/filtering functionality.

Event Management Module & Notifications

This module allows users to schedule events and attach saved outfits and makeup looks.

Event information, including Storage URLs for selected looks, is saved in Firestore.

CHAPTER 4

39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The integrated Notification Worker, implemented via Android WorkManager,

schedules local push notifications to remind users of upcoming events.

Profile Module

The Profile and Settings Module allows users to view and update profile information,

and style preferences. All updates are synchronized with Firestore to maintain data

consistency across the application.

Firebase Backend

The Firebase Backend acts as the core infrastructure supporting authentication,

structured data storage, and secure image storage. It integrates all modules, including

Wardrobe, Try-On, AI Categorization, Makeup, Outfit Management, and Event

Planner, ensuring a scalable, efficient, and seamless experience for the user.

4.3 Database Design and Firebase Schema

This application uses Google Cloud Firestore as the primary NoSQL database for

managing user data, wardrobe metadata, outfit information, makeup info and event

planning. In addition, Firebase Storage is used to store all binary image files, such as

uploaded clothing, AI-generated try-on images and makeup looks. This integrated setup

allows for scalable, secure, and efficient handling of both structured metadata and large

media assets

4.3.1 Firestore Data Structure Overview

The top-level Firestore collection is users, where each document is uniquely identified

by a user ID (userId). Each user document contains four subcollections:

• userdata: Stores personal user information such as name, email, date of birth

and style preferences.

• wardrobe: Each user document has a subcollection of clothing items, storing

image URLs, segmentation masks, and AI-generated metadata (type, style,

color, pattern, attributes).

CHAPTER 4

40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• outfits: Contains saved try-on results, linking images in Outfit Storage with

associated metadata extracted by AI Categorization.

• events: Stores event details, including date/time, linked outfit/makeup

references, and notification settings.

4.3.2 Firebase Storage Data Structure Overview

Firebase Storage is used for managing image files. Each uploaded clothing item and

AI-generated outfit image is stored in user-specific folders in the following structure:

Table 4.1 Data sturcture

Image Type Storage Path Format

Clothing Uploads users/{userId}/wardrobe/{clothingId}.jpg

Outfit Results users/{userId}/outfits/{outfitId}.jpg

Makeup Results users/{userId}/makeup/{makeupId}.jpg

These images are referenced in Firestore via the imageUrl field to maintain a

lightweight database while supporting rich media content in the app.

Figure 4.2 Firebase Storage

CHAPTER 4

41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3.3 Firestore Path and Field Design

Users Collection

Firestore Path: users/{userId}/userdata

Field Name Data Type Description Sample Value

fullName String User's full

name

"john"

dateOfBirth String User's date of

birth

"16/01/2000"

createdAt Number Account

creation

timestamp

1758142870124

hasCompletedOnboarding Boolean Whether

onboarding is

completed

true

stylePreference String Primary style

preference

"Party"

stylePreferences Array[String] List of style

preferences

["Party",

"Business",

"Wedding"]

 Table 4.2 User collection

Figure 4.3 User collection

CHAPTER 4

42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Wardrobe Collection

Firestore Path: users/{userId}/wardrobe

Field Name Data

Type

Description Sample Value

display_name String Descriptive name of

the clothing item

"Casual 2"

image_name String File name of the

uploaded image

"temp_image_1758151248713_

294.png"

image_url String Firebase Storage URL

of the clothing image

"https://firebasestorage.googlea

pis.com/.../wardrobe/3f011fd8-

..."

metadata Map Clothing attributes {category: "top", color: "dark

green", pattern: "text print",

style: "hooded top", occasion:

"Casual", description: "A dark

green long-sleeved hooded

top..."}

timestamp String Upload time "2025-09-17T23:21:04.188491"

 Table 4.3 Wardrobe collection

Figure 4.4 Wardrobe collection

https://firebasestorage.googleapis.com/.../wardrobe/3f011fd8-
https://firebasestorage.googleapis.com/.../wardrobe/3f011fd8-

CHAPTER 4

43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Outfits Collection

Firestore Path: users/{userId}/outfits

Field

Name

Data

Type

Description Sample Value

image_url String Firebase Storage

URL of the outfit

image

"https://firebasestorage.googleapis.

com/.../outfits/de9134a6-..."

isFavorite Boolean Whether the outfit

is marked as

favorite

false

metadata Map Outfit attributes and

description

{color: "Olive Green", description:

"A person is wearing a long-sleeved

olive green hooded top...", occasion:

"Loungewear / Home", style:

"Relaxed and casual loungewear.",

outfit_name: "hoody"}

timestamp String Creation time "2025-09-17T23:23:45.452570"

 Table 4.4 Outfit collection

 Figure 4.5 Outfit collection

https://firebasestorage.googleapis.com/.../outfits/de9134a6-
https://firebasestorage.googleapis.com/.../outfits/de9134a6-

CHAPTER 4

44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Makeup Collection

Firestore Path: users/{userId}/makeups

Field Name Data

Type

Description Sample Value

id String Unique makeup

identifier

"3a28356a-1871-4a59-af2f-

6ba686ac5bad"

imageUrl String Firebase Storage

URL of the makeup

result

"https://firebasestorage.goog

leapis.com/.../makeup/3a283

56a-..."

name String Name of the

makeup look

"look 1"

dateCreated Timesta

mp

Creation date/time "September 18, 2025 at

8:07:04 AM UTC+8"

likesCount Number Number of likes 0

public Boolean Visibility flag false

stability Number AR effect stability

score

0

userId String Owner reference "dw4zTLVX3qaoQT7be8b

WHYOBID02"

 Table 4.5 Makeup collection

https://firebasestorage.googleapis.com/.../makeup/3a28356a-
https://firebasestorage.googleapis.com/.../makeup/3a28356a-
https://firebasestorage.googleapis.com/.../makeup/3a28356a-

CHAPTER 4

45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.6 Makeup collection

Events Collection

Firestore Path: users/{userId}/events

Field Name Data

Type

Description Sample Value

id String Unique event

identifier

"3Iu09TYO7Tv5rR42cMY

x"

title String Event title "oo"

date String Event date "2025-09-18"

time String Event time "10:59"

allDay Boolean All-day event

flag

false

eventType String Type of event "WEDDING"

description String Optional event

description

""

location String Optional event

location

""

CHAPTER 4

46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

plannedOutfitId String /

Null

Linked outfit

reference

null

outfitImageUrl String /

Null

URL of linked

outfit

null

reminderEnabled Boolean Whether

reminders are

active

true

reminderTime Number Minutes before

event to notify

1

createdAt Number Event creation

timestamp

1758160794146

 Table 4.6 Event collection

Figure 4.7 Event collection

Firestore offers real-time synchronization and scalable document-based storage, which

is well-suited to user-centric data like clothes and events. Firebase Storage

complements this by hosting high-resolution media files without bloating the database.

This separation of concerns ensures fast access, efficient storage, and easier file

management.

CHAPTER 4

47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Model Selection and Architecture

4.4.1 GroundingDINO + SAM2 (Segmentation Pipeline)

Our system first applies a two-stage segmentation pipeline to isolate garments

in the user’s photo. GroundingDINO is used to detect clothing items with open-

vocabulary prompts, outputting high-quality bounding boxes and labels. These

detections are then passed to Meta’s Segment Anything Model (SAM2), which

generates precise pixel-level masks for each garment. This combination was chosen

because it leverages the strengths of each model – GroundingDINO’s zero-shot object

detection and SAM2’s accurate segmentation – to build a robust pipeline for complex

masking tasks. The resulting segmented garment images and masks are saved in cloud

storage, with metadata (labels, bounding box coordinates) recorded in the database for

later use.

4.4.2 KolorVTO (Virtual Try-On Model)

For generating the final try-on images, we use the Kolors Virtual Try-On

(KolorVTO) engine. The app supplies the user’s photo and the segmented garment

image to KolorVTO, which synthesizes a realistic image of the user wearing that

clothing. In practice, the system base64-encodes the person and garment images and

sends them via a JSON API request to the KolorVTO service. The service returns a job

identifier and, upon completion, a composite image. This try-on image is then retrieved

by the app; it is stored in Firebase Storage and indexed in Firestore along with any

relevant parameters (such as the random seed or processing status) so that it can be

displayed or queried later.

4.4.3 Banuba SDK (Makeup Try-On Module)

We integrate Banuba’s AR Face SDK to provide real-time virtual makeup.

Banuba’s SDK performs fast, precise face tracking and builds a 3D face mesh in real

time, allowing digital cosmetics (lipstick, eyeshadow, blush, etc.) to be overlaid

correctly onto the user’s facial features. Underlying neural networks segment fine facial

regions (lips, cheeks, skin, etc.) at the pixel level so that makeup effects align accurately

on any skin tone. When the user applies virtual makeup, the resulting augmented image

(e.g. a camera frame with the effects) is captured and saved. The captured makeup-try-

CHAPTER 4

48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

on images are uploaded to Firebase Storage, and their metadata (chosen filters,

timestamp, etc.) are recorded in Firestore for later retrieval.

4.4.4 Google Gemini (AI Categorization Model)

Finally, we use Google’s Gemini multimodal AI to categorize clothing and

outfit images. Gemini supports zero-shot object detection and visual understanding,

meaning we can send it an image and ask open-ended questions about it. In our system,

each segmented garment image and each generated try-on outfit image is sent to Gemini

with prompts requesting descriptive attributes. Gemini returns labels and descriptions,

which we parse into structured metadata. These attributes are stored in Firestore

alongside references to the images, while the image files remain in Firebase Storage. In

this way, Gemini’s output provides searchable metadata (type, color, style, etc.) for

each item, integrated with our database to support product categorization and user

queries.

CHAPTER 5

49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

System Implementation

5.1 Hardware Setup

To build and test the Android-based Virtual Try-On application, the following hardware

components are required:

Laptop (Development)

Table 5.1 Specifications of laptop

Description Specifications

Model Nitro AN515-45

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

Operating System Windows 11

Graphic NVIDIA GeForce RTX 3060 Laptop GPU

Memory 16GB RAM

Storage 475GB

Mobile Device for Testing

Table 5.2 Specifications of mobile device

Description Specifications

Model HONOR X9b 5G

Processor Snapdragon 6 Gen 1

Operating System Android 12

Memory 8GB RAM

Storage 256GB

CHAPTER 5

50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Software Setup

The software setup for the Virtual Try-On (VTO) system required different tools

for mobile development, backend AI processing, and cloud service integration. Each

component was installed and configured separately to ensure modularity and smooth

system integration.

Android Development Tools

The Android application was developed using Android Studio as the primary

IDE, with Java Development Kit (JDK), Gradle, and the Android SDK with Emulator

Tools. These tools were used to build, test, and run the Jetpack Compose–based

mobile interface.

Figure 5.1 Android Studio setup

Firebase Integration

Firebase was configured to handle Authentication, Firestore Database, and

Storage. The google-services.json file was downloaded from the Firebase Console and

added to the application project to enable backend connectivity. This ensured that user

login, clothing metadata, and wardrobe images were synchronized between the app

and the server.

CHAPTER 5

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2 Integration of Firebase

Banuba SDK for Makeup Try-On

The Banuba SDK was integrated into the mobile app to provide AR-based

makeup try-on functionality. It enabled real-time rendering of lipstick, eyeshadow,

and other effects on the user’s face. The SDK required license activation and was

embedded within the Android Studio project.

Figure 5.3 Integration of Banuba SDK

CHAPTER 5

52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

AI Backend – env1 (Segmentation & Try-On)

A dedicated Anaconda environment, named env1, was created to run the core

segmentation and try-on pipeline. This included installing dependencies such as

PyTorch, Torchvision, OpenCV, Transformers, and FastAPI. Within this

environment:

• Grounding DINO was used for clothing detection.

• SAM2 was applied to generate precise segmentation masks.

The FastAPI server exposed these functionalities, and Ngrok was used to provide a

secure public API endpoint for mobile app integration.

Figure 5.4 Anaconda environment (env1) for Grounded Sam2

KolorsVTO model

Instead of a local installation, the KolorsVTO model is accessed via Kling AI’s

platform. This service generates try-on images by combining user-uploaded photos

with clothing items stored in the wardrobe. Integration with Kling AI is achieved

through API calls, where the segmented clothing (from Anaconda env1) and user photo

are sent to the KolorsVTO endpoint. The processed output is then returned to the app.

Since KolorsVTO is a hosted service, no additional local environment is required

beyond configuring API access.

CHAPTER 5

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

AI Backend – .venv (Gemini Categorization & Outfit Management)

A second environment, named .venv, was created specifically for the Gemini AI

backend. This FastAPI microservice handled clothing categorization, metadata

extraction (type, color, style, occasion), and smart naming for wardrobe management.

Separating this environment from segmentation ensured better stability and reduced

dependency conflicts.

Figure 5.5 Gemini AI categorization backend (.venv) with Firebase

5.3 Settings and Configuration

After setting up the core software components, additional configuration steps

were carried out to ensure proper integration. In Android Studio, the google-

services.json file downloaded from Firebase was added to the app/ folder, linking the

project with Firebase services. Gradle dependencies were configured for Firebase

SDKs, Banuba SDK, and networking libraries. Figure 5.x presents the Android Studio

configuration with Firebase integration.

CHAPTER 5

54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.6 Gradle dependencies for Firebase and Banuba SDK.

In the Firebase Console, Authentication was enabled with both

Email/Password and Google Sign-In, while Firestore Database and Firebase Storage

were configured for structured and unstructured data storage. This ensured seamless

synchronization between metadata (e.g., clothing categories) and media files (e.g.,

segmented clothes, try-on outputs). Figure 5.x shows the Firebase Console setup.

Figure 5.7 Firebase Authentication

CHAPTER 5

55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.8 Firestore

Figure 5.9 Firebase Storage

In Anaconda env1, dependencies such as PyTorch, TorchVision, and OpenCV

are installed to support the Grounding DINO and SAM2 models. The segmentation

service is initiated by executing segmentation.py, which loads the models and provides

API endpoints for the mobile application.

CHAPTER 5

56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.10 Dependency installation in Anaconda env1

In the Gemini backend (.venv), the environment is configured with authentication

keys, API SDKs, and supporting libraries for recommendation and categorization. This

ensures smooth communication with Google’s Gemini API.

Figure 5.11 Gemini backend environment configuration

The KolorVTO service from Kling AI does not require local environment installation

but instead relies on API integration. The system is configured with Kling AI

CHAPTER 5

57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

credentials and endpoints, enabling seamless transmission of input images and

reception of generated try-on results.

Figure 5.12 Configuration of KolorVTO API

For the Banuba SDK, the configuration is done in the Android Studio project by

importing the SDK dependencies into build.gradle. The SDK is then initialized in the

application code with secure API keys to unlock makeup and accessory features.

Figure 5.13 Banuba SDK configuration

CHAPTER 5

58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Lastly, Ngrok is set up with authentication and assigned tunnels. The forwarding URL

generated by Ngrok is embedded in the mobile application, allowing the app to send

requests to locally running services (segmentation and Gemini AI backend).

Figure 5.14 Ngrok configuration with the generated forwarding URL

5.4 System operation

5.4.1 User Authentication System

The user authentication system was implemented using Firebase Authentication,

enabling users to register and log in securely with their email and password. The

Firebase Authentication service was integrated into the Android application through the

Firebase SDK and the configuration file google-services.json, which links the mobile

app to the Firebase project.

In this implementation, users are able to register an account by providing their

email and password. Upon successful registration, Firebase creates a new user profile,

and the app immediately redirects the user to the onboarding flow. Similarly, during

the login process, registered users can enter their credentials, which are verified by

Firebase. If authentication is successful, the system performs an onboarding status

check by querying Firestore to determine whether the user has completed the personal

information entry required during the onboarding process.

If the onboarding is incomplete, the user is redirected to the onboarding screen

to fill in their personal details. Once completed, the information is stored in Firebase

Authentication and linked to the user’s account. If the onboarding is already completed,

the system bypasses this step and directly loads the main application interface. This

integration ensures a seamless flow from registration and login to onboarding,

providing a secure and personalized entry point into the Virtual Try-On application.

CHAPTER 5

59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.15 Login Screen

Figure 5.16 Registration Screen

CHAPTER 5

60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.17 Onboarding Redirection Screen

Figure 5.18 Main Screen

CHAPTER 5

61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.2 Wardrobe Management and Clothing Segmentation

Overview of the Process

In this section, the Clothing Segmentation process in the Virtual Try-On (VTO)

application is automated using a combination of Grounding DINO and SAM2. When a

user uploads a clothing image, Grounding DINO first detects and localizes the clothing

regions, after which SAM2 generates precise segmentation masks. The segmented

items are then categorized by the Gemini AI backend, which assigns clothing type,

color, and style attributes. The final segmented images are stored in Firebase Storage,

while metadata such as category and attributes are saved in Firestore, allowing efficient

organization and retrieval within the wardrobe system.

Workflow of Clothing Segmentation

The process begins when a user selects or captures a clothing photo within the

mobile application. This image is uploaded to the backend server, where Grounding

DINO performs object detection to identify and localize clothing regions. Once

bounding boxes are detected, SAM2 processes these regions to generate precise

segmentation masks, accurately isolates the clothing item from the background. The

segmented image is then returned to the mobile application for user confirmation.

On the confirmation page, the user is presented with the segmented clothing and

can review its quality. At this stage, users can visually inspect the segmented clothing

and, if necessary, use the rotate button to adjust its orientation before saving. Once the

confirmation is made, the finalized clothing image is sent to the Gemini AI backend for

automatic categorization, where it is analyzed and assigned attributes such as category,

color, and style. After categorization, the image is uploaded to Firebase Storage, and

the corresponding metadata is stored in Firestore. Finally, the clothing item is displayed

in the user’s wardrobe within the application, ready to be managed or combined into

outfits. To enhance usability, the wardrobe page includes a filtering feature that enables

users to quickly locate clothing items by category. Finally, users can select items from

their wardrobe to create and save new outfits in the system.

CHAPTER 5

62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.19 Add Clothes Figure 5.20 Clothes to be segment

Figure 5.21 Confirm segmented

clothes

Figure 5.22 Clothing item

CHAPTER 5

63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.23 Segmented clothing item displayed in the wardrobe

5.4.3 Try-On Image Generation with KolorVTO

Overview of the Process

The Try-On Image Generation feature allows users to virtually try on clothing items

using AI-generated images. It supports both single-item and combination outfits.

Generated images can be saved, categorized, and stored in the app for future reference.

Workflow of Try-On Image Generation

The workflow begins with the user selecting a personal photo, either uploaded

previously or captured live. In the single-item mode, the chosen clothing item is

displayed at the bottom right of the user photo as a preview for confirmation. In the

combination mode, the user selects both a top and a bottom, which are displayed as

separate previews at the bottom right. Once confirmed, the app sends the user image

and the clothing image via a POST API request to the backend server. On the server,

the KolorsVTO model processes the inputs and generates an image of the user wearing

the selected clothing item or outfit combination. The generated try-on image is returned

to the app and displayed. When the user clicks save, a dialog appears to enter the outfit

name. The outfit is then processed by the Gemini AI categorization system, stored in

Firebase along with the user’s data, and displayed in the Outfit Page for convenient

retrieval.

CHAPTER 5

64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.24 Try on page Figure 5.25 clothing try on page

Figure 5.26 Choose a clothes Figure 5.27 Try on screen

CHAPTER 5

65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.28 Try on result Figure 5.29 Combine mode

Figure 5.30 Try on result Figure 5.31 Saving result

CHAPTER 5

66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.32 Successfully save

5.4.4 Makeup Try-On

Overview of the Process

The Makeup Try-On feature allows users to virtually apply makeup effects using either

a live camera feed or uploaded images. It supports real-time virtual try-on with the

camera or applying makeup to existing photos. Users can preview the effects, make

adjustments, and save the final images to Firebase for future access.

Workflow of Makeup Try-On

The workflow begins with the user choosing the input method: camera or image.

If the image option is selected, a dialog appears allowing the user to choose a photo

either from their saved outfits or from the device gallery. If the camera option is selected,

the user can try on makeup effects live.

In the camera mode, the Makeup Try-On page displays the live camera feed

along with a capture button and a makeup icon. Clicking the makeup icon opens a

selection panel with predefined makeup effects that the user can try on in real time.

After applying the desired effects, the user can capture the image, which is then saved

to Firebase.

In the image mode, after selecting a photo, a makeup selection panel is displayed

at the bottom of the screen, and a save button is available at the top right corner. Users

CHAPTER 5

67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

can apply built-in makeup effects, preview the result on the selected image, and save

the final image to Firebase.

 Figure 5.33 Selection Figure 5.34 Select outfit

 Figure 5.35 Before makeup Figure 5.36 After makeup

CHAPTER 5

68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Figure 5.37 Before makeup Figure 5.38 After makeup

 Figure 5.39 Saving Look

CHAPTER 5

69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.5 Outfit Management

Overview of the Process

The Outfit Management feature allows users to save, review, and manage their try-on

results, including both clothing and makeup try-ons. Users can access a personalized

history of their generated images and perform further actions such as viewing details or

editing the saved items.

Workflow for Outfit Management

After a try-on image is generated whether through the KolorVTO API for clothing or

the makeup try-on feature the image is uploaded to Firebase Storage and linked to the

user’s record in the Firestore “Outfits” and “Makeup” collection. In the Outfit

Management page, an exchange button beside the page title allows users to toggle

between clothing try-on results and makeup try-on results. Below the title, a filter panel

lets users filter the displayed items based on categories such as clothing type, outfit

combinations, or makeup type.

When a user selects an item from the displayed list, a new page opens showing

the item details, including the try-on image, associated metadata (e.g., clothing IDs or

makeup effect), and timestamp. On this page, users can also edit the saved entry, for

example by updating the outfit name. This workflow ensures a comprehensive and

interactive way to manage both clothing and makeup try-on results, providing an

organized and user-friendly interface for wardrobe and makeup history.

 Figure 5.40 Outfit page Figure 5.41 Outfit detail

CHAPTER 5

70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Figure 5.42 Outfit information Figure 5.43 Makeup Storage Page

Figure 5.44 Look detail

CHAPTER 5

71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.6 Event Screen

Overview of the Process

The Event Screen provides users with a centralized interface to view, manage, and

interact with their scheduled events. It combines a calendar view, event lists, filtering

options, and notifications to ensure users stay informed about upcoming events. Users

can select a date, add new events, view details, and receive timely reminders.

Workflow of the Event Screen

When the Event Screen is opened, the EventViewModel retrieves all events from the

backend, including upcoming and past events, and updates the UI automatically via

collectAsState().

The workflow begins with the user selecting a date on the calendar. Events for the

selected date are filtered and displayed in a dedicated section. Users can also view all

upcoming events or past events in separate sections.

Each event is represented by an EventCard, displaying the outfit image or type

indicator, title, date and time, location (if available), and event type label. Clicking an

EventCard opens the event’s detail page for review or editing.

Users can add new events using the “+” button on the calendar. When an event is

created, a notification is automatically scheduled using the device’s notification

system, ensuring the user receives timely reminders before the event occurs. A

calendar legend is also provided to clarify event markers. All updates to the event lists

such as adding, editing, or deleting events are dynamically reflected in the UI without

manual refresh, maintaining a responsive experience.

CHAPTER 5

72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Figure 5.45 Event Page Figure 5.46 Event page

 Figure 5.47 Create event Figure 5.48 Event Detail

CHAPTER 5

73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Figure 5.49 Notifications

5.4.7 Profile Screen

Overview of the Profile Screen

The Profile Screen allows users to view, manage, and update their personal information,

including full name, date of birth, email, profile picture, and style preferences. It

provides a centralized interface for managing personal data and preferences, ensuring

a personalized experience within the app. The screen also offers access to additional

app settings and sign-out functionality.

Workflow of the Profile Screen

When a user navigates to the Profile Screen, the application automatically loads the

user’s profile information from Firebase Firestore through the ProfileViewModel. Once

the data is fetched, the screen displays the user’s full name, email address, date of birth,

and style preferences. Style preferences are presented in a chip layout, providing a clear

and visually organized overview of the user’s selected styles. If the user has not set any

style preferences, the screen displays prompts encouraging them to update their

preferences to enhance personalized recommendations.

The user can edit their profile by tapping the "Edit Profile" button, which opens

a dialog that allows modifications to the full name, date of birth via a date picker, and

style preferences using a multiple-choice selection panel. After confirming the changes,

the updated data is sent to Firebase Firestore, ensuring persistence across devices, and

the screen is refreshed to display the new information. A dedicated sign-out button

CHAPTER 5

74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

allows the user to securely log out, with the AuthViewModel handling authentication

state and redirecting the user to the login screen.

 Figure 5.50 Profile page Figure 5.51 Edit Profile

5.5 Implementation Issues and Challenges

Within the creation and launch of the Virtual Try-On application, there were a

number of aspects and challenges that were faced especially concerning the operations

at the back end, AI processing, and performance of the devices. The use of cloud-based

services to process and store the user data was among the primary challenges.

Applications like clothing segmentation and try-on image generation are highly reliant

on backend APIs like the KolorVTO model that generates realistic try-on images. Any

latency or instability in such backend services has a direct impact on the performance

and user experience of the application.

Connection problems were a major problem particularly when the users had

poor or bad Wi-Fi or cellular data. Because the procedure of user images transmission,

of retrieving segmented clothing items and of processing AI-generated try-on images

require the uploading and the downloading of data stored in Firebase Storage and in

CHAPTER 5

75
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

external APIs, the slow network speed greatly contributes to the processing time. Such

latency may be annoying to users, and in other instances the app may seem non-

responsive. Moreover, the unstable connection may cause the unsuccessful

transmission of all data, and more than that, the requests will not be fulfilled, or the

files will be corrupted, which also affects the quality of the try-on results.

The other problem that was identified when testing was the accuracy of AI-

generated images with the KolorVTO model. Network delays can cause the results

generated to be significantly different to the original clothing item or target appearance,

in addition to creating the results generated when the image resolution is decreased to

support slow uploading. Some of the cases have artifacts or unpredicted outputs of the

model, and this reduces the apparent reality of the try-on feature. To achieve regular

and high-quality AI results, high-speed internet connectivity should be stable, image

information should be managed cautiously, and error-processing systems must be

effective to resend or re-improve unsuccessful requests.

Besides backend and connection problems, some of the real-time functionalities

like try-on makeup, which is powered by the Banuba SDK, generated device

performance problems. The AR processing of Banuba is very demanding taking much

computational power to execute smoothly. The AR rendering may lag on devices with

less processing power or during operation of many processes with high load at the same

time leading to slower updates and jittery displays. This heavy processing load has an

impact on user experience where the live makeup preview might not look fluid and

responsive in low-end hardware, thus limiting users to interact with the application in

a more natural way.

 Overall, the combination of network dependency, AI model sensitivity, high

device processing requirements for AR features, and backend processing demands

presented significant challenges. Addressing these issues involved optimizing image

handling, improving error handling for failed or delayed requests, managing device

performance, and providing user feedback during long operations to ensure that the app

remains functional and user-friendly even under suboptimal conditions.

CHAPTER 6

76
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6

System Evaluation And Discussion

6.1 System Testing and Performance Metrics

6.1.1 Black-Box Testing

System testing is a crucial stage in evaluating the effectiveness and reliability of the

Virtual Try-On mobile application. This phase ensures that all implemented features

operate according to the design specifications and satisfy the user requirements. The

testing process focuses on assessing functional correctness, performance efficiency,

and overall user experience. Performance metrics were established to quantify the

system’s effectiveness, including response time for try-on image generation, accuracy

of clothing segmentation, and the success rate of wardrobe management operations.

These metrics provide a measurable way to evaluate the responsiveness and stability of

the system under different conditions.

Black-box testing was used as the primary method to evaluate the system. This testing

approach examines the application’s behavior from the user’s perspective without

considering the internal code structure. By focusing on inputs and expected outputs,

black-box testing ensures that the system functions correctly under normal and edge-

case scenarios. For the Virtual Try-On app, black-box testing covered the authentication

module, clothing segmentation, try-on image generation, and wardrobe management.

In the authentication module, tests were conducted for login, registration, and password

recovery using both valid and invalid credentials. The system was expected to grant

access for correct login information and display appropriate error messages for

incorrect credentials.

The clothing segmentation functionality was also tested using various clothing images.

Users could upload images of shirts, dresses, or jackets, and the system was expected

to generate accurate masks that isolate the selected clothing item. Similarly, the try-on

image generation feature was evaluated by uploading different user photos and

selecting wardrobe items. The system’s output was expected to produce realistic try-on

images with correct positioning and proportions. In addition, wardrobe and outfit

CHAPTER 6

77
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

management functions were tested to ensure that users could add, view, and save

outfits, while invalid inputs, such as unsupported file types, were appropriately handled.

Performance testing was carried out to examine the system’s behavior under multiple

concurrent requests. The primary goal was to measure response time and server

stability, especially since the KolorVTO model requires heavy computational

processing. Metrics such as the average response time for image generation and success

rates for segmentation and wardrobe operations were recorded. Overall, the black-box

testing results demonstrated that the system meets functional requirements and provides

reliable, accurate, and user-friendly performance. Minor delays in try-on image

generation were noted due to the computationally intensive nature of the AI model,

which is expected given the complexity of the processing involved.

6.2 Testing Setup and Result

6.2.1 Testing Setup

The testing environment was designed to simulate realistic user conditions and measure

the performance of the system. The app was tested on Android devices running Android

12 and above, with a network connection of 4G and Wi-Fi. The backend server was

deployed on Google Cloud Platform, handling clothing segmentation and try-on image

generation requests.

Testing Setup:

• Devices: Android smartphone as the client device for running the mobile

application.

• Backend: Python FastAPI server hosting the Grounded SAM2 model for

clothing segmentation, the KolorVTO model for try-on image generation, and

the AI categorization service for wardrobe organization
.

• Database: Firebase Firestore for storing user information, wardrobe metadata,

outfit history, makeup looks, and event details.

• Storage: Firebase Storage for managing segmented clothing images, generated

try-on images, and saved makeup results.

• Metrics: Evaluation was based on response time (time taken for model

inference and result delivery), success rate (ratio of successful operations to

CHAPTER 6

78
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

total attempts), and image accuracy (quality of segmented masks, try-on

images, and makeup effects).

6.2.2 Testing Results

Module Test Scenario Expected Result Observed Result Pass/Fail

User

Authentication

Register new

account with

valid

email/password

Account created and

redirected to

onboarding

Account created

and redirected

correctly

Pass

User

Authentication

Login with

correct

credentials

User logged in and

redirected to main

interface

Logged in

successfully

Pass

User

Authentication

Login with

incorrect

password

Error message

displayed

Error message

displayed

Pass

Wardrobe

Management &

Clothing

Segmentation

Upload clothing

image

Clothing correctly

segmented and

returned to app for

confirmation

Segmented image

returned

successfully

Pass

Wardrobe

Management &

Clothing

Segmentation

User confirms

segmented image

Confirmed

segmented clothing

ready for upload

Confirmation

works correctly

Pass

AI

Categorization

Upload confirmed

segmented

clothing

Server generates

category, color,

style metadata,

stores image and

metadata in

Firebase

Metadata

generated

correctly; stored

successfully

Pass

Try-On Image

Generation

Generate try-on

image (single

item)

AI server generates

accurate try-on

image, returned to

app, stored in

Firebase

Generated image

accurate; stored

successfully

Pass

Try-On Image

Generation

Generate try-on

image

(combination

outfit)

AI server generates

try-on image for

outfit combination,

returned

Mostly accurate;

minor

inconsistencies in

some

combinations

Pass with

minor

issues

CHAPTER 6

79
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Makeup Try-On

(Banuba)

Real-time

makeup try-on via

camera

Smooth application

in live feed

Smooth on high-

end devices; lag

on mid-range

devices

Pass with

caution

Makeup Try-On

(Banuba)

Apply makeup to

uploaded image

Makeup applied

correctly

Applied correctly Pass

Outfit

Management &

History

Save try-on

results

Images uploaded to

AI Categorization

server, processed,

and stored in

Firebase

Successfully

saved and linked

to user

Pass

Outfit

Management &

History

Edit saved outfit Updates reflected in

Firebase

Updates applied

correctly

Pass

Event Screen Add new event Event created and

notification

scheduled

Event created,

notification

received

Pass

Event Screen Edit event Event updated and

synced

Updates applied

correctly

Pass

Profile Screen Edit profile

information

Profile updated and

reflected in UI

Profile updated

successfully

Pass

Profile Screen Logout User redirected to

login screen

Redirected

successfully

Pass

Table 6.1 Testing Results

6.3 Objective Evaluation

The project objective that were set at the onset of the development process were

tackled and evaluated in a systematic manner during the implementation and testing

processes. The initial goal, which is to create an Android-based Virtual Try-On (VTO)

application is achieved. The Android Studio and Jetpack Compose were used in the

complete creation of the mobile app, which is compatible with a great number of

devices. The app is well compatible with the latest smartphones and remains accessible

to cheap smartphones, indicating that the Android platform was an appropriate decision

to reach a maximum number of users.

The second objective, which was to incorporate deep learning technologies, was

also achieved by using the latest AI models. Grounded-SAM2 was utilized in accurate

segmentation of clothing, KolorVTO was utilized in creating lifelike try-on pictures,

CHAPTER 6

80
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

and Gemini AI was incorporated in intelligent division of clothing products. These

technologies, combined, offer users an interactive and accurate virtual try on

experience. It was also tested that clothing items were segmented with a high level of

accuracy and that the try-on images generated were similar in appearance to those that

were anticipated though there were instances of inaccurate results in case of poor

connectivity, or when the server was overloaded.

The third objective, which facilitated complete body customization, was

reached when the system was expanded to include mostly more than clothing try-on to

make-up simulation. The camera feature allows the users to virtually apply different

makeup styles in real time or make changes to the images posted by them by applying

filters. This will enable the user to see their entire appearance, including clothes, and

products in the same platform. Moreover, the features of outfit history, wardrobe

management, and event reminders added to the features of the original objective

increased the features of the application, making it a more ecstatic and functional user

experience.

On balance, the three project objectives were all achieved, and the created

system has shown high competence in Android application, AI implementation, and

complete customization of the body. Solvable minor issues, including the delays in the

processing and the high computational load of the makeup rendering, do not

compromise the accomplishment of the goals but point out to the areas of potential

optimization of the future wor

CHAPTER 7

81
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

The VTO mobile application prototype is an effective approach to digital styling

that will solve the drawback of the real-life store experiences and pre-determined

fashion collections. The system gives the user a hygienic, contactless, and highly

personal styling experience, which employs both clothing and makeup try-on by

utilizing both advanced AI technologies and an Android-based platform.

The app combines GroundingDINO and SAM2 to detect and segment clothes,

KolorVTO to generate realistic try-ons, and Banuba to apply makeup effects, thus

providing users with a full-body customization experience. Besides that, the platform

has helped with AI-driven classification of the wardrobe, event-based outfit planning

with notifications, and outfit history management where users can plan, save and revisit

their styles with ease. All these properties are cleverly connected with Firebase services

that provide authentication, storage, and data management, and the FastAPI backend

provides an efficient deployment of AI models and modules interconnection.

The opportunity to add their own clothing pieces, identify and divide them with

the help of GroundingDINO + SAM2, and create realistic try-ons with the help of

KolorVTO are one of the most important innovations of the project that allows users to

rely not only on the offered catalogs but also create personalized products and outfits

on their own. This gives the users more freedom, personalization and creativity in

regard to their own wardrobe and style in general. The experience organizer and history

are other features that move the app beyond the try-on functions, making it more of a

personal digital stylist.

Although these achievements have been made, there are still challenges. Banuba

makeup SDK has high processing power that might cause performance problems with

mid-range devices. Also, network stability is of key importance to the try-on

performance; a problematic connection can slow down the processes and lower the

quality of the obtained results. It will be important to resolve such problems by

implementing optimization and adaptive processing techniques to improve them in the

future.

CHAPTER 7

82
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

On the whole, the Virtual Try-On mobile application is an indicator of the future

potential of AI-powered styling platforms to transform the way in which people

experience fashion and beauty. The system, with its scalable architecture, rich features,

and user-centered design, gives a solid platform on which it can be extended into a full-

immersion and intelligent virtual fashion platform.

7.2 Recommendation

For future improvements, several recommendations are proposed to enhance the

Virtual Try-On application. First, performance optimization should be prioritized by

reducing AI model processing time to ensure a smoother and faster user experience

across a wide range of Android devices. This can be achieved through more efficient

model deployment strategies and lightweight preprocessing techniques. Second, the

scalability of backend services needs to be addressed by deploying APIs to robust cloud

servers, enabling the system to support large-scale usage while maintaining stability

and responsiveness even during peak demand.

In terms of functionality, the project would benefit from feature expansion,

including the integration of additional makeup styles, hairstyles, and accessories such

as jewelry, eyewear, and bags. The introduction of social media sharing for completed

outfits would further enrich the user experience by allowing individuals to showcase

their styles and receive feedback. Alongside this, implementing an AI-powered

recommendation system would provide personalized outfit suggestions based on users’

wardrobes, events, and preferences, making the app more intelligent and user-centric.

Finally, for long-term innovation, future research should explore 3D virtual try-

on capabilities using AR/VR technologies. Such advancements would create a more

immersive and realistic experience, bridging the gap between digital styling and real-

world fashion. By adopting these recommendations, the application can evolve into a

comprehensive, intelligent, and interactive fashion ecosystem.

REFERENCES

83
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] H. Ghodhbani, M. Neji, I. Razzak, and A. M. Alimi, “You can try without

visiting: a comprehensive survey on virtually try-on outfits,” Multimedia Tools

and Applications, vol. 81, Mar. 2022, doi: https://doi.org/10.1007/s11042-022-

12802-6.

[2] A. L. Roggeveen and R. Sethuraman, “How the COVID Pandemic May Change

the World of Retailing,” Journal of Retailing, vol. 96, no. 2, pp. 169–171, Apr.

2020, doi: https://doi.org/10.1016/j.jretai.2020.04.002.

[3] A. Kavin, T Jithesh, G. Kalaiarasi, M. Selvi, R. Yogitha, and T.N. Suresh Babu,

“Virtual Trial Room for Online Shopping,” Apr. 2024, doi:

https://doi.org/10.1109/iccsp60870.2024.10544238.

[4] “IEEE COMSOC MMTC E-Letter MULTIMEDIA COMMUNICATIONS

TECHNICAL COMMITTEE IEEE COMMUNICATIONS SOCIETY,” 2011.

Available:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c570ecd9e

ca1db203b808218e98bd65b15930279#page=37

[5] J. Gray, “A look inside Perfect Corp.'s YouCam Makeup app and the rise of

beauty AR,” www.businessofbusiness.com, Mar. 08, 2021.

https://www.businessofbusiness.com/articles/perfect-corp-youcam-makeup-

app-beauty-tech-ar/

[6] S. Daiani, “The Role of Context Congruency in Smart Mirrors’ Virtual Try-On

at Clothing Stores: Enhancing Customer Decision-Making and

Satisfaction,” Ohiolink.edu, 2024.

https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accessio

n_num=ucin1721398757906967 (accessed Sep. 10, 2024).

REFERENCES

84
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[7] S. Degree, “We Tried 3 Closet Organization Apps & Here’s What We Think Of

Them - Style Degree,” Style Degree, Mar. 25, 2021.

https://styledegree.sg/closet-organization-apps-

review/#:~:text=Absence%20Of%20In%2DApp%20Catalogue (accessed Sep.

10, 2024).

[8] “Virtual Fitting and Styling,” Style.me. https://style.me/virtual-fitting/

[9] X. Han, Z. Wu, Z. Wu, R. Yu, and L. Davis, “VITON: An Image-based Virtual

Try-on Network.” Available:

https://openaccess.thecvf.com/content_cvpr_2018/papers/Han_VITON_An_I

mage-Based_CVPR_2018_paper.pdf

[10] S. Jandial, A. Chopra, K. Ayush, M. Hemani, A. Kumar, and B. Krishnamurthy,

“SieveNet: A Unified Framework for Robust Image-Based Virtual Try-

On,” arXiv.org, 2020. https://arxiv.org/abs/2001.06265 (accessed May 02,

2025).

APPENDIX

A-1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix A

A.1 Code Sample

Segmentation.py

import cv2

import torch

import base64

import numpy as np

from fastapi import FastAPI, HTTPException, File, UploadFile, Form

from pydantic import BaseModel

from fastapi.middleware.cors import CORSMiddleware

import io

from sam2.build_sam import build_sam2

from sam2.sam2_image_predictor import SAM2ImagePredictor

from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator

from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection

from PIL import Image

Create FastAPI app

app = FastAPI(title="SAM2 Segmentation API")

Add CORS middleware

app.add_middleware(

 CORSMiddleware,

 allow_origins=["*"],

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

Setup CUDA and model configurations

APPENDIX

A-2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

if torch.cuda.get_device_properties(0).major >= 8:

 torch.backends.cuda.matmul.allow_tf32 = True

 torch.backends.cudnn.allow_tf32 = True

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Load GroundingDINO

grounding_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-

dino-tiny")

grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(

 "IDEA-Research/grounding-dino-tiny"

).to(DEVICE)

CHECKPOINT = "checkpoints/sam2.1_hiera_tiny.pt"

CONFIG = "configs/sam2.1/sam2.1_hiera_t.yaml"

Load the model

sam2_model = build_sam2(CONFIG, CHECKPOINT, device=DEVICE,

apply_postprocessing=False)

mask_generator = SAM2AutomaticMaskGenerator(sam2_model)

@app.get("/")

async def root():

 return {"message": "SAM2 Segmentation API is running. Use POST /segment

endpoint."}

@app.post("/segment")

async def segment_image(file: UploadFile = File(...)):

 try:

APPENDIX

A-3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 contents = await file.read()

 image_pil = Image.open(io.BytesIO(contents)).convert("RGB")

 image_np = np.array(image_pil)

 # Step 1: detect all clothing items

 inputs = grounding_processor(

 images=image_pil,

 text="clothes . shirt . t-shirt . pants . dress . jacket . coat . skirt . blouse .

sweater . hoodie . jeans . trousers . shorts . gown . jumpsuit .",

 return_tensors="pt"

)

 inputs = {k: v.to(DEVICE) for k, v in inputs.items()}

 with torch.no_grad():

 outputs = grounding_model(**inputs)

 results = grounding_processor.post_process_grounded_object_detection(

 outputs,

 input_ids=inputs["input_ids"],

 box_threshold=0.35, text_threshold=0.25,

 target_sizes=[image_np.shape[:2]]

)

 boxes = results[0]["boxes"].cpu().numpy()

 if len(boxes) == 0:

 return {"error": "No clothes detected"}

 # Step 2: segment each with SAM2

 predictor = SAM2ImagePredictor(sam2_model)

 predictor.set_image(image_np)

 all_masks = []

 for box in boxes:

 masks, _, _ = predictor.predict(box=np.array([box]), multimask_output=False)

APPENDIX

A-4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if len(masks) > 0:

 mask_bool = masks[0].astype(bool)

 all_masks.append(mask_bool)

 if len(all_masks) == 0:

 return {"error": "No masks generated"}

 # Step 3: merge masks

 combined_mask = np.any(all_masks, axis=0) # shape: H x W, boolean mask

 # Step 4: crop or prepare output

 # optional: find bounding box around combined_mask

 ys, xs = np.where(combined_mask)

 y1, y2 = ys.min(), ys.max()

 x1, x2 = xs.min(), xs.max()

 # crop image_np

 cropped_img = image_np[y1:y2, x1:x2]

 # apply mask to crop

 cropped_mask = combined_mask[y1:y2, x1:x2]

 # build RGBA

 alpha = (cropped_mask.astype(np.uint8) * 255)

 cropped_rgba = np.dstack((cropped_img, alpha))

 # encode as base64 if you want

 _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_rgba,

cv2.COLOR_RGBA2BGRA))

 b64_img = base64.b64encode(buffer).decode("utf-8")

 return {"mask": b64_img}

 except Exception as e:

APPENDIX

A-5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 return {"error": str(e)}

if __name__ == "__main__":

 import uvicorn

 uvicorn.run(app, host="0.0.0.0", port=8080)

Image_to_text.py

from fastapi import FastAPI, File, UploadFile, Form

from google import genai

from google.genai import types

from google.cloud import firestore, storage

from pydantic import BaseModel

import enum

import uuid

import datetime

from fastapi.encoders import jsonable_encoder

import json

import os

from google.oauth2 import service_account

Define structured schema

class Category(enum.Enum):

 ALL = "all"

 UPPER = "top"

 BOTTOM = "bottom"

 FULL_BODY = "full_body"

APPENDIX

A-6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

class Occasion(enum.Enum):

 CASUAL = "Casual"

 FORMAL = "Formal"

 BUSINESS_OFFICE = "Business / Office"

 PARTY_CELEBRATION = "Party / Celebration"

 WEDDING = "Wedding"

 SPORTS_ACTIVE = "Sports / Active"

 TRAVEL_VACATION = "Travel / Vacation"

 LOUNGEWEAR_HOME = "Loungewear / Home"

 TRADITIONAL_CULTURAL = "Traditional / Cultural"

 SEASONAL_WEATHER = "Seasonal / Weather-based"

class ClothingItem(BaseModel):

 description: str

 category: Category

 color: str

 pattern: str

 style: str

 occasion: str

Smart Name Generation Function

def generate_smart_item_name(user_id: str, item_occasion: str, item_category: str,

item_style: str) -> str:

 """

 Generate smart names based on occasion like 'Casual 1', 'Formal 2', 'Business 3',

etc.

 based on existing items in the user's wardrobe

 """

 try:

APPENDIX

A-7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # Map occasion text to proper display name

 occasion_mapping = {

 "casual": "Casual",

 "formal": "Formal",

 "business": "Business",

 "office": "Business",

 "business / office": "Business",

 "party": "Party",

 "celebration": "Party",

 "party / celebration": "Party",

 "wedding": "Wedding",

 "sports": "Sports",

 "active": "Sports",

 "sports / active": "Sports",

 "travel": "Travel",

 "vacation": "Travel",

 "travel / vacation": "Travel",

 "loungewear": "Loungewear",

 "home": "Loungewear",

 "loungewear / home": "Loungewear",

 "traditional": "Traditional",

 "cultural": "Traditional",

 "traditional / cultural": "Traditional",

 "seasonal": "Seasonal",

 "weather": "Seasonal",

 "seasonal / weather-based": "Seasonal"

 }

 # Determine base name from occasion first, then style, then category

 occasion_lower = item_occasion.lower().strip()

APPENDIX

A-8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 style_lower = item_style.lower().strip()

 base_name = None

 # Try to match occasion first

 for key, value in occasion_mapping.items():

 if key in occasion_lower:

 base_name = value

 break

 # If no occasion match, try style

 if not base_name and (style_lower and

 style_lower != "unknown" and

 style_lower != "test clothing item" and

 style_lower != "not specified" and

 style_lower != ""):

 # Map common styles to occasions

 if "casual" in style_lower:

 base_name = "Casual"

 elif "formal" in style_lower:

 base_name = "Formal"

 elif "business" in style_lower or "office" in style_lower:

 base_name = "Business"

 elif "party" in style_lower or "evening" in style_lower:

 base_name = "Party"

 elif "sport" in style_lower or "active" in style_lower:

 base_name = "Sports"

 else:

 base_name = item_style.capitalize()

APPENDIX

A-9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # If no occasion or style match, use category as fallback

 if not base_name:

 if item_category.lower() == "top":

 base_name = "Top"

 elif item_category.lower() == "bottom":

 base_name = "Bottom"

 elif item_category.lower() == "full_body":

 base_name = "Outfit"

 else:

 base_name = "Item"

 # Query existing items with the same base name pattern

 user_items_ref =

db.collection("users").document(user_id).collection("wardrobeItems")

 existing_items = user_items_ref.get()

 # Count items with similar style/base name

 count = 0

 for item_doc in existing_items:

 item_data = item_doc.to_dict()

 existing_display_name = item_data.get("display_name", "")

 # Check if this item has the same base name

 if existing_display_name.startswith(base_name + " "):

 try:

 # Extract number from existing name like "Casual 3"

 number_part = existing_display_name.split(" ")[-1]

 if number_part.isdigit():

 item_number = int(number_part)

APPENDIX

A-10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 count = max(count, item_number)

 except:

 continue

 # Generate new name with next number

 new_number = count + 1

 smart_name = f"{base_name} {new_number}"

 print(f"Generated smart name: '{smart_name}' for occasion='{item_occasion}',

style='{item_style}', category='{item_category}'")

 return smart_name

 except Exception as e:

 print(f"Error generating smart name: {e}")

 # Fallback to simple naming

 return f"Item {datetime.datetime.now().strftime('%m%d%H%M')}"

Initialize FastAPI & Gemini

app = FastAPI(title="Clothing Metadata API")

client = genai.Client() # Gemini API client

Initialize Firebase with credentials

try:

 # Path to your service account key file

 credentials_path = "vto-app-f7833-firebase-adminsdk-fbsvc-ea90c9d06d.json" #

Place this file in the same directory

 if os.path.exists(credentials_path):

 # Load credentials from file

APPENDIX

A-11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 credentials =

service_account.Credentials.from_service_account_file(credentials_path)

 db = firestore.Client(credentials=credentials)

 storage_client = storage.Client(credentials=credentials)

 bucket = storage_client.bucket("vto-app-f7833.firebasestorage.app")

 print(" Firebase credentials loaded successfully")

 else:

 print(f" Credentials file not found: {credentials_path}")

 print("Please download firebase-credentials.json from Firebase Console")

 exit(1)

except Exception as e:

 print(f" Firebase initialization failed: {e}")

 exit(1)

@app.post("/categorize/{user_id}")

async def categorize_clothing(user_id: str, file: UploadFile = File(...)):

 try:

 # Read uploaded image

 image_bytes = await file.read()

 # Prompt Gemini to generate description + structured JSON

 prompt = (

 "Interpret this clothing item and provide:\n"

 "1. A simple description.\n"

 "2. Structured JSON with fields:\n"

 " - description (text)\n"

 " - category (enum: all, top, bottom, full_body)\n"

 " - color (text)\n"

 " - pattern (text)\n"

 " - style (text)\n"

APPENDIX

A-12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 " - occasion (choose from: Casual, Formal, Business / Office, Party /

Celebration, Wedding, Sports / Active, Travel / Vacation, Loungewear / Home,

Traditional / Cultural, Seasonal / Weather-based)\n"

 "\nFor occasion field, pick the most appropriate from the list above. If

multiple apply, choose the primary one."

)

 # Call Gemini with structured output

 response = client.models.generate_content(

 model="gemini-2.5-flash",

 contents=[

 types.Part.from_bytes(

 data=image_bytes,

 mime_type="image/png"

),

 prompt

],

 config={

 "response_mime_type": "application/json",

 "response_schema": ClothingItem,

 "thinking_config": types.ThinkingConfig(thinking_budget=0) # disables

extra thinking

 }

)

 # Parse Gemini output safely

 try:

 structured_json = json.loads(response.text)

 except Exception:

 structured_json = {"error": "Failed to parse Gemini output", "raw_text":

response.text}

APPENDIX

A-13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # Generate smart name based on AI analysis results

 item_occasion = structured_json.get("occasion", "")

 item_style = structured_json.get("style", "")

 item_category = structured_json.get("category", "other")

 smart_name = generate_smart_item_name(user_id, item_occasion,

item_category, item_style)

 # Upload image to Firebase Storage - FIXED PATH

 item_id = str(uuid.uuid4())

 # Use PNG format to preserve transparency from segmentation

 storage_path = f"users/{user_id}/wardrobe/{item_id}.png"

 blob = bucket.blob(storage_path)

 # Upload with error handling

 try:

 blob.upload_from_string(image_bytes, content_type="image/png")

 print(f" Successfully uploaded to Firebase Storage")

 except Exception as upload_error:

 print(f" Upload failed: {upload_error}")

 raise upload_error

 # Make blob public and generate proper URL

 try:

 blob.make_public()

 print(f" Successfully made blob public")

 except Exception as public_error:

 print(f" Make public failed: {public_error}")

 print(f" Continuing with URL generation...")

APPENDIX

A-14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 bucket_name = bucket.name

 blob_name = blob.name.replace("/", "%2F") # URL encode the path

 image_url =

f"https://firebasestorage.googleapis.com/v0/b/{bucket_name}/o/{blob_name}?alt=me

dia"

 print(f"=== IMAGE UPLOAD DEBUG ===")

 print(f"User ID: {user_id}")

 print(f"Item ID: {item_id}")

 print(f"Storage path: {storage_path}")

 print(f"Bucket name: {bucket_name}")

 print(f"Blob name (encoded): {blob_name}")

 print(f"Generated URL: {image_url}")

 print(f"File name: {file.filename}")

 print(f"Image bytes size: {len(image_bytes)}")

 print("=========================")

 # Save metadata + image URL to Firestore with error handling

 try:

 doc_ref =

db.collection("users").document(user_id).collection("wardrobeItems").document(item

_id)

 firestore_data = {

 "image_name": file.filename,

 "image_url": image_url,

 "metadata": structured_json,

 "timestamp": datetime.datetime.utcnow().isoformat(),

 "display_name": smart_name # Generated smart name

 }

 doc_ref.set(jsonable_encoder(firestore_data))

 print(f" Successfully saved to Firestore")

APPENDIX

A-15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 print(f"Document path: users/{user_id}/wardrobeItems/{item_id}")

 except Exception as firestore_error:

 print(f" Firestore save failed: {firestore_error}")

 raise firestore_error

 return {

 "message": "Clothing categorized and saved to Firebase",

 "item_id": item_id,

 "image_url": image_url,

 "metadata": structured_json,

 "timestamp": datetime.datetime.utcnow().isoformat()

 }

 except Exception as e:

 return {"error": str(e)}

@app.post("/upload_outfit/{user_id}")

async def upload_outfit(

 user_id: str,

 file: UploadFile = File(...),

 outfit_name: str = Form(...) # User provides outfit name

):

 try:

 # Read uploaded image

 image_bytes = await file.read()

 # Prompt Gemini to generate outfit occasion + metadata

 prompt = (

 "Analyze this outfit image and provide structured JSON with:\n"

 "1. description (short text)\n"

APPENDIX

A-16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 "2. occasion (choose one: Casual, Formal, Business / Office, Party /

Celebration, "

 "Wedding, Sports / Active, Travel / Vacation, Loungewear / Home,

Traditional / Cultural, Seasonal)\n"

 "3. color (main colors)\n"

 "4. style (short style description)\n"

)

 # Call Gemini for structured metadata

 response = client.models.generate_content(

 model="gemini-2.5-flash",

 contents=[

 types.Part.from_bytes(data=image_bytes, mime_type="image/png"),

 prompt

],

 config={

 "response_mime_type": "application/json"

 }

)

 # Parse Gemini response safely

 try:

 structured_json = json.loads(response.text)

 except Exception:

 structured_json = {"error": "Failed to parse Gemini output", "raw_text":

response.text}

 # Generate unique ID for outfit

 item_id = str(uuid.uuid4())

 # Firebase Storage path (outfits)

APPENDIX

A-17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 storage_path = f"users/{user_id}/outfits/{item_id}.png"

 blob = bucket.blob(storage_path)

 try:

 blob.upload_from_string(image_bytes, content_type="image/png")

 blob.make_public()

 print(f" Uploaded outfit image to Storage")

 except Exception as e:

 print(f" Upload failed: {e}")

 raise e

 # Generate public URL

 bucket_name = bucket.name

 blob_name = blob.name.replace("/", "%2F")

 image_url =

f"https://firebasestorage.googleapis.com/v0/b/{bucket_name}/o/{blob_name}?alt=me

dia"

 # Firestore path (outfits)

 try:

 doc_ref =

db.collection("users").document(user_id).collection("outfits").document(item_id)

 firestore_data = {

 "outfit_name": outfit_name, # user-provided

 "image_url": image_url,

 "metadata": structured_json,

 "timestamp": datetime.datetime.utcnow().isoformat()

 }

 doc_ref.set(jsonable_encoder(firestore_data))

 print(f" Saved outfit metadata to Firestore")

 except Exception as firestore_error:

APPENDIX

A-18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 print(f" Firestore save failed: {firestore_error}")

 raise firestore_error

 return {

 "message": "Outfit uploaded and saved successfully",

 "item_id": item_id,

 "outfit_name": outfit_name,

 "image_url": image_url,

 "metadata": structured_json

 }

 except Exception as e:

 return {"error": str(e)}

Run locally

if __name__ == "__main__":

 import uvicorn

 uvicorn.run(app, host="0.0.0.0", port=8000)

APPENDIX

A-19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A.2 Poster

