Virtual Try-on Platform
By
Yeaw Wooi Tong

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology
(Kampar Campus)

JUNE 2025

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ms Tong
Dong Ling who has given me this bright opportunity to engage in virtual try on project.
It is my first step to establish a career in VTO field. A million thanks to you.

Finally, I must say thanks to my parents and my family for their love, support, and

continuous encouragement throughout the course.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Yeaw Wooi Tong. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the
requirements for the degree of Bachelor of Computer Science (Honours) at
Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal
represents the work of the author, except where due acknowledgment has
been made in the text. No part of this Final Year Project proposal may be
reproduced, stored, or transmitted in any form or by any means, whether
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

The project focuses on developing a comprehensive Virtual Try-On (VTO) application
that integrates Deep learning (DL) technologies. The aim is to provide users with an
immersive experience to visualize and customize their full-body look, including
clothing, makeup. This solution addresses the limitations of existing virtual try-on
systems, which are often constrained to specific categories and reliant on in-store
systems. The proposed VTO app is designed to offer a complete styling experience,
allowing users to experiment with their entire look within one platform. The use of DL
enhances effectiveness and realism of the Virtual Try-On (VTO) system. The app also
tackles challenges related to hygiene and time consumption by eliminating the need for
physical try-ons in stores, making it a timely solution in the post-pandemic digital
shopping era. The project employs Android as the development platform to ensure
accessibility across a wide range of devices, particularly in emerging markets. By
leveraging advanced technologies, the app promises a more convenient, and engaging

shopping and styling experience.

Area of Study (Minimum 1 and Maximum 2): Deep Learning

Keywords (Minimum 5 and Maximum 10): Mobile Application, Deep Learning,
Virtual Try-On System, Segmentation, Al-Driven Image Synthesis

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i
ACKNOWLEDGEMENTS ii
COPYRIGHT STATEMENT iii
ABSTRACT iv
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES Xi
LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1
1.1 Problem Statement and Motivation 2
1.2 Objectives 3
1.3 Project Scope and Direction 3
1.4 Contributions 3
1.5 Report Organization 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 Existing VTO Application 6
2.1.1 YouCam Makeup App 6
2.1.2 Smart Mirrors in Retail 8
2.1.3 Closet Organization Apps (Pureple, Cladwell, 10
Closet+) 12

2.1.4 Style.me: AR-Based Virtual Fashion Try-On
2.2 Previous work on VTO 13
2.2.1 VITON: An Image-based Virtual Try-on Network 13
2.2.2 SieveNet: A Unified Framework for Robust Image- 15

Based Virtual Try-On
2.3 Summary of Strengths and Limitations of Existing VTO 20
Solutions

2.4 Proposed Solution 21

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 System Methodology/Approach

3.1
3.2

33

System Methodology

System Design Diagram

3.2.1 System Architecture Diagram

3.2.2 Use Case Diagram

3.2.3 Activity Diagram

3.2.4 Al Model Workflow and Performance

Timeline
3.3.1 FYPI
332 FYP2

CHAPTER 4 System Design

4.1

System Block Diagram

4.2 Module Design

4.3

4.4

Database Design and Firebase Schema

4.3.1 Firestore Data Structure Overview

4.3.2 Firebase Storage Data Structure Overview

4.3.3 Firestore Path and Field Design

Model Selection and Architecture

4.4.1 GroundingDINO + SAM2 (Segmentation Pipeline)
4.4.2 KolorVTO (Virtual Try-On Model)

4.4.3 Banuba SDK (Makeup Try-On Module)

4.4.4 Google Gemini (Al Categorization Model)

CHAPTER 5 System Implementation

5.1
52
53
54

Hardware Setup
Software Setup
Settings and Configuration
System operation
5.4.1 User Authentication System
5.4.2Wardrobe Management and Clothing Segmentation
5.4.3 Try-On Image Generation with KolorVTO
5.4.4 Makeup Try-On
5.4.5 Outfit Management

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23
23
26
26
27
29
30
33
33
34

35
35

37
39
39
40
41
47
47
47
47
48
49
49
50
53
58
58
61
63
66
69

Vi

5.4.6 Event Screen 71

5.4.7 Profile Screen 73
5.5 Implementation Issues and Challenges 74
CHAPTER 6 System Evaluation and Discussion 76
6.1 System Testing and Performance Metrics 76
6.1.1 Black-Box Testing 76
6.2 Testing Setup and Result 77
6.2.1 Testing Setup 77
6.2.2 Testing Results 78
6.3 Objective Evaluation 79
CHAPTER 7 Conclusion and Recommendation 81
7.1 Conclusion 81
7.2 Recommendation 82
REFERENCES 83
APPENDIX A
A.1 Code Sample A-1
A.2 Poster A-19
vii

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure Number

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15

Figure 2.16

Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8
Figure 4.1

LIST OF FIGURES

Title

YouCam Interface

Al Fashion

Al Tools

Smart Mirrors

Pureple

Cladwell

Closet+

Style.me

two-stage pipeline comprising

side-by-side comparisons

Inference Pipeline of the SieveNet framework
Coarse-to-Fine Warping Module

Conditional Segmentation Mask Prediction module

Segmentation-Assisted Texture Translation module

Quantitative comparison of Proposed vs CP-VTON.

GMM, TOM
Side-by-side comparison images
Agile Methodology

System Architecture Diagram

Use Case Diagram
Activity Diagram
Workflow of SAM2
Workflow of KolorVTO
FYP1 Timeline

FYP2 Timeline
System Block Diagram

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

O o0 3

19
23
26

27
29
31
32
33

34
35

viii

Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14

Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24

Firebase Storage

User collection

Wardrobe collection

Outfit collection

Makeup collection

Event collection

Android Studio setup

Integration of Firebase

Integration of Banuba SDK

Anaconda environment (env1) for Grounded Sam?2
Gemini Al categorization backend (.venv) with

Firebase

Gradle dependencies for Firebase and Banuba SDK.

Firebase Authentication

Firestore

Firebase Storage

Dependency installation in Anaconda env1
Gemini backend environment configuration
Configuration of KolorVTO API

Banuba SDK configuration

Ngrok configuration with the generated forwarding
URL

Login Screen

Registration Screen

Onboarding Redirection Screen

Main Screen

Add Clothes

Clothes to be segment

Confirm segmented clothes

Clothing item

Segmented clothing item displayed in the wardrobe

Try on page

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40
41

42
43
45
46
50
51
51
52
53

54
54
55
55
56
56
57
57
58

59
59
60
60
62
62
62
62
63
64

Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 5.39
Figure 5.40
Figure 5.41
Figure 5.42
Figure 5.43
Figure 5.44
Figure 5.45
Figure 5.46
Figure 5.47
Figure 5.48
Figure 5.49
Figure 5.50
Figure 5.51

clothing try on page

Choose a clothes
Try on screen
Try on result
Combine mode
Try on result
Saving result
Successfully save
Selection

Select outfit
Before makeup
After makeup
Before makeup
After makeup
Saving Look
Outfit page
Outfit detail

Outfit information

Makeup Storage Page

Look detail
Event Page
Event page
Create event
Event Detail
Notifications
Profile page
Edit Profile

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

64
64
64
65
65
65
65
66
67
67
67
67
68
68
68
69
69
70
70
70
72
72
72
72
73
74
75

Table Number

Table 2.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 5.1
Table 5.2
Table 6.1

LIST OF TABLES

Title

Summary of Strengths and Limitations
Data sturcture

User collection

Wardrobe collection

Outfit collection

Makeup collection

Event collection

Specifications of laptop

Specifications of mobile device

Testing Results

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

20
40
41
42
43
44
45
49
49
79

Xi

LIST OF ABBREVIATIONS

VTO Virtual Try-On

SDM Supervised Descent Method
Al Artificial Intelligence

DL Deep Learning

SAM 2 Segment Anything 2

AR Augmented Reality

TPS thin-plate spline

Xii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

CHAPTER 1

Introduction

The rapid advancements in digital technology have significantly transformed
industries, including the fashion sector. Traditionally, personal styling and fashion
decisions required physical interactions, such as trying on clothes, applying makeup,
and selecting accessories. These activities, typically done in physical stores, involved
consumers trying on multiple outfits to find the right combination for events or social
gatherings. This process of repeatedly changing and adjusting outfits to achieve the
desired look is time-consuming and often exhausting. Virtual try-on (VTO) systems,
which allow users to visualize clothing and accessories on their bodies before making
a purchase, have become an integral part of the fashion industry's digital evolution [1].

In response to the COVID-19 pandemic, the retail landscape, especially in non-
essential sectors like fashion, witnessed significant changes as consumers shifted from
in-store shopping to online platforms. With the pandemic exacerbating hygiene
concerns, VIO systems have gained even more importance, providing a safer,
contactless shopping experience [2]. The growing demand for online shopping has
made VTO systems crucial for consumers who seek convenience and flexibility in their
shopping experience.

This project seeks to address these inefficiencies by developing a Virtual Try-
On Application that offers full-body customization. The app allows users to virtually
simulate their entire look, including clothes, makeup before stepping out or attending
an event. Unlike existing applications, which tend to focus on specific aspects of styling
(such as makeup or clothing), this app integrates several styling elements, offering users
a complete and immersive customization experience. Moreover, the application
enhances the online shopping experience by providing a realistic preview of how
products will look on the user’s body. This feature reduces the need for physical try-
ons, lowering the likelihood of returns. Additionally, some current virtual try-on
systems are only available in physical stores, limiting their convenience and
accessibility. The Virtual Try-On App solves this issue by allowing users to style

themselves from anywhere, providing engaging experience. According to Kavin et al.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

(2024), such applications, using tools like OpenCV and Unity3D, reduce the need for
physical try-ons, making the shopping process more efficient and user-friendly.

The project will implement Deep learning technologies, enable users to
visualize their selected products in real-time. By generating accurate simulations, users
can confidently make styling decisions without physically interacting with the items,
thus creating a seamless, efficient, and convenient shopping and styling experience.
The ability to interact with virtual garments enhances the shopping experience by

making it more immersive and realistic [4].

1.1 Problem Statement and Motivation

The current landscape of virtual fashion and styling tools often lacks an all-
encompassing solution that allows users to fully visualize and customize their
appearance. Most digital fashion tools are either limited to specific categories, such as
makeup or clothing, or confined to physical store systems that require users to be on-
site. This creates a fragmented and inconvenient experience for consumers who want
to coordinate their entire look for an event or occasion.

Additionally, physically trying on clothes and makeup in stores is not only time-
consuming but also a source of fatigue for many consumers. The repetitive process of
changing outfits to find the perfect combination often leads to dissatisfaction with the
shopping experience. The COVID-19 pandemic has further exacerbated this issue, with
growing concerns about hygiene when using shared fitting rooms or makeup testers in
stores. As Ghodhbani et al. (2022) suggest, the pandemic has increased consumer
demand for contact-free shopping solutions, further highlighting the need for virtual
try-on systems that offer a comprehensive and user-friendly experience.

The Virtual Try-On App aims to solve these problems by offering a single
platform where users can visualize their entire look in one go. By using Deep learning,
the app provides accurate simulations of products, allowing users to make informed
decisions about their styling choices without the need for physical interactions. This not
only enhances convenience but also addresses consumer concerns about hygiene and
time efficiency.

The motivation for developing the Virtual Try-On App stems from the desire to
improve both the user experience in personal styling and the online shopping process.

Traditionally, achieving the perfect look for events or daily wear requires significant
2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

time spent trying on multiple outfits. This is often a frustrating and exhausting process,
particularly when consumers are uncertain about how the different elements of their
look will come together. The Virtual Try-On App seeks to eliminate this issue by
allowing users to experiment with their entire look virtually, reducing the time and
effort involved in achieving their desired appearance.

In the digital age, consumers are increasingly turning to online shopping for
convenience, but the inability to physically try on items remains a significant barrier.
This project aims to bridge the gap between the physical and virtual shopping
experience by providing users with a reliable and realistic simulation of how clothes,
makeup will fit and look on them. The use of advanced technologies, such as Deep
learning, further enhances the user experience by offering accurate visualizations that
mimic real-world outcomes.

The app is also driven by the need to offer a more hygienic and time-efficient
alternative to traditional in-store experiences. By enabling users to virtually customize
their look from the comfort of their own home, the app eliminates the need for physical
try-ons, reducing potential health risks and saving time. This shift to a virtual solution
offers consumers a greater level of convenience, allowing them to style themselves

without the constraints of physical locations.

1.2 Project Objectives
1. To develop an Android-based Virtual Try-On (VTO) application:

The core objective of this project is to build a mobile app that functions on the
Android platform, making use of the operating system's flexibility and broad user
base. By targeting Android, the app will be accessible to a wide range of devices,

from high-end smartphones to budget-friendly options, thus increasing its reach.
2. To integrate Deep learning technologies :

The app leverages deep learning models for clothing segmentation and try-on image
generation. These technologies enhance the user experience by accurately

combining clothing items with user photos and enabling real-time virtual try-ons.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

3. To enable full-body customization:

The app will allow users to try on clothing, makeup in real time, offering a full-
body customization experience. This will enable users to visualize their entire look

in one seamless experience, eliminating the need for physical try-ons in stores.

1.3 Project Scope and Direction

The scope of this project is to develop an Android-based Virtual Try-On (VTO)
application that integrates Deep Learning (DL) technologies to provide users with an
seamless virtual styling experience. The app will allow users to virtually try on clothing,
makeup. A key feature of the project is its focus on full-body customization, enabling
users to visualize a cohesive look by trying on multiple fashion items within a single
platform. The app is designed as a mobile application, ensuring users can conveniently
use the app from anywhere and at any time, making it a flexible solution for modern
lifestyles. By optimizing the app for a broad range of Android devices, the project
ensures wide accessibility across various smartphones, catering to a diverse audience.
The final product will be a fully functional, scalable, and versatile VTO app that
delivers an accessible and accurate virtual styling solution to meet modern consumer

needs.

14 Contributions

The Virtual Try-On App introduces several important contributions that have
the potential to transform the way users interact with fashion and personal styling. One
of the most significant contributions of the app is its ability to offer a complete and
cohesive full-body customization experience. Unlike existing apps that focus on
individual aspects of styling, such as makeup or clothing, this app brings together all
the necessary elements such as clothing and makeup into one integrated platform. Users
can experiment with their entire look within a single app, allowing for a smoother and
more enjoyable styling process.

Another major contribution of the app is the use of deeo learning technologies

to deliver a realistic user experience. By leveraging DL, the app enables users to

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

visualize their chosen products in real time. The incorporation of deep learning allows
the app to refine these simulations ensuring a more accurate and customized experience.

Additionally, the app offers a convenient, store-free experience that
significantly enhances the online shopping process. Users no longer need to visit
physical stores to try on items or rely on store-based virtual try-on systems. Instead, the
app allows them to experiment with their look anytime and anywhere, making the
process of personal styling more accessible and flexible. The app’s ability to provide
realistic visual try-on previews, reduces the chances of purchasing clothes that do not
suit them, ultimately lowering return rates and improving overall user satisfaction. As
noted by Ghodhbani et al. (2022), such advancements can significantly improve the
user experience by reducing the need for physical store visits and minimizing the

likelihood of returns due to poor fit.

1.5 Report Organization

This report is structured into several chapters to comprehensively present the
development of the Virtual Try-On (VTO) mobile application. Chapter 1 introduces
the project by outlining the background, motivation, objectives, scope, and
contributions. Chapter 2 provides a literature review of existing VTO applications and
related research, highlighting their strengths, weaknesses, and the research gaps this
project aims to address. Chapter 3 details the proposed methodology, including system
design specifications, architecture, tools and technologies, AI model workflows, and
performance requirements. Chapter 4 presents the system design, covering
authentication, wardrobe management, clothing segmentation, and try-on image
generation. Chapter 5 discusses system implementation, including hardware and
software setup, module integration, and operational workflows. Chapter 6 focuses on
system testing and evaluation, outlining the testing strategies, setup, and results.
Finally, Chapter 7 concludes the report by summarizing the project’s outcomes and

proposing future directions for enhancement.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

CHAPTER 2

Literature Reviews

2.1 Existing VTO Application

The rapid development of deep learning technologies has revolutionized the
fashion and beauty industries. Virtual Try-On (VTO) systems allow users to visualize
clothing, makeup, in a virtual environment, offering a more interactive and engaging
shopping experience. However, existing VTO solutions have limitations in terms of
usability, accessibility, and completeness, which often hinder their adoption and

effectiveness.
2.1.1 YouCam Makeup App

The YouCam Makeup app, developed by Perfect Corp., is a leading example of
beauty tech that leverages AR and machine learning to provide users with a
comprehensive virtual try-on experience for makeup. Launched with the aim of
enhancing the digital beauty shopping experience, YouCam allows users to apply
virtual makeup, analyze their skin, and receive personalized product recommendations
based on their unique features. The app combines elements of social commerce with
beauty tech, making it not only a VTO platform but also a tool for Al-powered skincare

analysis, livestream tutorials, and personalized beauty consultations.

A standout feature of the app is its ability to map over 200 facial landmarks
using patented AgileFace technology, which allows for the precise application of virtual
makeup and real-time facial retouching. The skin analysis tool evaluates factors such
as wrinkles, dark circles, and moisture levels, generating a "skin age" score for users,
which can prompt purchases from partnering beauty brands to "improve" the user's skin.
This personalization and integration with beauty brands have led to increased
engagement and higher conversion rates during the pandemic, with brand partners’

conversion rates increasing by up to two and a half times[5].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

BERSAMA DL 1:04 ¥ Al @

YouCam Makeup

Chreats an,
1D,PHOTO)
by mssey

(@r=) (@)

O ¢ o @

Al Tools Al Hairstyle Makeup

[q(i :

= |

y)
f 8

4 Upgrade Your Wardrobe
with Al Fashion

Feminine Masculine

2CIF'Y Swimsuit Trendy Casual Business Photo She

Figure 2.2 Al Fashion

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

—
Al Tools

= Ay
Al Fashion

N

Al'Headshot

T

8 ¢

i! X\
Portrait Avatar »
g

Figure 2.3 Al Tools
Limitations

YouCam Makeup delivers a solid virtual makeup experience through AR and Al, yet
its capability is focused on beauty aspects such as makeup application, skin analysis,
and facial retouching. It has no feature for clothing try-on or fashion styling. Hence,
users looking for a complete styling experience including clothes must rely on other
apps. The lack of clothing integration renders it less convenient for full-body virtual

try-on or fashion coordination.

2.1.2 Smart Mirrors in Retail

The integration of smart mirrors in retail stores has brought a transformative
change to the shopping experience. Smart mirrors, equipped with augmented reality
(AR) and artificial intelligence (Al), allow customers to virtually try on outfits without
physically changing clothes. As Daiani (2024) explains, smart mirrors offer users
contextually relevant environments, such as a beach or wedding setting, enabling them

to visualize how an outfit would look in a particular situation. The use of these

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

contextual features enhances both customer satisfaction and decision-making, as users

can better assess the suitability of their attire for specific events.

Smart mirrors have also been shown to improve customer engagement by
offering interactive features such as gesture recognition, voice commands, and
personalized recommendations based on previous shopping behavior [6]. These
technologies create a more immersive and convenient shopping experience, enabling
users to make informed purchase decisions without the need to physically try on
multiple outfits. For instance, interactive lighting controls allow customers to visualize
how an outfit looks in different lighting environments, such as outdoor or indoor

settings, enhancing the realism of the virtual try-on experience.

Figure 2.4 Smart Mirrors

Limitations

Smart mirrors provide interactive in-store experiences by enabling users to try clothes
virtually with AR and contextual environments. However, they are meant for physical
stores and thus not accessible to users shopping online or at home. In addition, they
usually come with expensive hardware and upkeep, limiting them to high-end stores.
Most smart mirrors also lack makeup try-on capability, so they are unable to offer an

end-to-end styling experience that includes both fashion and beauty.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.3 Closet Organization Apps (Pureple, Cladwell, Closet+)

Closet organization apps such as Pureple, Cladwell, and Closet+ provide users
with the ability to digitally catalog and manage their clothing, helping them better
visualize, plan, and organize outfits [7]. While these apps serve as virtual wardrobe

managers, they focus exclusively on clothing.

e Pureple: Offers features like cataloging clothes, planning outfits, and a
community-driven outfit suggestion system, but focuses solely on clothing. It
suffers from an ineffective outfit suggestion algorithm, frequent advertisements,

and a poor user interface.
g
PUREP

Categorising Clothes App-Suggested Outfits Community-Styled Outfits

(= 2 (=)\ (F——)

< : » Q9a

Styte Omers Sty Me

- O o]

P Styted Far Mo My Commurty Shares
’ oo Stymts Too Outtits

sy

o. -

Do you want community to
create outfits for you from

é q‘ o gl
A
', i -

) S 3

L » e

o

Figure 2.5 Pureple

e Cladwell: Provides weather-appropriate outfit suggestions and allows users to
track their wardrobe utilization. However, it only focuses on clothing

management and do not offer try-on capabilities.

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Large Catalogue

<

A

CLADWELL

Upload Clothes

(x

Ly
nn

.
nnr
O
M Y,

X,

g

£

H
clxlic|clx

—. %

[@ CUSTOM PANTS

o

Figure 2.6 Cladwell

Capsule Wardrobes
/c»n., e nu\
W Closer Y

.

+ Comnte Vo Capuste

B S Create New Capsule

V74

qQqwertywuiop
alsidiflglih]ljlk]!

& zZ x ¢c vbnmi®

\. /

e Closet+: A simpler app focused on organizing clothes, creating outfits, and

planning what to wear for future events. It requires manual uploads of clothing

photos and do not offer try-on capabilities.

Creating Outfits

Work Casual

Outfit Planning

Figure 2.7 Closet+

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Packing List

T,

Staycation

11

CHAPTER 2

Limitations

These apps are largely virtual closet organizers. While they help users manage,
plan, and sort through their outfits, they don't include virtual try-on simulation. The
users cannot view dynamic pictures of themselves wearing the clothes; all they get is
static pictures of the clothing, with no capability to view the clothing on them. Further,
they also do not permit makeup styling and facial beauty, and most don't include Al-
based outfit suggestions. This restricts their use to simple wardrobe management

instead of an active, interactive fashion experience.

2.1.4 Style.me: AR-Based Virtual Fashion Try-On

Style.me is an advanced virtual try-on platform that integrates AR and Al to provide
users with an immersive experience in trying on clothing items virtually. The app
allows users to visualize clothing on realistic 3D avatars generated based on their body
measurements. Style.me uses deep learning algorithms and computer vision to enhance
the precision of fit and garment simulation, ensuring that users can visualize how
clothes will fit and drape on their bodies. A standout feature of Style.me is its focus on
offering a comprehensive virtual shopping experience. Unlike other apps that focus
solely on a single product category, Style.me integrates various types of clothing,
including tops, bottoms, dresses, and outerwear. It offers retailers and brands the ability
to showcase their collections in virtual form, enhancing the online shopping experience

and increasing engagement[8].

Experience fashion in-situ

AR Try-On for Footwear. Point your device and wear shoes in-situ with
motion tracking — web-view solution, no app required

CONTACTUS.

Figure 2.8 Style.me

12
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Limitations

Style.me uses Al and 3D avatars to mimic clothing try-ons with a virtual
dressing room experience that feels real. It does this only for individual pieces of
clothing that are already in the app through partnerships with fashion brands, however.
Users can't upload their own images of clothing they'd like to try on, which limits
personalization. Style.me is solely for clothing, too, and doesn't allow makeup or

accessories, so it can't offer a complete head-to-toe styling option.

2.2 Previous work on VTO
2.2.1 VITON: An Image-based Virtual Try-on Network
Overview and Strength

VITON (Virtual Try-On Network) is the very first image-based virtual try-on
system that was designed to clothe an individual in a target photo with an outfit from a
product image without relying on 3D body modeling (Han et al., 2018). This was a
departure from the conventional approaches that relied on costly and complex 3D scans
or mesh reconstructions. VITON also utilizes a two-stage coarse-to-fine generation
pipeline. During the first phase, a coarse image of the person with the target clothing is
generated by an encoder-decoder network based on a clothing-agnostic representation
such as pose heatmaps, body shape masks, and facial areas in order to retain important
visual information. The second stage continues to enhance the output by warping the
garment through thin-plate spline (TPS) transformation and blending it with the image
using a learned alpha mask, which helps in enhancing texture alignment and visual

realism [9].

One of the most potent arguments for VITON is that it is easily available, as it
functions solely on 2D RGB data and does not need depth data or 3D input. The
clothing-agnostic design allows successful preservation of pose and identity, and
renders the try-on result more realistic in appearance. Two-stage architecture enhances
visual quality in general, especially in depicting folds of clothes, texture, and garment

arrangement. Its input requirement compatibility also makes it extremely scalable and

13

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

deployable to actual online e-commerce platforms. VITON also employs perceptual

loss and L1 loss to further improve convergence at training and image realism.

Trained on the Zalando dataset that is image-diverse and richly annotated,
VITON has the ability to generalize to a diverse range of garments and body types, a
feature that adds to its real-world usability. In spite of all its weaknesses, VITON set
the baseline blueprint for most later try-on networks (Han et al., 2018). To show the
VITON architecture, Figure 2.8 can be used to demonstrate the two-stage pipeline
comprising: (1) the coarse try-on image generation via a U-Net architecture from pose
and segmentation maps, and (2) the refinement module with TPS warping and alpha
composition. Figure 2.9 can show side-by-side comparisons of the original image,
warped garment, and VITON's synthesized output, showing both its effectiveness and

limitations [9].

Multi-task Encoder-decoder Generator Sec 32 course Aesult [Aeference Image |

= \

Target Clothing C Clathing Mask M GT Mask M,

ﬁ | n - n
J
|
]

Shape Context |
Matching 2t

Person Represertation /7
— Porcapiuad
Loas

Gy

Refinement Network Sec 3.3

Warped Clothing 4"\
Composition Mask (@ Refined Result [Reference Image J
Apra Perceptual
" Compoation Loss
Coarse Result | e R -~

Figure 2.9 two-stage pipeline comprising

14

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Falwence Image Targat Cating Coarse Rasut Clothing Mask Wagad Coming Compoditon Mask Rafined Resudt

f

/

-
s

=
e

i

Figure 2.10 side-by-side comparisons

Limitations

Despite its pioneering contributions, VITON has several notable limitations. Firstly, the
model generates low-resolution outputs restricted to 256x192 pixels, which limits its
applicability in high-resolution contexts such as digital advertising or fashion catalog
production. Additionally, although VITON includes a refinement stage, it often
struggles to maintain high fidelity in garment textures—details like logos, text, or
embroidery are sometimes lost or blurred, especially under challenging conditions like
occlusion or inconsistent lighting. The model also exhibits sensitivity to body poses and
occlusions; it performs poorly when body parts overlap (e.g., crossed arms) or when
poses deviate significantly from the norm, leading to unrealistic overlaps or distortions
in the synthesized image. Moreover, VITON is primarily tailored for upper-body
garments and lacks the generalizability needed to handle full-body outfits or accessories
without significant reengineering. Lastly, the TPS-based warping used in VITON,
though effective to a degree, lacks the adaptability of newer deep learning-based spatial
transformation techniques, which limits its performance on more complex or layered

clothing items.

2.2.2 SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On

SieveNet is a remarkable enhancement of image-based virtual try-on (VTO)
systems that seeks to enhance the limitations of garment misalignment, artifact

generation, and poor pose adaptation typical of earlier models like CP-VTON. It is
15

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

designed with three separate modules: the Coarse-to-Fine Warping module, the
Conditional Segmentation Mask Prediction module, and the Segmentation-Assisted
Texture Translation module. These are combined through the utilization of novel loss
functions, such as a perceptual geometric matching loss and a duelling triplet loss, in
order to enhance both the photorealism and alignment of the eventual synthesized

result.

The overall framework, illustrated in Figure 2.10, starts with a target garment
and model input image. This pair is fed into the Coarse-to-Fine Warping module, which
conducts a two-stage warping of the garment to match the model pose. The Conditional
Segmentation module then produces a garment-conditioned semantic map, which
guides the ultimate Segmentation-Assisted Texture Translation module to synthesize a

coherent, artifact-free composite image.

Segmentisth
Mask Translated
Mol Testure
Tmage Prioe

'1 S——" il

Warpod Prodiet leage Feul Try-on
’;\‘ Expeciad Sep, Mask

Texture Transfer

Figure 2.11 Inference Pipeline of the SieveNet framework

The Coarse-to-Fine Warping module applies Thin-Plate Spline (TPS)
transformation hierarchically. In step one, a coarse warp roughly aligns the garment
with the model's silhouette through a 19-channel person representation. In step two, a
perceptual geometric matching loss further aligns the result by matching deep feature
distances in a VGG feature space. This two-stage strategy is demonstrated to boost the
accuracy of warping significantly, depicted in Figure 2.11, alongside comparing coarse

and fine warping results [10].

16

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

i

ﬂ . o I ;- i.o.l aa_éame_' ﬂ ﬂ
EB

(A) Coarse-to-fine Warping

Figure 2.12 Coarse-to-Fine Warping Module

Second, the Conditional Segmentation Mask Prediction module plays a
significant role in avoiding classic VTO pitfalls such as bleeding textures or incorrect
clothing placement under occlusion or complex poses. A UNet architecture is employed
to generate an "expected" segmentation mask to guide the final composition. Examples
of its effect, especially on challenging occluded instances, are demonstrated in Figure

2.12 [10].

Figure 2.13 Conditional Segmentation Mask Prediction module

The final Segmentation-Assisted Texture Translation module merges the
warped clothing and segmentation map to compose the ultimate try-on image. It blends
texture from unchanged areas of the original model image and creates the final
composition through a learned composition mask. Enhanced by a duelling triplet loss,
this module improves image realism by encouraging proximity to ground-truth images
and distance from previous-stage outputs. Figure 2.13 shows the heightened fidelity
and texture legibility afforded by this strategy [10].

17

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

...

L
i,
v
» >
-
Lo

Texture translation
priors

(C) Segmentation Assisted Texture Translation

Conv. Upsampling TPS Spatial o Feature Mask
. ‘ : " Regres 2 T
Encoder l Conv. Transformer Correlation i Composition
Decoder

Figure 2.14 Segmentation-Assisted Texture Translation module

Performance metrics reveal SieveNet's superiority over CP-VTON in structural
similarity (SSIM), multiscale SSIM, Frechet Inception Distance (FID), and Peak
Signal-to-Noise Ratio (PSNR). These are listed in Figure 2.13, which validates the
combined strength of every module within the architecture.Qualitatively speaking,

SieveNet is able to produce significantly more realistic outputs than CP-VTON [10].

Configuration SSIM | MS-SSIM | FID PSNR | IS

GMM + TOM (CP-VTON) | 0.698 | 0.746 200331 | 14544 | 2.66 £0.14
GMM + SATT 0.751 | 0.787 15.89 16.05 284 +0.13
C2F + SATT 0.755 | 0.794 14.79 16.39 | 2.80 = 0.08
C2F + SATT-D (SieveNet) | 0.766 | 0.809 14.65 16.98 | 2.82 = 0.09

Figure 2.15 Quantitative comparison of Proposed vs CP-VTON. GMM, TOM

The system demonstrates strong warping on diverse body poses and clothing types due
to the utilization of a two-stage transformation plan. The conditional segmentation
mask is especially effective at maintaining garment outlines and eliminating undesired
artifacts. In addition to this, duelling triplet loss encourages texture details and general

visual quality, even under occlusion. Side-by-side comparison images in Figure 2.14
18

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

illustrate these enhancements, where CP-VTON and SieveNet results are presented

comparatively.

Target Model Try-on Cloth CP-VTON Ours

o -

Wl s R A i

[N

Figure 2.16 Side-by-side comparison images

Overall, SieveNet is a high-quality standard of VTO research that combines
architectural novelty with specifically crafted loss functions, thereby yielding a flexible

and high-quality solution well-suited for practical fashion application.
Limitations

SieveNet faces several limitations in its current approach. One major challenge is its
limited occlusion handling, where it struggles with complex occlusions such as hair or
folded limbs. This results in artifacts and errors in the final try-on image, reducing
overall quality. Another limitation is its fixed input representation; SieveNet relies on
a fixed 19-channel person representation and handcrafted priors, which limits its
adaptability across datasets with different formats or image qualities, making it less
flexible in diverse scenarios. Additionally, SieveNet operates in a 2D framework

19

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

without 3D or depth awareness, which reduces its ability to represent garments

realistically, particularly for items that require contour adaptation, such as loose or

draping clothing. Without an understanding of spatial depth, SieveNet cannot provide

a fully realistic depiction of how clothes fit and move in three-dimensional space.

2.3 Summary of Strengths and Limitations of Existing VTO Solutions

Table 2.1 Summary of Strengths and Limitations

System/App Strengths Limitations
YouCam - Accurate virtual makeup with | - Only focuses on makeup and
Makeup AR- Facial landmark detection | skincare

(AgileFace)- Skin analysis and

beauty suggestions

- No clothing or full-body
styling features

Smart Mirrors

- Real-time AR clothing try-on-
Context-aware environments

(e.g., lighting)- Gesture and voice

- Confined to physical retail

environments

- Expensive hardware and

interaction .
maintenance- No makeup or
complete look styling
Pureple/ - Effective wardrobe | - No virtual try-on or image
Cladwell/ organization- Outfit planning and | simulation
Closet+ tions- Weather-based
o8¢ SUBBeSHONS carerbased) No makeup or face styling-
recommendations (Cladwell)) .
Mostly static and manual input
Style.me - High-quality 3D avatars for try- | - Only supports pre-loaded

on- Realistic fit and draping using

Al- Supports multiple clothing
types

clothing from brand partners
- No user-uploaded clothing

- No makeup or accessories

integration

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

CHAPTER 2

VITON - Image-based VTO without 3D | - Low-resolution outputs

data- Clothing-agnostic person | (256x192)

representation- Two-stage .
- Poor texture preservation

refinement with TPS warping-

Scalable using 2D RGB data

(logos, embroidery)

- Sensitive to occlusion and

body pose

- Focuses only on upper-body

garments

- TPS warping lacks deep
adaptability

SieveNet - Coarse-to-fine warping | - Limited occlusion handling
improves alignment- Conditional | (e.g., folded arms, hair)
segmentation helps avoid

- Uses fixed handcrafted priors
artifacts- Superior texture

translation with triplet loss - No 3D/depth awareness

- Lacks adaptability to varied

datasets or image quality

2.4 Proposed Solution

The proposed comprehensive mobile-based solution addresses past virtual try-
on system limitations by introducing an adaptive platform which improves device
accessibility through personalization and increased reality levels.

The current VTO systems face two crucial limitations including low-resolution
output generation and poor texture retention in clothing appearance. This system
resolves such constraints through its implementation of state-of-the-art image synthesis
methods which create detailed high-resolution outputs. The algorithm maintains
detailed fabric components such as text together with embroidery details and patterns
despite changing lighting conditions or partial light exposures. The system employs
contemporary deep learning-based spatial transformations instead of using problematic
Thin Plate Spline (TPS) warping procedures because TPS functions poorly with

21

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

complex poses and layered clothing situations. The methodology provides optimal
alignment while retaining visual clarity when dealing with crossed body parts and
irregular poses thus lowering the appearance of distortions and artifacts.

The system improves its simulation ability by implementing pseudo-depth
understanding capabilities to duplicate 3D knowledge in a two-dimensional display.
Such an approach enables the model to better simulate garment draping over the body
specifically for loose-fitting garments and multi-layered outfits which results in
heightened reality during try-on sessions.

Users can now improve existing garment selection through the proposed
solution because it enables the uploading of personal clothing images. Users can
integrate their clothing into the virtual wardrobe through segmentation before adding
them to the try-on feature. The solution improves user personalization while enlarging
the selection of styles available through an app beyond its pre-defined fashion
collections.

The VTO mobile application proposal creates a single platform that merges
clothing and makeup features to overcome both the single-product focus and the
restricted full-body customization. Users benefit from whole-app integration which
creates a more convenient and enjoyable process to create their desired look. Users now
experience a consistent design flow because they can avoid application switching to
test various fashion and beauty products without requiring continuous interface
changes.A mobile application development of the VTO system removes users' need to
visit physical stores because it fulfills all their styling needs in one platform. Through
the application's interface users can test clothing items as well as apply cosmetics and
accessories regardless of their present location in a manner that reflects increasing
digital shopping trends. The new approach enhances user convenience since it enables
remote shopping and styling preferences which are gaining value following the
pandemic.

The proposed solution through its mobile platform delivers a comprehensive
user-focused approach for addressing existing VTO challenges by delivering enhanced

realism and universal compatibility in one convenient mobile platform.

22

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

CHAPTER 3

System Methodology/Approach

3.1Methodology

The development of the Virtual Try-On (VTO) mobile application followed an
Agile software development methodology. Agile was selected because it supports
flexibility, incremental delivery, and iterative refinement of features, which is well
suited for combining mobile app development with Al-driven functionality. Through
short development cycles (sprints), each feature was designed, implemented, tested, and
reviewed before integration into the full system. This ensured that user requirements
were continuously addressed while allowing the system to evolve based on testing

feedback.

Review (6) (D) Plan

Agile
methodology

@ Design

Deploy @

«s@sana

Figure 3.1 Agile Methodology

23
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

According to Figure 3.1, the planning phase is the first. During this stage, needs
analysis of the application Virtual Try-On was carried out to develop an efficient and
convenient system. The idea was to create an application giving the user the ability to
upload clothes and personal photos, categorize the clothing items, virtually try on
clothes, add makeup effects, and manage what is in the wardrobe. Functional
requirements were user authentication, wardrobe management, the usage of the
Grounded-SAM2 model to segment clothes, the use of the KolorVTO to generate
realistic try-on photos, the use of the Banuba to generate makeup try-on photos and to
store the data in Firebase. Non-functional requirements were centered on low-latency
response of the Al server, the ability to get a 85 or more image accuracy to ensure try-

on realism, and a clean responsive Ul that was built in Jetpack Compose.

The second stage is the design phase, which incorporated the system
architecture that defines the interplay between the mobile application, Al backend and
Firebase cloud services. The architecture was composed of a frontend, which is an
Android application based on Jetpack Compose, a backend, which is an application
hosted on FastAPI to execute Al models (Grounded-SAM?2 to segment an image and
KolorVTO to generate an image), and Firebase services to handle user authentication,
data, and media storage. SDK to live try-on was also provided in Banuba. This step also
included the creation of diagrams like use case diagrams, activity diagrams and system

architecture diagram to show the interaction between modules.

The development phase was aimed at the implementation of the modules that
were planned. The authentication was developed using Firebase Authentication where
users are free to register with email. The management of the wardrobe allowed users to
provide pictures of clothes that were forwarded to the backend to be segmented by the
Grounded-SAM?2 model. The images were segmented and sent back to the app where
the user was expected to confirm before classification into Firebase. KolorVTO was
also built in to create try-on photos, which gave realistic previews. Banuba SDK was
used to allow real-time makeup trial using the camera or uploading a static image. Outfit
planning and event management functions were introduced to enable one to save the
outfit on a certain date. The modular development process was done so that every

individual component was tested to be integrated.

24

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

The testing stage consisted in testing the back-end and front-end. In the case of
the backend, Grounded-SAM?2 segmented the uploaded clothes and the results were
compared to determine the level of accuracy. The KolorVTO model has been tested by
creating results of try-on and comparing it with the expected behavior in terms of
realism. Regarding the frontend, UI/UX items like wardrobe navigation, outfit planner
and makeup panel were tested in black-box testing to ensure they acted accordingly.
Performance testing was also aimed at testing the response times under varying network
conditions as poor connectivity led to more time in processing and lower accuracy of

output in other cases.

Deployment stage entailed that the system was packaged into a working
prototype used in Android gadgets. Al backend was deployed using Fast API, and it
allowed real-time API requests to be made by the app and integrate Firebase services
to do the authentication, storage, and data synchronization. The Android devices were
launched with the mobile application and tested to make sure the application is

compatible with various Android hardware, both high-end and mid-range.

Lastly, the review process assessed the project results with respect to the initial
goals. The system managed to deliver clothing segmentation, realistic try-on
generation, wardrobe management, event planning and makeup try-on features
successfully. The system had strengths such as modular integration of various Al

models and scalability on a cloud basis.

25
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.2 System Design Diagram

3.2.1 System Architecture Diagram

Grounded SAM2 (Segmentation)
Mobile App (Jetpack Compose UI) /

- Login/Register

_ Wardrobe [| KolorVTO (Try-On Generation)
- Try-On Backend Server (APl Layer)
- Qutfit Page
- Event Page ~ .
- Profile \
Banuba SDK (Makeup)

Firebase Authenfication

¥ h

Al Categorizaftion
(Clothing Type, Color, Style)

Figure 3.2 System Architecture Diagram

The system architecture of the Virtual Try-On Mobile Application is designed
to integrate the mobile app, backend server, Al models, and Firebase cloud services
into a seamless workflow. The mobile application, built using Jetpack Compose, serves
as the user-facing interface and provides core features such as login and registration,
wardrobe management, virtual try-on, outfit page, event planner, and user profile. All
requests and user actions initiated from the mobile app are sent to the Backend Server

through an API layer.

The Backend Server acts as the central controller, receiving requests from the
mobile application and coordinating them with the Al models and Firebase services. It
manages three key Al models: Grounded SAM?2, which performs clothing
segmentation to extract apparel from uploaded user images; KolorVTO, which
generates photorealistic try-on images by overlaying segmented clothes on the user’s
body; and Banuba SDK, which provides virtual makeup simulation including lipstick,
foundation, and eyeshadow effects. The outputs from these AI models are not directly

stored. Instead, they first pass through the AI Categorization Module, which

26

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

automatically labels and classifies results with metadata such as clothing type, color,

and style.

The Al Categorization Module ensures that both segmented images and try-on
results are properly organized before storage. Once categorized, the data is sent to
Firebase Storage for storing image files such as segmented clothes, generated try-on
previews, and makeup results, while Firebase Firestore stores structured metadata
including clothing categories, user wardrobe details, and event-linked outfit
information. Additionally, Firebase Authentication handles secure user login and
registration. Both Firestore and Storage communicate back to the mobile application,

allowing users to view their saved wardrobe items, outfits, and events within the app.

This architecture demonstrates a modular and layered design where the mobile
app handles user interaction, the backend server coordinates Al and cloud services, and
Firebase ensures secure authentication, scalable data storage, and retrieval. The
integration of Al Categorization as an intermediate layer adds intelligence to the system
by organizing and labeling outputs, which not only improves wardrobe management

but also provides a foundation for future recommendation and personalization features.

3.2.2 Use Case Diagram

Virtual Try On Mobile Application

mclude-/_—_\

User Authentication,
sign out

add clothing
open wardrobe include
view clothing
extend P
Customer
view makeup looks

View Profile

include’ edit Profile

0

Figure 3.3 Use Case Diagram
27

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

The use case diagram of the Virtual Try-On mobile application illustrates the
main interactions between the customer and the system. The customer is the primary
actor who can access different features after authentication. Through Firebase
Authentication, the customer is able to sign in and sign out of the app securely. Once
logged in, the customer can manage their wardrobe by uploading clothing images,
which are first processed by the segmentaion system to segment and send to Al
categorization server classify the items before storing the images and metadata in
Firebase services. The customer can also browse and view their wardrobe items.
Another major functionality is the Virtual Try-On feature, where the customer can
select clothing items from the wardrobe and generate realistic try-on results using the
KolorVTO model. This feature also extends to makeup try-on through the Banuba SDK,
allowing the customer to visualize full-body styling, with the option to view saved or
recommended makeup looks. In addition, the system provides outfit and event planning
functions, where the customer can create events, assign outfits to them, and view
planned outfits for specific occasions. The customer can also view and edit their
personal profile, which includes details such as name, measurements, and style
preferences. Overall, the use case diagram demonstrates how the system integrates
authentication, wardrobe management, Al-powered categorization, virtual try-on, event

planning, and profile management into a cohesive experience for the user.

28

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.2.3 Activity Diagram

Outht Page

Figure 3.4 Activity Diagram

This system activity diagram illustrates the complete flow of how a user interacts with
the Virtual Try-On App. It starts from the moment the user logs into the system and then
branches into the different features provided by the app. Once inside, the user can navigate to
various sections such as the wardrobe, outfit management, event scheduling, profile

management, and the virtual try-on feature.

In the wardrobe, the user is able to upload and manage clothing items that can
later be used for styling. The outfit section allows the user to manage the outfit item.
The event section supports planning by letting users assign specific outfits to occasions,

ensuring that their styling is ready in advance. The profile area allows users to maintain

29

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

their personal details and preferences, which influence the overall personalization of

the app.

The virtual try-on process is a core part of the diagram, where users can choose
to experiment with clothing or makeup. For clothing, the app generates realistic images
of the user wearing selected items, while for makeup, the app provides a way to preview

different looks. In both cases, the results can be saved for future use.

Overall, the activity diagram shows how the system is designed to give users
full flexibility: they can freely move between wardrobe, outfits, events, profiles, and
try-on activities, repeating actions as needed until they are satisfied. It emphasizes the
interactive and iterative experience the app provides, enabling users to continuously

experiment with and refine their personal style.

3.2.4 AI Model Workflow and Performance
SAM?2 Model (Clothing Segmentation)

e Functionality: The SAM2 model segments clothing items from uploaded user
images. Below is a diagram showing the process from image upload to

segmentation and storage.

30

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

User Uploads Clothes

SAM2 Processes Image

|

h
o

Server encode image

|

h
oy

send back to app

|

h 4
oy

App decode the
image
-~

h 4

app upload to

Firebase storage

-
|_./|
Figure 3.5 Workflow of SAM2

1. User Uploads Clothing Image: The user uploads an image containing clothing

to the app.
2. API Request: The app sends a request to the backend for segmentation.

3. SAM2 Model Processes Image: The backend calls the SAM2 model to

segment the clothing from the background.
4. SAM2 encode image: Cannot send file, so need to encode the image.
5. When send it back, the app need to decode

31

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3
6. Result Storage: The segmented image and metadata are saved to Firebase
Storage and Firestore for future retrieval.
KolorVTO Model (Try-On Image Generation)

e Functionality: The KolorVTO model generates try-on images by mapping the
segmented clothing onto the user’s photo. Below is a diagram showing how this

works.

.

User select auser
photo

e 4
v

User select a clothes

g

AFI Reguest

| —
v
KolerVTO Processes
Image

g

Server encode image

e 4
v

send back to app

~—
4
App decode the
image

~—
4
app upload to
Firebase storage

@

Figure 3.6 Workflow of KolorVTO
1. User Selects Clothing and Uploads Photo: The user selects a clothing item
and uploads a full-body image.

32
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3
2. API Request: The app sends the full-body image and the segmented clothing
image to the backend.

3. KolorVTO Model Processes Images: The backend calls the KolorVTO model

to generate a try-on image.

4. Try-On Image Returned: The generated try-on image is sent back to the app
and displayed to the user.

5. Result Storage: The try-on image and metadata are saved to Firebase Storage

and Firestore.

3.3 Timeline

3.3.1FYP1

2026-02 2025-03 2025-04 202605
B i TaskMName i
03 09 18 2 02) 18 2 30 06 13 20 Ed o4
1 - PPt
2 ~ Planning and Setup
3 Research exising viriual ry-on apps
a Ioenty key Teatures and requIEmEnts

Detne project scope and goals

2 Project planning and setup complets

9 Define User personas and user siories
1 Create user flow magrams.
n Design wirerames for key screens

10 ~ D
15 Set up Jetpack Compose amework

7 Impiement navigation

% BUIG Home, Wardrobe, and Preie screen Ul
2% a5 Ul completed

& Implementation

niication (Google
a8 Enabled image upload and sorage 1o Fife
a9 Impiemented ciothing segmentation using

ar Impiementad try-on generation using Kolor.

a8 Displayed clothes and outfits in app

52 FYP 1 report writen *

Powered by: onlinegantt.com

Figure 3.7 FYPI Timeline

33

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.3.2FYP2

ID i TaskName
1 - FYP2
2 ~ Backend & Feature Enhancemenis

3 -

12 -

18 -

23 -

27 -

Refactor AP1 requests for segmentation an
‘Add caching, refries, and error handiing
Oplimize Firesiore siruclure for scalability
Optimized backend & storage

UIUX Refinement
Improve wardrobe and outfit U (design, st
Add betier previews and load siates
Fix bugs and ensure esponsiveness
Enhanced user expenence

User Info & Onbaarding Flaw

Implement multi-step flow: basic info, body -

Allow profile editing of info
Save info in Firestore for personalized exp.
Full GNboarding system in place

Event Qutfit Planning
Let users assign oulfis (o calendar dates
Enable ediling and reminders
‘Outnt planner funclional

Testing & Final Touches
Conduct module and integration tests
Perform usability testing and fix issues
‘Stable and tested busid

Final Report & Presentation
Document implementation, resuits, and fut
Prepare sliges and rehearse final presentat

Final submission completed

202508

202607 2025-08

Powered by: onlinegantt.com

Figure 3.8 FYP2 Timeline

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

kal

34

CHAPTER 4

CHAPTER 4

System Design
4.1 System Block Diagram

Al Processing Pipelines

Grounded-SAM2
(Segmentation)

‘Wardrobe
KolorVTO Al Categorization
(Clothing Try-On) ini
Try-On Page e
(Clothing & Makeup)
Banuba SDK

(Makeup Try-On)
Login & Registration

Profile Management

User Interface (Jetpack Compose UT)

Firebase Backend

Firebase Storage

- Firebase Auth
, Free0)
Notification Worker

Outfit Manager

Makeup Storage

Event Planner

Figure 4.1 System Block Diagram

The block diagram illustrates the modular architecture and end-to-end data flow
of the Virtual Try-On mobile application. The process begins with the Authentication
Module, which manages secure login and registration using Firebase Authentication.
Once authenticated, new users are guided through the Onboarding Flow, where
personal details such as full name, date of birth, and style preferences are collected.
These details are stored in Firebase Firestore, forming the basis for a personalized
experience. Existing users can later access this information through the Profile
Management Module, which retrieves data from Firestore, displays it within the app,

and allows users to make edits that are automatically updated in real time.

The Wardrobe Module enables users to upload raw images of clothing items. These
images are processed through the Segmentation Pipeline, which integrates
GroundingDINO for clothing region detection and SAM2 for precise segmentation.
Postprocessing ensures clean, user-confirmed outputs, which are then transmitted to the
Al Categorization Server. This server performs feature extraction to classify the

clothing based on attributes such as type, color, and style. The processed images are
35

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

stored in Firebase Storage, while the categorized metadata is stored in Firestore,

ensuring synchronization between visual and structured information.

The Try-On Module supports both Clothing Try-On and Makeup Try-On. For
clothing, users select items from their wardrobe, and the system retrieves the
corresponding segmented images from Firebase Storage. These, along with the user’s
photo, are sent to the KolorVTO pipeline, which generates photorealistic try-on
previews. The generated results are passed to the Al Categorization Server, which
extracts additional metadata and stored the data and the result to the Firebase. The
results are then displayed on the Outfit Storage Page, where users can view, manage,
and reuse their try-on outcomes. For makeup, the Banuba SDK applies real-time AR
effects such as lipstick, foundation, or eyeshadow directly to the user’s face. The
generated outputs are saved to Firebase Storage and displayed in the Makeup Storage

Page, where they can be retrieved with corresponding details.

The Event Planner extends this functionality by letting users assign saved outfits
to upcoming events. Event details, including linked outfits, are stored in Firestore, while
reminders are triggered through the Notification Worker to ensure timely user

engagement.
From a data flow perspective, the system follows a structured cycle:
1. User inputs (login, personal info, clothing uploads, makeup selections).

2. Processing (segmentation via GroundingDINO + SAM2, try-on generation via

KolorVTO, AR makeup via Banuba, and categorization via the Al server).

3. Storage and retrieval through Firebase (Firestore for structured metadata and

scheduling, Storage for images and try-on results).

4. Presentation through a Jetpack Compose-based UI, which displays personalized

content across wardrobe, outfit, makeup, and event modules.

The backend integration ensures that Firebase functions as the central hub for both
structured and unstructured data, while Al servers handle heavy computational tasks
like segmentation, categorization, and try-on generation. This modular and
interconnected design guarantees stability, scalability, and a seamless user experience

across all components of the system.

36

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.2 Module Design

Authentication Module

The Authentication Module handles secure user registration and login. It supports
email/password, authentication via Firebase Authentication. This module manages user
sessions, validates login states, and interacts with Firestore to maintain user account
records. Key classes include LoginActivity, RegisterActivity, and corresponding
ViewModel classes, which coordinate with Firebase methods such as
signlnWithEmailAndPassword() and signlnWithCredential(). The module provides

input validation, error handling, and redirects users upon successful login.

Wardrobe Management Module

The Wardrobe Management Module allows users to upload clothing images from their
device or camera. Uploaded images trigger the Image Segmentation Pipeline. The
module uses WardrobeViewModel and WardrobeScreen (Jetpack Compose Ul) to
display wardrobe contents. Confirmed segmented images, along with metadata
generated by the Al Categorization Server, are stored in Firebase Storage and Firestore

to form the user’s digital wardrobe.

Image Segmentation Pipeline Module
This module processes uploaded clothing images through multiple stages:
1. Preprocessing: resizing, normalization.
2. GroundingDINO: detects clothing regions with bounding boxes.
3. SAM2: generates precise segmentation masks for each clothing item.
4. Postprocessing: refines masks and creates transparent PNGs.
Users confirm the segmented images before they are forwarded to the Al

Categorization Module.

4.2.4 Al Categorization Module

The AI Categorization Module analyzes segmented clothing and Al-generated outfit
images to extract structured metadata. Attributes include clothing type, category, color,
pattern, style tags, and additional properties such as sleeve length or collar type. The
module receives inputs through REST APIs, processes images using Python scripts,

and outputs JSON documents stored in Firestore along with the corresponding images

37

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

in Firebase Storage. This ensures all items are searchable, filterable, and consistently

organized.

Clothing Try-On Module (KolorvVTO)

The Clothing Try-On Module allows users to select wardrobe items and upload their
photos to generate photorealistic try-on images using KolorVTO. Results are stored in
Outfit Storage, and metadata is sent to the Al Categorization Server for consistency.
The module integrates with TryOnScreen and TryOnViewModel to manage image

display and user interactions.

Makeup Module (Banuba SDK)

The Makeup Module uses the Banuba SDK to provide real-time AR makeup
application. Users can try lipstick, eyeshadow, eyeliner, and preset looks. Makeup
results are saved in Makeup Storage, and associated metadata, such as applied effects
and base skin tone, is stored in Firestore. This allows users to reapply or edit makeup

results independently of clothing try-ons.

Outfit Management Module

The Outfit Management Module provides an interface to view, edit, delete, rename, and
combine saved outfits. Metadata from Al Categorization is used to enable searching
and filtering. Users can mark favorites and reuse previously generated try-on images.

The module interacts with Outfit Storage for image management.

Makeup Storage Module

The Makeup Storage Module stores saved makeup looks separately from outfits. It
allows users to quickly reapply, edit, or share previously saved makeup results.
Metadata is synchronized with Firestore to maintain consistency and enable

search/filtering functionality.

Event Management Module & Notifications
This module allows users to schedule events and attach saved outfits and makeup looks.

Event information, including Storage URLSs for selected looks, is saved in Firestore.

38

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

The integrated Notification Worker, implemented via Android WorkManager,

schedules local push notifications to remind users of upcoming events.

Profile Module
The Profile and Settings Module allows users to view and update profile information,
and style preferences. All updates are synchronized with Firestore to maintain data

consistency across the application.

Firebase Backend

The Firebase Backend acts as the core infrastructure supporting authentication,
structured data storage, and secure image storage. It integrates all modules, including
Wardrobe, Try-On, AI Categorization, Makeup, Outfit Management, and Event

Planner, ensuring a scalable, efficient, and seamless experience for the user.

4.3 Database Design and Firebase Schema

This application uses Google Cloud Firestore as the primary NoSQL database for
managing user data, wardrobe metadata, outfit information, makeup info and event
planning. In addition, Firebase Storage is used to store all binary image files, such as
uploaded clothing, Al-generated try-on images and makeup looks. This integrated setup
allows for scalable, secure, and efficient handling of both structured metadata and large

media assets

4.3.1 Firestore Data Structure Overview

The top-level Firestore collection is users, where each document is uniquely identified

by a user ID (userld). Each user document contains four subcollections:

e userdata: Stores personal user information such as name, email, date of birth

and style preferences.

e wardrobe: Each user document has a subcollection of clothing items, storing
image URLs, segmentation masks, and Al-generated metadata (type, style,

color, pattern, attributes).

39

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

o outfits: Contains saved try-on results, linking images in Outfit Storage with

associated metadata extracted by Al Categorization.

o events: Stores event details, including date/time, linked outfit/makeup

references, and notification settings.

4.3.2 Firebase Storage Data Structure Overview

Firebase Storage is used for managing image files. Each uploaded clothing item and

Al-generated outfit image is stored in user-specific folders in the following structure:

Table 4.1 Data sturcture

Image Type Storage Path Format

Clothing Uploads | users/{userld}/wardrobe/{clothingld}.jpg
Outfit Results users/{userld}/outfits/{outfitld}.jpg
Makeup Results | users/{userld}/makeup/{makeupld}.jpg

These images are referenced in Firestore via the imageUrl field to maintain a

lightweight database while supporting rich media content in the app.

® Firebase

A Project Overview £

»e e
g
]

VTOapp ~

Storage vio-app-17833 firehasestorage.a

Files Rules Usage

O
O

200§

pp = (4 Need help getting started with Storage? Ask Gemini)

rageapp > users > CNcfAOb4knOv.

Figure 4.2 Firebase Storage

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

& upload file Faa i
Last modified

40

CHAPTER 4

4.3.3 Firestore Path and Field Design

Users Collection

Firestore Path: users/{userld}/userdata

Field Name Data Type Description Sample Value
fullName String User's full | "john"
name
dateOfBirth String User's date of | ''16/01/2000"
birth
createdAt Number Account 1758142870124
creation
timestamp
hasCompletedOnboarding | Boolean Whether true
onboarding is
completed
stylePreference String Primary style | "Party"
preference
stylePreferences Array[String] | List of style | ['"Party",
preferences "Business'",
"Wedding"]
Table 4.2 User collection
®» Firebase VTO app ~ Cloud Firestore > Database
Project Overview = M > users > dwdzTLVX3qao.. > wardrobeltems &
Project shortcuts I users = [E dwazTLvX3qaoQT7be8bWHYOBIDOZ

Authentication
Functions

Al Logic (NEw)
Storage

Firestore Database

S5mooZk rOhSNiKrEu3Kye6DFz

+ Add document

dw4zTLVX3gaoQT7be8bWHYOBIDO2

Build ~
Run ~
Related development taols

€ Firebase Studio (3

D Modify

+ Start collection

fits
: wardrobeltems
+ Add field
createdAt
dateOfBirth

fullName: “yeaw"

hasCompletedOnboarding:

stylePreference

stylePreferences

@ "Sports”
1 "Wedding”

2 ‘“Party”

Figure 4.3 User collection

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

L]

1758150312298
"01/01/2000"

true

“Sports”

41

CHAPTER 4

Wardrobe Collection

Firestore Path: users/{userld}/wardrobe

Field Name | Data Description Sample Value
Type
display name | String | Descriptive name of "Casual 2"
the clothing item
image name | String | File name of the "temp image 1758151248713
uploaded image 294.png"
image url String | Firebase Storage URL | "https://firebasestorage.googlea
of the clothing image | pis.com/.../wardrobe/3f011{d8-
n
metadata Map Clothing attributes {category: "top", color: "dark
green", pattern: "text print",
style: "hooded top", occasion:
"Casual", description: "A dark
green long-sleeved hooded
top..."}
timestamp String | Upload time "2025-09-17T723:21:04.188491"
Table 4.3 Wardrobe collection
® Firebase VTOspp v Cloud Firestore > Database ()
fr Project Overview = (A > users > dwazTLVX3qac.. > wardrobeltems & More in Google Cloud o
B us = i Bl dwdzTLVX3qaoQT7beBbWHYOBIDO2 § 1B wardrobeltems = i +
(.; :‘::I”D““‘:”‘ + Add document + Start collection + Adnldln‘cumenl
G AllLogic (FeW) R Jos .
By Sworage i wardrobeltems >) |
; (. |
Figure 4.4 Wardrobe collection
42

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://firebasestorage.googleapis.com/.../wardrobe/3f011fd8-
https://firebasestorage.googleapis.com/.../wardrobe/3f011fd8-

CHAPTER 4

Outfits Collection

Firestore Path: users/{userld}/outfits

Field Data Description Sample Value
Name Type
image url | String Firebase Storage | "https://firebasestorage.googleapis.
URL of the outfit | com/.../outfits/de9134a6-..."
image
isFavorite | Boolean | Whether the outfit | false
is marked as
favorite
metadata | Map Outfit attributes and | {color: "Olive Green", description:
description "A person is wearing a long-sleeved
olive green hooded top...", occasion:
"Loungewear / Home", style:
"Relaxed and casual loungewear.",
outfit name: "hoody"}
timestamp | String Creation time "2025-09-17T23:23:45.452570"
Table 4.4 Outfit collection
® Firebase VTOapp = Cloud Firestore > Database o
A ProjectOverview ¢ [> users > dwdzTLVX3qao.. > outfits & More in Google Cloud v
et I user = B dw4zTLVX3qa0QT7beBbWHYOBIDOZ § D outfit = i s
(‘; F:n + Add document + Start collection) : Addldncumenlll - o
W o e i outfits > ' |
B3 Storage v
2 Firestore Database + Add field
P e
(. |
Figure 4.5 Outfit collection
43

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://firebasestorage.googleapis.com/.../outfits/de9134a6-
https://firebasestorage.googleapis.com/.../outfits/de9134a6-

CHAPTER 4

Makeup Collection

Firestore Path: users/{userld}/makeups

Field Name Data Description Sample Value
Type
id String Unique makeup | '"3a28356a-1871-4a59-af2{-
identifier 6ba686acSbad"
imageUrl String Firebase Storage | "https://firebasestorage.goog
URL of the makeup | leapis.com/.../makeup/3a283
result S6a-..."
name String Name of the | "look 1"
makeup look
dateCreated Timesta | Creation date/time | '"September 18, 2025 at
mp 8:07:04 AM UTC+8"
likesCount Number | Number of likes 0
public Boolean | Visibility flag false
stability Number | AR effect stability | 0
score
userld String Owner reference "dw4zTLVX3qaoQT7be8b
WHYOBIDO02"

Table 4.5 Makeup collection

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

https://firebasestorage.googleapis.com/.../makeup/3a28356a-
https://firebasestorage.googleapis.com/.../makeup/3a28356a-
https://firebasestorage.googleapis.com/.../makeup/3a28356a-

CHAPTER 4

® Firebase

A Project Overview Qo

= Authentication

(+) Functions

Ej

By s

2 Firestore Database

Build v
Run v

© Firebase Studio

Blaze

VTOapp v Cloud Firestore > Database

@ >

+ Start collection

makeup_looks >

+ Add field
At: 1758150312298
*01/01/2000
“yeaw”
true
ePreference: "Sports’
ePreference
8 "sports”
1 "Wedding

2 "party’

> 3a28356a-1871

(@ makeup_look Tt
+ Add document

3228356a-1871-4259-af2f-6bab.. >

& M

+ Start collection

+ Add field

September 18, 2025 at 8:07:04 AM UTC+8

“3a28356a-1871-4a59-af2f-6ba686acSbad”

jore in Google Cloud v

“https:/

PP
7833 firebasestorage.app/o/users%2Fdw4zTLVX3qaoQT7be8bw

1871-4a59-af2f-6ba686acSbad jpg?
alt=media&token=10b3550a-81ac-4

t: 0

ame : EERAL’
false
0

"dwA4zTLVX3qaoQT 7be8bWHYOBID02"

com/v0/b

f3-8187-ef32901a27fe"

Figure 4.6 Makeup collection

Events Collection

Firestore Path: users/{userld}/events

Iy

o 4+

Field Name

Data
Type

Description

Sample Value

location

id String Unique event | "3[u09TYO7Tv5rR42¢cMY
identifier x"
title String Event title "o00"
date String Event date ""2025-09-18"
time String Event time "10:59"
allDay Boolean | All-day event | false
flag
eventType String Type of event "WEDDING"
description String Optional event | ""
description
location String Optional event | ""

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

CHAPTER 4

plannedOutfitld | String /| Linked outfit | null

Null reference

outfitlmageUrl String /| URL of linked | null
Null outfit

reminderEnabled | Boolean Whether true
reminders are

active

reminderTime Number Minutes before | 1

event to notify

createdAt Number Event creation | 1758160794146

timestamp

Table 4.6 Event collection

® Firebase VTOapp * Cloud Firestore > Database o
 Project Overview o [> s > dwazTLVX3gao.. > events > 3I09TYOTTVS... & & More in Google Cloud [
B dwazTLVX3qacQT7beBbWHYOBIDO2 § I event = i [E) 31u09TYOTTVSRAZEMYx .
& fushentication + Start collection + Add document + Start collection
) Functions a 6]
events > i 3IuBYTYO7TvSrRAZCMYx > + Addfield
G5 AlLogic (new l . .
ks rQHa@18ulXVkea 110ay: false
Py Storage
At: 1758160704146
2 Firestore Database + Addfield
e "20250018°
reatedat: 1758150312208
atelfE t “01/01/2000°
ly ype . "WEDDING"
Build v fullName: “yeaw"
i “3Iu09TYOTTVSIRA2CMY X"
has I true
Run v .
yle e "Sports”
yle
'1d
8 “Sports
@ Firebase Studio eminderEnabled: true
1 "Wedding
S i ine: 1
2 “Party
10:59°
= Madify R .
. © Database asia o

Figure 4.7 Event collection

Firestore offers real-time synchronization and scalable document-based storage, which
is well-suited to user-centric data like clothes and events. Firebase Storage
complements this by hosting high-resolution media files without bloating the database.
This separation of concerns ensures fast access, efficient storage, and easier file

management.

46
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.4 Model Selection and Architecture
4.4.1 GroundingDINO + SAM2 (Segmentation Pipeline)

Our system first applies a two-stage segmentation pipeline to isolate garments
in the user’s photo. GroundingDINO is used to detect clothing items with open-
vocabulary prompts, outputting high-quality bounding boxes and labels. These
detections are then passed to Meta’s Segment Anything Model (SAM2), which
generates precise pixel-level masks for each garment. This combination was chosen
because it leverages the strengths of each model — GroundingDINO’s zero-shot object
detection and SAM2’s accurate segmentation — to build a robust pipeline for complex
masking tasks. The resulting segmented garment images and masks are saved in cloud
storage, with metadata (labels, bounding box coordinates) recorded in the database for

later use.

4.4.2 KolorVTO (Virtual Try-On Model)

For generating the final try-on images, we use the Kolors Virtual Try-On
(KolorVTO) engine. The app supplies the user’s photo and the segmented garment
image to KolorVTO, which synthesizes a realistic image of the user wearing that
clothing. In practice, the system base64-encodes the person and garment images and
sends them via a JSON API request to the KolorVTO service. The service returns a job
identifier and, upon completion, a composite image. This try-on image is then retrieved
by the app; it is stored in Firebase Storage and indexed in Firestore along with any
relevant parameters (such as the random seed or processing status) so that it can be

displayed or queried later.

4.4.3 Banuba SDK (Makeup Try-On Module)

We integrate Banuba’s AR Face SDK to provide real-time virtual makeup.
Banuba’s SDK performs fast, precise face tracking and builds a 3D face mesh in real
time, allowing digital cosmetics (lipstick, eyeshadow, blush, etc.) to be overlaid
correctly onto the user’s facial features. Underlying neural networks segment fine facial
regions (lips, cheeks, skin, etc.) at the pixel level so that makeup effects align accurately
on any skin tone. When the user applies virtual makeup, the resulting augmented image

(e.g. a camera frame with the effects) is captured and saved. The captured makeup-try-

47

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

on images are uploaded to Firebase Storage, and their metadata (chosen filters,

timestamp, etc.) are recorded in Firestore for later retrieval.

4.4.4 Google Gemini (Al Categorization Model)

Finally, we use Google’s Gemini multimodal Al to categorize clothing and
outfit images. Gemini supports zero-shot object detection and visual understanding,
meaning we can send it an image and ask open-ended questions about it. In our system,
each segmented garment image and each generated try-on outfit image is sent to Gemini
with prompts requesting descriptive attributes. Gemini returns labels and descriptions,
which we parse into structured metadata. These attributes are stored in Firestore
alongside references to the images, while the image files remain in Firebase Storage. In
this way, Gemini’s output provides searchable metadata (type, color, style, etc.) for
each item, integrated with our database to support product categorization and user

queries.

48

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

CHAPTER 5

System Implementation

5.1 Hardware Setup

To build and test the Android-based Virtual Try-On application, the following hardware

components are required:

Laptop (Development)
Table 5.1 Specifications of laptop
Description Specifications
Model Nitro AN515-45

Processor

AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

Operating System

Windows 11

Graphic NVIDIA GeForce RTX 3060 Laptop GPU
Memory 16GB RAM
Storage 475GB

Mobile Device for Testing

Table 5.2 Specifications of mobile device

Description Specifications
Model HONOR X9b 5G
Processor Snapdragon 6 Gen 1
Operating System Android 12
Memory 8GB RAM

Storage 256GB

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

CHAPTER 5

5.2 Software Setup

The software setup for the Virtual Try-On (VTO) system required different tools
for mobile development, backend Al processing, and cloud service integration. Each
component was installed and configured separately to ensure modularity and smooth

system integration.

Android Development Tools
The Android application was developed using Android Studio as the primary
IDE, with Java Development Kit (JDK), Gradle, and the Android SDK with Emulator

Tools. These tools were used to build, test, and run the Jetpack Compose—based

mobile interface.

Figure 5.1 Android Studio setup

Firebase Integration

Firebase was configured to handle Authentication, Firestore Database, and
Storage. The google-services.json file was downloaded from the Firebase Console and
added to the application project to enable backend connectivity. This ensured that user
login, clothing metadata, and wardrobe images were synchronized between the app

and the server.

50

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

® Firebase VTOapp v Project settings

A Project Overview o Add app

SDK setup and configuration

5 e = | com.TOTOMOFYRVTOAPP Need ure the Firebase SDKs for your b instructions o just
(-) Functions figuration file containing keys and

€5 Allogic (Wew

© gic (22 [See SDK instructions & google-services.json

P Storage

2 Firestore Database

AppID @
1:965552125458:android: 7fd9800b90249b4df2cach

Build " Aj Kname
Add a nickname
Run v
>ackage name
com.TOTOMOFYP.VTOAPP
& Firebase Studio[® SHA certificate fingerprints (@ Type @
Add fingerprint
Elnza Modify
Remove this app
<

Figure 5.2 Integration of Firebase

Banuba SDK for Makeup Try-On

The Banuba SDK was integrated into the mobile app to provide AR-based
makeup try-on functionality. It enabled real-time rendering of lipstick, eyeshadow,
and other effects on the user’s face. The SDK required license activation and was

embedded within the Android Studio project.

MyApplication.kt

t com.goog

import com.banuba.sdk.manager.BanubaSdkManager

s MyApplication : Application() {

FirebaseApp.initializeApp(

Banuba$

Figure 5.3 Integration of Banuba SDK

51

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Al Backend — env1 (Segmentation & Try-On)
A dedicated Anaconda environment, named env1, was created to run the core
segmentation and try-on pipeline. This included installing dependencies such as
PyTorch, Torchvision, OpenCV, Transformers, and FastAPI. Within this
environment:

e Grounding DINO was used for clothing detection.

e SAM?2 was applied to generate precise segmentation masks.
The FastAPI server exposed these functionalities, and Ngrok was used to provide a

secure public API endpoint for mobile app integration.

Figure 5.4 Anaconda environment (env1) for Grounded Sam2

KolorsVTO model

Instead of a local installation, the KolorsVTO model is accessed via Kling AI’s

platform. This service generates try-on images by combining user-uploaded photos

with clothing items stored in the wardrobe. Integration with Kling Al is achieved

through API calls, where the segmented clothing (from Anaconda env1) and user photo

are sent to the KolorsVTO endpoint. The processed output is then returned to the app.

Since KolorsVTO is a hosted service, no additional local environment is required

beyond configuring API access.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Al Backend - .venv (Gemini Categorization & Outfit Management)

A second environment, named .venv, was created specifically for the Gemini Al
backend. This FastAPI microservice handled clothing categorization, metadata
extraction (type, color, style, occasion), and smart naming for wardrobe management.

Separating this environment from segmentation ensured better stability and reduced

dependency conflicts.

Figure 5.5 Gemini Al categorization backend (.venv) with Firebase

5.3 Settings and Configuration

After setting up the core software components, additional configuration steps
were carried out to ensure proper integration. In Android Studio, the google-
services.json file downloaded from Firebase was added to the app/ folder, linking the
project with Firebase services. Gradle dependencies were configured for Firebase
SDKs, Banuba SDK, and networking libraries. Figure 5.x presents the Android Studio

configuration with Firebase integration.

53

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Figure 5.6 Gradle dependencies for Firebase and Banuba SDK.

In the Firebase Console, Authentication was enabled with both
Email/Password and Google Sign-In, while Firestore Database and Firebase Storage
were configured for structured and unstructured data storage. This ensured seamless
synchronization between metadata (e.g., clothing categories) and media files (e.g.,

segmented clothes, try-on outputs). Figure 5.x shows the Firebase Console setup.

Authentication

Users Sign-in method Templates Usage Settings % Extensions

@ The following Authentication features will stop working when Firebase Dynamic Links shuts down soon: email link authentication +
for mobile apps, as well as Cordova OAuth support for web apps.

Q, search by email address, phone number, or user UID c

dentifier ~ Provis ders Created Signed In User UID

0

[

[(

[

(]

Figure 5.7 Firebase Authentication

54

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

VTO app ¥
Cloud Firestore >

Database Add database (4 Ask Gemini how to get started with Fires1ure>

Data Rules Indexes Disaster Recovery Usage % Extensions
Panel view Query builder
(A > users > 5moo2krOhSNi.. & More in Google Cloud v
2 (default) 1B users = i [E 5moozkrOhSNiKrEu3Kye6DFzgNg2
+ Start collection + Add document =+ Start collection
users > 5moo2krOhSNikrEu3Kye6DFzgNg2 > + Add field

CNcfABbAknOvBbQR4GINxdAt4Nn53 createdAt: 1758142870124

MNp1c9GewdZRgPEtRMC8A1LImzz1 dateOfBirth: "16/01/2000"

YhBGKF1YUFVNmbu5q5tvg5cLhsm2 fullName: "tt"

dw4zTLVX3qa0QT7be8bWHYOBIDE2 hasCompletedonboarding: true

stylePreference: "Party”
stylePreferences
8 'Party"

1 'Business’

Figure 5.8 Firestore

VTOapp v

Sto rage vio-app-f7833.firebasestorage.app ~ C 4 Need help getting started with Storage? Ask Gemini)

Files Rules Usage & Extensions

GD gs://vio-app-f7833.firebasestorage.app &, Upload file g

O Name Size Type Last modified
O [makeup_looks/ Folder
O [users/ Folder

Figure 5.9 Firebase Storage

In Anaconda envl, dependencies such as PyTorch, TorchVision, and OpenCV
are installed to support the Grounding DINO and SAM2 models. The segmentation
service is initiated by executing segmentation.py, which loads the models and provides

API endpoints for the mobile application.

55
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

conda-forge

pypi
conda-forge
pypi

Figure 5.10 Dependency installation in Anaconda env1

In the Gemini backend (.venv), the environment is configured with authentication
keys, API SDKs, and supporting libraries for recommendation and categorization. This

ensures smooth communication with Google’s Gemini APIL.

TERMINAL

certifi
et-normalizer

colorama
exceptiongroup
fastapi
google-api-core
google-auth
google-cloud-core
google-cloud-firestore
google-cloud-storage
google-crec32c
google-genai
google-resumable-media
googleapis-common-protos
grpcio

grpcio-status

h11

httpcore

httpx

idna

pillow

pip

proto-plus

protobuf

pyasni
pyasnl_modules
pydantic
pydantic_core
python-multipart
requests

rsa

setuptools

sniffio

starlette

Figure 5.11 Gemini backend environment configuration

The KolorVTO service from Kling Al does not require local environment installation

but instead relies on API integration. The system is configured with Kling Al
56

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

credentials and endpoints, enabling seamless transmission of input images and

reception of generated try-on results.

Figure 5.12 Configuration of KolorVTO API

For the Banuba SDK, the configuration is done in the Android Studio project by
importing the SDK dependencies into build.gradle. The SDK is then initialized in the

application code with secure API keys to unlock makeup and accessory features.

Figure 5.13 Banuba SDK configuration

57

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Lastly, Ngrok is set up with authentication and assigned tunnels. The forwarding URL
generated by Ngrok is embedded in the mobile application, allowing the app to send
requests to locally running services (segmentation and Gemini Al backend).

C:\ngrok\ngrok.exe - ngrok X

ngrok (Ctrl+C to quit)

Account totomo@673@gmail.com (Plan: Free)

Update update available (version 3.29.0, Ctrl-U to update)

Version 3 §

Region Asia Pacific (ap)

Latency 18ms

Web Interface http://127.0.0.1:4040

Forwarding https://6fbe8U80e60e.ngrok-free.app —> http://localhost:8000

Connections ttl opn rtl rt5 p50 p9e
(€] [0} 0.00 0.00 0.00 0.00

Figure 5.14 Ngrok configuration with the generated forwarding URL

5.4 System operation
5.4.1 User Authentication System

The user authentication system was implemented using Firebase Authentication,
enabling users to register and log in securely with their email and password. The
Firebase Authentication service was integrated into the Android application through the
Firebase SDK and the configuration file google-services.json, which links the mobile
app to the Firebase project.

In this implementation, users are able to register an account by providing their
email and password. Upon successful registration, Firebase creates a new user profile,
and the app immediately redirects the user to the onboarding flow. Similarly, during
the login process, registered users can enter their credentials, which are verified by
Firebase. If authentication is successful, the system performs an onboarding status
check by querying Firestore to determine whether the user has completed the personal
information entry required during the onboarding process.

If the onboarding is incomplete, the user is redirected to the onboarding screen
to fill in their personal details. Once completed, the information is stored in Firebase
Authentication and linked to the user’s account. If the onboarding is already completed,
the system bypasses this step and directly loads the main application interface. This
integration ensures a seamless flow from registration and login to onboarding,

providing a secure and personalized entry point into the Virtual Try-On application.

58

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celco.. 10:47 © 3= 0 Sl @ #

Welcome Back

= |

‘ Password o '

Forgot your password?

Don't have an account? Sign Up

Figure 5.15 Login Screen
weenseusos evmm

&

Create Your Account

i

Password o

Confirm Password ©

Figure 5.16 Registration Screen

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celco... 10:54 Q@ @ 37 0 Sl @54

< Complete Your Profile

Tell Us About You

Full Name

Date of Birth (m)

Style Preferences (Select
multiple)

Complete Profile

Figure 5.17 Onboarding Redirection Screen

MY Celco... 10:56 @ & 3 = 00 Cal @4

Clothes Try-On

Try on clothes with a photo

& =
Camera Gallery

Makeup Try-On

Apply virtual makeup

LA =
Camera Image

K o Y
Outfits ~ Wardrobe Events Profile

Figure 5.18 Main Screen

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.4.2 Wardrobe Management and Clothing Segmentation

Overview of the Process

In this section, the Clothing Segmentation process in the Virtual Try-On (VTO)
application is automated using a combination of Grounding DINO and SAM2. When a
user uploads a clothing image, Grounding DINO first detects and localizes the clothing
regions, after which SAM2 generates precise segmentation masks. The segmented
items are then categorized by the Gemini Al backend, which assigns clothing type,
color, and style attributes. The final segmented images are stored in Firebase Storage,
while metadata such as category and attributes are saved in Firestore, allowing efficient

organization and retrieval within the wardrobe system.

Workflow of Clothing Segmentation

The process begins when a user selects or captures a clothing photo within the
mobile application. This image is uploaded to the backend server, where Grounding
DINO performs object detection to identify and localize clothing regions. Once
bounding boxes are detected, SAM2 processes these regions to generate precise
segmentation masks, accurately isolates the clothing item from the background. The
segmented image is then returned to the mobile application for user confirmation.

On the confirmation page, the user is presented with the segmented clothing and
can review its quality. At this stage, users can visually inspect the segmented clothing
and, if necessary, use the rotate button to adjust its orientation before saving. Once the
confirmation is made, the finalized clothing image is sent to the Gemini Al backend for
automatic categorization, where it is analyzed and assigned attributes such as category,
color, and style. After categorization, the image is uploaded to Firebase Storage, and
the corresponding metadata is stored in Firestore. Finally, the clothing item is displayed
in the user’s wardrobe within the application, ready to be managed or combined into
outfits. To enhance usability, the wardrobe page includes a filtering feature that enables
users to quickly locate clothing items by category. Finally, users can select items from

their wardrobe to create and save new outfits in the system.

61

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celco.. 11:17 QO ¥

Add to Wardrobe X

to add a clothing item to

Camera Gallery

Figure 5.19 Add Clothes

MY Celeo... 11:26 O @ 3T 00 %l @4

< Preview

Clothing Preview

il “‘) “‘ \,.«g’\
/ 7, “'(:‘J q {\ \’.
S

Tl
L

(¢ Rotate)
J

¢ Tip: Click ‘Save' to automatically categorize
and save this item to your wardrobe using Al

A © RN

Figure 5.21 Confirm segmented
clothes

Bachelor of Computer Science (Honours)

Figure 5.20 Clothes to be segment

MY Celco.. 11:58 @ @ 2RO % @D

¢« Casual 4 P |

Casual 4
Description
A light pink tiered pleated sleeveless

top.

pink

f Q W=

Figure 5.22 Clothing item

Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

CHAPTER 5

MY Celco... 12:06 O 9 3R Ol G4

My Wardrobe

@& (o) (Bottom) [Full_body

Figure 5.23 Segmented clothing item displayed in the wardrobe

5.4.3 Try-On Image Generation with KolorVTO

Overview of the Process

The Try-On Image Generation feature allows users to virtually try on clothing items
using Al-generated images. It supports both single-item and combination outfits.

Generated images can be saved, categorized, and stored in the app for future reference.

Workflow of Try-On Image Generation

The workflow begins with the user selecting a personal photo, either uploaded
previously or captured live. In the single-item mode, the chosen clothing item is
displayed at the bottom right of the user photo as a preview for confirmation. In the
combination mode, the user selects both a top and a bottom, which are displayed as
separate previews at the bottom right. Once confirmed, the app sends the user image
and the clothing image via a POST API request to the backend server. On the server,
the KolorsVTO model processes the inputs and generates an image of the user wearing
the selected clothing item or outfit combination. The generated try-on image is returned
to the app and displayed. When the user clicks save, a dialog appears to enter the outfit
name. The outfit is then processed by the Gemini Al categorization system, stored in
Firebase along with the user’s data, and displayed in the Outfit Page for convenient

retrieval.

63

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celco... 12:58 @ @ 3 R 00 %l @4

Clothes Try-On

Try on clothes with a photo

(4]
Camera Gallery

Makeup Try-On

Apply virtual makeup

LA
Camera Image

* @ 8 =
Figure 5.24 Try on page
MY Celco.. 1:030Q T 0 3= 0 Sl @4

< Virtual TI'Y'On Save

"/“\Jf‘\‘\‘ 4 ‘
R
Wips

® O B a2

Qutfits Wardrobe Events Profile

Figure 5.26 Choose a clothes

Bachelor of Computer Science (Honours)

MY Celeo.. 1:000 7 O £ ROW %l @D

< Virtual Try-On save

* @ (o] 2
Outfits Wardrobe Events Profie

Figure 5.25 clothing try on page

MY Celco.. 1:030Q ¥ O 3 = 0 4%l @4

< Virtual Try-On Save

Generate outfit

* @ o} 2

Outfits Wardrobe Events Profile

Figure 5.27 Try on screen

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celco.. 1:07 @ 9 O 3= 0D %l @4 MY Celco.. 1:17 Q@ @ @ 3 = 0D “ull @4

¢ Virtual Try-On Save < Virtual Try-On @

X

Single ltem Upper + Lower

Al w»\,-“
&N A

Generate outfit

* @ o} 2 * @ o] 2
Outfits Wardrobe y Events Profile Qutfits Wardrobe Events Profile
Figure 5.28 Try on result Figure 5.29 Combine mode

MY Celco.. 1:120 0 Q 9 3 = 00 Sl @D 4

MY Celco.. 1:19 0 QO O 3= 0 Sl @4

& Virtual Try-On @

Save Outfit

Enter a name for your outfit

Outfit Name ’

bance) @

Generate outfit

* © o 2
Figure 5.30 Try on result Figure 5.31 Saving result

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

CHAPTER 5

MY Celco.. 1:2220Q0 0 9 37T 0B Sl @D+

& Virtual Try-On m

@ Outfit saved successfully

Figure 5.32 Successfully save

5.4.4 Makeup Try-On

Overview of the Process

The Makeup Try-On feature allows users to virtually apply makeup effects using either
a live camera feed or uploaded images. It supports real-time virtual try-on with the
camera or applying makeup to existing photos. Users can preview the effects, make

adjustments, and save the final images to Firebase for future access.

Workflow of Makeup Try-On

The workflow begins with the user choosing the input method: camera or image.
If the image option is selected, a dialog appears allowing the user to choose a photo
either from their saved outfits or from the device gallery. If the camera option is selected,
the user can try on makeup effects live.

In the camera mode, the Makeup Try-On page displays the live camera feed
along with a capture button and a makeup icon. Clicking the makeup icon opens a
selection panel with predefined makeup effects that the user can try on in real time.
After applying the desired effects, the user can capture the image, which is then saved
to Firebase.

In the image mode, after selecting a photo, a makeup selection panel is displayed
at the bottom of the screen, and a save button is available at the top right corner. Users

66

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

can apply built-in makeup effects, preview the result on the selected image, and save
the final image to Firebase.

MY Celco.. 1:44 © @ @ 2 2 OB S @4 MY Celco... 1:57 @ @ @ 3 = 0D Sl @4

Select Outfit for Makeup <

Filter by Category
All v

Select Image Source

Choose where to select your image for
makeup application:

hoody Hoodie with j...
22/09/2025 22/09/2025
m o] 2
Wardrobe Events Profile
Figure 5.33 Selection Figure 5.34 Select outfit

mDigi 212009

'

dation Lips Teeth White Soft Light Eyes

‘ e
| G @
Figure 5.35 Before makeup Figure 5.36 After makeup

67

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celco.. 2202 Q0 O 9

Figure 5.37 Before makeup Figure 5.38 After makeup

MY Celco..2:01 QO 9@ 3 = 00l @4

Save Makeup Look

Give your makeup look a name:

Look Name

[My Look g]

oo

Figure 5.39 Saving Look

68

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.4.5 Outfit Management

Overview of the Process

The Outfit Management feature allows users to save, review, and manage their try-on
results, including both clothing and makeup try-ons. Users can access a personalized
history of their generated images and perform further actions such as viewing details or
editing the saved items.

Workflow for Outfit Management

After a try-on image is generated whether through the KolorVTO API for clothing or
the makeup try-on feature the image is uploaded to Firebase Storage and linked to the
user’s record in the Firestore “Outfits” and “Makeup” collection. In the Outfit
Management page, an exchange button beside the page title allows users to toggle
between clothing try-on results and makeup try-on results. Below the title, a filter panel
lets users filter the displayed items based on categories such as clothing type, outfit
combinations, or makeup type.

When a user selects an item from the displayed list, a new page opens showing
the item details, including the try-on image, associated metadata (e.g., clothing IDs or
makeup effect), and timestamp. On this page, users can also edit the saved entry, for
example by updating the outfit name. This workflow ensures a comprehensive and
interactive way to manage both clothing and makeup try-on results, providing an
organized and user-friendly interface for wardrobe and makeup history.

1Y Celcoml 2:27 @ O 9 £ 00 %l G+ MY Celco.. 2280 0 @ B 0l @4+

Outfits (s < outfit 1 [|

Filter by Category ——

All

outfit2 outfit 1 '

V)
outfit 1
hoody Hoodie with j...
Al Analysis
@ e B = @ Q B =
Figure 5.40 Outfit page Figure 5.41 Outfit detail

69

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celco..2:28 @ @ @ 3 2 00l @4 MY Celco.. 2:128Q O @ 3 = 00l @4
< outfit 1 [] < Makeup Storage
.
k .
Q
outfit 1
22/09/2025
Look2 My Look 2
Sept 22, 2025 Sept 22, 2025
Al Analysis

Description: A man wearing a dark blue
short-sleeved t-shirt with a 2
graphic print featuring
orange text on a striped light
blue background. He pairs it -
with matching dark blue]
e

relaxed-fit trousers. He also
Look 1 My Look1

wears glasses and a
Sept 22, 2025 Sept 18, 2025

silver-toned chain necklace,

and is barefoot J
Occasion: Loungewear / Home
Colors: [Dark Blue, Orange, Light
Blue, Silver, Black]
Style: Relaxed Loungewear
- °
WaEEIobe Evemms Pr;le WaEEobe Evemnts Pr;Ie

Figure 5.42 Outfit information Figure 5.43 Makeup Storage Page

MY Celco.. 228 @ O @ 3 7 00 %l @4

< Look2 []

Details
Name Look2
Created Sept 22, 2025 at 2:06 am
-
@] -
Wardrobe J Events Profile

Figure 5.44 Look detail

70
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.4.6 Event Screen

Overview of the Process

The Event Screen provides users with a centralized interface to view, manage, and
interact with their scheduled events. It combines a calendar view, event lists, filtering
options, and notifications to ensure users stay informed about upcoming events. Users

can select a date, add new events, view details, and receive timely reminders.

Workflow of the Event Screen

When the Event Screen is opened, the EventViewModel retrieves all events from the
backend, including upcoming and past events, and updates the UI automatically via
collectAsState().

The workflow begins with the user selecting a date on the calendar. Events for the
selected date are filtered and displayed in a dedicated section. Users can also view all
upcoming events or past events in separate sections.

Each event is represented by an EventCard, displaying the outfit image or type
indicator, title, date and time, location (if available), and event type label. Clicking an
EventCard opens the event’s detail page for review or editing.

Users can add new events using the “+” button on the calendar. When an event is
created, a notification is automatically scheduled using the device’s notification
system, ensuring the user receives timely reminders before the event occurs. A
calendar legend is also provided to clarify event markers. All updates to the event lists
such as adding, editing, or deleting events are dynamically reflected in the UI without

manual refresh, maintaining a responsive experience.

71
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

MY Celc2:430Q O @ 3= 00l G4

Events

< September 2025 > °

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

wee

21 ° 23 24 25 26 27

28 29 30

@ Today @ sclected ® Has Events
{3 Events on Today

No events on this date. Tap + on calendar to
add an event!

* m 2

Outfits Wardrobe Profile

Figure 5.45 Event Page

MY Celco.. 2:43Q O @ 2 2 @Dl GO
& Create Event o Save
Event Title

— Event Type
Other -
Date (] ’ Time ®

All Day Event @

Location (Optional)

Description (Optional)

Planned Outfit M Select Outfit
-
* m :
Qutfits Wardrobe 1 Profile

Figure 5.47 Create event

Bachelor of Computer Science (Honours)

MY Celco...2:44 Q © @ 3 =M% G4

Events

3] Events on Today

No events on this date. Tap + on calendar to
add an event!

3 All Upcoming Events

No upcoming events. Tap + on calendar to
create your first event!

£ Past Events

. 44
2025-09-18 - 11:01
[Dinner |

oo
2025-09-18 « 10:59
* m 2
Qutfits Wardrobe ¥ m 4 Profile
Figure 5.46 Event page
MY Celco.. 224300 @ 3 = 0%l GD4

¢ Event Details /~ &

44
{ Oinnec J

Date & Time
2025-09-18
®11:01

Planned Outfit

a Reminder Active
You'll be notified 1 hour before the event

* m 2

Outfits Wardrobe Profile

Figure 5.48 Event Detail

72

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

V1O Style
Event Reminder
65 is starting soon at 03:49

@y @ Solocted

3} Events on Today

f o .
Figure 5.49 Notifications

5.4.7 Profile Screen

Overview of the Profile Screen

The Profile Screen allows users to view, manage, and update their personal information,
including full name, date of birth, email, profile picture, and style preferences. It
provides a centralized interface for managing personal data and preferences, ensuring
a personalized experience within the app. The screen also offers access to additional

app settings and sign-out functionality.

Workflow of the Profile Screen
When a user navigates to the Profile Screen, the application automatically loads the
user’s profile information from Firebase Firestore through the ProfileViewModel. Once
the data is fetched, the screen displays the user’s full name, email address, date of birth,
and style preferences. Style preferences are presented in a chip layout, providing a clear
and visually organized overview of the user’s selected styles. If the user has not set any
style preferences, the screen displays prompts encouraging them to update their
preferences to enhance personalized recommendations.

The user can edit their profile by tapping the "Edit Profile" button, which opens
a dialog that allows modifications to the full name, date of birth via a date picker, and
style preferences using a multiple-choice selection panel. After confirming the changes,
the updated data is sent to Firebase Firestore, ensuring persistence across devices, and

the screen is refreshed to display the new information. A dedicated sign-out button

73

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

allows the user to securely log out, with the AuthViewModel handling authentication

state and redirecting the user to the login screen.

»mDigi 3:0190 3 = Sl B4
13:00 @ 3 = 00 %l G4

Profile

yeaw

test5@gmail.com
Born: 01/01/2000
Edit Profile

Edit Profile

Full Name

yeaw ’

Style Preferences Edit

Your preferred styles: Sports, Wedding, Party

— Date of Birth

01/01/2000 =]

— Style Preferences -

Sports, Wedding, Party /’ l

LA o I

Figure 5.50 Profile page Figure 5.51 Edit Profile

5.5 Implementation Issues and Challenges

Within the creation and launch of the Virtual Try-On application, there were a
number of aspects and challenges that were faced especially concerning the operations
at the back end, Al processing, and performance of the devices. The use of cloud-based
services to process and store the user data was among the primary challenges.
Applications like clothing segmentation and try-on image generation are highly reliant
on backend APIs like the KolorVTO model that generates realistic try-on images. Any
latency or instability in such backend services has a direct impact on the performance

and user experience of the application.

Connection problems were a major problem particularly when the users had
poor or bad Wi-Fi or cellular data. Because the procedure of user images transmission,
of retrieving segmented clothing items and of processing Al-generated try-on images
require the uploading and the downloading of data stored in Firebase Storage and in

74
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

external APIs, the slow network speed greatly contributes to the processing time. Such
latency may be annoying to users, and in other instances the app may seem non-
responsive. Moreover, the unstable connection may cause the unsuccessful
transmission of all data, and more than that, the requests will not be fulfilled, or the

files will be corrupted, which also affects the quality of the try-on results.

The other problem that was identified when testing was the accuracy of Al-
generated images with the KolorVTO model. Network delays can cause the results
generated to be significantly different to the original clothing item or target appearance,
in addition to creating the results generated when the image resolution is decreased to
support slow uploading. Some of the cases have artifacts or unpredicted outputs of the
model, and this reduces the apparent reality of the try-on feature. To achieve regular
and high-quality Al results, high-speed internet connectivity should be stable, image
information should be managed cautiously, and error-processing systems must be

effective to resend or re-improve unsuccessful requests.

Besides backend and connection problems, some of the real-time functionalities
like try-on makeup, which is powered by the Banuba SDK, generated device
performance problems. The AR processing of Banuba is very demanding taking much
computational power to execute smoothly. The AR rendering may lag on devices with
less processing power or during operation of many processes with high load at the same
time leading to slower updates and jittery displays. This heavy processing load has an
impact on user experience where the live makeup preview might not look fluid and
responsive in low-end hardware, thus limiting users to interact with the application in

a more natural way.

Overall, the combination of network dependency, Al model sensitivity, high
device processing requirements for AR features, and backend processing demands
presented significant challenges. Addressing these issues involved optimizing image
handling, improving error handling for failed or delayed requests, managing device
performance, and providing user feedback during long operations to ensure that the app

remains functional and user-friendly even under suboptimal conditions.

75

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Chapter 6

System Evaluation And Discussion

6.1 System Testing and Performance Metrics
6.1.1 Black-Box Testing

System testing is a crucial stage in evaluating the effectiveness and reliability of the
Virtual Try-On mobile application. This phase ensures that all implemented features
operate according to the design specifications and satisfy the user requirements. The
testing process focuses on assessing functional correctness, performance efficiency,
and overall user experience. Performance metrics were established to quantify the
system’s effectiveness, including response time for try-on image generation, accuracy
of clothing segmentation, and the success rate of wardrobe management operations.
These metrics provide a measurable way to evaluate the responsiveness and stability of

the system under different conditions.

Black-box testing was used as the primary method to evaluate the system. This testing
approach examines the application’s behavior from the user’s perspective without
considering the internal code structure. By focusing on inputs and expected outputs,
black-box testing ensures that the system functions correctly under normal and edge-
case scenarios. For the Virtual Try-On app, black-box testing covered the authentication
module, clothing segmentation, try-on image generation, and wardrobe management.
In the authentication module, tests were conducted for login, registration, and password
recovery using both valid and invalid credentials. The system was expected to grant
access for correct login information and display appropriate error messages for

incorrect credentials.

The clothing segmentation functionality was also tested using various clothing images.
Users could upload images of shirts, dresses, or jackets, and the system was expected
to generate accurate masks that isolate the selected clothing item. Similarly, the try-on
image generation feature was evaluated by uploading different user photos and
selecting wardrobe items. The system’s output was expected to produce realistic try-on

images with correct positioning and proportions. In addition, wardrobe and outfit

76

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

management functions were tested to ensure that users could add, view, and save

outfits, while invalid inputs, such as unsupported file types, were appropriately handled.

Performance testing was carried out to examine the system’s behavior under multiple
concurrent requests. The primary goal was to measure response time and server
stability, especially since the KolorVTO model requires heavy computational
processing. Metrics such as the average response time for image generation and success
rates for segmentation and wardrobe operations were recorded. Overall, the black-box
testing results demonstrated that the system meets functional requirements and provides
reliable, accurate, and user-friendly performance. Minor delays in try-on image
generation were noted due to the computationally intensive nature of the Al model,

which is expected given the complexity of the processing involved.

6.2 Testing Setup and Result
6.2.1 Testing Setup

The testing environment was designed to simulate realistic user conditions and measure
the performance of the system. The app was tested on Android devices running Android
12 and above, with a network connection of 4G and Wi-Fi. The backend server was
deployed on Google Cloud Platform, handling clothing segmentation and try-on image

generation requests.

Testing Setup:

e Devices: Android smartphone as the client device for running the mobile
application.

e Backend: Python FastAPI server hosting the Grounded SAM2 model for
clothing segmentation, the KolorVTO model for try-on image generation, and
the Al categorization service for wardrobe organization

e Database: Firebase Firestore for storing user information, wardrobe metadata,
outfit history, makeup looks, and event details.

e Storage: Firebase Storage for managing segmented clothing images, generated
try-on images, and saved makeup results.

e Metrics: Evaluation was based on response time (time taken for model
inference and result delivery), success rate (ratio of successful operations to

77

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

total attempts), and image accuracy (quality of segmented masks, try-on
images, and makeup effects).

6.2.2 Testing Results

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Module Test Scenario Expected Result Observed Result | Pass/Fail
User Register new Account created and | Account created Pass
Authentication account with redirected to and redirected
valid onboarding correctly
email/password
User Login with User logged inand | Logged in Pass
Authentication correct redirected to main successfully
credentials interface
User Login with Error message Error message Pass
Authentication incorrect displayed displayed
password
Wardrobe Upload clothing | Clothing correctly Segmented image | Pass
Management & | image segmented and returned
Clothing returned to app for | successfully
Segmentation confirmation
Wardrobe User confirms Confirmed Confirmation Pass
Management & | segmented image | segmented clothing | works correctly
Clothing ready for upload
Segmentation
Al Upload confirmed | Server generates Metadata Pass
Categorization segmented category, color, generated
clothing style metadata, correctly; stored
stores image and successfully
metadata in
Firebase
Try-On Image Generate try-on Al server generates | Generated image | Pass
Generation image (single accurate try-on accurate; stored
item) image, returned to successfully
app, stored in
Firebase
Try-On Image Generate try-on Al server generates | Mostly accurate; Pass with
Generation image try-on image for minor minor
(combination outfit combination, | inconsistencies in | issues
outfit) returned some
combinations
78

CHAPTER 6

Makeup Try-On | Real-time Smooth application | Smooth on high- | Pass with
(Banuba) makeup try-on via | in live feed end devices; lag caution
camera on mid-range
devices
Makeup Try-On | Apply makeup to | Makeup applied Applied correctly | Pass
(Banuba) uploaded image correctly
Outfit Save try-on Images uploaded to | Successfully Pass
Management & | results Al Categorization saved and linked
History server, processed, to user
and stored in
Firebase
Outfit Edit saved outfit | Updates reflected in | Updates applied Pass
Management & Firebase correctly
History
Event Screen Add new event Event created and Event created, Pass
notification notification
scheduled received
Event Screen Edit event Event updated and | Updates applied Pass
synced correctly
Profile Screen Edit profile Profile updated and | Profile updated Pass
information reflected in Ul successfully
Profile Screen Logout User redirected to Redirected Pass
login screen successfully

Table 6.1 Testing Results

6.3 Objective Evaluation

The project objective that were set at the onset of the development process were

tackled and evaluated in a systematic manner during the implementation and testing
processes. The initial goal, which is to create an Android-based Virtual Try-On (VTO)
application is achieved. The Android Studio and Jetpack Compose were used in the
complete creation of the mobile app, which is compatible with a great number of
devices. The app is well compatible with the latest smartphones and remains accessible
to cheap smartphones, indicating that the Android platform was an appropriate decision

to reach a maximum number of users.

The second objective, which was to incorporate deep learning technologies, was
also achieved by using the latest Al models. Grounded-SAM?2 was utilized in accurate

segmentation of clothing, KolorVTO was utilized in creating lifelike try-on pictures,
79

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

and Gemini Al was incorporated in intelligent division of clothing products. These
technologies, combined, offer users an interactive and accurate virtual try on
experience. It was also tested that clothing items were segmented with a high level of
accuracy and that the try-on images generated were similar in appearance to those that
were anticipated though there were instances of inaccurate results in case of poor

connectivity, or when the server was overloaded.

The third objective, which facilitated complete body customization, was
reached when the system was expanded to include mostly more than clothing try-on to
make-up simulation. The camera feature allows the users to virtually apply different
makeup styles in real time or make changes to the images posted by them by applying
filters. This will enable the user to see their entire appearance, including clothes, and
products in the same platform. Moreover, the features of outfit history, wardrobe
management, and event reminders added to the features of the original objective
increased the features of the application, making it a more ecstatic and functional user

experience.

On balance, the three project objectives were all achieved, and the created
system has shown high competence in Android application, Al implementation, and
complete customization of the body. Solvable minor issues, including the delays in the
processing and the high computational load of the makeup rendering, do not
compromise the accomplishment of the goals but point out to the areas of potential

optimization of the future wor

80

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

Chapter 7
Conclusion and Recommendation

7.1 Conclusion

The VTO mobile application prototype is an effective approach to digital styling
that will solve the drawback of the real-life store experiences and pre-determined
fashion collections. The system gives the user a hygienic, contactless, and highly
personal styling experience, which employs both clothing and makeup try-on by
utilizing both advanced Al technologies and an Android-based platform.

The app combines GroundingDINO and SAM2 to detect and segment clothes,
KolorVTO to generate realistic try-ons, and Banuba to apply makeup effects, thus
providing users with a full-body customization experience. Besides that, the platform
has helped with Al-driven classification of the wardrobe, event-based outfit planning
with notifications, and outfit history management where users can plan, save and revisit
their styles with ease. All these properties are cleverly connected with Firebase services
that provide authentication, storage, and data management, and the FastAPI backend
provides an efficient deployment of Al models and modules interconnection.

The opportunity to add their own clothing pieces, identify and divide them with
the help of GroundingDINO + SAM?2, and create realistic try-ons with the help of
KolorVTO are one of the most important innovations of the project that allows users to
rely not only on the offered catalogs but also create personalized products and outfits
on their own. This gives the users more freedom, personalization and creativity in
regard to their own wardrobe and style in general. The experience organizer and history
are other features that move the app beyond the try-on functions, making it more of a
personal digital stylist.

Although these achievements have been made, there are still challenges. Banuba
makeup SDK has high processing power that might cause performance problems with
mid-range devices. Also, network stability is of key importance to the try-on
performance; a problematic connection can slow down the processes and lower the
quality of the obtained results. It will be important to resolve such problems by
implementing optimization and adaptive processing techniques to improve them in the

future.

81

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

On the whole, the Virtual Try-On mobile application is an indicator of the future
potential of Al-powered styling platforms to transform the way in which people
experience fashion and beauty. The system, with its scalable architecture, rich features,
and user-centered design, gives a solid platform on which it can be extended into a full-

immersion and intelligent virtual fashion platform.

7.2 Recommendation

For future improvements, several recommendations are proposed to enhance the
Virtual Try-On application. First, performance optimization should be prioritized by
reducing Al model processing time to ensure a smoother and faster user experience
across a wide range of Android devices. This can be achieved through more efficient
model deployment strategies and lightweight preprocessing techniques. Second, the
scalability of backend services needs to be addressed by deploying APIs to robust cloud
servers, enabling the system to support large-scale usage while maintaining stability
and responsiveness even during peak demand.

In terms of functionality, the project would benefit from feature expansion,
including the integration of additional makeup styles, hairstyles, and accessories such
as jewelry, eyewear, and bags. The introduction of social media sharing for completed
outfits would further enrich the user experience by allowing individuals to showcase
their styles and receive feedback. Alongside this, implementing an Al-powered
recommendation system would provide personalized outfit suggestions based on users’
wardrobes, events, and preferences, making the app more intelligent and user-centric.

Finally, for long-term innovation, future research should explore 3D virtual try-
on capabilities using AR/VR technologies. Such advancements would create a more
immersive and realistic experience, bridging the gap between digital styling and real-
world fashion. By adopting these recommendations, the application can evolve into a

comprehensive, intelligent, and interactive fashion ecosystem.

82

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

H. Ghodhbani, M. Neji, . Razzak, and A. M. Alimi, “You can try without
visiting: a comprehensive survey on virtually try-on outfits,” Multimedia Tools
and Applications, vol. 81, Mar. 2022, doi: https://doi.org/10.1007/s11042-022-
12802-6.

A. L. Roggeveen and R. Sethuraman, “How the COVID Pandemic May Change
the World of Retailing,” Journal of Retailing, vol. 96, no. 2, pp. 169—171, Apr.
2020, doi: https://doi.org/10.1016/j.jretai.2020.04.002.

A. Kavin, T Jithesh, G. Kalaiarasi, M. Selvi, R. Yogitha, and T.N. Suresh Babu,
“Virtual Trial Room for Online Shopping,” Apr. 2024, doi:
https://doi.org/10.1109/iccsp60870.2024.10544238.

“IEEE COMSOC MMTC E-Letter MULTIMEDIA COMMUNICATIONS
TECHNICAL COMMITTEE IEEE COMMUNICATIONS SOCIETY,” 2011.
Available:

https://citeseerx.ist.psu.edu/document?repid=rep1 &type=pdf&doi=c570ecd9e
caldb203b808218e98bd65b15930279#page=37

J. Gray, “A look inside Perfect Corp.'s YouCam Makeup app and the rise of
beauty AR.,” www.businessofbusiness.com, Mar. 08, 2021.
https://www.businessofbusiness.com/articles/perfect-corp-youcam-makeup-

app-beauty-tech-ar/

S. Daiani, “The Role of Context Congruency in Smart Mirrors’ Virtual Try-On
at Clothing Stores: Enhancing Customer Decision-Making and
Satisfaction,” Ohiolink.edu, 2024.
https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?7clear=10&p10_accessio
n_num=ucinl721398757906967 (accessed Sep. 10, 2024).

83

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[7]

[8]

[9]

[10]

S. Degree, “We Tried 3 Closet Organization Apps & Here’s What We Think Of
Them - Style Degree,” Style Degree, Mar. 25, 2021.
https://styledegree.sg/closet-organization-apps-
review/#:~:text=Absence%2001%20In%2DApp%20Catalogue (accessed Sep.
10, 2024).

“Virtual Fitting and Styling,” Style.me. https://style.me/virtual-fitting/

X.Han, Z. Wu, Z. Wu, R. Yu, and L. Davis, “VITON: An Image-based Virtual
Try-on Network.” Available:
https://openaccess.thecvf.com/content cvpr 2018/papers/Han VITON An I
mage-Based CVPR 2018 paper.pdf

S. Jandial, A. Chopra, K. Ayush, M. Hemani, A. Kumar, and B. Krishnamurthy,
“SieveNet: A Unified Framework for Robust Image-Based Virtual Try-
On,” arXiv.org, 2020. https://arxiv.org/abs/2001.06265 (accessed May 02,
2025).

84

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Appendix A
A.1 Code Sample

Segmentation.py

import cv2

import torch

import base64

import numpy as np

from fastapi import FastAPI, HTTPException, File, UploadFile, Form

from pydantic import BaseModel

from fastapi.middleware.cors import CORSMiddleware

import io

from sam2.build_sam import build_sam2

from sam2.sam2 image predictor import SAM2ImagePredictor

from sam2.automatic_mask generator import SAM2AutomaticMaskGenerator
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection

from PIL import Image

Create FastAPI app
app = FastAPI(title="SAM?2 Segmentation API")

Add CORS middleware

app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],

allow headers=["*"],

Setup CUDA and model configurations

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

torch.autocast(device type="cuda", dtype=torch.bfloat16). enter ()

if torch.cuda.get device properties(0).major >= 8:
torch.backends.cuda.matmul.allow tf32 = True

torch.backends.cudnn.allow tf32 = True

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu’)
Load GroundingDINO

grounding_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-
dino-tiny")

grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(
"IDEA-Research/grounding-dino-tiny"
).to(DEVICE)

CHECKPOINT = "checkpoints/sam2.1 hiera_tiny.pt"
CONFIG = "configs/sam2.1/sam2.1 hiera_t.yaml"

Load the model

sam2_model = build sam2(CONFIG, CHECKPOINT, device=DEVICE,
apply postprocessing=False)

mask generator = SAM2AutomaticMaskGenerator(sam2_model)

@app.get("/")
async def root():

return {"message": "SAM2 Segmentation API is running. Use POST /segment
endpoint."}

@app.post("/segment")
async def segment_image(file: UploadFile = File(...)):
try:
A-2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

contents = await file.read()
image pil = Image.open(io.BytesIO(contents)).convert("RGB")

image np = np.array(image pil)

Step 1: detect all clothing items
inputs = grounding_processor(
images=image pil,

text="clothes . shirt . t-shirt . pants . dress . jacket . coat . skirt . blouse .
sweater . hoodie . jeans . trousers . shorts . gown . jumpsuit .",

return_tensors="pt"
)
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.no_grad():
outputs = grounding_model(**inputs)
results = grounding_processor.post_process_grounded object detection(
outputs,
input_ids=inputs["input_ids"],
box_threshold=0.35, text threshold=0.25,
target sizes=[image np.shape[:2]]
)
boxes = results[0]["boxes"].cpu().numpy/()
if len(boxes) == 0:

return {"error": "No clothes detected"}

Step 2: segment each with SAM?2
predictor = SAM2ImagePredictor(sam2_model)
predictor.set_image(image np)
all masks =[]
for box in boxes:
masks, , = predictor.predict(box=np.array([box]), multimask output=False)
A-3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

if len(masks) > 0:
mask bool = masks[0].astype(bool)
all masks.append(mask bool)

if len(all_masks) == 0:

return {"error": "No masks generated" }

Step 3: merge masks

combined mask = np.any(all masks, axis=0) # shape: H x W, boolean mask

Step 4: crop or prepare output

optional: find bounding box around combined mask
ys, xs = np.where(combined mask)

yl, y2 = ys.min(), ys.max()

x1, x2 = xs.min(), xs.max()

crop image np

cropped_img = image np[yl:y2, x1:x2]

apply mask to crop

cropped_mask = combined mask[y1:y2, x1:x2]
build RGBA

alpha = (cropped mask.astype(np.uint8) * 255)
cropped_rgba = np.dstack((cropped _img, alpha))

encode as base64 if you want

_, buffer = cv2.imencode(".png", cv2.cvtColor(cropped rgba,
cv2.COLOR RGBA2BGRA))

b64 img = base64.b64encode(buffer).decode("utf-8")

return {"mask": b64 img}

except Exception as e:

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-4

APPENDIX

return {"error": str(e)}

if name ==" main ":
import uvicorn

uvicorn.run(app, host="0.0.0.0", port=8080)

Image to text.py

from fastapi import FastAPI, File, UploadFile, Form
from google import genai

from google.genai import types

from google.cloud import firestore, storage
from pydantic import BaseModel

import enum

import uuid

import datetime

from fastapi.encoders import jsonable _encoder
import json

import os

from google.oauth2 import service account

e

Define structured schema

e

class Category(enum.Enum):
ALL ="all"
UPPER = "top"
BOTTOM = "bottom"
FULL_BODY = "full body"

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

class Occasion(enum.Enum):
CASUAL = "Casual"
FORMAL = "Formal"
BUSINESS OFFICE = "Business / Office"
PARTY_ CELEBRATION = "Party / Celebration"
WEDDING = "Wedding"
SPORTS_ ACTIVE = "Sports / Active"
TRAVEL VACATION = "Travel / Vacation"
LOUNGEWEAR HOME = "Loungewear / Home"
TRADITIONAL CULTURAL = "Traditional / Cultural"
SEASONAL WEATHER = "Seasonal / Weather-based"

class Clothingltem(BaseModel):
description: str
category: Category
color: str
pattern: str
style: str

occasion: str

e
Smart Name Generation Function

e

def generate_smart item name(user_id: str, item_occasion: str, item_category: str,
item_style: str) -> str:

nmnn

Generate smart names based on occasion like 'Casual 1', 'Formal 2', 'Business 3',
etc.

based on existing items in the user's wardrobe

nnn

try:
A-6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Map occasion text to proper display name

occasion_mapping = {
"casual": "Casual",
"formal": "Formal",
"business": "Business",
"office": "Business",
"business / office": "Business",
"party": "Party",
"celebration": "Party",
"party / celebration": "Party",
"wedding": "Wedding",
"sports": "Sports",
"active": "Sports",
"sports / active": "Sports",
"travel": "Travel",
"vacation": "Travel",
"travel / vacation": "Travel",
"loungewear": "Loungewear",
"home": "Loungewear",
"loungewear / home": "Loungewear",
"traditional": "Traditional",
"cultural": "Traditional",
"traditional / cultural": "Traditional",
"seasonal": "Seasonal",
"weather": "Seasonal",

"seasonal / weather-based": "Seasonal"

Determine base name from occasion first, then style, then category

occasion_lower = item_occasion.lower().strip()

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-7

APPENDIX

style lower = item_style.lower().strip()

base name = None

Try to match occasion first
for key, value in occasion_mapping.items():
if key in occasion_lower:
base name = value

break

If no occasion match, try style

if not base name and (style lower and
style lower !="unknown" and
style lower !="test clothing item" and
style lower !="not specified" and

style lower !=""):

Map common styles to occasions

if "casual" in style lower:
base _name = "Casual"

elif "formal" in style lower:
base name = "Formal"

elif "business" in style lower or "office" in style lower:
base_name = "Business"

elif "party" in style lower or "evening" in style lower:
base name = "Party"

elif "sport" in style lower or "active" in style lower:
base name = "Sports"

else:

base name = item_style.capitalize()

A-8
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

If no occasion or style match, use category as fallback
if not base name:
if item_category.lower() == "top":
base name = "Top"
elif item_category.lower() == "bottom":
base name = "Bottom"
elif item_category.lower() == "full body":
base _name = "Outfit"
else:

base name = "Item"

Query existing items with the same base name pattern

user_items_ref =
db.collection("users").document(user_id).collection("wardrobeltems")

existing_items = user items_ref.get()

Count items with similar style/base name
count =0
for item_doc in existing_items:

item_data = item_doc.to_dict()

existing_display name = item_data.get("display name", "")

Check if this item has the same base name
if existing_display name.startswith(base name +""):
try:
Extract number from existing name like "Casual 3"
number part = existing display name.split(" ")[-1]
if number part.isdigit():
item_number = int(number_part)
A-9

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

count = max(count, item_number)
except:

continue

Generate new name with next number
new_ number = count + 1

smart name = f"'{base name} {new number}"

print(f"Generated smart name: '{smart name}' for occasion='{item_occasion}',
style="{item_style}', category="{item_category}"")

return smart_name

except Exception as e:
print(f"Error generating smart name: {e}")
Fallback to simple naming

return f"'Item {datetime.datetime.now().strftime('%m%d%H%M")}"

e

Initialize FastAPI & Gemini
H e

app = FastAPI(title="Clothing Metadata API")

client = genai.Client() # Gemini API client

Initialize Firebase with credentials
try:
Path to your service account key file

credentials path = "vto-app-f7833-firebase-adminsdk-tbsvc-ea90c¢9d06d.json" #
Place this file in the same directory

if os.path.exists(credentials_path):
Load credentials from file

A-10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

credentials =
service_account.Credentials.from service account file(credentials path)

db = firestore.Client(credentials=credentials)
storage client = storage.Client(credentials=credentials)

bucket = storage client.bucket("vto-app-f7833.firebasestorage.app")

print(" £4 Firebase credentials loaded successfully")
else:
print(f")X Credentials file not found: {credentials_path}")
print("Please download firebase-credentials.json from Firebase Console")
exit(1)
except Exception as e:
print(f" X Firebase initialization failed: {e}")

exit(1)

@app.post("/categorize/ {user_id}")
async def categorize clothing(user id: str, file: UploadFile = File(...)):
try:
Read uploaded image

image bytes = await file.read()

Prompt Gemini to generate description + structured JSON
prompt = (

"Interpret this clothing item and provide:\n"

"1. A simple description.\n"

"2. Structured JSON with fields:\n"

n

- description (text)\n"

n

- category (enum: all, top, bottom, full body)\n"

n

- color (text)\n"

n

- pattern (text)\n"
" - style (text)\n"
A-11

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

n

- occasion (choose from: Casual, Formal, Business / Office, Party /
Celebration, Wedding, Sports / Active, Travel / Vacation, Loungewear / Home,
Traditional / Cultural, Seasonal / Weather-based)\n"

"\nFor occasion field, pick the most appropriate from the list above. If
multiple apply, choose the primary one."

)

Call Gemini with structured output
response = client.models.generate content(
model="gemini-2.5-flash",
contents=|
types.Part.from_bytes(
data=image bytes,
mime_type="image/png"
)s
prompt

I,
config={
"response_mime_type": "application/json",

"response_schema": Clothingltem,

"thinking_config": types.ThinkingConfig(thinking budget=0) # disables
extra thinking

}

Parse Gemini output safely
try:

structured json = json.loads(response.text)
except Exception:

structured _json = {"error": "Failed to parse Gemini output", "raw_text":
response.text}

A-12
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Generate smart name based on Al analysis results
item_occasion = structured json.get("occasion", "")
item_style = structured_json.get("style", "")
item_category = structured json.get("category", "other")

smart_name = generate_smart_item name(user_id, item_occasion,
item_category, item_style)

Upload image to Firebase Storage - FIXED PATH

item_id = str(uuid.uuid4())

Use PNG format to preserve transparency from segmentation
storage path = f"'users/{user_id}/wardrobe/{item_id}.png"
blob = bucket.blob(storage path)

Upload with error handling

try:

blob.upload from_string(image bytes, content type="image/png")

print(f" §4 Successfully uploaded to Firebase Storage")
except Exception as upload_error:
print(f")X Upload failed: {upload_error}")

raise upload_error

Make blob public and generate proper URL

try:

blob.make public()

print(f' £4 Successfully made blob public")
except Exception as public_error:

print(f")X{ Make public failed: {public_error}")

print(f" 4. Continuing with URL generation...")

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-13

APPENDIX

bucket name = bucket.name
blob_name = blob.name.replace("/", "%2F") # URL encode the path

image url =
f"https://firebasestorage.googleapis.com/v0/b/{bucket name}/o/{blob name}?alt=me
dia"

print(f"=== IMAGE UPLOAD DEBUG ===")
print(f'User ID: {user id}")

print(f"Item ID: {item_id}")

print(f"Storage path: {storage path}")
print(f"Bucket name: {bucket name}")
print(f"Blob name (encoded): {blob name}")
print(f"Generated URL: {image url}")
print(f"File name: {file.filename}")

print(f"Image bytes size: {len(image bytes)}")

print(" ")

Save metadata + image URL to Firestore with error handling

try:

doc ref=
db.collection("users").document(user_id).collection("wardrobeltems").document(item
_id)

firestore data = {
"image name": file.filename,
"image url": image url,
"metadata": structured json,
"timestamp": datetime.datetime.utcnow().isoformat(),
"display name": smart name # Generated smart name

}

doc ref.set(jsonable encoder(firestore data))
print(f" £4 Successfully saved to Firestore")
A-14

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

print(f'Document path: users/{user id}/wardrobeltems/{item_id}")
except Exception as firestore error:
print(f" X Firestore save failed: {firestore error}")

raise firestore error

return {
"message": "Clothing categorized and saved to Firebase",
"item_id": item_1id,
"image url": image url,
"metadata": structured json,

"timestamp": datetime.datetime.utcnow().isoformat()

except Exception as e:

return {"error": str(e)}

@app.post("/upload _outfit/{user id}")
async def upload outfit(

user_id: str,

file: UploadFile = File(...),

outfit name: str = Form(...) # User provides outfit name

try:
Read uploaded image

image bytes = await file.read()

Prompt Gemini to generate outfit occasion + metadata
prompt = (
"Analyze this outfit image and provide structured JSON with:\n"

"1. description (short text)\n"

A-15
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

"2. occasion (choose one: Casual, Formal, Business / Office, Party /
Celebration, "

"Wedding, Sports / Active, Travel / Vacation, Loungewear / Home,
Traditional / Cultural, Seasonal)\n"

"3. color (main colors)\n"

"4, style (short style description)\n"

Call Gemini for structured metadata
response = client.models.generate content(
model="gemini-2.5-flash",
contents=|
types.Part.from_bytes(data=image bytes, mime_type="image/png"),
prompt
1,
config={

n.n

"response_mime_type": "application/json"

Parse Gemini response safely
try:

structured _json = json.loads(response.text)
except Exception:

nn

structured json = {"error": "Failed to parse Gemini output", "raw_text":
response.text}

Generate unique ID for outfit

item_id = str(uuid.uuid4())

Firebase Storage path (outfits)

A-16
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

storage path = f'users/{user_id}/outfits/{item id}.png"
blob = bucket.blob(storage path)

try:
blob.upload from_string(image bytes, content type="image/png")
blob.make public()
print(f" §4 Uploaded outfit image to Storage")
except Exception as e:
print(f")X Upload failed: {e}")

raise €

Generate public URL
bucket name = bucket.name
blob_name = blob.name.replace("/", "%2F")

image url =
f"https://firebasestorage.googleapis.com/v0/b/{bucket name}/o/{blob name}?alt=me
dia"

Firestore path (outfits)

try:

doc ref=
db.collection("users").document(user_id).collection("outfits").document(item_id)

firestore data = {
"outfit name": outfit name, # user-provided
"image url": image url,
"metadata": structured json,
"timestamp": datetime.datetime.utcnow().isoformat()
b
doc_ref.set(jsonable encoder(firestore data))
print(f" Saved outfit metadata to Firestore")

except Exception as firestore error:

A-17
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

print(f")X Firestore save failed: {firestore error}")

raise firestore error

return {
"message": "Outfit uploaded and saved successfully",
"item_id": item_1id,
"outfit name": outfit name,
"image url": image url,

"metadata": structured json

except Exception as e:

return {"error": str(e)}

S

Run locally
S

if name ==" main "

import uvicorn

uvicorn.run(app, host="0.0.0.0", port=8000)

A-18
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

A.2 Poster

UT. 'R Virtual Try On

UNIVERSITI TUNKU ABDUL RAHMAN

Developer

Yeaw Wooi Tong

Supervisor

Ms Tong Dong Ling

Module

« User Authentication

« Clothing Segmentation
« Wardrobe

« Try On

 Outfit

« Event Planner

« Profile Management

« Make Up

« Al Categorized

Introduction

Bachelor of Computer Science (Honours)

Project Objective

To develop a mobile application that allows users
to virtually try on clothes using Al-powered
clothing segmentation and image generation,

enhancing the personal styling experience..

¢ Proposed method

Integrates virtual wardrobe and makeup try-on in
one system. Clothing is segmented with the
Grounded SAM2 model and stored in a virtual
wardrobe, while facial images are processed with a
face parsing model to detect key regions. Users can
then select clothes and makeup styles, which are
applied using GAN-based transfer or simple

overlays.

Clothing Try On

A-19

Faculty of Information and Communication Technology (Kampar Campus), UTAR

