
 

REPORT STATUS DECLARATION FORM 

 Title: Using Surrogate Servers for Content Delivery Network 

                     Infrastructure with Guaranteed QoS 
 

Academic Session: _____________ 

 I                                    WONG KHAI HSIANG 

(CAPITAL LETTER) 

 declare that I allow this Final Year Project Report to be kept in  

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows: 

1. The dissertation is a property of the Library. 

2. The Library is allowed to make copies of this dissertation for academic purposes. 

 

 

   Verified by, 

 

 _________________________  _________________________ 

 (Author’s signature)     (Supervisor’s signature) 

 Address: 

 __________________________ 

 __________________________  _________________________ 

 __________________________   Supervisor’s name 

 Date: _____________________  Date: ____________________ 

UNIVERSITI TUNKU ABDUL RAHMAN 

 



ii 

 

Using Surrogate Servers for Content Delivery Network Infrastructure 

with Guaranteed QoS 

 

By 

Wong Khai Hsiang 

 

 

 

 

A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

In partial fulfillment of the requirement 

for the degree of 

BACHELOR OF INFORMATION TECHNOLOGY (HONS) 

COMMUNICATIONS AND NETWORKING 

Faculty of Information and Communication Technology 

(Perak Campus)  

MAY 2012



0 

 

DECLARATION OF ORIGINALITY 

 

I declare that this report entitled “Using Surrogate Servers for Content Delivery Network 

Infrastructure with Guaranteed QoS” is my own work except as cited in the references. The 

report has not been accepted for any degree and is not being submitted concurrently in 

candidature for any degree or other award. 

 

 

 

Signature  : _________________________ 

 

Name   : WONG KHAI HSIANG 

 

Date   : _________________________ 

 

 

 

 



1 

 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Lau 

Phooi Yee who has given me this bright opportunity to engage in an Future Media 

Internet project. It has been a very eye opening experience for me. A million thanks to 

you.  

Finally, I must say thanks to my parents and my family for their love, support and 

continuous encouragement throughout the course.  

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

ABSTRACTS 

 

This project is a Research project on Using Surrogate Servers for Content Delivery 

Network Infrastructure with Guaranteed QoS. The research focuses on Soarin, a novel 

contents delivery system to increase network bandwidth dynamically by deploying 

delivery servers in a wide area. What this project does is to simulate the concepts of 

Soarin and analyze if it would be viable to be put to used just like the un-released 

technology used currently in AKAMAI. On providing broadband contents, especially in 

the views of on-demand contents, having the required capacity of network bandwidth are 

very important. CDN has some combination of a content-delivery infrastructure, a 

request-routing infrastructure, a distribution infrastructure, and an accounting 

infrastructure. The content-delivery infrastructure consists of a set of "surrogate" servers 

that deliver copies of content to sets of users. CDN can increase network bandwidth so 

that delivery servers are distributed in a wide area all over the Internet. Before using 

CDN to deliver contents, contents provider estimate the amount of the access to provision 

the enough processing power and network bandwidth. However CDN cannot provide 

their services during overload. This is because CDN cannot increase its network 

bandwidth and processing power flexibly. Cloud computing makes it possible to increase 

processing power dynamically by increasing servers. However, current cloud-computing 

systems cannot increase network bandwidth. This is because it increases servers only in a 

local area. Servers have to be deployed in a wide area to increase network bandwidth. 

The end result from this project from the simulation of Soarin will be able to determine 

whether Soarin would be a suitable concept to be put into full practical use. 



0 

 

Table of Contents 

LIST OF FIGURES ................................................................................................................................ i 

LIST OF TABLES ................................................................................................................................. ii 

LIST OF ABBREVIATIONS ................................................................................................................. iii 

Chapter 1: Introduction .................................................................................................................... 1 

Chapter 2: Project Background ........................................................................................................ 6 

2.1 Literature Review................................................................................................................... 9 

Chapter 3: Project Scope and Objectives ....................................................................................... 12 

Chapter 4: REQUIREMENT AND DESIGN ................................................................................ 13 

4.1 Introduction .................................................................................................................... 13 

4.2 SOARIN ......................................................................................................................... 16 

4.2.1  Server Deployment Policy of SOARIN ................................................................ 18 

4.2.2 Distance between Execution Server and Deployment Server ................................ 18 

4.2.3 The Simulation Software .............................................................................................. 18 

Chapter 5: Simulation and Results ................................................................................................. 28 

5.1 Preliminary Investigation Case ............................................................................................ 28 

5.2 Preliminary Case Study Experimental Results .................................................................... 36 

5.3 Experimental Set-up 1(Closest Surrogate) ........................................................................... 42 

5.4 Experimental Set-Up 1 Results ............................................................................................ 43 



1 

 

5.4.1 Results for varying number of clients (Surrogate Fixed) .............................................. 44 

5.4.2 Results for varying number of surrogates (Client Fixed) ............................................. 45 

Figure 7: Graphical Interpretation of Throughput Results ......................................................... 45 

5.5 Experimental Set-up 2(Random Surrogate) ......................................................................... 46 

5.6 Experimental Set-Up 2 Results ............................................................................................ 47 

5.6.1 Results for varying number of clients (Surrogate Fixed) .............................................. 47 

5.6.2 Results for varying number of clients (Surrogate Fixed) .............................................. 49 

5.7 Topology Tables and Figures ............................................................................................... 50 

Chapter 6: Discussion and Conclusion .......................................................................................... 80 

6.1 Discussion ............................................................................................................................ 80 

6.1.1 Simulations Scenario Comparison ................................................................................ 80 

6.2 Conclusion and Future Works ......................................................................................... 83 

References ...................................................................................................................................... 85 

Appendices ..................................................................................................................................... 86 

 



i 

 

LIST OF FIGURES 

Figure Number                                        Title                                                          Page        

 1 Content Distribution Network Infrastructures 2 

 2 General View of Server Proliferation 14 

 3 General Overview of CS and OS 17 

 4 Router Placement 29 

 5 CDN Topology used in the simulation 32 

 6 Graphical Interpretation of Throughput Results 44 

 7 Graphical Interpretation of Throughput Results 45 

 8 Graphical Interpretation of Throughput Results 48 

 9 Graphical Interpretation of Throughput Results 49 

 10 10 Surrogates 10 Clients 52 

 11 10 Surrogates 15 Clients 55 

 12 10 Surrogates 20 Clients 58 

 13 20 Surrogates 5 Clients 61 

 14 10 Surrogates 30 Clients 64 

 15 20 Clients 5 Surrogates 67 

 16 20 Clients 10 Surrogates 70 

 17 20 Clients 20 Surrogates 73 

 18 20 Clients 25 Surrogates 76 

 19 20 Clients 30 Surrogates 79 

 20 Throughput Comparisons 81 

 21 Throughput Comparisons 82 



ii 

 

LIST OF TABLES 
 

Figure Number                                        Title                                                          Page        

 1 Router Topology  29 

 2 Topology Table 30-31 

 3 Client-Object Request Table 33-35 

 4 Object ID 35 

 5 STDOUT File Events 36-38 

 6 Throughput Results 44 

 7 Throughput Results 45 

 8 Throughput Results 47 

 9 Throughput Results 49 

 10 Topology Table 50-51 

 11 Topology Table 53-54 

 12 Topology Table 56-57 

 13 Topology Table 59-60 

 14 Topology Table 62-63 

 15 Topology Table 65-66 

 16 Topology Table 68-69 

 17 Topology Table 71-72 

 18 Topology Table 74-75 

 19 Topology Table 77-78 

 20 Throughput Comparisons 80 

 21 Throughput Comparisons 81 



iii 

 

LIST OF ABBREVIATIONS 
 

CDN    Content Delivery Network 

QoS    Quality Of Service 

ISP    Internet Service Provider 

VMM    Virtual Machine Monitor 

ES    Execution Server 

DS    Distribution Server 

OS    Observation Server 

AS    Autonomous System 

CS    Control Server 

 

 

 

 

 

 

 

 



1 

 

Chapter 1: Introduction 

 

What is Content Delivery Network (CDN)? What it does is that it replicates contents over 

several mirrored web servers (i.e., surrogate servers) which is strategically placed at 

various locations in order to deal with the flash crowds. A CDN the following structures:  

1. Content-delivery infrastructure 

2. Request-routing infrastructure 

3. Distribution infrastructure 

4. Accounting infrastructure 

 CDN improves network performance by maximizing bandwidth usage, improving 

content accessibility and maintaining content updates through content replication thus 

offering fast and reliable applications and services by distributing contents to proxies 

servers located close to users. Figure 1 illustrates a CDN and its components. 



2 

 

 

Figure 1: Content Distribution Network Infrastructures 

The content delivery architecture consists of a set of surrogate servers that deliver 

copies of content to one or more user while combining different activities such as  

a) web storage services  

b) file transfer services 

c) E-commerce services  

d) web applications 

e) directory services 

f) live(on-demand) services  

 



3 

 

The request-routing infrastructure consists of mechanisms to redirect content requests 

from a client to a suitable surrogate. The distribution infrastructure consists of 

mechanisms to move contents from the origin server to the surrogates. The accounting 

infrastructure tracks and collects data on request-routing, distribution, and delivery 

functions within the CDN creating logs and reports of distribution and delivery activities. 

The client interacts with the CDN through the request routing infrastructure and surrogate 

servers. 

 

The origin server (hosting the content to be delivered) interacts with the CDN in two 

ways (see Figure 1): 

a) It pushes new content to the replica servers, (the replica themselves request 

content updates from the origin server through the distribution infrastructure). 

b) It requests logs and other accounting data from the CDN or the CDN itself 

provides this data to the origin server through the accounting infrastructure. 

 

Figure 1 shows one of the possible scenarios of interaction between two clients, the 

access routers, the replica servers and the origin server. A client sends  

1. a content request to the routing infrastructure, that redirects  

2. the client’s request to a surrogate server, to which the client subsequently asks  

3. The desired content. 

 

The design of a CDN requires, together with the distribution of replica servers at the edge 

of the network, a set of supporting services and capabilities. In order to be efficient for 

1. a significant number of users  



4 

 

2. a considerably wide area, the edge servers must be deployed in thousands of 

networks, at different geographically spread locations.  

The optimal performance and reliability depend on the granularity of the distribution of 

those edge servers. The establishment of a CDN therefore requires the design of some 

important features the following:- 

 

a) Replica placement mechanisms are needed to decide the locations of the replica 

server and to adaptively update the contents prior to the request arrival (pre-

fetching). Thus servers are not updated upon request, i.e. unlike in traditional 

proxy caching, but are pro-actively updating its content. Adaptivity in replica 

placement is required, especially to cope with changing traffic conditions though 

not related to pull behavior as in traditional caching. 

b) Content update mechanisms must be provided to automatically check the host 

site for changes and retrieve updated content for delivery to the edges of the 

network, thus ensuring content freshness. Standard mechanisms adopted in proxy 

caching do not guarantee content freshness since content stored on standard cache 

servers does not change as the source content changes. 

c) Active measurement mechanisms must be added to cooperative access routers 

in order to provide immediate access to a real-time picture of the Internet traffic, 

i.e. to the ability to recognize the fastest route from the requesting users to the 

replica servers in any type of traffic situations, especially in presence of “flash 

crowds”. Flash crowds refers to the sudden heavy demand, expected or not, for a 



5 

 

single site. A measurement activity is at the basis of the replica selection 

mechanism.  

d) Replica selection mechanisms must be added to cooperative access routers to 

accurately locate the closest and most available edge server from which the end 

users can retrieve the required content. A robust service must also keep its servers 

from getting overloaded by means of access control and load balancing. 

e) Re-routing mechanisms must be able to quickly re-route content requests in 

response to traffic bursts and congestion as revealed by the measurement activity. 

Also, the CDN infrastructure, must allow the service providers to directly access 

the caches and control their availability and to get the statistics information about 

the accesses to the site, from the cooperative access routers. 

 

 

 

 

 

 

 

 

 



6 

 

Chapter 2: Project Background  

 

Over the last decades, users have witnessed the growth and maturity of the Internet. As a 

consequence, there has been an enormous growth in network traffic, driven by rapid 

acceptance of broadband access, along with increases in system complexity and content 

richness [1]. The over-evolving nature of the Internet brings new challenges in managing 

and delivering content to users. As an example, popular Web services often suffer 

congestion and bottleneck due to the large demands made on their services. A sudden 

spike in Web content requests may cause heavy workload on particular Web server(s), 

and as a result a hotspot [2] can be generated. Coping with such unexpected demand 

causes significant strain on a Web server. Eventually the Web servers are totally 

overwhelmed with the sudden increase in traffic, and the Web site holding the content 

becomes temporarily unavailable. Content providers view the Web as a vehicle to bring 

rich content to their users. A decrease in service quality, along with high access delays 

mainly caused by long download times, leaves the users in frustration. Companies earn 

significant financial incentives from Web-based e-business. Hence, they are concerned to 

improve the service quality experienced by the users while accessing their Web sites. As 

such, the past few years have seen an evolution of technologies that aim to improve 

content delivery and service provisioning over the Web. When used together, the 

infrastructures supporting these technologies form a new type of network, which is often 

referred to as content network [3]. 

 

Several content networks attempt to address the performance problem through using 

different mechanisms to improve the Quality of Service (QoS). One approach is to 



7 

 

modify the traditional Web architecture by improving the Web server hardware adding a 

high-speed processor, more memory and disk space, or maybe even a multi-processor 

system. This approach is not flexible [4]. Moreover, small enhancements are not possible 

and at some point, the complete server system might have to be replaced. Caching proxy 

deployment by an ISP can be beneficial for the narrow bandwidth users accessing the 

Internet. In order to improve performance and reduce bandwidth utilization, caching 

proxies are deployed close to the users. Caching proxies may also be equipped with 

technologies to detect a server failure and maximize efficient use of caching proxy 

resources. Users often configure their browsers to send their Web request through these 

caches rather than sending directly to origin servers. When this configuration is properly 

done, the user’s entire browsing session goes through a specific caching proxy. Thus, the 

caches contain most popular content viewed by all the users of the caching proxies. A 

provider may also deploy different levels of local, regional, international caches at 

geographically distributed locations. Such arrangement is referred to as hierarchical 

caching. This may provide additional performance improvements and bandwidth savings 

[5]. A more scalable solution is the establishment of server farms. It is a type of content 

network that has been in widespread use for several years. A server farm is comprised of 

multiple Web servers, each of them sharing the burden of answering requests for the 

same Web site [4]. It also makes use of a Layer 4-7 switch, Web switch or content switch 

that examines content request and dispatches them among the group of servers. A server 

farm can also be constructed with surrogates [63] instead of a switch. This approach is 

more flexible and shows better scalability [4]. Moreover, it provides the inherent benefit 

of fault tolerance [1]. Deployment and growth of server farms progresses with the 

upgrade of network links that connects the Web sites to the Internet. Although server 



8 

 

farms and hierarchical caching through caching proxies are useful techniques to address 

the Internet Web performance problem, they have limitations. In the first case, since 

servers are deployed near the origin server, they do little to improve the network 

performance due to network congestion. CDN can increase network bandwidth so that 

delivery servers are distributed 

in a wide area all over the Internet. Before using CDN to deliver contents, contents 

provider estimate the amount of the access to provision the enough processing power and 

network bandwidth. However CDN cannot provide their services during overload. This is 

because CDN cannot increase its network bandwidth and processing power flexibly. 

Cloud computing makes it possible to increase processing power dynamically by 

increasing servers. 

 

However, current cloud-computing systems cannot increase network bandwidth. This is 

because it increases servers only in a local area. Servers have to be deployed in a wide 

area to increase network bandwidth. There are three problems in deploying servers in a 

wide area. These problems are composed of three main parts: 

(1) how to deploy the servers 

(2) where to deploy the servers 

(3) when to deploy the servers 

 

There are some research contributions for wide area live migration [6][7]. The results of 

these researches can be used in server deployment in a wide area. However, the purpose 

of these studies focuses how to deploy the servers. We tackle the problem when to deploy 

the servers. 



9 

 

2.1 Literature Review 

 

There have been numerous proposed methodologies in the placement and usage of 

Surrogate Servers in the past. One particular paper [8] proposed a new CDN architecture 

by creating server clusters in a single content delivery network. According to the 

proposed architecture, it can achieve better server load balance and it is fit for the future 

large storage requirement for CDN services. With the coordination among content serves, 

client requests are satisfied by different servers within a cluster. It is on the basis that in a 

CDN, a content server has no knowledge about the data stored on its neighbouring 

servers. If it cannot satisfy a client request, it has to forward the request to the original 

server even in case the required data is available in its neighbouring servers. Moreover, if 

a server is overloaded, its neighbouring servers are not aware of that and cannot help to 

reduce its workload even their workload are very low. Another serious issue is the cache 

space limitation, since more and more content providers use CDN service, the storage 

requirement increases dramatically, new services such as high quality videos, video on 

demand, real-time video conferences and real time stock information generate even 

higher storage requirement and exacerbate the problem, thus the cache hit rate on these 

CDN servers keeps decreasing. 

 

On another paper [9], techniques for building the dissemination tree, a dynamic content 

distribution network were explored. Several replica placement algorithms which reduce 

the number of replicas deployed and self-organized them into a balanced dissemination 

tree. A peer-to-peer location service used for better scalability and locality was also 



10 

 

proposed.  The methodology is proposed based on the purpose of dynamically choosing 

the number and placement of replicas while satisfying QoS requirements and server 

capacity constraints and to disseminate updates to the replicas on small delay and 

bandwidth consumption. On a third paper [10] a novel content delivery system was 

proposed with the basis that it can increase network bandwidth dynamically by delivery 

servers in a wide area. It is also mentioned that it can use various server deployment 

policy to deploy delivery servers and to decide on server suitability for the role of content 

deliverer. The issue that were tackled were on the inability to dynamically increase 

delivery servers in existing CDNs concluding that existing CDNs lack flexibility to 

deploy distribution servers.  

 

In the first paper[8] where a server clustering was proposed is rather unrealistic. Firstly, 

to have a cluster of servers, it would mean deploying numerous physical servers within 

an area meaning spending a lot of money just to focus on a singular geographical area to 

provide QoS within the area. If the concept were to be used by a CDN provider, it would 

mean building numerous physical servers in each geographical area which would add up 

to a very big number of servers. The cost itself would be a big step back. Secondly, the 

congestion in an area needed to be taken in consideration. There would be no point to be 

deploying clusters of servers in areas that are not congested. The physical distance 

between servers would also be a stumbling block. How far would a server need to be to 

be classified as another cluster and how near one should be? What about the network 

bandwidth within an area? Just because the distance between two surrogates are low does 

not guarantee that the bandwidth would suffice, there would be scenarios where the 

distance is not a factor but the bandwidth would be. A physical surrogate may be nearer 



11 

 

but if the network bandwidth between the server and client isn’t ideal, a further surrogate 

might be a better option. The proposal of the second paper [9] is a plausible thing that 

may be put into real-world conditions. However, it would only be satisfy a small to 

medium area of servers. Take Akamai, for instance. They have a total of 95 000 

surrogates globally. The overhead of calculating everything in such a large scale would 

overwhelm the whole network. CDN is all about providing availability whenever there is 

a request. Let’s say, calculation is done in every geographical area. That would able to 

work, however, as data of how many clients request changes in real-time (i.e. the sudden 

emergence of a flash crowd), discrepancies in those data might overthrow the whole 

calculation process and a need to re-calculate everything would therefore cause a massive 

delay of content delivery.  

 

In comparison to the current un-published technology of Akamai[7], which consists of 

“EdgeComputing” and “NOCC” which provides delivery of web-based applications that 

scale on demand, a proactive monitoring and troubleshooting of all servers in the global 

Akamai network respectively, the third paper[10] proposed a rather similar concept. 

“Soarin” as proposed in the third paper make uses of Virtual Machines Machines (VMM) 

within physical servers to monitor network performance and these physical machines 

execute virtual machines that make up Execution Servers(ES), Distribution Servers(DS). 

By usage of virtual machines within physical machines, using multiple Distribution 

Servers (DS) would be easily done as a the number of physical Distribution Servers(DS) 

might prove to be a bottleneck.  The only drawback is that “Soarin” has yet to be tested 

and there is no physical evidence to back up the methodology proposed. 

 



12 

 

Chapter 3: Project Scope and Objectives 

The project aims to solidify a new methodology in the deployment of surrogate servers in 

CDNs to guarantee Qos. Research will be done on SOARIN about Server Proliferation 

(VMM,ES,DS) and the Server Deployment Policy of Soarin.  

After that, the concept of SOARIN would be put to the test in a simulation that replicates 

real-world environments and see how it would perform. 

The project scopes include:  

1. Understanding how SOARIN works in terms of Server Proliferation and the 

Server Deployment Policy 

2. Simulating the concept of SOARIN in a real-world environment to solidify 

the concept as proposed in [10].  

3. Analyzing the result of simulation in (2) 

4. Proposing an extended-SOARIN for new environment./scenario 

 

 

 



13 

 

Chapter 4: REQUIREMENT AND DESIGN 

 

4.1 Introduction 

Server Proliferation deploys physical machines that are installed with virtual machine 

monitor throughout the Internet in advance. These physical machines would execute 

virtual machines on them. These physical machines are named Execution Server (ES). 

The other server is Deployment Server (DS).DS stores the virtual machines HDD images. 

In Server Proliferation, services (i.e. Web server, Streaming server) will be executed 

inside virtual machines. When a new virtual machine is required, the virtual machine’s 

HDD image will be distributed from DS to one of the ES. The distributed virtual machine 

is executed on the ES 

 

Server Proliferation realizes the increasing and decreasing processing power and network 

bandwidth of server system dynamically by increasing and decreasing servers in a wide 

area dynamically. Figure 1 shows architecture of Server Proliferation.  

 



14 

 

 

 

Figure 2: General View of Server Proliferation 

 

We introduce two types of the servers in Server Proliferation.  

1. Execution Server (ES)  

2. Distribution Server (DS) 

 

Without Server Proliferation, one CDN will be just like Cloud computing which makes it 

possible to increase servers dynamically. By increasing servers, it is possible to use the 

CPU and the network of the increased server. Thus processing power and network 

bandwidth is increased. Therefore cloud-computing systems can increase the processing 

power and network bandwidth. However, compared with processing power, it is difficult 



15 

 

to increase network bandwidth. This is due to network bottleneck. Typical cloud-

computing system is constructed in an iDC (Internet Data Center). The uplink network of 

the iDC may become network bottleneck of the cloud computing system. 

 

By contrast, Server Proliferation can increase both of processing power and network 

bandwidth. It is because it can deploy servers in a wide area; therefore, deployed servers 

can use different uplink network each other. In this case, where SOARIN is concerned, it 

does not matter how many servers are to be deployed in the specific area, with 

virtualization, the mountain of costs of server deployments can be avoided. As it turned 

out, it is possible to increase network bandwidth of the system. Server Proliferation uses 

virtual machine as a basis. It is because virtual machine is easy to increase and decrease 

dynamically. Moreover using virtual machine can reduce cost since physical machines 

can be shared with other system that uses virtual machines. It is possible to execute 

another virtual machine besides virtual machine executed by Server Proliferation. We can 

say that Server Proliferation is high-cost performance. 

 

 

 

 

 



16 

 

4.2 SOARIN 

In this section, we describe Flexible Contents Delivery System with Dynamic Server 

Deployment: SOARIN. SOARIN enables flexible increase in network bandwidth. 

SOARIN increases distribution servers to increase network bandwidth. SOARIN can 

increase distribution server anytime. It is possible to add network bandwidth even after 

content distribution is started. In addition, SOARIN can decide when and where to 

increase distribution server flexibly. Upon increasing distribution servers dynamically, 

the new problem when and where to increase surrogates happens. In SOARIN, 

distribution servers are constructed inside virtual machines, this problem is equal to a 

problem what criteria a physical machine to execute a virtual machine is chosen. This 

selection criterion is called Server Deployment Policy. There is a variety of server 

deployment policy and SOARIN is able to use various server deployment policies for 

contents holders’ requirements. The examples of the server deployment policy are 

discussed later in this section. 

 

SOARIN uses Server Proliferation to deploy distribution servers. Server Proliferation is 

able to provide on how to deploy a virtual machine dynamically. However it lacks 

capability to decide timing and location of deploying virtual machine. Hence, the 

introduction of Observation Server (OS) and Control Server (CS) in addition to 

Execution Server (ES) and Deployment Server (DS) in Server Proliferation. OS collects 

several kinds of metrics using server deployment policy. For example, it collects the CPU 

load and network traffic of ESs, calculates the distance from ESs to DSs. CS controls all 

over SOARIN’s system. CS selects ES to deploy new virtual machine using information 

from OS based on server deployment policy. CS will then direct DS to transfer the HDD 



17 

 

image of the virtual machine to the selected ES to deploy new distribution server. After 

that, CS directs ES to execute the virtual machine for new distribution server. Finally CS 

updates request navigation policy to use the new distribution server. Figure 2 will 

illustrate a general overview of how OS , CS ,DS and ES work. 

 

 

 

Figure 3: General Overview of CS and OS 



18 

 

4.2.1  Server Deployment Policy of SOARIN 

As mentioned above SOARIN is able to use various server deployment policies. In this 

project however, only one Server Deployment Policy of SOARIN will be used to deal 

with a scenario of a sudden spike in user connected (peak hour) which is where we take 

into account the distance between the execution server and deployment server. i.e, how 

far an execution server is from the deployment server (origin server).  

 

 

4.2.2 Distance between Execution Server and Deployment Server 

This policy uses the distance between Deployment Server and Execution Server as a 

criterion. Some metrics can be used to calculate the distance which includes number of 

hops, round trip time, and AS (Autonomous System) path length between DS and ES. DS 

measure this information periodically. OS collects this information from DS. This policy 

chooses the nearest ES from DS; therefore it may deploy new distribution server in a 

short time. As a result, it is possible to correspond to a sudden surge in the volume of 

request (peak hour).  In this project, when a surrogate is not able to fulfill the client’s 

request, the request will be directed to the nearest surrogate or origin to fulfill that request.  

 

4.2.3 The Simulation Software 

CDNSim has been designated to provide a realistic simulation for CDNs, simulating the 

surrogate servers, the TCP/IP protocol, and the main CDN functions. The main 

advantages of this tool are its high performance, its extensibility, and its user interface, 



19 

 

which is used to configure its parameters. CDNSim provides an automated environment 

for conducting experiments and extracting client, server, and network statistics.  

 

To run CDNSim, open a terminal (assuming bash or dash shell and CDNsim is installed 

in the home directory of the current user) and type the following in order to invoke the 

wizard (change path as necessary). 

 

The first screen that appears defines the CDN redirection policy: The client is redirected 

to a surrogate server according to the policy. Upon a cache miss the surrogate server is 

redirected also according to the same policy. 

 

 Cooperative Environment (closest surrogate). The client is redirected to the 

closest surrogate server in terms of network hops. Upon a cache miss, the 

surrogate server retrieves the object from the closest alternative surrogate server 

that contains the requested object. The object is stored in the cache and then it is 

served to the client. If the object is not outsourced at all in any surrogate server 

then the surrogate server retrieves the object from the closest origin server. 



20 

 

Consecutive cooperations may occur if in the meantime the alternative surrogate 

server removed the object from the cache causing another cache miss. 

 Non - Cooperative Environment (closest origin). The client is redirected to the 

closest surrogate server in terms of network hops. Upon a cache miss, the 

surrogate server retrieves the object from the closest origin server, stores it in 

cache and serves it to the client. 

 Cooperative Environment (random surrogate). The client is redirected to a 

random surrogate server. Upon a cache miss, the surrogate server retrieves the 

object from a random alternative surrogate server that contains the requested 

object. The object is stored in the cache and then it is served to the client. If the 

object is not outsourced at all in any surrogate server then the surrogate server 

retrieves the object from a random origin server. Consecutive cooperations may 

occur if in the meantime the alternative surrogate server removed the object from 

the cache causing another cache miss. 

 Cooperative Environment (surrogate load balance surrogate). The client is 

redirected to the closest surrogate server in terms of network hops. If the surrogate 

server is loaded ~95% then the client is redirected to the least loaded surrogate 

server. Upon a cache miss, the surrogate server retrieves the object from the 

closest alternative surrogate server that contains the requested object. Again if the 

load is ~95% the surrogate server is redirected to the least loaded surrogate server 

that contains the object. The object is stored in the cache and then it is served to 

the client. If the object is not outsourced at all in any surrogate server then the 

surrogate server retrieves the object from the closest origin server. If the origin 

server load is ~95% then the surrogate is redirected to the least loaded origin 



21 

 

server. Consecutive cooperations may occur if in the meantime the alternative 

surrogate server removed the object from the cache causing another cache miss. 

 

 

The next screen provides options for the network topology. CDNsim may build any kind 

of wired network topology as long as the appropriate configuration is provided. 

Advanced tuning can be performed by editing the base.ned file once the simulation 

bottles are generated by the end of this tutorial. In this page we try to simplify the 

procedure by offering some basic options: 

 

 

 Routers. The user must provide a text file that describes the backbone network 

topology represented by a "cloud" of routers. The file format is "int int\n" 



22 

 

without the quotes. Each integer represents a node id, each line represents a link 

between the two nodes and "\n" is the new line character. There is no need to 

define "double" links i.e. 1 3 and 3 1. The default behaviour is to create double 

links. The node ids must be in the range [0, number_of_routers). All the other 

network nodes (surrogate servers, origin servers, clients) are randomly attached to 

the routers backbone. If you provide the same options you will get the same 

network topology each time you run the wizard. You may find useful to use one 

of these files (as 3037, random 1000, random 50, transit stub 1008, waxman 1000) 

 Link speed. This option defines the speed of each link. All the links will have the 

same speed. Creating a network with varying speeds require manual editing of the 

generated network topology file. 

 Number of clients. This is the number of clients that exist in the network. 

 Clients' number of outgoing connections. Each client may handle more than 

one connection for requesting objects. This option sets an upper limit. 

 Clients' number of retries. Each client can retry that much times if a request is 

failed. 

 Clients' mean waiting time per retry. Following the exponential distribution 

with this mean the each client remains idle until next retry. 

 Number of surrogate servers. This is the number of surrogate servers 

the CDN has. 

 Surrogate servers' number of outgoing connections. Upon cache misses the 

surrogate servers have to retrieve the requested objects from alternative servers. 

This option defines the maximum number of such connections. Denial of service 

occurs if this limit is met. 

http://oswinds.csd.auth.gr/CDNsim/docs/tut1/network_topologies/as3037
http://oswinds.csd.auth.gr/CDNsim/docs/tut1/network_topologies/random1000
http://oswinds.csd.auth.gr/CDNsim/docs/tut1/network_topologies/random50
http://oswinds.csd.auth.gr/CDNsim/docs/tut1/network_topologies/transSt1008
http://oswinds.csd.auth.gr/CDNsim/docs/tut1/network_topologies/waxman1_1000


23 

 

 Surrogate servers' number of incoming connections. This sets the maximum 

number of connections a surrogate may receive from other surrogate servers or 

clients for objects. Denial of service occurs if limit is reached. 

 Number of origin servers. Defines the number of origin servers in the network. 

The origin servers contain the whole web site and they are the last resort for a 

request to be satisfied. 

 Origin servers' number of incoming connections.. Defines the number of 

incoming requests for objects the origin servers can handle simultaneously. 

Denial of service occurs if this limit is exceeded. 

 

In the next screen the user inputs the web site and the clients trace file. More specifically:  

 

 Website. This file contains all the objects existing in the system and can be 

transferred. The format is "int int\n", where the first integer is a unique object id 

and the second integer is the size in bytes. The object ids must be in the 

range [0,number_of_objects). For example you may use this file web_site16000. 

http://oswinds.csd.auth.gr/CDNsim/docs/tut1/data/web_site16000


24 

 

 Traffic. This file describe which clients, when and what they will be request from 

theCDN. The file format is "double int int\n". The first number is the timestamp 

of the request, the second is the client and the last is the requested object. The 

timestamp takes values >=0 and the file must be sorted by increasing timestamp. 

The clients take values in >= 0. If the client numbers are in the range 

[0, number_of_clients) wherenumber_of_clients is the one defined in step4 then it 

is all OK. Otherwise the client numbers in the trace file are reassigned randomly 

to meet the range [0,number_of_clients) but preserving the requests each client is 

originally assigned to. If you provide the same input you will get the same 

assignment each time you run the wizard. The requested objects must be in the 

range [0 number_of_objects). Here is a trace file for your 

convenience trace_file50000. 

 

 

This step configures each surrogate server`s local cache. The configuration is set by a file 

which describes the contents, the capacity and the cache replacement policy of every 

surrogate server. The file contains records, each one referring to a surrogate server. There 

http://oswinds.csd.auth.gr/CDNsim/docs/tut1/data/trace_file50000


25 

 

is an extra option "Shrink..." this would make caches to fit the initial contents exactly. 

For instance if you configure a cache to be 1GB and the file that contains the objects to 

be stored contains e.g. 1MB of objects, them the cache will become 1MB. 

 

 

Here the user must provide input for the following: 

 Output directory. This is the directory where the output (not the results of the 

simulation) will be stored. 

 New bottle's name. Descriptive name for the new experiment. 

 

 

At this step all the input provided in the previous steps and all the necessary libraries are 

verified and bundled inside a compressed archive called bottle. If anything is invalid then 

you get an error message. You may open the generated archive (it is tar.gz format) and 

take a look. All the procedure can be repeated to create more bottles.. Advanced network 

topology tuning can be performed by editing the base.ned file inside the bottles. 



26 

 

The purpose of CDNSim is to be used as a testbed for CDN evaluation and 

experimentations subsequently making it a suitable choice to be used for the objectives of 

my project. In terms of simulating a CDN, there are numerous software out there that can 

serve such purpose (i.e. NS-2, OPNET). However, the reason CDNsim is used is because 

it was built on top of OMNET as an extension specifically used to simulate CDNs. It is 

used on a Linux Platform. Unlike other simulation softwares, I do not have to start from 

scratch in the purpose of doing my project. With CDNsim, a lot of functions (request 

routing, traffic files and number of components in the topology) are all provided as 

sample and to edit them, it is a matter of changing the parameters in the files. In a 

nutshell, with CDNsim, a lot of the works which I would have to do from scratch have 

already been simplified for me. All I needed to do was take a bit of time to study the 

architecture and codes of CDNsim and I am ready to use it in my project.  

 

In terms of SOARIN, the ability to manipulate topologies in CDNSim allows me to use 

create a simple topology of 3 nodes for my objective. By using the CDNsim.py, I am able 

to build the topology for any kind of CDN which includes all the options of manipulating 

the number of clients, servers and origins. By running the sh script, it will simulate the 

topology by using the .ned and .hi inside the topology and by calling the .cc file in 

CDNsim lib, INET lib and HACK folder. All of the .cc files were built by the author of 

CDNsim. After running the simulation, the whole simulation process will be logged into 

stats a STDOUT file. From the analyzation of the result from STDOUT file, I will be able 

to come to grasp on what had been simulated. 

On modifying the topology, CDNsim allows us to control the model of the topology. 

Also, built in is a provided request routing to route the request and other protocol and 



27 

 

libraries. In terms of my project, I will be using 10 nodes with the IDs of S1 – S0. . 

CDNsim provides the basic model for building a CDN; hence it helps in simplifying the 

amount of work that I have to do. By assuming that the central unit is the request routing 

system, I am able to proceed to only work on the modification of topology and the 

different roles that each node plays. If say one of the nodes does not a certain file, central 

unit being the one that controls all of the surrogate servers within the singular CDN will 

route the missing file from the origin server or from the closest node that has the file. All 

in all, after the whole simulation is done, from the stat file, I will be able find the proof of 

routing from CDN which shows the traffic of the packet transfer between nodes. 

 

 

 

 

 

 

 

 

 

 



28 

 

Chapter 5: Simulation and Results 

5.1 Preliminary Investigation Case 

This section discusses the topology of the CDN that will be simulated will be simulated. 

Referring to Figure 4, the total number of routers in the topology: 15 (R0 – R 14), and 

when we refer to Figure 5, we are able to see that the number of clients: 10 (C15 – C24) , 

surrogates: 10(S25 – S34) and 1 origin. The full topology on how each component 

connects with each other is illustrated both in a diagram (Figure 5) and the router 

topology is illustrated in Figure 4. In terms of Table 1, the two rows of routers that is 

shown is the connection between routers (i.e. Router 0 is connected to Router 1) whilst in 

Table 2, the two rows of components are the inter-connected network devices and their 

bandwidth. Each client’s request will is put into tables (Table 3) to show at what timeline 

each request cross-referenced with which object being requested. The client tables are 

divided into 3 rows which includes Client (which identifies the client), Timeline (the 

timeframe of at which the clients makes a request) and lastly, Object ID (which is the ID 

of the object which they will make a request of). In Table 4, we will see the Object ID 

and its’ size. It is important to see the table as CDNSim’s traffic files only shows the 

object size instead of the object ID. The STDOUT file and STATS file outputs are also 

included as the results of the simulation. However, both the STDOUT and STATS file 

outputs are only limited to 0 – 10 timeline because the output is too long and the recorded 

output is enough to illustrate the results of the simulation.  

 

 



29 

 

Router Topology Table 1 as illustrated in Figure 4( on the right) 

  

 

 

Figure 4: Router Placement (Connection Table shown in Table 1) 

 

 

 

 

 

Router Router 

0 1 

1 2 

1 7 

2 3 

2 4 

2 5 

3 7 

3 6 

4 5 

5 8 

5 9 

6 10 

6 12 

7 10 

8 11 

9 14 

10 12 

12 13 

13 14 



30 

 

Topology Table 2 as illustrated in Figure 5 

Component Component Bandwidth(Mbps) 

 

Component Component  Bandwidth(Mbps) 

r0 r1  100 

 

r10 r7 100 

r0 o39 100 

 

r10 r6 100 

r1 r2 100 

 

r10 r12 100 

r1 r7 100 

 

r10 c23 100 

r1 c16 100 

 

r10 s33 100 

r2 r1  100 

 

r11 r8 100 

r2 r3 100 

 

r11 r9 100 

r2 r4 100 

 

r11 s30 100 

r2 r5 100 

 

r11 c19 100 

r2 s32 100 

 

r12 r10 100 

r2 c22 100 

 

r12 r16 100 

r3 r2 100 

 

r12 r13 100 

r3 r7 100 

 

r12 s29 100 

r3 r6 100 

 

r12 c24 100 

r3 s28 100 

 

r13 r12 100 

r4 r2 100 

 

r13 r14 100 

r4 r5 100 

 

r13 s31 100 

r4 s26 100 

 

r14 r13 100 

r4 c15 100 

 

r14 r9 100 

r5 r2 100 

 

r14 c20 100 

r5 r4 100 

 

c15 r4 100 

r5 r9 100 

 

c16 r1 100 

r5 r8 100 

 

c17 r9 100 



31 

 

r5 s27 100 

 

c18 r6 100 

r6 r3 100 

 

c19 r11 100 

r6 r9 100 

 

c20 r14 100 

r6 r12 100 

 

c21 r8 100 

r6 r10 100 

 

c22 r2 100 

r6 c18 100 

 

c23 r10 100 

r7 r1 100 

 

c24 r12 100 

r7 r10 100 

 

s25 r7 100 

r7 r3 100 

 

s26 r4 100 

r7 s25 100 

 

s27 r5 100 

r8 r5 100 

 

s28 r3 100 

r8 r11 100 

 

s29 r12 100 

r8 c21 100 

 

s30 r11 100 

r9 r6 100 

 

s31 r13 100 

r9 r5 100 

 

s32 r2 100 

r9 r11 100 

 

s33 r10 100 

r9 r14 100 

 

s34 r9 100 

r9 s34 100 

 

o35 r0 100 

r9 c17 100 

     



32 

 

 

Figure 5: CDN Topology used in the simulation (Connection Table Information in Table 

2) 

 

 

 



33 

 

Table 3: Client-Object Request Table 

Client  Timeline 

Object 

ID 

 

Client  Timeline 

Object 

ID 

15 0 10 

 

18 3 5 

  10 10 

 

  13 8 

  20 3 

 

  23 2 

  30 7 

 

  33 10 

  40 6 

 

  43 6 

  50 0 

 

  53 3 

  60 9 

 

  63 3 

  70 1 

 

  73 6 

  80 5 

 

  83 0 

  90 8 

 

  93 9 

  100 2 

    

    

19 4 1 

16 1 2 

 

  14 5 

  11 9 

 

  24 8 

  21 5 

 

  34 2 

  31 9 

 

  44 10 

  41 7 

 

  54 5 

  51 6 

 

  64 5 

  61 6 

 

  74 7 

  71 9 

 

  84 6 

  81 1 

 

  94 0 

  91 5 

    

    

20 5 9 

17 2 8 

 

  15 1 

  12 2 

 

  25 5 

  22 10 

 

  35 8 

  32 5 

 

  45 2 

  42 3 

 

  55 10 

  52 7 

 

  65 10 

  62 7 

 

  75 3 



34 

 

  72 0 

 

  85 7 

  82 9 

 

  95 6 

  92 1 

     

Client  Timeline 

Object 

ID 

 

Client  Timeline 

Object 

ID 

21 6 0 

 

24 9 3 

  16 9 

 

  19 7 

  26 1 

 

  29 6 

  36 5 

 

  39 0 

  46 8 

 

  49 9 

  56 2 

 

  59 1 

  66 10 

 

  69 5 

  76 6 

 

  79 8 

  86 3 

 

  89 2 

  96 7 

 

  99 10 

   

 

   22 7 6 

      17 0 

      27 9 

      37 1 

      47 5 

      57 8 

      67 2 

      77 10 

      87 8 

      97 3 

    

       23 8 7 

      18 6 

      28 0 

      38 9 

      48 1 

    



35 

 

  58 5 

      68 8 

      78 2 

      88 10 

      98 1 

     

Table 4: Object ID  

 

Object ID Object Size 

 

 

0 388637 

 

 

1 71125 

 

 

2 58512 

 

 

3 101924 

 

 

4 106333 

 

 

5 368734 

 

 

6 299117 

 

 

7 108522 

 

 

8 60248 

 

 

9 79751 

 

 

10 256125 

 

     

 

 

 

 

 



36 

 

5.2 Preliminary Case Study Experimental Results 

This section discusses the experimental results.  

Table 5: STDOUT File Events. 

Line Status Timeline Component 

Object 

Size 

Object 

ID 

1 UTIL_UP 0.000145712  o35 256125 10 

2 UTIL_DOWN 0.0059406  s33 256125 10 

3 UTIL_UP 0.00608536  s33 256125 10 

4 UTIL_DOWN 0.0113115  c15 256125 10 

5 UTIL_UP 1.00012  o35 314637 

 6 UTIL_DOWN 1.0019  s28 58512 2 

7 UTIL_UP 1.00204  s28 58512 2 

8 UTIL_DOWN 1.00341  c16 58512 2 

9 UTIL_UP 2.00015  o35 374885 

 10 UTIL_DOWN 2.00214  s33 316373 

 11 UTIL_UP 2.0023  s33 316373 

 12 UTIL_DOWN 2.00384  c17 60248 8 

13 UTIL_UP 3.0001  o35 743619 

 14 UTIL_DOWN 3.00779  s30 368734 5 

15 UTIL_UP 3.00792  s30 368734 5 

16 UTIL_DOWN 3.01534  c18 368734 5 



37 

 

17 UTIL_UP 4.00012  o35 814744 

 18 UTIL_DOWN 4.00216  s26 71125 1 

19 UTIL_UP  4.00229  s26 71125 1 

20 UTIL_DOWN 4.00391  c19 71125 1 

21 UTIL_UP 5.00015  o35 894495 

 22 UTIL_DOWN 5.00252  s33 396124 

 23 UTIL_UP 5.00268  s33  396124 

 24 UTIL_DOWN 5.00461  c20 79751 9 

25 UTIL_UP 6.00012  o35 1283132 

 26 UTIL_DOWN 6.00836  s28  447149 

 27 UTIL_UP 6.00849  s28 447149 

 28 UTIL_DOWN 6.01632  c21 388637 

 29 UTIL_UP 7.00006  o35 1582249 

 30 UTIL_DOWN  7.00613 s27  299117 6 

31 UTIL_UP 7.00624  s27 299117 6 

32 UTIL_DOWN 7.01231  c22 299117 6 

33 UTIL_UP 8.00012  o35 1690771 

 34 UTIL_DOWN 8.0029  s26  179647 

 35 UTIL_UP 8.00303  s26 179647 

 36 UTIL_DOWN 8.00538  c23  108522 7 

37 UTIL_UP 9.00012 o35 1792695 

 



38 

 

38 UTIL_DOWN 9.00276  s28 549073 

 39 UTIL_UP 9.00291  s28 549073 

 40 UTIL_DOWN 9.00527  c24 101924 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Sample Result 1: Stats File Records 

0.000000,SURROGATE,s33,MISS,10 

0.000000,ORIGIN,o35,HIT,10 

COMPLETED,CLIENT,c15,10,0,0.000000,0.011352,- 

1.000000,SURROGATE,s28,MISS,2 

1.000000,ORIGIN,o35,HIT,2 

COMPLETED,CLIENT,c16,2,0,1.000000,1.003455,- 

2.000000,SURROGATE,s33,HIT,8 

COMPLETED,CLIENT,c17,8,0,2.000000,2.003894,- 

3.000000,SURROGATE,s30,HIT,5 

COMPLETED,CLIENT,c18,5,0,3.000000,3.015385,- 

4.000000,SURROGATE,s26,HIT,1 

COMPLETED,CLIENT,c19,1,0,4.000000,4.003953,- 

5.000000,SURROGATE,s33,MISS,9 

5.000000,ORIGIN,o35,HIT,9 

COMPLETED,CLIENT,c20,9,0,5.000000,5.004657,- 

6.000000,SURROGATE,s28,MISS,0 

6.000000,ORIGIN,o35,HIT,0 

COMPLETED,CLIENT,c21,0,0,6.000000,6.016357,- 

7.000000,SURROGATE,s27,HIT,6 

COMPLETED,CLIENT,c22,6,0,7.000000,7.012347,- 

8.000000,SURROGATE,s26,MISS,7 

8.000000,ORIGIN,o35,HIT,7 

COMPLETED,CLIENT,c23,7,0,8.000000,8.005423,- 

9.000000,SURROGATE,s28,MISS,3 

9.000000,ORIGIN,o35,HIT,3 

COMPLETED,CLIENT,c24,3,0,9.000000,9.005319,- 

 



40 

 

As we cross-reference the STDOUT (Table 5) and STATS (Sample Result 1) files’ 

outputs, at the following event with line 1,2,3 and 4 of STDOUT file,   

It is shown that( Sample Result 1) at time 0.00000, surrogate 33 got a request for object 

10, but it does not have the content hence it forwards the request to the origin server, 

which receives the request and sends the object at which at time 0.011352, client 15 

receives the object. 

With the STDOUT (Table 5) file, UTIL_UP means that there is traffic of transfer while 

UTIL_DOWN means that the traffic of transfer is completed. As seen in the sample 

result 2, illustrated in line 5, the object size does not have an object ID. This is because it 

is the cumulative figure of the object sizes sent so far (line 1 – 4 + line 6). It is a general 

pointer on how much the load has the server gone through. To explain how to understand 

the STDOUT file, as we take a look at line 1, the origin server is sending the object 

toward surrogate 33. As seen at line 2, surrogate 33 has received the object and the traffic 

has completed. In Line 3, surrogate 33 proceeds to complete the request from client 15 

for the object and in line 4, client 15 receives the object and the traffic is completed once 

more. Cross-referenced the results in both the STDOUT and STAT output files, and from 

there, we will be able to fully grasp the network’s traffic. Though it may seem that the 

STAT’s file output is a tad bit slower than in the STDOUT file, it is due to the run time 

problem which exists within the simulator (CDNSim) itself. The simulator proceeds to 

print the traffic into the STDOUT file before printing it to the stat file which explains the 

delay of traffic information. 

The objective of the simulation was to show that the CDN is able to fulfill requests of clients by 

providing sources of closest surrogates OR if not available, re-direct requests to origin so that the 



41 

 

origin will be able to fulfill the request. By cross-referencing the SDTOUT and stats files 

recorded above, we will able to see that. Each of the line referenced is made in regards to the 

STDOUT table above while the stats records will be used directly with each statement. 

First off, at Line 8, time: 1.0, C16 requested for Object 2. Upon checking, the closest surrogate 

which responded is s28 replying that only the origin has object 2. Hence, s28 re-directs the 

request to the origin,o35 which then proceeds to fulfill the request at time 1.003455 

 1.000000,SURROGATE,s28,MISS,2 

 1.000000,ORIGIN,o35,HIT,2 

 COMPLETED,CLIENT,c16,2,0,1.000000,1.003455,- 

Sample Record 2 

 

At Line 12, time: 2.0, C17 requested Object 8 and the closest source with object 8(s33) responded 

and proceeded with fulfilling the request at time 2.003894 

 2.000000,SURROGATE,s33,HIT,8 

 COMPLETED,CLIENT,c17,8,0,2.000000,2.003894,- 

 

Sample Record 3 

At Line 16, time: 3.0, C18 requested Objet 5, the closest source s30, responded and fulfilled the 

request at time 3.015385 

 3.000000,SURROGATE,s30,HIT,5 

 COMPLETED,CLIENT,c18,5,0,3.000000,3.015385,- 

Sample Record 4 

 



42 

 

Similar to line 12 and line 16, Line 20 at time: 4.0, C19 requests for object 1, which the closest 

source is s26, responded. 

 4.000000,SURROGATE,s26,HIT,1 

 COMPLETED,CLIENT,c19,1,0,4.000000,4.003953,- 

Sample Record 5 

 

At Line 24, time: 5.0, which is similar with line 8,  C20 requested for object 9,but the closest 

source is the origin where s33 redirected the requested toward. 

 5.000000,SURROGATE,s33,MISS,9 

 5.000000,ORIGIN,o35,HIT,9 

 COMPLETED,CLIENT,c20,9,0,5.000000,5.004657,- 

Sample Record 6 

5.3 Experimental Set-up 1(Closest Surrogate) 

 

This section will discuss the simulation in terms of Closest Surrogate. What is Closest 

Surrogate?  In reference to CDNsim, Closest Surrogate is where the client is redirected to 

the closest surrogate server in terms of network hops. Upon a cache miss, the surrogate 

server retrieves the object from the closest alternative surrogate server that contains the 

requested object. The object is stored in the cache and then it is served to the client. If the 

object is not outsourced at all in any surrogate server then the surrogate server retrieves 

the object from the closest origin server. Consecutive cooperation may occur if in the 

meantime the alternative surrogate server removed the object from the cache causing 

another cache miss. 



43 

 

There will be 2 models which will be simulated in terms of Closest Surrogate where 

Model 1 has a fixed number of 10 surrogates but will have increasing number of clients 

(10, 15 and 20) and Model 2 where it has a fixed number of 20 clients but will have an 

increasing number of surrogates(5,10 and 20). Refer below (after 5.6) for the topologies 

for the model. (Figure 10 – 15). 

 

5.4 Experimental Set-Up 1 Results 

 

Referring to Table 6, 7 and Figure 6, 7, it is observed that “Closest Surrogate” is able to 

handle the increases of clients but needs time to stabilize the increased capacity. In Table 

6, we are able to observe that when the number of clients climbed to 15, the throughput 

drops quite drastically. However, as the number of clients continues to increase, we are 

able to see that the throughput slowly improves and though not as good as the 1:1 

surrogate-client ratio; is still quite impressive considering that at 20 clients, the surrogate-

client ratio is at 1:2. As we look at Table 7, when the number of clients is fixed and the 

number of surrogates is increased, as the surrogate-client ratio goes back to 1:1, we are 

able to see that the throughput goes into an upward pattern (figure 7). 

 

 

 



44 

 

5.4.1 Results for varying number of clients (Surrogate Fixed) 

 

Number Of 

Surrogates Number of Client Throughput(Mbps) 

10 10 61.4839 

10 15 51.8004 

10 20 57.9785 

10 25 56.6786 

10 30 56.4982 

 

Table 6: Throughput Results 

 

Figure 6: Graphical Interpretation of Throughput Results 

 

Number
Of 

Clients 

Throughput (Mbps) 



45 

 

5.4.2 Results for varying number of surrogates (Client Fixed) 

 

Number Of 

Surrogates Number of Client Throughput(Mbps) 

5 20 57.9324 

10 20 57.9785 

20 20 61.2917 

25 20 62.7338 

30 20 64.0003 

 

Table 7: Throughput Results 

 

Figure 7: Graphical Interpretation of Throughput Results 

 

Number
Of 

Clients 

Throughput (Mbps) 



46 

 

 

5.5 Experimental Set-up 2(Random Surrogate) 

 

This section will discuss the simulation in terms of Random Surrogate. What is Random 

Surrogate?  In reference to CDNsim, The client is redirected to a random surrogate 

server. Upon a cache miss, the surrogate server retrieves the object from a random 

alternative surrogate server that contains the requested object. The object is stored in the 

cache and then it is served to the client. If the object is not outsourced at all in any 

surrogate server then the surrogate server retrieves the object from a random origin server. 

Consecutive cooperation may occur if in the meantime the alternative surrogate server 

removed the object from the cache causing another cache miss. 

Again, there will be 2 models which will be simulated in terms of Random Surrogate 

where Model 1 has a fixed number of 10 surrogates but will have increasing number of 

clients (10, 15 and 20) and Model 2 where it has a fixed number of 20 clients but will 

have an increasing number of surrogates(5,10 and 20).  Refer below (after section 5.6) for 

the topologies for the model. (Figure 10 – 15). 

 

 

 

 

 



47 

 

5.6 Experimental Set-Up 2 Results 

 

Referring to Table 8, 9 and Figure 8, 9, it is observed that “Random Surrogate” works 

best at 1:1 Surrogate-Client ratio. In Table 8, we are able to observe that as the number of 

client increases, the throughput goes through a decline pattern. While when the number 

of clients is the same as the number of surrogates, the throughput is recorded to be quite 

good. However, as the number of clients starts outnumbering the number of surrogates, 

the throughput starts to go down. As we look at Table 9, when the number of clients is 

fixed and the number of surrogates is increased, the throughput slowly climbs back as the 

surrogate-client ratio goes back to 1:1.  

5.6.1 Results for varying number of clients (Surrogate Fixed) 

 

Number Of 

Surrogates 

Number of 

Client Throughput(Mbps) 

10 10 64.0788 

10 15 56.0951 

10 20 55.9788 

10 25 54.9965 

10 30 49.9604 

 

Table 8: Throughput Results 



48 

 

 

Figure 8: Graphical Interpretation of Throughput Results 

 

 

 

 

 

 

 

Number
Of 

Surrogate 

Throughput (Mbps) 



49 

 

5.6.2 Results for varying number of clients (Surrogate Fixed) 

Number Of 

Surrogates 

Number of 

Client Throughput(Mbps) 

5 20 48.1495 

10 20 55.9788 

20 20 62.0368 

25 20 62.4888 

30 20 64.2012 

 

Table 9: Throughput Results 

 

Figure 9: Graphical Interpretation of Throughput Results 

 

 

Number

Of 
Surrogate 

Throughput (Mbps) 



50 

 

5.7 Topology Tables and Figures 

 

Topology Table 10 as illustrated in Figure 10 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r10 r7 10 

r0 o39 10 

 

r10 r6 10 

r1 r2 10 

 

r10 r12 10 

r1 r7 10 

 

r10 c23 10 

r1 c16 10 

 

r10 s33 10 

r2 r1  10 

 

r11 r8 10 

r2 r3 10 

 

r11 r9 10 

r2 r4 10 

 

r11 s30 10 

r2 r5 10 

 

r11 c19 10 

r2 s32 10 

 

r12 r10 10 

r2 c22 10 

 

r12 r16 10 

r3 r2 10 

 

r12 r13 10 

r3 r7 10 

 

r12 s29 10 

r3 r6 10 

 

r12 c24 10 

r3 s28 10 

 

r13 r12 10 

r4 r2 10 

 

r13 r14 10 

r4 r5 10 

 

r13 s31 10 

r4 s26 10 

 

r14 r13 10 

r4 c15 10 

 

r14 r9 10 

r5 r2 10 

 

r14 c20 10 

r5 r4 10 

 

c15 r4 10 

r5 r9 10 

 

c16 r1 10 

r5 r8 10 

 

c17 r9 10 

r5 s27 10 

 

c18 r6 10 

r6 r3 10 

 

c19 r11 10 

r6 r9 10 

 

c20 r14 10 



51 

 

r6 r12 10 

 

c21 r8 10 

r6 r10 10 

 

c22 r2 10 

r6 c18 10 

 

c23 r10 10 

r7 r1 10 

 

c24 r12 10 

r7 r10 10 

 

s25 r7 10 

r7 r3 10 

 

s26 r4 10 

r7 s25 10 

 

s27 r5 10 

r8 r5 10 

 

s28 r3 10 

r8 r11 10 

 

s29 r12 10 

r8 c21 10 

 

s30 r11 10 

r9 r6 10 

 

s31 r13 10 

r9 r5 10 

 

s32 r2 10 

r9 r11 10 

 

s33 r10 10 

r9 r14 10 

 

s34 r9 10 

r9 s34 10 

 

o35 r0 10 

r9 c17 10 

    

        



52 

 

 

Figure 10: 10 Surrogates 10 Clients 

 

 

 



53 

 

Topology Table 11 as illustrated in Figure 11 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r10 r6 10 

r0 o40 10 

 

r10 r12 10 

r1 r2 10 

 

r10 c23 10 

r1 r7 10 

 

r10 s38 10 

r1 c16 10 

 

r11 r8 10 

r2 r1  10 

 

r11 r9 10 

r2 r3 10 

 

r11 s35 10 

r2 r4 10 

 

r11 c19 10 

r2 r5 10 

 

r12 r10 10 

r2 s37 10 

 

r12 r16 10 

r2 c22 10 

 

r12 r13 10 

r3 r2 10 

 

r12 s29 10 

r3 r7 10 

 

r12 c24 10 

r3 c29 10 

 

r13 c27 10 

r3 r6 10 

 

r13 r12 10 

r3 s28 10 

 

r13 r14 10 

r4 o36 10 

 

r13 s36 10 

r4 r2 10 

 

r14 o38 10 

r4 r5 10 

 

r14 r13 10 

r4 s26 10 

 

r14 r9 10 

r4 c15 10 

 

r14 c20 10 

r5 r2 10 

 

c15 r4 10 

r5 r4 10 

 

c16 r1 10 

r5 r9 10 

 

c17 r9 10 

r5 r8 10 

 

c18 r6 10 

r5 c25 10 

 

c19 r11 10 

r5 s27 10 

 

c20 r14 10 

r6 r3 10 

 

c21 r8 10 

r6 r9 10 

 

c22 r2 10 

r6 r12 10 

 

c23 r10 10 



54 

 

r6 r10 10 

 

c24 r12 10 

r6 c18 10 

 

c25 r5 10 

r7 c26 10 

 

c26 r7 10 

r7 r1 10 

 

c27 r13 10 

r7 r10 10 

 

c28 r8 10 

r7 r3 10 

 

c29 r3 10 

r7 s25 10 

 

s30 r7 10 

r8 o37 10 

 

s31 r4 10 

r8 c28 10 

 

s32 r5 10 

r8 r5 10 

 

s33 r3 10 

r8 r11 10 

 

s34 r12 10 

r8 c21 10 

 

s35 r11 10 

r9 r6 10 

 

s36 r13 10 

r9 r5 10 

 

s37 r2 10 

r9 r11 10 

 

s38 r10 10 

r9 r14 10 

 

s39 r9 10 

r9 s39 10 

 

o40 r0 10 

r9 c17 10 

    r10 o39 10 

    r10 r7 10 

     



55 

 

 

Figure 11: 10 Surrogates 15 Clients 

 

 

 



56 

 

Topology Table 12 as illustrated in Figure 12 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r11 c19 10 

r0 o45 10 

 

r12 c33 10 

r1 c32 10 

 

r12 r10 10 

r1 r2 10 

 

r12 r6 10 

r1 r7 10 

 

r12 r13 10 

r1 c16 10 

 

r12 s39 10 

r2 r1  10 

 

r12 c24 10 

r2 r3 10 

 

r13 c27 10 

r2 r4 10 

 

r13 r12 10 

r2 r5 10 

 

r13 s41 10 

r2 s42 10 

 

r13 r14 10 

r2 c22 10 

 

r14 c34 10 

r3 r2 10 

 

r14 c31 10 

r3 r7 10 

 

r14 r13 10 

r3 c29 10 

 

r14 r9 10 

r3 r6 10 

 

r14 c20 10 

r3 s38 10 

 

c15 r4 10 

r4 s36 10 

 

c16 r1 10 

r4 c30 10 

 

c17 r9 10 

r4 r2 10 

 

c18 r6 10 

r4 r5 10 

 

c19 r11 10 

r4 c15 10 

 

c20 r14 10 

r5 r2 10 

 

c21 r8 10 

r5 r4 10 

 

c22 r2 10 

r5 r8 10 

 

c23 r10 10 

r5 c25 10 

 

c24 r12 10 

r5 s37 10 

 

c25 r5 10 

r6 r3 10 

 

c26 r7 10 

r6 r9 10 

 

c27 r13 10 

r6 r12 10 

 

c28 r8 10 



57 

 

r6 r10 10 

 

c29 r3 10 

r6 c18 10 

 

c30 r7 10 

r7 c26 10 

 

c31 r4 10 

r7 r1 10 

 

c32 r5 10 

r7 r10 10 

 

c33 r3 10 

r7 r3 10 

 

c34 r12 10 

r7 s35 10 

 

s35 r7 10 

r8 c28 10 

 

s36 r4 10 

r8 r5 10 

 

s37 r5 10 

r8 r11 10 

 

s38 r3 10 

r8 c21 10 

 

s39 r12 10 

r9 r6 10 

 

s35 r7 10 

r9 r11 10 

 

s36 r4 10 

r9 r14 10 

 

s37 r5 10 

r9 s44 10 

 

s38 r3 10 

r9 c17 10 

 

s39 r12 10 

r10 r7 10 

 

s40 r11 10 

r10 s43 10 

 

s41 r13 10 

r10 r12 10 

 

s42 r2 10 

r10 c23 10 

 

s43 r10 10 

r11 s40 10 

 

s44 r9 10 

r11 r8 10 

 

o45 r0 10 

r11 r9 10 

    



58 

 

 

Figure 12: 10 Surrogates 20 Clients 

 

 

 

 



59 

 

Topology Table 13 as illustrated in Figure 13 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r12 c19 10 

r0 o51 10 

 

r12 c33 10 

r1 c32 10 

 

r12 r10 10 

r1 r2 10 

 

r12 r6 10 

r1 s44 10 

 

r12 r13 10 

r1 c34 10 

 

r12 s39 10 

r2 r3 10 

 

r12 c24 10 

r2 r4 10 

 

r13 c27 10 

r2 r5 10 

 

r13 r12 10 

r2 s42 10 

 

r13 s41 10 

r2 c22 10 

 

r13 r14 10 

r3 r2 10 

 

r14 c34 10 

r3 r7 10 

 

r14 c31 10 

r3 c29 10 

 

r14 r13 10 

r3 r6 10 

 

r14 r9 10 

r3 s38 10 

 

r14 c20 10 

r4 s36 10 

 

c15 r4 10 

r4 c30 10 

 

c16 r1 10 

r4 r2 10 

 

c17 r9 10 

r4 r5 10 

 

c18 r6 10 

r4 c15 10 

 

c19 r11 10 

r5 r2 10 

 

c20 r14 10 

r5 r4 10 

 

c21 r8 10 

r5 r8 10 

 

c22 r2 10 

r5 c25 10 

 

c23 r10 10 

r5 s37 10 

 

c24 r12 10 

r6 r3 10 

 

c25 r5 10 

r6 r9 10 

 

c26 r7 10 

r6 r12 10 

 

c27 r13 10 

r6 r10 10 

 

c28 r8 10 



60 

 

r6 c18 10 

 

c29 r3 10 

r7 c26 10 

 

c30 r4 10 

r7 r1 10 

 

c31 r14 10 

r7 r10 10 

 

c32 r1 10 

r7 r3 10 

 

c33 r12 10 

r7 s35 10 

 

c34 r14 10 

r8 c28 10 

 

c35 r7 10 

r8 r5 10 

 

c36 r4 10 

r8 r11 10 

 

c37 r5 10 

r8 c21 10 

 

c38 r3 10 

r9 r6 10 

 

c39 r12 10 

r9 r11 10 

 

c35 r7 10 

r9 r14 10 

 

s36 r4 10 

r9 s44 10 

 

s37 r5 10 

r9 c17 10 

 

s38 r3 10 

r10 r7 10 

 

s39 r12 10 

r10 s43 10 

 

s40 r11 10 

r10 r12 10 

 

s41 r13 10 

r10 c23 10 

 

s42 r2 10 

r10 s40 10 

 

s43 r10 10 

r11 r8 10 

 

s44 r9 10 

r11 r9 10 

 

s45 r0 10 

r11 c23 10 

 

s46 r13 10 

r11 s40 10 

 

s47 r9 10 

r11 r8 10 

 

s48 c20 10 

r11 r9 10 

 

s49 r4 10 

r12 s42 10 

 

s50 r1 10 

r12 s36 10 

 

o51 r0 10 

 

 

 



61 

 

 

Figure 13: 10 Surrogates 25 Clients 

 

 

 

 

 



62 

 

Topology Table 14 as illustrated in Figure 14 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r12 r13 10 

r0 o57 10 

 

r12 r9 10 

r1 c32 10 

 

r12 r10 10 

r1 r2 10 

 

r12 r6 10 

r1 s44 10 

 

r12 r13 10 

r1 c34 10 

 

r12 s39 10 

r1 s44 10 

 

r12 c24 10 

r1 c22 10 

 

r13 c27 10 

r2 r2 10 

 

r13 r12 10 

r2 r7 10 

 

r13 s41 10 

r2 c29 10 

 

r13 r14 10 

r2 r6 10 

 

r14 c34 10 

r2 s38 10 

 

r14 c31 10 

r2 s36 10 

 

r14 r13 10 

r2 c30 10 

 

r14 r9 10 

r2 r2 10 

 

r14 c20 10 

r2 r5 10 

 

c15 r4 10 

r3 c15 10 

 

c16 r1 10 

r3 r2 10 

 

c17 r9 10 

r3 c29 10 

 

c18 r6 10 

r3 r6 10 

 

c19 r11 10 

r3 s38 10 

 

c20 r14 10 

r4 s36 10 

 

c21 r8 10 

r4 c30 10 

 

c22 r2 10 

r4 r2 10 

 

c23 r10 10 

r4 r5 10 

 

c24 r12 10 

r4 c15 10 

 

c25 r5 10 

r5 r2 10 

 

c26 r7 10 

r5 r4 10 

 

c27 r13 10 

r5 r8 10 

 

c28 r8 10 



63 

 

r5 c25 10 

 

c29 r3 10 

r5 s37 10 

 

c30 r4 10 

r6 r3 10 

 

c31 r14 10 

r6 r9 10 

 

c32 r1 10 

r6 r12 10 

 

c33 r12 10 

r6 r10 10 

 

c34 r14 10 

r6 c18 10 

 

c35 r7 10 

r7 c26 10 

 

c36 r4 10 

r7 r1 10 

 

c37 r5 10 

r7 r10 10 

 

c38 r3 10 

r7 r3 10 

 

c39 r12 10 

r7 s35 10 

 

c35 r7 10 

r8 c28 10 

 

c36 r4 10 

r8 r5 10 

 

c37 r5 10 

r8 r11 10 

 

c38 r3 10 

r8 c21 10 

 

c39 r12 10 

r9 r6 10 

 

c40 r11 10 

r9 r11 10 

 

s41 r13 10 

r9 r14 10 

 

s42 r2 10 

r9 s44 10 

 

s43 r10 10 

r9 c17 10 

 

s44 r9 10 

r10 r7 10 

 

s45 r0 10 

r10 s43 10 

 

s46 r13 10 

r10 r12 10 

 

s47 r9 10 

r10 c23 10 

 

s48 r2 10 

r10 s40 10 

 

s49 r4 10 

r11 r8 10 

 

s50 r1 10 

r11 r9 10 

 

s51 r9 10 

r11 c23 10 

 

s52 r9 10 

r11 s40 10 

 

s53 r6 10 

r11 r8 10 

 

s54 r11 10 

r11 r9 10 

 

s55 r14 10 

r12 s42 10 

 

s56 r8 10 



64 

 

r12 s36 10 

 

o57 r0 10 

 

 

Figure 14: 10 Surrogates 30 Clients 

 

 

 



65 

 

Topology Table 15 as illustrated in Figure 15 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r10 r12 10 

r0 o40 10 

 

r10 c23 10 

r1 c32 10 

 

r11 r8 10 

r1 r2 10 

 

r11 r9 10 

r1 r7 10 

 

r11 c19 10 

r1 c16 10 

 

r12 c33 10 

r2 r1  10 

 

r12 r10 10 

r2 r3 10 

 

r12 r6 10 

r2 r4 10 

 

r12 r13 10 

r2 r5 10 

 

r12 s39 10 

r2 c22 10 

 

r12 c24 10 

r3 r2 10 

 

r13 c27 10 

r3 r7 10 

 

r13 r12 10 

r3 c29 10 

 

r13 r14 10 

r3 r6 10 

 

r14 c34 10 

r3 s38 10 

 

r14 c31 10 

r4 s36 10 

 

r14 r13 10 

r4 c30 10 

 

r14 r9 10 

r4 r2 10 

 

r14 c20 10 

r4 r5 10 

 

c15 r4 10 

r4 c15 10 

 

c16 r1 10 

r5 r2 10 

 

c17 r9 10 

r5 r4 10 

 

c18 r6 10 

r5 r8 10 

 

c19 r11 10 

r5 c25 10 

 

c20 r14 10 

r5 s37 10 

 

c21 r8 10 

r6 r3 10 

 

c22 r2 10 

r6 r9 10 

 

c23 r10 10 

r6 r12 10 

 

c24 r12 10 

r6 r10 10 

 

c25 r5 10 



66 

 

r6 c18 10 

 

c26 r7 10 

r7 c26 10 

 

c27 r13 10 

r7 r1 10 

 

c28 r8 10 

r7 r10 10 

 

c29 r3 10 

r7 r3 10 

 

c30 r4 10 

r7 s35 10 

 

c31 r14 10 

r8 c28 10 

 

c32 r1 10 

r8 r5 10 

 

c33 r12 10 

r8 r11 10 

 

c34 r14 10 

r8 c21 10 

 

s35 r7 10 

r9 r6 10 

 

s36 r4 10 

r9 r11 10 

 

s37 r5 10 

r9 r14 10 

 

s38 r3 10 

r9 c17 10 

 

s39 r12 10 

r10 r7 10 

 

o40 r0 10 

 



67 

 

 

Figure 15: 20 Clients 5 Surrogates 

 

 

 

 



68 

 

Topology Table 16 as illustrated in Figure 16 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r11 c19 10 

r0 o45 10 

 

r12 c33 10 

r1 c32 10 

 

r12 r10 10 

r1 r2 10 

 

r12 r6 10 

r1 r7 10 

 

r12 r13 10 

r1 c16 10 

 

r12 s39 10 

r2 r1  10 

 

r12 c24 10 

r2 r3 10 

 

r13 c27 10 

r2 r4 10 

 

r13 r12 10 

r2 r5 10 

 

r13 s41 10 

r2 s42 10 

 

r13 r14 10 

r2 c22 10 

 

r14 c34 10 

r3 r2 10 

 

r14 c31 10 

r3 r7 10 

 

r14 r13 10 

r3 c29 10 

 

r14 r9 10 

r3 r6 10 

 

r14 c20 10 

r3 s38 10 

 

c15 r4 10 

r4 s36 10 

 

c16 r1 10 

r4 c30 10 

 

c17 r9 10 

r4 r2 10 

 

c18 r6 10 

r4 r5 10 

 

c19 r11 10 

r4 c15 10 

 

c20 r14 10 

r5 r2 10 

 

c21 r8 10 

r5 r4 10 

 

c22 r2 10 

r5 r8 10 

 

c23 r10 10 

r5 c25 10 

 

c24 r12 10 

r5 s37 10 

 

c25 r5 10 

r6 r3 10 

 

c26 r7 10 

r6 r9 10 

 

c27 r13 10 

r6 r12 10 

 

c28 r8 10 



69 

 

r6 r10 10 

 

c29 r3 10 

r6 c18 10 

 

c30 r4 10 

r7 c26 10 

 

c31 r14 10 

r7 r1 10 

 

c32 r1 10 

r7 r10 10 

 

c33 r12 10 

r7 r3 10 

 

c34 r14 10 

r7 s35 10 

 

s35 r7 10 

r8 c28 10 

 

s36 r4 10 

r8 r5 10 

 

s37 r5 10 

r8 r11 10 

 

s38 r3 10 

r8 c21 10 

 

s39 r12 10 

r9 r6 10 

 

s35 r7 10 

r9 r11 10 

 

s36 r4 10 

r9 r14 10 

 

s37 r5 10 

r9 s44 10 

 

s38 r3 10 

r9 c17 10 

 

s39 r12 10 

r10 r7 10 

 

s40 r11 10 

r10 s43 10 

 

s41 r13 10 

r10 r12 10 

 

s42 r2 10 

r10 c23 10 

 

s43 r10 10 

r11 s40 10 

 

s44 r9 10 

r11 r8 10 

 

o45 r0 10 

r11 r9 10 

    



70 

 

 

Figure 16: 20 Clients 10 Surrogates 

 

 

 

 



71 

 

Topology Table 17 as illustrated in Figure 17 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r12 r6 10 

r0 s54 10 

 

r12 r13 10 

r0 o55 10 

 

r12 s39 10 

r1 s51 10 

 

r12 c24 10 

r1 c32 10 

 

r13 c27 10 

r1 r2 10 

 

r13 s50 10 

r1 r7 10 

 

r13 r12 10 

r1 c16 10 

 

r13 s41 10 

r2 r1  10 

 

r13 r14 10 

r2 r3 10 

 

r14 s47 10 

r2 r4 10 

 

r14 c34 10 

r2 r5 10 

 

r14 c31 10 

r2 s42 10 

 

r14 r13 10 

r2 c22 10 

 

r14 r9 10 

r3 r2 10 

 

r14 c20 10 

r3 r7 10 

 

c15 r4 10 

r3 c29 10 

 

c16 r1 10 

r3 r6 10 

 

c17 r9 10 

r3 s38 10 

 

c18 r6 10 

r4 s36 10 

 

c19 r11 10 

r4 c30 10 

 

c20 r14 10 

r4 s45 10 

 

c21 r8 10 

r4 r2 10 

 

c22 r2 10 

r4 r5 10 

 

c23 r10 10 

r4 c15 10 

 

c24 r12 10 

r5 r2 10 

 

c25 r5 10 

r5 r4 10 

 

c26 r7 10 

r5 r8 10 

 

c27 r13 10 

r5 c25 10 

 

c28 r8 10 

r5 s37 10 

 

c29 r3 10 



72 

 

r6 r3 10 

 

c30 r4 10 

r6 r9 10 

 

c31 r14 10 

r6 r12 10 

 

c32 r1 10 

r6 r10 10 

 

c33 r12 10 

r6 c18 10 

 

c34 r14 10 

r7 c26 10 

 

s35 r7 10 

r7 r1 10 

 

s36 r4 10 

r7 r10 10 

 

s37 r5 10 

r7 r3 10 

 

s38 r3 10 

r7 s35 10 

 

s39 r12 10 

r8 c28 10 

 

s35 r7 10 

r8 r5 10 

 

s36 r4 10 

r8 s53 10 

 

s37 r5 10 

r8 s46 10 

 

s38 r3 10 

r8 r11 10 

 

s39 r12 10 

r8 c21 10 

 

s40 r11 10 

r9 r6 10 

 

s41 r13 10 

r9 r11 10 

 

s42 r2 10 

r9 r14 10 

 

s43 r10 10 

r9 s44 10 

 

s44 r9 10 

r9 c17 10 

 

s45 r4 10 

r10 r7 10 

 

s46 r8 10 

r10 s43 10 

 

s47 r14 10 

r10 r12 10 

 

s48 r12 10 

r10 c23 10 

 

s49 r14 10 

r11 s40 10 

 

s50 r13 10 

r11 r8 10 

 

s51 r1 10 

r11 r9 10 

 

s52 r12 10 

r12 c33 10 

 

s53 r8 10 

r12 s52 10 

 

s54 r0 10 

r12 r10 10 

 

o55 r0 10 

 



73 

 

 

Figure 17: 20 Clients 20 Surrogates 

 

 

 

 

 



74 

 

Table 18 as illustrated in Figure 18 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r12 r6 10 

r0 s54 10 

 

r12 r13 10 

r0 o55 10 

 

r12 s39 10 

r1 s51 10 

 

r12 c24 10 

r1 c32 10 

 

r13 c27 10 

r1 r2 10 

 

r13 s50 10 

r1 r7 10 

 

r13 r12 10 

r1 c16 10 

 

r13 s41 10 

r2 r1  10 

 

r13 r14 10 

r2 r3 10 

 

r14 s47 10 

r2 r4 10 

 

r14 c34 10 

r2 r5 10 

 

r14 c31 10 

r2 s42 10 

 

r14 r13 10 

r2 c22 10 

 

r14 r9 10 

r3 r2 10 

 

r14 c20 10 

r3 r7 10 

 

c15 r4 10 

r3 c29 10 

 

c16 r1 10 

r3 r6 10 

 

c17 r9 10 

r3 s38 10 

 

c18 r6 10 

r4 s36 10 

 

c19 r11 10 

r4 c30 10 

 

c20 r14 10 

r4 s45 10 

 

c21 r8 10 

r4 r2 10 

 

c22 r2 10 

r4 r5 10 

 

c23 r10 10 

r4 c15 10 

 

c24 r12 10 

r5 r2 10 

 

c25 r5 10 

r5 r4 10 

 

c26 r7 10 

r5 r8 10 

 

c27 r13 10 

r5 c25 10 

 

c28 r8 10 

r5 s37 10 

 

c29 r3 10 



75 

 

r6 r3 10 

 

c30 r4 10 

r6 r9 10 

 

c31 r14 10 

r6 r12 10 

 

c32 r1 10 

r6 r10 10 

 

c33 r12 10 

r6 c18 10 

 

c34 r14 10 

r7 c26 10 

 

s35 r7 10 

r7 r1 10 

 

s36 r4 10 

r7 r10 10 

 

s37 r5 10 

r7 r3 10 

 

s38 r3 10 

r7 s35 10 

 

s39 r12 10 

r8 c28 10 

 

s35 r7 10 

r8 r5 10 

 

s36 r4 10 

r8 s53 10 

 

s37 r5 10 

r8 s46 10 

 

s38 r3 10 

r8 r11 10 

 

s39 r12 10 

r8 c21 10 

 

s40 r11 10 

r9 r6 10 

 

s41 r13 10 

r9 r11 10 

 

s42 r2 10 

r9 r14 10 

 

s43 r10 10 

r9 s44 10 

 

s44 r9 10 

r9 c17 10 

 

s45 r4 10 

r9 r7 10 

 

s46 r8 10 

r10 s43 10 

 

s47 r14 10 

r10 r12 10 

 

s48 r12 10 

r10 c23 10 

 

s49 r14 10 

r10 s40 10 

 

s50 r13 10 

r10 s43 10 

 

s51 r1 10 

r10 r12 10 

 

s52 r12 10 

r10 c23 10 

 

s53 r8 10 

r11 s40 10 

 

s54 r0 10 

r11 r8 10 

 

s55 r12 10 

r11 r9 10 

 

s56 r11 10 

r12 c33 10 

 

s57 r13 10 



76 

 

r12 s52 10 

 

s58 r2 10 

r12 r10 10 

 

s59 r10 10 

    

o60 r0 10 

 

 

Figure 18: 20 Clients 25 Surrogates 

 

 



77 

 

Table 19 as illustrated in Figure 19 

Component Component Bandwidth(Mbps) 

 

Component Component 

 

Bandwidth(Mbps) 

r0 r1  10 

 

r12 s39 10 

r0 s54 10 

 

r12 c24 10 

r0 o55 10 

 

r13 c27 10 

r1 s51 10 

 

r13 s50 10 

r1 c32 10 

 

r13 r12 10 

r1 r2 10 

 

r13 s41 10 

r1 r7 10 

 

r13 r14 10 

r1 c16 10 

 

r14 s47 10 

r2 r1  10 

 

r14 c34 10 

r2 r3 10 

 

r14 c31 10 

r2 r4 10 

 

r14 r13 10 

r2 r5 10 

 

r14 r9 10 

r2 s42 10 

 

r14 c20 10 

r2 c22 10 

 

c15 r4 10 

r3 r2 10 

 

c16 r1 10 

r3 r7 10 

 

c17 r9 10 

r3 c29 10 

 

c18 r6 10 

r3 r6 10 

 

c19 r11 10 

r3 s38 10 

 

c20 r14 10 

r4 s36 10 

 

c21 r8 10 

r4 c30 10 

 

c22 r2 10 

r4 s45 10 

 

c23 r10 10 

r4 r2 10 

 

c24 r12 10 

r4 r5 10 

 

c25 r5 10 

r4 c15 10 

 

c26 r7 10 

r5 r2 10 

 

c27 r13 10 

r5 r4 10 

 

c28 r8 10 

r5 r8 10 

 

c29 r3 10 

r5 c25 10 

 

c30 r4 10 

r5 s37 10 

 

c31 r14 10 



78 

 

r6 r3 10 

 

c32 r1 10 

r6 r9 10 

 

c33 r12 10 

r6 r12 10 

 

c34 r14 10 

r6 r10 10 

 

s35 r7 10 

r6 c18 10 

 

s36 r4 10 

r7 c26 10 

 

s37 r5 10 

r7 r1 10 

 

s38 r3 10 

r7 r10 10 

 

s39 r12 10 

r7 r3 10 

 

s35 r7 10 

r7 s35 10 

 

s36 r4 10 

r7 c28 10 

 

s37 r5 10 

r7 r5 10 

 

s38 r3 10 

r8 s53 10 

 

s39 r12 10 

r8 s46 10 

 

s40 r11 10 

r8 r11 10 

 

s41 r13 10 

r8 c21 10 

 

s42 r2 10 

r8 r6 10 

 

s43 r10 10 

r8 r11 10 

 

s44 r9 10 

r8 r14 10 

 

s45 r4 10 

r9 s44 10 

 

s46 r8 10 

r9 c17 10 

 

s47 r14 10 

r9 r7 10 

 

s48 r12 10 

r9 s43 10 

 

s49 r14 10 

r9 r12 10 

 

s50 r13 10 

r9 c23 10 

 

s51 r1 10 

r9 s40 10 

 

s52 r12 10 

r10 s43 10 

 

s53 r8 10 

r10 r12 10 

 

s54 r0 10 

r10 c23 10 

 

s55 r12 10 

r10 s40 10 

 

s56 r11 10 

r11 s43 10 

 

s57 r13 10 

r11 r12 10 

 

s58 r2 10 

r11 c23 10 

 

s59 r10 10 



79 

 

r11 s40 10 

 

s60 r0 10 

r11 r8 10 

 

s61 r11 10 

r11 r9 10 

 

s62 r13 10 

r12 c33 10 

 

s63 r2 10 

r12 s52 10 

 

s64 r10 10 

r12 r10 10 

 

o65 r9 10 

r12 r6 10 

 

s64 r10 10 

r12 r13 10 

 

o65 r0 10 

 

 

Figure 19: 20 Clients 30 Surrogates 



80 

 

Chapter 6: Discussion and Conclusion 

 

6.1 Discussion 

6.1.1 Simulations Scenario Comparison 

Referring to Table 20, 21 and Figure 20, 21, for the 2 case studies, it was found that 

“Closest Surrogate” is better when compared side by side with “Random Surrogate”. 

Both the “Closest Surrogate” and “Random Surrogate” is put to the test with the same 

models and while we are able to see that “Closest Surrogate” needs a bit of time to 

accommodate the increases in capacity, “Random Surrogate” works best only at 1:1 

surrogate-client ratio. While in the perfect world, for every number of clients we will 

have a surrogate accommodating its requests, it is impractical in real life. Hence, for 

anyone to expect that we are able to have a 1:1 surrogate-client ratio in real life is 

impossible and that we can only expect that a CDN uses “Closest Surrogate” protocols as 

it is clearly seen that, despite needing some time to get used to an increase in capacity, it 

generally is able to recover and perform just as well as a 1:1 surrogate-client ratio. 

Number of 

Client 

Closest 

Surrogate Random Surrogate 

10 61.4839 64.0788 

15 51.8004 56.0951 

20 57.9785 55.9788 

25 56.6786 54.9965 

30 56.4982 49.9604 

 

Table 20: Throughput comparisons between Closest and Random Surrogate Models (Surrogate 

Fixed) 



81 

 

 

Figure 20: Graphical Interpretation Of Table 17 

 

Number Of 

Surrogates 

Closest 

Surrogate 

Random 

Surrogate 

5 57.9324 48.1495 

10 57.9785 55.9788 

20 61.2917 62.0368 

25 62.7338 62.4888 

30 64.0003 64.2012 

 

Table 21: Throughput comparisons between Closest and Random Surrogate Models (Client Fixed) 

Throughput (Mbps) 

Number Of Clients 



82 

 

 

Figure 21: Graphical Interpretation Of Table 18 

 

 

 

 

 

 

 

 

Throughput (Mbps) 

Number Of Surrogates 



83 

 

6.2 Conclusion and Future Works 

 

Existing CDNs have always been struggling to use the perfect replica placement 

mechanism to fully expose the abilities of CDN:- to provide ON-DEMAND content with 

no jitters, no delays and at best, no frustrations from all the waiting. Akamai has been 

very successful in doing so and doing it on a large scale all over the world. However, the 

technology that they have been implementing has never been revealed nor shared to the 

general public in the hopes of monopolizing the CDN market. Throughout the years, 

numerous men have came up and proposed numerous different approaches to try and 

solve the issue but none has really been able to hit the mark and say they've finally done 

it. And then, there is Soarin. The concept of Soarin is rather similar to what has been seen 

with Akamai's technology. Though we may never be able to fully be sure that it is similar 

to what Akamai's been using, we make do with what we've got and Soarin looks a rather 

good fit for the vague description that fits Akamai's technology. The biggest stumbling 

block however, is that Soarin has never been put to the test and be proven to be a good 

concept to work with. This is where the objective of this project comes in. This project 

was started to delve into Soarin and find out how it works. We would then simulate the 

concepts, analyze the results and go on to propose an extended-Soarin for a new scenario. 

While we have understood that using the “Closest Surrogate” protocols works best in a 

CDN, we are still far from fully able to utilize Soarin. To be able to one day put Soarin to 

real life practices, it has to go through many studies and simulation before it fully 

qualifies as a proper model to Akamai’s unrevealed technology. For future works in 

terms of an extended-Soarin, one should to go full scale and not just simulate and 

actually use a proper physical Observation Server to monitor the uplinks, downlinks, 



84 

 

network traffic, throughput etc etc of a CDN, and a more in-depth study done on how to 

improve “Closest Surrogate” (maybe of not using network hops as reference and using 

another metric).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

References 

[1] M. Hofmann, and L. R. Beaumont, Content Networking: Architecture, Protocols, and 

Practice, Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 129-134, 2005. 

[2] S. Adler, “The Slash Dot Effect: An Analysis of Three Internet Publications,” Linux 

Gazette Issue, Vol. 38, 1999. 

[3] M. Day, B. Cain, G. Tomlinson, and P. Rzewski, “A Model for Content 

Internetworking (CDI),” Internet Engineering Task Force RFC 3466, February 2003. 

www.ietf.org/rfc/rfc3466.txt 

[4] M. Hofmann, and L. R. Beaumont, Content Networking: Architecture, Protocols, and 

Practice, Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 129-134, 2005. 

[5] N. Bartolini, E. Casalicchio, and S. Tucci, “A Walk Through Content Delivery 

Networks,” In Proceedings of MASCOTS 2003, LNCS Vol. 2965/2004, pp. 1-25, April 

2004. 

[6] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, “Globally 

Distributed Content Delivery,” IEEE Internet Computing, pp. 50-58, September/October 

2002. 

[7] Akamai Technologies, Inc., www.akamai.com, 2007 

[8] Z. Xu, Y. Hu,L. Bhuyan ,”Efficient Server Cooperation Mechanism in Content 

Delivery Network”, 2006 

[9] Y. Chen, R.H. Katz, J.D. Kubiatowicz, “Dynamic Replica Placement for Scalable 

Content Delivery”, 2008 

[10] Y. Kamiya, T. Shimokawa, F. Tanizaki, N. Yoshida. “Scalable Contents Delivery 

System with Dynamic Server Deployment”, 2010 

http://www.ietf.org/rfc/rfc3466.txt


86 

 

Appendices 

FINAL YEAR PROJECT BIWEEKLY REPORT 

(Project I / Project II) 

Trimester,Year:Year3T2 Study week no.: Week 2 

Student Name & ID : WONG KHAI HSIANG (1001293) 

Supervisor                : Dr.LAU PHOOI YEE 

Project Title             : Using Surrogate Servers for Content Delivery 

Network Infrastructure with Guaranteed QoS 
 

WORK DONE 

Discuss simulation to be done 

WORK TO BE DONE 

Research on suitable simulation software 

PROBLEMS ENCOUNTERED 

Several simulation software that needs to be studied  

SELF EVALUATION OF THE PROGRESS 

Satisfactory progress 

 

 _________________________                            _________________________ 

 Supervisor’s signature         Student’s signature 



87 

 

FINAL YEAR PROJECT BIWEEKLY REPORT 

(Project I / Project II) 

Trimester,Year: Year3T2 Study week no.: Week 4 

Student Name & ID : WONG KHAI HSIANG (1001293) 

Supervisor                : Dr.LAU PHOOI YEE 

Project Title             : Using Surrogate Servers for Content Delivery 

Network Infrastructure with Guaranteed QoS 
 

WORK DONE 

Decision on simulation software 

2.WORK TO BE DONE 

Further study to be done on selected simulation software 

PROBLEMS ENCOUNTERED 

Not much documentation to be studied of Simulation Software 

SELF EVALUATION OF THE PROGRESS 

Satisfactory progress 

 

 

 _________________________                            _________________________ 

 Supervisor’s signature         Student’s signature 



88 

 

FINAL YEAR PROJECT BIWEEKLY REPORT 

(Project I / Project II) 

Trimester,Year: Year3T2 Study week no.: Week 6 

Student Name & ID : WONG KHAI HSIANG (1001293) 

Supervisor                : Dr.LAU PHOOI YEE 

Project Title             : Using Surrogate Servers for Content Delivery 

Network Infrastructure with Guaranteed QoS 
 

WORK DONE 

Chap 4 Direction 

2.WORK TO BE DONE 

Decision on simulation scope to be documented 

PROBLEMS ENCOUNTERED 

Still exploring of Simulation Software 

SELF EVALUATION OF THE PROGRESS 

Satisfactory progress 

 

 

 

 _________________________                            _________________________ 

 Supervisor’s signature         Student’s signature 



89 

 

FINAL YEAR PROJECT BIWEEKLY REPORT 

(Project I / Project II) 

Trimester,Year: Year3T2 Study week no.: Week 7 

Student Name & ID : WONG KHAI HSIANG (1001293) 

Supervisor                : Dr.LAU PHOOI YEE 

Project Title             : Using Surrogate Servers for Content Delivery 

Network Infrastructure with Guaranteed QoS 
 

WORK DONE 

Chap 4 Progress  

2.WORK TO BE DONE 

Completion of Chap 4 and Start of simulation 

3.PROBLEMS ENCOUNTERED 

Unsure of all the simulation software’s parameters 

SELF EVALUATION OF THE PROGRESS 

Satisfactory progress 

 

 

 

 _________________________                            _________________________ 

 Supervisor’s signature         Student’s signature 



90 

 

FINAL YEAR PROJECT BIWEEKLY REPORT 

(Project I / Project II) 

Trimester,Year: Year3T2 Study week no.: Week 9 

Student Name & ID : WONG KHAI HSIANG (1001293) 

Supervisor                : Dr.LAU PHOOI YEE 

Project Title             : Using Surrogate Servers for Content Delivery 

Network Infrastructure with Guaranteed QoS 
 

WORK DONE 

Review of Chap 4 and Review of Preliminary Simulation Case 

2.WORK TO BE DONE 

Coming up with proper models for Simulation 

3.PROBLEMS ENCOUNTERED 

Unsure of what models to use 

SELF EVALUATION OF THE PROGRESS 

Satisfactory progress 

 

 

 

 _________________________                            _________________________ 

 Supervisor’s signature         Student’s signature 



91 

 

FINAL YEAR PROJECT BIWEEKLY REPORT 

(Project I / Project II) 

Trimester,Year: Year3T2 Study week no.: Week 11 

Student Name & ID : WONG KHAI HSIANG (1001293) 

Supervisor                : Dr.LAU PHOOI YEE 

Project Title             : Using Surrogate Servers for Content Delivery 

Network Infrastructure with Guaranteed QoS 
 

WORK DONE 

Narrowed down area of simulation and model 

2.WORK TO BE DONE 

Simulation and Documentation 

3.PROBLEMS ENCOUNTERED 

Huge amounts of data to be documented. 

4.SELF EVALUATION OF THE PROGRESS 

Satisfactory progress 

 

 

 

 _________________________                            _________________________ 

 Supervisor’s signature         Student’s signature 


