

AI-DRIVEN PET CARE APP FOR VIRTUAL

ASSISTANCE AND SYMPTOM DIAGNOSIS

NIVIKA PRASAD A/P KASHI NATH

UNIVERSITI TUNKU ABDUL RAHMAN

AI-DRIVEN PET CARE APP FOR VIRTUAL ASSISTANCE AND

SYMPTOM DIAGNOSIS

NIVIKA PRASAD A/P KASHI NATH

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Name : Nivika Prasad A/P Kashi Nath

ID No. : 2104910

Date : 17/9/2025

ii

COPYRIGHT STATEMENT

© 2025, Nivika Prasad A/P Kashi Nath. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Bachelor of Software Engineering (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This final year project report

represents the work of the author, except where due acknowledgement has

been made in the text. No part of this final year project report may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Lee Ming Jie, my dedicated

research supervisor, for his invaluable guidance, continuous support, and

unwavering patience throughout the development of this project. His expertise,

insightful feedback, and encouragement were instrumental in shaping the

direction and success of my work.

I also extend my sincere appreciation to the faculty and staff of the

Lee Kong Chian Faculty of Engineering and Science (LKC FES), Universiti

Tunku Abdul Rahman, for providing an enriching academic environment and

access to essential resources that greatly supported my learning and research

journey. The knowledge and skills I have gained during my studies have been

fundamental to the completion of this project.

To my dear friends and the pet-loving users who participated in

testing PawHub, thank you for your honest feedback, moral support, and

companionship throughout this journey. Your insights helped shape the app

into a user-centered solution, and your encouragement kept me motivated to

deliver my best.

Lastly, to my beloved family, thank you for your endless love,

understanding, and unwavering belief in me. Your constant encouragement

gave me strength during challenging times and motivated me to push forward

no matter the obstacles.

This project is not only a step toward smarter pet care but also a

personal achievement made possible by the kindness and support of everyone

mentioned above.

iv

ABSTRACT

Pet ownership brings joy but also significant responsibilities in health

management and care. Existing applications often offer fragmented features,

lack reliable information, and fail to assist owners in assessing urgent medical

concerns. To address these challenges, this project presents PawHub, a mobile

application that integrates artificial intelligence with comprehensive pet care

tools to deliver a unified, user-friendly experience. The system was developed

using the Agile methodology, leveraging React Native for cross-platform

frontend development, Node.js with Express for the backend, and Supabase as

the centralized database and authentication provider. Key functionalities

include an AI-powered chatbot utilizing multiple models via OpenRouter AI,

an AI symptom diagnosis tool that generates severity-based assessments,

digital health record tracking, automated email reminders through Resend, and

a curated educational content module powered by web scraping from trusted

sources such as the American Kennel Club (AKC). The application underwent

rigorous testing and the results demonstrated high functionality and usability.

PawHub successfully bridges the gap between pet owners and virtual

veterinary support by providing timely, context-aware guidance, structured

health tracking, and expert-backed knowledge. In conclusion, the app proves

that AI-enhanced mobile solutions can significantly improve pet care decision-

making and owner confidence.

Keywords: Artificial Intelligence; Pet Health Management; Symptom

Diagnosis; Web Scraping; Pet Care; Mobile Application

Subject Area: QA76.75-76.765 Computer software

v

TABLE OF CONTENTS

DECLARATION i

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES xi

LIST OF FIGURES xiv

LIST OF APPENDICES xxiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.3.1 Difficulty in Accessing Reliable and

Expert-Backed Pet Health Information 3

1.3.2 Inefficient Health Record Management for

Pets 4

1.3.3 Difficulty in Assessing When to Seek

Veterinary Care 5

1.4 Aim and Objectives 5

1.4.1 Aim 5

1.4.2 Objectives 6

1.5 Proposed Solution 6

1.6 Proposed Approach 8

1.6.1 Requirement Analysis 9

1.6.2 Design and Prototyping 9

1.6.3 Design and Prototyping Development 9

1.6.4 Testing and Optimization 10

1.7 Scope and Limitation of the Study 10

vi

1.7.1 Scope 10

1.7.2 Development and Research Scope 11

1.7.3 Target Users 11

1.7.4 Application Features 12

1.7.5 Limitations 15

2 LITERATURE REVIEW 17

2.1 Introduction 17

2.2 Literature Review 17

2.2.1 Artificial Intelligence (AI) Chatbots in Pet

Healthcare 17

2.2.2 Artificial Intelligence (AI) in Veterinary

Medicine 19

2.2.3 Machine Learning for Pet Health

Monitoring 20

2.2.4 Comparison of Literature Review Research

Papers with my PawHub Application 21

2.3 Analysis of Existing Pet Care Applications 22

2.3.1 TTcare Application 23

2.3.2 PetVet AI Application 25

2.3.3 PetVitality Application 26

2.3.4 11Pets Application 30

2.3.5 Comparison of Existing Pet Care

Applications with PawHub App Features 32

2.4 Software Development Methodologies 33

2.4.1 Waterfall Methodology 33

2.4.2 Agile Methodology 36

2.4.3 Rapid Application Development (RAD)

Methodology 39

2.4.4 Comparison of Software Development

Methodologies 42

2.5 AI APIs for AI features 42

2.5.1 OpenAI API 43

2.5.2 DeepSeek API 44

2.5.3 OpenRouter AI API 45

vii

2.5.4 Comparison of AI APIs for AI features 46

2.6 Backend Development Tools 47

2.6.1 Supabase 47

2.6.2 Firebase 48

2.6.3 Comparison of Backend Development

Tools 50

2.7 Frontend Development Tools 50

2.7.1 React Native 51

2.7.2 Flutter 52

2.7.3 Comparison of Frontend Development

Tools 53

2.8 Summary 54

3 METHODOLOGY AND WORK PLAN 56

3.1 Introduction 56

3.2 Collecting Requirements 57

3.3 Analysis of Requirements 59

3.4 Software Development Methodology Used 62

3.4.1 Requirement Analysis and Sprint Planning 63

3.4.2 Design and Prototyping 63

3.4.3 Development and Integration 64

3.4.4 Testing and Optimization 67

3.4.5 Review and Continuous Improvement 67

3.5 Development Tools Used 68

3.5.1 React Native 68

3.5.2 Visual Studio Code 69

3.5.3 Android Studio Emulator 70

3.5.4 GitHub 71

3.5.5 Node.Js 72

3.5.6 Supabase 73

3.5.7 OpenRouter AI 74

3.5.8 Resend 75

3.5.9 Figma 76

3.6 Project Plan 77

3.6.1 Work Breakdown Structure (WBS) 78

viii

3.6.2 Gantt Chart 79

4 PROJECT INITIAL SPECIFICATIONS 81

4.1 Introduction 81

4.2 Facts Finding 81

4.2.1 Section 1: General Information 82

4.2.2 Section 2: Current Pet Care Practices 84

4.2.3 Section 3: AI Chatbot & App Features 88

4.2.4 Section 4: Pet Health Record Management

Preferences 92

4.2.5 Section 5: App Usability and Feature

Preferences 94

4.3 Requirements Specification 98

4.3.1 Functional Requirements 98

4.3.2 Non-Functional Requirements 99

4.4 Use Case Diagram 100

4.5 Use Case Description 101

4.5.1 UC001: Login User Profile 101

4.5.2 UC002: Register User Profile 103

4.5.3 UC003: Manage User Profile 105

4.5.4 UC004: Add Pet 107

4.5.5 UC005: Manage Pet Profile 109

4.5.6 UC006: Add Pet Health Records 111

4.5.7 UC007: Enquire AI Chatbot 113

4.5.8 UC008: Input Symptom Diagnosis 115

4.5.9 UC009: View Educational Resources 117

4.5.10 UC010: Give Feedback 119

4.6 User Interface (UI) Prototype 121

5 SYSTEM DESIGN 127

5.1 Introduction 127

5.2 System Architecture 127

5.3 Database Design 129

5.3.1 Data Dictionary 130

5.4 API Endpoints 137

5.4.1 Authentication Endpoints 137

ix

5.4.2 Profile Management Endpoints 137

5.4.3 Pet Management Endpoints 138

5.4.4 Health Records Endpoints 138

5.4.5 Feedback Endpoints 139

5.4.6 Symptom Diagnosis Endpoints 139

5.4.7 AI Chatbot Endpoints 139

5.4.8 Other Endpoints 140

5.5 Data Flow Diagram (DFD) 141

5.5.1 Context Diagram 141

5.5.2 Level-0 Diagram 142

5.5.3 Level-1 Diagram 142

5.6 Activity Diagram 145

5.6.1 Login Activity Diagram 145

5.6.2 Register Activity Diagram 145

5.6.3 Forgot Password Activity Diagram 146

5.6.4 Add Pet Activity Diagram 146

5.6.5 Add Health Record With Reminder

Activity Diagram 147

5.6.6 AI Chatbot Activity Diagram 148

5.6.7 Symptoms Diagnosis Activity Diagram 149

5.6.8 Education Article Activity Diagram 150

5.6.9 Feedback Activity Diagram 151

5.6.10 Profile Management Activity Diagram 151

5.7 Mobile Application Design Principles 152

5.8 User Interface (UI) Design 162

5.8.1 User Authentication Screens 162

5.8.2 Homescreen 163

5.8.3 AI Chatbot Screen 164

5.8.4 Symptom Diagnosis Screen 165

5.8.5 Pet Management Screen 168

5.8.6 Profile Management Screen 172

5.8.7 Education Screen 174

5.8.8 Feedback Screen 176

5.9 Conclusion 177

x

6 IMPLEMENTATION 178

6.1 Introduction 178

6.2 Frontend Implementation 178

6.2.1 Authentication Module 178

6.2.2 AI Chatbot Module 181

6.2.3 Symptom Diagnosis Module 184

6.2.4 Pet Management Module 188

6.2.5 Profile Management Module 193

6.2.6 Education Module 196

6.2.7 Feedback Module 199

6.3 Backend Implementation 203

6.4 Database Integration 209

6.5 AI Features Implementation 213

6.5.1 AI Chatbot 213

6.5.2 Symptom Diagnosis 215

6.6 Automated Email Reminder System 218

6.7 Web Scraping for Educational Content 222

6.8 Security Implementation 224

6.9 Conclusion 229

7 TESTING 231

7.1 Introduction 231

7.2 Test Execution 231

7.3 Unit Test 232

7.4 System Usability Scale (SUS) Test 253

7.5 User Acceptance Test 256

8 CONCLUSION AND RECOMMENDATION 259

8.1 Conclusion 259

8.2 Achievement of Objectives 260

8.3 Limitation & Recommendations 261

REFERENCES 263

APPENDICES 267

xi

LIST OF TABLES

Table 2.1: Comparison of Literature Review Research Papers 21

Table 2.2: Comparison between existing pet care applications and

PawHub App Features 32

Table 2.3: Comparison of Software Development Methodologies 42

Table 2.4: Comparison of AI APIs for AI features 46

Table 2.5: Comparison of Backend Development Tools 50

Table 2.6: Comparison of Frontend Development Tools 53

Table 3.1: Resources Allocation 56

Table 4.1: Additional Features User Responses (Open ended

question) 95

Table 4.2: Final Feedback or Suggestion user responses (Open

ended question) 96

Table 4.3: Functional Requirements 98

Table 4.4: Non-Functional Requirements 99

Table 4.5: UC001 Login User Profile 101

Table 4.6: Register User Profile 103

Table 4.7: Manage User Profile 105

Table 4.8: UC004: Add Pet 107

Table 4.9: UC005: Manage Pet Profile 109

Table 4.10: UC006: Add Pet Health Records 111

Table 4.11: UC007: Enquire AI Chatbot 113

Table 4.12: UC008: Input Symptom Diagnosis 115

Table 4.13: UC009: View Educational Resources 117

Table 4.14: UC010: Give Feedback 119

Table 5.1: Authenticated Users Table 130

xii

Table 5.2: Users Information Table 130

Table 5.3: Pets Information Table 131

Table 5.4: Pets Health Record Information Table 132

Table 5.5: Pets AI Symptoms Diagnosis History Table 133

Table 5.6: AI Chatbot Message History Table 133

Table 5.7: Email Reminders Table 134

Table 5.8: User Feedback Table 135

Table 5.9: Web-scraped Articles Table 136

Table 5.10: Authentication Endpoints 137

Table 5.11: Profile Management Endpoints 137

Table 5.12: Pet Management Endpoints 138

Table 5.13: Health Records Endpoints 138

Table 5.14: Feedback Endpoints 139

Table 5.15: Symptom Diagnosis Endpoints 139

Table 5.16: AI Chatbot Endpoints 139

Table 5.17: Other Endpoints 140

Table 7.1: Unit Test Case - Login 232

Table 7.2: Unit Test Case - Register 235

Table 7.3: Unit Test Case - Forgot 237

Table 7.4: Unit Test Case - AI Chatbot 238

Table 7.5: Unit Test Case - Symptom Diagnosis 240

Table 7.6: Unit Test Case - Pet Management 243

Table 7.7: Unit Test Case - Profile Management 246

Table 7.8: Unit Test Case - Education 248

Table 7.9: Unit Test Case - Feedback 250

xiii

Table 7.10: SUS Survey 255

Table 7.11: User Acceptance Testing Template for User 256

Table 8.1: Limitations and Recommendations 261

xiv

LIST OF FIGURES

Figure 1.1: System Architecture 7

Figure 1.2: Agile Methodology (Agile software development:

everything you need to know, 2024) 8

Figure 2.1: Main Features of TTcare Application 23

Figure 2.2: Basic Features in TTcare Application 24

Figure 2.3: TTcare Application Analysis Error 24

Figure 2.4: PetVet AI Main AI Chatbot Feature 25

Figure 2.5: PetVet AI simple FAQ 26

Figure 2.6: PetVitality Home Page 26

Figure 2.7: PetVitality AI tools features 27

Figure 2.8: PetVitality Specialised health trackers feature 28

Figure 2.9: PetVitality Detailed Health Tracking Feature 28

Figure 2.10: PetVitality Routine Scheduler and Reminders Feature 29

Figure 2.11: PetVitality Document Storage and Personal Gallery

Feature 29

Figure 2.12: 11Pets General Functions 30

Figure 2.13: 11Pets Health Tracking Features 31

Figure 2.14: Waterfall Methodology (Motion, 2023) 33

Figure 2.15: Agile Methodology (Agile software development:

everything you need to know, 2024) 36

Figure 2.16: RAD Methodology (Rapid Application Development

(RAD), no date) 39

Figure 2.17: Open AI API (Postman, 2025) 43

Figure 2.18: DeepSeek API (TechNode Feed, 2025) 44

Figure 2.19: OpenRouter AI API (OpenRouter Logo PNG Vector

(SVG) Free Download, 2025) 45

xv

Figure 2.20: Supabase Backend Tool (asierr.dev, 2024) 47

Figure 2.21: Firebase Backend Tool (Setting up Firebase / Google

Analytics, 2025) 48

Figure 2.22: React Native (Okoone, 2025) 51

Figure 2.23: Flutter (What is Flutter? Guide for Flutter App

Development | Relia Software, no date) 52

Figure 3.1: Agile Methodology (Agile software development:

everything you need to know, 2024) 62

Figure 3.2: React Native (Okoone, 2025) 68

Figure 3.3: Visual Studio Code (Hill, 2024) 69

Figure 3.4: Android Studio Emulator (Najjar, 2023) 70

Figure 3.5: GitHub (GitHub Logo Download - SVG - All Vector

Logo, 2016) 71

Figure 3.6: Node.Js Backend Tool (Node.js Development Services

Company | Hire Node.js Developers, 2016) 72

Figure 3.7: Supabase Backend Tool (asierr.dev, 2024) 73

Figure 3.8: OpenRouter AI API (OpenRouter Logo PNG Vector

(SVG) Free Download, 2025) 74

Figure 3.9: Resend Email API (Resend, 2025) 75

Figure 3.10: Figma (Interino, 2022) 76

Figure 3.11: Work Breakdown Structure Diagram 78

Figure 3.12: Project Planning and Requirements Gathering Gantt

Chart 79

Figure 3.13: System Design Phase Gantt Chart 79

Figure 3.14: Development Phase Gantt Chart 80

Figure 3.15: Testing Phase Gantt Chart 80

Figure 3.16: Closing Phase Gantt Chart 80

Figure 4.1: Target Users of Survey 81

Figure 4.2: Survey Question 1, Age Group 82

xvi

Figure 4.3: Survey Question 2, Pet Types 82

Figure 4.4: Survey Question 3, Number of pets 83

Figure 4.5: Survey Question 4, Pet Ownership Experience 83

Figure 4.6: Survey Question 5, Current Pet Health Management 84

Figure 4.7: Survey Question 6, Vet Visits for checkup or health

concerns 84

Figure 4.8: Survey Question 7, Struggles to identify if pet is sick 85

Figure 4.9: Survey Question 8, Ways to search unusual symptoms 86

Figure 4.10: Survey Question 9, Challenges faced in managing pet’s

health 86

Figure 4.11: Survey Question 10, Pet Health Tracking System

Usefulness 87

Figure 4.12: Survey Question 11, AI-based Virtual Assistant Usage 88

Figure 4.13: Survey Question 12, AI-based Symptoms Diagnosis Tool

Usage 88

Figure 4.14: Survey Question 13, AI-based Virtual Assistant Usage

for General Pet Care Questions 89

Figure 4.15: Survey Question 14, AI-based Virtual Assistant Usage 89

Figure 4.16: Survey Question 15, User Trust on AI Tool For

Symptoms Diagnosis 90

Figure 4.17: Survey Question 16, AI Symptom Checker 91

Figure 4.18: Survey Question 17, AI-based Virtual Assistant

Response Rate 91

Figure 4.19: Survey Question 18, Preferred features in a Pet Health

Record System 92

Figure 4.20: Survey Question 19, Importance of Centralized Digital

System 92

Figure 4.21: Survey Question 20, Interest in Receiving Pet Care Tips,

Alerts, and Reminders 93

Figure 4.22: Survey Question 21, Most Important Factors in Pet Care

App 94

xvii

Figure 4.23: Survey Question 22, Preference for an AI-powered

Symptom Diagnosis Tool 94

Figure 4.24: Survey Question 23, Additional Features Suggestion 95

Figure 4.25: Survey Question 24, Final Feedback or Suggestion for

improving the application 96

Figure 4.26: Use Case Diagram 100

Figure 4.27: Overall PawHub Prototype 121

Figure 4.28: Welcome Screen 121

Figure 4.29: Login Screen 122

Figure 4.30: Register Screen 122

Figure 4.31: Home Screen and Navigation 123

Figure 4.32: AI Chatbot Screen 123

Figure 4.33: Symptom Diagnosis Screen 124

Figure 4.34: Pet Profile Management Screen 124

Figure 4.35: User Profile Management Screen 125

Figure 4.36: Educational Resources Screen 125

Figure 4.37: Feedback Screen 126

Figure 5.1: System Architecture 127

Figure 5.2: ERD Diagram 129

Figure 5.3: Context Diagram 141

Figure 5.4: Level-0 Diagram 142

Figure 5.5: Enquire AI Chatbot Level-1 Diagram 143

Figure 5.6: Input Symptom Diagnosis Level-1 Diagram 143

Figure 5.7: Add Pet Health Records Level-1 Diagram 144

Figure 5.8: Login screen activity diagram 145

Figure 5.9: Register screen activity diagram 145

xviii

Figure 5.10: Forgot screen activity diagram 146

Figure 5.11: Pet Management Screen activity diagram - Add pet 146

Figure 5.12: Pet Management Screen activity diagram - Add health

record with reminder 147

Figure 5.13: AI Chatbot Screen activity diagram 148

Figure 5.14: Symptom Diagnosis Screen activity diagram 149

Figure 5.15: Education Screen activity diagram 150

Figure 5.16: Feedback Screen activity diagram 151

Figure 5.17: Profile Management Screen activity diagram 151

Figure 5.18(a)(b)(c): Strive for Consistency 152

Figure 5.19(a)(b)(c): Enable Frequent Users to Use Shortcuts 153

Figure 5.20: Enable Frequent Users to Use Shortcuts - Prominent

Display 153

Figure 5.21(a)(b): Offer Informative Feedback - loading spinner 154

Figure 5.22(a)(b): Offer Informative Feedback - Success Toast 154

Figure 5.23(a)(b): Offer Informative Feedback - Input Validation 155

Figure 5.24(a)(b)(c): Design Dialogs to Yield Closure -

Symptom Diagnosis Flow 155

Figure 5.25(a)(b)(c): Design Dialogs to Yield Closure - Delete

Heatlh Record 156

Figure 5.26(a)(b): Offer Simple Error Handling - Input Validation 156

Figure 5.27(a)(b): Offer Simple Error Handling - For irreversible

actions 157

Figure 5.28: Permit Easy Reversal of Actions – Cancel 158

Figure 5.29: Permit Easy Reversal of Actions - non-destructive until

explicitly saved 158

Figure 5.30(a)(b)(c): Support Internal Locus of Control –

Control to decide 159

xix

Figure 5.31(a)(b): Support Internal Locus of Control – AI Never Pre-

fills 159

Figure 5.32: Reduce Short-Term Memory Load – Pet Information

Populated 160

Figure 5.33: Reduce Short-Term Memory Load – Pet Preview 160

Figure 5.34(a)(b): Reduce Short-Term Memory Load – Consistent

Navigation 161

Figure 5.35(a)(b)(c)(d): User Authentication Screens UI 162

Figure 5.36(a)(b)(c)(d): Home Screen UI 163

Figure 5.37(a)(b)(c)(d): AI Chatbot Screen UI 164

Figure 5.38(a)(b)(c)(d): Symptom Diagnosis Screen UI 165

Figure 5.39(a)(b)(c)(d): Symptom Diagnosis Screen Results UI 166

Figure 5.40(a)(b)(c)(d): Symptom History Modal UI 167

Figure 5.41(a)(b)(c): Pet Management Screen UI 168

Figure 5.42(a)(b)(c)(d): Create Pet Profile Management Screen UI 169

Figure 5.43(a)(b)(c)(d): Update Pet Profile Management Screen UI 169

Figure 5.44(a)(b): Delete Pet Profile Management Screen UI 170

Figure 5.45(a)(b)(c)(d): CRUD for Pet Health Record Management

Screen UI 171

Figure 5.46(a)(b): Reminder for Pet Health Record Management

Screen UI 171

Figure 5.47(a)(b): Profile Management Screen UI 172

Figure 5.48(a)(b)(c): CRUD in Profile Management Screen UI 173

Figure 5.49(a)(b)(c): Education Screen UI 174

Figure 5.50(a)(b): Article in Education Screen UI 175

Figure 5.51(a)(b)(c)(d): Feedback Screen UI 176

Figure 6.1(a)(b)(c): Authentication Screen Required Input Validations 179

Figure 6.2(a)(b)(c): Authentication Screen Input Validations 179

xx

Figure 6.3: JWT token for session management 180

Figure 6.4(a)(b): Forgot Password Account Recovery Email 180

Figure 6.5: AI Chatbot Interface 181

Figure 6.6: Selector buttons to select pet and AI model 181

Figure 6.7: AI multi-line text field enabled and disabled 182

Figure 6.8: AI message rating system 182

Figure 6.9: AI Chat History session ID 183

Figure 6.10(a)(b): Clear Chat button and trigger 183

Figure 6.11: Health Records Loaded Badge 183

Figure 6.12: Session Management Token in AI Chatbot screen 184

Figure 6.13: Symptom Diagnosis Screen Pet Selection Modal 184

Figure 6.14(a)(b)(c): Input Validation and Loading Indicator for

Severity Assessment 185

Figure 6.15: Severity Assessment Results 185

Figure 6.16: Symptom Diagnosis Result Diagnosis 186

Figure 6.17: Symptom Diagnosis Result Recommendation 186

Figure 6.18: Symptom Diagnosis Result Possible Causes 186

Figure 6.19: Symptom Diagnosis Result Additional Notes 186

Figure 6.20: Symptom Diagnosis Disclaimer 187

Figure 6.21(a)(b)(c): View Past Assessments in Symptom

History Modal 187

Figure 6.22: Error Handling - AI Service Unavailable 188

Figure 6.23: NotificationToast component for success message 188

Figure 6.24: List of Registered Pets in Pet Management Screen 189

Figure 6.25(a)(b)(c): Add New Pet Form validation and Image

Upload Option 189

xxi

Figure 6.26(a)(b): Edit Pet Profile, Update Existing Pet Type

Information 190

Figure 6.27: Delete Pet Confirmation Alert 190

Figure 6.28: Health Records List as Chronological Medical History 191

Figure 6.29(a)(b): Add Health Record Input Validations 191

Figure 6.30(a)(b): Future Date with Email Reminder Enabled 192

Figure 6.31: Delete Health Record Confirmation 192

Figure 6.32: Pet Management Screen session 192

Figure 6.33: Avatar and User Information in Profile Management

Screen 193

Figure 6.34: Selected image is uploaded via multipart/form-data 193

Figure 6.35(a)(b): Camera, Gallery, and Default Avatars in Image

Picker 194

Figure 6.36(a)(b): Edit Profile Information with Input Validation 194

Figure 6.37: Save Changes, Log Out, and Delete Account Buttons 195

Figure 6.38: Session Management Token in Profile Management 195

Figure 6.39: Success Toast on Profile Update 196

Figure 6.40(a)(b): Pet Education Screens Header and Search Bar 196

Figure 6.41: Category Tabs 197

Figure 6.42(a)(b): Article Card Layout 197

Figure 6.43: No Articles Found 198

Figure 6.44(a)(b): Opening Article in External Browser 198

Figure 6.45: Fetching Articles from Backend 199

Figure 6.46: Header and Rating Section in Feedback Screen 199

Figure 6.47: Feedback Input Field with Placeholder 200

Figure 6.48(a)(b): Submit Feedback Button and Error Handling 200

Figure 6.49: Success Notification Toast on Submission 200

xxii

Figure 6.50: View Past Feedbacks Button 201

Figure 6.51: List of Submissions in Past Feedbacks Modal 201

Figure 6.52: Loading Indicator in Feedback History Modal 202

Figure 6.53: Authentication middleware 203

Figure 6.54: Rate limiting 204

Figure 6.55: Supabase Client SDK 205

Figure 6.56: Context-Rich AI Prompt with pet information 205

Figure 6.57: Fallback logic to alternative models 206

Figure 6.58: Email Reminder checker task runs every 60 seconds 206

Figure 6.59: Scraper runs and fetches articles 207

Figure 6.60: CORS and Multer Configuration 208

Figure 6.61: Creation of database table using PostgreSQL in supabase 209

Figure 6.62: RLS Policies in Supabase 210

Figure 6.63: Avatar Bucket in Supabase Storage 210

Figure 6.64(a)(b): JWT-based token generation 211

Figure 6.65: Database Schema in Supabase 211

Figure 6.66(a)(b): Environment Variable Import and Validations in

Backend 212

Figure 6.67: OpenRouter Configuration 213

Figure 6.68: Context Rich AI prompt for AI Chatbot 214

Figure 6.69: Fallback logic for AI Chatbot 214

Figure 6.70: Save chat history immediately with a unique session_id 215

Figure 6.71: Symptom Diagnosis AI Structured Context Prompt 216

Figure 6.72: Diagnosis Result is Saved in the symptom_history Table 216

Figure 6.73: AI Fallback Logic for Symptom Diagnosis Screen 217

Figure 6.74: AI Error Message If All Models Fail 217

xxiii

Figure 6.75: System Calculates the Reminder 218

Figure 6.76: Scheduling Logic is implemented 219

Figure 6.77: Email Reminder Checker Running Every 60 Seconds 219

Figure 6.78(a)(b): Example Email Sent via Resend 220

Figure 6.79(a)(b): Reminder Marked as Sent in Database 220

Figure 6.80: Reminders deleted when health record deleted 221

Figure 6.81: Email Address Accessed via Supabase Admin API 221

Figure 6.82: Axios for HTTP requests 222

Figure 6.83: Scraper performs a link-based upsert operation 222

Figure 6.84: Categorized based on the source URL 223

Figure 6.85: Script logs the error and Process other articles 224

Figure 6.86: Authentication Middleware and Supabase Auth 225

Figure 6.87: JWT (JSON Web Token) saved to storage 225

Figure 6.88: Express Rate Limits 225

Figure 6.89: HTTPS-style practices 226

Figure 6.90: Row Level Security (RLS) policies in Supabase 227

Figure 6.91: Multers and Cors Configuration 227

Figure 6.92(a)(b): Environment Variables 228

Figure 6.93: Input Validation 228

Figure 6.94: Supabase Admin API 229

Figure 7.1: Standard SUS Test Questions (Item Benchmarks for the

System Usability ScaleJUS, no date) 253

Figure 7.2: SUS Grading Table (Shei, 2023) 254

Figure 7.3: SUS Survey Response Chart 254

xxiv

LIST OF APPENDICES

Appendix A: Fact Findings Survey 267

Appendix B: SUS Survey 276

Appendix C: UAT Results 286

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Over the years, pet ownership has grown significantly, with more individuals

and families welcoming pets into their homes. Pets are more than just animals,

they are companions that bring joy, comfort, and emotional support to their

owners. However, caring for a pet comes with responsibilities, including

providing proper nutrition, regular health check-ups, and ensuring their overall

well-being. For first-time pet owners, this can be overwhelming, especially

when they are unsure about recognizing early signs of illness, maintaining

vaccination records, or understanding their pet’s specific needs.

 Today, life moves quickly, and many people who have pets find it

hard to take care manage their pet’s health the way they should. Searching for

information online can sometimes lead to confusing or unreliable advice,

making it difficult to make the right decisions for a pet’s well-being.

Additionally, scheduling vet visits for minor concerns can be both time-

consuming and costly, leaving many owners wishing for a simpler way to get

answers about their pet’s health.

 With advancements in Artificial Intelligence (AI), technology now

plays a crucial role in transforming pet care. AI-powered solutions can assist

pet owners by providing instant, reliable, and data-driven insights into pet

health and wellness. PawHub, an AI-based pet care mobile application, is

designed to bridge this gap by offering an AI chatbot for general pet care

inquiries and an AI-powered symptom diagnosis tool. The chatbot can answer

questions related to pet care, including nutrition, training, and common health

concerns, while the symptom diagnosis feature helps pet owners assess

whether their pet needs immediate veterinary attention.

 Beyond AI assistance, this application will also serve as a

comprehensive pet management tool, allowing users to track their pet’s health

records, vaccination schedules, and important medical history in one place.

Additionally, the app provides educational resources through web scraping

2

tailored for first-time pet owners, guiding them through the essential aspects of

pet care.

 By leveraging AI, cloud-based data storage, and an easy-to-use

interface, this application aims to simplify pet ownership and ensure that pet

owners have quick and accurate access to information whenever they need it.

PawHub will provide a clever, dependable, and practical solution for pet care

in the digital age, regardless of whether a person is a beginner pet owner

looking for advice or an experienced pet owner seeking a more effective

approach to maintain health records.

1.2 Importance of the Study

Pet ownership is a lifelong commitment that requires continuous care, yet

many owners struggle to keep up due to busy lifestyles. Issues like early

illness detection, diet changes, and behavioural concerns often go unnoticed,

leading to preventable health problems. The lack of accessible, reliable pet

care information further complicates decision-making.

 In the digital age, pet owners rely on online sources, but these often

contain conflicting or misleading advice. Managing health records is also

challenging, especially with physical booklets or scattered digital notes.

Existing pet care apps typically focus on either health tracking or AI chat

support but rarely provide a comprehensive solution that integrates multiple

features seamlessly.

 This study explores the potential of an AI-powered pet care app that

will assist owners by offering symptom diagnosis, real-time AI chatbot

support, and efficient health record management. By analysing reported

symptoms, the AI will help detect early health concerns, reducing delays in

treatment and unnecessary vet visits. A 24/7 AI chatbot with multiple AI

models will provide instant, reliable guidance on nutrition, training, and

common health issues, minimizing dependence on unverified online sources.

Additionally, a digital health management system will streamline pet record-

keeping, ensuring organized and stress-free tracking of medical history,

vaccinations, and appointments.

 Designed for all pet owners, including first-time users, the app will

prioritize an intuitive and user-friendly interface. This ensures that key

3

features such as symptom diagnosis, health tracking, and AI support are easily

accessible.

 By integrating AI, database management, and an intuitive design, this

application has the potential to transform pet care, making it more efficient

and accessible. This study highlights the need for AI-driven pet care solutions

that empower owners with instant, accurate, and reliable insights, ensuring

better well-being for pets in the future.

1.3 Problem Statement

Pet ownership is a fulfilling experience, but it comes with significant

responsibilities, particularly in maintaining a pet’s health and overall well-

being. Ensuring proper medical care, nutrition, and timely veterinary checkups

can be challenging, especially when reliable information and structured health

management tools are not readily available. Despite the existence of multiple

pet care applications, most focus on isolated functionalities such as basic

health tracking or AI-powered chatbots. However, there is currently no

integrated platform that seamlessly combines AI-driven symptom diagnosis,

structured health record management, and reliable pet care guidance. This

fragmentation forces pet owners to rely on multiple sources, which is

inefficient, time-consuming, and may lead to misinformation or improper pet

care.

1.3.1 Difficulty in Accessing Reliable and Expert-Backed Pet Health

Information

Pet owners often struggle to find trustworthy sources for pet health

information. Many turn to online platforms, which can contain conflicting or

misleading advice not backed by veterinary science. This reliance on

unverified sources increases the risk of misdiagnosis and improper treatment,

potentially worsening a pet’s condition. A study exploring pet owner’s online

search experiences highlights that while the internet is a common resource, the

quality and reliability of information vary significantly, affecting interactions

with veterinarians (Lai et al., 2021).

 The spread of misinformation has been observed in both human and

animal healthcare, leading to poor decision-making. For instance, during the

4

COVID-19 pandemic, a surge in misinformation paralleled trends in human

healthcare, diminishing trust in evidence-based treatments. A notable example

involved a pet owner who faced opposition in online communities for

choosing conventional chemotherapy over holistic treatments for her dog’s

cancer, showcasing the broader issue of misinformation influencing pet care

decisions (Senter, 2024). To address this gap, an AI-powered system providing

reliable, expert-backed health guidance is essential for ensuring informed pet

care decisions.

1.3.2 Inefficient Health Record Management for Pets

The absence of a centralized system for tracking and managing pet health

records poses significant challenges. Many pet owners rely on scattered notes

or physical booklets to track vaccinations, vet appointments, and medical

history. This disorganized approach can result in missed vaccinations,

overlooked medical symptoms, and inconsistencies in treatment plans. Proper

record-keeping is crucial in veterinary practice to ensure high-quality care and

legal compliance. Inadequate record-keeping can compromise a veterinarian’s

defence during trial or board review (PLIT, 2021).

 Additionally, the transition from traditional paper records to AI-

powered Electronic Medical Records (EMRs) has introduced challenges such

as data privacy concerns and the need for robust data management systems.

Even though EMRs provide advantages like more accessibility and fewer

mistakes, sensitive data must be protected during adoption by stringent data

security procedures. The evolution of veterinary records underscores the need

to address these challenges to fully leverage the advantages of EMRs

(Vetrec.io, 2024). A standardized, secure, and accessible health record

management system would not only enhance pet healthcare but also safeguard

veterinary professionals against legal risks associated with inadequate

documentation.

5

1.3.3 Difficulty in Assessing When to Seek Veterinary Care

Determining whether a pet’s condition requires immediate veterinary attention

or can be managed at home is a common challenge. Pet owners often find

themselves uncertain, leading to either unnecessary vet visits for minor issues

or dangerous delays in seeking treatment for serious conditions. Insufficient

access to veterinary treatment affects human health in addition to being a

serious threat to animal health. (Niemiec et al., 2024).

 Since pets cannot verbally communicate their discomfort or

symptoms, owners must rely on observable signs, which can be difficult to

interpret without expert guidance. The lack of accessible, veterinary-backed

resources exacerbates this issue, leaving pet owners dependent on personal

judgment or unreliable online sources. For example, during the H5N1 bird flu

outbreak, misinformation regarding transmission risks to domestic animals

like cats led to confusion and varied responses among pet owners, highlighting

the need for clear, accurate guidance (Patterdale, 2025). Without reliable tools

to assess their pets’ health, owners may either expose them to unnecessary

medical interventions or fail to address critical health issues promptly.

Implementing an AI-driven symptom checker could bridge this gap, helping

pet owners make informed decisions about seeking veterinary care

1.4 Aim and Objectives

1.4.1 Aim

The project’s goal is to develop a smartphone application for pet care that uses

artificial intelligence (AI) to serve as a virtual assistant for pet owners,

offering instant AI chatbot support, symptom-based health assessments, and a

digital health record management system. By providing a clever, data-driven,

and approachable solution that enables pet owners to make knowledgeable

decisions regarding the well-being and health of their pets, the aim is to make

pet care easier. By integrating Artificial Intelligence (AI) and cloud-based data

management, the app will ensure that pet owners have reliable, instant, and

personalized support for their pet care needs, reducing misinformation,

unnecessary vet visits, and disorganized health records.

6

1.4.2 Objectives

i) To develop an AI-powered chatbot with multiple AI models

that provides instant responses to pet care inquiries, ensuring

reliable and accessible guidance.

ii) To implement an AI-driven symptom diagnosis tool to help pet

owners assess health concerns and determine if immediate

veterinary attention is needed.

iii) To create a structured digital health record management system

to streamline tracking of medical history, vaccinations, and

other essential pet’s data.

iv) To offer educational resources through web scraping that

provides valuable insights and expert knowledge on pet care.

By achieving these objectives, this project will not only streamline pet care

management but also enhance the overall pet ownership experience. Pet

owners will have access to a reliable, AI-driven virtual assistant that simplifies

decision-making, reduces reliance on misinformation, and ensures that their

pets receive timely and appropriate care.

1.5 Proposed Solution

The project’s intended solution is a mobile application for pet care powered by

artificial intelligence that helps pet owners manage the health and wellbeing of

their pets by acting as a virtual assistant. This application will integrate

artificial intelligence, cloud-based database management, and user-friendly

mobile technology to provide an all-in-one platform for pet care. The primary

goal of PawHub is to offer pet owners a reliable, efficient, and accessible tool

to monitor their pet’s health, receive AI-generated care recommendations, and

maintain essential records, reducing the stress and uncertainty of pet

management.

 The key features of the application include an AI-powered chatbot

with options from multiple AI model, a symptom diagnosis tool, and a pet

health records management system. The AI chatbot, powered by third party

API’s from multiple AI models, will provide real-time responses to general pet

care inquiries, offering users guidance on nutrition, training, and common pet

7

health concerns. The symptom diagnosis feature will also utilize AI models to

analyse user-provided symptoms and categorise the health issues based on

severity, enabling pet owners to take timely action when necessary.

Additionally, the pet health records management system will allow users to

store and track their pet’s information, vaccination history, vet visits, and other

medical records, ensuring that critical health information is always accessible.

 To ensure secure access and data protection, the application will

implement Supabase authentication for user management. The database

operations will also be handled by Supabase, which will store user and pet-

related data efficiently while allowing seamless integration with the

application’s features. Moreover, the app will include educational resources,

such as pet care articles and guides, to enhance pet owner’s knowledge and

provide preventive care insights, this will be implemented through web-

scraping. The PawHub application will be developed using React Native for

cross-platform compatibility and node.js for backend, ensuring that it can

reach a wider audience of pet owners using both Android and iOS devices.

Figure 1.1: System Architecture

 PawHub was built on a secure, full-stack architecture that integrates

React Native (frontend), Node.js with Express (backend), and Supabase

(PostgreSQL database and authentication). The frontend communicated with a

dedicated backend server, which acts as a secure gateway for all API requests.

8

This server handles authentication, data validation, and routing while

enforcing rate limiting and JWT-based access control to protect user data.

The backend connects to Supabase to manage user profiles, pet

details, health records, and AI interaction history, all secured with Row Level

Security (RLS) policies to ensure users only access their own data. For AI-

powered features, the backend forwarded enriched prompts to OpenRouter.ai,

enabling intelligent chatbot responses and symptom diagnosis with model

fallback logic for reliability. Additionally, an automated email reminder

system uses Resend to notify users of upcoming health events, triggered by a

background checker that runs every 60 seconds.

All sensitive credentials including Supabase, OpenRouter, and

Resend API keys are securely stored in environment variables using .env files,

ensuring they are never exposed in the frontend or version control. This

layered, well-integrated architecture supports scalability, security, and real-

time functionality, making PawHub a robust and intelligent solution for

modern pet care management.

1.6 Proposed Approach

Figure 1.2: Agile Methodology (Agile software development: everything you

need to know, 2024)

Throughout the project lifespan, PawHub will follow an Agile software

development methodology combined with an incremental approach to ensure

continuous improvement, adaptability, and high-quality outcomes. This

approach supports the gradual development and refinement of features such as

9

the AI chatbot, symptom diagnosis tool, and pet health records system by

dividing the project into manageable sprints or development cycles. At the end

of each sprint, a functional component of the application will be tested, and

evaluated, allowing for supervisor feedback and necessary adjustments to be

integrated into future iterations.

 Agile’s flexibility is especially beneficial for the mobile application,

PawHub that relies on modern technologies such as AI and cloud-based

services, where requirements may evolve based on testing outcomes or user

needs. The project will begin with an initial planning and requirement analysis

phase, followed by design, development, testing, and deployment, with each

phase being revisited and refined as needed. By adopting this methodology,

the development process remains dynamic and user-focused, ensuring that the

final product is not only functional and reliable but also aligned with user

expectations and evolving technological trends.

1.6.1 Requirement Analysis

The first phase involves requirement analysis, where research will be

conducted to identify the challenges pet owners face when managing their

pet’s health. Surveys and studies on existing pet care applications will be used

to gather insights, allowing for the identification of essential features that

differentiate PawHub from other solutions. This phase is crucial for defining

the scope of the project and aligning the application’s functionalities with user

needs.

1.6.2 Design and Prototyping

Following this, the design and prototyping phase will focus on creating UI/UX

wireframes to ensure an intuitive and user-friendly experience. The system

architecture will be structured to define how the application components,

including the AI chatbot, database, and user interface, will interact. This stage

will also outline data models for pet health records and chatbot responses.

1.6.3 Design and Prototyping Development

The development phase will involve coding and integrating the core features

of the application. This includes implementing Supabase authentication for

10

secure user management, configuring Supabase for database operations, and

integrating the AI API models for AI-powered chatbot functionality.

Integrating Resend API configuration for pet health record reminders. The

symptom diagnosis module will be developed using AI models capable of

analysing input symptoms and providing relevant analysis and

recommendation. Throughout this phase, React Native and Node.js will be

used to develop the application, ensuring efficiency in both functionality and

design.

1.6.4 Testing and Optimization

Once the core features are implemented, the testing and optimization phase

will be conducted to evaluate the app’s performance, usability, and accuracy.

Unit testing and system testing will be performed to detect bugs and ensure

smooth interactions between different components. The AI chatbot and

symptom diagnosis system will also undergo validation testing to measure

response accuracy and reliability. User feedback will be gathered through

initial test runs to refine the application further, addressing any usability

concerns or feature gaps.

 By following an agile and iterative development approach, PawHub

will be refined continuously to enhance its efficiency, accuracy, and user

experience. The structured methodology ensures that the project progresses

systematically while allowing flexibility for improvements. This approach not

only facilitates efficient project execution but also ensures that PawHub

evolves to meet the dynamic needs of pet owners effectively.

1.7 Scope and Limitation of the Study

1.7.1 Scope

The research study is about the development and implementation of an AI-

powered application for pet care that aims to give pet owners virtual support in

overseeing the health and general welfare of their animals. The proposed

application will be developed using React Native, ensuring compatibility for

cross platform devices. For backend services, Node.js and Supabase will be

utilized to handle user authentication, database management, and cloud storage,

offering a secure and scalable solution for storing pet health records and user

11

data. The AI-powered functionalities, including the chatbot and symptom

diagnosis tool, will be integrated using an AI models to enhance user

experience by providing intelligent and data-driven assistance tailored to pet

care needs.

1.7.2 Development and Research Scope

The proposed application will incorporate AI-based virtual assistance and pet

health management functionalities. The scope of research includes the

evaluation of AI-powered chatbots for pet care, symptom diagnosis accuracy,

and the effectiveness of cloud-based storage for managing pet health records.

The development scope will involve implementing core features such as user

authentication, pet profile management, symptom diagnosis, AI-driven chatbot

interactions, and reminder notifications.

1.7.3 Target Users

The primary target users of the PawHub application are pet owners who are

looking for accessible, AI-powered virtual assistance to support them in

managing the health and well-being of their pets. These users may include

first-time pet owners who need guidance on general care, feeding, training,

and early detection of symptoms, as well as experienced owners who want to

streamline their pet management routines using digital tools. In addition to the

Pet Owner, the Admin is a secondary user responsible for managing feedback

submitted by users and curating educational content. All admin tasks are

performed via the Supabase web dashboard and are not part of the PawHub

mobile application.

 The application is also beneficial for veterinarians, pet caregivers, and

pet care enthusiasts. Veterinarians may find value in features such as

organized health records and symptom logs provided by the app, which can

improve diagnosis accuracy and treatment plans during in-person consultations.

Pet caregivers, such as pet sitters or boarding staff, can also use the app to

better understand the pet’s needs, care routines, and medical history while the

owner is away. Meanwhile, pet care enthusiasts and community members who

actively engage in learning about pet health and behaviour can benefit from

the educational resources and AI chatbot for general pet-related inquiries.

12

1.7.4 Application Features

The proposed application will include several core features to simplify and

enhance pet care management:

i) AI-powered chatbot

The AI Chatbot in the PawHub app acts as a virtual assistant, helping

pet owners by answering questions related to pet nutrition, training,

behaviour, and common health concerns. Powered by natural

language processing (NLP) APIs, the chatbot provides structured and

relevant responses based on user queries, pet informations and health

records, offering quick and accessible support without the need to

search multiple sources. To improve the accuracy and adaptability of

responses, the chatbot integrates three different AI models, allowing

users to switch between them based on their preference for response

style or depth. This multi-model approach ensures more flexible and

tailored assistance across a variety of pet care topics and a fallback

logic is implemented to avoid system downtime. While the chatbot

does not replace professional veterinary care, it helps bridge the gap

by offering valuable insights and general guidance to pet owners at

any time.

ii) Symptom diagnosis tool

The Symptom Diagnosis tool in the PawHub app is designed to assist

pet owners in assessing the urgency of their pet’s health condition

based on user-input symptoms. By utilizing an AI-powered model

and a AI fallback logic to avoid system downtime, the tool analyzes

the described symptoms and returns a health status categorized by a

three-colour indicator system, green for minor issues, yellow for

moderate concern, and red for serious conditions that may require

immediate veterinary attention. This simple visual system helps users

quickly understand the potential severity of their pet’s symptoms. A

clear disclaimer is displayed at the top, reminding users that the tool

is for informational purposes only and does not serve as a

replacement for professional veterinary diagnosis or treatment. The

13

Symptom Diagnosis tool aims to empower pet owners to make more

informed decisions while emphasizing the importance of seeking

professional veterinary care when needed.

iii) Pet profile management

The Pet Profile Management system allows users to create and

manage individual profiles for each of their pets. These profiles will

include vital details such as the pet’s name, breed, age, gender,

weight, and medical history. The feature is designed to give pet

owners a personalized dashboard where they can quickly view and

update pet-specific information. This makes it easier to keep track of

important dates such as vet appointments, vaccination due dates, and

dietary preferences. For users with multiple pets, the feature offers a

convenient way to switch between profiles, ensuring each pet’s needs

are addressed efficiently.

iv) Pet health record management

This feature enables users to digitally store, view, and update their

pet’s medical records in an organized and secure format. It includes

essential information such as vaccination history, scheduled check-

ups with email reminders, prior illnesses, diagnoses, prescribed

medications and allergy notes. By centralizing this data within the

app, pet owners can easily track their pet’s health status and share

comprehensive reports with veterinarians during appointments. This

function reduces the risk of missing important medical details and

helps ensure continuity in healthcare, particularly for pets with

chronic conditions or special medical needs.

v) Educational resources

The Educational Resources section acts as a learning hub, offering

curated content such as expert-written articles, how-to guides, and

infographics on pet nutrition, grooming, exercise, training, and

common illnesses. The content is organized into clear categories for

easy navigation with a search function. Web scraping is used to

14

automate the gathering of educational materials from trusted pet care

websites. By using libraries like Axios and Cheerio to fetch and parse

web data, PawHub intelligently collects and updates its resources

without manual input. This automation ensures that users, especially

first-time pet owners, have continuous access to reliable and

categorized pet care information within the app.

vi) User profile management

This feature allows users to create secure and personalized accounts

by registering with their name, email address, password and phone

number. Once logged in, users can manage their profile settings and

update information. The system ensures secure authentication and

session handling to protect user data, while also offering a

personalized interface that enhances the overall user experience. User

profile management also facilitates the storage of app activity and

preferences, making it easier for users to resume tasks and interact

with the application seamlessly.

vii) User feedback system

The User Feedback System provides a structured platform within the

app where users can submit feedback, report bugs, and suggest

improvements. This feature is crucial for ongoing development and

refinement of the application, as it gives direct insights into user

experiences and expectations. The feedback system may include

rating options, comment sections, and a quick survey form to collect

both qualitative and quantitative data. By engaging users in the

development cycle, this feature supports continuous improvement and

ensures that the app evolves based on actual user needs and

challenges.

15

1.7.5 Limitations

While this application aims to provide an advanced and intelligent platform for

pet care management, several limitations must be acknowledged:

i) Accuracy Constraints of AI-Powered Features

The chatbot and symptom diagnosis tool will rely on pre-trained AI

models API that generate responses based on existing datasets. While

efforts will be made to improve precision using prompts, the AI may

not always provide entirely accurate diagnoses or recommendations,

especially in rare or complex medical cases. The system will be

trained on general pet care patterns, meaning that unique scenarios or

breed-specific conditions may not be well-addressed. Additional

validation from professional veterinarians will be necessary for cases

requiring expert medical judgment.

ii) Not a Replacement for Veterinary Care

The AI-powered tools will provide guidance and preliminary

assessments but cannot substitute the expertise of a licensed

veterinarian. The application will serve as a supplementary tool to

help pet owners understand potential health concerns and manage

routine pet care, but it will not provide official medical diagnoses or

treatment plans. Users will be strongly encouraged to consult a

veterinarian for serious or urgent medical conditions rather than

relying solely on AI-generated suggestions.

iii) Internet Dependency

Since many of the AI-driven features and cloud-based services will

rely on API calls for data processing and retrieval, a stable internet

connection will be required for optimal performance. Users in areas

with poor or limited connectivity may experience delays in chatbot

responses, incomplete symptom analysis, or restricted access to stored

health records. While certain offline functionalities may be

implemented in the future, real-time AI interactions and cloud-stored

data will still require an active internet connection.

16

iv) Potential User Over-Reliance on AI

The convenience of AI-powered recommendations may lead some pet

owners to rely too heavily on automated guidance instead of seeking

human expertise. While the chatbot and symptom analysis tool will

aim to provide valuable insights, they should be used as advisory

tools rather than definitive sources of medical advice. To mitigate this

risk, the application will emphasize the importance of professional

veterinary consultation and promote responsible usage among its

users.

 Despite these limitations, the proposed AI-driven pet care application

is designed to be a valuable and user-friendly tool that enhances pet care

management. By integrating AI capabilities with essential health management

features, the app will provide a structured and informed approach to pet care.

While technology cannot replace the expertise of veterinarians, this application

aspires to bridge the gap between traditional pet care and modern AI-driven

assistance, making pet ownership more convenient, informed, and accessible.

17

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The improvement of artificial intelligence (AI) and mobile technology has

significantly transformed the pet care industry, enabling pet owners to monitor

their pet’s health more efficiently. AI-powered solutions such as chatbots,

symptom diagnosis tools, and veterinary decision-support systems have

emerged to assist pet owners in making informed healthcare decisions.

Through immediate access to health-related insights, early diagnosis, and real-

time pet health monitoring, these advances aid in bridging the gap between pet

owners and veterinary specialists.

 However, despite the availability of various AI-driven pet care

applications, many solutions face limitations, such as a lack of comprehensive

health monitoring, reliance on internet connectivity, and limited AI accuracy

in symptom diagnosis. Some applications focus on image-based disease

detection, while others provide general pet care advice without offering

personalized health insights. This literature review explores existing AI-based

pet care applications, their benefits, and their limitations to highlight the need

for a more integrated and accessible solution.

 The PawHub application aims to address these gaps by offering an

AI-powered chatbot and API-based symptom diagnosis system that provides

real-time, reliable health insights. Unlike other pet care apps, PawHub

integrates multiple AI-driven features, symptom analysis, and offline

functionality, ensuring a user-friendly and accessible pet healthcare assistant.

2.2 Literature Review

This section will examine key research and existing solutions relevant to

PawHub’s AI‑driven pet care features.

2.2.1 Artificial Intelligence (AI) Chatbots in Pet Healthcare

The use of AI-powered chatbots in pet healthcare has gained significant

attraction, offering pet owners immediate access to health-related information

18

and preliminary diagnoses. Jokar et al. (2024) emphasize that AI chatbots,

such as ChatGPT, provide 24/7 availability and convenience, allowing pet

owners to make informed decisions without requiring immediate veterinary

consultations. Since these virtual assistants employ Natural Language

Processing (NLP) to understand pet health issues and deliver suitable solutions,

they are helpful tools for managing pet care.

 The power of AI chatbots to offer immediate access to medical

information is one of its main advantages. Chatbots assist pet owners by

analysing symptoms, offering first-aid suggestions in urgent situations, and

eliminating consultation fees for minor health concerns. Additionally, these

AI-driven assistants serve as educational resources, providing insights into pet

nutrition, behaviour, and preventive care strategies.

 Despite these advantages, AI-driven pet healthcare systems also

present several challenges. AI chatbots lack the ability to perform physical

examinations, increasing the risk of misdiagnosis. Furthermore, pet owners

may over-rely on AI recommendations, potentially delaying professional

veterinary care, which could worsen medical conditions. AI-generated

responses may also include inaccurate or generalized advice, particularly for

complex medical cases requiring professional expertise.

 To mitigate these risks, Jokar et al. (2024) propose integrating AI

chatbots as complementary tools alongside veterinarians, ensuring that

chatbots handle preliminary diagnosis and routine inquiries while complex

cases remain under veterinary supervision. They also recommend the

establishment of regulations and guidelines to prevent AI chatbots from acting

as independent substitutes for professional veterinary care.

 For my PawHub application, AI chatbots will play a crucial role in

enhancing pet healthcare accessibility by offering instant, AI-driven insights

while ensuring that pet owners receive verified and professional veterinary

support when needed. By implementing an AI-powered chatbot that integrates

accurate symptom analysis, first-aid recommendations, and direct veterinarian

referrals, PawHub aims to address the limitations of existing AI-based pet care

solutions, ensuring a more reliable and comprehensive virtual assistant for pet

owners.

19

2.2.2 Artificial Intelligence (AI) in Veterinary Medicine

The use of artificial intelligence (AI) in animal health care has significantly

improved diagnostic accuracy, treatment planning, and medical record

management. AI-based radiographic analysis is one of the key advancements,

allowing automated detection of abnormalities such as pulmonary nodules,

cardiomegaly, and skeletal disorders with high precision (Appleby & Basran,

2022). AI-powered imaging tools assist veterinarians in identifying diseases

more efficiently, reducing the time required for diagnosis while improving

overall patient care.

 Beyond imaging, AI applications in veterinary medicine are

expanding into predictive analytics and decision support systems, which can

help veterinarians analyse historical health data and anticipate potential

medical conditions. AI-driven systems are also enhancing automated medical

record management, enabling structured data extraction from unstructured

clinical notes to streamline patient histories and improve continuity of care.

 However, AI adoption in veterinary medicine presents challenges,

particularly in data quality and model reliability. AI models require large

datasets of accurately labeled veterinary records to ensure generalizability and

precision. Variability in diagnostic interpretations and inconsistencies in data

collection across different veterinary clinics may lead to potential biases in AI-

driven diagnoses. Therefore, veterinary professionals must be actively

involved in training AI models, ensuring that these technologies align with

clinical best practices and ethical considerations (Appleby & Basran, 2022).

 For PawHub, the integration of AI-driven health monitoring and

symptom analysis can significantly enhance pet care by providing real-time

insights to pet owners. AI-driven diagnostic technologies can help discover

diseases early by providing initial health evaluations prior to a professional

veterinary consultation. By leveraging AI in veterinary medicine, PawHub

aims to bridge the gap between pet owners and veterinarians, ensuring timely

and informed healthcare decisions for pets.

20

2.2.3 Machine Learning for Pet Health Monitoring

The use of artificial intelligence (AI) and machine learning (ML) in veterinary

medicine has greatly improved the accuracy of diagnosing and tracking the

health of pets. Specifically, advanced machine learning techniques, including

CNNs, have shown remarkable success in detecting skin conditions in pets and

identifying other potential health problems. Studies have shown that CNN-

based models can achieve 92% accuracy in classifying common pet conditions

such as dermatitis, eczema, and fungal infections (Mehra, 2025). These

findings suggest that AI-driven image classification is a valuable tool for early

disease detection and intervention.

Traditional veterinary diagnosis relies heavily on human expertise,

which can lead to inconsistencies in assessment and delayed detection of

health issues. Through the use of huge amounts of annotated photos, the

development of AI-powered dermatology tools seeks to standardize diagnoses,

increase diagnostic reliability, and lessen the workload for veterinarians.

Mehra (2025) emphasizes that deep learning models, when trained on

extensive veterinary databases, can effectively differentiate between various

skin conditions, allowing for faster and more accurate diagnoses with minimal

human intervention.

However, despite these advancements, AI-driven pet health monitoring

systems face multiple challenges. The accuracy of CNN-based models

depends on the quality of training images, which may vary based on factors

such as lighting conditions, image resolution, and severity of the skin

condition. Furthermore, AI models may struggle with new or rare pet illnesses,

leading to misclassifications that require human verification. Another major

concern is user adoption, as many pet owners still prefer direct veterinary

consultations, making AI-based diagnostics a supplementary tool rather than a

standalone solution. Additionally, cloud-based AI models often require

consistent internet connectivity, limiting their usability in offline environments

or remote areas where veterinary services are already scarce.

While PawHub does not rely on image-based CNN models, the

concept of leveraging machine learning API for accurate symptom analysis

aligns with the app’s goal of offering reliable, real-time health insights. By

focusing on API-based symptom diagnosis rather than image classification,

21

PawHub aims to provide a more accessible solution that does not depend on

high-quality images. This ensures that pet owners can benefit from AI-assisted

diagnostics even in low-resource environments, making PawHub a more

practical tool for everyday pet healthcare management.

2.2.4 Comparison of Literature Review Research Papers with my

PawHub Application

Table 2.1: Comparison of Literature Review Research Papers

Study Key Features Limitations Relevance to

PawHub

AI

Chatbots

in Pet

Healthcare

-24/7 virtual

assistance using

NLP

-Provides general

health info

-Cost-effective

-Cannot conduct

physical exams

-Risk of

misdiagnosis

-May delay

professional help

-Integrates chatbot

for instant support

-Offers symptom-

based suggestions

-Encourages vet

consultation

AI in

Veterinary

Medicine

-AI in radiography

(e.g., X-ray

analysis)

-Medical record

automation

-Predictive

analytics

-Requires large,

clean datasets

-Clinical bias

possible

-Not accessible to

pet owners directly

-Bridges gap with

vets through AI

insights

-Provides real-time

monitoring data to

users

Machine

Learning

for Pet

Health

Monitoring

-CNNs detect skin

conditions

-High diagnosis

accuracy

-Deep learning

image

classification

-Accuracy depends

on image quality

-May miss rare

conditions

-Internet

dependency in

cloud models

-Focuses on

symptom input

over image data

-Reduces internet

dependency

-Offers generalized

suggestions

22

A comparative analysis of AI-based pet healthcare solutions reveals both

strengths and weaknesses across various approaches. AI chatbots offer 24/7

virtual assistance for health advice and symptom assessments through Natural

Language Processing (NLP), but their inability to conduct physical exams can

lead to misdiagnoses and over-reliance on AI-generated recommendations,

delaying veterinary care. PawHub addresses this by integrating an AI chatbot

that provides real-time insights while guiding users to professional veterinary

services when needed.

 In veterinary medicine, AI technologies like radiographic image

analysis and predictive analytics improve diagnostic accuracy, yet their

effectiveness relies on high-quality data and remains inaccessible to pet

owners. PawHub bridges this gap by offering AI-driven text input symptom

analysis, enabling pet owners to gain preliminary health insights before

seeking professional consultation. While machine learning models such as

convolutional neural networks (CNNs) are effective in detecting skin diseases

and health conditions through image-based classification, they are limited by

factors like image quality, internet dependency, and challenges in diagnosing

rare conditions. In contrast, PawHub does not rely on image-based analysis but

uses an AI-powered API for symptom-based diagnosis, providing broader

usability, including offline functionality.

2.3 Analysis of Existing Pet Care Applications

The increasing use of mobile technology in pet care has led to the

development of numerous applications that help pet owners in track the health

of their pets. The applications range from fundamental pet management tools

to advanced AI-driven health monitoring systems. The integration of artificial

intelligence has significantly enhanced the ability of these applications to

detect symptoms, provide virtual veterinary consultations, and offer

personalized care recommendations. However, despite the availability of

several pet care applications, many existing solutions have notable limitations.

 Some applications lack comprehensive AI-driven support, while

others do not provide an all-in-one solution for pet health monitoring,

symptom diagnosis, and veterinary assistance. Additionally, the reliance on

internet connectivity in most AI-powered pet care apps limits their

23

accessibility in offline environments, which can be a significant drawback for

pet owners in areas with poor connectivity.

 This literature review examines four widely used pet care applications

analysing their features, strengths, and limitations. By assessing these existing

solutions, this review aims to identify gaps in the market and establish the

need for a more integrated, AI-driven pet care application. The proposed

PawHub application seeks to address these gaps by offering a holistic and

intelligent pet care assistant that combines AI-driven diagnostics, real-time

health tracking, multi-user accessibility, and offline functionality.

2.3.1 TTcare Application

Figure 2.1: Main Features of TTcare Application

TTcare, developed by AI FOR PET, is an AI-powered pet health monitoring

application that focuses on early disease detection through image recognition

technology. By allowing pet owners to upload photos of their pets, the

application uses artificial intelligence to analyse visual indicators of potential

health issues, particularly in the eyes, skin, joints, teeth and ears. As shown in

Figure 2.1, One of its advantages is, it uses of AI in detecting abnormalities,

enabling early intervention before symptoms worsen and once a user selects

24

and option, it provides user with clear guidelines to get accurate results. (PET,

2023).

Figure 2.2: Basic Features in TTcare Application

 Other than that, it also provides user with some basic functions like

user profile management, FAQ and contact us page that will help the user in

identifying how the application works as shown in Figure 2.2.

Figure 2.3: TTcare Application Analysis Error

 Despite these strengths, TTcare has major limitations. Its diagnostic

approach relies solely on image-based analysis, meaning it cannot assess

internal health conditions or detect symptoms that do not present visible signs.

Blur images or slightly discoloured images are also one of the setbacks as

25

shown in Figure 2.3, the image that provided to the system was captured using

flash and is not blur but the system couldn’t analyse the image for diseases

detection. Furthermore, the application solely relies on image recognition

technology feature and no assistance, leaving users with limited guidance

beyond scan results. Another significant drawback is its dependency on

internet connectivity for AI-based analysis, making it inaccessible in offline

environments.

2.3.2 PetVet AI Application

Figure 2.4: PetVet AI Main AI Chatbot Feature

PetVet AI is a pet health management application that offers AI-driven virtual

veterinary assistance. Unlike TTcare, which focuses on image-based detection,

PetVet AI allows users to have real time conversations for personalised pet

care enquiries. As shown in Figure 2.4, the application includes an AI chatbot

that delivers real-time responses to pet health-related inquiries, assisting pet

owners in making well-informed decisions about the welfare of their animals.

This application is trained with vast veterinary medical records and expert

insights to assist users on their pet care enquiries (LLC, 2023).

26

Figure 2.5: PetVet AI simple FAQ

Additionally, the app provides a simple FAQ as shown ins Figure 2.5

that gives the users with a basic knowledge about the application and how to

use it. While PetVet AI Pet offers real-time AI support, its recommendations

remain advisory rather than diagnostic, meaning they should not replace

professional veterinary consultations. Another limitation is its reliance on

internet connectivity, restricting accessibility in areas with poor network

coverage. The application also lacks advanced health management tool,

making it difficult for pet owners to track long-term changes in their pet’s

health.

2.3.3 PetVitality Application

Figure 2.6: PetVitality Home Page

27

PetVitality is a wellness-focused pet care application that integrates health

monitoring with activity tracking. It provides pet owners with tools to track

their pet’s weight, temperature, and vital signs, helping them detect potential

health concerns early. The application also features activity tracking

capabilities that users can input manually, allowing owners to monitor

movement and behaviour patterns. The app also provides appointment

reminders for veterinary visits and medication schedules, ensuring that pet

owners stay on top of their pet’s healthcare routines. Other than that, it also

provides users with articles for general pet care training guides, personal

gallery and document storage. (Lyssa AS, 2024).

Figure 2.7: PetVitality AI tools features

 Firstly, this app integrates several AI tools, including an ingredient

scanner that analyses pet food labels for harmful or beneficial components,

and a breed-and-age-specific content generator for personalized care tips.

Another AI feature offers automated medication insights and emergency mini

guides. Other than that, it also provides an AI-assisted pattern recognition tool

that analyses the data logged by users to detect potential early signs of health

issues. For example, if consistent changes are noted in weight, temperature, or

feces tracking, the app may alert the user to seek veterinary advice.

28

Figure 2.8: PetVitality Specialised health trackers feature

PetVitality also includes specialized health trackers such as a visual

poop score tracker for digestive health, a heat cycle predictor for reproductive

planning, and a manual heart and lung respiratory rate monitor for pets with

heart/lungs conditions, vomiting tracker, manual seizure tracker and allergies

tracker. These features allow users to closely observe specific aspects of their

pet’s physical health. The seizure tool is designed for pets with epilepsy, this

specialized tool tracks the regularity and frequency of seizures and uses

predictive analytics to estimate when the next episode might occur. This helps

owners be more prepared and proactive in managing their pet’s condition.

Figure 2.9: PetVitality Detailed Health Tracking Feature

29

 PetVitality also includes a detailed health tracking feature as shown in

Figure 2.9 that allows users to log and monitor vital health information such as

medical conditions, vaccine records, dental care etc. This component acts as a

centralized health log, helping users detect unusual trends or changes in their

pet’s condition over time.

Figure 2.10: PetVitality Routine Scheduler and Reminders Feature

 As shown in Figure 2.10, the routine scheduler and reminders is

another essential feature that enables users to schedule and receive reminders

for essential pet care tasks such as grooming, training, medication

administration, and routine vet check-ups. Users can set recurring alerts and

view their pet’s care calendar.

Figure 2.11: PetVitality Document Storage and Personal Gallery Feature

30

 Besides, the document storage feature allows pet owners to scan and

upload important medical records, vaccination cards, and prescription

documents directly into the app. These documents are securely saved and can

be organized in folders for easy access and sharing. Other than that, to create a

more personal experience, the app also allows users to store photos of their

pets in a personal gallery.

 Despite its comprehensive approach to pet wellness, PetVitality has

limitations. Although the app tracks activity levels, it does not provide

predictive health alerts based on behavioural changes. Another drawback is the

absence of an AI chatbot, which limits the app’s ability to provide instant pet

care guidance.

2.3.4 11Pets Application

Figure 2.12: 11Pets General Functions

11Pets is a pet care management application designed for both individual pet

owners and professional pet caretakers. It serves as a centralized platform for

storing medical records, tracking grooming schedules, and managing pet

nutrition. The application allows users to maintain a digital record of

vaccinations, medications, allergies, and lab results, ensuring that all pet health

data is easily accessible.

 Additionally, it provides features for managing feeding schedules and

tracking grooming routines, making it a valuable tool for maintaining a

31

structured pet care plan. One of the unique aspects of 11Pets is its support for

pet shelters and rescue organizations, allowing them to manage adoption

profiles and track the medical history of rescued animals (Ltd, 2015).

Figure 2.13: 11Pets Health Tracking Features

 One of the standouts features of 11Pets is its versatility, it offers two

distinct versions, Pet Care for personal use and Business for professional pet

care providers, including shelters and boarding services. These functionalities

make it an ideal tool for managing both single-pet households and large-scale

animal welfare operations. Moreover, the platform enables easy sharing of

medical records with veterinarians and allows offline data access, ensuring

users can manage pet care even in low-connectivity environments.

 It also includes features to manage grooming routines and hygiene

care. Pet owners can schedule and track activities such as baths, brushing, nail

trimming, and other grooming tasks, helping maintain their pet’s cleanliness

and well-being. It also allows them to track their pets weight and behaviour

and can view their analytics in a graph format.

 Although 11Pets is a robust pet management tool, it lacks AI-driven

features. Without AI-powered insights, pet owners must rely on manual

record-keeping rather than automated health assessments. While 11Pets offers

offline access, making it more convenient in low-connectivity environments,

its functionality is primarily limited to record management rather than

proactive pet health monitoring.

32

2.3.5 Comparison of Existing Pet Care Applications with PawHub App

Features

Table 2.2: Comparison between existing pet care applications and PawHub

App Features

Features/App TTCare PetVet AI PetVitality 11Pets PawHub

AI Chatbot No Yes No No Yes

AI-Symptom

Diagnosis

Yes

(image)

No No No Yes

Pet Profile

Management

Yes No Yes Yes Yes

Pet Health

Record

Management

No No Yes Yes Yes

User Profile

Management

No No Yes Yes Yes

Educational

Resources

Yes

(FAQ)

Yes (FAQ) Yes No Yes

Feedback Yes No Yes No Yes

The comparative analysis of existing pet care applications TTcare, PetVet AI

Pet, PetVitality, and 11Pets, reveals significant gaps that PawHub aims to

address. While TTcare excels in AI-powered visual diagnostics, it is limited to

image-based analysis and requires consistent internet connectivity. PetVet AI

Pet introduces a helpful AI chatbot yet lacks core diagnostic tools or health

record management. PetVitality offers comprehensive wellness tracking and

personalized care features, but it does not include AI-based diagnostics or

chatbot interaction for real-time assistance. Meanwhile, 11Pets focuses on

extensive pet health and grooming record-keeping with offline access but does

not implement AI capabilities.

 In contrast, PawHub combines the strengths of all these apps,

integrating AI-driven symptom diagnosis through text input, AI chatbot

support, pet health records management, user management, pet care

33

educational resources, and feedback system. This holistic approach positions

PawHub as a more intelligent and unified solution, offering pet owners a

versatile and accessible digital assistant for effective pet care.

2.4 Software Development Methodologies

To guide PawHub’s development, three classic Software Development Life

Cycle (SDLC) approaches were reviewed, Waterfall, Agile, and Rapid

Application Development (RAD). Each offers different trade‑offs between

predictability, flexibility, and speed, which are critical when integrating

evolving AI features into a mobile pet‑care app.

2.4.1 Waterfall Methodology

Figure 2.14: Waterfall Methodology (Motion, 2023)

Figure 2.15 illustrates the Waterfall model, a classic, step-by-step approach to

software development that divides the project into separate, sequential stages.

Despite the linear structure, there is usually some overlap or interconnection

between the different phases as the project progresses. According to this

method, every phase must be thoroughly completed and formally approved

before advancing to the next one, thereby resulting in a detailed, sequential

process that relies heavily on rigorous planning. Waterfall methodology has

been widely adopted in environments where project requirements are stable

and clearly defined from the outset. Its structured nature enables project teams

to produce detailed documentation and set rigorous milestones, which can

34

serve as a roadmap for managing time, budgets, and resources effectively.

According to Atlassian (2024), the Waterfall model unfolds as a series of well-

defined steps, each of which is very important in following the software

development process.

i) Requirements Phase

This phase is the foundation of the entire project. It involves

gathering all the necessary conditions, features, and specifications

required for the system. Stakeholders and end-users are consulted to

obtain a comprehensive understanding of what the software must

achieve. Every requirement is documented rigorously, usually in a

Software Requirement Specification (SRS) document, which serves

as the baseline for the entire project. This phase is crucial because any

oversight or ambiguity here could propagate errors throughout later

stages.

ii) Design Phase

Once the requirements are clearly documented, the Design phase

begins. Here, the focus shifts to defining the technical architecture

and system design based on the gathered requirements. This phase

involves outlining the software architecture, designing the user

interface, creating database schemas, and determining the necessary

system components. Detailed design documents and Figures are

produced to provide a clear blueprint that developers will follow

during implementation. A well-executed design process contributes to

the system’s scalability, maintainability, and adherence to the

established criteria.

iii) Implementation Phase

The actual coding happens during the Implementation phase.

Developers use the selected programming languages and

development tools to convert the design specifications into source

code. This phase is typically carried out in multiple stages or modules,

corresponding to the various components described in the design

35

documents. The focus during this phase is on writing efficient, error-

free code that faithfully represents the design. While this stage brings

the project closer to a working application, it heavily relies on the

accuracy of the previous phases.

iv) Verification (Testing) Phase

Following implementation, the Verification phase is devoted to

quality assurance. To make sure it satisfies the SRS standards, the

system is put through a thorough testing process. This includes tests

like acceptance testing, system testing, integration testing, and unit

testing which are used to identify and address defects. Verification

ensures that the software operates as intended and that issues from the

earlier stages are addressed. However, deferring testing until after the

bulk of the development is complete can lead to late discovery of

bugs, which might be expensive and time-consuming to correct.

v) Maintenance Phase

The maintenance phase starts once the program has been deployed

and put to use. To maintain the software’s effectiveness over time,

this phase contains regular updates, bug repairs, performance

increases, and improvements. Maintenance can also include adapting

the software to new environments or changing user requirements.

Although it is not part of the initial development, effective

maintenance is critical for ensuring the long-term reliability and

relevance of the application.

2.4.1.1 Advantages of Waterfall Methodology

The clear, linear structure of the Waterfall model is one of its main advantages,

it makes the development process quite predictable. With each phase explicitly

defined, project managers and stakeholders can easily track progress against

predetermined milestones, ensuring that the project remains on schedule and

within budget. This high level of documentation not only facilitates

communication among team members but also provides a comprehensive

reference for future maintenance, helping to reduce long-term risks. Moreover,

36

because each phase has a distinct deliverable, it is relatively straightforward to

identify where issues occur, at least from a management standpoint. The

Waterfall model’s methodical, sequential flow is most useful for projects when

the goal is to provide a well-defined product with few features and

requirements are not anticipated to alter.

2.4.1.2 Disadvantages of Waterfall Methodology

Despite its advantages, the rigid structure of the Waterfall model has

significant drawbacks, especially in the context of modern, user-centric

applications. One of the core disadvantages is its inflexibility, once a phase is

complete, it becomes extremely challenging to revisit or modify previous work.

This inherent rigidity means that any discovered mistakes or changed

requirements later in the process can result in extensive rework and delays.

The model also defers testing until after the implementation phase, which

increases the risk of late defect detection, a scenario that can escalate costs and

extend delivery timelines. Such a late discovery of problems limits the ability

to respond quickly to shifting market demands or to integrate emergent user

feedback, both of which are critical for the success of applications with

complex, evolving functionalities.

2.4.2 Agile Methodology

Figure 2.15: Agile Methodology (Agile software development:

everything you need to know, 2024)

37

Agile software development is an incremental, iterative process that prioritizes

adaptability, teamwork, and ongoing development. Agile divides the project

into manageable, brief cycles called sprints, as opposed to the Waterfall

model’s linear progression. A subset of features are planned, designed,

implemented, tested, and reviewed throughout each sprint, which typically

lasts one to four weeks. By encouraging continuous interaction with

stakeholder feedback, this iterative process makes sure that requirements

modifications or new information may be promptly included. Originally

popularized by the Agile Manifesto (Drumond, 2024). Agile has become a

leading approach for projects where requirements evolve, and rapid adaptation

is crucial.

i) Sprint Planning and Requirements Gathering

Every Agile sprint starts with a planning phase in which the

developer determines the most important tasks and user stories based

on stakeholder input and existing priorities. This phase involves

defining the sprint backlog, where each user story is refined into

actionable tasks with clear acceptance criteria. Although Agile

promotes a flexible approach, meticulous planning at the beginning of

each sprint ensures that the vision for the product remains aligned

with user expectations. This ongoing requirement refinement is

critical for an evolving application like PawHub, where the

integration of AI features and dynamic pet health functionalities

demands continuous user input.

ii) Design and Implementation

During the sprint, the design and implementation process occurs

concurrently in an iterative cycle. In this phase, the chosen features

are designed in detail and then translated into code using suitable

programming languages and development tools. Agile encourages

frequent communication, often through daily stand-up meetings or

personal reviews to quickly identify issues and adapt designs as

necessary. This phase benefits from modern techniques such as pair

programming, code reviews, and frequent prototyping, which

38

collectively foster rapid development while maintaining high quality.

For PawHub, this approach allows for the quick incorporation of user

feedback into features like AI chat support and symptom diagnosis,

ensuring that the application evolves to meet real-world user needs.

iii) Testing and Review

At the end of each sprint, Agile emphasizes rigorous testing and

review of the newly developed features. Unit, integration, and user

acceptability tests are regularly conducted as part of continuous

integration, a fundamental approach that aims to identify flaws early.

Post-sprint reviews or demos enable the developer to showcase

working functionality and gather valuable feedback from stakeholders

or early users. This constant testing cycle is crucial for PawHub, as it

ensures that complex functionalities especially AI components are

validated continuously, reducing the risk of late-stage issues and

contributing to overall product robustness.

iv) Sprint Retrospective (Continuous Improvement)

Following the testing and review phase, the sprint concludes with a

retrospective session where the developer reflects on the process. This

self-assessment involves analysing what went well, identifying

challenges encountered, and determining areas for improvement in

subsequent sprints. By continuously refining development practices,

Agile ensures that the process becomes progressively more efficient

and aligned with project goals. For PawHub, this step is vital in

ensuring that the evolving features, particularly those involving AI,

are continually enhanced based on both technical insights and user

feedback, promoting long-term success and high-quality performance.

2.4.2.1 Advantages of Agile Methodology

Agile’s flexible and iterative structure makes it possible to quickly adjust to

changing requirements, which is crucial for projects like PawHub that have

changing requirements. Its continuous testing and integration practices

facilitate early defect detection and prompt resolution, reducing risk and

39

enhancing product quality. In addition, Agile’s emphasis on regular feedback

ensures that user requirements remain central to the development process,

leading to higher user satisfaction and product relevance. Although Agile

typically results in less formal documentation, its focus on dynamic

improvement and collaboration outweighs this drawback in projects where

innovation and responsiveness are critical.

2.4.2.2 Disadvantages of Agile Methodology

Despite its many strengths, Agile can be resource-intensive since it demands

constant collaboration and frequent adjustments. If modifications to this model

are not properly managed, scope creep could occur which will affect the

budgets and schedules. Agile’s iterative process may also lead to inconsistent

documentation quality when compared to more conventional methods like

Waterfall, which could cause problems for maintenance or handovers in the

future. For a solo developer or a small project, maintaining discipline and

consistent progress across multiple short cycles can be challenging without

formal team structures. However, when managed effectively, these challenges

are mitigated by Agile’s substantial benefits.

2.4.3 Rapid Application Development (RAD) Methodology

Figure 2.16: RAD Methodology (Rapid Application Development (RAD),

no date)

40

The iterative process of Rapid Application Development (RAD) places a

strong emphasis on quick user feedback and rapid prototyping. Rather than

relying on comprehensive upfront planning, RAD emphasizes the creation of a

functional prototype early on, which is then improved through several

iterations. RAD facilitates parallel development in phases that allow

developers to quickly modify and adapt the application based on immediate

user responses. This methodology is particularly popular in scenarios where

speed to market is critical, and requirements are expected to evolve rapidly

(Kissflow, 2022).

i) Requirements Planning

In RAD, the initial planning phase is focused on outlining high-level

requirements rather than detailed specifications. Stakeholders provide

input on the desired features, which are then translated into user

stories. This phase is less exhaustive than in traditional models,

allowing developers to begin prototyping sooner.

ii) User Design Phase

During the user design phase, developers build preliminary models

such as wireframes, prototypes, and mock-ups. These prototypes are

shown to stakeholders and potential users for feedback. This phase is

crucial for ensuring that the design meets user needs, although the

rapid cycle may result in less formal documentation. For PawHub,

iterative prototyping is valuable for testing AI functionalities like

chatbots and symptom diagnosis interfaces, enabling early

identification of usability issues.

iii) Rapid Construction

The rapid construction phase is where developers build the actual

system components quickly. With a focus on speed, the emphasis is

on delivering working software as soon as possible. Despite the

benefit of early delivery, the focus on rapid development can

sometimes compromise thorough testing, leading to quality issues if

not managed carefully. For PawHub, rapid construction can validate

41

core functionalities quickly; however, the complexity of integrating

secure health management and AI algorithms requires careful balance

to avoid sacrificing reliability.

iv) Cutover (Implementation) Phase

The final phase in RAD involves the actual deployment of the

application. It includes final testing, user training, and product

documentation. Although RAD aims for a swift transition to

production, a lack of detailed documentation and rushed testing may

lead to unforeseen maintenance challenges post-deployment. For

PawHub, while RAD allows for rapid prototyping and early market

entry, the potential quality risks and scalability issues are significant

concerns given the app’s need for long-term stability and high

accuracy in AI outputs.

2.4.3.1 Advantages of RAD Methodology

RAD offers notably fast development cycles, facilitating rapid prototyping and

early user feedback. This accelerates time-to-market and enables developers to

quickly iterate and improve the product. However, the methodology may

sometimes result in reduced documentation and insufficient testing, which can

compromise long-term maintainability and product quality. The need for a

highly skilled and cohesive developer to manage rapid iterations is another

drawback that may increase risk for complex applications like PawHub.

2.4.3.2 Disadvantages of RAD Methodology

The rapid pace and iterative cycles in RAD can lead to challenges such as

scope creep and quality inconsistencies. With a strong focus on speed, some

vital aspects especially extensive testing and thorough documentation may be

overlooked. This is particularly risky for applications requiring robust AI

integration and sensitive data management, as even minor oversights can

impact overall reliability and user trust.

42

2.4.4 Comparison of Software Development Methodologies

Table 2.3: Comparison of Software Development Methodologies

Methodology Advantages Disadvantages

Waterfall -Clear structure

-Strong documentation

-Predictable timeline

-Inflexible to changes

-Late bug detection

-Hard to adapt user feedback

RAD -Fast prototyping

-Quick user feedback

-User-focused updates

-Weak documentation/testing

-Risk of scope creep

-Needs skilled management

Agile -Flexible and adaptive

-Early bug detection

-User-driven development

-Resource-demanding

-Scope creep if unmanaged

-Lighter documentation

Agile methodology is particularly well-suited for developing PawHub because

it enables continuous, iterative refinement of its complex, AI-driven features.

Unlike Waterfall, Agile facilitates rapid integration of user feedback, allowing

the app to evolve in real-time as user requirements and AI algorithms improve.

Although RAD offers fast prototyping, its potential drawbacks in

documentation and testing can compromise reliability, issues unacceptable for

an application intended to deliver accurate, secure, and timely pet health

insights. Agile’s emphasis on regular sprint planning, frequent testing, and

retrospectives ensures that each component, such as the AI chatbot and

symptom diagnosis system, is rigorously validated and fine-tuned to meet high

standards of quality, making Agile the most appropriate methodology for

PawHub.

2.5 AI APIs for AI features

To create PawHub’s intelligent features such as the chatbot and symptom

diagnosis, three leading AI APIs were evaluated which is OpenAI, DeepSeek,

and OpenRouter. Each offers distinct capabilities, pricing models, and levels

of community support. The following subsections summarize their features,

limitations, and fit for PawHub.

43

2.5.1 OpenAI API

Figure 2.17: Open AI API (Postman, 2025)

OpenAI has been a leader in general-purpose AI, with its GPT-4 model setting

new standards for tasks like natural language generation, understanding, and

reasoning (OpenAI, 2023). The OpenAI API provides access to powerful

models such as GPT-3.5 and GPT-4, enabling developers to build

sophisticated chatbots, summarization tools, classification engines, and more.

For PawHub, these capabilities translate into advanced pet care chatbots,

symptom evaluators, and FAQ assistants that can handle free-form queries

with human-like fluency.

 The primary strength of OpenAI’s API is its unparalleled natural

language understanding and generation quality, which allows the chatbot to

carry context, ask clarifying questions, and generate highly nuanced outputs.

Additionally, OpenAI provides structured endpoints for both completion and

chat modes, supports embeddings for semantic search, and allows fine-tuning

for domain-specific tasks. These features align well with the medical and

caregiving nature of PawHub, where accurate, clear communication is critical.

 However, OpenAI’s major limitation is its cost and rate limits. While

a free trial is available, it offers limited usage, and sustained usage incurs a

pay-as-you-go pricing model that may quickly escalate in high-traffic

applications. This is a significant consideration for apps like PawHub that

expect real-time and frequent interactions. Furthermore, strict terms of service

and compliance requirements especially around health data, may add legal or

ethical complexity.

 Still, OpenAI remains a top-tier choice for projects requiring cutting-

edge performance, and for specific components of PawHub (e.g., onboarding

assistant, complex symptom analysis), its reliability and accuracy can justify

its cost when used strategically in hybrid setups.

44

2.5.2 DeepSeek API

Figure 2.18: DeepSeek API (TechNode Feed, 2025)

DeepSeek is an emerging player in the AI development landscape, known for

its deep contextual inference and semantic search capabilities. It is engineered

to excel at interpreting complex, ambiguous, or domain-specific language,

which makes it a promising candidate for applications such as symptom-based

diagnostic assistants or personalized care suggestions in PawHub. The core

value proposition of DeepSeek lies in its ability to understand intent beyond

surface-level language, allowing it to deliver tailored responses that are more

relevant to the user’s query (Guo et al., 2024).

 Technically, DeepSeek APIs support inference using their own

optimized large language models, such as DeepSeek-V2. However, DeepSeek

is still maturing. As of 2024, its API offerings are limited in scope and its

developer resources, community activity, and framework integrations are less

mature compared to OpenRouter and OpenAI. The documentation is minimal,

and support forums are sparse, potentially increasing integration time for

teams requiring precise control and debugging support. (Your First API Call |

DeepSeek API Docs, 2025)

 Additionally, DeepSeek’s free tier is relatively constrained, offering

limited API tokens per month and fewer customizations unless subscribed to a

premium plan. In the context of PawHub, while DeepSeek may offer superior

context retention and tailored inference capabilities, these benefits come at the

cost of lower transparency, less documentation, and potential vendor lock-in

due to the proprietary nature of its models.Nonetheless, DeepSeek holds high

strategic potential as a supplementary AI tool in PawHub, especially for

providing nuanced responses during complex symptom queries or multilingual

expansion in the future. However, it may not yet be reliable enough as a

standalone solution until the ecosystem becomes more robust.

45

2.5.3 OpenRouter AI API

Figure 2.19: OpenRouter AI API (OpenRouter Logo PNG Vector (SVG)

Free Download, 2025)

OpenRouter is a robust, developer-friendly API designed to bridge the gap

between conversational AI systems and customizable, scalable chatbot

solutions. Leveraging the power of transformer-based models, OpenRouter

focuses on providing accessible and high-quality conversational AI

capabilities that can be easily integrated into various applications, including

customer support, personal assistants, and diagnostic tools.

 OpenRouter’s primary strength lies in its open-source approach,

offering significant flexibility in how developers can implement its models. Its

ability to work well with different languages and frameworks makes the

platform ideal for those seeking a customizable and open solution. The API

offers multiple pre-trained models suited for a wide variety of tasks such as

question answering, summarization, and natural language

processing.Additionally, OpenRouter’s open-source nature enables seamless

collaboration among developers and greater control over the chatbot’s

performance.

 However, one of the limitations of lies in its relatively high

infrastructure and resource demands. OpenRouter requires careful

optimization in high-traffic environments, as excessive computational needs

could lead to slow response times or increased operational costs. Additionally,

while it’s documentation are growing, it still does not match the maturity of

other major platforms like OpenAI in terms of developer resources and

community engagement (Principles - OpenRouter’s Core Values, 2025).

 Despite these challenges, OpenRouter remains a strong choice for

applications like PawHub, especially when control over the AI model are

prioritized. It can be a highly effective part of PawHub’s AI-powered

ecosystem. With the right infrastructure in place, OpenRouter’s flexibility,

46

scalability, and open-source nature can significantly enhance PawHub’s ability

to provide dynamic and accurate pet care support.

2.5.4 Comparison of AI APIs for AI features

Table 2.4: Comparison of AI APIs for AI features

Criteria OpenAI DeepSeek OpenRouter

Performance Excellent NLP

with GPT-4/GPT-

3.5

Strong contextual

understanding

Strong

conversational AI

across models

Cost Pay-as-you-go;

expensive at scale

Limited free tier Open-source and

cost-effective

Customization Low (limited

fine-tuning

access)

Moderate High (model

flexibility, prompt

control)

Ease of

Integration

Well-documented

SDKs &

endpoints

Less

documentation

and slower

onboarding

Simple REST

API; growing dev

support

Open-source

Access

No No Yes

Community

Support

Mature ecosystem Emerging Growing open-

source developer

base

All three APIs, OpenRouter, OpenAI, and DeepSeek provide unique strengths

for powering the AI features in PawHub, an AI-driven pet care application.

OpenRouter emerges as the most balanced and developer-friendly option,

offering a cost-effective, open-source platform with high flexibility and

customization. Its support for multiple models and prompt control makes it

ideal for modular chatbot functionalities and pet-specific symptom analysis.

OpenAI delivers superior natural language performance with models like

GPT-4, making it suitable for handling highly complex queries. However, its

47

high cost and limited customization options make it not ideal. Meanwhile,

DeepSeek shows promise in understanding context and intent, offering value

for nuanced symptom interpretation or future multilingual support. However,

its limited documentation, constrained free tier, and smaller community make

it less suited compared to OpenRouter.

2.6 Backend Development Tools

The selection of an appropriate backend development tool is a critical

component in ensuring that the PawHub application operates efficiently,

securely, and at scale. Given the nature of the application which includes

managing sensitive pet health records, real-time user interactions, and secure

authentication choosing a backend solution that offers reliability, flexibility,

and robust database features is paramount. This section reviews two popular

Backend-as-a-Service (BaaS) platforms Supabase and Firebase, both of which

are widely adopted for modern application development. These platforms

provide integrated services for authentication, data storage, file management,

and real-time functionality.

2.6.1 Supabase

Figure 2.20: Supabase Backend Tool (asierr.dev, 2024)

Supabase is an open-source backend platform that provides developers with a

powerful suite of tools built around PostgreSQL, a proven and mature

relational database. Branded as an “open-source Firebase alternative,”

Supabase offers out-of-the-box support for authentication, real-time

subscriptions, auto-generated APIs, and secure file storage, all using familiar

SQL syntax. One of Supabase’s most significant strengths is its relational data

model, which is essential for PawHub, where pet profiles, user accounts,

appointment records, vaccination history, and symptom logs need to be

properly linked and queried with high precision.

48

 Supabase’s authentication system supports email and password login,

OAuth (Google, GitHub, etc.), and third-party integrations while maintaining

row-level security (RLS), a PostgreSQL-native feature that allows developers

to write policies that enforce fine-grained access control. This is especially

useful for PawHub, where each user should only access their own pet’s data

and health records. Another benefit is the real-time capability, which is made

possible via PostgreSQL’s replication features. This allows changes in the

database to be broadcast immediately to clients, ensuring live updates, such as

tracking a pet’s symptoms or syncing appointment reminders, appear

instantaneously in the app.

 The storage system in Supabase allows for secure and scalable file

uploads, including photos of pets, scanned documents, and medical records.

With the free tier offering up to 500MB of database storage and 50,000

monthly active users, Supabase is more than capable of supporting the early

development and testing phases of PawHub without incurring high costs.

Moreover, since Supabase is open source, it can be self-hosted if greater

control or cost optimization is needed in the future. (Supabase, no date)

 In addition, Supabase is developer-friendly with RESTful and

GraphQL API generation, excellent documentation, and community-driven

support. It integrates smoothly with modern front-end frameworks like React

Native, making it a natural backend pairing for PawHub’s tech stack. However,

as a relatively newer player compared to Firebase, Supabase may have less

mature tooling in some advanced use cases (e.g., serverless functions,

analytics), though these gaps are rapidly narrowing as the platform evolves.

2.6.2 Firebase

Figure 2.21: Firebase Backend Tool (Setting up Firebase / Google

Analytics, 2025)

49

Firebase is a backend platform developed by Google, offering a highly

integrated and scalable BaaS solution. It includes a suite of services such as

Cloud Firestore (NoSQL database), Realtime Database, Firebase

Authentication, Firebase Storage, and Firebase Cloud Functions. Mobile

developers have widely embraced Firebase for its user-friendly interface,

dependable performance, and seamless integration with the Google Cloud

ecosystem.

 Firebase’s Cloud Firestore is a document-based NoSQL database that

stores data in collections and documents. This structure is particularly

effective for apps with loosely structured data or where relationships between

entities are minimal. However, in complex applications like PawHub, which

require multiple relationships between pets, users, and medical records, the

lack of structured querying compared to SQL may introduce challenges in data

modeling and querying efficiency.

 Firebase’s authentication module is robust and user-friendly,

supporting email/password login, federated identity providers (e.g., Google,

Facebook), and custom authentication systems. Firebase also excels in real-

time capabilities, with Firestore and Realtime Database enabling live syncing

across devices, a strong feature for interactive apps like PawHub (Build

Documentation | Firebase Documentation, no date).

 One of Firebase’s major selling points is its infrastructure scalability.

Backed by Google Cloud, Firebase can effortlessly handle spikes in user

activity and data loads, making it an excellent choice for apps expecting high

traffic or viral growth. Additionally, Firebase includes analytics, A/B testing,

and performance monitoring tools, which help developers optimize user

engagement and app stability.

 However, Firebase is not open-source, and its NoSQL nature may

lead to difficulties in maintaining complex queries, particularly when working

with hierarchical or relational data. Furthermore, as your app scales, Firebase’s

cost structure can become quite expensive especially when it comes to

real‑time database reads, writes, and storage usage. For PawHub, where each

user may frequently interact with medical records and symptom logs, the cost

model can become unpredictable without tight control over API usage.

50

2.6.3 Comparison of Backend Development Tools

Table 2.5: Comparison of Backend Development Tools

Feature Supabase Firebase

Database Type PostgreSQL (SQL-based) Firestore / Realtime Database

(NoSQL)

Open Source Yes No

Hosting

Options

Self-hosting or managed Google-managed only

Security Row-Level Security (RLS) Role-based Rules

Real-time

Support

Yes Yes

Authentication Built-in Auth (Email,

OAuth, etc.)

Built-in Auth (Email, Socials,

etc.)

Pricing Generous free tier,

transparent pricing

Free tier, can become costly

at scale

Ideal For Structured data, high

control, SQL queries

Fast MVPs, scalable cloud-

native apps

Supabase is the most suitable backend development tool for PawHub due to its

relational database capabilities, transparent pricing, and open-source flexibility.

Its integration with React Native, support for role-based access control, and

real-time features make it ideal for managing pet health records, secure user

access, and responsive symptom tracking. Unlike Firebase, which offers high

scalability but can lead to unpredictable costs and complexity with NoSQL

data modeling, Supabase provides a better balance of structure, control, and

affordability particularly important for the long-term sustainability and data

integrity needs of an AI-powered pet care app like PawHub.

2.7 Frontend Development Tools

Choosing the right frontend framework is a pivotal decision in mobile

application development, especially for feature-rich apps like PawHub, which

aims to offer real-time AI chatbot assistance, pet health record management,

51

and offline accessibility. The frontend must be responsive, performant,

visually appealing, and compatible with backend APIs (such as Supabase).

Two of the most widely used cross-platform development frameworks today

are React Native and Flutter. Both frameworks let you maintain one codebase

for Android and iOS, which accelerates development and cuts down on costs.

However, they differ significantly in terms of architecture, flexibility,

performance, learning curve, and ecosystem maturity. This section provides a

comprehensive analysis of React Native and Flutter.

2.7.1 React Native

Figure 2.22: React Native (Okoone, 2025)

React Native is Meta’s open‑source framework that allows to write in

application in JavaScript and React and have it run on both Android and iOS

which can build once instead of coding separately for each platform. It bridges

JavaScript and native mobile components through a mechanism called the

“bridge”, allowing code reuse while still delivering near-native performance.

For an app like PawHub, which requires tight integration with local storage,

and backend services, React Native provides robust support for both functional

and UI layers.

 A major benefit of React Native is its large developer ecosystem and

the wide range of third-party libraries available, which significantly enhance

the development process. This allows rapid development of features such as

push notifications, file uploads, authentication flows, and navigation, all of

which are crucial for a user-centric app like PawHub. Moreover, since React

Native supports the same design principles as React.js, developers familiar

with web development can quickly transition into mobile development,

reducing onboarding time and improving productivity (Introduction · React

Native, no date).

52

 Another notable advantage is React Native makes development faster

and smoother with its reload capability, showing code edits instantly without

rebuilding everything. For PawHub, this enables faster prototyping and

iteration on features like chatbot interfaces, health tracker screens, and form

input for symptom analysis.

 React Native also integrates well with Supabase, using fetch-based

API calls and async data storage. Its support for SQLite and other local

databases allows for implementing offline functionality, a critical feature for

users in low-connectivity regions.

 Despite its strengths, React Native does have limitations. The reliance

on third-party modules can sometimes result in unstable dependencies or

delayed support for new operating system updates. Additionally, in scenarios

involving heavy UI activity like intricate animations, React Native may show

slight delays due to its use of a JavaScript to access native features. However,

these performance issues can be addressed through optimizations using native

modules or libraries like Reanimated.

2.7.2 Flutter

Figure 2.23: Flutter (What is Flutter? Guide for Flutter App Development

| Relia Software, no date)

Flutter, made by Google, makes it easier to build apps for different platforms

using just one codebase. Unlike React Native, Flutter uses the Dart

programming language and compiles directly to machine code. This

architecture results in faster startup times and better runtime performance for

animation-heavy or highly interactive apps.

 One of Flutter’s standout features is its “widget-centric” architecture.

Every element on the screen is a widget, giving developers granular control

53

over the UI and allowing them to create highly customized designs. This is

advantageous for apps with demanding UI requirements or complex interfaces.

 Additionally, Flutter provides its own rendering engine, Skia, which

eliminates dependence on the native platform’s UI components ensuring

consistent design and performance across devices Flutter is particularly strong

in animation handling, making it ideal for apps with splashy transitions or

micro-interactions. For a simple, functional app like PawHub, however, this

level of visual finesse is not a primary requirement (Flutter documentation, no

date).

 The main drawbacks of Flutter lie in its relatively smaller community,

larger app size, and learning curve associated with Dart, which is not as widely

used as JavaScript. Integrating Flutter with platforms like Supabase may

require additional configuration or community plugins, which might not be as

mature or well-documented as React Native equivalents.

2.7.3 Comparison of Frontend Development Tools

Table 2.6: Comparison of Frontend Development Tools

Feature React Native Flutter

Programming

Language

JavaScript Dart

UI

Performance

Native-like (bridged) High performance (custom

renderer)

Developer

Ecosystem

Mature, large community Growing, but smaller

community

Library/Plugin

Support

Extensive (NPM, GitHub) Moderate

Learning

Curve

Easier for web developers Steeper due to Dart

App Size Moderate Larger by default

Ideal Use Case API-heavy apps, MVPs,

integration-rich

Custom UI apps, animation-

focused apps

54

Supabase is the most suitable backend development tool for PawHub due to its

relational database capabilities, transparent pricing, and open-source flexibility.

Its integration with React Native, real-time features make it ideal for managing

pet health records, secure user access, and responsive symptom tracking.

Unlike Firebase, which offers high scalability but can lead to unpredictable

costs and complexity with NoSQL data modeling, Supabase provides a better

balance of structure, control, and affordability, particularly important for the

long-term sustainability and data integrity needs of an AI-powered pet care

app like PawHub.

2.8 Summary

The literature review underscores the transformative impact of AI and mobile

technology on the pet care industry, enabling tools like chatbots, symptom

diagnosis systems, and veterinary decision-support platforms. Despite

advancements, existing solutions face limitations such as fragmented health

monitoring, reliance on internet connectivity, and insufficient accuracy in AI-

driven diagnostics. Applications like TTcare (image-based analysis) and

PetVet AI (chatbot support) address niche needs but lack holistic integration,

while PetVitality and 11Pets focus on record-keeping without robust AI

integration.

 PawHub aims to bridge these gaps by offering a comprehensive, AI-

powered solution combining real-time symptom analysis, multi-user

accessibility, and offline functionality. The app integrates an AI chatbot for

instant guidance, API-based symptom diagnosis, and health record

management, ensuring reliability and accessibility even in low-connectivity

environments.

 Agile methodology was selected for development due to its flexibility,

iterative refinement, and alignment with evolving AI features. OpenRouter

emerged as the optimal AI API, balancing cost-effectiveness, customization,

and conversational accuracy, while Supabase was chosen for its relational

database capabilities, security, and scalability. React Native’s mature

ecosystem and seamless backend integration further support PawHub’s cross-

platform performance.

55

 By synthesizing AI-driven diagnostics, user-centric design, and

offline accessibility, PawHub positions itself as a pioneering solution for

proactive, informed pet healthcare, addressing critical gaps in the market and

enhancing the connection between pet owners and veterinary professionals.

56

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The follow section shows the approach and schedule that will direct the

development of PawHub, an AI-powered mobile app designed to help pet

owners manage their pet’s health. The project will follow the Agile

methodology, allowing for flexible, iterative development through continuous

feedback and adaptive sprint planning. PawHub aims to address common

challenges in pet care, including early symptom detection, digital health

recordkeeping, and access to veterinary advice. Key features will include an

AI chatbot, a symptom checker, multi-pet profiles, and educational content.

The app will be built using React Native for the frontend and Supabase for the

backend, with AI features powered by the OpenRouter AI API. The table

below provides a summary of the project’s resource allocation:

Table 3.1: Resources Allocation

Resources Allocation

Personnel Independently manage all aspects of the project, including

requirement gathering, design, development, and integration.

Additional testers will be involved during the testing phase to

validate functionality and identify potential defects.

Time The project will be carried out over six months. The first three

months will be devoted to requirement analysis, literature

review, and UI prototyping, while the remaining three months

will focus on development, testing, and refinement.

Costs The project will incur no financial cost. All tools and

platforms used including React Native, Node.js, Supabase, the

OpenRouter API (free tier), and development software will be

open-source or freely available.

Materials Software to be used will include Figma, Visual Studio Code,

Android Studio Emulator, GitHub, Node.js and React Native

57

libraries. AI capabilities will be integrated using the

OpenRouter API. Development and testing will be performed

using a personal laptop and smartphone.

3.2 Collecting Requirements

This section will focus on the process of identifying and collecting essential

requirements for the development of PawHub, an AI-powered pet healthcare

assistant mobile application. By adopting the mindset of a pet owner and end

user, this stage aim to uncover the necessary features, functionalities, and pain

points that the app must address to deliver a seamless and intelligent user

experience.

 To ensure the requirements are grounded in actual user needs, a

survey-based approach will be adopted. The survey will target active pet

owners, particularly those responsible for tracking pet health, handling

emergencies, and ensuring regular veterinary checkups. Responses will be

collected, covering areas such as current pet care habits, difficulties in health

management, expectations of AI features, and mobile app usage preferences.

 In addition, four existing pet care mobile applications, TTcare, PetVet

AI Pet, PetVitality, and 11Pets has be reviewed to assess their core

functionalities and identify common shortcomings. Features such as symptom

checkers, health tracking, appointment reminders, AI chatbots, and document

storage are evaluated. While each of these applications may offer partial

solutions, none provides a comprehensive system that integrates AI-driven

diagnosis, health record management, personalized care tips, and offline

accessibility within a single platform.

 Several common limitations and usability challenges are observed.

The absence of integrated AI chatbots and fragmented health record

management require users to change from one app to another to manage

different functions of pet care. Some applications also lack interactive features

such as reminders, multi-pet profile support, or emergency guidance.

Moreover, offline functionality, crucial for pet owners in remote or rural areas

were missing from most solutions. Based on the app analysis, the following

requirements has been identified as critical for the success of PawHub:

58

i) AI-powered chatbot to answer pet care queries and provide

general advice.

ii) Symptom checker for early diagnosis based on user input (text-

based, not image-based).

iii) Secure digital pet health records including vaccination logs and

medical history.

iv) Offline access to essential health data and records.

v) Personalised alerts and reminders for pet health records.

vi) Support for multi-pet profiles with individualized health logs.

vii) FAQs for first time pet owners.

viii) Clean, user-friendly interface suitable for a broad range of users.

ix) Built-in feedback system to support ongoing feature refinement

and updates.

x) Real-time alerts for symptom concerns and vaccination reminders.

 However, it is important to acknowledge the gap between ideal

functionality and realistic development capabilities. Advanced features such as

real-time vet chat, image-based diagnostics, or AI analytics dashboards may

require substantial computing resources and infrastructure support. Given the

limitations in time, manpower, and budget, a phased development strategy will

be adopted.

 The initial version of PawHub will focus on delivering the most

essential and feasible features, the AI chatbot, text-based symptom checker,

digital health records, offline data accessibility, and a responsive, user-friendly

interface. These core modules will address the most pressing needs of users

while staying within the project’s technical and temporal constraints.

Additional enhancements such as emergency vet locators, advanced APIs, or

community support channels may be explored in future iterations once the

foundation is successfully built and validated. In the next section, the collected

requirements will be analyzed in detail to determine their feasibility within the

available resources, development tools, and timeline constraints.

59

3.3 Analysis of Requirements

This section will evaluate the feasibility of the key functional requirements

identified in Section 3.2, considering the actual constraints of the project.

These constraints will include limited manpower (as a solo developer), a tight

three-month development timeframe, no allocated budget, and the reliance

solely on open-source tools and available hardware resources. The purpose of

this analysis will be to realistically assess which features can be implemented

effectively during the current development phase of PawHub.

i) AI Chatbot Integration

The AI chatbot will be considered a core feature of PawHub, intended to

assist users in accessing general pet care information. Upon analysis, this

requirement will be achievable using free-tier access from open-source

APIs such as OpenRouter. The chatbot will be trained to provide common

responses to pet health inquiries. However, integrating premium APIs like

OpenAI for more advanced interactions will be considered unrealistic due

to API usage fees that cannot be sustained under a zero-cost constraint.

Therefore, the basic chatbot will be implemented using OpenRouter with

the potential to upgrade in future iterations.

ii) Symptom Checker API Integration

Implementing a text-based symptom checker using a third-party API will

be feasible within the project’s limitations. Free or trial-tier APIs, such as

self-built logic models hosted via Supabase functions, will allow for

symptom input and provide general guidance. As this feature will not

require complex image recognition or machine learning training from

scratch, it will be both cost-effective and achievable within the project

timeline.

iii) Pet Health Record Management

A core feature of PawHub will be the ability to store vaccination, illness,

and treatment records digitally. With Node.js and Supabase calls as the

backend, an open-source Firebase alternative, this functionality will be

efficiently implemented using structured database tables. Supabase’s

60

authentication and PostgreSQL database services will be available under a

generous free tier, making this feature highly feasible within current

resource constraints.

iv) Offline Functionality

Providing limited offline access to pet health records and educational

content will be partially achievable. Both features rely on Supabase for

cloud storage, which requires an active internet connection for real-time

updates and retrieval. However, to enhance usability during low or no

connectivity, offline caching will be implemented using React Native’s

local storage (e.g., AsyncStorage). This approach allows recently accessed

health records and educational articles (scraped and stored in Supabase) to

be temporarily saved on the user’s device. While this enables basic read-

only access when offline, any updates or AI-related functions such as

chatbot queries or symptom analysis will still require a stable internet

connection due to their dependency on external APIs and cloud databases.

v) Personalized Alerts and Reminders

Features like vaccination reminders, feeding schedules, and wellness

notifications will initially be considered useful, but implementing a full-

fledged background scheduling system with push notifications will require

more time and backend logic than available. As a compromise, users will

be able to manually input and view upcoming vaccination reminders, but

auto-generated alerts and schedule notifications may be excluded from the

first version.

vi) Multi-Pet Profile Support

Allowing users to register multiple pets with individual profiles will be a

scalable feature that aligns well with Supabase’s relational database

structure. The development of this functionality will be feasible and will be

included in the initial build, although advanced segmentation features (like

charts or analytics) will be deferred to future updates.

61

vii) Educational Content and Tips

Including a curated list of pet care tips and articles will be considered

realistic. This feature will be achieved by dynamically retrieving web-

scraped content and storing it in Supabase storage, eliminating the need for

manual hardcoding or local JSON files. The content, categorized into

topics like nutrition, training, and general pet care, will be regularly

updated using external scraping scripts and then accessed by the app via

Supabase queries. As this approach does not rely on complex real-time

APIs and offers flexibility for offline caching, it will remain well within

the project’s scope and achievable using the existing tech stack.

viii) Clean, User-Friendly UI

Given the project scope and the use of React Native with design tools,

implementing a visually appealing and easy-to-navigate UI will be highly

feasible. Existing UI libraries such as React Native Paper and ShadCN will

offer pre-built components that reduce development time. This will align

well with both the solo development structure and the time constraints.

ix) Feedback System

A basic feedback collection mechanism (e.g., a form submitted to

Supabase) will be achievable. However, advanced analytics or rating

systems that require detailed backend processing will be reserved for

future adjusments.

x) Use of Paid APIs and Advanced AI Models

Advanced services such as OpenAI’s GPT-4 API, real-time veterinarian

consultations, or proprietary ML models will be deemed out of scope for

the current phase. These features will often require payment structures and

infrastructure beyond the project’s capabilities and may be explored once

the app reaches a more mature state or receives funding.

 In conclusion, the requirements identified for PawHub will be

carefully analyzed against the available resources. Most essential features

62

including an AI chatbot (via OpenRouter), health record storage (via

Supabase), symptom checker API integration, multi-pet support, and offline

access to static data will be found realistically implementable. However, more

resource-intensive features such as automated schedule reminders, image-

based diagnosis, and full offline AI capabilities will be excluded or scaled

down for future iterations. This phased approach will allow the app to remain

functional, user-friendly, and impactful within the available budget and time

constraints.

3.4 Software Development Methodology Used

Figure 3.1: Agile Methodology (Agile software development: everything you

need to know, 2024)

The development of PawHub will be guided by the Agile software

development methodology, which is particularly well-suited for projects with

evolving requirements and a focus on continuous improvement and delivery.

Agile is a great option for creating a mobile application that incorporates

cutting-edge AI-powered features like an AI chatbot, a symptom diagnosis

tool, and pet health record management modules since it places an emphasis

on teamwork, adaptability, and responsiveness. By adopting Agile, the project

will be able to accommodate changes in user feedback and technical direction

while maintaining a consistent development rhythm that leads to the creation

of a high-quality, user-centric product.

63

 According to Kaleel and Harishankar (2013), agile methodology

supports mobile software engineering by addressing challenges unique to

Android development. Agile development will be structured into incremental

iterations called sprints, each typically lasting between two to four weeks.

Every sprint will consist of essential phases such as planning, design,

development, testing, and review. These repeated cycles will allow for gradual

refinement of each feature, enabling early detection of issues and rapid

adaptation to shifting user expectations and technical considerations. The

following subsections will explain how Agile will be implemented throughout

the various phases of PawHub’s development.

3.4.1 Requirement Analysis and Sprint Planning

The first step in the Agile process will involve thorough requirement analysis

to ensure that the application features align with user expectations. For

PawHub, this phase will begin with preliminary research into common

challenges faced by pet owners, including health management difficulties, a

lack of reliable pet health information, and delays in recognizing symptoms

that require veterinary attention.

 Surveys and comparative analysis of existing pet care applications

will be conducted to better understand what users want and what gaps

currently exist. Insights from this phase will inform the definition of key

features such as the AI chatbot, the symptom diagnosis tool, and a digital pet

health record module. Based on these findings, Sprint Planning will be

conducted to define clear goals, allocate tasks, and establish a development

roadmap for the upcoming sprint cycles.

3.4.2 Design and Prototyping

The design and prototyping stage will begin after the requirements analysis. In

order to visually organize the application’s layout and interaction flow, user

interface (UI) and user experience (UX) designs will be created at this phase.

According to Käpyaho and Kauppinen (2015), using prototypes in agile

development facilitates better understanding of requirements and fosters

iterative refinement. The focus will be on delivering an intuitive and accessible

user experience, particularly for pet owners who may not be tech-savvy.

64

 Low-fidelity wireframes will be created using tools like Figma to

visualize each screen’s layout, content arrangement, and navigation logic.

Concurrently, the system architecture will be planned to outline the

communication flow between components, specifically between the front-end

which will be built using React Native and the back-end services such as

Node.Js, Supabase for database and authentication, OpenRouter API for

chatbot and symptom-related processing and Resend for email reminders.

 As part of Agile’s iterative nature, this design process will involve

multiple review cycles. Feedback from supervisors and early users will be

collected at the end of each sprint to refine the designs and align them closely

with usability goals. Any identified issues will be incorporated into subsequent

design improvements.

3.4.3 Development and Integration

Once the prototypes and architecture have been reviewed and validated, the

development and integration phase will begin. This phase will involve the

actual coding and implementation of PawHub’s core modules, structured

across four main sprints.

3.4.3.1 Sprint 1

Sprint 1 will focus on user interface (UI) development and navigation setup.

During this period, the core UI screens such as Login, Register, Home, Pet

Dashboard, and Profile will be implemented using React Native. A navigation

flow will be created between the screens to support smooth transitions using

appropriate navigation components. The UI layout will be tested and reviewed

by the supervisor, after which necessary adjustments will be made to improve

responsiveness, spacing, and visual hierarchy.

3.4.3.2 Sprint 2

Sprint 2 will concentrate on backend implementation and user authentication.

Supabase will be used to set up authentication logic, enabling secure

registration, login, and user sessions. A database schema will be established

for both user and pet profiles. CRUD (Create, Read, Update, Delete)

operations will be developed for managing user data and pet data, including

65

health records and vaccination details. User flow tests will be carried out to

ensure seamless interaction, and any authentication or session-related bugs

will be resolved during this sprint.

3.4.3.3 Sprint 3

Sprint 3 will focus on the implementation and enhancement of PawHub’s AI-

driven features, aiming to significantly elevate the app’s intelligence, user

support capability, and educational value.

i) AI Chatbot Integration Module (Multi-Model via

OpenRouter)

In this phase, the AI chatbot interface will be connected to multiple

specialized large language models (LLMs) using the OpenRouter API.

Users will be given the ability to select from three optimized AI

models, each with unique conversational strengths, depending on the

nature of their enquiry (e.g., general care, emergency advice,

behavioral issues). A model selector dropdown will be implemented

within the chat interface, dynamically routing user queries to the

chosen AI in real-time.

 Prompt engineering techniques will be applied to tailor the

input prompts for each model, ensuring that the AI maintains a strict

context around pet-specific conversations. Special prompt tokens,

contextual conditioning, and instruction fine-tuning will be used to

make the chatbot reject irrelevant questions (e.g., human-related

queries) and stay focused on pet care advice. Error handling will also

be implemented to gracefully manage API failures, rate limits, and

fallback model selection to ensure uninterrupted user experience.

ii) Symptom Checker Module (AI Risk Assessment Tool)

The Symptom Checker will allow users to input a structured set of

symptom data through interactive forms. The form will support input

type such as text fields for user to input their pet symptoms. Upon

submission, the collected symptom profile will be compiled into a

dynamically generated prompt and sent to a selected OpenRouter LLM

66

that specializes in clinical reasoning or healthcare inference. The AI

model will return a risk-assessed recommendation, which will then be

interpreted into a color-coded risk indicator:

• Green: Mild, Monitor at home

• Yellow: Moderate, Suggest vet consultation if symptoms

persist

• Red: Severe, Immediate veterinary attention required

iii) Educational Resource Module (Dynamic Web-Scraped

Content)

The Educational Resources screen will be dynamically retrieved

content using web scraping server. Scheduled scraping scripts (run

externally) will fetch pet care articles, expert advice, and how-to guides

from verified sources (e.g., ASPCA, PetMD, VCA Hospitals). The

articles will be categorized intelligently into various core segments.

 A searchable UI will be implemented to allow users to filter

and find articles based on keywords or categories. Each article card

will display a title, snippet, publication date, and a quick link to full

details inside the app’s reader view. Metadata tagging (e.g., dog health,

cat grooming, puppy training) will be assigned automatically, further

enhancing search relevance.

3.4.3.4 Sprint 4

Sprint 4 will serve as the final sprint of the development phase. This sprint will

involve the implementation of additional features such as offline support

(using local storage, where feasible), a feedback collection module, and final

user experience testing with real pet owners. Integration testing will be carried

out across all modules to ensure consistent data flow between the front end,

database, and AI services. Performance improvements and final bug fixes will

also be prioritized, culminating in the preparation of the final working

prototype for demo and evaluation purposes.

 The entire development phase will follow an incremental and flexible

approach. Each sprint will result in a usable build of the application, allowing

67

for continuous testing and refinement. This process will help ensure that

PawHub is delivered with reliable functionality, user-friendly design, and

meaningful AI-driven features for pet healthcare support.

3.4.4 Testing and Optimization

Once the core features of PawHub have been successfully developed and

integrated, the project will proceed into the testing and optimization phase.

This phase will be essential in identifying and resolving bugs, validating the

app’s functionality, and ensuring that each component meets the defined user

requirements. Testing will be conducted iteratively throughout the

development cycle, aligning with the Agile methodology. This will include

unit testing, integration testing, and system testing, applied incrementally as

each feature is completed.

 The AI-related modules, specifically the chatbot and the symptom

diagnosis tool will undergo detailed validation to assess the accuracy of their

responses. Simulated unit test cases will be designed to reflect real-world pet

health issues, allowing the system’s logic and prompt outputs to be evaluated

for reliability and relevance.

 In addition to formal testing techniques, informal usability testing

sessions will be conducted with actual pet owners. Their feedback will provide

valuable insights into the app’s design, navigation, and overall user experience.

Any issues discovered during these sessions will be documented and addressed,

leading to a series of refinements. The goal of this phase will be to ensure

PawHub is not only technically stable but also intuitive and user-centric.

3.4.5 Review and Continuous Improvement

As part of Agile methodology, PawHub’s development will embrace a culture

of continuous review and enhancement. After the completion of each sprint, a

sprint review meeting will be conducted to assess the progress made, evaluate

whether sprint objectives have been met, and gather feedback from the

supervisor. This feedback will be used to guide the priorities and

improvements in the subsequent sprint.

 Upon nearing the project’s completion, a final review will be

conducted. This will serve as the last quality checkpoint to confirm that all

68

functionalities are implemented correctly, the system performs smoothly, and

the app provides a cohesive and seamless experience. Final adjustments and

polishing will be performed based on the cumulative feedback, ensuring

PawHub meets its full potential before final deployment and presentation.

3.5 Development Tools Used

In this section, all the development tools that will be used throughout this

project to achieve the application’s success will be discussed.

3.5.1 React Native

Figure 3.2: React Native (Okoone, 2025)

React Native will be selected as the primary front-end development framework

for PawHub due to its cross-platform capabilities and efficient component-

based architecture. React Native, created by Facebook, is a time-and money-

saving option for developing mobile apps since it enables developers to write

JavaScript code that compiles to native components for both iOS and Android.

This will be especially beneficial for a solo developer working under time and

resource constraints, as it will remove the need to build separate native apps

for different platforms (Introduction · React Native, no date).

 Another advantage of React Native will be its support for a rich

ecosystem of libraries and modules, which will allow for rapid integration of

UI components, state management systems, and third-party APIs. Libraries

like React Navigation and Native Base will be utilized to streamline

navigation between screens and enhance user interface consistency. React

Native will also provide hot-reloading capabilities, which will make it easier to

test UI changes in real time without restarting the app, thereby improving

productivity during sprints.

69

 React Native will prove to be a scalable and adaptable choice for

PawHub, especially as it will need to integrate with various back-end services

like Supabase and AI APIs like OpenRouter. Its flexibility will allow for

smooth communication with external APIs using tools like Axios and Fetch,

enabling seamless real-time interactions for features like chatbot messaging

and pet profile updates. The app’s ability to function smoothly across devices

will further validate the selection of React Native as the core framework.

3.5.2 Visual Studio Code

Figure 3.3: Visual Studio Code (Hill, 2024)

For building PawHub, Visual Studio Code (VS Code) will be the main tool

used to write, debug, and organize the app’s code. It’s a lightweight and

flexible editor made by Microsoft, chosen because it’s fast, easy to customize,

and comes with smart features like code suggestions and helpful extensions.

Its customizable interface and built-in terminal will provide an efficient and

personalized development environment tailored to the project’s workflow.

 The wide variety of extensions available in VS Code will

significantly enhance productivity. Tools such as Prettier for code formatting,

ESLint for syntax checking, and React Native Tools for debugging will make

the development process smoother and more efficient. Integrated Git support

will allow real-time version control and commit management directly within

the IDE, reducing context switching and streamlining the development process.

The built-in terminal will make it easy to execute Supabase CLI commands,

run build scripts, and interact with Node.js-based packages (Visual Studio

Code, 2023).

70

 Throughout the development of PawHub, VS Code’s intuitive UI,

performance, and extension-rich ecosystem will enable a faster development

pace, especially during tight sprint cycles. Real-time linting and syntax

highlighting features will help reduce logical and syntactical errors early in the

process. Its seamless integration with React Native and support for

collaborative features (such as GitHub Copilot) will make it an indispensable

tool in delivering a high-quality application.

3.5.3 Android Studio Emulator

Figure 3.4: Android Studio Emulator (Najjar, 2023)

The main testing environment for PawHub’s Android version will be the

Android Studio Emulator. It enables programmers to simulate different

Android devices and OS versions. This will be particularly useful for testing

responsiveness, functionality, and UI behaviour across different screen sizes

and resolutions (Run apps on the Android Emulator, no date).

 Using the emulator will help identify device-specific issues early in

the development process without requiring access to a wide range of physical

devices. This will be critical for ensuring compatibility and consistency,

especially for features like pet profile creation, symptom checker interactions,

and chatbot UI layouts. Various use-case scenarios such as poor network

conditions, navigation between screens, and user input validation will be tested

to ensure a seamless experience under real-world constraints.

 While React Native will support hot-reloading on physical devices,

the Android Studio Emulator will provide a safe and efficient sandbox for

debugging major UI and system-level behaviours. It will also allow simulation

of hardware features like camera, location services, and battery performance,

which will be essential for validating features like health reminders. The

emulator will play a crucial role in streamlining the QA and testing process.

71

3.5.4 GitHub

Figure 3.5: GitHub (GitHub Logo Download - SVG - All Vector Logo, 2016)

GitHub will be used as the version control and code collaboration platform for

PawHub. Although the project will be developed individually, GitHub will

ensure that all changes are systematically tracked, enabling effective source

code management and a robust backup strategy. By committing updates

regularly, the developer will be able to roll back to previous versions when

necessary, reducing the risk of irreversible errors or data loss (GitHub, 2024).

 GitHub’s project board and issue-tracking features will be leveraged

to plan tasks, organize sprint goals, and track bugs or enhancement requests.

This will make it easier to manage workload, prioritize features, and maintain

a structured development pipeline aligned with the Agile methodology.

Milestones and branches will also be used to isolate features, such as

separating the chatbot development branch from the pet profile UI updates.

 Additionally, GitHub will make it possible to host the project in a

secure, cloud-based environment. This will ensure continuous access to the

codebase across different development machines. The repository will also

serve as a medium for showcasing the development history, which can be

shared with supervisors, testers, or future collaborators. Overall, GitHub will

support both the technical and organizational aspects of PawHub’s

development lifecycle.

72

3.5.5 Node.Js

Figure 3.6: Node.Js Backend Tool (Node.js Development Services Company |

Hire Node.js Developers, 2016)

Node.js will be used as the backend runtime environment for PawHub to

enable secure, server-side logic and centralized API management between the

React Native frontend and external services. Node.js, enables developers to

use JavaScript in front-end and back-end applications, promoting code

consistency, faster development cycles, and easier debugging, especially

beneficial for a solo developer managing a full-stack application.

The Express.js framework, running on top of Node.js, will be utilized

to define RESTful API endpoints that handle authentication, data validation,

session management, and integration with third-party APIs. This architecture

ensures that sensitive operations such as password updates, health record

modifications, and AI prompt handling are processed securely on the server

rather than directly from the client, reducing exposure to potential attacks like

injection or unauthorized access (OpenJS Foundation, 2017).

A primary benefit of Node.js is its event-driven and non-blocking I/O

approach allows for great efficiency and scalability when managing several

concurrent requests. This is critical for features like real-time chat responses

and scheduled email reminders. Additionally, middleware support in Express

allows for modular implementation of functionalities such as JWT-based

authentication, rate limiting, request logging, and error handling, ensuring

robustness and maintainability throughout the project lifecycle. With strong

community support, extensive npm packages, and compatibility with modern

web standards, Node.js serves as a reliable and efficient backbone for

PawHub’s backend infrastructure.

73

3.5.6 Supabase

Figure 3.7: Supabase Backend Tool (asierr.dev, 2024)

Supabase will be chosen as the back-end platform for data storage, user

authentication, and real-time synchronization. As an open-source Firebase

alternative, Supabase will provide a scalable and developer-friendly suite of

tools, including a PostgreSQL database, RESTful APIs, and real-time listeners.

For PawHub, Supabase will handle user accounts, pet profiles, and health

records with seamless integration into the React Native frontend.

 Supabase Auth will be used to manage secure login and registration

using email and password. It will also provide session management features,

ensuring that user data can be accessed securely without the need to build a

custom authentication backend. Its integration with JWT tokens and role-based

permissions will enable fine-tuned access control over pet data and user-

specific resources (Supabase, no date).

 In terms of database functionality, Supabase’s real-time PostgreSQL

database will allow for efficient CRUD operations on pet and health-related

data. The Supabase client library will work seamlessly within the React Native

environment, making it easier to connect the frontend and backend without the

complexity of a traditional server architecture. Its hosted dashboard will

provide insights into database activity, logs, and performance metrics,

supporting scalability and debugging.

74

3.5.7 OpenRouter AI

Figure 3.8: OpenRouter AI API (OpenRouter Logo PNG Vector (SVG) Free

Download, 2025)

The OpenRouter AI API will be used to power PawHub’s AI chatbot, offering

advanced natural language processing capabilities through access to a wide

range of leading large language models (LLMs). OpenRouter serves as a

unified platform that connects to multiple powerful AI models, such as GPT-4,

Claude, and Mixtral, allowing flexible and intelligent conversational

experiences without the need to build custom models from scratch.

 By integrating OpenRouter’s API via HTTP requests, PawHub will

be able to interpret user queries about pet care, generate accurate and context-

aware replies, and provide seamless real-time interaction within the app.

OpenRouter’s support multiple models within one API key aligns well with

PawHub’s aim to achieve different AI models within one application and it

also allow prompt engineering that will help with fine-tuning of how the

chatbot responds, making interactions more specific to pet care needs.

 Additionally, OpenRouter offers competitive pricing, a generous free

tier for developers, and the flexibility to select different AI models according

to usage scenarios, making it highly suitable for PawHub’s development that

requires multiple models and scaling phases. Its clear documentation and

growing developer community ensure reliable support during the integration

process. OpenRouter will serve as a robust and scalable solution for building

intelligent dialogue systems in PawHub, providing users with trusted, pet-

specific guidance instantly (Principles - OpenRouter’s Core Values, 2025).

75

3.5.8 Resend

Figure 3.9: Resend Email API (Resend, 2025)

Resend will be integrated into PawHub as the email delivery service

responsible for sending automated health reminders to users based on

upcoming pet care events such as vaccinations, deworming schedules, and vet

check-ups. Designed specifically for developers, Resend offers a simple,

reliable, and cost-effective solution for transactional email delivery, making it

an ideal choice over traditional SMTP providers or bulk email services

unsuitable for personalized notifications.

A major advantage of Resend is its developer-first approach,

featuring clean documentation, instant setup with API keys, and real-time

delivery analytics through its dashboard. It also provides detailed logs for

troubleshooting failed deliveries and supports email verification to ensure

deliverability and compliance with anti-spam policies. Unlike other email

platforms that require complex configuration or hidden costs at scale, Resend

offers a generous free tier and transparent pricing, fitting perfectly within the

project’s zero-budget constraint (Managing Emails - Resend, 2025).

Furthermore, Resend integrates smoothly with Node.js via

lightweight HTTP clients like Axios, enabling quick implementation without

bloating the codebase. Its reliability and ease of use make it a powerful tool for

enhancing user accountability and preventive pet care. By automating timely

reminders through Resend, PawHub reinforces responsible pet ownership and

delivers added value beyond basic digital record-keeping.

76

3.5.9 Figma

Figure 3.10: Figma (Interino, 2022)

Figma will serve as the primary tool for designing the PawHub prototype

screens and user interface. The goal is to develop an app that feels smooth,

intuitive, and user-friendly for all pet owners, and Figma supports this

objective by enabling design visualization prior to development (Figma

Design – Figma Learn - Help Center, 2024).

 As a cloud-based platform with real-time collaboration capabilities,

Figma facilitates rapid design iteration across key screens such as Login,

Register, Home, Pet Dashboard, AI Chatbot, and Profile. Its ability to support

both low and high-fidelity mockups allows for flexible experimentation with

layouts and ensures a seamless user journey throughout the app.

 Despite its design-oriented nature, Figma remains highly accessible to

those with a development background. Its drag-and-drop interface, reusable

components, and built-in prototyping tools make it easy to simulate the look

and feel of the application. Once the design is finalized, it will act as a visual

reference during the development phase in Visual Studio Code, guiding the

implementation of each React Native component and ensuring visual

consistency and usability aligned with the original design objectives.

77

3.6 Project Plan

This section outlines the overall project planning strategy. The WBS breaks

down the project into manageable tasks and sub-tasks to ensure systematic

progress and clear role distribution. The Gantt chart presents the scheduling of

these tasks across the project duration, highlighting key milestones,

dependencies, and deadlines to ensure effective time management and project

tracking.

78

3.6.1 Work Breakdown Structure (WBS)

Figure 3.11: Work Breakdown Structure Diagram

79

3.6.2 Gantt Chart

The Gantt chart presents the scheduling of these tasks across the project

duration, highlighting key milestones, dependencies, and deadlines to ensure

effective time management and project tracking.

3.6.2.1 Project Planning and Requirements Gathering

Figure 3.12: Project Planning and Requirements Gathering Gantt Chart

3.6.2.2 System Design Phase

Figure 3.13: System Design Phase Gantt Chart

80

3.6.2.3 Development Phase

Figure 3.14: Development Phase Gantt Chart

3.6.2.4 Testing Phase

Figure 3.15: Testing Phase Gantt Chart

3.6.2.5 Closing Phase

Figure 3.16: Closing Phase Gantt Chart

81

CHAPTER 4

4 PROJECT INITIAL SPECIFICATIONS

4.1 Introduction

In this section, data collected through questionnaires are analyse and

preliminary research is presented to identify user needs and system

expectations for the PawHub application. Based on these findings, the

requirements are written, the use case diagram are drawn, and based on these

specifications, the use case description, and user interface designs are

developed and included in this chapter. Overall, this chapter serves as a

blueprint for the application’s core features and user experience design.

4.2 Facts Finding

Figure 4.1: Target Users of Survey

This section in my report presents an in-depth analysis of pet owner’s current

practices, preferences, and challenges in managing pet health, gathered

through a comprehensive survey. The survey sample, composed entirely of

active pet owners, with 83.8% (37 respondents) confirming pet ownership,

validates the relevance of our study and underscores a strong inclination

towards digital solutions for pet health management. These findings reveal

significant gaps in current offerings and highlight a growing demand for an

integrated, user-friendly platform that meets the real needs of pet owners,

thereby guiding the design and development of PawHub to enhance timely and

effective care for their pets.

82

4.2.1 Section 1: General Information

Figure 4.2: Survey Question 1, Age Group

The survey data indicate that the majority of respondents are young adults,

with 71% aged between 18 and 24, and an additional 25.8% falling within the

25–34 age bracket. This concentration in the younger demographic suggests

that the target user base is likely to be tech-savvy, comfortable with mobile

apps, and open to adopting innovative digital solutions for managing pet care.

Such a youthful audience is often receptive to modern, interactive interfaces

and may value features that integrate seamlessly with their digital lifestyles.

Figure 4.3: Survey Question 2, Pet Types

In terms of pet types, the survey shows that dogs are the most popular, owned

by 58.1% of respondents, while 41.9% own cats. There is also a smaller

percentage of respondents who own fish, birds, and other pets. This

distribution implies that while the app should primarily cater to dog and cat

owners by offering features and content tailored to these animals, it should

also remain flexible enough to accommodate the needs of owners with less

common pet types, ensuring inclusivity and broad appeal.

83

Figure 4.4: Survey Question 3, Number of pets

 The survey reveals that the majority of respondents (61.3%) own just

one pet, which suggests that many users may prefer a simple and

straightforward user interface for managing a single pet’s profile. However,

with 12.9% owning two pets, 9.7% owning three, and 16.1% owning more

than three pets, there is a clear indication that the app should support multi-pet

management. This feature would enable users with multiple pets to easily

switch between profiles and maintain comprehensive health records for each

animal, thereby increasing the app’s overall usability and appeal.

Figure 4.5: Survey Question 4, Pet Ownership Experience

 Respondents experience levels with pet ownership vary significantly.

The largest group, comprising 41.9% of respondents, has been pet owners for

more than six years, suggesting they are likely to be well-informed and may

demand more advanced features or nuanced insights regarding pet care.

Meanwhile, 35.5% have 1–3 years of experience, indicating a need for

educational content and guidance to help newer pet owners make informed

decisions. With 12.9% having 4–6 years and 9.7% less than a year of

experience, the app should ideally offer a balance of advanced functionalities

84

for experienced owners and user-friendly, educational features to assist those

who are relatively new to pet care.

4.2.2 Section 2: Current Pet Care Practices

Figure 4.6: Survey Question 5, Current Pet Health Management

Out of 31 respondents, 25.8% rely on physical records like booklets, while

12.9% use digital notes on devices such as phones or laptops. A significant

32.3% depend on documents provided by veterinarians, and 29% indicated

that they do not track their pet’s health records at all. These results suggest a

varied approach to record-keeping, reflecting both traditional and modern

practices. The fact that nearly one-third of respondents do not track their

records at all underscores a clear opportunity for a centralized digital solution

like PawHub to simplify health record management and ensure that critical

information is readily accessible.

Figure 4.7: Survey Question 6, Vet Visits for checkup or health concerns

85

 Among the 31 respondents, 6.5% visit a veterinarian monthly, 19.4%

do so every 3-6 months, and another 19.4% attend annual checkups. However,

the largest group, 41.9%, only visits a vet when their pet is sick, and 12.9%

reported that they rarely or never make vet visits. This distribution indicates

that while routine checkups are followed by some, a substantial portion of pet

owners delay veterinary visits until a problem arises. Such insights highlight

the potential benefit of an app that encourages proactive health management

through regular reminders and alerts, potentially reducing the reliance on

reactive, emergency-based vet visits.

Figure 4.8: Survey Question 7, Struggles to identify if pet is sick

 When asked about the difficulty of identifying sickness in their pets,

29% of respondents stated that they have experienced this issue many times,

48.4% said it happens sometimes, and 22.6% mentioned that they usually

know when their pet is sick. This data reveals that a significant majority, over

three-quarters of respondents face challenges in accurately identifying health

issues in their pets. This finding underscores the need for an intelligent, AI-

powered symptom diagnosis tool within PawHub that could assist pet owners

in early detection and prompt action, ultimately leading to better health

outcomes for their pets.

86

Figure 4.9: Survey Question 8, Ways to search unusual symptoms

 The responses indicate that a large majority of 87.1% rely on Google

or other online searches to gather information when their pet exhibits unusual

symptoms. Additionally, 38.7% consult a veterinarian directly, 29% ask other

pet owners, and only 16.1% utilize pet-related forums or social media groups.

These findings suggest that while pet owners frequently turn to online sources,

which may vary in reliability, a significant number still value professional

guidance and peer advice. This reinforces the need for a trusted, integrated

solution like PawHub that provides accurate AI-driven insights, thereby

reducing the reliance on less consistent online information and unnecessary

google searches.

Figure 4.10: Survey Question 9, Challenges faced in managing pet’s

health

 This question revealed several common struggles faced by pet owners,

with the most prominent issue being understanding pet symptoms and

knowing when to take action, cited by 71% of respondents. This suggests that

many owners feel uncertain or lack the confidence to assess their pet’s health,

87

which could lead to delayed or inappropriate responses to illnesses.

Additionally, 38.7% of respondents stated they struggle with finding reliable

pet care advice, highlighting the difficulty of navigating the vast amount of

sometimes conflicting information available online. A notable 25.8%

mentioned the challenge of managing multiple pets’ health records,

emphasizing a need for a system that can consolidate and organize health data

in one place. Other common issues include forgetting vaccination dates

(22.6%) and keeping track of vet appointments (16.1%). These findings

clearly indicate that pet owners face both informational and organizational

difficulties, underlining the necessity for an app like PawHub, which can

deliver trustworthy insights, reminders, and comprehensive record

management features tailored to individual pet needs.

Figure 4.11: Survey Question 10, Pet Health Tracking System Usefulness

 Most participants (80.6%) expressed that a pet health tracking system

would help them stay organized, showing strong demand for such a digital tool.

A further 19.4% said they might find it useful if it is easy to use, indicating

that usability and intuitive design are crucial for adoption. Significantly, no

respondents rejected the idea of a tracking system, reinforcing the notion that

most pet owners are open to technological solutions, especially if they can

simplify and improve how pet health is managed. This feedback strongly

supports the integration of tracking features in PawHub, such as, vet visit logs,

symptom monitoring, and multi-pet support, all within a user-friendly

interface.

88

4.2.3 Section 3: AI Chatbot & App Features

Figure 4.12: Survey Question 11, AI-based Virtual Assistant Usage

This question aimed to gauge the familiarity and openness of respondents

toward AI tools in pet care. About 35.5% stated they frequently use AI-based

tools, indicating a growing acceptance of modern technology in everyday pet

care routines. Another 22.6% use them occasionally alongside other resources,

showing that AI is often used in combination with traditional sources such as

vets or online forums. Interestingly, 41.9% said they rarely use AI but are open

to trying it, suggesting that while AI hasn’t become mainstream in this context

yet, there is strong interest and potential for adoption. Importantly, no one

rejected the usefulness of AI outright, which highlights a positive user

sentiment towards integrating such tools into a pet care app.

Figure 4.13: Survey Question 12, AI-based Symptoms Diagnosis Tool

Usage

 The response was overwhelmingly positive, with 51.6% saying it

would be very helpful, and the remaining 48.4% agreeing it might be useful,

89

though they would still consult a vet. Notably, no one expressed distrust in

using AI for preliminary diagnosis, suggesting that users are open to AI tools

as a first line of assistance or a support system before seeking professional

care. This confirms that there is a strong interest in using AI to bridge the gap

between noticing symptoms and taking action, giving reassurance to pet

owners who may otherwise delay or struggle with decision-making.

Figure 4.14: Survey Question 13, AI-based Virtual Assistant Usage for

General Pet Care Questions

 A large majority (67.7%) responded yes, provided that the chatbot

delivers accurate information, while 32.3% indicated they would use it for

minor issues. Again, none rejected the idea of using an AI chatbot, showing

widespread acceptance of such tools, especially for low-risk or general

informational pet care queries. This points to the need for PawHub to prioritize

data accuracy and reliability, as trust in the information source is key for

continued usage and user satisfaction.

Figure 4.15: Survey Question 14, AI-based Virtual Assistant Usage

90

 This multi-choice question highlighted the specific functionalities

users desire from an AI chatbot. Nutrition and feeding advice (87.1%),

common illness symptoms and basic first aid (83.9%), and emergency care

guidance (67.7%) were among the most requested features. Additionally,

training and behavioural guidance (67.7%) and information on vaccinations

and general pet health care (64.5%) also ranked high. These results reflect a

wide range of needs, from routine care to critical health concerns, emphasizing

the importance of developing a comprehensive and multi-functional AI

assistant in PawHub. Users expect more than just casual chat, they want

expert-level educational resources across diverse pet health topics.

Figure 4.16: Survey Question 15, User Trust on AI Tool For Symptoms

Diagnosis

 Trust levels are relatively high, with most responses clustering around

the mid-to-high end of the scale. 38.7% selected “3”, indicating a neutral but

open stance, the same percentage selected “4”, showing strong confidence in

AI tools. Moreover, 22.6% rated it “5”, showing very high trust in AI-powered

symptom diagnosis. Importantly, no respondents chose “1” or “2”, indicating

that nobody is fundamentally opposed to trusting AI in this role. This shows

well for PawHub, suggesting that the more accurate and transparent the tool

becomes, the more user confidence it can build over time.

91

Figure 4.17: Survey Question 16, AI Symptom Checker

 More than half (54.8%) agreed that such a tool would help them

decide, while 41.9% said maybe, again pointing to openness dependent on

accuracy and reliability. Only 3.2% rejected the usefulness of an AI symptom

checker outright. This highlights the opportunity for PawHub to serve as a

decision-support tool, helping users interpret symptoms and make timely

decisions on seeking veterinary care, especially useful for owners unsure

whether a symptom is urgent.

Figure 4.18: Survey Question 17, AI-based Virtual Assistant Response

Rate

 Users had mixed but insightful expectations about response time. 51.6%

preferred instant responses, reflecting the need for real-time interaction in

cases of stress or urgency. 19.4% were comfortable with a delay of up to a

minute, likely valuing slightly delayed but thoughtful responses. Interestingly,

another 51.6% emphasized that “accuracy matters more than speed”, which

reinforces the importance of providing correct and helpful information over

quick, generic answers. These insights suggest PawHub should aim for a

92

balance, prioritize speed, when possible, but never at the expense of accuracy

and user trust.

4.2.4 Section 4: Pet Health Record Management Preferences

Figure 4.19: Survey Question 18, Preferred features in a Pet Health

Record System

When asked about preferred features for a digital pet health record system, the

most in-demand feature was digital vaccination and medical history tracking,

with 93.5% of respondents selecting it. Reminders for vaccinations and vet

appointments followed closely at 80.6%, indicating that users prioritize

staying up to date on their pet’s health needs. Symptom logging and

weight/diet monitoring were each selected by 61.3% of respondents, showing

that many pet owners want more detailed tracking tools. Additionally, 32.3%

valued secure cloud storage for accessing data across devices, and a small

group (3.2%) suggested integrating an encrypted chatbot for privacy and

convenience.

Figure 4.20: Survey Question 19, Importance of Centralized Digital

System

93

 The majority of respondents considered a centralized digital system

highly important for managing their pet’s health. Specifically, 48.4% rated its

importance as 5 (very important), while 38.7% gave it a 4, making up a

combined 87.1% who strongly support the idea. The remaining 12.9% rated it

a 3, indicating moderate interest, while none of the participants rated it as

unimportant (1 or 2). This shows a strong preference for a unified and digital

health tracking solution among pet owners.

Figure 4.21: Survey Question 20, Interest in Receiving Pet Care Tips,

Alerts, and Reminders

 Regarding engagement through alerts and updates, 61.3% of

participants stated they would love to receive regular pet care tips and

notifications through the app. Another 35.5% expressed interest in receiving

updates, but only for important matters such as vaccinations or health concerns.

Just 3.2% mentioned that they do not require reminders. Overall, this indicates

a clear interest in having timely, relevant notifications delivered through the

app to help with responsible pet care management.

94

4.2.5 Section 5: App Usability and Feature Preferences

Figure 4.22: Survey Question 21, Most Important Factors in Pet Care App

When identifying key priorities for a pet care app, 83.9% of respondents

ranked the accuracy of AI diagnosis as the most important factor. This was

followed closely by an easy-to-use interface and reliable pet care advice, both

of which were selected by 80.6% of participants, highlighting the need for

simplicity and trustworthy information. Additionally, 58.1% valued health

record storage and reminders, and the same percentage emphasized the

importance of fast response times. Data privacy and security were also a

concern for 35.5% of users, suggesting that while functionality is important,

protecting user data should not be overlooked.

Figure 4.23: Survey Question 22, Preference for an AI-powered Symptom

Diagnosis Tool

 A majority of respondents (61.3%) expressed that they would prefer

the app to include AI-powered symptom diagnosis to help assess their pet’s

health. Another 38.7% responded “maybe,” showing openness to the idea

while emphasizing that they would still confirm with a veterinarian.

95

Importantly, none of the respondents rejected the idea outright, which reflects

a high level of trust or curiosity in the role of AI in supporting pet health

assessments.

Figure 4.24: Survey Question 23, Additional Features Suggestion

Table 4.1: Additional Features User Responses (Open ended question)

Pet locations if they go missing Reminders

photo record feature for pet so that it

is easier to have a lost and found if

the pet accidentally lost

Nearest animal clinics? And maybe

it’s ratings? Could do like a

collaboration type thing

Keeping individual record and

profile for each pet that user own.

Categorising them can be a help to

those who owns more that one type

of pet.

Perhaps a call/communication center

to connect veterinarians/trained

professionals with consumers

virtually

Maybe we could have specialists

online for chatting with the users

regarding their pets’ behaviours.

Maybe a social hub for pet parents to

share tips, photos of their pet and

personal stories.

Nutritional plans, behavioural

training tips etc

Pet communities for those which

shares location

A profile photo for your pet ! Location for the nearest veterinarian

Real time update and notification Facts

Chatbot encrypted. Maybe, real-time

advice from a vet and also

identifying the nearest animal

hospital in case of any emergency.

General knowledge/educational stuff

(importance of

neutering/vaccination/safety tips or

precautions to take after vaccination)

where I can take picture and upload

to ask om diagnosis.

Honestly most things have been

covered!

multiple language can be accessed Locations for near by clinic

Lost pet alert system Reminders

96

Participants suggested a wide range of features to improve the overall

functionality and usefulness of the pet care app. Several respondents

recommended features to help in emergencies, such as lost pet alert systems,

pet location tracking, and real-time notifications. Others proposed having

individual pet profiles, photo records, and categorization for multiple pets.

There were also suggestions for real-time vet consultations, access to nearby

clinics with ratings, and AI-based image diagnosis tools. Some participants

wanted multilingual access, social features like a pet parent community,

educational content, and behavioural training tips. These ideas reflect a desire

for both practical tools and community engagement features that support day-

to-day pet care. Many of the features suggested are already in line with your

planned functionality for PawHub, like AI advice, pet profiles, and vet

communication. Others such as social features, lost pet systems, clinic locators,

and education tools can be considered for future iterations to enhance user

value and experience.

Figure 4.25: Survey Question 24, Final Feedback or Suggestion for

improving the application

Table 4.2: Final Feedback or Suggestion user responses (Open ended

question)

If there was a way to gauge people’s

trust in AI, like maybe a health

department certification or ethics

certification that ensures users they can

rely on the app for accurate information

Keep it simple and user friendly

which can also be used by older

generations which aren’t really

good with technology.

Customization options, In-App chat

with Vet, Offline mode

Can apply real veterinarian in the

apps to increase the accountability

Allow for other pet owners to add each

other on the app

Might be useful to profile for each

pet, as some people have multiple

97

pets to take care of.

More educational/fun facts Have multiple pets account

accessible

Overall, very good！ Nice app idea ! All the best :)

 Final feedback from users was mostly positive and constructive.

Many emphasized the importance of having multiple pet account access and

individual profiles, especially for users with more than one pet. Simplicity and

user-friendliness were recurring themes, especially to ensure that the app is

accessible to older generations. Several participants suggested offline access,

customization options, and real veterinarian integration to enhance trust and

credibility. There were also ideas like in-app vet chats, friend-adding features

among pet owners, and even certification labels to validate the app’s reliability.

Overall, the feedback was encouraging, with multiple users expressing support

and enthusiasm for the app concept. These suggestions emphasize the

importance of user-centric design, credibility, and reliability. Integrating

feedback from real users into future development such as vet verification,

multiple pet profiles, and simplicity can set PawHub apart in a growing market

of pet care apps.

98

4.3 Requirements Specification

This section defines the functionalities of the PawHub mobile application. The

requirements were derived from the key features of the application and aligned

with the objectives of promoting accessible, AI-powered pet care management.

4.3.1 Functional Requirements

Table 4.3: Functional Requirements

ID Functional Requirements

F001 Pet owners must be able to create a new account to access the app.

F002 Pet owners must be able to log into their existing account to access the

app.

F003 Pet owners should have the ability to view and update their personal

profile information.

F004 The system must support pet owners to manage their pet profile.

F005 Pet owners should have the ability to add pets, view their pet profile,

update their information and delete multiple pet profiles.

F006 The system must allow pet owners to add, view and delete health

records for each pet.

F007 The system should automatically notify pet owners with reminders if

the health record date is in the future.

F008 The system should provide an AI-powered chatbot that answers pet

care inquiries (nutrition, training, behaviour, etc.) in real time.

F009 Pet owners must be able to toggle between three AI models in the

chatbot for varied response styles.

F010 The system should allow pet owners to enter pet symptoms and

receive an AI-generated analysis indicating if urgent veterinary care is

needed.

F011 The system should provide pet care resources such as articles, tips,

and guides.

F012 The system should allow pet owners to give feedback on the app’s

functionality and usability.

99

4.3.2 Non-Functional Requirements

Table 4.4: Non-Functional Requirements

ID Non-Functional Requirements Category

NF001 Under normal conditions, the system

must respond to user input in less than

two seconds.

Performance

NF002 For both tech-savvy and non-tech-

savvy users, the front end of the

application must be easy to use,

visually appealing, and clear.

Usability

NF003 The system must ensure secure data

transmission and storage, protecting

user credentials and pet health data.

Security

NF004 The system’s code should be modular,

well-documented, and easily

extendable for future updates and

feature additions.

Maintainability

NF005 The system must allow 1000 users and

data without significant performance

degradation.

Scalability

100

4.4 Use Case Diagram

Figure 4.26: Use Case Diagram

101

4.5 Use Case Description

Based on requirements specifications and use case diagram, the use case

description are designed and included in this section. Overall, this section

shows the flows of event between users (pet owners) and the system for every

use case features.

4.5.1 UC001: Login User Profile

Table 4.5: UC001 Login User Profile

Use Case Name: Login User Profile

ID:

UC001

Importance Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want secure and quick access to their account.

Brief Description: This use case describes the process of allowing an

existing user to access their account by verifying their login information.

Trigger: A user wants to log into their existing account.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user presses the “Login” function.

2. The system ask the user to give their email and password.

3. The system checks the completion of data entered by the user.

Continue to S-1.

4. The system validates the format of the information written by the

102

user. Continue to S-2.

5. The system checks if they user credentials match the database.

Continue to S-3.

6. The system brings the user to the home page.

Sub-flows:

S-1: Perform 3.1 or 3.2

 3.1 If the information is empty, the system will show an error

message of incomplete data. Continue to flow no 2.

 3.2 If the information is complete, proceed to flow no 4.

S-2: Perform 4.1 or 4.2

 4.1 If all the information is in the correct format, proceed to flow

no.5.

 4.2 If the information format is incorrect, the system displays an

error message beside and ask to re-enter again. Continue to flow no.2.

S-3: Perform 5.1 or 5.2

 5.1 If the credentials match the records in the database. proceed to

flow no.6.

 5.2 If the credentials are not found in the database, the system

displays an error message. Continue to flow no.2.

Alternate/Exceptional Flows:

• A message advising the user to try again later is displayed in the

event that a system fault arises during database validation.

103

4.5.2 UC002: Register User Profile

Table 4.6: Register User Profile

Use Case Name: Register User Profile

ID:

UC002

Importance Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want to create a new profile easily and securely.

Brief Description: This use case explains how to let a new user to

register by giving the necessary information.

Trigger: A new user wants to create an account.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user picks the the “Register” function.

2. The system prompts the user to enter personal details (e.g., email,

password, name, phone number).

3. The system checks the completion of data entered by the user.

Continue to S-1.

4. The system validates the format of the entered information.

Continue to S-2.

5. The system checks for duplicate account existence in the database.

Continue to S-3.

6. The system creates the user account.

104

Sub-flows:

S-1: Perform 3.1 or 3.2

 3.1 A warning message indicating incomplete data is displayed by

the system if any required field is left empty. Continue to flow no 2.

 3.2 If all required fields are complete, proceed to flow no 4.

S-2: Perform 4.1 or 4.2

 4.1 If all the information is in the correct format, proceed to flow

no.5.

 4.2 If the information format is incorrect, the system displays an

error message beside and ask to re-enter again. Continue to flow no.2.

S-3: Perform 5.1 or 5.2

 5.1 If no duplicate account exists. proceed to flow no.6.

 5.2 If an account with the provided email already exists, the system

will show an error message and prompts for a different email. Continue to

flow no.2.

Alternate/Exceptional Flows:

• A warning message is displayed and the user is urged to try again

later in the event that a system error occurs during account creation.

105

4.5.3 UC003: Manage User Profile

Table 4.7: Manage User Profile

Use Case Name: Manage User Profile

ID:

UC003

Importance Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want quick and organized access to their pet’s profile and

information.

Brief Description: This use case explains how to let a user change their

personal information.

Trigger: A logged-in user wants to update their profile details.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user presses the “Manage User Profile” button.

2. The current profile details of the user is shown by the system.

3. The user edits their wanted informations fields.

4. The system checks the completeness of the new data. Continue to S-

1.

5. The system validates the format of the new information. Continue to

S-2.

6. The system saves the updated profile information.

106

Sub-flows:

S-1: Perform 4.1 or 4.2

 4.1 If the updated information is complete, proceed to flow no.5.

 4.2 The system shows an error message and asks the user to fill out

all necessary fields if the revised information is not full. Continue to flow

no.2.

S-2: Perform 5.1 or 5.2

 5.1 If the updated information is in the correct format. proceed to

flow no.6.

 5.2 The system asks the user to re-enter the right format and shows

an error message if the information format is incorrect. Continue to flow

no.2.

Alternate/Exceptional Flows:

• If an error while saving the profile, it notifies the user and suggests

trying the update again later.

107

4.5.4 UC004: Add Pet

Table 4.8: UC004: Add Pet

Use Case Name: Add Pet

ID:

UC004

Importance

Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want to easily register their pet’s details for health

monitoring and management.

Brief Description: This use case explains how to allow a user to add a

new pet profile by providing necessary pet details.

Trigger: A user wants to add a new pet profile to their account.

Relationships:

 Association : Pet Owner

 Include : Add Pet Details

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “Add Pet” function.

2. The user is prompted by the system to input pet information, such as

the pet’s name, breed, and age.

3. The system checks for the completeness of the entered data. Continue

to S-1.

4. The system validates the format of the pet details. Continue to S-2.

5. The system saves the new pet profile and associates it with the user’s

account.

108

Sub-flows:

S-1: Perform 3.1 or 3.2

 3.1 If all required details are provided, proceed to flow no.4.

 3.2 If any required pet detail is missing, the system displays an error

message indicating incomplete data. Continue to flow no.2.

S-2: Perform 4.1 or 4.2

 4.1 If the pet details are in the correct format. proceed to flow no.5.

 4.2 If any detail is in the incorrect format, the system displays an

error message and asks for re-entry. Continue to flow no.2.

Alternate/Exceptional Flows:

• If the system cannot save the pet profile because of an error, it shows

a warning and ask the user to try again later.

109

4.5.5 UC005: Manage Pet Profile

Table 4.9: UC005: Manage Pet Profile

Use Case Name: Manage Pet Profile

ID:

UC005

Importance

Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want to keep their pet information accurate and up to date

for better management and tracking.

Brief Description: This use case explains the function of allowing a user

to update or edit an existing pet profile.

Trigger: A user wants to modify details of an existing pet profile.

Relationships:

 Association : Pet Owner

 Include : View Pet Profile

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user picks the “Manage Pet Profile” button.

2. A list of pet profiles associated with the user is displayed by the

system.

3. The user selects a specific pet profile to edit.

4. The system presents the current pet details for editing.

5. The user modifies the desired fields.

6. The system checks the completeness of the updated information.

Continue to S-1.

7. The system validates the format of the updated information. Continue

110

to S-2.

8. The system saves the updated pet profile.

Sub-flows:

S-1: Perform 6.1 or 6.2

 6.1 If the updated pet details are complete, proceed to flow no.7.

 6.2 The system indicates an error and asks for completion if any

required fields are left blank. Continue to flow no.4.

S-2: Perform 7.1 or 7.2

 7.1 If the updated details are correctly formatted. proceed to flow

no.8.

 7.2 The system requests for re-entry and shows an error message if

the format is incorrect. Continue to flow no.4.

Alternate/Exceptional Flows:

• The user is notified and advised to try again later if the system detects

an error when saving updates.

111

4.5.6 UC006: Add Pet Health Records

Table 4.10: UC006: Add Pet Health Records

Use Case Name: Add Pet Health Records

ID:

UC006

Importance

Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want to document their pet’s health records efficiently and

receive reminders for future vaccinations or appointments.

Brief Description: This use case explains how to add a pet’s health

record, including an extension that will send out a reminder if future

dates (such a vaccine or veterinary appointment) are added.

Trigger: A user wants to record new health information for their pet.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : Notify Reminder

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “Add Pet Health Records” function.

2. The user is prompted by the system to submit information about their

pet health record, such as the date, type, and name of their

vaccinations.

3. The system checks for completeness of the entered data. Continue to

S-1.

4. The system validates the format and correctness of the date and other

details. Continue to S-2.

112

5. The system checks if the entered date is in the future. Continue to S-

3.

6. The system triggers the Notify Reminder extension.

7. The system saves the health record and associates it with the pet’s

profile.

Sub-flows:

S-1: Perform 3.1 or 3.2

 3.1 If all fields are complete, proceed to flow no.4.

 3.2 The system indicates incomplete data with an error message if

any necessary field is left empty. Continue to flow no.2.

S-2: Perform 4.1 or 4.2

 4.1 If the information is in the correct format, proceed to flow no.5.

 4.2 If any field is incorrectly formatted, the system shows an error

warning and the user is asked to enter the information again. Continue to

flow no.2.

S-3: Perform 5.1 or 5.2

 5.1 If the health record includes a future date, the system

automatically schedules a reminder for the event. proceed to flow no.6.

 5.2 If the date is not in the future, no reminder is scheduled, and the

system proceeds to save the record. proceed to flow no.7.

Alternate/Exceptional Flows:

• If an error occurs during the reminder scheduling or saving process,

the system displays an error message and suggests trying again later.

113

4.5.7 UC007: Enquire AI Chatbot

Table 4.11: UC007: Enquire AI Chatbot

Use Case Name: Enquire AI Chatbot

ID:

UC007

Importance

Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want fast, AI-powered responses to general pet care

questions to support daily care decisions.

Brief Description: This use case explains the interaction with the AI

chatbot to ask questions and receive pet care advice.

Trigger: A user wants to get advice or information about pet care from

the AI chatbot.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “AI Chatbot” option.

2. The system opens the AI chat interface, including a dropdown menu

for model selection.

3. The user selects one of the available AI models.

4. The user enters a pet care-related question into the input box.

5. The system performs a preliminary validation of the input (e.g.,

checking for non-empty and valid characters). Continue to S-1.

6. The system constructs an API request that includes both the selected

114

AI model and the user’s query.

7. The system sends the API request to the corresponding OpenRouter

AI model endpoint based on the user’s selected model.

8. The system waits for the response from the external AI API.

9. Upon receiving the response, the system processes and formats the

returned text for clarity and display.

10. The system displays the AI-generated response to the user in the chat

interface.

Sub-flows:

S-1: Perform 5.1 or 5.2

 5.1 If the user’s input is valid (non-empty and acceptable format),

proceed to flow no.6.

 5.2 If the input is invalid (empty or contains disallowed characters),

the system will show a warning and ask the user to enter the query again.

Continue to flow no.4.

Alternate/Exceptional Flows:

A-1: API Timeout or Failure

• If the external AI API fails to respond within the expected time or

returns an error, the system displays a message indicating that the

service is temporarily unavailable and suggests using another model.

A-2: Malformed API Response

• If the AI API returns an incorrect or partial result, the system alerts

the user and records the error for future analysis, with the option to

try the request again.

115

4.5.8 UC008: Input Symptom Diagnosis

Table 4.12: UC008: Input Symptom Diagnosis

Use Case Name: Input Symptom Diagnosis

ID:

UC008

Importance

Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want to receive fast and reliable suggestions when their

pet shows signs of illness.

Brief Description: This use case explains the function of allowing a user

to input pet symptoms and receive a preliminary diagnosis whether the

pet needs immediate medical attention.

Trigger: A user observes unusual symptoms in their pet and wants a

preliminary diagnosis.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “Symptom Diagnosis” button.

2. The user is prompted by the system to enter the symptoms they have

noticed.

3. The user inputs some details of the symptoms faced by their pet.

4. The system checks for completeness of the entered data. Continue to

S-1.

5. The system validates the format and relevance of the symptoms.

116

Continue to S-2.

6. The system processes the input and generates a preliminary diagnosis

on whether the pet need immediate medical attention.

7. The system displays the preliminary diagnosis and any recommended

next steps.

Sub-flows:

S-1: Perform 4.1 or 4.2

 4.1 If all required symptom details are provided, proceed to flow

no.5.

 4.2 If details are incomplete, the system displays an error message

and asks for additional information. Continue to flow no.2.

S-1: Perform 5.1 or 5.2

 5.1 If the symptoms are clearly described and in the correct format.

proceed to flow no.6.

 5.2 If the description is incomplete, the system asks the user to

clarify or add more details. Continue to flow no.2.

Alternate/Exceptional Flows:

• If the system is unable to provide a clear diagnosis, it may

recommend the user consult a veterinary professional immediately.

117

4.5.9 UC009: View Educational Resources

Table 4.13: UC009: View Educational Resources

Use Case Name: View Educational Resources

ID:

UC009

Importance

Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want easy access to trusted pet care articles and guides to

improve their knowledge and care practices.

Brief Description: This use case explains how to let a user to browse and

view educational resources related to pet care.

Trigger: A user wants to learn more about pet care through articles or

training guides.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “Educational Resources” option.

2. The system displays a list or menu of available educational resources

after web scraping.

3. The user browses or uses the search/filter functionality to find

relevant topics.

4. The user selects a specific resource to view.

5. The system displays the detailed content of the selected resource.

118

Sub-flows:

Alternate/Exceptional Flows:

• If no resources match the user’s search criteria, the system displays a

“No educational resources found” message with suggestions to

broaden the search.

119

4.5.10 UC010: Give Feedback

Table 4.14: UC010: Give Feedback

Use Case Name: Give Feedback

ID:

UC010

Importance

Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners – want to share their experiences, report issues, or suggest

improvements to help enhance the app’s quality.

Brief Description: This use case describes the process of allowing a user

to submit feedback or report their experience with the application.

Trigger: A user decides to provide feedback about their experience using

the application.

Relationships:

 Association : Pet Owner

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the “Feedback” option.

2. The user is prompted by the system to submit a report, comments, or

ideas.

3. The user inputs their feedback.

4. The system checks for completeness of the feedback submission.

Continue to S-1.

5. The system records and stores the feedback.

120

Sub-flows:

S-1: Perform 4.1 or 4.2

 4.1 If the feedback is complete, proceed to flow no.5.

 4.2 The system shows an error notice and asks the user to finish the

submission if the feedback is lacking any necessary information. Continue to

flow no.2.

Alternate/Exceptional Flows:

• The user is notified and given the option to try again later if the

system detects an error when recording the feedback.

121

4.6 User Interface (UI) Prototype

This section presents a simple wireframe prototype developed using Figma for

the PawHub application. The prototype illustrates the overall layout,

navigation flow, and key interface elements designed to ensure a user-friendly

and accessible experience. It serves as a visual guide for the app’s structure

before moving into full development.

Figure 4.27: Overall PawHub Prototype

Figure 4.28: Welcome Screen

122

Figure 4.29: Login Screen

Figure 4.30: Register Screen

123

Figure 4.31: Home Screen and Navigation

Figure 4.32: AI Chatbot Screen

124

Figure 4.33: Symptom Diagnosis Screen

Figure 4.34: Pet Profile Management Screen

125

Figure 4.35: User Profile Management Screen

Figure 4.36: Educational Resources Screen

126

Figure 4.37: Feedback Screen

127

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

In this chapter the system architecture, database diagram, data dictionary, API,

Endpoints, Data Flow Diagram (ERD), Activity Diagram, Mobile Application

Design Principles and User Interface Design were all covered in detail. To

show the relationships and structuring of data, it contains Activity Diagrams,

Data Flow Diagrams (DFD), Entity Relationship Diagrams (ERD), and a data

dictionary. The user interface decisions are explained using the principles of

mobile application design which focuses on responsiveness, consistency, and

usability. Additionally, layouts for the application’s user interface are used to

show the application's navigation, layout, and overall user experience.

5.2 System Architecture

Figure 5.1: System Architecture

The PawHub system architecture is a well-structured, secure, and intelligent

mobile application ecosystem designed to assist pet owners in managing their

pets’ health through AI-powered virtual assistance. At the client side, the

React Native mobile app served as the user interface, allowing pet owners to

128

interact with features such as symptom diagnosis, AI chatbot conversations,

pet profile management, and health record tracking. All user requests are

securely transmitted to the Node.js Express backend server, which acts as the

central control layer, handling authentication, business logic, and

communication with external services.

The backend ensured data integrity and security by validating

requests, enforcing rate limits, and using JWT-based authentication to verify

user identity. It communicates with Supabase, which functions as the primary

database and authentication provider, storing user profiles, pet information,

health records, symptom history, chat logs, and feedback, to guarantee that

users may only access their own data, all are safeguarded by Row Level

Security (RLS). For AI-powered functionality, the backend integrates with

OpenRouter.ai, sending structured prompts that include pet details and

symptoms to advanced language models such as Microsoft MAI DS R1,

Mistral, and Horizon Alpha. The system employed a Model Control &

Prioritization (MCP) strategy, automatically falling back to alternative models

if the primary one fails, ensuring reliable and continuous AI responses.

When a user submits symptoms, the AI returns a diagnosis in a

strictly formatted structure Diagnosis, Severity, Recommendation, Possible

Causes, and Additional Notes which is parsed by the backend and displayed in

a clean, user-friendly format within the app. Additionally, the system uses

Resend to send automated email reminders for upcoming health events, such

as vaccinations, by checking the email_reminders table at regular intervals and

triggering emails one day before the scheduled date. This layered architecture

separating the frontend, backend, database, and external AI/email services

ensures scalability, maintainability, and strong security, making PawHub a

robust, real-world-ready pet care solution that effectively combines modern

full-stack development with artificial intelligence to deliver practical value to

pet owners.

129

5.3 Database Design

The PawHub application used a secure, relational database built on Supabase

(PostgreSQL) to store user, pet, health, and AI interaction data. The profiles

table links to Supabase Auth for secure user identification, while keeping

profile data like username and avatar separate. The pets table stores pet details

and is linked to users via foreign key, supporting multiple pets per user. Health

records, including vaccinations and check-ups, are tracked in the

health_records table with optional email reminders managed by the

email_reminders table.

AI-powered features were supported by symptom_history, which

saves AI-generated diagnoses with severity levels, and chat_history, which

logs chatbot interactions for continuity and user feedback. Educational content

is stored in the articles table, populated weekly by scraping trusted sources like

AKC. User feedback is collected in the feedback table to support app

improvements. All tables were protected by Row Level Security (RLS)

standards, making sure users may only view their own data. This design

ensures data integrity, privacy, and scalability, forming a solid foundation for

current functionality and future enhancements.

Figure 5.2: ERD Diagram

130

5.3.1 Data Dictionary

5.3.1.1 auth.users.id

This table is managed by Supabase Auth. It is not directly accessed by the app,

only through secure authentication flows.

Table 5.1: Authenticated Users Table

Field Type Null Default Description

id uuid NO - User’s unique identification

email text NO - User’s Email address

encrypted_password text NO - Password hash stored securely

(not visible or accessible)

5.3.1.2 profiles

Stores user account information linked to Supabase Auth.

Table 5.2: Users Information Table

Field Type Null Default Description

id uuid NO - Primary key;

references

auth.users(id)

username text NO - Unique username

chosen by the user

phone text YES NULL User’s contact number

avatar_url text YES NULL URL to profile picture

in Supabase Storage

created_at timestamptz NO timezone(‘utc’::text,

now())

Account creation

timestamp

is_deleted boolean NO false Flag to mark soft-

deleted accounts

Constraints:

• profiles_pkey: Primary key on id

• profiles_id_fkey: Foreign key to auth.users(id)

131

5.3.1.3 pets

Stores pet profile information owned by a user.

Table 5.3: Pets Information Table

Field Type Null Default Description

user_id uuid YES NULL Owner of the

pet

pet_name text NO - Name of the pet

pet_breed text YES NULL Type of the pet

pet_birthday date YES NULL Date of birth

pet_weight numeric YES NULL Weight in

kilograms

pet_height numeric YES NULL Height in

centimeters

id uuid NO gen_random_uuid() Unique pet

identifier

created_at timestamptz NO timezone(‘utc’::text,

now())

Timestamp

when pet was

added

pet_avatar text YES NULL URL to pet’s

profile image

Constraints:

• pets_pkey: Primary key on id

• pets_user_id_fkey: Foreign key to profiles(id)

132

5.3.1.4 health_records

Tracks medical events such as vaccinations, check-ups, and treatments.

Table 5.4: Pets Health Record Information Table

Field Type Null Default Description

pet_id uuid YES NULL Reference to the pet

record_name text NO - Name of the health

event (e.g.,

“Vaccination”)

record_code text YES NULL Optional medical

code

record_date date NO - Scheduled or past

date of the event

record_cause text YES NULL Reason for the visit

(e.g., “Routine check-

up”)

id uuid NO gen_random

_uuid()

Unique record ID

record_description text YES NULL Notes or details about

the event

created_at timestamptz NO timezone(‘u

tc’::text,

now())

Timestamp when

record was created

notification_enabled boolean NO true Whether to send

email reminder

Constraints:

• health_records_pkey: Primary key on id

• health_records_pet_id_fkey: Foreign key to pets(id)

• health_records_user_id_fkey: Foreign key to profiles(id)

133

5.3.1.5 symptom_history

Stores AI-generated diagnoses from user-submitted symptoms.

Table 5.5: Pets AI Symptoms Diagnosis History Table

Field Type Null Default Description

pet_id uuid YES NULL Reference to the pet

id bigint NO GENERATED

ALWAYS AS

IDENTITY

Auto-incrementing ID

user_id uuid NO - Owner who submitted

the symptoms

symptoms text NO - User’s input (e.g.,

“vomiting, lethargic”)

diagnosis text NO - AI-generated diagnosis

severity text NO - Risk level: low,

moderate, or high

created_at timestamptz NO now() Timestamp of diagnosis

Constraints:

• symptom_history_pkey: Primary key on id

• symptom_history_user_id_fkey: Foreign key to profiles(id)

• symptom_history_pet_id_fkey: Foreign key to pets(id)

5.3.1.6 chat_history

Stores messages from the AI chatbot for continuity and rating.

Table 5.6: AI Chatbot Message History Table

Field Type Null Default Description

id bigint NO GENERATED

ALWAYS AS

IDENTITY

Auto-incrementing

message ID

user_id uuid NO - User who sent the

message

134

message text NO - Message content

is_user boolean NO - trueif from user,falseif

from AI

created_at timestamptz NO now() Timestamp of message

rating integer YES NULL User rating (1–5 stars) for

bot message

session_id text YES NULL Group messages by chat

session

pet_id uuid YES NULL Contextual pet for AI

response

Constraints:

• chat_history_pkey: Primary key on id

• chat_history_user_id_fkey: Foreign key to profiles(id)

• chat_history_pet_id_fkey: Foreign key to pets(id)

5.3.1.7 email_reminders

Manages scheduled email notifications for upcoming health events.

Table 5.7: Email Reminders Table

Field Type Null Default Description

record_date date YES NULL Date of the health event

user_id uuid NO - Recipient user

pet_id uuid NO - Pet associated with the reminder

record_id uuid NO - Unique;

referenceshealth_records(id)

record_name text NO - Name of the event (e.g., “Dental

Check-up”)

pet_name text NO - Name of the pet (denormalized

for email)

reminder_time timest

amptz

NO - When the email should be sent

(e.g., 1 day before)

135

id uuid NO gen_ran

dom_uu

id()

Unique reminder ID

sent boole

an

NO false Whether the email has been sent

created_at timest

amptz

NO now() When reminder was created

Constraints:

• email_reminders_pkey: Primary key on id

• email_reminders_user_id_fkey: Foreign key to profiles(id)

• email_reminders_pet_id_fkey: Foreign key to pets(id)

• record_id is unique per user

5.3.1.8 feedback

Stores user feedback for app improvement.

Table 5.8: User Feedback Table

Field Type Null Default Description

created_at timestamptz NO CURRENT_

TIMESTAMP

When feedback was

submitted

id bigint NO GENERATED

ALWAYS AS

IDENTITY

Auto-incrementing ID

user_id uuid NO - Submitter

rating integer NO - 1 to 5 stars

feedback_text text NO - User’s written feedback

Constraints:

• feedback_pkey: Primary key on id

• feedback_user_id_fkey: Foreign key to profiles(id)

• rating must be between 1 and 5

136

5.3.1.9 articles

Stores curated pet care articles scraped from external sources (e.g., AKC).

Table 5.9: Web-scraped Articles Table

Field Type Null Default Description

title text NO - Article title

summary text YES NULL Brief description

link text NO - Unique URL to original

article

category text YES NULL Topic (e.g., “Training”,

“Nutrition”)

image text YES NULL Thumbnail image URL

created_at timestamptz NO now() When article was added

to database

id bigint NO GENERATED

ALWAYS AS

IDENTITY

Auto-incrementing ID

Constraints:

• articles_pkey: Primary key on id

• link must be unique

137

5.4 API Endpoints

To enable communication between the React Native frontend and backend

services, the PawHub application made use of a secure RESTful API

developed with Node.js and Express.js. JWT-based authentication middleware

safeguards all endpoints, guaranteeing that only authorized users can access or

alter data. Rate limiting was implemented to prevent abuse, with specific

limits for authentication (20 attempts per 15 minutes), general usage (200

requests per 15 minutes), and chat functionality (20 requests per minute). The

API integrates with Supabase for data persistence, OpenRouter for AI-

powered symptom diagnosis, and Resend for automated email reminders. All

requests required a valid Bearer token obtained during login, and responses

were returned in JSON format.

5.4.1 Authentication Endpoints

Table 5.10: Authentication Endpoints

Method Endpoint Description

POST /auth/login Gets the JWT token after authenticating

the user with their email and password.

POST /auth/register Creates a new user account and

corresponding profile entry

POST /auth/forgot-password Initiates password reset flow via email

5.4.2 Profile Management Endpoints

Table 5.11: Profile Management Endpoints

Method Endpoint Description

GET /auth/profile Retrieves user profile information

including username and avatar URL

PUT /profile Updates user’s profile information.

POST /profile/avatar Uploads a new profile picture from a

multipart/form-data request

POST /profile/avatar/default Sets a predefined default avatar by

138

updating the avatar_url with the URL of

one of the four default user images hosted

in Supabase Storage.

DELETE /profile Soft deletes the user account by setting

the is_deleted flag to true in the Profiles

table.

5.4.3 Pet Management Endpoints

Table 5.12: Pet Management Endpoints

Method Endpoint Description

GET /pets Retrieves all pets belonging to the authenticated user

POST /pets Creates a new pet profile or updates an existing one

DELETE /pets/:id Deletes a pet and all associated health records

5.4.4 Health Records Endpoints

Table 5.13: Health Records Endpoints

Method Endpoint Description

GET /health-records/:petId Retrieves all health records for a specific

pet

POST /health-records Creates a new health record with optional

email reminder

DELETE /health-records/:id Deletes a specific health record

139

5.4.5 Feedback Endpoints

Table 5.14: Feedback Endpoints

Method Endpoint Description

GET /feedback Retrieves all feedback for logged-in user from

database

POST /feedback Submits or updates user feedback with rating

DELETE /feedback/:id Deletes a feedback entry

5.4.6 Symptom Diagnosis Endpoints

Table 5.15: Symptom Diagnosis Endpoints

Method Endpoint Description

POST /symptom/diagnose Sends symptoms to AI model and returns

structured diagnosis

GET /symptom-history Retrieves user’s past symptom diagnoses

POST /symptom-history Saves a new symptom diagnosis to

history

DELETE /symptom-history/:id Deletes a specific symptom history entry

5.4.7 AI Chatbot Endpoints

Table 5.16: AI Chatbot Endpoints

Method Endpoint Description

GET /chat/models Retrieves list of available AI models for

chat

GET /chat/history Retrieves chat history for current session

POST /chat/message Sends user message to AI and returns

response

PUT /chat/rate/:id Submits user rating for a chat message

DELETE /chat/session/:sessionId Clear a chat session

GET /chat/sessions Get user’s chat sessions

140

5.4.8 Other Endpoints

Table 5.17: Other Endpoints

Method Endpoint Description

GET /articles Retrieves web scraped educational articles from

database

GET /home Retrieves consolidated data for home screen

display

GET /health Health check endpoint returning service status

141

5.5 Data Flow Diagram (DFD)

The PawHub system’s information flow is shown by the Data Flow Diagram

(DFD), which shows the data flow between users, processes, and the database.

It gives a clear picture of the system’s data storage, external entities, and

functional processes, making it possible to understand how various parts work

together. In order to guarantee that all data transactions were managed

effectively and securely, the DFD also helps in identifying the pathways via

which user inputs are processed, stored, and retrieved. The system’s general

functioning and detailed process flows can be seen in both the Level 0 and

Level 1 diagrams.

5.5.1 Context Diagram

Figure 5.3: Context Diagram

142

5.5.2 Level-0 Diagram

Figure 5.4: Level-0 Diagram

5.5.3 Level-1 Diagram

The PawHub system’s primary functions were shown in further detail in the

Level 1 Data Flow Diagram, which builds upon the Level 0 diagram’s general

flow. It interacts with external entities and the system’s databases, breaking

down certain important processes into smaller ones. This degree of detail

helped in explaining the sequential data flow, illustrating the ways in which

data is collected, processed, stored, and retrieved to provide the application’s

intended functionality.

143

5.5.3.1 Enquire AI Chatbot Level-1 Diagram

Figure 5.5: Enquire AI Chatbot Level-1 Diagram

5.5.3.2 Input Symptom Diagnosis Level-1 Diagram

Figure 5.6: Input Symptom Diagnosis Level-1 Diagram

144

5.5.3.3 Add Pet Health Records Level-1 Diagram

Figure 5.7: Add Pet Health Records Level-1 Diagram

145

5.6 Activity Diagram

Activity diagrams were used in PawHub to show the process of important user

interactions across the main modules. These diagrams used a standardized

UML structure to show action sequences, decision points, validations, and

system responses. The detailed activity diagrams for the main features were

shown in the next sections. These provide an illustration of the operational

workflows that are necessary to comprehend the functional behavior of the

application.

5.6.1 Login Activity Diagram

Figure 5.8: Login screen activity diagram

5.6.2 Register Activity Diagram

Figure 5.9: Register screen activity diagram

146

5.6.3 Forgot Password Activity Diagram

Figure 5.10: Forgot screen activity diagram

5.6.4 Add Pet Activity Diagram

Figure 5.11: Pet Management Screen activity diagram - Add pet

147

5.6.5 Add Health Record With Reminder Activity Diagram

Figure 5.12: Pet Management Screen activity diagram - Add health record

with reminder

148

5.6.6 AI Chatbot Activity Diagram

Figure 5.13: AI Chatbot Screen activity diagram

149

5.6.7 Symptoms Diagnosis Activity Diagram

Figure 5.14: Symptom Diagnosis Screen activity diagram

150

5.6.8 Education Article Activity Diagram

Figure 5.15: Education Screen activity diagram

151

5.6.9 Feedback Activity Diagram

Figure 5.16: Feedback Screen activity diagram

5.6.10 Profile Management Activity Diagram

Figure 5.17: Profile Management Screen activity diagram

152

5.7 Mobile Application Design Principles

The design of PawHub was guided by established human-computer interaction

(HCI) principles, particularly Shneiderman’s Eight Golden Rules of Interface

Design, to ensure an intuitive, efficient, and user-centered experience for pet

owners managing their animals’ health. These principles were systematically

applied throughout the app’s core workflows from selecting a pet and entering

symptoms to viewing AI-generated diagnoses and managing health records,

resulting in a cohesive, trustworthy, and professional mobile interface.

i. Strive for Consistency

(a) (b) (c)

Figure 5.18(a)(b)(c): Strive for Consistency

PawHub maintained strict visual and functional consistency across all

screens. The primary action button color, input field styling, typography

hierarchy, icon usage, and modal layouts were uniform whether the user is

adding a pet, submitting feedback, or viewing a diagnosis report. This

consistency reduced cognitive load, allowing users to navigate confidently

without relearning interactions. For example, the “Analyze Symptoms”

button appears identically on the Symptom Diagnosis screen as the “save”

button does on the Pet Management form to add pet, both use the same

rounded corner, shadow, and color scheme, reinforcing familiarity.

153

ii. Enable Frequent Users to Use Shortcuts

(a) (b) (c)

Figure 5.19(a)(b)(c): Enable Frequent Users to Use Shortcuts

To support power users who interacts with the app daily, PawHub

incorporated contextual shortcuts. When a user has only one pet, it is auto-

selected upon opening the Symptom Diagnosis screen or AI Chatbot,

eliminating a mandatory selection step. Additionally, the floating “+”

button on the Pet Management screen allows instant access to new pet

profile creation without navigating through menus.

Figure 5.20: Enable Frequent Users to Use Shortcuts - Prominent Display

Recent assessments were prominently displayed in the home view,

enabling quick review without drilling into full history, accelerating

common tasks while preserving discoverability for new users.

154

iii. Offer Informative Feedback

(a) (b)

Figure 5.21(a)(b): Offer Informative Feedback - loading spinner

Every user action triggered immediate, meaningful feedback. When

submitting symptoms or feedback, a loading spinner with the text appeared

instantly, signaling system activity. When a user interacted with the AI

Chatbot, the 3 dots were displayed to show the AI is typing.

(a) (b)

Figure 5.22(a)(b): Offer Informative Feedback - Success Toast

Upon successful creation or deletion of a pet, health record or

assesment, a subtle toast notification slided in confirming success without

interruption.

155

(a) (b)

Figure 5.23(a)(b): Offer Informative Feedback - Input Validation

Input validation was handled inline, empty fields turned red with

descriptive error messages below them, ensuring users understand what

went wrong without confusion or frustration. These layered feedback

mechanisms kept users informed at every stage of interaction.

iv. Design Dialogs to Yield Closure

(a) (b) (c)

Figure 5.24(a)(b)(c): Design Dialogs to Yield Closure - Symptom

Diagnosis Flow

Each core task followed a clear, closed-loop sequence. In the Symptom

Diagnosis flow, users begin by entering symptoms, tap “Analyze”,

observed the AI processing state, receive a structured report, and found the

result automatically saved in their history. No step feels incomplete, the

156

final diagnosis card and its presence in the “Recent Assessments” list

provided tangible closure.

(a) (b) (c)

Figure 5.25(a)(b)(c): Design Dialogs to Yield Closure - Delete Heatlh

Record

Similarly, deleting a health record required a confirmation modal

followed by immediate visual removal from the list, ensuring users felt

confident their action was fully processed.

v. Offer Simple Error Handling

(a) (b)

Figure 5.26(a)(b): Offer Simple Error Handling - Input Validation

157

Errors were prevented and resolved gracefully. Before submitting a request,

the app validated that sections are not blank, if they are, the input field

turned red with a clear message. This inline approach prevents form

submission failures entirely.

(a) (b)

Figure 5.27(a)(b): Offer Simple Error Handling - For irreversible

actions

 For irreversible actions like deleting a user profile, pet or assessment,

a confirmation modal appeared with a destructive button labeled “Delete,”

requiring explicit intent. This dual-layered strategy, prevention via

validation and recovery via confirmation minimizes user anxiety and data

loss.

158

vi. Permit Easy Reversal of Actions

Figure 5.28: Permit Easy Reversal of Actions – Cancel

PawHub prioritizes reversibility to encourage exploration. Deleting any

item whether a pet, health record, or symptom assessment triggered a

dedicated confirmation modal with clearly labeled “Cancel” and “Delete”

buttons. There were no “undo” after deletion, but because all data were

stored in the cloud and visible in the History section, users can always re-

add information if needed.

(a) (b)

Figure 5.29: Permit Easy Reversal of Actions - non-destructive until

explicitly saved

159

 Furthermore, edits to pets or records are non-destructive until

explicitly saved, allowing users to cancel changes mid-flow without

consequence.

vii. Support Internal Locus of Control

(a) (b) (c)

Figure 5.30(a)(b)(c): Support Internal Locus of Control – Control to

decide

Users remained firmly in control of their workflow. They chose which pet

to analyze, decide whether to enable email reminders for upcoming

appointments, select images from camera or gallery (or use a default), and

toggle between viewing recent or full history.

(a) (b)

Figure 5.31(a)(b): Support Internal Locus of Control – AI Never Pre-

fills

160

 No automation overrided user intent. For instance, the AI never pre-

fills symptoms. Even when the AI service is slow, the app waits patiently

rather than auto-retrying or redirecting, preserving user agency and trust.

viii. Reduce Short-Term Memory Load

Figure 5.32: Reduce Short-Term Memory Load – Pet Information

Populated

PawHub minimized the need for users to remember information across

screens. When diagnosing symptoms, the selected pet’s name, breed, age,

and weight are auto-populated from their profile eliminating manual entry.

Figure 5.33: Reduce Short-Term Memory Load – Pet Preview

161

 In the History section, each assessment card displayed a concise

preview, pet name, date, severity badge, and a truncated symptom

summary enough to recall context without opening the full report.

(a) (b)

Figure 5.34(a)(b): Reduce Short-Term Memory Load – Consistent

Navigation

 Navigation were also consistent, back buttons always returned to the

previous screen, and breadcrumbs were implied through hierarchical

structure rather than explicit labels.

162

5.8 User Interface (UI) Design

The user interface (UI) of PawHub were designed to be intuitive, accessible,

and visually appealing, ensuring a seamless experience for pet owners of all

technical levels. The UI supported all core functionalities of the system,

including authentication, pet management, AI interaction, and health tracking.

Screens were designed with consistent navigation, clear typography, and pet-

friendly aesthetics using warm colors and icons.

5.8.1 User Authentication Screens

(a) (b) (c) (d)

Figure 5.35(a)(b)(c)(d): User Authentication Screens UI

When a user opened the PawHub app, they were first presented with the

Welcome Screen, featuring a swipeable onboarding experience. After swiping

through the introduction, it took the user to the Login Screen. The login

interface provided two primary options, log in to an existing account or

register a new account. For users who have forgotten their password, a “Forgot

Password?” link redirects them to the Reset Password Screen from the Login

Screen. Upon entering their email, a reset link was sent via Supabase Auth,

allowing secure password recovery. All user inputs were validated on the

client side (e.g., email format, password strength) before being securely

transmitted to the backend and stored in Supabase. This ensured data integrity

and a smooth, user-friendly authentication experience.

163

5.8.2 Homescreen

(a) (b) (c) (d)

Figure 5.36(a)(b)(c)(d): Home Screen UI

The homescreen served as the central dashboard of the PawHub application,

providing users with a personalized overview of their pets, recent AI

assessments, and quick access to all key features. Designed with a warm, pet-

friendly aesthetic using soft browns, creams, and card-based layouts, the

interface ensured intuitive navigation and a welcoming user experience.

 Upon login, the user was greeted with a personalized welcome

message (“Hello, [Username]!”) and a profile button that links to the User

Profile screen. The main content was organized into clear sections such as

Your Pets, displays a horizontal scrollable list of pet cards, each showing the

pet’s full detailed information. Tapping a card navigates to the Pet Profile

Management screen for detailed management. Features displayed a 2-column

layout of the six core features each with an icon and label for easy recognition.

Recent Assessments showed up to three recent AI symptom diagnoses with the

date, symptoms, and a color-coded severity badge (Low Risk, Moderate

Concern, High Priority) based on the diagnosis. Pet Care Articles displayed

the latest educational articles from AKC with thumbnails, titles, and

publication dates. Tapping an article opened it in the Education screen.

164

5.8.3 AI Chatbot Screen

(a) (b) (c) (d)

Figure 5.37(a)(b)(c)(d): AI Chatbot Screen UI

The AI Chatbot Screen was the central hub for interactive pet care support in

PawHub, offering a clean, intuitive interface where users could ask questions

about pet health, behavior, nutrition, and training. Responses were powered by

OpenRouter AI and personalized using the selected pet’s profile, including

type, age, weight, and medical history. Users could choose between AI models

such as Microsoft MAI DS R1 (primary), Mistral-7B-Instruct, and Horizon

Alpha enabling model fallback for reliability.

User messages appeared on the right, AI responses on the left with a

pet-themed icon. A typing indicator showed when the AI is responding, and

users can rate messages with 1–5 stars. The input field included a multi-line

text box with a disabled send button during loading to prevent duplicates. If

the AI fails, a friendly fallback message appeared, prompting users to check

their connection and consult a vet if needed. A “Clear Chat” button cleared the

conversation, and a health records badge showed how many records were

loaded for context. The screen delivered a responsive, secure, and user-

friendly experience while clearly emphasized that the app is a supportive tool,

not a substitute for professional veterinary care.

165

5.8.4 Symptom Diagnosis Screen

(a) (b) (c) (d)

Figure 5.38(a)(b)(c)(d): Symptom Diagnosis Screen UI

The Symptom Diagnosis Screen provided pet owners with AI-powered health

assessments based on user-submitted symptoms. The clean, intuitive interface

guided users through three steps, select a pet, describe symptoms, and analyze.

A modal allowed pet selection with name, breed, and age displayed for

accurate context. Users input symptoms in a multi-line text field, then tap

“Analyze Symptoms” to start the AI process, with a loading indicator

preventing duplicate submissions.

166

User input symptoms:

(a) (b) (c) (d)

Figure 5.39(a)(b)(c)(d): Symptom Diagnosis Screen Results UI

Results were presented in a structured format with clear sections:

Diagnosis, Recommendation, Possible Causes, and Additional Notes. A color-

coded severity badge (green, yellow, red) indicated urgency such as Low Risk,

Moderate Concern, or High Priority helping users decide on next steps. A

visible disclaimer emphasized that the app supports, but does not replace,

professional veterinary care.

167

Symptom History Modal:

(a) (b) (c) (d)

Figure 5.40(a)(b)(c)(d): Symptom History Modal UI

A “Symptom History” button opened a scrollable modal showing past

assessments with date, symptoms, and pet name. Entries could be viewed or

deleted, with an empty state shown if no history existed. All data was securely

sent to the Node.js backend, enriched with pet details, analyzed via

OpenRouter AI, and stored in the symptom_history table. This screen

effectively combined AI, personalization, and user-centered design to deliver

timely, actionable pet health insights.

168

5.8.5 Pet Management Screen

(a) (b) (c)

Figure 5.41(a)(b)(c): Pet Management Screen UI

The Pet Management Screen was a central feature of the PawHub application,

allowing users to manage their pets’ information and health records through a

clean, intuitive interface. The screen was divided into two main sections, Pet

Profile Management and Health Records Management, enabling users to

organize, track, and maintain comprehensive pet health data.

i) CRUD for pet profile management:

On pet profiles, users could carry out complete Create, Read, Update, and

Delete (CRUD) actions. To add a new pet, users tap an “+” button to add new

pets and were presented with a form to input essential details such as pet name,

type, birthday, weight, height, and upload a photo. Form validation ensured

accurate data entry, and the new pet was saved securely to Supabase via the

backend API. Existing pet profiles were displayed in a scrollable list or card

layout, and tapping a pet opened the full profile for viewing or editing. Users

could update any field and save changes, or delete a pet profile with

confirmation. A visual indicator (e.g., pet avatar and age) enhanced

recognition and personalization.

169

Create:

(a) (b) (c) (d)

Figure 5.42(a)(b)(c)(d): Create Pet Profile Management Screen UI

Update:

(a) (b) (c) (d)

Figure 5.43(a)(b)(c)(d): Update Pet Profile Management Screen UI

170

Delete:

(a) (b)

Figure 5.44(a)(b): Delete Pet Profile Management Screen UI

ii) CRUD for health records of each pet:

Each pet had an associated Health Records section where users could add,

view, edit, or delete medical entries such as vaccinations, check-ups,

treatments, or deworming. When adding a record, the form captured the record

name, date, cause, description, and code. A toggle allowed users to enable

email reminders for future-dated events. Once saved, records were displayed

in chronological order with key details visible at a glance. Users could tap any

record to view or modify it, or delete it with confirmation.

171

(a) (b) (c) (d)

Figure 5.45(a)(b)(c)(d): CRUD for Pet Health Record Management Screen

UI

Email Reminder for Future Health Events:

(a) (b)

Figure 5.46(a)(b): Reminder for Pet Health Record Management

Screen UI

When a user added a health record with a future date and enabled the

notification toggle, the system automatically scheduled an email reminder to

be sent one day before the event. This was handled by the backend, which

created an entry in the email_reminders table and triggered the Resend email

172

service daily to check for upcoming reminders. The email included the pet’s

name, event type, and date, prompting the owner to prepare. This proactive

notification system helped prevent missed appointments and supported

preventive pet care.

5.8.6 Profile Management Screen

(a) (b)

Figure 5.47(a)(b): Profile Management Screen UI

The Profile Management Screen allowed users to personalize their account

settings, update personal information, manage their profile picture, and control

their account security. The interface was designed with a clean, card-based

layout that separated the avatar section from the profile information, providing

a clear and organized user experience.

173

CRUD in Profile Management:

(a) (b) (c)

Figure 5.48(a)(b)(c): CRUD in Profile Management Screen UI

The Profile Management Screen allowed users to update their profile

picture and personal information securely. By tapping the avatar, users could

choose to take a photo, select an image from their gallery, or pick from

predefined default avatars. The selected image was uploaded to Supabase

Storage, and the URL was saved in the profiles table. A loading indicator and

error handling ensured a smooth experience.

Below, users could edit their email, username, phone number, and

password in a form with real-time validation for format and strength. Changes

were saved via secure API calls to the Node.js backend, with immediate

feedback on success.

Users also had the option to delete their account, which triggered a

confirmation alert and, when confirmed, performed a soft delete via the

backend API, removing the user’s data and signing them out.

Additionally, the “Log Out” button allowed users to securely end

their session. The screen used secure authentication flows with JWT tokens

stored in AsyncStorage, and all API requests were protected with Bearer token

authentication.

174

5.8.7 Education Screen

(a) (b) (c)

Figure 5.49(a)(b)(c): Education Screen UI

The Education Screen in PawHub provided users with access to reliable, up-

to-date pet care information sourced from trusted authorities such as the

American Kennel Club (AKC). This screen featured a scrollable list of curated

articles organized by category, including Dog Breeds, Health, Training,

Nutrition, and Fun Facts. Each article was displayed in a clean card layout

with a thumbnail image, title, category, and publication date, offering users a

quick preview before reading.

175

Click into an article:

(a) (b)

Figure 5.50(a)(b): Article in Education Screen UI

 When a user tapped on an article card, they were redirected to the

original webpage in their device’s default browser, ensuring they received the

most current and accurate information directly from the source. This approach

maintained content integrity and avoided copyright issues, while still

providing seamless access to expert-backed knowledge.

The content displayed in the app was updated through a web scraper

that runs in the terminal by the developer, fetching new articles from AKC’s

website and storing them in the Supabase database. This ensured the Education

Screen remains fresh and relevant. For future enhancements, Github Actions

could be implemented to automate the webscraper weekly without requiring

manual updates.

176

5.8.8 Feedback Screen

(a) (b) (c) (d)

Figure 5.51(a)(b)(c)(d): Feedback Screen UI

The Feedback Screen allowed users to share their experience with the PawHub

application through a simple, intuitive interface. The screen features a clean,

card-based layout with a rating system and text input for detailed feedback.

Users beginned by selecting a star rating from 1 to 5, with visual labels

indicating “POOR” to “EXCELLENT” to guide their selection. Below, a

multi-line text field enabled users to describe their experience, including

suggestions or issues encountered.

Once submitted, the feedback was securely sent to the backend via an

authenticated API call to the Node.js server, where it is stored in the feedback

table in Supabase. A success notification toast appeared to confirm submission.

Users could also view their past feedback entries by tapping the “View Past

Feedbacks” button, which opened a modal displaying a scrollable list of

previous submissions, including the date, rating, and feedback text. If no

feedback were submitted, an empty state was shown with a descriptive

message. The screen included real-time validation to ensure the feedback text

was not empty.

177

5.9 Conclusion

This chapter showed an overview of the system design of PawHub, an AI-

based pet care application designed to support pet owners with virtual

assistance, symptom diagnosis, and health management. The system

architecture demonstrated a secure, scalable, and well-structured integration of

React Native, Node.js, Supabase, OpenRouter, and Resend, ensuring robust

communication between frontend and backend components.

The database design was detailed through a complete data dictionary

and entity relationships, highlighting data integrity, security through Row

Level Security (RLS), and efficient organization of user, pet, health, and AI

interaction data. The API endpoints were systematically outlined, showcasing

a well-organized RESTful interface that supports all core functionalities with

proper authentication and rate limiting.

Additionally, the Data Flow Diagrams (DFD) and Activity Diagram

strengthened the application's logical flow and flexibility by clearly visualizing

the data flow from user input to AI processing and storage. The user interface

design ensured usability, accessibility, and a seamless experience across all

screens.

Overall, the system design of PawHub reflected a professional, user-

centered approach that successfully integrated modern technologies to deliver

a reliable and intelligent pet care solution. This solid foundation enables future

enhancements such as push notifications, advanced analytics, or integration

with wearable pet devices, positioning PawHub as a scalable and impactful

mobile health application.

178

CHAPTER 6

6 IMPLEMENTATION

6.1 Introduction

This chapter showed the implementation and integration of PawHub, an AI-

powered mobile application designed to assist pet owners with virtual pet care,

symptom diagnosis, and health management. The system was developed using

a modular, full-stack approach that integrates frontend, backend, database,

artificial intelligence, and automated services. Each component was

implemented with a strong emphasis on security, usability, and scalability,

ensuring a robust and user-friendly experience. The development followed an

Agile methodology, enabling iterative refinement and continuous integration.

6.2 Frontend Implementation

The frontend of PawHub was developed using React Native and tested in

Android Studio Emulator, providing a robust, cross-platform foundation that

ensured seamless performance on both Android and iOS devices. The choice

of React Native aligned with the project’s goal of delivering a high-quality,

native-like user experience while maintaining a single codebase, a critical

advantage for a solo developer working under time and resource constraints.

The user interface was designed in Figma during the prototyping

phase, ensuring a cohesive, pet-friendly aesthetic characterized by warm

earthy tones (soft browns, creams, and oranges), rounded card layouts,

gradient accents, and intuitive navigation. This design language was

consistently implemented across all screens to promote familiarity, reduce

cognitive load, and create an emotionally engaging experience for pet owners.

6.2.1 Authentication Module

This module handled user onboarding and secure access to the PawHub

application. It included the Welcome, Login, Register, and Forgot Password

screens, providing a seamless and secure entry point for new and returning

users. The onboarding process beginned with a swipeable welcome screen

179

featuring animated transitions that introduce key app features, allowing users

to easily navigate to the login or registration interface.

(a) (b) (c)

Figure 6.1(a)(b)(c): Authentication Screen Required Input Validations

The Login, Register, and Forgot Password screens implemented

comprehensive input validation to ensure that all required fields were properly

filled in before submission to ensure data integrity and security.

(a) (b) (c)

Figure 6.2(a)(b)(c): Authentication Screen Input Validations

The input validation on the Login, Register, and Forgot Password

screens ensured that essential fields like username, email, and phone number

were correctly filled before submission. Emails must follow a valid format,

180

phone numbers must be 10–15 digits, and passwords required a minimum of

six characters with uppercase, lowercase, and numeric characters for stronger

security. A confirm password checked and prevented mismatches, while clear

error messages guided users to fix mistakes. This approach maintained data

integrity, enhanced account security, and improved the overall user experience.

All user inputs were sanitized and validated on the client side to prevent

injection attacks and ensure secure data transmission.

Figure 6.3: JWT token for session management

Upon successful registration or login, the system leveraged Supabase

Auth for secure authentication, generating a JWT token that was stored in

AsyncStorage for session persistence.

(a) (b)

Figure 6.4(a)(b): Forgot Password Account Recovery Email

For account recovery, the Forgot Password functionality allowed

users to enter their email and receive a secure reset link via email, powered by

Supabase’s built-in password recovery system. This module established a

secure foundation for the entire app, ensuring that only authenticated users

181

could access personalized features while maintaining a user-friendly

onboarding experience.

6.2.2 AI Chatbot Module

This module served as the interactive core of the PawHub application,

allowing users to consult a virtual assistant driven by AI in real time for advice

on pet care. The interface was designed to mimic a familiar messaging app,

ensuring intuitive navigation and a seamless user experience.

Figure 6.5: AI Chatbot Interface

The screen features a clean, scrollable chat window where messages

were displayed in bubbles, AI replies to the left are soft brown with a pet-

themed logo, while user messages were displayed towards the right in a light

beige tone. A typing indicator with animated dots appeared when the AI was

generating a response, providing visual feedback and improving perceived

responsiveness.

Figure 6.6: Selector buttons to select pet and AI model

182

At the top of the screen, two selector buttons allowed users to choose

a pet and select an AI model (Microsoft MAI DS R1, Mistral-7B-Instruct, or

Horizon Alpha). This personalization ensured that AI responses were tailored

to the selected pet’s profile, including breed, age, weight, and medical history.

Tapping the pet selector opened a modal listing all pets with their photos,

names, breeds, and calculated ages. The model selector displayed available AI

models along with their context window sizes (e.g., 32K, 8K, 256K tokens),

empowering users to choose based on performance, speed, or depth of

response.

(a) (b)

Figure 6.7: AI multi-line text field enabled and disabled

Users input queries into a multi-line text field at the bottom, with a

send button that disabled during loading to prevent duplicate submissions. If

the AI failed to respond due to connectivity or API issues, a friendly fallback

message was shown, advising users to check their internet connection and

consult a veterinarian if needed.

Figure 6.8: AI message rating system

A key feature was the message rating system, each AI response could

be rated with 1–5 stars, allowing users to provide feedback directly within the

chat. This data was sent to the backend and stored in the chat_history table for

future model improvement.

183

Figure 6.9: AI Chat History session ID

The chat maintained session continuity by grouping messages under a

unique session ID. When a user switched pets, the conversation resets

automatically to ensure context accuracy.

(a) (b)

Figure 6.10(a)(b): Clear Chat button and trigger

The “Clear Chat” button at the top allowed user to clear their existing

chat. When the button was pressed, it triggered a confirmation alert to prevent

accidental deletion of the chat.

Figure 6.11: Health Records Loaded Badge

Additionally, a health records badge appeared when records were

loaded, informing users that the AI had access to relevant medical history for

184

more accurate advice of the selected pet. An error banner displayed non-

intrusive alerts if data failed to load.

Figure 6.12: Session Management Token in AI Chatbot screen

All interactions were secured using JWT authentication. The access

token, stored in AsyncStorage, was included in every API request to endpoints

such as /chat/message, /chat/models, and /chat/history. This ensured that only

authenticated users could access AI features and their data remained private

and secure. This module exemplified a robust integration of AI,

personalization, and user-centered design, delivering intelligent, context-aware

pet care support in a secure, engaging, and reliable format.

6.2.3 Symptom Diagnosis Module

This module enabled users to perform AI-powered health assessments for their

pets based on described symptoms. It provided a structured, user-friendly

interface that guided pet owners through the process of submitting symptoms

and receiving actionable insights in a clear, organized format.

Figure 6.13: Symptom Diagnosis Screen Pet Selection Modal

The screen beginned with a pet selector button at the top, allowing

users to choose which pet they are assessing. Tapping this opened a modal

listing all registered pets with their photos, names, breeds, and calculated ages,

ensuring the AI received accurate context for personalized results.

185

(a) (b) (c)

Figure 6.14(a)(b)(c): Input Validation and Loading Indicator for Severity

Assessment

Below, a multi-line text input field allowed users to freely describe

their pet’s symptoms and input was validated. If the text input was empty, a

red error validation appeared at the below encouraging users to input

symptoms. A prominent “Analyze Symptoms” button triggered the diagnosis

process, disabled during loading to prevent duplicate submissions. While the

system processed the request, a loading indicator with “Analysing

symptoms…” was displayed. Once completed, the AI-generated diagnosis was

presented in a structured card layout with clearly labeled sections as show in

the figure below.

Severity Assessment :

Figure 6.15: Severity Assessment Results

 A color-coded severity indicator appeared at the top of the result card

such as Green for Low Risk, Yellow for Moderate Concern, Red for High

Priority. This visual system helped users quickly understand the urgency of the

situation and decide whether to monitor at home or seek immediate veterinary

care.

186

Diagnosis: The identified condition or possible illness.

Figure 6.16: Symptom Diagnosis Result Diagnosis

Recommendation: Immediate actions to take.

Figure 6.17: Symptom Diagnosis Result Recommendation

Possible Causes: Potential underlying reasons.

Figure 6.18: Symptom Diagnosis Result Possible Causes

Additional Notes: Contextual advice or observations.

Figure 6.19: Symptom Diagnosis Result Additional Notes

187

Figure 6.20: Symptom Diagnosis Disclaimer

This visual indicator helped users quickly assess urgency and decide

whether to monitor at home or seek veterinary care. The severity level was

determined both by the AI model and client-side logic that scanned for

keywords in the response. A non-intrusive disclaimer button was there to

ensure that users don’t follow the AI diagnosis blindly if their pet symptoms

were too serious.

(a) (b) (c)

Figure 6.21(a)(b)(c): View Past Assessments in Symptom History Modal

A “Symptom History” button opened a scrollable modal showing all

past assessments, including the date, symptoms, associated pet, and severity

level. Each entry could be tapped to view full details or deleted with

confirmation. If no history existed, an empty state message was shown. This

188

feature allowed users to track changes over time and review previous AI

suggestions. All data was securely transmitted to the Node.js backend via the

/symptom/diagnose endpoint, where the AI prompt is enriched with pet details

and processed using OpenRouter. The result was saved in the

symptom_history table in Supabase for future reference.

Figure 6.22: Error Handling - AI Service Unavailable

In case of network issues or AI service downtime, a friendly error

message was displayed. This maintained a positive user experience while

clearly communicating the issue.

Figure 6.23: NotificationToast component for success message

The module used a reusable NotificationToast component to provide

feedback on success message, enhancing usability. It also included real-time

validation, session-based state management, and responsive design for

consistent performance across devices. This module exemplified the

integration of artificial intelligence, personalization, and user-centered design,

delivering timely, structured, and visually intuitive pet health insights while

emphasizing responsible use and the importance of professional veterinary

care.

6.2.4 Pet Management Module

This module enabled users to fully manage their pets’ information and health

records through an intuitive, organized interface. It was a core component of

PawHub, allowing pet owners to maintain comprehensive digital profiles and

189

medical histories for each pet. The module supported all CRUD (Create, Read,

Update, Delete) actions for both pet profiles and health records, ensuring

flexibility and data control.

Figure 6.24: List of Registered Pets in Pet Management Screen

The main screen displayed a scrollable list of all registered pets in

card format at the top. Each card showed the pet’s photo, name, breed, age,

and weight, providing a quick visual overview. Tapping a pet card open its

detailed profile and associated health records.

(a) (b) (c)

Figure 6.25(a)(b)(c): Add New Pet Form validation and Image Upload

Option

Users could add a new pet by tapping the “+” button, which opened a

modal form titled “Register New Pet”. Every user input had input validation.

The app also included eight default pet avatars (dog, cat, bird, rabbit, hamster,

190

turtle, snake) to ensure every pet has a visual identity even without a custom

photo. Image upload was handled via react-native-image-crop-picker,

supporting both camera and gallery access.

(a) (b)

Figure 6.26(a)(b): Edit Pet Profile, Update Existing Pet Type

Information

Existing pet profiles could be edited by tapping an “Edit” button,

which repopulates the same form with current data. All fields were editable,

and changes were validated before saved securely to the backend via the /pets

endpoint. The module used a reusable CustomAlert component for all

confirmation dialogs and a NotificationToast to provide feedback on

successful operations.

Figure 6.27: Delete Pet Confirmation Alert

Deleting a pet triggered a confirmation alert that warns users. This

prevented accidental data loss and emphasized the cascading effect of deletion.

191

Figure 6.28: Health Records List as Chronological Medical History

Each pet had a dedicated Health Records section where users could

view, add, edit, or delete medical entries such as vaccinations, check-ups,

treatments, or deworming. Records were displayed in chronological order with

key details visible at a glance such as event name, date, cause, and description.

(a) (b)

Figure 6.29(a)(b): Add Health Record Input Validations

To add a record, users filled out a form that captured essential health

information. Input validation ensured record name and date were required,

Date picker restricted future dates only for scheduled events, Optional fields

192

(code, cause, description) could be left blank The notification toggle allowed

users to enable email reminders for future-dated events.

(a) (b)

Figure 6.30(a)(b): Future Date with Email Reminder Enabled

If the record date was in the future and the notification toggle was on,

the system automatically created an entry in the email_reminders table. The

backend checked daily for upcoming reminders and sends an email via Resend

one day before the event.

Figure 6.31: Delete Health Record Confirmation

Deleting a health record also used a confirmation alert to prevent

accidental removal. This applied to both past and future records, ensuring

users were aware of their actions.

Figure 6.32: Pet Management Screen session

Data was fetched from and synced with the Node.js backend using

secure JWT-authenticated API calls to /pets and /health-records. This module

exemplified a robust, user-centered approach to pet health management,

combining data integrity, usability, and automation to help pet owners stay

organized and proactive in their pet’s care.

193

6.2.5 Profile Management Module

This module allowed users to manage their personal account settings,

including profile information, avatar, password, and account security. It

offered users a safe and intuitive way to customize their identities within the

PawHub app while protecting the privacy and integrity of their data.

Figure 6.33: Avatar and User Information in Profile Management Screen

The screen was structured as a card-based layout with two main

sections which is the Avatar Section and Profile Information.

Figure 6.34: Selected image is uploaded via multipart/form-data

At the top, users could update their profile picture by tapping the

avatar, which opens a modal with multiple options such as take a photo using

the camera, select an image from the device gallery, or choose from four

predefined default avatars hosted in Supabase Storage. The selected image was

uploaded via multipart/form-data to the /profile/avatar endpoint and stored

securely in Supabase, with the public URL saved in the profiles table.

194

(a) (b)

Figure 6.35(a)(b): Camera, Gallery, and Default Avatars in Image

Picker

The avatar upload modal included proper Android permission

handling (camera and storage), error feedback, and a loading indicator during

upload. If the user already had a custom avatar, it was displayed using the uri

source in React Native’s Image component. If permission was not given to

access the gallery or camera, permission denied error was shown.

(a) (b)

Figure 6.36(a)(b): Edit Profile Information with Input Validation

Below the avatar, users could view and edit their email, username,

phone number, and password. When in edit mode, the static text fields

transformed into input fields with real-time validation. Validation errors were

displayed below each field with red text, ensuring users could correct mistakes

before submission.

195

Figure 6.37: Save Changes, Log Out, and Delete Account Buttons

The module included three action buttons such as Save Changes

which sends updated profile data to the /profile endpoint via a secure PUT

request. A success toast appeared upon completion. Log out which triggered

supabase.auth.signOut() to end the session and redirected to the login screen.

Delete account which showed a confirmation alert warning that all data will be

permanently deleted. If confirmed, a DELETE request was sent to /profile, the

account was soft-deleted, and the user was signed out.

Figure 6.38: Session Management Token in Profile Management

All API interactions were protected with JWT authentication. The app

used a custom makeAuthenticatedRequest helper that automatically retrieved

the access token from AsyncStorage or refreshed the session if expired. This

ensured secure, seamless communication with the backend.

196

Figure 6.39: Success Toast on Profile Update

A success toast (“Profile updated successfully!”) appeared after a

successful save, reinforcing positive user feedback. This module exemplifiee a

secure, well-structured approach to user account management, combining real-

time validation, secure image handling, and safe data deletion to deliver a

reliable and trustworthy experience.

6.2.6 Education Module

This module provided users with access to reliable, up-to-date pet care

information sourced from trusted authorities such as the American Kennel

Club (AKC). It served as a knowledge hub within the PawHub application,

empowering pet owners with expert-backed articles on topics including dog

breeds, puppy care, health, training, nutrition, travel, dog sports, and fun facts.

The interface’s simplicity, ease of use, and intuitive design guarantee that

users found the right information easily depending on their needs or interests.

(a) (b)

Figure 6.40(a)(b): Pet Education Screens Header and Search Bar

197

The screen featured a well-organized layout beginning with a

prominent header. Below, a search bar allowed users to type keywords and

filter articles in real time by title or category. The search input included a clear

button to reset the query, enhancing usability and interactivity.

Figure 6.41: Category Tabs

A horizontal scrollable tab bar displayed all available categories: All,

Breeds, Puppy Info, Health, Training, Nutrition, Travel, Sports, and Fun Facts.

Each tab was styled as a pill-shaped button, with the active category

highlighted in a warm orange color for clear visual feedback. Tapping a

category filtered the article list to show only those matching the selected topic,

enabling focused browsing.

(a) (b)

Figure 6.42(a)(b): Article Card Layout

Articles were displayed in a vertical scrollable list using card-based

design. Each card included a thumbnail image at the top, followed by the

article title, and a footer with the category badge and a “Read More” button

with an arrow icon. If an article lacked an image, a placeholder paw icon was

shown to maintain visual consistency.

198

Figure 6.43: No Articles Found

When no articles matched the search or selected category, an empty

state was displayed with a book icon, a descriptive message and a “Refresh”

button to retry loading data. This improved user experience by providing

feedback and recovery options.

(a) (b)

Figure 6.44(a)(b): Opening Article in External Browser

Tapping on an article card or the “Read More” button opened the

original webpage in the device’s default browser using Linking.openURL().

This ensured users receive the most current and accurate information directly

from the source, while also respecting content licensing and avoiding

duplication.

199

Figure 6.45: Fetching Articles from Backend

On initial load, a loading indicator appeared with the message

“Loading articles…” to inform users that content is being fetched from the

backend. The data was retrieved via a secure GET request to the /articles

endpoint, which pulls from the articles table in Supabase populated weekly by

a web scraper running on a application terminal. By connecting AI-powered

features with trusted resources, it reinforced the app’s role as a comprehensive

pet wellness platform.

6.2.7 Feedback Module

This module allowed users to share their experience and provide valuable

feedback on the PawHub application, helping to guide future improvements

and ensure the app meets user expectations. It featured a clean, user-friendly

interface that encouraged honest and constructive input through a structured

feedback form and an accessible history view.

Figure 6.46: Header and Rating Section in Feedback Screen

The screen opened with a welcoming header. Below, users were

prompted to rate their overall experience using a 5-star system displayed

200

prominently in the center of a card. Each star was interactive, allowing users to

tap and select a rating from 1 (Poor) to 5 (Excellent).

Figure 6.47: Feedback Input Field with Placeholder

Below the rating, users were asked to “Tell us more about your

experience” in a multi-line text input field. The field included a descriptive

placeholder to guide users in providing detailed feedback. The input supported

text wrapping and dynamic expansion up to a reasonable height, ensuring

users could express themselves fully.

(a) (b)

Figure 6.48(a)(b): Submit Feedback Button and Error Handling

A “Submit Feedback” button was displayed at the bottom of the card.

If the user attempted to submit without entering any text, a validation error

appeared with the input field border turning red to highlight the issue. During

submission, the button changed to “SUBMITTING…” and disabled further

interaction to prevent duplicate entries.

Figure 6.49: Success Notification Toast on Submission

201

Upon successful submission, a toast notification slided in from the

top with a checkmark icon. The toast automatically disappeared after 3

seconds, providing subtle but clear confirmation without interrupting the user

flow.

Figure 6.50: View Past Feedbacks Button

A dedicated “View Past Feedbacks” button was placed below the

form, styled with a soft background and an icon of a clock. Tapping it opened

a full-screen modal that retrieved and displayed all previously submitted

feedback entries.

Figure 6.51: List of Submissions in Past Feedbacks Modal

The modal showed a scrollable list of past feedback, each entry

including the submission date and time, the star rating, and the feedback text.

Entries were listed in reverse chronological order, with the most recent at the

top. If no feedback has been submitted, an empty state was shown with an icon

and the message: “No feedback submitted yet”.

202

Figure 6.52: Loading Indicator in Feedback History Modal

When opening the history, a loading indicator appeared if data is

being fetched from the backend via the /feedback endpoint. The request is

authenticated using a JWT token retrieved from AsyncStorage, ensuring only

the current user’s data is accessed. All feedback was securely sent to the

backend. This data can later be analyzed to improve app functionality, fix bugs,

and enhance the user experience. This module exemplified a thoughtful

approach to create a reliable feedback mechanism that empowered users to

contribute to the app’s continuous improvement.

203

6.3 Backend Implementation

The backend of PawHub was developed using Node.js with Express.js,

forming a secure and scalable server that serves as the central control layer

between the React Native frontend and external services such as Supabase,

OpenRouter, and Resend. Hosted locally at http://10.0.2.2:3000 for Android

emulator testing, the server was designed to handle authentication, data

processing, API routing, and automated tasks with robust error handling and

logging. The architecture followed a modular structure, separating concerns

into routes, controllers, and middleware to ensure maintainability and clean

code organization.

Figure 6.53: Authentication middleware

All API endpoints were protected by a custom JWT authentication

middleware that validated the Authorization: Bearer <token> header for every

incoming request. This middleware retrieved the token from the request header,

verified it against Supabase Auth, and attached the user ID to the request

object if valid. Access was blocked if the token was absent, invalid, or expired,

guaranteeing that only users who have been authenticated can use protected

routes. Strict data privacy was maintained by this technique, which also

stopped unwanted access to private data including chat history, pet profiles,

and health records.

204

Figure 6.54: Rate limiting

Express-rate-limit is used to establish rate limitation in order to

improve security and avoid abuse. Different limits were applied based on the

endpoint such as 20 attempts per 15 minutes for authentication routes to

prevent brute-force attacks, 200 requests per 15 minutes for general usage to

ensure fair system access, and 20 messages per minute on chat-related

endpoints to avoid spam. These limits were enforced globally and per IP

address, providing an additional layer of protection against denial-of-service

threats.

The backend exposed a comprehensive RESTful API that supported

all core functionalities of the application. Authentication routes such as

/auth/login, /auth/register, and /profile handle user sign-in, registration, and

profile retrieval. Pet management was facilitated through /pets, which allowed

users to create, read, update, and delete pet profiles. Health records were

managed via /health-records, supporting CRUD operations and enabling email

reminders for future-dated events. AI-powered features were accessible

through /chat/message, /chat/models, and /symptom/diagnose, where user

inputs were enriched with pet context and sent to OpenRouter for intelligent

responses. Additional endpoints like /feedback, /articles, and /home support

feedback submission, educational content retrieval, and consolidated

dashboard data, respectively.

205

Figure 6.55: Supabase Client SDK

Data persistence was handled through Supabase, a PostgreSQL-based

backend-as-a-service platform. The backend interacted with Supabase using

the Supabase client SDK, ensuring secure and efficient database operations.

Key tables include profiles, pets, health_records, symptom_history,

chat_history, email_reminders, articles, and feedback, each designed with

proper relationships and constraints. Row Level Security (RLS) policies are

enforced on all tables to ensure that users can only access their own data,

preventing cross-user data exposure. Foreign key constraints maintain

referential integrity across related entities, preserving data consistency.

Figure 6.56: Context-Rich AI Prompt with pet information

206

For AI-powered features, the backend integrated with OpenRouter.ai,

allowing access to advanced language models such as Microsoft MAI DS R1,

Mistral-7B-Instruct, and Horizon Alpha. When a user submits a query or

symptom description, the server fetched the selected pet’s details and health

records from Supabase, constructed a context-rich prompt, and sent it to

OpenRouter with appropriate headers including Authorization, HTTP-Referer,

and X-Title. The AI response was parsed into a structured format with sections

such as Diagnosis, Severity, Recommendation, Possible Causes, and

Additional Notes, then saved to the symptom_history or chat_history table for

future reference.

Figure 6.57: Fallback logic to alternative models

A Model Control & Prioritization (MCP) strategy ensured reliability

by automatically falling back to alternative models if the primary one fails,

minimizing downtime and maintaining service continuity.

Figure 6.58: Email Reminder checker task runs every 60 seconds

207

An essential component of the backend is the automated email

reminder system, powered by Resend. A background task runs every 60

seconds via setInterval, querying the email_reminders table for records where

the reminder_time is in the near future and the sent flag is still false. For each

matching record, an email is sent to the user with personalized content such as

the pet’s name, event type, and scheduled date. After successful delivery, the

sent field is updated to true, preventing duplicate emails. This proactive

notification system helped users stay on top of preventive care, such as

vaccinations and check-ups, without manual tracking.

Figure 6.59: Scraper runs and fetches articles

Educational content displayed in the app is sourced from the

American Kennel Club (AKC) through a terminal runs weekly web scraper,

the scraper runs and fetched articles from AKC’s website across categories

including Dog Breeds, Health, Training, Nutrition, Travel, Dog Sports, and

Fun Facts. Using Axios and Cheerio, it extracted the title, link, image URL,

and category, then upserted the data into the articles table in Supabase. This

ensured that the Education screen remained up-to-date with fresh, expert-

backed content.

208

Figure 6.60: CORS and Multer Configuration

Security is a top priority throughout the backend implementation. The

server used Helmet.js to set secure HTTP headers, CORS was configured to

allow only trusted origins, and all input were validated both on the client and

server side to prevent injection attacks. Sensitive API keys such as

OPENROUTER_API_KEY and RESEND_API_KEY were stored in

environment variables and never exposed in the codebase. File uploads for

profile pictures were handled securely using Multer, with images stored in

Supabase Storage and public URLs saved in the profiles table. Passwords were

managed entirely by Supabase Auth and were never accessible to the

application, ensuring compliance with best practices in user data protection.

This backend design demonstrated a robust, intelligent, and secure

architecture that seamlessly integrated frontend, database, AI, and automation

systems. By combining modern tools, modular design, and strong security

practices, PawHub delivered a reliable and scalable pet care solution that

enhanced user experience while maintaining data integrity and privacy.

209

6.4 Database Integration

The PawHub application was set up using Supabase, a powerful backend-as-a-

service platform built on PostgreSQL, to manage all data storage and retrieval

efficiently. The setup process began with creating a new project on the

Supabase dashboard, where the database was initialized and connected to both

the React Native frontend and Node.js backend. Tables were created either

through the Supabase web interface or by executing raw SQL scripts in the

SQL Editor, ensuring consistency and accuracy in the schema design. This

centralized setup allowed seamless integration of authentication, file storage,

real-time updates, and Row Level Security (RLS), providing a robust

foundation for the entire application.

Figure 6.61: Creation of database table using PostgreSQL in supabase

PostgreSQL served as the core relational database engine for PawHub,

offering reliability, scalability, and advanced querying capabilities. It stored

structured data such as user profiles, pet information, health records, AI chat

logs, symptom history, feedback, and educational articles. The use of

PostgreSQL ensured strong data integrity through constraints, transactions,

and indexing, while also supporting JSON fields and full-text search for future

enhancements. Its compatibility with Supabase enabled smooth interaction

with the frontend and backend, making it an ideal choice for a data-intensive

mobile application like PawHub.

210

Figure 6.62: RLS Policies in Supabase

Row Level Security (RLS) policies were implemented across all

relevant tables to enforce strict data privacy and access control. These policies

ensured that users can only view, edit, or delete their own data, preventing

unauthorized access to other users’ information. For example, a user can only

access pet profiles, health records, chat history, and symptom diagnoses linked

to their unique user ID. RLS was enabled on tables such as profiles, pets,

health_records, chat_history, symptom_history, and feedback, with policies

defined using PostgreSQL’s native syntax. This security model was essential

for maintaining user trust and complying with data protection standards.

Figure 6.63: Avatar Bucket in Supabase Storage

To manage profile pictures for users, a dedicated storage bucket

named “avatars” was created within Supabase Storage. This bucket securely

hosted all uploaded images, with public URLs generated for display in the app.

Default avatars for users were pre-uploaded to this bucket, ensuring visual

consistency even when no custom image was selected. The backend handles

211

image uploads via Multer middleware, processed the file, and stored it in the

bucket with appropriate metadata. Access to the bucket is restricted using

policies, allowing only authenticated users to upload or modify their own

images.

(a) (b)

Figure 6.64(a)(b): JWT-based token generation

Supabase Auth managed authentication and offers session

management, safe email/password login, and token creation based on JWT.

Upon registration or login, Supabase creates a user entry in the auth.users table

and triggers the creation of a corresponding record in the profiles table. This

integration simplified user management and ensured secure access to protected

routes. The system used the supabase.auth.signInWithPassword() and

supabase.auth.getUser() methods to manage sessions, while the backend

verified JWT tokens in API requests to authenticate users before granting

access to sensitive data.

Figure 6.65: Database Schema in Supabase

212

The database schema is carefully designed to reflect the relationships

between entities in the PawHub ecosystem. Key tables include profiles, pets,

health_records, symptom_history, chat_history, email_reminders, articles, and

feedback. Each table is structured with appropriate data types, primary keys,

and constraints to ensure consistency. For instance, the pets table includes

fields such as pet_name, pet_breed, pet_birthday, pet_weight, pet_height, and

pet_avatar, all linked to the owner via the user_id foreign key. This well-

organized schema supported the app’s functionality while allowing room for

future expansion.

Foreign key constraints were used throughout the database to

maintain referential integrity and enforce logical relationships between tables.

For example, the pets table references the profiles table via the user_id field,

ensuring that every pet belongs to a valid user. Similarly, health_records and

symptom_history tables reference the pets table through pet_id, linking

medical events and AI diagnoses to specific animals. These constraints prevent

orphaned records and ensure that data remains consistent and accurate across

the system.

(a) (b)

Figure 6.66(a)(b): Environment Variable Import and Validations in

Backend

Environment variables were securely managed using a .env file in

both the frontend (PawHub/.env) and backend (PawHub/backend/.env)

directories. Sensitive credentials were stored in these files and loaded at

runtime using the dotenv package. This approach keeps API keys and

configuration settings out of the source code, reducing the risk of exposure.

213

The backend validated the presence of these variables at startup, ensuring the

server cannot run without proper configuration.

6.5 AI Features Implementation

The AI features in PawHub were designed to provide pet owners with

intelligent, real-time support through two core modules, the AI Chatbot and

the Symptom Diagnosis tool. These features leverage advanced language

models via OpenRouter.ai, enabling the app to deliver context-aware,

personalized responses that enhance user experience while maintaining

reliability through model fallback logic. The integration of AI into pet care

allowed users to receive immediate guidance on health, behavior, nutrition,

and training, bridging the gap between everyday concerns and professional

veterinary care.

6.5.1 AI Chatbot

The AI Chatbot served as the interactive hub for general pet care assistance,

allowing users to ask questions and receive instant, conversational responses.

Figure 6.67: OpenRouter Configuration

Built on a multi-model architecture, the chatbot supported three AI

models: Microsoft MAI DS R1 (primary), Mistral-7B-Instruct, and Horizon

Alpha, giving users the flexibility to choose based on response style, depth, or

performance. This model selection were implemented through a dropdown

interface in the app, enabling dynamic routing of queries to the selected model

via OpenRouter’s API.

214

Figure 6.68: Context Rich AI prompt for AI Chatbot

When a user submitted a message, the backend constructs a context-

rich prompt that included the selected pet’s profile such as breed, age, weight,

and medical history to ensure responses were tailored and relevant. The

request was sent with proper authentication headers (Authorization, HTTP-

Referer, X-Title) to OpenRouter, and the AI response was parsed and

displayed in a familiar messaging interface. A typing indicator provided visual

feedback during response generation, enhancing perceived responsiveness.

Figure 6.69: Fallback logic for AI Chatbot

To ensure continuous availability, the system implemented Model

Control & Prioritization (MCP) logic. If the primary model failed or timed out,

the backend automatically retries the request with an alternative model,

215

minimizing downtime and maintaining service continuity. Users could rate

each AI message with 1–5 stars, and this feedback was securely stored in the

chat_history table in Supabase for future analysis and model improvement.

Figure 6.70: Save chat history immediately with a unique session_id

The chat maintained session continuity using a unique session_id,

allowing users to resume conversations with preserved context. When a

different pet was selected, the chat resets to ensure accurate, pet-specific

advice. All interactions were protected with JWT authentication, and the

frontend used secure storage via AsyncStorage to manage user sessions. This

module exemplified a robust integration of AI, personalization, and user-

centered design, delivering intelligent, context-aware pet care support in a

secure and engaging format.

6.5.2 Symptom Diagnosis

The Symptom Diagnosis module enabled users to perform AI-powered health

assessments by submitting descriptions of their pet’s symptoms. This function

was intended to assist pet owners in determining if the situation required

immediate veterinarian care and in assessing the severity of the problem.

When a user entered symptoms and selects a pet, the backend retrieved the

pet’s full profile and constructed a detailed prompt enriched with breed-

specific tendencies, age, weight, and existing health records.

216

Figure 6.71: Symptom Diagnosis AI Structured Context Prompt

This structured prompt was sent to OpenRouter, where an AI model

analyzed the input and returned a response formatted into key sections:

Diagnosis, Severity, Recommendation, Possible Causes, and Additional Notes.

The backend parsed this response using string matching and regular

expressions to extract each component, ensuring a clean, user-friendly display.

A severity level classified as Low Risk, Moderate Concern, or High Priority is

determined based on keywords in the AI’s output and displayed with a color-

coded badge (green, yellow, red) to help users quickly assess urgency.

Figure 6.72: Diagnosis Result is Saved in the symptom_history Table

The diagnosis result was saved in the symptom_history table for

future reference, allowing users to track changes over time. A dedicated

Symptom History button opens a scrollable modal where past assessments can

217

be viewed or deleted. If no history exists, an empty state was shown with a

descriptive message.

Figure 6.73: AI Fallback Logic for Symptom Diagnosis Screen

To ensure continuous availability, the system implemented Model

Control & Prioritization (MCP) logic. If the primary model failed or timed out,

the backend automatically retried the request with an alternative model,

minimizing downtime and maintaining service continuity.

Figure 6.74: AI Error Message If All Models Fail

In cases where the AI service was temporarily unavailable, a friendly

fallback message was displayed: “The AI service is temporarily down. Please

try again later.” This graceful degradation ensured a positive user experience

even during technical issues. Additionally, a non-intrusive disclaimer was

shown with every result: “This AI-powered symptom assessment was for

informational purposes only and should not be considered veterinary advice.”

This reinforced that the app was a supportive tool, not a replacement for

professional care.

218

The module included real-time validation, session-based state

management, and responsive design for consistent performance across devices.

By combining artificial intelligence, personalization, and responsible design,

the Symptom Diagnosis feature delivered timely, structured, and visually

intuitive pet health insights while emphasizing the importance of professional

veterinary consultation.

6.6 Automated Email Reminder System

To assist pet owners in remembering their pets’ vaccination schedules, the

PawHub app featured an efficient and dependable automated email reminder

system. This feature is particularly useful for tracking upcoming health events

such as vaccinations, deworming, check-ups, and other medical appointments.

By reducing the likelihood of missed appointments, the system supported

long-term pet wellness and reinforced responsible pet ownership.

Figure 6.75: System Calculates the Reminder

When a user added a new health record with a future date and enabled

the “Enable Email Reminder” toggle, the backend automatically processed this

information and scheduled a notification. The system calculate the reminder

time by subtracting 24 hours from the event date and sets the time to 9:00 AM

for optimal user engagement. This ensured that the email was delivered one

day before the scheduled event, giving the owner sufficient time to prepare.

219

Figure 6.76: Scheduling Logic is implemented

The scheduling logic was implemented within the /health-records

POST endpoint. After a new record is successfully saved to the health_records

table in Supabase, the backend checks if reminders are enabled and the date is

in the future. If so, it retrieved the associated pet’s name and constructed a

reminder object containing the user ID, pet ID, record ID, event name, pet

name, event date, and calculated reminder time. This data is then upserted into

the email_reminders table, with a unique constraint on record_id and user_id

to prevent duplicate entries.

Figure 6.77: Email Reminder Checker Running Every 60 Seconds

220

To ensure timely delivery, a background task runs every 60 seconds

via setInterval in the Node.js server. This email checker queries the

email_reminders table for all records where the reminder_time has passed and

the sent flag is still false. For each matching record, the system retrieved the

user’s email address using Supabase Auth’s admin API, then used Resend to

send a professionally formatted email with a clear subject line and HTML

body.

(a) (b)

Figure 6.78(a)(b): Example Email Sent via Resend

The email content was personalized and included the pet’s name, the

type of health event, and the scheduled date.

(a) (b)

Figure 6.79(a)(b): Reminder Marked as Sent in Database

Once the email was successfully sent, the sent field in the

email_reminders table was updated to true, preventing the same reminder from

being sent again. Detailed logging was implemented throughout the process,

allowing developers to monitor successful deliveries and troubleshoot any

issues.

221

Figure 6.80: Reminders deleted when health record deleted

The system also includes safeguards to maintain data integrity. When

a health record is deleted, the associated reminder is automatically removed

from the email_reminders table to avoid orphaned entries. Additionally, a

daily cleanup function runs to identify and delete any reminders that no longer

have a corresponding health record, ensuring the database remains consistent.

Figure 6.81: Email Address Accessed via Supabase Admin API

Security and privacy were prioritized throughout the implementation.

The user’s email address was only accessed via Supabase Admin API with

proper authentication, and all API keys (including RESEND_API_KEY) were

stored in environment variables using .env files. The entire process was

asynchronous and non-blocking, ensuring that the main application flow was

not affected by email operations.

This automated email reminder system exemplified a seamless

integration of backend logic, database management, and third-party services.

By combining real-time data processing, scheduled checks, and personalized

communication, PawHub delivers a valuable, user-centric feature that

promotes proactive pet care and enhances the overall user experience.

222

6.7 Web Scraping for Educational Content

The Education module in PawHub was powered by a dynamic web scraping

system that ensured users have access to fresh, reliable, and expert-backed pet

care information. The application integrated a weekly scraping process that

fetched articles from trusted sources such as the American Kennel Club

(AKC), ensuring that the knowledge base remains current and relevant. This

approach not only reduces maintenance overhead but also enhanced the app’s

value by delivering up-to-date guidance on topics like dog breeds, puppy care,

health, training, nutrition, travel, and fun facts.

Figure 6.82: Axios for HTTP requests

The scraping process was implemented using Node.js with the

libraries Axios for HTTP requests and Cheerio for parsing HTML content. A

dedicated script, scraper.js, was responsible for visiting predefined AKC

article pages, extracting key information, and structuring it into a standardized

format. For each article, the scraper collected the title, category, image URL,

and original link.

Figure 6.83: Scraper performs a link-based upsert operation

To ensure content integrity and avoid duplicates, the scraper

performed a link-based upsert operation when inserting data into the articles

table in Supabase. If an article with the same link already exists, it is updated,

otherwise, a new record is created. This mechanism guaranteed that only

223

unique articles were stored and that existing entries were refreshed if updated

on the source website.

The scraping task run weekly, it was manually updated by the

developer in the terminal. This timing was chosen to minimize server load and

ensure fresh content was available at the start of the weekend, when users were

more likely to engage with educational material. The GitHub Actions

workflow could be implemented as future enhancement to trigger the

scraper.js script in a Node.js environment, it can execute the scraping logic,

and securely connects to Supabase using environment variables to insert the

data.

Figure 6.84: Categorized based on the source URL

All scraped articles were categorized based on their source URL and

content structure. Categories included Dog Breeds, Puppy Info, Health,

Training, Nutrition, Travel, Sports, and Fun Facts, allowing users to easily

navigate and filter content within the app. Each article card in the Education

screen displayed the title, a thumbnail image, the category badge, and a “Read

More” button that opened the original webpage in the device’s default browser.

This design respects content ownership and licensing while providing

seamless access to authoritative information.

224

Figure 6.85: Script logs the error and Process other articles

Security and reliability were prioritized throughout the

implementation. The scraper included error handling for network failures, rate

limiting, and changes in page structure. If a source page was temporarily

unavailable or the HTML format changes, the script logs the error and

continues processing other articles, preventing a single failure from halting the

entire operation. Additionally, all API keys and database credentials were

stored in environment variables, ensuring sensitive data was never exposed in

the codebase.

By combining web scraping, scheduled execution, and secure

database integration, PawHub delivers a continuously updated educational

experience that empowers pet owners with trustworthy, expert-backed insights

without requiring manual updates or content creation.

6.8 Security Implementation

The PawHub application prioritized security across all layers of the system to

protect user data, ensure privacy, and maintain the integrity of sensitive

information such as pet health records and personal details. A multi-layered

security approach has been implemented that spans the frontend, backend,

database, and third-party integrations, ensuring that the application adhered to

modern best practices in mobile and web security.

225

Figure 6.86: Authentication Middleware and Supabase Auth

At the authentication level, PawHub leveraged Authentication

middleware and Supabase Auth for secure user sign-up, login, and session

management. This eliminated the need to handle raw passwords within the

application logic, as all credential verification was performed securely by

Supabase using industry-standard hashing and encryption.

Figure 6.87: JWT (JSON Web Token) saved to storage

A JWT (JSON Web Token) was generated and saved in the device's

AsyncStorage upon successful authentication, this token was then used for

upcoming API queries. This token was validated on every request through a

custom authenticate middleware on the backend, ensuring that only authorized

users can access protected routes.

Figure 6.88: Express Rate Limits

226

To prevent abuse and protect against brute-force attacks, rate limiting

is enforced using express-rate-limit on key endpoints. The /auth/ routes were

limited to 20 attempts per 15 minutes, preventing repeated login attempts.

General API usage was capped at 200 requests per 15 minutes per IP, and

chat-related endpoints were limited to 20 messages per minute to discourage

spamming. These limits were applied globally and were transparently

managed by the Express server, enhancing system resilience without

impacting legitimate users.

Figure 6.89: HTTPS-style practices

All communication between the React Native frontend and Node.js

backend was secured using HTTPS-style practiced via JWT-based

authentication. Every API request included an Authorization: Bearer <token>

header, which is validated before any data processing occurs. This ensured that

even if an endpoint is exposed, it cannot be accessed without proper

credentials. In order to mitigate typical online vulnerabilities like XSS and

clickjacking, the backend also used Helmet.js to specify secure HTTP headers.

227

Figure 6.90: Row Level Security (RLS) policies in Supabase

The database layer was protected by Row Level Security (RLS)

policies in Supabase, which enforced strict data isolation. Users can only

access, modify, or delete records that belong to them. For example, a user

cannot view another user’s pet profiles, health records, chat history, or

symptom diagnoses even if they know the record ID. These policies were

defined directly in PostgreSQL and are enforced at the database level,

providing a robust defense against unauthorized data access.

Figure 6.91: Multers and Cors Configuration

File uploads, such as profile picture changes, were handled securely

using Multer middleware on the backend. When a user uploaded an image, it

was temporarily stored, validated for type and size, and then uploaded to the

Supabase Storage “avatars” bucket with appropriate access controls. Public

URLs are generated for display in the app, but direct access to the storage is

228

restricted to authenticated users only. Default avatars were pre-uploaded and

referenced via secure signed URLs, minimizing exposure.

(a) (b)

Figure 6.92(a)(b): Environment Variables

Sensitive configuration data, including API keys for OpenRouter,

Resend, and Supabase service roles, were stored in .env files and loaded using

the dotenv package. These files were excluded from version control

via .gitignore, preventing accidental exposure of secrets. The backend

validated the presence of all required environment variables at startup,

ensuring the server cannot run without proper configuration.

Figure 6.93: Input Validation

Besides, to stop injection attacks and corrupted data, input validation

was done on both the frontend and backend. On the frontend, all user inputs

were validated for registration, login, and profile updates. On the backend, all

229

incoming data was checked for type, format, and completeness before being

processed or stored. For example, email fields were validated using regex

patterns, phone numbers were checked for length, and password strength was

enforced during profile updates.

Figure 6.94: Supabase Admin API

Additionally, the backend used the Supabase Admin API with a

service role key to securely retrieve user emails for email reminders, ensuring

that this sensitive operation is performed only in a trusted environment. The

service role key was never exposed to the frontend and is strictly limited to

server-side use.

This comprehensive security strategy ensured that PawHub remained

a trustworthy and reliable platform for pet owners. By integrating secure

authentication, rate limiting, encrypted storage, input validation, and

environment isolation, the application protected user data at every level while

delivering a seamless and intuitive experience.

6.9 Conclusion

The implementation of PawHub demonstrated a successful integration of

modern mobile development, artificial intelligence, and secure backend

architecture to deliver a comprehensive pet care solution. The system

effectively combined user-centric design with intelligent features such as AI-

powered symptom diagnosis, virtual pet assistance, and personalized health

tracking to empower pet owners with timely, actionable insights. Each module

has been carefully developed and tested, ensuring a seamless and intuitive user

experience across all screens, from authentication and pet profile management

to education and feedback submission.

The frontend, built with React Native, provided a responsive and

visually appealing interface that maintained consistency across devices while

offering smooth navigation and real-time interactions. The backend, powered

by Node.js and Express.js, serves as a robust and secure gateway between the

230

client and external services, handling authentication, data processing, and API

routing with efficiency and reliability. By leveraging Supabase as the primary

database and authentication provider, the application ensured data integrity,

scalability, and strong security through Row Level Security (RLS) policies

that restrict user access to their own data.

Key advanced features such as the AI Chatbot and Symptom

Diagnosis module showcased the effective use of OpenRouter to deliver

context-aware responses personalized to each pet’s profile and medical history.

The Model Control & Prioritization (MCP) strategy ensured service continuity

by automatically falling back to alternative AI models when needed,

enhancing system reliability. Additionally, the automated email reminder

system, powered by Resend, supports preventive care by notifying users of

upcoming health events, while the weekly web scraper kept the Education

module updated with fresh, expert-backed content from trusted sources like

the American Kennel Club.

Security has been prioritized throughout the development process,

with JWT-based authentication, rate limiting, input validation, secure file

storage, and environment variable isolation working together to protect user

data and prevent abuse. The application adhered to best practices in data

handling and privacy, ensuring compliance with modern security standards.

Overall, the implementation of PawHub reflected a professional,

well-structured approach that successfully bridges the gap between pet owners

and virtual pet care assistance. This foundation not only met current functional

requirements but also supported future enhancements such as push

notifications, multi-language support, or integration with wearable pet devices.

With its robust architecture, intelligent features, and user-focused design,

PawHub stands as a scalable, real-world-ready mobile application that delivers

practical value to pet owners while demonstrating technical excellence in full-

stack development.

231

CHAPTER 7

7 TESTING

7.1 Introduction

The testing phase was a critical component in the development lifecycle of any

software application, ensuring that the system functioned as intended, met user

requirements, and maintained high standards of reliability, usability, and

security. For the PawHub Application, testing strategy was implemented to

validate all aspects of the system, from individual components to end-to-end

user workflows. The test conducted includes unit testing, system usability

testing, and user acceptance testing. The goal was to identify and resolve

defects early and enhance user experience. Testing was conducted iteratively

alongside development, following an Agile-inspired approach that allowed for

continuous feedback and improvement. All tests were documented, and results

were used to refine features, fix bugs, and optimize performance.

7.2 Test Execution

Test execution was carried out in a systematic manner across multiple

environments to ensure compatibility, functionality, and performance

consistency. The primary testing environment consisted of an Android Studio

Emulator (Pixel 4 API 30) to validate real-world performance. The backend

server was hosted locally at http://10.0.2.2:3000 to support emulator

connectivity, while Supabase served as the cloud database and authentication

provider. Each test cycle followed a predefined test plan that included test

objectives, input data, expected outcomes, and pass/fail criteria. Functional

testing was performed on all major modules: authentication, AI chatbot,

symptom diagnosis, pet and health record management, profile editing,

education, and feedback. Logs and error messages were monitored using

console outputs and Supabase logs to trace issues. Test results were recorded

in a structured format, and critical bugs were prioritized for immediate

resolution. This disciplined execution ensured that PawHub met functional

requirements and delivered a stable, user-friendly experience.

232

7.3 Unit Test

The unit testing phase focused on validating the core functionalities of the

PawHub application to ensure reliable and error-free performance. Each

module, including authentication, pet management, AI chatbot, symptom

diagnosis, profile management, education, and feedback, was tested in

isolation to verify correct behavior under various scenarios. The testing

covered input validation, form handling, API integration, error states, and user

interactions to confirm that individual components function as intended. This

rigorous approach ensured the application’s stability, usability, and readiness

for further testing stages.

Table 7.1: Unit Test Case - Login

Test Case

ID

TC-001 Module Name Authentication

Module

Test Title Login Screen

Pre

Condition

-

Test Case

Descriptio

n

Execution Steps Expected Result Actual

Result

Statu

s

Valid

credentials

login

1. Enter registered

email.

2. Enter correct

password.

3. Tap “Submit”.

User logs in

successfully. JWT

token stored in

AsyncStorage.

Navigate to Home

screen.

Token

stored.

Navigation

successful.

Pass

Empty

email field

1. Leave email field

empty.

2. Enter password.

3. Tap “Submit”.

Error: “Email is

required.” Form

submission

blocked.

Error

message

appears. No

API call

made.

Pass

Empty

password

1. Enter email.

2. Leave password

Error: “Password

cannot be empty.”

Error

message

Pass

233

field empty.

3. Tap “Submit”.

Form submission

blocked.

appears. No

API call

made.

Both fields

empty

1. Leave both email

and password empty.

2. Tap “Submit”.

Both errors

appear: “Email is

required” and

“Password cannot

be empty.”

Both error

messages

displayed.

Pass

Invalid

email

format

1. Enter “invalid-

email” as email.

2. Enter valid

password.

3. Tap “Submit”.

Backend returns

error. Frontend

shows “Invalid

login credentials”.

Backend

rejects.

General

error

shown.

Pass

Correct

email,

wrong

password

1. Enter correct

email.

2. Enter incorrect

password.

3. Tap “Submit”.

Backend returns

error. App shows:

“Invalid login

credentials”.

Backend

rejects.

General

error

shown.

Pass

Unregistere

d email

1. Enter unregistered

email.

2. Enter any

password.

3. Tap “Submit”.

Backend returns

error. App shows:

“Invalid login

credentials”.

General

error

appears. No

navigation.

Pass

Loading

state

during

login

1. Enter valid

credentials.

2. Tap “Submit”.

3. Observe button.

Button shows

Activity

Indicator. Cannot

be pressed again.

Spinner

appears.

Button

disabled.

Pass

Network

error (no

internet)

1. Turn off Wi-

Fi/data.

2. Enter credentials.

3. Tap “Submit”.

App shows:

“Unable to

connect. Please

check your

internet

connection.”

Error

message

displayed.

Pass

234

error.

Backend

server

down

1. Stop Node.js

server.

2. Attempt login.

Fetch fails. App

shows:

“Something went

wrong. Please try

again.”

Error

caught in

catch block.

Message

shown.

Pass

Secure

password

input

1. Type in password

field.

Characters are

masked (****).

Password

hidden

during

input.

Pass

Case-

sensitive

email

handling

1. Enter

“User@Example.co

m“.

2. Submit with

correct password.

Login succeeds.

Email is handled

case-insensitively

by backend.

Login

successful.

Pass

Forgot

password

link

1. Tap “Forgot

password?” link.

Navigate to

Forgot Password

Screen.

Navigation

occurs.

Pass

Sign up

link

1. Tap “Don’t have

an account? Sign

up”.

Navigate to

Register Screen.

Navigation

occurs.

Pass

Rapid

repeated

login

attempts

1. Submit invalid

login 5 times

quickly.

No client-side

rate limiting, but

backend blocks

after 20 attempts

(via express-rate-

limit).

After 20

attempts,

“Too many

attempts, try

again later”

error

received.

Pass

Input text

clearing on

re-entry

1. Enter email.

2. Navigate away.

3. Return to screen.

Fields are empty

(unless auto-fill

enabled).

Fields start

empty.

Pass

mailto:User@Example.com
mailto:User@Example.com

235

Table 7.2: Unit Test Case - Register

Test Case

ID

TC-002 Module Name Authentication

Module

Test Title Register Screen

Pre

Condition

-

Test Case

Description

Execution Steps Expected Result Actual

Result

Status

Valid

registration

1. Enter valid

username, email,

phone, password,

and confirm

password.

2. Tap “Submit”.

User is registered.

Success alert

appears. Redirect to

Login screen.

Registration

successful.

Navigation

occurs.

Pass

Duplicate

Email

1. Enter existing

email.

2. Fill other fields.

3. Tap “Register”.

Error: “An account

with this email

already exist”

shown

Error

shown,

Registration

blocked.

Pass

Empty

username

1. Leave username

empty.

2. Fill other fields.

3. Tap “Submit”.

Error: “Username

is required.” Form

submission

blocked.

Error

message

displayed.

Pass

Invalid

email

format

1. Enter “invalid-

email” as email.

2. Fill other fields.

3. Tap “Submit”.

Error: “Please enter

a valid email

address.”

Validation

prevents

submission.

Pass

Missing

phone

number

1. Leave phone

field empty.

2. Fill other fields.

3. Tap “Submit”.

Error: “Phone

number is

required.”

Error

message

shown.

Pass

Invalid

phone

number

1. Enter “123”

(less than 10

digits).

Error: “Enter a

valid phone

number (10–15

Validation

enforced.

Pass

236

2. Fill other fields.

3. Tap “Submit”.

digits).”

Weak

password

(short)

1. Enter password:

“pass1”.

2. Fill other fields.

3. Tap “Submit”.

Error: “Password

must be at least 6

characters.”

Submission

blocked.

Pass

Weak

password

(missing

criteria)

1. Enter

“password123”

(no uppercase).

2. Fill other fields.

3. Tap “Submit”.

Error: “Password

must include

uppercase,

lowercase, and a

number.”

Validation

triggered.

Pass

Password

mismatch

1. Enter password:

“Pass123”.

2. Confirm:

“Pass12”.

3. Tap “Submit”.

Error: “Passwords

do not match.”

Error

message

appears.

Pass

Network

error (no

internet)

1. Turn off Wi-

Fi/data.

2. Attempt

registration.

Error: “Unable to

register. Please

check your internet

connection.”

General

error

message

shown.

Pass

Backend

server down

1. Stop Node.js

server.

2. Attempt

registration.

App shows:

“Something went

wrong. Please try

again.”

Error

caught and

displayed.

Pass

Loading

state during

submission

1. Enter valid

data.

2. Tap “Submit”.

3. Observe button.

Button shows

Activity Indicator.

Cannot be pressed

again.

Spinner

appears.

Button

disabled.

Pass

Navigate to

Login

screen

1. Tap “Already

have an account?

Login”.

Navigate to Login

Screen.

Navigation

occurs.

Pass

237

Table 7.3: Unit Test Case - Forgot

Test Case

ID

TC-003 Module Name Authentication

Module

Test Title Forgot Screen

Pre

Condition

-

Test Case

Description

Execution

Steps

Expected Result Actual

Result

Status

Valid email

submission

1. Enter

registered

email.

2. Tap

“Submit”.

Success message:

“Password reset link

sent.” Redirect to Login

after 3 seconds.

Message

shown.

Navigation

to Login

occurs.

Pass

Empty email

field

1. Leave

email empty.

2. Tap

“Submit”.

Error: “Email is

required.” Form

submission blocked.

Error

message

appears.

Pass

Invalid

email format

1. Enter

“invalid-

email”.

2. Tap

“Submit”.

Error: “Please enter a

valid email address.”

Validation

prevents

submission.

Pass

Unregistered

email

1. Enter

unregistered

email.

2. Tap

“Submit”.

No error (security best

practice). Generic

success message

shown.

App shows

success to

avoid

exposing

account

status.

Pass

Loading

state during

submission

1. Enter

valid email.

2. Tap

“Submit”.

3. Observe

Button shows Activity

Indicator. Cannot be

pressed again.

Spinner

appears.

Button

disabled.

Pass

238

button.

Network

error (no

internet)

1. Turn off

Wi-Fi/data.

2. Attempt

submission.

Error: “Unable to send

reset link. Please check

your internet

connection.”

General error

message

displayed.

Pass

Backend

server down

1. Stop

Node.js

server.

2. Attempt

reset.

Error: “Network error.

Please try again.”

Error caught

in catch

block.

Pass

Navigate

back to

Login

1. Tap

“Back to

Login” link.

Navigate to Login

Screen.

Navigation

occurs.

Pass

Success

message

visibility

1. Submit

valid email.

2. Observe

feedback.

Green success message:

“Password reset link

sent to your email.”

Message

displayed

clearly.

Pass

Table 7.4: Unit Test Case - AI Chatbot

Test Case

ID

TC-004 Module Name AI Chatbot Module

Test Title AI Chatbot Screen

Pre

Condition

-

Test Case

Description

Execution

Steps

Expected Result Actual

Result

Status

Send

message

with valid

input

1. Select a pet.

2. Type “How

do I train my

puppy?”

3. Tap send.

AI responds with

relevant advice.

Message appears in

chat.

Response

received

and

displayed.

Pass

Empty 1. Leave input No message sent. Input Send button Pass

239

message

input

field empty.

2. Tap send.

field remains

unchanged.

disabled.

No action.

Loading

state during

response

1. Send a

message.

2. Wait for AI

response.

Typing indicator

(animated dots)

appears. Send button

disabled.

Indicator

shown until

response

received.

Pass

Switch pet

resets chat

1. Send a

message.

2. Select a

different pet.

Chat clears. New

session starts.

Messages

reset.

Session ID

regenerated.

Pass

Rate AI

response (1–

5 stars)

1. Receive AI

response.

2. Tap stars to

rate (e.g., 5).

Rating saved in

chat_history table.

Visual feedback

shown.

Rating

updated in

Supabase.

Pass

Select

different AI

model

1. Tap model

selector.

2. Choose

“Mistral-7B-

Instruct”.

3. Send

message.

Request sent to

selected model.

Response received.

Correct

model used.

Response

generated.

Pass

Network

error during

message

send

1. Turn off

internet.

2. Send

message.

Friendly fallback:

“Check your

connection. For urgent

concerns, contact your

vet.”

Error

message

displayed.

Pass

Backend

server down

1. Stop

Node.js

server.

2. Send

message.

App shows fallback

message. No crash.

Graceful

error

handling.

Pass

Clear chat

confirmation

1. Tap “Clear

Chat”.

Chat history cleared.

New session starts.

Messages

removed.

Pass

240

2. Confirm in

alert.

Session

reset.

Health

records

badge

visibility

1. Add health

records for

selected pet.

2. Open chat.

Badge shows: “X

health records loaded”.

Badge

appears

with correct

count.

Pass

Model

selector

displays

correct

names

1. Tap model

selector.

Modal shows:

Microsoft MAI DS R1,

Mistral-7B-Instruct,

Horizon Alpha.

All models

listed with

context

sizes.

Pass

User avatar

displays

correctly

1. User has

custom profile

picture.

2. Send

message.

Avatar appears in user

message bubble.

Image

loaded from

Supabase

URL.

Pass

Bot avatar

displays pet

image

1. Pet has

profile

picture.

2. Receive AI

response.

AI message shows

pet’s avatar.

Correct

image

displayed.

Pass

Table 7.5: Unit Test Case - Symptom Diagnosis

Test Case

ID

TC-005 Module Name Symptom Diagnosis

Module

Test Title Symptom Diagnosis Screen

Pre

Condition

-

Test Case

Description

Execution

Steps

Expected Result Actual Result Status

Submit

symptoms

1. Select a pet.

2. Enter

AI returns

structured

Response

received and

Pass

241

with valid

input

“vomiting,

lethargic” in

symptoms

field.

3. Tap

“Analyze

Symptoms”.

diagnosis with

severity,

recommendation,

possible causes,

and additional

notes.

displayed

correctly.

Empty

symptoms

field

1. Leave

symptoms field

empty.

2. Tap

“Analyze

Symptoms”.

Error: “Please

describe your pet’s

symptoms.” No

API call made.

Validation

triggered.

Form blocked.

Pass

Loading

state during

analysis

1. Enter valid

symptoms.

2. Tap

“Analyze

Symptoms”.

3. Observe

button.

Button shows

loading indicator

with “Analyzing

symptoms…”.

Disabled during

processing.

Spinner with

words appears.

Button

disabled.

Pass

Severity

badge

displays

correctly

1. Submit

symptoms

indicating

emergency

(e.g.,

“seizures”).

2. View result.

Red badge: “High

Priority”. Color-

coded based on

severity.

Correct color

and label

displayed.

Pass

View past

assessments

1. Tap

“Symptom

History”

button.

2. View list of

past diagnoses.

Modal shows all

previous

assessments with

date, pet, and

severity.

History loaded

from

symptom_histo

ry table.

Pass

242

Delete past

assessment

1. Open

Symptom

History.

2. Tap delete

on an entry.

3. Confirm.

Entry removed

from list and

database.

Record deleted

in Supabase.

Pass

Network

error during

diagnosis

1. Turn off

internet.

2. Submit

symptoms.

Friendly fallback:

“Unable to get

diagnosis. Please

try again later.”

Error message

displayed.

Retry button

shown.

Pass

Backend

server down

1. Stop Node.js

server.

2. Submit

symptoms.

Friendly fallback:

“Unable to get

diagnosis. Please

try again later.”

Error message

displayed.

Retry button

shown.

Pass

AI response

parsing

(structured

output)

1. Receive AI

response.

2. View

diagnosis card.

Response parsed

into sections:

Diagnosis,

Recommendation,

Possible Causes,

Additional Notes.

Content

correctly

extracted and

formatted.

Pass

Empty

history state

1. No past

assessments.

2. Tap

“Symptom

History”.

Modal shows: “No

assessments yet.”

Empty state

displayed

correctly.

Pass

Disclaimer

modal

1. Open

Symptom

Diagnosis

screen and

press info icon.

Modal appears:

“This is for

informational

purposes only...”

Disclaimer

shown.

Pass

243

Table 7.6: Unit Test Case - Pet Management

Test Case

ID

TC-006 Module Name Pet Management

Module

Test Title Pet Management Screen

Pre

Condition

-

Test Case

Description

Execution Steps Expected Result Actual

Result

Status

Add new pet

with valid

data

1. Tap “+” button.

2. Enter valid

name, breed,

birthday, weight.

3. Upload photo

(optional).

4. Tap “Save”.

Pet appears in list.

Data saved in pets

table. Success

toast shown.

Pet added

successfully.

Pass

Empty pet

name

validation

1. Tap “Add Pet”.

2. Leave name

empty.

3. Tap “Save”.

Error: “Pet name is

required.” Form

submission

blocked.

Validation

triggered.

Pass

Future

birthday

validation

1. Set birthday to

next year.

2. Tap “Save”.

Error: “Date

cannot be in the

future.”

Future date

submission

blocked.

Pass

Invalid

weight entry

1. Enter negative

or non-numeric

weight.

2. Tap “Save”.

Error: “Weight

must be a positive

number.”

Validation

prevents

save.

Pass

Invalid

height entry

(non-

numeric)

1. Enter “xyz” as

height.

2. Tap “Save”.

Error: “Must be a

valid number.”

Prevents

submission.

Pass

Edit existing

pet profile

1. Tap “Edit” on a

pet.

2. Change breed

Updated info

reflected in list and

database.

Changes

saved in

Supabase.

Pass

244

or weight.

3. Tap “Save”.

Delete a pet 1. Tap “Delete”

on a pet.

2. Confirm in

alert.

Pet removed from

list. All associated

health records

deleted.

Record and

related data

removed.

Pass

Cancel

delete action

1. Tap “Delete”.

2. Tap “Cancel”

in alert.

No deletion

occurs.

Pet remains

in list.

Pass

Image

upload from

gallery

1. Tap image

placeholder.

2. Choose

“Gallery”.

3. Select image.

Image displayed in

pet card. URL

saved in database.

Photo

uploaded to

Supabase

Storage.

Pass

Image

upload from

camera

1. Tap image

placeholder.

2. Choose

“Camera”.

3. Take photo.

Photo appears in

pet profile.

Image saved

and

displayed.

Pass

Select

default

avatar

1. Tap image

placeholder.

2. Choose a

default pet icon

(dog, cat, etc.).

Selected avatar

displayed.

Default

image URL

saved.

Pass

Add health

record with

valid data

1. Select a pet.

2. Tap “Add

Record”.

3. Enter valid

name, date, cause.

4. Tap “Save”.

Record appears in

list. Saved in

health_records

table.

Record

created

successfully.

Pass

Empty

health

record name

1. Leave record

name empty.

2. Tap “Save”.

Error: “Record

name is required.”

Form

blocked.

Pass

245

Empty

health

record date

1. Leave record

date empty.

2. Tap “Save”.

Error: “Date is

required.”

Form

blocked.

Pass

Future date

with

reminder

enabled

1. Set date to next

week.

2. Enable “Email

Reminder”.

3. Save.

Entry created in

email_reminders

table.

Reminder

scheduled

successfully.

Pass

View health

records list

1. Select a pet

with records.

2. View list.

Records displayed

in chronological

order.

Correct

sorting

applied.

Pass

Edit existing

health

record

1. Tap “Edit” on a

pet’s health

record.

2. Change health

record name.

3. Tap “Save”.

Updated info

reflected in list and

database.

Changes

saved in

Supabase.

Pass

Delete

health

record

1. Swipe or tap

delete on a

record.

2. Confirm.

Record removed

from list and

database.

Deletion

confirmed in

Supabase.

Pass

Network

error during

pet save

1. Turn off

internet.

2. Try to save.

Error: “Something

went wrong.

Please try again.”

Friendly

error

message

shown.

Pass

Backend

server down

1. Stop Node.js

server.

2. Attempt to

save.

App shows error:

“Could not add

pet. Please try

again”.

Graceful

error

handling.

Pass

246

Table 7.7: Unit Test Case - Profile Management

Test Case

ID

TC-007 Module Name Profile Management

Module

Test Title Profile Management Screen

Pre

Condition

-

Test Case

Description

Execution Steps Expected Result Actual

Result

Status

Load profile

on screen

open

1. Navigate to

Profile screen.

2. Wait for data to

load.

Email, username,

phone, and avatar

are displayed.

Data loaded

from

backend and

shown.

Pass

Edit profile

information

1. Tap “Edit”.

2. Change

username.

3. Tap “Save

Changes”.

Updated info

saved in profiles

table. Success

toast shown.

Changes

reflected in

database.

Pass

Save with

valid

password

change

1. Enter new

strong password.

2. Confirm

password.

3. Save.

Password updated

in Supabase Auth.

No error.

Login still

works with

new

password.

Pass

Password

mismatch

validation

1. Enter new

password.

2. Confirm with

different text.

3. Tap “Save”.

Error: “Passwords

do not match.”

Form blocked.

Validation

prevents

submission.

Pass

Weak

password

validation

1. Enter

“pass123” as

password.

2. Save.

Error: “Must

include uppercase,

lowercase,

number, and

symbol.”

Submission

blocked.

Pass

Empty email 1. Leave email Error: “Email is Form Pass

247

field empty.

2. Save.

required.” validation

triggered.

Invalid

email format

1. Enter “invalid-

email”.

2. Save.

Error: “Please

enter a valid

email”.

Prevents

invalid

submission.

Pass

Short

username

validation

1. Enter “ab” as

username.

2. Save.

Error: “Username

must be at least 3

characters.”

Validation

enforced.

Pass

Long

username

validation

1. Enter 31+

character

username.

2. Save.

Error: “Username

cannot exceed 30

characters.”

Input

blocked.

Pass

Invalid

phone

number

1. Enter “123” as

phone.

2. Save.

Error: “Enter a

valid phone

number (10–15

digits).”

Prevents

save.

Pass

Upload

profile

photo from

gallery

1. Tap avatar.

2. Choose

“Gallery”.

3. Select image.

Image uploaded to

Supabase Storage.

Avatar updated.

New image

appears in

profile.

Pass

Take photo

using

camera

1. Tap avatar.

2. Choose

“Camera”.

3. Take photo.

Photo captured,

cropped, and

uploaded.

Avatar

updated

with new

photo.

Pass

Select

default

avatar

1. Tap avatar.

2. Choose a

default user

image.

Selected avatar

displayed. URL

saved in database.

Default

image

shown.

Pass

Cancel

image

picker

1. Tap avatar.

2. Tap outside

modal.

Modal closes. No

changes made.

Profile

remains

unchanged.

Pass

Log out 1. Tap “Log Out”. Session cleared.

Redirect to Login

User logged

out

Pass

248

screen. successfully.

Delete

account

confirmation

1. Tap “Delete

Account”.

2. Tap “Cancel”.

No deletion. Back

to profile.

Account

remains

active.

Pass

Delete

account

(confirm)

1. Tap “Delete

Account”.

2. Tap “Delete”.

Account deleted.

Redirect to Login.

Data

removed

from

Supabase.

Pass

Loading

state during

save

1. Edit profile.

2. Tap “Save

Changes”.

3. Observe

button.

Button shows

loading spinner.

Disabled during

request.

Prevents

duplicate

submission.

Pass

Network

error during

save

1. Turn off

internet.

2. Try to save

changes.

Error: “Something

went wrong.

Please try again.”

Friendly

error

message

shown.

Pass

Backend

server down

1. Stop Node.js

server.

2. Attempt to

save.

App shows error.

No crash.

Graceful

error

handling.

Pass

Table 7.8: Unit Test Case - Education

Test Case

ID

TC-008 Module Name Education Module

Test Title Education Screen

Pre

Condition

-

Test Case

Description

Execution

Steps

Expected Result Actual

Result

Status

Load

articles on

1. Navigate to

Education

Articles fetched from

/articles endpoint and

List

populated

Pass

249

screen open screen.

2. Wait for

data to load.

displayed. with

content.

Search

articles by

title

1. Type

“small dog” in

search bar.

2. Observe

results.

Only articles with

matching title appear.

Filtered list

shown.

Pass

Clear search

query

1. Enter text.

2. Tap “X”

button.

Search field clears.

Full article list

restored.

All articles

reappear.

Pass

Select

category

filter (e.g.,

Health)

1. Tap

“Health” tab.

2. Observe

list.

Only articles under

“Health” category are

shown.

Filtering

applied

correctly.

Pass

Switch

between

categories

1. Tap

“Nutrition”.

2. Then tap

“Travel”.

Article list updates to

match selected

category.

Content

changes

dynamically.

Pass

View article

details

1. Tap on an

article card.

Opens external

browser via

Linking.openURL()

using the article’s link.

Original

webpage

opens in

browser.

Pass

Empty

search

results

1. Search for

“xyz123” (no

match).

Show: “No results for

‘xyz123’“.

Empty state

displayed.

Pass

Default

view (All

category)

1. Open

screen or

select “All”.

Show all articles

without filtering.

Full list

displayed.

Pass

Image

placeholder

for missing

image

1. Article has

no image.

2. View card.

Display paw icon

placeholder.

Placeholder

shown

correctly.

Pass

250

Read More

button

functionality

1. Tap “Read

More” on a

card.

Open article link in

browser. Same as

tapping the card.

Browser

opens with

correct

URL.

Pass

Scrollable

category

tabs

1. Scroll

horizontally

through

category tabs.

Tabs move smoothly.

All categories

accessible.

Horizontal

scroll works.

Pass

Network

error

handling

1. Turn off

internet.

2. Open

Education

screen.

Show error: “Could

not load articles.

Please try again.”

Alert shown.

Empty state

with retry.

Pass

Backend

server down

1. Stop

Node.js

server.

2. Open

screen.

App shows alert and

empty state with

refresh option.

Graceful

error

handling.

Pass

Table 7.9: Unit Test Case - Feedback

Test Case

ID

TC-009 Module Name Feedback Module

Test Title Feedback Screen

Pre

Condition

-

Test Case

Description

Execution

Steps

Expected Result Actual

Result

Status

Submit

feedback

with valid

input

1. Select 4

stars.

2. Enter

“Great app for

Success toast:

“Feedback submitted

successfully”.

Feedback

saved in

feedback

table with

Pass

251

pet care”.

3. Tap

“Submit

Feedback”.

success

toast.

Empty

feedback

text

validation

1. Leave text

field empty.

2. Tap

“Submit

Feedback”.

Error: “Please share

your experience

before submitting”.

Form blocked.

Validation

prevents

submission.

Pass

Rating

selection (1–

5 stars)

1. Tap 1 star.

2. Tap 5 stars.

Rating updates

visually and in state.

Correct star

count

reflected.

Pass

Loading

state during

submission

1. Enter valid

feedback.

2. Tap

“Submit”.

3. Observe

button.

Button shows

“SUBMITTING...”

and disables.

Prevents

duplicate

submission.

Pass

View past

feedbacks

1. Tap “View

Past

Feedbacks”.

Modal opens showing

all submitted

feedback.

Data loaded

from

/feedback

endpoint.

Pass

Past

feedbacks

loading state

1. Open

history modal.

2. Wait for

data.

Show: “Loading your

feedback...”.

Spinner

appears

during fetch.

Pass

Empty

feedback

history

1. No

feedback

submitted.

2. Open

history modal.

Show: “No feedback

submitted yet”.

Empty state

displayed.

Pass

Close

history

1. Open

modal.

Modal closes. Back to

feedback form.

Navigation

works

Pass

252

modal 2. Tap “X” or

back button.

smoothly.

Success

notification

visibility

1. Submit

feedback.

2. Observe

top of screen.

Toast slides in:

“Success! Feedback

submitted

successfully”.

Disappears after 3

seconds.

Notification

shown and

auto-

dismissed.

Pass

Network

error during

submission

1. Turn off

internet.

2. Try to

submit.

Alert: “Could not

submit feedback.

Please try again.”

Error

handled

gracefully.

Pass

Backend

server down

1. Stop

Node.js

server.

2. Attempt to

submit.

App shows error alert.

No crash.

Graceful

error

handling.

Pass

253

7.4 System Usability Scale (SUS) Test

System usability testing was carried out in order to assess the PawHub

application's general usability, interface design, and simplicity of navigation.

A group of ten pet owners, were invited to interact with the app in a controlled

environment. Each participant was asked to complete the standardized System

Usability Scale (SUS) questionnaire, a trustworthy and often used instrument

for evaluating software system’s perceived usability. The SUS consists of 10

Likert-scale statements designed to assess learnability, efficiency, and user

confidence.

Figure 7.1: Standard SUS Test Questions (Item Benchmarks for the System

Usability ScaleJUS, no date)

A globally recognized and proven technique for evaluating the

general usability of software systems, the System Usability Scale (SUS)

consists of 10 standardized questions, as shown in Figure 7.1. These questions

were developed by John Brooke in 1986 and are designed to evaluate key

aspects of user experience, including learnability, efficiency, ease of use, and

user confidence (Item Benchmarks for the System Usability ScaleJUS, no

date). The SUS uses a 5-point Likert scale for each statement, allowing for

quantitative measurement of usability.

254

Figure 7.2: SUS Grading Table (Shei, 2023)

This benchmark table categorized SUS scores into descriptive

adjective ratings, allowing for intuitive interpretation of the results. An

average score of 68 is considered the industry average. Scores above 80.3 are

classified as “Excellent”, indicating a highly usable and satisfying user

experience. The grading scale provides a clear framework for evaluating

PawHub’s performance against established usability standards.

Figure 7.3: SUS Survey Response Chart

The visual representation of user responses highlights consistent

agreement with positive usability indicators. Most participants strongly agreed

with statements such as “I thought the app was easy to use” and “I felt very

confident using the app.” Even-numbered reverse-scored items (e.g., “I found

the app unnecessarily complex”) received low ratings, indicating users

disagreed with negative usability claims. This pattern reflects a generally

positive user experience across all tested features

255

Table 7.10: SUS Survey

Participants Scores for each Question Total

1 2 3 4 5 6 7 8 9 10

1 4 1 5 1 4 1 5 1 5 2 92.50

2 5 1 5 1 5 1 5 1 5 1 100.00

3 4 2 4 2 4 2 4 1 3 3 72.50

4 4 2 5 2 5 2 5 1 5 1 90.00

5 4 3 4 2 4 3 4 2 4 2 65.00

6 5 1 5 1 5 1 4 1 4 1 95.00

7 4 3 4 2 4 2 4 2 4 2 72.50

8 4 2 5 1 4 1 4 2 5 1 87.50

9 5 2 5 1 4 1 4 1 4 1 90.00

10 4 2 3 2 4 2 3 2 3 2 67.50

Average Sus Score 83.25

Grade A Adjective Rating Excellent

The individual SUS scores were calculated using the official formula:

for odd-numbered items, (Score - 1) x 2.5, for even-numbered items, (5 -

Score) x 2.5. The total for each participant was summed to produce a final

score out of 100. As shown in the table, most participants scored between 87.5

and 100, indicating a highly positive perception of the app’s usability.

The average SUS score of 83.25 places PawHub firmly in the

“Excellent” category according to standard benchmarks. This result reflects a

highly usable, intuitive, and efficient application. Users were able to complete

tasks with confidence, found the interface easy to navigate, and reported

minimal frustration during interaction.

Overall, the SUS test results confirm that PawHub delivers a user-

centered, accessible, and highly satisfying experience. The app successfully

balances advanced functionality with simplicity, making it appropriate for a

variety of users, including those who are not as tech-savvy. These findings

validate the effectiveness of the design decisions and iterative testing process

employed during development.

256

7.5 User Acceptance Test

Five users participate in the User Acceptance Testing (UAT) portion of this

project. Users were provided with realistic scenarios in order to evaluate the

application’s functionality, usability, and reliability under real-world

conditions. The testing focused on core modules including authentication, pet

management, health records, AI-powered features, education, feedback, and

profile management. Each participant was asked to complete a series of tasks

while providing feedback on their experience. The structured test template

below outlines the UAT findings. Detailed observations and user comments

were documented in Appendix C: User Acceptance Test Results.

Table 7.11: User Acceptance Testing Template for User

PawHub Application

Test

Module

Test Case

ID

Test Scenario Status Comment

Register UAT-001 Able to register a new

account with valid

username, email, phone, and

password.

Pass

Login UAT-002 Able to log in with valid

credentials.

Pass

Forgot

Password

UAT-003 Able to reset password using

registered email.

Pass

Pet

Management

UAT-004 Able to add a new pet with

photo, name, breed,

birthday, weight, and height.

Pass

UAT-005 Able to edit existing pet

profile.

Pass

UAT-006 Able to delete a pet and

confirm associated records

are removed.

Pass

Health

Records

UAT-007 Able to add a health record

with future date and enable

Pass

257

 email reminder.

UAT-008 Able to receive email

reminder 24 hours before

scheduled event.

Pass

UAT-009 Able to edit existing health

records.

Pass

UAT-010 Able to delete a health

record and confirm

associated email reminders

are removed.

Pass

AI Chatbot

UAT-011 Able to send message to AI

chatbot and receive relevant

response.

Pass

UAT-012 Able to switch between AI

models.

Pass

UAT-013 Able to switch between Pets. Pass

UAT-014 Able to rate AI message with

1–5 stars.

Pass

Symptom

Diagnosis

UAT-015 Able to submit symptoms

and receive AI-generated

diagnosis with severity level.

Pass

UAT-016 Able to view and delete past

symptom assessments.

Pass

Education UAT-017 Able to search articles and

filter by category.

Pass

UAT-018 Able to tap article to open

original article webpage.

Pass

Feedback

UAT-019 Able to submit feedback

with rating and comment.

Pass

UAT-020 Able to view past feedback

submissions.

Pass

Profile UAT-021 Able to update username, Pass

258

Management

phone, and password.

UAT-022 Able to upload profile

picture from gallery or

camera.

Pass

UAT-023 Able to select default avatar. Pass

UAT-024 Able to log out. Pass

UAT-025 Able to delete account. Pass

All 25 test cases passed across 5 participants, confirming that

PawHub is stable, user-friendly, and ready for deployment. The UAT results

demonstrate strong alignment between the app’s design and user needs,

particularly in AI assistance, health tracking, and ease of use. Detailed

qualitative feedback from users is included in Appendix C, supporting

continuous improvement and future enhancements.

259

CHAPTER 8

8 CONCLUSION AND RECOMMENDATION

8.1 Conclusion

The PawHub application has been successfully developed as a comprehensive,

AI-powered mobile application created to tackle the main issues pet owners

encounter while trying to manage the health and wellbeing of their animals.

The system integrates artificial intelligence, cloud-based data storage, and

user-centered design to deliver a seamless and intelligent pet care experience.

By combining an AI chatbot, symptom diagnosis tool, digital health

record management, and curated educational content, PawHub fills a critical

gap in the current pet care technology landscape. Unlike existing applications

that offer fragmented or isolated features, PawHub provides a unified platform

where users can access real-time AI support, track medical history, receive

timely health reminders, and obtain expert-backed information all within a

single, intuitive interface.

The implementation leverages a React Native frontend, a secure

Node.js backend, and Supabase as the unified database and authentication

provider. Key features including the AI Chatbot, Symptom Diagnosis, Pet and

Health Record Management, and Educational Content Delivery have been

rigorously tested and validated through unit testing, system usability testing,

and user acceptance testing, demonstrating high functionality, reliability, and

user satisfaction.

The integration of AI capabilities via OpenRouter.ai enables context-

aware interactions that are personalized to each pet’s profile, significantly

enhancing the app’s value as a virtual pet care assistant. The automated email

reminder system ensures timely notifications for vaccinations and check-ups,

promoting responsible pet ownership. Additionally, the web scraping

mechanism for educational content ensures that users receive up-to-date,

expert-backed information from trusted sources such as the American Kennel

Club (AKC).

260

Security measures such as JWT-based authentication, Row Level

Security (RLS), input validation, and environment variable isolation ensure the

protection of sensitive user and pet data. Overall, PawHub stands as a robust,

scalable, and user-centered mobile application that effectively bridges the gap

between pet owners and virtual veterinary support, providing a holistic, all-in-

one solution for managing multiple pets and addressing their everyday health

and care concerns.

8.2 Achievement of Objectives

All project objectives have been successfully achieved, demonstrating the

effectiveness and completeness of the PawHub application.

The first objective, to develop an AI-powered chatbot with support

for multiple AI models was fulfilled by integrating OpenRouter.ai, enabling

users to interact with models such as Microsoft MAI DS R1, Mistral-7B-

Instruct, and Horizon Alpha. This allows personalized, context-aware

responses to pet care inquiries, enhancing the reliability and depth of

assistance.

The second objective, to implement an AI-driven symptom diagnosis

tool was accomplished through a structured analysis of user-reported

symptoms, delivering AI-generated assessments with severity levels and

recommendations, helping users determine the urgency of veterinary visits.

The third objective, to create a structured digital health record

management system was realized with the implementation of Supabase

powered CRUD operations for pet profiles and medical records, including

vaccination logs, treatment history, and email reminders for upcoming events.

Finally, the fourth objective, to offer educational resources via web

scraping was achieved by the collection of expert-backed articles from AKC,

ensuring users have access to credible, regularly updated pet care knowledge.

These achievements collectively confirm that PawHub meets its intended

purpose as a holistic pet care assistant.

261

8.3 Limitation & Recommendations

Even though the objectives were effectively met throughout the project,

several limitations were found within the application during the development

and testing phases. These limitations are shown in the table below along with

the recommendations for future revisions to optimize the performance of the

application.

Table 8.1: Limitations and Recommendations

No. Limitations Recommendations

1 No offline capabilities, the app

requires an active internet

connection for core features such

as AI chatbot, symptom

diagnosis, and article loading.

Users cannot access or update pet

records when offline.

Implement offline data storage

using SQLite or AsyncStorage to

allow users to view pet profiles,

add/edit health records, and draft

messages while offline. Sync data

when the connection is restored.

2 Web scraping is done manually,

articles are not automatically

updated as GitHub Actions were

not implemented. This reduces

the timeliness and scalability of

the education module.

Integrate GitHub Actions or a

cloud-based scheduler (e.g.,

Supabase Cron, AWS Lambda) to

automate the web scraping process

weekly for fresh, up-to-date

content.

3 Limited source of educational

content. Currently, articles are

only scraped from the American

Kennel Club (AKC). This

restricts the diversity and

coverage of pet care topics.

Expand the web scraper to include

additional reputable sources such

as ASPCA, PetMD, and AKC’s

international counterparts to

provide broader, more diverse

content.

4 No multi-language support.

Because the app is presently only

available in English, users who do

not speak English may find it

difficult to use.

Add multiple language support

using an internationalization (i18n)

library to include common

languages such as Spanish,

Mandarin, or Bahasa Malaysia,

262

improving global accessibility.

5 No push notifications. The app

relies solely on email reminders

for upcoming health events,

which may be overlooked or

marked as spam.

Integrate Firebase Cloud

Messaging (FCM) to deliver real-

time push notifications for

reminders, AI responses, and

system updates, improving user

engagement and reliability.

263

REFERENCES

Agile software development: everything you need to know (2024)

www.nexapp.ca. Available at: https://www.nexapp.ca/en/blog/agile-software-

development.

Appleby, R.B. and Basran, P.S. (2022) ‘Artificial intelligence in veterinary

medicine’, Journal of the American Veterinary Medical Association, 260(8),

pp. 1–6. Available at: https://doi.org/10.2460/javma.22.03.0093 .

asierr.dev (2024) 5 Supabase Features That Make It the Best Backend for

Startups, Medium. Available at: https://medium.com/@asierr/5-supabase-

features-that-make-it-the-best-backend-for-startups-b0c8340b7200 (Accessed:

17 April 2025).

Atlassian (2024) Waterfall Methodology for Project Management, Atlassian.

Available at: https://www.atlassian.com/agile/project-management/waterfall-

methodology.

Build Documentation | Firebase Documentation (no date) Firebase. Available

at: https://firebase.google.com/docs/build.

Figma Design – Figma Learn - Help Center (2024) Figma.com. Available at:

https://help.figma.com/hc/en-us/categories/360002042553.

Flutter documentation (no date) docs.flutter.dev. Available at:

https://docs.flutter.dev/?_gl=1.

GitHub (2024) GitHub.com Help Documentation, docs.github.com. Available

at: https://docs.github.com/en.

GitHub Logo Download - SVG - All Vector Logo (2016) AllVectorLogo.

Available at: https://allvectorlogo.com/github-logo/ (Accessed: 22 April 2025).

Guo, D. et al. (2024) DeepSeek-Coder: When the Large Language Model

Meets Programming -- The Rise of Code Intelligence, arXiv.org. Available at:

https://doi.org/10.48550/arXiv.2401.14196.

Hill, P. (2024) Visual Studio Code 1.94 launched with big startup speed

improvements, Neowin. Available at: https://www.neowin.net/news/visual-

studio-code-194-launched-with-big-startup-speed-improvements/.

Interino, J. (2022) Figma for your Design Portfolio, Part 2: How to Create a

Design Portfolio in Figma, Atomic Spin. Available at:

https://spin.atomicobject.com/building-your-portfolio-figma/ (Accessed: 23

April 2025).

Introduction · React Native (no date) reactnative.dev. Available at:

https://reactnative.dev/docs/getting-started.

Introduction · React Native (no date) reactnative.dev. Available at:

https://reactnative.dev/docs/getting-started.

Item Benchmarks for the System Usability ScaleJUS (no date) uxpajournal.org.

Available at: https://uxpajournal.org/item-benchmarks-system-usability-scale-

sus/.

Jokar, M., Arman Abdous and Vahid Rahmanian (2024) ‘AI chatbots in pet

health care: Opportunities and challenges for owners’, Veterinary medicine

and science, 10(3). Available at: https://doi.org/10.1002/vms3.1464 .

Kaleel, S. B. and Harishankar, S. (2013) ‘Applying Agile Methodology in

Mobile Software Engineering: Android Application Development and its

264

Challenges’. Toronto Metropolitan University. doi:

10.32920/ryerson.14637270.v2.

Käpyaho, M. and Kauppinen, M. (2015) Agile requirements engineering with

prototyping: A case study, IEEE Xplore. Available at:

https://doi.org/10.1109/RE.2015.7320450.

Kissflow (2022) Rapid Application Development (RAD) | Definition, Steps &

Full Guide, kissflow.com. Available at: https://kissflow.com/application-

development/rad/rapid-application-development/.

Lai, N. et al. (2021) ‘Pet owners’ online information searches and the

perceived effects on interactions and relationships with their veterinarians’,

Veterinary Evidence, 6(1). Available at: https://doi.org/10.18849/ve.v6i1.345 .

LLC, H.B. (2023) PetVet AI 24/7 Pet Health Care (1.0.8), [Mobile app].

Available at:

https://play.google.com/store/apps/datasafety?id=ai.petvet.app&hl=en

(Accessed: 20 March 2025)

Ltd, 11 Pets (2015) 11pets Pet care (6.003.003), [Mobile app]. Available at:

https://play.google.com/store/apps/details?id=com.m11pets.elevenpets&hl=en

(Accessed: 20 March 2025).

Lyssa AS (2024) PetVitality Pet Health Tracker (1.1.3), [Mobile app].

Available at:

https://play.google.com/store/apps/details?id=com.lyssa.petvitality&hl=en

(Accessed: 20 March 2025).

Managing Emails - Resend (2025) Resend.com. Resend. Available at:

https://resend.com/docs/dashboard/emails/introduction (Accessed: 12

September 2025).

Mehra, A. (2025) ‘Utilizing Machine Learning for Developing a Pet Health

Monitoring System’, Journal of Integrated Engineering Sciences (JIES), 1(1),

pp. 37–43. Available at:

https://journals.academicsp.com/index.php/jies/article/view/5 (Accessed: 20

March 2025).

Motion (2023) Understanding the Waterfall Methodology: A Sequential

Approach to Project Management, www.usemotion.com. Available at:

https://www.usemotion.com/blog/waterfall-methodology.

Najjar, A. (2023) How to install Emulator on Android Studio - Abdalqader

Najjar - Medium, Medium. Available at:

https://medium.com/@abdalqader27.najjar/how-to-install-emulator-on-

android-studio-95eb101e604b (Accessed: 22 April 2025).

Niemiec, R. et al. (2024) ‘Veterinary and pet owner perspectives on addressing

access to veterinary care and workforce challenges’, Frontiers in Veterinary

Science, 11. Available at: https://doi.org/10.3389/fvets.2024.1419295 .

Node.js Development Services Company | Hire Node.js Developers (2016)

Angularminds.com. Available at: https://www.angularminds.com/nodejs-

development-company (Accessed: 12 September 2025).

Okoone (2025) Okoone.com. Available at:

https://www.okoone.com/technologies/mobile/react-native/ (Accessed: 17

April 2025).

OpenAI (2023) GPT-4, Openai.com. Available at:

https://openai.com/index/gpt-4-research/.

OpenJS Foundation (2017) Express - Node.js web application framework,

Expressjs.com. Available at: https://expressjs.com/.

265

OpenRouter Logo PNG Vector (SVG) Free Download (2025) Seeklogo.

Available at: https://seeklogo.com/vector-logo/611674/openrouter (Accessed:

27 April 2025).

PET, A.F. (2023) TTcare: Keep Your Pet Healthy (2.5.0), [Mobile app].

Available at:

https://play.google.com/store/apps/details?id=com.ttcare.pet&hl=en (Accessed:

20 March 2025).

PLIT, A. (2021) Veterinary Medical Records and the Importance of

Documentation, EquiManagement. Available at:

https://equimanagement.com/business-development/legal/veterinary-medical-

records-and-the-importance-of-documentation/ (Accessed: 19 March 2025).

Postman (2025) Postman.com. Available at:

https://www.postman.com/devrel/openai/documentation/k25n3c8/openai-api

(Accessed: 17 April 2025).

Principles - OpenRouter’s Core Values (2025) OpenRouter Documentation.

OpenRouter | Documentation. Available at:

https://openrouter.ai/docs/overview/principles (Accessed: 27 April 2025).

Rapid Application Development (RAD) (no date) Cost Efficient IT. Available

at: https://www.agilelonestar.com/knowledge-base/rapid-application-

development.

Resend (2025) Resend, Resend.com. Available at: https://resend.com/emails.

Run apps on the Android Emulator (no date) Android Developers. Available at:

https://developer.android.com/studio/run/emulator.

Sassafras Patterdale (2025) How to Protect Your Cats (and Backyard Chickens)

From Bird Flu, WIRED. Available at: https://www.wired.com/story/pets-and-

backyard-flocks-are-at-risk-from-bird-flu-heres-how-to-protect-them/

(Accessed: 19 March 2025).

Senter, A. (2024) ‘Toxic’: Dog chemo sparks outrageous debate, news.

news.com.au — Australia’s leading news site. Available at:

https://www.news.com.au/lifestyle/home/pets/owners-desperate-move-after-

pet-dogs-heartbreaking-diagnosis/news-

story/53e26bcb46f8d01fa981faa0967d35cb (Accessed: 19 March 2025).

Setting up Firebase / Google Analytics (2025) Shopgate.com. Available at:

https://support.shopgate.com/en/migrated/knowledge/firebase-for-mobile-apps

(Accessed: 17 April 2025).

Shei, A. (2023) Foundit | A Platform for Founders to Shares and Grow Ideas

— UI/UX Case Study, Medium. Available at:

https://medium.com/@aryn.shei/foundit-a-platform-for-founders-to-shares-

and-grow-ideas-ui-ux-case-study-bfcc4a7bd5ac (Accessed: 6 September 2025).

Supabase (no date) Supabase Docs, supabase.com. Available at:

https://supabase.com/docs.

TechNode Feed (2025) DeepSeek-V3 ends promotional pricing, updates API

service rates, TechNode. Available at:

https://technode.com/2025/02/10/deepseek-v3-ends-promotional-pricing-

updates-api-service-rates/ (Accessed: 17 April 2025).

vetrec (2024) Vetrec.io. Available at: https://www.vetrec.io/post/the-

evolution-of-veterinary-records-from-paper-to-ai-medical-records (Accessed:

19 March 2025).

Visual Studio Code (2023) Documentation for Visual Studio Code,

code.visualstudio.com. Available at: https://code.visualstudio.com/docs.

266

What is Flutter? Guide for Flutter App Development | Relia Software (no date)

reliasoftware.com. Available at: https://reliasoftware.com/blog/what-is-flutter.

Your First API Call | DeepSeek API Docs (2025) Deepseek.com. Available at:

https://api-docs.deepseek.com/.

https://api-docs.deepseek.com/

267

APPENDICES

Appendix A: Fact Findings Survey

268

269

270

271

272

273

274

275

276

Appendix B: SUS Survey

Participant 1:

Name: Aishwarya

277

Participant 2:

Name: Avnaesh Sonia Singh

278

Participant 3:

Name: Felicia Lau Yee Siew

279

Participant 4:

Name: Estin Ling Wing Yen

280

Participant 5:

Name: Woo Khai Ren

281

Participant 6:

Name: Babita

282

Participant 7:

Name: Yap Ming Jun

283

Participant 8:

Name: Yeap Huai Zhou

284

Participant 9:

Name: Nikita Prasad

285

Participant 10:

Name: Diksha Suri

286

Appendix C: UAT Results

Participant 1:

Name: Charles Lee Ung Kiet

Test Starting Time: 9:45am

Test Ending Time: 10:15am

PawHub Application

Test

Module

Test Case

ID

Test Scenario Status Comment

Register UAT-001 Able to register a new

account with valid

username, email, phone, and

password.

Pass -

Login UAT-002 Able to log in with valid

credentials.

Pass -

Forgot

Password

UAT-003 Able to reset password using

registered email.

Pass -

Pet

Management

UAT-004 Able to add a new pet with

photo, name, breed,

birthday, weight, and height.

Pass Took me

a second

to find the

add button

UAT-005 Able to edit existing pet

profile.

Pass -

UAT-006 Able to delete a pet and

confirm associated records

are removed.

Pass -

Health

Records

UAT-007 Able to add a health record

with future date and enable

email reminder.

Pass -

UAT-008 Able to receive email

reminder 24 hours before

scheduled event.

Pass -

UAT-009 Able to edit existing health

records.

Pass -

287

UAT-010 Able to delete a health

record and confirm

associated email reminders

are removed.

Pass -

AI Chatbot

UAT-011 Able to send message to AI

chatbot and receive relevant

response.

Pass -

UAT-012 Able to switch between AI

models.

Pass -

UAT-013 Able to switch between Pets. Pass -

UAT-014 Able to rate AI message with

1–5 stars.

Pass -

Symptom

Diagnosis

UAT-015 Able to submit symptoms

and receive AI-generated

diagnosis with severity level.

Pass -

UAT-016 Able to view and delete past

symptom assessments.

Pass -

Education UAT-017 Able to search articles and

filter by category.

Pass -

UAT-018 Able to tap article to open

original article webpage.

Pass opened in

browser.

No

crashes.

Feedback

UAT-019 Able to submit feedback

with rating and comment.

Pass -

UAT-020 Able to view past feedback

submissions.

Pass -

Profile

Management

UAT-021 Able to update username,

phone, and password.

Pass -

UAT-022 Able to upload profile

picture from gallery or

camera.

Pass -

UAT-023 Able to select default avatar. Pass -

288

UAT-024 Able to log out. Pass -

UAT-025 Able to delete account. Pass -

Participant 2:

Name: Tee Junn Jeh

Test Starting Time: 1:05pm

Test Ending Time: 1:35pm

PawHub Application

Test

Module

Test

Case ID

Test Scenario Status Comment

Register UAT-001 Able to register a new

account with valid

username, email, phone,

and password.

Pass -

Login UAT-002 Able to log in with valid

credentials.

Pass -

Forgot

Password

UAT-003 Able to reset password

using registered email.

Pass -

Pet

Management

UAT-004 Able to add a new pet

with photo, name, breed,

birthday, weight, and

height.

Pass -

UAT-005 Able to edit existing pet

profile.

Pass -

UAT-006 Able to delete a pet and

confirm associated records

are removed.

Pass -

Health

Records

UAT-007 Able to add a health

record with future date

and enable email

reminder.

Pass -

UAT-008 Able to receive email Pass -

289

reminder 24 hours before

scheduled event.

UAT-009 Able to edit existing

health records.

Pass -

UAT-010 Able to delete a health

record and confirm

associated email

reminders are removed.

Pass -

AI Chatbot

UAT-011 Able to send message to

AI chatbot and receive

relevant response.

Pass -

UAT-012 Able to switch between AI

models.

Pass -

UAT-013 Able to switch between

Pets.

Pass -

UAT-014 Able to rate AI message

with 1–5 stars.

Pass -

Symptom

Diagnosis

UAT-015 Able to submit symptoms

and receive AI-generated

diagnosis with severity

level.

Pass My wifi

disconnected,

the results

didn’t show

in 1st try.

UAT-016 Able to view and delete

past symptom

assessments.

Pass -

Education UAT-017 Able to search articles and

filter by category.

Pass -

UAT-018 Able to tap article to open

original article webpage.

Pass -

Feedback

UAT-019 Able to submit feedback

with rating and comment.

Pass -

UAT-020 Able to view past

feedback submissions.

Pass -

290

Profile

Management

UAT-021 Able to update username,

phone, and password.

Pass -

UAT-022 Able to upload profile

picture from gallery or

camera.

Pass -

UAT-023 Able to select default

avatar.

Pass -

UAT-024 Able to log out. Pass -

UAT-025 Able to delete account. Pass -

Participant 3:

Name: Vanex

Test Starting Time: 11:00am

Test Ending Time: 11:30am

PawHub Application

Test

Module

Test Case

ID

Test Scenario Status Comment

Register UAT-001 Able to register a new

account with valid

username, email, phone, and

password.

Pass -

Login UAT-002 Able to log in with valid

credentials.

Pass -

Forgot

Password

UAT-003 Able to reset password using

registered email.

Pass -

Pet

Management

UAT-004 Able to add a new pet with

photo, name, breed,

birthday, weight, and height.

Pass -

UAT-005 Able to edit existing pet

profile.

Pass -

UAT-006 Able to delete a pet and

confirm associated records

Pass -

291

are removed.

Health

Records

UAT-007 Able to add a health record

with future date and enable

email reminder.

Pass -

UAT-008 Able to receive email

reminder 24 hours before

scheduled event.

Pass -

UAT-009 Able to edit existing health

records.

Pass -

UAT-010 Able to delete a health

record and confirm

associated email reminders

are removed.

Pass -

AI Chatbot

UAT-011 Able to send message to AI

chatbot and receive relevant

response.

Pass -

UAT-012 Able to switch between AI

models.

Pass -

UAT-013 Able to switch between Pets. Pass -

UAT-014 Able to rate AI message with

1–5 stars.

Pass -

Symptom

Diagnosis

UAT-015 Able to submit symptoms

and receive AI-generated

diagnosis with severity level.

Pass -

UAT-016 Able to view and delete past

symptom assessments.

Pass -

Education UAT-017 Able to search articles and

filter by category.

Pass -

UAT-018 Able to tap article to open

original article webpage.

Pass -

Feedback

UAT-019 Able to submit feedback

with rating and comment.

Pass -

UAT-020 Able to view past feedback Pass -

292

submissions.

Profile

Management

UAT-021 Able to update username,

phone, and password.

Pass -

UAT-022 Able to upload profile

picture from gallery or

camera.

Pass -

UAT-023 Able to select default avatar. Pass -

UAT-024 Able to log out. Pass -

UAT-025 Able to delete account. Pass -

Participant 4:

Name: Alex Ting

Test Starting Time: 2:36pm

Test Ending Time: 3:06pm

PawHub Application

Test

Module

Test Case

ID

Test Scenario Status Comment

Register UAT-001 Able to register a new

account with valid

username, email, phone, and

password.

Pass -

Login UAT-002 Able to log in with valid

credentials.

Pass -

Forgot

Password

UAT-003 Able to reset password using

registered email.

Pass -

Pet

Management

UAT-004 Able to add a new pet with

photo, name, breed,

birthday, weight, and height.

Pass -

UAT-005 Able to edit existing pet

profile.

Pass -

UAT-006 Able to delete a pet and

confirm associated records

Pass -

293

are removed.

Health

Records

UAT-007 Able to add a health record

with future date and enable

email reminder.

Pass -

UAT-008 Able to receive email

reminder 24 hours before

scheduled event.

Pass Good,

received

the email.

UAT-009 Able to edit existing health

records.

Pass -

UAT-010 Able to delete a health

record and confirm

associated email reminders

are removed.

Pass -

AI Chatbot

UAT-011 Able to send message to AI

chatbot and receive relevant

response.

Pass -

UAT-012 Able to switch between AI

models.

Pass -

UAT-013 Able to switch between Pets. Pass -

UAT-014 Able to rate AI message with

1–5 stars.

Pass -

Symptom

Diagnosis

UAT-015 Able to submit symptoms

and receive AI-generated

diagnosis with severity level.

Pass -

UAT-016 Able to view and delete past

symptom assessments.

Pass -

Education UAT-017 Able to search articles and

filter by category.

Pass -

UAT-018 Able to tap article to open

original article webpage.

Pass -

Feedback

UAT-019 Able to submit feedback

with rating and comment.

Pass -

UAT-020 Able to view past feedback Pass -

294

submissions.

Profile

Management

UAT-021 Able to update username,

phone, and password.

Pass Updated

username

Form

validated

instantly.

UAT-022 Able to upload profile

picture from gallery or

camera.

Pass -

UAT-023 Able to select default avatar. Pass -

UAT-024 Able to log out. Pass -

UAT-025 Able to delete account. Pass -

Participant 5:

Name: Benjamin

Test Starting Time: 3:10pm

Test Ending Time: 3:40pm

PawHub Application

Test

Module

Test

Case ID

Test Scenario Status Comment

Register UAT-001 Able to register a new

account with valid

username, email, phone,

and password.

Pass -

Login UAT-002 Able to log in with valid

credentials.

Pass -

Forgot

Password

UAT-003 Able to reset password

using registered email.

Pass -

Pet

Management

UAT-004 Able to add a new pet with

photo, name, breed,

birthday, weight, and

height.

Pass -

295

UAT-005 Able to edit existing pet

profile.

Pass -

UAT-006 Able to delete a pet and

confirm associated records

are removed.

Pass -

Health

Records

UAT-007 Able to add a health record

with future date and enable

email reminder.

Pass -

UAT-008 Able to receive email

reminder 24 hours before

scheduled event.

Pass -

UAT-009 Able to edit existing health

records.

Pass -

UAT-010 Able to delete a health

record and confirm

associated email reminders

are removed.

Pass -

AI Chatbot

UAT-011 Able to send message to AI

chatbot and receive

relevant response.

Pass Impressive,

the AI was

able to

answer

based on

my pet

information.

UAT-012 Able to switch between AI

models.

Pass -

UAT-013 Able to switch between

Pets.

Pass -

UAT-014 Able to rate AI message

with 1–5 stars.

Pass -

Symptom

Diagnosis

UAT-015 Able to submit symptoms

and receive AI-generated

diagnosis with severity

Pass -

296

level.

UAT-016 Able to view and delete

past symptom assessments.

Pass -

Education UAT-017 Able to search articles and

filter by category.

Pass -

UAT-018 Able to tap article to open

original article webpage.

Pass -

Feedback

UAT-019 Able to submit feedback

with rating and comment.

Pass -

UAT-020 Able to view past feedback

submissions.

Pass -

Profile

Management

UAT-021 Able to update username,

phone, and password.

Pass -

UAT-022 Able to upload profile

picture from gallery or

camera.

Pass -

UAT-023 Able to select default

avatar.

Pass -

UAT-024 Able to log out. Pass -

UAT-025 Able to delete account. Pass -

