AI-DRIVEN PET CARE APP FOR VIRTUAL
ASSISTANCE AND SYMPTOM DIAGNOSIS

NIVIKA PRASAD A/P KASHI NATH

UNIVERSITI TUNKU ABDUL RAHMAN

AI-DRIVEN PET CARE APP FOR VIRTUAL ASSISTANCE AND
SYMPTOM DIAGNOSIS

NIVIKA PRASAD A/P KASHI NATH

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Software Engineering

(Honours)

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2025

DECLARATION

I hereby declare that this project report is based on my original work except
for citations and quotations which have been duly acknowledged. I also
declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Name - Nivika Prasad A/P Kashi Nath

ID No. ;2104910

Date . 17/9/2025

il

COPYRIGHT STATEMENT

© 2025, Nivika Prasad A/P Kashi Nath. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Bachelor of Software Engineering (Honours) at
Universiti Tunku Abdul Rahman (UTAR). This final year project report
represents the work of the author, except where due acknowledgement has
been made in the text. No part of this final year project report may be
reproduced, stored, or transmitted in any form or by any means, whether
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Lee Ming Jie, my dedicated
research supervisor, for his invaluable guidance, continuous support, and
unwavering patience throughout the development of this project. His expertise,
insightful feedback, and encouragement were instrumental in shaping the
direction and success of my work.

I also extend my sincere appreciation to the faculty and staff of the
Lee Kong Chian Faculty of Engineering and Science (LKC FES), Universiti
Tunku Abdul Rahman, for providing an enriching academic environment and
access to essential resources that greatly supported my learning and research
journey. The knowledge and skills I have gained during my studies have been
fundamental to the completion of this project.

To my dear friends and the pet-loving users who participated in
testing PawHub, thank you for your honest feedback, moral support, and
companionship throughout this journey. Your insights helped shape the app
into a user-centered solution, and your encouragement kept me motivated to
deliver my best.

Lastly, to my beloved family, thank you for your endless love,
understanding, and unwavering belief in me. Your constant encouragement
gave me strength during challenging times and motivated me to push forward
no matter the obstacles.

This project is not only a step toward smarter pet care but also a
personal achievement made possible by the kindness and support of everyone

mentioned above.

v

ABSTRACT

Pet ownership brings joy but also significant responsibilities in health
management and care. Existing applications often offer fragmented features,
lack reliable information, and fail to assist owners in assessing urgent medical
concerns. To address these challenges, this project presents PawHub, a mobile
application that integrates artificial intelligence with comprehensive pet care
tools to deliver a unified, user-friendly experience. The system was developed
using the Agile methodology, leveraging React Native for cross-platform
frontend development, Node.js with Express for the backend, and Supabase as
the centralized database and authentication provider. Key functionalities
include an Al-powered chatbot utilizing multiple models via OpenRouter Al,
an Al symptom diagnosis tool that generates severity-based assessments,
digital health record tracking, automated email reminders through Resend, and
a curated educational content module powered by web scraping from trusted
sources such as the American Kennel Club (AKC). The application underwent
rigorous testing and the results demonstrated high functionality and usability.
PawHub successfully bridges the gap between pet owners and virtual
veterinary support by providing timely, context-aware guidance, structured
health tracking, and expert-backed knowledge. In conclusion, the app proves
that Al-enhanced mobile solutions can significantly improve pet care decision-

making and owner confidence.

Keywords: Artificial Intelligence; Pet Health Management; Symptom
Diagnosis; Web Scraping; Pet Care; Mobile Application

Subject Area: QA76.75-76.765 Computer software

DECLARATION
ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF APPENDICES
CHAPTER
1 INTRODUCTION
1.1 General Introduction
1.2 Importance of the Study
1.3 Problem Statement
1.3.1 Difficulty in Accessing Reliable
Expert-Backed Pet Health Information
1.3.2 Inefficient Health Record Management for
Pets
1.3.3 Difficulty in Assessing When to Seek
Veterinary Care
1.4 Aim and Objectives
1.4.1 Aim
1.4.2 Objectives
1.5 Proposed Solution
1.6 Proposed Approach
1.6.1 Requirement Analysis
1.6.2 Design and Prototyping
1.6.3 Design and Prototyping Development
1.6.4 Testing and Optimization
1.7 Scope and Limitation of the Study

TABLE OF CONTENTS

iii

iv

xi
Xiv

XXiv

O O O 0 N N U W

_ =
oS O

1.7.1 Scope

1.7.2 Development and Research Scope
1.7.3 Target Users

1.7.4 Application Features

1.7.5 Limitations

2 LITERATURE REVIEW
2.1 Introduction
2.2 Literature Review

23

24

2.5

2.2.1 Arttificial Intelligence (AI) Chatbots in Pet
Healthcare

2.2.2 Attificial Intelligence (AI) in Veterinary
Medicine

2.2.3 Machine Learning for Pet Health
Monitoring

2.2.4 Comparison of Literature Review Research
Papers with my PawHub Application

Analysis of Existing Pet Care Applications

2.3.1 TTcare Application

2.3.2 PetVet Al Application

2.3.3 PetVitality Application

2.3.4 11Pets Application

2.3.5 Comparison of Existing Pet Care
Applications with PawHub App Features

Software Development Methodologies

2.4.1 Waterfall Methodology

2.4.2 Agile Methodology

2.4.3 Rapid Application Development (RAD)
Methodology

2.4.4 Comparison of Software Development
Methodologies

Al APIs for Al features

2.5.1 OpenAl API

2.5.2 DeepSeek API

2.5.3 OpenRouter Al API

vi

10
11
11
12
15
17
17
17

17

19

20

21
22
23
25
26
30

32
33
33
36

39

42
42
43
44
45

2.6

2.7

2.8

2.5.4 Comparison of Al APIs for Al features

Backend Development Tools

2.6.1 Supabase

2.6.2 Firebase

2.6.3 Comparison of Backend Development
Tools

Frontend Development Tools

2.7.1 React Native

2.7.2 Flutter

2.7.3 Comparison of Frontend Development
Tools

Summary

METHODOLOGY AND WORK PLAN

3.1
3.2
33
34

3.5

3.6

Introduction

Collecting Requirements

Analysis of Requirements

Software Development Methodology Used
3.4.1 Requirement Analysis and Sprint Planning
3.4.2 Design and Prototyping

3.4.3 Development and Integration

3.4.4 Testing and Optimization

3.4.5 Review and Continuous Improvement
Development Tools Used

3.5.1 React Native

3.5.2 Visual Studio Code

3.5.3 Android Studio Emulator

3.5.4 GitHub

3.5.5 Node.Js

3.5.6 Supabase

3.5.7 OpenRouter Al

3.5.8 Resend

3.5.9 Figma

Project Plan

3.6.1 Work Breakdown Structure (WBS)

vii

46
47
47
48

50
50
51
52

53
54
56
56
57
59
62
63
63
64
67
67
68
68
69
70
71
72
73
74
75
76
77
78

4

4.1
4.2

4.3

4.4
45

4.6

3.6.2 Gantt Chart
PROJECT INITIAL SPECIFICATIONS

Introduction

Facts Finding

4.2.1 Section 1: General Information

4.2.2 Section 2: Current Pet Care Practices

4.2.3 Section 3: Al Chatbot & App Features
4.2.4 Section 4: Pet Health Record Management

Preferences

4.2.5 Section 5: App Usability and Feature

Preferences

Requirements Specification

4.3.1 Functional Requirements

4.3.2 Non-Functional Requirements

Use Case Diagram

Use Case Description

4.5.1 UCO001:
4.5.2 UC002:
4.5.3 UCO003:
4.5.4 UC004:
4.5.5 UCO005:
4.5.6 UC006:
4.5.7 UC007:
4.5.8 UC008:
4.5.9 UC009:
4.5.10UCO010:

User Interface

SYSTEM DESIGN

5.1
5.2
53

5.4

Introduction

Login User Profile
Register User Profile
Manage User Profile

Add Pet

Manage Pet Profile

Add Pet Health Records
Enquire Al Chatbot

Input Symptom Diagnosis
View Educational Resources
Give Feedback

(UI) Prototype

System Architecture

Database Design

5.3.1 Data Dictionary

API Endpoints

5.4.1 Authentication Endpoints

viii

79
81
81
81
82
84
88

92

94

98

98

99
100
101
101
103
105
107
109
111
113
115
117
119
121
127
127
127
129
130
137
137

5.5

5.6

5.7
5.8

59

5.4.2 Profile Management Endpoints

5.4.3 Pet Management Endpoints

5.4.4 Health Records Endpoints

5.4.5 Feedback Endpoints

5.4.6 Symptom Diagnosis Endpoints

5.4.7 Al Chatbot Endpoints

5.4.8 Other Endpoints

Data Flow Diagram (DFD)

5.5.1 Context Diagram

5.5.2 Level-0 Diagram

5.5.3 Level-1 Diagram

Activity Diagram

5.6.1 Login Activity Diagram

5.6.2 Register Activity Diagram

5.6.3 Forgot Password Activity Diagram

5.6.4 Add Pet Activity Diagram

5.6.5 Add Health Record With Reminder
Activity Diagram

5.6.6 Al Chatbot Activity Diagram

5.6.7 Symptoms Diagnosis Activity Diagram

5.6.8 Education Article Activity Diagram

5.6.9 Feedback Activity Diagram

5.6.10Profile Management Activity Diagram

Mobile Application Design Principles

User Interface (UI) Design

5.8.1 User Authentication Screens

5.8.2 Homescreen

5.8.3 AI Chatbot Screen

5.8.4 Symptom Diagnosis Screen

5.8.5 Pet Management Screen

5.8.6 Profile Management Screen

5.8.7 Education Screen

5.8.8 Feedback Screen

Conclusion

X

137
138
138
139
139
139
140
141
141
142
142
145
145
145
146
146

147
148
149
150
151
151
152
162
162
163
164
165
168
172
174
176
177

6 IMPLEMENTATION

6.1 Introduction
6.2 Frontend Implementation
6.2.1 Authentication Module
6.2.2 Al Chatbot Module
6.2.3 Symptom Diagnosis Module
6.2.4 Pet Management Module
6.2.5 Profile Management Module
6.2.6 Education Module
6.2.7 Feedback Module
6.3 Backend Implementation
6.4 Database Integration
6.5 Al Features Implementation
6.5.1 Al Chatbot
6.5.2 Symptom Diagnosis
6.6 Automated Email Reminder System
6.7 Web Scraping for Educational Content
6.8 Security Implementation
6.9 Conclusion
7 TESTING
7.1 Introduction
7.2 Test Execution
7.3 Unit Test
7.4 System Usability Scale (SUS) Test
7.5 User Acceptance Test
8 CONCLUSION AND RECOMMENDATION
8.1 Conclusion
8.2 Achievement of Objectives
8.3 Limitation & Recommendations
REFERENCES

APPENDICES

178
178
178
178
181
184
188
193
196
199
203
209
213
213
215
218
222
224
229
231
231
231
232
253
256
259
259
260
261
263
267

Table 2.1:

Table 2.2:

Table 2.3:

Table 2.4:

Table 2.5:

Table 2.6:

Table 3.1:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

Table 4.7:

Table 4.8:

Table 4.9:

Table 4.10:

Table 4.11:

Table 4.12:

Table 4.13:

Table 4.14:

Table 5.1:

LIST OF TABLES

Comparison of Literature Review Research Papers

Comparison between existing pet care applications and
PawHub App Features

Comparison of Software Development Methodologies
Comparison of Al APIs for Al features

Comparison of Backend Development Tools
Comparison of Frontend Development Tools
Resources Allocation

Additional Features User Responses (Open ended
question)

Final Feedback or Suggestion user responses (Open
ended question)

Functional Requirements
Non-Functional Requirements
UCO001 Login User Profile
Register User Profile

Manage User Profile

UC004: Add Pet

UCO005: Manage Pet Profile
UCO006: Add Pet Health Records
UCO007: Enquire Al Chatbot
UCO008: Input Symptom Diagnosis
UCO009: View Educational Resources
UCO010: Give Feedback

Authenticated Users Table

X1

21

32

46

50

53

56

95

96

98

99

101

103

105

107

109

111

113

115

117

119

130

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.8:

Table 5.9:

Table 5.10:

Table 5.11:

Table 5.12:

Table 5.13:

Table 5.14:

Table 5.15:

Table 5.16:

Table 5.17:

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Table 7.9:

Users Information Table

Pets Information Table

Pets Health Record Information Table

Pets Al Symptoms Diagnosis History Table

Al Chatbot Message History Table
Email Reminders Table

User Feedback Table

Web-scraped Articles Table
Authentication Endpoints

Profile Management Endpoints

Pet Management Endpoints

Health Records Endpoints

Feedback Endpoints

Symptom Diagnosis Endpoints

Al Chatbot Endpoints

Other Endpoints

Unit Test Case - Login

Unit Test Case - Register

Unit Test Case - Forgot

Unit Test Case - Al Chatbot

Unit Test Case - Symptom Diagnosis
Unit Test Case - Pet Management
Unit Test Case - Profile Management
Unit Test Case - Education

Unit Test Case - Feedback

Xii

130

131

132

133

133

134

135

136

137

137

138

138

139

139

139

140

232

235

237

238

240

243

246

248

250

xiii
255

Table 7.10: SUS Survey

Table 7.11: User Acceptance Testing Template for User 256

Table 8.1: Limitations and Recommendations 261

Figure 1.1:

Figure 1.2:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 2.9:

Figure 2.10:

Figure 2.11:

Figure 2.12:
Figure 2.13:
Figure 2.14:

Figure 2.15:

Figure 2.16:

Figure 2.17:
Figure 2.18:

Figure 2.19:

LIST OF FIGURES

System Architecture

Agile Methodology (Agile software
everything you need to know, 2024)

development:

Main Features of TTcare Application

Basic Features in TTcare Application

TTcare Application Analysis Error

PetVet Al Main Al Chatbot Feature

PetVet Al simple FAQ

PetVitality Home Page

PetVitality Al tools features

PetVitality Specialised health trackers feature
PetVitality Detailed Health Tracking Feature
PetVitality Routine Scheduler and Reminders Feature

PetVitality Document Storage and Personal Gallery
Feature

11Pets General Functions
11Pets Health Tracking Features
Waterfall Methodology (Motion, 2023)

Agile Methodology (Agile software
everything you need to know, 2024)

development:
RAD Methodology (Rapid Application Development
(RAD), no date)

Open Al API (Postman, 2025)

DeepSeek API (TechNode Feed, 2025)

OpenRouter Al API (OpenRouter Logo PNG Vector
(SVG) Free Download, 2025)

X1V

23

24

24

25

26

26

27

28

28

29

29

30

31

33

36

39

43

44

45

Figure 2.20:

Figure 2.21:

Figure 2.22:

Figure 2.23:

Figure 3.1:

Figure 3.2:
Figure 3.3:
Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.9:

Figure 3.10:
Figure 3.11:

Figure 3.12:

Figure 3.13:
Figure 3.14:
Figure 3.15:

Figure 3.16:

Figure 4.1:

Figure 4.2:

Supabase Backend Tool (asierr.dev, 2024)

Firebase Backend Tool (Setting up Firebase / Google
Analytics, 2025)

React Native (Okoone, 2025)

Flutter (What is Flutter? Guide for Flutter App
Development | Relia Software, no date)

Agile Methodology (Agile software
everything you need to know, 2024)

development:

React Native (Okoone, 2025)
Visual Studio Code (Hill, 2024)
Android Studio Emulator (Najjar, 2023)

GitHub (GitHub Logo Download - SVG - All Vector
Logo, 2016)

Node.Js Backend Tool (Node.js Development Services
Company | Hire Node.js Developers, 2016)

Supabase Backend Tool (asierr.dev, 2024)

OpenRouter Al API (OpenRouter Logo PNG Vector
(SVG) Free Download, 2025)

Resend Email API (Resend, 2025)
Figma (Interino, 2022)
Work Breakdown Structure Diagram

Project Planning and Requirements Gathering Gantt
Chart

System Design Phase Gantt Chart
Development Phase Gantt Chart
Testing Phase Gantt Chart
Closing Phase Gantt Chart

Target Users of Survey

Survey Question 1, Age Group

XV

47

48

51

52

62

68

69

70

71

72

73

74

75

76

78

79

79

80

80

80

81

82

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Figure 4.16:

Figure 4.17:

Figure 4.18:

Figure 4.19:

Figure 4.20:

Figure 4.21:

Figure 4.22:

Survey Question 2, Pet Types

Survey Question 3, Number of pets

Survey Question 4, Pet Ownership Experience
Survey Question 5, Current Pet Health Management

Survey Question 6, Vet Visits for checkup or health
concerns

Survey Question 7, Struggles to identify if pet is sick
Survey Question 8, Ways to search unusual symptoms

Survey Question 9, Challenges faced in managing pet’s
health

Survey Question 10, Pet Health Tracking System
Usefulness

Survey Question 11, Al-based Virtual Assistant Usage

Survey Question 12, Al-based Symptoms Diagnosis Tool
Usage

Survey Question 13, Al-based Virtual Assistant Usage
for General Pet Care Questions

Survey Question 14, Al-based Virtual Assistant Usage

Survey Question 15, User Trust on Al Tool For
Symptoms Diagnosis

Survey Question 16, Al Symptom Checker

Survey Question 17, Al-based Virtual Assistant

Response Rate

Survey Question 18, Preferred features in a Pet Health
Record System

Survey Question 19, Importance of Centralized Digital
System

Survey Question 20, Interest in Receiving Pet Care Tips,
Alerts, and Reminders

Survey Question 21, Most Important Factors in Pet Care
App 94

XVi

82

83

83

84

84

85

86

86

87

88

88

89

89

90

91

91

92

92

93

Figure 4.23:

Figure 4.24:

Figure 4.25:

Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:

Figure 4.37:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Figure 5.9:

Survey Question 22, Preference for an Al-powered
Symptom Diagnosis Tool

Survey Question 23, Additional Features Suggestion

Survey Question 24, Final Feedback or Suggestion for
improving the application

Use Case Diagram

Overall PawHub Prototype

Welcome Screen

Login Screen

Register Screen

Home Screen and Navigation

Al Chatbot Screen

Symptom Diagnosis Screen

Pet Profile Management Screen

User Profile Management Screen
Educational Resources Screen

Feedback Screen

System Architecture

ERD Diagram

Context Diagram

Level-0 Diagram

Enquire Al Chatbot Level-1 Diagram
Input Symptom Diagnosis Level-1 Diagram
Add Pet Health Records Level-1 Diagram
Login screen activity diagram

Register screen activity diagram

Xvii

94

95

96

100

121

121

122

122

123

123

124

124

125

125

126

127

129

141

142

143

143

144

145

145

Figure 5.10: Forgot screen activity diagram
Figure 5.11: Pet Management Screen activity diagram - Add pet

Figure 5.12: Pet Management Screen activity diagram - Add health
record with reminder

Figure 5.13: Al Chatbot Screen activity diagram

Figure 5.14: Symptom Diagnosis Screen activity diagram

Figure 5.15: Education Screen activity diagram

Figure 5.16: Feedback Screen activity diagram

Figure 5.17: Profile Management Screen activity diagram

Figure 5.18(a)(b)(c): Strive for Consistency

Figure 5.19(a)(b)(c): Enable Frequent Users to Use Shortcuts

Figure 5.20: Enable Frequent Users to Use Shortcuts - Prominent
Display

Figure 5.21(a)(b): Offer Informative Feedback - loading spinner
Figure 5.22(a)(b): Offer Informative Feedback - Success Toast

Figure 5.23(a)(b): Offer Informative Feedback - Input Validation

Figure 5.24(a)(b)(c): Design Dialogs to Yield Closure -
Symptom Diagnosis Flow

Figure 5.25(a)(b)(c): Design Dialogs to Yield Closure - Delete
Heatlh Record

Figure 5.26(a)(b): Offer Simple Error Handling - Input Validation

Figure 5.27(a)(b): Offer Simple Error Handling - For irreversible
actions

Figure 5.28: Permit Easy Reversal of Actions — Cancel

Figure 5.29: Permit Easy Reversal of Actions - non-destructive until
explicitly saved

Figure 5.30(a)(b)(c): Support Internal Locus of Control -
Control to decide

XViil

146

146

147

148

149

150

151

151

152

153

153

154

154

155

155

156

156

157

158

158

159

Figure 5.31(a)(b): Support Internal Locus of Control — Al Never Pre-
fills 159

Figure 5.32: Reduce Short-Term Memory Load — Pet Information
Populated

Figure 5.33: Reduce Short-Term Memory Load — Pet Preview

Figure 5.34(a)(b): Reduce Short-Term Memory Load — Consistent
Navigation

Figure 5.35(a)(b)(c)(d): User Authentication Screens Ul

Figure 5.36(a)(b)(c)(d): Home Screen Ul

Figure 5.37(a)(b)(c)(d): Al Chatbot Screen Ul

Figure 5.38(a)(b)(c)(d): Symptom Diagnosis Screen Ul

Figure 5.39(a)(b)(c)(d): Symptom Diagnosis Screen Results Ul
Figure 5.40(a)(b)(c)(d): Symptom History Modal Ul

Figure 5.41(a)(b)(c): Pet Management Screen Ul

Figure 5.42(a)(b)(c)(d): Create Pet Profile Management Screen Ul
Figure 5.43(a)(b)(c)(d): Update Pet Profile Management Screen Ul
Figure 5.44(a)(b): Delete Pet Profile Management Screen Ul

Figure 5.45(a)(b)(c)(d): CRUD for Pet Health Record Management
Screen UL 171

Figure 5.46(a)(b): Reminder for Pet Health Record Management
Screen Ul

Figure 5.47(a)(b): Profile Management Screen Ul

Figure 5.48(a)(b)(c): CRUD in Profile Management Screen Ul
Figure 5.49(a)(b)(c): Education Screen Ul

Figure 5.50(a)(b): Article in Education Screen Ul

Figure 5.51(a)(b)(c)(d): Feedback Screen Ul

Figure 6.1(a)(b)(c): Authentication Screen Required Input Validations

Figure 6.2(a)(b)(c): Authentication Screen Input Validations

XiX

160

160

161

162

163

164

165

166

167

168

169

169

170

171

172

173

174

175

176

179

179

Figure 6.3: JWT token for session management

Figure 6.4(a)(b): Forgot Password Account Recovery Email
Figure 6.5: Al Chatbot Interface

Figure 6.6: Selector buttons to select pet and Al model
Figure 6.7: Al multi-line text field enabled and disabled
Figure 6.8: Al message rating system

Figure 6.9: Al Chat History session ID

Figure 6.10(a)(b): Clear Chat button and trigger

Figure 6.11: Health Records Loaded Badge

Figure 6.12: Session Management Token in Al Chatbot screen
Figure 6.13: Symptom Diagnosis Screen Pet Selection Modal

Figure 6.14(a)(b)(c): Input Validation and Loading Indicator for
Severity Assessment

Figure 6.15: Severity Assessment Results

Figure 6.16: Symptom Diagnosis Result Diagnosis

Figure 6.17: Symptom Diagnosis Result Recommendation
Figure 6.18: Symptom Diagnosis Result Possible Causes
Figure 6.19: Symptom Diagnosis Result Additional Notes
Figure 6.20: Symptom Diagnosis Disclaimer

Figure 6.21(a)(b)(c): View Past Assessments in Symptom
History Modal

Figure 6.22: Error Handling - AI Service Unavailable
Figure 6.23: NotificationToast component for success message
Figure 6.24: List of Registered Pets in Pet Management Screen

Figure 6.25(a)(b)(c): Add New Pet Form validation and Image
Upload Option

XX

180

180

181

181

182

182

183

183

183

184

184

185

185

186

186

186

186

187

187

188

188

189

189

Figure 6.26(a)(b): Edit Pet Profile, Update Existing Pet Type
Information

Figure 6.27: Delete Pet Confirmation Alert

Figure 6.28: Health Records List as Chronological Medical History
Figure 6.29(a)(b): Add Health Record Input Validations

Figure 6.30(a)(b): Future Date with Email Reminder Enabled
Figure 6.31: Delete Health Record Confirmation

Figure 6.32: Pet Management Screen session

Figure 6.33: Avatar and User Information in Profile Management
Screen

Figure 6.34: Selected image is uploaded via multipart/form-data

Figure 6.35(a)(b): Camera, Gallery, and Default Avatars in Image
Picker

Figure 6.36(a)(b): Edit Profile Information with Input Validation
Figure 6.37: Save Changes, Log Out, and Delete Account Buttons
Figure 6.38: Session Management Token in Profile Management
Figure 6.39: Success Toast on Profile Update

Figure 6.40(a)(b): Pet Education Screens Header and Search Bar
Figure 6.41: Category Tabs

Figure 6.42(a)(b): Article Card Layout

Figure 6.43: No Articles Found

Figure 6.44(a)(b): Opening Article in External Browser

Figure 6.45: Fetching Articles from Backend

Figure 6.46: Header and Rating Section in Feedback Screen
Figure 6.47: Feedback Input Field with Placeholder

Figure 6.48(a)(b): Submit Feedback Button and Error Handling

Figure 6.49: Success Notification Toast on Submission

XX1

190

190

191

191

192

192

192

193

193

194

194

195

195

196

196

197

197

198

198

199

199

200

200

200

Figure 6.50:
Figure 6.51:
Figure 6.52:
Figure 6.53:
Figure 6.54:
Figure 6.55:
Figure 6.56:
Figure 6.57:
Figure 6.58:
Figure 6.59:
Figure 6.60:
Figure 6.61:
Figure 6.62:

Figure 6.63:

View Past Feedbacks Button

List of Submissions in Past Feedbacks Modal
Loading Indicator in Feedback History Modal
Authentication middleware

Rate limiting

Supabase Client SDK

Context-Rich AI Prompt with pet information
Fallback logic to alternative models

Email Reminder checker task runs every 60 seconds
Scraper runs and fetches articles

CORS and Multer Configuration

Creation of database table using PostgreSQL in supabase
RLS Policies in Supabase

Avatar Bucket in Supabase Storage

Figure 6.64(a)(b): JWT-based token generation

Figure 6.65:

Figure 6.66(a)(b): Environment Variable Import and Validations in

Figure 6.67:
Figure 6.68:
Figure 6.69:
Figure 6.70:
Figure 6.71:
Figure 6.72:
Figure 6.73:

Figure 6.74:

Database Schema in Supabase

Backend

OpenRouter Configuration

Context Rich Al prompt for AI Chatbot

Fallback logic for Al Chatbot

Save chat history immediately with a unique session_id
Symptom Diagnosis Al Structured Context Prompt
Diagnosis Result is Saved in the symptom_history Table
Al Fallback Logic for Symptom Diagnosis Screen

Al Error Message If All Models Fail

XXI1i

201

201

202

203

204

205

205

206

206

207

208

209

210

210

211

211

212

213

214

214

215

216

216

217

217

Figure 6.75:
Figure 6.76:

Figure 6.77:

System Calculates the Reminder
Scheduling Logic is implemented

Email Reminder Checker Running Every 60 Seconds

Figure 6.78(a)(b): Example Email Sent via Resend

Figure 6.79(a)(b): Reminder Marked as Sent in Database

Figure 6.80:
Figure 6.81:
Figure 6.82:
Figure 6.83:
Figure 6.84:
Figure 6.85:
Figure 6.86:
Figure 6.87:
Figure 6.88:
Figure 6.89:
Figure 6.90:

Figure 6.91:

Reminders deleted when health record deleted
Email Address Accessed via Supabase Admin API
Axios for HTTP requests

Scraper performs a link-based upsert operation
Categorized based on the source URL

Script logs the error and Process other articles
Authentication Middleware and Supabase Auth
JWT (JSON Web Token) saved to storage
Express Rate Limits

HTTPS-style practices

Row Level Security (RLS) policies in Supabase

Multers and Cors Configuration

Figure 6.92(a)(b): Environment Variables

Figure 6.93:
Figure 6.94:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Input Validation
Supabase Admin API

Standard SUS Test Questions (Item Benchmarks for the
System Usability ScaleJUS, no date)

SUS Grading Table (Shei, 2023)

SUS Survey Response Chart

XXI1i1

218

219

219

220

220

221

221

222

222

223

224

225

225

225

226

227

227

228

228

229

253

254

254

LIST OF APPENDICES

Appendix A: Fact Findings Survey
Appendix B: SUS Survey

Appendix C: UAT Results

XX1V

267

276

286

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Over the years, pet ownership has grown significantly, with more individuals
and families welcoming pets into their homes. Pets are more than just animals,
they are companions that bring joy, comfort, and emotional support to their
owners. However, caring for a pet comes with responsibilities, including
providing proper nutrition, regular health check-ups, and ensuring their overall
well-being. For first-time pet owners, this can be overwhelming, especially
when they are unsure about recognizing early signs of illness, maintaining
vaccination records, or understanding their pet’s specific needs.

Today, life moves quickly, and many people who have pets find it
hard to take care manage their pet’s health the way they should. Searching for
information online can sometimes lead to confusing or unreliable advice,
making it difficult to make the right decisions for a pet’s well-being.
Additionally, scheduling vet visits for minor concerns can be both time-
consuming and costly, leaving many owners wishing for a simpler way to get
answers about their pet’s health.

With advancements in Artificial Intelligence (Al), technology now
plays a crucial role in transforming pet care. Al-powered solutions can assist
pet owners by providing instant, reliable, and data-driven insights into pet
health and wellness. PawHub, an Al-based pet care mobile application, is
designed to bridge this gap by offering an Al chatbot for general pet care
inquiries and an Al-powered symptom diagnosis tool. The chatbot can answer
questions related to pet care, including nutrition, training, and common health
concerns, while the symptom diagnosis feature helps pet owners assess
whether their pet needs immediate veterinary attention.

Beyond AI assistance, this application will also serve as a
comprehensive pet management tool, allowing users to track their pet’s health
records, vaccination schedules, and important medical history in one place.

Additionally, the app provides educational resources through web scraping

tailored for first-time pet owners, guiding them through the essential aspects of
pet care.

By leveraging Al, cloud-based data storage, and an easy-to-use
interface, this application aims to simplify pet ownership and ensure that pet
owners have quick and accurate access to information whenever they need it.
PawHub will provide a clever, dependable, and practical solution for pet care
in the digital age, regardless of whether a person is a beginner pet owner
looking for advice or an experienced pet owner seeking a more effective

approach to maintain health records.

1.2 Importance of the Study

Pet ownership is a lifelong commitment that requires continuous care, yet
many owners struggle to keep up due to busy lifestyles. Issues like early
illness detection, diet changes, and behavioural concerns often go unnoticed,
leading to preventable health problems. The lack of accessible, reliable pet
care information further complicates decision-making.

In the digital age, pet owners rely on online sources, but these often
contain conflicting or misleading advice. Managing health records is also
challenging, especially with physical booklets or scattered digital notes.
Existing pet care apps typically focus on either health tracking or AI chat
support but rarely provide a comprehensive solution that integrates multiple
features seamlessly.

This study explores the potential of an Al-powered pet care app that
will assist owners by offering symptom diagnosis, real-time Al chatbot
support, and efficient health record management. By analysing reported
symptoms, the Al will help detect early health concerns, reducing delays in
treatment and unnecessary vet visits. A 24/7 Al chatbot with multiple Al
models will provide instant, reliable guidance on nutrition, training, and
common health issues, minimizing dependence on unverified online sources.
Additionally, a digital health management system will streamline pet record-
keeping, ensuring organized and stress-free tracking of medical history,
vaccinations, and appointments.

Designed for all pet owners, including first-time users, the app will

prioritize an intuitive and user-friendly interface. This ensures that key

features such as symptom diagnosis, health tracking, and Al support are easily
accessible.

By integrating Al, database management, and an intuitive design, this
application has the potential to transform pet care, making it more efficient
and accessible. This study highlights the need for Al-driven pet care solutions
that empower owners with instant, accurate, and reliable insights, ensuring

better well-being for pets in the future.

1.3 Problem Statement

Pet ownership is a fulfilling experience, but it comes with significant
responsibilities, particularly in maintaining a pet’s health and overall well-
being. Ensuring proper medical care, nutrition, and timely veterinary checkups
can be challenging, especially when reliable information and structured health
management tools are not readily available. Despite the existence of multiple
pet care applications, most focus on isolated functionalities such as basic
health tracking or Al-powered chatbots. However, there is currently no
integrated platform that seamlessly combines Al-driven symptom diagnosis,
structured health record management, and reliable pet care guidance. This
fragmentation forces pet owners to rely on multiple sources, which is
inefficient, time-consuming, and may lead to misinformation or improper pet

carc.

1.3.1 Difficulty in Accessing Reliable and Expert-Backed Pet Health
Information
Pet owners often struggle to find trustworthy sources for pet health
information. Many turn to online platforms, which can contain conflicting or
misleading advice not backed by veterinary science. This reliance on
unverified sources increases the risk of misdiagnosis and improper treatment,
potentially worsening a pet’s condition. A study exploring pet owner’s online
search experiences highlights that while the internet is a common resource, the
quality and reliability of information vary significantly, affecting interactions
with veterinarians (Lai et al., 2021).
The spread of misinformation has been observed in both human and

animal healthcare, leading to poor decision-making. For instance, during the

COVID-19 pandemic, a surge in misinformation paralleled trends in human
healthcare, diminishing trust in evidence-based treatments. A notable example
involved a pet owner who faced opposition in online communities for
choosing conventional chemotherapy over holistic treatments for her dog’s
cancer, showcasing the broader issue of misinformation influencing pet care
decisions (Senter, 2024). To address this gap, an Al-powered system providing
reliable, expert-backed health guidance is essential for ensuring informed pet

care decisions.

1.3.2 Inefficient Health Record Management for Pets

The absence of a centralized system for tracking and managing pet health
records poses significant challenges. Many pet owners rely on scattered notes
or physical booklets to track vaccinations, vet appointments, and medical
history. This disorganized approach can result in missed vaccinations,
overlooked medical symptoms, and inconsistencies in treatment plans. Proper
record-keeping is crucial in veterinary practice to ensure high-quality care and
legal compliance. Inadequate record-keeping can compromise a veterinarian’s
defence during trial or board review (PLIT, 2021).

Additionally, the transition from traditional paper records to Al-
powered Electronic Medical Records (EMRs) has introduced challenges such
as data privacy concerns and the need for robust data management systems.
Even though EMRs provide advantages like more accessibility and fewer
mistakes, sensitive data must be protected during adoption by stringent data
security procedures. The evolution of veterinary records underscores the need
to address these challenges to fully leverage the advantages of EMRs
(Vetrec.io, 2024). A standardized, secure, and accessible health record
management system would not only enhance pet healthcare but also safeguard
veterinary professionals against legal risks associated with inadequate

documentation.

1.3.3 Difficulty in Assessing When to Seek Veterinary Care
Determining whether a pet’s condition requires immediate veterinary attention
or can be managed at home is a common challenge. Pet owners often find
themselves uncertain, leading to either unnecessary vet visits for minor issues
or dangerous delays in seeking treatment for serious conditions. Insufficient
access to veterinary treatment affects human health in addition to being a
serious threat to animal health. (Niemiec et al., 2024).

Since pets cannot verbally communicate their discomfort or
symptoms, owners must rely on observable signs, which can be difficult to
interpret without expert guidance. The lack of accessible, veterinary-backed
resources exacerbates this issue, leaving pet owners dependent on personal
judgment or unreliable online sources. For example, during the H5N1 bird flu
outbreak, misinformation regarding transmission risks to domestic animals
like cats led to confusion and varied responses among pet owners, highlighting
the need for clear, accurate guidance (Patterdale, 2025). Without reliable tools
to assess their pets’ health, owners may either expose them to unnecessary
medical interventions or fail to address critical health issues promptly.
Implementing an Al-driven symptom checker could bridge this gap, helping

pet owners make informed decisions about seeking veterinary care

14 Aim and Objectives

141 Aim

The project’s goal is to develop a smartphone application for pet care that uses
artificial intelligence (AI) to serve as a virtual assistant for pet owners,
offering instant Al chatbot support, symptom-based health assessments, and a
digital health record management system. By providing a clever, data-driven,
and approachable solution that enables pet owners to make knowledgeable
decisions regarding the well-being and health of their pets, the aim is to make
pet care easier. By integrating Artificial Intelligence (Al) and cloud-based data
management, the app will ensure that pet owners have reliable, instant, and
personalized support for their pet care needs, reducing misinformation,

unnecessary vet visits, and disorganized health records.

1.4.2 Objectives

1) To develop an Al-powered chatbot with multiple Al models
that provides instant responses to pet care inquiries, ensuring
reliable and accessible guidance.

i) To implement an Al-driven symptom diagnosis tool to help pet
owners assess health concerns and determine if immediate
veterinary attention is needed.

1i1) To create a structured digital health record management system
to streamline tracking of medical history, vaccinations, and
other essential pet’s data.

1v) To offer educational resources through web scraping that

provides valuable insights and expert knowledge on pet care.

By achieving these objectives, this project will not only streamline pet care
management but also enhance the overall pet ownership experience. Pet
owners will have access to a reliable, Al-driven virtual assistant that simplifies
decision-making, reduces reliance on misinformation, and ensures that their

pets receive timely and appropriate care.

1.5 Proposed Solution

The project’s intended solution is a mobile application for pet care powered by
artificial intelligence that helps pet owners manage the health and wellbeing of
their pets by acting as a virtual assistant. This application will integrate
artificial intelligence, cloud-based database management, and user-friendly
mobile technology to provide an all-in-one platform for pet care. The primary
goal of PawHub is to offer pet owners a reliable, efficient, and accessible tool
to monitor their pet’s health, receive Al-generated care recommendations, and
maintain essential records, reducing the stress and uncertainty of pet
management.

The key features of the application include an Al-powered chatbot
with options from multiple Al model, a symptom diagnosis tool, and a pet
health records management system. The Al chatbot, powered by third party
APT’s from multiple Al models, will provide real-time responses to general pet

care inquiries, offering users guidance on nutrition, training, and common pet

health concerns. The symptom diagnosis feature will also utilize AI models to
analyse user-provided symptoms and categorise the health issues based on
severity, enabling pet owners to take timely action when necessary.
Additionally, the pet health records management system will allow users to
store and track their pet’s information, vaccination history, vet visits, and other
medical records, ensuring that critical health information is always accessible.
To ensure secure access and data protection, the application will
implement Supabase authentication for user management. The database
operations will also be handled by Supabase, which will store user and pet-
related data efficiently while allowing seamless integration with the
application’s features. Moreover, the app will include educational resources,
such as pet care articles and guides, to enhance pet owner’s knowledge and
provide preventive care insights, this will be implemented through web-
scraping. The PawHub application will be developed using React Native for
cross-platform compatibility and node.js for backend, ensuring that it can

reach a wider audience of pet owners using both Android and iOS devices.

Database Query

y supabase

P

\\\\\\\\\

< OpenRouter

Al

Sends email via API

Resend

Receive email

Figure 1.1: System Architecture

PawHub was built on a secure, full-stack architecture that integrates
React Native (frontend), Node.js with Express (backend), and Supabase
(PostgreSQL database and authentication). The frontend communicated with a

dedicated backend server, which acts as a secure gateway for all API requests.

This server handles authentication, data validation, and routing while
enforcing rate limiting and JWT-based access control to protect user data.

The backend connects to Supabase to manage user profiles, pet
details, health records, and Al interaction history, all secured with Row Level
Security (RLS) policies to ensure users only access their own data. For Al-
powered features, the backend forwarded enriched prompts to OpenRouter.ai,
enabling intelligent chatbot responses and symptom diagnosis with model
fallback logic for reliability. Additionally, an automated email reminder
system uses Resend to notify users of upcoming health events, triggered by a
background checker that runs every 60 seconds.

All sensitive credentials including Supabase, OpenRouter, and
Resend API keys are securely stored in environment variables using .env files,
ensuring they are never exposed in the frontend or version control. This
layered, well-integrated architecture supports scalability, security, and real-
time functionality, making PawHub a robust and intelligent solution for

modern pet care management.

1.6 Proposed Approach

=

W

> AGILE

'&" METHODOLOGY

PLAN

Figure 1.2: Agile Methodology (Agile software development: everything you
need to know, 2024)

Throughout the project lifespan, PawHub will follow an Agile software
development methodology combined with an incremental approach to ensure
continuous improvement, adaptability, and high-quality outcomes. This

approach supports the gradual development and refinement of features such as

the Al chatbot, symptom diagnosis tool, and pet health records system by
dividing the project into manageable sprints or development cycles. At the end
of each sprint, a functional component of the application will be tested, and
evaluated, allowing for supervisor feedback and necessary adjustments to be
integrated into future iterations.

Agile’s flexibility is especially beneficial for the mobile application,
PawHub that relies on modern technologies such as Al and cloud-based
services, where requirements may evolve based on testing outcomes or user
needs. The project will begin with an initial planning and requirement analysis
phase, followed by design, development, testing, and deployment, with each
phase being revisited and refined as needed. By adopting this methodology,
the development process remains dynamic and user-focused, ensuring that the
final product is not only functional and reliable but also aligned with user

expectations and evolving technological trends.

1.6.1 Requirement Analysis

The first phase involves requirement analysis, where research will be
conducted to identify the challenges pet owners face when managing their
pet’s health. Surveys and studies on existing pet care applications will be used
to gather insights, allowing for the identification of essential features that
differentiate PawHub from other solutions. This phase is crucial for defining
the scope of the project and aligning the application’s functionalities with user

needs.

1.6.2 Design and Prototyping

Following this, the design and prototyping phase will focus on creating UI/UX
wireframes to ensure an intuitive and user-friendly experience. The system
architecture will be structured to define how the application components,
including the Al chatbot, database, and user interface, will interact. This stage

will also outline data models for pet health records and chatbot responses.

1.6.3 Design and Prototyping Development
The development phase will involve coding and integrating the core features

of the application. This includes implementing Supabase authentication for

10

secure user management, configuring Supabase for database operations, and
integrating the Al API models for Al-powered chatbot functionality.
Integrating Resend API configuration for pet health record reminders. The
symptom diagnosis module will be developed using Al models capable of
analysing input symptoms and providing relevant analysis and
recommendation. Throughout this phase, React Native and Node.js will be
used to develop the application, ensuring efficiency in both functionality and

design.

1.6.4 Testing and Optimization

Once the core features are implemented, the testing and optimization phase
will be conducted to evaluate the app’s performance, usability, and accuracy.
Unit testing and system testing will be performed to detect bugs and ensure
smooth interactions between different components. The AI chatbot and
symptom diagnosis system will also undergo validation testing to measure
response accuracy and reliability. User feedback will be gathered through
initial test runs to refine the application further, addressing any usability
concerns or feature gaps.

By following an agile and iterative development approach, PawHub
will be refined continuously to enhance its efficiency, accuracy, and user
experience. The structured methodology ensures that the project progresses
systematically while allowing flexibility for improvements. This approach not
only facilitates efficient project execution but also ensures that PawHub

evolves to meet the dynamic needs of pet owners effectively.

1.7 Scope and Limitation of the Study

1.7.1 Scope

The research study is about the development and implementation of an Al-
powered application for pet care that aims to give pet owners virtual support in
overseeing the health and general welfare of their animals. The proposed
application will be developed using React Native, ensuring compatibility for
cross platform devices. For backend services, Node.js and Supabase will be
utilized to handle user authentication, database management, and cloud storage,

offering a secure and scalable solution for storing pet health records and user

11

data. The Al-powered functionalities, including the chatbot and symptom
diagnosis tool, will be integrated using an Al models to enhance user
experience by providing intelligent and data-driven assistance tailored to pet

care needs.

1.7.2 Development and Research Scope

The proposed application will incorporate Al-based virtual assistance and pet
health management functionalities. The scope of research includes the
evaluation of Al-powered chatbots for pet care, symptom diagnosis accuracy,
and the effectiveness of cloud-based storage for managing pet health records.
The development scope will involve implementing core features such as user
authentication, pet profile management, symptom diagnosis, Al-driven chatbot

interactions, and reminder notifications.

1.7.3 Target Users

The primary target users of the PawHub application are pet owners who are
looking for accessible, Al-powered virtual assistance to support them in
managing the health and well-being of their pets. These users may include
first-time pet owners who need guidance on general care, feeding, training,
and early detection of symptoms, as well as experienced owners who want to
streamline their pet management routines using digital tools. In addition to the
Pet Owner, the Admin is a secondary user responsible for managing feedback
submitted by users and curating educational content. All admin tasks are
performed via the Supabase web dashboard and are not part of the PawHub
mobile application.

The application is also beneficial for veterinarians, pet caregivers, and
pet care enthusiasts. Veterinarians may find value in features such as
organized health records and symptom logs provided by the app, which can
improve diagnosis accuracy and treatment plans during in-person consultations.
Pet caregivers, such as pet sitters or boarding staff, can also use the app to
better understand the pet’s needs, care routines, and medical history while the
owner is away. Meanwhile, pet care enthusiasts and community members who
actively engage in learning about pet health and behaviour can benefit from

the educational resources and Al chatbot for general pet-related inquiries.

12

1.7.4 Application Features
The proposed application will include several core features to simplify and

enhance pet care management:

i) Al-powered chatbot
The AI Chatbot in the PawHub app acts as a virtual assistant, helping
pet owners by answering questions related to pet nutrition, training,
behaviour, and common health concerns. Powered by natural
language processing (NLP) APIs, the chatbot provides structured and
relevant responses based on user queries, pet informations and health
records, offering quick and accessible support without the need to
search multiple sources. To improve the accuracy and adaptability of
responses, the chatbot integrates three different Al models, allowing
users to switch between them based on their preference for response
style or depth. This multi-model approach ensures more flexible and
tailored assistance across a variety of pet care topics and a fallback
logic is implemented to avoid system downtime. While the chatbot
does not replace professional veterinary care, it helps bridge the gap
by offering valuable insights and general guidance to pet owners at

any time.

ii) Symptom diagnosis tool
The Symptom Diagnosis tool in the PawHub app is designed to assist
pet owners in assessing the urgency of their pet’s health condition
based on user-input symptoms. By utilizing an Al-powered model
and a Al fallback logic to avoid system downtime, the tool analyzes
the described symptoms and returns a health status categorized by a
three-colour indicator system, green for minor issues, yellow for
moderate concern, and red for serious conditions that may require
immediate veterinary attention. This simple visual system helps users
quickly understand the potential severity of their pet’s symptoms. A
clear disclaimer is displayed at the top, reminding users that the tool
is for informational purposes only and does not serve as a

replacement for professional veterinary diagnosis or treatment. The

13

Symptom Diagnosis tool aims to empower pet owners to make more
informed decisions while emphasizing the importance of seeking

professional veterinary care when needed.

iii) Pet profile management
The Pet Profile Management system allows users to create and
manage individual profiles for each of their pets. These profiles will
include vital details such as the pet’s name, breed, age, gender,
weight, and medical history. The feature is designed to give pet
owners a personalized dashboard where they can quickly view and
update pet-specific information. This makes it easier to keep track of
important dates such as vet appointments, vaccination due dates, and
dietary preferences. For users with multiple pets, the feature offers a
convenient way to switch between profiles, ensuring each pet’s needs

are addressed efficiently.

iv) Pet health record management
This feature enables users to digitally store, view, and update their
pet’s medical records in an organized and secure format. It includes
essential information such as vaccination history, scheduled check-
ups with email reminders, prior illnesses, diagnoses, prescribed
medications and allergy notes. By centralizing this data within the
app, pet owners can easily track their pet’s health status and share
comprehensive reports with veterinarians during appointments. This
function reduces the risk of missing important medical details and
helps ensure continuity in healthcare, particularly for pets with

chronic conditions or special medical needs.

V) Educational resources
The Educational Resources section acts as a learning hub, offering
curated content such as expert-written articles, how-to guides, and
infographics on pet nutrition, grooming, exercise, training, and
common illnesses. The content is organized into clear categories for

easy navigation with a search function. Web scraping is used to

14

automate the gathering of educational materials from trusted pet care
websites. By using libraries like Axios and Cheerio to fetch and parse
web data, PawHub intelligently collects and updates its resources
without manual input. This automation ensures that users, especially
first-time pet owners, have continuous access to reliable and

categorized pet care information within the app.

vi) User profile management
This feature allows users to create secure and personalized accounts
by registering with their name, email address, password and phone
number. Once logged in, users can manage their profile settings and
update information. The system ensures secure authentication and
session handling to protect user data, while also offering a
personalized interface that enhances the overall user experience. User
profile management also facilitates the storage of app activity and
preferences, making it easier for users to resume tasks and interact

with the application seamlessly.

vii) User feedback system
The User Feedback System provides a structured platform within the
app where users can submit feedback, report bugs, and suggest
improvements. This feature is crucial for ongoing development and
refinement of the application, as it gives direct insights into user
experiences and expectations. The feedback system may include
rating options, comment sections, and a quick survey form to collect
both qualitative and quantitative data. By engaging users in the
development cycle, this feature supports continuous improvement and
ensures that the app evolves based on actual user needs and

challenges.

15

1.7.5 Limitations
While this application aims to provide an advanced and intelligent platform for

pet care management, several limitations must be acknowledged:

i) Accuracy Constraints of AI-Powered Features
The chatbot and symptom diagnosis tool will rely on pre-trained Al
models API that generate responses based on existing datasets. While
efforts will be made to improve precision using prompts, the Al may
not always provide entirely accurate diagnoses or recommendations,
especially in rare or complex medical cases. The system will be
trained on general pet care patterns, meaning that unique scenarios or
breed-specific conditions may not be well-addressed. Additional
validation from professional veterinarians will be necessary for cases

requiring expert medical judgment.

ii) Not a Replacement for Veterinary Care

The Al-powered tools will provide guidance and preliminary
assessments but cannot substitute the expertise of a licensed
veterinarian. The application will serve as a supplementary tool to
help pet owners understand potential health concerns and manage
routine pet care, but it will not provide official medical diagnoses or
treatment plans. Users will be strongly encouraged to consult a
veterinarian for serious or urgent medical conditions rather than

relying solely on Al-generated suggestions.

iii) Internet Dependency
Since many of the Al-driven features and cloud-based services will
rely on API calls for data processing and retrieval, a stable internet
connection will be required for optimal performance. Users in areas
with poor or limited connectivity may experience delays in chatbot
responses, incomplete symptom analysis, or restricted access to stored
health records. While certain offline functionalities may be
implemented in the future, real-time Al interactions and cloud-stored

data will still require an active internet connection.

16

iv) Potential User Over-Reliance on Al
The convenience of Al-powered recommendations may lead some pet
owners to rely too heavily on automated guidance instead of seeking
human expertise. While the chatbot and symptom analysis tool will
aim to provide valuable insights, they should be used as advisory
tools rather than definitive sources of medical advice. To mitigate this
risk, the application will emphasize the importance of professional
veterinary consultation and promote responsible usage among its

users.

Despite these limitations, the proposed Al-driven pet care application
is designed to be a valuable and user-friendly tool that enhances pet care
management. By integrating Al capabilities with essential health management
features, the app will provide a structured and informed approach to pet care.
While technology cannot replace the expertise of veterinarians, this application
aspires to bridge the gap between traditional pet care and modern Al-driven

assistance, making pet ownership more convenient, informed, and accessible.

17

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The improvement of artificial intelligence (Al) and mobile technology has
significantly transformed the pet care industry, enabling pet owners to monitor
their pet’s health more efficiently. Al-powered solutions such as chatbots,
symptom diagnosis tools, and veterinary decision-support systems have
emerged to assist pet owners in making informed healthcare decisions.
Through immediate access to health-related insights, early diagnosis, and real-
time pet health monitoring, these advances aid in bridging the gap between pet
owners and veterinary specialists.

However, despite the availability of various Al-driven pet care
applications, many solutions face limitations, such as a lack of comprehensive
health monitoring, reliance on internet connectivity, and limited Al accuracy
in symptom diagnosis. Some applications focus on image-based disease
detection, while others provide general pet care advice without offering
personalized health insights. This literature review explores existing Al-based
pet care applications, their benefits, and their limitations to highlight the need
for a more integrated and accessible solution.

The PawHub application aims to address these gaps by offering an
Al-powered chatbot and API-based symptom diagnosis system that provides
real-time, reliable health insights. Unlike other pet care apps, PawHub
integrates multiple Al-driven features, symptom analysis, and offline

functionality, ensuring a user-friendly and accessible pet healthcare assistant.

2.2 Literature Review
This section will examine key research and existing solutions relevant to

PawHub’s Al-driven pet care features.

2.2.1 Artificial Intelligence (AI) Chatbots in Pet Healthcare
The use of Al-powered chatbots in pet healthcare has gained significant

attraction, offering pet owners immediate access to health-related information

18

and preliminary diagnoses. Jokar et al. (2024) emphasize that Al chatbots,
such as ChatGPT, provide 24/7 availability and convenience, allowing pet
owners to make informed decisions without requiring immediate veterinary
consultations. Since these virtual assistants employ Natural Language
Processing (NLP) to understand pet health issues and deliver suitable solutions,
they are helpful tools for managing pet care.

The power of Al chatbots to offer immediate access to medical
information is one of its main advantages. Chatbots assist pet owners by
analysing symptoms, offering first-aid suggestions in urgent situations, and
eliminating consultation fees for minor health concerns. Additionally, these
Al-driven assistants serve as educational resources, providing insights into pet
nutrition, behaviour, and preventive care strategies.

Despite these advantages, Al-driven pet healthcare systems also
present several challenges. Al chatbots lack the ability to perform physical
examinations, increasing the risk of misdiagnosis. Furthermore, pet owners
may over-rely on Al recommendations, potentially delaying professional
veterinary care, which could worsen medical conditions. Al-generated
responses may also include inaccurate or generalized advice, particularly for
complex medical cases requiring professional expertise.

To mitigate these risks, Jokar et al. (2024) propose integrating Al
chatbots as complementary tools alongside veterinarians, ensuring that
chatbots handle preliminary diagnosis and routine inquiries while complex
cases remain under veterinary supervision. They also recommend the
establishment of regulations and guidelines to prevent Al chatbots from acting
as independent substitutes for professional veterinary care.

For my PawHub application, Al chatbots will play a crucial role in
enhancing pet healthcare accessibility by offering instant, Al-driven insights
while ensuring that pet owners receive verified and professional veterinary
support when needed. By implementing an Al-powered chatbot that integrates
accurate symptom analysis, first-aid recommendations, and direct veterinarian
referrals, PawHub aims to address the limitations of existing Al-based pet care
solutions, ensuring a more reliable and comprehensive virtual assistant for pet

Oowners.

19

2.2.2 Artificial Intelligence (Al) in Veterinary Medicine

The use of artificial intelligence (AI) in animal health care has significantly
improved diagnostic accuracy, treatment planning, and medical record
management. Al-based radiographic analysis is one of the key advancements,
allowing automated detection of abnormalities such as pulmonary nodules,
cardiomegaly, and skeletal disorders with high precision (Appleby & Basran,
2022). Al-powered imaging tools assist veterinarians in identifying diseases
more efficiently, reducing the time required for diagnosis while improving
overall patient care.

Beyond imaging, Al applications in veterinary medicine are
expanding into predictive analytics and decision support systems, which can
help veterinarians analyse historical health data and anticipate potential
medical conditions. Al-driven systems are also enhancing automated medical
record management, enabling structured data extraction from unstructured
clinical notes to streamline patient histories and improve continuity of care.

However, Al adoption in veterinary medicine presents challenges,
particularly in data quality and model reliability. Al models require large
datasets of accurately labeled veterinary records to ensure generalizability and
precision. Variability in diagnostic interpretations and inconsistencies in data
collection across different veterinary clinics may lead to potential biases in Al-
driven diagnoses. Therefore, veterinary professionals must be actively
involved in training Al models, ensuring that these technologies align with
clinical best practices and ethical considerations (Appleby & Basran, 2022).

For PawHub, the integration of Al-driven health monitoring and
symptom analysis can significantly enhance pet care by providing real-time
insights to pet owners. Al-driven diagnostic technologies can help discover
diseases early by providing initial health evaluations prior to a professional
veterinary consultation. By leveraging Al in veterinary medicine, PawHub
aims to bridge the gap between pet owners and veterinarians, ensuring timely

and informed healthcare decisions for pets.

20

2.2.3 Machine Learning for Pet Health Monitoring

The use of artificial intelligence (AI) and machine learning (ML) in veterinary
medicine has greatly improved the accuracy of diagnosing and tracking the
health of pets. Specifically, advanced machine learning techniques, including
CNNs, have shown remarkable success in detecting skin conditions in pets and
identifying other potential health problems. Studies have shown that CNN-
based models can achieve 92% accuracy in classifying common pet conditions
such as dermatitis, eczema, and fungal infections (Mehra, 2025). These
findings suggest that Al-driven image classification is a valuable tool for early
disease detection and intervention.

Traditional veterinary diagnosis relies heavily on human expertise,
which can lead to inconsistencies in assessment and delayed detection of
health issues. Through the use of huge amounts of annotated photos, the
development of Al-powered dermatology tools seeks to standardize diagnoses,
increase diagnostic reliability, and lessen the workload for veterinarians.
Mehra (2025) emphasizes that deep learning models, when trained on
extensive veterinary databases, can effectively differentiate between various
skin conditions, allowing for faster and more accurate diagnoses with minimal
human intervention.

However, despite these advancements, Al-driven pet health monitoring
systems face multiple challenges. The accuracy of CNN-based models
depends on the quality of training images, which may vary based on factors
such as lighting conditions, image resolution, and severity of the skin
condition. Furthermore, Al models may struggle with new or rare pet illnesses,
leading to misclassifications that require human verification. Another major
concern is user adoption, as many pet owners still prefer direct veterinary
consultations, making Al-based diagnostics a supplementary tool rather than a
standalone solution. Additionally, cloud-based Al models often require
consistent internet connectivity, limiting their usability in offline environments
or remote areas where veterinary services are already scarce.

While PawHub does not rely on image-based CNN models, the
concept of leveraging machine learning API for accurate symptom analysis
aligns with the app’s goal of offering reliable, real-time health insights. By

focusing on API-based symptom diagnosis rather than image classification,

21

PawHub aims to provide a more accessible solution that does not depend on

high-quality images. This ensures that pet owners can benefit from Al-assisted

diagnostics even in low-resource environments, making PawHub a more

practical tool for everyday pet healthcare management.

2.2.4 Comparison of Literature Review Research Papers with my
PawHub Application
Table 2.1: Comparison of Literature Review Research Papers
Study Key Features Limitations Relevance to
PawHub
Al -24/7 virtual | -Cannot conduct | -Integrates chatbot
Chatbots assistance using | physical exams for instant support
in Pet | NLP -Risk of | -Offers symptom-
Healthcare | -Provides general | misdiagnosis based suggestions
health info -May delay | -Encourages vet
-Cost-effective professional help consultation
Al in | -Al in radiography | -Requires large, | -Bridges gap with
Veterinary | (e.g., X-ray | clean datasets vets through Al
Medicine analysis) -Clinical bias | insights
-Medical record | possible -Provides real-time
automation -Not accessible to | monitoring data to
-Predictive pet owners directly | users
analytics
Machine -CNNs detect skin | -Accuracy depends | -Focuses on
Learning conditions on image quality symptom input
for Pet | -High diagnosis | -May miss rare | over image data
Health accuracy conditions -Reduces internet
Monitoring | -Deep learning | -Internet dependency
image dependency in | -Offers generalized
classification cloud models suggestions

22

A comparative analysis of Al-based pet healthcare solutions reveals both
strengths and weaknesses across various approaches. Al chatbots offer 24/7
virtual assistance for health advice and symptom assessments through Natural
Language Processing (NLP), but their inability to conduct physical exams can
lead to misdiagnoses and over-reliance on Al-generated recommendations,
delaying veterinary care. PawHub addresses this by integrating an Al chatbot
that provides real-time insights while guiding users to professional veterinary
services when needed.

In veterinary medicine, Al technologies like radiographic image
analysis and predictive analytics improve diagnostic accuracy, yet their
effectiveness relies on high-quality data and remains inaccessible to pet
owners. PawHub bridges this gap by offering Al-driven text input symptom
analysis, enabling pet owners to gain preliminary health insights before
seeking professional consultation. While machine learning models such as
convolutional neural networks (CNNs) are effective in detecting skin diseases
and health conditions through image-based classification, they are limited by
factors like image quality, internet dependency, and challenges in diagnosing
rare conditions. In contrast, PawHub does not rely on image-based analysis but
uses an Al-powered API for symptom-based diagnosis, providing broader

usability, including offline functionality.

23 Analysis of Existing Pet Care Applications
The increasing use of mobile technology in pet care has led to the
development of numerous applications that help pet owners in track the health
of their pets. The applications range from fundamental pet management tools
to advanced Al-driven health monitoring systems. The integration of artificial
intelligence has significantly enhanced the ability of these applications to
detect symptoms, provide virtual veterinary consultations, and offer
personalized care recommendations. However, despite the availability of
several pet care applications, many existing solutions have notable limitations.
Some applications lack comprehensive Al-driven support, while
others do not provide an all-in-one solution for pet health monitoring,
symptom diagnosis, and veterinary assistance. Additionally, the reliance on

internet connectivity in most Al-powered pet care apps limits their

23

accessibility in offline environments, which can be a significant drawback for
pet owners in areas with poor connectivity.

This literature review examines four widely used pet care applications
analysing their features, strengths, and limitations. By assessing these existing
solutions, this review aims to identify gaps in the market and establish the
need for a more integrated, Al-driven pet care application. The proposed
PawHub application seeks to address these gaps by offering a holistic and
intelligent pet care assistant that combines Al-driven diagnostics, real-time

health tracking, multi-user accessibility, and offline functionality.

2.3.1 TTcare Application

cookie » o
Al check What's health check
Eye Joints

©
Teeth

® ~ o

Skin Ear, Paw, Belly " Use flash for better 0

q '.‘ % results

You can make one or more selections
for scanning. Use the flash for more
accurate results.

B View check history

2 M
Let's find out how to check A
our pet's health

Figure 2.1: Main Features of TTcare Application

TTcare, developed by Al FOR PET, is an Al-powered pet health monitoring
application that focuses on early disease detection through image recognition
technology. By allowing pet owners to upload photos of their pets, the
application uses artificial intelligence to analyse visual indicators of potential
health issues, particularly in the eyes, skin, joints, teeth and ears. As shown in
Figure 2.1, One of its advantages is, it uses of Al in detecting abnormalities,

enabling early intervention before symptoms worsen and once a user selects

24

and option, it provides user with clear guidelines to get accurate results. (PET,
2023).

More

& a8 o

Notice FAQ Contact us

Settings

My Info

Push Settings

End-User License Agreement
Partnership information

Version information 2.5.0 Latest version

Figure 2.2: Basic Features in TTcare Application

Other than that, it also provides user with some basic functions like
user profile management, FAQ and contact us page that will help the user in

identifying how the application works as shown in Figure 2.2.

D |

Can't analyze blurred

o

Your scan We need

Can't analyze blurred Clear focused photo

Try again?

[Go to user guide

Figure 2.3: TTcare Application Analysis Error

Despite these strengths, TTcare has major limitations. Its diagnostic
approach relies solely on image-based analysis, meaning it cannot assess
internal health conditions or detect symptoms that do not present visible signs.

Blur images or slightly discoloured images are also one of the setbacks as

25

shown in Figure 2.3, the image that provided to the system was captured using
flash and is not blur but the system couldn’t analyse the image for diseases
detection. Furthermore, the application solely relies on image recognition
technology feature and no assistance, leaving users with limited guidance
beyond scan results. Another significant drawback is its dependency on
internet connectivity for Al-based analysis, making it inaccessible in offline

environments.

2.3.2 PetVet Al Application

(=)) © .

&
ﬂ What issue is Cookie experiencing?

A
o Cookie

My petS b 20, 03:02 PM
she is vommiting @)
‘ Cookie 7 Feb 20, 03:02 PM
& Toy poodle m 9 Years
a I'm sorry to hear that Cookie is
* Chat with Al having some trouble with vomiting.
Ask questions about your It's not uncommon for dogs to
Dog experience this, but it can be

concerning. One possible diagnosis
could be gastritis, which is

+ Add New Pet |nf!ammal\nn of the stomac‘hlmlr‘lq
This can be caused by Cookie eating

FAQs !

Figure 2.4: PetVet Al Main Al Chatbot Feature

PetVet Al is a pet health management application that offers Al-driven virtual
veterinary assistance. Unlike TTcare, which focuses on image-based detection,
PetVet Al allows users to have real time conversations for personalised pet
care enquiries. As shown in Figure 2.4, the application includes an Al chatbot
that delivers real-time responses to pet health-related inquiries, assisting pet
owners in making well-informed decisions about the welfare of their animals.
This application is trained with vast veterinary medical records and expert

insights to assist users on their pet care enquiries (LLC, 2023).

26

FAQs

How does PetVet.ai work? &4

Does this replace my regular
veterinarian?

How accurate is the
information provided by the v
app?

What animals can | ask
questions about?

It my pet has a life threatening
emergency, what should | do?

How can | get the best possible
answers from PetVet.ai?

Figure 2.5: PetVet Al simple FAQ

Additionally, the app provides a simple FAQ as shown ins Figure 2.5
that gives the users with a basic knowledge about the application and how to
use it. While PetVet Al Pet offers real-time Al support, its recommendations
remain advisory rather than diagnostic, meaning they should not replace
professional veterinary consultations. Another limitation is its reliance on
internet connectivity, restricting accessibility in areas with poor network
coverage. The application also lacks advanced health management tool,
making it difficult for pet owners to track long-term changes in their pet’s

health.

2.3.3 PetVitality Application

= PetVitality ©O

Cookie

Mastiff

2 months

Articles
~
L
What Can Your Dog's
Feces Tell You?

Figure 2.6: PetVitality Home Page

27

PetVitality is a wellness-focused pet care application that integrates health
monitoring with activity tracking. It provides pet owners with tools to track
their pet’s weight, temperature, and vital signs, helping them detect potential
health concerns early. The application also features activity tracking
capabilities that users can input manually, allowing owners to monitor
movement and behaviour patterns. The app also provides appointment
reminders for veterinary visits and medication schedules, ensuring that pet
owners stay on top of their pet’s healthcare routines. Other than that, it also
provides users with articles for general pet care training guides, personal

gallery and document storage. (Lyssa AS, 2024).

PetVitality

Treatments Medications

Sitter's notes

Health tracker

Nutrition

Figure 2.7: PetVitality Al tools features

Firstly, this app integrates several Al tools, including an ingredient
scanner that analyses pet food labels for harmful or beneficial components,
and a breed-and-age-specific content generator for personalized care tips.
Another Al feature offers automated medication insights and emergency mini
guides. Other than that, it also provides an Al-assisted pattern recognition tool
that analyses the data logged by users to detect potential early signs of health
issues. For example, if consistent changes are noted in weight, temperature, or

feces tracking, the app may alert the user to seek veterinary advice.

28

PetVitality

Nutrition

Vomiting

Seizures Heart/lungs

Allergies

Figure 2.8: PetVitality Specialised health trackers feature

PetVitality also includes specialized health trackers such as a visual
poop score tracker for digestive health, a heat cycle predictor for reproductive
planning, and a manual heart and lung respiratory rate monitor for pets with
heart/lungs conditions, vomiting tracker, manual seizure tracker and allergies
tracker. These features allow users to closely observe specific aspects of their
pet’s physical health. The seizure tool is designed for pets with epilepsy, this
specialized tool tracks the regularity and frequency of seizures and uses
predictive analytics to estimate when the next episode might occur. This helps

owners be more prepared and proactive in managing their pet’s condition.

Treatments

Select pet

Df Cockie

DentalCare Health Checkups Miscel
©) ©

Al tools

Figure 2.9: PetVitality Detailed Health Tracking Feature

29

PetVitality also includes a detailed health tracking feature as shown in
Figure 2.9 that allows users to log and monitor vital health information such as
medical conditions, vaccine records, dental care etc. This component acts as a
centralized health log, helping users detect unusual trends or changes in their

pet’s condition over time.

Figure 2.10: PetVitality Routine Scheduler and Reminders Feature

As shown in Figure 2.10, the routine scheduler and reminders is
another essential feature that enables users to schedule and receive reminders
for essential pet care tasks such as grooming, training, medication
administration, and routine vet check-ups. Users can set recurring alerts and

view their pet’s care calendar.

Documents Photo gallery

Df Cookie Df Cookie

5 Hhsjsjsiemememeidididnd

Figure 2.11: PetVitality Document Storage and Personal Gallery Feature

30

Besides, the document storage feature allows pet owners to scan and
upload important medical records, vaccination cards, and prescription
documents directly into the app. These documents are securely saved and can
be organized in folders for easy access and sharing. Other than that, to create a
more personal experience, the app also allows users to store photos of their
pets in a personal gallery.

Despite its comprehensive approach to pet wellness, PetVitality has
limitations. Although the app tracks activity levels, it does not provide
predictive health alerts based on behavioural changes. Another drawback is the
absence of an Al chatbot, which limits the app’s ability to provide instant pet

care guidance.

2.3.4 11Pets Application

®
< 4@ Jack

@
@ @ bom Profile Details

My Profile Progress

My Pets

Gompiete all the steps shown below and WIN A

Add a new Record

Figure 2.12: 11Pets General Functions

11Pets is a pet care management application designed for both individual pet
owners and professional pet caretakers. It serves as a centralized platform for
storing medical records, tracking grooming schedules, and managing pet
nutrition. The application allows users to maintain a digital record of
vaccinations, medications, allergies, and lab results, ensuring that all pet health
data is easily accessible.

Additionally, it provides features for managing feeding schedules and

tracking grooming routines, making it a valuable tool for maintaining a

31

structured pet care plan. One of the unique aspects of 11Pets is its support for
pet shelters and rescue organizations, allowing them to manage adoption

profiles and track the medical history of rescued animals (Ltd, 2015).

< 4@ Jack < 4@ Jack
Weight Behavior

o 2700t 2022

Upceming Graph Title -

9 Aug. 2022
11 July 2022

By sad

Today, 12 Nov. 2022

Weight

27 Oct. 2022

Weight

20 Oct. 2022

Weight

Figure 2.13: 11Pets Health Tracking Features

One of the standouts features of 11Pets is its versatility, it offers two
distinct versions, Pet Care for personal use and Business for professional pet
care providers, including shelters and boarding services. These functionalities
make it an ideal tool for managing both single-pet households and large-scale
animal welfare operations. Moreover, the platform enables easy sharing of
medical records with veterinarians and allows offline data access, ensuring
users can manage pet care even in low-connectivity environments.

It also includes features to manage grooming routines and hygiene
care. Pet owners can schedule and track activities such as baths, brushing, nail
trimming, and other grooming tasks, helping maintain their pet’s cleanliness
and well-being. It also allows them to track their pets weight and behaviour
and can view their analytics in a graph format.

Although 11Pets is a robust pet management tool, it lacks Al-driven
features. Without Al-powered insights, pet owners must rely on manual
record-keeping rather than automated health assessments. While 11Pets offers
offline access, making it more convenient in low-connectivity environments,
its functionality is primarily limited to record management rather than

proactive pet health monitoring.

32

2.3.5 Comparison of Existing Pet Care Applications with PawHub App

Features

Table 2.2: Comparison between existing pet care applications and PawHub

App Features
Features/App | TTCare | PetVet AI | PetVitality | 11Pets | PawHub
AI Chatbot No Yes No No Yes
AI-Symptom | Yes No No No Yes
Diagnosis (image)
Pet Profile | Yes No Yes Yes Yes
Management
Pet Health | No No Yes Yes Yes
Record
Management
User Profile | No No Yes Yes Yes
Management
Educational Yes Yes (FAQ) | Yes No Yes
Resources (FAQ)
Feedback Yes No Yes No Yes

The comparative analysis of existing pet care applications TTcare, PetVet Al
Pet, PetVitality, and 11Pets, reveals significant gaps that PawHub aims to
address. While TTcare excels in Al-powered visual diagnostics, it is limited to
image-based analysis and requires consistent internet connectivity. PetVet Al
Pet introduces a helpful Al chatbot yet lacks core diagnostic tools or health
record management. PetVitality offers comprehensive wellness tracking and
personalized care features, but it does not include Al-based diagnostics or
chatbot interaction for real-time assistance. Meanwhile, 11Pets focuses on
extensive pet health and grooming record-keeping with offline access but does
not implement Al capabilities.

In contrast, PawHub combines the strengths of all these apps,
integrating Al-driven symptom diagnosis through text input, Al chatbot

support, pet health records management, user management, pet care

33

educational resources, and feedback system. This holistic approach positions
PawHub as a more intelligent and unified solution, offering pet owners a

versatile and accessible digital assistant for effective pet care.

24 Software Development Methodologies

To guide PawHub’s development, three classic Software Development Life
Cycle (SDLC) approaches were reviewed, Waterfall, Agile, and Rapid
Application Development (RAD). Each offers different trade-offs between
predictability, flexibility, and speed, which are critical when integrating

evolving Al features into a mobile pet-care app.

2.4.1 Waterfall Methodology

Waterfall Methodology

Requirements —1

Design *l
Implementation *l
Testing *l

Deploying *l

Maintenance

Figure 2.14: Waterfall Methodology (Motion, 2023)

Figure 2.15 illustrates the Waterfall model, a classic, step-by-step approach to
software development that divides the project into separate, sequential stages.
Despite the linear structure, there is usually some overlap or interconnection
between the different phases as the project progresses. According to this
method, every phase must be thoroughly completed and formally approved
before advancing to the next one, thereby resulting in a detailed, sequential
process that relies heavily on rigorous planning. Waterfall methodology has
been widely adopted in environments where project requirements are stable
and clearly defined from the outset. Its structured nature enables project teams

to produce detailed documentation and set rigorous milestones, which can

34

serve as a roadmap for managing time, budgets, and resources effectively.

According to Atlassian (2024), the Waterfall model unfolds as a series of well-

defined steps, each of which is very important in following the software

development process.

i) Requirements Phase

This phase is the foundation of the entire project. It involves
gathering all the necessary conditions, features, and specifications
required for the system. Stakeholders and end-users are consulted to
obtain a comprehensive understanding of what the software must
achieve. Every requirement is documented rigorously, usually in a
Software Requirement Specification (SRS) document, which serves
as the baseline for the entire project. This phase is crucial because any
oversight or ambiguity here could propagate errors throughout later

stages.

ii) Design Phase

Once the requirements are clearly documented, the Design phase
begins. Here, the focus shifts to defining the technical architecture
and system design based on the gathered requirements. This phase
involves outlining the software architecture, designing the user
interface, creating database schemas, and determining the necessary
system components. Detailed design documents and Figures are
produced to provide a clear blueprint that developers will follow
during implementation. A well-executed design process contributes to
the system’s scalability, maintainability, and adherence to the

established criteria.

iii) Implementation Phase

The actual coding happens during the Implementation phase.
Developers use the selected programming languages and
development tools to convert the design specifications into source
code. This phase is typically carried out in multiple stages or modules,

corresponding to the various components described in the design

35

documents. The focus during this phase is on writing efficient, error-
free code that faithfully represents the design. While this stage brings
the project closer to a working application, it heavily relies on the

accuracy of the previous phases.

iv) Verification (Testing) Phase
Following implementation, the Verification phase is devoted to
quality assurance. To make sure it satisfies the SRS standards, the
system is put through a thorough testing process. This includes tests
like acceptance testing, system testing, integration testing, and unit
testing which are used to identify and address defects. Verification
ensures that the software operates as intended and that issues from the
earlier stages are addressed. However, deferring testing until after the
bulk of the development is complete can lead to late discovery of

bugs, which might be expensive and time-consuming to correct.

V) Maintenance Phase
The maintenance phase starts once the program has been deployed
and put to use. To maintain the software’s effectiveness over time,
this phase contains regular updates, bug repairs, performance
increases, and improvements. Maintenance can also include adapting
the software to new environments or changing user requirements.
Although it is not part of the initial development, effective
maintenance is critical for ensuring the long-term reliability and

relevance of the application.

2.4.1.1 Advantages of Waterfall Methodology

The clear, linear structure of the Waterfall model is one of its main advantages,
it makes the development process quite predictable. With each phase explicitly
defined, project managers and stakeholders can easily track progress against
predetermined milestones, ensuring that the project remains on schedule and
within budget. This high level of documentation not only facilitates
communication among team members but also provides a comprehensive

reference for future maintenance, helping to reduce long-term risks. Moreover,

36

because each phase has a distinct deliverable, it is relatively straightforward to
identify where issues occur, at least from a management standpoint. The
Waterfall model’s methodical, sequential flow is most useful for projects when
the goal is to provide a well-defined product with few features and

requirements are not anticipated to alter.

2.4.1.2 Disadvantages of Waterfall Methodology

Despite its advantages, the rigid structure of the Waterfall model has
significant drawbacks, especially in the context of modern, user-centric
applications. One of the core disadvantages is its inflexibility, once a phase is
complete, it becomes extremely challenging to revisit or modify previous work.
This inherent rigidity means that any discovered mistakes or changed
requirements later in the process can result in extensive rework and delays.
The model also defers testing until after the implementation phase, which
increases the risk of late defect detection, a scenario that can escalate costs and
extend delivery timelines. Such a late discovery of problems limits the ability
to respond quickly to shifting market demands or to integrate emergent user
feedback, both of which are critical for the success of applications with

complex, evolving functionalities.

242 Agile Methodology

oep_OY
kS
w
> AGILE
E METHODOLOGY

=D

Figure 2.15: Agile Methodology (Agile software development:

everything you need to know, 2024)

37

Agile software development is an incremental, iterative process that prioritizes
adaptability, teamwork, and ongoing development. Agile divides the project
into manageable, brief cycles called sprints, as opposed to the Waterfall
model’s linear progression. A subset of features are planned, designed,
implemented, tested, and reviewed throughout each sprint, which typically
lasts one to four weeks. By encouraging continuous interaction with
stakeholder feedback, this iterative process makes sure that requirements
modifications or new information may be promptly included. Originally
popularized by the Agile Manifesto (Drumond, 2024). Agile has become a
leading approach for projects where requirements evolve, and rapid adaptation

1s crucial.

i) Sprint Planning and Requirements Gathering

Every Agile sprint starts with a planning phase in which the
developer determines the most important tasks and user stories based
on stakeholder input and existing priorities. This phase involves
defining the sprint backlog, where each user story is refined into
actionable tasks with clear acceptance criteria. Although Agile
promotes a flexible approach, meticulous planning at the beginning of
each sprint ensures that the vision for the product remains aligned
with user expectations. This ongoing requirement refinement is
critical for an evolving application like PawHub, where the
integration of Al features and dynamic pet health functionalities

demands continuous user input.

ii) Design and Implementation
During the sprint, the design and implementation process occurs
concurrently in an iterative cycle. In this phase, the chosen features
are designed in detail and then translated into code using suitable
programming languages and development tools. Agile encourages
frequent communication, often through daily stand-up meetings or
personal reviews to quickly identify issues and adapt designs as
necessary. This phase benefits from modern techniques such as pair

programming, code reviews, and frequent prototyping, which

38

collectively foster rapid development while maintaining high quality.
For PawHub, this approach allows for the quick incorporation of user
feedback into features like Al chat support and symptom diagnosis,

ensuring that the application evolves to meet real-world user needs.

iii) Testing and Review
At the end of each sprint, Agile emphasizes rigorous testing and
review of the newly developed features. Unit, integration, and user
acceptability tests are regularly conducted as part of continuous
integration, a fundamental approach that aims to identify flaws early.
Post-sprint reviews or demos enable the developer to showcase
working functionality and gather valuable feedback from stakeholders
or early users. This constant testing cycle is crucial for PawHub, as it
ensures that complex functionalities especially Al components are
validated continuously, reducing the risk of late-stage issues and

contributing to overall product robustness.

iv) Sprint Retrospective (Continuous Improvement)
Following the testing and review phase, the sprint concludes with a
retrospective session where the developer reflects on the process. This
self-assessment involves analysing what went well, identifying
challenges encountered, and determining areas for improvement in
subsequent sprints. By continuously refining development practices,
Agile ensures that the process becomes progressively more efficient
and aligned with project goals. For PawHub, this step is vital in
ensuring that the evolving features, particularly those involving Al,
are continually enhanced based on both technical insights and user

feedback, promoting long-term success and high-quality performance.

2.4.2.1 Advantages of Agile Methodology

Agile’s flexible and iterative structure makes it possible to quickly adjust to
changing requirements, which is crucial for projects like PawHub that have
changing requirements. Its continuous testing and integration practices

facilitate early defect detection and prompt resolution, reducing risk and

39

enhancing product quality. In addition, Agile’s emphasis on regular feedback
ensures that user requirements remain central to the development process,
leading to higher user satisfaction and product relevance. Although Agile
typically results in less formal documentation, its focus on dynamic
improvement and collaboration outweighs this drawback in projects where

innovation and responsiveness are critical.

2.4.2.2 Disadvantages of Agile Methodology

Despite its many strengths, Agile can be resource-intensive since it demands
constant collaboration and frequent adjustments. If modifications to this model
are not properly managed, scope creep could occur which will affect the
budgets and schedules. Agile’s iterative process may also lead to inconsistent
documentation quality when compared to more conventional methods like
Waterfall, which could cause problems for maintenance or handovers in the
future. For a solo developer or a small project, maintaining discipline and
consistent progress across multiple short cycles can be challenging without
formal team structures. However, when managed effectively, these challenges

are mitigated by Agile’s substantial benefits.

2.43 Rapid Application Development (RAD) Methodology

RAPID APPLICATION DEVELOPMENT (RAD)

Prototype
=~

REQUIREMENTS USER >
PLANNING e CONSTRUCTION

Figure 2.16: RAD Methodology (Rapid Application Development (RAD),

no date)

40

The iterative process of Rapid Application Development (RAD) places a
strong emphasis on quick user feedback and rapid prototyping. Rather than
relying on comprehensive upfront planning, RAD emphasizes the creation of a
functional prototype early on, which is then improved through several
iterations. RAD facilitates parallel development in phases that allow
developers to quickly modify and adapt the application based on immediate
user responses. This methodology is particularly popular in scenarios where
speed to market is critical, and requirements are expected to evolve rapidly

(Kissflow, 2022).

1) Requirements Planning
In RAD, the initial planning phase is focused on outlining high-level
requirements rather than detailed specifications. Stakeholders provide
input on the desired features, which are then translated into user
stories. This phase is less exhaustive than in traditional models,

allowing developers to begin prototyping sooner.

1) User Design Phase
During the user design phase, developers build preliminary models
such as wireframes, prototypes, and mock-ups. These prototypes are
shown to stakeholders and potential users for feedback. This phase is
crucial for ensuring that the design meets user needs, although the
rapid cycle may result in less formal documentation. For PawHub,
iterative prototyping is valuable for testing Al functionalities like
chatbots and symptom diagnosis interfaces, enabling early

identification of usability issues.

1i1) Rapid Construction
The rapid construction phase is where developers build the actual
system components quickly. With a focus on speed, the emphasis is
on delivering working software as soon as possible. Despite the
benefit of early delivery, the focus on rapid development can
sometimes compromise thorough testing, leading to quality issues if

not managed carefully. For PawHub, rapid construction can validate

41

core functionalities quickly; however, the complexity of integrating
secure health management and Al algorithms requires careful balance

to avoid sacrificing reliability.

iv) Cutover (Implementation) Phase

The final phase in RAD involves the actual deployment of the
application. It includes final testing, user training, and product
documentation. Although RAD aims for a swift transition to
production, a lack of detailed documentation and rushed testing may
lead to unforeseen maintenance challenges post-deployment. For
PawHub, while RAD allows for rapid prototyping and early market
entry, the potential quality risks and scalability issues are significant
concerns given the app’s need for long-term stability and high

accuracy in Al outputs.

2.4.3.1 Advantages of RAD Methodology

RAD offers notably fast development cycles, facilitating rapid prototyping and
early user feedback. This accelerates time-to-market and enables developers to
quickly iterate and improve the product. However, the methodology may
sometimes result in reduced documentation and insufficient testing, which can
compromise long-term maintainability and product quality. The need for a
highly skilled and cohesive developer to manage rapid iterations is another

drawback that may increase risk for complex applications like PawHub.

2.4.3.2 Disadvantages of RAD Methodology

The rapid pace and iterative cycles in RAD can lead to challenges such as
scope creep and quality inconsistencies. With a strong focus on speed, some
vital aspects especially extensive testing and thorough documentation may be
overlooked. This is particularly risky for applications requiring robust Al
integration and sensitive data management, as even minor oversights can

impact overall reliability and user trust.

42

2.4.4 Comparison of Software Development Methodologies

Table 2.3: Comparison of Software Development Methodologies

Methodology | Advantages Disadvantages

Waterfall -Clear structure -Inflexible to changes
-Strong documentation -Late bug detection
-Predictable timeline -Hard to adapt user feedback

RAD -Fast prototyping -Weak documentation/testing
-Quick user feedback -Risk of scope creep
-User-focused updates -Needs skilled management

Agile -Flexible and adaptive -Resource-demanding
-Early bug detection -Scope creep if unmanaged
-User-driven development | -Lighter documentation

Agile methodology is particularly well-suited for developing PawHub because
it enables continuous, iterative refinement of its complex, Al-driven features.
Unlike Waterfall, Agile facilitates rapid integration of user feedback, allowing
the app to evolve in real-time as user requirements and Al algorithms improve.
Although RAD offers fast prototyping, its potential drawbacks in
documentation and testing can compromise reliability, issues unacceptable for
an application intended to deliver accurate, secure, and timely pet health
insights. Agile’s emphasis on regular sprint planning, frequent testing, and
retrospectives ensures that each component, such as the AI chatbot and
symptom diagnosis system, is rigorously validated and fine-tuned to meet high
standards of quality, making Agile the most appropriate methodology for
PawHub.

2.5 AI APIs for Al features

To create PawHub’s intelligent features such as the chatbot and symptom
diagnosis, three leading AI APIs were evaluated which is OpenAl, DeepSeek,
and OpenRouter. Each offers distinct capabilities, pricing models, and levels
of community support. The following subsections summarize their features,

limitations, and fit for PawHub.

43

2.5.1 OpenAl API

Figure 2.17: Open Al API (Postman, 2025)

OpenAl has been a leader in general-purpose Al, with its GPT-4 model setting
new standards for tasks like natural language generation, understanding, and
reasoning (OpenAl, 2023). The OpenAl API provides access to powerful
models such as GPT-3.5 and GPT-4, enabling developers to build
sophisticated chatbots, summarization tools, classification engines, and more.
For PawHub, these capabilities translate into advanced pet care chatbots,
symptom evaluators, and FAQ assistants that can handle free-form queries
with human-like fluency.

The primary strength of OpenAl’s API is its unparalleled natural
language understanding and generation quality, which allows the chatbot to
carry context, ask clarifying questions, and generate highly nuanced outputs.
Additionally, OpenAl provides structured endpoints for both completion and
chat modes, supports embeddings for semantic search, and allows fine-tuning
for domain-specific tasks. These features align well with the medical and
caregiving nature of PawHub, where accurate, clear communication is critical.

However, OpenAl’s major limitation is its cost and rate limits. While
a free trial is available, it offers limited usage, and sustained usage incurs a
pay-as-you-go pricing model that may quickly escalate in high-traffic
applications. This is a significant consideration for apps like PawHub that
expect real-time and frequent interactions. Furthermore, strict terms of service
and compliance requirements especially around health data, may add legal or
ethical complexity.

Still, OpenAl remains a top-tier choice for projects requiring cutting-
edge performance, and for specific components of PawHub (e.g., onboarding
assistant, complex symptom analysis), its reliability and accuracy can justify

its cost when used strategically in hybrid setups.

44

2.5.2 DeepSeek API

& deepseck

Figure 2.18: DeepSeek API (TechNode Feed, 2025)

DeepSecek is an emerging player in the Al development landscape, known for
its deep contextual inference and semantic search capabilities. It is engineered
to excel at interpreting complex, ambiguous, or domain-specific language,
which makes it a promising candidate for applications such as symptom-based
diagnostic assistants or personalized care suggestions in PawHub. The core
value proposition of DeepSeek lies in its ability to understand intent beyond
surface-level language, allowing it to deliver tailored responses that are more
relevant to the user’s query (Guo ef al., 2024).

Technically, DeepSeek APIs support inference using their own
optimized large language models, such as DeepSeek-V2. However, DeepSeek
is still maturing. As of 2024, its API offerings are limited in scope and its
developer resources, community activity, and framework integrations are less
mature compared to OpenRouter and OpenAl. The documentation is minimal,
and support forums are sparse, potentially increasing integration time for
teams requiring precise control and debugging support. (Your First API Call |
DeepSeek API Docs, 2025)

Additionally, DeepSeek’s free tier is relatively constrained, offering
limited API tokens per month and fewer customizations unless subscribed to a
premium plan. In the context of PawHub, while DeepSeek may offer superior
context retention and tailored inference capabilities, these benefits come at the
cost of lower transparency, less documentation, and potential vendor lock-in
due to the proprietary nature of its models.Nonetheless, DeepSeek holds high
strategic potential as a supplementary Al tool in PawHub, especially for
providing nuanced responses during complex symptom queries or multilingual
expansion in the future. However, it may not yet be reliable enough as a

standalone solution until the ecosystem becomes more robust.

45

2.5.3 OpenRouter AI API

Figure 2.19: OpenRouter AI API (OpenRouter Logo PNG Vector (SVG)
Free Download, 2025)

OpenRouter is a robust, developer-friendly API designed to bridge the gap
between conversational Al systems and customizable, scalable chatbot
solutions. Leveraging the power of transformer-based models, OpenRouter
focuses on providing accessible and high-quality conversational Al
capabilities that can be easily integrated into various applications, including
customer support, personal assistants, and diagnostic tools.

OpenRouter’s primary strength lies in its open-source approach,
offering significant flexibility in how developers can implement its models. Its
ability to work well with different languages and frameworks makes the
platform ideal for those seeking a customizable and open solution. The API
offers multiple pre-trained models suited for a wide variety of tasks such as
question answering, summarization, and natural language
processing.Additionally, OpenRouter’s open-source nature enables seamless
collaboration among developers and greater control over the chatbot’s
performance.

However, one of the limitations of lies in its relatively high
infrastructure and resource demands. OpenRouter requires careful
optimization in high-traffic environments, as excessive computational needs
could lead to slow response times or increased operational costs. Additionally,
while it’s documentation are growing, it still does not match the maturity of
other major platforms like OpenAl in terms of developer resources and
community engagement (Principles - OpenRouter’s Core Values, 2025).

Despite these challenges, OpenRouter remains a strong choice for
applications like PawHub, especially when control over the Al model are
prioritized. It can be a highly effective part of PawHub’s Al-powered

ecosystem. With the right infrastructure in place, OpenRouter’s flexibility,

46

scalability, and open-source nature can significantly enhance PawHub’s ability

to provide dynamic and accurate pet care support.

2.5.4 Comparison of AI APIs for Al features
Table 2.4: Comparison of AI APIs for Al features
Criteria OpenAl DeepSeek OpenRouter
Performance | Excellent NLP | Strong contextual | Strong
with GPT-4/GPT- | understanding conversational Al
3.5 across models
Cost Pay-as-you-go; Limited free tier Open-source and
expensive at scale cost-effective
Customization | Low (limited | Moderate High (model
fine-tuning flexibility, prompt
access) control)
Ease of | Well-documented | Less Simple REST
Integration SDKs & | documentation API; growing dev
endpoints and slower | support
onboarding
Open-source | No No Yes
Access
Community Mature ecosystem | Emerging Growing open-
Support source developer

base

All three APIs, OpenRouter, OpenAl, and DeepSeek provide unique strengths

for powering the Al features in PawHub, an Al-driven pet care application.

OpenRouter emerges as the most balanced and developer-friendly option,

offering a cost-effective, open-source platform with high flexibility and

customization. Its support for multiple models and prompt control makes it

ideal for modular chatbot functionalities and pet-specific symptom analysis.

OpenAl delivers superior natural language performance with models like

GPT-4, making it suitable for handling highly complex queries. However, its

47

high cost and limited customization options make it not ideal. Meanwhile,
DeepSeek shows promise in understanding context and intent, offering value
for nuanced symptom interpretation or future multilingual support. However,
its limited documentation, constrained free tier, and smaller community make

it less suited compared to OpenRouter.

2.6 Backend Development Tools

The selection of an appropriate backend development tool is a critical
component in ensuring that the PawHub application operates efficiently,
securely, and at scale. Given the nature of the application which includes
managing sensitive pet health records, real-time user interactions, and secure
authentication choosing a backend solution that offers reliability, flexibility,
and robust database features is paramount. This section reviews two popular
Backend-as-a-Service (BaaS) platforms Supabase and Firebase, both of which
are widely adopted for modern application development. These platforms
provide integrated services for authentication, data storage, file management,

and real-time functionality.

2.6.1 Supabase

y supabase

Figure 2.20: Supabase Backend Tool (asierr.dev, 2024)

Supabase is an open-source backend platform that provides developers with a
powerful suite of tools built around PostgreSQL, a proven and mature
relational database. Branded as an “open-source Firebase alternative,”
Supabase offers out-of-the-box support for authentication, real-time
subscriptions, auto-generated APIs, and secure file storage, all using familiar
SQL syntax. One of Supabase’s most significant strengths is its relational data
model, which is essential for PawHub, where pet profiles, user accounts,
appointment records, vaccination history, and symptom logs need to be

properly linked and queried with high precision.

48

Supabase’s authentication system supports email and password login,
OAuth (Google, GitHub, etc.), and third-party integrations while maintaining
row-level security (RLS), a PostgreSQL-native feature that allows developers
to write policies that enforce fine-grained access control. This is especially
useful for PawHub, where each user should only access their own pet’s data
and health records. Another benefit is the real-time capability, which is made
possible via PostgreSQL’s replication features. This allows changes in the
database to be broadcast immediately to clients, ensuring live updates, such as
tracking a pet’s symptoms or syncing appointment reminders, appear
instantaneously in the app.

The storage system in Supabase allows for secure and scalable file
uploads, including photos of pets, scanned documents, and medical records.
With the free tier offering up to 500MB of database storage and 50,000
monthly active users, Supabase is more than capable of supporting the early
development and testing phases of PawHub without incurring high costs.
Moreover, since Supabase is open source, it can be self-hosted if greater
control or cost optimization is needed in the future. (Supabase, no date)

In addition, Supabase is developer-friendly with RESTful and
GraphQL API generation, excellent documentation, and community-driven
support. It integrates smoothly with modern front-end frameworks like React
Native, making it a natural backend pairing for PawHub’s tech stack. However,
as a relatively newer player compared to Firebase, Supabase may have less
mature tooling in some advanced use cases (e.g., serverless functions,

analytics), though these gaps are rapidly narrowing as the platform evolves.

2.6.2 Firebase

‘ Firebase

Figure 2.21: Firebase Backend Tool (Setting up Firebase / Google
Analytics, 2025)

49

Firebase is a backend platform developed by Google, offering a highly
integrated and scalable BaaS solution. It includes a suite of services such as
Cloud Firestore (NoSQL database), Realtime Database, Firebase
Authentication, Firebase Storage, and Firebase Cloud Functions. Mobile
developers have widely embraced Firebase for its user-friendly interface,
dependable performance, and seamless integration with the Google Cloud
ecosystem.

Firebase’s Cloud Firestore is a document-based NoSQL database that
stores data in collections and documents. This structure is particularly
effective for apps with loosely structured data or where relationships between
entities are minimal. However, in complex applications like PawHub, which
require multiple relationships between pets, users, and medical records, the
lack of structured querying compared to SQL may introduce challenges in data
modeling and querying efficiency.

Firebase’s authentication module is robust and user-friendly,
supporting email/password login, federated identity providers (e.g., Google,
Facebook), and custom authentication systems. Firebase also excels in real-
time capabilities, with Firestore and Realtime Database enabling live syncing
across devices, a strong feature for interactive apps like PawHub (Build
Documentation | Firebase Documentation, no date).

One of Firebase’s major selling points is its infrastructure scalability.
Backed by Google Cloud, Firebase can effortlessly handle spikes in user
activity and data loads, making it an excellent choice for apps expecting high
traffic or viral growth. Additionally, Firebase includes analytics, A/B testing,
and performance monitoring tools, which help developers optimize user
engagement and app stability.

However, Firebase is not open-source, and its NoSQL nature may
lead to difficulties in maintaining complex queries, particularly when working
with hierarchical or relational data. Furthermore, as your app scales, Firebase’s
cost structure can become quite expensive especially when it comes to
real-time database reads, writes, and storage usage. For PawHub, where each
user may frequently interact with medical records and symptom logs, the cost

model can become unpredictable without tight control over API usage.

50

2.6.3 Comparison of Backend Development Tools

Table 2.5: Comparison of Backend Development Tools

Feature Supabase Firebase
Database Type | PostgreSQL (SQL-based) | Firestore / Realtime Database
(NoSQL)

Open Source Yes No

Hosting Self-hosting or managed Google-managed only

Options

Security Row-Level Security (RLS) | Role-based Rules

Real-time Yes Yes

Support

Authentication | Built-in Auth (Email, | Built-in Auth (Email, Socials,
OAuth, etc.) etc.)

Pricing Generous free tier, | Free tier, can become costly
transparent pricing at scale

Ideal For Structured data, high | Fast MVPs, scalable cloud-
control, SQL queries native apps

Supabase is the most suitable backend development tool for PawHub due to its
relational database capabilities, transparent pricing, and open-source flexibility.
Its integration with React Native, support for role-based access control, and
real-time features make it ideal for managing pet health records, secure user
access, and responsive symptom tracking. Unlike Firebase, which offers high
scalability but can lead to unpredictable costs and complexity with NoSQL
data modeling, Supabase provides a better balance of structure, control, and
affordability particularly important for the long-term sustainability and data
integrity needs of an Al-powered pet care app like PawHub.

2.7 Frontend Development Tools
Choosing the right frontend framework is a pivotal decision in mobile
application development, especially for feature-rich apps like PawHub, which

aims to offer real-time Al chatbot assistance, pet health record management,

51

and offline accessibility. The frontend must be responsive, performant,
visually appealing, and compatible with backend APIs (such as Supabase).
Two of the most widely used cross-platform development frameworks today
are React Native and Flutter. Both frameworks let you maintain one codebase
for Android and iOS, which accelerates development and cuts down on costs.
However, they differ significantly in terms of architecture, flexibility,
performance, learning curve, and ecosystem maturity. This section provides a

comprehensive analysis of React Native and Flutter.

2.7.1 React Native

Figure 2.22: React Native (Okoone, 2025)

React Native is Meta’s open-source framework that allows to write in
application in JavaScript and React and have it run on both Android and i0OS
which can build once instead of coding separately for each platform. It bridges
JavaScript and native mobile components through a mechanism called the
“bridge”, allowing code reuse while still delivering near-native performance.
For an app like PawHub, which requires tight integration with local storage,
and backend services, React Native provides robust support for both functional
and UI layers.

A major benefit of React Native is its large developer ecosystem and
the wide range of third-party libraries available, which significantly enhance
the development process. This allows rapid development of features such as
push notifications, file uploads, authentication flows, and navigation, all of
which are crucial for a user-centric app like PawHub. Moreover, since React
Native supports the same design principles as React.js, developers familiar
with web development can quickly transition into mobile development,
reducing onboarding time and improving productivity (Introduction - React

Native, no date).

52

Another notable advantage is React Native makes development faster
and smoother with its reload capability, showing code edits instantly without
rebuilding everything. For PawHub, this enables faster prototyping and
iteration on features like chatbot interfaces, health tracker screens, and form
input for symptom analysis.

React Native also integrates well with Supabase, using fetch-based
API calls and async data storage. Its support for SQLite and other local
databases allows for implementing offline functionality, a critical feature for
users in low-connectivity regions.

Despite its strengths, React Native does have limitations. The reliance
on third-party modules can sometimes result in unstable dependencies or
delayed support for new operating system updates. Additionally, in scenarios
involving heavy UI activity like intricate animations, React Native may show
slight delays due to its use of a JavaScript to access native features. However,
these performance issues can be addressed through optimizations using native

modules or libraries like Reanimated.

2.7.2 Flutter

¢ Flutter

Figure 2.23: Flutter (What is Flutter? Guide for Flutter App Development

| Relia Software, no date)

Flutter, made by Google, makes it easier to build apps for different platforms
using just one codebase. Unlike React Native, Flutter uses the Dart
programming language and compiles directly to machine code. This
architecture results in faster startup times and better runtime performance for
animation-heavy or highly interactive apps.

One of Flutter’s standout features is its “widget-centric” architecture.

Every element on the screen is a widget, giving developers granular control

53

over the Ul and allowing them to create highly customized designs. This is
advantageous for apps with demanding UI requirements or complex interfaces.

Additionally, Flutter provides its own rendering engine, Skia, which
eliminates dependence on the native platform’s Ul components ensuring
consistent design and performance across devices Flutter is particularly strong
in animation handling, making it ideal for apps with splashy transitions or
micro-interactions. For a simple, functional app like PawHub, however, this
level of visual finesse is not a primary requirement (Flutter documentation, no
date).

The main drawbacks of Flutter lie in its relatively smaller community,
larger app size, and learning curve associated with Dart, which is not as widely
used as JavaScript. Integrating Flutter with platforms like Supabase may
require additional configuration or community plugins, which might not be as

mature or well-documented as React Native equivalents.

2.7.3 Comparison of Frontend Development Tools

Table 2.6: Comparison of Frontend Development Tools

Feature React Native Flutter

Programming | JavaScript Dart

Language

Ul Native-like (bridged) High performance (custom
Performance renderer)

Developer Mature, large community | Growing, but smaller
Ecosystem community

Library/Plugin | Extensive (NPM, GitHub) | Moderate

Support

Learning Easier for web developers | Steeper due to Dart
Curve

App Size Moderate Larger by default

Ideal Use Case | API-heavy apps, MVPs, | Custom UI apps, animation-

integration-rich focused apps

54

Supabase is the most suitable backend development tool for PawHub due to its
relational database capabilities, transparent pricing, and open-source flexibility.
Its integration with React Native, real-time features make it ideal for managing
pet health records, secure user access, and responsive symptom tracking.
Unlike Firebase, which offers high scalability but can lead to unpredictable
costs and complexity with NoSQL data modeling, Supabase provides a better
balance of structure, control, and affordability, particularly important for the
long-term sustainability and data integrity needs of an Al-powered pet care

app like PawHub.

2.8 Summary

The literature review underscores the transformative impact of Al and mobile
technology on the pet care industry, enabling tools like chatbots, symptom
diagnosis systems, and veterinary decision-support platforms. Despite
advancements, existing solutions face limitations such as fragmented health
monitoring, reliance on internet connectivity, and insufficient accuracy in Al-
driven diagnostics. Applications like TTcare (image-based analysis) and
PetVet Al (chatbot support) address niche needs but lack holistic integration,
while PetVitality and 11Pets focus on record-keeping without robust Al
integration.

PawHub aims to bridge these gaps by offering a comprehensive, Al-
powered solution combining real-time symptom analysis, multi-user
accessibility, and offline functionality. The app integrates an Al chatbot for
instant guidance, API-based symptom diagnosis, and health record
management, ensuring reliability and accessibility even in low-connectivity
environments.

Agile methodology was selected for development due to its flexibility,
iterative refinement, and alignment with evolving Al features. OpenRouter
emerged as the optimal Al API, balancing cost-effectiveness, customization,
and conversational accuracy, while Supabase was chosen for its relational
database capabilities, security, and scalability. React Native’s mature
ecosystem and seamless backend integration further support PawHub’s cross-

platform performance.

55

By synthesizing Al-driven diagnostics, user-centric design, and
offline accessibility, PawHub positions itself as a pioneering solution for
proactive, informed pet healthcare, addressing critical gaps in the market and

enhancing the connection between pet owners and veterinary professionals.

56

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The follow section shows the approach and schedule that will direct the
development of PawHub, an Al-powered mobile app designed to help pet
owners manage their pet’s health. The project will follow the Agile
methodology, allowing for flexible, iterative development through continuous
feedback and adaptive sprint planning. PawHub aims to address common
challenges in pet care, including early symptom detection, digital health
recordkeeping, and access to veterinary advice. Key features will include an
Al chatbot, a symptom checker, multi-pet profiles, and educational content.
The app will be built using React Native for the frontend and Supabase for the
backend, with Al features powered by the OpenRouter AI API. The table

below provides a summary of the project’s resource allocation:

Table 3.1: Resources Allocation

Resources Allocation

Personnel Independently manage all aspects of the project, including
requirement gathering, design, development, and integration.
Additional testers will be involved during the testing phase to

validate functionality and identify potential defects.

Time The project will be carried out over six months. The first three
months will be devoted to requirement analysis, literature
review, and Ul prototyping, while the remaining three months

will focus on development, testing, and refinement.

Costs The project will incur no financial cost. All tools and
platforms used including React Native, Node.js, Supabase, the
OpenRouter API (free tier), and development software will be

open-source or freely available.

Materials Software to be used will include Figma, Visual Studio Code,

Android Studio Emulator, GitHub, Node.js and React Native

57

libraries. Al capabilities will be integrated using the
OpenRouter API. Development and testing will be performed

using a personal laptop and smartphone.

3.2 Collecting Requirements

This section will focus on the process of identifying and collecting essential
requirements for the development of PawHub, an Al-powered pet healthcare
assistant mobile application. By adopting the mindset of a pet owner and end
user, this stage aim to uncover the necessary features, functionalities, and pain
points that the app must address to deliver a seamless and intelligent user
experience.

To ensure the requirements are grounded in actual user needs, a
survey-based approach will be adopted. The survey will target active pet
owners, particularly those responsible for tracking pet health, handling
emergencies, and ensuring regular veterinary checkups. Responses will be
collected, covering areas such as current pet care habits, difficulties in health
management, expectations of Al features, and mobile app usage preferences.

In addition, four existing pet care mobile applications, TTcare, PetVet
Al Pet, PetVitality, and 11Pets has be reviewed to assess their core
functionalities and identify common shortcomings. Features such as symptom
checkers, health tracking, appointment reminders, Al chatbots, and document
storage are evaluated. While each of these applications may offer partial
solutions, none provides a comprehensive system that integrates Al-driven
diagnosis, health record management, personalized care tips, and offline
accessibility within a single platform.

Several common limitations and usability challenges are observed.
The absence of integrated AI chatbots and fragmented health record
management require users to change from one app to another to manage
different functions of pet care. Some applications also lack interactive features
such as reminders, multi-pet profile support, or emergency guidance.
Moreover, offline functionality, crucial for pet owners in remote or rural areas
were missing from most solutions. Based on the app analysis, the following

requirements has been identified as critical for the success of PawHub:

58

1) Al-powered chatbot to answer pet care queries and provide
general advice.
i1) Symptom checker for early diagnosis based on user input (text-

based, not image-based).

iii) Secure digital pet health records including vaccination logs and
medical history.

1v) Offline access to essential health data and records.

V) Personalised alerts and reminders for pet health records.

vi) Support for multi-pet profiles with individualized health logs.

vii) FAQs for first time pet owners.

Viii) Clean, user-friendly interface suitable for a broad range of users.

1X) Built-in feedback system to support ongoing feature refinement

and updates.

X) Real-time alerts for symptom concerns and vaccination reminders.

However, it is important to acknowledge the gap between ideal
functionality and realistic development capabilities. Advanced features such as
real-time vet chat, image-based diagnostics, or Al analytics dashboards may
require substantial computing resources and infrastructure support. Given the
limitations in time, manpower, and budget, a phased development strategy will
be adopted.

The initial version of PawHub will focus on delivering the most
essential and feasible features, the Al chatbot, text-based symptom checker,
digital health records, offline data accessibility, and a responsive, user-friendly
interface. These core modules will address the most pressing needs of users
while staying within the project’s technical and temporal constraints.
Additional enhancements such as emergency vet locators, advanced APIs, or
community support channels may be explored in future iterations once the
foundation is successfully built and validated. In the next section, the collected
requirements will be analyzed in detail to determine their feasibility within the

available resources, development tools, and timeline constraints.

59

33 Analysis of Requirements

This section will evaluate the feasibility of the key functional requirements
identified in Section 3.2, considering the actual constraints of the project.
These constraints will include limited manpower (as a solo developer), a tight
three-month development timeframe, no allocated budget, and the reliance
solely on open-source tools and available hardware resources. The purpose of
this analysis will be to realistically assess which features can be implemented

effectively during the current development phase of PawHub.

i) Al Chatbot Integration

The AI chatbot will be considered a core feature of PawHub, intended to
assist users in accessing general pet care information. Upon analysis, this
requirement will be achievable using free-tier access from open-source
APIs such as OpenRouter. The chatbot will be trained to provide common
responses to pet health inquiries. However, integrating premium APIs like
OpenAl for more advanced interactions will be considered unrealistic due
to API usage fees that cannot be sustained under a zero-cost constraint.
Therefore, the basic chatbot will be implemented using OpenRouter with

the potential to upgrade in future iterations.

ii) Symptom Checker API Integration

Implementing a text-based symptom checker using a third-party API will
be feasible within the project’s limitations. Free or trial-tier APIs, such as
self-built logic models hosted via Supabase functions, will allow for
symptom input and provide general guidance. As this feature will not
require complex image recognition or machine learning training from
scratch, it will be both cost-effective and achievable within the project

timeline.

iii) Pet Health Record Management

A core feature of PawHub will be the ability to store vaccination, illness,
and treatment records digitally. With Node.js and Supabase calls as the
backend, an open-source Firebase alternative, this functionality will be

efficiently implemented using structured database tables. Supabase’s

60

authentication and PostgreSQL database services will be available under a
generous free tier, making this feature highly feasible within current

resource constraints.

iv) Offline Functionality

Providing limited offline access to pet health records and educational
content will be partially achievable. Both features rely on Supabase for
cloud storage, which requires an active internet connection for real-time
updates and retrieval. However, to enhance usability during low or no
connectivity, offline caching will be implemented using React Native’s
local storage (e.g., AsyncStorage). This approach allows recently accessed
health records and educational articles (scraped and stored in Supabase) to
be temporarily saved on the user’s device. While this enables basic read-
only access when offline, any updates or Al-related functions such as
chatbot queries or symptom analysis will still require a stable internet

connection due to their dependency on external APIs and cloud databases.

V) Personalized Alerts and Reminders

Features like vaccination reminders, feeding schedules, and wellness
notifications will initially be considered useful, but implementing a full-
fledged background scheduling system with push notifications will require
more time and backend logic than available. As a compromise, users will
be able to manually input and view upcoming vaccination reminders, but
auto-generated alerts and schedule notifications may be excluded from the

first version.

vi) Multi-Pet Profile Support

Allowing users to register multiple pets with individual profiles will be a
scalable feature that aligns well with Supabase’s relational database
structure. The development of this functionality will be feasible and will be
included in the initial build, although advanced segmentation features (like

charts or analytics) will be deferred to future updates.

61

vii) Educational Content and Tips

Including a curated list of pet care tips and articles will be considered
realistic. This feature will be achieved by dynamically retrieving web-
scraped content and storing it in Supabase storage, eliminating the need for
manual hardcoding or local JSON files. The content, categorized into
topics like nutrition, training, and general pet care, will be regularly
updated using external scraping scripts and then accessed by the app via
Supabase queries. As this approach does not rely on complex real-time
APIs and offers flexibility for offline caching, it will remain well within

the project’s scope and achievable using the existing tech stack.

viii) Clean, User-Friendly Ul

Given the project scope and the use of React Native with design tools,
implementing a visually appealing and easy-to-navigate UI will be highly
feasible. Existing UI libraries such as React Native Paper and ShadCN will
offer pre-built components that reduce development time. This will align

well with both the solo development structure and the time constraints.

ix) Feedback System

A basic feedback collection mechanism (e.g., a form submitted to
Supabase) will be achievable. However, advanced analytics or rating
systems that require detailed backend processing will be reserved for

future adjusments.

X) Use of Paid APIs and Advanced AI Models

Advanced services such as OpenAl’s GPT-4 API, real-time veterinarian
consultations, or proprietary ML models will be deemed out of scope for
the current phase. These features will often require payment structures and
infrastructure beyond the project’s capabilities and may be explored once

the app reaches a more mature state or receives funding.

In conclusion, the requirements identified for PawHub will be

carefully analyzed against the available resources. Most essential features

62

including an AI chatbot (via OpenRouter), health record storage (via
Supabase), symptom checker API integration, multi-pet support, and offline
access to static data will be found realistically implementable. However, more
resource-intensive features such as automated schedule reminders, image-
based diagnosis, and full offline Al capabilities will be excluded or scaled
down for future iterations. This phased approach will allow the app to remain
functional, user-friendly, and impactful within the available budget and time

constraints.

34 Software Development Methodology Used

oe‘;_OY
>
w
> AGILE
L&J METHODOLOGY

PLAN

Figure 3.1: Agile Methodology (Agile software development: everything you
need to know, 2024)

The development of PawHub will be guided by the Agile software
development methodology, which is particularly well-suited for projects with
evolving requirements and a focus on continuous improvement and delivery.
Agile is a great option for creating a mobile application that incorporates
cutting-edge Al-powered features like an Al chatbot, a symptom diagnosis
tool, and pet health record management modules since it places an emphasis
on teamwork, adaptability, and responsiveness. By adopting Agile, the project
will be able to accommodate changes in user feedback and technical direction
while maintaining a consistent development rhythm that leads to the creation

of a high-quality, user-centric product.

63

According to Kaleel and Harishankar (2013), agile methodology
supports mobile software engineering by addressing challenges unique to
Android development. Agile development will be structured into incremental
iterations called sprints, each typically lasting between two to four weeks.
Every sprint will consist of essential phases such as planning, design,
development, testing, and review. These repeated cycles will allow for gradual
refinement of each feature, enabling early detection of issues and rapid
adaptation to shifting user expectations and technical considerations. The
following subsections will explain how Agile will be implemented throughout

the various phases of PawHub’s development.

3.4.1 Requirement Analysis and Sprint Planning

The first step in the Agile process will involve thorough requirement analysis
to ensure that the application features align with user expectations. For
PawHub, this phase will begin with preliminary research into common
challenges faced by pet owners, including health management difficulties, a
lack of reliable pet health information, and delays in recognizing symptoms
that require veterinary attention.

Surveys and comparative analysis of existing pet care applications
will be conducted to better understand what users want and what gaps
currently exist. Insights from this phase will inform the definition of key
features such as the Al chatbot, the symptom diagnosis tool, and a digital pet
health record module. Based on these findings, Sprint Planning will be
conducted to define clear goals, allocate tasks, and establish a development

roadmap for the upcoming sprint cycles.

3.4.2 Design and Prototyping

The design and prototyping stage will begin after the requirements analysis. In
order to visually organize the application’s layout and interaction flow, user
interface (UI) and user experience (UX) designs will be created at this phase.
According to Kidpyaho and Kauppinen (2015), using prototypes in agile
development facilitates better understanding of requirements and fosters
iterative refinement. The focus will be on delivering an intuitive and accessible

user experience, particularly for pet owners who may not be tech-savvy.

64

Low-fidelity wireframes will be created using tools like Figma to
visualize each screen’s layout, content arrangement, and navigation logic.
Concurrently, the system architecture will be planned to outline the
communication flow between components, specifically between the front-end
which will be built using React Native and the back-end services such as
Node.Js, Supabase for database and authentication, OpenRouter API for
chatbot and symptom-related processing and Resend for email reminders.

As part of Agile’s iterative nature, this design process will involve
multiple review cycles. Feedback from supervisors and early users will be
collected at the end of each sprint to refine the designs and align them closely
with usability goals. Any identified issues will be incorporated into subsequent

design improvements.

3.4.3 Development and Integration

Once the prototypes and architecture have been reviewed and validated, the
development and integration phase will begin. This phase will involve the
actual coding and implementation of PawHub’s core modules, structured

across four main sprints.

3.4.3.1 Sprint1

Sprint 1 will focus on user interface (UI) development and navigation setup.
During this period, the core Ul screens such as Login, Register, Home, Pet
Dashboard, and Profile will be implemented using React Native. A navigation
flow will be created between the screens to support smooth transitions using
appropriate navigation components. The UI layout will be tested and reviewed
by the supervisor, after which necessary adjustments will be made to improve

responsiveness, spacing, and visual hierarchy.

3.4.3.2 Sprint2

Sprint 2 will concentrate on backend implementation and user authentication.
Supabase will be used to set up authentication logic, enabling secure
registration, login, and user sessions. A database schema will be established
for both user and pet profiles. CRUD (Create, Read, Update, Delete)

operations will be developed for managing user data and pet data, including

65

health records and vaccination details. User flow tests will be carried out to
ensure seamless interaction, and any authentication or session-related bugs

will be resolved during this sprint.

3.4.3.3 Sprint3
Sprint 3 will focus on the implementation and enhancement of PawHub’s Al-
driven features, aiming to significantly elevate the app’s intelligence, user

support capability, and educational value.

i) Al Chatbot Integration Module (Multi-Model via
OpenRouter)

In this phase, the Al chatbot interface will be connected to multiple
specialized large language models (LLMs) using the OpenRouter API.
Users will be given the ability to select from three optimized Al
models, each with unique conversational strengths, depending on the
nature of their enquiry (e.g., general care, emergency advice,
behavioral issues). A model selector dropdown will be implemented
within the chat interface, dynamically routing user queries to the
chosen Al in real-time.

Prompt engineering techniques will be applied to tailor the
input prompts for each model, ensuring that the Al maintains a strict
context around pet-specific conversations. Special prompt tokens,
contextual conditioning, and instruction fine-tuning will be used to
make the chatbot reject irrelevant questions (e.g., human-related
queries) and stay focused on pet care advice. Error handling will also
be implemented to gracefully manage API failures, rate limits, and

fallback model selection to ensure uninterrupted user experience.

ii) Symptom Checker Module (AI Risk Assessment Tool)

The Symptom Checker will allow users to input a structured set of
symptom data through interactive forms. The form will support input
type such as text fields for user to input their pet symptoms. Upon
submission, the collected symptom profile will be compiled into a

dynamically generated prompt and sent to a selected OpenRouter LLM

66

that specializes in clinical reasoning or healthcare inference. The Al
model will return a risk-assessed recommendation, which will then be
interpreted into a color-coded risk indicator:
* QGreen: Mild, Monitor at home
* Yellow: Moderate, Suggest vet consultation if symptoms
persist

* Red: Severe, Immediate veterinary attention required

iii) Educational Resource Module (Dynamic Web-Scraped
Content)

The Educational Resources screen will be dynamically retrieved

content using web scraping server. Scheduled scraping scripts (run

externally) will fetch pet care articles, expert advice, and how-to guides

from verified sources (e.g., ASPCA, PetMD, VCA Hospitals). The

articles will be categorized intelligently into various core segments.

A searchable UI will be implemented to allow users to filter
and find articles based on keywords or categories. Each article card
will display a title, snippet, publication date, and a quick link to full
details inside the app’s reader view. Metadata tagging (e.g., dog health,
cat grooming, puppy training) will be assigned automatically, further

enhancing search relevance.

3.4.3.4 Sprint4

Sprint 4 will serve as the final sprint of the development phase. This sprint will
involve the implementation of additional features such as offline support
(using local storage, where feasible), a feedback collection module, and final
user experience testing with real pet owners. Integration testing will be carried
out across all modules to ensure consistent data flow between the front end,
database, and Al services. Performance improvements and final bug fixes will
also be prioritized, culminating in the preparation of the final working

prototype for demo and evaluation purposes.

The entire development phase will follow an incremental and flexible

approach. Each sprint will result in a usable build of the application, allowing

67

for continuous testing and refinement. This process will help ensure that
PawHub is delivered with reliable functionality, user-friendly design, and

meaningful Al-driven features for pet healthcare support.

3.44 Testing and Optimization

Once the core features of PawHub have been successfully developed and
integrated, the project will proceed into the testing and optimization phase.
This phase will be essential in identifying and resolving bugs, validating the
app’s functionality, and ensuring that each component meets the defined user
requirements. Testing will be conducted iteratively throughout the
development cycle, aligning with the Agile methodology. This will include
unit testing, integration testing, and system testing, applied incrementally as
each feature is completed.

The Al-related modules, specifically the chatbot and the symptom
diagnosis tool will undergo detailed validation to assess the accuracy of their
responses. Simulated unit test cases will be designed to reflect real-world pet
health issues, allowing the system’s logic and prompt outputs to be evaluated
for reliability and relevance.

In addition to formal testing techniques, informal usability testing
sessions will be conducted with actual pet owners. Their feedback will provide
valuable insights into the app’s design, navigation, and overall user experience.
Any issues discovered during these sessions will be documented and addressed,
leading to a series of refinements. The goal of this phase will be to ensure

PawHub is not only technically stable but also intuitive and user-centric.

3.45 Review and Continuous Improvement
As part of Agile methodology, PawHub’s development will embrace a culture
of continuous review and enhancement. After the completion of each sprint, a
sprint review meeting will be conducted to assess the progress made, evaluate
whether sprint objectives have been met, and gather feedback from the
supervisor. This feedback will be used to guide the priorities and
improvements in the subsequent sprint.

Upon nearing the project’s completion, a final review will be

conducted. This will serve as the last quality checkpoint to confirm that all

68

functionalities are implemented correctly, the system performs smoothly, and
the app provides a cohesive and seamless experience. Final adjustments and
polishing will be performed based on the cumulative feedback, ensuring

PawHub meets its full potential before final deployment and presentation.

3.5 Development Tools Used
In this section, all the development tools that will be used throughout this

project to achieve the application’s success will be discussed.

3.5.1 React Native

Figure 3.2: React Native (Okoone, 2025)

React Native will be selected as the primary front-end development framework
for PawHub due to its cross-platform capabilities and efficient component-
based architecture. React Native, created by Facebook, is a time-and money-
saving option for developing mobile apps since it enables developers to write
JavaScript code that compiles to native components for both 10S and Android.
This will be especially beneficial for a solo developer working under time and
resource constraints, as it will remove the need to build separate native apps
for different platforms (Introduction - React Native, no date).

Another advantage of React Native will be its support for a rich
ecosystem of libraries and modules, which will allow for rapid integration of
Ul components, state management systems, and third-party APIs. Libraries
like React Navigation and Native Base will be utilized to streamline
navigation between screens and enhance user interface consistency. React
Native will also provide hot-reloading capabilities, which will make it easier to
test Ul changes in real time without restarting the app, thereby improving

productivity during sprints.

69

React Native will prove to be a scalable and adaptable choice for
PawHub, especially as it will need to integrate with various back-end services
like Supabase and AI APIs like OpenRouter. Its flexibility will allow for
smooth communication with external APIs using tools like Axios and Fetch,
enabling seamless real-time interactions for features like chatbot messaging
and pet profile updates. The app’s ability to function smoothly across devices

will further validate the selection of React Native as the core framework.

3.5.2 Visual Studio Code

Figure 3.3: Visual Studio Code (Hill, 2024)

For building PawHub, Visual Studio Code (VS Code) will be the main tool
used to write, debug, and organize the app’s code. It’s a lightweight and
flexible editor made by Microsoft, chosen because it’s fast, easy to customize,
and comes with smart features like code suggestions and helpful extensions.
Its customizable interface and built-in terminal will provide an efficient and
personalized development environment tailored to the project’s workflow.

The wide variety of extensions available in VS Code will
significantly enhance productivity. Tools such as Prettier for code formatting,
ESLint for syntax checking, and React Native Tools for debugging will make
the development process smoother and more efficient. Integrated Git support
will allow real-time version control and commit management directly within
the IDE, reducing context switching and streamlining the development process.
The built-in terminal will make it easy to execute Supabase CLI commands,
run build scripts, and interact with Node.js-based packages (Visual Studio
Code, 2023).

70

Throughout the development of PawHub, VS Code’s intuitive Ul,
performance, and extension-rich ecosystem will enable a faster development
pace, especially during tight sprint cycles. Real-time linting and syntax
highlighting features will help reduce logical and syntactical errors early in the
process. Its seamless integration with React Native and support for
collaborative features (such as GitHub Copilot) will make it an indispensable

tool in delivering a high-quality application.

3.5.3 Android Studio Emulator

android

Emulators

Figure 3.4: Android Studio Emulator (Najjar, 2023)

The main testing environment for PawHub’s Android version will be the
Android Studio Emulator. It enables programmers to simulate different
Android devices and OS versions. This will be particularly useful for testing
responsiveness, functionality, and UI behaviour across different screen sizes
and resolutions (Run apps on the Android Emulator, no date).

Using the emulator will help identify device-specific issues early in
the development process without requiring access to a wide range of physical
devices. This will be critical for ensuring compatibility and consistency,
especially for features like pet profile creation, symptom checker interactions,
and chatbot UI layouts. Various use-case scenarios such as poor network
conditions, navigation between screens, and user input validation will be tested
to ensure a seamless experience under real-world constraints.

While React Native will support hot-reloading on physical devices,
the Android Studio Emulator will provide a safe and efficient sandbox for
debugging major Ul and system-level behaviours. It will also allow simulation
of hardware features like camera, location services, and battery performance,
which will be essential for validating features like health reminders. The

emulator will play a crucial role in streamlining the QA and testing process.

71

3.54 GitHub

) GitHub

Figure 3.5: GitHub (GitHub Logo Download - SVG - All Vector Logo, 2016)

GitHub will be used as the version control and code collaboration platform for
PawHub. Although the project will be developed individually, GitHub will
ensure that all changes are systematically tracked, enabling effective source
code management and a robust backup strategy. By committing updates
regularly, the developer will be able to roll back to previous versions when
necessary, reducing the risk of irreversible errors or data loss (GitHub, 2024).
GitHub’s project board and issue-tracking features will be leveraged
to plan tasks, organize sprint goals, and track bugs or enhancement requests.
This will make it easier to manage workload, prioritize features, and maintain
a structured development pipeline aligned with the Agile methodology.
Milestones and branches will also be used to isolate features, such as
separating the chatbot development branch from the pet profile UI updates.
Additionally, GitHub will make it possible to host the project in a
secure, cloud-based environment. This will ensure continuous access to the
codebase across different development machines. The repository will also
serve as a medium for showcasing the development history, which can be
shared with supervisors, testers, or future collaborators. Overall, GitHub will
support both the technical and organizational aspects of PawHub’s

development lifecycle.

72

3.5.5 Node.Js

N ¢

Figure 3.6: Node.Js Backend Tool (Node.js Development Services Company |
Hire Node.js Developers, 2016)

Node.js will be used as the backend runtime environment for PawHub to
enable secure, server-side logic and centralized API management between the
React Native frontend and external services. Node.js, enables developers to
use JavaScript in front-end and back-end applications, promoting code
consistency, faster development cycles, and easier debugging, especially
beneficial for a solo developer managing a full-stack application.

The Express.js framework, running on top of Node.js, will be utilized
to define RESTful API endpoints that handle authentication, data validation,
session management, and integration with third-party APIs. This architecture
ensures that sensitive operations such as password updates, health record
modifications, and Al prompt handling are processed securely on the server
rather than directly from the client, reducing exposure to potential attacks like
injection or unauthorized access (OpenJS Foundation, 2017).

A primary benefit of Node.js is its event-driven and non-blocking I/O
approach allows for great efficiency and scalability when managing several
concurrent requests. This is critical for features like real-time chat responses
and scheduled email reminders. Additionally, middleware support in Express
allows for modular implementation of functionalities such as JWT-based
authentication, rate limiting, request logging, and error handling, ensuring
robustness and maintainability throughout the project lifecycle. With strong
community support, extensive npm packages, and compatibility with modern
web standards, Node.js serves as a reliable and efficient backbone for

PawHub’s backend infrastructure.

73

3.5.6 Supabase

y supabase

Figure 3.7: Supabase Backend Tool (asierr.dev, 2024)

Supabase will be chosen as the back-end platform for data storage, user
authentication, and real-time synchronization. As an open-source Firebase
alternative, Supabase will provide a scalable and developer-friendly suite of
tools, including a PostgreSQL database, RESTful APIs, and real-time listeners.
For PawHub, Supabase will handle user accounts, pet profiles, and health
records with seamless integration into the React Native frontend.

Supabase Auth will be used to manage secure login and registration
using email and password. It will also provide session management features,
ensuring that user data can be accessed securely without the need to build a
custom authentication backend. Its integration with JWT tokens and role-based
permissions will enable fine-tuned access control over pet data and user-
specific resources (Supabase, no date).

In terms of database functionality, Supabase’s real-time PostgreSQL
database will allow for efficient CRUD operations on pet and health-related
data. The Supabase client library will work seamlessly within the React Native
environment, making it easier to connect the frontend and backend without the
complexity of a traditional server architecture. Its hosted dashboard will
provide insights into database activity, logs, and performance metrics,

supporting scalability and debugging.

74

3.5.7 OpenRouter Al

Figure 3.8: OpenRouter AI API (OpenRouter Logo PNG Vector (SVG) Free
Download, 2025)

The OpenRouter AI API will be used to power PawHub’s Al chatbot, offering
advanced natural language processing capabilities through access to a wide
range of leading large language models (LLMs). OpenRouter serves as a
unified platform that connects to multiple powerful AI models, such as GPT-4,
Claude, and Mixtral, allowing flexible and intelligent conversational
experiences without the need to build custom models from scratch.

By integrating OpenRouter’s API via HTTP requests, PawHub will
be able to interpret user queries about pet care, generate accurate and context-
aware replies, and provide seamless real-time interaction within the app.
OpenRouter’s support multiple models within one API key aligns well with
PawHub’s aim to achieve different Al models within one application and it
also allow prompt engineering that will help with fine-tuning of how the
chatbot responds, making interactions more specific to pet care needs.

Additionally, OpenRouter offers competitive pricing, a generous free
tier for developers, and the flexibility to select different Al models according
to usage scenarios, making it highly suitable for PawHub’s development that
requires multiple models and scaling phases. Its clear documentation and
growing developer community ensure reliable support during the integration
process. OpenRouter will serve as a robust and scalable solution for building
intelligent dialogue systems in PawHub, providing users with trusted, pet-

specific guidance instantly (Principles - OpenRouter’s Core Values, 2025).

75

3.5.8 Resend

Resend

Figure 3.9: Resend Email API (Resend, 2025)

Resend will be integrated into PawHub as the email delivery service
responsible for sending automated health reminders to users based on
upcoming pet care events such as vaccinations, deworming schedules, and vet
check-ups. Designed specifically for developers, Resend offers a simple,
reliable, and cost-effective solution for transactional email delivery, making it
an ideal choice over traditional SMTP providers or bulk email services
unsuitable for personalized notifications.

A major advantage of Resend is its developer-first approach,
featuring clean documentation, instant setup with API keys, and real-time
delivery analytics through its dashboard. It also provides detailed logs for
troubleshooting failed deliveries and supports email verification to ensure
deliverability and compliance with anti-spam policies. Unlike other email
platforms that require complex configuration or hidden costs at scale, Resend
offers a generous free tier and transparent pricing, fitting perfectly within the
project’s zero-budget constraint (Managing Emails - Resend, 2025).

Furthermore, Resend integrates smoothly with Node.js via
lightweight HTTP clients like Axios, enabling quick implementation without
bloating the codebase. Its reliability and ease of use make it a powerful tool for
enhancing user accountability and preventive pet care. By automating timely
reminders through Resend, PawHub reinforces responsible pet ownership and

delivers added value beyond basic digital record-keeping.

76

3.59 Figma

Figure 3.10: Figma (Interino, 2022)

Figma will serve as the primary tool for designing the PawHub prototype
screens and user interface. The goal is to develop an app that feels smooth,
intuitive, and user-friendly for all pet owners, and Figma supports this
objective by enabling design visualization prior to development (Figma
Design — Figma Learn - Help Center, 2024).

As a cloud-based platform with real-time collaboration capabilities,
Figma facilitates rapid design iteration across key screens such as Login,
Register, Home, Pet Dashboard, AI Chatbot, and Profile. Its ability to support
both low and high-fidelity mockups allows for flexible experimentation with
layouts and ensures a seamless user journey throughout the app.

Despite its design-oriented nature, Figma remains highly accessible to
those with a development background. Its drag-and-drop interface, reusable
components, and built-in prototyping tools make it easy to simulate the look
and feel of the application. Once the design is finalized, it will act as a visual
reference during the development phase in Visual Studio Code, guiding the
implementation of each React Native component and ensuring visual

consistency and usability aligned with the original design objectives.

71

3.6 Project Plan

This section outlines the overall project planning strategy. The WBS breaks
down the project into manageable tasks and sub-tasks to ensure systematic
progress and clear role distribution. The Gantt chart presents the scheduling of
these tasks across the project duration, highlighting key milestones,
dependencies, and deadlines to ensure effective time management and project

tracking.

3.6.1

Work Breakdown Structure (WBS)

Work Breakdown Str

ure

1.0 Project Planning and
Requirements Gathering Phase

2.0 System Design Phase

3.0 Development Phase

4.0 Testing Phase

5.0 Project Closing

— 1.1 Qutline Project Introduction

—1.2 Identify Importance of study

'—— 1.3 Define Problem Statement

—— 1.4 Define aim and objectives

_{ 1.5 Propose Solution

1.6 Determine Project
Approach

—— 17 Define Project Scope

— 1.8 Literature Review

1.9 Define Methodology and
Work Plans

1.10 Conduct Survey and Fact-
finding

— 1.11 Identify Development Tools

—— 112 Define Requirements ‘

—‘ 2.1 Use Case Modeling
2.2 UIfUX Design

2.3 System Architecture
Design

[2.4 APl Integration Design

3.1 Sprint 1- UlJUX Development
& Navigation Setup

3.2 Sprint 2 - Authentication,
Database & Pet Profile Features

8.3 Sprint 8 - Al Integration &

2.5 Feedback and Review

Figure 3.11:

Symptom Checker

3.4 Sprint 4 - Final Features,
Feedback & Testing

4.1 Unit Testing

4.2 Integration Testing

4.3 Usability Testing

4.4 Performance Testing

4.5 Security Testing

4.6 Bug fixing

Work Breakdown Structure Diagram

5.1 Final code optimization and
polish

6.2 Prepare final documentation

6.3 Final report compilation

5.4 Poster and demo video
preparation

5.5 Submit
deliverables

5.6 Final presentation and
evaluation

78

79

3.6.2 Gantt Chart
The Gantt chart presents the scheduling of these tasks across the project
duration, highlighting key milestones, dependencies, and deadlines to ensure

effective time management and project tracking.

3.6.2.1 Project Planning and Requirements Gathering

) [Task Name Duration [Start Finish February 2025 March 202§ il 2025
6lolulslglai|aalor| 2l slefnlialrz]oolasloalsol o |al7lrolialieliolalos
1 | 1.0 Project Planning and Requirements Gathering Sldays Mon2/10/25 Mon d4/21/25 1
2 1.1 Outline project introduction 6 days Mon 2/10/25 Sun 2/16/25 1
"3 | 1.2 Identify importance of the study Gdays Mon2/10/25 Sun 2/16/25 1
4| 1.3 Define problem statement 6days Mon2/17/25 Sun 2/23/25 [1
"5 | 1.3.1Difficulty in accessing reliable and expert-backed pet health info 2days Mon2/i%/25 Tue 2/18/25 (=]
& | 13.2Inefficient pet health record management 2days Wed2/13/25 Thu2/20/25 [*
"7 | 1.3.3Difficulty in assessing when to seek veterinary care 2 days Fri2/21/25 Sun 2/23/25 [
8 |14 Define aim and objectives 6 days Mon 2/17/25 Sun 2/23/25 [’ 1
"3 |15 Propose solution (Al chatbot, symptom checker, health records) Gdays Mon2/24/25 Sun 3/2/25 []
10 | 1.6 Determine project approach Gdays Mon2/24/25 Sun 3/2/25 ! 1
1| 16.1 Agile methodology 3days Mon2/24/25 Wed 2/26/25]
12 | 1.6 lterative sprint planning 3days Thu227/25 Sun 3225 —
13| 1.7 Define project scope 6 days Mon3/3/25 Sun 3/9/25 1 1
14 | 1.7.1Target users: Pet owners, caregivers 3 days Mon 3/3/25 Wed 3/5/25 -
15 | 1.7.2Main modules: Chatbot, Symptom Checker, Health Records, Educatior3days Thu3/6/25 Sun 3/9/25 —
716 | 1.8 Literature Review 1ldays Mon3/10/25 Sun 3/23/25 [}]
17 1.8.1 Al in pet healthcare 5 days Mon 3/10/25 Fri 3/14/25 ¥ 1
Tg | 18.1.1 Summarize papers on chatbots, ML, and vet Al Sdays Mon3/10/25 Fri3/14/25 —
15 | 1.8.2Review existing pet care apps (TTcare, PetVet Al, PetVitality, 11Pets) 2days Sat3/15/25 Tue 3/18/25 —
o | 1.8.2.1 Feature analysis 1day Sat3/15/25 Sat 3/15/25
x 1.8.2.2 Comparative study 2days Sun3/16/25 Mon3/17/25 -
22 | 183 Software development methodologies 2days Tue3/18/25 Wed3/13/25 (=]
b 1.8.3.1 Agile vs Waterfall vs RAD 2days Thu3/20/25 Fii3/21/25 [T
24 | 1.8.4 Frontend & Backend tools comparison 2 days Thu3/20/25 Fri3/21/25 -
25 1.8.4.1 React Native vs Flutter 1day Thu3/20/25 Thu 3/20/25 "
2 | 18.4.2Supabase vs Firebase 1day Fi3/21/25 Fi3/225 "
27 | 1.85AIAPIs 2 days sat3/22/25 Sun 3/23/25 [’
2 1.8.5.1 OpenAl, DeepSeek, OpenRouter comparisan 2days sat3(22/25 Sun3/23/25 [
25| 1.9 Define methodology and work plan Gdays Mon3/24/25 Sun 3/30/25 b 1
30 | 1..1Choose Agile methodology 2days Mon3/24/25 Tue 3/25/25 -
31 | 1.9.2Define sprints and iterations 2days Wed 3/26/25 Thu3/27/25 ']
2 1.9.3 Create Gant chart 2days Fri3/28/25 Sun 3/30/25 -
"33 | 1.10 Conduct survey and fact-finding Gdays Mon3/31/25 Sun 4/6/25 [1
34 | 1.10.1 Design survey questionnaire 2days Mon3/3Y25 Tuedf1/25 -
35 | 1.10.2 Distribute via Goagle Forms 2days Wed4/225 Thudf3/2s =]
36 | 1.10.3 Analyse resuits for feature refinement 2days Fi4/4/25 Sun4/8/25 -t
37| 1.11 Identify development tools Gdays Mona/7/25 Sunaf13/25 [1
38 | 1.11.1Visual Studio Code, GitHub 2days Mona/7/25 Tuea/sizs [
33 | 1.11.2 Android Studio Emulator 2 days Wed 4/9/25 Thu4/10/25 -
40 | 1.11.3 Supabase, OpenRouter Al 2days Fi4/11/25 Mon /1425 [
a1 |1.12 Define requirements 6days Mona/14/25 Sun4/20/25 v]
Tz | 1.12.1 Functional requirements 3days Mon4/14/25 Wed 4/16/25 =
43 | 1.12.2 Non-functional requirements 3days Thud/17/25 Mon4/21/25 —

Figure 3.12: Project Planning and Requirements Gathering Gantt Chart

3.6.2.2 System Design Phase

ID [Task Name [Duration [start Finish May 2025 |
1] I ! J19122/251/2811 |4 17 11w0/13116/19/22/25/28131]3 |
45 | 2.0 System Design Phase 26 days Mon 4/21/25 Mon 5/26/25] 1
46 | 2.1 Use Case Modeling 6 days Mon 4/21/25 Sun4/27/25 | g 1
47 2.1.1 llustrate use case diagram 3 days Mon 4/21/25 Wed 4/23/25 [|
48 | 2.1.2 Define use cases for each feature 3 days Thu4/24/25 Mon 4/28/25 [
| 43 | 2.2 UVUX Design 3 days Mon 4/28/25 Wed 4/30/25 (i)
50 | 2.2.1Wireframe with Figma 2days Mon 4/28/25 Tue 4/29/25]
51 | 2.2.2 Define screen navigation and routing 1day Wed 4/30/25 Wed 4/30/25 "
52 |23 System Architecture Design 6 days Mon 5/5/25 Sun 5/11/25] 1
53 | 2.3.1 Define database schema (pet records, users) 3 days Mon5/5/25 Wed 5/7/25 [
54 | 2.3.2 Chatbot and APl communication flow 3 days ThuS/8/25 Mon 5/12/25 —
55 | 2.4 API Integration Design 6 days Mon 5/12/25 Sun 5/18/25 [}]
56 2.4.1 OpenRouter for chatbot 3 days Mon 5/12/25 Wed 5/14/25 [T
57 | 2.4.2 Symptom checker (prompt-based) 3days Thu5/15/25 Mon5/19/25 |) 1 1
58 | 2.5 Feedback and Review 6 days Mon5/19/25 Sun 5/25/25 []
59 | 2.5.1 Discuss designs with supervisor 3days Mon5/19/25 Wed5/21/25 | (B
60 | 252 Refine Ul based on feedback 3days Thu5/22/25 Mon5/26/25 | [’ 1

Figure 3.13: System Design Phase Gantt Chart

3.6.2.3 Development Phas

80

rn a5k Name Duration stant nkh T 225 [20] po——
L [2|es|alsnlslelslwlisiwlalzlaalolslels2lislmwlalalorinlelslelnltelirla
& | 3.0 Development Phase 61days Sun8/17/25
63 | 3.1 Sprint 1= UVUX Development & Navigation Setup 16 days Sun 6/15/25
T | 3.1.1 Design and develop core Ul screens 6days Mon5/26/25 Sun 6/1/25 —
T | 3.1.1.1Login and Register pages 2days Mon$/26/25 Tues/21/25 -
"6 | 3.1.1.2Home and Navigation Tabs. 2days WedS/28/25 Thus/29/25 -
“§ | 3.1.1.3Pet Dashboard and Profile pages 2days FriS/30/25 Sats/31/2s -
68 | 3.1.2 Implement navigation flow between screens 2days Sun6/1/25 Mon6/2/25 -
63 |3.1.3 Create low-fidelity wireframes in Figma for reference 2days Tue6/3/25 Wed6/af25 -
70| 3.1.4 Conduct Ul testing and adjust screen layout 2days Thu®/S/25 Fri6/6/25 -
71| 3.1.5 Prasent to supervisor for design feedback 1day SHES SREES "
72 | 3.1.6 Refine layout based on feedback 2days SUn6/8/25 Mon 6/9/25 -
73 | 3.1.7 Ensure responsive design across device sizes 3days Tue 6/10/25 Thu6/12/25 [B]
74| 3.1.8 Refine Ul animations, padding, and transitions 2days FA6/13/25 Sun/15/25 —
3.2 Sprint 2 - Authentication, Database & Pet Profile Features 16days Mon6/16/25 Sun7/6/25 I
32.1 Set up Supabase authentication (Register/Login flow) 2days Mon6/16/25 Tue6/17/25 -
3222 Integrate Supabase user sessions 2days Wed6/18/25 Thu/19/25 -
32.3 Set up Supabase database schema 2days Fi6/20/25 Sun6/22/25 -
3.2.3.1 User profile data 1day Fri6/20/25 Fri6/20/25 "
3.2.3.2 Pet profile structure 2days swef21/25 Sune/z2/25 -
3.2.4 Develop CRUD operations for pet profiles 2days. Mon 6/23/25 Tue 6/24/25 -
325 Test user flow 243y Wed6/25/25 Thu®/26/25 -
"84 | 326 Fix authentication & session handiing bugs 2days Fri6/27/25 Sat6/28/25 -
"85 |3.2.7 Develop Ul for health record management 2days Sun6/29/25 Mon 6/30/25 -
328 Integrate Supabase to store & retrieve records 2days Tue7/125 Wed 7/ -
3.2.9 Add features for vaccination, notes, vel visits 2days Thu?/325 FA7/425 -
32.10 Build multi-pet profile viewing 1day Satfss Satifsias "
3211 Validate data integrity between pet and user 1day Sun7/6/25 Sun7/6/25 n
41 | 3.3 Sprint 3= Al Integration & Symptom Checker 16days Mon7/7/25 Sun7/21/25 I
3.3.1 Connect OpenRouter API to chatbot interface 2days Mon7/7/25 Tue 7/8/25]
3.3.2 Design chatbot prompt flow 2days Wed7/9/25 Thu7/10/25 -
33.3 Handie loading, error, and fallback states 2days FATAY2S Sat7f2fnSs -
33.4 Style chat interface to match app theme 2days Sen7/1325 Mon7/1a/25 -
5 Test responses to general pet care quaries 2days Tue7/15/25 Wed 7/16/25 -
336 Refactor prompt logic for better accuracy 2days Thu7/17/25 Fi7j18/25 -
3.3.7 Design and implement Symptom Checker form 2days SatI/19/25 Sun7/20/25
338C 1o Oper for 24days Mon7/21/25 Tue 7/22/25
339 Include dropdowns, input fields for symptom data 2days Wed 7/23/25 Thu7/24/25
3.3.10 Add educational content module (e.q., FAQs, artides) 2days Fi7/25/25 Sun7/27/25 -
103 | 34 Sprint 4 - Final Features, Feedback & Testing 16days Mon7/28/25 Sun8/17/25 I——
104 | 34.1 Implement offiine support with local storage (i feasible) 3days Mon7/2825 Wed7/30/25 [
7105 | 3.4.2 Add feedback module (ratings/comments) 2days Tha 7/31/25 Frig/1/25 -
7106 | 34.3 Conduct a final UX test with pet owners for feedback 2days Sat8/2/25 Sun8/3/25 -
3.4.4 Conduct integration testing across all modules 3days Mon8/a/zs Wed8/6/25 —
3.4.5 Bug fixing across navigation, records, and API calls 3days Thu8/7/25 Sat8f9f2s [
34.6 Optimize database queries and lading speed 2days SunB/10/25 MonB8/13/25 -
"110 | 34.7 Prepare app for demo deployment 3days Tue8/12/25 Thus/14/25 -
3.4.8 Submit final working prototype for evaluation 2days i8S Sung/1/s =
Figure 3.14: Development Phase Gantt Chart
.
3.6.2.4 Testing Phase
[Jrask hame Gutonoan Finsn o T p—
LR) nlu LR " n a s B E] n 2 . o "7 “ »
40 Testing Phase Ndms MonBAK Suns/425
4.1 Unit Testing Sdays Mon 8/18/25 Fr8/22/25 L
411 Tast Ul components and loge: I MoaBINZS WedB0S —
412 Test AP| esponses 20ap smaas memmas |
42 iniegration Tesing Ao SMWTES wewIn I—
421 Ensure smooth fromenc backend regaton ddes SMBRVI Wed B2UIS —
43 Usabibty Tesiing o WIS Moad/Es I—
4.3.1 Gatner fsedDack rom users (pet owners) Jdew Twams FeaEI —
4:3.2 Update UXU! accordingly ey SmABIS Suna/ss -
4.4 Performance Testing I Tueszas Thasias —
4.4.1 Assess load speed, responsiveness. ddays Tue 8/2/25 Thu 5/4/25. —
4.5 Security Testing 2am EnSfSS Suna/7as —
45,1 Valkiata logn, data protection Tdes P Semss —
46 Bug fixing Bdas Moa%/E2S Sun9/14/25 —

Figure 3.15:

3.6.2.5 Closing Phase

Testing Phase Gantt Chart

‘\u Task Name

129 | 5.1 Final code oplimization and polish
|52 Prepare final documentation
5.3 Final report compdation
5.4 Poster and demo video preparabon
5.5 Submit deliverables

5.6 Final presentation and evaluation

‘ 125 | 5.0 Project

‘Duration

Bdays.
2days
2ea
1day
1day
1day
1day

Figure 3.16:

’sun

Mon 9/15/25
Mon 9/15/25
“Wed 3/17/25
FriB19(25
Sat9/20/25
Sun 8/21/25
Sun 9/21/25

Firish September 2025

Sun 9/21/25

Tues/16/25 | ——

Thus/18(5 ——

Fri9/18/25
Sat 9/20/25
Sun 9/21/25
Sun 9/21/25

Closing Phase Gantt Chart

81

CHAPTER 4
PROJECT INITIAL SPECIFICATIONS

4.1 Introduction

In this section, data collected through questionnaires are analyse and
preliminary research is presented to identify user needs and system
expectations for the PawHub application. Based on these findings, the
requirements are written, the use case diagram are drawn, and based on these
specifications, the use case description, and user interface designs are
developed and included in this chapter. Overall, this chapter serves as a

blueprint for the application’s core features and user experience design.

4.2 Facts Finding

Do you own a pet?

37 responses

@ Yes

-

Figure 4.1: Target Users of Survey

This section in my report presents an in-depth analysis of pet owner’s current
practices, preferences, and challenges in managing pet health, gathered
through a comprehensive survey. The survey sample, composed entirely of
active pet owners, with 83.8% (37 respondents) confirming pet ownership,
validates the relevance of our study and underscores a strong inclination
towards digital solutions for pet health management. These findings reveal
significant gaps in current offerings and highlight a growing demand for an
integrated, user-friendly platform that meets the real needs of pet owners,
thereby guiding the design and development of PawHub to enhance timely and

effective care for their pets.

82

4.2.1 Section 1: General Information

1. What is your age group?

31 responses

@® Under 18
@ 18-24
25-34
@®35-44
@45+

Figure 4.2: Survey Question 1, Age Group

The survey data indicate that the majority of respondents are young adults,
with 71% aged between 18 and 24, and an additional 25.8% falling within the
25-34 age bracket. This concentration in the younger demographic suggests
that the target user base is likely to be tech-savvy, comfortable with mobile
apps, and open to adopting innovative digital solutions for managing pet care.
Such a youthful audience is often receptive to modern, interactive interfaces

and may value features that integrate seamlessly with their digital lifestyles.

2. What type of pet(s) do you own?

31 responses

Dog 18 (58.1%)
Cat 13 (41.9%)
Rabbit 1(3.2%)
Hamster 1(3.2%)
Bird [0 (0%)
Fish 3(9.7%)
Guinea-pig |0 (0%)
Tortoises 1(3.2%)
1(3.2%)

0 5 10 15 20

Figure 4.3: Survey Question 2, Pet Types

In terms of pet types, the survey shows that dogs are the most popular, owned
by 58.1% of respondents, while 41.9% own cats. There is also a smaller
percentage of respondents who own fish, birds, and other pets. This
distribution implies that while the app should primarily cater to dog and cat
owners by offering features and content tailored to these animals, it should
also remain flexible enough to accommodate the needs of owners with less

common pet types, ensuring inclusivity and broad appeal.

83

3. How many pets do you currently have?
31 responses

01

[
3
® More than 3

Figure 4.4: Survey Question 3, Number of pets

The survey reveals that the majority of respondents (61.3%) own just
one pet, which suggests that many users may prefer a simple and
straightforward user interface for managing a single pet’s profile. However,
with 12.9% owning two pets, 9.7% owning three, and 16.1% owning more
than three pets, there is a clear indication that the app should support multi-pet
management. This feature would enable users with multiple pets to easily
switch between profiles and maintain comprehensive health records for each

animal, thereby increasing the app’s overall usability and appeal.

4. How long have you been a pet owner?

31 responses

@ Less than a year
® 1-3years

4 -6 years
@ More than 8 years

Y

Figure 4.5: Survey Question 4, Pet Ownership Experience

Respondents experience levels with pet ownership vary significantly.
The largest group, comprising 41.9% of respondents, has been pet owners for
more than six years, suggesting they are likely to be well-informed and may
demand more advanced features or nuanced insights regarding pet care.
Meanwhile, 35.5% have 1-3 years of experience, indicating a need for
educational content and guidance to help newer pet owners make informed
decisions. With 12.9% having 4-6 years and 9.7% less than a year of

experience, the app should ideally offer a balance of advanced functionalities

84

for experienced owners and user-friendly, educational features to assist those

who are relatively new to pet care.

4.2.2 Section 2: Current Pet Care Practices

5. How do you currently manage your pet’s health records?

31 responses

@ Physical records (e.g., physical
booklets)

@ Digital notes (e.g., phone/laptop)
Vet-provided documents
@ | do not track my pet's health records

Figure 4.6: Survey Question 5, Current Pet Health Management

Out of 31 respondents, 25.8% rely on physical records like booklets, while
12.9% use digital notes on devices such as phones or laptops. A significant
32.3% depend on documents provided by veterinarians, and 29% indicated
that they do not track their pet’s health records at all. These results suggest a
varied approach to record-keeping, reflecting both traditional and modern
practices. The fact that nearly one-third of respondents do not track their
records at all underscores a clear opportunity for a centralized digital solution
like PawHub to simplify health record management and ensure that critical

information is readily accessible.

6. How often do you visit a veterinarian for checkups or health concerns?
31 responses

@ Monthly
@ Every 3-6 months
Once a year
@ Only when my pet is sick
@ Rarely/Never

N

Figure 4.7: Survey Question 6, Vet Visits for checkup or health concerns

85

Among the 31 respondents, 6.5% visit a veterinarian monthly, 19.4%
do so every 3-6 months, and another 19.4% attend annual checkups. However,
the largest group, 41.9%, only visits a vet when their pet is sick, and 12.9%
reported that they rarely or never make vet visits. This distribution indicates
that while routine checkups are followed by some, a substantial portion of pet
owners delay veterinary visits until a problem arises. Such insights highlight
the potential benefit of an app that encourages proactive health management
through regular reminders and alerts, potentially reducing the reliance on

reactive, emergency-based vet visits.

7. Have you ever struggled to identify if your pet was sick?
31 responses

@ Yes, many times
@ Sometimes
No, | usually know when they are sick

Figure 4.8: Survey Question 7, Struggles to identify if pet is sick

When asked about the difficulty of identifying sickness in their pets,
29% of respondents stated that they have experienced this issue many times,
48.4% said it happens sometimes, and 22.6% mentioned that they usually
know when their pet is sick. This data reveals that a significant majority, over
three-quarters of respondents face challenges in accurately identifying health
issues in their pets. This finding underscores the need for an intelligent, Al-
powered symptom diagnosis tool within PawHub that could assist pet owners
in early detection and prompt action, ultimately leading to better health

outcomes for their pets.

86

8. How do you usually search for information when your pet shows unusual symptoms?

31 responses

Google/Online searches 27 (87.1%)
Pet-related forurnsrcr social 5 (16.1%)
media groups
Consulting a veterinarian directly 12 (38.7%)
Asking other pet owners 9(29%)
I don't search, | go straight to the 6 (19.4%)
vet
0 10 20 30

Figure 4.9: Survey Question 8, Ways to search unusual symptoms

The responses indicate that a large majority of 87.1% rely on Google
or other online searches to gather information when their pet exhibits unusual
symptoms. Additionally, 38.7% consult a veterinarian directly, 29% ask other
pet owners, and only 16.1% utilize pet-related forums or social media groups.
These findings suggest that while pet owners frequently turn to online sources,
which may vary in reliability, a significant number still value professional
guidance and peer advice. This reinforces the need for a trusted, integrated
solution like PawHub that provides accurate Al-driven insights, thereby
reducing the reliance on less consistent online information and unnecessary

google searches.

9. What challenges do you face in managing your pet’s health?
31 responses

Forgetting vaccination dates 7 (22.6%)

Keeping track of vet

1%
appointments 5016.1%)

Understanding pet symptoms alnd 22 (11%)
when to take action
Finding reliable pet care advice 12 (38.7%)

Managing multiple pet's health
records

8 (25.8%)
0 5 10 15 20 25
Figure 4.10: Survey Question 9, Challenges faced in managing pet’s
health

This question revealed several common struggles faced by pet owners,
with the most prominent issue being understanding pet symptoms and
knowing when to take action, cited by 71% of respondents. This suggests that

many owners feel uncertain or lack the confidence to assess their pet’s health,

87

which could lead to delayed or inappropriate responses to illnesses.
Additionally, 38.7% of respondents stated they struggle with finding reliable
pet care advice, highlighting the difficulty of navigating the vast amount of
sometimes conflicting information available online. A notable 25.8%
mentioned the challenge of managing multiple pets’ health records,
emphasizing a need for a system that can consolidate and organize health data
in one place. Other common issues include forgetting vaccination dates
(22.6%) and keeping track of vet appointments (16.1%). These findings
clearly indicate that pet owners face both informational and organizational
difficulties, underlining the necessity for an app like PawHub, which can
deliver trustworthy insights, reminders, and comprehensive record

management features tailored to individual pet needs.

10. Would you find a pet health tracking system useful?

31 responses

@ Yes, it would help me stay organized
@ Maybe, if it's easy to use
No, | don't need one

Figure 4.11: Survey Question 10, Pet Health Tracking System Usefulness

Most participants (80.6%) expressed that a pet health tracking system
would help them stay organized, showing strong demand for such a digital tool.
A further 19.4% said they might find it useful if it is easy to use, indicating
that usability and intuitive design are crucial for adoption. Significantly, no
respondents rejected the idea of a tracking system, reinforcing the notion that
most pet owners are open to technological solutions, especially if they can
simplify and improve how pet health is managed. This feedback strongly
supports the integration of tracking features in PawHub, such as, vet visit logs,
symptom monitoring, and multi-pet support, all within a user-friendly

interface.

88

4.2.3 Section 3: AI Chatbot & App Features

11. Do you currently use Al-based tools (e.g., Al chatbots or virtual assistants) to ask questions

about pet care?
31 responses

@ Yes, frequently.
@ Sometimes, but | also rely on other
saurces.
Rarely, but I'm interested in exploring.
@ No, and | don't think they'd be useful.

Figure 4.12: Survey Question 11, Al-based Virtual Assistant Usage

This question aimed to gauge the familiarity and openness of respondents
toward Al tools in pet care. About 35.5% stated they frequently use Al-based
tools, indicating a growing acceptance of modern technology in everyday pet
care routines. Another 22.6% use them occasionally alongside other resources,
showing that Al is often used in combination with traditional sources such as
vets or online forums. Interestingly, 41.9% said they rarely use Al but are open
to trying it, suggesting that while Al hasn’t become mainstream in this context
yet, there is strong interest and potential for adoption. Importantly, no one
rejected the usefulness of Al outright, which highlights a positive user

sentiment towards integrating such tools into a pet care app.

12. Do you think an Al-powered symptom diagnosis tool could be helpful in identifying potential

health issues before visiting a vet?
31 responses

@ Yes, very helpful
48.4% @ Maybe, but | would still consult a vet
No, | don't trust Al for health diagnosis

Figure 4.13: Survey Question 12, Al-based Symptoms Diagnosis Tool
Usage

The response was overwhelmingly positive, with 51.6% saying it

would be very helpful, and the remaining 48.4% agreeing it might be useful,

89

though they would still consult a vet. Notably, no one expressed distrust in
using Al for preliminary diagnosis, suggesting that users are open to Al tools
as a first line of assistance or a support system before seeking professional
care. This confirms that there is a strong interest in using Al to bridge the gap
between noticing symptoms and taking action, giving reassurance to pet

owners who may otherwise delay or struggle with decision-making.

13. Would you use an Al chatbot to answer general pet care questions?

31 responses

@ Yes, if the information is accurate
@ Maybe, for minor issues
No, | prefer speaking to a professional

Figure 4.14: Survey Question 13, Al-based Virtual Assistant Usage for

General Pet Care Questions

A large majority (67.7%) responded yes, provided that the chatbot
delivers accurate information, while 32.3% indicated they would use it for
minor issues. Again, none rejected the idea of using an Al chatbot, showing
widespread acceptance of such tools, especially for low-risk or general
informational pet care queries. This points to the need for PawHub to prioritize
data accuracy and reliability, as trust in the information source is key for

continued usage and user satisfaction.

14. What type of assistance would you expect from an Al chatbot?
31 responses

Nutrition & feeding advice 27 (87.1%)

Training & behavioral guidance 21 (67.7%)

Common illness symptoms &

0
basic first aid 26 (83.9%)

Information on vaccinations & pet

o
health care 20 (64.5%)

Emergency care guidance 21 (67.7%)

Other (please specify)|—0 (0%)

0 10 20 30

Figure 4.15: Survey Question 14, Al-based Virtual Assistant Usage

90

This multi-choice question highlighted the specific functionalities
users desire from an Al chatbot. Nutrition and feeding advice (87.1%),
common illness symptoms and basic first aid (83.9%), and emergency care
guidance (67.7%) were among the most requested features. Additionally,
training and behavioural guidance (67.7%) and information on vaccinations
and general pet health care (64.5%) also ranked high. These results reflect a
wide range of needs, from routine care to critical health concerns, emphasizing
the importance of developing a comprehensive and multi-functional Al
assistant in PawHub. Users expect more than just casual chat, they want

expert-level educational resources across diverse pet health topics.

15. How likely are you to trust an Al tool to diagnose pet symptoms?

31 responses

15

12 (38.7%) 12 (38.7%)
7 (22.6%)

0 (0%) 0(0%)

1 2 3 4 5

Figure 4.16: Survey Question 15, User Trust on Al Tool For Symptoms

Diagnosis

Trust levels are relatively high, with most responses clustering around
the mid-to-high end of the scale. 38.7% selected “3”, indicating a neutral but
open stance, the same percentage selected “4”, showing strong confidence in
Al tools. Moreover, 22.6% rated it “5”, showing very high trust in Al-powered
symptom diagnosis. Importantly, no respondents chose “1” or “2”, indicating
that nobody is fundamentally opposed to trusting Al in this role. This shows
well for PawHub, suggesting that the more accurate and transparent the tool

becomes, the more user confidence it can build over time.

91

16. Would an Al symptom checker help you decide if your pet needs a vet visit?
31 responses

® Yes
® No

\ o

Figure 4.17: Survey Question 16, Al Symptom Checker

More than half (54.8%) agreed that such a tool would help them
decide, while 41.9% said maybe, again pointing to openness dependent on
accuracy and reliability. Only 3.2% rejected the usefulness of an Al symptom
checker outright. This highlights the opportunity for PawHub to serve as a
decision-support tool, helping users interpret symptoms and make timely
decisions on seeking veterinary care, especially useful for owners unsure

whether a symptom is urgent.

17. How quickly do you expect responses from the Al chatbot?
31 responses

@ Instantly (within seconds)

@ Within a minute
Speed is not important, accuracy
matters more

Figure 4.18: Survey Question 17, Al-based Virtual Assistant Response
Rate

Users had mixed but insightful expectations about response time. 51.6%
preferred instant responses, reflecting the need for real-time interaction in
cases of stress or urgency. 19.4% were comfortable with a delay of up to a
minute, likely valuing slightly delayed but thoughtful responses. Interestingly,
another 51.6% emphasized that “accuracy matters more than speed”, which
reinforces the importance of providing correct and helpful information over

quick, generic answers. These insights suggest PawHub should aim for a

92

balance, prioritize speed, when possible, but never at the expense of accuracy

and user trust.

4.2.4 Section 4: Pet Health Record Management Preferences

18. What features would you like in a pet health record system?
31 responses

Digital vaccination and medical
history tracking

Reminders for vaccinations and
vet appointments

Symptom logging for better
tracking

29 (93.5%)
25 (80.6%)
19 (61.3%)
Weight and diet monitoring 19 (61.3%)

Secure cloud storage 10 (32.3%)

Maybe a chatbot encrypted 1(3.2%)

0 10 20 30

Figure 4.19: Survey Question 18, Preferred features in a Pet Health
Record System

When asked about preferred features for a digital pet health record system, the
most in-demand feature was digital vaccination and medical history tracking,
with 93.5% of respondents selecting it. Reminders for vaccinations and vet
appointments followed closely at 80.6%, indicating that users prioritize
staying up to date on their pet’s health needs. Symptom logging and
weight/diet monitoring were each selected by 61.3% of respondents, showing
that many pet owners want more detailed tracking tools. Additionally, 32.3%
valued secure cloud storage for accessing data across devices, and a small
group (3.2%) suggested integrating an encrypted chatbot for privacy and

convenience.

19. How important is it to have a centralized digital system to track your pet's health?

31 responses

15 15 (48.4%)

12 (38.7%)

4(12.9%)
0 (0%) 0(0%)

1 2 3 4 5

Figure 4.20: Survey Question 19, Importance of Centralized Digital
System

93

The majority of respondents considered a centralized digital system
highly important for managing their pet’s health. Specifically, 48.4% rated its
importance as 5 (very important), while 38.7% gave it a 4, making up a
combined 87.1% who strongly support the idea. The remaining 12.9% rated it
a 3, indicating moderate interest, while none of the participants rated it as
unimportant (1 or 2). This shows a strong preference for a unified and digital

health tracking solution among pet owners.

20. Would you be interested in receiving pet care tips, alerts, and reminders through the app?

31 responses

@ Yes, | would love regular tips and
updates

@ Maybe, but only for important
notifications

No, | don't need reminders

Figure 4.21: Survey Question 20, Interest in Receiving Pet Care Tips,

Alerts, and Reminders

Regarding engagement through alerts and updates, 61.3% of
participants stated they would love to receive regular pet care tips and
notifications through the app. Another 35.5% expressed interest in receiving
updates, but only for important matters such as vaccinations or health concerns.
Just 3.2% mentioned that they do not require reminders. Overall, this indicates
a clear interest in having timely, relevant notifications delivered through the

app to help with responsible pet care management.

94

4.2.5 Section 5: App Usability and Feature Preferences

21. What factors are most important in a pet care app?
31 responses

Accuracy of Al diagnosis 26 (83.9%)
Easy-to-use interface 25 (80.6%)
Reliable pet care advice 25 (80.6%)
Health record storage and 18 (58.1%)
reminders e
Fast response times 18 (58.1%)
Data privacy and security 11 (35.5%)
0 10 20 30
Figure 4.22: Survey Question 21, Most Important Factors in Pet Care App

When identifying key priorities for a pet care app, 83.9% of respondents
ranked the accuracy of Al diagnosis as the most important factor. This was
followed closely by an easy-to-use interface and reliable pet care advice, both
of which were selected by 80.6% of participants, highlighting the need for
simplicity and trustworthy information. Additionally, 58.1% valued health
record storage and reminders, and the same percentage emphasized the
importance of fast response times. Data privacy and security were also a
concern for 35.5% of users, suggesting that while functionality is important,

protecting user data should not be overlooked.

22. Would you prefer the app to provide Al-powered symptom diagnosis for common pet ilinesses?
31 responses

@ Yes, it would help in assessing my pet's
health

® Maybe, but | would still confirm with a
vet
No, | don't trust Al for symptom
diagnosis

Figure 4.23: Survey Question 22, Preference for an Al-powered Symptom

Diagnosis Tool

A majority of respondents (61.3%) expressed that they would prefer
the app to include Al-powered symptom diagnosis to help assess their pet’s
health. Another 38.7% responded “maybe,” showing openness to the idea

while emphasizing that they would still confirm with a veterinarian.

95

Importantly, none of the respondents rejected the idea outright, which reflects

a high level of trust or curiosity in the role of Al in supporting pet health

assessments.

23. What additional features do you think a pet care app should have?

31 responses

Figure 4.24:

Survey Question 23, Additional Features Suggestion

Table 4.1: Additional Features User Responses (Open ended question)

Pet locations if they go missing

Reminders

photo record feature for pet so that it
is easier to have a lost and found if

the pet accidentally lost

Nearest animal clinics? And maybe

it’s ratings? Could do like a

collaboration type thing

Keeping individual record and
profile for each pet that user own.
Categorising them can be a help to
those who owns more that one type

of pet.

Perhaps a call/communication center
to connect veterinarians/trained

professionals with consumers

virtually

Maybe we could have specialists
online for chatting with the users

regarding their pets’ behaviours.

Maybe a social hub for pet parents to
share tips, photos of their pet and

personal stories.

Nutritional ~ plans, behavioural

training tips etc

Pet communities for those which

shares location

A profile photo for your pet !

Location for the nearest veterinarian

Real time update and notification

Facts

Chatbot encrypted. Maybe, real-time

advice from a vet and also

identifying the nearest animal

hospital in case of any emergency.

General knowledge/educational stuff
(importance of
neutering/vaccination/safety tips or

precautions to take after vaccination)

where I can take picture and upload

to ask om diagnosis.

Honestly most things have been

covered!

multiple language can be accessed

Locations for near by clinic

Lost pet alert system

Reminders

96

Participants suggested a wide range of features to improve the overall
functionality and usefulness of the pet care app. Several respondents
recommended features to help in emergencies, such as lost pet alert systems,
pet location tracking, and real-time notifications. Others proposed having
individual pet profiles, photo records, and categorization for multiple pets.
There were also suggestions for real-time vet consultations, access to nearby
clinics with ratings, and Al-based image diagnosis tools. Some participants
wanted multilingual access, social features like a pet parent community,
educational content, and behavioural training tips. These ideas reflect a desire
for both practical tools and community engagement features that support day-
to-day pet care. Many of the features suggested are already in line with your
planned functionality for PawHub, like Al advice, pet profiles, and vet
communication. Others such as social features, lost pet systems, clinic locators,
and education tools can be considered for future iterations to enhance user

value and experience.

24. Any final feedback or suggestions for improving the app?

17 responses

Figure 4.25: Survey Question 24, Final Feedback or Suggestion for

improving the application

Table 4.2: Final Feedback or Suggestion user responses (Open ended

question)

If there was a way to gauge people’s | Keep it simple and user friendly
trust in Al, like maybe a health | which can also be used by older
department certification or ethics | generations which aren’t really
certification that ensures users they can | good with technology.

rely on the app for accurate information

Customization options, In-App chat | Can apply real veterinarian in the

with Vet, Offline mode apps to increase the accountability

Allow for other pet owners to add each | Might be useful to profile for each

other on the app pet, as some people have multiple

97

pets to take care of.

More educational/fun facts Have multiple pets account
accessible

Overall, very good ! Nice app idea ! All the best :)

Final feedback from users was mostly positive and constructive.
Many emphasized the importance of having multiple pet account access and
individual profiles, especially for users with more than one pet. Simplicity and
user-friendliness were recurring themes, especially to ensure that the app is
accessible to older generations. Several participants suggested offline access,
customization options, and real veterinarian integration to enhance trust and
credibility. There were also ideas like in-app vet chats, friend-adding features
among pet owners, and even certification labels to validate the app’s reliability.
Overall, the feedback was encouraging, with multiple users expressing support
and enthusiasm for the app concept. These suggestions emphasize the
importance of user-centric design, credibility, and reliability. Integrating
feedback from real users into future development such as vet verification,
multiple pet profiles, and simplicity can set PawHub apart in a growing market

of pet care apps.

4.3

98

Requirements Specification

This section defines the functionalities of the PawHub mobile application. The

requirements were derived from the key features of the application and aligned

with the objectives of promoting accessible, Al-powered pet care management.

4.3.1 Functional Requirements
Table 4.3: Functional Requirements

ID Functional Requirements

FOO01 | Pet owners must be able to create a new account to access the app.

F002 | Pet owners must be able to log into their existing account to access the
app.

F003 | Pet owners should have the ability to view and update their personal
profile information.

F004 | The system must support pet owners to manage their pet profile.

FO05 | Pet owners should have the ability to add pets, view their pet profile,
update their information and delete multiple pet profiles.

F006 | The system must allow pet owners to add, view and delete health
records for each pet.

F007 | The system should automatically notify pet owners with reminders if
the health record date is in the future.

F008 | The system should provide an Al-powered chatbot that answers pet
care inquiries (nutrition, training, behaviour, etc.) in real time.

FO09 | Pet owners must be able to toggle between three Al models in the
chatbot for varied response styles.

FO10 | The system should allow pet owners to enter pet symptoms and
receive an Al-generated analysis indicating if urgent veterinary care is
needed.

FO11 | The system should provide pet care resources such as articles, tips,
and guides.

FO12 | The system should allow pet owners to give feedback on the app’s

functionality and usability.

4.3.2

Non-Functional Requirements

99

Table 4.4: Non-Functional Requirements

ID

Non-Functional Requirements

Category

NF001

Under normal conditions, the system
must respond to user input in less than

two seconds.

Performance

NF002

For both tech-savvy and non-tech-
savvy users, the front end of the
application must be easy to use,

visually appealing, and clear.

Usability

NF003

The system must ensure secure data
transmission and storage, protecting

user credentials and pet health data.

Security

NF004

The system’s code should be modular,
well-documented, and easily
extendable for future wupdates and

feature additions.

Maintainability

NF005

The system must allow 1000 users and
data without significant performance

degradation.

Scalability

4.4 Use Case Diagram

100

uc Al Pet Care Application)

Al Driven Pet Care App for Virtual Assistance and Symptom Diagnosis

Login User Profile

Register User Profile

Manage User Profile

AddPet |-----——= Add Pet Details

«include»

Manage Pet Profiles | ——————= View Pet Profile
sinclude»

Pet Owner

Add Pet Health

Records Notify Reminder

i
I
wextends
T
i

extension points
Automatically sends notifications
for upcoming vaccinations or vet
visits

Enguire Al Chatbot

Input Symptom
Di -

View Educational

Give Feedback

Assumptions:

1. Pet owners are the end users of the system.

2. All admin tasks such as reviewing user feedback and curating educational content are performed via the
Supabase web dashboard and are not part of the PawHub mobile app.

3. The application would work on a wide range of devices that users commonly use.

Figure 4.26: Use Case Diagram

101

4.5 Use Case Description

Based on requirements specifications and use case diagram, the use case
description are designed and included in this section. Overall, this section
shows the flows of event between users (pet owners) and the system for every

use case features.

4.5.1 UCO001: Login User Profile

Table 4.5: UCO001 Login User Profile

Use Case Name: Login User Profile ID: Importance Level:
UCO001 | High
Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners — want secure and quick access to their account.

Brief Description: This use case describes the process of allowing an

existing user to access their account by verifying their login information.

Trigger: A user wants to log into their existing account.

Relationships:
Association : Pet Owner
Include : N/A
Extend : N/A

Generalization: N/A

Normal Flow of Events:
1. The user presses the “Login” function.
2. The system ask the user to give their email and password.
3. The system checks the completion of data entered by the user.

Continue to S-1.

4. The system validates the format of the information written by the

102

user. Continue to S-2.
5. The system checks if they user credentials match the database.
Continue to S-3.

6. The system brings the user to the home page.

Sub-flows:

S-1: Perform 3.1 or 3.2
3.1 If the information is empty, the system will show an error
message of incomplete data. Continue to flow no 2.

3.2 If the information is complete, proceed to flow no 4.

S-2: Perform 4.1 or 4.2

4.1 If all the information is in the correct format, proceed to flow
no.S.

4.2 If the information format is incorrect, the system displays an

error message beside and ask to re-enter again. Continue to flow no.2.

S-3: Perform 5.1 or 5.2

5.1 If the credentials match the records in the database. proceed to
flow no.6.

5.2 If the credentials are not found in the database, the system

displays an error message. Continue to flow no.2.

Alternate/Exceptional Flows:
e A message advising the user to try again later is displayed in the

event that a system fault arises during database validation.

103

4.5.2 UC002: Register User Profile

Table 4.6: Register User Profile

Use Case Name: Register User Profile | ID: Importance Level:
UCO002 | High
Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners — want to create a new profile easily and securely.

Brief Description: This use case explains how to let a new user to

register by giving the necessary information.

Trigger: A new user wants to create an account.

Relationships:
Association : Pet Owner
Include : N/A
Extend : N/A

Generalization: N/A

Normal Flow of Events:

1. The user picks the the “Register” function.

2. The system prompts the user to enter personal details (e.g., email,
password, name, phone number).

3. The system checks the completion of data entered by the user.
Continue to S-1.

4. The system validates the format of the entered information.
Continue to S-2.

5. The system checks for duplicate account existence in the database.
Continue to S-3.

6. The system creates the user account.

104

Sub-flows:

S-1: Perform 3.1 or 3.2
3.1 A warning message indicating incomplete data is displayed by
the system if any required field is left empty. Continue to flow no 2.

3.2 If all required fields are complete, proceed to flow no 4.

S-2: Perform 4.1 or 4.2

4.1 If all the information is in the correct format, proceed to flow
no.5.

4.2 If the information format is incorrect, the system displays an

error message beside and ask to re-enter again. Continue to flow no.2.

S-3: Perform 5.1 or 5.2

5.1 If no duplicate account exists. proceed to flow no.6.

5.2 If an account with the provided email already exists, the system
will show an error message and prompts for a different email. Continue to

flow no.2.

Alternate/Exceptional Flows:
e A warning message is displayed and the user is urged to try again

later in the event that a system error occurs during account creation.

4.5.3

105

UC003: Manage User Profile

Table 4.7: Manage User Profile

Use Case Name: Manage User Profile ID: Importance Level:

UC003 | High

Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners — want quick and organized access to their pet’s profile and

information.

Brief Description: This use case explains how to let a user change their

personal information.

Trigger: A logged-in user wants to update their profile details.

Relationships:
Association : Pet Owner
Include : N/A
Extend : N/A

Generalization: N/A

Normal Flow of Events:

> b

The user presses the “Manage User Profile” button.

The current profile details of the user is shown by the system.

The user edits their wanted informations fields.

The system checks the completeness of the new data. Continue to S-
1.

The system validates the format of the new information. Continue to
S-2.

The system saves the updated profile information.

106

Sub-flows:

S-1: Perform 4.1 or 4.2
4.1 If the updated information is complete, proceed to flow no.5.
4.2 The system shows an error message and asks the user to fill out
all necessary fields if the revised information is not full. Continue to flow

no.2.

S-2: Perform 5.1 or 5.2

5.1 If the updated information is in the correct format. proceed to
flow no.6.

5.2 The system asks the user to re-enter the right format and shows
an error message if the information format is incorrect. Continue to flow

no.2.

Alternate/Exceptional Flows:
o If an error while saving the profile, it notifies the user and suggests

trying the update again later.

45.4 UC004: Add Pet

Table 4.8: UC004: Add Pet

107

Use Case Name: Add Pet

ID:
UuCco004

Importance
Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners — want to easily register their pet’s details for health

monitoring and management.

Brief Description: This use case explains how to allow a user to add a

new pet profile by providing necessary pet details.

Trigger: A user wants to add a new pet profile to their account.

Relationships:

Association : Pet Owner

Include : Add Pet Details

Extend

Generalization: N/A

Normal Flow of Events:

1. The user selects the “Add Pet” function.

2. The user is prompted by the system to input pet information, such as

the pet’s name, breed, and age.

3. The system checks for the completeness of the entered data. Continue

to S-1.

4. The system validates the format of the pet details. Continue to S-2.

5. The system saves the new pet profile and associates it with the user’s

account.

108

Sub-flows:

S-1: Perform 3.1 or 3.2
3.1 If all required details are provided, proceed to flow no.4.
3.2 If any required pet detail is missing, the system displays an error

message indicating incomplete data. Continue to flow no.2.

S-2: Perform 4.1 or 4.2
4.1 If the pet details are in the correct format. proceed to flow no.5.
4.2 If any detail is in the incorrect format, the system displays an

error message and asks for re-entry. Continue to flow no.2.

Alternate/Exceptional Flows:
o If the system cannot save the pet profile because of an error, it shows

a warning and ask the user to try again later.

109

4.5.5 UC005: Manage Pet Profile

Table 4.9: UC005: Manage Pet Profile

Use Case Name: Manage Pet Profile ID: Importance
UCo005 Level:
High
Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:
Pet Owners — want to keep their pet information accurate and up to date

for better management and tracking.

Brief Description: This use case explains the function of allowing a user

to update or edit an existing pet profile.

Trigger: A user wants to modify details of an existing pet profile.

Relationships:
Association : Pet Owner
Include : View Pet Profile
Extend : N/A

Generalization: N/A

Normal Flow of Events:
1. The user picks the “Manage Pet Profile” button.
2. A list of pet profiles associated with the user is displayed by the
system.
The user selects a specific pet profile to edit.
The system presents the current pet details for editing.

The user modifies the desired fields.

A

The system checks the completeness of the updated information.
Continue to S-1.

7. The system validates the format of the updated information. Continue

110

to S-2.
8. The system saves the updated pet profile.

Sub-flows:

S-1: Perform 6.1 or 6.2
6.1 If the updated pet details are complete, proceed to flow no.7.
6.2 The system indicates an error and asks for completion if any

required fields are left blank. Continue to flow no.4.

S-2: Perform 7.1 or 7.2

7.1 If the updated details are correctly formatted. proceed to flow
no.8.

7.2 The system requests for re-entry and shows an error message if

the format is incorrect. Continue to flow no.4.

Alternate/Exceptional Flows:
o The user is notified and advised to try again later if the system detects

an error when saving updates.

4.5.6 UC006: Add Pet Health Records

Table 4.10: UC006: Add Pet Health Records

111

Use Case Name: Add Pet Health Records

ID:
ucCooe6

Importance
Level:

High

Primary Actor: Pet Owner

Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners — want to document their pet’s health records efficiently and

receive reminders for future vaccinations or appointments.

Brief Description: This use case explains how to add a pet’s health

record, including an extension that will send out a reminder if future

dates (such a vaccine or veterinary appointment) are added.

Trigger: A user wants to record new health information for their pet.

Relationships:
Association : Pet Owner
Include : N/A
Extend : Notify Reminder

Generalization: N/A

Normal Flow of Events:

1. The user selects the “Add Pet Health Records” function.

2. The user is prompted by the system to submit information about their

pet health record, such as the date, type, and name of their

vaccinations.

3. The system checks for completeness of the entered data. Continue to

S-1.

4. The system validates the format and correctness of the date and other

details. Continue to S-2.

112

5. The system checks if the entered date is in the future. Continue to S-
3.

6. The system triggers the Notify Reminder extension.

7. The system saves the health record and associates it with the pet’s

profile.

Sub-flows:

S-1: Perform 3.1 or 3.2
3.1 If all fields are complete, proceed to flow no.4.
3.2 The system indicates incomplete data with an error message if

any necessary field is left empty. Continue to flow no.2.

S-2: Perform 4.1 or 4.2
4.1 If the information is in the correct format, proceed to flow no.5.
4.2 If any field is incorrectly formatted, the system shows an error
warning and the user is asked to enter the information again. Continue to

flow no.2.

S-3: Perform 5.1 or 5.2

5.1 If the health record includes a future date, the system
automatically schedules a reminder for the event. proceed to flow no.6.

5.2 If the date is not in the future, no reminder is scheduled, and the

system proceeds to save the record. proceed to flow no.7.

Alternate/Exceptional Flows:
e If an error occurs during the reminder scheduling or saving process,

the system displays an error message and suggests trying again later.

113

457 UCO007: Enquire AI Chatbot

Table 4.11: UC007: Enquire Al Chatbot

Use Case Name: Enquire AI Chatbot ID: Importance
ucoo7 Level:
High
Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:
Pet Owners — want fast, Al-powered responses to general pet care

questions to support daily care decisions.

Brief Description: This use case explains the interaction with the Al

chatbot to ask questions and receive pet care advice.

Trigger: A user wants to get advice or information about pet care from

the AI chatbot.

Relationships:
Association : Pet Owner
Include : N/A
Extend : N/A

Generalization: N/A

Normal Flow of Events:
1. The user selects the “Al Chatbot” option.
2. The system opens the Al chat interface, including a dropdown menu
for model selection.
3. The user selects one of the available Al models.
4. The user enters a pet care-related question into the input box.
5. The system performs a preliminary validation of the input (e.g.,

checking for non-empty and valid characters). Continue to S-1.

6. The system constructs an API request that includes both the selected

114

Al model and the user’s query.

7. The system sends the API request to the corresponding OpenRouter
Al model endpoint based on the user’s selected model.

8. The system waits for the response from the external AI API.

9. Upon receiving the response, the system processes and formats the
returned text for clarity and display.

10. The system displays the Al-generated response to the user in the chat

interface.

Sub-flows:

S-1: Perform 5.1 or 5.2

5.1 If the user’s input is valid (non-empty and acceptable format),
proceed to flow no.6.

5.2 If the input is invalid (empty or contains disallowed characters),
the system will show a warning and ask the user to enter the query again.

Continue to flow no.4.

Alternate/Exceptional Flows:

A-1: API Timeout or Failure
o If the external Al API fails to respond within the expected time or
returns an error, the system displays a message indicating that the

service is temporarily unavailable and suggests using another model.

A-2: Malformed API Response
o If the Al API returns an incorrect or partial result, the system alerts
the user and records the error for future analysis, with the option to

try the request again.

4.5.8

115

UCO008: Input Symptom Diagnosis

Table 4.12: UC008: Input Symptom Diagnosis

Use Case Name: Input Symptom Diagnosis ID: Importance

ucoo0s8 Level:
High

Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners — want to receive fast and reliable suggestions when their

pet shows signs of illness.

Brief Description: This use case explains the function of allowing a user

to input pet symptoms and receive a preliminary diagnosis whether the

pet needs immediate medical attention.

Trigger: A user observes unusual symptoms in their pet and wants a

preliminary diagnosis.

Relationships:
Association : Pet Owner
Include : N/A
Extend : N/A

Generalization: N/A

Normal Flow of Events:

l.
2.

The user selects the “Symptom Diagnosis” button.

The user is prompted by the system to enter the symptoms they have
noticed.

The user inputs some details of the symptoms faced by their pet.

The system checks for completeness of the entered data. Continue to
S-1.

The system validates the format and relevance of the symptoms.

116

Continue to S-2.

6. The system processes the input and generates a preliminary diagnosis
on whether the pet need immediate medical attention.

7. The system displays the preliminary diagnosis and any recommended

next steps.

Sub-flows:

S-1: Perform 4.1 or 4.2

4.1 If all required symptom details are provided, proceed to flow
no.S.

4.2 If details are incomplete, the system displays an error message

and asks for additional information. Continue to flow no.2.

S-1: Perform 5.1 or 5.2

5.1 If the symptoms are clearly described and in the correct format.
proceed to flow no.6.

5.2 If the description is incomplete, the system asks the user to

clarify or add more details. Continue to flow no.2.

Alternate/Exceptional Flows:
e If the system is unable to provide a clear diagnosis, it may

recommend the user consult a veterinary professional immediately.

117

4.5.9 UC009: View Educational Resources

Table 4.13: UC009: View Educational Resources

Use Case Name: View Educational Resources ID: Importance
ucCo009 Level:
High
Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:
Pet Owners — want easy access to trusted pet care articles and guides to

improve their knowledge and care practices.

Brief Description: This use case explains how to let a user to browse and

view educational resources related to pet care.

Trigger: A user wants to learn more about pet care through articles or

training guides.

Relationships:
Association : Pet Owner
Include : N/A
Extend : N/A

Generalization: N/A

Normal Flow of Events:
1. The user selects the “Educational Resources” option.
2. The system displays a list or menu of available educational resources
after web scraping.
3. The user browses or uses the search/filter functionality to find
relevant topics.
4. The user selects a specific resource to view.

5. The system displays the detailed content of the selected resource.

118

Sub-flows:

Alternate/Exceptional Flows:
e Ifno resources match the user’s search criteria, the system displays a
“No educational resources found” message with suggestions to

broaden the search.

119

4.5.10 UCO010: Give Feedback

Table 4.14: UCO010: Give Feedback

Use Case Name: Give Feedback ID: Importance

ucCo10 Level:
High

Primary Actor: Pet Owner Use Case Type: Detail, Real

Stakeholders and Interests:

Pet Owners — want to share their experiences, report issues, or suggest

improvements to help enhance the app’s quality.

Brief Description: This use case describes the process of allowing a user

to submit feedback or report their experience with the application.

Trigger: A user decides to provide feedback about their experience using

the application.

Relationships:
Association : Pet Owner
Include : N/A
Extend : N/A

Generalization: N/A

Normal Flow of Events:

l.
2.

The user selects the “Feedback” option.

The user is prompted by the system to submit a report, comments, or
ideas.

The user inputs their feedback.

The system checks for completeness of the feedback submission.
Continue to S-1.

The system records and stores the feedback.

120

Sub-flows:

S-1: Perform 4.1 or 4.2

4.1 If the feedback is complete, proceed to flow no.5.

4.2 The system shows an error notice and asks the user to finish the
submission if the feedback is lacking any necessary information. Continue to

flow no.2.

Alternate/Exceptional Flows:
e The user is notified and given the option to try again later if the

system detects an error when recording the feedback.

121

4.6 User Interface (UI) Prototype

This section presents a simple wireframe prototype developed using Figma for
the PawHub application. The prototype illustrates the overall layout,
navigation flow, and key interface elements designed to ensure a user-friendly

and accessible experience. It serves as a visual guide for the app’s structure

before moving into full development.

Figure 4.27: Overall PawHub Prototype

Welcome to
PawHub

SWIPE TO BEGIN

Figure 4.28: Welcome Screen

122

Welcome Back!

Please enter your login credentials

Email:

Password:

Don't have an account ?
Sign Up Now!

Figure 4.29: Login Screen

Register

Create your account now!

Username:

Phone Number:

Password:

Already have an account ?
Login Now!

Figure 4.30: Register Screen

@ Welcome {user} — @ Welcome {user}

Manage your pets: ey Feedback

ﬁ @ @ . Education

Ruby Browny Oliver

Log Out

Concern about your pets health 7

Delete Account

Chat With Our Al Virtual Assistance

Get A Symptoms Diagnosis

Symptom Diagnosis

First time pet owner ? t et owner ?

Search for educational r

Figure 4.31: Home Screen and Navigation

@ Al Chatbot

[select Al Model

Welcome to PawHub,
please tell me your pet
related inquiry or
concerns

why is my pet....

Figure 4.32: Al Chatbot Screen

123

124

@ Symptoms Diagnosis

Pet symptoms:

[Add symptoms.. @

**Text to say whether the pet needs
serious medical attention or not

Colour Indicators to show how urgently the
pet need medical attention based on the
symptoms entered

Figure 4.33: Symptom Diagnosis Screen

@ Pet Profile — @ Pet Profile

My Pets

e Q o,

Browny Oliver

Labrador Cat

Pet Profile
NAME BREED

Ruby Rabbit

BIRTHDATE WEIGHT

7
2021-2-21 5kg

AGE HEIGHT

Pet Profile 3 years old 6 cm

MNAME

Ruby

Health Records

BIRTHDATE Influenza Shot
2021-2-21 DATE 2021-3-21

CAUSE

Ruby was having reverse sneezing

Figure 4.34: Pet Profile Management Screen

@ User Profile —

Molly@gmail.com

013-24368382

& 2k %k ok ok ok ok ok ok ke ok ok

Figure 4.35: User Profile Management Screen

Educational —
Resources —

(Search

©

Nutritions

Figure 4.36: Educational Resources Screen

Training Pet Card

A guide to the best
nutrition

Look for animal proteins
(chicken, turkey, beef, fish,
eqgs) as the first
ingredients. Aim for at
least 22 % crude protein for
pupples and 18 % for adults
(dry-matter basis).

What to Feed Your
Cat?

High-protein, moisture-rich,
low-carb meals tailored to
life stage keep your cat
lean, hydrated and thriving.
When uneertain, consult
your veterinarian

@l

125

126

@ Feedback Form —
—

How would you rate your experience?

WWWWW

POOR EXCELLENT

Tell us more about your experience

I'm experiencing delay in system response
time when i insert pet health record.

Figure 4.37: Feedback Screen

127

CHAPTER 5

SYSTEM DESIGN

51 Introduction

In this chapter the system architecture, database diagram, data dictionary, API,
Endpoints, Data Flow Diagram (ERD), Activity Diagram, Mobile Application
Design Principles and User Interface Design were all covered in detail. To
show the relationships and structuring of data, it contains Activity Diagrams,
Data Flow Diagrams (DFD), Entity Relationship Diagrams (ERD), and a data
dictionary. The user interface decisions are explained using the principles of
mobile application design which focuses on responsiveness, consistency, and
usability. Additionally, layouts for the application’s user interface are used to

show the application's navigation, layout, and overall user experience.

5.2 System Architecture

Database Query

y supabase

Po 6 + Auth + Starage (securs with BLS)

\\\\\\\\\

< OpenRouter

— | Al

Sends email via API

Resend

Receive email

Figure 5.1: System Architecture

The PawHub system architecture is a well-structured, secure, and intelligent
mobile application ecosystem designed to assist pet owners in managing their
pets’ health through Al-powered virtual assistance. At the client side, the

React Native mobile app served as the user interface, allowing pet owners to

128

interact with features such as symptom diagnosis, Al chatbot conversations,
pet profile management, and health record tracking. All user requests are
securely transmitted to the Node.js Express backend server, which acts as the
central control layer, handling authentication, business logic, and
communication with external services.

The backend ensured data integrity and security by validating
requests, enforcing rate limits, and using JWT-based authentication to verify
user identity. It communicates with Supabase, which functions as the primary
database and authentication provider, storing user profiles, pet information,
health records, symptom history, chat logs, and feedback, to guarantee that
users may only access their own data, all are safeguarded by Row Level
Security (RLS). For Al-powered functionality, the backend integrates with
OpenRouter.ai, sending structured prompts that include pet details and
symptoms to advanced language models such as Microsoft MAI DS RI,
Mistral, and Horizon Alpha. The system employed a Model Control &
Prioritization (MCP) strategy, automatically falling back to alternative models
if the primary one fails, ensuring reliable and continuous Al responses.

When a user submits symptoms, the Al returns a diagnosis in a
strictly formatted structure Diagnosis, Severity, Recommendation, Possible
Causes, and Additional Notes which is parsed by the backend and displayed in
a clean, user-friendly format within the app. Additionally, the system uses
Resend to send automated email reminders for upcoming health events, such
as vaccinations, by checking the email reminders table at regular intervals and
triggering emails one day before the scheduled date. This layered architecture
separating the frontend, backend, database, and external Al/email services
ensures scalability, maintainability, and strong security, making PawHub a
robust, real-world-ready pet care solution that effectively combines modern
full-stack development with artificial intelligence to deliver practical value to

pet owners.

129

5.3 Database Design

The PawHub application used a secure, relational database built on Supabase
(PostgreSQL) to store user, pet, health, and Al interaction data. The profiles
table links to Supabase Auth for secure user identification, while keeping
profile data like username and avatar separate. The pets table stores pet details
and is linked to users via foreign key, supporting multiple pets per user. Health
records, including vaccinations and check-ups, are tracked in the
health records table with optional email reminders managed by the
email reminders table.

Al-powered features were supported by symptom history, which
saves Al-generated diagnoses with severity levels, and chat history, which
logs chatbot interactions for continuity and user feedback. Educational content
is stored in the articles table, populated weekly by scraping trusted sources like
AKC. User feedback is collected in the feedback table to support app
improvements. All tables were protected by Row Level Security (RLS)
standards, making sure users may only view their own data. This design
ensures data integrity, privacy, and scalability, forming a solid foundation for

current functionality and future enhancements.

user_id

created_at

(((((((

o Primary key # Identity /7 Unique <O Nullable ¢ Non-Nullable

Figure 5.2: ERD Diagram

130

5.3.1 Data Dictionary
5.3.1.1 auth.users.id
This table is managed by Supabase Auth. It is not directly accessed by the app,

only through secure authentication flows.

Table 5.1: Authenticated Users Table

Field Type | Null | Default | Description

id uuid | NO |- User’s unique identification

email text | NO |- User’s Email address

encrypted password | text | NO | - Password hash stored securely
(not visible or accessible)

5.3.1.2 profiles

Stores user account information linked to Supabase Auth.

Table 5.2: Users Information Table

Field Type Null | Default Description
id uuid NO |- Primary key;
references

auth.users(id)

username | text NO |- Unique username

chosen by the user

phone text YES | NULL User’s contact number
avatar_url | text YES | NULL URL to profile picture
in Supabase Storage
created at | timestamptz | NO | timezone(‘utc’::text, | Account creation
now()) timestamp
is_deleted | boolean NO | false Flag to mark soft-

deleted accounts

Constraints:
o profiles pkey: Primary key on id
o profiles id fkey: Foreign key to auth.users(id)

5.3.1.3 pets

Stores pet profile information owned by a user.

Table 5.3: Pets Information Table

131

Field Type Null Default Description

user id uuid YES NULL Owner of the
pet

pet name text NO - Name of the pet

pet breed text YES | NULL Type of the pet

pet_birthday | date YES | NULL Date of birth

pet weight numeric YES | NULL Weight in
kilograms

pet_height numeric YES | NULL Height in
centimeters

id uuid NO gen _random uuid() | Unique pet
identifier

created at timestamptz | NO timezone(‘utc’::text, | Timestamp

now()) when pet was

added

pet_avatar text YES | NULL URL to pet’s
profile image

Constraints:

e pets_pkey: Primary key on id

o pets_user id fkey: Foreign key to profiles(id)

5.3.1.4 health_records

132

Tracks medical events such as vaccinations, check-ups, and treatments.

Table 5.4: Pets Health Record Information Table

Field Type Null | Default Description
pet id uuid YES | NULL Reference to the pet
record name text NO |- Name of the health
event (e.g.,
“Vaccination™)
record code text YES | NULL Optional medical
code
record date date NO |- Scheduled or past
date of the event
record cause text YES | NULL Reason for the visit
(e.g., “Routine check-
up”)
id uuid NO | gen random | Unique record ID
_uuid()
record_description | text YES | NULL Notes or details about
the event
created at timestamptz | NO | timezone(‘u | Timestamp when
tc’:text, record was created
now())
notification_enabled | boolean NO | true Whether to send

email reminder

Constraints:

e health records pkey: Primary key on id

e health records pet id fkey: Foreign key to pets(id)

e health records user id fkey: Foreign key to profiles(id)

5.3.1.5 symptom_history

133

Stores Al-generated diagnoses from user-submitted symptoms.

Table 5.5: Pets AI Symptoms Diagnosis History Table

Field Type Null | Default Description
pet id uuid YES | NULL Reference to the pet
id bigint NO | GENERATED | Auto-incrementing ID
ALWAYS AS
IDENTITY
user_id uuid NO |- Owner who submitted
the symptoms
symptoms | text NO |- User’s input (e.g.,
“vomiting, lethargic”)
diagnosis text NO |- Al-generated diagnosis
severity text NO |- Risk level: low,
moderate, or high
created at | timestamptz | NO | now() Timestamp of diagnosis
Constraints:

o symptom_history pkey: Primary key on id

o symptom_history user id fkey: Foreign key to profiles(id)

o symptom history pet id fkey: Foreign key to pets(id)

5.3.1.6 chat_history

Stores messages from the Al chatbot for continuity and rating.

Table 5.6: Al Chatbot Message History Table
Field Type Null | Default Description
id bigint NO | GENERATED | Auto-incrementing
ALWAYS AS | message ID
IDENTITY
user_id uuid NO |- User who sent the
message

134

message text NO |- Message content

is_user boolean NO |- trueif from user,falseif
from Al

created at | timestamptz | NO | now() Timestamp of message

rating integer YES | NULL User rating (1-5 stars) for
bot message

session_id | text YES | NULL Group messages by chat
session

pet id uuid YES | NULL Contextual pet for Al
response

Constraints:

e chat history pkey: Primary key on id

o chat history user id fkey: Foreign key to profiles(id)

o chat history pet id fkey: Foreign key to pets(id)

5.3.1.7 email_reminders

Manages scheduled email notifications for upcoming health events.

Table 5.7: Email Reminders Table

Field Type | Null | Default | Description

record_date date | YES | NULL | Date of the health event

user_id uuid | NO - Recipient user

pet id uuid | NO - Pet associated with the reminder

record_id uuid | NO - Unique;
referenceshealth _records(id)

record name | text NO - Name of the event (e.g., “Dental
Check-up”)

pet name text NO - Name of the pet (denormalized
for email)

reminder time | timest | NO - When the email should be sent

amptz

(e.g., 1 day before)

135

id uuid | NO gen ran | Unique reminder ID
dom uu
id()
sent boole | NO false Whether the email has been sent
an
created at timest | NO now() When reminder was created
amptz
Constraints:

e email reminders pkey: Primary key on id
e email reminders user id_fkey: Foreign key to profiles(id)
o cmail reminders pet id fkey: Foreign key to pets(id)

e record id is unique per user

5.3.1.8 feedback

Stores user feedback for app improvement.

Table 5.8: User Feedback Table

Field Type Null | Default Description

created at timestamptz | NO | CURRENT When feedback was
TIMESTAMP | submitted

id bigint NO | GENERATED | Auto-incrementing ID
ALWAYS AS
IDENTITY

user_id uuid NO |- Submitter

rating integer NO |- 1 to 5 stars

feedback text | text NO |- User’s written feedback

Constraints:

o feedback pkey: Primary key on id
o feedback user id fkey: Foreign key to profiles(id)

e rating must be between 1 and 5

5.3.1.9 articles

136

Stores curated pet care articles scraped from external sources (e.g., AKC).

Table 5.9: Web-scraped Articles Table

Field Type Null | Default Description
title text NO |- Article title
summary | text YES | NULL Brief description
link text NO |- Unique URL to original
article
category | text YES | NULL Topic (e.g., “Training”,
“Nutrition™)
image text YES | NULL Thumbnail image URL
created at | timestamptz | NO | now() When article was added
to database
id bigint NO | GENERATED | Auto-incrementing ID
ALWAYS AS
IDENTITY
Constraints:

articles_pkey: Primary key on id

link must be unique

137

5.4 API Endpoints

To enable communication between the React Native frontend and backend
services, the PawHub application made use of a secure RESTful API
developed with Node.js and Express.js. JWT-based authentication middleware
safeguards all endpoints, guaranteeing that only authorized users can access or
alter data. Rate limiting was implemented to prevent abuse, with specific
limits for authentication (20 attempts per 15 minutes), general usage (200
requests per 15 minutes), and chat functionality (20 requests per minute). The
API integrates with Supabase for data persistence, OpenRouter for Al-
powered symptom diagnosis, and Resend for automated email reminders. All
requests required a valid Bearer token obtained during login, and responses

were returned in JSON format.

5.4.1 Authentication Endpoints

Table 5.10: Authentication Endpoints

Method | Endpoint Description

POST /auth/login Gets the JWT token after authenticating

the user with their email and password.

POST /auth/register Creates a new user account and

corresponding profile entry

POST /auth/forgot-password | Initiates password reset flow via email

5.4.2 Profile Management Endpoints

Table 5.11: Profile Management Endpoints

Method | Endpoint Description

GET /auth/profile Retrieves user profile information

including username and avatar URL

PUT /profile Updates user’s profile information.

POST /profile/avatar Uploads a new profile picture from a

multipart/form-data request

POST /profile/avatar/default | Sets a predefined default avatar by

138

updating the avatar url with the URL of
one of the four default user images hosted

in Supabase Storage.

DELETE | /profile Soft deletes the user account by setting
the is_deleted flag to true in the Profiles
table.

5.4.3 Pet Management Endpoints

Table 5.12: Pet Management Endpoints

Method | Endpoint | Description

GET /pets Retrieves all pets belonging to the authenticated user
POST /pets Creates a new pet profile or updates an existing one
DELETE | /pets/:id Deletes a pet and all associated health records

5.4.4 Health Records Endpoints

Table 5.13: Health Records Endpoints

Method | Endpoint Description

GET /health-records/:petld | Retrieves all health records for a specific
pet

POST /health-records Creates a new health record with optional
email reminder

DELETE | /health-records/:id Deletes a specific health record

139

5.4.5 Feedback Endpoints
Table 5.14: Feedback Endpoints
Method | Endpoint Description
GET /feedback Retrieves all feedback for logged-in user from
database
POST /feedback Submits or updates user feedback with rating
DELETE | /feedback/:id | Deletes a feedback entry
5.4.6 Symptom Diagnosis Endpoints
Table 5.15: Symptom Diagnosis Endpoints
Method | Endpoint Description
POST /symptom/diagnose Sends symptoms to Al model and returns
structured diagnosis
GET /symptom-history Retrieves user’s past symptom diagnoses
POST /symptom-history Saves a new symptom diagnosis to
history
DELETE | /symptom-history/:id | Deletes a specific symptom history entry
5.4.7 Al Chatbot Endpoints
Table 5.16: Al Chatbot Endpoints
Method | Endpoint Description
GET /chat/models Retrieves list of available Al models for
chat
GET /chat/history Retrieves chat history for current session
POST /chat/message Sends user message to Al and returns
response
PUT /chat/rate/:id Submits user rating for a chat message
DELETE | /chat/session/:sessionld | Clear a chat session

GET

/chat/sessions

Get user’s chat sessions

140

5.4.8 Other Endpoints
Table 5.17: Other Endpoints

Method | Endpoint Description

GET /articles Retrieves web scraped educational articles from
database

GET /home Retrieves consolidated data for home screen
display

GET /health Health check endpoint returning service status

141

5.5 Data Flow Diagram (DFD)

The PawHub system’s information flow is shown by the Data Flow Diagram
(DFD), which shows the data flow between users, processes, and the database.
It gives a clear picture of the system’s data storage, external entities, and
functional processes, making it possible to understand how various parts work
together. In order to guarantee that all data transactions were managed
effectively and securely, the DFD also helps in identifying the pathways via
which user inputs are processed, stored, and retrieved. The system’s general
functioning and detailed process flows can be seen in both the Level 0 and

Level 1 diagrams.

5.5.1 Context Diagram

Login credentials

registration details

update profile info

update pet details

pet details
health record details
symptom details
chat query

request for
articles

feedback message Al-Driven Pet Care App
for Vitual Assitance and

Pet Owner Symptom Diagnosis

&

-

L\ feedback submission confirmation
R L
list of articles

Al chatbot response
diagnosis result

confirmation of health record added
updated pet details

confirmation of pet profile creation

updated profile details confirmation message

login confirmation

registration confirmation message

Figure 5.3: Context Diagram

142

5.5.2 Level-0 Diagram

i feteh pet info request

T e
/ Pets

/ /f

s et profile dat

— Symptom History

Figure 5.4: Level-0 Diagram

5.5.3 Level-1 Diagram

The PawHub system’s primary functions were shown in further detail in the
Level 1 Data Flow Diagram, which builds upon the Level 0 diagram’s general
flow. It interacts with external entities and the system’s databases, breaking
down certain important processes into smaller ones. This degree of detail
helped in explaining the sequential data flow, illustrating the ways in which
data is collected, processed, stored, and retrieved to provide the application’s

intended functionality.

5.5.3.1 Enquire AI Chatbot Level-1 Diagram

143

analysis Level 1 Disgram

Pets

‘ _ Health Records

health remrds/

details
retrieved

\ pet profile details
pet profile details retrieved

health record details

Retrieve Pet
info

Receive Chat
Query

request
pet info S
petinfo

chat query

Send Context

request previous chats e % chat history

o History

Pet Owner

stare new query & /

S M response

new chat
history
retrieved

| previous chat history

| retrieved
Al Chatbot Answer
Displayed previous chat history

Symptom History

Al Chatbot
-~~~ Answer

Return Al
Response

Al request

OpenRouter Al API

Figure 5.5: Enquire Al Chatbot Level-1 Diagram

5.5.3.2 Input Symptom Diagnosis Level-1 Diagram

analysis Level-1 Diagram

Pets

pet profile details /
/ /
f /
{ pet profile details
retrieved

Kztr;ava

,,r—b(symptom . = Retrieve Pet -
2P Assessment Eestpetinl: \nfo Selected pet info +
Query

symptoms query

Send Context
0 Al

b

symptoms ———__ / 5 /m Request
\

"Wl Response-

Pet Owner

Al diagnosis answer

— ~

Al response structured——| Response and

\me-iw

Symptoms disgnosis answer
displayed
i

Display
Structured
Diagnosis

store structured
structured response

response

Symptom History

retrleve

OpenRouter Al AP|

Figure 5.6: Input Symptom Diagnosis Level-1 Diagram

144

5.5.3.3 Add Pet Health Records Level-1 Diagram

analysis Level-1 Diagram /

Pets

verify pet 1D ;
[pet detalls
. - -

—petID— A

o — Enter Health L ‘L/
heslth record details Record Detalls | verifyper —
_~+ pet 1D \ | -
-

ki validated pet 1D+
health record details
\1 store health record
PetOwnef — =

Save Health) Health Records
\ Record
success message

N _/‘\ /’
\ ﬁ / confirmation of

" Send record date.
Confirmation /
oy
\ W Schedule future -
— Trecord save |

record saved
Check Record
Reminder gt Date
B dnan, Notification detalls

[*®

\ confirmation
\ reminder saved

\ [| —

R, Reminder Request -

store .unn{u date BT S
\ Email Reminder /)7

g femindernes ponse

Figure 5.7: Add Pet Health Records Level-1 Diagram

145

5.6 Activity Diagram

Activity diagrams were used in PawHub to show the process of important user
interactions across the main modules. These diagrams used a standardized
UML structure to show action sequences, decision points, validations, and
system responses. The detailed activity diagrams for the main features were
shown in the next sections. These provide an illustration of the operational
workflows that are necessary to comprehend the functional behavior of the

application.

5.6.1 Login Activity Diagram

: User opens app |
| Enter email and password
H'me valid? _.m’ﬁ
Send to backend /auth/login Highlight errors

i‘é Authentication su:cssful?::ﬁ i Stay on Login Screen
Store JWT in AsyncStorage | Show 'Invalid credentials' |
Navigate to Home Screen] | Stay on Login Screen

(‘5 é

Figure 5.8: Login screen activity diagram

5.6.2 Register Activity Diagram

| User taps 'Sign Up'

Input userame, email, phone, password, confirm password
5. Al felds filled? Y12
¥ - / ¥
¢—¥£ Email format valid? ""—¢ Highlight missing fields

J < enough? v Show Please enter a valid email’ | (L

es no ()

e Show ‘Password must Include uppercase, lowercase, number, symbor i O

Call Supabase signUp(} Show 'Passwords do not match’ /l O
3
O
es no IC
'iL\ EENEDEED", @
s || insert into profiles table

Show success message

Redirect to Login

Figure 5.9: Register screen activity diagram

146

5.6.3 Forgot Password Activity Diagram

: User taps 'Forgot Password?'

2

Enter email

FEL;VaIid email format? “0—¢

| Send reset request to Supabase | " Show 'Invalid email format’

v

I: Show 'If account exists, link sent to email’

v

Redirect to Login |

Figure 5.10: Forgot screen activity diagram

5.6.4 Add Pet Activity Diagram

M

Tap'+' on Pet List

E——

| Enter pet name, breed, birthday, weight, height |

v

\' Upload photo or select default avatar |
Hli%t name prcvldeu?:‘,"n—¢
es . “no s
r\s'”‘"“y L past?{,—¢ Show 'Pet name is required'
s/ d “,no) i
¢—L1We\thHe\ghtvah numbers? —& Show 'Date cannot be in future' |

| Upload image to Supabase Storage (if any) | Show 'Weight/height must be positive numbers' | %

| save pet data to 'pets’ table é

A 2N

| Show 'Pet added successfully!* |

v

| Refresh pet list

o

Figure 5.11: Pet Management Screen activity diagram - Add pet

147

5.6.5 Add Health Record With Reminder Activity Diagram

b

-~ ",

|' In pet screen, tap 'Add Record' |
|' Fill event name, date, cause

) y

g ™
|

J
A

| Toggle 'Email Reminder' OM/OFF

#

®

; Y # Y
[calculate reminder_time = record date - 24h | | Skip reminder |
\ ;N /

! y y

P

| save to email_reminders table |

oy

| L -

'd N
| Show success toast |

I ™y
| Refresh record list |

-, v

|

Figure 5.12: Pet Management Screen activity diagram - Add health record

with reminder

148

5.6.6 Al Chatbot Activity Diagram

?

./- -\'.
| selectapet |
\)

—

7~ ™y
| Type message in input box |

Message empty?

. ™y rd Y

| Ignore send action | | Display user message |
s ~ =
| Wait for input | | Fetch selected pet + health records |
"_ _t’ I_ _tJ

v

\
| Build contextual prompt |
\ g

_ v

e ™
| Call OpenRouter APl with model |

Al responded?

s ~
Parse response Show fallback: ‘Al temporarily down. Try again.'
P p ¥ ¥ ag
‘\-._ _/' I_ _JJ
I Y /—L*\
| Save bot reply to chat_history | | wait for retry |
'_ _/' ‘»._ _/'

v

g ™
| Display Al message with rating stars |

2

™
| Wait for next input |
\ Y,

>

. -
o -

-
-

T

Figure 5.13: Al Chatbot Screen activity diagram

5.6.7

Symptoms Diagnosis Activity Diagram

*

|/- !
| Mavigate to Symptom Diagnosis Screen

' Ty
| sSelecta pet |

., .a

—

Ty
| Enter symptoms (e.qg., vomiting, lethargic) |
g Ty

| Tap 'Analyze Symptoms' |

s)

| Show loading spinner]

L -y

v

'd Y
| Fetch pet profile + health history |
~,
| Construct Al prompt with context |

. .

.

| call fsymptom/diagnose endpoint |

' N ™
Parse diagnosis into sections: Show: The Al service is down.
- Condition Please try again later.'
- Severity p A

- Recommendation
- Possible Causes

'd ™
| save to symptom_history |

v :

Display structured result card '
(color-coded by severity)

A "y

®

Figure 5.14: Symptom Diagnosis Screen activity diagram

149

150

5.6.8 Education Article Activity Diagram

M

| Navigate to Education Screen |

{ ™
| show loading indicator |

s .a

¥

" N
| Get /articles from backend |
\ g

/ 1) I ™
Display article cards | Show 'No articles. Tap to refresh.’ |
(title, image, category) e ’

vy
\ J

. S

/ ™
e ™ | Allow retry |
| Allow search & filter | . S

-
| User taps an article

| X . y

¢ ™,
[Open external browser via Linking.openURL() |

e y

®

Figure 5.15: Education Screen activity diagram

5.6.9 Feedback Activity Diagram

151

*

p
| Navigate to Feedback Screen
.-’#-\.
| Tap 1-5 stars |
| Enter comment |

ra ™,
| Tap 'Submit Feedback'

£5. Feedback text empty? no

' A
| Show 'Please share your experience' |
\

®

./-
| posT

25 no
Saved successfully?

-
to /ffeedback |

™
Trigger NotificationToast:
:Clear form

é

! ™y
| Alert: 'Could not submit. Check connection.' |

6

Figure 5.16:

5.6.10 Profile Management Activity Diagram

Feedback Screen activity diagram

=2 Tap Log out? 2

Cat supabasa auth signOutl)

|

Ciear session & AsyncStarage.

Avstar changedi

Highlight ivealid felds

|

Stay In edit mode

|

2 permssion grantea? 1=

v

Show Camera/Gallery access required

5

Upluad inmage 1o Supabase Storage

-

I

Send updated data to backend (PUT jprofile)

245 pa st
¥ v

Sawe e avatar R (# chinged) | | Sham Falled m save Ty agai
¥ ¥

Show success toast
i mode

i

Stay in edit mode

!

Figure 5.17:

Profile Management Screen activity diagram

152

5.7 Mobile Application Design Principles

The design of PawHub was guided by established human-computer interaction
(HCI) principles, particularly Shneiderman’s Eight Golden Rules of Interface
Design, to ensure an intuitive, efficient, and user-centered experience for pet
owners managing their animals’ health. These principles were systematically
applied throughout the app’s core workflows from selecting a pet and entering
symptoms to viewing Al-generated diagnoses and managing health records,

resulting in a cohesive, trustworthy, and professional mobile interface.

o . .
i. Strive for Consistency
e Symptom Diagnosis = <& @ Feedback =
Register New Pet @ sh
are Your Thoughts
Pet Health Assessment g
Al-powered symptom analysis for your pet LT TN
‘ k How would you rate your experience?
©
\ addphoto /
Select Pet o K d
-~ Cooki - POOR EXCELLENT
 Cookiesss
Tell us more about your experience
Describe Symptoms [i]

SUBMIT FEEDBACK

View Past Feedbacks @

Q Analyze Symptoms l

Recent Assessments View All >

o O & &

Cancel

Home AlChatbot Symptoms Pets

(a) (b) (c)
Figure 5.18(a)(b)(c): Strive for Consistency

PawHub maintained strict visual and functional consistency across all
screens. The primary action button color, input field styling, typography
hierarchy, icon usage, and modal layouts were uniform whether the user is
adding a pet, submitting feedback, or viewing a diagnosis report. This
consistency reduced cognitive load, allowing users to navigate confidently
without relearning interactions. For example, the “Analyze Symptoms”
button appears identically on the Symptom Diagnosis screen as the “save”

button does on the Pet Management form to add pet, both use the same

rounded corner, shadow, and color scheme, reinforcing familiarity.

153

ii. Enable Frequent Users to Use Shortcuts

@ Al Pet Assistant @ Symptom Diagnosis =

odel
@ My Pets (1)
Microsoft MAID.. Pet Health Assessment

8 2 health records loaded c Al-powered symptom analysis for your pet

&5
3
Select Pet o

- Ruby
v
@ ruy Rabbit

Describe Symptoms []

Ex:My doghasb
seems let

Q_ Analyze Symptoms

Ask about pet healt Ruby

6 years old

Home Al Chatbot Symptoms Home Al Chatbot 51!'\5 ’:%%" User P@E l«lgh‘)l Symptoms Pets
(b) (c)
Figure 5.19(a)(b)(c): Enable Frequent Users to Use Shortcuts

To support power users who interacts with the app daily, PawHub
incorporated contextual shortcuts. When a user has only one pet, it is auto-
selected upon opening the Symptom Diagnosis screen or Al Chatbot,
eliminating a mandatory selection step. Additionally, the floating “+”
button on the Pet Management screen allows instant access to new pet

profile creation without navigating through menus.

@ Home dashboard =

Education Feedback

Sep 13,2025

Tall wagging

Low Risk

Sep 13,2025

Heavy breathing, not flyng

Figure 5.20: Enable Frequent Users to Use Shortcuts - Prominent Display

Recent assessments were prominently displayed in the home view,
enabling quick review without drilling into full history, accelerating

common tasks while preserving discoverability for new users.

154

iii. Offer Informative Feedback

e Symptom Diagnosis — 6 Al Pet Assistant =

Al-powered symptom analysis for your pet P Model

@ Cookiesss Microsoft MAI D.

Select Pet - Can my pet eat vege? [

™ Cookiesss v

Describe Symptoms o

Vomiting

Recent Assessments View All >

(b)
Figure 5.21(a)(b): Offer Informative Feedback - loading spinner

Every user action triggered immediate, meaningful feedback. When
submitting symptoms or feedback, a loading spinner with the text appeared
instantly, signaling system activity. When a user interacted with the Al

Chatbot, the 3 dots were displayed to show the Al is typing.

e Pet Management e Pet Management

Bai D,
o ’ PETS o) ﬂ
A Success! A Success! ”
Pet added s = Pel deleted successfully

Cookiesss Ham an... iu ‘ a”
Dog L gt &

Cookiesss Ham an...
Dog Hamster

Yoda

0 months old

(a) (b)
Figure 5.22(a)(b): Offer Informative Feedback - Success Toast

Upon successful creation or deletion of a pet, health record or

assesment, a subtle toast notification slided in confirming success without

interruption.

Register New Pet

&
caneel

Figure 5.23(a)(b):

155

@ symptom Diagnosis =

Describe Symptoms: L]

(b)
Offer Informative Feedback - Input Validation

Input validation was handled inline, empty fields turned red with

descriptive error messages below them, ensuring users understand what

went wrong without confusion or frustration. These layered feedback

mechanisms kept users informed at every stage of interaction.

iv.

a Symptom Diagnosis =

Al-powered symptom analysis for your pet

Select Pet “°
™ Cookiesss v
Describe Symptoms (]

Vomiting

View All >

Recent Assessments

Figure 5.24(a)(b)(c): Design Dialogs to Yield Closure -

Diagnosis Flow

Design Dialogs to Yield Closure

@ symptom Diagnosis =
Assessment Report [}

| Disgnosis

Withhald food for 4-6 hours, then

offer small amaunts of water and a
bland diet (e.g., boiled chicken and
rice). Seek veterinary care if vomiting
persists beyond 24 hours or if lethargy/
diarrhea develops.

Q Possible Causes

* Dietary indiscretion (ingesting

(R!l:enl Assessments

spoiled food, garbage, of foreign
objects)

(b)

e Symptom Diagnosis

roundworms, giardia)

 Bacterial or viral

View All ¥

Tail wagging

(©)
Symptom

Each core task followed a clear, closed-loop sequence. In the Symptom

Diagnosis flow, users begin by entering symptoms, tap “Analyze”,

observed the Al processing state, receive a structured report, and found the

result automatically saved in their history. No step feels incomplete, the

156

final diagnosis card and its presence in the “Recent Assessments” list

provided tangible closure.

o Pet Management 6 Pet Management =

Date 2025-09-05
A Dot Brodil
N
Code VAC-10373
'
@ Suecess 5
Full body check up * Health record deleted successfully
. —
Ear Check Up o !m
Delete Record Lsd)
Date 2025-09-04 AT® you Sure you want 1o delete “Ear G\ s
Cookiesss Haman...
Dog Hamster
Annual Vaccination "2 |
Date 2025-09-01
[}
Code vAC-10284
yearly health check up
bring pet passport

(b) (c)
Figure 5.25(a)(b)(c): Design Dialogs to Yield Closure - Delete Heatlh
Record

Similarly, deleting a health record required a confirmation modal
followed by immediate visual removal from the list, ensuring users felt

confident their action was fully processed.

V. Offer Simple Error Handling

@ symptom Diagnosis =
Register New Pet

Describe Symptoms: L]

""77\‘. g
e
', AddPhow

(b)
Figure 5.26(a)(b): Offer Simple Error Handling - Input Validation

157

Errors were prevented and resolved gracefully. Before submitting a request,
the app validated that sections are not blank, if they are, the input field
turned red with a clear message. This inline approach prevents form

submission failures entirely.

* Dietary indiscretion (ingesting
spoiled food, garbage, or foreign
objects)

roundworms, giardia)

l]‘_'l Delete Assessment

Delete Record

™ Cookiesss
&7 vomiting

1 1o delete

Are you sure you want to delete this
assessment? This action cannot be

Tail wagging
% Cookiesss

(a) (b)
Figure 5.27(a)(b): Offer Simple Error Handling - For irreversible

actions

For irreversible actions like deleting a user profile, pet or assessment,
a confirmation modal appeared with a destructive button labeled “Delete,”
requiring explicit intent. This dual-layered strategy, prevention via

validation and recovery via confirmation minimizes user anxiety and data

loss.

158

Vi. Permit Easy Reversal of Actions

Delete Record

Are you sure you want to delete

nnual Vacc

-

Figure 5.28: Permit Easy Reversal of Actions — Cancel

PawHub prioritizes reversibility to encourage exploration. Deleting any
item whether a pet, health record, or symptom assessment triggered a
dedicated confirmation modal with clearly labeled “Cancel” and “Delete”
buttons. There were no “undo” after deletion, but because all data were
stored in the cloud and visible in the History section, users can always re-

add information if needed.

@ Pet Management
Edit Pet Details

Pet Name *

Gary Gary
11 years old
Pet Type *
& @

Birthday Type
2014-08-24 Turtle

Turtle

Birthday *

@ v
Weight Height
15kg 22cm

2014-08-24

ﬂ Gancel

O =

AlChatbot Symptoms Pets

(a) (b)
Figure 5.29: Permit Easy Reversal of Actions - non-destructive until

explicitly saved

159

Furthermore, edits to pets or records are non-destructive until

explicitly saved, allowing users to cancel changes mid-flow without

consequence.

vii. Support Internal Locus of Control

6 Pet Management =

o Pet Profile Add Health Record x
@ My Pets (4) ° Cause/Reason
Select Pet Image
{
) e :
|
- Take Photo Gallery
Cookiesss Ham an...
Doy Homster

Or choose a default

= (o [l p®0®:

(a) (b) (c)
Figure 5.30(a)(b)(c): Support Internal Locus of Control — Control to

decide

Users remained firmly in control of their workflow. They chose which pet
to analyze, decide whether to enable email reminders for upcoming
appointments, select images from camera or gallery (or use a default), and

toggle between viewing recent or full history.

Madel

o ‘Symptom Diagnosis = 6 Al Pet Assistant =

™ cookiesss Microsoft MAI D
Pet Health Assessment)
Al-powered symptom analysis for your pet Can my pet eat vege §§
™ Cookiesss can safely eat many
vegetables, such as carrots, green
beans, and cucumbers, in small,
fa Ruby v bite-sized portions. Avoid toxic
options like enions, garlic, grapes,
and raw potatoes. Always infroduce
new veggies gradually and manitor
~ for digestive issues (e.g.. vomiting,
Describe Sympioms o diarrhea). For specific vegetable
concerns, consult your vet for
personalized advice.
Srtriraedr

Select Pet =&

(a) (b)
Figure 5.31(a)(b): Support Internal Locus of Control — Al Never Pre-

fills

160

No automation overrided user intent. For instance, the Al never pre-
fills symptoms. Even when the Al service is slow, the app waits patiently

rather than auto-retrying or redirecting, preserving user agency and trust.

viii. Reduce Short-Term Memory Load

Select Pet

's_“ Enuluesss
A

@ Ham and Cheese
Q Birdy
ird

Figure 5.32: Reduce Short-Term Memory Load — Pet Information
Populated

PawHub minimized the need for users to remember information across
screens. When diagnosing symptoms, the selected pet’s name, breed, age,

and weight are auto-populated from their profile eliminating manual entry.

Sep 13,2025

Reported Symptoms

Vomiting

Assessment

Acute gastroenteritis likely due to

dietary indiscretion, infection, or

gastrointestinal irritation

Immediate Recommendation

Withhold food for 4-6 hours, then

offer small amounts of water and a

bland diet (e.q., boiled chicken and

rice). Seek veterinary care if vomiting
eyond 24 hours or if

Figure 5.33: Reduce Short-Term Memory Load — Pet Preview

161

In the History section, each assessment card displayed a concise
preview, pet name, date, severity badge, and a truncated symptom

summary enough to recall context without opening the full report.

AB Pet Education @ Share Your Thoughts

Q, Search articles How would you rate your experience?

o Breeds Puppy Info Health
POOR EXCELLENT

Tell us more about your experience

I'm experiencing delay in system
response time when | insert pet health

record

Keeping Your Dog Safe This Labor Day

Health Read More = SUBMIT FEEDBACK

View Past Feedbacks @

(b)
Reduce Short-Term Memory Load — Consistent

Figure 5.34(a)(b):

Navigation

Navigation were also consistent, back buttons always returned to the

previous screen, and breadcrumbs were implied through hierarchical

structure rather than explicit labels.

162

5.8 User Interface (UI) Design

The user interface (UI) of PawHub were designed to be intuitive, accessible,
and visually appealing, ensuring a seamless experience for pet owners of all
technical levels. The UI supported all core functionalities of the system,
including authentication, pet management, Al interaction, and health tracking.
Screens were designed with consistent navigation, clear typography, and pet-

friendly aesthetics using warm colors and icons.

5.8.1 User Authentication Screens

Reset Password

Enter your em

Welcome to PawHub

Vaur Al-powered Pet Care Application 3

Welcome back

We're happy to see you again!

Enter your email

& Emai

Please sign in

& Email

D SWIPE TO BEGIN

(a) (b) (c) (d)
Figure 5.35(a)(b)(c)(d): User Authentication Screens Ul

When a user opened the PawHub app, they were first presented with the
Welcome Screen, featuring a swipeable onboarding experience. After swiping
through the introduction, it took the user to the Login Screen. The login
interface provided two primary options, log in to an existing account or
register a new account. For users who have forgotten their password, a “Forgot
Password?” link redirects them to the Reset Password Screen from the Login
Screen. Upon entering their email, a reset link was sent via Supabase Auth,
allowing secure password recovery. All user inputs were validated on the
client side (e.g., email format, password strength) before being securely
transmitted to the backend and stored in Supabase. This ensured data integrity

and a smooth, user-friendly authentication experience.

5.8.2
/

1056 &

9 Home Dashboard

Hello, Nivika11!

How's your furry friend today?

Your Pets

—
w_ﬁ
Gary
Turtle

™
&

Cookie
Dog

Homescreen

057 @ -

o Home Dashboard

Features

/’

102 & .

@ Home dashboard

Recent Assessments

My pet cant breathe

High Pricrity

My pet is vomiting

My pet cute

163

e Home Dashboard

Pet Care Articles

Dog Trainer Tips.
Consistency is Key

New Hope for Treating Dog
Arthritis Pain
-

Aug 28, 2025 Pet Care Articles

Figure 5.36(a)(b)(c)(d): Home Screen Ul

The homescreen served as the central dashboard of the PawHub application,
providing users with a personalized overview of their pets, recent Al
assessments, and quick access to all key features. Designed with a warm, pet-
friendly aesthetic using soft browns, creams, and card-based layouts, the
interface ensured intuitive navigation and a welcoming user experience.

Upon login, the user was greeted with a personalized welcome
message (“Hello, [Username]!”) and a profile button that links to the User
Profile screen. The main content was organized into clear sections such as
Your Pets, displays a horizontal scrollable list of pet cards, each showing the
pet’s full detailed information. Tapping a card navigates to the Pet Profile
Management screen for detailed management. Features displayed a 2-column
layout of the six core features each with an icon and label for easy recognition.
Recent Assessments showed up to three recent Al symptom diagnoses with the
date, symptoms, and a color-coded severity badge (Low Risk, Moderate
Concern, High Priority) based on the diagnosis. Pet Care Articles displayed
the latest educational articles from AKC with thumbnails, titles, and

publication dates. Tapping an article opened it in the Education screen.

164

5.8.3 AI Chatbot Screen

106 & -

e Al Pet Assistant

Can my pet eat chocolate? [. Select Al Model

£ Chocolate is taxic 1o dogs dueto okie Microsoft MAI DS R1

theobramine and caffeine, which E® 0oo 2000 tokens
they cannat metabolize effectively.
For a 6 kg dog like Cookie, even Mistral-78-Instruct
small amounts (e.g., 10-20 grams
of dark chocolate) can cause
serious issues like vomiting, Horizon Alpha
seizures, of heart problems. If ”
Caokie ingested chocolate, note
the type (dark/milk/white), quantity,
and timing, and contact your vet
immediately—this is urgent. For
prevention, keep all chocolate
securely stored

frovtrindr

Figure 5.37(a)(b)(c)(d): Al Chatbot Screen Ul

The AI Chatbot Screen was the central hub for interactive pet care support in
PawHub, offering a clean, intuitive interface where users could ask questions
about pet health, behavior, nutrition, and training. Responses were powered by
OpenRouter Al and personalized using the selected pet’s profile, including
type, age, weight, and medical history. Users could choose between Al models
such as Microsoft MAI DS R1 (primary), Mistral-7B-Instruct, and Horizon
Alpha enabling model fallback for reliability.

User messages appeared on the right, Al responses on the left with a
pet-themed icon. A typing indicator showed when the Al is responding, and
users can rate messages with 1-5 stars. The input field included a multi-line
text box with a disabled send button during loading to prevent duplicates. If
the Al fails, a friendly fallback message appeared, prompting users to check
their connection and consult a vet if needed. A “Clear Chat” button cleared the
conversation, and a health records badge showed how many records were
loaded for context. The screen delivered a responsive, secure, and user-
friendly experience while clearly emphasized that the app is a supportive tool,

not a substitute for professional veterinary care.

165

5.8.4 Symptom Diagnosis Screen

7

M2 .. Nz e -

e Symptom Diagnosis

@ symptom Diagnosis

Pet Health Assessment

Al-powered symptom analysis for your pet Recent Assessments View Al >

Select Pet x

% Medical Disclaimer

Select Pet w
My pet cant breathe T red symptom assessment
& cory - @ Gary is nal purposes only and
t be considered veterinary
B rays consult with a licensed
veterinarian for professional medical
; guidance, especially in emergency
Describe Symptoms [i] My pet is vomiting sit

@ Cookie

(a) (b) () (d)
Figure 5.38(a)(b)(c)(d): Symptom Diagnosis Screen Ul

The Symptom Diagnosis Screen provided pet owners with Al-powered health
assessments based on user-submitted symptoms. The clean, intuitive interface
guided users through three steps, select a pet, describe symptoms, and analyze.
A modal allowed pet selection with name, breed, and age displayed for
accurate context. Users input symptoms in a multi-line text field, then tap
“Analyze Symptoms” to start the AI process, with a loading indicator

preventing duplicate submissions.

User input symptoms:

[?

347 @ - AL LI PT

e Symptom Diagnosis

40 350 0 -

raR 35 @ -

166

Pet Health Assessment

Al-powered symptom analysis for your pet

Select Pet @&
™ cookie ~
Describe Symptoms o

My pet is vomiting, walking slow

e Symptom Diagnosis

Severity Assessment

]

Schedule a veterinary visit soon

Assessment Report

| Disgnosis

Womiting paired with lethargy may
indicate gastrointestinal upset,
systemic illn
conditions

or age-related

A Recommendation

= 6 Symptom Diagnosis
A\ Recommendation
Seek veterinary evaluation within 24

hours for hydration assessment and
diagnostic tests.

* Kidney/liver disease or pancreatitis
[5 Additional Notes

Monitor for dehydration {e.g.. dry
gums, skin tenting) and note vomit
appearance (blood, bile). Avoid offering
food until advised.

o ‘Symptom Diagnosis

Recent Assessments

My pet is vomiting, walking slow
@ Cookie

® High Priority

My pet cant breathe
@ Gary

My pet is vomiting
Cookie

View All >

(a)

Figure 5.39(a)(b)(c)(d):

(b)

(©)

(d)

Symptom Diagnosis Screen Results Ul

Results were presented in a structured format with clear sections:

Diagnosis, Recommendation, Possible Causes, and Additional Notes. A color-

coded severity badge (green, yellow, red) indicated urgency such as Low Risk,

Moderate Concern, or High Priority helping users decide on next steps. A

visible disclaimer emphasized that the app supports, but does not replace,

professional veterinary care.

167

Symptom History Modal:

[?

*o0 (355 @ -

Symptom History 9 Symptom Diagnosis

* Moderate Concern

Aug 30,2025 Aug 30, 2025

My pet is vomiting, walking slow

& Cookie & Cookie

% Cookie

]ﬂ Delete Assessment

Reported Symptoms
Select Pet w

High Priarity
My et i wanntieg, walkiig siow ™ Cook
My pet cant breathe . 3 — # cookie ~
2 My pet is vomiting, walking slow
& Gary
Assessment
A
Vomiting paired with lethargy may Describe Symptoms [:]

indicate gastrointestinal upse,
systemic illness, or age-related
conditions.

My pet is vomitin
da v My petis vomiting, walking slow
@ Cookie

(N

Seek veterinary evaluation within 24
hours for hydration assessment and
diagnostic tests.

® Low Risk

My pet cute diagnostic tests.

% Ham and Cheese

Dnecinla Mancar Brceihla Passas

(a) (b) (c) (d)
Figure 5.40(a)(b)(c)(d): Symptom History Modal Ul

A “Symptom History” button opened a scrollable modal showing past
assessments with date, symptoms, and pet name. Entries could be viewed or
deleted, with an empty state shown if no history existed. All data was securely
sent to the Node.js backend, enriched with pet details, analyzed via
OpenRouter Al, and stored in the symptom history table. This screen
effectively combined Al, personalization, and user-centered design to deliver

timely, actionable pet health insights.

168

5.8.5 Pet Management Screen

409 B . *4n 408 = *a0 a2 B -
e Pet Management e Pet Management = 0 Pet Management =
= Pet Profile % Health Records (2) °
(]
% My Pets (5) ° Annual Vaccination B u
°
'@ i
= e, Dat 2005-08
K Code VAC-20473
- - Cookie \
a Cookie 9 years old
Tur

Annual Ear Check Up o (]

(a) (b) (c)
Figure 5.41(a)(b)(c): Pet Management Screen Ul

The Pet Management Screen was a central feature of the PawHub application,
allowing users to manage their pets’ information and health records through a
clean, intuitive interface. The screen was divided into two main sections, Pet
Profile Management and Health Records Management, enabling users to

organize, track, and maintain comprehensive pet health data.

i) CRUD for pet profile management:

On pet profiles, users could carry out complete Create, Read, Update, and
Delete (CRUD) actions. To add a new pet, users tap an “+” button to add new
pets and were presented with a form to input essential details such as pet name,
type, birthday, weight, height, and upload a photo. Form validation ensured
accurate data entry, and the new pet was saved securely to Supabase via the
backend API. Existing pet profiles were displayed in a scrollable list or card
layout, and tapping a pet opened the full profile for viewing or editing. Users
could update any field and save changes, or delete a pet profile with
confirmation. A visual indicator (e.g., pet avatar and age) enhanced

recognition and personalization.

169

Create:

[/

Register New Pet

2025

Sat, Aug 30

Select Pet Image
< August 2025

(o] B

Take Photo Gallery

PEOO

(a) (b) (c) (d)
Figure 5.42(a)(b)(c)(d): Create Pet Profile Management Screen Ul

Update:

PLN a1 O -

e Pet Management

Edit Pet Details Edit Pet Details

Select Pet Image

Cookie
st 9 years old
2016-03-21
[] %
(romy. Weight (kg) * Height (cm) * m“;‘;;u n-;;

6

n fpis

18

w16.0321 =]

n s

(a) (b) (©) (d)
Figure 5.43(a)(b)(c)(d): Update Pet Profile Management Screen Ul

170

Delete:
e Pet Management
Pet Profile
(a) (b)
Figure 5.44(a)(b): Delete Pet Profile Management Screen Ul

ii) CRUD for health records of each pet:

Each pet had an associated Health Records section where users could add,
view, edit, or delete medical entries such as vaccinations, check-ups,
treatments, or deworming. When adding a record, the form captured the record
name, date, cause, description, and code. A toggle allowed users to enable
email reminders for future-dated events. Once saved, records were displayed
in chronological order with key details visible at a glance. Users could tap any

record to view or modify it, or delete it with confirmation.

171

Add Health Record Add Health Record Edit Health Record

Record Name * Record Name *

Annual Ear Check Up

Date *
Delete Record

- to delete

Record Code

EAC-83746 m

Cause/Reason

Check for Ear Infections

cancel e o faneel

(a) (b) (c) (d)
Figure 5.45(a)(b)(c)(d): CRUD for Pet Health Record Management Screen
Ul

Email Reminder for Future Health Events:

448 @ -
e Pet Management

% Health Records (2) °
S
L

Annual Vaccination [
°

° PawHub 1212
o PawHub
Qo

Annual Ear Check Up E N

Hi there!

20250825

ode EAC-B3746

(b)
Figure 5.46(a)(b): Reminder for Pet Health Record Management
Screen Ul

When a user added a health record with a future date and enabled the
notification toggle, the system automatically scheduled an email reminder to
be sent one day before the event. This was handled by the backend, which

created an entry in the email reminders table and triggered the Resend email

172

service daily to check for upcoming reminders. The email included the pet’s
name, event type, and date, prompting the owner to prepare. This proactive
notification system helped prevent missed appointments and supported

preventive pet care.

5.8.6 Profile Management Screen

54 & . AR 455 @ -

o Profile Management 9 Profile Management

Profile Information E

S Email*
nivikaprasad@gmail. com

Nivika11 Username

Nivika11

Profile Information [1] o

01139588820

(a) (b)
Figure 5.47(a)(b): Profile Management Screen Ul

The Profile Management Screen allowed users to personalize their account
settings, update personal information, manage their profile picture, and control
their account security. The interface was designed with a clean, card-based
layout that separated the avatar section from the profile information, providing

a clear and organized user experience.

173

CRUD in Profile Management:

Select Profile Image
(o] M
Take Photo Gallen

Delete Account

Or choose a default: This acticn cannot be undone. All your
5 data will be permanently deleted

(a) (b) (c)
Figure 5.48(a)(b)(c): CRUD in Profile Management Screen Ul

The Profile Management Screen allowed users to update their profile
picture and personal information securely. By tapping the avatar, users could
choose to take a photo, select an image from their gallery, or pick from
predefined default avatars. The selected image was uploaded to Supabase
Storage, and the URL was saved in the profiles table. A loading indicator and
error handling ensured a smooth experience.

Below, users could edit their email, username, phone number, and
password in a form with real-time validation for format and strength. Changes
were saved via secure API calls to the Node.js backend, with immediate
feedback on success.

Users also had the option to delete their account, which triggered a
confirmation alert and, when confirmed, performed a soft delete via the
backend API, removing the user’s data and signing them out.

Additionally, the “Log Out” button allowed users to securely end
their session. The screen used secure authentication flows with JWT tokens
stored in AsyncStorage, and all API requests were protected with Bearer token

authentication.

5.8.7 Education Screen

L7 L

€« a Education

Rl Pet Education

40 503 @ -

- 0 Education

A8 Pet Education

Figure 5.49(a)(b)(c): Education Screen UI

174

The Education Screen in PawHub provided users with access to reliable, up-

to-date pet care information sourced from trusted authorities such as the

American Kennel Club (AKC). This screen featured a scrollable list of curated

articles organized by category, including Dog Breeds, Health, Training,

Nutrition, and Fun Facts. Each article was displayed in a clean card layout

with a thumbnail image, title, category, and publication date, offering users a

quick preview before reading.

175

Click into an article:

505 @ - e L)

(_o Educatin O % skcomglepertadvice. + @

P sncn SN Mow
AB Pet Education W e q L2 =

Puppy-Proofing Tips
CRES - - IR for Your Home And

___ﬁ ' ‘ Yard
5 a& S
]| =

, tha

o
Puppy-Proofing Tips for Your Home
And Yard

Puppy Information

(b)
Figure 5.50(a)(b): Article in Education Screen Ul

When a user tapped on an article card, they were redirected to the
original webpage in their device’s default browser, ensuring they received the
most current and accurate information directly from the source. This approach
maintained content integrity and avoided copyright issues, while still
providing seamless access to expert-backed knowledge.

The content displayed in the app was updated through a web scraper
that runs in the terminal by the developer, fetching new articles from AKC’s
website and storing them in the Supabase database. This ensured the Education
Screen remains fresh and relevant. For future enhancements, Github Actions
could be implemented to automate the webscraper weekly without requiring

manual updates.

176

5.8.8 Feedback Screen

@ Share Your Thoughts

@ Share Your Thoughts

Success!

How would you rate your experience?

Tell us mare about your experience

|« e = < e = |
(a) (b) © (@

Figure 5.51(a)(b)(c)(d): Feedback Screen Ul

The Feedback Screen allowed users to share their experience with the PawHub
application through a simple, intuitive interface. The screen features a clean,
card-based layout with a rating system and text input for detailed feedback.
Users beginned by selecting a star rating from 1 to 5, with visual labels
indicating “POOR” to “EXCELLENT” to guide their selection. Below, a
multi-line text field enabled users to describe their experience, including
suggestions or issues encountered.

Once submitted, the feedback was securely sent to the backend via an
authenticated API call to the Node.js server, where it is stored in the feedback
table in Supabase. A success notification toast appeared to confirm submission.
Users could also view their past feedback entries by tapping the “View Past
Feedbacks” button, which opened a modal displaying a scrollable list of
previous submissions, including the date, rating, and feedback text. If no
feedback were submitted, an empty state was shown with a descriptive
message. The screen included real-time validation to ensure the feedback text

was not empty.

177

5.9 Conclusion

This chapter showed an overview of the system design of PawHub, an Al-
based pet care application designed to support pet owners with virtual
assistance, symptom diagnosis, and health management. The system
architecture demonstrated a secure, scalable, and well-structured integration of
React Native, Node.js, Supabase, OpenRouter, and Resend, ensuring robust
communication between frontend and backend components.

The database design was detailed through a complete data dictionary
and entity relationships, highlighting data integrity, security through Row
Level Security (RLS), and efficient organization of user, pet, health, and Al
interaction data. The API endpoints were systematically outlined, showcasing
a well-organized RESTful interface that supports all core functionalities with
proper authentication and rate limiting.

Additionally, the Data Flow Diagrams (DFD) and Activity Diagram
strengthened the application's logical flow and flexibility by clearly visualizing
the data flow from user input to Al processing and storage. The user interface
design ensured usability, accessibility, and a seamless experience across all
screens.

Overall, the system design of PawHub reflected a professional, user-
centered approach that successfully integrated modern technologies to deliver
a reliable and intelligent pet care solution. This solid foundation enables future
enhancements such as push notifications, advanced analytics, or integration
with wearable pet devices, positioning PawHub as a scalable and impactful

mobile health application.

178

CHAPTER 6

IMPLEMENTATION

6.1 Introduction

This chapter showed the implementation and integration of PawHub, an Al-
powered mobile application designed to assist pet owners with virtual pet care,
symptom diagnosis, and health management. The system was developed using
a modular, full-stack approach that integrates frontend, backend, database,
artificial intelligence, and automated services. Each component was
implemented with a strong emphasis on security, usability, and scalability,
ensuring a robust and user-friendly experience. The development followed an

Agile methodology, enabling iterative refinement and continuous integration.

6.2 Frontend Implementation
The frontend of PawHub was developed using React Native and tested in
Android Studio Emulator, providing a robust, cross-platform foundation that
ensured seamless performance on both Android and 10S devices. The choice
of React Native aligned with the project’s goal of delivering a high-quality,
native-like user experience while maintaining a single codebase, a critical
advantage for a solo developer working under time and resource constraints.
The user interface was designed in Figma during the prototyping
phase, ensuring a cohesive, pet-friendly aesthetic characterized by warm
earthy tones (soft browns, creams, and oranges), rounded card layouts,
gradient accents, and intuitive navigation. This design language was
consistently implemented across all screens to promote familiarity, reduce

cognitive load, and create an emotionally engaging experience for pet owners.

6.2.1 Authentication Module

This module handled user onboarding and secure access to the PawHub
application. It included the Welcome, Login, Register, and Forgot Password
screens, providing a seamless and secure entry point for new and returning

users. The onboarding process beginned with a swipeable welcome screen

179

featuring animated transitions that introduce key app features, allowing users

to easily navigate to the login or registration interface.

4.
&_ i
Join us &

Create an account 1o get started!

Reset Password

Enter your email to reset password

Create your account

Welcome back

We're happy to see you again!

Enter your email

- e

Please sign in

& Emal

(b) (c)
Figure 6.1(a)(b)(c): Authentication Screen Required Input Validations

The Login, Register, and Forgot Password screens implemented
comprehensive input validation to ensure that all required fields were properly

filled in before submission to ensure data integrity and security.

n
x
il

Join us

Create an account to get started!

Create your account

Welcome back

We're happy 1o see you again! & raf

& vehr

Please sign in

& nivikaaprasad@gmail com

(b) (c)
Figure 6.2(a)(b)(c): Authentication Screen Input Validations

The input validation on the Login, Register, and Forgot Password
screens ensured that essential fields like username, email, and phone number

were correctly filled before submission. Emails must follow a valid format,

180

phone numbers must be 10—15 digits, and passwords required a minimum of
six characters with uppercase, lowercase, and numeric characters for stronger
security. A confirm password checked and prevented mismatches, while clear
error messages guided users to fix mistakes. This approach maintained data
integrity, enhanced account security, and improved the overall user experience.

All user inputs were sanitized and validated on the client side to prevent

injection attacks and ensure secure data transmission.

orage.setItem({ 5S¢ on.access_token);

Figure 6.3: JWT token for session management
Upon successful registration or login, the system leveraged Supabase
Auth for secure authentication, generating a JWT token that was stored in

AsyncStorage for session persistence.

Reset Your Password G |

/I—:g B | inbox
- @) Supabase Authsoipm
Reset Password & o

Enter your email to reset password
Reset Password

Follow this link to reset the password for

" /our user:
Enter your email Yy

& nivikaprasad@Tutarmy

Back to Login

(a) (b)
Figure 6.4(a)(b): Forgot Password Account Recovery Email

For account recovery, the Forgot Password functionality allowed
users to enter their email and receive a secure reset link via email, powered by
Supabase’s built-in password recovery system. This module established a

secure foundation for the entire app, ensuring that only authenticated users

181

could access personalized features while maintaining a user-friendly

onboarding experience.

6.2.2 Al Chatbot Module

This module served as the interactive core of the PawHub application,
allowing users to consult a virtual assistant driven by Al in real time for advice
on pet care. The interface was designed to mimic a familiar messaging app,

ensuring intuitive navigation and a seamless user experience.

6 Al Pet Assistant —

Pet Model

™ cookie Microsoft MAI D
2 health records loaded e

Can | bring my pet for a walk in 35 a
degree celcius?

F”\ At 35°C, it's risky to walk Cookie
due to her small size and heat
sensitivity. Pavement temperatures
can exceed 50°C, risking paw
burns and heatstroke. Opt for early
morning/late evening walks, keep
sessions short, and bring water.
Monitor for excessive panting,
lethargy, or stumbling, and seek
vet care immediately if symptoms
arise.

TRAET

(A] g

Home AlChatbot _ Symptoms Pets

Figure 6.5: Al Chatbot Interface

The screen features a clean, scrollable chat window where messages
were displayed in bubbles, Al replies to the left are soft brown with a pet-
themed logo, while user messages were displayed towards the right in a light
beige tone. A typing indicator with animated dots appeared when the Al was
generating a response, providing visual feedback and improving perceived

responsiveness.

Pet Maodel

Q Gary Microsoft MAI D...

Figure 6.6: Selector buttons to select pet and Al model

182

At the top of the screen, two selector buttons allowed users to choose
a pet and select an Al model (Microsoft MAI DS R1, Mistral-7B-Instruct, or
Horizon Alpha). This personalization ensured that Al responses were tailored
to the selected pet’s profile, including breed, age, weight, and medical history.
Tapping the pet selector opened a modal listing all pets with their photos,
names, breeds, and calculated ages. The model selector displayed available Al
models along with their context window sizes (e.g., 32K, 8K, 256K tokens),
empowering users to choose based on performance, speed, or depth of

response.

Can my pet eat banana °

(a) (b)
Figure 6.7: Al multi-line text field enabled and disabled

Users input queries into a multi-line text field at the bottom, with a
send button that disabled during loading to prevent duplicate submissions. If
the Al failed to respond due to connectivity or API issues, a friendly fallback
message was shown, advising users to check their internet connection and

consult a veterinarian if needed.

“ At 35°C, it's risky to walk Cookie
due to her small size and heat
sensitivity. Pavement temperatures
can exceed 50°C, risking paw
burns and heatstroke. Opt for early
morning/late evening walks, keep
sessions short, and bring water.
Monitor for excessive panting,
lethargy, or stumbling, and seek
vet care immediately if symptoms
arise.

AW

Figure 6.8: Al message rating system

A key feature was the message rating system, each Al response could
be rated with 1-5 stars, allowing users to provide feedback directly within the
chat. This data was sent to the backend and stored in the chat history table for

future model improvement.

183

Figure 6.9: Al Chat History session ID
The chat maintained session continuity by grouping messages under a

unique session ID. When a user switched pets, the conversation resets

automatically to ensure context accuracy.

Clear Chat

(a) (b)
Figure 6.10(a)(b): Clear Chat button and trigger

The “Clear Chat” button at the top allowed user to clear their existing
chat. When the button was pressed, it triggered a confirmation alert to prevent

accidental deletion of the chat.

B 2 health records loaded =

Figure 6.11: Health Records Loaded Badge

Additionally, a health records badge appeared when records were

loaded, informing users that the Al had access to relevant medical history for

184

more accurate advice of the selected pet. An error banner displayed non-

intrusive alerts if data failed to load.

Figure 6.12: Session Management Token in Al Chatbot screen

All interactions were secured using JWT authentication. The access
token, stored in AsyncStorage, was included in every API request to endpoints
such as /chat/message, /chat/models, and /chat/history. This ensured that only
authenticated users could access Al features and their data remained private
and secure. This module exemplified a robust integration of Al
personalization, and user-centered design, delivering intelligent, context-aware

pet care support in a secure, engaging, and reliable format.

6.2.3 Symptom Diagnosis Module

This module enabled users to perform Al-powered health assessments for their
pets based on described symptoms. It provided a structured, user-friendly
interface that guided pet owners through the process of submitting symptoms

and receiving actionable insights in a clear, organized format.

Select Pet

- Gary

Figure 6.13: Symptom Diagnosis Screen Pet Selection Modal

The screen beginned with a pet selector button at the top, allowing
users to choose which pet they are assessing. Tapping this opened a modal
listing all registered pets with their photos, names, breeds, and calculated ages,

ensuring the Al received accurate context for personalized results.

185

Describe Symptoms (] Describe Symptoms i) Describe Symptoms (i]

’ Vomiting

Please describe your pet's symptoms.

(a) (b) (c)
Figure 6.14(a)(b)(c): Input Validation and Loading Indicator for Severity
Assessment

Below, a multi-line text input field allowed users to freely describe
their pet’s symptoms and input was validated. If the text input was empty, a
red error validation appeared at the below encouraging users to input
symptoms. A prominent “Analyze Symptoms” button triggered the diagnosis
process, disabled during loading to prevent duplicate submissions. While the
system processed the request, a loading indicator with “Analysing
symptoms...” was displayed. Once completed, the Al-generated diagnosis was
presented in a structured card layout with clearly labeled sections as show in

the figure below.

Severity Assessment :

Severity Assessment

Schedule a veterinary visit scon

Figure 6.15: Severity Assessment Results

A color-coded severity indicator appeared at the top of the result card
such as Green for Low Risk, Yellow for Moderate Concern, Red for High
Priority. This visual system helped users quickly understand the urgency of the
situation and decide whether to monitor at home or seek immediate veterinary

care.

Diagnosis: The identified condition or possible illness.

Assessment Report [5

| Diagnosis

Reduced appetite and sleep
disturbances in Gary may indicate
environmental stress, improper habitat
conditions, or underlying illness.

Figure 6.16: Symptom Diagnosis Result Diagnosis

Recommendation: Immediate actions to take.

A\ Recommendation

Seek veterinary evaluation within
24-48 hours for a physical exam and
fecal test.

Figure 6.17: Symptom Diagnosis Result Recommendation

Possible Causes: Potential underlying reasons.

Q, Possible Causes

* |ncorrect temperature gradients in
habitat (affecting metabolism/sleep
cycles)

* Water quality issues (ammonia/
nitrite spikes)

* Early-stage respiratory or
gastrointestinal infection

Figure 6.18: Symptom Diagnosis Result Possible Causes

Additional Notes: Contextual advice or observations.
B Additional Notes
Check basking area temperature
(28-32°C) and water parameters

immediately. Monitor for mucus in
mouth/nostrils or abnormal buoyancy.

Figure 6.19: Symptom Diagnosis Result Additional Notes

186

187

3% Medical Disclaimer

This Al-powered symptom assessment
is for informational purposes only and
should not be considered veterinary
advice. Always consult with a licensed
veterinarian for professional medical
guidance, especially in emergency
situations

Accuracy may vary based on symptom
scription quality and Al model limitations.

I Understand

Figure 6.20: Symptom Diagnosis Disclaimer

This visual indicator helped users quickly assess urgency and decide
whether to monitor at home or seek veterinary care. The severity level was
determined both by the AI model and client-side logic that scanned for
keywords in the response. A non-intrusive disclaimer button was there to
ensure that users don’t follow the Al diagnosis blindly if their pet symptoms

were too Serious.

x
Aug 28, 2025 i
Recent Assessments View All >
& Cookie
Sep3,2025 W]
Reported Symptoms
My pet has been eating less, not sleeping
& Gary My pet is vomiting
Assessment
Aug 28,2025 Tl
) » Vomiting in a 9-year-old dog may
Recent Assessments View All > My pet is vomiting indicate gastrointestinal upset, dietary
@ Cookie indiscretion, or underlying conditions
like gastritis or organ dysfunction.
@ Immediate Recommendation
® Low Risk Aug 27,2025 Seek veterinary evaluation within
No previous assessments yel 24 hours if vomiting persists or if
My pet cute ! 9P
accompanied by lethargy, diarrhea, or
% Ham and Cheese loss of appetite.

(a) (b) (c)
Figure 6.21(a)(b)(c): View Past Assessments in Symptom History Modal

A “Symptom History” button opened a scrollable modal showing all
past assessments, including the date, symptoms, associated pet, and severity
level. Each entry could be tapped to view full details or deleted with

confirmation. If no history existed, an empty state message was shown. This

188

feature allowed users to track changes over time and review previous Al
suggestions. All data was securely transmitted to the Node.js backend via the
/symptom/diagnose endpoint, where the Al prompt is enriched with pet details
and processed using OpenRouter. The result was saved in the

symptom_history table in Supabase for future reference.

console.error(Diagnosis error:', error);
setDiagnosisData({
diagnosis: " Error: message.includes('unavailable

. Pl

o get diagnosis. Ple try again.'}’

Figure 6.22: Error Handling - Al Service Unavailable

In case of network issues or Al service downtime, a friendly error
message was displayed. This maintained a positive user experience while

clearly communicating the issue.

Success

Assessment deleted successfully

Figure 6.23: NotificationToast component for success message

The module used a reusable NotificationToast component to provide
feedback on success message, enhancing usability. It also included real-time
validation, session-based state management, and responsive design for
consistent performance across devices. This module exemplified the
integration of artificial intelligence, personalization, and user-centered design,
delivering timely, structured, and visually intuitive pet health insights while
emphasizing responsible use and the importance of professional veterinary

care.

6.2.4 Pet Management Module
This module enabled users to fully manage their pets’ information and health
records through an intuitive, organized interface. It was a core component of

PawHub, allowing pet owners to maintain comprehensive digital profiles and

189

medical histories for each pet. The module supported all CRUD (Create, Read,
Update, Delete) actions for both pet profiles and health records, ensuring

flexibility and data control.

% My Pets (5) °

Figure 6.24: List of Registered Pets in Pet Management Screen

The main screen displayed a scrollable list of all registered pets in
card format at the top. Each card showed the pet’s photo, name, breed, age,
and weight, providing a quick visual overview. Tapping a pet card open its

detailed profile and associated health records.

Register New Pet x Register New Pet x
S e J @
5 Adapnow ' o [/

° A o Select Pet Image x

P L J (o) ™

Take Photo

Or choose a default

PEOO

(a) (b) (c)
Figure 6.25(a)(b)(c): Add New Pet Form validation and Image Upload

Option

Users could add a new pet by tapping the “+” button, which opened a
modal form titled “Register New Pet”. Every user input had input validation.

The app also included eight default pet avatars (dog, cat, bird, rabbit, hamster,

190

turtle, snake) to ensure every pet has a visual identity even without a custom

photo. Image upload was handled via react-native-image-crop-picker,

supporting both camera and gallery access.

G

Cookiesss Cookiesss
9 years old 9 years old
20160521 - Weosm cunesPi
=] . =] e

Weight Height Weight Height

6kg 18cm 6kg 18cm
(a) (b)

Figure 6.26(a)(b): Edit Pet Profile, Update Existing Pet Type

Information

Existing pet profiles could be edited by tapping an “Edit” button,
which repopulates the same form with current data. All fields were editable,
and changes were validated before saved securely to the backend via the /pets
endpoint. The module used a reusable CustomAlert component for all

confirmation dialogs and a NotificationToast to provide feedback on

successful operations.

Delete Pet

Are you sure you want to delete
Peter? This will also delete all health
records for this pet.

I 4|
Figure 6.27: Delete Pet Confirmation Alert

Deleting a pet triggered a confirmation alert that warns users. This

prevented accidental data loss and emphasized the cascading effect of deletion.

191

% Health Records (2) °

Ear Check Up G (]
© Upcoming

Date 2025-09-04

Annual Vaccination G i

Date 2025-09-01

Code VAC-10384

Cause - yearly health check up

Notes - bring pet passport

Figure 6.28: Health Records List as Chronological Medical History

Each pet had a dedicated Health Records section where users could
view, add, edit, or delete medical entries such as vaccinations, check-ups,
treatments, or deworming. Records were displayed in chronological order with

key details visible at a glance such as event name, date, cause, and description.

Add Health Record

Record Name *

[

Record name is required

Date *

[

Date is required

Record Code

Cause/Reason

Cancel

(a) (b)
Figure 6.29(a)(b): Add Health Record Input Validations

To add a record, users filled out a form that captured essential health
information. Input validation ensured record name and date were required,

Date picker restricted future dates only for scheduled events, Optional fields

192

(code, cause, description) could be left blank The notification toggle allowed

users to enable email reminders for future-dated events.

Email Reminders

(a) (b)
Figure 6.30(a)(b): Future Date with Email Reminder Enabled

If the record date was in the future and the notification toggle was on,
the system automatically created an entry in the email reminders table. The
backend checked daily for upcoming reminders and sends an email via Resend

one day before the event.

Delete Record

Are you sure you want to delete "Ear
Check Up"?

Figure 6.31: Delete Health Record Confirmation

Deleting a health record also used a confirmation alert to prevent
accidental removal. This applied to both past and future records, ensuring

users were aware of their actions.

token =

Figure 6.32: Pet Management Screen session

Data was fetched from and synced with the Node.js backend using
secure JWT-authenticated API calls to /pets and /health-records. This module
exemplified a robust, user-centered approach to pet health management,
combining data integrity, usability, and automation to help pet owners stay

organized and proactive in their pet’s care.

193

6.2.5 Profile Management Module

This module allowed users to manage their personal account settings,
including profile information, avatar, password, and account security. It
offered users a safe and intuitive way to customize their identities within the

PawHub app while protecting the privacy and integrity of their data.

’@
Nivika1111

Profile Information G

Email*

nivikaprasad@gmail.com

Username’

Nivika1111

Phone

01139588820

Figure 6.33: Avatar and User Information in Profile Management Screen

The screen was structured as a card-based layout with two main

sections which is the Avatar Section and Profile Information.

k)
body: formData,

H

Figure 6.34: Selected image is uploaded via multipart/form-data

At the top, users could update their profile picture by tapping the
avatar, which opens a modal with multiple options such as take a photo using
the camera, select an image from the device gallery, or choose from four
predefined default avatars hosted in Supabase Storage. The selected image was
uploaded via multipart/form-data to the /profile/avatar endpoint and stored

securely in Supabase, with the public URL saved in the profiles table.

194

Select Profile Image

Select Profile Image

(0] o2
E HL2y Permission denied

Or choose a default:

0 o)

b Take Photo Gallery

(a) (b)
Figure 6.35(a)(b): Camera, Gallery, and Default Avatars in Image
Picker

The avatar upload modal included proper Android permission
handling (camera and storage), error feedback, and a loading indicator during
upload. If the user already had a custom avatar, it was displayed using the uri
source in React Native’s Image component. If permission was not given to

access the gallery or camera, permission denied error was shown.

nivikaprasad

Please enter a valid email

Username*

Vs N
hy
Username must be at least 3 characters
Phone
011395
hS J
Please enter a valid phone number (10-15
digits)
New Password
\ J
Password must be at least 8 characters
Confirm Password
'd hY

Passwords do not match

(a) (b)
Figure 6.36(a)(b): Edit Profile Information with Input Validation

Below the avatar, users could view and edit their email, username,
phone number, and password. When in edit mode, the static text fields
transformed into input fields with real-time validation. Validation errors were
displayed below each field with red text, ensuring users could correct mistakes

before submission.

195

Save Changes

Delete Account

Figure 6.37: Save Changes, Log Out, and Delete Account Buttons

The module included three action buttons such as Save Changes
which sends updated profile data to the /profile endpoint via a secure PUT
request. A success toast appeared upon completion. Log out which triggered
supabase.auth.signOut() to end the session and redirected to the login screen.
Delete account which showed a confirmation alert warning that all data will be
permanently deleted. If confirmed, a DELETE request was sent to /profile, the

account was soft-deleted, and the user was signed out.

makeAuthenticatedRequest = (url, options =
token = ait getAuthToken();

if (ltoken
it supabase.auth.refreshSession();

token = session.access_token;

await fetch(url, {

...options.headers,
Authorization Bearer ${token}",
.. (options.body FormData ? {} : { 'Conte

Figure 6.38: Session Management Token in Profile Management

All API interactions were protected with JWT authentication. The app
used a custom makeAuthenticatedRequest helper that automatically retrieved
the access token from AsyncStorage or refreshed the session if expired. This

ensured secure, seamless communication with the backend.

196

[Profile updated successfully!

Nivika1111

Figure 6.39: Success Toast on Profile Update

A success toast (“Profile updated successfully!”) appeared after a
successful save, reinforcing positive user feedback. This module exemplifiee a
secure, well-structured approach to user account management, combining real-
time validation, secure image handling, and safe data deletion to deliver a

reliable and trustworthy experience.

6.2.6 Education Module

This module provided users with access to reliable, up-to-date pet care
information sourced from trusted authorities such as the American Kennel
Club (AKC). It served as a knowledge hub within the PawHub application,
empowering pet owners with expert-backed articles on topics including dog
breeds, puppy care, health, training, nutrition, travel, dog sports, and fun facts.
The interface’s simplicity, ease of use, and intuitive design guarantee that

users found the right information easily depending on their needs or interests.

AR Pet Education German
Q german [}

Q Search articles

o Breeds Puppy Info Health
o Breeds Puppy Info Health
g

Keeping Your Dog Safe This Labor Day Fun Facts About the German Shepherd
Dog
Health Read More >
Fun Facts Read More -
(a) (b)

Figure 6.40(a)(b): Pet Education Screens Header and Search Bar

197

The screen featured a well-organized layout beginning with a
prominent header. Below, a search bar allowed users to type keywords and
filter articles in real time by title or category. The search input included a clear

button to reset the query, enhancing usability and interactivity.

o Breeds Puppy Info Health

Figure 6.41: Category Tabs

A horizontal scrollable tab bar displayed all available categories: All,
Breeds, Puppy Info, Health, Training, Nutrition, Travel, Sports, and Fun Facts.
Each tab was styled as a pill-shaped button, with the active category
highlighted in a warm orange color for clear visual feedback. Tapping a
category filtered the article list to show only those matching the selected topic,

enabling focused browsing.

o9,
<*

What to Know About Caring for Dog Urban Dog Skills: Training Tips for City
Burns Dogs

Health Read More > Training Tips Read More >

(a) (b)
Figure 6.42(a)(b): Article Card Layout

Articles were displayed in a vertical scrollable list using card-based
design. Each card included a thumbnail image at the top, followed by the
article title, and a footer with the category badge and a “Read More” button
with an arrow icon. If an article lacked an image, a placeholder paw icon was

shown to maintain visual consistency.

198

Book
Q. book [>]

Nutrition Travel @ Fun Facts

No articles found

No results for "book"

Figure 6.43: No Articles Found

When no articles matched the search or selected category, an empty
state was displayed with a book icon, a descriptive message and a “Refresh”
button to retry loading data. This improved user experience by providing

feedback and recovery options.

stamcH soMm

R Pet Education W woe Q A

The Belgian Breeds'
G2 Beerch arlinlen Shared Characteristics

Al Puppy Info Health

e
IIE

The four Belgian breeds belang to the AKC Herding

d doy

area mmmnnl

Group. These me

history

Meet the Belgian Herding Breeds

perament, they hay

THDEEAN O
(a) (b)
Figure 6.44(a)(b): Opening Article in External Browser

Tapping on an article card or the “Read More” button opened the
original webpage in the device’s default browser using Linking.openURLY().
This ensured users receive the most current and accurate information directly
from the source, while also respecting content licensing and avoiding

duplication.

199

fetchArticles =
setloading

await fetch(" ${API URL

cles. Please try again.');

setArticles([]

setFilteredArticles([]);
finally

setLoading(D5

Figure 6.45: Fetching Articles from Backend

On initial load, a loading indicator appeared with the message
“Loading articles...” to inform users that content is being fetched from the
backend. The data was retrieved via a secure GET request to the /articles
endpoint, which pulls from the articles table in Supabase populated weekly by
a web scraper running on a application terminal. By connecting Al-powered
features with trusted resources, it reinforced the app’s role as a comprehensive

pet wellness platform.

6.2.7 Feedback Module

This module allowed users to share their experience and provide valuable
feedback on the PawHub application, helping to guide future improvements
and ensure the app meets user expectations. It featured a clean, user-friendly
interface that encouraged honest and constructive input through a structured

feedback form and an accessible history view.

@ Share Your Thoughts

How would you rate your experience?

POOR EXCELLENT

Figure 6.46: Header and Rating Section in Feedback Screen

The screen opened with a welcoming header. Below, users were

prompted to rate their overall experience using a 5-star system displayed

200

prominently in the center of a card. Each star was interactive, allowing users to

tap and select a rating from 1 (Poor) to 5 (Excellent).

Tell us more about your experience

SUBMIT FEEDBACK

View Past Feedbacks @

Figure 6.47: Feedback Input Field with Placeholder

Below the rating, users were asked to “Tell us more about your
experience” in a multi-line text input field. The field included a descriptive
placeholder to guide users in providing detailed feedback. The input supported
text wrapping and dynamic expansion up to a reasonable height, ensuring

users could express themselves fully.

Tell us more about your experience Tell us more about your experience

I'm experiencing delay in system Good
response time when | insert pet health
record

lease share your experience before submitting

(a) (b)
Figure 6.48(a)(b): Submit Feedback Button and Error Handling

A “Submit Feedback” button was displayed at the bottom of the card.
If the user attempted to submit without entering any text, a validation error
appeared with the input field border turning red to highlight the issue. During
submission, the button changed to “SUBMITTING...” and disabled further

interaction to prevent duplicate entries.

Success!

Feedback submitted successfully

Figure 6.49: Success Notification Toast on Submission

201

Upon successful submission, a toast notification slided in from the
top with a checkmark icon. The toast automatically disappeared after 3
seconds, providing subtle but clear confirmation without interrupting the user

flow.

View Past Feedbacks @

Figure 6.50: View Past Feedbacks Button

A dedicated “View Past Feedbacks” button was placed below the
form, styled with a soft background and an icon of a clock. Tapping it opened
a full-screen modal that retrieved and displayed all previously submitted

feedback entries.

Your Feedback History X

Figure 6.51: List of Submissions in Past Feedbacks Modal

The modal showed a scrollable list of past feedback, each entry
including the submission date and time, the star rating, and the feedback text.
Entries were listed in reverse chronological order, with the most recent at the
top. If no feedback has been submitted, an empty state was shown with an icon

and the message: “No feedback submitted yet”.

202

fetchPastFeedbacks =
setLoadingPast g
try

await fetch(${A
headers:
Authorization: ~Bearer ${token} ,

Error('Failed to fetch

.json();

ch past ', error);

Figure 6.52: Loading Indicator in Feedback History Modal

When opening the history, a loading indicator appeared if data is
being fetched from the backend via the /feedback endpoint. The request is
authenticated using a JWT token retrieved from AsyncStorage, ensuring only
the current user’s data is accessed. All feedback was securely sent to the
backend. This data can later be analyzed to improve app functionality, fix bugs,
and enhance the user experience. This module exemplified a thoughtful
approach to create a reliable feedback mechanism that empowered users to

contribute to the app’s continuous improvement.

203

6.3 Backend Implementation

The backend of PawHub was developed using Node.js with Express.js,
forming a secure and scalable server that serves as the central control layer
between the React Native frontend and external services such as Supabase,
OpenRouter, and Resend. Hosted locally at http://10.0.2.2:3000 for Android
emulator testing, the server was designed to handle authentication, data
processing, API routing, and automated tasks with robust error handling and
logging. The architecture followed a modular structure, separating concerns
into routes, controllers, and middleware to ensure maintainability and clean

code organization.

authenticate = (req, res, next)
req.headers.authorization?.replace
turn res.status(4e1).json({ e

data: { }, error } = await supabase.auth.getUser(t:
if (error ||) ret res.status(401).json({ error: "In

req.user

(err) {
ole.error(‘Aut i ", err);
res.status(500).json({ error: ‘Aut ation failed' });

Figure 6.53: Authentication middleware

All API endpoints were protected by a custom JWT authentication
middleware that validated the Authorization: Bearer <token> header for every
incoming request. This middleware retrieved the token from the request header,
verified it against Supabase Auth, and attached the user ID to the request
object if valid. Access was blocked if the token was absent, invalid, or expired,
guaranteeing that only users who have been authenticated can use protected
routes. Strict data privacy was maintained by this technique, which also
stopped unwanted access to private data including chat history, pet profiles,

and health records.

204

limiter = rateLimit({
windowMs: 15 * 606 * 1000,
max: 209,
standardHeaders:
legacyHeaders:

D

authLimiter = rateLimit({
windowMs: 15 * 60 * 1000,
max: 20,

message: { error: 'Too many attempts. Try again later.' },

standardHeaders:
legacyHeaders:

chatLimiter = rateLimit({
windowMs: 60 * 1600,
max: 2@,
message: { error: 'Too many chat requests. Please slow down.' },
standardHeaders: c
legacyHeaders:

Figure 6.54: Rate limiting

Express-rate-limit is used to establish rate limitation in order to
improve security and avoid abuse. Different limits were applied based on the
endpoint such as 20 attempts per 15 minutes for authentication routes to
prevent brute-force attacks, 200 requests per 15 minutes for general usage to
ensure fair system access, and 20 messages per minute on chat-related
endpoints to avoid spam. These limits were enforced globally and per IP
address, providing an additional layer of protection against denial-of-service
threats.

The backend exposed a comprehensive RESTful API that supported
all core functionalities of the application. Authentication routes such as
/auth/login, /auth/register, and /profile handle user sign-in, registration, and
profile retrieval. Pet management was facilitated through /pets, which allowed
users to create, read, update, and delete pet profiles. Health records were
managed via /health-records, supporting CRUD operations and enabling email
reminders for future-dated events. Al-powered features were accessible
through /chat/message, /chat/models, and /symptom/diagnose, where user
inputs were enriched with pet context and sent to OpenRouter for intelligent
responses. Additional endpoints like /feedback, /articles, and /home support
feedback submission, educational content retrieval, and consolidated

dashboard data, respectively.

205

)

dmin = createClient(

process.env.s S /ICE_ROLE_KEY

)s

Figure 6.55: Supabase Client SDK

Data persistence was handled through Supabase, a PostgreSQL-based
backend-as-a-service platform. The backend interacted with Supabase using
the Supabase client SDK, ensuring secure and efficient database operations.
Key tables include profiles, pets, health records, symptom history,
chat history, email reminders, articles, and feedback, each designed with
proper relationships and constraints. Row Level Security (RLS) policies are
enforced on all tables to ensure that users can only access their own data,
preventing cross-user data exposure. Foreign key constraints maintain

referential integrity across related entities, preserving data consistency.

t.pet_name] .

*rompt = buildSystemPrompt();

Figure 6.56: Context-Rich AI Prompt with pet information

206

For Al-powered features, the backend integrated with OpenRouter.ai,
allowing access to advanced language models such as Microsoft MAI DS R1,
Mistral-7B-Instruct, and Horizon Alpha. When a user submits a query or
symptom description, the server fetched the selected pet’s details and health
records from Supabase, constructed a context-rich prompt, and sent it to
OpenRouter with appropriate headers including Authorization, HTTP-Referer,
and X-Title. The Al response was parsed into a structured format with sections
such as Diagnosis, Severity, Recommendation, Possible Causes, and
Additional Notes, then saved to the symptom_history or chat history table for

future reference.

jodel && OPENROUTER_MODELS.some(m m.id === pre
OUTER_MODELS .map(m m.id).filter(m m l==

m.id);

aiResponse
usedModel =

Figure 6.57: Fallback logic to alternative models

A Model Control & Prioritization (MCP) strategy ensured reliability
by automatically falling back to alternative models if the primary one fails,

minimizing downtime and maintaining service continuity.

startEmailChecker() {
setInterval(
Date()
'@ Email running at:*, now.toISostring());

nder_time', now.toISOString
or;

console.log(" m@ Found ${data.length} pending reminders);
', reminder);

h (err) {
ole.error(' A Email check interval error:', err);

> 60000);

Figure 6.58: Email Reminder checker task runs every 60 seconds

207

An essential component of the backend is the automated email
reminder system, powered by Resend. A background task runs every 60
seconds via setInterval, querying the email reminders table for records where
the reminder time is in the near future and the sent flag is still false. For each
matching record, an email is sent to the user with personalized content such as
the pet’s name, event type, and scheduled date. After successful delivery, the
sent field is updated to true, preventing duplicate emails. This proactive
notification system helped users stay on top of preventive care, such as

vaccinations and check-ups, without manual tracking.

scrapeAndStore() {
(14
console.log("\
{ data: html

$ = cheerio.load(html

articles = [];

ard__title').text().trim();

$(el).fi .content p").text().trim() ||
$(el).find(. ek”).text().trim() ||

t link = $(el).find -card__title').attr("href');

image =
$(el).find *).attr(
$(el).find).attr(

if (image && image.startswith('//"
image = 'https:" + image;

article = { title, summary, link, image, category: cat.name };

if (title 8% link) articles.push(article);

Figure 6.59: Scraper runs and fetches articles

Educational content displayed in the app is sourced from the
American Kennel Club (AKC) through a terminal runs weekly web scraper,
the scraper runs and fetched articles from AKC’s website across categories
including Dog Breeds, Health, Training, Nutrition, Travel, Dog Sports, and
Fun Facts. Using Axios and Cheerio, it extracted the title, link, image URL,
and category, then upserted the data into the articles table in Supabase. This
ensured that the Education screen remained up-to-date with fresh, expert-

backed content.

208

.includes(origin))

* callback Error(‘Not allowed by CORS'));

}
1

EES
credentials:

))3

upload = multer({
storage: multer.memoryStorage(),
limits: { filesize: 5 * 1@24 * 1024 },

1s

Figure 6.60: CORS and Multer Configuration

Security is a top priority throughout the backend implementation. The
server used Helmet.js to set secure HTTP headers, CORS was configured to
allow only trusted origins, and all input were validated both on the client and
server side to prevent injection attacks. Sensitive API keys such as
OPENROUTER _API KEY and RESEND API KEY were stored in
environment variables and never exposed in the codebase. File uploads for
profile pictures were handled securely using Multer, with images stored in
Supabase Storage and public URLSs saved in the profiles table. Passwords were
managed entirely by Supabase Auth and were never accessible to the
application, ensuring compliance with best practices in user data protection.

This backend design demonstrated a robust, intelligent, and secure
architecture that seamlessly integrated frontend, database, Al, and automation
systems. By combining modern tools, modular design, and strong security
practices, PawHub delivered a reliable and scalable pet care solution that

enhanced user experience while maintaining data integrity and privacy.

209

6.4 Database Integration

The PawHub application was set up using Supabase, a powerful backend-as-a-
service platform built on PostgreSQL, to manage all data storage and retrieval
efficiently. The setup process began with creating a new project on the
Supabase dashboard, where the database was initialized and connected to both
the React Native frontend and Node.js backend. Tables were created either
through the Supabase web interface or by executing raw SQL scripts in the
SQL Editor, ensuring consistency and accuracy in the schema design. This
centralized setup allowed seamless integration of authentication, file storage,
real-time updates, and Row Level Security (RLS), providing a robust

foundation for the entire application.

Nivika ~ Fre

SQL Editor

Figure 6.61: Creation of database table using PostgreSQL in supabase

PostgreSQL served as the core relational database engine for PawHub,
offering reliability, scalability, and advanced querying capabilities. It stored
structured data such as user profiles, pet information, health records, Al chat
logs, symptom history, feedback, and educational articles. The use of
PostgreSQL ensured strong data integrity through constraints, transactions,
and indexing, while also supporting JSON fields and full-text search for future
enhancements. Its compatibility with Supabase enabled smooth interaction
with the frontend and backend, making it an ideal choice for a data-intensive

mobile application like PawHub.

210

Figure 6.62: RLS Policies in Supabase

Row Level Security (RLS) policies were implemented across all
relevant tables to enforce strict data privacy and access control. These policies
ensured that users can only view, edit, or delete their own data, preventing
unauthorized access to other users’ information. For example, a user can only
access pet profiles, health records, chat history, and symptom diagnoses linked
to their unique user ID. RLS was enabled on tables such as profiles, pets,
health records, chat history, symptom_history, and feedback, with policies
defined using PostgreSQL’s native syntax. This security model was essential

for maintaining user trust and complying with data protection standards.

Storage

New bucket

Figure 6.63: Avatar Bucket in Supabase Storage

To manage profile pictures for users, a dedicated storage bucket
named ‘““avatars” was created within Supabase Storage. This bucket securely
hosted all uploaded images, with public URLs generated for display in the app.
Default avatars for users were pre-uploaded to this bucket, ensuring visual

consistency even when no custom image was selected. The backend handles

211

image uploads via Multer middleware, processed the file, and stored it in the
bucket with appropriate metadata. Access to the bucket is restricted using
policies, allowing only authenticated users to upload or modify their own

images.

jpabase.auth.signup({

(b)
Figure 6.64(a)(b): JWT-based token generation

Supabase Auth managed authentication and offers session
management, safe email/password login, and token creation based on JWT.
Upon registration or login, Supabase creates a user entry in the auth.users table
and triggers the creation of a corresponding record in the profiles table. This
integration simplified user management and ensured secure access to protected
routes. The system used the supabase.auth.signlnWithPassword() and
supabase.auth.getUser() methods to manage sessions, while the backend
verified JWT tokens in API requests to authenticate users before granting

access to sensitive data.

o Primary key 7 Identity (i Unique (O Nullable ¢ Non-Nullable

Figure 6.65: Database Schema in Supabase

212

The database schema is carefully designed to reflect the relationships
between entities in the PawHub ecosystem. Key tables include profiles, pets,
health records, symptom_history, chat history, email reminders, articles, and
feedback. Each table is structured with appropriate data types, primary keys,
and constraints to ensure consistency. For instance, the pets table includes
fields such as pet name, pet breed, pet birthday, pet weight, pet height, and
pet _avatar, all linked to the owner via the user id foreign key. This well-
organized schema supported the app’s functionality while allowing room for
future expansion.

Foreign key constraints were used throughout the database to
maintain referential integrity and enforce logical relationships between tables.
For example, the pets table references the profiles table via the user id field,
ensuring that every pet belongs to a valid user. Similarly, health records and
symptom_history tables reference the pets table through pet id, linking
medical events and Al diagnoses to specific animals. These constraints prevent
orphaned records and ensure that data remains consistent and accurate across

the system.

import dotenv from 'd
dotenv.config();

(a) (b)
Figure 6.66(a)(b): Environment Variable Import and Validations in
Backend

Environment variables were securely managed using a .env file in
both the frontend (PawHub/.env) and backend (PawHub/backend/.env)
directories. Sensitive credentials were stored in these files and loaded at
runtime using the dotenv package. This approach keeps API keys and

configuration settings out of the source code, reducing the risk of exposure.

213

The backend validated the presence of these variables at startup, ensuring the

server cannot run without proper configuration.

6.5 Al Features Implementation

The Al features in PawHub were designed to provide pet owners with
intelligent, real-time support through two core modules, the Al Chatbot and
the Symptom Diagnosis tool. These features leverage advanced language
models via OpenRouter.ai, enabling the app to deliver context-aware,
personalized responses that enhance user experience while maintaining
reliability through model fallback logic. The integration of Al into pet care
allowed users to receive immediate guidance on health, behavior, nutrition,
and training, bridging the gap between everyday concerns and professional

veterinary care.

6.5.1 Al Chatbot
The AI Chatbot served as the interactive hub for general pet care assistance,

allowing users to ask questions and receive instant, conversational responses.

context: 32000 },
nstruct’, context: 8eee },
1a", context: 256000 }

Figure 6.67: OpenRouter Configuration

Built on a multi-model architecture, the chatbot supported three Al
models: Microsoft MAI DS R1 (primary), Mistral-7B-Instruct, and Horizon
Alpha, giving users the flexibility to choose based on response style, depth, or
performance. This model selection were implemented through a dropdown
interface in the app, enabling dynamic routing of queries to the selected model

via OpenRouter’s APIL.

214

buildSystenPrompt = ()

{r.record_

pet_weight} kg” : *Unknown'}

ompt = buildSystemPrompt();

Figure 6.68: Context Rich AI prompt for Al Chatbot

When a user submitted a message, the backend constructs a context-
rich prompt that included the selected pet’s profile such as breed, age, weight,
and medical history to ensure responses were tailored and relevant. The
request was sent with proper authentication headers (Authorization, HTTP-
Referer, X-Title) to OpenRouter, and the AI response was parsed and
displayed in a familiar messaging interface. A typing indicator provided visual

feedback during response generation, enhancing perceived responsiveness.

NROUTER_MODELS . some (m m.id === p
OUTER_MODELS . map(m m.id).filter(m m l== pi
m.id);

aiResponse =
usedModel = B

model modelorder) {

cor.lsole.log "l Try ${model});

Figure 6.69: Fallback logic for AI Chatbot

To ensure continuous availability, the system implemented Model
Control & Prioritization (MCP) logic. If the primary model failed or timed out,

the backend automatically retries the request with an alternative model,

215
minimizing downtime and maintaining service continuity. Users could rate

each Al message with 1-5 stars, and this feedback was securely stored in the

chat_history table in Supabase for future analysis and model improvement.

session_id

.select()

w userMsgError;

Figure 6.70: Save chat history immediately with a unique session_id

The chat maintained session continuity using a unique session_id,
allowing users to resume conversations with preserved context. When a
different pet was selected, the chat resets to ensure accurate, pet-specific
advice. All interactions were protected with JWT authentication, and the
frontend used secure storage via AsyncStorage to manage user sessions. This
module exemplified a robust integration of Al, personalization, and user-
centered design, delivering intelligent, context-aware pet care support in a

secure and engaging format.

6.5.2 Symptom Diagnosis

The Symptom Diagnosis module enabled users to perform Al-powered health
assessments by submitting descriptions of their pet’s symptoms. This function
was intended to assist pet owners in determining if the situation required
immediate veterinarian care and in assessing the severity of the problem.
When a user entered symptoms and selects a pet, the backend retrieved the
pet’s full profile and constructed a detailed prompt enriched with breed-

specific tendencies, age, weight, and existing health records.

216

. Follow this struc

Figure 6.71: Symptom Diagnosis Al Structured Context Prompt

This structured prompt was sent to OpenRouter, where an Al model
analyzed the input and returned a response formatted into key sections:
Diagnosis, Severity, Recommendation, Possible Causes, and Additional Notes.
The backend parsed this response using string matching and regular
expressions to extract each component, ensuring a clean, user-friendly display.
A severity level classified as Low Risk, Moderate Concern, or High Priority is
determined based on keywords in the AI’s output and displayed with a color-

coded badge (green, yellow, red) to help users quickly assess urgency.

Jinsert([
user_id

severity
1))
.select()
.single();

if (error) {
console.erro
return res.

1
5

Figure 6.72: Diagnosis Result is Saved in the symptom_history Table

The diagnosis result was saved in the symptom history table for
future reference, allowing users to track changes over time. A dedicated

Symptom History button opens a scrollable modal where past assessments can

217

be viewed or deleted. If no history exists, an empty state was shown with a

descriptive message.

return { id, name: names[id], context: cc

3)s

Figure 6.73: Al Fallback Logic for Symptom Diagnosis Screen

To ensure continuous availability, the system implemented Model
Control & Prioritization (MCP) logic. If the primary model failed or timed out,
the backend automatically retried the request with an alternative model,

minimizing downtime and maintaining service continuity.

]
if (!parsedResponse.diagnosis) {
return res.status(
error s ily . Please try again later.”,
fallback:

)3

Figure 6.74: Al Error Message If All Models Fail

In cases where the Al service was temporarily unavailable, a friendly
fallback message was displayed: “The Al service is temporarily down. Please
try again later.” This graceful degradation ensured a positive user experience
even during technical issues. Additionally, a non-intrusive disclaimer was
shown with every result: “This Al-powered symptom assessment was for
informational purposes only and should not be considered veterinary advice.”
This reinforced that the app was a supportive tool, not a replacement for

professional care.

218

The module included real-time validation, session-based state
management, and responsive design for consistent performance across devices.
By combining artificial intelligence, personalization, and responsible design,
the Symptom Diagnosis feature delivered timely, structured, and visually
intuitive pet health insights while emphasizing the importance of professional

veterinary consultation.

6.6 Automated Email Reminder System

To assist pet owners in remembering their pets’ vaccination schedules, the
PawHub app featured an efficient and dependable automated email reminder
system. This feature is particularly useful for tracking upcoming health events
such as vaccinations, deworming, check-ups, and other medical appointments.
By reducing the likelihood of missed appointments, the system supported

long-term pet wellness and reinforced responsible pet ownership.

reminderTime.setDate(reminderTime.getDate() - 1);

reminderTime.setHours(9, @, 0, @);

Figure 6.75: System Calculates the Reminder

When a user added a new health record with a future date and enabled
the “Enable Email Reminder” toggle, the backend automatically processed this
information and scheduled a notification. The system calculate the reminder
time by subtracting 24 hours from the event date and sets the time to 9:00 AM
for optimal user engagement. This ensured that the email was delivered one

day before the scheduled event, giving the owner sufficient time to prepare.

219

tch pet for reminder:', petError);

record_nam
pet_name:
record_dat

t supabase

onConflict: _id,user_id’ ¥
1y
I/

Figure 6.76: Scheduling Logic is implemented

The scheduling logic was implemented within the /health-records
POST endpoint. After a new record is successfully saved to the health records
table in Supabase, the backend checks if reminders are enabled and the date is
in the future. If so, it retrieved the associated pet’s name and constructed a
reminder object containing the user ID, pet ID, record ID, event name, pet
name, event date, and calculated reminder time. This data is then upserted into
the email reminders table, with a unique constraint on record id and user id

to prevent duplicate entries.

startemailchecker() {
setInterv.

r running at:', now.toISostring());

console.log(M Found ${data.length} pen

, reminder);
sendEmailRem

console.error(' X Email
1

, 60000);

¥

Figure 6.77: Email Reminder Checker Running Every 60 Seconds

220

To ensure timely delivery, a background task runs every 60 seconds
via setlnterval in the Node.js server. This email checker queries the
email reminders table for all records where the reminder time has passed and
the sent flag is still false. For each matching record, the system retrieved the
user’s email address using Supabase Auth’s admin API, then used Resend to
send a professionally formatted email with a clear subject line and HTML

body.

o PawHub

Hi there!

et.pet_name}</ g> has an upc

eminder.record_name}</1i>
${ Date(reminder.record_date).tolocaleDateString()}</1i>

For more information, pl ck the ub Applicatio

(b)
Figure 6.78(a)(b): Example Email Sent via Resend

The email content was personalized and included the pet’s name, the

type of health event, and the scheduled date.

(b)
Figure 6.79(a)(b): Reminder Marked as Sent in Database

Once the email was successfully sent, the sent field in the
email reminders table was updated to true, preventing the same reminder from
being sent again. Detailed logging was implemented throughout the process,
allowing developers to monitor successful deliveries and troubleshoot any

1SSues.

221

await supabase

.from('email_|
.delete()

if (reminderk
console.error

{
.from('h

Figure 6.80: Reminders deleted when health record deleted

The system also includes safeguards to maintain data integrity. When
a health record is deleted, the associated reminder is automatically removed
from the email reminders table to avoid orphaned entries. Additionally, a
daily cleanup function runs to identify and delete any reminders that no longer

have a corresponding health record, ensuring the database remains consistent.

data: user, error: userError } = await supabaseAdmin.auth.admin.getUserById(reminder.user id);

Figure 6.81: Email Address Accessed via Supabase Admin API

Security and privacy were prioritized throughout the implementation.
The user’s email address was only accessed via Supabase Admin API with
proper authentication, and all API keys (including RESEND API KEY) were
stored in environment variables using .env files. The entire process was
asynchronous and non-blocking, ensuring that the main application flow was
not affected by email operations.

This automated email reminder system exemplified a seamless
integration of backend logic, database management, and third-party services.
By combining real-time data processing, scheduled checks, and personalized
communication, PawHub delivers a valuable, user-centric feature that

promotes proactive pet care and enhances the overall user experience.

222

6.7 Web Scraping for Educational Content

The Education module in PawHub was powered by a dynamic web scraping
system that ensured users have access to fresh, reliable, and expert-backed pet
care information. The application integrated a weekly scraping process that
fetched articles from trusted sources such as the American Kennel Club
(AKC), ensuring that the knowledge base remains current and relevant. This
approach not only reduces maintenance overhead but also enhanced the app’s
value by delivering up-to-date guidance on topics like dog breeds, puppy care,

health, training, nutrition, travel, and fun facts.

Figure 6.82: Axios for HTTP requests

The scraping process was implemented using Node.js with the
libraries Axios for HTTP requests and Cheerio for parsing HTML content. A
dedicated script, scraper.js, was responsible for visiting predefined AKC
article pages, extracting key information, and structuring it into a standardized
format. For each article, the scraper collected the title, category, image URL,

and original link.

if (articles.l
{ dat ~ } = await supabase

from("z
.upsert(ar es, { onConflict: ['link’]
.select();

Figure 6.83: Scraper performs a link-based upsert operation

To ensure content integrity and avoid duplicates, the scraper
performed a link-based upsert operation when inserting data into the articles
table in Supabase. If an article with the same link already exists, it is updated,

otherwise, a new record is created. This mechanism guaranteed that only

223

unique articles were stored and that existing entries were refreshed if updated
on the source website.

The scraping task run weekly, it was manually updated by the
developer in the terminal. This timing was chosen to minimize server load and
ensure fresh content was available at the start of the weekend, when users were
more likely to engage with educational material. The GitHub Actions
workflow could be implemented as future enhancement to trigger the
scraper.js script in a Node.js environment, it can execute the scraping logic,
and securely connects to Supabase using environment variables to insert the

data.

{ name:

{ name:
{ name: *
{ name: *

Figure 6.84: Categorized based on the source URL

All scraped articles were categorized based on their source URL and
content structure. Categories included Dog Breeds, Puppy Info, Health,
Training, Nutrition, Travel, Sports, and Fun Facts, allowing users to easily
navigate and filter content within the app. Each article card in the Education
screen displayed the title, a thumbnail image, the category badge, and a “Read
More” button that opened the original webpage in the device’s default browser.
This design respects content ownership and licensing while providing

seamless access to authoritative information.

224

.content-card _title').text().trim();

b p').text().trim() ||
$(el).Find(" dek").text().trim() ||

- link = $(el).find('.content-card title").attr('href");

image =
$(el).find('img’

if (image && image.startsWith(
image = ‘https:' + image;

F

article = { title, summary, link, image, category: cat.name };

if (title && link) articles.push(article);

Figure 6.85: Script logs the error and Process other articles

Security and reliability were prioritized throughout the
implementation. The scraper included error handling for network failures, rate
limiting, and changes in page structure. If a source page was temporarily
unavailable or the HTML format changes, the script logs the error and
continues processing other articles, preventing a single failure from halting the
entire operation. Additionally, all API keys and database credentials were
stored in environment variables, ensuring sensitive data was never exposed in
the codebase.

By combining web scraping, scheduled execution, and secure
database integration, PawHub delivers a continuously updated educational
experience that empowers pet owners with trustworthy, expert-backed insights

without requiring manual updates or content creation.

6.8 Security Implementation

The PawHub application prioritized security across all layers of the system to
protect user data, ensure privacy, and maintain the integrity of sensitive
information such as pet health records and personal details. A multi-layered
security approach has been implemented that spans the frontend, backend,
database, and third-party integrations, ensuring that the application adhered to

modern best practices in mobile and web security.

225

(req, res, next) {
req.headers.authorization?.replac
return res.status(401).json({ error

= await e.auth.getUser
s.status(4e1) .json({ error: "Ir

(err) {
le.error(‘Auth midd
res.status(560).json({ err
3

Figure 6.86: Authentication Middleware and Supabase Auth

At the authentication level, PawHub leveraged Authentication
middleware and Supabase Auth for secure user sign-up, login, and session
management. This eliminated the need to handle raw passwords within the
application logic, as all credential verification was performed securely by

Supabase using industry-standard hashing and encryption.

.access toke

Figure 6.87: JWT (JSON Web Token) saved to storage

A JWT (JSON Web Token) was generated and saved in the device's
AsyncStorage upon successful authentication, this token was then used for
upcoming API queries. This token was validated on every request through a
custom authenticate middleware on the backend, ensuring that only authorized

users can access protected routes.

limiter = rateLimit({
windowMs: 15 * 60 * 1@ed,
max: 200,
standardHeaders: =
legacyHeaders:

1)

authLimiter = rateLimit({
windowMs: 15 * 60 * 1000,
max: 20,
message: { error: ny attempts. Try ain later.'
standardHeaders:
legacyHeaders:

1)

iter = rateLimit({

message: { error:
standardHeaders:
legacyHeaders:

1)

Figure 6.88: Express Rate Limits

226

To prevent abuse and protect against brute-force attacks, rate limiting
is enforced using express-rate-limit on key endpoints. The /auth/ routes were
limited to 20 attempts per 15 minutes, preventing repeated login attempts.
General API usage was capped at 200 requests per 15 minutes per IP, and
chat-related endpoints were limited to 20 messages per minute to discourage
spamming. These limits were applied globally and were transparently
managed by the Express server, enhancing system resilience without

impacting legitimate users.

fetchpets =
try
setLoading(78
token = i .getItem('acc

console.log(" ched tok oken);
if (ltoken) {

Authorization: ~Bearer ${token}

Figure 6.89: HTTPS-style practices

All communication between the React Native frontend and Node.js
backend was secured using HTTPS-style practiced via JWT-based
authentication. Every API request included an Authorization: Bearer <token>
header, which is validated before any data processing occurs. This ensured that
even if an endpoint is exposed, it cannot be accessed without proper
credentials. In order to mitigate typical online vulnerabilities like XSS and

clickjacking, the backend also used Helmet.js to specify secure HTTP headers.

227

Disable RLS Crsate policy

Users can manage their health records

Disable RLS Craate palicy

Figure 6.90: Row Level Security (RLS) policies in Supabase

The database layer was protected by Row Level Security (RLS)
policies in Supabase, which enforced strict data isolation. Users can only
access, modify, or delete records that belong to them. For example, a user
cannot view another user’s pet profiles, health records, chat history, or
symptom diagnoses even if they know the record ID. These policies were
defined directly in PostgreSQL and are enforced at the database level,

providing a robust defense against unauthorized data access.

* callback Error(Not

}
1

I
credentials:

)3

upload = multer({
storage: multer.memoryStorage(),
limits: { filesize: 5 * 1@24 * 1024 },

1s

Figure 6.91: Multers and Cors Configuration

File uploads, such as profile picture changes, were handled securely
using Multer middleware on the backend. When a user uploaded an image, it
was temporarily stored, validated for type and size, and then uploaded to the
Supabase Storage “avatars” bucket with appropriate access controls. Public

URLSs are generated for display in the app, but direct access to the storage is

228

restricted to authenticated users only. Default avatars were pre-uploaded and

referenced via secure signed URLSs, minimizing exposure.

if (!process.env.SUPABASE
throw

if (!process

throw

- - if ! C
import dotenv frc If (lprocess

dotenv.config();

(a) (b)
Figure 6.92(a)(b): Environment Variables

Sensitive configuration data, including API keys for OpenRouter,
Resend, and Supabase service roles, were stored in .env files and loaded using
the dotenv package. These files were excluded from version control
via .gitignore, preventing accidental exposure of secrets. The backend
validated the presence of all required environment variables at startup,

ensuring the server cannot run without proper configuration.

e.phone &&
s.phone = "

f (profile.password

e, number, and special

assword |== prof
onfirmPassword =

Figure 6.93: Input Validation

Besides, to stop injection attacks and corrupted data, input validation
was done on both the frontend and backend. On the frontend, all user inputs

were validated for registration, login, and profile updates. On the backend, all

229

incoming data was checked for type, format, and completeness before being
processed or stored. For example, email fields were validated using regex
patterns, phone numbers were checked for length, and password strength was

enforced during profile updates.

data: user, error: userkError } = await supabaseAdmin.auth.admin.getUserById(reminder.user id);

Figure 6.94: Supabase Admin API

Additionally, the backend used the Supabase Admin API with a
service role key to securely retrieve user emails for email reminders, ensuring
that this sensitive operation is performed only in a trusted environment. The
service role key was never exposed to the frontend and is strictly limited to
server-side use.

This comprehensive security strategy ensured that PawHub remained
a trustworthy and reliable platform for pet owners. By integrating secure
authentication, rate limiting, encrypted storage, input validation, and
environment isolation, the application protected user data at every level while

delivering a seamless and intuitive experience.

6.9 Conclusion
The implementation of PawHub demonstrated a successful integration of
modern mobile development, artificial intelligence, and secure backend
architecture to deliver a comprehensive pet care solution. The system
effectively combined user-centric design with intelligent features such as Al-
powered symptom diagnosis, virtual pet assistance, and personalized health
tracking to empower pet owners with timely, actionable insights. Each module
has been carefully developed and tested, ensuring a seamless and intuitive user
experience across all screens, from authentication and pet profile management
to education and feedback submission.

The frontend, built with React Native, provided a responsive and
visually appealing interface that maintained consistency across devices while
offering smooth navigation and real-time interactions. The backend, powered

by Node.js and Express.js, serves as a robust and secure gateway between the

230

client and external services, handling authentication, data processing, and API
routing with efficiency and reliability. By leveraging Supabase as the primary
database and authentication provider, the application ensured data integrity,
scalability, and strong security through Row Level Security (RLS) policies
that restrict user access to their own data.

Key advanced features such as the AI Chatbot and Symptom
Diagnosis module showcased the effective use of OpenRouter to deliver
context-aware responses personalized to each pet’s profile and medical history.
The Model Control & Prioritization (MCP) strategy ensured service continuity
by automatically falling back to alternative AI models when needed,
enhancing system reliability. Additionally, the automated email reminder
system, powered by Resend, supports preventive care by notifying users of
upcoming health events, while the weekly web scraper kept the Education
module updated with fresh, expert-backed content from trusted sources like
the American Kennel Club.

Security has been prioritized throughout the development process,
with JWT-based authentication, rate limiting, input validation, secure file
storage, and environment variable isolation working together to protect user
data and prevent abuse. The application adhered to best practices in data
handling and privacy, ensuring compliance with modern security standards.

Overall, the implementation of PawHub reflected a professional,
well-structured approach that successfully bridges the gap between pet owners
and virtual pet care assistance. This foundation not only met current functional
requirements but also supported future enhancements such as push
notifications, multi-language support, or integration with wearable pet devices.
With its robust architecture, intelligent features, and user-focused design,
PawHub stands as a scalable, real-world-ready mobile application that delivers
practical value to pet owners while demonstrating technical excellence in full-

stack development.

231

CHAPTER 7

TESTING

71 Introduction

The testing phase was a critical component in the development lifecycle of any
software application, ensuring that the system functioned as intended, met user
requirements, and maintained high standards of reliability, usability, and
security. For the PawHub Application, testing strategy was implemented to
validate all aspects of the system, from individual components to end-to-end
user workflows. The test conducted includes unit testing, system usability
testing, and user acceptance testing. The goal was to identify and resolve
defects early and enhance user experience. Testing was conducted iteratively
alongside development, following an Agile-inspired approach that allowed for
continuous feedback and improvement. All tests were documented, and results

were used to refine features, fix bugs, and optimize performance.

7.2 Test Execution

Test execution was carried out in a systematic manner across multiple
environments to ensure compatibility, functionality, and performance
consistency. The primary testing environment consisted of an Android Studio
Emulator (Pixel 4 API 30) to validate real-world performance. The backend
server was hosted locally at http://10.0.2.2:3000 to support emulator
connectivity, while Supabase served as the cloud database and authentication
provider. Each test cycle followed a predefined test plan that included test
objectives, input data, expected outcomes, and pass/fail criteria. Functional
testing was performed on all major modules: authentication, Al chatbot,
symptom diagnosis, pet and health record management, profile editing,
education, and feedback. Logs and error messages were monitored using
console outputs and Supabase logs to trace issues. Test results were recorded
in a structured format, and critical bugs were prioritized for immediate
resolution. This disciplined execution ensured that PawHub met functional

requirements and delivered a stable, user-friendly experience.

7.3

Unit Test

232

The unit testing phase focused on validating the core functionalities of the

PawHub application to ensure reliable and error-free performance. Each

module, including authentication, pet management, Al chatbot, symptom

diagnosis, profile management, education, and feedback, was tested in

isolation to verify correct behavior under various scenarios. The testing

covered input validation, form handling, API integration, error states, and user

interactions to confirm that individual components function as intended. This

rigorous approach ensured the application’s stability, usability, and readiness

for further testing stages.

Table 7.1: Unit Test Case - Login

Test Case | TC-001 Module Name Authentication
ID Module
Test Title | Login Screen
Pre -
Condition
Test Case | Execution Steps Expected Result | Actual Statu
Descriptio Result J
n
Valid 1. Enter registered | User logs in | Token Pass
credentials | email. successfully. JWT | stored.
login 2. Enter correct | token stored in | Navigation

password. AsyncStorage. successful.

3. Tap “Submit”. Navigate to Home

screen.

Empty 1. Leave email field | Error: “Email is | Error Pass
email field | empty. required.” Form | message

2. Enter password. | submission appears. No

3. Tap “Submit”. blocked. API call

made.

Empty 1. Enter email. | Error: “Password | Error Pass
password | 2. Leave password | cannot be empty.” | message

233

field empty. Form submission | appears. No
3. Tap “Submit”. blocked. API call
made.
Both fields | 1. Leave both email | Both errors | Both error | Pass
empty and password empty. | appear: “Email is | messages
2. Tap “Submit”. required” and | displayed.
“Password cannot
be empty.”
Invalid 1. Enter “invalid- | Backend returns | Backend Pass
email email” as email. | error. Frontend | rejects.
format 2. Enter valid | shows “Invalid | General
password. login credentials”. | error
3. Tap “Submit”. shown.
Correct 1. Enter correct | Backend returns | Backend Pass
email, email. error. App shows: | rejects.
wrong 2. Enter incorrect | “Invalid login | General
password password. credentials”. error
3. Tap “Submit”. shown.
Unregistere | 1. Enter unregistered | Backend returns | General Pass
d email email. error. App shows: | error
2. Enter any | “Invalid login | appears. No
password. credentials”. navigation.
3. Tap “Submit”.
Loading 1. Enter valid | Button shows | Spinner Pass
state credentials. Activity appears.
during 2. Tap “Submit”. Indicator. Cannot | Button
login 3. Observe button. be pressed again. | disabled.
Network I. Turn off Wi-| App shows: | Error Pass
error (no | Fi/data. “Unable to | message
internet) 2. Enter credentials. | connect. Please | displayed.
3. Tap “Submit”. check your
internet

connection.”

234

error.
Backend 1. Stop Node.js | Fetch fails. App | Error Pass
server server. shows: caught in
down 2. Attempt login. “Something went | catch block.

wrong. Please try | Message

again.” shown.
Secure 1. Type in password | Characters are | Password Pass
password | field. masked (*¥***). hidden
input during

input.
Case- 1. Enter | Login succeeds. | Login Pass
sensitive “User@Example.co | Email is handled | successful.
email m*. case-insensitively
handling 2. Submit with | by backend.
correct password.
Forgot 1. Tap “Forgot | Navigate to | Navigation | Pass
password password?” link. Forgot Password | occurs.
link Screen.
Sign up | 1. Tap “Don’t have | Navigate to | Navigation | Pass
link an account? Sign | Register Screen. occurs.
up”.

Rapid 1. Submit invalid | No client-side | After 20 | Pass
repeated login 5 times | rate limiting, but | attempts,
login quickly. backend blocks | “Too many
attempts after 20 attempts | attempts, try

(via express-rate- | again later”

limit). error

received.

Input text| 1. Enter email. | Fields are empty | Fields start | Pass

clearing on

re-entry

2. Navigate away.

3. Return to screen.

(unless auto-fill

enabled).

empty.

mailto:User@Example.com
mailto:User@Example.com

Table 7.2: Unit Test Case - Register

235

Test Case | TC-002 Module Name Authentication
ID Module
Test Title | Register Screen
Pre -
Condition
Test Case | Execution Steps | Expected Result Actual Status
Description Result
Valid 1. Enter wvalid | User is registered. | Registration | Pass
registration | username, email, | Success alert | successful.

phone, password, | appears. Redirect to | Navigation

and confirm | Login screen. occurs.

password.

2. Tap “Submit”.
Duplicate 1. Enter existing | Error: “An account | Error Pass
Email email. with this email | shown,

2. Fill other fields. | already exist” | Registration

3. Tap “Register”. | shown blocked.
Empty 1. Leave username | Error: “Username | Error Pass
username empty. is required.” Form | message

2. Fill other fields. | submission displayed.

3. Tap “Submit”. | blocked.
Invalid 1. Enter “invalid- | Error: “Please enter | Validation | Pass
email email” as email. |a valid email | prevents
format 2. Fill other fields. | address.” submission.

3. Tap “Submit”.
Missing 1. Leave phone | Error: “Phone | Error Pass
phone field empty. | number is | message
number 2. Fill other fields. | required.” shown.

3. Tap “Submit”.
Invalid 1. Enter “123” | Error: “Enter a Validation | Pass
phone (less than 10 | valid phone enforced.
number digits). number (1015

236

2. Fill other fields. | digits).”
3. Tap “Submit”.
Weak 1. Enter password: | Error: “Password | Submission | Pass
password “pass1”. must be at least 6 | blocked.
(short) 2. Fill other fields. | characters.”
3. Tap “Submit”.
Weak 1. Enter | Error: “Password | Validation | Pass
password “password123” must include | triggered.
(missing (no uppercase). | uppercase,
criteria) 2. Fill other fields. | lowercase, and a
3. Tap “Submit”. | number.”
Password 1. Enter password: | Error: “Passwords | Error Pass
mismatch “Pass123”. do not match.” message
2. Confirm: appears.
“Pass12”.
3. Tap “Submit”.
Network 1. Turn off Wi- | Error: “Unable to | General Pass
error (no | Fi/data. register. Please | error
internet) 2. Attempt | check your internet | message
registration. connection.” shown.
Backend 1. Stop Node.js | App shows: | Error Pass
server down | server. “Something went | caught and
2. Attempt | wrong. Please try | displayed.
registration. again.”
Loading 1. Enter valid | Button shows | Spinner Pass
state during | data. Activity Indicator. | appears.
submission | 2. Tap “Submit”. | Cannot be pressed | Button
3. Observe button. | again. disabled.
Navigate to | . Tap “Already | Navigate to Login | Navigation | Pass
Login have an account? | Screen. occurs.
screen Login”.

Table 7.3: Unit Test Case - Forgot

237

Test Case | TC-003 Module Name Authentication
ID Module
Test Title Forgot Screen
Pre -
Condition
Test Case | Execution Expected Result Actual Status
Description | Steps Result
Valid email | 1. Enter | Success message: | Message Pass
submission | registered “Password reset link | shown.
email. sent.” Redirect to Login | Navigation
2. Tap | after 3 seconds. to Login
“Submit”. occurs.
Empty email | 1. Leave | Error: “Email is | Error Pass
field email empty. | required.” Form | message
2. Tap | submission blocked. appears.
“Submit”.
Invalid 1. Enter | Error: “Please enter a | Validation Pass
email format | “invalid- valid email address.” prevents
email”. submission.
2. Tap
“Submit”.
Unregistered | 1. Enter | No error (security best | App shows | Pass
email unregistered | practice). Generic | success to
email. success message | avoid
2. Tap | shown. exposing
“Submit”. account
status.
Loading 1. Enter | Button shows Activity | Spinner Pass
state during | valid email. | Indicator. Cannot be | appears.
submission | 2. Tap | pressed again. Button
“Submit”. disabled.
3. Observe

238

button.
Network 1. Turn off | Error: “Unable to send | General error | Pass
error (no | Wi-Fi/data. | reset link. Please check | message
internet) 2. Attempt | your internet displayed.
submission. | connection.”
Backend 1. Stop | Error: “Network error. | Error caught | Pass
server down | Node.js Please try again.” in catch
server. block.
2. Attempt
reset.
Navigate 1. Tap | Navigate to Login | Navigation Pass
back to | “Back to | Screen. occurs.
Login Login” link.
Success 1. Submit | Green success message: | Message Pass
message valid email. | “Password reset link | displayed
visibility 2. Observe | sent to your email.” clearly.
feedback.
Table 7.4: Unit Test Case - Al Chatbot
Test Case | TC-004 Module Name Al Chatbot Module
ID
Test Title Al Chatbot Screen
Pre -
Condition
Test Case | Execution Expected Result Actual Status
Description | Steps Result
Send 1. Select a pet. | Al responds with | Response Pass
message 2. Type “How | relevant advice. | received
with valid | do I train my | Message appears in | and
input puppy?”’ chat. displayed.
3. Tap send.
Empty 1. Leave input | No message sent. Input | Send button | Pass

239

message field empty. | field remains | disabled.
input 2. Tap send. unchanged. No action.
Loading I. Send a| Typing indicator | Indicator Pass
state during | message. (animated dots) | shown until
response 2. Wait for Al | appears. Send button | response
response. disabled. received.
Switch pet|1. Send a|Chat clears. New | Messages Pass
resets chat message. session starts. reset.
2. Select a Session 1D
different pet. regenerated.
Rate Al | 1. Receive Al | Rating saved in | Rating Pass
response (1— | response. chat_history table. | updated in
5 stars) 2. Tap stars to | Visual feedback | Supabase.
rate (e.g., 5). shown.
Select 1. Tap model | Request sent to Correct Pass
different Al | selector. selected model. model used.
model 2. Choose | Response received. Response
“Mistral-7B- generated.
Instruct”.
3. Send
message.
Network 1. Turn off | Friendly fallback: | Error Pass
error during | internet. “Check your | message
message 2. Send | connection. For urgent | displayed.
send message. concerns, contact your
vet.”
Backend 1. Stop | App shows fallback | Graceful Pass
server down | Node.js message. No crash. error
server. handling.
2. Send
message.
Clear chat | 1. Tap “Clear | Chat history cleared. | Messages Pass
confirmation | Chat”. New session starts. removed.

240

2. Confirm in Session

alert. reset.
Health 1. Add health | Badge shows: “X | Badge Pass
records records for | health records loaded”. | appears
badge selected pet. with correct
visibility 2. Open chat. count.
Model 1. Tap model | Modal shows: | All models | Pass
selector selector. Microsoft MAI DS R1, | listed with
displays Mistral-7B-Instruct, context
correct Horizon Alpha. sizes.
names
User avatar | 1. User has | Avatar appears in user | Image Pass
displays custom profile | message bubble. loaded from
correctly picture. Supabase

2. Send URL.

message.
Bot avatar [1. Pet has| Al message shows | Correct Pass
displays pet | profile pet’s avatar. image
image picture. displayed.

2. Receive Al

response.

Table 7.5: Unit Test Case - Symptom Diagnosis
Test Case | TC-005 Module Name Symptom Diagnosis
ID Module
Test Title Symptom Diagnosis Screen
Pre -
Condition
Test Case | Execution Expected Result | Actual Result | Status
Description | Steps
Submit 1. Select a pet. | Al returns | Response Pass
symptoms | 2. Enter | structured received and

241

with valid | “vomiting, diagnosis with | displayed
input lethargic” in | severity, correctly.

symptoms recommendation,

field. possible causes,

3. Tap | and additional

“Analyze notes.

Symptoms”.
Empty 1. Leave | Error: “Please | Validation Pass
symptoms | symptoms field | describe your pet’s | triggered.
field empty. symptoms.” No | Form blocked.

2. Tap | API call made.

“Analyze

Symptoms”.
Loading 1. Enter valid | Button shows | Spinner with | Pass
state during | symptoms. loading indicator | words appears.
analysis 2. Tap | with “Analyzing | Button

“Analyze symptoms...”. disabled.

Symptoms”. Disabled during

3. Observe | processing.

button.
Severity 1. Submit | Red badge: “High | Correct color | Pass
badge symptoms Priority”. Color- | and label
displays indicating coded based on | displayed.
correctly emergency severity.

(e.g.,

“seizures”).

2. View result.
View past | 1. Tap | Modal shows all History loaded | Pass
assessments | “Symptom previous from

History” assessments with symptom_histo

button. date, pet, and ry table.

2. View list of

past diagnoses.

severity.

242

Delete past | 1. Open | Entry removed | Record deleted | Pass
assessment | Symptom from list and | in Supabase.

History. database.

2. Tap delete

on an entry.

3. Confirm.
Network I. Turn off | Friendly fallback: | Error message | Pass
error during | internet. “Unable to get | displayed.
diagnosis 2. Submit | diagnosis. Please | Retry button

symptoms. try again later.” shown.
Backend 1. Stop Node.js | Friendly fallback: | Error message | Pass
server down | server. “Unable to get | displayed.

2. Submit | diagnosis. Please | Retry button

symptoms. try again later.” shown.
Al response | 1. Receive Al | Response parsed | Content Pass
parsing response. into sections: | correctly
(structured | 2. View | Diagnosis, extracted and
output) diagnosis card. | Recommendation, | formatted.

Possible Causes,
Additional Notes.

Empty I. No past | Modal shows: “No | Empty state | Pass
history state | assessments. assessments yet.” | displayed

2. Tap correctly.

“Symptom

History™.
Disclaimer | 1. Open | Modal appears: | Disclaimer Pass
modal Symptom “This is for | shown.

Diagnosis informational

screen and | purposes only...”

press info icon.

Table 7.6: Unit Test Case - Pet Management

243

Test Case | TC-006 Module Name Pet Management
ID Module
Test Title Pet Management Screen
Pre -
Condition
Test Case | Execution Steps | Expected Result | Actual Status
Description Result
Add new pet | 1. Tap “+” button. | Pet appears in list. | Pet added | Pass
with valid | 2. Enter valid | Data saved in pets | successfully.
data name, breed, | table. Success

birthday, weight. | toast shown.

3. Upload photo

(optional).

4. Tap “Save”.
Empty pet | 1. Tap “Add Pet”. | Error: “Pet name is | Validation Pass
name 2. Leave name |required.” Form | triggered.
validation empty. submission

3. Tap “Save”. blocked.
Future 1. Set birthday to | Error: “Date | Future date | Pass
birthday next year. cannot be in the | submission
validation 2. Tap “Save”. future.” blocked.
Invalid 1. Enter negative | Error: “Weight | Validation Pass
weight entry | or non-numeric | must be a positive | prevents

weight. number.” save.

2. Tap “Save”.
Invalid 1. Enter “xyz” as | Error: “Must be a | Prevents Pass
height entry | height. valid number.” submission.
(non- 2. Tap “Save”.
numeric)
Edit existing | 1. Tap “Edit” on a | Updated info | Changes Pass
pet profile pet. reflected in list and | saved in

2. Change breed | database. Supabase.

244

or weight.
3. Tap “Save”.
Delete apet | 1. Tap “Delete” | Pet removed from | Record and | Pass
on a pet. list. All associated | related data
2. Confirm in | health records removed.
alert. deleted.
Cancel 1. Tap “Delete”. | No deletion | Pet remains | Pass
delete action | 2. Tap “Cancel” | occurs. in list.
in alert.
Image 1. Tap image | Image displayed in | Photo Pass
upload from | placeholder. pet card. URL | uploaded to
gallery 2. Choose | saved in database. | Supabase
“Gallery”. Storage.
3. Select image.
Image 1. Tap 1image | Photo appears in | Image saved | Pass
upload from | placeholder. pet profile. and
camera 2. Choose displayed.
“Camera”.
3. Take photo.
Select 1. Tap 1image | Selected avatar | Default Pass
default placeholder. displayed. image URL
avatar 2. Choose a saved.
default pet icon
(dog, cat, etc.).
Add health | 1. Select a pet. | Record appears in | Record Pass
record with | 2. Tap “Add | list. Saved in | created
valid data Record”. health_records successfully.
3. Enter wvalid | table.
name, date, cause.
4. Tap “Save”.
Empty 1. Leave record | Error: “Record | Form Pass
health name empty. | name is required.” | blocked.

record name

2. Tap “Save”.

245

Empty 1. Leave record | Error: “Date is | Form Pass
health date empty. | required.” blocked.
record date | 2. Tap “Save”.
Future date | 1. Set date to next | Entry created in | Reminder Pass
with week. email_reminders scheduled
reminder 2. Enable “Email | table. successfully.
enabled Reminder”.

3. Save.
View health | 1. Select a pet | Records displayed | Correct Pass
records list | with records. | in chronological | sorting

2. View list. order. applied.
Edit existing | 1. Tap “Edit” on a | Updated info | Changes Pass
health pet’s health | reflected in list and | saved in
record record. database. Supabase.

2. Change health

record name.

3. Tap “Save”.
Delete 1. Swipe or tap | Record removed | Deletion Pass
health delete on a|from list and | confirmed in
record record. database. Supabase.

2. Confirm.
Network 1. Turn off | Error: “Something | Friendly Pass
error during | internet. went wrong. | error
pet save 2. Try to save. Please try again.” | message

shown.

Backend 1. Stop Node.js | App shows error: | Graceful Pass
server down | server. “Could not add | error

2. Attempt to |pet. Please try | handling.

save.

again”.

Table 7.7: Unit Test Case - Profile Management

246

Test Case | TC-007 Module Name Profile Management
ID Module
Test Title Profile Management Screen
Pre -
Condition
Test Case | Execution Steps | Expected Result | Actual Status
Description Result
Load profile | 1. Navigate to | Email, username, | Data loaded | Pass
on screen | Profile screen. | phone, and avatar | from
open 2. Wait for data to | are displayed. backend and

load. shown.
Edit profile | 1. Tap “Edit”. | Updated info | Changes Pass
information | 2. Change | saved in profiles | reflected in

username. table. Success | database.

3. Tap “Save | toast shown.

Changes”.
Save with | 1. Enter new | Password updated | Login still | Pass
valid strong password. | in Supabase Auth. | works with
password 2. Confirm | No error. new
change password. password.

3. Save.
Password 1. Enter new | Error: “Passwords | Validation Pass
mismatch password. do not match.” | prevents
validation 2. Confirm with | Form blocked. submission.

different text.

3. Tap “Save”.
Weak 1. Enter | Error: “Must | Submission | Pass
password “pass123” as | include uppercase, | blocked.
validation password. lowercase,

2. Save. number, and

symbol.”

Empty email | 1. Leave email | Error: “Email is Form Pass

247

field empty. required.” validation

2. Save. triggered.
Invalid 1. Enter “invalid- | Error: “Please | Prevents Pass
email format | email”. enter a valid | invalid

2. Save. email”. submission.
Short 1. Enter “ab” as | Error: “Username | Validation Pass
username username. must be at least 3 | enforced.
validation 2. Save. characters.”
Long 1. Enter 31+ | Error: “Username | Input Pass
username character cannot exceed 30 | blocked.
validation username. characters.”

2. Save.
Invalid 1. Enter “123” as | Error: “Enter a | Prevents Pass
phone phone. valid phone | save.
number 2. Save. number (10-15

digits).”

Upload 1. Tap avatar. | Image uploaded to | New image | Pass
profile 2. Choose | Supabase Storage. | appears in
photo from | “Gallery”. Avatar updated. profile.
gallery 3. Select image.
Take photo | 1. Tap avatar. | Photo captured, | Avatar Pass
using 2. Choose | cropped, and | updated
camera “Camera”. uploaded. with new

3. Take photo. photo.
Select 1. Tap avatar. | Selected avatar | Default Pass
default 2. Choose a|displayed. =~ URL | image
avatar default user | saved in database. | shown.

image.
Cancel 1. Tap avatar. | Modal closes. No | Profile Pass
image 2. Tap outside | changes made. remains
picker modal. unchanged.
Log out 1. Tap “Log Out”. | Session cleared. | User logged | Pass

Redirect to Login

out

248

screen. successfully.
Delete 1. Tap “Delete | No deletion. Back | Account Pass
account Account”. to profile. remains
confirmation | 2. Tap “Cancel”. active.
Delete 1. Tap “Delete | Account deleted. | Data Pass
account Account”. Redirect to Login. | removed
(confirm) 2. Tap “Delete”. from
Supabase.

Loading 1. Edit profile. | Button shows | Prevents Pass
state during | 2. Tap “Save | loading spinner. | duplicate
save Changes”. Disabled during | submission.

3. Observe | request.

button.
Network 1. Turn off | Error: “Something | Friendly Pass
error during | internet. went wrong. | error
save 2. Try to save | Please try again.” | message

changes. shown.
Backend 1. Stop Node.js | App shows error. | Graceful Pass
server down | server. No crash. error

2. Attempt to handling.

save.

Table 7.8: Unit Test Case - Education

Test Case | TC-008 Module Name Education Module
ID
Test Title Education Screen
Pre -
Condition
Test Case | Execution Expected Result Actual Status
Description | Steps Result
Load 1. Navigate to | Articles fetched from | List Pass
articles on | Education /articles endpoint and | populated

249

screen open | screen. displayed. with
2. Wait for content.
data to load.
Search 1. Type | Only articles with | Filtered list | Pass
articles by | “small dog” in | matching title appear. | shown.
title search bar.
2. Observe
results.
Clear search | 1. Enter text. | Search field clears. | All articles | Pass
query 2. Tap “X” | Full article list | reappear.
button. restored.
Select 1. Tap | Only articles under | Filtering Pass
category “Health” tab. | “Health” category are | applied
filter (e.g., | 2. Observe | shown. correctly.
Health) list.
Switch 1. Tap | Article list updates to | Content Pass
between “Nutrition”. match selected | changes
categories 2. Then tap | category. dynamically.
“Travel”.
View article | 1. Tap on an | Opens external Original Pass
details article card. browser via webpage
Linking.openURLY() opens in
using the article’s link. | browser.
Empty 1. Search for | Show: “No results for | Empty state | Pass
search “xyz123” (no | ‘xyzl123’*. displayed.
results match).
Default 1. Open | Show all articles | Full list | Pass
view (All | screen or | without filtering. displayed.
category) select “All”.
Image 1. Article has | Display paw icon | Placeholder | Pass
placeholder | no image. | placeholder. shown
for missing | 2. View card. correctly.

image

250

Read More | 1. Tap “Read | Open article link in | Browser Pass
button More” on a | browser. Same as | opens with
functionality | card. tapping the card. correct
URL.

Scrollable 1. Scroll | Tabs move smoothly. | Horizontal Pass
category horizontally All categories | scroll works.
tabs through accessible.

category tabs.
Network 1. Turn off | Show error: “Could | Alert shown. | Pass
error internet. not load articles. | Empty state
handling 2. Open | Please try again.” with retry.

Education

screen.
Backend l. Stop | App shows alert and | Graceful Pass
server down | Node.js empty state with | error

server. refresh option. handling.

2. Open

screen.

Table 7.9: Unit Test Case - Feedback

Test Case | TC-009 Module Name Feedback Module
ID
Test Title Feedback Screen
Pre -
Condition
Test Case | Execution Expected Result Actual Status
Description | Steps Result
Submit 1. Select 4 | Success toast: | Feedback Pass
feedback stars. “Feedback submitted | saved in
with wvalid | 2. Enter | successfully”. feedback
input “Great app for table with

251

pet care”. success

3. Tap toast.

“Submit

Feedback™.
Empty 1. Leave text | Error: “Please share | Validation Pass
feedback field empty. | your experience | prevents
text 2. Tap | before submitting”. | submission.
validation “Submit Form blocked.

Feedback™.
Rating 1. Tap 1 star. | Rating updates | Correct star | Pass
selection (1— | 2. Tap 5 stars. | visually and in state. count
5 stars) reflected.
Loading 1. Enter valid | Button shows | Prevents Pass
state during | feedback. “SUBMITTING...” duplicate
submission | 2. Tap | and disables. submission.

“Submit”.

3. Observe

button.
View past | 1. Tap “View | Modal opens showing | Data loaded | Pass
feedbacks Past all submitted | from

Feedbacks”. feedback. /feedback

endpoint.

Past 1. Open | Show: “Loading your | Spinner Pass
feedbacks history modal. | feedback...”. appears
loading state | 2. Wait for during fetch.

data.
Empty 1. No | Show: “No feedback | Empty state | Pass
feedback feedback submitted yet”. displayed.
history submitted.

2. Open

history modal.
Close 1. Open | Modal closes. Back to | Navigation | Pass
history modal. feedback form. works

252

modal 2. Tap “X” or smoothly.
back button.
Success 1. Submit | Toast slides in: | Notification | Pass
notification | feedback. “Success! Feedback | shown and
visibility 2. Observe | submitted auto-
top of screen. | successfully”. dismissed.
Disappears after 3
seconds.
Network 1. Turn off | Alert: “Could not | Error Pass
error during | internet. submit feedback. | handled
submission | 2. Try to | Please try again.” gracefully.
submit.
Backend 1. Stop | App shows error alert. | Graceful Pass
server down | Node.js No crash. error
server. handling.

2. Attempt to

submit.

253

7.4 System Usability Scale (SUS) Test

System usability testing was carried out in order to assess the PawHub
application's general usability, interface design, and simplicity of navigation.
A group of ten pet owners, were invited to interact with the app in a controlled
environment. Each participant was asked to complete the standardized System
Usability Scale (SUS) questionnaire, a trustworthy and often used instrument
for evaluating software system’s perceived usability. The SUS consists of 10

Likert-scale statements designed to assess learnability, efficiency, and user

confidence.
The System Usability Scale Strongly Strongly
Standard Version Disagree Agree
1 2 3 435
| think that | would like to use this system
1 O|0O|O|D|O
frequently.
| found the system unnecessarily complex. o|Oo|Oo|O|0O
| thought the system was easy to use. o|ojo|o|O

| think that | would need the support of a technical
person to be able to use this system.

| found the various functions in this system were
well integrated.
| thought there was too much inconsistency in this

6 O|O|O|O0|0O
system.

5 1 woulg imagine that m?st people would learn to ololololo
use this system very quickly.

8 | found the system very awkward to use. O({ojoJjO|0

9 | felt very confident using the system. o|oflOo|Of0O
| needed to learn a lot of things before | could get

10 g|ojojoj0O

going with this system.

Figure 7.1: Standard SUS Test Questions (Item Benchmarks for the System
Usability ScaleJUS, no date)

A globally recognized and proven technique for evaluating the
general usability of software systems, the System Usability Scale (SUS)
consists of 10 standardized questions, as shown in Figure 7.1. These questions
were developed by John Brooke in 1986 and are designed to evaluate key
aspects of user experience, including learnability, efficiency, ease of use, and
user confidence (Item Benchmarks for the System Usability ScaleJUS, no
date). The SUS uses a 5-point Likert scale for each statement, allowing for

quantitative measurement of usability.

254

SUS Score Grade Adjective Rating

>80.3 A Excellent
68 — 80.3 B Good
68 C Okay
51-68 D Poor
<51 F Awful

Figure 7.2: SUS Grading Table (Shei, 2023)

This benchmark table categorized SUS scores into descriptive
adjective ratings, allowing for intuitive interpretation of the results. An
average score of 68 is considered the industry average. Scores above 80.3 are
classified as “Excellent”, indicating a highly usable and satisfying user
experience. The grading scale provides a clear framework for evaluating

PawHub’s performance against established usability standards.

Please indicate how strongly yeu agree or disagree with the following staternents about your experience using the PawHub applieation. Select ne option per statement

" e i s K e »
K o e e o e o o R e

Figure 7.3: SUS Survey Response Chart

The visual representation of user responses highlights consistent
agreement with positive usability indicators. Most participants strongly agreed
with statements such as “I thought the app was easy to use” and “I felt very
confident using the app.” Even-numbered reverse-scored items (e.g., “I found
the app unnecessarily complex™) received low ratings, indicating users
disagreed with negative usability claims. This pattern reflects a generally

positive user experience across all tested features

255

Table 7.10: SUS Survey

Participants | Scores for each Question Total
1 |2 (3 (4 (5 |6 (7 |8 (9 |10

1 4 |1 |5 |1 |4 |1 |5 |1 |5 |2 92.50
2 S (1 (5 |1 (5 |1 |5 |1 |5 |1 100.00
3 4 (2 |4 (2 |4 (2 |4 |1 |3 |3 72.50
4 4 |2 |5 |2 |5 |2 |5 |1 |5 |1 90.00
5 4 |3 |4 |2 |4 |3 |4 |2 (4 |2 65.00
6 5 |1 (5 |1 (5 |1 14 |1 14 |1 95.00
7 4 |3 |4 |2 |4 |2 |4 |2 (4 |2 72.50
8 4 |2 |5 |1 (4 |1 (4 (2 |5 |1 87.50
9 5 12 |5 |1 |4 |1 (4 |1 |4 |1 90.00
10 4 |2 (3 |2 |4 |2 |3 |2 |3 |2 67.50
Average Sus Score 83.25
Grade A Adjective Rating Excellent

The individual SUS scores were calculated using the official formula:
for odd-numbered items, (Score - 1) x 2.5, for even-numbered items, (5 -
Score) x 2.5. The total for each participant was summed to produce a final
score out of 100. As shown in the table, most participants scored between 87.5
and 100, indicating a highly positive perception of the app’s usability.

The average SUS score of 83.25 places PawHub firmly in the
“Excellent” category according to standard benchmarks. This result reflects a
highly usable, intuitive, and efficient application. Users were able to complete
tasks with confidence, found the interface easy to navigate, and reported
minimal frustration during interaction.

Overall, the SUS test results confirm that PawHub delivers a user-
centered, accessible, and highly satisfying experience. The app successfully
balances advanced functionality with simplicity, making it appropriate for a
variety of users, including those who are not as tech-savvy. These findings
validate the effectiveness of the design decisions and iterative testing process

employed during development.

256

7.5 User Acceptance Test

Five users participate in the User Acceptance Testing (UAT) portion of this
project. Users were provided with realistic scenarios in order to evaluate the
application’s functionality, usability, and reliability under real-world
conditions. The testing focused on core modules including authentication, pet
management, health records, Al-powered features, education, feedback, and
profile management. Each participant was asked to complete a series of tasks
while providing feedback on their experience. The structured test template
below outlines the UAT findings. Detailed observations and user comments

were documented in Appendix C: User Acceptance Test Results.

Table 7.11: User Acceptance Testing Template for User

PawHub Application

Test Test Case | Test Scenario Status | Comment

Module ID

Register UAT-001 | Able to register a new | Pass
account with valid
username, email, phone, and
password.

Login UAT-002 | Able to log in with valid | Pass
credentials.

Forgot UAT-003 | Able to reset password using | Pass

Password registered email.

Pet UAT-004 | Able to add a new pet with | Pass

Management photo, name, breed,

birthday, weight, and height.

UAT-005 | Able to edit existing pet | Pass
profile.

UAT-006 | Able to delete a pet and | Pass
confirm associated records

are removed.

Health UAT-007 | Able to add a health record | Pass

Records with future date and enable

257

email reminder.

UAT-008 | Able to receive email | Pass
reminder 24 hours before
scheduled event.

UAT-009 | Able to edit existing health | Pass
records.

UAT-010 | Able to delete a health | Pass
record and confirm
associated email reminders
are removed.

Al Chatbot | UAT-011 | Able to send message to Al | Pass
chatbot and receive relevant
response.

UAT-012 | Able to switch between Al | Pass
models.

UAT-013 | Able to switch between Pets. | Pass

UAT-014 | Able to rate Al message with | Pass
1-5 stars.

Symptom UAT-015 | Able to submit symptoms | Pass

Diagnosis and receive Al-generated
diagnosis with severity level.

UAT-016 | Able to view and delete past | Pass
symptom assessments.

Education UAT-017 | Able to search articles and | Pass
filter by category.

UAT-018 | Able to tap article to open | Pass
original article webpage.

Feedback UAT-019 | Able to submit feedback | Pass
with rating and comment.

UAT-020 | Able to view past feedback | Pass
submissions.

Profile UAT-021 | Able to update username, | Pass

258

Management phone, and password.

UAT-022 | Able to wupload profile | Pass
picture from gallery or
camera.

UAT-023 | Able to select default avatar. | Pass

UAT-024 | Able to log out. Pass

UAT-025 | Able to delete account. Pass

All 25 test cases passed across 5 participants, confirming that

PawHub is stable, user-friendly, and ready for deployment. The UAT results

demonstrate strong alignment between the app’s design and user needs,

particularly in Al assistance, health tracking, and ease of use. Detailed

qualitative feedback from wusers is included in Appendix C, supporting

continuous improvement and future enhancements.

259

CHAPTER 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

The PawHub application has been successfully developed as a comprehensive,
Al-powered mobile application created to tackle the main issues pet owners
encounter while trying to manage the health and wellbeing of their animals.
The system integrates artificial intelligence, cloud-based data storage, and
user-centered design to deliver a seamless and intelligent pet care experience.

By combining an Al chatbot, symptom diagnosis tool, digital health
record management, and curated educational content, PawHub fills a critical
gap in the current pet care technology landscape. Unlike existing applications
that offer fragmented or isolated features, PawHub provides a unified platform
where users can access real-time Al support, track medical history, receive
timely health reminders, and obtain expert-backed information all within a
single, intuitive interface.

The implementation leverages a React Native frontend, a secure
Node.js backend, and Supabase as the unified database and authentication
provider. Key features including the AI Chatbot, Symptom Diagnosis, Pet and
Health Record Management, and Educational Content Delivery have been
rigorously tested and validated through unit testing, system usability testing,
and user acceptance testing, demonstrating high functionality, reliability, and
user satisfaction.

The integration of Al capabilities via OpenRouter.ai enables context-
aware interactions that are personalized to each pet’s profile, significantly
enhancing the app’s value as a virtual pet care assistant. The automated email
reminder system ensures timely notifications for vaccinations and check-ups,
promoting responsible pet ownership. Additionally, the web scraping
mechanism for educational content ensures that users receive up-to-date,
expert-backed information from trusted sources such as the American Kennel

Club (AKC).

260

Security measures such as JWT-based authentication, Row Level
Security (RLS), input validation, and environment variable isolation ensure the
protection of sensitive user and pet data. Overall, PawHub stands as a robust,
scalable, and user-centered mobile application that effectively bridges the gap
between pet owners and virtual veterinary support, providing a holistic, all-in-
one solution for managing multiple pets and addressing their everyday health

and care concerns.

8.2 Achievement of Objectives
All project objectives have been successfully achieved, demonstrating the
effectiveness and completeness of the PawHub application.

The first objective, to develop an Al-powered chatbot with support
for multiple AI models was fulfilled by integrating OpenRouter.ai, enabling
users to interact with models such as Microsoft MAI DS R1, Mistral-7B-
Instruct, and Horizon Alpha. This allows personalized, context-aware
responses to pet care inquiries, enhancing the reliability and depth of
assistance.

The second objective, to implement an Al-driven symptom diagnosis
tool was accomplished through a structured analysis of user-reported
symptoms, delivering Al-generated assessments with severity levels and
recommendations, helping users determine the urgency of veterinary visits.

The third objective, to create a structured digital health record
management system was realized with the implementation of Supabase
powered CRUD operations for pet profiles and medical records, including
vaccination logs, treatment history, and email reminders for upcoming events.

Finally, the fourth objective, to offer educational resources via web
scraping was achieved by the collection of expert-backed articles from AKC,
ensuring users have access to credible, regularly updated pet care knowledge.
These achievements collectively confirm that PawHub meets its intended

purpose as a holistic pet care assistant.

8.3

261

Limitation & Recommendations

Even though the objectives were effectively met throughout the project,

several limitations were found within the application during the development

and testing phases. These limitations are shown in the table below along with

the recommendations for future revisions to optimize the performance of the

application.
Table 8.1: Limitations and Recommendations
No. | Limitations Recommendations
1 No offline capabilities, the app | Implement offline data storage

requires an active internet
connection for core features such
as Al chatbot, symptom
diagnosis, and article loading.
Users cannot access or update pet

records when offline.

using SQLite or AsyncStorage to
allow users to view pet profiles,
add/edit health records, and draft
messages while offline. Sync data

when the connection is restored.

Web scraping is done manually,

articles are not automatically
updated as GitHub Actions were
not implemented. This reduces
the timeliness and scalability of

the education module.

Integrate GitHub Actions or a

cloud-based scheduler

(e.g.,
Supabase Cron, AWS Lambda) to
automate the web scraping process

weekly for fresh, up-to-date

content.

Limited source of educational
content. Currently, articles are
only scraped from the American
Club (AKC). This
the

Kennel

restricts diversity and

coverage of pet care topics.

Expand the web scraper to include
additional reputable sources such
as ASPCA, PetMD, and AKC’s
international counterparts to

provide broader, more diverse

content.

No multi-language support.
Because the app is presently only
available in English, users who do
not speak English may find it

difficult to use.

Add multiple language support
using an internationalization (i18n)
include

library to common

languages such as Spanish,

Mandarin, or Bahasa Malaysia,

262

improving global accessibility.

No push notifications. The app
relies solely on email reminders
for upcoming health events,
which may be overlooked or

marked as spam.

Integrate Firebase Cloud

Messaging (FCM) to deliver real-

time push notifications for

reminders, Al responses, and

system updates, improving user

engagement and reliability.

263

REFERENCES

Agile software development: everything you need to know (2024)
www.nexapp.ca. Available at: https://www.nexapp.ca/en/blog/agile-software-
development.

Appleby, R.B. and Basran, P.S. (2022) ‘Artificial intelligence in veterinary
medicine’, Journal of the American Veterinary Medical Association, 260(8),
pp. 1-6. Available at: https://doi.org/10.2460/javma.22.03.0093 .

asierr.dev (2024) 5 Supabase Features That Make It the Best Backend for
Startups, Medium. Available at: https://medium.com/@asierr/5-supabase-
features-that-make-it-the-best-backend-for-startups-b0c8340b7200 (Accessed:
17 April 2025).

Atlassian (2024) Waterfall Methodology for Project Management, Atlassian.
Available at: https://www.atlassian.com/agile/project-management/waterfall-
methodology.

Build Documentation | Firebase Documentation (no date) Firebase. Available
at: https://firebase.google.com/docs/build.

Figma Design — Figma Learn - Help Center (2024) Figma.com. Available at:
https://help.figma.com/hc/en-us/categories/360002042553.

Flutter ~documentation (no date) docs.flutter.dev. Available at:
https://docs.flutter.dev/? gl=1.

GitHub (2024) GitHub.com Help Documentation, docs.github.com. Available
at: https://docs.github.com/en.

GitHub Logo Download - SVG - All Vector Logo (2016) AllVectorLogo.
Available at: https://allvectorlogo.com/github-logo/ (Accessed: 22 April 2025).
Guo, D. et al. (2024) DeepSeek-Coder: When the Large Language Model
Meets Programming -- The Rise of Code Intelligence, arXiv.org. Available at:
https://doi.org/10.48550/arXiv.2401.14196.

Hill, P. (2024) Visual Studio Code 1.94 launched with big startup speed
improvements, Neowin. Available at: https://www.neowin.net/news/visual-
studio-code-194-launched-with-big-startup-speed-improvements/.

Interino, J. (2022) Figma for your Design Portfolio, Part 2: How to Create a
Design Portfolio in Figma, Atomic Spin. Available at:
https://spin.atomicobject.com/building-your-portfolio-figma/ (Accessed: 23

April 2025).

Introduction - React Native (no date) reactnative.dev. Available at:
https://reactnative.dev/docs/getting-started.

Introduction - React Native (no date) reactnative.dev. Available at:

https://reactnative.dev/docs/getting-started.

Item Benchmarks for the System Usability ScaleJUS (no date) uxpajournal.org.
Available at: https://uxpajournal.org/item-benchmarks-system-usability-scale-
sus/.

Jokar, M., Arman Abdous and Vahid Rahmanian (2024) ‘Al chatbots in pet
health care: Opportunities and challenges for owners’, Veterinary medicine
and science, 10(3). Available at: https://doi.org/10.1002/vms3.1464 .

Kaleel, S. B. and Harishankar, S. (2013) ‘Applying Agile Methodology in
Mobile Software Engineering: Android Application Development and its

264

Challenges’. Toronto Metropolitan University. doi:
10.32920/ryerson.14637270.v2.

Képyaho, M. and Kauppinen, M. (2015) Agile requirements engineering with
prototyping: A case study, IEEE Xplore. Available at:
https://doi.org/10.1109/RE.2015.7320450.

Kissflow (2022) Rapid Application Development (RAD) | Definition, Steps &
Full Guide, kissflow.com. Available at: https://kissflow.com/application-
development/rad/rapid-application-development/.

Lai, N. et al. (2021) ‘Pet owners’ online information searches and the
perceived effects on interactions and relationships with their veterinarians’,
Veterinary Evidence, 6(1). Available at: https://doi.org/10.18849/ve.v611.345 .
LLC, H.B. (2023) PetVet Al 24/7 Pet Health Care (1.0.8), [Mobile app].
Available at:
https://play.google.com/store/apps/datasafety?id=ai.petvet.app&hl=en
(Accessed: 20 March 2025)

Ltd, 11 Pets (2015) 11pets Pet care (6.003.003), [Mobile app]. Available at:
https://play.google.com/store/apps/details?id=com.m1 1 pets.elevenpets&hl=en
(Accessed: 20 March 2025).

Lyssa AS (2024) PetVitality Pet Health Tracker (1.1.3), [Mobile app].
Available at:
https://play.google.com/store/apps/details?id=com.lyssa.petvitality&hl=en
(Accessed: 20 March 2025).

Managing Emails - Resend (2025) Resend.com. Resend. Available at:
https://resend.com/docs/dashboard/emails/introduction (Accessed: 12
September 2025).

Mehra, A. (2025) ‘Utilizing Machine Learning for Developing a Pet Health
Monitoring System’, Journal of Integrated Engineering Sciences (JIES), 1(1),
pp- 37-43. Available at:
https://journals.academicsp.com/index.php/jies/article/view/5 (Accessed: 20
March 2025).

Motion (2023) Understanding the Waterfall Methodology: A Sequential
Approach to Project Management, www.usemotion.com. Available at:
https://www.usemotion.com/blog/waterfall-methodology.

Najjar, A. (2023) How to install Emulator on Android Studio - Abdalqader
Najjar - Medium, Medium. Available at:
https://medium.com/@abdalqader27.najjar/how-to-install-emulator-on-
android-studio-95eb101e604b (Accessed: 22 April 2025).

Niemiec, R. et al. (2024) “Veterinary and pet owner perspectives on addressing
access to veterinary care and workforce challenges’, Frontiers in Veterinary
Science, 11. Available at: https://doi.org/10.3389/fvets.2024.1419295 .
Node.js Development Services Company | Hire Node.js Developers (2016)
Angularminds.com. Available at: https://www.angularminds.com/nodejs-
development-company (Accessed: 12 September 2025).

Okoone (2025) Okoone.com. Available at:
https://www.okoone.com/technologies/mobile/react-native/ (Accessed: 17
April 2025).

OpenAl (2023) GPT-4, Openai.com. Available at:
https://openai.com/index/gpt-4-research/.

OpenJS Foundation (2017) Express - Node.js web application framework,
Expressjs.com. Available at: https://expressjs.com/.

265

OpenRouter Logo PNG Vector (SVG) Free Download (2025) Seeklogo.
Available at: https://seeklogo.com/vector-logo/611674/openrouter (Accessed:
27 April 2025).

PET, A.F. (2023) TTcare: Keep Your Pet Healthy (2.5.0), [Mobile app].
Available at:
https://play.google.com/store/apps/details?id=com.ttcare.pet&hl=en (Accessed:
20 March 2025).

PLIT, A. (2021) Veterinary Medical Records and the Importance of
Documentation, EquiManagement. Available at:
https://equimanagement.com/business-development/legal/veterinary-medical-
records-and-the-importance-of-documentation/ (Accessed: 19 March 2025).
Postman (2025) Postman.com. Available at:
https://www.postman.com/devrel/openai/documentation/k25n3c8/openai-api
(Accessed: 17 April 2025).

Principles - OpenRouter’s Core Values (2025) OpenRouter Documentation.
OpenRouter | Documentation. Available at:
https://openrouter.ai/docs/overview/principles (Accessed: 27 April 2025).
Rapid Application Development (RAD) (no date) Cost Efficient IT. Available
at: https://www.agilelonestar.com/knowledge-base/rapid-application-
development.

Resend (2025) Resend, Resend.com. Available at: https://resend.com/emails.
Run apps on the Android Emulator (no date) Android Developers. Available at:
https://developer.android.com/studio/run/emulator.

Sassafras Patterdale (2025) How to Protect Your Cats (and Backyard Chickens)
From Bird Flu, WIRED. Available at: https://www.wired.com/story/pets-and-
backyard-flocks-are-at-risk-from-bird-flu-heres-how-to-protect-them/
(Accessed: 19 March 2025).

Senter, A. (2024) ‘Toxic’: Dog chemo sparks outrageous debate, news.
news.com.au — Australia’s leading news site. Available at:
https://www.news.com.au/lifestyle/home/pets/owners-desperate-move-after-
pet-dogs-heartbreaking-diagnosis/news-
story/53e26bcb4618d01fa981faa0967d35¢cb (Accessed: 19 March 2025).
Setting up Firebase / Google Analytics (2025) Shopgate.com. Available at:
https://support.shopgate.com/en/migrated/knowledge/firebase-for-mobile-apps
(Accessed: 17 April 2025).

Shei, A. (2023) Foundit | A Platform for Founders to Shares and Grow Ideas
— Ul/ux Case Study, Medium. Available at:
https://medium.com/@aryn.shei/foundit-a-platform-for-founders-to-shares-
and-grow-ideas-ui-ux-case-study-bfcc4a7bd5ac (Accessed: 6 September 2025).
Supabase (no date) Supabase Docs, supabase.com. Available at:
https://supabase.com/docs.

TechNode Feed (2025) DeepSeek-V3 ends promotional pricing, updates API
service rates, TechNode. Available at:
https://technode.com/2025/02/10/deepseek-v3-ends-promotional-pricing-
updates-api-service-rates/ (Accessed: 17 April 2025).

vetrec (2024) Vetrec.io. Available at: https://www.vetrec.io/post/the-
evolution-of-veterinary-records-from-paper-to-ai-medical-records (Accessed:
19 March 2025).

Visual Studio Code (2023) Documentation for Visual Studio Code,
code.visualstudio.com. Available at: https://code.visualstudio.com/docs.

266

What is Flutter? Guide for Flutter App Development | Relia Software (no date)
reliasoftware.com. Available at: https://reliasoftware.com/blog/what-is-flutter.
Your First API Call | DeepSeek API Docs (2025) Deepseek.com. Available at:
https://api-docs.deepseek.com/.

https://api-docs.deepseek.com/

267

APPENDICES

Appendix A: Fact Findings Survey

aar25, 904 PM Al Driven Pet Care App for Viflual Assistance and Sympdom Diagnosis:

#* Indicatas raciirad o
g quirad 4

1.

Al Driven Pet Care App for Virtual Assistance and

Symptom Diagnosis
Dear Respondents,

I .am a final-year undergraduate student from the Bachelor of Science (Honours) Software
Engineering program at Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku
Abdul Rahman (UTAR). As part of my Final Year Project, | am developing a mobile
application titled "Al-Driven Pet Care App for Virtual Assistance and Symptom Diagnosis”.

This study aims to explore how Artificial Intelligence (Al) can assist pet owners in managing
their pets health more effectively. This app is designed to provide Al-powered symptom
diagnosis, a virtual pet care assistant, and digital health record management to help pet
owners track and maintain their pets well-being. Through this survey, | seek to understand
the challenges pet owners face and gather insights to improve the app’s features, usability,
and effectiveness.

‘Your participation is voluntary, and all responses will be kept strictly confidential for
academic research purposes only. | would greatly appreciate your time in completing this
short questionnaire. Your feedback will play a key role in developing this application into a
smart and accessible pet care solution.

For any inguiries, feel free to contact me at nivikaprasadi@Tutar.my.

Thank you for your time and support! ¥

Ernail *

2. Doyouown a pet? *

Mark only one oval.

[ves

_:u Mo

Section 1: General Information

hitps:iidocs googhe. comformesidii 14-eColdFE152E2 be QNI MWE ZNFAa NdwrmacouwmiSU edit 1"

268

anas, oid P Al Driven Pet Care App for Vifual Aszsistance and Sympiom Diagnosis.

3. 1. What is your age group? *

Mark only one oval.

() Under18
[J18-24
([)25-34

) 35-44

:)45+

4. 2 What type of pet(s) do you own? *
(Select all that apply)
Check all that apply.
_. Dog
[Jcat

| Rabbit

: Hamster

[| Bird

[Fish

ﬁ Guinea-pig

[| other:

5. 3. How many pets do you currently have? *

Mark only one oval.

P

L1
Dz
s

(::‘ More than 3

hitps:iidocs googie. comformesidii 14-eColdFE152E2 be QNI MWE ZNFAa NdwrmacouwmiSU edit 20

Qs o:id PM Al Driven Pet Care App for Virual Assistancs and Sympiom Diagnosis

6. 4. How long have you been a pet owner? *

Mark only one oval.

:-' Less than a year
‘ 1 - 3 years
J4-6 years

() More than 6 years

Section 2: Current Pet Care Practices

7. 5. How do you currently manage your pet's health records? *
Mark only one oval.

L::' Physical records (e_q., physical booklets)
() Digital notes (e.g., phone/laptop)
f_:' Vet-provided documents

’f_:' I do mot track my pet’s health records

() other:

8. 6. How often do you visit a veterinarian for checkups or health concerns? *

Mark only one oval.

) Monthly

[) Every 3-6 months
_ Joncea year
(::' Only when my pet is sick

-

\::' Rarely/Never

hitps:idocs googhe comformeidi 14-sCol F 805282 be QXZNWEZNF A2 NdwimacauwmiSL edit

269

270

amzs, 004 P Al Diriven Pet Care App for Viflual Assistances and Symplom Diagnosis

9. 7. Have you ever struggled to identify if your pat was sick? *

Mark only one oval.

- Yes, many times
Lf_.‘-' Sometimes

J—

) Mo, lusually know when they are sick

10. 8. How do you usually search for information when your pet shows unusual %
symptoms?
(Select all that apply)
Check all that apply.

J Google/Online searches

_—| Pet-related forums or social media groups
J Consulting a veterinarian directly

:| Asking other pet owners

: | | don't search, | go straight to the vet

11. 9. What challenges do you face in managing your pet's health? *
(Selact all that apply)

Check all that apply.

,—| Forgetting vaccination dates

J Keeping track of vet appointments

:| Understanding pet symptoms and when to take action
: | Finding reliable pet care advice

:| Managing multiple pet's health records
|| other:

hitps:idocs google comformeidi 14-sCol F 805282 be QXZNWEZNF A2 NdwimacouwmiSL edit 4

271

9025, o0 PW Al Driven Pet Care App for Vifual Assistancs and Symplom Diagnosis

12, 10. Would you find a pet health tracking system useful? *
Mark only one oval.

D) Yes, it would help me stay organized

D Maybe, if it's easy to use

() Mo, don't need one

Section 3: Al Chatbot & App Features

13, 11. Do you currently use Al-based tools (e.g., Al chatbots or virtual assistants) ta *
ask guestions about pet care?

Mark only one oval.

) Yes, frequently.

f -‘ Sometimes, but | also rely on other sources.

I

__?' Rarely, but I'm interested in exploring.

_\ No, and | don't think they'd be useful.

14, 12. Do you think an Al-powered symptom diagnosis tool could be helpful in
identifying potential health issues before visiting a vet?

Mark only one oval.

() Yes, very helpful
':3 Maybe, but | would still consult a vet

1::3' Mo, | don't trust Al for health diagnosis

hiltps:Ndoos googhe comMormesid! 1 14-sColdFBI52B2 be OXZNWE ZNFlAaNdwrmacouwm | GUedit

anmas, o0d P Al Driven Pet Care App for Vifual Aszsistance and Sympiom Diagnosis.

15. 13, Would you use an Al chatbot to answer general pet care questions? *
Mark only one oval.

() Yes, if the information is accurate

'd . -
\.___' Maybe, for minor issues

C JNol prefer speaking to a professional

16. 14. What type of assistance would you expect from an Al chatbot? *
(Selact all that apply)
Check all that apply.

| Nutrition & feeding advice

.—| Training & behavioral guidance

J Commeon iliness symptoms & basic first aid
:I Information on vaccinations & pet health care

: | Emergency care guidance
| other (please specify)

17. 15 How likely are you to trust an Al tool to diagnose pet symptoms? *

Mark enly one oval.

Unli Very Likely

18. 16. Would an Al symptom checker help you decide if your pet needs a vet visit? *

Mark only one oval.

[ves
__JNo
- Maybe

hilps:idecs google comformsidi114-sCoMFBI5 282 be QX ZMNWE ZNF 1Aa Ndwx macouwml S edit

272

9a2s, ol PM Al Driven Pet Care App for Vitual Assistancs and Symplom Diagnosis.

19. 17. How quickly do you expect responses from the Al chatbot? *
Mark only one oval.

(D] Instantly (within seconds)

() Within a minute

-.(_)'Epeed is not important, accuracy matters maore

Section 4: Pet Health Record Management Preferences

20. 18. What features would you like in a pet health record system? *
(Select all that apply)
Check all that apply.
; Digital vaccination and medical history tracking
ﬁ Reminders for vaccinations and vet appointments
: Symptom logging for better tracking
: ‘Weight and diet monitoring

: Secure cloud storage

: Other:

21, 19.How important is it to have a centralized digital system to track your pet's

health?

Mark only one oval.

Mot Very Important

hitps:fidocs google comformesidi 114-sCold FBIS2E2 be OXZNWE ZNF1Aa NdwxmaoauwsmiBU edit

273

TN

274

aaas, B0d P Al Diriven Pet Care App for Vifual Assistance and Symplom Diagnosis.

22. 20. Would you be interested in receiving pet care tips, alerts, and reminders *
through the app?

Mark only one oval.

(-. ; Yes, | would love regular tips and updates
C ,\ Maybe, but only for important notifications

() Ne, | don't need reminders

Section 5: App Usability and Feature Preferences

23. 21. What factors are most important in a pet care app? *
(Select up to 3)
Check all that apply.
Il Accuracy of Al diagnosis
] Easy-to-use interface
:I Reliable pet care advice
: | Health record storage and reminders
:| Fast response times

.—| Drata privacy and security

24. 22 Would you prefer the app to provide Al-powered symptom diagnosis for
common pet illnesses?

Mark only one oval.
f_ : Yes, it would help in assessing my pet's health

C : Maybe, but | would still confirm with a vet

-:-' Mo, | don't trust Al for symptom diagnosis

~

hitps:iidocs googhe comMormsid 1 14-5ColdFE152B2 be QX ZMNWE ZNFAa Ndwix maoouwmi GL edit

A2S, 004 PM Al Driven Pet Care Apg for Virtual Assistance and Sympiom Diagnosis

25. 23, What additional features do you think a pet care app should have? *

26. 24, Any final feedback or suggestions for improving the app?

This content is neither created nor endorsed by Google.

Google Forms

hiltps:fidocs googhe comitformes’d 1 i4-sColFBI5282 be OXZMWE ZNF lAaNdwrmacauwmiGLliedil

275

276

Appendix B: SUS Survey
Participant 1:
Name: Aishwarya

Pleaze indicate how strongly you agree or disagree with the following statementa about your *
experience using the PawHub application. Salect one option per statament.

Strongly

Di Neutral Agraa b=t I
Disagree sagree Butra rangly Agree

| think that |

would like to use - — . —
this system — = = @
frequently

| fowned the

system @ () (& P P
unnecessarily
complex.

| thought the
system was easy) ()])] (=)
to use.

| think that |

would need the

suppart of & = — = =
technical person @
to be able to use
this system.

| fiownd the

various functions

in this system) O O ® O
ware well

integrated.

| thought there

was too much — — — —
inconsistency in @
this system.

| would imagine

that most people

would leam to)) i) (O]
use this system

very quickhy.

| fiownd the
system wery @ () [:]))
awkward to use.

| felt very
confident using i i [:]) @
the system

| needed to learn

a lot of things

before | could get) ()])]]
gaoing with this

Fystem.

Participant 2:

Name: Avnaesh Sonia Singh

Please indicate how strongly you agree or disagree with the following statements about your

experience using the PawHub application. Select one option per statement.

Strongly
Disagrae
| think that |
wiould like to use Y
this system =
frequenthy
| fiound the

system ®

unnecesEanily
complex.

| thought the
SYSLEMm Was easy i
1o use.

| think that |

would need the

support of &

technical person @
to be able to use

this system.

| figund the

warious functions

in this system (i
ware well

integrated.

| thaught there

was too much

inconsistency in @
this system.

| would imagine

that most people

would leam to i
use this system

wery quickly.

| fiound the

Tystem very w
awkward to use.

| felt very
confident using (]
the system

| needed to learn

a lot of things

before | could get)
going with this

SyStem.

Disagree

C

C

C

I:'_'

]

]

]

]

Newutral

Agrae

Strongly Agres

277

Participant 3:

Name: Felicia Lau Yee Siew

Pleaze indicate how strongly you agree or disagree with the following statements about your

experience using the PawHub application. Select one option per statement.

Strongly
Dizagree

| think that |

wiould like to use —
this system =
fraquently

| fiound the

System —
unnecessarily -
complex.

| thouwght the
system was easy i
1o uEe.

| think that |

would need the

support of & —
technical person -
to be able to use

this systam.

| fiound the

warious functions

in thiz system (]
wiere well

integrated.

| thowght there

was too much -
inconsistency in =
this system.

| wauld imagine

that most people

would leam to 3
use this system

wery quickhy.

| fiound the

Fystem very 0
awlkward to use.

| falt very
confident using ()
the system

| needed to learmn

a lot of things

before | could get 3
going with this

SYStem.

Dizagree

]

[

]

[

Meutral

Agrae

]

f

]

f

]

f

Strangly Agree

278

279

Participant 4:
Name: Estin Ling Wing Yen

Pleaze indicate how strongly you agree or disagree with the following statementa about your o
experience using the PawHub application. Salect one option per statament.

Strongly

Disagree Dizagrae Meutral Agrae Strongly Agres

| think that |

would like touse — — — —
this system — — = @
frequently

| fiouned thie

system — — — —
unnecessarily - @ h
complex.

| thought the
SYSLEM Was easy (]) (T) @
to use.

I think that |

wiould need the

support of a — — — —
technical person - @
to be able to use

this systam.

| fiound the

warious functions

in this system] i (M) ()
woara weall

integrated.

| thought there

was too much — - — —
inconsistency in — @
this systam.

| would imagine

that most people

would leam to (v (]] (] @
use this system

wery quickhy.

| fiound the
system very (») O))
awkward to use.

| fslt very
confident using i)) [:] @
tha system

| needed o learn

a lot of things

before | could get @] ™) ™
gaing with this

System.

280

Participant 5:
Name: Woo Khai Ren

Please indicate how strongly you agree or disagree with the following statements about your o
experience using the PawHub application. Select one option per statement.

Strongly

Disagree Disagres Meutral Agres Strangly Agres

| think that |

would like to use — — — —
this system — = = @
frequently

| fiound the

system — — — —
unnecessanily - - @
complex.

| thought the
system was sasy () i)] 3
10 uEe.

| think that |

wiould need the

support of & = — = =
technical person - @
to be able to use

this systam.

| fiound the

warious functions

in this system i)] (® O
ware well

integrated.

| thought there

was tao much — —
inconsistency in 5 o @ L L

[

this systam.

| would imagine

that most people

would leam to)) (0] O)
use this system

wery quickhy.

| fiound the
System wery [:J @ [:] [:J @)
awlkward to usa.

| falt very
confident uzing) i O ® O
the system

| needed to learn

a lot of things

before | could get (] ()]) () i
going with this

SyStEm.

281

Participant 6:

Name: Babita

Pleaze indicate how strongly you agree or disagree with the following statements about your *
experience using the PawHub application. Select one option per staternent.

Strongly

Disagree Dizagres Meutral Agrae Strongly Agres

| think that |

wiould like to use — - - -

this system — — — — @
frequently

| fiownd the

SyEtEm — — — —
unneceseanily @ : : -
complex.

| thought the
system was easy) (L) (L)] ()
10 use.

| think that |

wiould need the

suppart of & — — — —
technical person @ : : -
ta be able to use
this system.

| found the

warious functions

iin this system) () () O ()
wiare well

integrated.

| thought there

was too much - - - -,
inconsistency in @
this system.

| would imagine

that most people

would leam to |___ | | ___I | ___I @ |:_:|
use this system

wery quickiy.

| found the
System very @))) i)
awlkward to use.

| fielt wery
confident using))) ® O
the system

| needed to learn

a lot of things

before | could get @]]) ()
gaing with this

System.

282

Participant 7:
Name: Yap Ming Jun

Please indicate how strongly you agree or disagree with the fellowing statements about your *
experience using the PawHub application. Select one option per statement.

Strongly

Disagree Disagree Neutral Agras Strongly Agres

| think that |

would like 1o use — — -~ —
this system = = = @
frequently

| fiownd the

system — — — —
unnecessanily - - @ i
complex.

| thought the
SY5tem was easy i () [(% 3
o use.

| think that |

would need the

support of & — — = =
technical person - @
to be able to uze

this system.

| fiound the

warious functions

in this system O 0 O (= O
wiere weall

integrated.

| thought there

was too much — -~ — —
inconsistency in = @
this system.

| would imagine

that most people

would leam to () ()) (O]
use this system

wery quickhy.

| fiound the
system very i (w)) i @
awkward to use.

| felt very
confident using 0 () O O] O
the system

| needed to learn

a lot of things

before | could get I:::I @ (7 () (17
gaing with this

system.

283

Participant 8:
Name: Yeap Huai Zhou

Please indicate how strongly vou aaree or disagree with the following statements about your *
experience using the PawHub application. Select one option per statement.

Strongly

Disagree Disagrese Meutral Agresa Strangly Agres

| think that |
would like to use — — —_ S
this system i 0 i (@

frequently

| fiouaned thie

system — — — —
unnecessanily - @
complex.

| thought the
system was easy (] (D () () ()
1o use

| think that |

would need the

support of & — — — —
tachnical person @ . 3
to be abla to use
this system.

| figund the

various functions

in this system O O O ® O
ware well

integrated.

| thought there

was too much — — — —
inconsistency in @ /
this system.

| wiould imagine

that most people

would leam to (] (D) [l @]
use this system

wery quickhy.

| figund the
system very) (@))) ®
awkwerd to use.

| felt very
confident using] i i () @
the system

| needed to learn

a lot of things

before | could get @ Ty iy] ™
gaoing with this

System.

284

Participant 9:
Name: Nikita Prasad

Pleaze indicate how strongly you agree or disagree with the fellowing statements about your *
experience uzing the PawHub application. Select one option per statement.

Strongly

Disagree Disagree Meutral Agras Strongly Agres

| think that |

wiould like to use — — — —

this system = = = @
frequently

| fownd the

system — @ IS — —
unnecessanily - b i
complex.

| thouwght the
system was easy [() O i O
to use.

| think that |

would need the

support of & — — — —
technical person @
to be able to uze
this system.

| fiound the

warious functions

in thiz system i) O (= O
wiere well

integrated.

| thowght there

was oo much — -~ — —
inconsistency in @
this system.

|l would imagine

that most people

would leam to) () M O iy
use this system

wery quickhy.

| fiownd the
system wery @ [:]) [:]]
awlkward to use.

| felt very
confident uzing i () O O O
the system

| needed to leam

a lot of things

before | could get (®) i) 0
going with this

SYEtEMm.

285

Participant 10:

Name: Diksha Suri

Please indicate how stronaly vou agree or disagree with the following statements about vour *
experience using the PawHub application. Select one option per statement.

Strongly

Disagree Disagree Meutral Agrae Strongly Agres

| think that |

would like to use — — — —
this system = = = @
frequently

| fiownd the

system — — — —
unnecessanily - @
complex.

| thought the
system was easy () () O]]
to use.

| think that |

would need the

support of & — — — —
technical person - @
to be able to use

this systam.

| fiownd the

various functions

in this system O O O ® O
were well

integrated.

| thought there

was too much — -
imconsistency in — @
this systam.

]
]

| wiould imagine

that most people

wiould leam to (T) (")]
use this system

wery quickhy.

| fiownd the
system very ! () ()) i)
awkward to use.

| felt very
confident using] i O ())
the systam

| needed to learn

a lot of things

before | could get i () i i))
gaoing with this

SyStEmMm.

Appendix C: UAT Results

Participant 1:

Name: Charles Lee Ung Kiet
Test Starting Time: 9:45am
Test Ending Time: 10:15am

286

PawHub Application
Test Test Case | Test Scenario Status | Comment
Module ID
Register UAT-001 | Able to register a new | Pass -
account with valid
username, email, phone, and
password.
Login UAT-002 | Able to log in with valid | Pass | -
credentials.
Forgot UAT-003 | Able to reset password using | Pass -
Password registered email.
Pet UAT-004 | Able to add a new pet with | Pass Took me
Management photo, name, breed, a second
birthday, weight, and height. to find the
add button
UAT-005 | Able to edit existing pet | Pass -
profile.
UAT-006 | Able to delete a pet and | Pass -
confirm associated records
are removed.
Health UAT-007 | Able to add a health record | Pass | -
Records with future date and enable
email reminder.
UAT-008 | Able to receive email | Pass -
reminder 24 hours before
scheduled event.
UAT-009 | Able to edit existing health | Pass -
records.

287

UAT-010 | Able to delete a health | Pass -
record and confirm
associated email reminders
are removed.
Al Chatbot | UAT-011 | Able to send message to Al | Pass -
chatbot and receive relevant
response.
UAT-012 | Able to switch between Al | Pass -
models.
UAT-013 | Able to switch between Pets. | Pass | -
UAT-014 | Able to rate Al message with | Pass -
1-5 stars.
Symptom UAT-015 | Able to submit symptoms | Pass | -
Diagnosis and receive Al-generated
diagnosis with severity level.
UAT-016 | Able to view and delete past | Pass -
symptom assessments.
Education UAT-017 | Able to search articles and | Pass -
filter by category.
UAT-018 | Able to tap article to open | Pass opened in
original article webpage. browser.
No
crashes.
Feedback UAT-019 | Able to submit feedback | Pass -
with rating and comment.
UAT-020 | Able to view past feedback | Pass -
submissions.
Profile UAT-021 | Able to update username, | Pass -
Management phone, and password.
UAT-022 | Able to wupload profile | Pass |-
picture from gallery or
camera.
UAT-023 | Able to select default avatar. | Pass -

288

UAT-024 | Able to log out. Pass -
UAT-025 | Able to delete account. Pass | -
Participant 2:
Name: Tee Junn Jeh
Test Starting Time: 1:05pm
Test Ending Time: 1:35pm
PawHub Application
Test Test Test Scenario Status | Comment
Module Case ID
Register UAT-001 | Able to register a new | Pass -
account with valid
username, email, phone,
and password.
Login UAT-002 | Able to log in with valid | Pass -
credentials.
Forgot UAT-003 | Able to reset password | Pass |-
Password using registered email.
Pet UAT-004 | Able to add a new pet | Pass -
Management with photo, name, breed,
birthday, weight, and
height.
UAT-005 | Able to edit existing pet | Pass -
profile.
UAT-006 | Able to delete a pet and | Pass -
confirm associated records
are removed.
Health UAT-007 | Able to add a health | Pass -
Records record with future date
and enable email
reminder.
UAT-008 | Able to receive email | Pass -

289

reminder 24 hours before

scheduled event.

UAT-009

Able to edit existing

health records.

Pass

UAT-010

Able to delete a health
record and confirm
associated email

reminders are removed.

Pass

Al Chatbot

UAT-011

Able to send message to
Al chatbot and receive

relevant response.

Pass

UAT-012

Able to switch between Al

models.

Pass

UAT-013

Able to switch between

Pets.

Pass

UAT-014

Able to rate Al message

with 1-5 stars.

Pass

Symptom

Diagnosis

UAT-015

Able to submit symptoms
and receive Al-generated
diagnosis with severity

level.

Pass

My wifi
disconnected,
the results
didn’t show

in 1st try.

UAT-016

Able to view and delete
past symptom

assessments.

Pass

Education

UAT-017

Able to search articles and

filter by category.

Pass

UAT-018

Able to tap article to open

original article webpage.

Pass

Feedback

UAT-019

Able to submit feedback

with rating and comment.

Pass

UAT-020

Able to view past

feedback submissions.

Pass

290

Profile UAT-021 | Able to update username, | Pass

Management phone, and password.

picture from gallery or

camera.

UAT-022 | Able to upload profile | Pass

UAT-023 | Able to select default | Pass

avatar.
UAT-024 | Able to log out. Pass -
UAT-025 | Able to delete account. Pass -

Participant 3:

Name: Vanex
Test Starting Time: 11:00am
Test Ending Time: 11:30am

PawHub Application
Test Test Case | Test Scenario Status | Comment
Module ID
Register UAT-001 | Able to register a new | Pass -
account with valid
username, email, phone, and
password.
Login UAT-002 | Able to log in with valid | Pass -
credentials.
Forgot UAT-003 | Able to reset password using | Pass -
Password registered email.
Pet UAT-004 | Able to add a new pet with | Pass -
Management photo, name, breed,
birthday, weight, and height.
UAT-005 | Able to edit existing pet | Pass -
profile.
UAT-006 | Able to delete a pet and | Pass -
confirm associated records

291

are removed.

Health

Records

UAT-007

Able to add a health record
with future date and enable

email reminder.

Pass

UAT-008

Able to receive email
reminder 24 hours before

scheduled event.

Pass

UAT-009

Able to edit existing health

records.

Pass

UAT-010

Able to delete a health
record and confirm
associated email reminders

are removed.

Pass

Al Chatbot

UAT-011

Able to send message to Al
chatbot and receive relevant

response.

Pass

UAT-012

Able to switch between Al

models.

Pass

UAT-013

Able to switch between Pets.

Pass

UAT-014

Able to rate Al message with

1-5 stars.

Pass

Symptom

Diagnosis

UAT-015

Able to submit symptoms
and receive Al-generated

diagnosis with severity level.

Pass

UAT-016

Able to view and delete past

symptom assessments.

Pass

Education

UAT-017

Able to search articles and

filter by category.

Pass

UAT-018

Able to tap article to open

original article webpage.

Pass

Feedback

UAT-019

Able to submit feedback

with rating and comment.

Pass

UAT-020

Able to view past feedback

Pass

292

submissions.
Profile UAT-021 | Able to update username, | Pass -
Management phone, and password.
UAT-022 | Able to wupload profile | Pass -
picture from gallery or
camera.
UAT-023 | Able to select default avatar. | Pass -
UAT-024 | Able to log out. Pass -
UAT-025 | Able to delete account. Pass | -
Participant 4:
Name: Alex Ting
Test Starting Time: 2:36pm
Test Ending Time: 3:06pm
PawHub Application
Test Test Case | Test Scenario Status | Comment
Module ID
Register UAT-001 | Able to register a new | Pass -
account with valid
username, email, phone, and
password.
Login UAT-002 | Able to log in with valid | Pass -
credentials.
Forgot UAT-003 | Able to reset password using | Pass -
Password registered email.
Pet UAT-004 | Able to add a new pet with | Pass -
Management photo, name, breed,
birthday, weight, and height.
UAT-005 | Able to edit existing pet | Pass -
profile.
UAT-006 | Able to delete a pet and | Pass -
confirm associated records

293

are removed.

Health

Records

UAT-007

Able to add a health record
with future date and enable

email reminder.

Pass

UAT-008

Able to receive email
reminder 24 hours before

scheduled event.

Pass

Good,
received

the email.

UAT-009

Able to edit existing health

records.

Pass

UAT-010

Able to delete a health
record and confirm
associated email reminders

are removed.

Pass

Al Chatbot

UAT-011

Able to send message to Al
chatbot and receive relevant

response.

Pass

UAT-012

Able to switch between Al

models.

Pass

UAT-013

Able to switch between Pets.

Pass

UAT-014

Able to rate Al message with

1-5 stars.

Pass

Symptom

Diagnosis

UAT-015

Able to submit symptoms

and receive Al-generated

diagnosis with severity level.

Pass

UAT-016

Able to view and delete past

symptom assessments.

Pass

Education

UAT-017

Able to search articles and

filter by category.

Pass

UAT-018

Able to tap article to open

original article webpage.

Pass

Feedback

UAT-019

Able to submit feedback

with rating and comment.

Pass

UAT-020

Able to view past feedback

Pass

294

submissions.
Profile UAT-021 | Able to update username, | Pass | Updated
Management phone, and password. username
Form
validated
instantly.
UAT-022 | Able to wupload profile | Pass -
picture from gallery or
camera.
UAT-023 | Able to select default avatar. | Pass | -
UAT-024 | Able to log out. Pass -
UAT-025 | Able to delete account. Pass -
Participant S:
Name: Benjamin
Test Starting Time: 3:10pm
Test Ending Time: 3:40pm
PawHub Application
Test Test Test Scenario Status | Comment
Module Case ID
Register UAT-001 | Able to register a new | Pass -
account with valid
username, email, phone,
and password.
Login UAT-002 | Able to log in with valid | Pass -
credentials.
Forgot UAT-003 | Able to reset password | Pass -
Password using registered email.
Pet UAT-004 | Able to add a new pet with | Pass -
Management photo, name, breed,
birthday, weight, and
height.

295

UAT-005

Able to edit existing pet
profile.

Pass

UAT-006

Able to delete a pet and
confirm associated records

are removed.

Pass

Health

Records

UAT-007

Able to add a health record
with future date and enable

email reminder.

Pass

UAT-008

Able to receive email
reminder 24 hours before

scheduled event.

Pass

UAT-009

Able to edit existing health

records.

Pass

UAT-010

Able to delete a health
record and confirm
associated email reminders

are removed.

Pass

Al Chatbot

UAT-011

Able to send message to Al
chatbot and receive

relevant response.

Pass

Impressive,
the Al was
able to
answer
based on
my pet

information.

UAT-012

Able to switch between Al

models.

Pass

UAT-013

Able to switch between

Pets.

Pass

UAT-014

Able to rate Al message

with 1-5 stars.

Pass

Symptom

Diagnosis

UAT-015

Able to submit symptoms
and receive Al-generated

diagnosis with severity

Pass

296

level.

UAT-016 | Able to view and delete | Pass

past symptom assessments.
Education UAT-017 | Able to search articles and | Pass
filter by category.

UAT-018 | Able to tap article to open | Pass
original article webpage.

Feedback UAT-019 | Able to submit feedback | Pass
with rating and comment.

UAT-020 | Able to view past feedback | Pass
submissions.

Profile UAT-021 | Able to update username, | Pass
Management phone, and password.

UAT-022 | Able to wupload profile | Pass
picture from gallery or
camera.

UAT-023 | Able to select default | Pass
avatar.

UAT-024 | Able to log out. Pass

UAT-025 | Able to delete account. Pass

