
i

Application of Minimax Algorithm in Dots and Boxes Game

BY

TAN AH HWA

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) INFORMATION SYSTEMS

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

FEBRUARY 2025

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2024 Tan Ah Hwa. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Systems (Honours) Information Systems

Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project

report represents the work of the author, except where due acknowledgment has been

made in the text. No part of this Final Year Project report may be reproduced, stored,

or transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to extend my heartfelt gratitude to my supervisor, Mr. Lee Heng Yew and my

moderator, Dr Ramesh Kumar Ayyasamy, for providing me with this invaluable opportunity

to work on an Application of Minimax Algorithm in Dots and Boxes Game project. His

guidance and insights have been instrumental in my growth and have set the foundation for my

journey into the Application of Algorithms. A million thanks for your support and mentorship.

Lastly, I am deeply thankful to my parents and family for their love, encouragement, and

continuous support throughout this journey.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This project addresses the common issue of deficient artificial intelligence (AI) opponents in

digital versions of the classic strategy game Dots and Boxes, which often limits gameplay

engagement and strategic depth. The core problem lies in developing a strategically competent

AI capable of navigating the game's large decision space and computational demands. The

methodology involved implementing the Minimax algorithm as the primary decision-making

engine for the AI. This was enhanced with several optimization techniques, including Alpha-

Beta pruning, transposition tables, killer move heuristics, and quiescence search. For the

highest difficulty setting, an iterative deepening Minimax approach was utilized alongside a

heuristic evaluation function that considers score difference and strategic board positions like

chains and potential opponent scoring opportunities. The research process included designing

and developing a functional Dots and Boxes game prototype using C# and the Universal

Windows Platform (UWP), featuring a user-friendly interface and customizable settings.

Rigorous testing confirmed the application's functionality and the AI's progressive difficulty,

with human players winning 70% of games on "Easy," the AI winning 50% on "Medium," and

the AI achieving an 80%-win rate on "Hard". AI response times remained acceptable even on

larger boards. The project successfully demonstrates the application of an enhanced Minimax

algorithm to create a challenging and engaging AI opponent, effectively revitalizing the classic

game by offering significant strategic depth through its advanced AI implementation and varied

difficulty levels.

Area of Study (Minimum 1 and Maximum 2): Artificial Intelligence in Gaming, Game Theory

Keywords (Minimum 5 and Maximum 10): Minimax Algorithm, Dots and Boxes, Artificial

Intelligence, Game AI, Alpha-Beta Pruning, Heuristic Evaluation, Game Development,

Strategic Games, Universal Windows Platform (UWP)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF SYMBOLS ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 2

1.2 Motivation 4

1.3 Project Objectives 5

1.4 Project Scope 7

1.5 Contributions 8

1.6 Report Organization 9

CHAPTER 2 LITERATURE REVIEW 10

2.1 Review of the Technologies 10

 2.1.1 Programming Language 10

 2.1.2 Minimax Algorithm 12

 2.1.3 Minimax Algorithm in Dots and Boxes 13

 2.1.4 Summary of the Technologies Review 14

2.2 Critical Remarks of Previous Works 14

 2.2.1 Strengths and Weaknesses of the Linja Game Project 14

 2.2.2 Strengths and Weaknesses of the Tic-Tac-Toe Algorithmic

 Analysis

17

 2.2.3 Compare them with my proposed solutions 20

2.3 Review of the Existing Systems/Applications 21

 2.3.1 Website Dots and Boxes Games A 21

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

 2.3.2 Website Dots and Boxes Games B 22

 2.3.3 Website Dots and Boxes Games C 22

 2.3.4 Summary of the Existing Systems 23

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

24

3.1 System Design Diagram/Equation 24

3.1.1 System Architecture Diagram 26

3.1.2 Use Case Diagram and Description 28

3.1.3 Activity Diagram 31

CHAPTER 4 SYSTEM DESIGN 34

 4.1 System Block Diagram 34

 4.2 System Components Interaction Operations 40

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

42

5.1 Software Setup 42

 3.1.3 Visual Studio 2022 42

 3.1.3 C# Programming Language 43

 3.1.3 Universal Windows Platform (UWP) 43

 3.1.3 XAML (Extensible Application Markup Language) 44

5.2 Setting and Configuration 44

5.3 System Operation (with Screenshot) 46

5.4 Implementation Issues and Challenges 54

5.5 Concluding Remark 56

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 58

6.1 System Testing and Performance Metrics

58

6.2 Testing Setup and Result 60

6.3 Project Challenges 62

6.4 Objectives Evaluation 64

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

6.5 Concluding Remark 66

CHAPTER 7 CONCLUSION AND RECOMMENDATION 68

7.1 Conclusion 68

7.2 Recommendation 69

REFERENCES 71

 POSTER 74

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

LIST OF FIGURES

Figure Number Title Page

Figure 3.1 Game overall diagram 24

Figure 3.2 Game Architecture Diagram 26

Figure 3.3 Game use case diagram 28

Figure 3.4 Game Activity Diagram 31

Figure 4.1 Simple Overall diagram 34

Figure 4.2 Settings page diagram 35

Figure 4.3 Main Menu diagram 36

Figure 4.4 Game page diagram 38

Figure 5.1 Start Page 46

Figure 5.2 Rules Page 47

Figure 5.3 Settings Page 48

Figure 5.4 Main Menu Page 49

Figure 5.5 Gameplay and AI Operation 50

Figure 5.6 Easy Level Play 51

Figure 5.7 Medium Level Play 52

Figure 5.8 Hard Level Play 53

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF SYMBOLS

β beta

α Alpha

∞ Infinity

≥ Less Than or Equal to

≤ Greater than or equal to

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF ABBREVIATIONS

AI Artificial Intelligence

GUI Graphical User Interface

CPU Central Processing Unit

LINQ Language Integrated Query

IL Intermediate Language

CLR Common Language Runtime

RAM Random Access Memory

GC Garbage Collection

LOH Large Object Heap

DFS Depth-First Search

XML Extensible Markup Language

XAML Extensible Application Markup Language

UI User Interface

2D Two-Dimensional

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

Dots and Boxes, a classic strategy game played on a grid of dots, challenges players to draw

lines connecting adjacent dots, aiming to complete squares [1]. While its rules are simple – the

player completing the most squares wins – the game possesses a surprising strategic depth,

making it an excellent testbed for artificial intelligence (AI). The requirement for foresight and

tactical planning, despite the straightforward mechanics, provides a compelling environment

to explore AI decision-making algorithms.

This project focuses on enhancing the traditional Dots and Boxes experience by implementing

the Minimax algorithm, a fundamental technique in AI and game theory designed for two-

player, zero-sum games where players have opposing goals [2]. Minimax operates by

systematically exploring the game tree, which represents all possible sequences of moves and

game states [2]. By evaluating these potential outcomes, the algorithm selects the move that

maximizes the AI's potential score while simultaneously minimizing the score achievable by

the opponent, effectively simulating optimal play from both sides [2].

Applying Minimax to Dots and Boxes empowers the computer opponent to play strategically.

By recursively evaluating future board configurations and anticipating the human player's

likely optimal responses, the AI can make informed decisions [2]. This includes identifying

opportunities to complete squares, strategically sacrificing moves to set up future gains (traps),

blocking the opponent from completing squares, and balancing offensive and defensive

maneuvers. The result is an AI capable of competing effectively, offering a significantly more

engaging and challenging experience for the human player.

The main goal of this project is to develop a functional prototype of Dots and Boxes featuring

an AI opponent driven by the Minimax algorithm. This prototype will serve as a practical

demonstration of how AI can elevate strategic gameplay in traditional games, allowing players

to interact directly with an intelligent, adaptable adversary. Furthermore, the development

process will offer valuable insights into the practical challenges and opportunities involved in

integrating such AI techniques into game environments.

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

Ultimately, this project aims to deliver a playable game that not only showcases the

effectiveness of the Minimax algorithm in a strategic context but also establishes a foundation

for potential future enhancements, such as incorporating more advanced AI techniques or

optimizations. By successfully creating these intelligent Dots and Boxes opponent, the project

contributes to the understanding of AI in gaming, demonstrating how algorithms can be used

to craft more sophisticated and human-like adversaries, with potential applications extending

to other strategic games and AI research domains.

1.1 Problem Statement

1. Deficient AI Opponents Limit Gameplay Engagement and Strategic Depth.

Many readily available digital versions of the classic game Dots and Boxes suffer from

underdeveloped artificial intelligence opponents. These AI players often employ simplistic

strategies, such as only focusing on immediate square captures (greedy approach) or failing to

anticipate more than one or two moves ahead. This lack of sophistication means the AI

frequently makes strategically naive errors, fails to recognize or set up complex traps (like

controlling long chains of potential squares), and doesn't adequately balance offensive

opportunities with defensive necessities. Consequently, the gameplay experience often

becomes predictable and insufficiently challenging, particularly for players who have moved

beyond the basics and are seeking to explore the game's deeper strategic nuances. This

deficiency significantly limits the game's replay ability in a single-player context, as the AI

ceases to be a compelling opponent, hindering the player's ability to learn advanced tactics and

ultimately failing to showcase Dots and Boxes' full potential as a rich strategic exercise. This

creates a clear need for an AI that can offer a persistent and adaptive challenge.

2. The Algorithmic Complexity of Developing a Strategically Competent Dots and Boxes AI.

Designing and implementing an AI agent capable of playing Dots and Boxes at a high level

presents a substantial algorithmic challenge inherent to the game's structure. While the rules

are straightforward, the number of possible moves (placing a line between two adjacent dots)

can be considerable, leading to a large branching factor. This results in a game tree that grows

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

exponentially with the number of turns, making exhaustive analysis complex. Creating an AI

that performs effectively requires moving far beyond simplistic approaches like random move

selection or purely greedy strategies. A competent AI must exhibit genuine foresight, capable

of evaluating the long-term consequences of its moves. This includes sophisticated reasoning

such as balancing the immediate gain of completing a square against the potential disadvantage

of opening multiple squares for the opponent, understanding the critical concept of chain

control (forcing the opponent to 'open' chains of potential boxes), strategically sacrificing

moves to gain positional advantage, and accurately assessing complex endgame positions.

Successfully embedding this level of strategic understanding into an AI necessitates the careful

application, implementation, and tuning of robust game-playing algorithms, like Minimax,

capable of navigating this complex decision space.

3. Computational Performance Challenges in Implementing Game Tree Search for Dots and

Boxes.

The practical implementation of game tree search algorithms, such as the Minimax algorithm,

for Dots and Boxes is often constrained by computational performance limitations, particularly

as the game progresses or when played on larger board sizes (e.g., 9x9 or greater). A naive,

unoptimized Minimax implementation attempts to recursively explore every possible sequence

of moves down to a certain depth or until the end of the game. Given the game's combinatorial

nature, the number of game states to evaluate can quickly become astronomically large,

potentially requiring significant processing time and memory resources. This computational

burden can manifest as unacceptably long delays between the player's move and the AI's

response, severely disrupting the natural flow of gameplay and leading to a frustrating user

experience. Therefore, a critical problem is not just selecting an appropriate algorithm like

Minimax, but also addressing its inherent computational cost. There is a crucial need to

investigate, implement, and fine-tune optimization techniques—most notably Alpha-Beta

pruning, which intelligently eliminates the need to evaluate large portions of the game tree [3],

and potentially heuristic evaluation functions to estimate board value without full searches—

to ensure the AI operates efficiently, provides timely responses, and remains viable even for

more complex game scenarios.

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

1.2 Motivation

The fundamental motivation driving this project is the compelling opportunity to significantly

enhance the classic game of Dots and Boxes by developing and integrating a sophisticated

artificial intelligence opponent based on the Minimax algorithm. While Dots and Boxes is

renowned for its simple rules and accessibility, its underlying strategic depth is often

underserved in digital versions that feature rudimentary AI. This project is born from the desire

to bridge that gap, moving beyond predictable or easily exploitable opponents to create a

genuinely engaging and intellectually stimulating challenge for players of all skill levels. The

goal is to transform the single-player experience from a basic pastime into a dynamic contest

of wits, where the AI opponent demonstrates foresight, tactical awareness, and the ability to

execute complex strategies like setting up sacrifices and controlling critical chains, thereby

increasing player engagement and promoting a deeper appreciation for the game's subtleties.

Furthermore, this endeavor provides a valuable platform to explore the practical application of

core AI game-playing principles within the unique constraints and tactical landscape of Dots

and Boxes. It offers a chance to investigate how a well-established algorithm like Minimax,

typically discussed in the context of games like Chess or Tic-Tac-Toe, adapts to the specific

mechanics of completing squares and managing line placements. This exploration involves

delving into how to best represent the game state, designing effective evaluation functions that

capture positional advantages beyond simple box counts, and observing the emergent strategic

behaviors produced by the algorithm. Successfully applying Minimax in this context serves as

a practical case study in AI problem-solving within combinatorial games.

Intrinsic to this exploration is the motivation derived from tackling the inherent technical

challenges associated with implementing game tree search algorithms efficiently. The project

confronts the computational demands of Minimax, particularly the potential for state-space

explosion on larger grids, which can render a naive implementation impractically slow.

Overcoming this involves the intellectually stimulating task of researching, implementing, and

fine-tuning optimization techniques such as Alpha-Beta pruning and potentially developing

effective heuristics. Successfully navigating these performance hurdles is key to demonstrating

how theoretical AI concepts can be translated into a responsive, functional, and genuinely

enjoyable interactive system, showcasing practical AI engineering alongside algorithmic

understanding.

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

Ultimately, the project aims to culminate in a fully playable Dots and Boxes prototype featuring

a competent Minimax-driven AI. This tangible outcome serves multiple purposes: it acts as a

clear demonstration of the algorithm's effectiveness in enhancing strategic gameplay, provides

users with a challenging and rewarding experience, and validates the design and

implementation choices made. Beyond its immediate function, this prototype is envisioned as

a foundation—a robust starting point for potential future explorations, such as incorporating

more advanced AI techniques (like machine learning enhancements), expanding game features,

or adapting the framework for educational purposes or application to other strategic board

games. This project, therefore, is motivated not just by improving a single game but by

contributing a well-realized example of AI in action within the accessible and engaging domain

of classic strategy games.

1.3 Project Objectives

1. To develop and implement the core Minimax algorithm as the decision-making engine for

an artificial intelligence opponent within a Dots and Boxes game.

This objective involves the detailed design and coding of the fundamental AI logic. It requires

creating a robust internal representation of the Dots and Boxes game state, capable of

accurately tracking the grid configuration, which lines have been drawn, the ownership of

completed squares, the current scores, and whose turn it is. Central to this objective is the

implementation of the recursive Minimax function itself, which must correctly alternate

between maximizing the AI's score on its turn and minimizing the human opponent's score on

their simulated turns [2]. This function needs to effectively explore the game tree by generating

all valid successor states (possible line placements) from any given state, evaluating terminal

states (win, loss, draw, or end-of-game based on completed squares), and propagating the

calculated utility values back up the tree. The ultimate output of this core component will be

the reliable selection of the move deemed most advantageous according to the Minimax

principle, forming the strategic heart of the AI player and enabling it to play with foresight

rather than just reacting greedily.

2. To integrate performance optimization techniques and variable difficulty levels into the

Minimax AI.

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

Building upon the core Minimax implementation, this objective addresses the practical

challenges of computational complexity and user experience. Recognizing that a full Minimax

search can become excessively slow on larger boards or at greater depths, this involves

implementing crucial optimization techniques. Primarily, this includes integrating Alpha-Beta

pruning, a method designed to significantly reduce the number of nodes evaluated in the game

tree by eliminating branches that cannot possibly influence the final decision [4], thereby

drastically speeding up move calculation without sacrificing the accuracy of the outcome.

Additionally, this objective may involve developing and incorporating heuristic evaluation

functions to assess non-terminal game states, allowing the AI to make informed decisions even

when a full search to the end of the game is infeasible. Furthermore, this objective explicitly

includes implementing the user-selectable "Computer Difficulty" setting. This will likely

involve mechanisms such as varying the maximum search depth of the Minimax algorithm

(deeper searches lead to stronger, but potentially slower, play), adjusting the complexity or

accuracy of heuristic functions, or potentially introducing controlled randomness at lower

difficulty settings, ensuring the game provides an appropriate and adaptable level of challenge

for a diverse range of players.

3. To create a complete, functional, and user-friendly prototype of the Dots and Boxes

application incorporating the Minimax AI.

This objective focuses on delivering the tangible product: a fully operational game application

that seamlessly integrates the AI opponent developed in the previous objectives. It

encompasses the entire scope of the user-facing software, starting with the development of an

intuitive graphical user interface (GUI) that visually represents the game board, scores, and

available moves clearly. A key aspect is implementing the described navigation structure,

ensuring users can move effortlessly and logically between the Start Page, Main Menu, Game

Page, Settings, and Rules sections. This objective also mandates the functional implementation

of all specified user customization options: toggling sound effects and background music,

selecting from available music tracks, applying different visual themes (checkerboard colours),

choosing various board sizes, and configuring the game setup, including the number of human

players and the AI's difficulty level. Crucially, this objective ensures the successful integration

of the optimized Minimax AI (from Objectives 1 and 2) into the game loop, allowing a human

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

player to interactively play a complete game against the computer opponent through the

developed interface, from initial setup to the final determination and display of the game's

outcome.

1.4 Project Scope

The scope of this project centers on the development of a functional, playable prototype of the

Dots and Boxes game featuring a competent artificial intelligence opponent powered by the

Minimax algorithm. This includes the complete implementation of the Minimax logic for AI

decision-making, incorporating state evaluation, recursive game tree exploration, and move

selection based on maximizing the AI's score while minimizing the opponent's [2].

Furthermore, the scope explicitly includes the integration of performance optimizations, such

as Alpha-Beta pruning or heuristic evaluations, to ensure efficient AI operation, along with the

implementation of variable computer difficulty levels accessible to the user.

The project scope also encompasses the creation of a complete user application framework.

This involves developing a graphical user interface with intuitive navigation between distinct

sections: a Start Page, Main Menu, Game Page, Settings screen, and a Rules display area,

following the specific interaction flows described. Essential game setup and customization

features fall within scope, including user selection of board size, player configuration, AI

difficulty, and visual theme (choice of three checkerboard colors). User-specific preferences,

namely the ability to enable/disable sound effects and background music (with three track

options), are also included within the Settings section. The implementation will cover all core

Dots and Boxes game mechanics, such as turn-based line drawing, square completion

detection, scoring, and handling of game end conditions.

Conversely, the project scope is strictly defined to exclude elements not central to the core AI

and gameplay demonstration. Specifically, the development of advanced or high-fidelity

graphics is outside the scope; the focus will remain on functional representation rather than

aesthetic polish. The project will not implement any online multiplayer capabilities, confining

gameplay to local sessions on a single device. Additionally, the exploration and

implementation of artificial intelligence algorithms other than Minimax (and its direct

optimizations like Alpha-Beta pruning or heuristics) are explicitly excluded, as the primary

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

goal is to demonstrate the application and effectiveness of the Minimax algorithm within the

Dots and Boxes context.

1.5 Contributions

A Functional and Optimized Minimax AI for Dots and Boxes is the primary contribution of

this project, involving the successful implementation and adaptation of the Minimax algorithm,

potentially enhanced with Alpha-Beta pruning or heuristics, specifically tailored for the

strategic complexities of Dots and Boxes. This results in an AI opponent capable of

demonstrating genuine foresight, balancing offensive and defensive tactics, recognizing traps,

and providing a significantly more challenging and engaging gameplay experience compared

to simpler AI implementations commonly found in this game. The AI serves as a practical

realization of game theory principles within this specific domain.

This project also contributes an enhanced and Configurable Dots and Boxes Game Prototype,

which is a complete, playable software application integrating the Minimax AI within a user-

friendly framework. Beyond basic gameplay, this prototype offers tangible enhancements

including variable AI difficulty levels, user customization options (such as board size, visual

themes, sound effects, and background music), and a clear, navigable user interface connecting

the start screen, main menu, game board, settings, and rules. This integrated system serves as

a polished demonstration platform showcasing the AI in action and providing a richer user

experience.

Furthermore, the project provides Practical Insights and a Demonstration of AI applications in

a Classic Game. It serves as a valuable case study on the practical application of a fundamental

AI algorithm (Minimax) to a classic strategy game. It demonstrates how theoretical AI concepts

can be translated into a working interactive system, highlighting both the effectiveness of the

algorithm in creating intelligent behavior and the practical challenges faced during

implementation, particularly regarding computational performance and the need for

optimization. The resulting prototype and the knowledge gained during its development can

serve educational purposes, illustrate AI principles to a wider audience, and potentially act as

a foundation for future research or extensions involving more advanced AI techniques or game

features.

CHAPTER 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

1.6 Report Organization

Chapter 1 serves as the Introduction. This chapter likely details the background of the Dots and

Boxes game, introduces the Minimax algorithm, states the problem the project aims to solve,

outlines the motivation behind the project, lists the project objectives, defines the scope of the

work, and highlights the contributions of the project. It concludes with the report's organization.

Chapter 2 is the Literature Review. This section is expected to cover a review of the

technologies used, such as the C# programming language and the Minimax algorithm,

including its application in Dots and Boxes. It also provides critical remarks on previous works,

comparing them with the proposed solutions, and reviews existing Dots and Boxes systems or

applications.

Chapter 3 details the System Methodology or Approach for this development-based project.

This would typically include system design diagrams like flowcharts or architecture diagrams

to explain how the system is structured and how its components interact.

Chapter 4 focuses on the System Design. This chapter likely elaborates on the system block

diagram and the interaction operations between different system components.

Chapter 5 covers System Implementation. This section would describe the software setup,

system settings and configurations, and the system's operation, potentially with screenshots. It

also discusses implementation issues and challenges faced during development and offers a

concluding remark on the implementation phase.

Chapter 6 is dedicated to System Evaluation and Discussion. This chapter would outline the

system testing procedures and performance metrics used, detail the testing setup and results,

discuss project challenges, and evaluate how well the project objectives were met. It concludes

with a summary of the evaluation.

Finally, Chapter 7 provides the Conclusion and Recommendations. This chapter summarizes

the project's achievements and offers recommendations for future work or enhancements. The

report also includes a list of References.

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 2

Literature Review

2.1 Review of the Technologies

2.1.1 Programming Language

C# is a modern, versatile programming language developed by Microsoft, designed with

developer productivity and application scalability in mind. It features static and strong typing,

alongside support for object-oriented and component-oriented programming paradigms [5].

Running primarily on the .NET framework, C# is employed across a wide spectrum of

applications, including full-stack desktop applications, mobile apps, game development and

others [6]. Its extensive libraries, cross-platform capabilities enabled by .NET, and features like

exception handling make it a popular choice, consistently ranking among the top programming

languages [5]. Key C# features contributing to its utility include Language Integrated Query

(LINQ) for data manipulation, a structured approach to exception handling, and functional

programming elements like lambda expressions [5]. C# code is typically compiled into an

intermediate language (IL) and executed within the .NET Common Language Runtime (CLR)

[7]. Code executed under the CLR's management is referred to as "managed code," benefiting

from services such as security checks, type safety, and, critically for this review, automatic

memory management through Garbage Collection (GC) [7].

A cornerstone feature of the .NET framework and C# is its automatic memory management

system, the Garbage Collector (GC) [7]. The GC serves as an automatic memory manager

within the CLR, relieving developers of manually allocating and deallocating memory [7]. This

automation frees developers from writing explicit memory release code, allocates objects

efficiently on the managed heap, and automatically reclaims memory from objects no longer

in use [8]. When a .NET application starts, the CLR reserves a contiguous block of virtual

memory known as the managed heap, where all reference-type objects are allocated [9].

Allocation is generally fast, comparable to stack allocation, as the runtime maintains a pointer

to the next available address and advances it upon object creation, often resulting in contiguous

storage, which can improve data locality [7]. The GC determines object liveness by examining

application "roots" (static fields, local variables, CPU registers, GC handles, finalization queue

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

objects) and constructing a graph of all reachable objects [7]. Objects not part of this graph are

considered garbage [7]. The collection process typically involves marking reachable objects,

relocating/compacting the heap by moving live objects together to reduce fragmentation

(updating references accordingly), and sweeping/releasing the memory of unreachable objects

[9]. Objects exceeding 85,000 bytes are allocated on the Large Object Heap (LOH), which is

usually not compacted due to the cost of moving large blocks, though compaction mechanisms

exist in later .NET versions [8].

To optimize performance, the GC employs a generational approach based on the observation

that most objects are short-lived [7]. The managed heap is logically divided into three

generations: Generation 0 holds the youngest, typically short-lived objects and is collected

most frequently [7]. Generation 1 holds objects that survived a Gen 0 collection, acting as a

buffer and collected less frequently and Generation 2 holds long-lived objects that survived

Gen 1, collected least frequently via a "full garbage collection" which includes all generations

and the LOH [7]. Objects surviving a collection in a lower generation are promoted to the next

higher one, and a collection of a higher generation always includes objects from lower

generations [7]. Garbage collection is triggered automatically by the CLR based on conditions

like low physical memory signalled by the OS, allocated memory on the managed heap

exceeding a dynamically adjusted threshold, or an explicit call to GC.Collect() (though manual

triggering is generally discouraged) [8].

For game development, automatic memory management via GC offers benefits in productivity

and code safety, allowing developers to focus on game logic rather than manual memory

management, thus reducing development time and eliminating bugs like memory leaks and

dangling pointers [7]. However, GC operations can introduce pauses or "hiccups" as they may

require suspending application threads, which can be disruptive in real-time games needing

smooth frame rates [10]. The non-deterministic timing of GC adds to this challenge [8].

Developers using C# for games must adopt strategies to minimize GC impact, such as

minimizing allocations within game loops, using object pooling (reusing objects instead of

creating new ones), preferring value types (structs) where appropriate to avoid heap allocations,

avoiding known garbage-generating operations like excessive string concatenation,

strategically using GC.Collect() during non-critical times (e.g., loading screens) and utilize

memory profiling tools in Visual Studio [11]. Modern .NET GCs have optimizations like

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

generational and background collection to mitigate pauses, but proactive memory management

remains crucial for optimal game performance [10].

2.1.2 Minimax Algorithm

The Minimax algorithm is a fundamental decision-making algorithm from game theory,

applied in AI for programming game-playing agents, especially for two-player, turn-based

games with perfect information and opposing goals (zero-sum games) like Tic-Tac-Toe, Chess,

and Dots and Boxes [12]. Its core principle is to find the optimal move by assuming the

opponent will also play optimally to counter [12]. It seeks to maximize the player's minimum

guaranteed outcome, minimizing the maximum possible loss the opponent can inflict [12].

Minimax involves two conceptual players: the Maximizer (Max), typically the AI, aiming for

the highest score, and the Minimizer (Min), the opponent, aiming for the lowest score for Max

[12]. The game is modeled as a game tree where nodes represent game states and edges

represent moves [12]. The algorithm explores this tree using recursive depth-first search (DFS),

going down paths until a terminal state or a predefined depth limit is reached [2]. A utility

function assigns a definitive score to terminal states (e.g., +10 for Max win, -10 for Min win,

0 for draw), while a heuristic evaluation function estimates the desirability of non-terminal

states reached at the search depth limit, based on game features [2]. The core calculation

involves propagating these values up the tree: Min nodes take the minimum value of their

children, and Max nodes take the maximum value of their children [12]. The value calculated

for the root node represents the best score Max can guarantee, and the optimal move leads to

the child node with this value [12]. However, Minimax has exponential time complexity,

approximately O(b^d) (where b is the branching factor, d is the depth), making full searches

infeasible for complex games [2]. Practical implementations must limit search depth, relying

on the heuristic function's accuracy at the limit, making the chosen to move an approximation

of the true optimal move.

Given Minimax's computational cost, Alpha-Beta pruning is an essential optimization

technique applied to the Minimax search [13]. It significantly reduces the number of nodes

evaluated without changing the final move chosen by Minimax [13]. It works by maintaining

bounds on achievable scores: Alpha (α), the best (highest) score found so far for the

Maximizer (initially -∞), and Beta (β), the best (lowest) score found so far for the Minimizer

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

(initially +∞) [13]. These values are passed down the tree and updated [13]. Pruning occurs

when beta becomes less than or equal to alpha (β ≤ α) [13]. At a Min node, if the current

best score for Min (β) becomes ≤ the alpha inherited from an ancestor Max node, the

remaining children are pruned because Max already has a better option (guaranteeing at least

α) [13]. At a Max node, if the current best score for Max (α) becomes ≥ the beta inherited

from an ancestor Min node, the remaining children are pruned because Min already has a better

option (guaranteeing at most β) [13]. In the best case (optimal move ordering), Alpha-Beta

can reduce complexity towards O (b^d/2), allowing significantly deeper searches [14].

However, its efficiency heavily depends on exploring the best moves first; poor move ordering

can degrade performance close to basic Minimax [14]. Therefore, implementing effective move

ordering heuristics is crucial [14]. Alpha-Beta pruning finds the same optimal move as

Minimax (at a given depth d) but explores only a subset of nodes, making it faster [14].

2.1.3 Minimax Algorithm in Dots and Boxes

Applying Minimax/Alpha-Beta to Dots and Boxes is suitable as it's a two-player, deterministic,

perfect-information, zero-sum game [15]. The AI (Maximizer) aims to maximize its captured

boxes minus the opponent's (Minimizer) [15]. The main challenge is the enormous state space.

Even a 3x3 grid has a vast number of configurations (estimated around 10^15), making a full

search impossible and necessitating depth-limited search and optimizations [15]. Efficient state

representation is critical. Options include a 2D grid/list of lists representing dots, links, and

boxes, custom data structures like Edge and Box classes, bitboards for fast updates and hashing,

or the conceptual "strings-and-coins" analogy [16]. The choice impacts the feasibility of

optimizations like transposition tables (requiring fast hashing) and symmetry detection [16].

The evaluation function is pivotal due to the depth limit. Terminal state evaluation is simple

(AI boxes - Human boxes). The heuristic function for non-terminal states must estimate the

final score difference, considering strategic nuances beyond immediate captures [16]. Factors

might include current score difference (though potentially limited early on), immediate

captures, control over "chains" (sequences of boxes with two open sides, crucial for endgame

strategy), number of available safe moves, and number of boxes with 2 lines (potential chain

elements) [16]. A common technique tracks a single zero-sum score (incrementing for AI

captures, decrementing for human captures) [15]. The "extra turn" rule (player captures a box,

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

moves again) must be handled correctly in the state transition logic and the simulation

continues with the same player until a move doesn't capture a box [15]. Essential optimizations

beyond Alpha-Beta include depth limiting, transposition tables (caching results of previously

seen states using hashing), symmetry handling (treating rotationally/reflectionally equivalent

states identically), and move ordering heuristics (prioritizing likely strong moves like captures

or chain-avoiding moves) [16].

2.1.4 Summary of the Technologies Review

In summary, this review covered C# with its automatic garbage collection, the Minimax

algorithm optimized by Alpha-Beta pruning, and the specific challenges of applying these to

Dots and Boxes (state space, representation, heuristics, extra turns, optimizations). C# offers

productivity via features like GC, but GC pauses require mitigation in games [8]. Minimax

provides a theoretical basis for optimal play, but its complexity necessitates depth limits and

Alpha-Beta pruning [12]. Implementing this for Dots and Boxes demands careful handling of

its large state space, strategic heuristics (especially chain control), state representation

supporting optimizations like transposition tables, and the extra turn rule. Next, the key

takeaways for implementation include managing memory consciously to minimize GC impact,

implementing optimized Minimax with Alpha-Beta and depth limiting, prioritizing heuristic

design focusing on strategic elements like chains, and choosing state representation wisely for

efficiency and optimizations.

2.2 Critical Remarks of Previous Works

2.2.1 Strengths and Weaknesses of the Linja Game Project

Using the Minimax algorithm to increase the strategic depth of gaming, the Linja game project

is a noteworthy application of game theory concepts [20]. This report will look at the project's

advantages and disadvantages, giving a fair assessment of its accomplishments and potential

for development.

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

Strengths

The Linja game project demonstrates several key strengths, notably its impressive application

of game theory concepts, particularly the minimax algorithm [20]. This algorithm is

fundamental to the development of an intelligent system capable of selecting optimal moves

within the game. By enabling the AI to minimize potential losses, the minimax algorithm

facilitates strategic play, thereby enhancing its performance against human opponents and

showcasing a profound understanding of strategic decision-making [20].

Another significant strength is the project's comprehensive framework [20]. The

documentation thoroughly outlines the game's rules, the data structures employed, and the

specifics of the algorithm's implementation. This detailed introduction ensures that the project's

scope and technical components are clearly understood, which contributes to a better

comprehension of the AI's functionality and the overall effectiveness of the system [20].

The project also excels in its focus on user interface design [20]. The inclusion of a graphical

user interface (GUI) significantly improves user interaction and makes the game more

accessible. Furthermore, the project considers varying difficulty levels for the AI, allowing for

a more personalized and enjoyable gaming experience tailored to different player skill levels.

This emphasis on user interface design reflects a commitment to creating a dynamic and user-

friendly application [20].

Moreover, the project incorporates an extensive experimental validation method, which is

crucial for assessing the AI's efficacy [20]. Through rigorous testing and analysis of outcomes,

the project demonstrates the AI's performance against human players. This empirical approach

not only validates the AI's capabilities but also supports the project's overall conclusions. The

detailed analysis of results offers valuable insights into the AI's performance and identifies

areas for potential improvement [20].

Finally, the document displays a forward-thinking approach by considering future work [20].

By outlining potential enhancements and modifications for broader platforms, the project

demonstrates a proactive stance on software development. This willingness to explore further

improvements signifies a dedication to continuous innovation and the ongoing development of

the game beyond its initial release [20].

Weaknesses

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Despite its strengths, the Linja game project faces challenges, primarily due to the complexity

of its implementation [20]. Games like Linja, with a vast number of potential moves, can be

computationally intensive and strain system resources. The intricacy of managing and

accessing a wide range of game states can present significant programming hurdles and affect

the AI's overall efficiency [20].

Another weakness lies in the potentially limited scope of testing scenarios [20]. Although the

project's testing is described as extensive, it might not encompass all conceivable game

dynamics. This limitation could mean the AI's learning capacity is not fully robust, as its

performance might vary when confronted with unexpected or diverse game situations.

Broadening the range of tests could yield a more comprehensive assessment of the AI's

performance [20].

The project's reliance on heuristic evaluations for decision-making presents both advantages

and disadvantages [20]. While heuristics simplify the analysis of complex game states, they

can sometimes lead to suboptimal decisions. Heuristic-based methods may oversimplify game

dynamics, potentially limiting the AI's ability to handle more intricate game scenarios

effectively [20].

Furthermore, user experience variability poses another challenge [20]. Differences in player

skill levels and strategic approaches can impact the AI's learning process, potentially leading

to inconsistent gameplay experiences. This unpredictability might affect the AI's capacity to

adapt and perform optimally across a diverse range of player interactions [20].

Finally, scalability concerns may arise as the game evolves or new features are introduced [20].

Maintaining performance and managing new complexities might necessitate considerable

modifications to the existing architecture. Ensuring the system's ability to scale effectively

while preserving usability and performance is a critical consideration for future development

[20].

The application of game theory, extensive framework, user interface design, experimental

validation, and consideration of future work are only a few of the strengths that the Linja game

project highlights [20]. It also has issues with scalability, user experience unpredictability,

reliance on heuristic evaluation, limited testing scenarios, and complexity of implementation

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

[20]. Progressing the project and guaranteeing its sustained success in providing an interesting

and strategic gaming experience would need to address these shortcomings while capitalizing

on its strengths [20].

2.2.2 Strengths and Weaknesses of the Tic-Tac-Toe Algorithmic Analysis

Significant insights into how computational strategies might improve gameplay and decision-

making processes are gained from the study of algorithms in game artificial intelligence [21].

The reviewed study provides a thorough comparative examination of multiple algorithms, with

a particular emphasis on the optimization of the minimax algorithm using Alpha-Beta pruning

[21]. This essay looks at the paper's advantages and disadvantages, noting its contributions to

the field of game AI research and suggesting avenues for development [21].

Strengths

A salient feature of the study is its comprehensive analysis of several algorithms, with the

thorough examination of the minimax algorithm and its optimization using Alpha-Beta pruning

standing out as a particularly insightful contribution [21]. This detailed comparison allows

readers to understand the respective benefits and drawbacks of each algorithm concerning

decision-making and operational efficiency. The research offers valuable insights into the

functionality of each algorithm within the Tic-Tac-Toe context, and this understanding can be

extrapolated to a broader range of strategic games [21].

The decision to utilize Tic-Tac-Toe as the primary platform for algorithmic experimentation is

commendable due to its clarity [21]. As a well-known and straightforward game, Tic-Tac-Toe

enables readers, irrespective of their background in game theory or artificial intelligence, to

grasp the fundamental concepts more easily. This familiar context facilitates the paper's ability

to clearly demonstrate AI algorithm performance without the obfuscation of complex game

rules, allowing readers to focus on the efficacy of the strategies rather than the intricacies of

the game itself [21].

The work also excels in situating its findings within the broader context of current AI research

[21]. By referencing prior studies and methodologies, the paper demonstrates a comprehensive

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

understanding of the prevailing state of AI and game development. This contextualization helps

validate the study by placing its conclusions in relation to existing literature and illustrating

how the findings contribute to the ongoing discourse on game AI, making the work significant

not only for its algorithmic insights but also for its contribution to advancing knowledge on AI

applications in gaming [21].

Furthermore, the article's thorough analysis of the intricacies of different algorithms is a

significant asset [21]. The comparison between brute force methods and Alpha-Beta pruning

is particularly useful, as it clearly demonstrates the differences in operational efficiency

between various tactics. These insights are valuable for both researchers and developers,

offering precise guidance on selecting appropriate algorithms based on the specific

requirements of a game. This focus on algorithmic efficiency positions the study as a useful

resource for anyone aiming to enhance AI performance in gaming scenarios [21].

Finally, the paper's conclusions carry important practical implications, especially for game

developers seeking to integrate AI into their creations [21]. The thorough examination of how

AI can enhance user experience and influence gameplay is crucial for understanding the real-

world applications of these algorithms. The research underscores how AI algorithms improve

strategic play and decision-making, thereby highlighting the relevance of its findings to actual

game development situations [21].

Weaknesses

While Tic-Tac-Toe serves as a useful tool for clarity, its use also limits the applicability of the

study's results [21]. Although the relatively simple game of Tic-Tac-Toe is excellent for

illustrating fundamental AI tactics, it may not adequately represent the complexities

encountered in more intricate gaming environments. The simplicity of the game means that the

findings might not readily apply to games with more extensive decision trees or deeper strategic

elements. Consequently, while the paper's conclusions are valuable, their applicability to more

complex AI applications may be constrained [21].

The extensive technical analysis presented in the paper could pose a challenge for individuals

not well-versed in algorithms or computer science [21]. The technical jargon and intricate

mathematical explanations of the minimax algorithm and Alpha-Beta pruning might be

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

difficult to follow for those unfamiliar with these subjects. As a result, the paper's accessibility

to a broader audience may be limited, potentially alienating readers who lack the necessary

technical background. Incorporating clearer explanations or illustrative examples could help

bridge this gap [21].

Although the work provides a solid theoretical framework, it would benefit from the inclusion

of more real-world examples or empirical data [21]. While a theoretical understanding of

algorithmic performance is useful, the paper's findings could be strengthened by incorporating

actual tests or case studies. Demonstrating the algorithms in action through simulations or

gaming scenarios would offer concrete proof of their efficacy, thereby reinforcing the

arguments and connecting them to practical applications [21].

The paper's apparent preference for specific methods, such as Alpha-Beta pruning, raises

concerns about potential bias [21]. While this algorithm has recognized advantages, the criteria

for judging it against other algorithms are not always clearly defined. A more comprehensive

comparison that impartially evaluates a wider range of algorithms would provide a more

balanced view of the AI landscape. Without this, the study risks presenting a skewed

perspective that might overlook the merits of other viable alternatives [21].

Furthermore, the analysis in this work primarily focuses on static algorithmic performance,

neglecting dynamic elements like evolving strategies or player behaviour [21]. In real-world

game scenarios, player behaviour can significantly influence outcomes, potentially requiring

AI tactics to adapt. By concentrating solely on the technical aspects of algorithmic efficiency,

the research overlooks the importance of adaptive AI capable of adjusting to shifting game

dynamics. A discussion of how these algorithms could account for player behaviour would

deepen the research and enhance its relevance to practical scenarios [21].

In the context of Tic-Tac-Toe, the study provides a thorough and perceptive analysis of AI

algorithms, with a focus on the minimax algorithm and its Alpha-Beta pruning optimization

[21]. Its thorough analysis, understandable application, context for the research, algorithmic

insights, and useful consequences are its strongest points [21]. The article does, however, have

many drawbacks, such as its limited scope, technical difficulty, and absence of empirical data,

potential bias, and emphasis on static analysis [21]. The article may gain greater traction and

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

provide more insightful information about the dynamic and changing nature of AI in game

development if these flaws were fixed [21].

2.2.3 Compare them with my proposed solutions

1. Comparison with the Linja Game Project

The Minimax algorithm was used by the Linja game project to generate a clever AI opponent

[20]. The application of game theory, a thorough framework, an intuitive interface, and

experimental validation are among its main advantages [20]. Unfortunately, scalability issues,

reliance on heuristic judgments, limited testing scenarios, and technical complexity all hindered

it [20].

Comparison

Both the Linja project and the proposed Dots and Boxes solution focus on integrating the

minimax algorithm to enhance AI decision-making [20]. However, my project adds a layer of

game adaptability, where the AI adjusts its strategy dynamically based on the player’s actions.

This addresses Linja's limitations in testing scenarios and adaptation, offering a more

responsive AI.

Linja's reliance on heuristics could lead to suboptimal decisions [20], which is mitigated in

Dots and Boxes through the implementation of Alpha-Beta pruning to optimize the Minimax

algorithm, reducing unnecessary calculations without sacrificing accuracy. The proposed

project also places additional emphasis on balancing AI competency to avoid overly simplistic

or unbeatable opponents, improving user experience.

2. Comparison with Tic-Tac-Toe Algorithmic Analysis

The Tic-Tac-Toe analysis concentrated on contrasting optimizations like Alpha-Beta pruning

with algorithms like Minimax [21]. Detailed algorithmic comparison, useful ramifications for

game production, and algorithmic insights are some of its strong points [21]. However, it was

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

devoid of empirical evidence, offered a static analysis, and seemed to be biased in favour of

some techniques over others, such as Alpha-Beta pruning [21].

Comparison

The suggested Dots and Boxes approach has the same ability to optimize performance by

utilizing Alpha-Beta pruning as Tic-Tac-Toe [21]. It goes one step further by putting the AI to

the test in a variety of challenging scenarios and dynamic game situations to make sure it can

adjust to changing player tactics [21]. This offers a more flexible, adaptive AI experience,

addressing the static analysis weakness of Tic-Tac-Toe analysis [21].

In contrast to Tic-Tac-Toe, which emphasizes a more straightforward game with fewer

strategic facets, Dots and Boxes offers a more intricate choice space, demanding a more

thorough analysis of move selection. The drawback of limited empirical data in the Tic-Tac-

Toe analysis is overcome by thoroughly testing a variety of game scenarios to address this

complexity [21].

To sum up, while other projects have effectively shown the Minimax algorithm's potential in

games, the suggested Dots and Boxes approach improves these by emphasizing flexibility,

balanced difficulty, and strategic complexity, giving players a more engaging experience.

2.3 Review of the Existing Systems/Applications

2.3.1 Website Dots and Boxes Games A [17]

Existing Games A represents a robust and feature-rich online implementation of the classic

Dots and Boxes game. Its primary strength, as noted by users, lies in the significant challenge

presented by its artificial intelligence, particularly when players engage with the highest

difficulty setting. This suggests a well-developed game engine, potentially utilizing

sophisticated algorithms to drive computer play. The system thoughtfully caters to a diverse

audience by offering a granular selection of four distinct difficulty levels. This range allows

both novices seeking a gentle introduction and experienced strategists looking for a demanding

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

contest to find an appropriate level of challenge, thereby enhancing replay ability. Beyond the

core single-player experience against the computer, System A acknowledges the social aspect

of gaming by providing functionality for users to compete directly against friends.

Furthermore, it empowers users with significant control over their gaming environment

through multiple customization options. Players can precisely define the complexity and length

of a match by selecting the dimensions of the game board. They can also personalize the visual

experience by choosing a preferred theme color for the interface and configure the game for

different group sizes by specifying the number of players, making it a highly adaptable and

user-centric platform.

2.3.2 Website Dots and Boxes Games B [18]

Existing Games B is another iteration of Dots and Boxes available as a web-based application.

User feedback highlights that engaging with this version's computer opponent provides a

stimulating and challenging experience, implying the integration of a competent AI that

requires thoughtful strategic play to overcome. However, System B diverges significantly from

others in its approach to difficulty configuration. A key characteristic and notable limitation of

this system is the complete absence of any user-selectable difficulty levels. The game appears

to operate on a single, fixed level of AI competence. While this fixed level is perceived as

challenging, this lack of adjustability means the game may not be suitable for beginners,

finding it too difficult, or experts seeking an even greater challenge or varied gameplay.

Consequently, user control over the game's parameters is restricted primarily to the ability to

customize the size of the playing grid. While board size selection allows some control over

game dynamics, the overall flexibility and adaptability of the experience are considerably less

than systems offering explicit difficulty scaling and other customization features.

2.3.3 Website Dots and Boxes Games C [19]

This third online Dots and Boxes game, Game C, offers players a simplified choice regarding

game difficulty, providing only two explicit options: an 'Easy' level and a 'Hard' level. While

offering a choice is beneficial, user experience indicates a potential weakness in its AI

implementation. Specifically, players have reported that triumphing over the computer

opponent, even when set to the designated 'Hard' level, feels relatively straightforward and less

CHAPTER 2

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

demanding compared to the higher difficulty settings found in System A or the default

challenge presented by System B. This suggests that the algorithms governing the AI's strategy

in System C might be less advanced or perhaps deliberately tuned to offer a more casual, less

intimidating gameplay experience. Despite this perceived limitation in the AI challenge,

System C incorporates essential features for usability and social play. Like System A, it

supports matches against the computer as well as contests between human players (friends).

Additionally, it provides the standard, yet crucial, functionality for users to select the desired

dimensions of the game board, allowing for variation in game length and complexity.

2.3.4 Summary of the Existing Systems

In evaluating these three existing Dots and Boxes systems, a clear hierarchy in terms of feature

depth, customization, and AI challenge becomes apparent. Game A emerges as the most

comprehensive offering. It successfully combines a challenging AI, particularly at its peak

setting, with extensive user control, featuring four difficulty levels and options to modify board

size, theme colour, and player numbers, alongside multiplayer capabilities. This makes it

suitable for a wide range of players seeking both challenge and personalization. Game B

presents a somewhat paradoxical experience: it delivers a notably challenging AI opponent but

severely restricts user control by omitting any means to select or adjust difficulty. Its

customization is essentially limited to board size, potentially alienating players who prefer

graduated difficulty or find the fixed level unsuitable. Game C offers a basic structure with two

difficulty levels ('Easy', 'Hard'), multiplayer support, and board size selection. However, its key

drawback is the perceived lack of genuine challenge even on its 'Hard' setting, positioning it

more towards casual players or those new to the game rather than users seeking a demanding

strategic duel. While all three permit board size adjustments, and Systems A and C facilitate

multiplayer games, the crucial differences lie in the sophistication and scalability of the AI

opponent and the overall degree of user customization afforded.

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 3

System Methodology/Approach

3.1 System Design Diagram

Figure 3.1 Game overall diagram

In Figure 3.1, the application's system design centers around a user interface that allows

seamless navigation between several key sections. The entry point is the Start Page, which acts

as a hub providing access to the Main Menu, Rules page, and Settings page. The Rules page

provides game instructions and allows navigation back to the Start Page. The Settings page

offers customization options and permits users to return to the Start Page or Main Menu.

The Main Menu serves as a central navigation point, allowing users to go back to the Start

Page, proceed to the Game Page, or access the Setting Page. Within the Main Menu, users can

configure game parameters such as select from three theme colours (default, light, blue), set

the computer's difficulty level, and choose the board size. These selections directly influence

the gameplay experience on the Game Page.

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

The Settings page provides controls for audio customization. Users can toggle sound effects on

or off, affecting auditory feedback during gameplay and operations. Additionally, background

music can be enabled or disabled, with three different background music options available for

selection. These settings allow users to tailor the game's audio environment to their preferences.

The core gameplay occurs on the Game Page. This component manages the user interface for

the Dots and Boxes game, dynamically generating the game board (dots, lines, and squares)

based on parameters received from the Main Menu (grid size, difficulty, theme). It manages

human player input via pointer events for drawing lines and provides visual feedback. The

game page also initializes and interacts with the artificial intelligence module for computer

opponents. It updates the visual state of the board based on moves from both human and AI

players, plays sound effects, calculates scores, and manages turn transitions. If a player

completes a square, they get another turn. The page continuously checks for game end

conditions (win, loss, or draw based on total score versus available squares) and displays the

outcome, disabling further board interaction. A menu button on the Game Page allows resetting

the current game or returning to the Main Menu. It also handles background video playback

and applies selected visual themes.

The AI's logic is encapsulated within a dedicated module. This component implements an AI

opponent with "easy", "medium", and "hard" difficulty levels, which adjust the search depth of

its core Minimax algorithm. The Minimax algorithm is enhanced with alpha-beta pruning for

efficient game tree exploration. To further optimize performance and decision-making, the AI

utilizes a transposition table (caching previously evaluated board states), a killer moves

heuristic (prioritizing moves that caused pruning), and a quiescence search (extending search

for capture sequences to mitigate the horizon effect). The AI evaluates board positions using a

heuristic function that considers score difference, penalizes moves creating immediate scoring

opportunities for the opponent (three sides of a box open), and discourages moves creating

chains of boxes with two sides. For the "hard" difficulty, iterative deepening is employed,

progressively increasing search depth within a time limit (which adjusts based on grid size) to

find the best possible move. The AI simulates moves on internal board copies to determine

consequences. The game page retrieves the current visual board state, converts it to an internal

representation of the board state, and asynchronously calls the AI module's function to

determine the best move. The AI's chosen move is then rendered on the UI by the game page.

The system design emphasizes a clear separation between the UI/game flow management and

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

the AI's decision-making logic, facilitating a customizable and challenging gameplay

experience.

3.1.1 System Architecture Diagram

Figure 3.2 Game Architecture Diagram

The system architecture in Figure 3.2 for the Dots and Boxes game application is designed as

a component-based structure, likely following a layered approach to separate concerns and

enhance modularity. This architecture ensures a clear distinction between user interaction,

game management, and artificial intelligence, facilitating an intuitive and engaging gameplay

experience.

At the forefront is the User Interface (UI) Layer, which serves as the primary point of

interaction for the user. This layer is responsible for presenting all visual elements and handling

user input across various sections of the application. It comprises several distinct views or

pages: the Start Page (initial entry point), the Rules Page (displaying game instructions), the

Settings Page (for audio and other preferences), the Main Menu Page (for game configuration),

and the Game Page (where actual gameplay occurs). The Game Page component is particularly

dynamic, responsible for rendering the game board with its dots, lines, and squares, and

providing real-time visual feedback like dot highlighting and line previews during a player's

move.

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

Interfacing with the UI Layer is the Game Logic Layer (or Application Layer). This layer acts

as the central coordinator of the application. It manages the overall game flow, including

navigation between the different UI pages based on user actions. Critically, it maintains the

Game State, which includes the current configuration of the board (lines drawn, squares

completed), player scores, and whose turn it is. This layer implements the fundamental rules

of Dots and Boxes, such as awarding points and an extra turn upon completing a square and

switching turns. When a game starts, this layer uses parameters selected by the user in the Main

Menu (like board size, AI difficulty, and visual theme) to initialize the game environment. The

component managing the game screen and player interaction within this layer is also

responsible for orchestrating communication between the user's actions on the UI and the AI

engine when it's the computer's turn. It handles events like valid moves, updates scores, and

checks for game termination conditions.

The AI Engine Layer provides the intelligence for the computer opponent. This component is

centred around a Minimax search algorithm, which is enhanced with alpha-beta pruning for

efficiency. To further refine its decision-making and performance, the AI engine incorporates

several advanced techniques: a transposition table to cache results of previously evaluated

board states, a killer move heuristic to prioritize promising moves, and a quiescence search to

stabilize evaluations in volatile (capture-heavy) positions. The AI's behaviour is scalable

through different difficulty levels ("easy," "medium," "hard"). These levels primarily adjust the

depth of its search algorithm: "easy" and "medium" use fixed, shallower search depths, while

"hard" employs iterative deepening up to a greater depth, constrained by time management

based on grid size. The AI evaluates board positions using a sophisticated heuristic function

that considers score differences, potential opponent scoring opportunities, and the strategic

implications of creating chains. It simulates potential moves on internal copies of the board

state before selecting its optimal move.

Underpinning these layers are Data Management aspects. The Game Logic Layer manages a

representation of the current game state (referred to as a BoardState object when interacting

with the AI), which includes all details about drawn lines and completed squares. User

preferences from the Settings page are also implicitly managed. The AI Engine maintains its

own data structures, most notably the transposition table for caching board evaluations.

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

The interactions between these layers are well-defined. User input from the UI Layer is

processed by the Game Logic Layer, which updates the game state and/or navigates the UI.

When it's the AI's turn, the Game Logic Layer provides the current game state to the AI Engine.

The AI Engine then asynchronously calculates its best move and returns it to the Game Logic

Layer, which in turn updates the game state and directs the UI Layer to reflect the AI's move

on the board. This architecture ensures that the game's presentation, core logic, and AI decision-

making are decoupled, leading to a robust and maintainable system.

3.1.2 Use Case Diagram and Description

Figure 3.3 Game use case diagram

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

In Figure 3.3, the system facilitates several interactions for the User, who is the primary actor.

The User begins at the Start Page, from which they can initiate several use cases: Navigate to

Main Menu, Navigate to Rules, and Navigate to Settings. The Navigate to Rules use case

allows the User to view game instructions and then Navigate to Start Page.

The Navigate to Settings use case allows the User to access and modify application preferences.

Within the Settings, the User can Manage Sound Effects (Enable/Disable) and Manage

Background Music (Enable/Disable). If enabling background music, the User can also Select

Background Music Track from three available options. From Settings, the User can Navigate

to Start Page or Navigate to Main Menu.

The Navigate to Main Menu use case, accessible from the Start Page, allows the User to

configure a new game. In the Main Menu, the User can Select Number of Players, Select

Computer Difficulty (with options for Easy, Medium, or Hard, which influences how the AI

Actor plays), Select Board Size, and Select Theme Colour (Default, Light, or Blue). After

configuring, the User can Navigate to Game Page to start playing. The Main Menu also allows

the User to Navigate to Start Page.

Once on the Game Page, the User can View Game Board. The primary gameplay use case for

the User is Make a Move, which involves drawing lines between dots. The System (or a Game

Management component) will then Update Game State, Check for Completed Squares, Update

Score accordingly, and Play Sound Effects (if enabled by the User in Settings). If the User

completes a square, they get another turn; otherwise, the System will Switch Turns. The User

can also, from a menu on the Game Page, Reset Game (restarting with the same configurations)

or Return to Main Menu.

The AI Player, acting as a secondary actor or system component, primarily engages within the

Game Page. When it is the AI's turn, its central task is to "Determine AI Move." The

sophistication of this process is directly influenced by the difficulty level selected by the User.

For the Easy Difficulty setting, the AI employs a Fixed-Depth Minimax search algorithm,

exploring the game tree to a shallow depth of 2 plies. This search is optimized through several

techniques, including Alpha-Beta Pruning to cut off branches that won't influence the outcome,

a Transposition Table to cache and retrieve evaluations of previously seen game states, Move

Ordering to prioritize more promising moves, the Killer Moves heuristic to try moves that have

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

been effective in other parts of the search tree, and a Quiescence Search to ensure stability in

tactical situations by extending the search for capture sequences.

At the Medium Difficulty level, the AI's foresight is extended. It utilizes a Fixed-Depth

Minimax search to 4 plies, allowing for a more comprehensive evaluation of potential moves.

This deeper search continues to benefit from the same suite of enhancements employed in the

Easy difficulty: Alpha-Beta Pruning, a Transposition Table, Move Ordering, Killer Moves, and

Quiescence Search, all of which become even more crucial for managing the larger search

space.

The Hard Difficulty presents the most formidable AI opponent. Here, the AI shifts to an

Iterative Deepening Minimax strategy, starting with a shallow search and progressively

increasing the depth up to a maximum of 10 plies. This approach is dynamically constrained

by Time Management, ensuring the AI decides within a set timeframe. Throughout each

iteration of its search, the AI heavily relies on Alpha-Beta Pruning, a Transposition Table,

powerful Move Ordering techniques, the Killer Moves heuristic, and a Quiescence Search at

the leaf nodes to refine its evaluations.

Once the AI has determined its move, the System takes over to integrate it into the game. This

involves updating the Game State to reflect the AI's action, checking if the move resulted in

any Completed Squares, updating the AI's Score accordingly, and playing any relevant Sound

Effects if enabled. If the AI's move successfully completes one or more squares, the AI is

granted another turn. If no square is completed, the turn switches back to the User.

Throughout the game, the System is responsible for Defining Game State initially and after

each move. It also handles Evaluating Actions based on the Minimax algorithm (for the AI),

which involves maximizing the AI's score and minimizing the opponent's score. Finally, the

System will Handle Game End Conditions, determining if the game is a win, loss, or draw

based on final scores, and then Display Game Outcome to the User.

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

3.1.3 Activity Diagram

Figure 3.4 Game Activity Diagram

In Figure 3.4, the flow begins when the user launches the application, landing on the Start Page.

From this initial activity, a decision node allows the user to navigate to different sections: the

Main Menu, the Rules page, or the Settings page. If the user selects Rules, the system displays

the game rules, after which the user typically returns to the Start Page. If Settings is chosen,

the user enters a settings configuration flow. Here, they can perform actions such as enabling

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

or disabling sound effects and background music. A conditional flow exists for background

music: if enabled, the user is presented with three options to choose from. After adjusting

settings, the user can navigate back to the Start Page or Main Menu.

Should the user navigate to the Main Menu (either from the Start Page or Settings), they engage

in game setup activities. These include selecting the choosing the Computer Difficulty (Easy,

Medium, or Hard – a critical input that alters subsequent AI behaviour), selecting the Board

Size, and picking a Theme Colour (default, light, or blue). Once these parameters are set, the

flow transitions to initializing and starting the game on the Game Page. Options to return to the

Start Page or access Settings directly from the Main Menu would also be available.

The core Gameplay activity begins with setting up the board and defining the initial game state.

This leads into a loop that continues until game-end conditions are met. Inside the loop, a

decision point determines whose turn it is: Human Player or AI Player.

If it's the Human Player's turn, the UI enables input, allowing the player to select dots to draw

a line. Visual feedback is provided during this action. Upon completion of a valid move, the

system updates the visual state of the board and plays a sound effect (if enabled). Following

this, the system "Checks for Completed Squares." If a square is completed, the human player's

score is updated, and they get another turn (looping back to the start of their turn). If no square

is completed, the turn switches to the AI Player.

The process for the AI Player's turn begins with the disabling of human input. The system then

retrieves the current state of the board and initiates the AI's move determination process. This

is a sophisticated sub-activity where the Minimax algorithm plays a central role. The AI defines

and utilizes a Minimax function, which is enhanced by Alpha-Beta pruning and various

heuristics. This function evaluates potential actions with the dual goals of maximizing the AI's

score while simultaneously minimizing the opponent's score. The precise manner in which this

evaluation and move selection occurs varies significantly based on the difficulty level chosen

by the user.

For the Easy Difficulty setting, the AI employs a Fixed-Depth Minimax search, exploring the

game tree to a relatively shallow depth of 2 plies. This search is augmented by several

techniques to improve efficiency and decision quality, including a transposition table to store

and recall evaluations of previously encountered board states, a killer move heuristic to

CHAPTER 3

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

prioritize moves that have proven effective elsewhere in the search, and a quiescence search to

ensure more stable evaluations in volatile positions. Notably, at this level, iterative deepening

and primary time management strategies are not utilized.

When set to Medium Difficulty, the AI performs a more extensive Fixed-Depth Minimax

search, extending its analysis to 4 plies. It continues to use the same set of enhancements as the

Easy level, such as the transposition table, killer move heuristic, and quiescence search. Similar

to the Easy setting, iterative deepening and primary time management are not key components

of its decision-making process at this difficulty.

At the Hard Difficulty level, the AI utilizes a more advanced Iterative Deepening Minimax

approach, allowing it to search progressively deeper, potentially up to 10 plies, within the

constraints of an allotted time for its turn. This strategy is heavily supported by a transposition

table, the killer move heuristic, and a quiescence search. The AI also simulates potential moves

on internal copies of the board state to assess their consequences before committing to the best

one. Once the AI's move is selected, the system updates the user interface to reflect this action,

plays a sound effect (if enabled), and then proceeds to update the game state and check for any

completed squares. In a manner identical to the human player's turn, if the AI successfully

completes one or more squares, its score is updated, and it is granted another turn. If no square

is completed, the turn transitions back to the Human Player.

After each turn, regardless of the player, the system will check for game end conditions. If the

game is not over, the gameplay loop continues. If game end conditions are met (e.g., all squares

are filled), the system determines the winner (Win, Loss, or Tie), displays a game over message,

and disables further interaction with the game board. From this end state, the user can select

options such as "Reset Game" (restarting with current settings) or "Return to Main Menu."

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 4: System Design

4.1 System Block Diagram

Figure 4.1 Simple Overall diagram

In Figure 4.1, the user interface of the application is designed to facilitate seamless navigation

between various sections, ensuring an intuitive experience for users. At the forefront is the Start

Page, which serves as the initial entry point. From this page, users can access three key areas:

the Main Menu, Rules, and Settings.

Navigating to the Main Menu allows users to explore further options within the application.

This menu not only provides a pathway back to the Start Page but also leads to the Game Page,

where the core gameplay takes place. Additionally, users can return to the Settings from the

Main Menu, enabling them to adjust their preferences before diving into the game.

The Rules section is accessible directly from the Start Page, providing users with essential

information about how to play the game. Once users have familiarized themselves with the

rules, they can easily return to the Start Page to continue exploring the application.

The Settings area offers flexibility, allowing users to navigate back to the Start Page or Main

Menu. This ensures that users can make adjustments to their preferences without losing their

place within the application.

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

Finally, the Game Page is designed for active gameplay, but users can also access the Settings

from here or return to the Start Page. This interconnected structure enhances user experience

by providing multiple pathways for navigation, making it easy for users to switch between

different sections based on their needs.

In summary, the application’s user interface is thoughtfully structured to provide a fluid

navigation experience, allowing users to move effortlessly between the Start Page, Main Menu,

Rules, Settings, and Game Page. This design not only promotes ease of use but also encourages

users to engage fully with the application.

Figure 4.2 Settings page diagram

In Figure 4.2, one of the primary features in Settings is the option to enable or disable sound

effects. When the sound effects are turned on, users will hear auditory feedback during

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

gameplay and operations, enriching their interaction with the game. Conversely, if the sound

effects are turned off, these auditory cues will not play, allowing for a quieter experience that

some users may prefer.

In addition to sound effects, the Settings also allow users to control background music. Users

can choose to have the background music play when it is enabled, providing an engaging

atmosphere that complements the gameplay. However, if a user opts to turn off the background

music, it will not play, ensuring that the gaming experience remains tailored to their

preferences.

In conclusion, the Settings section plays a crucial role in personalizing the user experience by

offering flexible audio options. Whether users prefer a fully immersive soundscape or a more

subdued atmosphere, the ability to customize sound settings ensures that every player can enjoy

the game in their unique way.

Figure 4.3 Main Menu diagram

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

In Figure 4.3, the Main Menu of the application features several interactive elements designed

to enhance gameplay by allowing users to customize their gaming experience. Among these

elements are the combo boxes for selecting the theme colour, computer difficulty, and board

size, each of which plays a crucial role in shaping how the game unfolds.

The Theme option enables users to determine the colour of the board in the game. Users can

select from various configurations, including default, light and blue colour. This flexibility

allows for a tailored gaming environment that can accommodate different preferences.

In conjunction with player selection, users can also set the Computer Difficulty. This feature

is particularly important for those who opt to include computer players in their games. By

choosing the appropriate difficulty level, users can ensure that the computer opponents provide

a suitable challenge. Whether a user is a novice seeking a more relaxed experience or an

experienced player looking for a formidable adversary, this setting allows for a balanced and

enjoyable gameplay experience.

Additionally, the Board Size selection allows users to customize the scale of the game.

Depending on the complexity and length of the game they desire, users can choose from various

board sizes. A larger board may offer more strategic possibilities and a longer gameplay

duration, while a smaller board can lead to quicker matches and more immediate action.

In summary, the Main Menu’s options for theme colour, computer difficulty, and board size

are integral to creating a tailored gameplay experience. By providing these choices, the

application ensures that every player can engage with the game in a way that suits their style

and preferences, ultimately leading to a more satisfying and immersive gaming experience.

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

Figure 4.4 Game page diagram

In Figure 4.4, the Game Page System Block Diagram illustrates the flow of gameplay and the

interaction between the human player and the computer AI. The process initiates with the user

navigating to the "Game Page," which triggers the "Start Play" state. This involves "Game State

Management," where the initial board configuration is set up, and the game begins. The

diagram clearly delineates the turn-based nature of the game, branching into "Human Player"

and "Computer Player" turns.

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

During the "Human Player" turn, the user interacts with the UI to "Draw Line." This action

leads to "Update Game State (Board, Score)," where the game board is visually updated with

the drawn line, and the scoreboard is potentially updated. Following this, the system "Check

for Completed Squares." If squares are completed ("Yes" branch), the "Get scores" block is

activated to award points to the human player, and the flow returns to "Check for Completed

Squares" to see if any further squares were completed by the same move, adhering to the game

rule that a player continues their turn if they complete a square. If no squares are completed

("No" branch), the turn switches to the "Computer Player." After checking for completed

squares (regardless of whether any were completed), the system proceeds to "Check Game

Over." If the game is over ("Yes" branch), the "Game Over" state is reached, and the "Display

Game Result" is shown before offering the option to "Reset Game," which likely takes the user

back to a state where a new game can be started, possibly from the Main Menu. If the game is

not over ("No" branch), the turn switches to the appropriate player ("Switch Turn to human"

or "Switch Turn to AI").

The "Computer Player" turn involves the "Minimax Algorithm" to "Determine Best Move."

The diagram highlights several techniques that enhance the Minimax algorithm's performance

and decision-making. "Alpha-beta pruning" improves performance by efficiently searching the

game tree, reducing the number of nodes to evaluate. A "transposition table" enhances speed

by storing and reusing evaluations of previously encountered game states, avoiding redundant

computations. The "killer move heuristic" further improves performance by prioritizing moves

that have historically led to cutoffs in the search tree, making the search more efficient.

"Quiescence search" ensures more stable evaluations in dynamic situations, particularly near

the end of capture sequences, by extending the search beyond the regular depth limit for

potentially volatile moves. Finally, "Heuristic evaluation" guides the evaluation of board

positions, providing a score for non-terminal states that the Minimax algorithm uses to compare

different moves. After the AI determines its best move, the game state is updated ("Update

Game State (Board, Score)"), and the system checks for completed squares, similar to the

human player's turn, before checking for game over and switching turns if necessary. The

"Scoreboard" element is shown to interact with both human and computer turns by "Update

scores" and also "Stores player scores." The "Back to Main Menu" option provides a way to

exit the current game and return to the application's main navigation.

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

4.2 System Components Interaction Operations

The Dots and Boxes application features several interconnected components that work together

to deliver the game experience. The user's journey begins at the Start Page, which acts as a

central hub, providing access to the Main Menu, Rules, and Settings. Navigation between these

sections is seamless, allowing users to move back and forth intuitively. From the Start Page, a

user can delve into the Rules to understand the game mechanics and then return to the Start

Page. Alternatively, they can enter the Settings to customize their preferences, such as enabling

or disabling sound effects and background music, and selecting from three background music

options. Within the Settings, users can navigate to the Game Page, the Start Page, or the Main

Menu, offering flexibility in adjusting configurations. The Main Menu itself presents options

to return to the Start Page, proceed to the Game Page to start playing, or revisit the Settings.

Crucially, the Main Menu also allows users to customize their gameplay experience by

selecting the computer's difficulty level (easy, medium, hard), choosing the board size, and

setting the theme colour from default, light, and blue.

The core gameplay unfolds on the Game Page. Initially, the game board is set up, and the game

enters the turn-based phase. The GamesPage.xaml.cs file is instrumental in managing the user

interface and game flow on this page. It dynamically generates the visual representation of the

board, including dots, initially hidden lines, and transparent squares, based on the grid size

received from the Main Menu. It also initializes an instance of the AIPlayer.cs based on the

selected difficulty level. Human players interact with the board by clicking and dragging

between adjacent dots to draw lines. The GamesPage.xaml.cs handles these pointer events,

providing visual feedback during the drag operation. Upon completing a valid move, the

corresponding line becomes visible, its colour changes, and a sound effect plays. The system

then checks if any squares have been completed. If so, the square's appearance is updated, the

human player's score increases, and they get another turn. If no square is completed, the turn

switches to the AI player.

When it's the AI's turn, the GamesPage.xaml.cs disables human input and retrieves the current

visual state of the board, passing it to the AIPlayer.cs. The AIPlayer.cs then employs its internal

logic, based on the selected difficulty, to determine the best move using the Minimax algorithm,

potentially enhanced with alpha-beta pruning, a transposition table, a killer move heuristic, and

quiescence search. For the "hard" difficulty, it also uses iterative deepening with time

CHAPTER 4

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

management. This calculation is performed asynchronously to prevent UI freezes. Once the

AIPlayer.cs returns the chosen move, the GamesPage.xaml.cs updates the UI, accordingly,

drawing the AI's line, playing a sound, and again checking for completed squares, updating

scores and turns as necessary. The game continuously monitors for game end conditions by

comparing the total score to the number of available squares. Upon game completion, a

message indicating the winner (or a tie) is displayed, and further interaction with the board is

disabled. Additionally, the Game Page includes a menu button that allows the player to reset

the current game or return to the Main Menu, and it also manages background video playback

and applies visual themes based on the settings.

The AIPlayer.cs component encapsulates the artificial intelligence logic. It receives the current

board state from the GamesPage.xaml.cs and returns the AI's chosen move. The complexity of

the AI's decision-making process varies significantly based on the difficulty level. On the

"easy" setting, the AI performs a shallow, fixed-depth (2 plies) Minimax search with alpha-

beta pruning, a transposition table, move ordering, killer moves, and a quiescence search for

immediate captures. The "medium" difficulty extends the fixed-depth search to 4 plies,

leveraging the same optimization techniques more extensively. The "hard" difficulty employs

a more sophisticated iterative deepening Minimax approach, progressively increasing the

search depth within a given time limit (time management), and utilizes alpha-beta pruning, a

transposition table, move ordering, killer moves, and quiescence search. The AI's evaluation

function considers the score difference, penalizes moves that create immediate opportunities

for the opponent, and discourages moves that lead to chains of two-sided boxes. Throughout

all difficulty levels, the AI simulates potential moves on internal copies of the board to predict

their outcomes without affecting the actual game state displayed on the Game Page.

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 5: System Implementation

5.1 Software Setup

The foundation of this project rests upon a carefully selected suite of software tools and

platforms, each chosen for its specific strengths in facilitating modern application development.

This setup is designed to ensure a streamlined workflow, robust functionality, and a high-

quality end-user experience. The core components include a state-of-the-art integrated

development environment, a versatile and powerful programming language, a comprehensive

development framework for Windows applications, and a declarative markup language for

crafting the user interface.

5.1.1 Visual Studio 2022

Visual Studio 2022 that furnishes the necessary tools for developing, debugging, and testing

Universal Windows Platform (UWP) applications using C# [22]. It is widely recognized for its

extensive array of features specifically designed for Windows app development, which include

a user-friendly interface, sophisticated debugging tools, and integrated support for multiple

programming languages [22].

Visual Studio 2022 is relevant to projects as it facilitates the seamless integration of diverse

development components, encompassing both front-end (UI) and back-end elements like game

logic and AI [22]. Its integrated XAML designer is crucial for crafting the graphical interface

for applications such as a "Dots and Boxes" game, offering drag-and-drop capabilities for

arranging the layout and visual components [22]. Furthermore, the debugging feature is

instrumental in identifying and resolving errors during runtime, which ensures the proper

functioning of AI logic and that the game operates as anticipated [22]. The IDE also

incorporates version control and collaboration tools, simplifying the process of tracking code

modifications and providing rollback options [22]. Additionally, Visual Studio offers robust

testing environments for UWP applications, enabling the game to be evaluated across various

device form factors and screen dimensions, such as desktops and tablets [22].

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

5.1.2 C# Programming Language

C# is a contemporary, object-oriented programming language developed for constructing a

diverse range of applications, such as games, desktop applications, and web services, among

others [24]. As a component of the Microsoft .NET ecosystem, it is particularly well-suited for

Windows app development [24].

The relevance of C# to a project, such as developing a "Dots and Boxes" game, is multifaceted.

It is utilized for scripting the game logic, including the rules of "Dots and Boxes," and for

implementing algorithms like minimax. The language's structured methodology and inherent

support for recursion make it an excellent choice for managing the recursive characteristics of

the minimax algorithm [25]. Furthermore, C#'s extensive graphics libraries, for instance,

DirectX for UWP, are instrumental in generating fluid animations, drawing lines between dots,

and visually emphasizing completed squares [23]. The event-driven programming paradigm of

C# is vital for processing user inputs, like clicks on dots, and for initiating AI responses in real-

time [26]. Additionally, C#'s memory management capabilities ensure that the game operates

efficiently, thereby preventing memory leaks or performance degradation as the game unfolds

[23].

5.1.3 Universal Windows Platform (UWP)

The Universal Windows Platform (UWP) serves as a development framework that empowers

developers to build applications capable of running on all Windows devices, such as desktops,

tablets, Xbox, and HoloLens, using a singular codebase [27]. This framework streamlines

cross-device compatibility, guaranteeing that the application can scale and operate optimally

on any device [27].

UWP's relevance to a project is significant as it facilitates the creation of a responsive interface

that adjusts to varying screen sizes and resolutions, thereby maintaining a consistent user

experience across different devices [27]. It offers native API access to Windows functionalities

like graphics, touch input, and device capabilities, which are utilized for managing user

interactions such as clicking on dots and drawing lines [27]. The platform also supports XAML,

a declarative language for defining UI elements, simplifying the design and modification of the

game's visual interface [27]. Moreover, its inherent cross-device compatibility allows the game

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

to be played on diverse Windows devices without the necessity for separate codebases for each

platform [27]. UWP also includes built-in support for animations and transitions, which are

crucial for delivering smooth visual feedback when lines are drawn, or squares are completed

[23].

5.1.4 XAML (Extensible Application Markup Language)

XAML, an XML-based declarative language, is utilized in the Universal Windows Platform

(UWP) to design and define the user interface (UI) of applications [28]. It facilitates the

separation of UI design from business logic, thereby simplifying the management of intricate

UI layouts and the customization of visual elements [28].

The relevance of XAML to a project is demonstrated through its capacity to enable developers

to construct interactive and visually engaging interfaces without the need for complex coding

for layout and design [28]. Specifically, it will be employed to delineate the layout of the "Dots

and Boxes" grid, display player scores, and indicate AI status [28]. Furthermore, XAML's

support for data binding permits real-time updates of the game's state, such as the count of

completed squares, to be mirrored in the UI automatically [28]. The animations and visual

transitions inherent in XAML will also serve to enrich the user experience by delivering fluid

feedback during gameplay, including highlighting completed squares or animating the moves

made by the AI [28].

5.2 Setting and Configuration

This section details the user-configurable aspects of the "Dots and Boxes" application,

illustrating how players can personalize their gaming environment and tailor the gameplay

experience to their preferences. The options available are primarily managed through the

dedicated Settings area and the Main Menu, and visual representations of these interfaces

would be integral to this discussion.

The application offers several audio customization features, accessible through the Settings

interface. A primary feature here is the ability to toggle sound effects. When enabled, users

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

receive auditory feedback during gameplay actions and operational interactions, which can

enrich the interactive experience. Conversely, users who prefer a quieter environment can

disable these sound effects, and the game will operate without these auditory cues.

Complementing this, users also have control over the background music. They can choose to

enable background music, which provides an engaging atmosphere to accompany gameplay.

There are three distinct background music options for the user to select from, allowing for some

variety. If a user opts to disable the background music, it will not play, ensuring the gaming

experience aligns with their individual auditory preferences. In essence, these flexible audio

options allow users to create either a fully immersive soundscape or a more subdued

atmosphere, ensuring that every player can enjoy the game in a way that is most comfortable

for them.

Further customization is available through the Main Menu, where users can adjust several

interactive elements crucial for shaping the gameplay. The "Theme" options allow players to

alter the game's visual appearance, specifically by choosing from three different checkerboard

color schemes: a default option, a light colour scheme, and a blue color scheme. This allows

users to select a visual style that they find most appealing. A significant gameplay configuration

is the "Computer Difficulty" setting. This allows users, particularly when playing against an

AI opponent, to select an appropriate challenge level. Options typically range from easy,

suitable for novices or those seeking a relaxed game, to more formidable levels for experienced

players desiring a significant challenge. This ensures a balanced and enjoyable experience for

a wide range of skill levels. Additionally, users can customize the "Board Size." This selection

directly influences the scale and complexity of the game. Players can choose from various

board dimensions, with larger boards generally offering more strategic depth and longer

gameplay, while smaller boards lead to quicker matches and more immediate tactical decisions.

In summary, the Setting and Configuration options for theme colour, computer difficulty, board

size, sound effects, and background music are integral to providing a tailored and user-centric

gameplay experience. By offering these choices, the application empowers players to engage

with the "Dots and Boxes" game in a manner that best suits their individual style, preferences,

and desired level of challenge, ultimately fostering a more satisfying and immersive

interaction.

5.3 System Operation (with Screenshot)

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

This section provides a comprehensive walkthrough of the Dots and Boxes application's

operation to illustrate the user's journey from launching the game to engaging in gameplay

against the AI. The operational flow is designed to be intuitive, supported by a clear user

interface and a robust backend implementing the Minimax algorithm. Screenshots will be

referenced throughout to visually guide the description.

Figure 5.1 Start Page

Upon launching the application, the user is greeted by the Start Page, as depicted in Figure 5.1.

This page serves as the initial entry point and presents a clean, welcoming interface.

Prominently displayed is the game's title, "DOTS & BOXES," establishing the application's

identity. Below the title, a "Play Game" button invites the user to proceed to the main game

setup. Additionally, the icons typically representing "Rules" and "Settings" (as suggested by

the book icon in the top left and a settings icon in the top right of the provided screenshot for

Figure 5.1) offer direct access to these respective sections. This design ensures that users can

immediately understand the primary action (to play the game) or choose to learn more about

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

the game or configure preferences before starting. The overall aesthetic is shown in the

screenshot with its vibrant background, which aims to be engaging.

Figure 5.2 Rules Page

If the user navigates to the Rules section, likely by clicking a dedicated icon on the Start Page,

they are presented with the Rules Page, illustrated in Figure 5.2. This page is designed to

provide players with all the necessary information regarding how to play Dots and Boxes. The

screenshot shows two main sections: "HOW TO PLAY," offering a concise list of steps and a

more detailed "RULES" section, which elaborates on aspects like game setup, turn-taking,

scoring (completing a box to earn a point and another turn), and the end-game condition (all

lines drawn, player with the most squares wins). The layout is clear and legible, facilitating

easy understanding. A back arrow icon visible in the top-left corner of the screenshot allows

the user to conveniently return to the previous page, likely the Start Page, after familiarizing

themselves with the game's mechanics.

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Figure 5.3 Settings Page

The Settings Page, shown in Figure 5.3, is accessible from the Start Page and potentially the

Main Menu, allowing users to customize their audio experience. This page plays a crucial role

in personalizing the application. As seen in the screenshot, users are presented with clear

options: "Sound Effects" can be toggled "ON" or "OFF," enabling or disabling auditory

feedback during gameplay and operations. Similarly, "Background Music" can be turned "ON"

or "OFF." Below these toggles, if background music is enabled, users can "Select Music" from

a list of options (Music 1, Music 2 and Music 3 are shown as radio button choices). This allows

users to tailor the game's ambiance to their preference, whether they enjoy an immersive

soundscape or a quieter session. A back arrow icon is again present for easy navigation.

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Figure 5.4 Main Menu Page

Navigating from the Start Page (e.g., by clicking "Play Game") or returning from other sections

like Settings (if accessed from the Main Menu) leads the user to the Main Menu Page depicted

in Figure 5.4. This page is central to configuring the upcoming game. The screenshot shows

several interactive elements: a "Theme" dropdown allows users to select from different visual

styles for the game board (e.g., "Default," with other options like Light and Blue as per your

description). Crucially, users can set the "Computer Difficulty" via another dropdown (shown

as "Easy," with options for Medium and Hard implied). This setting directly influences the AI's

playing strength. A "Board Size" dropdown allows users to customize the dimensions of the

game grid, affecting the game's length and complexity. Once these preferences are set, the user

clicks the prominent "Start" button to commence gameplay. Icons for returning (back arrow)

and accessing settings are also visible, providing flexible navigation.

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Figure 5.5 Gameplay and AI Operation

Proceeding to the gameplay screenshots (Figure 5.5), it's important to outline the core

operations that occur once the "Start" button on the Main Menu is pressed. The application

transitions to the Game Page. Here, the initial steps involve setting up the game board according

to the selected size and entering the game phase where players take turns. The system maintains

a clear definition of the game state, which includes all drawn lines, the current player's turn,

and completed squares – this is crucial for the Minimax algorithm.

The AI's decision-making, managed by AIPlayer.cs, then comes into play. This involves

implementing the Minimax algorithm to evaluate potential moves by simulating outcomes.

This core algorithm is enhanced with Alpha-Beta pruning and heuristics to improve efficiency.

The process involves defining the minimax function to recursively evaluate game states,

checking for terminal conditions (win/lose/draw). The AI evaluates actions to maximize its

own score and minimize the opponent's score. Based on this evaluation, an action is generated,

and the game state is updated. The GamesPage.xaml.cs file manages this user interface, game

flow, player interaction (handling human clicks/drags to draw lines, providing visual

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

feedback), dynamically generating the UWP UI elements for the board (dots, lines, squares),

and managing turns between the human and AI. It invokes the AI's GetBestMove method

asynchronously to keep the UI responsive and updates the visual state based on the AI's or

human's move, including scores and highlighting completed boxes. The game continuously

checks for end conditions.

Figure 5.6 Easy Level Play

Figure 5.6 showcases an example of gameplay at the "Easy" difficulty level. The screenshot

displays the game board, likely at or near the end of a game, with dots, lines drawn by both

players (distinguished by colour, e.g., red and blue), and completed squares filled in. Player

scores are visible at the bottom ("Human: 9 | Computer: 7" in the example screenshot), along

with a game outcome message ("Human Wins!"). During gameplay on Easy, the AI uses a

Fixed-Depth Minimax search, exploring only 2 plies ahead. While it employs Alpha-Beta

Pruning, a Transposition Table, Move Ordering, Killer Moves, and Quiescence Search for

efficiency and basic tactical stability, its limited foresight makes it a more predictable and less

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

challenging opponent, suitable for novice players. Iterative deepening is not used, and time

management is not a primary constraint due to the shallow search.

Figure 5.7 Medium Level Play

Figure 5.7 presents a scenario from a game played on "Medium" difficulty. Like the previous

figure, it shows the game board, scores ("Human: 7 | Computer: 9" in this example), and a

game outcome ("Computer Wins!"). The AI's operation at this level is more sophisticated. It

uses a Fixed-Depth Minimax search extended to 4 plies. This deeper lookahead allows the AI

to understand more complex tactical situations and make more deliberate short-term plans.

Alpha-Beta Pruning becomes more critical here to manage the larger search space. The

Transposition Table, Move Ordering, and Killer Moves continue to enhance efficiency and

decision quality. The Quiescence Search remains crucial for stable evaluations at the search

horizon. However, like the Easy level, Iterative Deepening is not employed, and the search

depth is fixed. This AI provides a noticeably greater challenge than the Easy level.

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Figure 5.8 Hard Level Play

Figure 5.8 illustrates gameplay against the AI at its most challenging "Hard" difficulty setting.

The screenshot again shows the game board, scores ("Human: 2 | Computer: 14"), and a game

outcome ("Computer Wins!"), potentially with a more decisive victory for the AI. At this level,

the AI employs its most advanced strategy: Iterative Deepening Minimax. It starts with a

shallow search and progressively increases the depth (up to a maximum of 10 plies), using the

best move found from the deepest completed iteration. This adaptive search is governed by

Time Management, ensuring the AI makes a move within a reasonable timeframe. Alpha-Beta

Pruning is indispensable, and the Transposition Table becomes extremely powerful, leveraging

information from shallower searches. High-quality Move Ordering and Killer Moves are

crucial for maximizing the search depth achievable within the time limit. A Quiescence Search

is applied at the leaf nodes of each iteration. This dynamic and potentially much deeper

analytical approach allows the AI to understand complex long-term strategies, making it a

formidable opponent.

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Throughout these gameplay stages (Figures 5.6-5.8), the GamesPage.xaml.cs ensures that

player inputs are handled, the board is updated visually (lines drawn, squares coloured, scores

incremented), sound effects are played (if enabled) and turns alternate correctly. The menu icon

visible in the top-left corner of the game screen likely provides options to reset the game or

return to the Main Menu.

In summary, the system's operation is characterized by a well-structured user interface that

guides the user from initial setup to engaging gameplay. The core of the application lies in its

AI, driven by the Minimax algorithm and its enhancements, providing varying levels of

challenge corresponding to the selected difficulty. All is visually represented on the game board

and through clear feedback to the user.

5.4 Implementation Issues and Challenges

This part reflects on the practical difficulties and obstacles encountered during the development

of the Dots and Boxes game, alongside the strategies and solutions employed to overcome

them. The implementation of a game featuring a sophisticated AI, a dynamic user interface and

various customization options invariably presents a unique set of challenges.

A primary area of technical challenge revolved around the correct and efficient implementation

of the Minimax algorithm, particularly with its enhancements. Ensuring the logical correctness

of the recursive Minimax function and the conditions for Alpha-Beta pruning was paramount,

as subtle errors here could lead to significantly suboptimal AI play. Debugging these recursive

algorithms required meticulous attention to detail, possibly involving logging AI decision paths

or visualizing parts of the search tree. Developing an effective heuristic evaluation function for

the AI also posed a considerable challenge. This involved carefully balancing various factors,

such as the current score difference, penalizing moves that create immediate scoring

opportunities for the opponent (like leaving three sides of a box open) and discouraging the

creation of long, unfavorable chains of boxes with two sides. Fine-tuning the weights and logic

of this heuristic function to produce intelligent and human-like behavior across different game

situations was an iterative process. Furthermore, implementing advanced techniques like

transposition tables (managing cache efficiently and handling hash collisions), killer move

heuristics, and quiescence search (defining "volatile" positions accurately) added layers of

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

complexity that needed careful design and testing. For the "Hard" difficulty, integrating

iterative deepening with effective time management that can ensure the AI made strong moves

within an acceptable timeframe, which adjusted based on grid size, was a specific optimization

challenge.

Managing the game state efficiently and accurately was another significant hurdle. The Dots

and Boxes game requires frequent updates to the board, scores and turn information. For the

AI to simulate potential moves, game states often need to be cloned. Doing this without

incurring substantial performance overhead, especially with larger board sizes or deeper search

depths, was a critical consideration. Correctly implementing the turn-taking logic, especially

the rule that allows a player to take another turn after completing a square, required careful

state management to prevent errors in game flow.

From a User Interface and User Experience perspective, developing the game within the UWP

framework using C# and XAML presented its own set of challenges. Dynamically generating

the game board on a XAML canvas, including the dots, lines (initially hidden and then made

visible), and rectangles for completed squares and ensuring it scaled correctly for different

board sizes demanded precise layout and rendering code. A major concern was maintaining a

responsive UI, especially when the AI was performing its computations. This was addressed

by invoking the AIPlayer's GetBestMove method asynchronously, as detailed in the

GamesPage.xaml.cs description, preventing the UI from freezing. Handling human player

input smoothly, such as clicking and dragging to draw lines between dots and providing

immediate visual feedback like dot highlighting and preview lines, also required careful event

handling and UI updates. Implementing the different visual themes and ensuring consistent

application across game elements, as well as integrating and managing the state of sound effects

and background music (including selection persistence), added to the UI development

workload.

The debugging process for a game involving AI can be particularly intricate. Beyond typical

code errors, identifying why an AI makes a suboptimal move or behaves unexpectedly requires

insight into its decision-making process. This might have involved creating specialized

debugging tools or extensive logging to trace the AI's evaluation of different game branches.

Testing the AI thoroughly across a multitude of game scenarios and for each difficulty level

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

was essential to validate its effectiveness and to ensure that the difficulty scaling felt

appropriate and fair to the player.

Finally, achieving the right balance for the AI difficulty levels ("Easy," "Medium," and "Hard")

was a significant design and implementation challenge. This involved not just setting different

search depths (2 plies for Easy, 4 for Medium, iterative deepening up to 10 for Hard) but also

potentially adjusting heuristic evaluation parameters or the application of certain advanced

techniques (like the stringency of time limits for Hard) to ensure a distinct and progressively

challenging experience for the player. This often requires extensive play-testing and iterative

refinement.

Overcoming these challenges involved a combination of careful algorithm design, robust

coding practices, thorough testing and an iterative approach to development, particularly in

refining the AI's behaviour and the overall user experience.

5.5 Concluding Remark

Process of transforming the conceptual design of the "Application of Minimax Algorithm in

Dots and Boxes Game" into a functional and interactive software system. It has covered the

meticulous software setup, the array of user-configurable settings and options, a walkthrough

of the system's operational flow from the user's perspective and a candid discussion of the

implementation issues and challenges encountered along with their resolutions. The journey

from design to a tangible product has been both challenging and rewarding, culminating in a

system that effectively brings the classic game of Dots and Boxes to life with an intelligent AI

opponent.

The key achievements of this implementation phase are noteworthy. A fully playable Dots and

Boxes game has been successfully developed, featuring a robust AI opponent powered by the

Minimax algorithm. This AI is not monolithic, it incorporates varying difficulty levels (Easy,

Medium, and Hard), achieved through sophisticated techniques such as adjustable search

depths, Alpha-Beta pruning, transposition tables for caching results, killer move heuristics for

prioritizing promising moves, quiescence search for more accurate evaluation in volatile

positions, and even iterative deepening with time management for the highest difficulty.

Furthermore, the application boasts a user-friendly interface, designed with intuitive navigation

CHAPTER 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

between the Start Page, Main Menu, Rules, Settings and the Game Page itself. Users are

provided with significant control to personalize their experience through customizable game

board themes, board sizes and comprehensive audio settings, including sound effects and a

selection of background music tracks. The successful integration of these features underscores

the practical realization of the project's design specifications.

Reflecting on the initial objectives, the implemented system effectively demonstrates the

application and potency of the Minimax algorithm within the context of a strategic board game

like Dots and Boxes. The varying AI behaviours across different difficulty settings clearly

showcase the algorithm's capability to make intelligent decisions and provide a challenging

experience. The development of the AI, from its core logic in AIPlayer.cs to its interaction with

the game environment managed by GamesPage.xaml.cs serves as a practical testament to the

algorithm's utility in game development.

The overall implementation process can be regarded as a success, having navigated numerous

technical and design challenges to deliver a complete and engaging application. The

development journey has provided invaluable insights into game AI development, user

interface design for interactive applications within the UWP framework and the practical

aspects of integrating complex algorithms with a user-facing front end. Key lessons learned

include the critical importance of modular design for managing complexity, the necessity of

asynchronous programming for maintaining UI responsiveness during intensive computations

like AI decision-making and the iterative nature of refining AI heuristics and balancing

difficulty levels through rigorous testing and observation. These takeaways will undoubtedly

prove beneficial for future software development endeavours, particularly those involving

artificial intelligence or interactive game design. This concluding remark signifies the

completion of the system implementation phase, with a functional Dots and Boxes game ready

for evaluation and user engagement.

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 6: System Evaluation And Discussion

6.1 System Testing and Performance Metrics

In this initial section of the evaluation, the comprehensive strategy employed for testing the

"Application of Minimax Algorithm in Dots and Boxes Game" is clearly defined alongside the

specific metrics used to rigorously measure its operational performance, the efficacy of its

artificial intelligence and the overall quality of the user experience. The primary goal of this

testing phase is to validate the application's functionality against its design specifications,

assess the intelligence and challenge posed by its AI across different difficulty levels,

determine its usability from a player's perspective and quantify its technical performance

characteristics.

A multifaceted testing approach was adopted, beginning with Functional Testing. This was

meticulously carried out to ensure all aspects of the game operate as intended. This included

verifying the seamless UI navigation between the Start Page, Main Menu, Rules, Settings and

the Game Page, including all back-and-forth transitions. The correct application of Dots and

Boxes game rules—such as valid line placement, accurate box completion and scoring (one

point per box and an extra turn upon scoring) and adherence to turn-based play—was

thoroughly checked. All customization options available in the settings, including the

application of visual themes, the toggling and selection of sound effects and background music,

the effective switching of AI computer difficulty levels and the correct rendering of different

board sizes were validated. It was also confirmed that the AI makes strategically valid moves

in all game situations and that game termination conditions (win, lose or draw) are detected

and displayed accurately. The functionality of in-game options, such as resetting the current

game or returning to the main menu, was also affirmed.

AI Performance Testing formed a critical component of the evaluation, given the project's

central focus on the Minimax algorithm. This testing was designed to objectively assess the

AI's playing strength, the quality of its decision-making and the distinctness of the challenge

presented by its "Easy", "Medium" and "Hard" difficulty settings. Evaluation methods included

conducting a series of games against human testers with varying levels of experience in Dots

and Boxes. The impact of the different AI techniques implemented such as varied search depths

for fixed-depth Minimax, the efficiency of Alpha-Beta pruning, the utility of transposition

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

tables and killer move heuristics, the strategic considerations of the quiescence search and the

adaptive nature of iterative deepening with time management on the "Hard" level such as was

observed through gameplay outcomes and AI response patterns.

Usability Testing was conducted to evaluate the ease of use and overall user-friendliness of the

application. This involved assessing the intuitiveness of the UI navigation and the logical flow

of interaction from launching the game to completing a match. The clarity of the game rules as

presented on the Rules Page and the ease with which users could understand and operate the

various options in the Settings and Main Menu were key focus areas. The overall user

satisfaction and engagement with the game were also considered, often gathered through direct

observation and feedback from testers.

Finally, technical performance testing addressed non-functional aspects of the application. A

primary focus was measuring the AI's move calculation time, especially for the more

computationally intensive "Medium" and "Hard" difficulty levels and observing how these

times scaled with different board sizes. UI responsiveness was monitored to ensure smooth

visual updates on the game board and to confirm that the application remained interactive and

did not freeze during AI turns, thereby validating the effectiveness of asynchronous AI

processing. Application load times for critical screens and transitions were also noted to ensure

a swift user experience. While not a primary focus for this type of game, general resource usage

(CPU and memory) might be observed during demanding AI calculations to ensure no

excessive consumption patterns.

To quantitatively and qualitatively assess these areas, a precise set of Performance Metrics was

defined. For evaluating AI Strength and Performance, the primary metrics included win/loss/tie

ratios derived from games played against human testers across all three difficulty levels.

Average score differentials in these games were also considered to gauge the decisiveness of

wins or losses. Qualitative feedback from testers regarding the perceived intelligence of the

AI's moves, the challenge posed by each difficulty level and any observable strategic patterns

formed an important part of this assessment. For Technical Performance, metrics included the

average and maximum AI move calculation time (measured in milliseconds or seconds) for

each difficulty level and selected board sizes. UI responsiveness was gauged by ensuring no

noticeable lag or stuttering during gameplay and AI thinking periods. Application load times

for key screens (e.g., from Main Menu to Game Page) were also measured. For Usability,

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

metrics encompass task completion rates for essential user actions (e.g., successfully starting a

game with specific custom settings, changing audio preferences), user satisfaction ratings

(potentially gathered via a simple post-test questionnaire) and the frequency and nature of any

errors or points of confusion encountered by testers. The justification for these testing

methodologies and metrics lies in their collective ability to provide a holistic and robust

evaluation of the Dots and Boxes game, thoroughly covering its core functionality, the

intelligence of its central AI component, its overall user-friendliness and its technical stability

and efficiency.

6.2 Testing Setup and Result

The Testing Setup was designed to ensure a thorough evaluation of the application. Tests were

conducted on standard Windows 10 personal computers, equipped with processors and RAM

typical for running UWP applications, and utilizing the Visual Studio 2022 environment for

debugging and performance monitoring where applicable. The testers were run by developers

and covered a wide range of experience with Dots & Boxes games, from novice players

unfamiliar with the game’s deep strategy to veteran players who could provide a more

challenging benchmark for the AI. For Functional Testing, a comprehensive checklist approach

was adopted. This covered all UI navigation paths (Start Page, Rules Page, Settings Page,

Main Menu Page, and transitions to/from the Game Page), the correct implementation of all

game rules (line drawing, box completion logic, scoring one point per box, awarding an extra

turn upon scoring), the successful application of all user-configurable settings (theme color

changes, sound effect and background music toggling/selection, AI difficulty adjustments and

board size variations) and the accurate detection and display of game termination conditions

(win, loss, or draw). For AI Performance Testing, a key method involved human testers playing

a series of 10 games against the AI at each of its three difficulty levels (Easy, Medium, Hard)

on a standard board size (e.g., 5x5). Additionally, specific tests were conducted on a larger

11x11 board to evaluate AI response times under more computationally intensive conditions.

Usability testing is conducted by testers while interacting with the application, subsequently

evaluating the experience in terms of UI intuitiveness, clarity of game rules, and ease of

configuration settings. Manual testing was the primary method for functional and usability

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

evaluations, while Visual Studio's diagnostic tools and manual timing were utilized for

assessing AI response times.

The results obtained from this multi-faceted testing approach are detailed as follows.

Functional testing verified that all core functionalities of the Dots and Boxes application

operate correctly and align with the design specifications. UI navigation between all screens

was found to be seamless and intuitive. The implementation of game rules, including accurate

line placement, correct box capture and scoring, and the proper awarding of extra turns, was

confirmed. Furthermore, all settings related to themes, audio controls, AI difficulty selection,

and board size customization were fully functional and correctly applied during gameplay. The

game also reliably detected and announced win, loss, or draw conditions.

Regarding AI performance in terms of playing strength, the AI was tested against human

players over 10 games on a standard board size for each difficulty level. On the Easy Level,

human testers achieved 7 wins, experienced 2 losses, and 1 game resulted in a tie. This 70%-

win rate for humans indicates that the Easy AI offers a suitable challenge for beginners,

enabling them to learn game mechanics without being overwhelmed and providing ample

opportunities for success. When facing the Medium AI, human testers secured 4 wins, while

the AI won 5 games, with 1 game ending in a tie. This nearly 50-50 split, where humans won

40% of games and the AI won 50%, suggests a well-balanced difficulty level that provides an

engaging and competitive experience for players with some familiarity with Dots and Boxes.

The Hard AI proved to be a formidable opponent, as human testers won only 2 games while

the AI achieved 8 wins. This 20%-win rate for humans demonstrates the significantly increased

playing strength of the Hard AI, validating the effectiveness of its advanced search techniques,

such as iterative deepening Minimax and its heuristics. Collectively, these results demonstrate

a clear and effective progression in AI playing strength across the three difficulty levels,

successfully aligning with the project's objective of providing varied and appropriate

challenges.

In terms of AI performance related to response time, specific measurements were taken on a

larger 11x11 board to assess how the system performed under a greater computational load.

For the Easy Level on this 11x11 board, the AI's response was consistently "fast", which

implies near-instantaneous moves, ensuring a fluid and uninterrupted experience even on a

larger grid for this introductory difficulty. When the Medium Level AI was tested on the 11x11

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

board, it took "around 2.5 seconds" on average to make a move. This duration is considered

acceptable, maintaining player engagement despite the increased complexity of the board and

the moderately challenging AI. For the Hard Level on the 11x11 board, the AI's move

calculation time averaged "around 4.5 seconds." This response time is reasonable given the

significant increase in the search space on such a large board and the depth of analysis

performed by the iterative deepening Minimax algorithm. It also indicates that the time

management heuristics implemented for the Hard AI are effective in keeping the game playable

within satisfactory time limits. Overall, the observed response times scale appropriately with

the AI's increasing complexity and the board size, ensuring that the game remains interactive

and enjoyable across all configurations.

The usability testing results are feedback from usability testing were predominantly positive.

Testers found the application's navigation to be intuitive and straightforward. The game rules

presented on the Rules Page were deemed clear and easy to understand. Appreciated the range

of customization options in the Settings and Main Menu, particularly the ability to change

themes, control audio, and select difficulty and board size, finding these options easy to access

and configure. Visual feedback during gameplay, such as the drawing of lines, highlighting of

completed squares, and score updates, was well-received and contributed to a positive user

experience. No significant usability issues were reported, suggesting the design effectively

meets user needs for ease of use and engagement.

In analysing these results, it is evident that the Dots and Boxes application has successfully met

its core design and functional requirements. The AI demonstrates a clear differentiation in

playing strength across its difficulty settings, providing both accessible gameplay for novices

and a significant challenge for more experienced players. The system performs efficiently, with

AI response times remaining within acceptable limits for an engaging user experience, even on

larger board configurations.

6.3 Project Challenges

One of the primary strategic challenges was defining the appropriate scope and sophistication

for the Computer Player. While the goal was to implement a robust Minimax algorithm,

determining the optimal set of advanced AI techniques such as transposition tables, killer move

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

heuristics, quiescence search, and iterative deepening for the "Hard" level required a balance

between the ambition for a highly intelligent opponent and the practical constraints of

development time and resources available for a project of this nature. Another significant

strategic consideration was ensuring a distinct and progressive difficulty curve across the

"Easy", "Medium" and "Hard" levels. This was not merely a case of implementing different

search depths but involved considerable iterative tuning of heuristic parameters and AI search

strategies to provide a gameplay experience that was appropriately challenging and engaging

for different user skill levels. The provided win/loss data (Human: 7 Win - 2 loss -1Tie on

Easy, 4 Win – 5 Loss – 1 Tie on Medium, 2 Win – 8 Loss on Hard) suggests this was largely

successful, but achieving this precise balance was a persistent focus.

Resource limitations, primarily in terms of time, were an overarching project challenge. The

available timeframe inevitably influenced the extent to which certain features could be

explored or refined. For instance, while a robust heuristic function was developed (considering

score difference, penalizing opponent's immediate scoring opportunities, and discouraging

two-sided chain creation), further experimentation with more complex heuristic components

or machine learning-assisted tuning might have been pursued with more time.

The learning curve associated with mastering both the theoretical and practical aspects of

advanced game AI development and the intricacies of the UWP platform for creating a polished

application also represented a significant project challenge. Moving beyond a basic Minimax

implementation to effectively integrate and debug techniques like iterative deepening,

sophisticated move ordering and quiescence search required a deep understanding of game tree

search algorithms. Similarly, leveraging the full capabilities of C# and XAML for dynamic UI

generation, asynchronous operations for responsive AI and cross-device compatibility within

UWP demanded a continuous learning effort throughout the project.

Finally, the iterative refinement of the AI's core logic, particularly its heuristic evaluation

function and the specific parameters governing search depth or time limits for different

difficulty levels, was a substantial undertaking. Knowing when a heuristic was "good enough"

or when the balance between AI strength and response time (e.g., Easy level being "fast",

Medium "around 2.5 seconds" and Hard "around 4.5 seconds" on an 11x11 board) was optimal

often involved subjective judgment informed by repeated testing and observation. This iterative

process, while crucial for quality, also had to be managed within the project's scope constraints.

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

These challenges were managed through a combination of careful initial planning, adopting an

agile and iterative development methodology, prioritizing core project objectives and diligently

applying learned knowledge. While most challenges were successfully addressed to deliver a

functional and effective application, the process highlighted the complexities inherent in AI-

driven game development and evaluation.

6.4 Objectives Evaluation

The first project objective was "To develop and implement the core Minimax algorithm as the

decision-making engine for an AI opponent within a Dots and Boxes game." This objective has

been fully met. The core logic of the artificial intelligence is based on the Minimax search

algorithm. The AI opponent demonstrably makes decisions and actively participates in the

game, indicating that the Minimax engine is not only implemented but also functional. The

ability of the AI to play complete games and achieve wins, particularly evident in the Medium

and Hard difficulty levels (where the AI won 50% and 80% of games against human testers,

respectively) provides strong evidence that Minimax serves as an effective decision-making

engine. Furthermore, functional testing confirmed that the AI consistently makes valid moves

within the rules of Dots and Boxes, reinforcing the successful implementation of this core

algorithmic objective.

The second objective was "To integrate performance optimization techniques and variable

difficulty levels into the Minimax AI." This objective has also been comprehensively achieved.

Regarding performance optimization, Alpha-Beta pruning, a significant enhancement to the

basic Minimax algorithm was explicitly implemented. Beyond this, several other advanced

techniques were successfully integrated to improve both the efficiency and the strategic

capabilities of the AI. These include the use of transposition tables to cache results of

previously evaluated board states, killer move heuristics to prioritize strategically relevant

moves, and quiescence search to ensure more stable evaluations in volatile capture sequences.

The AI's response times, even on a large 11x11 board (Easy: "fast", Medium: "around 2.5

seconds", Hard: "around 4.5 seconds"), demonstrate that these optimization techniques allow

the AI to perform complex searches within acceptable timeframes, making the game interactive

and enjoyable. In terms of variable difficulty levels, the application successfully implements

"Easy", "Medium" and "Hard" settings, which are user-selectable via the Main Menu. These

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

levels are not superficial. They employ distinct AI strategies, including different fixed search

depths (2-ply for Easy, 4-ply for Medium) and the use of Iterative Deepening Minimax (up to

10 plies with time management) for the Hard level. The AI performance results from testing

validate the effectiveness of this implementation, with win/loss ratios showing a distinct and

progressive increase in AI playing strength from Easy (human win rate 70%) to Medium (AI

win rate 50%) and further to Hard (AI win rate 80%). This confirms that variable and

meaningful difficulty levels, supported by optimized AI, were successfully integrated.

The third objective was "To create a complete, functional and user-friendly prototype of the

Dots and Boxes application incorporating the Minimax AI". This objective has been fully

realized. The developed application constitutes a complete prototype, encompassing all

essential features for a Dots and Boxes game. This includes dynamic board setup based on

user-selected sizes, intuitive mechanics for players to draw lines and complete boxes, accurate

scorekeeping, correct turn management (including awarding extra turns upon scoring), and

reliable detection and announcement of win, loss, or draw outcomes. The functional testing

results, as detailed in section 6.2, confirmed that all these core game functionalities, along with

UI navigation and the application of settings, operate correctly as designed. The Minimax AI

is seamlessly integrated as an opponent. In terms of user-friendliness, the application's interface

with its distinct Start Page, Main Menu, Rules section, and Settings area was designed to

facilitate intuitive navigation. Feedback from usability testing indicated that users found the UI

easy to navigate, the game rules clear, and the available settings (for themes, audio, difficulty

and board size) straightforward to understand and use. Positive reception of visual feedback

during gameplay further attests to the application's user-friendly design. The provision of these

customization options enhances the user experience, allowing players to tailor the game to their

preferences.

In conclusion, based on the comprehensive implementation of features and the supporting

evidence from system testing. All stated project objectives for the "Application of Minimax

Algorithm in Dots and Boxes Game" have been successfully met. The project has delivered a

functional game with an intelligent AI opponent that employs the Minimax algorithm,

incorporates performance optimizations and variable difficulty levels, and is wrapped in a user-

friendly and customizable interface.

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

6.5 Concluding Remark

In concluding this chapter on System Evaluation and Discussion, it is evident that the

"Application of Minimax Algorithm in Dots and Boxes Game" has undergone a thorough

assessment process, yielding significant insights into its functionality, performance and overall

quality. The key findings derived from comprehensive system testing, encompassing functional

verification, AI performance analysis across its varied difficulty levels, usability assessments,

and technical performance measurements, along with the critical evaluation of project

objectives and reflection on inherent project challenges, provide a solid basis for an overall

appraisal of the developed application. The system has been proven to be functionally complete

with all core game mechanics and user interface elements operating as designed. The AI,

powered by the Minimax algorithm and its associated optimizations, demonstrably offers a

progressively challenging experience, as evidenced by the win/loss ratios against human testers

(Human 70% win rate on Easy, AI 50% win rate on Medium, AI 80% win rate on Hard) and

maintains acceptable response times even on larger boards (Easy: fast, Medium: ~2.5s, Hard:

~4.5s on an 11x11 board). Furthermore, usability feedback has affirmed the intuitive nature of

the application's navigation and the clarity of its options.

Considering these comprehensive evaluation outcomes, the project can be confidently assessed

as a success. It has effectively achieved its central aim of developing and implementing a Dots

and Boxes game that not only incorporates a functional Minimax-based AI but also

demonstrates the algorithm's capabilities through varied difficulty levels and optimization

techniques. The main strengths of the developed application lie in its robust AI implementation,

which leverages techniques like Alpha-Beta pruning, transposition tables, killer move

heuristics, quiescence search and iterative deepening to provide a challenging opponent,

particularly at the "Hard" difficulty. The user-friendly interface, characterized by intuitive

navigation across the Start Page, Main Menu, Rules, Settings and Game Page, coupled with a

good degree of customizability through options for themes, audio controls, AI difficulty and

board sizes, significantly enhances the player experience. The functional completeness ensures

that users have access to all essential features of the Dots and Boxes game.

While the evaluation has been largely positive, and no major weaknesses were identified that

impede the core functionality or user experience, it is acknowledged that the pursuit of artificial

intelligence offers limitless scope for advancement. For instance, while the current AI is

CHAPTER 6

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

effective, future iterations could explore even more sophisticated heuristic evaluation functions

or adaptive learning capabilities for a more nuanced and human-like opponent. Performance

on exceptionally large board sizes or with search depths significantly exceeding the current

"Hard" level's 10 plies might also present increasing computational demands, though current

testing has shown robust performance within the designed parameters.

This chapter's evaluation, therefore, encapsulates that the developed Dots and Boxes

application stands as a well-implemented system that successfully meets its stated objectives.

The findings from this evaluation might naturally lead to considerations for future

enhancements, such as the exploration of more advanced AI paradigms, the potential addition

of features like online multiplayer capabilities, an expanded range of customization options, or

even a dedicated tutorial mode to help new players grasp the strategic depths of Dots and

Boxes. Such future work could build upon the solid foundation established by this project.

CHAPTER 7

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 7: Conclusion and Recommendation

7.1 Conclusion

This project successfully achieved its central aim, the development and implementation of a

functional Dots and Boxes game featuring an intelligent Artificial Intelligence (AI) opponent

driven by the Minimax algorithm. The journey involved meticulous design and development,

culminating in a comprehensive application that not only provides engaging gameplay but also

serves as a practical demonstration of AI principles in a classic strategy game context.

Key achievements of this project are multifaceted. A fully playable Dots and Boxes game was

developed, complete with intuitive user navigation across various sections, including the Start

Page, Main Menu, Rules, Settings, and the Game Page. The core of the AI opponent lies in the

robust implementation of the Minimax algorithm. This was significantly enhanced with

performance optimization techniques such as Alpha-Beta pruning, transposition tables to cache

previously evaluated game states, killer move heuristics to prioritize strategically advantageous

moves, and quiescence search to ensure more stable evaluations in dynamic game situations.

Furthermore, the project successfully delivered variable AI difficulty levels—Easy, Medium

and Hard. These levels are not merely superficial adjustments but are characterized by distinct

AI behaviors and search strategies. The Easy level employs a fixed-depth Minimax search of

2 plies, offering an accessible challenge. The Medium level increases this to a 4-ply search,

providing a more thoughtful opponent. The Hard level utilizes a sophisticated Iterative

Deepening Minimax approach, searching up to 10 plies and incorporating time management,

presenting a formidable challenge to experienced players. This progressive difficulty ensures

an engaging experience for a wide range of user skill levels.

The application also boasts a user-friendly interface and a suite of customization options that

enhance the player experience. Users can personalize their game by selecting different visual

themes (default, light and blue), choosing from various board sizes to alter game complexity

and duration, and managing audio settings, including toggling sound effects and selecting from

three background music tracks. The seamless integration of these features, managed by

components like GamesPage.xaml.cs for the UI and game flow, and AIPlayer.cs for the AI

logic, underscores the successful realization of the project's design specifications.

CHAPTER 7

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

Drawing upon the system evaluations, it is evident that the initial objectives of the project have

been comprehensively met. The Minimax algorithm serves as an effective decision-making

engine, the optimization techniques ensure efficient AI operation and the variable difficulty

levels provide a graduated challenge. The creation of a complete, functional and user-friendly

prototype incorporating this AI has been fully realized. The development journey has also

provided valuable insights into the practical application of AI algorithms in game development,

the intricacies of user interface design for interactive experiences, and the balance between AI

sophistication and computational performance. This project stands as a testament to how classic

games can be revitalized and enhanced through the thoughtful application of artificial

intelligence.

7.2 Recommendation

The following recommendations aim to expand the game's capabilities, further refine the

artificial intelligence and enrich the overall user experience.

Further advancements in Artificial Intelligence are a key area for future development. While

the Minimax algorithm with its current heuristics and optimizations provides a strong AI, future

work could involve integrating machine learning. Reinforcement learning, for instance, could

enable the AI to learn and evolve its strategies through self-play, potentially discovering novel

tactics and adapting more dynamically to different opponent styles beyond predefined

heuristics. The current heuristic function, which considers critical factors like score difference

and chain prevention, could also be made more sophisticated. Future iterations could explore

more nuanced heuristic evaluations, possibly incorporating dynamic weighting of game

elements based on the game phase (early, mid, endgame) or more complex pattern recognition

to better assess board positions. To create an even more human-like and challenging AI,

opponent modelling could be introduced, involving the AI attempting to identify patterns or

weaknesses in the human player's strategy during a game and adapting its approach

accordingly.

Expanding features and enriching gameplay also offer significant potential. A major

enhancement would be the introduction of online multiplayer capabilities, allowing users to

compete against friends or other players remotely, thereby greatly increasing the game's replay

CHAPTER 7

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

ability and community engagement. Ensuring a polished local two-player mode, if not already

a core feature, where two humans can play against each other on the same device, would also

be beneficial. Developing an interactive tutorial mode could significantly benefit new players

by explaining basic rules, demonstrating simple tactics, and perhaps even offering insights into

the AI's decision-making process at lower difficulty levels. An advanced strategy guide section

could also be added to help players understand deeper concepts like chain control and

sacrifices. Furthermore, introducing diverse game modes, such as "Challenge Puzzles" with

pre-set board configurations, "Timed Games", or variations on scoring rules, could add

substantial variety.

Enhancing the user experience and customization options is another avenue for improvement.

While the current theme and audio options are good, expanding these further could include a

wider array of visual themes, board styles, or even allowing users to import their background

music. Beyond the existing Easy, Medium and Hard levels, allowing users to create custom AI

profiles by fine-tuning parameters like search depth or specific heuristic weights could appeal

to advanced players seeking a very specific challenge. Implementing game analysis tools, such

as a move history viewer, the ability to undo moves in practice modes, or an option to request

hints from the AI, could improve the learning experience and allow players to analyse their

games more effectively.

Performance and technical refinements should also be considered for future iterations. For

players who enjoy very large board sizes, further optimization of the AI's search algorithms

could be explored, possibly by investigating techniques for more aggressive pruning or even

parallelizing parts of the search process on multi-core processors. While the game is developed

as a UWP application, exploring possibilities for porting it to other platforms, such as the web

or mobile devices, could significantly broaden its reach and accessibility.

By considering these recommendations, the "Application of Minimax Algorithm in Dots and

Boxes Game" can continue to evolve, offering an even more intelligent, engaging, and feature-

rich experience for its users, while also serving as a valuable platform for further exploration

in the domain of game AI.

REFERENCES

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

REFERENCES

[1] Wikipedia contributors, “Dots and boxes,” Wikipedia, May 12, 2024.

https://en.wikipedia.org/wiki/Dots_and_boxes#:~:text=Dots%20and%20boxes%20is%20a,an

d%20pigs%20in%20a%20pen. (Accessed: 04 May 2025)

[2] GeeksforGeeks, “Minimax Algorithm in Game Theory | Set 1 (Introduction),”

GeeksforGeeks, Jun. 13, 2022. https://www.geeksforgeeks.org/minimax-algorithm-in-game-

theory-set-1-introduction/ (Accessed: 04 May 2025)

[3] GeeksforGeeks, “Minimax Algorithm in Game Theory | Set 4 (AlphaBeta Pruning),”

GeeksforGeeks, Jan. 16, 2023. https://www.geeksforgeeks.org/minimax-algorithm-in-game-

theory-set-4-alpha-beta-pruning/ (Accessed: 04 May 2025)

[4] S. Hossain, “Key Problem-Solving Algorithms and Strategies in AI,” Medium, Nov. 23,

2024. [Online]. Available: https://machinelearning4all.com/key-problem-solving-algorithms-

and-strategies-in-ai-d64e665fc1de (Accessed: 04 May 2025)

[5] Wikipedia contributors, “C Sharp (programming language),” Wikipedia, May 04, 2025.

https://en.wikipedia.org/wiki/C_Sharp_(programming_language) (Accessed: 04 May 2025)

[6] “W3Schools.com.”

https://www.w3schools.com/cs/cs_intro.php#:~:text=C%23%20Introduction&text=C%23%2

0is%20pronounced%20%22C%2DSharp,And%20much%2C%20much%20more! (Accessed:

04 May 2025)

[7] Gewarren, “Fundamentals of garbage collection - .NET,” Microsoft Learn.

https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals

(Accessed: 04 May 2025)

[8] GeeksforGeeks, “Garbage collection in C# | .NET Framework,” GeeksforGeeks, Mar. 11,

2025. https://www.geeksforgeeks.org/garbage-collection-in-c-sharp-dot-net-framework/

(Accessed: 04 May 2025)

[9] Gewarren, .“NET garbage collection - .NET,” Microsoft Learn.

https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/ (Accessed: 04 May

2025)

REFERENCES

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

[10] “As a low-level game dev, I consider C# a nearly perfect, wonderful language, tra... |

Hacker News.” https://news.ycombinator.com/item?id=14169152 (Accessed: 04 May 2025)

[11] Stackexchange.com. [Online]. Available:

https://gamedev.stackexchange.com/questions/7/what-are-typical-pitfalls-when-writing-

games-with-a-managed-language-like-c. [Accessed: 04 May 2025].

[12] GeeksforGeeks, “MiniMax Algorithm in Artificial Intelligence,” GeeksforGeeks, Apr. 07,

2025. https://www.geeksforgeeks.org/mini-max-algorithm-in-artificial-intelligence/

(Accessed: 04 May 2025)

[13] GeeksforGeeks, “Minimax Algorithm in Game Theory | Set 4 (AlphaBeta Pruning),”

GeeksforGeeks, Jan. 16, 2023. https://www.geeksforgeeks.org/minimax-algorithm-in-game-

theory-set-4-alpha-beta-pruning/ (Accessed: 04 May 2025)

[14] Wikipedia contributors, “Alpha–beta pruning,” Wikipedia, Apr. 04, 2025.

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning (Accessed: 04 May 2025)

[15] Researchgate.net. [Online]. Available:

https://www.researchgate.net/publication/338855656_INTELLIGENT_AGENTS_FOR_SOL

VING_THE_GAME_DOTS_AND_BOXES (Accessed: 05 May 2025)

[16] Aaai.org. [Online]. Available: https://cdn.aaai.org/ojs/8144/8144-13-11671-1-2-

20201228.pdf (Accessed: 04 May 2025)

[17] “Dots and Boxes | Gametable.org,” Gametable.org. https://gametable.org/games/dots-

and-boxes/ (Accessed: 04 May 2025)

[18] O. Manners, “Dots and boxes.” https://dotsandboxes.org/ (Accessed: 04 May 2025)

[19] Coolmath Games, “Dots and Boxes - Play it Online at Coolmath Games,” Coolmath

Games, May 02, 2025. https://www.coolmathgames.com/0-dots-and-boxes (Accessed: 04 May

2025)

[20] M.-J. Suárez-Barón, H.-J. Rincón-Díaz, C.-D. González-Rodríguez, and J.-S. Gonzalez-

Sanabria, “Linja: a mobile application based on Minimax strategy and game theory,” 2022.

https://www.redalyc.org/journal/4139/413971146003/html/ (Accessed: 05 May 2025)

REFERENCES

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

[21] Analysis of Minimax algorithm using tic-tac-toe. Available at:

https://www.researchgate.net/publication/346813363_Analysis_of_Minimax_Algorithm_Usi

ng_Tic-Tac-Toe (Accessed: 05 May 2025)

[22] “ Universal Windows Platform | Visual Studio,” Visual Studio, May 02, 2023.

https://visualstudio.microsoft.com/vs/features/universal-windows-platform/ (Accessed: 06

May 2025)

[23] Stevewhims, “Windows game development guide - UWP applications,” Microsoft Learn,

Aug. 22, 2024. https://learn.microsoft.com/en-us/windows/uwp/gaming/e2e (Accessed: 06

May 2025)

[24] “ What is C# Programming? A Beginner’s Guide | Pluralsight,” May 13, 2024.

https://www.pluralsight.com/blog/software-development/everything-you-need-to-know-

about-c-#:~:text=What%20is%20C%23 (Accessed: 06 May 2025)

[25] S. Singh, “Recursion in C# - Scaler topics,” Scaler Topics, Nov. 06, 2023.

https://www.scaler.com/topics/csharp/recursion-in-csharp/ (Accessed: 06 May 2025)

[26] Codex, A.C. (2023) Using the event-driven model in .NET C#, Reintech media. Available

at: https://reintech.io/blog/event-driven-model-in-net-c-sharp-tutorial (Accessed: 06 May

2025)

[27] QuinnRadich, “What’s a Universal Windows Platform (UWP) app? - UWP applications,”

Microsoft Learn, Aug. 21, 2024. https://learn.microsoft.com/en-us/windows/uwp/get-

started/universal-application-platform-guide (Accessed: 06 May 2025)

[28] Wikipedia contributors, “Extensible application markup language,” Wikipedia, May 16,

2024, https://en.wikipedia.org/wiki/Extensible_Application_Markup_Language (Accessed:

06 May 2025)

POSTER

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

POSTER

	COPYRIGHT STATEMENT

